NASA Astrophysics Data System (ADS)
Tempeler, J.; Danylyuk, S.; Brose, S.; Loosen, P.; Juschkin, L.
2018-07-01
In this study we analyze the impact of process and growth parameters on the structural properties of germanium (Ge) quantum dot (QD) arrays. The arrays were deposited by molecular-beam epitaxy on pre-patterned silicon (Si) substrates. Periodic arrays of pits with diameters between 120 and 20 nm and pitches ranging from 200 nm down to 40 nm were etched into the substrate prior to growth. The structural perfection of the two-dimensional QD arrays was evaluated based on SEM images. The impact of two processing steps on the directed self-assembly of Ge QD arrays is investigated. First, a thin Si buffer layer grown on a pre-patterned substrate reshapes the pre-pattern pits and determines the nucleation and initial shape of the QDs. Subsequently, the deposition parameters of the Ge define the overall shape and uniformity of the QDs. In particular, the growth temperature and the deposition rate are relevant and need to be optimized according to the design of the pre-pattern. Applying this knowledge, we are able to fabricate regular arrays of pyramid shaped QDs with dot densities up to 7.2 × 1010 cm‑2.
Tempeler, J; Danylyuk, S; Brose, S; Loosen, P; Juschkin, L
2018-07-06
In this study we analyze the impact of process and growth parameters on the structural properties of germanium (Ge) quantum dot (QD) arrays. The arrays were deposited by molecular-beam epitaxy on pre-patterned silicon (Si) substrates. Periodic arrays of pits with diameters between 120 and 20 nm and pitches ranging from 200 nm down to 40 nm were etched into the substrate prior to growth. The structural perfection of the two-dimensional QD arrays was evaluated based on SEM images. The impact of two processing steps on the directed self-assembly of Ge QD arrays is investigated. First, a thin Si buffer layer grown on a pre-patterned substrate reshapes the pre-pattern pits and determines the nucleation and initial shape of the QDs. Subsequently, the deposition parameters of the Ge define the overall shape and uniformity of the QDs. In particular, the growth temperature and the deposition rate are relevant and need to be optimized according to the design of the pre-pattern. Applying this knowledge, we are able to fabricate regular arrays of pyramid shaped QDs with dot densities up to 7.2 × 10 10 cm -2 .
Evaluating focused ion beam patterning for position-controlled nanowire growth using computer vision
NASA Astrophysics Data System (ADS)
Mosberg, A. B.; Myklebost, S.; Ren, D.; Weman, H.; Fimland, B. O.; van Helvoort, A. T. J.
2017-09-01
To efficiently evaluate the novel approach of focused ion beam (FIB) direct patterning of substrates for nanowire growth, a reference matrix of hole arrays has been used to study the effect of ion fluence and hole diameter on nanowire growth. Self-catalyzed GaAsSb nanowires were grown using molecular beam epitaxy and studied by scanning electron microscopy (SEM). To ensure an objective analysis, SEM images were analyzed with computer vision to automatically identify nanowires and characterize each array. It is shown that FIB milling parameters can be used to control the nanowire growth. Lower ion fluence and smaller diameter holes result in a higher yield (up to 83%) of single vertical nanowires, while higher fluence and hole diameter exhibit a regime of multiple nanowires. The catalyst size distribution and placement uniformity of vertical nanowires is best for low-value parameter combinations, indicating how to improve the FIB parameters for positioned-controlled nanowire growth.
Coen, Enrico; Rolland-Lagan, Anne-Gaëlle; Matthews, Mark; Bangham, J. Andrew; Prusinkiewicz, Przemyslaw
2004-01-01
Although much progress has been made in understanding how gene expression patterns are established during development, much less is known about how these patterns are related to the growth of biological shapes. Here we describe conceptual and experimental approaches to bridging this gap, with particular reference to plant development where lack of cell movement simplifies matters. Growth and shape change in plants can be fully described with four types of regional parameter: growth rate, anisotropy, direction, and rotation. A key requirement is to understand how these parameters both influence and respond to the action of genes. This can be addressed by using mechanistic models that capture interactions among three components: regional identities, regionalizing morphogens, and polarizing morphogens. By incorporating these interactions within a growing framework, it is possible to generate shape changes and associated gene expression patterns according to particular hypotheses. The results can be compared with experimental observations of growth of normal and mutant forms, allowing further hypotheses and experiments to be formulated. We illustrate these principles with a study of snapdragon petal growth. PMID:14960734
Colony patterning and collective hyphal growth of filamentous fungi
NASA Astrophysics Data System (ADS)
Matsuura, Shu
2002-11-01
Colony morphology of wild and mutant strains of Aspergillus nidulans at various nutrient and agar levels was investigated. Two types of colony patterning were found for these strains. One type produced uniform colonies at all nutrient and agar levels tested, and the other exhibited morphological change into disordered ramified colonies at low nutrient levels. Both types showed highly condensed compact colonies at high nutrient levels on low agar media that was highly diffusive. Disordered colonies were found to develop with low hyphal extension rates at low nutrient levels. To understand basic pattern selection rules, a colony model with three parameters, i.e., the initial nutrient level and the step length of nutrient random walk as the external parameters, and the frequency of nutrient uptake as an internal parameter, was constructed. At low nutrient levels, with decreasing nutrient uptake frequency under diffusive conditions, the model colony exhibited onsets of disordered ramification. Further, in the growth process of A. nidulans, reduction of hyphal extension rate due to a population effect of hyphae was found when hyphae form three-dimensional dense colonies, as compared to the case in which hyphal growth was restricted into two-dimensional space. A hyphal population effect was introduced in the colony model. Thickening of colony periphery due to the population effect became distinctive as the nutrient diffusion effect was raised at high nutrient levels with low hyphal growth rate. It was considered that colony patterning and onset of disorder were strongly governed by the combination of nutrient diffusion and hyphal growth rate.
Uniform modeling of bacterial colony patterns with varying nutrient and substrate
NASA Astrophysics Data System (ADS)
Schwarcz, Deborah; Levine, Herbert; Ben-Jacob, Eshel; Ariel, Gil
2016-04-01
Bacteria develop complex patterns depending on growth condition. For example, Bacillus subtilis exhibit five different patterns depending on substrate hardness and nutrient concentration. We present a unified integro-differential model that reproduces the entire experimentally observed morphology diagram at varying nutrient concentrations and substrate hardness. The model allows a comprehensive and quantitative comparison between experimental and numerical variables and parameters, such as colony growth rate, nutrient concentration and diffusion constants. As a result, the role of the different physical mechanisms underlying and regulating the growth of the colony can be evaluated.
J.C.G. Goelz; Thomas E. Burk; Shepard M. Zedaker
1999-01-01
Cross-sectional area growth and height growth of Fraser fir and red spruce trees growing in Virginia and North Carolina were analyzed to identify possible long-term growth trends. Cross-sectional area growth provided no evidence of growth decline. The individual discs were classified according to parameter estimates of the growth trend equation. The predominant pattern...
Growth-mediated autochemotactic pattern formation in self-propelling bacteria
NASA Astrophysics Data System (ADS)
Mukherjee, Mrinmoy; Ghosh, Pushpita
2018-01-01
Bacteria, while developing a multicellular colony or biofilm, can undergo pattern formation by diverse intricate mechanisms. One such route is directional movement or chemotaxis toward or away from self-secreted or externally employed chemicals. In some bacteria, the self-produced signaling chemicals or autoinducers themselves act as chemoattractants or chemorepellents and thereby regulate the directional movements of the cells in the colony. In addition, bacteria follow a certain growth kinetics which is integrated in the process of colony development. Here, we study the interplay of bacterial growth dynamics, cell motility, and autochemotactic motion with respect to the self-secreted diffusive signaling chemicals in spatial pattern formation. Using a continuum model of motile bacteria, we show growth can act as a crucial tuning parameter in determining the spatiotemporal dynamics of a colony. In action of growth dynamics, while chemoattraction toward autoinducers creates arrested phase separation, pattern transitions and suppression can occur for a fixed chemorepulsive strength.
Yim, Annie P Y; Yeung, Hiu-Yan; Hung, Vivian W Y; Lee, Kwong-Man; Lam, Tsz-Ping; Ng, Bobby K W; Qiu, Yong; Cheng, Jack C Y
2012-08-15
A cross-sectional and prospective longitudinal study on the anthropometric parameters and growth pattern of girls with adolescent idiopathic scoliosis (AIS). To investigate the growth pattern of girls with AIS with different severities, using cross-sectional and prospective longitudinal data set in comparison with age-matched healthy controls. AIS occurs in children during their pubertal growth spurt. Although there is no clear consensus on the difference in body height between girls with AIS and healthy controls, it is generally thought that the development and curve progression in girls with AIS is closely associated with their growth rate. There is no concrete prospective longitudinal study to document clearly the growth pattern and growth rate of subjects with AIS . A total of 611 girls with AIS and 296 healthy age-matched controls were included in the study and among them, 194 girls with AIS and 116 healthy controls were followed up until skeletal maturity. The girls with AIS were grouped into moderate (AIS20) and severe curve (AIS40) groups on the basis of maximum curve magnitude at skeletal maturity. Clinical data and detailed anthropometric parameters were recorded. In the cross-sectional analysis, the groups of subjects were compared within different age groups (from the age of 12-16 yr). In the longitudinal study, linear mixed modeling with respect to age or years since menarche was employed to formulate the growth trajectory of different anthropometric parameters. In the cross-sectional analysis, the girls with AIS were generally taller, with longer arm span and lower body mass index than the healthy controls. The girls with AIS40 were found to be significantly shorter in height (P = 0.006) and arm span (P = 0.025) at the age of 12 years but caught up and overtook the control group at the age of 14 to 16 years. In the longitudinal study, the average growth rate of arm span in girls with AIS40 was significantly higher than that in girls with AIS20 (> 30%) (P = 0.004) and controls (> 70%) (P = 0.0004). The age of menarche of girls with AIS40 was significantly delayed by 5.9 months and 3.8 months when compared with the control group and girls with AIS20, respectively (P < 0.05). The growth patterns of girls with AIS with confirmed curve severities were significantly different from healthy age-matched controls. Girls with severe AIS had delayed menarche with faster skeletal growth rate during the age of 12 to 16 years. Monitoring the rate of change of arm span of girls with AIS could be an important additional clinical parameter in helping predict curve severity in girls with AIS.
Nonlinear Growth Models in M"plus" and SAS
ERIC Educational Resources Information Center
Grimm, Kevin J.; Ram, Nilam
2009-01-01
Nonlinear growth curves or growth curves that follow a specified nonlinear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this article we describe how a variety of sigmoid curves can be fit using the M"plus" structural modeling program and the nonlinear…
Massie, Danielle L.; Smith, Geoffrey; Bonvechio, Timothy F.; Bunch, Aaron J.; Lucchesi, David O.; Wagner, Tyler
2018-01-01
Quantifying spatial variability in fish growth and identifying large‐scale drivers of growth are fundamental to many conservation and management decisions. Although fish growth studies often focus on a single population, it is becoming increasingly clear that large‐scale studies are likely needed for addressing transboundary management needs. This is particularly true for species with high recreational value and for those with negative ecological consequences when introduced outside of their native range, such as the Flathead Catfish Pylodictis olivaris. This study quantified growth variability of the Flathead Catfish across a large portion of its contemporary range to determine whether growth differences existed between habitat types (i.e., reservoirs and rivers) and between native and introduced populations. Additionally, we investigated whether growth parameters varied as a function of latitude and time since introduction (for introduced populations). Length‐at‐age data from 26 populations across 11 states in the USA were modeled using a Bayesian hierarchical von Bertalanffy growth model. Population‐specific growth trajectories revealed large variation in Flathead Catfish growth and relatively high uncertainty in growth parameters for some populations. Relatively high uncertainty was also evident when comparing populations and when quantifying large‐scale patterns. Growth parameters (Brody growth coefficient [K] and theoretical maximum average length [L∞]) were not different (based on overlapping 90% credible intervals) between habitat types or between native and introduced populations. For populations within the introduced range of Flathead Catfish, latitude was negatively correlated with K. For native populations, we estimated an 85% probability that L∞ estimates were negatively correlated with latitude. Contrary to predictions, time since introduction was not correlated with growth parameters in introduced populations of Flathead Catfish. Results of this study suggest that Flathead Catfish growth patterns are likely shaped more strongly by finer‐scale processes (e.g., exploitation or prey abundances) as opposed to macro‐scale drivers.
Spatiotemporal pattern formation in a prey-predator model under environmental driving forces
NASA Astrophysics Data System (ADS)
Sirohi, Anuj Kumar; Banerjee, Malay; Chakraborti, Anirban
2015-09-01
Many existing studies on pattern formation in the reaction-diffusion systems rely on deterministic models. However, environmental noise is often a major factor which leads to significant changes in the spatiotemporal dynamics. In this paper, we focus on the spatiotemporal patterns produced by the predator-prey model with ratio-dependent functional response and density dependent death rate of predator. We get the reaction-diffusion equations incorporating the self-diffusion terms, corresponding to random movement of the individuals within two dimensional habitats, into the growth equations for the prey and predator population. In order to have the noise added model, small amplitude heterogeneous perturbations to the linear intrinsic growth rates are introduced using uncorrelated Gaussian white noise terms. For the noise added system, we then observe spatial patterns for the parameter values lying outside the Turing instability region. With thorough numerical simulations we characterize the patterns corresponding to Turing and Turing-Hopf domain and study their dependence on different system parameters like noise-intensity, etc.
Modelling the growth of plants with a uniform growth logistics.
Kilian, H G; Bartkowiak, D; Kazda, M; Kaufmann, D
2014-05-21
The increment model has previously been used to describe the growth of plants in general. Here, we examine how the same logistics enables the development of different superstructures. Data from the literature are analyzed with the increment model. Increments are growth-invariant molecular clusters, treated as heuristic particles. This approach formulates the law of mass action for multi-component systems, describing the general properties of superstructures which are optimized via relaxation processes. The daily growth patterns of hypocotyls can be reproduced implying predetermined growth invariant model parameters. In various species, the coordinated formation and death of fine roots are modeled successfully. Their biphasic annual growth follows distinct morphological programs but both use the same logistics. In tropical forests, distributions of the diameter in breast height of trees of different species adhere to the same pattern. Beyond structural fluctuations, competition and cooperation within and between the species may drive optimization. All superstructures of plants examined so far could be reproduced with our approach. With genetically encoded growth-invariant model parameters (interaction with the environment included) perfect morphological development runs embedded in the uniform logistics of the increment model. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kaviani, Rosa; Londono, Irene; Parent, Stefan; Moldovan, Florina; Villemure, Isabelle
2016-08-01
Longitudinal growth of long bones and vertebrae occurs in growth plate cartilage. This process is partly regulated by mechanical forces, which are one of the underlying reasons for progression of growth deformities such as idiopathic adolescent scoliosis and early-onset scoliosis. This concept of mechanical modulation of bone growth is also exploited in the development of fusionless treatments of these deformities. However, the optimal loading condition for the mechanical modulation of growth plate remains to be identified. The objective of this study was to evaluate the effects of in vitro static versus dynamic modulation and of dynamic loading parameters, such as frequency and amplitude, on the mechanical responses and histomorphology of growth plate explants. Growth plate explants from distal ulnae of 4-week-old swines were extracted and randomly distributed among six experimental groups: baseline ([Formula: see text]), control ([Formula: see text]), static ([Formula: see text]) and dynamic ([Formula: see text]). For static and dynamic groups, mechanical modulation was performed in vitro using an Indexed CartiGen bioreactor. A stress relaxation test combined with confocal microscopy and digital image correlation was used to characterize the mechanical responses of each explant in terms of peak stress, equilibrium stress, equilibrium modulus of elasticity and strain pattern. Histomorphometrical measurements were performed on toluidine blue tissue sections using a semi-automatic custom-developed MATLAB toolbox. Results suggest that compared to dynamic modulation, static modulation changes the strain pattern of the tissue and thus is more detrimental for tissue biomechanics, while the histomorphological parameters are not affected by mechanical modulation. Also, under dynamic modulation, changing the frequency or amplitude does not affect the biomechanical response of the tissue. Results of this study will be useful in finding optimal and non-damaging parameters for the mechanical modulation of growth plate in fusionless treatments.
The Multigroup Multilevel Categorical Latent Growth Curve Models
ERIC Educational Resources Information Center
Hung, Lai-Fa
2010-01-01
Longitudinal data describe developmental patterns and enable predictions of individual changes beyond sampled time points. Major methodological issues in longitudinal data include modeling random effects, subject effects, growth curve parameters, and autoregressive residuals. This study embedded the longitudinal model within a multigroup…
NASA Astrophysics Data System (ADS)
Banerjee, Paromita; Soni, Jalpa; Ghosh, Nirmalya; Sengupta, Tapas K.
2013-02-01
It is of considerable current interest to develop various methods which help to understand and quantify the cellular association in growing bacterial colonies and is also important in terms of detection and identification of a bacterial species. A novel approach is used here to probe the morphological structural changes occurring during the growth of the bacterial colony of Bacillus thuringiensis under different environmental conditions (in normal nutrient agar, in presence of glucose - acting as additional nutrient and additional 3mM arsenate as additional toxic material). This approach combines the quantitative Mueller matrix polarimetry to extract intrinsic polarization properties and inverse analysis of the polarization preserving part of the light scattering spectra to determine the fractal parameter H (Hurst exponent) using Born approximation. Interesting differences are observed in the intrinsic polarization parameters and also in the Hurst exponent, which is a measurement of the fractality of a pattern formed by bacteria while growing as a colony. These findings are further confirmed with optical microscopic studies of the same sample and the results indicate a very strong and distinct dependence on the environmental conditions during growth, which can be exploited to quantify different bacterial species and their growth patterns.
Autoimmune control of lesion growth in CNS with minimal damage
NASA Astrophysics Data System (ADS)
Mathankumar, R.; Mohan, T. R. Krishna
2013-07-01
Lesions in central nervous system (CNS) and their growth leads to debilitating diseases like Multiple Sclerosis (MS), Alzheimer's etc. We developed a model earlier [1, 2] which shows how the lesion growth can be arrested through a beneficial auto-immune mechanism. We compared some of the dynamical patterns in the model with different facets of MS. The success of the approach depends on a set of control parameters and their phase space was shown to have a smooth manifold separating the uncontrolled lesion growth region from the controlled. Here we show that an optimal set of parameter values exist in the model which minimizes system damage while, at once, achieving control of lesion growth.
Siu King Cheung, Catherine; Tak Keung Lee, Warren; Kit Tse, Yee; Ping Tang, Sheng; Man Lee, Kwong; Guo, Xia; Qin, Lin; Chun Yiu Cheng, Jack
2003-09-15
A cross-sectional study of anthropometric parameters in adolescent idiopathic scoliosis (AIS). To compare anthropometric parameters and growth pattern of AIS girls versus normal controls during peri-puberty. Abnormal pattern of growth has been reported in AIS patients. The sequential changes of growth and the correlation with curve severity have not been properly studied. Five hundred ninety-eight AIS girls and 307 healthy girls entered the study. Weight, height, body mass index (BMI), arm span, sitting height, and leg length were determined using standard techniques. Height and sitting height were adjusted by using the greatest Cobb angle to correct for spinal deformity (Bjure's formula). Puberty was graded by Tanner's staging. AIS girls had significantly shorter height (P = 0.001), corrected height (P = 0.005), arm span (P = 0.022), sitting height (P = 0.005) and leg length (P = 0.004) than the controls at pubertal stage I. From pubertal stages II through V, corrected height (P
Modeling Physiological Processes That Relate Toxicant Exposure and Bacterial Population Dynamics
Klanjscek, Tin; Nisbet, Roger M.; Priester, John H.; Holden, Patricia A.
2012-01-01
Quantifying effects of toxicant exposure on metabolic processes is crucial to predicting microbial growth patterns in different environments. Mechanistic models, such as those based on Dynamic Energy Budget (DEB) theory, can link physiological processes to microbial growth. Here we expand the DEB framework to include explicit consideration of the role of reactive oxygen species (ROS). Extensions considered are: (i) additional terms in the equation for the “hazard rate” that quantifies mortality risk; (ii) a variable representing environmental degradation; (iii) a mechanistic description of toxic effects linked to increase in ROS production and aging acceleration, and to non-competitive inhibition of transport channels; (iv) a new representation of the “lag time” based on energy required for acclimation. We estimate model parameters using calibrated Pseudomonas aeruginosa optical density growth data for seven levels of cadmium exposure. The model reproduces growth patterns for all treatments with a single common parameter set, and bacterial growth for treatments of up to 150 mg(Cd)/L can be predicted reasonably well using parameters estimated from cadmium treatments of 20 mg(Cd)/L and lower. Our approach is an important step towards connecting levels of biological organization in ecotoxicology. The presented model reveals possible connections between processes that are not obvious from purely empirical considerations, enables validation and hypothesis testing by creating testable predictions, and identifies research required to further develop the theory. PMID:22328915
Robust synthesis and continuous manufacturing of carbon nanotube forests and graphene films
NASA Astrophysics Data System (ADS)
Polsen, Erik S.
Successful translation of the outstanding properties of carbon nanotubes (CNTs) and graphene to commercial applications requires highly consistent methods of synthesis, using scalable and cost-effective machines. This thesis presents robust process conditions and a series of process operations that will enable integrated roll-to-roll (R2R) CNT and graphene growth on flexible substrates. First, a comprehensive study was undertaken to establish the sources of variation in laboratory CVD growth of CNT forests. Statistical analysis identified factors that contribute to variation in forest height and density including ambient humidity, sample position in the reactor, and barometric pressure. Implementation of system modifications and user procedures reduced the variation in height and density by 50% and 54% respectively. With improved growth, two new methods for continuous deposition and patterning of catalyst nanoparticles for CNT forest growth were developed, enabling the diameter, density and pattern geometry to be tailored through the control of process parameters. Convective assembly of catalyst nanoparticles in solution enables growth of CNT forests with density 3-fold higher than using sputtered catalyst films with the same growth parameters. Additionally, laser printing of magnetic ink character recognition toner provides a large scale patterning method, with digital control of the pattern density and tunable CNT density via laser intensity. A concentric tube CVD reactor was conceptualized, designed and built for R2R growth of CNT forests and graphene on flexible substrates helically fed through the annular gap. The design enables downstream injection of the hydrocarbon source, and gas consumption is reduced 90% compared to a standard tube furnace. Multi-wall CNT forests are grown continuously on metallic and ceramic fiber substrates at 33 mm/min. High quality, uniform bi- and multi-layer graphene is grown on Cu and Ni foils at 25 - 495 mm/min. A second machine for continuous forest growth and delamination was developed; and forest-substrate adhesion strength was controlled through CVD parameters. Taken together, these methods enable uniform R2R processing of CNT forests and graphene with engineered properties. Last, it is projected that foreseeable improvements in CNT forest quality and density using these methods will result in electrical and thermal properties that exceed state-of-the-art bulk materials.
Modeling of urban growth using cellular automata (CA) optimized by Particle Swarm Optimization (PSO)
NASA Astrophysics Data System (ADS)
Khalilnia, M. H.; Ghaemirad, T.; Abbaspour, R. A.
2013-09-01
In this paper, two satellite images of Tehran, the capital city of Iran, which were taken by TM and ETM+ for years 1988 and 2010 are used as the base information layers to study the changes in urban patterns of this metropolis. The patterns of urban growth for the city of Tehran are extracted in a period of twelve years using cellular automata setting the logistic regression functions as transition functions. Furthermore, the weighting coefficients of parameters affecting the urban growth, i.e. distance from urban centers, distance from rural centers, distance from agricultural centers, and neighborhood effects were selected using PSO. In order to evaluate the results of the prediction, the percent correct match index is calculated. According to the results, by combining optimization techniques with cellular automata model, the urban growth patterns can be predicted with accuracy up to 75 %.
Depaoli, Sarah
2013-06-01
Growth mixture modeling (GMM) represents a technique that is designed to capture change over time for unobserved subgroups (or latent classes) that exhibit qualitatively different patterns of growth. The aim of the current article was to explore the impact of latent class separation (i.e., how similar growth trajectories are across latent classes) on GMM performance. Several estimation conditions were compared: maximum likelihood via the expectation maximization (EM) algorithm and the Bayesian framework implementing diffuse priors, "accurate" informative priors, weakly informative priors, data-driven informative priors, priors reflecting partial-knowledge of parameters, and "inaccurate" (but informative) priors. The main goal was to provide insight about the optimal estimation condition under different degrees of latent class separation for GMM. Results indicated that optimal parameter recovery was obtained though the Bayesian approach using "accurate" informative priors, and partial-knowledge priors showed promise for the recovery of the growth trajectory parameters. Maximum likelihood and the remaining Bayesian estimation conditions yielded poor parameter recovery for the latent class proportions and the growth trajectories. (PsycINFO Database Record (c) 2013 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Wierzchowski, W.; Moore, M.; Makepeace, A. P. W.; Yacoot, A.
1991-10-01
A 4 x 4 x 1.5 cu mm cuboctahedral diamond and two 0.7 mm thick slabs cut from a truncated octahedral diamond grown by the reconstitution technique were studied in different double-crystal arrangements with both conventional and synchrotron X-ray sources. The back-reflection double crystal topographs of large polished 001-plane-oriented faces intersecting different growth sectors, together with cathodoluminescence patterns, allowed identification of these sectors. A double-crystal arrangement, employing the -3 2 5 quartz reflection matching the symmetrical 004 diamond reflection in CuK(alpha 1) radiation, was used for measurement of lattice parameter differences with an accuracy of one and a half parts per million. The simultaneous investigation by means of Lang projection and section topography provided complementary information about the crystallographic defects and internal structures of growth sectors. Observation of the cuboctahedral diamond with a filter of peak transmittance at 430 nm revealed a 'Maltese cross' growth feature in the central (001) growth sector, which also affected the birefringence pattern. However, this feature only very slightly affected the double-crystal topographs.
Development of a program to fit data to a new logistic model for microbial growth.
Fujikawa, Hiroshi; Kano, Yoshihiro
2009-06-01
Recently we developed a mathematical model for microbial growth in food. The model successfully predicted microbial growth at various patterns of temperature. In this study, we developed a program to fit data to the model with a spread sheet program, Microsoft Excel. Users can instantly get curves fitted to the model by inputting growth data and choosing the slope portion of a curve. The program also could estimate growth parameters including the rate constant of growth and the lag period. This program would be a useful tool for analyzing growth data and further predicting microbial growth.
Sanabria, Eduardo A; Vaira, Marcos; Quiroga, Lorena B; Akmentins, Mauricio S; Pereyra, Laura C
2014-04-01
We study the variation in thermal parameters in two contrasting populations Yungas Redbelly Toads (Melanophryniscus rubriventris) with different discrete color phenotypes comparing field body temperatures, critical thermal maximum and heating rates. We found significant differences in field body temperatures of the different morphs. Temperatures were higher in toads with a high extent of dorsal melanization. No variation was registered in operative temperatures between the study locations at the moment of capture and processing. Critical thermal maximum of toads was positively related with the extent of dorsal melanization. Furthermore, we founded significant differences in heating rates between morphs, where individuals with a high extent of dorsal melanization showed greater heating rates than toads with lower dorsal melanization. The color pattern-thermal parameter relationship observed may influence the activity patterns and body size of individuals. Body temperature is a modulator of physiological and behavioral functions in amphibians, influencing daily and seasonal activity, locomotor performance, digestion rate and growth rate. It is possible that some growth constraints may arise due to the relationship of color pattern-metabolism allowing different morphs to attain similar sizes at different locations instead of body-size clines. Copyright © 2014. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Trip, Elizabeth D. L.; Craig, Peter; Green, Alison; Choat, J. Howard
2014-12-01
Newly recruited Ctenochaetus striatus were monitored over a 16-month period in American Samoa, 2002-2003. During this period, a mass recruitment of age-0 C. striatus occurred in March 2002 with numbers reaching 22.9 recruits m-2. This program provided an invaluable opportunity to (1) analyze the dynamics of a mass recruitment episode and to assess its significance with respect to more typical patterns of recruitment and (2) establish the pattern of recruit growth during their first year of life. Age-based analysis indicated that the mass recruitment generated about 90 % of annual recruitment, but recruit mortality was high; thus, most recruitment was provided by continuous settlement throughout the year. The mass event appeared to be a short-lived pulse with recruits residing on the reef an average of 14.1 d compared with 161.1 d for other recruits. Recruits grew rapidly, achieving 90 % of their adult size during their first year, and they formed their first otolith annulus after 1 yr, thereby providing a firm basis for otolith interpretation of fish ages during the early life history phase of this species. The extensive age-based documentation of their first year growth in this study validates the distinctive "square" growth pattern exhibited by acanthurids as described in the literature (i.e., long life span with rapid initial growth that quickly reaches an asymptotic size), and it demonstrates the impact that the presence of age-0 fish has when generating growth parameters for populations exhibiting square growth. We found that the parameters from the re-parameterized von Bertalanffy growth function have preferred characteristics when modeling square growth in fish and that fixing age-at-length zero to pelagic larval duration is a preferable method to constrain growth models when lacking age-0 fish.
NASA Astrophysics Data System (ADS)
Meyer, Nele; Bornemann, Ludger; Welp, Gerhard; Amelung, Wulf
2015-04-01
Bare fallow management goes along with lacking supply of new C sources; yet, little is known on the spatio-temporal controls of microbial adaptation processes. Here we hypothesized that microbial activity parameters decline upon bare fallow but that their spatial patterns are increasingly controlled by nutrient status as fallow management proceeds. To test these hypotheses, we investigated spatial and temporal patterns of substrate-induced respiration (SIR) and basal respiration curves in an arable field after 1, 3, and 7 years of bare fallow but with large within-field heterogeneity of physicochemical soil parameters. The analyses comprised the contents of SOC, mineral nitrogen (Nmin), particulate organic matter (POM), texture of the fine earth, and the proportion of rock fragments as well as basal respiration and several SIR fitting parameters (microbial biomass, microbial growth rates, peak respiration rates, cumulative CO2 release) each with and without additions of mineral N and P. We also repeated substrate (i.e. glucose) additions following the first SIR measurement. The results revealed that most respiration parameters like basal respiration, microbial biomass, and growth rates showed no or inconsistent responses to spatial and temporal patterns of basic soil properties like SOC, Nmin or texture. However, bare fallow changed the shape of the SIR curves; it developed two distinct microbial growth peaks at advanced stages of fallow, i.e. a delayed CO2 release. Likewise, the maximum respiration rate during the first growth phase declined during 7 years of fallow by 47% but its spatial distribution was always correlated with Nmin contents (r = 0.43 - 0.79). The nutrient additions suggested that these changes in SIR curves were caused by N deficiency; the first peak increased after N additions while the second growth phase diminished. Intriguingly, a repeated glucose addition had a similar effect on the SIR curves as the glucose+N addition. Thus, N deficiency apparently subsided during SIR. The results suggested that soil microbes acquire nitrogen from refractory SOM pools (i.e. microbial nitrogen mining). Hence, there was no significant decrease in cumulative CO2 evolution with proceeding time of fallow. As soil microorganisms maintained their functionality there was no overall loss in potential microbial activity, irrespective of the spatial patterns of other soil properties.
Selective-area catalyst-free MBE growth of GaN nanowires using a patterned oxide layer.
Schumann, T; Gotschke, T; Limbach, F; Stoica, T; Calarco, R
2011-03-04
GaN nanowires (NWs) were grown selectively in holes of a patterned silicon oxide mask, by rf-plasma-assisted molecular beam epitaxy (PAMBE), without any metal catalyst. The oxide was deposited on a thin AlN buffer layer previously grown on a Si(111) substrate. Regular arrays of holes in the oxide layer were obtained using standard e-beam lithography. The selectivity of growth has been studied varying the substrate temperature, gallium beam equivalent pressure and patterning layout. Adjusting the growth parameters, GaN NWs can be selectively grown in the holes of the patterned oxide with complete suppression of the parasitic growth in between the holes. The occupation probability of a hole with a single or multiple NWs depends strongly on its diameter. The selectively grown GaN NWs have one common crystallographic orientation with respect to the Si(111) substrate via the AlN buffer layer, as proven by x-ray diffraction (XRD) measurements. Based on the experimental data, we present a schematic model of the GaN NW formation in which a GaN pedestal is initially grown in the hole.
Prioux, J; Mercier, J; Ramonatxo, M; Granier, P; Mercier, B; Prefaut, C
1995-01-01
The aim of the study was to define the changes of parameters of breathing pattern and ventilation (VE) as a function of age during maximal exercise in children. A multi-longitudinal survey was conducted in forty four untrained schoolboys, divided in three groups with initial age of 11.2 years for group I, 12.9 years for group II, and 14.9 for group III. These children were subsequently followed three years ago at the same period. The range age was thus 11.2 to 16.9 years. This study showed that, during growth, ventilation (VE max), tidal volume (VT max) and mean inspiratory flow (VT/TI max) increased significantly with age, that inspiratory frequency (f max) decreased, that inspiratory, expiratory and total time of the respiratory cycle (TI max, TE max, TTOT max) increased slightly and that the inspiration fraction (TI/TTOT max) was identical at 11 and 17 years. Furthermore we observed that the peak height velocity and peak tidal volume velocity took place at the same age, i.e., 14 years and that those of weight and VT/TI at the same age of 15 years. In conclusion, this study allowed us to define reference values for breathing pattern at maximal exercise in sedentary boys and to specify the relation between growth and parameters of breathing pattern in these children.
Fat-tailed fluctuations in the size of organizations: the role of social influence.
Mondani, Hernan; Holme, Petter; Liljeros, Fredrik
2014-01-01
Organizational growth processes have consistently been shown to exhibit a fatter-than-Gaussian growth-rate distribution in a variety of settings. Long periods of relatively small changes are interrupted by sudden changes in all size scales. This kind of extreme events can have important consequences for the development of biological and socio-economic systems. Existing models do not derive this aggregated pattern from agent actions at the micro level. We develop an agent-based simulation model on a social network. We take our departure in a model by a Schwarzkopf et al. on a scale-free network. We reproduce the fat-tailed pattern out of internal dynamics alone, and also find that it is robust with respect to network topology. Thus, the social network and the local interactions are a prerequisite for generating the pattern, but not the network topology itself. We further extend the model with a parameter δ that weights the relative fraction of an individual's neighbours belonging to a given organization, representing a contextual aspect of social influence. In the lower limit of this parameter, the fraction is irrelevant and choice of organization is random. In the upper limit of the parameter, the largest fraction quickly dominates, leading to a winner-takes-all situation. We recover the real pattern as an intermediate case between these two extremes.
Large area silicon sheet by EFG
NASA Technical Reports Server (NTRS)
1981-01-01
The influence of parameters such as CO2 concentration, gas flow patterns, quartz in the bulk melt, melt doping level and growth speed on ribbon properties was examined for 10 cm wide ribbon. Ribbon quality is optimized for ambient CO2 in argon concentrations in the range from 1000 to 5000 ppm. Cell performance degrades at CO2 concentrations above 5000 ppm and IR interstitial oxygen levels decrease. These experiments were done primarily at a growth speed of 3.5 cm/minute. Cartridge parameters influencing the ribbon thickness were studied and thickness uniformity at 200 micrometers (8 mils) has been improved. Growth stability at the target speed of 4.0 cm/minute was improved significantly.
A computational model of cerebral cortex folding.
Nie, Jingxin; Guo, Lei; Li, Gang; Faraco, Carlos; Stephen Miller, L; Liu, Tianming
2010-05-21
The geometric complexity and variability of the human cerebral cortex have long intrigued the scientific community. As a result, quantitative description of cortical folding patterns and the understanding of underlying folding mechanisms have emerged as important research goals. This paper presents a computational 3D geometric model of cerebral cortex folding initialized by MRI data of a human fetal brain and deformed under the governance of a partial differential equation modeling cortical growth. By applying different simulation parameters, our model is able to generate folding convolutions and shape dynamics of the cerebral cortex. The simulations of this 3D geometric model provide computational experimental support to the following hypotheses: (1) Mechanical constraints of the skull regulate the cortical folding process. (2) The cortical folding pattern is dependent on the global cell growth rate of the whole cortex. (3) The cortical folding pattern is dependent on relative rates of cell growth in different cortical areas. (4) The cortical folding pattern is dependent on the initial geometry of the cortex. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Mining Productive-Associated Periodic-Frequent Patterns in Body Sensor Data for Smart Home Care
Ismail, Walaa N.; Hassan, Mohammad Mehedi
2017-01-01
The understanding of various health-oriented vital sign data generated from body sensor networks (BSNs) and discovery of the associations between the generated parameters is an important task that may assist and promote important decision making in healthcare. For example, in a smart home scenario where occupants’ health status is continuously monitored remotely, it is essential to provide the required assistance when an unusual or critical situation is detected in their vital sign data. In this paper, we present an efficient approach for mining the periodic patterns obtained from BSN data. In addition, we employ a correlation test on the generated patterns and introduce productive-associated periodic-frequent patterns as the set of correlated periodic-frequent items. The combination of these measures has the advantage of empowering healthcare providers and patients to raise the quality of diagnosis as well as improve treatment and smart care, especially for elderly people in smart homes. We develop an efficient algorithm named PPFP-growth (Productive Periodic-Frequent Pattern-growth) to discover all productive-associated periodic frequent patterns using these measures. PPFP-growth is efficient and the productiveness measure removes uncorrelated periodic items. An experimental evaluation on synthetic and real datasets shows the efficiency of the proposed PPFP-growth algorithm, which can filter a huge number of periodic patterns to reveal only the correlated ones. PMID:28445441
Mining Productive-Associated Periodic-Frequent Patterns in Body Sensor Data for Smart Home Care.
Ismail, Walaa N; Hassan, Mohammad Mehedi
2017-04-26
The understanding of various health-oriented vital sign data generated from body sensor networks (BSNs) and discovery of the associations between the generated parameters is an important task that may assist and promote important decision making in healthcare. For example, in a smart home scenario where occupants' health status is continuously monitored remotely, it is essential to provide the required assistance when an unusual or critical situation is detected in their vital sign data. In this paper, we present an efficient approach for mining the periodic patterns obtained from BSN data. In addition, we employ a correlation test on the generated patterns and introduce productive-associated periodic-frequent patterns as the set of correlated periodic-frequent items. The combination of these measures has the advantage of empowering healthcare providers and patients to raise the quality of diagnosis as well as improve treatment and smart care, especially for elderly people in smart homes. We develop an efficient algorithm named PPFP-growth (Productive Periodic-Frequent Pattern-growth) to discover all productive-associated periodic frequent patterns using these measures. PPFP-growth is efficient and the productiveness measure removes uncorrelated periodic items. An experimental evaluation on synthetic and real datasets shows the efficiency of the proposed PPFP-growth algorithm, which can filter a huge number of periodic patterns to reveal only the correlated ones.
A cellular automata model for avascular solid tumor growth under the effect of therapy
NASA Astrophysics Data System (ADS)
Reis, E. A.; Santos, L. B. L.; Pinho, S. T. R.
2009-04-01
Tumor growth has long been a target of investigation within the context of mathematical and computer modeling. The objective of this study is to propose and analyze a two-dimensional stochastic cellular automata model to describe avascular solid tumor growth, taking into account both the competition between cancer cells and normal cells for nutrients and/or space and a time-dependent proliferation of cancer cells. Gompertzian growth, characteristic of some tumors, is described and some of the features of the time-spatial pattern of solid tumors, such as compact morphology with irregular borders, are captured. The parameter space is studied in order to analyze the occurrence of necrosis and the response to therapy. Our findings suggest that transitions exist between necrotic and non-necrotic phases (no-therapy cases), and between the states of cure and non-cure (therapy cases). To analyze cure, the control and order parameters are, respectively, the highest probability of cancer cell proliferation and the probability of the therapeutic effect on cancer cells. With respect to patterns, it is possible to observe the inner necrotic core and the effect of the therapy destroying the tumor from its outer borders inwards.
Gangele, Aparna; Sharma, Chandra Shekhar; Pandey, Ashok Kumar
2017-04-01
Immense development has been taken place not only to increase the bulk production, repeatability and yield of carbon nanotubes (CNTs) in last 25 years but preference is also given to acknowledge the basic concepts of nucleation and growth methods. Vertically aligned carbon nanotubes (VAC-NTs) are forest of CNTs accommodated perpendicular on a substrate. Their exceptional chemical and physical properties along with sequential arrangement and dense structure make them suitable in various fields. The effect of different type of selected substrate, carbon precursor, catalyst and their physical and chemical status, reaction conditions and many other key parameters have been thoroughly studied and analysed. The aim of this paper is to specify the trend and summarize the effect of key parameters instead of only presenting all the experiments reported till date. The identified trends will be compared with the recent observations on the growth of different types of patterned VACNTs. In this review article, we have presented a comprehensive analysis of different techniques to precisely determine the role of different parameters responsible for the growth of patterned vertical aligned carbon nanotubes. We have covered various techniques proposed in the span of more than two decades to fabricate the different structures and configurations of carbon nanotubes on different types of substrates. Apart from a detailed discussion of each technique along with their specific process and implementation, we have also provided a critical analysis of the associated constraints, benefits and shortcomings. To sum it all for easy reference for researchers, we have tabulated all the techniques based on certain main key factors. This review article comprises of an exhaustive discussion and a handy reference for researchers who are new in the field of synthesis of CNTs or who wants to get abreast with the techniques of determining the growth of VACNTs arrays.
Prediction of Land use changes using CA in GIS Environment
NASA Astrophysics Data System (ADS)
Kiavarz Moghaddam, H.; Samadzadegan, F.
2009-04-01
Urban growth is a typical self-organized system that results from the interaction between three defined systems; developed urban system, natural non-urban system and planned urban system. Urban growth simulation for an artificial city is carried out first. It evaluates a number of urban sprawl parameters including the size and shape of neighborhood besides testing different types of constraints on urban growth simulation. The results indicate that circular-type neighborhood shows smoother but faster urban growth as compared to nine-cell Moore neighborhood. Cellular Automata is proved to be very efficient in simulating the urban growth simulation over time. The strength of this technology comes from the ability of urban modeler to implement the growth simulation model, evaluating the results and presenting the output simulation results in visual interpretable environment. Artificial city simulation model provides an excellent environment to test a number of simulation parameters such as neighborhood influence on growth results and constraints role in driving the urban growth .Also, CA rules definition is critical stage in simulating the urban growth pattern in a close manner to reality. CA urban growth simulation and prediction of Tehran over the last four decades succeeds to simulate specified tested growth years at a high accuracy level. Some real data layer have been used in the CA simulation training phase such as 1995 while others used for testing the prediction results such as 2002. Tuning the CA growth rules is important through comparing the simulated images with the real data to obtain feedback. An important notice is that CA rules need also to be modified over time to adapt to the urban growth pattern. The evaluation method used on region basis has its advantage in covering the spatial distribution component of the urban growth process. Next step includes running the developed CA simulation over classified raster data for three years in a developed ArcGIS extention. A set of crisp rules are defined and calibrated based on real urban growth pattern. Uncertainty analysis is performed to evaluate the accuracy of the simulated results as compared to the historical real data. Evaluation shows promising results represented by the high average accuracies achieved. The average accuracy for the predicted growth images 1964 and 2002 is over 80 %. Modifying CA growth rules over time to match the growth pattern changes is important to obtain accurate simulation. This modification is based on the urban growth relationship for Tehran over time as can be seen in the historical raster data. The feedback obtained from comparing the simulated and real data is crucial in identifying the optimal set of CA rules for reliable simulation and calibrating growth steps.
Emerging Interaction Patterns in the Emiliania huxleyi-EhV System
Ruiz, Eliana; Oosterhof, Monique; Sandaa, Ruth-Anne; Larsen, Aud; Pagarete, António
2017-01-01
Viruses are thought to be fundamental in driving microbial diversity in the oceanic planktonic realm. That role and associated emerging infection patterns remain particularly elusive for eukaryotic phytoplankton and their viruses. Here we used a vast number of strains from the model system Emiliania huxleyi/Emiliania huxleyi Virus to quantify parameters such as growth rate (µ), resistance (R), and viral production (Vp) capacities. Algal and viral abundances were monitored by flow cytometry during 72-h incubation experiments. The results pointed out higher viral production capacity in generalist EhV strains, and the virus-host infection network showed a strong co-evolution pattern between E. huxleyi and EhV populations. The existence of a trade-off between resistance and growth capacities was not confirmed. PMID:28327527
Emerging Interaction Patterns in the Emiliania huxleyi-EhV System.
Ruiz, Eliana; Oosterhof, Monique; Sandaa, Ruth-Anne; Larsen, Aud; Pagarete, António
2017-03-22
Viruses are thought to be fundamental in driving microbial diversity in the oceanic planktonic realm. That role and associated emerging infection patterns remain particularly elusive for eukaryotic phytoplankton and their viruses. Here we used a vast number of strains from the model system Emiliania huxleyi /Emiliania huxleyi Virus to quantify parameters such as growth rate (µ), resistance (R), and viral production (Vp) capacities. Algal and viral abundances were monitored by flow cytometry during 72-h incubation experiments. The results pointed out higher viral production capacity in generalist EhV strains, and the virus-host infection network showed a strong co-evolution pattern between E. huxleyi and EhV populations. The existence of a trade-off between resistance and growth capacities was not confirmed.
Temperature dependent growth of GaN nanowires using CVD technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Mukesh, E-mail: mukeshjihrnp@gmail.com; Singh, R.; Kumar, Vikram
2016-05-23
Growth of GaN nanowires have been carried out on sapphire substrates with Au as a catalyst using chemical vapour deposition technique. GaN nanowires growth have been studied with the experimental parameter as growth temperature. Diameter of grown GaN nanowires are in the range of 50 nm to 100 nm while the nanowire length depends on growth temperature. Morphology of the GaN nanowires have been studied by scanning electron microscopy. Crystalline nature has been observed by XRD patterns. Optical properties of grown GaN nanowires have been investigated by photoluminescence spectra.
NASA Astrophysics Data System (ADS)
Hernández-Otero, A.; Gaspar, M. B.; Macho, G.; Vázquez, E.
2014-01-01
The sword razor clam Ensis arcuatus is the most important commercial species of razor clam in Spain, and its fishery in the Ría de Pontevedra (Galicia, NW Spain) is the most productive. Despite the economic importance of this species, information on its biology is scarce. This study reports shell morphometric relationships, age, and growth rates of E. arcuatus in three fishing beds in the Ría de Pontevedra (Brensa, Bueu and Ons, located in respectively the inner, middle and outer zones of the ria), providing the first estimates of growth parameters for the species in the Iberian Peninsula. Growth was estimated by examination of surface growth rings and internal shell microgrowth patterns (acetate peel technique) that proved to be the most suitable method for growth estimate. Growth of E. arcuatus was slower in Bueu (L∞ = 140.4, k = 0.40) followed by Brensa (L∞ = 151.91, k = 0.40) and Ons (L∞ = 172.7, k = 0.33), and the clams reached commercial size in 1.7, 2.3 and 2.8 years in Ons, Brensa and Bueu, respectively. The differences in growth between sites in relation to environmental parameters are evaluated and the implications for the razor clam fishery are discussed.
Effects of harmane on growth and in vivo metabolism of aflatoxin B1 in male and female rats.
Billaud, C
1991-01-01
The role of harmane, a beta-carboline formed during pyrolysis of tryptophan, on the metabolism of AFB1, growth and some parameters of the nutritional status was investigated in the rat. Male and female Wistar rats were fed a semi-synthetic diet containing AFB1 (2 ppm), harmane (250 ppm) or both compounds, for 33 days after weaning. Qualitative and quantitative differences in the urinary and faecal excretion of parental compound and metabolites were assessed by HPLC analysis. Harmane did not modify appreciably the growth and the other nutritional parameters studied. Similar excretion patterns of AFB1 metabolites were observed in males and females. Harmane caused a limited increase in the excretion of AFM1 in faeces but not in urine, without altering the growth process in rats of either sex.
Schumann, K; Guenther, A; Göritz, F; Jewgenow, K
2014-08-01
Fetal growth during pregnancy has previously been studied in the domesticated guinea pig (Cavia aperea f. porcellus) after dissecting pregnant females, but there are no studies describing the fetal growth in their wild progenitor, the wild guinea pig (C aperea). In this study, 50 pregnancies of wild guinea pig sows were investigated using modern ultrasound technique. The two most common fetal growth parameters (biparietal diameter [BPD] and crown-rump-length [CRL]) and uterine position were measured. Data revealed similar fetal growth patterns in the wild guinea pig and domesticated guinea pig in the investigated gestation period, although they differ in reproductive milestones such as gestation length (average duration of pregnancy 68 days), average birth weight, and litter mass. In this study, pregnancy lasted on average 60.2 days with a variance of less than a day (0.96 days). The measured fetal growth parameters are strongly correlated with each (R = 0.91; P < 0.001) other and with gestational age (BPD regression equation y = 0.04x - 0.29; P < 0.001 and CRL regression equation y = 0.17x - 2.21; P < 0.01). Furthermore, fetuses in the most frequent uterine positions did not differ in their growth parameters and were not influenced by the mother ID. Our results imply that ultrasound measurement of a single fetal growth parameter is sufficient to reliably estimate gestational age in the wild guinea pig. Copyright © 2014 Elsevier Inc. All rights reserved.
Estimating non-isothermal bacterial growth in foods from isothermal experimental data.
Corradini, M G; Peleg, M
2005-01-01
To develop a mathematical method to estimate non-isothermal microbial growth curves in foods from experiments performed under isothermal conditions and demonstrate the method's applicability with published growth data. Published isothermal growth curves of Pseudomonas spp. in refrigerated fish at 0-8 degrees C and Escherichia coli 1952 in a nutritional broth at 27.6-36 degrees C were fitted with two different three-parameter 'primary models' and the temperature dependence of their parameters was fitted by ad hoc empirical 'secondary models'. These were used to generate non-isothermal growth curves by solving, numerically, a differential equation derived on the premise that the momentary non-isothermal growth rate is the isothermal rate at the momentary temperature, at a time that corresponds to the momentary growth level of the population. The predicted non-isothermal growth curves were in agreement with the reported experimental ones and, as expected, the quality of the predictions did not depend on the 'primary model' chosen for the calculation. A common type of sigmoid growth curve can be adequately described by three-parameter 'primary models'. At least in the two systems examined, these could be used to predict growth patterns under a variety of continuous and discontinuous non-isothermal temperature profiles. The described mathematical method whenever validated experimentally will enable the simulation of the microbial quality of stored and transported foods under a large variety of existing or contemplated commercial temperature histories.
Pattern formation in individual-based systems with time-varying parameters
NASA Astrophysics Data System (ADS)
Ashcroft, Peter; Galla, Tobias
2013-12-01
We study the patterns generated in finite-time sweeps across symmetry-breaking bifurcations in individual-based models. Similar to the well-known Kibble-Zurek scenario of defect formation, large-scale patterns are generated when model parameters are varied slowly, whereas fast sweeps produce a large number of small domains. The symmetry breaking is triggered by intrinsic noise, originating from the discrete dynamics at the microlevel. Based on a linear-noise approximation, we calculate the characteristic length scale of these patterns. We demonstrate the applicability of this approach in a simple model of opinion dynamics, a model in evolutionary game theory with a time-dependent fitness structure, and a model of cell differentiation. Our theoretical estimates are confirmed in simulations. In further numerical work, we observe a similar phenomenon when the symmetry-breaking bifurcation is triggered by population growth.
Van Neste, Dominique
2014-01-01
The words "hair growth" frequently encompass many aspects other than just growth. Report on a validation method for precise non-invasive measurement of thickness together with linear hair growth rates of individual hair fibres. To verify the possible correlation between thickness and linear growth rate of scalp hair in male pattern hair loss as compared with healthy male controls. To document the process of validation of hair growth measurement from in vivo image capturing and manual processing, followed by computer assisted image analysis. We analysed 179 paired images obtained with the contrast-enhanced-phototrichogram method with exogen collection (CE-PTG-EC) in 13 healthy male controls and in 87 men with male pattern hair loss (MPHL). There was a global positive correlation between thickness and growth rate (ANOVA; p<0.0001) and a statistically significantly (ANOVA; p<0.0005) slower growth rate in MPHL as compared with equally thick hairs from controls. Finally, the growth rate recorded in the more severe patterns was significantly (ANOVA; P ≤ 0.001) reduced compared with equally thick hair from less severely affected MPHL or controls subjects. Reduced growth rate, together with thinning and shortening of the anagen phase duration in MPHL might contribute together to the global impression of decreased hair volume on the top of the head. Amongst other structural and functional parameters characterizing hair follicle regression, linear hair growth rate warrants further investigation, as it may be relevant in terms of self-perception of hair coverage, quantitative diagnosis and prognostic factor of the therapeutic response.
A laboratory-calibrated model of coho salmon growth with utility for ecological analyses
Manhard, Christopher V.; Som, Nicholas A.; Perry, Russell W.; Plumb, John M.
2018-01-01
We conducted a meta-analysis of laboratory- and hatchery-based growth data to estimate broadly applicable parameters of mass- and temperature-dependent growth of juvenile coho salmon (Oncorhynchus kisutch). Following studies of other salmonid species, we incorporated the Ratkowsky growth model into an allometric model and fit this model to growth observations from eight studies spanning ten different populations. To account for changes in growth patterns with food availability, we reparameterized the Ratkowsky model to scale several of its parameters relative to ration. The resulting model was robust across a wide range of ration allocations and experimental conditions, accounting for 99% of the variation in final body mass. We fit this model to growth data from coho salmon inhabiting tributaries and constructed ponds in the Klamath Basin by estimating habitat-specific indices of food availability. The model produced evidence that constructed ponds provided higher food availability than natural tributaries. Because of their simplicity (only mass and temperature are required as inputs) and robustness, ration-varying Ratkowsky models have utility as an ecological tool for capturing growth in freshwater fish populations.
Sharpening of carbon nanocone tips during plasma-enhanced chemical vapor growth
NASA Astrophysics Data System (ADS)
Merkulov, Vladimir I.; Melechko, Anatoli V.; Guillorn, Michael A.; Lowndes, Douglas H.; Simpson, Michael L.
2001-12-01
In situ tip sharpening of vertically aligned carbon nanocones (VACNCs) was demonstrated. VACNCs were synthesized on patterned catalyst dots of 100 nm in diameter using dc plasma-enhanced chemical vapor deposition. The VACNC tip diameter was found to decrease with growth time. This enables synthesis of ultra-sharp VACNCs even for relatively large catalyst dot sizes, which is quite important for practical applications. We also find that for a given set of growth parameters the diameter of the initially formed catalyst nanoparticle determines the maximum length of the growing VACNC. The mechanism of VACNC growth and sharpening is discussed.
Fetal growth and perinatal outcome of pregnancies continuing after threatened abortion.
Das, A G; Gopalan, S; Dhaliwal, L K
1996-05-01
The present study was conducted with the aim to find out the effect of threatened abortion in the current pregnancy on the subsequent perinatal outcome and follow the growth pattern of the fetuses of such complicated pregnancies. The study group consisted of 55 women with threatened abortion and 55 women with normal pregnancies formed the control group. Most of the patients presented at 6-12 weeks' gestation. The fetal growth was monitored by both clinical as well as ultrasound (USG) parameters. The mean growth rates were almost identical throughout gestation. The mean values of each parameter of the study group were found lying with 95% confidence limit values of their control group. The apparent increased incidence of low lying placenta in early pregnancy probably contributed to threatened abortion. There was no significant difference in preterm delivery, low birth-weight and overall perinatal outcome.
NASA Astrophysics Data System (ADS)
Banerjee, Paromita; Soni, Jalpa; Purwar, Harsh; Ghosh, Nirmalya; Sengupta, Tapas K.
2013-03-01
Development of methods for quantification of cellular association and patterns in growing bacterial colony is of considerable current interest, not only to help understand multicellular behavior of a bacterial species but also to facilitate detection and identification of a bacterial species in a given space and under a given set of condition(s). We have explored quantitative spectral light scattering polarimetry for probing the morphological and structural changes taking place during colony formations of growing Bacillus thuringiensis bacteria under different conditions (in normal nutrient agar representing favorable growth environment, in the presence of 1% glucose as an additional nutrient, and 3 mM sodium arsenate as toxic material). The method is based on the measurement of spectral 3×3 Mueller matrices (which involves linear polarization measurements alone) and its subsequent analysis via polar decomposition to extract the intrinsic polarization parameters. Moreover, the fractal micro-optical parameter, namely, the Hurst exponent H, is determined via fractal-Born approximation-based inverse analysis of the polarization-preserving component of the light scattering spectra. Interesting differences are noted in the derived values for the H parameter and the intrinsic polarization parameters (linear diattenuation d, linear retardance δ, and linear depolarization Δ coefficients) of the growing bacterial colonies under different conditions. The bacterial colony growing in presence of 1% glucose exhibit the strongest fractality (lowest value of H), whereas that growing in presence of 3 mM sodium arsenate showed the weakest fractality. Moreover, the values for δ and d parameters are found to be considerably higher for the colony growing in presence of glucose, indicating more structured growth pattern. These findings are corroborated further with optical microscopic studies conducted on the same samples.
Shankaran, Seetha; Das, Abhik; Bauer, Charles R; Bada, Henrietta S; Lester, Barry; Wright, Linda L; Smeriglio, Vincent
2004-08-01
To determine the effects of patterns of drug use during term pregnancy on infant growth parameters at birth. Histories of cocaine, opiate, alcohol, tobacco, and marijuana use during the 3-month period before pregnancy and the 3 trimesters of pregnancy were recorded at the infants' 1-month visit. Patterns of use were categorized as consistently high, moderate, or low/none or increasing/decreasing, and effects on growth parameters were analyzed in multivariate linear regression analyses, with adjustment for clinical site, maternal age, prepregnancy weight, multidrug use, and socioeconomic status. A total of 241 cocaine-exposed women and 410 non-cocaine-exposed women participated in the study. In the cocaine-exposed group, 75% used alcohol, 90% used tobacco, and 53% used marijuana; in the non-cocaine-exposed group, 57% used alcohol, 34% used tobacco, and 19% used marijuana. Birth weight, birth length, and head circumference were significantly greater among infants born to women who used no drugs, compared with women with any cocaine, opiate, alcohol, tobacco, or marijuana use, and were greater among infants born to cocaine nonusers, compared with cocaine users. With adjustment for confounders, birth weight was significantly affected by cocaine (deficit of 250 g with consistently low pattern) and tobacco (deficits of 232 g with consistently high pattern, 173 g with consistently moderate pattern, 153 g with decreasing pattern, and 103 g with consistently low pattern). Head size was affected by cocaine (deficit of 0.98 cm with consistently moderate pattern) and tobacco (deficits of 0.72 cm with consistently high pattern and 0.89 cm with consistently moderate pattern). Birth length was affected by tobacco use only (deficits of 0.82 cm with consistently high pattern and 0.98 cm with decreasing use). Patterns of tobacco use during pregnancy affect birth weight, length, and head circumference, whereas cocaine affects birth weight and head size, when adjustments are made for confounders, including multidrug use.
[GHBP, IGF-1 and IGFBP-3 serum levels in familial short-statured and normal-statured children].
del Valle Núñez, Cristóbal Jorge; López-Siguero, Juan Pedro; López-Canti, Luis Fernando; Lechuga Campoy, José Luis; Espigares Martín, Rosa; Martínez-Aedo Ollero, María José
2004-10-09
Growth hormone binding protein (GHBP), insuline-like growth factor 1 (IGF-1) and insuline-like growth factor binding protein 3 (IGFBP-3) serum concentrations were studied in familial short-statured patients (FSS) and age-matched normal-statured subjects. The aim of the study was to ascertain whether differences in growth factors concentrations between groups could be shown and whether they may contribute to explaining the different patterns of growth in both groups. Serum samples of 38 FSS patients (20 boys) and 31 normal-statured subjects (15 boys) in Tanner I stage (prepubertal), were analysed in a central laboratory. All auxological parameters (height, growth velocity, target height, body mass index (BMI) and biochemical parameters (IGF-1 and IGFBP-3) were standardised for age and sex-matched subjects. GHBP values were expressed as percentage of specific binding. The studied populations were similar and no statistically-significant differences in chronological age, bone age and BMI were found. Height, growth velocity and target height were significantly lower in FSS patients compared with normal subjects (p < 0.0001). IGF-1, IGFBP-3 and GHBP concentrations were significantly lower in the FSS group (p < 0.01). Correlations were found between IGF-1 and IGFBP-3 (r = 0.56; p = 0.0004) and between IGF-1 and GHBP (r = 0.34; p = 0.03) in the FSS group. However, in the normal-statured group only BMI and GHBP were correlated (r = 0.5; p = 0.02). These results strongly support the importance of the GH/IGF-1 functional axis in the pattern of growth and probably contribute to understanding of the pathophysiologic basis of the auxological differences found between groups.
Bozzetti, Valentina; Paterlini, Giuseppe; Gazzolo, Diego; Van Bel, Frank; Visser, Gerard H A; Roncaglia, Nadia; Tagliabue, Paolo E
2013-11-01
To detect predictors of feeding tolerance in intrauterine growth restriction (IUGR) infants with or without brain-sparing effect (BS). We conducted a case-control study in 70 IUGR infants (35 IUGR with BS, matched for gestational age with 35 IUGR infants with no BS). BS was classified as pulsatility index (PI) ratio [umbilical artery (UAPI) to middle cerebral artery (MCAPI) (U/C ratio)] > 1. Clinical parameters of feeding tolerance - days to achieve full enteral feeding (FEF) - were compared between the IUGR with BS and IUGR without BS infants. Age at the start of minimal enteral feeding (MEF) was analysed. Achievement of FEF was significantly shorter in IUGR infants without BS than in IUGR with BS. IUGR with BS started MEF later than IUGR without BS infants. Significant correlation of MEF and FEF with UA PI, U/C ratio and CRIB score was found. Multiple linear regression analysis showed significant correlations with CRIB score and caffeine administration (MEF only), and sepsis (FEF only) and U/C ratio (for both). Impaired gut function can be early detected by monitoring Doppler patterns and clinical parameters. ©2013 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Sears, Katie E; Kerkhoff, Andrew J; Messerman, Arianne; Itagaki, Haruhiko
2012-01-01
Metabolism, growth, and the assimilation of energy and materials are essential processes that are intricately related and depend heavily on animal size. However, models that relate the ontogenetic scaling of energy assimilation and metabolism to growth rely on assumptions that have yet to be rigorously tested. Based on detailed daily measurements of metabolism, growth, and assimilation in tobacco hornworms, Manduca sexta, we provide a first experimental test of the core assumptions of a metabolic scaling model of ontogenetic growth. Metabolic scaling parameters changed over development, in violation of the model assumptions. At the same time, the scaling of growth rate matches that of metabolic rate, with similar scaling exponents both across and within developmental instars. Rates of assimilation were much higher than expected during the first two instars and did not match the patterns of scaling of growth and metabolism, which suggests high costs of biosynthesis early in development. The rapid increase in size and discrete instars observed in larval insect development provide an ideal system for understanding how patterns of growth and metabolism emerge from fundamental cellular processes and the exchange of materials and energy between an organism and its environment.
How pattern is selected in drift wave turbulence: Role of parallel flow shear
NASA Astrophysics Data System (ADS)
Kosuga, Y.
2017-12-01
The role of parallel shear flow in the pattern selection problem in drift wave turbulence is discussed. Patterns of interest here are E × B convective cells, which include poloidally symmetric zonal flows and radially elongated streamers. The competition between zonal flow formation and streamer formation is analyzed in the context of modulational instability analysis, with the parallel flow shear as a parameter. For drift wave turbulence with k⊥ρs ≲ O (1 ) and without parallel flow coupling, zonal flows are preferred structures. While increasing the magnitude of parallel flow shear, streamer growth overcomes zonal flow growth. This is because the self-focusing effect of the modulational instability becomes more effective for streamers through density and parallel velocity modulation. As a consequence, the bursty release of free energy may result as the parallel flow shear increases.
Pölzlberger, Eva; Hartmann, Beda; Hafner, Erich; Stümpflein, Ingrid; Kirchengast, Sylvia
2017-05-01
The impact of maternal height, pre-pregnancy weight status and gestational weight gain on fetal growth patterns and newborn size was analysed using a dataset of 4261 singleton term births taking place at the Viennese Danube Hospital between 2005 and 2013. Fetal growth patterns were reconstructed from three ultrasound examinations carried out at the 11th/12th, 20th/21th and 32th/33th weeks of gestation. Crown-rump length, biparietal diameter, fronto-occipital diameter, head circumference, abdominal transverse diameter, abdominal anterior-posterior diameter, abdominal circumference and femur length were determined. Birth weight, birth length and head circumference were measured immediately after birth. The vast majority of newborns were of normal weight, i.e. between 2500 and 4000 g. Maternal height showed a just-significant but weak positive association (r=0.03: p=0.039) with crown-rump length at the first trimester and with the majority of fetal parameters at the second trimester (r>0.06; p0.09; p0.08; p0.17; p0.13; p0.13; p<0.001), were significantly positively associated with newborn size. Some of these associations were quite weak and the statistical significance was mainly due to the large sample size. The association patterns between maternal height and pre-pregnancy weight status with fetal growth patterns (p<0.001), as well as newborn size (p<0.001), were independent of maternal age, nicotine consumption and fetal sex. In general, taller and heavier women gave birth to larger infants. This association between maternal size and fetal growth patterns was detectable from the first trimester onwards.
Rosado-Souza, Laise; Scossa, Federico; Chaves, Izabel S; Kleessen, Sabrina; Salvador, Luiz F D; Milagre, Jocimar C; Finger, Fernando; Bhering, Leonardo L; Sulpice, Ronan; Araújo, Wagner L; Nikoloski, Zoran; Fernie, Alisdair R; Nunes-Nesi, Adriano
2015-09-01
Collectively, the results presented improve upon the utility of an important genetic resource and attest to a complex genetic basis for differences in both leaf metabolism and fruit morphology between natural populations. Diversity of accessions within the same species provides an alternative method to identify physiological and metabolic traits that have large effects on growth regulation, biomass and fruit production. Here, we investigated physiological and metabolic traits as well as parameters related to plant growth and fruit production of 49 phenotypically diverse pepper accessions of Capsicum chinense grown ex situ under controlled conditions. Although single-trait analysis identified up to seven distinct groups of accessions, working with the whole data set by multivariate analyses allowed the separation of the 49 accessions in three clusters. Using all 23 measured parameters and data from the geographic origin for these accessions, positive correlations between the combined phenotypes and geographic origin were observed, supporting a robust pattern of isolation-by-distance. In addition, we found that fruit set was positively correlated with photosynthesis-related parameters, which, however, do not explain alone the differences in accession susceptibility to fruit abortion. Our results demonstrated that, although the accessions belong to the same species, they exhibit considerable natural intraspecific variation with respect to physiological and metabolic parameters, presenting diverse adaptation mechanisms and being a highly interesting source of information for plant breeders. This study also represents the first study combining photosynthetic, primary metabolism and growth parameters for Capsicum to date.
Spontaneous chiral symmetry breaking in two-dimensional aggregation
NASA Astrophysics Data System (ADS)
Sandler, Ilya Moiseevich
Recently, unusual and strikingly beautiful seahorse-like growth patterns have been discovered. These patterns possess a spontaneously broken chiral (left/right) symmetry. To explain this spontaneous chiral symmetry breaking, we develop a model for the growth of the aggregate, assuming that the latter is charged, and that the incoming particles are polarizable, and hence drawn preferentially to regions of strong electric field. This model is used both for numerical simulation and theoretical analysis of the aggregation process. We find that the broken symmetry (typically, an 'S' shape) appears in our simulations for some parameter values. Its origin is the long-range interaction (competition and repulsion) among growing branches of the aggregate, such that a right or left side consistently dominates the growth process. We show that the electrostatic interaction may account for the other geometrical properties of the aggregates, such as the existence of only 2 main arms, and the "finned" external edge of the main arms. The results of our simulations of growth in the presence of the external electric field are also in a good agreement with the results of new experiments, motivated by our ideas. Thus, we believe that our growth model provides a plausible explanation of the origin of the broken symmetry in the experimental patterns.
Cripps, Jemma; Beveridge, Ian; Ploeg, Richard; Coulson, Graeme
2014-01-01
Large mammalian herbivores are commonly infected with gastrointestinal helminths. In many host species, these helminths cause clinical disease and may trigger conspicuous mortality events. However, they may also have subclinical impacts, reducing fitness as well as causing complex changes to host growth patterns and body condition. Theoretically, juveniles should experience significantly greater costs from parasites, being immunologically naive and undergoing a significant growth phase. The aims of our study were to quantify the subclinical effects of helminths in juvenile eastern grey kangaroos (Macropus giganteus), which commonly harbour large burdens of gastrointestinal nematodes and are susceptible to associated mass mortality during cold, wet conditions. We conducted a field experiment on a population of free-ranging kangaroos, removing nematodes from one group of juveniles using an anthelmintic treatment. We then compared growth parameters (body condition and growth rates) and haematological parameters of this group with an age-matched, parasitised (untreated) control group. Treated juvenile kangaroos had significantly higher levels of plasma protein (albumin) but, contrary to our predictions, showed negligible changes in all the other parameters measured. Our results suggest that juvenile kangaroos are largely unaffected by their gastrointestinal helminth burdens, and may be able to compensate for the costs of parasites. PMID:25161906
Molenaar, W. M.; Bartels, H.; Koudstaal, J.
1984-01-01
A group of 424 lymphomas diagnosed as centroblastic-centrocytic lymphomas at the Lymph Node Registry in Kiel was subdivided into small (S), mixed (M) and large (L) cell groups, according to the "working formulation" proposed in a National Cancer Institute sponsored study. Histological epidemiological and clinical parameters were studied. It was found that in group S a follicular growth pattern was most frequent and in group L a follicular and diffuse growth, while group M took an intermediate position. No statistically significant differences were found in respect to epidemiological factors or overall survival. However, in the first 6 years after the diagnosis the survival in group S was better than in group M, but thereafter a reversal occurred. Group L appeared to have the worst survival throughout. Growth pattern and sclerosis were found to be of limited influence on survival within the cytological groups. PMID:6367799
Exploring the patterns and evolution of self-organized urban street networks through modeling
NASA Astrophysics Data System (ADS)
Rui, Yikang; Ban, Yifang; Wang, Jiechen; Haas, Jan
2013-03-01
As one of the most important subsystems in cities, urban street networks have recently been well studied by using the approach of complex networks. This paper proposes a growing model for self-organized urban street networks. The model involves a competition among new centers with different values of attraction radius and a local optimal principle of both geometrical and topological factors. We find that with the model growth, the local optimization in the connection process and appropriate probability for the loop construction well reflect the evolution strategy in real-world cities. Moreover, different values of attraction radius in centers competition process lead to morphological change in patterns including urban network, polycentric and monocentric structures. The model succeeds in reproducing a large diversity of road network patterns by varying parameters. The similarity between the properties of our model and empirical results implies that a simple universal growth mechanism exists in self-organized cities.
Role of mechanical factors in cortical folding development
NASA Astrophysics Data System (ADS)
Razavi, Mir Jalil; Zhang, Tuo; Li, Xiao; Liu, Tianming; Wang, Xianqiao
2015-09-01
Deciphering mysteries of the structure-function relationship in cortical folding has emerged as the cynosure of recent research on brain. Understanding the mechanism of convolution patterns can provide useful insight into the normal and pathological brain function. However, despite decades of speculation and endeavors the underlying mechanism of the brain folding process remains poorly understood. This paper focuses on the three-dimensional morphological patterns of a developing brain under different tissue specification assumptions via theoretical analyses, computational modeling, and experiment verifications. The living human brain is modeled with a soft structure having outer cortex and inner core to investigate the brain development. Analytical interpretations of differential growth of the brain model provide preliminary insight into the critical growth ratio for instability and crease formation of the developing brain followed by computational modeling as a way to offer clues for brain's postbuckling morphology. Especially, tissue geometry, growth ratio, and material properties of the cortex are explored as the most determinant parameters to control the morphogenesis of a growing brain model. As indicated in results, compressive residual stresses caused by the sufficient growth trigger instability and the brain forms highly convoluted patterns wherein its gyrification degree is specified with the cortex thickness. Morphological patterns of the developing brain predicted from the computational modeling are consistent with our neuroimaging observations, thereby clarifying, in part, the reason of some classical malformation in a developing brain.
Monte Carlo simulation of ferroelectric domain growth
NASA Astrophysics Data System (ADS)
Li, B. L.; Liu, X. P.; Fang, F.; Zhu, J. L.; Liu, J.-M.
2006-01-01
The kinetics of two-dimensional isothermal domain growth in a quenched ferroelectric system is investigated using Monte Carlo simulation based on a realistic Ginzburg-Landau ferroelectric model with cubic-tetragonal (square-rectangle) phase transitions. The evolution of the domain pattern and domain size with annealing time is simulated, and the stability of trijunctions and tetrajunctions of domain walls is analyzed. It is found that in this much realistic model with strong dipole alignment anisotropy and long-range Coulomb interaction, the powerlaw for normal domain growth still stands applicable. Towards the late stage of domain growth, both the average domain area and reciprocal density of domain wall junctions increase linearly with time, and the one-parameter dynamic scaling of the domain growth is demonstrated.
Bao, H; Liu, Z; Yan, P; Qiu, Y; Zhu, F
2015-12-01
A self-control ratio, the spine-pelvis index (SPI), was proposed for the assessment of patients with adolescent idiopathic scoliosis (AIS) in this study. The aim was to evaluate the disproportionate growth between the spine and pelvis in these patients using SPI. A total of 64 female patients with thoracic AIS were randomly enrolled between December 2010 and October 2012 (mean age 13 years, standard deviation (sd) 2.17; 9 to 18) and a further 73 healthy female patients with a mean age of 12.4 years (mean age 12.4 years, sd 2.24; 9 to 18), were randomly selected from a normal control database at our centre. The radiographic parameters measured included length of spine (LOS), height of spine (HOS), length of thoracic vertebrae (LOT), height of thoracic vertebrae (HOT), width of pelvis (WOP), height of pelvis (HOP) and width of thorax (WOT). SPI was defined as the ratio LOS/HOP. The SPI and LOT/HOP in patients with AIS showed a significant increase when compared with normal girls (p < 0.001 and p < 0.001 respectively), implying an abnormal pattern of growth of the spine relative to the pelvis in patients with AIS. No significant difference in SPI was found in different age groups in the control group, making the SPI an age-independent parameter with a mean value of 2.219 (2.164 to 2.239). We also found that the SPI was not related to maturity in the control group. This study, for the first time, used a self-control ratio to confirm the disproportionate patterns of growth of the spine and pelvis in patients with thoracic AIS, highlighting that the SPI is not affected by age or maturity. ©2015 The British Editorial Society of Bone & Joint Surgery.
Identification of Limiting Factors for the Optimum Growth of Fusarium Oxysporum in Liquid Medium
Srivastava, Shilpi; Pathak, Neelam; Srivastava, Prachi
2011-01-01
Fusarium oxysporum is a highly ubiquitous species that infects a wide range of hosts causing various diseases such as vascular wilts, yellows, rots, and damping-off. Despite the immense economic significance of this phytopathogen, few workers have reported growth studies in this genus in submerged culture. In the present study, several parameters such as change in media pH, biomass, pattern of substrate utilization, viability of the fungal cells, and protein content were observed over a period of time. The fungal biomass increased at a slow rate for the initial 48 h and thereafter increased at an exponential rate. However, after about 8 days the rapid growth stabilized and the trend became more toward stationary phase. The concentration of glucose in the liquid media decreased rapidly up to the initial 4 days, followed by a slow decrease. The pH of the medium gradually decreased as the fungal growth progressed, the reduction being more pronounced in the initial 48 h. This study would be of immense importance for utilization of F. oxysporum for diverse applications because we can predict the growth pattern in the fungus and modulate its growth for human benefit. PMID:21976815
Non-linear Growth Models in Mplus and SAS
Grimm, Kevin J.; Ram, Nilam
2013-01-01
Non-linear growth curves or growth curves that follow a specified non-linear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this paper we describe how a variety of sigmoid curves can be fit using the Mplus structural modeling program and the non-linear mixed-effects modeling procedure NLMIXED in SAS. Using longitudinal achievement data collected as part of a study examining the effects of preschool instruction on academic gain we illustrate the procedures for fitting growth models of logistic, Gompertz, and Richards functions. Brief notes regarding the practical benefits, limitations, and choices faced in the fitting and estimation of such models are included. PMID:23882134
Global patterns and clines in the growth of common carp Cyprinus carpio.
Vilizzi, L; Copp, G H
2017-07-01
This review provides a meta-analytical assessment of the global patterns and clines in the growth of Cyprinus carpio as measured by length-at-age (L t ) or von Bertalanffy growth function (VBGF) parameters, mass-length relationship (W-L t ) and condition factor, based on literature data. In total, 284 studies were retrieved spanning 91 years of research and carried out on 381 waterbodies-locations in 50 countries in all five continents. Although native C. carpio achieved larger (asymptotic) size relative to its non-native counterpart, the latter grew faster during the first 7 years of life. Lentic populations (especially in natural lakes) also achieved larger sizes relative to lotic ones and the same was true for populations in cold and temperate v. arid climates. Unlike previous studies (on much more restricted datasets), only weak latitudinal clines in instantaneous growth rate, L t at age 3 and mortality were observed globally and this was probably due to the presence of counter-gradient growth variation at all representative age classes (i.e. 1-10 years). Slightly negative allometry was revealed by the W-L t and the related form factor tended to distinguish the more elongated and torpedo-shaped body typical of the wild form from the deeper body of feral-domesticated C. carpio. Existing population dynamics models for C. carpio will benefit from the comprehensive range of waterbody type × climate class-specific VBGF parameters provided in the present study; whereas, more studies are needed on the species' growth in tropical regions and to unravel the possibility of confounding effects on age estimation due to both historical and methodological reasons. © 2017 The Fisheries Society of the British Isles.
Voronoi Cell Patterns: theoretical model and application to submonolayer growth
NASA Astrophysics Data System (ADS)
González, Diego Luis; Einstein, T. L.
2012-02-01
We use a simple fragmentation model to describe the statistical behavior of the Voronoi cell patterns generated by a homogeneous and isotropic set of points in 1D and in 2D. In particular, we are interested in the distribution of sizes of these Voronoi cells. Our model is completely defined by two probability distributions in 1D and again in 2D, the probability to add a new point inside an existing cell and the probability that this new point is at a particular position relative to the preexisting point inside this cell. In 1D the first distribution depends on a single parameter while the second distribution is defined through a fragmentation kernel; in 2D both distributions depend on a single parameter. The fragmentation kernel and the control parameters are closely related to the physical properties of the specific system under study. We apply our model to describe the Voronoi cell patterns of island nucleation for critical island sizes i=0,1,2,3. Experimental results for the Voronoi cells of InAs/GaAs quantum dots are also described by our model.
MacLeod, J M; Cojocaru, C V; Ratto, F; Harnagea, C; Bernardi, A; Alonso, M I; Rosei, F
2012-02-17
The combination of nanostenciling with pulsed laser deposition (PLD) provides a flexible, fast approach for patterning the growth of Ge on Si. Within each stencilled site, the morphological evolution of the Ge structures with deposition follows a modified Stranski-Krastanov (SK) growth mode. By systematically varying the PLD parameters (laser repetition rate and number of pulses) on two different substrate orientations (111 and 100), we have observed corresponding changes in growth morphology, strain and elemental composition using scanning electron microscopy, atomic force microscopy and μ-Raman spectroscopy. The growth behaviour is well predicted within a classical SK scheme, although the Si(100) growth exhibits significant relaxation and ripening with increasing coverage. Other novel aspects of the growth include the increased thickness of the wetting layer and the kinetic control of Si/Ge intermixing via the PLD repetition rate.
USDA-ARS?s Scientific Manuscript database
Tomatoes responded to soil and residue from a hairy vetch cover crop differently on many levels than tomato response to inorganic nitrogen. Tomato fruit production, plant biomass parameters, and photosynthesis were higher in plants grown in vetch than bare soil. Tomato growth and photosynthesis metr...
Santhana Kumar, V; Pandey, P K; Anand, Theivasigamani; Bhuvaneswari, G Rathi; Dhinakaran, A; Kumar, Saurav
2018-06-01
Biofloc technology was evaluated with a view to analyse utilization of nitrogenous waste from the effluent and to improve water quality and growth parameters of Penaeus vannamei in intensive culture system. The experiment was carried out in two different treatment outdoor earthen ponds of 0.12 ha, one supplemented with carbon source (molasses, wheat and sugar) for biofloc formation and other was feed based control pond with a stocking density of 60 animals m -2 in duplicate for 120 days. Water, sediment and P. vannamei were sampled at regular intervals from the both set of ponds for evaluating physico-chemical parameters, nitrogen content and growth parameters, respectively. A significant reduction in the concentration of total ammonia nitrogen (TAN) and nitrite (NO 2 -N) were found in the biofloc pond than that of control pond. A significant low level of nitrogen was recorded in the effluents of biofloc pond in comparison to the control. In biofloc system, a significantly elevated heterotrophic bacterial count along with reduction in total Vibrio count was noticed. A significant improvement in the feed conversion efficiency (FCR) and growth parameters of P. vannamei was noticed in the biofloc pond. Growth of P. vannamei in the biofloc pond showed positive allometric pattern with an increased survival. The microbial biomass grown in biofloc consumes toxic inorganic nitrogen and converts it into useful protein, making it available for the cultured shrimp. This improved FCR and reduced the discharge of nitrogenous waste into adjacent environment, making intensive shrimp farming an eco-friendly enterprise. Copyright © 2018 Elsevier Ltd. All rights reserved.
Selective Growth of Metallic and Semiconducting Single Walled Carbon Nanotubes on Textured Silicon.
Jang, Mira; Lee, Jongtaek; Park, Teahee; Lee, Junyoung; Yang, Jonghee; Yi, Whikun
2016-03-01
We fabricated the etched Si substrate having the pyramidal pattern size from 0.5 to 4.2 μm by changing the texturing process parameters, i.e., KOH concentration, etching time, and temperature. Single walled carbon nanotubes (SWNTs) were then synthesized on the etched Si substrates with different pyramidal pattern by chemical vapor deposition. We investigated the optical and electronic properties of SWNT film grown on the etched Si substrates of different morphology by using scanning electron microscopy, Raman spectroscopy and conducting probe atomic force microscopy. We confirmed that the morphology of substrate strongly affected the selective growth of the SWNT film. Semiconducting SWNTs were formed on larger pyramidal sized Si wafer with higher ratio compared with SWNTs on smaller pyramidal sized Si.
N-face GaN nanorods: Continuous-flux MOVPE growth and morphological properties
NASA Astrophysics Data System (ADS)
Bergbauer, W.; Strassburg, M.; Kölper, Ch.; Linder, N.; Roder, C.; Lähnemann, J.; Trampert, A.; Fündling, S.; Li, S. F.; Wehmann, H.-H.; Waag, A.
2011-01-01
We demonstrate the morphological properties of height, diameter and shape controlled N-face GaN nanorods (NRs) by adjusting conventional growth parameters of a standard metalorganic vapour phase epitaxy (MOVPE) growth process. Particularly the hydrogen fraction within the carrier gas was shown to be an important shaping tool for the grown nanostructures. Additionally, the aspect ratio of the NRs was successfully tuned by increasing the pitch of the nanoimprint lithography (NIL) pattern, while maintaining the hole-diameter constant. An optimum aspect ratio could be found at pitches between 400 and 800 nm, whereas larger pitches are counter-productive. The major conclusion drawn from our experiments is that the whole amount of growth material available over the masked surface contributes to the growth of the NRs.
Bubley, W J; Kneebone, J; Sulikowski, J A; Tsang, P C W
2012-04-01
Male and female spiny dogfish Squalus acanthias were collected in the western North Atlantic Ocean in the Gulf of Maine between July 2006 and June 2009. Squalus acanthias ranged from 25 to 102 cm stretch total length and were caught during all months of the year except January. Age estimates derived from banding patterns visible in both the vertebrae and second dorsal-fin spines were compared. Vertebral growth increments were visualized using a modified histological staining technique, which was verified as appropriate for obtaining age estimates. Marginal increment analysis of vertebrae verified the increment periodicity, suggesting annual band deposition. Based on increased precision and accuracy of age estimates, as well as more biologically realistic parameters generated in growth models, the current study found that vertebrae provided a more reliable and accurate means of estimating age in S. acanthias than the second dorsal-fin spine. Age estimates obtained from vertebrae ranged from <1 year-old to 17 years for male and 24 years for female S. acanthias. The two-parameter von Bertalanffy growth model fit to vertebrae-derived age estimates produced parameters of L∞ = 94·23 cm and k = 0·11 for males and L∞ = 100·76 cm and k = 0·12 for females. While these growth parameters differed from those previously reported for S. acanthias in the western North Atlantic Ocean, the causes of such differences were beyond the scope of the current study and remain to be determined. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.
NASA Technical Reports Server (NTRS)
Spalding, E. P.; Cosgrove, D. J.
1993-01-01
A variety of electrolytes (10-30 mol m-3) increased the relative growth rate of etiolated cucumber (Cucumis sativus L. cv. Burpee's Pickler) hypocotyls by 20-50% relative to water-only controls. The nonelectrolyte mannitol inhibited growth by 10%. All salts tested were effective, regardless of chemical composition or valence. Measurements of cell-sap osmolality ruled out an osmotic mechanism for the growth stimulation by electrolytes. This, and the nonspecificity of the response, indicate that an electrical property of the solutions was responsible for their growth-stimulating activity. Measurements of surface electrical potential supported this reasoning. Treatment with electrolytes also enhanced nutation and altered the pattern of phototropic curvature development. A novel analytical method for quantitating these effects on growth was developed. The evidence indicates that electrolytes influence an electrophysiological parameter that is involved in the control of cell expansion and the coordination of growth underlying tropisms and nutations.
Tsivian, Matvey; Ulusoy, Said; Abern, Michael; Wandel, Ayelet; Sidi, A Ami; Tsivian, Alexander
2012-10-01
Anatomic parameters determining renal mass complexity have been used in a number of proposed scoring systems despite lack of a critical analysis of their independent contributions. We sought to assess the independent contribution of anatomic parameters on perioperative outcomes of laparoscopic partial nephrectomy (LPN). Preoperative imaging studies were reviewed for 147 consecutive patients undergoing LPN for a single renal mass. Renal mass anatomy was recorded: Size, growth pattern (endo-/meso-/exophytic), centrality (central/hilar/peripheral), anterior/posterior, lateral/medial, polar location. Multivariable models were used to determine associations of anatomic parameters with warm ischemia time (WIT), operative time (OT), estimated blood loss (EBL), intra- and postoperative complications, as well as renal function. All models were adjusted for the learning curve and relevant confounders. Median (range) tumor size was 3.3 cm (1.5-11 cm); 52% were central and 14% hilar. While 44% were exophytic, 23% and 33% were mesophytic and endophytic, respectively. Anatomic parameters did not uniformly predict perioperative outcomes. WIT was associated with tumor size (P=0.068), centrality (central, P=0.016; hilar, P=0.073), and endophytic growth pattern (P=0.017). OT was only associated with tumor size (P<0.001). No anatomic parameter predicted EBL. Tumor centrality increased the odds of overall and intraoperative complications, without reaching statistical significance. Postoperative renal function was not associated with any of the anatomic parameters considered after adjustment for baseline function and WIT. Learning curve, considered as a confounder, was independently associated with reduced WIT and OT as well as reduced odds of intraoperative complications. This study provides a detailed analysis of the independent impact of renal mass anatomic parameters on perioperative outcomes. Our findings suggest diverse independent contributions of the anatomic parameters to the different measures of outcomes (WIT, OT, EBL, complications, and renal function) emphasizing the importance of the learning curve.
Thermal effects in nano-sized adsorbate islands growth processes at vapor deposition
NASA Astrophysics Data System (ADS)
Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Dvornichenko, Alina V.
2016-02-01
We study a model of pattern formation in adsorptive systems with a local change in the surface temperature due to adsorption/desorption processes. It is found that thermal effects shrink the domain of main system parameters, when pattern formation is possible. It is shown that an increase in a surface reheat efficiency delays ordering processes. We have found that a distribution of adsorbate islands over sizes depends on relaxation and reheat processes. We have shown that the mean linear size of stationary adsorbate islands is of nano-meter range.
Robust stochastic Turing patterns in the development of a one-dimensional cyanobacterial organism.
Di Patti, Francesca; Lavacchi, Laura; Arbel-Goren, Rinat; Schein-Lubomirsky, Leora; Fanelli, Duccio; Stavans, Joel
2018-05-01
Under nitrogen deprivation, the one-dimensional cyanobacterial organism Anabaena sp. PCC 7120 develops patterns of single, nitrogen-fixing cells separated by nearly regular intervals of photosynthetic vegetative cells. We study a minimal, stochastic model of developmental patterns in Anabaena that includes a nondiffusing activator, two diffusing inhibitor morphogens, demographic fluctuations in the number of morphogen molecules, and filament growth. By tracking developing filaments, we provide experimental evidence for different spatiotemporal roles of the two inhibitors during pattern maintenance and for small molecular copy numbers, justifying a stochastic approach. In the deterministic limit, the model yields Turing patterns within a region of parameter space that shrinks markedly as the inhibitor diffusivities become equal. Transient, noise-driven, stochastic Turing patterns are produced outside this region, which can then be fixed by downstream genetic commitment pathways, dramatically enhancing the robustness of pattern formation, also in the biologically relevant situation in which the inhibitors' diffusivities may be comparable.
Early vs. asymptotic growth responses of herbaceous plants to elevated CO[sub 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, S.C.; Jasienski, M.; Bazzaz, F.A.
1999-07-01
Although many studies have examined the effects of elevated carbon dioxide on plant growth,'' the dynamics of growth involve at least two parameters, namely, an early rate of exponential size increase and an asymptotic size reached late in plant ontogeny. The common practice of quantifying CO[sub 2] responses as a single response ratio thus obscures two qualitatively distinct kinds of effects. The present experiment examines effects of elevated CO[sub 2] on both early and asymptotic growth parameters in eight C[sub 3] herbaceous plant species (Abutilon theophrasti, Cassia obtusifolia, Plantago major, Rumex crispus, Taraxacum officinale, Dactylis glomerata, Lolium multiflorum, and Panicummore » dichotomoflorum). Plants were grown for 118--172 d in a factorial design of CO[sub 2] (350 and 700 [micro]L/L) and plant density (individually grown vs. high-density monocultures) under edaphic conditions approximating those of coastal areas in Massachusetts. For Abutilon theophrasti, intraspecific patterns of plant response were also assessed using eight genotypes randomly sampled from a natural population and propagated as inbred lines.« less
NASA Astrophysics Data System (ADS)
Urbánek, Michal; Flajšman, Lukáš; Křižáková, Viola; Gloss, Jonáš; Horký, Michal; Schmid, Michael; Varga, Peter
2018-06-01
Focused ion beam irradiation of metastable Fe78Ni22 thin films grown on Cu(100) substrates is used to create ferromagnetic, body-centered cubic patterns embedded into paramagnetic, face-centered-cubic surrounding. The structural and magnetic phase transformation can be controlled by varying parameters of the transforming gallium ion beam. The focused ion beam parameters such as the ion dose, number of scans, and scanning direction can be used not only to control a degree of transformation but also to change the otherwise four-fold in-plane magnetic anisotropy into the uniaxial anisotropy along a specific crystallographic direction. This change is associated with a preferred growth of specific crystallographic domains. The possibility to create magnetic patterns with continuous magnetization transitions and at the same time to create patterns with periodical changes in magnetic anisotropy makes this system an ideal candidate for rapid prototyping of a large variety of nanostructured samples. Namely, spin-wave waveguides and magnonic crystals can be easily combined into complex devices in a single fabrication step.
NASA Astrophysics Data System (ADS)
Okabe, Tomonaga; Yashiro, Shigeki
This study proposes the cohesive zone model (CZM) for predicting fatigue damage growth in notched carbon-fiber-reinforced composite plastic (CFRP) cross-ply laminates. In this model, damage growth in the fracture process of cohesive elements due to cyclic loading is represented by the conventional damage mechanics model. We preliminarily investigated whether this model can appropriately express fatigue damage growth for a circular crack embedded in isotropic solid material. This investigation demonstrated that this model could reproduce the results with the well-established fracture mechanics model plus the Paris' law by tuning adjustable parameters. We then numerically investigated the damage process in notched CFRP cross-ply laminates under tensile cyclic loading and compared the predicted damage patterns with those in experiments reported by Spearing et al. (Compos. Sci. Technol. 1992). The predicted damage patterns agreed with the experiment results, which exhibited the extension of multiple types of damage (e.g., splits, transverse cracks and delaminations) near the notches.
Differential segmental growth of the vertebral column of the rat (Rattus norvegicus).
Bergmann, Philip J; Melin, Amanda D; Russell, Anthony P
2006-01-01
Despite the pervasive occurrence of segmental morphologies in the animal kingdom, the study of segmental growth is almost entirely lacking, but may have significant implications for understanding the development of these organisms. We investigate the segmental and regional growth of the entire vertebral column of the rat (Rattus norvegicus) by fitting a Gompertz curve to length and age data for each vertebra and each vertebral region. Regional lengths are calculated by summing constituent vertebral lengths and intervertebral space lengths for cervical, thoracic, lumbar, sacral, and caudal regions. Gompertz curves allow for the estimation of parameters representing neonatal and adult vertebral and regional lengths, as well as initial growth rate and the rate of exponential growth decay. Findings demonstrate differences between neonatal and adult rats in terms of relative vertebral lengths, and differential growth rates between sequential vertebrae and vertebral regions. Specifically, relative differences in the length of vertebrae indicate increasing differences caudad. Vertebral length in neonates increases from the atlas to the middle of the thoracic series and decreases in length caudad, while adult vertebral lengths tend to increase caudad. There is also a general trend of increasing vertebral and regional initial growth and rate of growth decay caudad. Anteroposterior patterns of growth are sexually dimorphic, with males having longer vertebrae than females at any given age. Differences are more pronounced (a) increasingly caudad along the body axis, and (b) in adulthood than in neonates. Elucidated patterns of growth are influenced by a combination of developmental, functional, and genetic factors.
Convective flows in enclosures with vertical temperature or concentration gradients
NASA Technical Reports Server (NTRS)
Wang, L. W.; Chai, A. T.; Sun, D. J.
1988-01-01
The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.
Convective flows in enclosures with vertical temperature or concentration gradients
NASA Technical Reports Server (NTRS)
Wang, L. W.; Chai, A. T.; Sun, D. J.
1989-01-01
The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.
Modeling the Effects of HER/ErbB1-3 Coexpression on Receptor Dimerization and Biological Response
Shankaran, Harish; Wiley, H. Steven; Resat, Haluk
2006-01-01
The human epidermal growth factor receptor (HER/ErbB) system comprises the epidermal growth factor receptor (EGFR/HER1) and three other homologs, namely HERs 2–4. This receptor system plays a critical role in cell proliferation and differentiation and receptor overexpression has been associated with poor prognosis in cancers of the epithelium. Here, we examine the effect of coexpressing varying levels of HERs 1–3 on the receptor dimerization patterns using a detailed kinetic model for HER/ErbB dimerization and trafficking. Our results indicate that coexpression of EGFR with HER2 or HER3 biases signaling to the cell surface and retards signal downregulation. In addition, simultaneous coexpression of HERs 1–3 leads to an abundance of HER2-HER3 heterodimers, which are known to be potent inducers of cell growth and transformation. Our new approach to use parameter dependence analysis in experimental design reveals that measurements of HER3 phosphorylation and HER2 internalization ratio may prove to be especially useful for the estimation of critical model parameters. Further, we examine the effect of receptor dimerization patterns on biological response using a simple phenomenological model. Results indicate that coexpression of EGFR with HER2 and HER3 at low to moderate levels may enable cells to match the response of a high HER2 expresser. PMID:16533841
Coarsening of stripe patterns: variations with quench depth and scaling.
Tripathi, Ashwani K; Kumar, Deepak
2015-02-01
The coarsening of stripe patterns when the system is evolved from random initial states is studied by varying the quench depth ε, which is a measure of distance from the transition point of the stripe phase. The dynamics of the growth of stripe order, which is characterized by two length scales, depends on the quench depth. The growth exponents of the two length scales vary continuously with ε. The decay exponents for free energy, stripe curvature, and densities of defects like grain boundaries and dislocations also show similar variation. This implies a breakdown of the standard picture of nonequilibrium dynamical scaling. In order to understand the variations with ε we propose an additional scaling with a length scale dependent on ε. The main contribution to this length scale comes from the "pinning potential," which is unique to systems where the order parameter is spatially periodic. The periodic order parameter gives rise to an ε-dependent potential, which can pin defects like grain boundaries, dislocations, etc. This additional scaling provides a compact description of variations of growth exponents with quench depth in terms of just one exponent for each of the length scales. The relaxation of free energy, stripe curvature, and the defect densities have also been related to these length scales. The study is done at zero temperature using Swift-Hohenberg equation in two dimensions.
Indium arsenide-on-SOI MOSFETs with extreme lattice mismatch
NASA Astrophysics Data System (ADS)
Wu, Bin
Both molecular beam epitaxy (MBE) and metal organic chemical vapor deposition (MOCVD) have been used to explore the growth of InAs on Si. Despite 11.6% lattice mismatch, planar InAs structures have been observed by scanning electron microscopy (SEM) when nucleating using MBE on patterned submicron Si-on-insulator (SOI) islands. Planar structures of size as large as 500 x 500 nm 2 and lines of width 200 nm and length a few microns have been observed. MOCVD growth of InAs also generates single grain structures on Si islands when the size is reduced to 100 x 100 nm2. By choosing SOI as the growth template, selective growth is enabled by MOCVD. Post-growth pattern-then-anneal process, in which MOCVD InAs is deposited onto unpatterned SOI followed with patterning and annealing of InAs-on-Si structure, is found to change the relative lattice parameters of encapsulated 17/5 nm InAs/Si island. Observed from transmission electron diffraction (TED) patterns, the lattice mismatch of 17/5 nm InAs/Si island reduces from 11.2 to 4.2% after being annealed at 800°C for 30 minutes. High-k Al2O3 dielectrics have been deposited by both electron-beam-enabled physical vapor deposition (PVD) and atomic layer deposition (ALD). Films from both techniques show leakage currents on the order of 10-9A/cm2, at ˜1 MV/cm electric field, breakdown field > ˜6 MV/cm, and dielectric constant > 6, comparable to those of reported ALD prior arts by Groner. The first MOSFETs with extreme lattice mismatch InAs-on-SOI channels using PVD Al2O3 as the gate dielectric are characterized. Channel recess was used to improve the gate control of the drain current.
A Bayesian approach to modelling the impact of hydrodynamic shear stress on biofilm deformation
Wilkinson, Darren J.; Jayathilake, Pahala Gedara; Rushton, Steve P.; Bridgens, Ben; Li, Bowen; Zuliani, Paolo
2018-01-01
We investigate the feasibility of using a surrogate-based method to emulate the deformation and detachment behaviour of a biofilm in response to hydrodynamic shear stress. The influence of shear force, growth rate and viscoelastic parameters on the patterns of growth, structure and resulting shape of microbial biofilms was examined. We develop a statistical modelling approach to this problem, using combination of Bayesian Poisson regression and dynamic linear models for the emulation. We observe that the hydrodynamic shear force affects biofilm deformation in line with some literature. Sensitivity results also showed that the expected number of shear events, shear flow, yield coefficient for heterotrophic bacteria and extracellular polymeric substance (EPS) stiffness per unit EPS mass are the four principal mechanisms governing the bacteria detachment in this study. The sensitivity of the model parameters is temporally dynamic, emphasising the significance of conducting the sensitivity analysis across multiple time points. The surrogate models are shown to perform well, and produced ≈ 480 fold increase in computational efficiency. We conclude that a surrogate-based approach is effective, and resulting biofilm structure is determined primarily by a balance between bacteria growth, viscoelastic parameters and applied shear stress. PMID:29649240
Surucu, Murat; Shah, Karan K; Mescioglu, Ibrahim; Roeske, John C; Small, William; Choi, Mehee; Emami, Bahman
2016-02-01
To develop decision trees predicting for tumor volume reduction in patients with head and neck (H&N) cancer using pretreatment clinical and pathological parameters. Forty-eight patients treated with definitive concurrent chemoradiotherapy for squamous cell carcinoma of the nasopharynx, oropharynx, oral cavity, or hypopharynx were retrospectively analyzed. These patients were rescanned at a median dose of 37.8 Gy and replanned to account for anatomical changes. The percentages of gross tumor volume (GTV) change from initial to rescan computed tomography (CT; %GTVΔ) were calculated. Two decision trees were generated to correlate %GTVΔ in primary and nodal volumes with 14 characteristics including age, gender, Karnofsky performance status (KPS), site, human papilloma virus (HPV) status, tumor grade, primary tumor growth pattern (endophytic/exophytic), tumor/nodal/group stages, chemotherapy regimen, and primary, nodal, and total GTV volumes in the initial CT scan. The C4.5 Decision Tree induction algorithm was implemented. The median %GTVΔ for primary, nodal, and total GTVs was 26.8%, 43.0%, and 31.2%, respectively. Type of chemotherapy, age, primary tumor growth pattern, site, KPS, and HPV status were the most predictive parameters for primary %GTVΔ decision tree, whereas for nodal %GTVΔ, KPS, site, age, primary tumor growth pattern, initial primary GTV, and total GTV volumes were predictive. Both decision trees had an accuracy of 88%. There can be significant changes in primary and nodal tumor volumes during the course of H&N chemoradiotherapy. Considering the proposed decision trees, radiation oncologists can select patients predicted to have high %GTVΔ, who would theoretically gain the most benefit from adaptive radiotherapy, in order to better use limited clinical resources. © The Author(s) 2015.
Singh, Gurinder; Verma, Sanjeev; Singh, Devinder Preet; Yadav, Sumit Kumar; Yadav, Achla Bharti
2016-11-01
Beta angle utilizes three skeletal landmarks - point A, point B, and point C (the apparent axis of the condyle). It is formed between A-B line and point A perpendicular to C-B line. Further this angle indicates the severity and the type of skeletal dysplasia in the sagittal dimension and it changes with the growth pattern of the patient. Hence, it is important to study the dependence of beta angle on the growth pattern. The present study was designed to evaluate the correlation of Beta angle with point A-Nasion-point B (ANB) angle, points A and B to palatal plane (App-Bpp), Wit's appraisal and Maxillary-Mandibular plane angle Bisector (MMB) and Frankfort-Mandibular plane Angle (FMA) in Skeletal Class I, Class II and Class III malocclusion groups. Pre-treatment lateral head cephalo-grams of 120 subjects in age group of 15-25 years were obtained. Three skeletal Class I, Class II and Class III malocclusion groups (40 each) were assorted on the basis of ANB, MMB, App-Bpp, Wit's appraisal and FMA. Analysis of variance (ANOVA) and mean differences were calculated to compare the study groups. Bivariate correlations among different parameters of these groups were obtained. Normal values of beta angle in skeletal Class I group, skeletal Class II group and skeletal Class III group was 31.33±3.25, 25.28±4.28 and 40.93±4.55 respectively. Overall beta angle showed a strong correlation with all parameters of anterio-posterior dysplasia indicators except FMA. Beta angle shows weak correlation with FMA and is not affected by growth pattern/jaw rotation. The normal values are in same range irrespective of the differences in craniofacial morphology.
Singh, Gurinder; Verma, Sanjeev; Singh, Devinder Preet; Yadav, Achla Bharti
2016-01-01
Introduction Beta angle utilizes three skeletal landmarks – point A, point B, and point C (the apparent axis of the condyle). It is formed between A-B line and point A perpendicular to C-B line. Further this angle indicates the severity and the type of skeletal dysplasia in the sagittal dimension and it changes with the growth pattern of the patient. Hence, it is important to study the dependence of beta angle on the growth pattern. Aim The present study was designed to evaluate the correlation of Beta angle with point A–Nasion–point B (ANB) angle, points A and B to palatal plane (App-Bpp), Wit’s appraisal and Maxillary-Mandibular plane angle Bisector (MMB) and Frankfort-Mandibular plane Angle (FMA) in Skeletal Class I, Class II and Class III malocclusion groups. Materials and Methods Pre-treatment lateral head cephalo-grams of 120 subjects in age group of 15-25 years were obtained. Three skeletal Class I, Class II and Class III malocclusion groups (40 each) were assorted on the basis of ANB, MMB, App-Bpp, Wit’s appraisal and FMA. Analysis of variance (ANOVA) and mean differences were calculated to compare the study groups. Bivariate correlations among different parameters of these groups were obtained. Results Normal values of beta angle in skeletal Class I group, skeletal Class II group and skeletal Class III group was 31.33±3.25, 25.28±4.28 and 40.93±4.55 respectively. Overall beta angle showed a strong correlation with all parameters of anterio-posterior dysplasia indicators except FMA. Conclusion Beta angle shows weak correlation with FMA and is not affected by growth pattern/jaw rotation. The normal values are in same range irrespective of the differences in craniofacial morphology. PMID:28050509
Tondjo, Kodjo; Brancheriau, Loïc; Sabatier, Sylvie; Kokutse, Adzo Dzifa; Kokou, Kouami; Jaeger, Marc; de Reffye, Philippe; Fourcaud, Thierry
2018-06-08
For a given genotype, the observed variability of tree forms results from the stochasticity of meristem functioning and from changing and heterogeneous environmental factors affecting biomass formation and allocation. In response to climate change, trees adapt their architecture by adjusting growth processes such as pre- and neoformation, as well as polycyclic growth. This is the case for the teak tree. The aim of this work was to adapt the plant model, GreenLab, in order to take into consideration both these processes using existing data on this tree species. This work adopted GreenLab formalism based on source-sink relationships at organ level that drive biomass production and partitioning within the whole plant over time. The stochastic aspect of phytomer production can be modelled by a Bernoulli process. The teak model was designed, parameterized and analysed using the architectural data from 2- to 5-year-old teak trees in open field stands. Growth and development parameters were identified, fitting the observed compound organic series with the theoretical series, using generalized least squares methods. Phytomer distributions of growth units and branching pattern varied depending on their axis category, i.e. their physiological age. These emerging properties were in accordance with the observed growth patterns and biomass allocation dynamics during a growing season marked by a short dry season. Annual growth patterns observed on teak, including shoot pre- and neoformation and polycyclism, were reproduced by the new version of the GreenLab model. However, further updating is discussed in order to ensure better consideration of radial variation in basic specific gravity of wood. Such upgrading of the model will enable teak ideotypes to be defined for improving wood production in terms of both volume and quality.
NASA Technical Reports Server (NTRS)
Li, C.
1975-01-01
Computer programs are developed and used in the study of the combined effects of evaporation and solidification in space processing. The temperature and solute concentration profiles during directional solidification of binary alloys with surface evaporation were mathematically formulated. Computer results are included along with an econotechnical model of crystal growth. This model allows: prediction of crystal size, quality, and cost; systematic selection of the best growth equipment or alloy system; optimization of growth or material parameters; and a maximization of zero-gravity effects. Segregation in GaAs crystals was examined along with vibration effects on GaAs crystal growth. It was found that a unique segregation pattern and strong convention currents exist in GaAs crystal growth. Some beneficial effects from vibration during GaAs growth were discovered. The implications of the results in space processing are indicated.
Fattal-Valevski, Aviva; Toledano-Alhadef, Hagit; Leitner, Yael; Geva, Ronny; Eshel, Rina; Harel, Shaul
2009-07-01
The relationship between somatic growth and neurocognitive outcome was studied in a cohort of 136 children with intrauterine growth retardation. The children were followed up from birth to 9 to 10 years of age by annual measurements of growth parameters, neurodevelopmental evaluations, and IQ. The rate of catch-up for height between 1 and 2 years of age was significantly higher than the catch-up for weight (P < .001). The cognitive outcome at 9 to 10 years correlated with head circumference at all ages. The neurodevelopmental outcome at 9 to 10 years correlated with weight at all ages. Correlation with head circumference was more significant with IQ, while with weight it was stronger with the neurodevelopmental score. Height at 1 year was a significant predictor for IQ and neurodevelopmental outcome at 9 to 10 years. These findings are of distinct importance for prediction of subsequent neurodevelopmental outcome in children with intrauterine growth retardation.
Merchan-Merchan, Wilson; Saveliev, Alexei V; Taylor, Aaron M
2009-12-01
The growth and morphological evolution of molybdenum-oxide microstructures formed in the high temperature environment of a counter-flow oxy-fuel flame using molybdenum probes is studied. Experiments conducted using various probe retention times show the sequence of the morphological changes. The morphological row begins with micron size objects exhibiting polygonal cubic shape, develops into elongated channels, changes to large structures with leaf-like shape, and ends in dendritic structures. Time of probe-flame interaction is found to be a governing parameter controlling the wide variety of morphological patterns; a molecular level growth mechanism is attributed to their development. This study reveals that the structures are grown in several consecutive stages: material "evaporation and transportation", "transformation", "nucleation", "initial growth", "intermediate growth", and "final growth". XRD analysis shows that the chemical compositions of all structures correspond to MoO(2).
Protein crystal growth in low gravity
NASA Technical Reports Server (NTRS)
Feigelson, Robert S.
1987-01-01
The solubility and growth mechanism of canavalin were studied, and the applicability of the Schlieren technique to protein crystal growth was investigated. Canavalin which may be crystallized from a basic solution by the addition of hydrogen (H+) ions was shown to have normal solubility characteristics over the range of temperatures (5 to 25 C) and pH (5 to 7.5) studied. The solubility data combined with growth rate data gathered from the seeded growth of canavalin crystals indicated that the growth mechanism at high supersaturation ratios (>1.28) is screw dislocation like. A Schlieren apparatus was constructed and flow patterns were observed in Rochelle salt (sodium potassium tartrate), lysozyme, and canavalin. The critical parameters were identified as the change in density with concentration (dp/dc) and the change in index of refraction with concentration (dn/dc). Some of these values were measured for the materials listed.
Continuous-Flow MOVPE of Ga-Polar GaN Column Arrays and Core-Shell LED Structures
NASA Astrophysics Data System (ADS)
Wang, Xue; Li, Shunfeng; Mohajerani, Matin Sadat; Ledig, Johannes; Wehmann, Hergo-Heinrich; Mandl, Martin; Strassburg, Martin; Steegmüller, Ulrich; Jahn, Uwe; Lähnemann, Jonas; Riechert, Henning; Griffiths, Ian; Cherns, David; Waag, Andreas
2013-06-01
Arrays of dislocation free uniform Ga-polar GaN columns have been realized on patterned SiOx/GaN/sapphire templates by metal organic vapor phase epitaxy using a continuous growth mode. The key parameters and the physical principles of growth of Ga-polar GaN three-dimensional columns are identified, and their potential for manipulating the growth process is discussed. High aspect ratio columns have been achieved using silane during the growth, leading to n-type columns. The vertical growth rate increases with increasing silane flow. In a core-shell columnar LED structure, the shells of InGaN/GaN multi quantum wells and p-GaN have been realized on a core of n-doped GaN column. Cathodoluminescence gives insight into the inner structure of these core-shell LED structures.
2012-01-01
Here, we introduce and give an overview of a general lithography-free method to fabricate silicide and germanide micro-/nanostructures on Si and Ge surfaces through metal-vapor-initiated endoepitaxial growth. Excellent controls on shape and orientation are achieved by adjusting the substrate orientation and growth parameters. Furthermore, micro-/nanoscale pits with controlled morphologies can also be successfully fabricated on Si and Ge surfaces by taking advantage of the sublimation of silicides/germanides. The aim of this brief report is to illustrate the concept of lithography-free synthesis and patterning on surfaces of elemental semiconductors, and the differences and the challenges associated with the Si and the Ge surfaces will be discussed. Our results suggest that this low-cost bottom-up approach is promising for applications in functional nanodevices. PMID:22315969
Characteristics of pattern formation and evolution in approximations of Physarum transport networks.
Jones, Jeff
2010-01-01
Most studies of pattern formation place particular emphasis on its role in the development of complex multicellular body plans. In simpler organisms, however, pattern formation is intrinsic to growth and behavior. Inspired by one such organism, the true slime mold Physarum polycephalum, we present examples of complex emergent pattern formation and evolution formed by a population of simple particle-like agents. Using simple local behaviors based on chemotaxis, the mobile agent population spontaneously forms complex and dynamic transport networks. By adjusting simple model parameters, maps of characteristic patterning are obtained. Certain areas of the parameter mapping yield particularly complex long term behaviors, including the circular contraction of network lacunae and bifurcation of network paths to maintain network connectivity. We demonstrate the formation of irregular spots and labyrinthine and reticulated patterns by chemoattraction. Other Turing-like patterning schemes were obtained by using chemorepulsion behaviors, including the self-organization of regular periodic arrays of spots, and striped patterns. We show that complex pattern types can be produced without resorting to the hierarchical coupling of reaction-diffusion mechanisms. We also present network behaviors arising from simple pre-patterning cues, giving simple examples of how the emergent pattern formation processes evolve into networks with functional and quasi-physical properties including tensionlike effects, network minimization behavior, and repair to network damage. The results are interpreted in relation to classical theories of biological pattern formation in natural systems, and we suggest mechanisms by which emergent pattern formation processes may be used as a method for spatially represented unconventional computation.
Patterns of nutrient utilization in the needle-feeding guild
Thomas Secher Jensen
1991-01-01
It is well known that large differences in performance parameters such as growth rate, survival rate, or fecundity rate are found between various insect guilds, e.g. root feeders and sapsuckers (Slansky and Rodriguez 1987, Slansky and Scriber 1985). Within guilds and even within a given host plant, the variability of the plant material may also result in considerable...
Julianna M. A. Jenkins; Frank R. Thompson; John Faaborg
2016-01-01
We can improve our ability to assess population viability and forecast population growth under different scenarios by understanding factors that limit population parameters in each stage of the annual cycle. Postfledging mortality rates may be as variable as nest survival across regions and fragmentation gradients, although factors that negatively impact nest survival...
Stature estimation from the lengths of the growing foot-a study on North Indian adolescents.
Krishan, Kewal; Kanchan, Tanuj; Passi, Neelam; DiMaggio, John A
2012-12-01
Stature estimation is considered as one of the basic parameters of the investigation process in unknown and commingled human remains in medico-legal case work. Race, age and sex are the other parameters which help in this process. Stature estimation is of the utmost importance as it completes the biological profile of a person along with the other three parameters of identification. The present research is intended to formulate standards for stature estimation from foot dimensions in adolescent males from North India and study the pattern of foot growth during the growing years. 154 male adolescents from the Northern part of India were included in the study. Besides stature, five anthropometric measurements that included the length of the foot from each toe (T1, T2, T3, T4, and T5 respectively) to pternion were measured on each foot. The data was analyzed statistically using Student's t-test, Pearson's correlation, linear and multiple regression analysis for estimation of stature and growth of foot during ages 13-18 years. Correlation coefficients between stature and all the foot measurements were found to be highly significant and positively correlated. Linear regression models and multiple regression models (with age as a co-variable) were derived for estimation of stature from the different measurements of the foot. Multiple regression models (with age as a co-variable) estimate stature with greater accuracy than the regression models for 13-18 years age group. The study shows the growth pattern of feet in North Indian adolescents and indicates that anthropometric measurements of the foot and its segments are valuable in estimation of stature in growing individuals of that population. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ontogenetic constraints on foraminiferal test construction.
Caromel, Aude G M; Schmidt, Daniela N; Rayfield, Emily J
2017-05-01
Developmental processes represent one of the main constraints on the generation of adult form. Determining how constructional and energetic demands operate throughout growth is es-sential to understanding fundamental growth rules and trade-offs that define the framework within which new species originate. In organisms producing spiral shells, coiling patterns can inform on the constructional constraints acting throughout development that dictated the diversification of forms within a group. Here, we use Synchrotron radiation X-Ray tomographic microscopy (SRXTM) reconstructions of eight planktic foraminifera repre-sentative of the major morphotypic groups to determine disparity of coiling patterns by measuring Raupian parameters. The results show that foraminifera are a morphologically highly conservative group, exploiting a limited range of poten-tial coiling patterns. Very similar coiling patterns during early ontogeny, regardless of species, point toward strong constraints in early ontogeny and to common develop-mental processes acting across all morphogroups. Dispersion and lateral displacement of taxa in morphospace are limited to the adult stage. Accretion with low translation down the coiling axis in juveniles may maximize lateral growth and metabolic efficiency in light of costly calcification. Increased translation in the adult stages allows growth to accommo-date new chamber shapes, mediated by changes in aperture location and the site of accretion over ontogeny. These constructional constraints, and the accretion of a small number of discrete chambers, limit the potential for novel forms within the foraminifera compared to other groups of coiling organisms and may explain the repeated evolution of similar morphotypes throughout the evolutionary history of the group. © 2017 Wiley Periodicals, Inc.
Experimental intrauterine growth retardation.
van Marthens, E; Harel, S; Zamenshof, S
1975-01-01
The effects of experimental intrauterine growth retardation on subsequent fetal development, especially with respect to brain development, were studied in a new animal model. The rabbit was chosen since it has a perinatal pattern of brain development similar to that of the human. Experimental ischemia was induced during the last trimester by ligation of spiral arterioles and the differential effects on fetal development at term (30th gestational day) are reported. Specific brain regions were examined for wet weight, total cell number (DNA) and total protein content. Highly significant decreases in all these parameters were found in both the cortex and cerebellum following experimental intrauterine growth retardation; these two organs were differentially affected. The prospects and advantages of using this animal model for the study of the postnatal "catch-up growth" are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghavan, C.M.; Sankar, R.; Mohan Kumar, R.
2008-02-05
Effect of amino acids (L-leucine and isoleucine) doping on the growth aspects and ferroelectric properties of triglycine sulphate crystals has been studied. Pure and doped crystals were grown from aqueous solution by low temperature solution growth technique. The cell parameter values were found to significantly vary for doped crystals. Fourier transform infrared analysis confirmed the presence of functional groups in the grown crystal. Morphology study reveals that amino acid doping induces faster growth rate along b-direction leading to a wide b-plane and hence suitable for pyroelectric detector applications. Ferroelectric domain structure has been studied by atomic force microscopy and hysteresismore » measurements reveal an increase of coercive field due to the formation of single domain pattern.« less
Werner, Jan; Sfakianakis, Nikolaos; Rendall, Alan D; Griebeler, Eva Maria
2018-05-07
Ectothermic and endothermic vertebrates differ not only in their source of body temperature (environment vs. metabolism), but also in growth patterns, in timing of sexual maturation within life, and energy intake functions. Here, we present a mathematical model applicable to ectothermic and endothermic vertebrates. It is designed to test whether differences in the timing of sexual maturation within an animal's life (age at which sexual maturity is reached vs. longevity) together with its ontogenetic gain in body mass (growth curve) can predict the energy intake throughout the animal's life (food intake curve) and can explain differences in energy partitioning (between growth, reproduction, heat production and maintenance, with the latter subsuming any other additional task requiring energy) between ectothermic and endothermic vertebrates. With our model we calculated from the growth curves and ages at which species reached sexual maturity energy intake functions and energy partitioning for five ectothermic and seven endothermic vertebrate species. We show that our model produces energy intake patterns and distributions as observed in ectothermic and endothermic species. Our results comply consistently with some empirical studies that in endothermic species, like birds and mammals, energy is used for heat production instead of growth, and with a hypothesis on the evolution of endothermy in amniotes published by us before. Our model offers an explanation on known differences in absolute energy intake between ectothermic fish and reptiles and endothermic birds and mammals. From a mathematical perspective, the model comes in two equivalent formulations, a differential and an integral one. It is derived from a discrete level approach, and it is shown to be well-posed and to attain a unique solution for (almost) every parameter set. Numerically, the integral formulation of the model is considered as an inverse problem with unknown parameters that are estimated using a series of empirical data. Copyright © 2018 Elsevier Ltd. All rights reserved.
Martin, O; Sauvant, D
2010-12-01
The prediction of the control of nutrient partitioning, particularly energy, is a major issue in modelling dairy cattle performance. The proportions of energy channelled to physiological functions (growth, maintenance, gestation and lactation) change as the animal ages and reproduces, and according to its genotype and nutritional environment. This is the first of two papers describing a teleonomic model of individual performance during growth and over repeated reproductive cycles throughout the lifespan of dairy cattle. The conceptual framework is based on the coupling of a regulating sub-model providing teleonomic drives to govern the work of an operating sub-model scaled with genetic parameters. The regulating sub-model describes the dynamic partitioning of a mammal female's priority between life functions targeted to growth (G), ageing (A), balance of body reserves (R) and nutrient supply of the unborn (U), newborn (N) and suckling (S) calf. The so-called GARUNS dynamic pattern defines a trajectory of relative priorities, goal directed towards the survival of the individual for the continuation of the specie. The operating sub-model describes changes in body weight (BW) and composition, foetal growth, milk yield and composition and food intake in dairy cows throughout their lifespan, that is, during growth, over successive reproductive cycles and through ageing. This dynamic pattern of performance defines a reference trajectory of a cow under normal husbandry conditions and feed regimen. Genetic parameters are incorporated in the model to scale individual performance and simulate differences within and between breeds. The model was calibrated for dairy cows with literature data. The model was evaluated by comparison with simulations of previously published empirical equations of BW, body condition score, milk yield and composition and feed intake. This evaluation showed that the model adequately simulates these production variables throughout the lifespan, and across a range of dairy cattle genotypes.
The fluid mechanics of thrombus formation
NASA Technical Reports Server (NTRS)
1972-01-01
Experimental data are presented for the growth of thrombi (blood clots) in a stagnation point flow of fresh blood. Thrombus shape, size and structure are shown to depend on local flow conditions. The evolution of a thrombus is described in terms of a physical model that includes platelet diffusion, a platelet aggregation mechanism, and diffusion and convection of the chemical species responsible for aggregation. Diffusion-controlled and convection-controlled regimes are defined by flow parameters and thrombus location, and the characteristic growth pattern in each regime is explained. Quantitative comparisons with an approximate theoretical model are presented, and a more general model is formulated.
Péry, Alexandre R R; Mons, Raphaël; Flammarion, Patrick; Lagadic, Laurent; Garric, Jeanne
2002-11-01
We present models to link feeding with growth, emergence, and reproduction of the midge Chironomus riparius. These models are based on assumptions about the biology of this species and distinguish between males and females. The assumptions are the isomorphism of the chironomidae, the fact that much more energy is used for growth than for maintenance, and the existence of a maximum length for male and female larvae that does not depend on food availability. We supported our assumptions by experimental data and estimated the parameters of the model. We then successfully predicted the length pattern of 2-d-old larvae exposed in an artificial sediment to different feeding levels with different starting densities and also linked emergence time and growth pattern. We found our model to be consistent with data from another study and another species (Chironomus plumosus). As for reproduction, the mean number of eggs per mass was described as a linear function of feeding quantity. Our models could be used in sediment risk assessment to choose feeding level, to build effects models, or to predict the effects of toxicants at the population level.
Fritts, Andrea K; Fritts, Mark W; Haag, Wendell R; DeBoer, Jason A; Casper, Andrew F
2017-01-01
The Illinois River was substantially altered during the 20th century with the installation of navigational locks and dams, construction of extensive levee networks, and degradation of water quality. Freshwater mussels were affected by these changes. We used sclerochronology and stable isotopes to evaluate changes over time in age-and-growth and food sources for two mussel species: Amblema plicata and Quadrula quadrula. Specimens were collected in years 1894, 1897, 1909, 1912, 1966, and 2013, and archeological specimens were collected circa 850. The von Bertalanffy growth parameter (K) was similar between 850 and 1897, but it increased by 1912 and remained elevated through 2013. Predicted maximum size (L inf ) increased over the past millennium, and 2013 individuals were over 50% larger than in 850. Growth indices showed similar patterns of continual increases in growth. Shells were enriched in 13 C and 15 N during the 20th century, but exhibited a partial return to historical conditions by 2013. These patterns are likely attributable to impoundment, nutrient pollution and eutrophication beginning in the early 20th century followed by recent water quality improvement. Published by Elsevier B.V.
An, Jin-kyu; Ono, Takashi
2017-01-01
Objective The objective of this study is to investigate the eruption pattern and root resorption of the bovine anterior dentition in relation to growth-related parameters based on dental maturity. Methods A cross-sectional study was conducted on 110 bovine anterior mandibles by using standard radiography, cone-beam computed tomography (CBCT), and actual measurements. We determined the relationships between the stages of dental maturity by using a modification of Demirjian's method and various growth-related parameters, such as the activity of the root-resorbing tissue and mobility of the deciduous teeth. The correlation of growth-related parameters with interdental spacing and distal unusual root resorption (DRR) of the deciduous fourth incisor was assessed. The cause of mesial unusual root resorption (MRR) of the deciduous fourth incisor was determined on the basis of the arrangement of the permanent third incisor. Results An independent t-test and chi-square test indicated significant differences in growth-related parameters associated with dental arch length discrepancy and factors related to the shedding of deciduous teeth between the low and high dental maturity groups. The samples with interdental spacing and DRR showed a larger sum of mesiodistal permanent crown widths and higher dental maturity than did the respective controls. Samples with MRR tended to show a lingually rotated distal tip of the adjacent tooth crown. Conclusions Dental maturity has relevance to the interdental spaces and unusual root resorption of mixed dentition. The position of the adjacent tooth crown on CBCT may be correlated with the occurrence of unusual root resorption of the incisor. PMID:29090124
Turner Tomaszewicz, Calandra N.; Seminoff, Jeffrey A.; Peckham, S. Hoyt; Avens, Larisa; Kurle, Carolyn M.
2016-01-01
Summary Determining location and timing of ontogenetic shifts in the habitat use of highly migratory species, along with possible intrapopulation variation in these shifts, is essential for understanding mechanisms driving alternate life histories and assessing overall population trends. Measuring variations in multi-year habitat use patterns is especially difficult for remote oceanic species.To investigate the potential for differential habitat use among migratory marine vertebrates, we measured the naturally occurring stable nitrogen isotope (δ15N) patterns that differentiate distinct ocean regions to create a “regional isotope characterization”, analyzed the δ15N values from annual bone growth layer rings from dead-stranded animals, then combined the bone and regional isotope data to track individual animal movement patterns over multiple years.We used humeri from juvenile North Pacific loggerhead turtles (Caretta caretta), animals that undergo long migrations across the North Pacific Ocean (NPO), using multiple discrete regions as they develop to adulthood. Typical of many migratory marine species, ontogenetic changes in habitat use throughout their decades-long juvenile stage is poorly understood, but each potential habitat has unique foraging opportunities and spatially explicit natural and anthropogenic threats that could affect key life history parameters.We found a bimodal size/age distribution in the timing that juveniles underwent an ontogenetic habitat shift from the oceanic central North Pacific (CNP) to the neritic east Pacific region near the Baja California Peninsula (BCP) (42.7±7.2 vs. 68.3±3.4 cm carapace length, 7.5±2.7 vs. 15.6±1.7 years). Important to the survival of this population, these disparate habitats differ considerably in their food availability, energy requirements, and threats, and these differences can influence life history parameters such as growth, survival, and future fecundity. This is the first evidence of alternative ontogenetic shifts and habitat use patterns for juveniles foraging in the eastern NPO.We combine two techniques, skeletochronology and stable isotope analysis, to reconstruct multi-year habitat use patterns of a remote migratory species, linked to estimated ages and body sizes of individuals, to reveal variable ontogeny during the juvenile life stage that could drive alternate life histories and that has the potential to illuminate the migration patterns for other species with accretionary tissues. PMID:28075017
Searching for modified growth patterns with tomographic surveys
NASA Astrophysics Data System (ADS)
Zhao, Gong-Bo; Pogosian, Levon; Silvestri, Alessandra; Zylberberg, Joel
2009-04-01
In alternative theories of gravity, designed to produce cosmic acceleration at the current epoch, the growth of large scale structure can be modified. We study the potential of upcoming and future tomographic surveys such as Dark Energy Survey (DES) and Large Synoptic Survey Telescope (LSST), with the aid of cosmic microwave background (CMB) and supernovae data, to detect departures from the growth of cosmic structure expected within general relativity. We employ parametric forms to quantify the potential time- and scale-dependent variation of the effective gravitational constant and the differences between the two Newtonian potentials. We then apply the Fisher matrix technique to forecast the errors on the modified growth parameters from galaxy clustering, weak lensing, CMB, and their cross correlations across multiple photometric redshift bins. We find that even with conservative assumptions about the data, DES will produce nontrivial constraints on modified growth and that LSST will do significantly better.
GaAs/Ge crystals grown on Si substrates patterned down to the micron scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taboada, A. G., E-mail: gonzalez@phys.ethz.ch; Kreiliger, T.; Falub, C. V.
Monolithic integration of III-V compounds into high density Si integrated circuits is a key technological challenge for the next generation of optoelectronic devices. In this work, we report on the metal organic vapor phase epitaxy growth of strain-free GaAs crystals on Si substrates patterned down to the micron scale. The differences in thermal expansion coefficient and lattice parameter are adapted by a 2-μm-thick intermediate Ge layer grown by low-energy plasma enhanced chemical vapor deposition. The GaAs crystals evolve during growth towards a pyramidal shape, with lateral facets composed of (111) planes and an apex formed by (137) and (001) surfaces.more » The influence of the anisotropic GaAs growth kinetics on the final morphology is highlighted by means of scanning and transmission electron microscopy measurements. The effect of the Si pattern geometry, substrate orientation, and crystal aspect ratio on the GaAs structural properties was investigated by means of high resolution X-ray diffraction. The thermal strain relaxation process of GaAs crystals with different aspect ratio is discussed within the framework of linear elasticity theory by Finite Element Method simulations based on realistic geometries extracted from cross-sectional scanning electron microscopy images.« less
Lattice distortions in GaN on sapphire using the CBED-HOLZ technique.
Sridhara Rao, D V; McLaughlin, K; Kappers, M J; Humphreys, C J
2009-09-01
The convergent beam electron diffraction (CBED) methodology was developed to investigate the lattice distortions in wurtzite gallium nitride (GaN) from a single zone-axis pattern. The methodology enabled quantitative measurements of lattice distortions (alpha, beta, gamma and c) in transmission electron microscope (TEM) specimens of a GaN film grown on (0,0,0,1) sapphire by metal-organic vapour-phase epitaxy. The CBED patterns were obtained at different distances from the GaN/sapphire interface. The results show that GaN is triclinic above the interface with an increased lattice parameter c. At 0.85 microm from the interface, alpha=90 degrees , beta=8905 degrees and gamma=11966 degrees . The GaN lattice relaxes steadily back to hexagonal further away from the sapphire substrate. The GaN distortions are mainly confined to the initial stages of growth involving the growth and the coalescence of 3D GaN islands.
Linking Plagioclase Zoning Patterns to Active Magma Processes
NASA Astrophysics Data System (ADS)
Izbekov, P. E.; Nicolaysen, K. P.; Neill, O. K.; Shcherbakov, V.; Plechov, P.; Eichelberger, J. C.
2015-12-01
Plagioclase, one of the most common and abundant mineral phases in volcanic products, will vary in composition in response to changes in temperature, pressure, composition of the ambient silicate melt, and melt H2O concentration. Changes in these parameters may cause dissolution or growth of plagioclase crystals, forming characteristic textural and compositional variations (zoning patterns), the complete core-to-rim sequence of which describes events experienced by an individual crystal from its nucleation to the last moments of its growth. Plagioclase crystals in a typical volcanic rock may look drastically dissimilar despite their spatial proximity and the fact that they have erupted together. Although they shared last moments of their growth during magma ascent and eruption, their prior experiences could be very different, as plagioclase crystals often come from different domains of the same magma system. Distinguishing similar zoning patterns, correlating them across the entire population of plagioclase crystals, and linking these patterns to specific perturbations in the magmatic system may provide additional perspective on the variety, extent, and timing of magma processes at active volcanic systems. Examples of magma processes, which may be distinguished based on plagioclase zoning patterns, include (1) cooling due to heat loss, (2) heating and/or pressure build up due to an input of new magmatic material, (3) pressure drop in response to magma system depressurization, and (4) crystal transfer between different magma domains/bodies. This review will include contrasting examples of zoning patters from recent eruptions of Karymsky, Bezymianny, and Tolbachik Volcanoes in Kamchatka, Augustine and Cleveland Volcanoes in Alaska, as well as from the drilling into an active magma body at Krafla, Iceland.
King, Julia H; Kwan, Sze Ting Cecilia; Yan, Jian; Klatt, Kevin C; Jiang, Xinyin; Roberson, Mark S; Caudill, Marie A
2017-07-18
Impairments in placental development can adversely affect pregnancy outcomes. The bioactive nutrient choline may mitigate some of these impairments, as suggested by data in humans, animals, and human trophoblasts. Herein, we investigated the effects of maternal choline supplementation (MCS) on parameters of fetal growth in a Dlx3 +/- (distal-less homeobox 3) mouse model of placental insufficiency. Dlx3 +/- female mice were assigned to 1X (control), 2X, or 4X choline intake levels during gestation. Dams were sacrificed at embryonic days E10.5, 12.5, 15.5, and 18.5. At E10.5, placental weight, embryo weight, and placental efficiency were higher in 4X versus 1X choline. Higher concentrations of hepatic and placental betaine were detected in 4X versus 1X choline, and placental betaine was positively associated with embryo weight. Placental mRNA expression of Igf1 was downregulated by 4X (versus 1X) choline at E10.5. No differences in fetal growth parameters were detected at E12.5 and 15.5, whereas a small but significant reduction in fetal weight was detected at E18.5 in 4X versus 1X choline. MCS improved fetal growth during early pregnancy in the Dlx3 +/- mice with the compensatory downregulation of Igf1 to slow growth as gestation progressed. Placental betaine may be responsible for the growth-promoting effects of choline.
Dynamical patterns and regime shifts in the nonlinear model of soil microorganisms growth
NASA Astrophysics Data System (ADS)
Zaitseva, Maria; Vladimirov, Artem; Winter, Anna-Marie; Vasilyeva, Nadezda
2017-04-01
Dynamical model of soil microorganisms growth and turnover is formulated as a system of nonlinear partial differential equations of reaction-diffusion type. We consider spatial distributions of concentrations of several substrates and microorganisms. Biochemical reactions are modelled by chemical kinetic equations. Transport is modelled by simple linear diffusion for all chemical substances, while for microorganisms we use different transport functions, e.g. some of them can actively move along gradient of substrate concentration, while others cannot move. We solve our model in two dimensions, starting from uniform state with small initial perturbations for various parameters and find parameter range, where small initial perturbations grow and evolve. We search for bifurcation points and critical regime shifts in our model and analyze time-space profile and phase portraits of these solutions approaching critical regime shifts in the system, exploring possibility to detect such shifts in advance. This work is supported by NordForsk, project #81513.
Individual based simulations of bacterial growth on agar plates
NASA Astrophysics Data System (ADS)
Ginovart, M.; López, D.; Valls, J.; Silbert, M.
2002-03-01
The individual based simulator, INDividual DIScrete SIMulations (INDISIM) has been used to study the behaviour of the growth of bacterial colonies on a finite dish. The simulations reproduce the qualitative trends of pattern formation that appear during the growth of Bacillus subtilis on an agar plate under different initial conditions of nutrient peptone concentration, the amount of agar on the plate, and the temperature. The simulations are carried out by imposing closed boundary conditions on a square lattice divided into square spatial cells. The simulator studies the temporal evolution of the bacterial population possible by setting rules of behaviour for each bacterium, such as its uptake, metabolism and reproduction, as well as rules for the medium in which the bacterial cells grow, such as concentration of nutrient particles and their diffusion. The determining factors that characterize the structure of the bacterial colony patterns in the presents simulations, are the initial concentrations of nutrient particles, that mimic the amount of peptone in the experiments, and the set of values for the microscopic diffusion parameter related, in the experiments, to the amount of the agar medium.
Germanium-Assisted Direct Growth of Graphene on Arbitrary Dielectric Substrates for Heating Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ziwen; Xue, Zhongying; Zhang, Miao
Direct growth of graphene on dielectric substrates is a prerequsite for the development of graphene-based electronic and optoelectronic devices. However, the current graphene synthesis directly on dielectric substrates always involves metal contamination problem, and the direct production of graphene patterns still remains unattainable and challenging. We propose herein a semiconducting Ge-assisted chemical vapor deposition approach to directly grow monolayer graphene on arbitrary dielectric substrates. By pre-patterning of catalytic Ge layer, the graphene with desired pattern can be achieved with extreme ease. Due to the catalysis of Ge, monolayer graphene is able to form on Ge covered dielectric substrates including SiOmore » 2/Si, quartz glass and sapphire substrates. Optimization of the process parameters leads to the complete sublimation of catalytic Ge layer during or immediately after monolayer graphene formation, thus resulting in direct deposition of large-area continuous graphene on dielectric substrates. The large-area, highly conductive graphene synthesized on transparent dielectric substrate using the proposed approach has exhibited wide applications, e.g., in defogger and in thermochromic displays, with both devices possessing excellent performances.« less
Germanium-Assisted Direct Growth of Graphene on Arbitrary Dielectric Substrates for Heating Devices
Wang, Ziwen; Xue, Zhongying; Zhang, Miao; ...
2017-05-31
Direct growth of graphene on dielectric substrates is a prerequsite for the development of graphene-based electronic and optoelectronic devices. However, the current graphene synthesis directly on dielectric substrates always involves metal contamination problem, and the direct production of graphene patterns still remains unattainable and challenging. We propose herein a semiconducting Ge-assisted chemical vapor deposition approach to directly grow monolayer graphene on arbitrary dielectric substrates. By pre-patterning of catalytic Ge layer, the graphene with desired pattern can be achieved with extreme ease. Due to the catalysis of Ge, monolayer graphene is able to form on Ge covered dielectric substrates including SiOmore » 2/Si, quartz glass and sapphire substrates. Optimization of the process parameters leads to the complete sublimation of catalytic Ge layer during or immediately after monolayer graphene formation, thus resulting in direct deposition of large-area continuous graphene on dielectric substrates. The large-area, highly conductive graphene synthesized on transparent dielectric substrate using the proposed approach has exhibited wide applications, e.g., in defogger and in thermochromic displays, with both devices possessing excellent performances.« less
Digital Transfer Growth of Patterned 2D Metal Chalcogenides by Confined Nanoparticle Evaporation
Mahjouri-Samani, Masoud; Tian, Mengkun; Wang, Kai; ...
2014-10-19
Developing methods for the facile synthesis of two-dimensional (2D) metal chalcogenides and other layered materials is crucial for emerging applications in functional devices. Controlling the stoichiometry, number of the layers, crystallite size, growth location, and areal uniformity is challenging in conventional vapor phase synthesis. Here, we demonstrate a new route to control these parameters in the growth of metal chalcogenide (GaSe) and dichalcogenide (MoSe 2) 2D crystals by precisely defining the mass and location of the source materials in a confined transfer growth system. A uniform and precise amount of stoichiometric nanoparticles are first synthesized and deposited onto a substratemore » by pulsed laser deposition (PLD) at room temperature. This source substrate is then covered with a receiver substrate to form a confined vapor transport growth (VTG) system. By simply heating the source substrate in an inert background gas, a natural temperature gradient is formed that evaporates the confined nanoparticles to grow large, crystalline 2D nanosheets on the cooler receiver substrate, the temperature of which is controlled by the background gas pressure. Large monolayer crystalline domains (~ 100 m lateral sizes) of GaSe and MoSe 2 are demonstrated, as well as continuous monolayer films through the deposition of additional precursor materials. This novel PLD-VTG synthesis and processing method offers a unique approach for the controlled growth of large-area, metal chalcogenides with a controlled number of layers in patterned growth locations for optoelectronics and energy related applications.« less
Systematic modelling and design evaluation of unperturbed tumour dynamics in xenografts.
Parra Guillen, Zinnia P Patricia; Mangas Sanjuan, Victor; Garcia-Cremades, Maria; Troconiz, Inaki F; Mo, Gary; Pitou, Celine; Iversen, Philip W; Wallin, Johan E
2018-04-24
Xenograft mice are largely used to evaluate the efficacy of oncological drugs during preclinical phases of drug discovery and development. Mathematical models provide a useful tool to quantitatively characterise tumour growth dynamics and also optimise upcoming experiments. To the best of our knowledge, this is the first report where unperturbed growth of a large set of tumour cell lines (n=28) has been systematically analysed using the model proposed by Simeoni in the context of non-linear mixed effect (NLME). Exponential growth was identified as the governing mechanism in the majority of the cell lines, with constant rate values ranging from 0.0204 to 0.203 day -1 No common patterns could be observed across tumour types, highlighting the importance of combining information from different cell lines when evaluating drug activity. Overall, typical model parameters were precisely estimated using designs where tumour size measurements were taken every two days. Moreover, reducing the number of measurement to twice per week, or even once per week for cell lines with low growth rates, showed little impact on parameter precision. However, in order to accurately characterise parameter variability (i.e. relative standard errors below 50%), a sample size of at least 50 mice is needed. This work illustrates the feasibility to systematically apply NLME models to characterise tumour growth in drug discovery and development, and constitutes a valuable source of data to optimise experimental designs by providing an a priori sampling window and minimising the number of samples required. The American Society for Pharmacology and Experimental Therapeutics.
Constrained Allocation Flux Balance Analysis
Mori, Matteo; Hwa, Terence; Martin, Olivier C.
2016-01-01
New experimental results on bacterial growth inspire a novel top-down approach to study cell metabolism, combining mass balance and proteomic constraints to extend and complement Flux Balance Analysis. We introduce here Constrained Allocation Flux Balance Analysis, CAFBA, in which the biosynthetic costs associated to growth are accounted for in an effective way through a single additional genome-wide constraint. Its roots lie in the experimentally observed pattern of proteome allocation for metabolic functions, allowing to bridge regulation and metabolism in a transparent way under the principle of growth-rate maximization. We provide a simple method to solve CAFBA efficiently and propose an “ensemble averaging” procedure to account for unknown protein costs. Applying this approach to modeling E. coli metabolism, we find that, as the growth rate increases, CAFBA solutions cross over from respiratory, growth-yield maximizing states (preferred at slow growth) to fermentative states with carbon overflow (preferred at fast growth). In addition, CAFBA allows for quantitatively accurate predictions on the rate of acetate excretion and growth yield based on only 3 parameters determined by empirical growth laws. PMID:27355325
Crystal Growth of Graphene Films and Graphene Nanoribbons via Chemical Vapor Deposition
NASA Astrophysics Data System (ADS)
Jacobberger, Robert Michael
Graphene is a two-dimensional carbon allotrope that has exceptional properties, including high charge carrier mobility, thermal conductivity, mechanical strength, and flexibility. Graphene is a semimetal, prohibiting its use in semiconductor applications in which a bandgap is required. However, graphene can be transformed from a semimetal into a semiconductor if it is confined into one-dimensional nanoribbons narrower than 10 nm with well-defined armchair edges. In this work, we study the crystal growth of graphene via chemical vapor deposition (CVD), which is the most promising method to produce graphene films on the industrial scale. We explore the growth of isolated graphene crystals, continuous graphene films, and narrow graphene nanoribbons with armchair edges. We gain key insight into the critical growth parameters and mechanisms that influence the crystal morphology, orientation, defect density, and evolution, providing an empirical understanding of the diverse growth behaviors observed in literature. Using this knowledge, we synthesize graphene with remarkably low pinhole density and achieve high-quality graphene at 750 °C on Cu(111), which is over 250 °C lower than the temperature typically used to grow graphene on copper from methane. We also describe our breakthrough in graphene nanoribbon synthesis. Highly anisotropic nanoribbons are formed on Ge(001) if an exceptionally slow growth rate is used. The nanoribbons are self-defining with predominantly smooth armchair edges, are self-aligning, and have tunable width to < 10 nm. High-performance field-effect transistors incorporating these nanoribbons as channels display high conductance modulation > 10,000 and high conductance > 5 muS. This directional and anisotropic growth enables the fabrication of semiconducting nanoribbons directly on conventional semiconductor wafers and, thus, promises to allow the integration of nanoribbons into future hybrid integrated circuits. We additionally report our discovery that chemical patterns consisting of alternating stripes of graphene and germanium can direct the self-assembly of block copolymers into rationally-designed patterns with nanoscale features. Density multiplication of 10 is achieved and faster assembly kinetics are observed on graphene/germanium templates than on conventional chemical patterns based on polymer mats and brushes. This work opens the door for extensive assembly studies on chemical patterns based on two-dimensional materials.
Noise and Dynamical Pattern Selection in Solidification
NASA Technical Reports Server (NTRS)
Kurtze, Douglas A.
1997-01-01
The overall goal of this project was to understand in more detail how a pattern-forming system can adjust its spacing. "Pattern-forming systems," in this context, are nonequilibrium contina whose state is determined by experimentally adjustable control parameter. Below some critical value of the control system then has available to it a range of linearly stable, spatially periodic steady states, each characterized by a spacing which can lie anywhere within some band of values. These systems like directional solidification, where the solidification front is planar when the ratio of growth velocity to thermal gradient is below its critical value, but takes on a cellular shape above critical. They also include systems without interfaces, such as Benard convection, where it is the fluid velocity field which changes from zero to something spatially periodic as the control parameter is increased through its critical value. The basic question to be addressed was that of how the system chooses one of its myriad possible spacings when the control parameter is above critical, and in particular the role of noise in the selection process. Previous work on explosive crystallization had suggested that one spacing in the range should be preferred, in the sense that weak noise should eventually drive the system to that spacing. That work had also suggested a heuristic argument for identifying the preferred spacing. The project had three main objectives: to understand in more detail how a pattern-forming system can adjust its spacing; to investigate how noise drives a system to its preferred spacing; and to extend the heuristic argument for a preferred spacing in explosive crystallization to other pattern-forming systems.
NASA Astrophysics Data System (ADS)
Han, Suyue; Chang, Gary Han; Schirmer, Clemens; Modarres-Sadeghi, Yahya
2016-11-01
We construct a reduced-order model (ROM) to study the Wall Shear Stress (WSS) distributions in image-based patient-specific aneurysms models. The magnitude of WSS has been shown to be a critical factor in growth and rupture of human aneurysms. We start the process by running a training case using Computational Fluid Dynamics (CFD) simulation with time-varying flow parameters, such that these parameters cover the range of parameters of interest. The method of snapshot Proper Orthogonal Decomposition (POD) is utilized to construct the reduced-order bases using the training CFD simulation. The resulting ROM enables us to study the flow patterns and the WSS distributions over a range of system parameters computationally very efficiently with a relatively small number of modes. This enables comprehensive analysis of the model system across a range of physiological conditions without the need to re-compute the simulation for small changes in the system parameters.
Petersen, J.H.; DeAngelis, D.L.; Paukert, C.P.
2008-01-01
Many fish species are at risk to some degree, and conservation efforts are planned or underway to preserve sensitive populations. For many imperiled species, models could serve as useful tools for researchers and managers as they seek to understand individual growth, quantify predator-prey dynamics, and identify critical sources of mortality. Development and application of models for rare species however, has been constrained by small population sizes, difficulty in obtaining sampling permits, limited opportunities for funding, and regulations on how endangered species can be used in laboratory studies. Bioenergetic and life history models should help with endangered species-recovery planning since these types of models have been used successfully in the last 25 years to address management problems for many commercially and recreationally important fish species. In this paper we discuss five approaches to developing models and parameters for rare species. Borrowing model functions and parameters from related species is simple, but uncorroborated results can be misleading. Directly estimating parameters with laboratory studies may be possible for rare species that have locally abundant populations. Monte Carlo filtering can be used to estimate several parameters by means of performing simple laboratory growth experiments to first determine test criteria. Pattern-oriented modeling (POM) is a new and developing field of research that uses field-observed patterns to build, test, and parameterize models. Models developed using the POM approach are closely linked to field data, produce testable hypotheses, and require a close working relationship between modelers and empiricists. Artificial evolution in individual-based models can be used to gain insight into adaptive behaviors for poorly understood species and thus can fill in knowledge gaps. ?? Copyright by the American Fisheries Society 2008.
Gao, Xi; Kong, Bo; Vigil, R Dennis
2017-01-01
A comprehensive quantitative model incorporating the effects of fluid flow patterns, light distribution, and algal growth kinetics on biomass growth rate is developed in order to predict the performance of a Taylor vortex algal photobioreactor for culturing Chlorella vulgaris. A commonly used Lagrangian strategy for coupling the various factors influencing algal growth was employed whereby results from computational fluid dynamics and radiation transport simulations were used to compute numerous microorganism light exposure histories, and this information in turn was used to estimate the global biomass specific growth rate. The simulations provide good quantitative agreement with experimental data and correctly predict the trend in reactor performance as a key reactor operating parameter is varied (inner cylinder rotation speed). However, biomass growth curves are consistently over-predicted and potential causes for these over-predictions and drawbacks of the Lagrangian approach are addressed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Integrating physical stress, growth, and development.
Uyttewaal, Magalie; Traas, Jan; Hamant, Olivier
2010-02-01
Linking the gene regulatory network to morphogenesis is a central question in developmental biology. Shape relies on the combined actions of biochemistry and biophysics, two parameters that are under local genetic control. The blooming of molecular biology since the 1970s has promoted a biochemical view of development, leaving behind the contribution of physical forces. Recently, the development of new techniques, such as live imaging, micromechanical approaches, and computer modeling, has revitalized the biomechanics field. In this review, we use shoot apical meristem development to illustrate how biochemistry and biomechanics cooperate to integrate the local cellular gene input into global growth patterns. Copyright 2009 Elsevier Ltd. All rights reserved.
Tsai, Song-Ling; Liu, Yi-Kai; Pan, Heng; Liu, Chien-Hung; Lee, Ming-Tsang
2016-01-08
The Laser Direct Synthesis and Patterning (LDSP) technology has advantages in terms of processing time and cost compared to nanomaterials-based laser additive microfabrication processes. In LDSP, a scanning laser on the substrate surface induces chemical reactions in the reactive liquid solution and selectively deposits target material in a preselected pattern on the substrate. In this study, we experimentally investigated the effect of the processing parameters and type and concentration of the additive solvent on the properties and growth rate of the resulting metal film fabricated by this LDSP technology. It was shown that reactive metal ion solutions with substantial viscosity yield metal films with superior physical properties. A numerical analysis was also carried out the first time to investigate the coupled opto-thermo-fluidic transport phenomena and the effects on the metal film growth rate. To complete the simulation, the optical properties of the LDSP deposited metal film with a variety of thicknesses were measured. The characteristics of the temperature field and the thermally induced flow associated with the moving heat source are discussed. It was shown that the processing temperature range of the LDSP is from 330 to 390 K. A semi-empirical model for estimating the metal film growth rate using this process was developed based on these results. From the experimental and numerical results, it is seen that, owing to the increased reflectivity of the silver film as its thickness increases, the growth rate decreases gradually from about 40 nm at initial to 10 nm per laser scan after ten scans. This self-controlling effect of LDSP process controls the thickness and improves the uniformity of the fabricated metal film. The growth rate and resulting thickness of the metal film can also be regulated by adjustment of the processing parameters, and thus can be utilized for controllable additive nano/microfabrication.
Johnson, James H.; McKenna, James E.; Dropkin, David S.; Andrews, William D.
2005-01-01
We examined the growth characteristics of 303 Atlantic sturgeon, Acipenser oxyrinchus, caught in the commercial fishery off the New Jersey coast from 1992 to 1994 (fork length range: 93–219 cm). Sections taken from the leading pectoral fin ray were used to age each sturgeon. Ages ranged from 5–26 years. Von Bertalanffy growth models for males and females fit well, but test statistics (t-test, maximum likelihood) failed to reject the null hypothesis that growth was not significantly different between sexes. Consequently, all data were pooled and the combined data gave L∞ and K estimates of 174.2 cm and 0.144, respectively. Our growth data do not fit the pattern of slower growth and increased size in more northernly latitudes for Atlantic sturgeon observed in other work. Lack of uniformity of our growth data may be due to (1) the sturgeon fishery harvesting multiple stocks having different growth rates, and (2) size limits for the commercial fishery having created a bias in estimating growth parameters.
Dependence of N-polar GaN rod morphology on growth parameters during selective area growth by MOVPE
NASA Astrophysics Data System (ADS)
Li, Shunfeng; Wang, Xue; Mohajerani, Matin Sadat; Fündling, Sönke; Erenburg, Milena; Wei, Jiandong; Wehmann, Hergo-Heinrich; Waag, Andreas; Mandl, Martin; Bergbauer, Werner; Strassburg, Martin
2013-02-01
Selective area growth of GaN rods by metalorganic vapor phase epitaxy has attracted great interest due to its novel applications in optoelectronic and photonics. In this work, we will present the dependence of GaN rod morphology on various growth parameters i.e. growth temperature, H2/N2 carrier gas concentration, V/III ratio, total carrier gas flow and reactor pressure. It is found that higher growth temperature helps to increase the aspect ratio of the rods, but reduces the height homogeneity. Furthermore, H2/N2 carrier gas concentration is found to be a critical factor to obtain vertical rod growth. Pure nitrogen carrier gas leads to irregular growth of GaN structure, while an increase of hydrogen carrier gas results in vertical GaN rod growth. Higher hydrogen carrier gas concentration also reduces the diameter and enhances the aspect of the GaN rods. Besides, increase of V/III ratio causes reduction of the aspect ratio of N-polar GaN rods, which could be explained by the relatively lower growth rate on (000-1) N-polar top surface when supplying more ammonia. In addition, an increase of the total carrier gas flow leads to a decrease in the diameter and the average volume of GaN rods. These phenomena are tentatively explained by the change of partial pressure of the source materials and boundary layer thickness in the reactor. Finally, it is shown that the average volume of the N-polar GaN rods keeps a similar value for a reactor pressure PR of 66 and 125 mbar, while an incomplete filling of the pattern opening is observed with PR of 250 mbar. Room temperature photoluminescence spectrum of the rods is also briefly discussed.
Neural electrical activity and neural network growth.
Gafarov, F M
2018-05-01
The development of central and peripheral neural system depends in part on the emergence of the correct functional connectivity in its input and output pathways. Now it is generally accepted that molecular factors guide neurons to establish a primary scaffold that undergoes activity-dependent refinement for building a fully functional circuit. However, a number of experimental results obtained recently shows that the neuronal electrical activity plays an important role in the establishing of initial interneuronal connections. Nevertheless, these processes are rather difficult to study experimentally, due to the absence of theoretical description and quantitative parameters for estimation of the neuronal activity influence on growth in neural networks. In this work we propose a general framework for a theoretical description of the activity-dependent neural network growth. The theoretical description incorporates a closed-loop growth model in which the neural activity can affect neurite outgrowth, which in turn can affect neural activity. We carried out the detailed quantitative analysis of spatiotemporal activity patterns and studied the relationship between individual cells and the network as a whole to explore the relationship between developing connectivity and activity patterns. The model, developed in this work will allow us to develop new experimental techniques for studying and quantifying the influence of the neuronal activity on growth processes in neural networks and may lead to a novel techniques for constructing large-scale neural networks by self-organization. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pre-natal exposures to cocaine and alcohol and physical growth patterns to age 8 years
Lumeng, Julie C.; Cabral, Howard J.; Gannon, Katherine; Heeren, Timothy; Frank, Deborah A.
2007-01-01
Two hundred and two primarily African American/Caribbean children (classified by maternal report and infant meconium as 38 heavier, 74 lighter and 89 not cocaine-exposed) were measured repeatedly from birth to age 8 years to assess whether there is an independent effect of prenatal cocaine exposure on physical growth patterns. Children with fetal alcohol syndrome identifiable at birth were excluded. At birth, cocaine and alcohol exposures were significantly and independently associated with lower weight, length and head circumference in cross-sectional multiple regression analyses. The relationship over time of pre-natal exposures to weight, height, and head circumference was then examined by multiple linear regression using mixed linear models including covariates: child’s gestational age, gender, ethnicity, age at assessment, current caregiver, birth mother’s use of alcohol, marijuana and tobacco during the pregnancy and pre-pregnancy weight (for child’s weight) and height (for child’s height and head circumference). The cocaine effects did not persist beyond infancy in piecewise linear mixed models, but a significant and independent negative effect of pre-natal alcohol exposure persisted for weight, height, and head circumference. Catch-up growth in cocaine-exposed infants occurred primarily by 6 months of age for all growth parameters, with some small fluctuations in growth rates in the preschool age range but no detectable differences between heavier versus unexposed nor lighter versus unexposed thereafter. PMID:17412558
Ultra-thin enhanced-absorption long-wave infrared detectors
NASA Astrophysics Data System (ADS)
Wang, Shaohua; Yoon, Narae; Kamboj, Abhilasha; Petluru, Priyanka; Zheng, Wanhua; Wasserman, Daniel
2018-02-01
We propose an architecture for enhanced absorption in ultra-thin strained layer superlattice detectors utilizing a hybrid optical cavity design. Our detector architecture utilizes a designer-metal doped semiconductor ground plane beneath the ultra-subwavelength thickness long-wavelength infrared absorber material, upon which we pattern metallic antenna structures. We demonstrate the potential for near 50% detector absorption in absorber layers with thicknesses of approximately λ0/50, using realistic material parameters. We investigate detector absorption as a function of wavelength and incidence angle, as well as detector geometry. The proposed device architecture offers the potential for high efficiency detectors with minimal growth costs and relaxed design parameters.
NASA Technical Reports Server (NTRS)
Spurrell, F. A.; Brenes, J.; Waibel, P.
1974-01-01
Roentgen signs, subperiosteal, endosteal, and trabecular bone growth are evaluated in turkeys fed phosphorus at the 0.5, 0.56, 0.68, 0.90, and 2.70 percent levels. Calcium levels of 0.30, 0.40, 0.60, 1.2, and 3.60 percent were also tested. Vitamin D levels of 0, 100, 300, 900 and 27,000 I.U. per day were likewise evaluated. Roentgen signs, bone mineral as measured by T-125 gamma ray absorption, and bone mineral growth patterns as shown by radiograph area projection are correlated with calcium, phosphorus, and vitamin D feeding levels. Differences in bone growth at the various feeding levels were observed which were not reflected by differences in other studied parameters.
Linking Plagioclase Zoning Patterns to Active Magma Processes
NASA Astrophysics Data System (ADS)
Izbekov, P. E.; Nicolaysen, K. P.; Neill, O. K.; Shcherbakov, V.; Eichelberger, J. C.; Plechov, P.
2016-12-01
Plagioclase, one of the most common and abundant mineral phases in volcanic products, will vary in composition in response to changes in temperature, pressure, composition of the ambient silicate melt, and melt H2O concentration. Changes in these parameters may cause dissolution or growth of plagioclase crystals, forming characteristic textural and compositional variations (zoning patterns), the complete core-to-rim sequence of which describes events experienced by an individual crystal from its nucleation to the last moments of its growth. Plagioclase crystals in a typical volcanic rock may look drastically dissimilar despite their spatial proximity and the fact that they have erupted together. Although they shared last moments of their growth during magma ascent and eruption, their prior experiences could be very different, as plagioclase crystals often come from different domains of the same magma system. Distinguishing similar zoning patterns, correlating them across the entire population of plagioclase crystals, and linking these patterns to specific perturbations in the magmatic system may provide additional perspective on the variety, extent, and timing of magma processes at active volcanic systems. Examples of magma processes, which may be distinguished based on plagioclase zoning patterns, include (1) cooling due to heat loss, (2) heating and/or pressure build up due to an input of new magmatic material, (3) pressure drop in response to magma system depressurization, and (4) crystal transfer between different magma domains/bodies. This review will include contrasting examples of zoning patters from recent eruptions of Augustine and Cleveland Volcanoes in Alaska, Sakurajima Volcano in Japan, Karymsky, Bezymianny, and Tolbachik Volcanoes in Kamchatka, as well as from the drilling into an active magma body at Krafla, Iceland.
Nunn, Angela J; Reiter, Ilja M; Häberle, Karl-Heinz; Langebartels, Christian; Bahnweg, Günther; Pretzsch, Hans; Sandermann, Heinrich; Matyssek, Rainer
2005-08-01
The responsiveness of adult beech and spruce trees to chronic O(3) stress was studied at a free-air O(3) exposure experiment in Freising/Germany. Over three growing seasons, gas exchange characteristics, biochemical parameters, macroscopic O(3) injury and the phenology of leaf organs were investigated, along with assessments of branch and stem growth as indications of tree performance. To assess response pattern to chronic O(3) stress in adult forest trees, we introduce a new evaluation approach, which provides a comprehensive, readily accomplishable overview across several tree-internal scaling levels, different canopy regions and growing seasons. This new approach, based on a three-grade colour coding, combines statistical analysis and the proficient ability of the "human eye" in pattern recognition.
Craniofacial skeletal pattern: is it really correlated with the degree of adenoid obstruction?
Feres, Murilo Fernando Neuppmann; Muniz, Tomas Salomão; de Andrade, Saulo Henrique; Lemos, Maurilo de Mello; Pignatari, Shirley Shizue Nagata
2015-01-01
OBJECTIVE: The aim of this study was to compare the cephalometric pattern of children with and without adenoid obstruction. METHODS: The sample comprised 100 children aged between four and 14 years old, both males and females, subjected to cephalometric examination for sagittal and vertical skeletal analysis. The sample also underwent nasofiberendoscopic examination intended to objectively assess the degree of adenoid obstruction. RESULTS: The individuals presented tendencies towards vertical craniofacial growth, convex profile and mandibular retrusion. However, there were no differences between obstructive and non-obstructive patients concerning all cephalometric variables. Correlations between skeletal parameters and the percentage of adenoid obstruction were either low or not significant. CONCLUSIONS: Results suggest that specific craniofacial patterns, such as Class II and hyperdivergency, might not be associated with adenoid hypertrophy. PMID:26352848
Selective sweeps in growing microbial colonies
NASA Astrophysics Data System (ADS)
Korolev, Kirill S.; Müller, Melanie J. I.; Karahan, Nilay; Murray, Andrew W.; Hallatschek, Oskar; Nelson, David R.
2012-04-01
Evolutionary experiments with microbes are a powerful tool to study mutations and natural selection. These experiments, however, are often limited to the well-mixed environments of a test tube or a chemostat. Since spatial organization can significantly affect evolutionary dynamics, the need is growing for evolutionary experiments in spatially structured environments. The surface of a Petri dish provides such an environment, but a more detailed understanding of microbial growth on Petri dishes is necessary to interpret such experiments. We formulate a simple deterministic reaction-diffusion model, which successfully predicts the spatial patterns created by two competing species during colony expansion. We also derive the shape of these patterns analytically without relying on microscopic details of the model. In particular, we find that the relative fitness of two microbial strains can be estimated from the logarithmic spirals created by selective sweeps. The theory is tested with strains of the budding yeast Saccharomyces cerevisiae for spatial competitions with different initial conditions and for a range of relative fitnesses. The reaction-diffusion model also connects the microscopic parameters like growth rates and diffusion constants with macroscopic spatial patterns and predicts the relationship between fitness in liquid cultures and on Petri dishes, which we confirmed experimentally. Spatial sector patterns therefore provide an alternative fitness assay to the commonly used liquid culture fitness assays.
Yao, Jia Bao; Chu, Xiu Li; Zhou, Zhi Chun; Tong, Jian She; Wang, Hui; Yu, Jia Zhong
2017-04-18
Growth and root development of three Schima superba seedling provenances were influenced by adjacent plant competition in the homogeneous and heterogeneous nutrient environment, which revealed the reasons of S. superba competition differences in the different genotypes. The results indicated that, compared with homogeneous nutrient environment, all three S. superba provenances showed higher seedling height, more dry matter accumulation, and significant root proliferation in heterogeneous nutrient environment. Under heterogeneous nutrient environment, the seedlings of S. superba from Jian'ou of Fujian exhibited higher competitive advantage in growth than that of S. superba from Longquan of Zhejiang and Xinfeng of Jiangxi, especially standing out under mixed cultivation with seedlings of Cunninghamia lanceolata. Under mixed cultivation, the root growth parameters of S. superba such as root length, root surface area and volume increased by 20.4%-69.0% compared with the single plant, which enhanced the foraging ability and growth advantage. To some extent, however, the root development in Longquan of Zhejiang and Xinfeng of Jiangxi was suppressed when subjected to the pattern of mixed cultivation. Besides, the root growth and development of all three S. superba provenances were suppressed, which might be due to their root self-recognition in the pattern of mono cultivation. Therefore, the seedling growth in Jian'ou of Fujian decreased significantly, but seedling growth in Longquan of Zhejiang and Xinfeng of Jiangxi was not suppressed, even increased evidently, as their root physiological plasticity might play the crucial role in seedling growth. Hence the S. superba from Jian'ou of Fujian with high foraging efficiency and competition ability was suggested with the method of mixed forestation to improve the S. superba forest plantation productivity.
NASA Astrophysics Data System (ADS)
Tuset, V. M.; García-Díaz, M. M.; González, J. A.; Lorente, M. J.; Lozano, I. J.
2005-08-01
The population biology of painted comber Serranus scriba (Linnaeus, 1758) of the Canary Islands coast was studied to estimate gonad morphology, sexuality, age and growth. Analysis of gonad organization and development revealed that it is a functional simultaneous hermaphrodite. Its anatomy and growth pattern of the reproductive cells is similar to that described in other species of the genus Serranus, although the sequence of vesicles appearing varies during vitellogenesis. Spawning season occurred from January to September with a peak in June. Individuals reached 50% maturity at 17.3 cm TL and 95% at 22.7 cm TL. Length-weight relationship was described by the following parameters: a = 0.01 and b = 3.10, being allometric positive. Age was determined from annuli in whole forming an opaque zone and a translucent zone in each annulus per year. The high percentage of otoliths with translucent zone during the annual cycle indicated that this species presents continuous growth throughout the year. Age range was 2-11 years for fish measuring 15.0-29.4 cm TL. This species is slow-growing and long lived. The growth parameters obtained were L∞ = 34.18 cm TL, k = 0.13 years -1, and to = -2.50 years. Otolith length was the best predictor of fish length, while the otolith weight was the best predictor of age.
Polizzi, Viviana; Adams, An; De Saeger, Sarah; Van Peteghem, Carlos; Moretti, Antonio; De Kimpe, Norbert
2012-01-01
A Penicillium polonicum, an Aspergillus ustus and a Periconia britannica strain were isolated from water-damaged environments and the production of microbial volatile organic compounds (MVOCs) was investigated by means of headspace solid-phase microextraction followed by GC-MS analysis. The most important MVOCs produced were 2-methylisoborneol, geosmin and daucane-type sesquiterpenes for P. polonicum, 1-octen-3-ol, 3-octanone, germacrene D, δ-cadinene and other sesquiterpenes for A. ustus and the volatile mycotoxin precursor aristolochene together with valencene, α-selinene and β-selinene for P. britannica. Different growth conditions (substrate, temperature, relative humidity) were selected, resembling indoor parameters, to investigate their influence on fungal metabolism in relation with the sick building syndrome and the results were compared with two other fungal strains previously analyzed under the same conditions. In general, the range of MVOCs and the emitted quantities were larger on malt extract agar than on wallpaper and plasterboard, but, overall, the main MVOC profile was conserved also on the two building materials tested. The influence of temperature and relative humidity on growth and metabolism is different for different fungal species, and two main patterns of behavior could be distinguished. Results show that, even at suboptimal conditions for growth, production of fungal volatiles can be significant. Copyright © 2011 Elsevier B.V. All rights reserved.
Kwan, Sze Ting (Cecilia); Yan, Jian; Klatt, Kevin C.; Jiang, Xinyin; Roberson, Mark S.; Caudill, Marie A.
2017-01-01
Impairments in placental development can adversely affect pregnancy outcomes. The bioactive nutrient choline may mitigate some of these impairments, as suggested by data in humans, animals, and human trophoblasts. Herein, we investigated the effects of maternal choline supplementation (MCS) on parameters of fetal growth in a Dlx3+/− (distal-less homeobox 3) mouse model of placental insufficiency. Dlx3+/− female mice were assigned to 1X (control), 2X, or 4X choline intake levels during gestation. Dams were sacrificed at embryonic days E10.5, 12.5, 15.5, and 18.5. At E10.5, placental weight, embryo weight, and placental efficiency were higher in 4X versus 1X choline. Higher concentrations of hepatic and placental betaine were detected in 4X versus 1X choline, and placental betaine was positively associated with embryo weight. Placental mRNA expression of Igf1 was downregulated by 4X (versus 1X) choline at E10.5. No differences in fetal growth parameters were detected at E12.5 and 15.5, whereas a small but significant reduction in fetal weight was detected at E18.5 in 4X versus 1X choline. MCS improved fetal growth during early pregnancy in the Dlx3+/− mice with the compensatory downregulation of Igf1 to slow growth as gestation progressed. Placental betaine may be responsible for the growth-promoting effects of choline. PMID:28718809
TOPICAL PROBLEMS: The phenomenological theory of world population growth
NASA Astrophysics Data System (ADS)
Kapitza, Sergei P.
1996-01-01
Of all global problems world population growth is the most significant. Demographic data describe this process in a concise and quantitative way in its past and present. Analysing this development it is possible by applying the concepts of systems analysis and synergetics, to work out a mathematical model for a phenomenological description of the global demographic process and to project its trends into the future. Assuming self-similarity as the dynamic principle of development, growth can be described practically over the whole of human history, assuming the growth rate to be proportional to the square of the number of people. The large parameter of the theory and the effective size of a coherent population group is of the order of 105 and the microscopic parameter of the phenomenology is the human lifespan. The demographic transition — a transition to a stabilised world population of some 14 billion in a foreseeable future — is a systemic singularity and is determined by the inherent pattern of growth of an open system, rather than by the lack of resources. The development of a quantitative nonlinear theory of the world population is of interest for interdisciplinary research in anthropology and demography, history and sociology, for population genetics and epidemiology, for studies in evolution of humankind and the origin of man. The model also provides insight into the stability of growth and the present predicament of humankind, and provides a setting for discussing the main global problems.
Marques, S; Ferreira, B P
2016-07-01
This paper presents results on the age, growth and population structure of a small grouper, the mutton hamlet Alphestes afer, and discusses the observed size and age structure patterns in relation to reproductive strategies among the epinephelids. Ages were determined by examination of sectioned otoliths, which showed a distinct pattern of alternating translucent and opaque zones that formed annually, as validated with tetracycline labelling. The von Bertalanffy growth function was adjusted to the length-at-age data of the males and females, but no significant differences were observed between the resulting parameters. The females, however, were older at given sizes and attained larger sizes and ages, with a maximum observed longevity of 13 years and a total length (LT ) of 26 cm, while the males attained maximum longevities of only 10 years and a 22 cm maximum LT . The LT and age range for the sex change was 16-25 cm and 3-11 years. The total mortality rate (Z) was estimated to be 0·55 for females and 0·82 for males. With the males younger and smaller than the females, this species differed from the pattern commonly observed for protogynous epinephelids. Males had slower growth after maturation, probably due to energy allocation to sperm production during sexual development. This study shows that demography is an important tool to understand the pathways for reproductive strategies in grouper populations. © 2016 The Fisheries Society of the British Isles.
NASA Astrophysics Data System (ADS)
Smallhorn-West, Patrick F.; Bridge, Tom C. L.; Munday, Philip L.; Jones, Geoffrey P.
2017-03-01
The abundance of many reef fish species varies with depth, but the demographic processes influencing this pattern remain unclear. Furthermore, while the distribution of highly specialized reef fish often closely matches that of their habitat, it is unclear whether changes in distribution patterns over depth are the result of changes in habitat availability or independent depth-related changes in population parameters such as recruitment and mortality. Here, we show that depth-related patterns in the distribution of the coral-associated goby, Paragobiodon xanthosoma, are strongly related to changes in recruitment and performance (growth and survival). Depth-stratified surveys showed that while the coral host, Seriatopora hystrix, extended into deeper water (>20 m), habitat use by P. xanthosoma declined with depth and both adult and juvenile P. xanthosoma were absent below 20 m. Standardization of S. hystrix abundance at three depths (5, 15 and 30 m) demonstrated that recruitment of P. xanthosoma was not determined by the availability of its habitat. Reciprocal transplantation of P. xanthosoma to S. hystrix colonies among three depths (5, 15 and 30 m) then established that individual performance (survival and growth) was lowest in deeper water; mortality was three times higher and growth greatly reduced in individuals transplanted to 30 m. Individuals collected from 15 m also exhibited growth rates 50% lower than fish from shallow depths. These results indicate that the depth distribution of this species is limited not by the availability of its coral habitat, but by demographic costs associated with living in deeper water.
NASA Astrophysics Data System (ADS)
Farley, Zachary; Aslangil, Denis; Banerjee, Arindam; Lawrie, Andrew G. W.
2017-11-01
An implicit large eddy simulation (ILES) code, MOBILE, is used to explore the growth rate of the mixing layer width of the acceleration-driven Rayleigh-Taylor instability (RTI) under variable acceleration histories. The sets of computations performed consist of a series of accel-decel-accel (ADA) cases in addition to baseline constant acceleration and accel-decel (AD) cases. The ADA cases are a series of varied times for the second acceleration reversal (t2) and show drastic differences in the growth rates. Upon the deceleration phase, the kinetic energy of the flow is shifted into internal wavelike patterns. These waves are evidenced by the examined differences in growth rate in the second acceleration phase for the set of ADA cases. Here, we investigate global parameters that include mixing width, growth rates and the anisotropy tensor for the kinetic energy to better understand the behavior of the growth during the re-acceleration period. Authors acknowledge financial support from DOE-SSAA (DE-NA0003195) and NSF CAREER (#1453056) awards.
NASA Astrophysics Data System (ADS)
Smith, Varina Campbell
The role of growth steps in inducing disequilibrium is investigated in crystals of vesuvianite from the Jeffrey mine, Asbestos, Quebec, using optical microscopy, atomic force microscopy, electron microprobe analysis, and single-crystal X-ray diffraction. The selective uptake of elements Fe and Al by asymmetric growth-steps on three crystallographic forms, {100}, {110}, and {121}, is documented. The prisms {100} and {110} show hillocks that display kinetically controlled oscillatory zoning along growth steps parallel to <010> and <11¯1>, but not on vicinal faces defined by [001] steps. Sector-specific zoning of extinction angles and 2V angles indicate different degrees of optical dissymmetrization in crystals spanning a range of growth habits. Unit-cell parameters and the presence of violating reflections confirm sectoral deviations from P4/nnc symmetry in the prismatic sectors. The partial loss of three glide planes follows the pattern expected from order of the cations Al and Fe induced by tangential selectivity at the edge of non-equivalent steps during layer-by-layer growth.
Turner Tomaszewicz, Calandra N; Seminoff, Jeffrey A; Peckham, S Hoyt; Avens, Larisa; Kurle, Carolyn M
2017-05-01
Determining location and timing of ontogenetic shifts in the habitat use of highly migratory species, along with possible intrapopulation variation in these shifts, is essential for understanding mechanisms driving alternate life histories and assessing overall population trends. Measuring variations in multi-year habitat-use patterns is especially difficult for remote oceanic species. To investigate the potential for differential habitat use among migratory marine vertebrates, we measured the naturally occurring stable nitrogen isotope (δ 15 N) patterns that differentiate distinct ocean regions to create a 'regional isotope characterization', analysed the δ 15 N values from annual bone growth layer rings from dead-stranded animals, and then combined the bone and regional isotope data to track individual animal movement patterns over multiple years. We used humeri from juvenile North Pacific loggerhead turtles (Caretta caretta), animals that undergo long migrations across the North Pacific Ocean (NPO), using multiple discrete regions as they develop to adulthood. Typical of many migratory marine species, ontogenetic changes in habitat use throughout their decades-long juvenile stage is poorly understood, but each potential habitat has unique foraging opportunities and spatially explicit natural and anthropogenic threats that could affect key life-history parameters. We found a bimodal size/age distribution in the timing that juveniles underwent an ontogenetic habitat shift from the oceanic central North Pacific (CNP) to the neritic east Pacific region near the Baja California Peninsula (BCP) (42·7 ± 7·2 vs. 68·3 ± 3·4 cm carapace length, 7·5 ± 2·7 vs. 15·6 ± 1·7 years). Important to the survival of this population, these disparate habitats differ considerably in their food availability, energy requirements and threats, and these differences can influence life-history parameters such as growth, survival and future fecundity. This is the first evidence of alternative ontogenetic shifts and habitat-use patterns for juveniles foraging in the eastern NPO. We combine two techniques, skeletochronology and stable isotope analysis, to reconstruct multi-year habitat-use patterns of a remote migratory species, linked to estimated ages and body sizes of individuals, to reveal variable ontogeny during the juvenile life stage that could drive alternate life histories and that has the potential to illuminate the migration patterns for other species with accretionary tissues. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Swimming pattern of Pseudomonas putida - navigating with stops and reversals
NASA Astrophysics Data System (ADS)
Hintsche, Marius; Waljor, Veronika; Alirezaeizanjani, Zahra; Theves, Matthias; Beta, Carsten
Bacterial swimming strategies depend on factors such as the chemical and physical environment, as well as the flagellation pattern of a species. For some bacteria the motility pattern and the underlying flagellar dynamics are well known, such as the classical run-and-tumble behavior of E. coli. Here we study the swimming motility and chemotactic behavior of the polar, multi-flagellated soil dwelling bacterium Pseudomonas putida. Compared to E. coli, its motility pattern is more diverse. In addition to different speed levels, P. putida exhibits two types of reorientation events, stops and reversals, the occurrence of which is modulated according to the growth conditions. We also analyzed the swimming pattern in the presence of chemical gradients. Using benzoate as a chemoattractant, we measured key motility parameters in order to characterize P. putida's chemotaxis strategy and to quantify the directional bias in its random walk. Our results indicate a change in the reversal frequency depending on changes in the chemoattractant concentration consistent with the classical scenario of temporal sensing. DFG.
Title: Freshwater phytoplankton responses to global warming.
Wagner, Heiko; Fanesi, Andrea; Wilhelm, Christian
2016-09-20
Global warming alters species composition and function of freshwater ecosystems. However, the impact of temperature on primary productivity is not sufficiently understood and water quality models need to be improved in order to assess the quantitative and qualitative changes of aquatic communities. On the basis of experimental data, we demonstrate that the commonly used photosynthetic and water chemistry parameters alone are not sufficient for modeling phytoplankton growth under changing temperature regimes. We present some new aspects of the acclimation process with respect to temperature and how contrasting responses may be explained by a more complete physiological knowledge of the energy flow from photons to new biomass. We further suggest including additional bio-markers/traits for algal growth such as carbon allocation patterns to increase the explanatory power of such models. Although carbon allocation patterns are promising and functional cellular traits for growth prediction under different nutrient and light conditions, their predictive power still waits to be tested with respect to temperature. A great challenge for the near future will be the prediction of primary production efficiencies under the global change scenario using a uniform model for phytoplankton assemblages. Copyright © 2016 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Herawati, T.; Yustiati, A.; Diliana, S. Y.; Adhardiansyah
2018-03-01
The research was conducted to find out the growth and productive pattern of Seren fish in Jatigede Sumedang Reservoir of West Java during the period of November 2016 to December 2016. The research used survey method with quantitative descriptive data analysis. Seren fish samples used in the study was 30 individuals collected in November 2016 and 41 individuals collected December 2016. The parameters observed namely were sex, gonads maturity level and index and fecundity. The results show that the average length of seren fish was 147 mm and the largest one was 273 mm. The fish growth patterns were allometrically negative. The condition factor ranged from 0.973 to 1.105. The ratio of nutritional fish seren was balanced between male and female fish. Gonad Maturity Index of male seren fish and female seren were relatively similar. The GMI male fish ranged between 0.285 to 11.055 % while the female GMI fish ranged from 1.23 to 11.76 %. The Seren fish of 225 mm has average fecundity of 10,032 grains, fish fitting 260 mm average 23,471 grains, there was a relationship between the addition of length size and fecundity.
Jiang, Qiao Wen; Cao, Zhi Min; Wang, Dao Ru; Li, Yuan Chao; Ni, Jian Yu
2016-03-01
The growth characteristics of Porites lutea skeleton in east sea area of Hainan Island were studied by CoralXDS software based on X-ray chronology. The growth parameters obtained included extension rate (ER), skeleton density (D), and calcification rate (CR). The results showed that ER varied from 0.49 to 1.10 cm·a -1 with an annual average of 0.76 cm·a -1 , D varied from 1.11 to 1.35 g·cm -3 with an annual average of 1.22 g·cm -3 , and CR varied from 0.55 to 1.41 g·cm -2 ·a -1 with an annual average of 0.94 g·cm -2 ·a -1 . Statistical analyses indicated that sea surface temperature (SST) was the key environmental factor that controlled the growth characteristics, as it highly co-varied with ER and CR, less so with D. All of the three growth characteristics increased with the increase of SST. There were other factors that influenced the growth characteristics of the coral column, such as light, water salinity, and hydrodynamics, etc. In addition, typhoon and severe tropical storms also imposed a significant impact on the growth pattern of Porites lutea coral. The change in growth pattern of coral skeleton in east of Hainan Island was a response to complex climate fluctuation. Over the past century, SST of east Hainan Island dramatically increased at a rate of 0.15 ℃·(10 a) -1 . The SST increase trend for the oceanic region could be divided into two stages, early 1940s and early 1980s. The human activities and global warming was the main causes for the increase of SST.
Improved national growth rate method: a comment.
Begum, N
1991-09-01
Rahman's 1987 paper on an improvement in the National Growth Rate Method (NGRM) is discussed. Rahman's assumption is that migration in/out of a city of region is constant, and because the method requires minimal data, it is suitable for application in developing countries. This assumption means that the model is inappropriate for developing countries which are known to have nonuniform rates of population change. Size of city also affects the migration pattern, where larger cities with greater numbers of industrial and business concerns and social services receive a rapid influx of new migrants. This view is also reflected in Rahman's paper. The example is given that Dhaka SMA, Bangladesh received 60% more migrants in 2 periods: 130,000 in migrants/year from 1974 to 1981 vs. 82,000/year from 1961 to 1974. Chittagong, Khulna, and Rajshahi SMA's had similar growth from 1961 to 1981, but there was a slower rate in the 2nd period. Positive contributions of the Rahman paper are the identification of the problems of the nuisance parameter. Rahman points out that the definition of the migration rate is flawed by the traditional NGRM parameter describing the natural increase of migrants. It is stated that recognition of this flaw and the development of a simple case of uniform migration is a good beginning for developing a more realistic model of migration. It is suggested that an extra parameter to represent departure from uniformity in the estimation be introduced. More data would be required. If the task is to use only 2 censuses for estimation of a single parameter, then there is a seemingly insurmountable problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teplyakova, Ludmila, E-mail: lat168@mail.ru; Koneva, Nina, E-mail: koneva@mail.ru; Kunitsyna, Tatyana, E-mail: kma11061990@mail.ru
2016-01-15
The slip trace pattern of Ni{sub 3}Fe alloy single crystals with the short range order oriented for a single slip were investigated on replica at different stages of deformation using the transmission diffraction electron microscopy method. The connection of staging with the formation of slip trace pattern and the change of its parameters were established. The number of local areas where two or more slip systems work is increased with the change of stages. In these conditions the character of slip localization in the primary slip system is changed from the packets to the homogeneous distribution. The distributions of themore » distances between slip traces and the shear power in slip traces were plotted. The correlation between the average value of the shear power in the primary slip traces and the average distance between them was revealed in this work. It was established that the rates of the average value growth of the relative local shear and the shear power in the slip traces reach the largest values at the transition stage.« less
Computerized morphometry as an aid in distinguishing recurrent versus nonrecurrent meningiomas.
Noy, Shawna; Vlodavsky, Euvgeni; Klorin, Geula; Drumea, Karen; Ben Izhak, Ofer; Shor, Eli; Sabo, Edmond
2011-06-01
To use novel digital and morphometric methods to identify variables able to better predict the recurrence of intracranial meningiomas. Histologic images from 30 previously diagnosed meningioma tumors that recurred over 10 years of follow-up were consecutively selected from the Rambam Pathology Archives. Images were captured and morphometrically analyzed. Novel algorithms of digital pattern recognition using Fourier transformation and fractal and nuclear texture analyses were applied to evaluate the overall growth pattern complexity of the tumors, as well as the chromatin texture of individual tumor nuclei. The extracted parameters were then correlated with patient prognosis. Kaplan-Meier analyses revealed statistically significant associations between tumor morphometric parameters and recurrence times. Tumors with less nuclear orientation, more nuclear density, higher fractal dimension, and less regular chromatin textures tended to recur faster than those with a higher degree of nuclear order, less pattern complexity, lower density, and more homogeneous chromatin nuclear textures (p < 0.01). To our knowledge, these digital morphometric methods were used for the first time to accurately predict tumor recurrence in patients with intracranial meningiomas. The use of these methods may bring additional valuable information to the clinician regarding the optimal management of these patients.
Gigantism and comparative life-history parameters of tyrannosaurid dinosaurs.
Erickson, Gregory M; Makovicky, Peter J; Currie, Philip J; Norell, Mark A; Yerby, Scott A; Brochu, Christopher A
2004-08-12
How evolutionary changes in body size are brought about by variance in developmental timing and/or growth rates (also known as heterochrony) is a topic of considerable interest in evolutionary biology. In particular, extreme size change leading to gigantism occurred within the dinosaurs on multiple occasions. Whether this change was brought about by accelerated growth, delayed maturity or a combination of both processes is unknown. A better understanding of relationships between non-avian dinosaur groups and the newfound capacity to reconstruct their growth curves make it possible to address these questions quantitatively. Here we study growth patterns within the Tyrannosauridae, the best known group of large carnivorous dinosaurs, and determine the developmental means by which Tyrannosaurus rex, weighing 5,000 kg and more, grew to be one of the most enormous terrestrial carnivorous animals ever. T. rex had a maximal growth rate of 2.1 kg d(-1), reached skeletal maturity in two decades and lived for up to 28 years. T. rex's great stature was primarily attained by accelerating growth rates beyond that of its closest relatives.
Batchwise growth of silica cone patterns via self-assembly of aligned nanowires.
Luo, Shudong; Zhou, Weiya; Chu, Weiguo; Shen, Jun; Zhang, Zengxing; Liu, Lifeng; Liu, Dongfang; Xiang, Yanjuan; Ma, Wenjun; Xie, Sishen
2007-03-01
Silica-cone patterns self-assembled from well-aligned nanowires are synthesized using gallium droplets as the catalyst and silicon wafers as the silicon source. The cones form a triangular pattern array radially on almost the whole surface of the molten Ga ball. Detailed field-emission scanning electron microscopy (SEM) analysis shows that the cone-pattern pieces frequently slide off and are detached from the molten Ga ball surface, which leads to the exposure of the catalyst surface and the growth of a new batch of silicon oxide nanowires as well as the cone patterns. The processes of growth and detachment alternate, giving rise to the formation of a volcano-like or a flower-like structure with bulk-quantity pieces of cone patterns piled up around the Ga ball. Consequently, the cone-patterned layer grows batch by batch until the reaction is terminated. Different to the conventional metal-catalyzed growth model, the batch-by-batch growth of the triangular cone patterns proceeds on the molten Ga balls via alternate growth on and detachment from the catalyst surface of the patterns; the Ga droplet can be used continuously and circularly as an effective catalyst for the growth of amorphous SiO(x) nanowires during the whole growth period. The intriguing batchwise growth phenomena may enrich our understanding of the vapour-liquid-solid (VLS) growth mechanism for the catalyst growth of nanowires or other nanostructures and may offer a different way of self-assembling novel silica nanostructures.
RS- and GIS-based study on landscape pattern change in the Poyang Lake wetland area, China
NASA Astrophysics Data System (ADS)
Chen, Xiaoling; Li, Hui; Bao, Shuming; Wu, Zhongyi; Fu, Weijuan; Cai, Xiaobin; Zhao, Hongmei; Guo, Peng
2006-10-01
As wetland has been recognized as an important component of ecosystem, it is received ever-increasing attention worldwide. Poyang Lake wetlands, the international wetlands and the largest bird habitat in Asia, play an important role in biodiversity and ecologic protection. However, with the rapid economic growth and urbanization, landscape patterns in the wetlands have dramatically changed in the past three decades. To better understand the wetland landscape dynamics, remote sensing, geographic information system technologies, and the FRAGSTATS landscape analysis program were used to measure landscape patterns. Statistical approach was employed to illustrate the driving forces. In this study, Landsat images (TM and ETM+) from 1989 and 2000 were acquired for the wetland area. The landscapes in the wetland area were classified as agricultural land, urban, wetland, forest, grassland, unused land, and water body using a combination of supervised and unsupervised classification techniques integrated with Digital Elevation Model (DEM). Landscape indices, which are popular for the quantitative analysis of landscape pattern, were then employed to analyze the landscape pattern changes between the two dates in a GIS. From this analysis an understanding of the spatial-temporal patterns of landscape evolution was generated. The results show that wetland area was reduced while fragmentation was increased over the study period. Further investigation was made to examine the relationship between landscape metrics and some other parameters such as urbanization to address the driving forces for those changes. The urban was chosen as center to conduct buffer analysis in a GIS to study the impact of human-induced activities on landscape pattern dynamics. It was found that the selected parameters were significantly correlated with the landscape metrics, which may well indicate the impact of human-induced activities on the wetland landscape pattern dynamics and account for the driving forces.
Abd El-Baki, G K; Mostafa, Doaa
2014-12-01
The interaction between sodium chloride and Trichoderma harzianum (T24) on growth parameters, ion contents, MDA content, proline, soluble proteins as well as SDS page protein profile were studied in Vicia faba Giza 429. A sharp reduction was found in fresh and dry mass of shoots and roots with increasing salinity. Trichoderma treatments promoted the growth criteria as compared with corresponding salinized plants. The water content and leaf area exhibited a marked decrease with increasing salinity. Trichoderma treatments induced a progressive increase in both parameters. Both proline and MDA contents were increased progressively as the salinity rose in the soil. Trichoderma treatments considerably retarded the accumulation of both parameters in shoots and roots. Both Na+ and K+ concentration increased in both organs by enhancing salinity levels. The treatment with Trichoderma harzianum enhanced the accumulation of both ions. Exposure of plants to different concentrations of salinity, or others treated with Trichoderma harzianum produced marked changes in their protein pattern. Three types of alterations were observed: the synthesis of certain proteins declined significantly, specific synthesis of certain other proteins were markedly observed and synthesis of a set specific protein was induced de novo in plant treated with Trichoderma harzianum.
Sadeghi, Neda; Prastawa, Marcel; Fletcher, P Thomas; Gilmore, John H; Lin, Weili; Gerig, Guido
2012-01-01
A population growth model that represents the growth trajectories of individual subjects is critical to study and understand neurodevelopment. This paper presents a framework for jointly estimating and modeling individual and population growth trajectories, and determining significant regional differences in growth pattern characteristics applied to longitudinal neuroimaging data. We use non-linear mixed effect modeling where temporal change is modeled by the Gompertz function. The Gompertz function uses intuitive parameters related to delay, rate of change, and expected asymptotic value; all descriptive measures which can answer clinical questions related to growth. Our proposed framework combines nonlinear modeling of individual trajectories, population analysis, and testing for regional differences. We apply this framework to the study of early maturation in white matter regions as measured with diffusion tensor imaging (DTI). Regional differences between anatomical regions of interest that are known to mature differently are analyzed and quantified. Experiments with image data from a large ongoing clinical study show that our framework provides descriptive, quantitative information on growth trajectories that can be directly interpreted by clinicians. To our knowledge, this is the first longitudinal analysis of growth functions to explain the trajectory of early brain maturation as it is represented in DTI.
Adressing optimality principles in DGVMs: Dynamics of Carbon allocation changes
NASA Astrophysics Data System (ADS)
Pietsch, Stephan
2017-04-01
DGVMs are designed to reproduce and quantify ecosystem processes. Based on plant functions or species specific parameter sets, the energy, carbon, nitrogen and water cycles of different ecosystems are assessed. These models have been proven to be important tools to investigate ecosystem fluxes as they are derived by plant, site and environmental factors. The general model approach assumes steady state conditions and constant model parameters. Both assumptions, however, are wrong, since: (i) No given ecosystem ever is at steady state! (ii) Ecosystems have the capability to adapt to changes in growth conditions, e.g. via changes in allocation patterns! This presentation will give examples how these general failures within current DGVMs may be addressed.
Adressing optimality principles in DGVMs: Dynamics of Carbon allocation changes.
NASA Astrophysics Data System (ADS)
Pietsch, S.
2016-12-01
DGVMs are designed to reproduce and quantify ecosystem processes. Based on plant functions or species specific parameter sets, the energy, carbon, nitrogen and water cycles of different ecosystems are assessed. These models have been proven to be important tools to investigate ecosystem fluxes as they are derived by plant, site and environmental factors. The general model approach assumes steady state conditions and constant model parameters. Both assumptions, however, are wrong. Any given ecosystem never is at steady state! Ecosystems have the capability to adapt to changes in growth conditions, e.g. via changes in allocation patterns! This presentation will give examples how these general failures within current DGVMs may be addressed.
ONODA, Tomoaki; YAMAMOTO, Ryuta; SAWAMURA, Kyohei; MURASE, Harutaka; NAMBO, Yasuo; INOUE, Yoshinobu; MATSUI, Akira; MIYAKE, Takeshi; HIRAI, Nobuhiro
2014-01-01
ABSTRACT We propose an approach of estimating individual growth curves based on the birthday information of Japanese Thoroughbred horses, with considerations of the seasonal compensatory growth that is a typical characteristic of seasonal breeding animals. The compensatory growth patterns appear during only the winter and spring seasons in the life of growing horses, and the meeting point between winter and spring depends on the birthday of each horse. We previously developed new growth curve equations for Japanese Thoroughbreds adjusting for compensatory growth. Based on the equations, a parameter denoting the birthday information was added for the modeling of the individual growth curves for each horse by shifting the meeting points in the compensatory growth periods. A total of 5,594 and 5,680 body weight and age measurements of Thoroughbred colts and fillies, respectively, and 3,770 withers height and age measurements of both sexes were used in the analyses. The results of predicted error difference and Akaike Information Criterion showed that the individual growth curves using birthday information better fit to the body weight and withers height data than not using them. The individual growth curve for each horse would be a useful tool for the feeding managements of young Japanese Thoroughbreds in compensatory growth periods. PMID:25013356
Innate immunity of fish (overview).
Magnadóttir, Bergljót
2006-02-01
The innate immune system is the only defence weapon of invertebrates and a fundamental defence mechanism of fish. The innate system also plays an instructive role in the acquired immune response and homeostasis and is therefore equally important in higher vertebrates. The innate system's recognition of non-self and danger signals is served by a limited number of germ-line encoded pattern recognition receptors/proteins, which recognise pathogen associated molecular patterns like bacterial and fungal glycoproteins and lipopolysaccharides and intracellular components released through injury or infection. The innate immune system is divided into physical barriers, cellular and humoral components. Humoral parameters include growth inhibitors, various lytic enzymes and components of the complement pathways, agglutinins and precipitins (opsonins, primarily lectins), natural antibodies, cytokines, chemokines and antibacterial peptides. Several external and internal factors can influence the activity of innate immune parameters. Temperature changes, handling and crowding stress can have suppressive effects on innate parameters, whereas several food additives and immunostimulants can enhance different innate factors. There is limited data available about the ontogenic development of the innate immunological system in fish. Active phagocytes, complement components and enzyme activity, like lysozyme and cathepsins, are present early in the development, before or soon after hatching.
A 3-dimensional DTI MRI-based model of GBM growth and response to radiation therapy.
Hathout, Leith; Patel, Vishal; Wen, Patrick
2016-09-01
Glioblastoma (GBM) is both the most common and the most aggressive intra-axial brain tumor, with a notoriously poor prognosis. To improve this prognosis, it is necessary to understand the dynamics of GBM growth, response to treatment and recurrence. The present study presents a mathematical diffusion-proliferation model of GBM growth and response to radiation therapy based on diffusion tensor (DTI) MRI imaging. This represents an important advance because it allows 3-dimensional tumor modeling in the anatomical context of the brain. Specifically, tumor infiltration is guided by the direction of the white matter tracts along which glioma cells infiltrate. This provides the potential to model different tumor growth patterns based on location within the brain, and to simulate the tumor's response to different radiation therapy regimens. Tumor infiltration across the corpus callosum is simulated in biologically accurate time frames. The response to radiation therapy, including changes in cell density gradients and how these compare across different radiation fractionation protocols, can be rendered. Also, the model can estimate the amount of subthreshold tumor which has extended beyond the visible MR imaging margins. When combined with the ability of being able to estimate the biological parameters of invasiveness and proliferation of a particular GBM from serial MRI scans, it is shown that the model has potential to simulate realistic tumor growth, response and recurrence patterns in individual patients. To the best of our knowledge, this is the first presentation of a DTI-based GBM growth and radiation therapy treatment model.
Ahmad, Abrar; Askari, Shlear; Befekadu, Rahel; Hahn-Strömberg, Victoria
2015-04-01
There have been numerous studies on the gene expression of connective tissue growth factor (CTGF) in colorectal cancer, however very few have investigated polymorphisms in this gene. The present study aimed to determine whether single nucleotide polymorphisms (SNPs) in the CTGF gene are associated with a higher susceptibility to colon cancer and/or an invasive tumor growth pattern. The CTGF gene was genotyped for seven SNPs (rs6918698, rs1931002, rs9493150, rs12526196, rs12527705, rs9399005 and rs12527379) by pyrosequencing. Formalin‑fixed paraffin‑embedded tissue samples (n=112) from patients diagnosed with colon carcinoma, and an equal number of blood samples from healthy controls, were selected for genomic DNA extraction. The complexity index was measured using images of tumor samples (n=64) stained for cytokeratin‑8. The images were analyzed and correlated with the identified CTGF SNPs and clinicopathological parameters of the patients, including age, gender, tumor penetration, lymph node metastasis, systemic metastasis, differentiation and localization of tumor. It was demonstrated that the frequency of the SNP rs6918698 GG genotype was significantly associated (P=0.05) with an increased risk of colon cancer, as compared with the GC and CC genotypes. The other six SNPs (rs1931002, rs9493150, rs12526196, rs12527705, rs9399005 and rs12527379) exhibited no significant difference in the genotype and allele frequencies between patients diagnosed with colon carcinoma and the normal healthy population. A trend was observed between genotype variation at rs6918698 and the complexity index (P=0.052). The complexity index and genotypes for any of the studied SNPs were not significantly correlated with clinical or pathological parameters of the patients. These results indicate that the rs6918698 GG genotype is associated with an increased risk of developing colon carcinoma, and genetic variations at the rs6918698 are associated with the growth pattern of the tumor. The present results may facilitate the identification of potential biomarkers of the disease in addition to drug targets.
Jacobs, Collin; Jacobs-Müller, Claudia; Hoffmann, Viviana; Meila, Dan; Erbe, Christina; Krieger, Elena; Wehrbein, Heiner
2012-01-01
Analysis of the effects and side effects of treatment of patients with moderate skeletal Class III and vertical growth pattern by means of extraction of the second molars in the lower jaw. A total of 20 patients with a mean age of 12.9 years were examined retrospectively. Inclusion criteria consisted of a Wits value of 0 to -5, a posterior growth pattern of the mandible (Hasund analysis), an overjet of -2 to 1 mm, and an overbite of 0 to -3 mm. Treatment was performed using a straight-wire appliance. As part of the treatment, the lower second molars were extracted and Class III elastics attached. Cephalograms and orthopantomograms taken before and after treatment were used for evaluation. Treatment resulted in a significant change in the mean overjet from 0.5 mm to 2.1 mm and the attainment of a positive mean overbite of -1.0 mm to 0.9 mm. The occlusal plane rotated anteriorly from 18.8° to 13.7°. The skeletal parameters showed a change in the Wits value from -3.3 mm to -1.4 mm and an anterior mandibular rotation (ML-NSL 35.5° vs. 32.0°). The soft tissues revealed an increase in the distance between the lower lip and the "esthetic line" to the posterior (-2.0 mm vs. -3.9 mm). Dental compensation of moderate skeletal Class III with a tendency to an anterior open bite with vertical growth pattern by extracting the lower second molars, combined with Class III elastics, resulted in an anterior rotation of the occlusal plane and mandible. Eighteen of 20 patients achieved a physiological overjet and positive overbite. A prerequisite for this therapy is the presence of lower wisdom teeth; a potential side effect is elongation of the upper second molars.
A Model of the Spatio-temporal Dynamics of Drosophila Eye Disc Development.
Fried, Patrick; Sánchez-Aragón, Máximo; Aguilar-Hidalgo, Daniel; Lehtinen, Birgitta; Casares, Fernando; Iber, Dagmar
2016-09-01
Patterning and growth are linked during early development and have to be tightly controlled to result in a functional tissue or organ. During the development of the Drosophila eye, this linkage is particularly clear: the growth of the eye primordium mainly results from proliferating cells ahead of the morphogenetic furrow (MF), a moving signaling wave that sweeps across the tissue from the posterior to the anterior side, that induces proliferating cells anterior to it to differentiate and become cell cycle quiescent in its wake. Therefore, final eye disc size depends on the proliferation rate of undifferentiated cells and on the speed with which the MF sweeps across the eye disc. We developed a spatio-temporal model of the growing eye disc based on the regulatory interactions controlled by the signals Decapentaplegic (Dpp), Hedgehog (Hh) and the transcription factor Homothorax (Hth) and explored how the signaling patterns affect the movement of the MF and impact on eye disc growth. We used published and new quantitative data to parameterize the model. In particular, two crucial parameter values, the degradation rate of Hth and the diffusion coefficient of Hh, were measured. The model is able to reproduce the linear movement of the MF and the termination of growth of the primordium. We further show that the model can explain several mutant phenotypes, but fails to reproduce the previously observed scaling of the Dpp gradient in the anterior compartment.
NASA Astrophysics Data System (ADS)
Lika, Konstadia; Kearney, Michael R.; Kooijman, Sebastiaan A. L. M.
2011-11-01
The covariation method for estimating the parameters of the standard Dynamic Energy Budget (DEB) model provides a single-step method of accessing all the core DEB parameters from commonly available empirical data. In this study, we assess the robustness of this parameter estimation procedure and analyse the role of pseudo-data using elasticity coefficients. In particular, we compare the performance of Maximum Likelihood (ML) vs. Weighted Least Squares (WLS) approaches and find that the two approaches tend to converge in performance as the number of uni-variate data sets increases, but that WLS is more robust when data sets comprise single points (zero-variate data). The efficiency of the approach is shown to be high, and the prior parameter estimates (pseudo-data) have very little influence if the real data contain information about the parameter values. For instance, the effects of the pseudo-value for the allocation fraction κ is reduced when there is information for both growth and reproduction, that for the energy conductance is reduced when information on age at birth and puberty is given, and the effects of the pseudo-value for the maturity maintenance rate coefficient are insignificant. The estimation of some parameters (e.g., the zoom factor and the shape coefficient) requires little information, while that of others (e.g., maturity maintenance rate, puberty threshold and reproduction efficiency) require data at several food levels. The generality of the standard DEB model, in combination with the estimation of all of its parameters, allows comparison of species on the basis of parameter values. We discuss a number of preliminary patterns emerging from the present collection of parameter estimates across a wide variety of taxa. We make the observation that the estimated value of the fraction κ of mobilised reserve that is allocated to soma is far away from the value that maximises reproduction. We recognise this as the reason why two very different parameter sets must exist that fit most data set reasonably well, and give arguments why, in most cases, the set with the large value of κ should be preferred. The continued development of a parameter database through the estimation procedures described here will provide a strong basis for understanding evolutionary patterns in metabolic organisation across the diversity of life.
Islam, M. Ashraful; Beardall, John
2017-01-01
Cyanobacteria are major bloom-forming organisms in freshwater ecosystems and many strains are known to produce toxins. Toxin production requires an investment in energy and resources. As light is one of the most important factors for cyanobacterial growth, any changes in light climate might affect cyanobacterial toxin production as well as their growth and physiology. To evaluate the effects of light on the growth and physiological parameters of both toxic and non-toxic strains of Microcystis aeruginosa and Anabaena circinalis, cultures were grown at a range of light intensities (10, 25, 50, 100, 150 and 200 µmol m−2 s−1). The study revealed that the toxic strains of both species (CS558 for M. aeruginosa and CS537 and CS541 for A. circinalis) showed growth (µ) saturation at a higher light intensity compared to the non-toxic strains (CS338 for M. aeruginosa and CS534 for A. circinalis). Both species showed differences in chlorophyll a, carotenoid, allophycocyanin (APC) and phycoerythrin (PE) content between strains. There were also differences in dark respiration (Rd), light saturated oxygen evolution rates (Pmax) and efficiency of light harvesting (α) between strains. All other physiological parameters showed no statistically significant differences between strains. This study suggest that the different strains respond differently to different light habitats. Thus, changes in light availability may affect bloom intensity of toxic and nontoxic strains of cyanobacteria by changing the dominance and succession patterns. PMID:28777340
Neuschulz, J; Schaefer, I; Scheer, M; Christ, H; Braumann, B
2013-07-01
In order to visualize and quantify the direction and extent of morphological upper-jaw changes in infants with unilateral cleft lip and palate (UCLP) during early orthodontic treatment, a three-dimensional method of cast analysis for routine application was developed. In the present investigation, this method was used to identify reaction patterns associated with specific cleft forms. The study included a cast series reflecting the upper-jaw situations of 46 infants with complete (n=27) or incomplete (n=19) UCLP during week 1 and months 3, 6, and 12 of life. Three-dimensional datasets were acquired and visualized with scanning software (DigiModel®; OrthoProof, The Netherlands). Following interactive identification of landmarks on the digitized surface relief, a defined set of representative linear parameters were three-dimensionally measured. At the same time, the three-dimensional surfaces of one patient series were superimposed based on a defined reference plane. Morphometric differences were statistically analyzed. Thanks to the user-friendly software, all landmarks could be identified quickly and reproducibly, thus, allowing for simultaneous three-dimensional measurement of all defined parameters. The measured values revealed that significant morphometric differences were present in all three planes of space between the two patient groups. Patients with complete UCLP underwent significantly larger reductions in cleft width (p<0.001), and sagittal growth in the complete UCLP group exceeded sagittal growth in the incomplete UCLP group by almost 50% within the first year of life. Based on patients with incomplete versus complete UCLP, different reaction patterns were identified that depended not on apparent severities of malformation but on cleft forms.
Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hainey, Mel F.; Redwing, Joan M.
Metal-mediated vapor-liquid-solid (VLS) growth is a promising approach for the fabrication of silicon nanowires, although residual metal incorporation into the nanowires during growth can adversely impact electronic properties particularly when metals such as gold and copper are utilized. Aluminum, which acts as a shallow acceptor in silicon, is therefore of significant interest for the growth of p-type silicon nanowires but has presented challenges due to its propensity for oxidation. This paper summarizes the key aspects of aluminum-catalyzed nanowire growth along with wire properties and device results. In the first section, aluminum-catalyzed nanowire growth is discussed with a specific emphasis onmore » methods to mitigate aluminum oxide formation. Next, the influence of growth parameters such as growth temperature, precursor partial pressure, and hydrogen partial pressure on nanowire morphology is discussed, followed by a brief review of the growth of templated and patterned arrays of nanowires. Aluminum incorporation into the nanowires is then discussed in detail, including measurements of the aluminum concentration within wires using atom probe tomography and assessment of electrical properties by four point resistance measurements. Finally, the use of aluminum-catalyzed VLS growth for device fabrication is reviewed including results on single-wire radial p-n junction solar cells and planar solar cells fabricated with nanowire/nanopyramid texturing.« less
NASA Astrophysics Data System (ADS)
Sarkar, Subhendu Sinha; Katiyar, Ajit K.; Sarkar, Arijit; Dhar, Achintya; Rudra, Arun; Khatri, Ravinder K.; Ray, Samit Kumar
2018-04-01
It is important to investigate the growth dynamics of Ge adatoms under different surface stress regimes of the patterned dielectric to control the selective growth of self-assembled Ge nanostructures on silicon. In the present work, we have studied the growth of Ge by molecular beam epitaxy on nanometer scale patterned Si3N4/Si(001) substrates generated using electron beam lithography. The pitch of the patterns has been varied to investigate its effect on the growth of Ge in comparison to un-patterned Si3N4. For the patterned Si3N4 film, Ge did not desorbed completely from the Si3N4 film and hence no site selective growth pattern is observed. Instead, depending upon the pitch, Ge growth has occurred in different growth modes around the openings in the Si3N4. For the un-patterned substrate, the morphology exhibits the occurrence of uniform 3D clustering of Ge adatoms on Si3N4 film. This variation in the growth modes of Ge is attributed to the variation of residual stress in the Si3N4 film for different pitch of holes, which has been confirmed theoretically through Comsol Multiphysics simulation. The variation in stress for different pitches resulted in modulation of surface energy of the Si3N4 film leading to the different growth modes of Ge.
Pattern formation with proportionate growth
NASA Astrophysics Data System (ADS)
Dhar, Deepak
It is a common observation that as baby animals grow, different body parts grow approximately at same rate. This property, called proportionate growth is remarkable in that it is not encountered easily outside biology. The models of growth that have been studied in Physics so far, e.g diffusion -limited aggregation, surface deposition, growth of crystals from melt etc. involve only growth at the surface, with the inner structure remaining frozen. Interestingly, patterns formed in growing sandpiles provide a very wide variety of patterns that show proportionate growth. One finds patterns with different features, with sharply defined boundaries. In particular, even with very simple rules, one can produce patterns that show striking resemblance to those seen in nature. We can characterize the asymptotic pattern exactly in some special cases. I will discuss in particular the patterns grown on noisy backgrounds. Supported by J. C. Bose fellowship from DST (India).
The use of Bjork's indications of growth for evaluation of extremes of skeletal morphology.
Davidovitch, Moshe; Eleftheriadi, Iro; Kostaki, Anastasia; Shpack, Nir
2016-12-01
Morphological indicators within the cranium for prediction of mandibular growth patterns as reported by Bjork are: (1) inclination of the condylar head (ICH), (2) curvature of mandibular canal (CMC), (3) shape of the lower border of the mandible and specifically depth of the antegonial notch (AN), (4) inclination of the symphysis (ISY), (5) interincisal angle (IIA), (6) intermolar angle (IMA), and (7) lower anterior face height (LAFH). The purpose of this study was to examine the association of these indicators as they relate to extreme skeletal patterns observed in skeletally mature subjects. The pre-treatment lateral cephalometric radiographs of 395 post-growth subjects were randomly selected from the archives of a university orthodontic department. These were divided in three groups according to their MP-SN angle [normal: 28-36degrees (G1), hypodivergent: ≤26degrees (G2), hyperdivergent: ≥38degrees (G3)]. It was found that only LAFH was correlated to age across all groups. However, within G1, G2, and G3, and between genders, it was found that there were statistically significant differences for all indicators in relation to age, except IMA (P > 0.05). In addition, ISY and IMA had a predictive value lower than the chance level (0.5). Bjork's implant studies have contributed much to understanding facial-skeletal growth; however, this study suggests that their utilization as a tool in classifying extreme skeletal patterns requires careful evaluation of all the parameters involved. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.
E- and P-cadherin expression during murine hair follicle morphogenesis and cycling.
Müller-Röver, S; Tokura, Y; Welker, P; Furukawa, F; Wakita, H; Takigawa, M; Paus, R
1999-08-01
The role of adhesion molecules in the control of hair follicle (HF) morphogenesis, regression and cycling is still rather enigmatic. Since the adhesion molecules E- and P-cadherin (Ecad and Pcad) are functionally important, e.g. during embryonic pattern formation, we have studied their expression patterns during neonatal HF morphogenesis and cycling in C57/BL6 mice by immunohistology and semi-quantitative RT-PCR. The expression of both cadherins was strikingly hair cycle-dependent and restricted to distinct anatomical HF compartments. During HF morphogenesis, hair bud keratinocytes displayed strong Ecad and Pcad immunoreactivity (IR). While neonatal epidermis showed Ecad IR in all epidermal layers, Pcad IR was restricted to the basal layer. During later stages of HF morphogenesis and during anagen IV-VI of the adolescent murine hair cycle, the outer root sheath showed strong E- and Pcad IR. Instead, the outermost portion of the hair matrix and the inner root sheath displayed isolated Ecad IR, while the innermost portion of the hair matrix exhibited isolated Pcad IR. During telogen, all epidermal and follicular keratinocytes showed strong Ecad IR. This is in contrast to Pcad, whose IR was stringently restricted to matrix and secondary hair germ keratinocytes which are in closest proximity to the dermal papilla. These findings suggest that isolated or combined E- and/or Pcad expression is involved in follicular pattern formation by segregating HF keratinocytes into functionally distinct subpopulations; most notably, isolated Pcad expression may segregate those hair matrix keratinocytes into one functional epithelial tissue unit, which is particularly susceptible to growth control by dermal papilla-derived morphogens. The next challenge is to define which secreted agents implicated in hair growth control modulate these follicular cadherin expression patterns, and to define how these basic parameters of HF topobiology are altered during common hair growth disorders.
Sasikumarl, Geetha; Mohamed, K S; Bhat, U S
2013-03-01
Sepia pharaonis is an important commercial species endemic to the tropical Indo-Pacific region. Despite its commercial significance, only few information on natural populations is available. This study was aimed to describe the aspects of size-composition, length-weight relationship, catch rates, seasonal recruitment and inter-cohort growth patterns of S. pharaonis population (Clade C), distributed along the Eastern Arabian Sea (South-West coast of India). For this, the Dorsal Mantle Length (DML) and weight of cuttlefishes was obtained from commercial trawl catches, from April 2002 to October 2006. Data was analyzed by normal length-weight methods such as von Bertalanffy. A total of 12454 cuttlefishes, ranging in length from four to 41cm were analyzed. Size-composition patterns discriminated two pulses in recruitment to the fishery, discernible by a decrease in the monthly mean size of the population. The DMLs of the two seasonal cohorts were subjected to modal-progression analysis using the Bhattacharya's method for the estimation of growth. The estimated parameters Linfinity and K in von Bertalanffy Growth Function (VBGF) were used to model growth curves in length for the cohorts. The first cohort, (post-monsoon cohort) which supports the major fishery, was composed of medium-sized, fast growing individuals, whereas the second cohort (pre-monsoon cohort), comprised of slow growing and large-sized individuals. There were differential growth characteristics between the sexes and the life span was estimated at less than 2.3 years for males and 2.1 years for females. Negative allometric growth in weight (W) with length (L) was observed for males (W=0.33069.L2.5389) and females (W=0.32542.L26057). The females were heavier compared to males at any given mantle length, and the males were found to attain larger ultimate lengths. The major fishing season for cuttlefish was from May to November, when higher monthly catch rates of 1.67-13.02kg/h were observed in comparison with 0.03-0.85kg/h in December-April. Seasonal catch rates indicated a migratory life cycle ofS. pharaonis between offshore and inshore coastal zones.
Branching instability in expanding bacterial colonies.
Giverso, Chiara; Verani, Marco; Ciarletta, Pasquale
2015-03-06
Self-organization in developing living organisms relies on the capability of cells to duplicate and perform a collective motion inside the surrounding environment. Chemical and mechanical interactions coordinate such a cooperative behaviour, driving the dynamical evolution of the macroscopic system. In this work, we perform an analytical and computational analysis to study pattern formation during the spreading of an initially circular bacterial colony on a Petri dish. The continuous mathematical model addresses the growth and the chemotactic migration of the living monolayer, together with the diffusion and consumption of nutrients in the agar. The governing equations contain four dimensionless parameters, accounting for the interplay among the chemotactic response, the bacteria-substrate interaction and the experimental geometry. The spreading colony is found to be always linearly unstable to perturbations of the interface, whereas branching instability arises in finite-element numerical simulations. The typical length scales of such fingers, which align in the radial direction and later undergo further branching, are controlled by the size parameters of the problem, whereas the emergence of branching is favoured if the diffusion is dominant on the chemotaxis. The model is able to predict the experimental morphologies, confirming that compact (resp. branched) patterns arise for fast (resp. slow) expanding colonies. Such results, while providing new insights into pattern selection in bacterial colonies, may finally have important applications for designing controlled patterns. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Spongiosa Primary Development: A Biochemical Hypothesis by Turing Patterns Formations
López-Vaca, Oscar Rodrigo; Garzón-Alvarado, Diego Alexander
2012-01-01
We propose a biochemical model describing the formation of primary spongiosa architecture through a bioregulatory model by metalloproteinase 13 (MMP13) and vascular endothelial growth factor (VEGF). It is assumed that MMP13 regulates cartilage degradation and the VEGF allows vascularization and advances in the ossification front through the presence of osteoblasts. The coupling of this set of molecules is represented by reaction-diffusion equations with parameters in the Turing space, creating a stable spatiotemporal pattern that leads to the formation of the trabeculae present in the spongy tissue. Experimental evidence has shown that the MMP13 regulates VEGF formation, and it is assumed that VEGF negatively regulates MMP13 formation. Thus, the patterns obtained by ossification may represent the primary spongiosa formation during endochondral ossification. Moreover, for the numerical solution, we used the finite element method with the Newton-Raphson method to approximate partial differential nonlinear equations. Ossification patterns obtained may represent the primary spongiosa formation during endochondral ossification. PMID:23193429
NASA Astrophysics Data System (ADS)
Xiaofeng, Chen; Nuofu, Chen; Jinliang, Wu; Xiulan, Zhang; Chunlin, Chai; Yude, Yu
2009-08-01
A GaSb crystal incorporated with Mn has been grown by the Bridgman method on the Polizon facility onboard the FOTON-M3 spacecraft. Structural defects and growth striations have been successfully revealed by the chemical etching method. By calculating various parameters of the convection, the striation patterns can be explained, and the critical value of the Taylor number, which characterizes the convective condition of the rotating magnetic field induced azimuthal flow, was shown. The stresses generated during crystal growth can be reflected by the observations of etch pit distribution and other structural defects. Suggestions for improving the space experiment to improve the quality of the crystal are given.
Pattern Formation in Keller-Segel Chemotaxis Models with Logistic Growth
NASA Astrophysics Data System (ADS)
Jin, Ling; Wang, Qi; Zhang, Zengyan
In this paper, we investigate pattern formation in Keller-Segel chemotaxis models over a multidimensional bounded domain subject to homogeneous Neumann boundary conditions. It is shown that the positive homogeneous steady state loses its stability as chemoattraction rate χ increases. Then using Crandall-Rabinowitz local theory with χ being the bifurcation parameter, we obtain the existence of nonhomogeneous steady states of the system which bifurcate from this homogeneous steady state. Stability of the bifurcating solutions is also established through rigorous and detailed calculations. Our results provide a selection mechanism of stable wavemode which states that the only stable bifurcation branch must have a wavemode number that minimizes the bifurcation value. Finally, we perform extensive numerical simulations on the formation of stable steady states with striking structures such as boundary spikes, interior spikes, stripes, etc. These nontrivial patterns can model cellular aggregation that develop through chemotactic movements in biological systems.
Boumans, Iris J M M; de Boer, Imke J M; Hofstede, Gert Jan; Bokkers, Eddie A M
2018-07-01
Domesticated pigs, Sus scrofa, vary considerably in feeding, social interaction and growth patterns. This variation originates partly from genetic variation that affects physiological factors and partly from behavioural strategies (avoid or approach) in competitive food resource situations. Currently, it is unknown how variation in physiological factors and in behavioural strategies among animals contributes to variation in feeding, social interaction and growth patterns in animals. The aim of this study was to unravel causation of variation in these patterns among pigs. We used an agent-based model to explore the effects of physiological factors and behavioural strategies in pigs on variation in feeding, social interaction and growth patterns. Model results show that variation in feeding, social interaction and growth patterns are caused partly by chance, such as time effects and coincidence of conflicts. Furthermore, results show that seemingly contradictory empirical findings in literature can be explained by variation in pig characteristics (i.e. growth potential, positive feedback, dominance, and coping style). Growth potential mainly affected feeding and growth patterns, whereas positive feedback, dominance and coping style affected feeding patterns, social interaction patterns, as well as growth patterns. Variation in behavioural strategies among pigs can reduce aggression at group level, but also make some pigs more susceptible to social constraints inhibiting them from feeding when they want to, especially low-ranking pigs and pigs with a passive coping style. Variation in feeding patterns, such as feeding rate or meal frequency, can indicate social constraints. Feeding patterns, however, can say something different about social constraints at group versus individual level. A combination of feeding patterns, such as a decreased feed intake, an increased feeding rate, and an increased meal frequency might, therefore, be needed to measure social constraints at individual level. Copyright © 2018 Elsevier Inc. All rights reserved.
Patterning mechanisms of the sub-intestinal venous plexus in zebrafish
Goi, Michela; Childs, Sarah J.
2017-01-01
Despite considerable interest in angiogenesis, organ-specific angiogenesis remains less well characterized. The vessels that absorb nutrients from the yolk and later provide blood supply to the developing digestive system are primarily venous in origin. In zebrafish, these are the vessels of the Sub-intestinal venous plexus (SIVP) and they represent a new candidate model to gain an insight into the mechanisms of venous angiogenesis. Unlike other vessel beds in zebrafish, the SIVP is not stereotypically patterned and lacks obvious sources of patterning information. However, by examining the area of vessel coverage, number of compartments, proliferation and migration speed we have identified common developmental steps in SIVP formation. We applied our analysis of SIVP development to obd mutants that have a mutation in the guidance receptor PlexinD1. obd mutants show dysregulation of nearly all parameters of SIVP formation. We show that the SIVP responds to a unique combination of pathways that control both arterial and venous growth in other systems. Blocking Shh, Notch and Pdgf signaling has no effect on SIVP growth. However Vegf promotes sprouting of the predominantly venous plexus and Bmp promotes outgrowth of the structure. We propose that the SIVP is a unique model to understand novel mechanisms utilized in organ-specific angiogenesis. PMID:26477558
Remote monitoring and prognosis of fatigue cracking in steel bridges with acoustic emission
NASA Astrophysics Data System (ADS)
Yu, Jianguo Peter; Ziehl, Paul; Pollock, Adrian
2011-04-01
Acoustic emission (AE) monitoring is desirable to nondestructively detect fatigue damage in steel bridges. Investigations of the relationship between AE signals and crack growth behavior are of paramount importance prior to the widespread application of passive piezoelectric sensing for monitoring of fatigue crack propagation in steel bridges. Tests have been performed to detect AE from fatigue cracks in A572G50 steel. Noise induced AE signals were filtered based on friction emission tests, loading pattern, and a combined approach involving Swansong II filters and investigation of waveforms. The filtering methods based on friction emission tests and load pattern are of interest to the field evaluation using sparse datasets. The combined approach is suitable for data filtering and interpretation of actual field tests. The pattern recognition program NOESIS (Envirocoustics) was utilized for the evaluation of AE data quality. AE parameters are associated with crack length, crack growth rate, maximum stress intensity and stress intensity range. It is shown that AE hits, counts, absolute energy, and signal strength are able to provide warnings at the critical cracking level where cracking progresses from stage II (stable propagation) to stage III (unstable propagation which may result in failure). Absolute energy rate and signal strength rate may be better than count rate to assess the remaining fatigue life of inservice steel bridges.
Genuine non-self-averaging and ultraslow convergence in gelation.
Cho, Y S; Mazza, M G; Kahng, B; Nagler, J
2016-08-01
In irreversible aggregation processes droplets or polymers of microscopic size successively coalesce until a large cluster of macroscopic scale forms. This gelation transition is widely believed to be self-averaging, meaning that the order parameter (the relative size of the largest connected cluster) attains well-defined values upon ensemble averaging with no sample-to-sample fluctuations in the thermodynamic limit. Here, we report on anomalous gelation transition types. Depending on the growth rate of the largest clusters, the gelation transition can show very diverse patterns as a function of the control parameter, which includes multiple stochastic discontinuous transitions, genuine non-self-averaging and ultraslow convergence of the transition point. Our framework may be helpful in understanding and controlling gelation.
Craniofacial morphology of orthodontically untreated patients living in Saxony, Germany.
Reich, U; Dannhauer, K H
1996-08-01
The subject of this study is an analysis of the possible specific ethnic characteristics of the craniofacial morphology within the Saxon population. For this purpose we analyzed, in a cephalometric cross-sectional study, lateral cephalometric radiographs taken between 1992 and 1994 of 10,047 orthodontically untreated native Saxon patients. The cephalometric analysis used was a synthesis of several classic procedures as applied at Leipzig University. Among the sagittal parameters there was a relatively high prevalence of mandibular retrognathism and skeletal distal jaw relationship. The vertical parameters displayed a relatively good balance between vertical and horizontal growth patterns. With respect to sexual dimorphism, the differences in the angular parameters and in the indices of relationship were only moderate and so almost irrelevant in clinical terms. Among the age-related changes, the focus is on the increase in the degree of prognathism of both jaws and the anterior rotation of the mandible.
NASA Astrophysics Data System (ADS)
Ren, Jeffrey S.; Barr, Neill G.; Scheuer, Kristin; Schiel, David R.; Zeldis, John
2014-07-01
A dynamic growth model of macroalgae was developed to predict growth of the green macroalga Ulva sp. in response to changes in environmental variables. The model is based on common physiological behaviour of macroalgae and hence has general applicability to macroalgae. Three state variables (nitrogen, carbon and phosphorus) were used to describe physiological processes and functional differences between nutrient and carbon uptakes. Carbon uptake is modelled as a function of temperature, light, algal internal state and water current, while nutrient uptake depends on internal state, temperature and environmental nutrient level. Growth can only occur when nutrients in the environment and in the internal storage pools (N-quota and P-quota) reach threshold levels. Physiological rates follow the Arrhenius relationship and increase exponentially with increasing temperature within the temperature tolerance range of a species. When parameterised and applied to Ulva sp. in the eutrophic Avon-Heathcote Estuary, New Zealand, the model generally reproduced field observations of Ulva sp. growth and abundance. Growth followed a clear seasonal cycle with biomass increasing from early-middle summer, reaching peak values in early autumn and then decreasing. Conversely, N-quotient levels were maximal during the winter months, declining during summer peak growth. These seasonal patterns were collectively driven by temperature, light intensity and nutrients. The model captured the N-quota and growth responses of Ulva sp. to the N-reduction arising from diversion of treated wastewater from the Avon-Heathcote Estuary to an offshore outfall in 2010, and of raw sewage N-discharges resulting from wastewater infrastructure damage caused by the Canterbury earthquakes in 2011. Sensitivity analyses revealed that temperature-related parameters and maximum uptake rate of C were among the most sensitive parameters in predicting biomass. In addition, the earthquake-derived changes in reduction of immersion time and decrease in the start biomass prior to summer blooms were shown to drive considerable declines in summer growth and biomass of Ulva sp.
NASA Astrophysics Data System (ADS)
Bergström, Per; Lindegarth, Susanne; Lindegarth, Mats
2013-10-01
Human pressures on coastal seas are increasing and methods for sustainable management, including spatial planning and mitigative actions, are therefore needed. In coastal areas worldwide, the development of mussel farming as an economically and ecologically sustainable industry requires geographic information on the growth and potential production capacity. In practice this means that coherent maps of temporally stable spatial patterns of growth need to be available in the planning process and that maps need to be based on mechanistic or empirical models. Therefore, as a first step towards development of models of growth, we assessed empirically the fundamental requirement that there are temporally consistent spatial patterns of growth in the blue mussel, Mytilus edulis. Using a pilot study we designed and dimensioned a transplant experiment, where the spatial consistency in the growth of mussels was evaluated at two resolutions. We found strong temporal and scale-dependent spatial variability in growth but patterns suggested that spatial patterns were uncoupled between growth of shell and that of soft tissue. Spatial patterns of shell growth were complex and largely inconsistent among years. Importantly, however, the growth of soft tissue was qualitatively consistent among years at the scale of km. The results suggest that processes affecting the whole coastal area cause substantial differences in growth of soft tissue among years but that factors varying at the scale of km create strong and persistent spatial patterns of growth, with a potential doubling of productivity by identifying the most suitable locations. We conclude that the observed spatial consistency provides a basis for further development of predictive modelling and mapping of soft tissue growth in these coastal areas. Potential causes of observed patterns, consequences for mussel-farming as a tool for mitigating eutrophication, aspects of precision of modelling and sampling of mussel growth as well as ecological functions in general are discussed.
Hormone-Mediated Pattern Formation in Seedling of Plants: a Competitive Growth Dynamics Model
NASA Astrophysics Data System (ADS)
Kawaguchi, Satoshi; Mimura, Masayasu; Ohya, Tomoyuki; Oikawa, Noriko; Okabe, Hirotaka; Kai, Shoichi
2001-10-01
An ecologically relevant pattern formation process mediated by hormonal interactions among growing seedlings is modeled based on the experimental observations on the effects of indole acetic acid, which can act as an inhibitor and activator of root growth depending on its concentration. In the absence of any lateral root with constant hormone-sensitivity, the edge effect phenomenon is obtained depending on the secretion rate of hormone from the main root. Introduction of growth-stage-dependent hormone-sensitivity drastically amplifies the initial randomness, resulting in spatially irregular macroscopic patterns. When the lateral root growth is introduced, periodic patterns are obtained whose periodicity depends on the length of lateral roots. The growth-stage-dependent hormone-sensitivity and the lateral root growth are crucial for macroscopic periodic-pattern formation.
NASA Astrophysics Data System (ADS)
Husain, Taha Murtuza
Large (1--4 x 106 m3) to major (> 4 x 106 m3) dome collapses for andesitic lava domes such as Soufriere Hills Volcano, Montserrat are observed for elevated magma discharge rates (6--13 m3/s). The gas rich magma pulses lead to pressure build up in the lava dome that result in structural failure of the over steepened canyon-like walls which may lead to rockfall or pyroclastic flow. This indicates that dome collapse intimately related to magma extrusion rate. Variation in magma extrusion rate for open-system magma chambers is observed to follow alternating periods of high and low activity. Periodic behavior of magma exhibits a rich diversity in the nature of its eruptive history due to variation in magma chamber size, total crystal content, linear crystal growth rate and magma replenishment rate. Distinguished patterns of growth were observed at different magma flow rates ranging from endogenous to exogenous dome growth for magma with varying strengths. Determining the key parameters that control the transition in flow pattern of the magma during its lava dome building eruption is the main focus. This dissertation examines the mechanical effects on the morphology of the evolving lava dome on the extrusion of magma from a central vent using a 2D particle dynamics model. The particle dynamics model is coupled with a conduit flow model that incorporates the kinetics of crystallization and rheological stiffening to investigate important mechanisms during lava dome building eruptions. Chapter I of this dissertation explores lava dome growth and failure mechanics using a two-dimensional particle-dynamics model. The model follows the evolution of fractured lava, with solidification driven by degassing induced crystallization of magma. The particle-dynamics model emulates the natural development of dome growth and rearrangement of the lava dome which is difficult in mesh-based analyses due to mesh entanglement effects. The deformable talus evolves naturally as a frictional carapace that caps a ductile magma core. Extrusion rate and magma rheology together with crystallization temperature and volatile content govern the distribution of strength in the composite structure. This new model is calibrated against existing observational models of lava dome growth. Chapter II of this dissertation explores the effects of a spectrum of different rheological regimes, on eruptive style and morphologic evolution of lava domes, using a two-dimensional (2D) particle-dynamics model for a spreading viscoplastic (Bingham) fluid. We assume that the ductile magma core of a 2-D synthetic lava dome develops finite yield strength, and that deformable frictional talus evolves from a carapace that caps the magma core. Our new model is calibrated against an existing analytical model for a spreading viscoplastic lava dome and is further compared against observational data of lava dome growth. Chapter III of this dissertation explores different lava-dome styles by developing a two-dimensional particle-dynamics model. These growth patterns range from endogenous lava dome growth comprising expansion of a ductile dome core to the exogenous extrusion of a degassed lava plug resulting in generation of a lava spine. We couple conduit flow dynamics with surface growth of the evolving lava dome, fueled by an open-system magma chamber undergoing continuous replenishment. The conduit flow model accounts for the variation in rheology of ascending magma that results from degassing-induced crystallization. Chapter IV of this dissertation explores the Variation in the extruding lava flow patterns range from endogenous dome growth with a ductile core to the exogenous extrusion of a degassed lava plug that results in the generation of a spine. The variations are a manifestation of the changes in the magma rheology which is governed by magma composition and rate of decompression of the ascending magma. We simulate using a two-dimensional particle-dynamics model, the cyclic behavior of lava dome growth with endogenous growth at high discharge rates followed by exogenous extrusion of rheologically stiffened lava due to degassing induced crystallization at low discharge rates. We couple conduit flow dynamics with surface growth of the evolving lava dome which is fueled by an overpressured reservoir undergoing constant replenishment. The periodic behavior between magma chamber pressure and discharge rate is reproduced as a result of the temporal and spatial change in magma viscosity controlled by crystallization kinetics. Dimensionless numbers are used to map the flow behaviors with the changing extrusion regime. A dimensionless plot identifying the flow transition region during the growth cycle of an evolving lava dome in its lava dome eruptive period is presented. The plot provides a the threshold value of a dimensionless strength parameter (pi 2 < 3.31 x 10-4) below which the transition in flow pattern occurs from endogenously evolving lava dome with a ductile core to the development of a shear lobe for short or long lived periodic episode of the extrusion of magma. (Abstract shortened by UMI.).
Cellular trade-offs and optimal resource allocation during cyanobacterial diurnal growth
Knoop, Henning; Bockmayr, Alexander; Steuer, Ralf
2017-01-01
Cyanobacteria are an integral part of Earth’s biogeochemical cycles and a promising resource for the synthesis of renewable bioproducts from atmospheric CO2. Growth and metabolism of cyanobacteria are inherently tied to the diurnal rhythm of light availability. As yet, however, insight into the stoichiometric and energetic constraints of cyanobacterial diurnal growth is limited. Here, we develop a computational framework to investigate the optimal allocation of cellular resources during diurnal phototrophic growth using a genome-scale metabolic reconstruction of the cyanobacterium Synechococcus elongatus PCC 7942. We formulate phototrophic growth as an autocatalytic process and solve the resulting time-dependent resource allocation problem using constraint-based analysis. Based on a narrow and well-defined set of parameters, our approach results in an ab initio prediction of growth properties over a full diurnal cycle. The computational model allows us to study the optimality of metabolite partitioning during diurnal growth. The cyclic pattern of glycogen accumulation, an emergent property of the model, has timing characteristics that are in qualitative agreement with experimental findings. The approach presented here provides insight into the time-dependent resource allocation problem of phototrophic diurnal growth and may serve as a general framework to assess the optimality of metabolic strategies that evolved in phototrophic organisms under diurnal conditions. PMID:28720699
Lobe, Shannon L; Bernstein, Marica C; German, Rebecca Z
2006-01-01
Dietary protein is a limiting factor in mammalian growth, significantly affecting the non-linear trajectories of skeletal growth. Young females may be particularly vulnerable to protein malnutrition if the restriction is not lifted before they become reproductive. With such early malnutrition, limited amino acids would be partitioned between two physiological objectives, successful reproduction vs. continued growth. Thus, the consequences of protein malnutrition could affect more than one generation. However, few studies have quantified these cross-generational effects. Our objective was to test for differences in skeletal growth in a second generation of malnourished rats compared with rats malnourished only post-weaning, the first generation and with controls. In this longitudinal study we modelled the growth of 22 craniofacial measurements with the logistic Gompertz equation, and tested for differences in the equation's parameters among the diet groups. The female offspring of post-weaning malnourished dams did not catch up in size to the first generation or to controls, although certain aspects of their craniofacial skeleton were less affected than others. The second generation's growth trajectories resembled the longer and slower growth of the first malnourished generation. There was a complex interaction between developmental processes and early nutritional environment, which affected variation of adult size. PMID:16761979
Hormonal changes in menopause: do they contribute to a 'midlife hair crisis' in women?
Mirmirani, P
2011-12-01
Female pattern hair loss is a common problem affecting a large number of women worldwide but beset by a paucity of research. The study of androgens has hitherto dominated the field of hair biology but there is increasing scientific and clinical data to suggest that nonandrogen signals can also affect the folliculosebaceous unit, especially in women. The discovery of oestrogen receptor beta has renewed and redefined prior concepts of oestrogen activity and signalling in hair biology. It is postulated that oestrogens modulate hair growth by their influence on a number of other hormones, growth factors, transcription factors and cytokines. The menopause is a period in which significant changes in oestrogen levels are recorded, and this review discusses studies that help to clarify the link between menopause and the perception of thinning hair. In a study of pre- and postmenopausal women without alopecia, menopausal status significantly influenced hair parameters, specifically hair growth rate, percentage anagen and hair diameter distributions, most notably in the frontal scalp. Hair density decreased with age, but was not correlated with menopausal status. Analyses of hair amount using a model of hair density and hair diameters suggest that the impact of changing hair parameters is most notable in the mid-forties for women. © 2011 The Author. BJD © 2011 British Association of Dermatologists.
Patterns of Growth and Decline in Lung Function in Persistent Childhood Asthma.
McGeachie, M J; Yates, K P; Zhou, X; Guo, F; Sternberg, A L; Van Natta, M L; Wise, R A; Szefler, S J; Sharma, S; Kho, A T; Cho, M H; Croteau-Chonka, D C; Castaldi, P J; Jain, G; Sanyal, A; Zhan, Y; Lajoie, B R; Dekker, J; Stamatoyannopoulos, J; Covar, R A; Zeiger, R S; Adkinson, N F; Williams, P V; Kelly, H W; Grasemann, H; Vonk, J M; Koppelman, G H; Postma, D S; Raby, B A; Houston, I; Lu, Q; Fuhlbrigge, A L; Tantisira, K G; Silverman, E K; Tonascia, J; Weiss, S T; Strunk, R C
2016-05-12
Tracking longitudinal measurements of growth and decline in lung function in patients with persistent childhood asthma may reveal links between asthma and subsequent chronic airflow obstruction. We classified children with asthma according to four characteristic patterns of lung-function growth and decline on the basis of graphs showing forced expiratory volume in 1 second (FEV1), representing spirometric measurements performed from childhood into adulthood. Risk factors associated with abnormal patterns were also examined. To define normal values, we used FEV1 values from participants in the National Health and Nutrition Examination Survey who did not have asthma. Of the 684 study participants, 170 (25%) had a normal pattern of lung-function growth without early decline, and 514 (75%) had abnormal patterns: 176 (26%) had reduced growth and an early decline, 160 (23%) had reduced growth only, and 178 (26%) had normal growth and an early decline. Lower baseline values for FEV1, smaller bronchodilator response, airway hyperresponsiveness at baseline, and male sex were associated with reduced growth (P<0.001 for all comparisons). At the last spirometric measurement (mean [±SD] age, 26.0±1.8 years), 73 participants (11%) met Global Initiative for Chronic Obstructive Lung Disease spirometric criteria for lung-function impairment that was consistent with chronic obstructive pulmonary disease (COPD); these participants were more likely to have a reduced pattern of growth than a normal pattern (18% vs. 3%, P<0.001). Childhood impairment of lung function and male sex were the most significant predictors of abnormal longitudinal patterns of lung-function growth and decline. Children with persistent asthma and reduced growth of lung function are at increased risk for fixed airflow obstruction and possibly COPD in early adulthood. (Funded by the Parker B. Francis Foundation and others; ClinicalTrials.gov number, NCT00000575.).
NASA Astrophysics Data System (ADS)
Hartmann, Jana; Steib, Frederik; Zhou, Hao; Ledig, Johannes; Nicolai, Lars; Fündling, Sönke; Schimpke, Tilman; Avramescu, Adrian; Varghese, Tansen; Trampert, Achim; Straßburg, Martin; Lugauer, Hans-Jürgen; Wehmann, Hergo-Heinrich; Waag, Andreas
2017-10-01
GaN fins are 3D architectures elongated in one direction parallel to the substrate surface. They have the geometry of walls with a large height to width ratio as well as small footprints. When appropriate symmetry directions of the GaN buffer are used, the sidewalls are formed by non-polar {1 1 -2 0} planes, making the fins particularly suitable for many device applications like LEDs, FETs, lasers, sensors or waveguides. The influence of growth parameters like temperature, pressure, V/III ratio and total precursor flow on the fin structures is analyzed. Based on these results, a 2-temperature-step-growth was developed, leading to fins with smooth side and top facets, fast vertical growth rates and good homogeneity along their length as well as over different mask patterns. For the core-shell growth of fin LED heterostructures, the 2-temperature-step-growth shows much smoother sidewalls and less crystal defects in the InGaN QW and p-GaN shell compared to structures with cores grown in just one step. Electroluminescence spectra of the 2-temperature-step-grown fin LED are demonstrated.
The Role of Oxygen in Avascular Tumor Growth
Grimes, David Robert; Kannan, Pavitra; McIntyre, Alan; Kavanagh, Anthony; Siddiky, Abul; Wigfield, Simon; Harris, Adrian; Partridge, Mike
2016-01-01
The oxygen status of a tumor has significant clinical implications for treatment prognosis, with well-oxygenated subvolumes responding markedly better to radiotherapy than poorly supplied regions. Oxygen is essential for tumor growth, yet estimation of local oxygen distribution can be difficult to ascertain in situ, due to chaotic patterns of vasculature. It is possible to avoid this confounding influence by using avascular tumor models, such as tumor spheroids, a much better approximation of realistic tumor dynamics than monolayers, where oxygen supply can be described by diffusion alone. Similar to in situ tumours, spheroids exhibit an approximately sigmoidal growth curve, often approximated and fitted by logistic and Gompertzian sigmoid functions. These describe the basic rate of growth well, but do not offer an explicitly mechanistic explanation. This work examines the oxygen dynamics of spheroids and demonstrates that this growth can be derived mechanistically with cellular doubling time and oxygen consumption rate (OCR) being key parameters. The model is fitted to growth curves for a range of cell lines and derived values of OCR are validated using clinical measurement. Finally, we illustrate how changes in OCR due to gemcitabine treatment can be directly inferred using this model. PMID:27088720
NASA Astrophysics Data System (ADS)
Roguna, S.; Saragih, I. J. A.; Siregar, P. S.; Julius, A. M.
2018-04-01
The Tropical Depression previously identified on March 3, 2017, at Arafuru Sea has grown to Tropical Cyclone Blance on March 5, 2017. The existence of Tropical Cyclone Blance gave impacts like increasing rainfall for some regions in Indonesia until March 7, 2017, such as Kupang. The increase of rainfall cannot be separated from the atmospheric dynamics related to convection processes and the formation of clouds. Analysis of weather parameters is made such as vorticity to observe vertical motion over the study area, vertical velocity to see the speed of lift force in the atmosphere, wind to see patterns of air mass distribution and rainfall to see the increase of rainfall compared to several days before the cyclone. Analysis of satellite imagery data is used as supporting analysis to see clouds imagery and movement direction of the cyclone. The results of weather parameters analysis show strong vorticity and lift force of air mass support the growth of Cumulonimbus clouds, cyclonic patterns on wind streamline and significant increase of rainfall compared to previous days. The results of satellite imagery analysis show the convective clouds over Kupang and surrounding areas when this phenomena and cyclone pattern moved down from Arafuru Sea towards the western part of Australia.
NASA Technical Reports Server (NTRS)
Noever, David A.
1990-01-01
With and without bioconvective pattern formation, a theoretical model predicts growth in light-limited cultures of motile algae. At the critical density for pattern formation, the resulting doubly exponential population curves show an inflection. Such growth corresponds quantitatively to experiments in mechanically unstirred cultures. This attaches survival value to synchronized pattern formation.
Vegetation pattern formation in a fog-dependent ecosystem.
Borthagaray, Ana I; Fuentes, Miguel A; Marquet, Pablo A
2010-07-07
Vegetation pattern formation is a striking characteristic of several water-limited ecosystems around the world. Typically, they have been described on runoff-based ecosystems emphasizing local interactions between water, biomass interception, growth and dispersal. Here, we show that this situation is by no means general, as banded patterns in vegetation can emerge in areas without rainfall and in plants without functional root (the Bromeliad Tillandsia landbeckii) and where fog is the principal source of moisture. We show that a simple model based on the advection of fog-water by wind and its interception by the vegetation can reproduce banded patterns which agree with empirical patterns observed in the Coastal Atacama Desert. Our model predicts how the parameters may affect the conditions to form the banded pattern, showing a transition from a uniform vegetated state, at high water input or terrain slope to a desert state throughout intermediate banded states. Moreover, the model predicts that the pattern wavelength is a decreasing non-linear function of fog-water input and slope, and an increasing function of plant loss and fog-water flow speed. Finally, we show that the vegetation density is increased by the formation of the regular pattern compared to the density expected by the spatially homogeneous model emphasizing the importance of self-organization in arid ecosystems. (c) 2010 Elsevier Ltd. All rights reserved.
Seedling growth strategies in Bauhinia species: comparing lianas and trees.
Cai, Zhi-Quan; Poorter, Lourens; Cao, Kun-Fang; Bongers, Frans
2007-10-01
Lianas are expected to differ from trees in their growth strategies. As a result these two groups of woody species will have different spatial distributions: lianas are more common in high light environments. This study determines the differences in growth patterns, biomass allocation and leaf traits in five closely related liana and tree species of the genus Bauhinia. Seedlings of two light-demanding lianas (Bauhinia tenuiflora and B. claviflora), one shade-tolerant liana (B. aurea), and two light-demanding trees (B. purpurea and B. monandra) were grown in a shadehouse at 25% of full sunlight. A range of physiological, morphological and biomass parameters at the leaf and whole plant level were compared among these five species. The two light-demanding liana species had higher relative growth rate (RGR), allocated more biomass to leaf production [higher leaf mass fraction (LMF) and higher leaf area ratio (LAR)] and stem mass fraction (SMF), and less biomass to the roots [root mass fraction (RMF)] than the two tree species. The shade-tolerant liana had the lowest RGR of all five species, and had a higher RMF, lower SMF and similar LMF than the two light-demanding liana species. The two light-demanding lianas had lower photosynthetic rates per unit area (A(area)) and similar photosynthetic rates per unit mass (A(mass)) than the trees. Across species, RGR was positively related to SLA, but not to LAR and A(area). It is concluded that the faster growth of light-demanding lianas compared with light-demanding trees is based on morphological parameters (SLA, LMF and LAR), and cannot be attributed to higher photosynthetic rates at the leaf level. The shade-tolerant liana exhibited a slow-growth strategy, compared with the light-demanding species.
Phytoplankton growth and PSII efficiency sensitivity to a glyphosate-based herbicide (Factor 540®).
Smedbol, Élise; Lucotte, Marc; Labrecque, Michel; Lepage, Laurent; Juneau, Philippe
2017-11-01
The use of glyphosate-based herbicides in agriculture has increased steadily since the mid 90's and there is now evidence of glyphosate leaching and contamination of aquatic ecosystems. The aim of this study was to evaluate the effects of a glyphosate-based herbicide (Factor 540 ® ) on growth and photosynthetic capacity of algae and cyanobacteria. Six algal and three cyanobacterial species/strains, of three different taxonomic groups, were exposed to five glyphosate concentrations (10, 50, 100, 500 and 1000μgl -1 ) during 48h. All species have significant growth inhibition at concentrations varying between 50 and 500μgl -1 . The photosynthetic response, after glyphosate exposure, varied among species, but a general pattern has emerged. There was an increase in the amount of photons absorbed (ABS/RC), in dissipated (DI O /RC) and trapped (TR O /RC) energy in the photosystem II reaction centers, along with a decreased of the maximum photosystem II quantum yield (F V /F M ) and electron transport per reaction center (ET O /RC). The EC 50 and LOEC values for growth and photosynthesis were calculated and established that growth was the most affected parameter by glyphosate-based herbicide, while parameter TR O /RC was the least affected. All species showed reduced growth at glyphosate concentrations lower than the Canadian standard for the protection of aquatic life, set at 800μgl -1 or the American aquatic life benchmark for acute toxicity in non vascular plants of 12 100μgl -1 questioning the validity of these thresholds in assessing the risks related to the presence of glyphosate and glyphosate-based herbicides in aquatic systems. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Seedling Growth Strategies in Bauhinia Species: Comparing Lianas and Trees
Cai, Zhi-Quan; Poorter, Lourens; Cao, Kun-Fang; Bongers, Frans
2007-01-01
Background and Aims Lianas are expected to differ from trees in their growth strategies. As a result these two groups of woody species will have different spatial distributions: lianas are more common in high light environments. This study determines the differences in growth patterns, biomass allocation and leaf traits in five closely related liana and tree species of the genus Bauhinia. Methods Seedlings of two light-demanding lianas (Bauhinia tenuiflora and B. claviflora), one shade-tolerant liana (B. aurea), and two light-demanding trees (B. purpurea and B. monandra) were grown in a shadehouse at 25 % of full sunlight. A range of physiological, morphological and biomass parameters at the leaf and whole plant level were compared among these five species. Key Results The two light-demanding liana species had higher relative growth rate (RGR), allocated more biomass to leaf production [higher leaf mass fraction (LMF) and higher leaf area ratio (LAR)] and stem mass fraction (SMF), and less biomass to the roots [root mass fraction (RMF)] than the two tree species. The shade-tolerant liana had the lowest RGR of all five species, and had a higher RMF, lower SMF and similar LMF than the two light-demanding liana species. The two light-demanding lianas had lower photosynthetic rates per unit area (Aarea) and similar photosynthetic rates per unit mass (Amass) than the trees. Across species, RGR was positively related to SLA, but not to LAR and Aarea. Conclusions It is concluded that the faster growth of light-demanding lianas compared with light-demanding trees is based on morphological parameters (SLA, LMF and LAR), and cannot be attributed to higher photosynthetic rates at the leaf level. The shade-tolerant liana exhibited a slow-growth strategy, compared with the light-demanding species. PMID:17720978
Pérez-Pérez, José Manuel; Rubio-Díaz, Silvia; Dhondt, Stijn; Hernández-Romero, Diana; Sánchez-Soriano, Joaquín; Beemster, Gerrit T S; Ponce, María Rosa; Micol, José Luis
2011-12-01
Despite the large number of genes known to affect leaf shape or size, we still have a relatively poor understanding of how leaf morphology is established. For example, little is known about how cell division and cell expansion are controlled and coordinated within a growing leaf to eventually develop into a laminar organ of a definite size. To obtain a global perspective of the cellular basis of variations in leaf morphology at the organ, tissue and cell levels, we studied a collection of 111 non-allelic mutants with abnormally shaped and/or sized leaves, which broadly represent the mutational variations in Arabidopsis thaliana leaf morphology not associated with lethality. We used image-processing techniques on these mutants to quantify morphological parameters running the gamut from the palisade mesophyll and epidermal cells to the venation, whole leaf and rosette levels. We found positive correlations between epidermal cell size and leaf area, which is consistent with long-standing Avery's hypothesis that the epidermis drives leaf growth. In addition, venation parameters were positively correlated with leaf area, suggesting that leaf growth and vein patterning share some genetic controls. Positional cloning of the genes affected by the studied mutations will eventually establish functional links between genotypes, molecular functions, cellular parameters and leaf phenotypes. © 2011 Blackwell Publishing Ltd.
Oláh, Viktor; Hepp, Anna; Gaibor Vaca, Norma Yolanda; Tamás, Marianna; Mészáros, Ilona
2018-05-28
High growth potential of duckweed species (Lemnaceae family) has been utilized in wide range of research and practical applications. Based on literature data, however, it can be assumed that duckweed populations maintain constant growth rates only when short periods are considered but can vary over longer time scales. This intrinsic instability in growth can affect the interpretation of growth data. Duckweed phytotoxicity tests are usually performed according to highly standardized protocols. Therefore the archive data provide an opportunity for retrospective comparisons. In the present study we collected growth (frond number- and frond area-based relative growth rates) and morphology (average frond and colony sizes) data from control treatments of phytotoxicity tests. All the analyzed tests were carried out with the same Spirodela polyrhiza (L.) Schleid. (giant duckweed) clone (RDSC ID No. 5501) under the same experimental conditions over more than four years. We aimed to assess the overall variability of the above parameters and to test if intrinsic growth patterns affect growth data in short-term. In general, the results reflected high stability of the measured parameters in long term but also indicated that some temporal variability is inevitable which can bias the comparability of growth tests. The frond area-based relative growth rate resulted in smaller coefficient of variation than the usually preferred frond number-based one. The results also revealed a negative correlation between mean growth rates and their coefficients of variation. Therefore, it would be advisable to introduce higher minimal growth rates and/or maximized tolerable coefficients of variation for control cultures into the standard duckweed growth inhibition tests. Analyses of growth data aggregated on seasonal basis indicated faster growth and larger mean frond size in laboratory duckweed cultures from mid-autumn till mid-spring than during summer and early autumn. But, in shorter term (∼50 days) we did not observe distinct trends in growth suggesting that the successive frond generations have no effect on growth traits within this time-scale. Our results point to the importance of assessing intrinsic growth dynamics in duckweed cultures and also to the re-usability of the already collected phytotoxicity data in addressing new research questions. Copyright © 2018. Published by Elsevier B.V.
McKenzie, D.; Hessl, Amy E.; Peterson, D.L.
2001-01-01
We explored spatial patterns of low-frequency variability in radial tree growth among western North American conifer species and identified predictors of the variability in these patterns. Using 185 sites from the International Tree-Ring Data Bank, each of which contained 10a??60 raw ring-width series, we rebuilt two chronologies for each site, using two conservative methods designed to retain any low-frequency variability associated with recent environmental change. We used factor analysis to identify regional low-frequency patterns in site chronologies and estimated the slope of the growth trend since 1850 at each site from a combination of linear regression and time-series techniques. This slope was the response variable in a regression-tree model to predict the effects of environmental gradients and species-level differences on growth trends. Growth patterns at 27 sites from the American Southwest were consistent with quasi-periodic patterns of drought. Either 12 or 32 of the 185 sites demonstrated patterns of increasing growth between 1850 and 1980 A.D., depending on the standardization technique used. Pronounced growth increases were associated with high-elevation sites (above 3000 m) and high-latitude sites in maritime climates. Future research focused on these high-elevation and high-latitude sites should address the precise mechanisms responsible for increased 20th century growth.
Application of stochastic processes in random growth and evolutionary dynamics
NASA Astrophysics Data System (ADS)
Oikonomou, Panagiotis
We study the effect of power-law distributed randomness on the dynamical behavior of processes such as stochastic growth patterns and evolution. First, we examine the geometrical properties of random shapes produced by a generalized stochastic Loewner Evolution driven by a superposition of a Brownian motion and a stable Levy process. The situation is defined by the usual stochastic Loewner Evolution parameter, kappa, as well as alpha which defines the power-law tail of the stable Levy distribution. We show that the properties of these patterns change qualitatively and singularly at critical values of kappa and alpha. It is reasonable to call such changes "phase transitions". These transitions occur as kappa passes through four and as alpha passes through one. Numerical simulations are used to explore the global scaling behavior of these patterns in each "phase". We show both analytically and numerically that the growth continues indefinitely in the vertical direction for alpha greater than 1, goes as logarithmically with time for alpha equals to 1, and saturates for alpha smaller than 1. The probability density has two different scales corresponding to directions along and perpendicular to the boundary. Scaling functions for the probability density are given for various limiting cases. Second, we study the effect of the architecture of biological networks on their evolutionary dynamics. In recent years, studies of the architecture of large networks have unveiled a common topology, called scale-free, in which a majority of the elements are poorly connected except for a small fraction of highly connected components. We ask how networks with distinct topologies can evolve towards a pre-established target phenotype through a process of random mutations and selection. We use networks of Boolean components as a framework to model a large class of phenotypes. Within this approach, we find that homogeneous random networks and scale-free networks exhibit drastically different evolutionary paths. While homogeneous random networks accumulate neutral mutations and evolve by sparse punctuated steps, scale-free networks evolve rapidly and continuously towards the target phenotype. Moreover, we show that scale-free networks always evolve faster than homogeneous random networks; remarkably, this property does not depend on the precise value of the topological parameter. By contrast, homogeneous random networks require a specific tuning of their topological parameter in order to optimize their fitness. This model suggests that the evolutionary paths of biological networks, punctuated or continuous, may solely be determined by the network topology.
Bhakhri, Bhanu Kiran; Meena, Shyam Sundar; Rawat, Mayank; Datta, Vikram
2015-02-01
It is inappropriate to use universal cut-off points to interpret stretched penile length (SPL) measurements in newborns with variable body dimensions. To assess neonatal SPL on the basis of gestational maturity and anthropometric parameters at birth. A cross-sectional observational study of SPL was conducted on stable newborns at a referral teaching hospital in north India between January and June 2012. Gestational maturity, SPL and anthropometric parameters (weight, length, head circumference and foot length) were recorded within 24 hours of birth. Variation of SPL in relation to gestational age and anthropometric parameters were evaluated using multiple linear regression models. The equation using lower confidence limits of 95% confidence intervals for the correlation coefficients provides cut-off points to define a small penis. Data from 1249 newborns demonstrated that penile growth follows the pattern of increase in body dimensions in newborns. SPL can be predicted best in relation to body and foot length taken together. SPL should be interpreted in relation to anthropometric parameters in newborns, particularly body and foot length.
Joganic, Jessica L
2016-01-01
Non-human primate growth trajectories are often used to estimate the age and life history traits of fossil taxa. The exclusive use of chimpanzee growth patterns to estimate developmental stages for the earliest hominins is problematic because incomplete lineage sorting in the hominoid clade has produced a mosaic human genome that contains different regions shared with any one of the great apes. The accidental death of a sub-adult male western lowland gorilla (Gorilla gorilla gorilla) provides not only an opportunity to compare the degree of dentoskeletal maturation in this individual with published data from conspecifics, but also insight into gorilla growth and development as it applies to modeling that of early hominins. Dental stage was assessed for a sub-adult male western lowland gorilla by comparing dental eruption and calcification to established relative age categories. Ectocranial suture fusion, epiphyseal union, and long bone dimensions were compared to growth standards for wild male gorillas of a similar dental stage to determine developmental timing variability. Results suggest that greater variability exists in developmental rates and patterns and in morphological parameters than is often acknowledged. These results have implications for selecting appropriate models for studying extinct taxa. Ecological and physical characteristics shared between humans and gorillas may make gorilla life history equally valid in a comparative framework and encourage non-exclusive use of chimpanzee life history for paleoanthropological models. © 2015 Wiley Periodicals, Inc.
Kweldam, Charlotte F; Nieboer, Daan; Algaba, Ferran; Amin, Mahul B; Berney, Dan M; Billis, Athanase; Bostwick, David G; Bubendorf, Lukas; Cheng, Liang; Compérat, Eva; Delahunt, Brett; Egevad, Lars; Evans, Andrew J; Hansel, Donna E; Humphrey, Peter A; Kristiansen, Glen; van der Kwast, Theodorus H; Magi-Galluzzi, Cristina; Montironi, Rodolfo; Netto, George J; Samaratunga, Hemamali; Srigley, John R; Tan, Puay H; Varma, Murali; Zhou, Ming; van Leenders, Geert J L H
2016-09-01
To assess the interobserver reproducibility of individual Gleason grade 4 growth patterns. Twenty-three genitourinary pathologists participated in the evaluation of 60 selected high-magnification photographs. The selection included 10 cases of Gleason grade 3, 40 of Gleason grade 4 (10 per growth pattern), and 10 of Gleason grade 5. Participants were asked to select a single predominant Gleason grade per case (3, 4, or 5), and to indicate the predominant Gleason grade 4 growth pattern, if present. 'Consensus' was defined as at least 80% agreement, and 'favoured' as 60-80% agreement. Consensus on Gleason grading was reached in 47 of 60 (78%) cases, 35 of which were assigned to grade 4. In the 13 non-consensus cases, ill-formed (6/13, 46%) and fused (7/13, 54%) patterns were involved in the disagreement. Among the 20 cases where at least one pathologist assigned the ill-formed growth pattern, none (0%, 0/20) reached consensus. Consensus for fused, cribriform and glomeruloid glands was reached in 2%, 23% and 38% of cases, respectively. In nine of 35 (26%) consensus Gleason grade 4 cases, participants disagreed on the growth pattern. Six of these were characterized by large epithelial proliferations with delicate intervening fibrovascular cores, which were alternatively given the designation fused or cribriform growth pattern ('complex fused'). Consensus on Gleason grade 4 growth pattern was predominantly reached on cribriform and glomeruloid patterns, but rarely on ill-formed and fused glands. The complex fused glands seem to constitute a borderline pattern of unknown prognostic significance on which a consensus could not be reached. © 2016 John Wiley & Sons Ltd.
FIB Secondary Etching Method for Fabrication of Fine CNT Forest Metamaterials
NASA Astrophysics Data System (ADS)
Pander, Adam; Hatta, Akimitsu; Furuta, Hiroshi
2017-10-01
Anisotropic materials, like carbon nanotubes (CNTs), are the perfect substitutes to overcome the limitations of conventional metamaterials; however, the successful fabrication of CNT forest metamaterial structures is still very challenging. In this study, a new method utilizing a focused ion beam (FIB) with additional secondary etching is presented, which can obtain uniform and fine patterning of CNT forest nanostructures for metamaterials and ranging in sizes from hundreds of nanometers to several micrometers. The influence of the FIB processing parameters on the morphology of the catalyst surface and the growth of the CNT forest was investigated, including the removal of redeposited material, decreasing the average surface roughness (from 0.45 to 0.15 nm), and a decrease in the thickness of the Fe catalyst. The results showed that the combination of FIB patterning and secondary etching enabled the growth of highly aligned, high-density CNT forest metamaterials. The improvement in the quality of single-walled CNTs (SWNTs), defined by the very high G/D peak ratio intensity of 10.47, demonstrated successful fine patterning of CNT forest for the first time. With a FIB patterning depth of 10 nm and a secondary etching of 0.5 nm, a minimum size of 150 nm of CNT forest metamaterials was achieved. The development of the FIB secondary etching method enabled for the first time, the fabrication of SWNT forest metamaterials for the optical and infrared regime, for future applications, e.g., in superlenses, antennas, or thermal metamaterials.
NASA Astrophysics Data System (ADS)
Huan, Qing; Hu, Hao; Pan, Li-Da; Xiao, Jiang; Du, Shi-Xuan; Gao, Hong-Jun
2010-08-01
Deposition patterns of tetracyanoquinodimethane (TCNQ) molecules on different surfaces are investigated by atomic force microscopy. A homemade physical vapour deposition system allows the better control of molecule deposition. Taking advantage of this system, we investigate TCNQ thin film growth on both SiO2 and mica surfaces. It is found that dense island patterns form at a high deposition rate, and a unique seahorse-like pattern forms at a low deposition rate. Growth patterns on different substrates suggest that the fractal pattern formation is dominated by molecule-molecule interaction. Finally, a phenomenal “two-branch" model is proposed to simulate the growth process of the seahorse pattern.
Brian R Lockhart; Emile S Gardiner; Theran Stautz; Theodor D. Leininger
2012-01-01
Lindera melissifolia (Walt.) Blume seedlings were raised in a growth chamber to determine the effects of light availability on shoot growth pattern, and basic leaf and stem growth. Lindera melissifolia seedlings exhibited a sympodial shoot growth pattern for 3 months following emergence from the soil medium, but this pattern was characterized by a reduction in leaf...
ERIC Educational Resources Information Center
Ghadirian, Hajar; Ayub, Ahmad Fauzi Mohd; Bakar, Kamariah Binti Abu; Hassanzadeh, Maryam
2016-01-01
This study presents a case study of asynchronous online discussions' (AOD) growth patterns in an undergraduate blended course to address the gap in our current understanding of how threads are developed in peer-moderated AODs. Building on a taxonomy of thread pattern proposed by Chan, Hew and Cheung (2009), growth patterns of thirty-six forums…
2015-01-01
Lateral appendages often show allometric growth with a specific growth polarity along the proximo-distal axis. Studies on leaf growth in model plants have identified a basipetal growth direction with the highest growth rate at the proximal end and progressively lower rates toward the distal end. Although the molecular mechanisms governing such a growth pattern have been studied recently, variation in leaf growth polarity and, therefore, its evolutionary origin remain unknown. By surveying 75 eudicot species, here we report that leaf growth polarity is divergent. Leaf growth in the proximo-distal axis is polar, with more growth arising from either the proximal or the distal end; dispersed with no apparent polarity; or bidirectional, with more growth contributed by the central region and less growth at either end. We further demonstrate that the expression gradient of the miR396-GROWTH-REGULATING FACTOR module strongly correlates with the polarity of leaf growth. Altering the endogenous pattern of miR396 expression in transgenic Arabidopsis thaliana leaves only partially modified the spatial pattern of cell expansion, suggesting that the diverse growth polarities might have evolved via concerted changes in multiple gene regulatory networks. PMID:26410303
Lindqvist, R
2006-07-01
Turbidity methods offer possibilities for generating data required for addressing microorganism variability in risk modeling given that the results of these methods correspond to those of viable count methods. The objectives of this study were to identify the best approach for determining growth parameters based on turbidity data and use of a Bioscreen instrument and to characterize variability in growth parameters of 34 Staphylococcus aureus strains of different biotypes isolated from broiler carcasses. Growth parameters were estimated by fitting primary growth models to turbidity growth curves or to detection times of serially diluted cultures either directly or by using an analysis of variance (ANOVA) approach. The maximum specific growth rates in chicken broth at 17 degrees C estimated by time to detection methods were in good agreement with viable count estimates, whereas growth models (exponential and Richards) underestimated growth rates. Time to detection methods were selected for strain characterization. The variation of growth parameters among strains was best described by either the logistic or lognormal distribution, but definitive conclusions require a larger data set. The distribution of the physiological state parameter ranged from 0.01 to 0.92 and was not significantly different from a normal distribution. Strain variability was important, and the coefficient of variation of growth parameters was up to six times larger among strains than within strains. It is suggested to apply a time to detection (ANOVA) approach using turbidity measurements for convenient and accurate estimation of growth parameters. The results emphasize the need to consider implications of strain variability for predictive modeling and risk assessment.
NASA Astrophysics Data System (ADS)
Vidyasagar, Pandit B.; Jagtap, Sagar S.; Dixit, Jyotsana P.; Kamble, Shailendra M.; Dhepe, Aarti P.
2014-12-01
Numerous studies have been carried out to investigate the hypergravity effect on plants, where seedlings (4-5 days old) were continuously exposed and grown under hypergravity condition. Here, we have used a novel `shortterm hypergravity exposure experimental method' where imbibed caryopses (instead of seedlings) were exposed to higher hypergravity values ranging from 500 g to 2500 g for a short interval time of 10 minutes and post short-term hypergravity treated caryopses were grown under 1 g conditions for five days. Changing patterns in caryopsis germination and growth, along with various photosynthetic and biochemical parameters were studied. Results revealed the significant inhibition of caryopsis germination and growth in short-term hypergravity treated seeds over control. Photosynthesis parameters such as chlorophyll content, rate of photosynthesis (PN), transpiration rate (Evap) and stomatal conductance (Gs), along with intracellular CO2 concentration (Cint) were found to be affected significantly in 5 days old seedlings exposed to short-term hypergravity treatment. In order to investigate the cause of observed inhibition, we examined the α-amylase activity and antioxidative enzyme activities. α-amylase activity was found to be inhibited, along with the reduction of sugars necessary for germination and earlier growth in short-term hypergravity treated caryopses. The activities of antioxidant enzymes such as catalase and guaiacol peroxidase were increased in short-term hypergravity treated caryopses, suggesting that caryopses might have experienced oxidative stress upon short-term hypergravity exposure.
COLD-WATER CORALS AND HYDROCHEMISTRY - is there a unifying link?
NASA Astrophysics Data System (ADS)
Flögel, Sascha; Rüggeberg, Andres; Mienis, Furu; Dullo, Wolf-Christian
2010-05-01
Physical and chemical parameters were measured in five different regions of the Northeast Atlantic with known occurrences of cold-water coral reefs and mounds and in the Mediterranean, where these corals form living carpets over existing morphologies. In this study we analyzed 282 bottom water samples regarding delta13CDIC, delta18O, and DIC. The hydrochemical data reveal characteristic patterns and differences for cold-water coral sites with living coral communities and ongoing reef and mound growth at the Irish and Norwegian sites. While the localities in the Mediterranean, in the Gulf of Cadiz, and off Mauritania show only patchy coral growth on mound-like reliefs and various substrates. The analysis of delta13C/delta18O reveals distinct clusters for the different regions and the respective bottom water masses bathing the delta18O, and especially between delta13CDIC and DIC shows that DIC is a parameter with high sensitivity to the mixing of bottom water masses. It varies distinctively between sites with living reefs/mounds and sites with restricted patchy growth or dead corals. Results suggest that DIC and delta13CDIC can provide additional insights into the mixing of bottom water masses. Prolific cold-water coral growth forming giant biogenic structures plot into a narrow geochemical window characterized by a variation of delta13CDIC between 0.45 and 0.79 per mille being associated with the water mass having a density of sigma-theta of 27.5±0.15 kg m-3.
Sundareswaran, Shobha; Kumar, Vinay
2015-01-01
Introduction: Beta angle as a skeletal anteroposterior dysplasia indicator is known to be useful in evaluating normodivergent growth patterns. Hence, we compared and verified the accuracy of Beta angle in predicting sagittal jaw discrepancy among subjects with hyperdivergent, hypodivergent and normodivergent growth patterns. Materials and Methods: Lateral cephalometric radiographs of 179 patients belonging to skeletal Classes I, II, and III were further divided into normodivergent, hyperdivergent, and hypodivergent groups based on their vertical growth patterns. Sagittal dysplasia indicators - angle ANB, Wits appraisal, and Beta angle values were measured and tabulated. The perpendicular point of intersection on line CB (Condylion-Point B) in Beta angle was designated as ‘X’ and linear dimension XB was evaluated. Results: Statistically significant increase was observed in the mean values of Beta angle and XB distance in the vertical growth pattern groups of both skeletal Class I and Class II patients thus pushing them toward Class III and Class I, respectively. Conclusions: Beta angle is a reliable indicator of sagittal dysplasia in normal and horizontal patterns of growth. However, vertical growth patterns significantly increased Beta angle values, thus affecting their reliability as a sagittal discrepancy assessment tool. Hence, Beta angle may not be a valid tool for assessment of sagittal jaw discrepancy in patients exhibiting vertical growth patterns with skeletal Class I and Class II malocclusions. Nevertheless, Class III malocclusions having the highest Beta angle values were unaffected. PMID:25810649
Remote Sensing of Landuse Changes and Implications for Landuse Policy
NASA Technical Reports Server (NTRS)
Kennedy, Ken
1996-01-01
This final report describes grant activities under which students were to study landuse changes by comparing planning and zoning documents using remote sensed data data analyzed and interpreted in the laboratory. Students were recruited through mathematics, political science and engineering classes an clubs. Work protocols were then organized for research on the county's growth patterns over the last three decades. Students and investigators made planes to identify specific scenes in Landsat and other data which would satisfy the research parameters. Finally, statistical and imaging software was identified and some was acquired.
Olayinka, Bolaji U; Etejere, Emmanuel O
Field trials were carried out to evaluate the effects of seven weed management strategies on the growth and yield of two groundnut varieties (Samnut 10 and MK 373) for two successive seasons (2010-2011). The experimental layout was a split plot complete randomized block design with three replications. The two groundnut varieties showed identical pattern of results for leaf area index, dry matter accumulation, relative growth rate, net assimilation rate and crop growth rate as well as yield. All the weed control treatments significantly enhanced the growth and yield compared with the weedy check. The weed free check had the highest growth but the highest yield was recorded from rice straw mulch at 0.1 m depth + one hand weeding at 6 weeks after sowing (WAS) due to increase in number of matured pods per plant, seed weight per plant and 100-seed weight. The results showed that rice straw mulch at 0.1 m depth + one hand weeding at 6 WAS was better agronomical practice for enhancing growth and yield of groundnut. This enhancement could be as a result of its positive influence on physiological parameters such as leaf area index, dry matter accumulation, relative growth rate, net assimilation rate and crop growth rate. Its use is also ecofriendly as it limits the need for synthetic herbicide.
Evaluation of trade influence on economic growth rate by computational intelligence approach
NASA Astrophysics Data System (ADS)
Sokolov-Mladenović, Svetlana; Milovančević, Milos; Mladenović, Igor
2017-01-01
In this study was analyzed the influence of trade parameters on the economic growth forecasting accuracy. Computational intelligence method was used for the analyzing since the method can handle highly nonlinear data. It is known that the economic growth could be modeled based on the different trade parameters. In this study five input parameters were considered. These input parameters were: trade in services, exports of goods and services, imports of goods and services, trade and merchandise trade. All these parameters were calculated as added percentages in gross domestic product (GDP). The main goal was to select which parameters are the most impactful on the economic growth percentage. GDP was used as economic growth indicator. Results show that the imports of goods and services has the highest influence on the economic growth forecasting accuracy.
Infant obesity and severe obesity growth patterns in the first two years of life.
Gittner, Lisaann S; Ludington-Hoe, Susan M; Haller, Harold S
2014-04-01
Distinguishing an obesity growth pattern that originates during infancy is clinically important. Infancy based obesity prevention interventions may be needed while precursors of later health are forming. Infant obesity and severe obesity growth patterns in the first 2-years are described and distinguished from a normal weight growth pattern. A retrospective chart review was conducted. Body mass index (BMI) growth patterns from birth to 2-years are described for children categorized at 5-years as normal weight (n = 61), overweight (n = 47), obese (n = 41) and severely obese (n = 72) cohorts using WHO reference standards. BMI values were calculated at birth, 1-week; 2-, 4-, 6-, 9-, 12-, 15-, 18-months; and 2- and 5-years. Graphs of the longitudinal Analysis of Variance of Means of BMI values identified the earliest significant divergence of a cohort's average BMI pattern from other cohorts' patterns. ANOVA and Pearson Product Moment correlations were also performed. Statistically significant differences in BMI values and differences in growth patterns between cohorts were evident as early as 2-6 months post-birth. Children who were obese or severely obese at 5-years demonstrated a BMI pattern that differed within the first 2-years of life from that of children who were normal weight at 5-years. The earliest significant correlation between early BMI values and 5-year BMI value was at 4-months post-birth. The study fills an important gap by demonstrating early onset of an infant obesity growth pattern in full-term children who were healthy throughout their first 5 years of life.
Human Population: Fundamentals of Growth and Change.
ERIC Educational Resources Information Center
Stauffer, Cheryl Lynn, Ed.
This booklet focuses on eight elements of population dynamics: "Population Growth and Distribution"; "Natural Increase and Future Growth"; "Effect of Migration on Population Growth"; "Three Patterns of Population Change"; "Patterns of World Urbanization"; "The Status of Women";…
Development of disease-specific growth charts in Turner syndrome and Noonan syndrome.
Isojima, Tsuyoshi; Yokoya, Susumu
2017-12-01
Many congenital diseases are associated with growth failure, and patients with these diseases have specific growth patterns. As the growth patterns of affected individuals differ from those of normal populations, it is challenging to detect additional conditions that can influence growth using standard growth charts. Disease-specific growth charts are thus very useful tools and can be helpful for understanding the growth pattern and pathogenesis of congenital diseases. In addition, disease-specific growth charts allow doctors to detect deviations from the usual growth patterns for early diagnosis of an additional condition and can be used to evaluate the effects of growth-promoting treatment for patients. When developing these charts, factors that can affect the reliability of the charts should be considered. These factors include the definition of the disease with growth failure, selection bias in the measurements used to develop the charts, secular trends of the subjects, the numbers of subjects of varying ages and ethnicities, and the statistical method used to develop the charts. In this review, we summarize the development of disease-specific growth charts for Japanese individuals with Turner syndrome and Noonan syndrome and evaluate the efforts to collect unbiased measurements of subjects with these diseases. These charts were the only available disease-specific growth charts of Turner syndrome and Noonan syndrome for Asian populations and were developed using a Japanese population. Therefore, when these charts are adopted for Asian populations other than Japanese, different growth patterns should be considered.
Genetics and Genomics of Longitudinal Lung Function Patterns in Individuals with Asthma
Yates, Katherine P.; Zhou, Xiaobo; Guo, Feng; Sternberg, Alice L.; Van Natta, Mark L.; Wise, Robert A.; Szefler, Stanley J.; Sharma, Sunita; Kho, Alvin T.; Cho, Michael H.; Croteau-Chonka, Damien C.; Castaldi, Peter J.; Jain, Gaurav; Sanyal, Amartya; Zhan, Ye; Lajoie, Bryan R.; Dekker, Job; Stamatoyannopoulos, John; Covar, Ronina A.; Zeiger, Robert S.; Adkinson, N. Franklin; Williams, Paul V.; Kelly, H. William; Grasemann, Hartmut; Vonk, Judith M.; Koppelman, Gerard H.; Postma, Dirkje S.; Raby, Benjamin A.; Houston, Isaac; Lu, Quan; Fuhlbrigge, Anne L.; Tantisira, Kelan G.; Silverman, Edwin K.; Tonascia, James; Strunk, Robert C.; Weiss, Scott T.
2016-01-01
Rationale: Patterns of longitudinal lung function growth and decline in childhood asthma have been shown to be important in determining risk for future respiratory ailments including chronic airway obstruction and chronic obstructive pulmonary disease. Objectives: To determine the genetic underpinnings of lung function patterns in subjects with childhood asthma. Methods: We performed a genome-wide association study of 581 non-Hispanic white individuals with asthma that were previously classified by patterns of lung function growth and decline (normal growth, normal growth with early decline, reduced growth, and reduced growth with early decline). The strongest association was also measured in two additional cohorts: a small asthma cohort and a large chronic obstructive pulmonary disease metaanalysis cohort. Interaction between the genomic region encompassing the most strongly associated single-nucleotide polymorphism and nearby genes was assessed by two chromosome conformation capture assays. Measurements and Main Results: An intergenic single-nucleotide polymorphism (rs4445257) on chromosome 8 was strongly associated with the normal growth with early decline pattern compared with all other pattern groups (P = 6.7 × 10−9; odds ratio, 2.8; 95% confidence interval, 2.0–4.0); replication analysis suggested this variant had opposite effects in normal growth with early decline and reduced growth with early decline pattern groups. Chromosome conformation capture experiments indicated a chromatin interaction between rs4445257 and the promoter of the distal CSMD3 gene. Conclusions: Early decline in lung function after normal growth is associated with a genetic polymorphism that may also protect against early decline in reduced growth groups. Clinical trial registered with www.clinicaltrials.gov (NCT00000575). PMID:27367781
Zachos, Louis G
2015-12-02
Holistic morphometrics is a term implying complete shape characterization of all of the structural parts of an organism. The skeleton of an echinoid is comprised of hundreds of individual plates arranged in a closed 3-dimensional mosaic forming the test. GIS software and techniques were used to generate topologically correct digital models of an ontogenetic series of specimens of the sand dollar echinoid Echinarachnius parma. Plate growth can be considered in proportion to overall skeleton growth, resulting in a linear model of relative growth. Alternatively, separate logistic equations can be fit to the ontogenetic series of homologous plate areas using nonlinear least squares regression to result in a model for instantaneous growth. The linear and logistic parameters of the models describe the allometric growth of plates from different viewpoints. Growth is shown to fall into characteristic patterns defining distinct plate growth domains associated with development of the imago (larval) skeleton just prior to metamorphosis, early growth associated with expansion of the corona and fold-over (forming the flattened body form), juvenile growth and formation of petals, and adult growth. Functions of growth, plate translocation, plate juxtaposition between aboral and oral surfaces, and relationships with internal buttressing are quantified. Results offer explanations for general skeletal symmetry, distinction between ambulacral and interambulacral growth, the relationship of growth to internal buttressing, existence of a distinct petalodium, and anterior-posterior asymmetry during development. The parametric values of growth functions derived from the results are a basis for computational modeling of growth and development in sand dollars.
Influence of infant feeding patterns over the first year of life on growth from birth to 5 years.
Betoko, A; Lioret, S; Heude, B; Hankard, R; Carles, S; Forhan, A; Regnault, N; Botton, J; Charles, M A; de Lauzon-Guillain, B
2017-08-01
As early-life feeding experiences may influence later health, we aimed to examine relations between feeding patterns over the first year of life and child's growth in the first 5 years of life. Our analysis included 1022 children from the EDEN mother-child cohort. Three feeding patterns were previously identified, i.e. 'Later dairy products introduction and use of ready-prepared baby foods' (pattern-1), 'Long breastfeeding, later main meal food introduction and use of home-made foods' (pattern-2) and 'Use of ready-prepared adult foods' (pattern-3). Associations between the feeding patterns and growth [weight, height and body mass index {BMI}] were analysed by multivariable linear regressions. Anthropometric changes were assessed by the final value adjusted for the initial value. Even though infant feeding patterns were not related to anthropometric measurements at 1, 3 and 5 years, high scores on pattern-1 were associated with higher 1-3 years weight and height changes. High scores on pattern-2 were related to lower 0-1 year weight and height changes, higher 1-5 years weight and height changes but not to BMI changes, after controlling for a wide range of potential confounding variables including parental BMI. Scores on pattern-3 were not significantly related to growth. Additional adjustment for breastfeeding duration reduced the strength of the associations between pattern-2 and growth but not those between pattern-1 and height growth. Our findings emphasize the relevance of considering infant feeding patterns including breastfeeding duration, age of complementary foods introduction as well as type of foods used when examining effects of early infant feeding practices on later health. © 2017 World Obesity Federation. © 2017 World Obesity Federation.
Fracture toughness and crack growth of Zerodur
NASA Technical Reports Server (NTRS)
Viens, Michael J.
1990-01-01
The fracture toughness and crack growth parameters of Zerodur, a low expansion glass ceramic material, were determined. The fracture toughness was determined using indentation techniques and was found to be 0.9 MPa x m(sup 1/2). The crack growth parameters were determined using indented biaxial specimens subjected to static and dynamic loading in an aqueous environment. The crack growth parameters n and 1n(B) were found to be 30.7 and -6.837, respectively. The crack growth parameters were also determined using indented biaxial specimens subjected to dynamic loading in an ambient 50 percent relative humidity environment. The crack growth parameters n and 1n(B) at 50 percent relative humidity were found to be 59.3 and -17.51, respectively.
The Uniform Pattern of Growth and Skeletal Maturation during the Human Adolescent Growth Spurt.
Sanders, James O; Qiu, Xing; Lu, Xiang; Duren, Dana L; Liu, Raymond W; Dang, Debbie; Menendez, Mariano E; Hans, Sarah D; Weber, David R; Cooperman, Daniel R
2017-12-01
Humans are one of the few species undergoing an adolescent growth spurt. Because children enter the spurt at different ages making age a poor maturity measure, longitudinal studies are necessary to identify the growth patterns and identify commonalities in adolescent growth. The standard maturity determinant, peak height velocity (PHV) timing, is difficult to estimate in individuals due to diurnal, postural, and measurement variation. Using prospective longitudinal populations of healthy children from two North American populations, we compared the timing of the adolescent growth spurt's peak height velocity to normalized heights and hand skeletal maturity radiographs. We found that in healthy children, the adolescent growth spurt is standardized at 90% of final height with similar patterns for children of both sexes beginning at the initiation of the growth spurt. Once children enter the growth spurt, their growth pattern is consistent between children with peak growth at 90% of final height and skeletal maturity closely reflecting growth remaining. This ability to use 90% of final height as easily identified important maturity standard with its close relationship to skeletal maturity represents a significant advance allowing accurate prediction of future growth for individual children and accurate maturity comparisons for future studies of children's growth.
Varella, Marcia H; Moss, William J
2015-08-01
To assess whether patterns of growth trajectory during infancy are associated with intelligence quotient (IQ) scores at 4 years of age in children born small-for-gestational age (SGA). Children in the Collaborative Perinatal Project born SGA were eligible for analysis. The primary outcome was the Stanford-Binet IQ score at 4 years of age. Growth patterns were defined based on changes in weight-for-age z-scores from birth to 4 months and 4 to 12 months of age and consisted of steady, early catch-up, late catch-up, constant catch-up, early catch-down, late catch-down, constant catch-down, early catch-up & late catch-down, and early catch-down & late catch-up. Multivariate linear regression was used to assess associations between patterns of growth and IQ. We evaluated patterns of growth and IQ in 5640 children. Compared with children with steady growth, IQ scores were 2.9 [standard deviation (SD)=0.54], 1.5 (SD=0.63), and 2.2 (SD=0.9) higher in children with early catch-up, early catch-up and later catch-down, and constant catch-up growth patterns, respectively, and 4.4 (SD=1.4) and 3.9 (SD=1.5) lower in children with early catch-down & late catch-up, and early catch-down growth patterns, respectively. Patterns in weight gain before 4 months of age were associated with differences in IQ scores at 4 years of age, with children with early catch-up having slightly higher IQ scores than children with steady growth and children with early catch-down having slightly lower IQ scores. These findings have implications for early infant nutrition in children born SGA. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Das Gupta, Mainak; Nath, Utpal
2015-10-01
Lateral appendages often show allometric growth with a specific growth polarity along the proximo-distal axis. Studies on leaf growth in model plants have identified a basipetal growth direction with the highest growth rate at the proximal end and progressively lower rates toward the distal end. Although the molecular mechanisms governing such a growth pattern have been studied recently, variation in leaf growth polarity and, therefore, its evolutionary origin remain unknown. By surveying 75 eudicot species, here we report that leaf growth polarity is divergent. Leaf growth in the proximo-distal axis is polar, with more growth arising from either the proximal or the distal end; dispersed with no apparent polarity; or bidirectional, with more growth contributed by the central region and less growth at either end. We further demonstrate that the expression gradient of the miR396-GROWTH-REGULATING FACTOR module strongly correlates with the polarity of leaf growth. Altering the endogenous pattern of miR396 expression in transgenic Arabidopsis thaliana leaves only partially modified the spatial pattern of cell expansion, suggesting that the diverse growth polarities might have evolved via concerted changes in multiple gene regulatory networks. © 2015 American Society of Plant Biologists. All rights reserved.
Bowsher, Julia H; Wray, Gregory A; Abouheif, Ehab
2007-12-15
Over the last decade, it has become clear that organismal form is largely determined by developmental and evolutionary changes in the growth and pattern formation of tissues. Yet, there is little known about how these two integrated processes respond to environmental cues or how they evolve relative to one another. Here, we present the discovery of vestigial wing imaginal discs in worker larvae of the red imported fire ant, Solenopsis invicta. These vestigial wing discs are present in all worker larvae, which is uncommon for a species with a large worker size distribution. Furthermore, the growth trajectory of these vestigial discs is distinct from all of the ant species examined to date because they grow at a rate slower than the leg discs. We predicted that the growth trajectory of the vestigial wing discs would be mirrored by evolutionary changes in their patterning. We tested this prediction by examining the expression of three patterning genes, extradenticle, ultrabithorax, and engrailed, known to underlie the wing polyphenism in ants. Surprisingly, the expression patterns of these three genes in the vestigial wing discs was the same as those found in ant species with different worker size distributions and wing disc growth than fire ants. We conclude that growth and patterning are evolutionarily dissociated in the vestigial wing discs of S. invicta because patterning in these discs is conserved, whereas their growth trajectories are not. The evolutionary dissociation of growth and patterning may be an important feature of gene networks that underlie polyphenic traits. 2007 Wiley-Liss, Inc
Selective LPCVD growth of graphene on patterned copper and its growth mechanism
NASA Astrophysics Data System (ADS)
Zhang, M.; Huang, B.-C.; Wang, Y.; Woo, J. C. S.
2016-12-01
Copper-catalyzed graphene low-pressure chemical-vapor deposition (LPCVD) growth has been regarded as a viable solution towards its integration to CMOS technology, and the wafer-bonding method provides a reliable alternative for transferring the selective graphene grown on a patterned metal film for IC manufacturing. In this paper, selective LPCVD graphene growth using patterned copper dots has been studied. The Raman spectra of grown films have demonstrated large dependence on the growth conditions. To explain the results, the growth mechanisms based on surface adsorption and copper-vapor-assisted growth are investigated by the comparison between the blanket copper films with/without the additional copper source. The copper vapor density is found to be critical for high-quality graphene growth. In addition, the copper-vapor-assisted growth is also evidenced by the carbon deposition on the SiO2 substrate of the patterned-copper-dot sample and chamber wall during graphene growth. This growth mechanism explains the correlation between the growth condition and Raman spectrum for films on copper dots. The study on the copper-catalyzed selective graphene growth on the hard substrate paves the way for the synthesis and integration of the 2D material in VLSI.
Directed self-assembly of virus particles at nanoscale chemical templates
NASA Astrophysics Data System (ADS)
Chung, Sung-Wook; Cheung, Chin Li; Chatterji, Anju; Lin, Tianwei; Johnson, Jack; de Yoreo, Jim
2006-03-01
Because viruses can be site-specifically engineered to present catalytic, electronic, and optical moieties, they are attractive as building blocks for hierarchical nanostructures. We report results using scanned probe nanolithography to direct virus organization into 1D and 2D patterns and in situ AFM investigations of organization dynamics as pattern geometry, inter-viral potential, virus flux, and virus-pattern interaction are varied. Cowpea Mosaic Virus was modified to present surface sites with histidine (His) or cysteine (Cys) groups. Flat gold substrates were patterned with 10-100nm features of alkyl thiols terminated by Ni-NTA or meleimide groups to reversibly and irreversibly bind to the Hys and Cys groups, respectively. We show how assembly kinetics, degree of ordering and cluster-size distribution at these templates depend on the control parameters and present a physical picture of virus assembly at templates that incorporates growth dynamics of small-molecule epitaxial systems and condensation dynamics of colloidal systems. This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.
Dynamics of VEGF matrix-retention in vascular network patterning
NASA Astrophysics Data System (ADS)
Köhn-Luque, A.; de Back, W.; Yamaguchi, Y.; Yoshimura, K.; Herrero, M. A.; Miura, T.
2013-12-01
Vascular endothelial growth factor (VEGF) is a central regulator of blood vessel morphogenesis, although its role in patterning of endothelial cells into vascular networks is not fully understood. It has been suggested that binding of soluble VEGF to extracellular matrix components causes spatially restricted cues that guide endothelial cells into network patterns. Yet, current evidence for such a mechanism remains indirect. In this study, we quantitatively analyse the dynamics of VEGF retention in a controlled in vitro situation of human umbilical vascular endothelial cells (HUVECs) in Matrigel. We show that fluorescent VEGF accumulates in pericellular areas and colocalizes with VEGF binding molecules. Analysis of fluorescence recovery after photobleaching reveals that binding/unbinding to matrix molecules dominates VEGF dynamics in the pericellular region. Computational simulations using our experimental measurements of kinetic parameters show that matrix retention of chemotactic signals can lead to the formation of reticular cellular networks on a realistic timescale. Taken together, these results show that VEGF binds to matrix molecules in proximity of HUVECs in Matrigel, and suggest that bound VEGF drives vascular network patterning.
NASA Astrophysics Data System (ADS)
Fauzan, M.; Bakti, D.; Susetya, I. E.; Desrita
2018-02-01
High market demand for A. gubernaculum, tends to increase the greater catching capacity so that the decreasing population. The aims of this study were to determine the growth and rate of exploitation of A. gubernaculum in Asahan aquatic. It was conducted for 1 Month 14 Days from October to November 2016. Data analyzed by (Electronic Lenght Frequencys Assesment Tool) ELEFAN I method by using (FAO-ICLARM Fish Stock Assesment Tool) on FiSAT II software. Shells obtained 855 individual. The growth pattern of shells is negative allometric. The range of condition factor was 0.81 - 2.15. The frequency distribution of the A. gubernaculum ranges from 14 to 43 mm, the dominant size group was 20 - 22 mm. The prediction of growth parameter Von Bertalanfy showed that the asimptot length (L∞) is 43.05 mm, the growth coefficient (K) is 1.2/year and the theoretical life (t0) of the A. gubernaculum is -0.12. The total Mortality (Z) of Anadara gubernaculum was 2.121/year. Natural mortality estimation rate (M) was 1.9/year. The exploitation rate of Anadara gubernaculum is 0.1/year.
NASA Astrophysics Data System (ADS)
Shariati, Mohsen; Darjani, Mojtaba
2016-02-01
The continuous laterally aligned growth of In2O3 nanocrystal networks extended with nanowire and pyramid connections under annealing influence has been reported. These nanostructures have been grown on Si substrate by using oxygen-assisted annealing process through PVD growth technique. The formation of In2O3 nanocrystals has been achieved by the successive growth of critical self-nucleated condensation in three orientations. The preferred direction was the route between two pyramids especially in the smallest surface energy. The effects of substrate temperature in annealing process on the morphological properties of the as-grown nanostructures were investigated. The annealing technique showed that by controlling the surface energy, the morphology of structures was changed from unregulated array to defined nanostructures; especially nanowires 50 nm in width. The obtained nanostructures also were investigated by the (transmission electron microscopy) TEM, Raman spectrum and the (X-ray diffraction) XRD patterns. They indicated that the self-assembled In2O3 nanocrystal networks have been fabricated by the vapor-solid (VS) growth mechanism. The growth mechanism process was prompted to attribute the relationship among the kinetics parameters, surface diffusion and morphology of nanostructures.
A new look at the decomposition of agricultural productivity growth incorporating weather effects.
Njuki, Eric; Bravo-Ureta, Boris E; O'Donnell, Christopher J
2018-01-01
Random fluctuations in temperature and precipitation have substantial impacts on agricultural output. However, the contribution of these changing configurations in weather to total factor productivity (TFP) growth has not been addressed explicitly in econometric analyses. Thus, the key objective of this study is to quantify and to investigate the role of changing weather patterns in explaining yearly fluctuations in TFP. For this purpose, we define TFP to be a measure of total output divided by a measure of total input. We estimate a stochastic production frontier model using U.S. state-level agricultural data incorporating growing season temperature and precipitation, and intra-annual standard deviations of temperature and precipitation for the period 1960-2004. We use the estimated parameters of the model to compute a TFP index that has good axiomatic properties. We then decompose TFP growth in each state into weather effects, technological progress, technical efficiency, and scale-mix efficiency changes. This approach improves our understanding of the role of different components of TFP in agricultural productivity growth. We find that annual TFP growth averaged 1.56% between 1960 and 2004. Moreover, we observe substantial heterogeneity in weather effects across states and over time.
The association between weight, height, and head circumference reconsidered.
Scheffler, Christiane; Greil, Holle; Hermanussen, Michael
2017-05-01
Under normal nutritional and health conditions, body height, weight and head circumference are significantly related. We hypothesize that the apparent general association between weight, height, and head circumference of the growing child might be misleading. We reanalyzed data of 7,444 boys and 7,375 girls measured in East-Germany between 1986 and 1990, aged from 0 to 7 y with measurements of body length/height, leg length, sitting height, biacromial shoulder breadth, thoracic breadth, thoracic depth, thoracic circumference, body weight, head volume, percentage of body fat, and hip skinfold vertical, using principal component analysis. Strong associations exist between skeletal growth, fat accumulation, and head volume increments. Yet in spite of this general proportionality, skeletal growth, fat acquisition, and head growth exhibit different patterns. Three components explain between almost 60% and more than 75% of cumulative variance between birth and age 7 y. Parameters of skeletal growth predominantly load on the first component and clearly separate from indicators of fat deposition. After age of 2 y, head volume loads on a separate third component in both sexes indicating independence of head growth. Under appropriate nutritional and health circumstances, nutritional status, body size, and head circumference are not related.
A new look at the decomposition of agricultural productivity growth incorporating weather effects
Bravo-Ureta, Boris E.; O’Donnell, Christopher J.
2018-01-01
Random fluctuations in temperature and precipitation have substantial impacts on agricultural output. However, the contribution of these changing configurations in weather to total factor productivity (TFP) growth has not been addressed explicitly in econometric analyses. Thus, the key objective of this study is to quantify and to investigate the role of changing weather patterns in explaining yearly fluctuations in TFP. For this purpose, we define TFP to be a measure of total output divided by a measure of total input. We estimate a stochastic production frontier model using U.S. state-level agricultural data incorporating growing season temperature and precipitation, and intra-annual standard deviations of temperature and precipitation for the period 1960–2004. We use the estimated parameters of the model to compute a TFP index that has good axiomatic properties. We then decompose TFP growth in each state into weather effects, technological progress, technical efficiency, and scale-mix efficiency changes. This approach improves our understanding of the role of different components of TFP in agricultural productivity growth. We find that annual TFP growth averaged 1.56% between 1960 and 2004. Moreover, we observe substantial heterogeneity in weather effects across states and over time. PMID:29466461
Aqueous Nucleation and Growth of Titanium Oxides Using Time-Resolved Synchrotron X- ray Diffraction
NASA Astrophysics Data System (ADS)
Hummer, D. R.; Heaney, P. J.; Post, J. E.
2006-05-01
The inorganic precipitation of oxide minerals in soil environments has profound effects on a variety of geochemical processes. These include the removal of metals from the aqueous phase, the production of coatings that reduce the reactive surface area of pre-existing mineral grains, and the generation of feedstocks for microbial metabolic reactions. Recent observations of transient, metastable phases during the growth of oxide crystallites has raised questions about their role in crystallization mechanisms, and created a need for more detailed structural measurements. To better understand the process of nucleation and growth, we investigated the crystallization of Ti oxides from aqueous 0.5 M TiCl4 solutions using synchrotron X-ray diffraction at temperatures of 100 and 150 °C. Solutions were heated in a 1.0 mm internal diameter quartz glass capillary sealed with epoxy. Powder diffraction patterns of the growing crystallites were collected using image plate technology with a time step of ~ 4 minutes, providing high resolution in situ measurements of structural changes during the crystallization process. The data indicate a co-precipitation of the two crystalline phases anatase and rutile within the first 30 minutes of heating, followed by a gradual phase transition from anatase to rutile during particle coarsening throughout the 10 hour duration of an experiment. The co-existence of anatase and rutile at the onset of crystallization lends additional support to the assertion of nearly identical free energies for anatase and rutile at the nanoscale, believed to be due to the prominence of surface energy effects (Ranade et al., 2001). Whole pattern analyses using the Rietveld refinement method also documented previously unobserved changes in lattice parameters of both phases during growth, on the order of 0.2-0.3 % expansion for each axis. The trends in lattice parameters are observed to be temperature dependent, generally having lower values at higher crystallization temperature. In addition to increased surface energy, these small but measurable structural changes may be partially responsible for the observed reversals in thermodynamic stability between crystalline Ti oxide phases at very small particle sizes.
NASA Astrophysics Data System (ADS)
Maske, H.; Cajal-Medrano, R.; Villegas-Mendoza, J.
2016-02-01
Organotrophic prokaryotes in aquatic environments account for about half of community respiration in surface oceans and are key trophic links in the plankton food web connecting dissolved organics and higher trophic levels. The transfer efficiency is partially characterized by the ratio of prokaryote respiration rates (r, day-1) to growth rates (m, day-1) and the resulting growth efficiency (Y). Much literature has been published about the response of these parameters to temperature in monospecific cultures, but little is known about the response of a community of pelagic prokaryotes were the sum of the genotypes and phenotype define the physiological potential. We inoculated 10 turbidostats and 39 chemostats with coastal bacteria and measured CO2 production, carbon biomass and cell abundance, with m ranging from 0.05 to 62 day-1 between 10 and 26oC. Under substrate limited conditions, common in the ocean, r showed no significant trend with temperature and was proportional to m implying constant Y. Under temperature-limited, nutrient replete growth the m of coastal prokaryote communities increased with temperature but r decreased (Q10: 0.4), resulting in an increase of Y with temperature (Q10: 2.5). The carbon demand rate (b, fmol C (cell day)-1) of turbidostat cultures showed a very high Q10 of 8.4. Casting the data in the framework of the metabolic theory of ecology (MTE), the physiological rates normalized to cell carbon showed no significant changes with temperature using either respiration or carbon demand as a proxy for physiological rate. Our results suggest that physiological patterns related to temperature are very different under nutrient limited or replete conditions and under neither condition it followed the pattern expected by MTE.
NASA Astrophysics Data System (ADS)
Shoshany, Maxim
2017-04-01
Shrublands cover a total of 12.7 million km2 , a considerable part of them along semi-arid to arid transition zones. Varying patterns of shrubs, grasses and barren land along such climatic gradients express the spatial dimension of climate change and human disturbance which attracted limited attention in the eco-geomorphic literature. Questions concerning relationships between rainfall, shrublands biomass and their patterns are fundamental for the understanding of these ecosystems response to the expected changes in water availability due to global warming and the increase in human disturbance to natural ecosystems following World population growth. While processes leading to the formation of patterns had attracted considerable attention, the spatial dimension of Water Use Efficiency (WUE) which is a parameter measuring ecosystems productivity in relation to water availability is severely missing. Relative shrub cover is a primary estimator of the fraction of water utilized for shrubs growth. Edge effects must be considered as well in fragmented ecosystems in general and in hot regions in particular since soil temperature in hot regions which frequently exceed 50oC during summer months decreases photosynthesis and productivity in plants bordering bare soil. This edge effect is decreasing with the increase in shrubs' height. Pattern Water Use Efficiency describes the combined effect of shrub cover, shrub height and shrub patches edge zone proportion on water use efficiency. In my presentation I will first present mapping od PWUEs across Mediterranean to arid transition zones in the Eastern Mediterranean. Then I will present several mathematical models describing PWUE for simulated patterns, searching for the spatial parameterization providing the highest sensitivity to patterns responses to changes in habitat conditions. Such simulations would allow us to discuss several PWUE strategies for shrublands recovery under the current scenarios of climate change and human driven degradation.
Vasuri, Francesco; Fittipaldi, Silvia; Giunchi, Francesca; Monica, Melissa; Ravaioli, Matteo; Degiovanni, Alessio; Bonora, Sonia; Golfieri, Rita; Bolondi, Luigi; Grigioni, Walter F; Pasquinelli, Gianandrea; D'Errico-Grigioni, Antonia
2016-02-01
In this paper we aimed to analyse the typology and the phenotype of the different vascular modifications in human hepatocellular carcinomas (HCCs) with a new immunomorphological and gene expression approach. We also attempted to correlate these modifications with the histological parameters of tumour aggressiveness and the surrounding liver parenchyma. Ninety-six HCCs (from 80 patients) were retrospectively enrolled, 46 occurring in non-cirrhotic livers, and 50 in livers transplanted for cirrhosis. Histopathological analysis, immunohistochemistry for CD34, Nestin and WT1 and RT-PCR for Nestin, transforming growth factor-β1 (TGFβ1) and insulin-like growth factor 1 (IGF1R) mRNA were performed in all nodules. By correlating the CD34 and Nestin immunoreactivity in HCC vasculature with the tumorous architecture, we identified four vascular patterns (named from 'a' to 'd'). Each of them was characterised by different expressions of TGFβ1 and IGF1R mRNA. Pattern a showed CD34-positive/Nestin-negative sinusoids, and was prevalent in microtrabecular lesions. Pattern b showed similar morphology and architecture as pattern a, but with Nestin-positive sinusoids and a significant 'boost' in IGF1R and TGFβ1 mRNAs. In patterns c and d a progressive sinusoid loss and a gain of newly formed arterioles were seen. Notably, HCCs with pattern a arose more frequently in cirrhosis (p=0.024), and showed lower incidence of microvascular invasion (p=0.002) and infiltration (p=0.005) compared with HCCs with other patterns. Although future studies are surely required, the identification of different vascular profiles in HCCs from cirrhotic and non-cirrhotic livers may help clarify the relationship between HCC progression and aggressiveness. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Shoaf, S A; Conway, K; Hunt, R K
1984-08-07
We have examined the behavior of two reaction-diffusion models, originally proposed by Gierer & Meinhardt (1972) and by Kauffman, Shymko & Trabert (1978), for biological pattern formation. Calculations are presented for pattern formation on a disc (approximating the geometry of a number of embryonic anlagen including the frog eye rudiment), emphasizing the sensitivity of patterns to changes in initial conditions and to perturbations in the geometry of the morphogen-producing space. Analysis of the linearized equations from the models enabled us to select appropriate parameters and disc size for pattern growth. A computer-implemented finite element method was used to solve the non-linear model equations reiteratively. For the Gierer-Meinhardt model, initial activation (varying in size over two orders of magnitude) of one point on the disc's edge was sufficient to generate the primary gradient. Various parts of the disc were removed (remaining only as diffusible space) from the morphogen-producing cycle to investigate the effects of cells dropping out of the cycle due to cell death or malfunction (single point removed) or differentiation (center removed), as occur in the Xenopus eye rudiment. The resulting patterns had the same general shape and amplitude as normal gradients. Nor did a two-fold increase in disc size affect the pattern-generating ability of the model. Disc fragments bearing their primary gradient patterns were fused (with gradients in opposite directions, but each parallel to the fusion line). The resulting patterns generated by the model showed many similarities to results of "compound eye" experiments in Xenopus. Similar patterns were obtained with the model of Kauffman's group (1978), but we found less stability of the pattern subject to simulations of central differentiation. However, removal of a single point from the morphogen cycle (cell death) did not result in any change. The sensitivity of the Kauffman et al. model to shape perturbations is not surprising since the model was originally designed to use shape and increasing size during growth to generate a sequence of transient patterns. However, the Gierer-Meinhardt model is remarkably stable even when subjected to a wide range of perturbations in the diffusible space, thus allowing it to cope with normal biological variability, and offering an exciting range of possibilities for reaction-diffusion models as mechanisms underlying the spatial patterns of tissue structures.
Modeling Surface Growth of Escherichia coli on Agar Plates
Fujikawa, Hiroshi; Morozumi, Satoshi
2005-01-01
Surface growth of Escherichia coli cells on a membrane filter placed on a nutrient agar plate under various conditions was studied with a mathematical model. The surface growth of bacterial cells showed a sigmoidal curve with time on a semilogarithmic plot. To describe it, a new logistic model that we presented earlier (H. Fujikawa et al., Food Microbiol. 21:501-509, 2004) was modified. Growth curves at various constant temperatures (10 to 34°C) were successfully described with the modified model (model III). Model III gave better predictions of the rate constant of growth and the lag period than a modified Gompertz model and the Baranyi model. Using the parameter values of model III at the constant temperatures, surface growth at various temperatures was successfully predicted. Surface growth curves at various initial cell numbers were also sigmoidal and converged to the same maximum cell numbers at the stationary phase. Surface growth curves at various nutrient levels were also sigmoidal. The maximum cell number and the rate of growth were lower as the nutrient level decreased. The surface growth curve was the same as that in a liquid, except for the large curvature at the deceleration period. These curves were also well described with model III. The pattern of increase in the ATP content of cells grown on a surface was sigmoidal, similar to that for cell growth. We discovered several characteristics of the surface growth of bacterial cells under various growth conditions and examined the applicability of our model to describe these growth curves. PMID:16332768
Cobb, Alexander R; Hoyt, Alison M; Gandois, Laure; Eri, Jangarun; Dommain, René; Abu Salim, Kamariah; Kai, Fuu Ming; Haji Su'ut, Nur Salihah; Harvey, Charles F
2017-06-27
Tropical peatlands now emit hundreds of megatons of carbon dioxide per year because of human disruption of the feedbacks that link peat accumulation and groundwater hydrology. However, no quantitative theory has existed for how patterns of carbon storage and release accompanying growth and subsidence of tropical peatlands are affected by climate and disturbance. Using comprehensive data from a pristine peatland in Brunei Darussalam, we show how rainfall and groundwater flow determine a shape parameter (the Laplacian of the peat surface elevation) that specifies, under a given rainfall regime, the ultimate, stable morphology, and hence carbon storage, of a tropical peatland within a network of rivers or canals. We find that peatlands reach their ultimate shape first at the edges of peat domes where they are bounded by rivers, so that the rate of carbon uptake accompanying their growth is proportional to the area of the still-growing dome interior. We use this model to study how tropical peatland carbon storage and fluxes are controlled by changes in climate, sea level, and drainage networks. We find that fluctuations in net precipitation on timescales from hours to years can reduce long-term peat accumulation. Our mathematical and numerical models can be used to predict long-term effects of changes in temporal rainfall patterns and drainage networks on tropical peatland geomorphology and carbon storage.
Hoyt, Alison M.; Gandois, Laure; Eri, Jangarun; Dommain, René; Abu Salim, Kamariah; Kai, Fuu Ming; Haji Su’ut, Nur Salihah; Harvey, Charles F.
2017-01-01
Tropical peatlands now emit hundreds of megatons of carbon dioxide per year because of human disruption of the feedbacks that link peat accumulation and groundwater hydrology. However, no quantitative theory has existed for how patterns of carbon storage and release accompanying growth and subsidence of tropical peatlands are affected by climate and disturbance. Using comprehensive data from a pristine peatland in Brunei Darussalam, we show how rainfall and groundwater flow determine a shape parameter (the Laplacian of the peat surface elevation) that specifies, under a given rainfall regime, the ultimate, stable morphology, and hence carbon storage, of a tropical peatland within a network of rivers or canals. We find that peatlands reach their ultimate shape first at the edges of peat domes where they are bounded by rivers, so that the rate of carbon uptake accompanying their growth is proportional to the area of the still-growing dome interior. We use this model to study how tropical peatland carbon storage and fluxes are controlled by changes in climate, sea level, and drainage networks. We find that fluctuations in net precipitation on timescales from hours to years can reduce long-term peat accumulation. Our mathematical and numerical models can be used to predict long-term effects of changes in temporal rainfall patterns and drainage networks on tropical peatland geomorphology and carbon storage. PMID:28607068
Using the LMS method to calculate z-scores for the Fenton preterm infant growth chart.
Fenton, T R; Sauve, R S
2007-12-01
The use of exact percentiles and z-scores permit optimal assessment of infants' growth. In addition, z-scores allow the precise description of size outside of the 3rd and 97th percentiles of a growth reference. To calculate percentiles and z-scores, health professionals require the LMS parameters (Lambda for the skew, Mu for the median, and Sigma for the generalized coefficient of variation; Cole, 1990). The objective of this study was to calculate the LMS parameters for the Fenton preterm growth chart (2003). Secondary data analysis of the Fenton preterm growth chart data. The Cole methods were used to produce the LMS parameters and to smooth the L parameter. New percentiles were generated from the smooth LMS parameters, which were then compared with the original growth chart percentiles. The maximum differences between the original percentile curves and the percentile curves generated from the LMS parameters were: for weight; a difference of 66 g (2.9%) at 32 weeks along the 90th percentile; for head circumference; some differences of 0.3 cm (0.6-1.0%); and for length; a difference of 0.5 cm (1.6%) at 22 weeks on the 97th percentile. The percentile curves generated from the smoothed LMS parameters for the Fenton growth chart are similar to the original curves. These LMS parameters for the Fenton preterm growth chart facilitate the calculation of z-scores, which will permit the more precise assessment of growth of infants who are born preterm.
Na, Hyungjoo; Eun, Youngkee; Kim, Min-Ook; Choi, Jungwook; Kim, Jongbaeg
2015-01-01
We report a unique approach for the patterned growth of single-crystalline tungsten oxide (WOx) nanowires based on localized stress-induction. Ions implanted into the desired growth area of WOx thin films lead to a local increase in the compressive stress, leading to the growth of nanowire at lower temperatures (600 °C vs. 750–900 °C) than for equivalent non-implanted samples. Nanowires were successfully grown on the microscale patterns using wafer-level ion implantation and on the nanometer scale patterns using a focused ion beam (FIB). Experimental results show that nanowire growth is influenced by a number of factors including the dose of the implanted ions and their atomic radius. The implanted-ion-assisted, stress-induced method proposed here for the patterned growth of WOx nanowires is simpler than alternative approaches and enhances the compatibility of the process by reducing the growth temperature. PMID:26666843
Predicting thunderstorm evolution using ground-based lightning detection networks
NASA Technical Reports Server (NTRS)
Goodman, Steven J.
1990-01-01
Lightning measurements acquired principally by a ground-based network of magnetic direction finders are used to diagnose and predict the existence, temporal evolution, and decay of thunderstorms over a wide range of space and time scales extending over four orders of magnitude. The non-linear growth and decay of thunderstorms and their accompanying cloud-to-ground lightning activity is described by the three parameter logistic growth model. The growth rate is shown to be a function of the storm size and duration, and the limiting value of the total lightning activity is related to the available energy in the environment. A new technique is described for removing systematic bearing errors from direction finder data where radar echoes are used to constrain site error correction and optimization (best point estimate) algorithms. A nearest neighbor pattern recognition algorithm is employed to cluster the discrete lightning discharges into storm cells and the advantages and limitations of different clustering strategies for storm identification and tracking are examined.
Mauch, Renan Marrichi; Kmit, Arthur Henrique Pezzo; Marson, Fernando Augusto de Lima; Levy, Carlos Emilio; Barros-Filho, Antonio de Azevedo; Ribeiro, José Dirceu
2016-12-01
To review the literature addressing the relationship of growth and nutritional parameters with pulmonary function in pediatric patients with cystic fibrosis. A collection of articles published in the last 15 years in English, Portuguese and Spanish was made by research in electronic databases - PubMed, Cochrane, Medline, Lilacs and Scielo - using the keywords cystic fibrosis, growth, nutrition, pulmonary function in varied combinations. Articles that addressed the long term association of growth and nutritional parameters, with an emphasis on growth, with pulmonary disease in cystic fibrosis, were included, and we excluded those that addressing only the relationship between nutritional parameters and cystic fibrosis and those in which the aim was to describe the disease. Seven studies were included, with a total of 12,455 patients. Six studies reported relationship between growth parameters and lung function, including one study addressing the association of growth parameters, solely, with lung function, and all the seven studies reported relationship between nutritional parameters and lung function. The review suggests that the severity of the lung disease, determined by spirometry, is associated with body growth and nutritional status in cystic fibrosis. Thus, the intervention in these parameters can lead to the better prognosis and life expectancy for cystic fibrosis patients. Copyright © 2016 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.
Marín, Sonia; Colom, Carmen; Sanchis, Vicente; Ramos, Antonio J
2009-01-15
The aim of the present work was to apply mathematical models for the prediction of growth of aflatoxigenic moulds in powdered Capsicum fruits as a function of its water availability. As prevention of fungal growth effectively conduces to prevention of mycotoxin accumulation, the development of models for prediction of growth of mycotoxigenic fungi becomes a key step in risk management. Two aflatoxigenic A. flavus from chilli powder were grown on 3% chilli powder extract agar at different water activity levels and their growth was evaluated over time in terms of colony sizes and ergosterol accumulation. Both variables were modelled over time, and the resulting parameters (growth rates and lag phases) were modelled as a function of water availability using the Rosso cardinal model. Linear logistic regression was also applied to predict the probability of growth over storage time. Both isolates showed a similar pattern of behaviour, with decreasing growth rates and increasing lag phases with decreasing water activity level. While estimation of optimum a(w) for growth was consistently around 0.97-0.99, the minimum estimated a(w) varied from 0.82 to 0.88 depending on the isolate and on the parameters used for predictions. Comparing growth rates obtained for colony size and ergosterol accumulation, a linear relationship between them could be observed. The rate of root square ergosterol/colony diameter/unit of time was 0.25-0.27. Probabilities of growth before 10 days over 90% were estimated at a(w) 0.91, while the safe period could be extended to more than 20 days (22-29 days) if water activity was decreased to an a(w)=0.87. Finally, the probability of growth is always under 50% when water availability is under a(w) 0.85, and almost null for A. flavus UdLTA 3.147. It was concluded that for safe production, storage and transport, chillies and chilli powder must be kept under 31% mc (db) (probability of growth <50%). However, growth is unlikely to occur if chilli is kept at approx. 34% for less than 10 days, or at approx. 33% for less than 20 days. Careful hazard analysis and critical control point (HACCP) techniques during raw material production and the subsequent stages of drying, transportation, elaboration and storage are indispensable.
Byrne, Maria; Lamare, Miles; Winter, David; Dworjanyn, Symon A; Uthicke, Sven
2013-01-01
The stunting effect of ocean acidification on development of calcifying invertebrate larvae has emerged as a significant effect of global change. We assessed the arm growth response of sea urchin echinoplutei, here used as a proxy of larval calcification, to increased seawater acidity/pCO2 and decreased carbonate mineral saturation in a global synthesis of data from 15 species. Phylogenetic relatedness did not influence the observed patterns. Regardless of habitat or latitude, ocean acidification impedes larval growth with a negative relationship between arm length and increased acidity/pCO2 and decreased carbonate mineral saturation. In multiple linear regression models incorporating these highly correlated parameters, pCO2 exerted the greatest influence on decreased arm growth in the global dataset and also in the data subsets for polar and subtidal species. Thus, reduced growth appears largely driven by organism hypercapnia. For tropical species, decreased carbonate mineral saturation was most important. No single parameter played a dominant role in arm size reduction in the temperate species. For intertidal species, the models were equivocal. Levels of acidification causing a significant (approx. 10-20+%) reduction in arm growth varied between species. In 13 species, reduction in length of arms and supporting skeletal rods was evident in larvae reared in near-future (pCO2 800+ µatm) conditions, whereas greater acidification (pCO2 1000+ µatm) reduced growth in all species. Although multi-stressor studies are few, when temperature is added to the stressor mix, near-future warming can reduce the negative effect of acidification on larval growth. Broadly speaking, responses of larvae from across world regions showed similar trends despite disparate phylogeny, environments and ecology. Larval success may be the bottleneck for species success with flow-on effects for sea urchin populations and marine ecosystems.
Byrne, Maria; Lamare, Miles; Winter, David; Dworjanyn, Symon A.; Uthicke, Sven
2013-01-01
The stunting effect of ocean acidification on development of calcifying invertebrate larvae has emerged as a significant effect of global change. We assessed the arm growth response of sea urchin echinoplutei, here used as a proxy of larval calcification, to increased seawater acidity/pCO2 and decreased carbonate mineral saturation in a global synthesis of data from 15 species. Phylogenetic relatedness did not influence the observed patterns. Regardless of habitat or latitude, ocean acidification impedes larval growth with a negative relationship between arm length and increased acidity/pCO2 and decreased carbonate mineral saturation. In multiple linear regression models incorporating these highly correlated parameters, pCO2 exerted the greatest influence on decreased arm growth in the global dataset and also in the data subsets for polar and subtidal species. Thus, reduced growth appears largely driven by organism hypercapnia. For tropical species, decreased carbonate mineral saturation was most important. No single parameter played a dominant role in arm size reduction in the temperate species. For intertidal species, the models were equivocal. Levels of acidification causing a significant (approx. 10–20+%) reduction in arm growth varied between species. In 13 species, reduction in length of arms and supporting skeletal rods was evident in larvae reared in near-future (pCO2 800+ µatm) conditions, whereas greater acidification (pCO2 1000+ µatm) reduced growth in all species. Although multi-stressor studies are few, when temperature is added to the stressor mix, near-future warming can reduce the negative effect of acidification on larval growth. Broadly speaking, responses of larvae from across world regions showed similar trends despite disparate phylogeny, environments and ecology. Larval success may be the bottleneck for species success with flow-on effects for sea urchin populations and marine ecosystems. PMID:23980242
Modeling pattern in collections of parameters
Link, W.A.
1999-01-01
Wildlife management is increasingly guided by analyses of large and complex datasets. The description of such datasets often requires a large number of parameters, among which certain patterns might be discernible. For example, one may consider a long-term study producing estimates of annual survival rates; of interest is the question whether these rates have declined through time. Several statistical methods exist for examining pattern in collections of parameters. Here, I argue for the superiority of 'random effects models' in which parameters are regarded as random variables, with distributions governed by 'hyperparameters' describing the patterns of interest. Unfortunately, implementation of random effects models is sometimes difficult. Ultrastructural models, in which the postulated pattern is built into the parameter structure of the original data analysis, are approximations to random effects models. However, this approximation is not completely satisfactory: failure to account for natural variation among parameters can lead to overstatement of the evidence for pattern among parameters. I describe quasi-likelihood methods that can be used to improve the approximation of random effects models by ultrastructural models.
Coles, J.F.; Jones, R.C.
2000-01-01
Three cyanobacteria (Microcystis aeruginosa Kutz. emend. Elenkin, Merismopedia tenuissima Lemmermann, and Oscillatoria sp.) and one diatom (Aulacoseira granulata var. angustissima O. Mull. emend. Simonsen) were isolated from the tidal freshwater Potomac River and maintained at 23??C and 40 ??mol photons??m-2??s-1 on a 16:8 L:D cycle in unialgal culture. Photosynthetic parameters were determined in nutrient-replete cultures growing exponentially at 15, 20, 25, and 30??C by incubation with 14C at six light levels. P(B)(max) was strongly correlated with temperature over the entire range for the cyanobacteria and from 15 to 25??C for Aulacoseira, with Q10 ranging from 1.79 to 2.67. The ?? values demonstrated a less consistent temperature pattern. Photosynthetic parameters indicated an advantage for cyanobacteria at warmer temperatures and in light-limited water columns. P(B)(max) and I(k) values were generally lower than comparable literature and field values, whereas ?? was generally higher, consistent with a somewhat shade acclimated status of our cultures. Specific growth rate (??), as measured by chlorophyll change, was strongly influenced by temperature in all species. Oscillatoria had the highest ?? at all temperatures, joined at lower temperatures by Aulacoseira and at higher temperatures by Microcystis. Values of ?? for Aulacaseira were near the low end of the literature range for diatoms consistent with the light-limited status of the cultures. The cyanobacteria exhibited growth rates similar to those reported in other studies. Q10 for growth ranged from 1.71 for Aulacoseira to 4.16 for Microcystis. Growth rate was highly correlated with P(B)(max) for each species and the regression slope coefficients were very similar for three of the species.
[Abnormal growth of spine in patients with adolescent idiopathic thoracic scoliosis].
Bao, Hongda; Liu, Zhen; Qiu, Yong; Zhu, Feng; Zhu, Zezhang; Zhang, Wen
2014-05-01
To investigate if the growth patterns of the spine and pelvis are consistent in adolescent idiopathic scoliosis (AIS) patients with single thoracic curves. Forty-eight thoracic adolescent idiopathic scoliosis (T-AIS) female patients and 48 healthy age-matched adolescents were recruited consecutively between December 2011 and October 2012. Radiographic parameters including height of spine (HOS), length of spine (LOS), height of thoracic spine (HOT), length of thoracic spine (LOT), height of pelvis (HOP), width of pelvis (WOP) and width of thorax (WOT) were measured on the long-cassette posteroanterior standing radiographs. In addition, ratios including HOS/HOP, LOS/HOP, HOT/HOP, LOT/HOP, LOS/LOT, WOT/WOP were also calculated. Independent t-test was performed to compare the radiographic parameters and ratios between the two groups. Compared to the age-matched healthy adolescents, T-AIS patients had a significantly higher LOS and LOT (t = -2.364 and -1.495, P = 0.020 and 0.043) and smaller HOS and HOT (t = 2.060 and 3.359, P = 0.042 and 0.001). Yet, all of HOP, WOP and WOT showed no significant difference between T-AIS patients and healthy adolescents. Similarly, LOS/HOP and LOT/HOP were significantly higher in T-AIS patients as may be expected with an average LOS/HOP of 2.26 ± 0.14 in normal controls.In addition, LOS/LOT in normal controls had a trend of increase with age which was different from the stable LOS/LOT in T-AIS patients, indicating an increased growth of thoracic vertebra compared to lumbar vertebra. Compared to the age-matched healthy adolescents, T-AIS patients have an abnormal growth characteristics with longer spine. The growth of pelvis and thorax show no significant differences between T-AIS patients and healthy adolescents.
A model analysis of climate and CO2 controls on tree growth in a semi-arid woodland
NASA Astrophysics Data System (ADS)
Li, G.; Harrison, S. P.; Prentice, I. C.
2015-03-01
We used a light-use efficiency model of photosynthesis coupled with a dynamic carbon allocation and tree-growth model to simulate annual growth of the gymnosperm Callitris columellaris in the semi-arid Great Western Woodlands, Western Australia, over the past 100 years. Parameter values were derived from independent observations except for sapwood specific respiration rate, fine-root turnover time, fine-root specific respiration rate and the ratio of fine-root mass to foliage area, which were estimated by Bayesian optimization. The model reproduced the general pattern of interannual variability in radial growth (tree-ring width), including the response to the shift in precipitation regimes that occurred in the 1960s. Simulated and observed responses to climate were consistent. Both showed a significant positive response of tree-ring width to total photosynthetically active radiation received and to the ratio of modeled actual to equilibrium evapotranspiration, and a significant negative response to vapour pressure deficit. However, the simulations showed an enhancement of radial growth in response to increasing atmospheric CO2 concentration (ppm) ([CO2]) during recent decades that is not present in the observations. The discrepancy disappeared when the model was recalibrated on successive 30-year windows. Then the ratio of fine-root mass to foliage area increases by 14% (from 0.127 to 0.144 kg C m-2) as [CO2] increased while the other three estimated parameters remained constant. The absence of a signal of increasing [CO2] has been noted in many tree-ring records, despite the enhancement of photosynthetic rates and water-use efficiency resulting from increasing [CO2]. Our simulations suggest that this behaviour could be explained as a consequence of a shift towards below-ground carbon allocation.
Majewsky, Vera; Scherr, Claudia; Arlt, Sebastian Patrick; Kiener, Jonas; Frrokaj, Kristina; Schindler, Tobias; Klocke, Peter; Baumgartner, Stephan
2014-04-01
Reproducibility of basic research investigations in homeopathy is challenging. This study investigated if formerly observed effects of homeopathically potentised gibberellic acid (GA3) on growth of duckweed (Lemna gibba L.) were reproducible. Duckweed was grown in potencies (14x-30x) of GA3 and one time succussed and unsuccussed water controls. Outcome parameter area-related growth rate was determined by a computerised image analysis system. Three series including five independent blinded and randomised potency experiments (PE) each were carried out. System stability was controlled by three series of five systematic negative control (SNC) experiments. Gibbosity (a specific growth state of L. gibba) was investigated as possibly essential factor for reactivity of L. gibba towards potentised GA3 in one series of potency and SNC experiments, respectively. Only in the third series with gibbous L. gibba L. we observed a significant effect (p = 0.009, F-test) of the homeopathic treatment. However, growth rate increased in contrast to the former study, and most biologically active potency levels differed. Variability in PE was lower than in SNC experiments. The stability of the experimental system was verified by the SNC experiments. Gibbosity seems to be a necessary condition for reactivity of L. gibba to potentised GA3. Further still unknown conditions seem to govern effect direction and the pattern of active and inactive potency levels. When designing new reproducibility studies, the physiological state of the test organism must be considered. Variability might be an interesting parameter to investigate effects of homeopathic remedies in basic research. Copyright © 2014 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
Metals Electroprocessing in Molten Salts
NASA Technical Reports Server (NTRS)
Sadoway, D. R.
1985-01-01
The present study seeks to explain the poor quality of solid electrodeposits in molten salts through a consideration of the effects of fluid flow of the electrolyte. Transparent cells allow observation of electrolyte circulation by a laser schlieren optical technique during the electrodeposition of solid zinc from the molten salt electrolyte, ZnCl2 - LiCl-KCl. Experimental variables are current, density, electrolyte composition, and cell geometry. Based on the results of earlier electrodeposition studies as well as reports in the literature, these parameters are identified as having the primary influence on cell performance and deposit quality. Experiments are conducted to measure the fluid flow patterns and the electrochemical cell characteristics, and to correlate this information with the morphology of the solid electrodeposit produced. Specifically, cell voltage, cell current, characteristic time for dendrite evolution, and dendrite growth directions are noted. Their relationship to electrolyte flow patterns and the morphology of the resulting electrodeposit are derived. Results to date indicate that laser schlieren imaging is capable of revealing fluid flow patterns in a molten salt electrolyte.
Tutkuviene, Janina; Cattaneo, Cristina; Obertová, Zuzana; Ratnayake, Melanie; Poppa, Pasquale; Barkus, Arunas; Khalaj-Hedayati, Kerstin; Schroeder, Inge; Ritz-Timme, Stefanie
2016-11-01
Craniofacial growth changes in young children are not yet completely understood. Up-to-date references for craniofacial measurements are crucial for clinical assessment of orthodontic anomalies, craniofacial abnormalities and subsequent planning of interventions. To provide normal reference data and to identify growth patterns for craniofacial dimensions of European boys and girls aged 3-6 years. Using standard anthropometric methodology, body weight, body height and 23 craniofacial measurements were acquired for a cross-sectional sample of 681 healthy children (362 boys and 319 girls) aged 3-6 years from Germany, Italy and Lithuania. Descriptive statistics, correlation coefficients, percentage annual changes and percentage growth rates were used to analyse the dataset. Between the ages of 3-6 years, craniofacial measurements showed age- and sex-related patterns independent from patterns observed for body weight and body height. Sex-related differences were observed in the majority of craniofacial measurements. In both sexes, face heights and face depths showed the strongest correlation with age. Growth patterns differed by craniofacial measurement and can be summarised into eight distinct age- and sex-related patterns. This study provided reference data and identified sex- and age-related growth patterns of the craniofacial complex of young European children, which may be used for detailed assessment of normal growth in paediatrics, maxillofacial reconstructive surgery and possibly for forensic age assessment.
Parameters of Technological Growth
ERIC Educational Resources Information Center
Starr, Chauncey; Rudman, Richard
1973-01-01
Examines the factors involved in technological growth and identifies the key parameters as societal resources and societal expectations. Concludes that quality of life can only be maintained by reducing population growth, since this parameter is the product of material levels, overcrowding, food, and pollution. (JR)
Lakshmi, K Bhagya; Yelchuru, Sri Harsha; Chandrika, V; Lakshmikar, O G; Sagar, V Lakshmi; Reddy, G Vivek
2018-01-01
The main aim is to determine whether growth pattern had an effect on the upper airway by comparing different craniofacial patterns with pharyngeal widths and its importance during the clinical examination. Sixty lateral cephalograms of patients aged between 16 and 24 years with no pharyngeal pathology or nasal obstruction were selected for the study. These were divided into skeletal Class I ( n = 30) and skeletal Class II ( n = 30) using ANB angle subdivided into normodivergent, hyperdivergent, and hypodivergent facial patterns based on SN-GoGn angle. McNamara's airway analysis was used to determine the upper- and lower-airway dimensions. One-way ANOVA was used to do the intergroup comparisons and the Tukey's test as the secondary statistical analysis. Statistically significant difference exists between the upper-airway dimensions in both the skeletal malocclusions with hyperdivergent growth patterns when compared to other growth patterns. In both the skeletal malocclusions, vertical growers showed a significant decrease in the airway size than the horizontal and normal growers. There is no statistical significance between the lower airway and craniofacial growth pattern.
NASA Astrophysics Data System (ADS)
Inkoom, J. N.; Nyarko, B. K.
2014-12-01
The integration of geographic information systems (GIS) and agent-based modelling (ABM) can be an efficient tool to improve spatial planning practices. This paper utilizes GIS and ABM approaches to simulate spatial growth patterns of settlement structures in Shama. A preliminary household survey on residential location decision-making choice served as the behavioural rule for household agents in the model. Physical environment properties of the model were extracted from a 2005 image implemented in NetLogo. The resulting growth pattern model was compared with empirical growth patterns to ascertain the model's accuracy. The paper establishes that the development of unplanned structures and its evolving structural pattern are a function of land price, proximity to economic centres, household economic status and location decision-making patterns. The application of the proposed model underlines its potential for integration into urban planning policies and practices, and for understanding residential decision-making processes in emerging cities in developing countries. Key Words: GIS; Agent-based modelling; Growth patterns; NetLogo; Location decision making; Computational Intelligence.
Vincenzi, Simone; Mangel, Marc; Crivelli, Alain J; Munch, Stephan; Skaug, Hans J
2014-09-01
The differences in demographic and life-history processes between organisms living in the same population have important consequences for ecological and evolutionary dynamics. Modern statistical and computational methods allow the investigation of individual and shared (among homogeneous groups) determinants of the observed variation in growth. We use an Empirical Bayes approach to estimate individual and shared variation in somatic growth using a von Bertalanffy growth model with random effects. To illustrate the power and generality of the method, we consider two populations of marble trout Salmo marmoratus living in Slovenian streams, where individually tagged fish have been sampled for more than 15 years. We use year-of-birth cohort, population density during the first year of life, and individual random effects as potential predictors of the von Bertalanffy growth function's parameters k (rate of growth) and L∞ (asymptotic size). Our results showed that size ranks were largely maintained throughout marble trout lifetime in both populations. According to the Akaike Information Criterion (AIC), the best models showed different growth patterns for year-of-birth cohorts as well as the existence of substantial individual variation in growth trajectories after accounting for the cohort effect. For both populations, models including density during the first year of life showed that growth tended to decrease with increasing population density early in life. Model validation showed that predictions of individual growth trajectories using the random-effects model were more accurate than predictions based on mean size-at-age of fish.
NASA Astrophysics Data System (ADS)
Mazzocchi, M. G.; Buffoni, G.; Carotenuto, Y.; Pasquali, S.; Ribera d'Alcalà, M.
2006-08-01
We integrated field and laboratory data with modeling to determine the extent to which the temporal patterns in population abundance of a copepod species as observed at sea may be explained by differences in production and mortality rates due to diet. A Lagrangian individual-based model utilizing birth and mortality rates whose values and variance were derived from the effects of dietary composition was implemented to simulate the growth of the multi-staged population of Temora stylifera. The four diets considered were represented by unialgal cultures of the dinoflagellate Prorocentrum minimum or the diatom Thalassiosira rotula, a mixture of the two species, and natural particle assemblages < 50 μm. The aim of this work was to set up an exemplary study on a debated issue, i.e., whether the insidious effect of a diatom diet demonstrated in laboratory experiments plays a role in the time course of copepod populations in situ. Our numerical simulations showed that differences in life history parameters, as mainly dependent on diet, caused remarkably different population growth rates. However, our model reproduced the pattern of an average seasonal cycle of T. stylifera in Mediterranean coastal waters only when it utilized time-dependent field data, which evidently integrate all conditions the animals experience at sea. Proper tuning of the mortality term of developmental stages was crucial to reproduce the pattern of the time course of T. stylifera abundance in situ, which confirms that this term plays a major role in shaping the copepod population dynamics. The model also showed that, while dietary composition affects the population growth, it is far from being the only determinant of the cycle of abundance of T. stylifera at sea.
Hall, April; Kingsford, Michael
2016-01-01
Predation and competition are critical processes influencing the ecology of organisms, and can play an integral role in shaping coral reef fish communities. This study compared the relative and interacting effects of competition and predation on two competing species of coral reef fish, Pomacentrus amboinensis and P. moluccensis (Pomacentridae), using a multifactorial experiment. Fish were subjected to the sight and smell of a known predator (Pseudochromis fuscus), the presence of the heterospecific competitor (i.e., P. amboinensis vs. P. moluccensis), or a combination of the two for a period of 19 days. The sub-lethal effects of predator/competitor treatments were compared with controls; a combination of otolith microstructure analysis and observations were used to determine otolith growth patterns and behaviour. We predicted that the stress of competition and/or predation would result in strong sub-lethal impacts, and act synergistically on growth and behavioural patterns. We found strong evidence to support this prediction, but only for P. amboinensis, which suffered reductions in growth in both predator and competitor treatments, with the largest reductions occurring when subjected to both predation and competition concurrently. There was strong evidence of asymmetrical competition between the two damselfish species, with P. moluccensis as the dominant competitor, displaying strong aggressive behaviour towards P. amboinensis. Growth reductions for P. amboinensis in predator/competitor treatments appeared to come about primarily due to increases in shelter seeking behaviour, which significantly reduced the foraging rates of individuals compared with controls. These data highlight the importance of predator/competitor synergisms in influencing key behaviours and demographic parameters for juvenile coral reef fishes. PMID:26992169
Evidence for the Gompertz curve in the income distribution of Brazil 1978-2005
NASA Astrophysics Data System (ADS)
Moura, N. J., Jr.; Ribeiro, M. B.
2009-01-01
This work presents an empirical study of the evolution of the personal income distribution in Brazil. Yearly samples available from 1978 to 2005 were studied and evidence was found that the complementary cumulative distribution of personal income for 99% of the economically less favorable population is well represented by a Gompertz curve of the form G(x) = exp [exp (A-Bx)], where x is the normalized individual income. The complementary cumulative distribution of the remaining 1% richest part of the population is well represented by a Pareto power law distribution P(x) = βx-α. This result means that similarly to other countries, Brazil’s income distribution is characterized by a well defined two class system. The parameters A, B, α, β were determined by a mixture of boundary conditions, normalization and fitting methods for every year in the time span of this study. Since the Gompertz curve is characteristic of growth models, its presence here suggests that these patterns in income distribution could be a consequence of the growth dynamics of the underlying economic system. In addition, we found out that the percentage share of both the Gompertzian and Paretian components relative to the total income shows an approximate cycling pattern with periods of about 4 years and whose maximum and minimum peaks in each component alternate at about every 2 years. This finding suggests that the growth dynamics of Brazil’s economic system might possibly follow a Goodwin-type class model dynamics based on the application of the Lotka-Volterra equation to economic growth and cycle.
NASA Astrophysics Data System (ADS)
Lubarsky, K.
2016-02-01
Submarine groundwater discharge (SGD) constitutes a large percentage of the freshwater inputs onto coastal coral reefs on high islands such as the Hawaiian Islands, although the impact of SGD on coral reef health is currently understudied. In Maunalua Bay, on Oahu, Hawaii, SGD is discharged onto shallow reef flats from discrete seeps, creating natural gradients of water chemistry across the reef flat. We used this system to investigate rates of growth of the lobe coral Porites lobata across a gradient of SGD influence at two study sites within the bay, and to characterize the variation in water chemistry gradient over space and time due to SGD. SGD input at these sites is tidally modulated, and the groundwater itself is brackish and extremely nutrient-rich (mean=190 μM NO3- at the Black Point study site, mean=40 μM NO3- at Wailupe Beach Park), with distinct carbonate signatures at both study sites. Coral nubbins were placed across the gradient for 6 months, and growth was measured using three metrics: surface area (photo analysis), buoyant weight, and linear extension. Various chemical parameters, including pH, salinity, total alkalinity, nutrients, and chlorphyll were sampled at the same locations across the gradient over 24 hour periods in the spring and fall in order to capture spatial and temporal variation in water chemistry due to the SGD plume. Spatial patterns and temporal variation in water chemistry were correlated with the observed spatial patterns in coral growth across the SGD gradient.
Buness, Andreas; Roth, Adrian; Herrmann, Annika; Schmitz, Oliver; Kamp, Hennicke; Busch, Kristina; Suter, Laura
2014-01-01
Early and accurate pre-clinical and clinical biomarkers of hepatotoxicity facilitate the drug development process and the safety monitoring in clinical studies. We selected eight known model compounds to be administered to male Wistar rats to identify biomarkers of drug induced liver injury (DILI) using transcriptomics, metabolite profiling (metabolomics) and conventional endpoints. We specifically explored early biomarkers in serum and liver tissue associated with histopathologically evident acute hepatotoxicity. A tailored data analysis strategy was implemented to better differentiate animals with no treatment-related findings in the liver from animals showing evident hepatotoxicity as assessed by histopathological analysis. From the large number of assessed parameters, our data analysis strategy allowed us to identify five metabolites in serum and five in liver tissue, 58 transcripts in liver tissue and seven clinical chemistry markers in serum that were significantly associated with acute hepatotoxicity. The identified markers comprised metabolites such as taurocholic acid and putrescine (measured as sum parameter together with agmatine), classical clinical chemistry markers like AST (aspartate aminotransferase), ALT (alanine aminotransferase), and bilirubin, as well as gene transcripts like Igfbp1 (insulin-like growth factor-binding protein 1) and Egr1 (early growth response protein 1). The response pattern of the identified biomarkers was concordant across all types of parameters and sample matrices. Our results suggest that a combination of several of these biomarkers could significantly improve the robustness and accuracy of an early diagnosis of hepatotoxicity.
ERIC Educational Resources Information Center
Phatak, Pramila; And Others
This study reports various aspects of the analyses carried out on the longitudinal data reported in a previous study (PS 007 345) for determining the general growth patterns and growth velocity of mental and motor development. Preliminary analyses focused on the selection of the growth curve, its evaluation in the 208 individual cases, and the…
An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people
Nelson, Matthew R.; Wegmann, Daniel; Ehm, Margaret G.; Kessner, Darren; St. Jean, Pamela; Verzilli, Claudio; Shen, Judong; Tang, Zhengzheng; Bacanu, Silviu-Alin; Fraser, Dana; Warren, Liling; Aponte, Jennifer; Zawistowski, Matthew; Liu, Xiao; Zhang, Hao; Zhang, Yong; Li, Jun; Li, Yun; Li, Li; Woollard, Peter; Topp, Simon; Hall, Matthew D.; Nangle, Keith; Wang, Jun; Abecasis, Gonçalo; Cardon, Lon R.; Zöllner, Sebastian; Whittaker, John C.; Chissoe, Stephanie L.; Novembre, John; Mooser, Vincent
2015-01-01
Rare genetic variants contribute to complex disease risk; however, the abundance of rare variants in human populations remains unknown. We explored this spectrum of variation by sequencing 202 genes encoding drug targets in 14,002 individuals. We find rare variants are abundant (one every 17 bases) and geographically localized, such that even with large sample sizes, rare variant catalogs will be largely incomplete. We used the observed patterns of variation to estimate population growth parameters, the proportion of variants in a given frequency class that are putatively deleterious, and mutation rates for each gene. Overall we conclude that, due to rapid population growth and weak purifying selection, human populations harbor an abundance of rare variants, many of which are deleterious and have relevance to understanding disease risk. PMID:22604722
Effect of social isolation on 24-h pattern of stress hormones and leptin in rats.
Perelló, Mario; Chacon, Fernando; Cardinali, Daniel P; Esquifino, Ana I; Spinedi, Eduardo
2006-03-13
This work analyzes the effect of social isolation of growing male rats on 24-h changes of plasma prolactin, growth hormone, ACTH and leptin, and on plasma and adrenal corticosterone concentrations. At 35 days of life, rats were either individually caged or kept in groups (6-8 animals per cage) under a 12:12 h light/dark schedule (lights on at 08:00 h). A significant arrest of body weight gain regardless of unchanged daily food intake was found in isolated rats after 2 weeks of isolation. On the 4th week, rats were killed at 6 time intervals during a 24-h cycle, beginning at 09:00 h. In isolated rats the 24-h pattern of all parameters tested became distorted, as assessed by Cosinor analysis. When analyzed as a main factor in a factorial analysis of variance, isolation decreased plasma prolactin and growth hormone, increased plasma leptin and corticosterone while decreased adrenal corticosterone. Plasma corticosterone levels correlated significantly with plasma ACTH and with adrenal corticosterone levels in group-caged rats only. These changes can be attributed to an effect of mild stress on the endogenous clock that modulates the circadian hormone release.
Nash, Andrea; Dunn, Michael; Asztalos, Elizabeth; Corey, Mary; Mulvihill-Jory, Bridget; O'Connor, Deborah L
2011-08-01
Several Canadian professional organizations recently recommended that the growth of preterm infants be monitored using the World Health Organization Growth Standards (WHO-GS) after hospital discharge. The WHO-GS are a prescriptive set of growth charts that describe how term infants should grow under ideal environmental conditions. Whether preterm infants following this pattern of growth have better outcomes than infants that do not has yet to be evaluated. Our aim was to determine whether the pattern of growth of very low birth weight (VLBW) infants during the first 2 years, assessed using the WHO-GS or the traditional Centers for Disease Control and Prevention reference growth charts (CDC-RGC), is associated with neurodevelopment. Pattern of weight, length, and head circumference gain of appropriate-for-gestation VLBW preterm infants (n = 289) from birth to 18-24 months corrected age was classified, using the WHO-GS and CDC-RGC, as sustained (change in Z-score ≤1 SD), decelerated (decline >1 SD), or accelerated (incline >1 SD). Development was assessed using the Bayley Scales of Infant and Toddler Development (BSID)-III at 18-24 months corrected age. Using the WHO-GS, children with a decelerated pattern of weight gain had lower cognitive (10 points), language (6 points), and motor (4 points) scores than infants with sustained weight gain (p < 0.05), even after adjustment for morbidities. No association was found using the CDC-RGC. In conclusion, a decelerated pattern of weight gain, determined with the WHO-GS, but not the CDC-GRC, is associated with poorer neurodevelopment scores on the BSID-III than a pattern of sustained growth.
Age and growth parameters of shark-like batoids.
White, J; Simpfendorfer, C A; Tobin, A J; Heupel, M R
2014-05-01
Estimates of life-history parameters were made for shark-like batoids of conservation concern Rhynchobatus spp. (Rhynchobatus australiae, Rhynchobatus laevis and Rhynchobatus palpebratus) and Glaucostegus typus using vertebral ageing. The sigmoid growth functions, Gompertz and logistic, best described the growth of Rhynchobatus spp. and G. typus, providing the best statistical fit and most biologically appropriate parameters. The two-parameter logistic was the preferred model for Rhynchobatus spp. with growth parameter estimates (both sexes combined) L(∞) = 2045 mm stretch total length, LST and k = 0·41 year⁻¹. The same model was also preferred for G. typus with growth parameter estimates (both sexes combined) L∞ = 2770 mm LST and k = 0·30 year⁻¹. Annual growth-band deposition could not be excluded in Rhynchobatus spp. using mark-recaptured individuals. Although morphologically similar G. typus and Rhynchobatus spp. have differing life histories, with G. typus longer lived, slower growing and attaining a larger maximum size. © 2014 The Fisheries Society of the British Isles.
Kihara, Takanori; Kashitani, Kosuke; Miyake, Jun
2017-07-14
Cell proliferation is a key characteristic of eukaryotic cells. During cell proliferation, cells interact with each other. In this study, we developed a cellular automata model to estimate cell-cell interactions using experimentally obtained images of cultured cells. We used four types of cells; HeLa cells, human osteosarcoma (HOS) cells, rat mesenchymal stem cells (MSCs), and rat smooth muscle A7r5 cells. These cells were cultured and stained daily. The obtained cell images were binarized and clipped into squares containing about 10 4 cells. These cells showed characteristic cell proliferation patterns. The growth curves of these cells were generated from the cell proliferation images and we determined the doubling time of these cells from the growth curves. We developed a simple cellular automata system with an easily accessible graphical user interface. This system has five variable parameters, namely, initial cell number, doubling time, motility, cell-cell adhesion, and cell-cell contact inhibition (of proliferation). Within these parameters, we obtained initial cell numbers and doubling times experimentally. We set the motility at a constant value because the effect of the parameter for our simulation was restricted. Therefore, we simulated cell proliferation behavior with cell-cell adhesion and cell-cell contact inhibition as variables. By comparing growth curves and proliferation cell images, we succeeded in determining the cell-cell interaction properties of each cell. Simulated HeLa and HOS cells exhibited low cell-cell adhesion and weak cell-cell contact inhibition. Simulated MSCs exhibited high cell-cell adhesion and positive cell-cell contact inhibition. Simulated A7r5 cells exhibited low cell-cell adhesion and strong cell-cell contact inhibition. These simulated results correlated with the experimental growth curves and proliferation images. Our simulation approach is an easy method for evaluating the cell-cell interaction properties of cells.
Park, Jaehyun; Jeon, Byongtae; Kang, Sungki; Oh, Mirae; Kim, Myonghwa; Jang, Seyoung; Park, Pyojam; Kim, Sangwoo; Moon, Sangho
2015-09-01
This study was conducted to investigate changes in blood enzyme parameters and to evaluate the relationship between insulin-like growth factor-1 (IGF-1), antler growth and body weight during the antler growth of sika deer (Cervus nippon). Serum enzyme activity and IGF-1 concentrations were measured in blood samples collected from the jugular and femoral veins at regular intervals during the antler growth period. Blood samples were taken in the morning from fasted stags (n = 12) which were healthy and showed no clinical signs of disease. Alfalfa was available ad libitum and concentrates were given at 1% of body weight to all stags. The experimental diet was provided at 9 am with water available at all times. There were no significant differences in alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase during antler growth, but alkaline phosphatase concentrations increased with antler growth progression, and the highest alkaline phosphatase concentration was obtained 55 days after antler casting. Serum IGF-1 concentrations measured from blood samples taken from the jugular vein during antler growth, determined that levels of IGF-1 was associated with body weight and antler growth patterns. Serum IGF-1 concentrations were higher at the antler cutting date than other sampling dates. Antler length increased significantly during antler growth (p<0.001), and there was a similar trend to between right and left beams. Body weight increased with antler growth but was not significant. Consequently it appeared that serum alkaline phosphatase concentration was related to antler growth and both antler growth and body weight were associated positively with IGF-1 concentrations during antler growth.
Growth charts for non-growth hormone treated Prader-Willi syndrome.
Butler, Merlin G; Lee, Jaehoon; Manzardo, Ann M; Gold, June-Anne; Miller, Jennifer L; Kimonis, Virginia; Driscoll, Daniel J
2015-01-01
The goal of this study was to generate and report standardized growth curves for weight, height, head circumference, and BMI for non-growth hormone-treated white male and female US subjects with Prader-Willi syndrome (PWS) between 3 and 18 years of age and develop standardized growth charts. Anthropometric measures (N = 133) were obtained according to standard methods from 120 non-growth hormone-treated white subjects (63 males and 57 females) with PWS between 3 and 18 years of age. Standardized growth curves were developed for the third, 10th, 25th, 50th, 75th, 90th, and 97th percentiles by using the LMS method for weight, height, head circumference, and BMI for PWS subjects along with the normative third, 50th, and 97th percentiles from national and international growth data. The LMS smoothing procedure summarized the distribution of the anthropometric variables at each age using three parameters: power of the Box-Cox transformation λ (L), median μ (M) and coefficient of variation δ (S). Weight, height, head circumference, and BMI standardized growth charts representing 7 percentile ranges were developed from 120 non-growth hormone-treated white male and female US subjects with PWS (age range: 3-18 years) and normative third, 50th, and 97th percentiles from national and international data. We encourage the use of syndrome-specific growth standards to examine and evaluate subjects with PWS when monitoring growth patterns and determining nutritional and obesity status. These variables can be influenced by culture, individual medical care, diet intervention, and physical activity plans. Copyright © 2015 by the American Academy of Pediatrics.
Navarro, Pedro J.; Fernández, Carlos; Weiss, Julia; Egea-Cortines, Marcos
2012-01-01
Plant development is the result of an endogenous morphogenetic program that integrates environmental signals. The so-called circadian clock is a set of genes that integrates environmental inputs into an internal pacing system that gates growth and other outputs. Study of circadian growth responses requires high sampling rates to detect changes in growth and avoid aliasing. We have developed a flexible configurable growth chamber comprising a computer vision system that allows sampling rates ranging between one image per 30 s to hours/days. The vision system has a controlled illumination system, which allows the user to set up different configurations. The illumination system used emits a combination of wavelengths ensuring the optimal growth of species under analysis. In order to obtain high contrast of captured images, the capture system is composed of two CCD cameras, for day and night periods. Depending on the sample type, a flexible image processing software calculates different parameters based on geometric calculations. As a proof of concept we tested the system in three different plant tissues, growth of petunia- and snapdragon (Antirrhinum majus) flowers and of cladodes from the cactus Opuntia ficus-indica. We found that petunia flowers grow at a steady pace and display a strong growth increase in the early morning, whereas Opuntia cladode growth turned out not to follow a circadian growth pattern under the growth conditions imposed. Furthermore we were able to identify a decoupling of increase in area and length indicating that two independent growth processes are responsible for the final size and shape of the cladode. PMID:23202214
NASA Astrophysics Data System (ADS)
Cabral-Tena, R. A.; Sánchez, A.; Reyes-Bonilla, H.; Ruvalcaba-Díaz, A. H.; Balart, E. F.
2015-11-01
Coral δ18O variations are used as a proxy for changes in near sea surface temperature and seawater isotope composition. Skeletal δ13C of coral is frequently used as a proxy for solar radiation because most of its variability is controlled by an interrelationship between three processes: photosynthesis, respiration, and feeding. Coral growth rate is known to influence the δ18O and δ13C isotope record to a lesser extent. Recent published data show differences in growth parameters between female and male coral; thus, skeletal δ18O and δ13C are hypothesized to be different in each sex. To assess this difference, this study describes changes in the skeletal δ18O and δ13C record of four female and six male Porites panamensis coral collected in Bahía de La Paz, whose growth bands spanned 12 years. The isotopic data were compared to SST, precipitation, PAR, chlorophyll a, and skeletal growth parameters. Porites panamensis is a known gonochoric brooder whose growth parameters are different in females and males. Splitting the data by sexes explained 81 and 93 % of the differences of δ18O, and of δ13C, respectively, in the isotope record between colonies. Both isotope records were different between sexes. δ18O was higher in female colonies than in male colonies, with a 0.31 ‰ difference; δ13C was lower in female colonies, with a 0.28 ‰ difference. A difference in the skeletal δ18O implies an error in SST estimates of ≈ 1.0 °C to ≈ 2.6 °C. The δ18O records showed a seasonal pattern that corresponded to SST, with low correlation coefficients (-0.45, -0.32), and gentle slopes (0.09 ‰ °C-1, 0.10 ‰ °C-1) of the δ18O-SST relation. Seasonal variation in coral δ18O represents only 52.37 and 35.66 % of the SST cycle; 29.72 and 38.53 % can be attributed to δ18O variability in seawater. δ13C data did not correlate with any of the environmental variables; therefore, variations in skeletal δ13C appear to be driven mainly by metabolic effects. Our results support the hypothesis of a sex-associated difference in skeletal δ18O and δ13C signal, and suggest that environmental conditions and coral growth parameters affect skeletal isotopic signal differently in each sex.
NASA Astrophysics Data System (ADS)
Patra, Nimai C.; Bharatan, Sudhakar; Li, Jia; Tilton, Michael; Iyer, Shanthi
2012-04-01
Recent research progress and findings in InSbN have attracted great attention due to its use in long wavelength infrared applications. A large bandgap reduction in InSb resulting from high N incorporation with minimal crystal defects is challenging due to relatively small atomic size of N. Hence optimization of growth conditions plays an important role in the growth of high-quality InSbN epilayers for device purposes. In this paper, we report on the correlation of structural, vibrational, electrical, and optical properties of molecular beam epitaxially grown InSbN epilayers grown on GaAs substrates, as a function of varying growth temperatures. Two dimensional growths of InSb and InSbN were confirmed from dynamic reflection high energy electron diffraction patterns and growth parameters were optimized. High crystalline quality of the epilayers is attested to by a low full width at half maximum of 200 arcsec from high resolution x-ray diffraction (HRXRD) scans and by the high intensity and well-resolved InSb longitudinal optical (LO) and 2nd order InSb LO mode observed from micro-Raman spectroscopy. The N incorporation in these InSbN epilayers is estimated to be 1.4% based on HRXRD simulation. X-ray photoelectron spectroscopy (XPS) studies reveal that most of the N present in the layers are in the form of In-N bonding. Variation of the lattice disorder with growth temperature is correlated with the types of N bonding present, the carrier concentration and mobility, observed in the corresponding XPS spectra and Hall measurements, respectively. XPS analysis, HRXRD scans, and Raman spectral analysis indicate that lower growth temperature favors In-N bonding which dictates N incorporation in the substitutional sites and lattice disorder, whereas, high growth temperature promotes the formation of In-N-Sb bonding. The best room temperature and 77 K electrical transport parameters and maximum redshift in the absorption edge have been achieved in the InSbN epilayer grown in the 290 °C ˜ 330 °C temperature range.
Critical Point in Self-Organized Tissue Growth
NASA Astrophysics Data System (ADS)
Aguilar-Hidalgo, Daniel; Werner, Steffen; Wartlick, Ortrud; González-Gaitán, Marcos; Friedrich, Benjamin M.; Jülicher, Frank
2018-05-01
We present a theory of pattern formation in growing domains inspired by biological examples of tissue development. Gradients of signaling molecules regulate growth, while growth changes these graded chemical patterns by dilution and advection. We identify a critical point of this feedback dynamics, which is characterized by spatially homogeneous growth and proportional scaling of patterns with tissue length. We apply this theory to the biological model system of the developing wing of the fruit fly Drosophila melanogaster and quantitatively identify signatures of the critical point.
Kinetic transition in the order-disorder transformation at a solid/liquid interface
NASA Astrophysics Data System (ADS)
Galenko, P. K.; Nizovtseva, I. G.; Reuther, K.; Rettenmayr, M.
2018-01-01
Phase-field analysis for the kinetic transition in an ordered crystal structure growing from an undercooled liquid is carried out. The results are interpreted on the basis of analytical and numerical solutions of equations describing the dynamics of the phase field, the long-range order parameter as well as the atomic diffusion within the crystal/liquid interface and in the bulk crystal. As an example, the growth of a binary A50B50 crystal is described, and critical undercoolings at characteristic changes of growth velocity and the long-range order parameter are defined. For rapidly growing crystals, analogies and qualitative differences are found in comparison with known non-equilibrium effects, particularly solute trapping and disorder trapping. The results and model predictions are compared qualitatively with results of the theory of kinetic phase transitions (Chernov 1968 Sov. Phys. JETP 26, 1182-1190) and with experimental data obtained for rapid dendritic solidification of congruently melting alloy with order-disorder transition (Hartmann et al. 2009 Europhys. Lett. 87, 40007 (doi:10.1209/0295-5075/87/40007)). This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.
NASA Astrophysics Data System (ADS)
Svedberg, E. B.; Birch, J.; Edvardsson, C. N. L.; Sundgren, J.-E.
1999-07-01
The use of video recording of reflection high energy electron diffraction (RHEED) patterns for assessing the dynamic evolution of the surface morphology and crystallinity during growth was evaluated. As an example, Mo/V(001) superlattices with varying layer thickness (with periods Λ of 2.5 to 8.9 nm and a constant Mo:V ratio of 1:1) were examined. During the deposition, changes from two- to three-dimensional growth were observed in situ. From prior transmission electron microscopy (TEM) and X-ray diffraction (XRD) studies, it is known that this transition is associated with a critical thickness and concurrent roughening of the V layer. Video recording and subsequent image and data processing allowed the surface morphology to be continuously followed during growth. Post-growth analyses of the recorded data provided the evolution of surface lattice parameters and short range [1-2 monolayer (ML)] surface roughnesses with a time resolution of 200-400 ms (0.02-0.04 nm thickness resolution). During growth of Mo, a smoothening effect could be observed while the growth of V evidently increased the surface roughness from 1 to 2 ML. Furthermore, the onset of coherency strain relaxation of the topmost growing layers was observed to occur at 2.0-2.5 nm layer thicknesses for both materials, which is in qualitative agreement with theoretical predictions.
Reis, Carla R G; Taddei, Fabiano G; Cobo, Valter J
2015-01-01
Goniopsis cruentata is a common semi-terrestrial crab in Brazilian mangroves and an important fishery resource for traditional communities in the northeastern Brazilian coast. Aiming to contribute to the knowledge about the species, this study evaluated the carapace width and weight growth curves, the relative growth of weight versus carapace width, and the temporal variation of gonadosomatic and hepatosomatic indices for the species. A total of 524 crabs were collected in a mangrove area of Ubatuba municipality, state of São Paulo. The growth-curves parameters and longevity (tmax) were estimated for males (CW∞=50.6 mm, WE=56.4 g, k=2.24, t0=0.003631502 year-1, tmax=1.3 years) and females (CW∞=50.7 mm, WE∞=58.8 g, k=2.50, t0=0.003247209 year-1, tmax=1.2 years). The age at onset of sexual maturity was 0.23 years for both genders. The weight-growth model was isometric for the immature developmental stages and allometric negative for adults. The species exhibited a continuous reproduction, with breeding peaks in spring and summer months. The weight dynamics of gonads and hepatopancreas were not clearly related. The growth and reproductive patterns indicated that Goniopsis cruentata has a life-history that prioritizes reproduction instead of survival. The species exhibited some of the highest growth rates and lowest longevity estimates reported for brachyuran species in Brazil.
Nijhout, H Frederik; Cinderella, Margaret; Grunert, Laura W
2014-03-01
The wings of butterflies and moths develop from imaginal disks whose structure is always congruent with the final adult wing. It is therefore possible to map every point on the imaginal disk to a location on the adult wing throughout ontogeny. We studied the growth patterns of the wings of two distantly related species with very different adult wing shapes, Junonia coenia and Manduca sexta. The shape of the wing disks change throughout their growth phase in a species-specific pattern. We measured mitotic densities and mitotic orientation in successive stages of wing development approximately one cell division apart. Cell proliferation was spatially patterned, and the density of mitoses was highly correlated with local growth. Unlike other systems in which the direction of mitoses has been viewed as the primary determinant of directional growth, we found that in these two species the direction of growth was only weakly correlated with the orientation of mitoses. Directional growth appears to be imposed by a constantly changing spatial pattern of cell division coupled with a weak bias in the orientation of cell division. Because growth and cell division in imaginal disk require ecdysone and insulin signaling, the changing spatial pattern of cell division may due to a changing pattern of expression of receptors or downstream elements in the signaling pathways for one or both of these hormones. Evolution of wing shape comes about by changes in the progression of spatial patterns of cell division. © 2014 Wiley Periodicals, Inc.
Modelling foetal growth in a bi-ethnic sample: results from the Born in Bradford (BiB) birth cohort.
Norris, Tom; Tuffnell, Derek; Wright, John; Cameron, Noël
2014-01-01
Attempts to explain the increased risk for metabolic disorders observed in South Asians have focused on the "South Asian" phenotype at birth and subsequent post-natal growth, with little research on pre-natal growth. To identify whether divergent growth patterns exist for foetal weight, head (HC) and abdominal circumferences (AC) in a sample of Pakistani and White British foetuses. Models were based on 5553 (weight), 5154 (HC) and 5099 (AC) foetuses from the Born in Bradford birth cohort. Fractional polynomials and mixed effects models were employed to determine growth patterns from ~15 weeks of gestation-birth. Pakistani foetuses were significantly smaller and lighter as early as 20 weeks. However, there was no ethnic difference in the growth patterns of weight and HC. For AC, Pakistani foetuses displayed a trend for reduced growth in the final trimester. As the pattern of weight and HC growth was not significantly different during the period under investigation, the mechanism culminating in the reduced Pakistani size at birth may act earlier in gestation. Reduced AC growth in Pakistanis may represent reduced growth of the visceral organs, with consequences for post-natal liver metabolism and renal function.
Growth patterns and life-history strategies in Placodontia (Diapsida: Sauropterygia)
Klein, Nicole; Neenan, James M.; Scheyer, Torsten M.; Griebeler, Eva Maria
2015-01-01
Placodontia is a clade of durophagous, near shore marine reptiles from Triassic sediments of modern-day Europe, Middle East and China. Although much is known about their primary anatomy and palaeoecology, relatively little has been published regarding their life history, i.e. ageing, maturation and growth. Here, growth records derived from long bone histological data of placodont individuals are described and modelled to assess placodont growth and life-history strategies. Growth modelling methods are used to confirm traits documented in the growth record (age at onset of sexual maturity, age when asymptotic length was achieved, age at death, maximum longevity) and also to estimate undocumented traits. Based on these growth models, generalized estimates of these traits are established for each taxon. Overall differences in bone tissue types and resulting growth curves indicate different growth patterns and life-history strategies between different taxa of Placodontia. Psephoderma and Paraplacodus grew with lamellar-zonal bone tissue type and show growth patterns as seen in modern reptiles. Placodontia indet. aff. Cyamodus and some Placodontia indet. show a unique combination of fibrolamellar bone tissue regularly stratified by growth marks, a pattern absent in modern sauropsids. The bone tissue type of Placodontia indet. aff. Cyamodus and Placodontia indet. indicates a significantly increased basal metabolic rate when compared with modern reptiles. Double lines of arrested growth, non-annual rest lines in annuli, and subcycles that stratify zones suggest high dependence of placodont growth on endogenous and exogenous factors. Histological and modelled differences within taxa point to high individual developmental plasticity but sexual dimorphism in growth patterns and the presence of different taxa in the sample cannot be ruled out. PMID:26587259
Growth and characterization of organic NLO material: Clobetasol propionate
NASA Astrophysics Data System (ADS)
Purusothaman, R.; Rajesh, P.; Ramasamy, P.
2015-06-01
Single crystals of clobetasol propionate (CP) have been grown by slow evaporation solution technique using mixed solvent of methanol-acetone. The grown crystals were subjected to single crystal X-ray diffraction analysis to confirm their lattice parameter and space group. The powder X-ray diffraction pattern of the grown CP has been indexed. Thermal analysis was performed to study the thermal stability of the grown crystals. Photoluminescence spectrum shows broad emission peak observed at 421 nm. Nonlinear optical studies were carried out for the grown crystal and second harmonic generation (SHG) efficiency was found in the crystal.
Kim, Eun Sook; Wang, Yan
2017-01-01
Population heterogeneity in growth trajectories can be detected with growth mixture modeling (GMM). It is common that researchers compute composite scores of repeated measures and use them as multiple indicators of growth factors (baseline performance and growth) assuming measurement invariance between latent classes. Considering that the assumption of measurement invariance does not always hold, we investigate the impact of measurement noninvariance on class enumeration and parameter recovery in GMM through a Monte Carlo simulation study (Study 1). In Study 2, we examine the class enumeration and parameter recovery of the second-order growth mixture modeling (SOGMM) that incorporates measurement models at the first order level. Thus, SOGMM estimates growth trajectory parameters with reliable sources of variance, that is, common factor variance of repeated measures and allows heterogeneity in measurement parameters between latent classes. The class enumeration rates are examined with information criteria such as AIC, BIC, sample-size adjusted BIC, and hierarchical BIC under various simulation conditions. The results of Study 1 showed that the parameter estimates of baseline performance and growth factor means were biased to the degree of measurement noninvariance even when the correct number of latent classes was extracted. In Study 2, the class enumeration accuracy of SOGMM depended on information criteria, class separation, and sample size. The estimates of baseline performance and growth factor mean differences between classes were generally unbiased but the size of measurement noninvariance was underestimated. Overall, SOGMM is advantageous in that it yields unbiased estimates of growth trajectory parameters and more accurate class enumeration compared to GMM by incorporating measurement models. PMID:28928691
Göritz, M; Müller, K; Krastel, D; Staudacher, G; Schmidt, P; Kühn, M; Nickel, R; Schoon, H-A
2013-07-01
Splenic haemangiosarcomas (HSAs) from 122 dogs were characterized and classified according to their patterns of growth, survival time post splenectomy, metastases and chemotherapy. The most common pattern of growth was a mixture of cavernous, capillary and solid tumour tissue. Survival time post splenectomy was independent of the growth pattern; however, it was influenced by chemotherapy and metastases. Immunohistochemical assessment of the expression of angiogenic factors (fetal liver kinase-1, angiopoietin-2, angiopoietin receptor-2 and vascular endothelial growth factor A) and conventional endothelial markers (CD31, factor VIII-related antigen) revealed variable expression, particularly in undifferentiated HSAs. Therefore, a combination of endothelial markers should be used to confirm the endothelial origin of splenic tumours. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lagzi, István; Ueyama, Daishin
2009-01-01
The pattern transition between periodic precipitation pattern formation (Liesegang phenomenon) and pure crystal growth regimes is investigated in silver nitrate and potassium dichromate system in mixed agarose-gelatin gel. Morphologically different patterns were found depending on the quality of the gel, and transition between these typical patterns can be controlled by the concentration of gelatin in mixed gel. Effect of temperature and hydrodynamic force on precipitation pattern structure was also investigated.
The Effects of Topographical Patterns and Sizes on Neural Stem Cell Behavior
Qi, Lin; Li, Ning; Huang, Rong; Song, Qin; Wang, Long; Zhang, Qi; Su, Ruigong; Kong, Tao; Tang, Mingliang; Cheng, Guosheng
2013-01-01
Engineered topographical manipulation, a paralleling approach with conventional biochemical cues, has recently attracted the growing interests in utilizations to control stem cell fate. In this study, effects of topological parameters, pattern and size are emphasized on the proliferation and differentiation of adult neural stem cells (ANSCs). We fabricate micro-scale topographical Si wafers with two different feature sizes. These topographical patterns present linear micro-pattern (LMP), circular micro-pattern (CMP) and dot micro-pattern (DMP). The results show that the three topography substrates are suitable for ANSC growth, while they all depress ANSC proliferation when compared to non-patterned substrates (control). Meanwhile, LMP and CMP with two feature sizes can both significantly enhance ANSC differentiation to neurons compared to control. The smaller the feature size is, the better upregulation applies to ANSC for the differentiated neurons. The underlying mechanisms of topography-enhanced neuronal differentiation are further revealed by directing suppression of mitogen-activated protein kinase/extracellular signaling-regulated kinase (MAPK/Erk) signaling pathway in ANSC using U0126, known to inhibit the activation of Erk. The statistical results suggest MAPK/Erk pathway is partially involved in topography-induced differentiation. These observations provide a better understanding on the different roles of topographical cues on stem cell behavior, especially on the selective differentiation, and facilitate to advance the field of stem cell therapy. PMID:23527077
NASA Astrophysics Data System (ADS)
Yang, YanYan; Liu, LianYou; Shi, PeiJun; Zhang, GuoMing; Qu, ZhiQiang; Tang, Yan; Lei, Jie; Wen, HaiMing; Xiong, YiYing; Wang, JingPu; Shen, LingLing
2015-03-01
To understand the characteristics of the nebkhas in barchan interdune areas, isolated barchan dunes at the southeast margin of the Badain Jaran Desert in China and Nitraria tangutorun nebkhas in the interdune areas were selected, and the morphometric parameters, spatial patterns, and granulometric characteristics of the nebkhas in various interdune zones were compared. According to the locations relative to barchan dunes, the interdune areas were divided into three zones: the windward interdune zone (Zw), the leeward interdune zone (Zl), and the horn interdune zone (Zh). The zone that is proximal to barchan dunes and has never been disturbed by barchan dunes was also selected (Zi). The morphometric parameters were measured through a satellite image and field investigation. The population density and spatial patterns were analyzed using the satellite image, and surface sediment samples of the nebkhas and barchan dunes were collected for grain size analysis. The morphometric parameters of Nitraria tangutorun nebkhas in the interdune zones differ significantly. The nebkhas in Zh are larger than those observed in the other zones, and the nebkhas are the smallest in Zl. In all of the zones, the long-axis orientation of the nebkhas is perpendicular to the prevailing wind direction. The population density of the nebkhas in Zw is relatively higher, whereas the density in Zh and Zl becomes obviously lower. The spatial distribution of nebkhas in all of the zones can be categorized as a dispersed pattern. The sediments of the nebkhas are coarsest in Zh and finest in Zl. In addition, the sediments of the nebkhas in all of the zones are finer than those of barchan dunes. The amount of sand captured by the nebkhas in the interdune areas is approximately 20% of the volume of barchan dunes. The variations of the nebkhas' sizes, spatial pattern and sediment are subjected to migration, flow field and sand transport of barchan dunes and sand accumulation with plant growth in the interdune areas, which suggest complex mutual interactions between barchan dunes and the nebkhas in the interdune areas.
Phototropic growth control of nanoscale pattern formation in photoelectrodeposited Se–Te films
Sadtler, Bryce; Burgos, Stanley P.; Batara, Nicolas A.; Beardslee, Joseph A.; Atwater, Harry A.; Lewis, Nathan S.
2013-01-01
Photoresponsive materials that adapt their morphologies, growth directions, and growth rates dynamically in response to the local incident electromagnetic field would provide a remarkable route to the synthesis of complex 3D mesostructures via feedback between illumination and the structure that develops under optical excitation. We report the spontaneous development of ordered, nanoscale lamellar patterns in electrodeposited selenium–tellurium (Se–Te) alloy films grown under noncoherent, uniform illumination on unpatterned substrates in an isotropic electrolyte solution. These inorganic nanostructures exhibited phototropic growth in which lamellar stripes grew toward the incident light source, adopted an orientation parallel to the light polarization direction with a period controlled by the illumination wavelength, and showed an increased growth rate with increasing light intensity. Furthermore, the patterns responded dynamically to changes during growth in the polarization, wavelength, and angle of the incident light, enabling the template-free and pattern-free synthesis, on a variety of substrates, of woodpile, spiral, branched, or zigzag structures, along with dynamically directed growth toward a noncoherent, uniform intensity light source. Full-wave electromagnetic simulations in combination with Monte Carlo growth simulations were used to model light–matter interactions in the Se–Te films and produced a model for the morphological evolution of the lamellar structures under phototropic growth conditions. The experiments and simulations are consistent with a phototropic growth mechanism in which the optical near-field intensity profile selects and reinforces the dominant morphological mode in the emergent nanoscale patterns. PMID:24218617
Phototropic growth control of nanoscale pattern formation in photoelectrodeposited Se-Te films.
Sadtler, Bryce; Burgos, Stanley P; Batara, Nicolas A; Beardslee, Joseph A; Atwater, Harry A; Lewis, Nathan S
2013-12-03
Photoresponsive materials that adapt their morphologies, growth directions, and growth rates dynamically in response to the local incident electromagnetic field would provide a remarkable route to the synthesis of complex 3D mesostructures via feedback between illumination and the structure that develops under optical excitation. We report the spontaneous development of ordered, nanoscale lamellar patterns in electrodeposited selenium-tellurium (Se-Te) alloy films grown under noncoherent, uniform illumination on unpatterned substrates in an isotropic electrolyte solution. These inorganic nanostructures exhibited phototropic growth in which lamellar stripes grew toward the incident light source, adopted an orientation parallel to the light polarization direction with a period controlled by the illumination wavelength, and showed an increased growth rate with increasing light intensity. Furthermore, the patterns responded dynamically to changes during growth in the polarization, wavelength, and angle of the incident light, enabling the template-free and pattern-free synthesis, on a variety of substrates, of woodpile, spiral, branched, or zigzag structures, along with dynamically directed growth toward a noncoherent, uniform intensity light source. Full-wave electromagnetic simulations in combination with Monte Carlo growth simulations were used to model light-matter interactions in the Se-Te films and produced a model for the morphological evolution of the lamellar structures under phototropic growth conditions. The experiments and simulations are consistent with a phototropic growth mechanism in which the optical near-field intensity profile selects and reinforces the dominant morphological mode in the emergent nanoscale patterns.
Ripple/Carcinoid pattern sebaceoma with apocrine differentiation.
Misago, Noriyuki; Narisawa, Yutaka
2011-02-01
Sebaceoma is a benign sebaceous neoplasm, which has been reported to show characteristic growth patterns, such as, ripple, labyrinthine/sinusoidal, and carcinoid-like patterns. Another recent finding regarding in sebaceoma is the observation of apocrine differentiation within the sebaceoma lesion. This report describes a case of carcinoid (a partial ripple and labyrinthine) pattern sebaceoma with apocrine differentiation with a literature review and immunohistochemical studies. The various characteristic growth patterns in sebaceoma were suggested to simply be variations of the same growth pattern arranged in cords, namely, a unified term "ripple/carcinoid pattern." The primitive sebaceous germinative cells in sebaceoma may still have the ability to undergo apocrine differentiation. Most of the reports so far on sebaceoma with apocrine differentiation, including the present case, describe a ripple/carcinoid pattern, thus suggesting that ripple/carcinoid pattern sebaceoma is composed of more primitive sebaceous germinative cells than conventional sebaceoma.
Lee, Hee Kwan; Yu, Jae Su
2012-04-01
We investigated the effect of growth parameters on the structural and optical properties of the ZnO nanostructures (NSs) grown on Au-coated Si substrate by a two-zone thermal chemical vapor deposition. The morphologies of ZnO NSs were controlled by various growth parameters, such as growth temperature, O2 flow rate, and working pressure, for different thicknesses of Au layer. The nanorod-like ZnO NSs were formed at 915 degrees C and the growth of two-dimensional structures, i.e., nanosheets, was enhanced with the increase of growth temperature up to 965 degrees C. It was found that the low working pressure contributed to improvement in vertical alignment and uniformity of ZnO NSs. The Zn/O atomic % ratio, which plays a key role in the growth mechanism of ZnO NSs, was changed by the growth parameters. The Zn/O atomic % ratio was increased with increasing the growth temperature, while it was decreased with increasing the working pressure. Under proper O2 flow rate, the ZnO nanorods with good crystallinity were fabricated with a Zn/O atomic % ratio of -0.9. For various growth parameters, the photoluminescence emission was slightly shifted with the ultraviolet emission related to the near band edge transition.
Xie, P; Wan, X P; Bu, Z; Diao, E J; Gong, D Q; Zou, X T
2018-06-01
The present study was conducted to determine the changes in concentrations of hormones and growth factors and their related receptor gene expressions in crop tissue, relative organ weight, and serum biochemical parameters in male and female pigeons during incubation and chick-rearing periods under artificial farming conditions. Seventy-eight pairs of 60-week-old White King pigeons with 2 fertile eggs per pair were randomly divided into 13 groups by different breeding stages. Serum prolactin and insulin-like growth factor-1 (IGF-1) concentrations in crop tissue homogenates were the highest in both male and female pigeons at 1 d of chick-rearing (R1), while epidermal growth factor (EGF) in female pigeons peaked at d 17 of incubation (I17) (P < 0.05). mRNA expression of the prolactin and EGF receptors in the crop tissue increased at the end of incubation and the early chick-rearing stage in both sexes. However, estrogen, progesterone, and growth hormone receptor expression each decreased during the early chick-rearing stage (P < 0.05). In male pigeons, IGF-1 receptor gene expression reached its peak at R7, while in female pigeons, it increased at the end of incubation. The relative weight of breast and abdominal fat in both sexes and thighs in the males was lowest at R7, and then gradually increased to the incubation period level. Serum total protein, albumin, and globulin concentrations increased to the highest levels at I17 (P < 0.05). Total cholesterol, triglyceride, and low-density lipoprotein reached their highest values at I17 in male pigeons and R25 in female pigeons (P < 0.05). In conclusion, hormones, growth factors, and their receptors potentially underlie pigeon crop tissue development. Changes in organs and serum biochemical profiles suggested their different breeding-cycle patterns with sexual effects.
Dysregulation of Placental miRNA in Maternal Obesity Is Associated With Pre- and Postnatal Growth.
Carreras-Badosa, Gemma; Bonmatí, Alexandra; Ortega, Francisco-Jose; Mercader, Josep-Maria; Guindo-Martínez, Marta; Torrents, David; Prats-Puig, Anna; Martinez-Calcerrada, Jose-Maria; de Zegher, Francis; Ibáñez, Lourdes; Fernandez-Real, Jose-Manuel; Lopez-Bermejo, Abel; Bassols, Judit
2017-07-01
Human placenta exhibits a specific microRNA (miRNA) expression pattern. Some of these miRNAs are dysregulated in pregnancy disorders such as preeclampsia and intrauterine growth restriction and are potential biomarkers for these pathologies. To study the placental miRNA profile in pregnant women with pregestational overweight/obesity (preOB) or gestational obesity (gestOB) and explore the associations between placental miRNAs dysregulated in maternal obesity and prenatal and postnatal growth. TaqMan Low Density Arrays and real-time polymerase chain reaction were used to profile the placental miRNAs in 70 pregnant women (20 preOB, 25 gestOB, and 25 control). Placentas and newborns were weighed at delivery, and infants were weighed at 1, 4, and 12 months of age. Eight miRNAs were decreased in placentas from preOB or gestOB (miR-100, miR-1269, miR-1285, miR-181, miR-185, miR-214, miR-296, and miR-487) (all P < 0.05). Among them, miR-100, miR-1285, miR-296, and miR-487 were associated with maternal metabolic parameters (all P < 0.05) and were predictors of lower birth weight (all P < 0.05; R2 > 30%) and increased postnatal weight gain (all P < 0.05; R2 > 20%). In silico analysis showed that these miRNAs were related to cell proliferation and insulin signaling pathways. miR-296 was also present in plasma samples and associated with placental expression and prenatal and postnatal growth parameters (all P < 0.05). We identified a specific placental miRNA profile in maternal obesity. Placental miRNAs dysregulated in maternal obesity may be involved in mediation of growth-promoting effects of maternal obesity on offspring and could be used as early markers of prenatal and postnatal growth. Copyright © 2017 Endocrine Society
Perera-Garcia, Martha A; Mendoza-Carranza, Manuel; Contreras-Sánchez, Wilfrido; Ferrara, Allyse; Huerta-Ortiz, Maricela; Hernández-Gómez, Raúl E
2013-06-01
Common snook Centropomus unidecimalis is an important commercial and fishery species in Southern Mexico, however the high exploitation rates have resulted in a strong reduction of its abundances. Since, the information about its population structure is scarce, the objective of the present research was to determine and compare the age structure in four important fishery sites. For this, age and growth of common snook were determined from specimens collected monthly, from July 2006 to March 2008, from two coastal (Barra Bosque and Barra San Pedro) and two riverine (San Pedro and Tres Brazos) commercial fishery sites in Tabasco, Mexico. Age was determined using sectioned saggitae otoliths and data analyzed by von Bertalanffy and Levenberg-Marquardt among others. Estimated ages ranged from 2 to 17 years. Monthly patterns of marginal increment formation and the percentage of otoliths with opaque rings on the outer edge demonstrated that a single annulus was formed each year. The von Bertalanffy parameters were calculated for males and females using linear adjustment and the non-linear method of Levenberg-Marquardt. The von Bertalanffy growth equations were FLt = 109.21(1-e-0.2(t+0.57)) for Barra Bosque, FLt = 94.56(1-e-027(t+0.485)) for Barra San Pedro, FLt = 97.15(1-e 0.17(t + 1.32)) for San Pedro and FLt = 83.77(1-e-026(t + 0.49)) for Tres Brazos. According to (Hotelling's T2, p < 0.05) test growth was significantly greater for females than for males. Based on the Chen test, von Bertalanffy growth curves were different among the study sites (RSS, p < 0.05). Based on the observed differences in growth parameters among sampling sites (coastal and riverine environments) future research need to be conducted on migration and population genetics, in order to delineate the stock structure of this population and support management programs.
Elsner, Joanna; Lipowczan, Marcin; Kwiatkowska, Dorota
2018-02-01
In numerous vascular plants, pavement cells of the leaf epidermis are shaped like a jigsaw-puzzle piece. Knowledge about the subcellular pattern of growth that accompanies morphogenesis of such a complex shape is crucial for studies of the role of the cytoskeleton, cell wall and phytohormones in plant cell development. Because the detailed growth pattern of the anticlinal and periclinal cell walls remains unknown, our aim was to measure pavement cell growth at a subcellular resolution. Using fluorescent microbeads applied to the surface of the adaxial leaf epidermis of Arabidopsis thaliana as landmarks for growth computation, we directly assessed the growth rates for the outer periclinal and anticlinal cell walls at a subcellular scale. We observed complementary tendencies in the growth pattern of the outer periclinal and anticlinal cell walls. Central portions of periclinal walls were characterized by relatively slow growth, while growth of the other wall portions was heterogeneous. Local growth of the periclinal walls accompanying lobe development after initiation was relatively fast and anisotropic, with maximal extension usually in the direction along the lobe axis. This growth pattern of the periclinal walls was complemented by the extension of the anticlinal walls, which was faster on the lobe sides than at the tips. Growth of the anticlinal and outer periclinal walls of leaf pavement cells is heterogeneous. The growth of the lobes resembles cell elongation via diffuse growth rather than tip growth. © 2018 Botanical Society of America.
Critical aspects of substrate nanopatterning for the ordered growth of GaN nanocolumns.
Barbagini, Francesca; Bengoechea-Encabo, Ana; Albert, Steven; Martinez, Javier; Sanchez García, Miguel Angel; Trampert, Achim; Calleja, Enrique
2011-12-14
Precise and reproducible surface nanopatterning is the key for a successful ordered growth of GaN nanocolumns. In this work, we point out the main technological issues related to the patterning process, mainly surface roughness and cleaning, and mask adhesion to the substrate. We found that each of these factors, process-related, has a dramatic impact on the subsequent selective growth of the columns inside the patterned holes. We compare the performance of e-beam lithography, colloidal lithography, and focused ion beam in the fabrication of hole-patterned masks for ordered columnar growth. These results are applicable to the ordered growth of nanocolumns of different materials.
Generation of shape complexity through tissue conflict resolution
Rebocho, Alexandra B; Southam, Paul; Kennaway, J Richard; Coen, Enrico
2017-01-01
Out-of-plane tissue deformations are key morphogenetic events during plant and animal development that generate 3D shapes, such as flowers or limbs. However, the mechanisms by which spatiotemporal patterns of gene expression modify cellular behaviours to generate such deformations remain to be established. We use the Snapdragon flower as a model system to address this problem. Combining cellular analysis with tissue-level modelling, we show that an orthogonal pattern of growth orientations plays a key role in generating out-of-plane deformations. This growth pattern is most likely oriented by a polarity field, highlighted by PIN1 protein localisation, and is modulated by dorsoventral gene activity. The orthogonal growth pattern interacts with other patterns of differential growth to create tissue conflicts that shape the flower. Similar shape changes can be generated by contraction as well as growth, suggesting tissue conflict resolution provides a flexible morphogenetic mechanism for generating shape diversity in plants and animals. DOI: http://dx.doi.org/10.7554/eLife.20156.001 PMID:28166865
Network patterns in exponentially growing two-dimensional biofilms
NASA Astrophysics Data System (ADS)
Zachreson, Cameron; Yap, Xinhui; Gloag, Erin S.; Shimoni, Raz; Whitchurch, Cynthia B.; Toth, Milos
2017-10-01
Anisotropic collective patterns occur frequently in the morphogenesis of two-dimensional biofilms. These patterns are often attributed to growth regulation mechanisms and differentiation based on gradients of diffusing nutrients and signaling molecules. Here, we employ a model of bacterial growth dynamics to show that even in the absence of growth regulation or differentiation, confinement by an enclosing medium such as agar can itself lead to stable pattern formation over time scales that are employed in experiments. The underlying mechanism relies on path formation through physical deformation of the enclosing environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patra, Nimai C.; Bharatan, Sudhakar; Li, Jia
2012-04-15
Recent research progress and findings in InSbN have attracted great attention due to its use in long wavelength infrared applications. A large bandgap reduction in InSb resulting from high N incorporation with minimal crystal defects is challenging due to relatively small atomic size of N. Hence optimization of growth conditions plays an important role in the growth of high-quality InSbN epilayers for device purposes. In this paper, we report on the correlation of structural, vibrational, electrical, and optical properties of molecular beam epitaxially grown InSbN epilayers grown on GaAs substrates, as a function of varying growth temperatures. Two dimensional growthsmore » of InSb and InSbN were confirmed from dynamic reflection high energy electron diffraction patterns and growth parameters were optimized. High crystalline quality of the epilayers is attested to by a low full width at half maximum of 200 arcsec from high resolution x-ray diffraction (HRXRD) scans and by the high intensity and well-resolved InSb longitudinal optical (LO) and 2{sup nd} order InSb LO mode observed from micro-Raman spectroscopy. The N incorporation in these InSbN epilayers is estimated to be 1.4% based on HRXRD simulation. X-ray photoelectron spectroscopy (XPS) studies reveal that most of the N present in the layers are in the form of In-N bonding. Variation of the lattice disorder with growth temperature is correlated with the types of N bonding present, the carrier concentration and mobility, observed in the corresponding XPS spectra and Hall measurements, respectively. XPS analysis, HRXRD scans, and Raman spectral analysis indicate that lower growth temperature favors In-N bonding which dictates N incorporation in the substitutional sites and lattice disorder, whereas, high growth temperature promotes the formation of In-N-Sb bonding. The best room temperature and 77 K electrical transport parameters and maximum redshift in the absorption edge have been achieved in the InSbN epilayer grown in the 290 deg. C {approx} 330 deg. C temperature range.« less
Turan, Serap; Ozdemir, Nihal; Güran, Tülay; Akalın, Figen; Akçay, Teoman; Ayabakan, Canan; Yılmaz, Yüksel; Bereket, Abdullah
2008-01-01
We report two patients with velo-cardio-facial syndrome (VCFS) who were admitted to our pediatric endocrinology clinic because of short stature and followed longitudinally until attainment of final height. Both patients followed a growth pattern consistent with constitutional delay of puberty with normal and near normal final height. Case 2 also had partial growth hormone (GH) deficiency and severe short stature (height SDS -3.4 SDS), but showed spontaneous catch-up and ended up with a final height of -2 SDS. These cases suggest that short stature in children with VCFS is due to a pattern of growth similar to that observed in constitutional delay of growth and puberty.
Vincenzi, Simone; Mangel, Marc; Crivelli, Alain J.; Munch, Stephan; Skaug, Hans J.
2014-01-01
The differences in demographic and life-history processes between organisms living in the same population have important consequences for ecological and evolutionary dynamics. Modern statistical and computational methods allow the investigation of individual and shared (among homogeneous groups) determinants of the observed variation in growth. We use an Empirical Bayes approach to estimate individual and shared variation in somatic growth using a von Bertalanffy growth model with random effects. To illustrate the power and generality of the method, we consider two populations of marble trout Salmo marmoratus living in Slovenian streams, where individually tagged fish have been sampled for more than 15 years. We use year-of-birth cohort, population density during the first year of life, and individual random effects as potential predictors of the von Bertalanffy growth function's parameters k (rate of growth) and (asymptotic size). Our results showed that size ranks were largely maintained throughout marble trout lifetime in both populations. According to the Akaike Information Criterion (AIC), the best models showed different growth patterns for year-of-birth cohorts as well as the existence of substantial individual variation in growth trajectories after accounting for the cohort effect. For both populations, models including density during the first year of life showed that growth tended to decrease with increasing population density early in life. Model validation showed that predictions of individual growth trajectories using the random-effects model were more accurate than predictions based on mean size-at-age of fish. PMID:25211603
Miller Neilan, Rachael; Rose, Kenneth
2014-02-21
Individuals are commonly exposed to fluctuating levels of stressors, while most laboratory experiments focus on constant exposures. We develop and test a mathematical model for predicting the effects of low dissolved oxygen (hypoxia) on growth, reproduction, and survival using laboratory experiments on fish and shrimp. The exposure-effects model simulates the hourly reductions in growth and survival, and the reduction in reproduction (fecundity) at times of spawning, of an individual as it is exposed to constant or hourly fluctuating dissolved oxygen (DO) concentrations. The model was applied to seven experiments involving fish and shrimp that included constant and fluctuating DO exposures, with constant exposures used for parameter estimation and the model then used to simulate the growth, reproduction, and survival in the fluctuating treatments. Cumulative effects on growth, reproduction, and survival were predicted well by the model, but the model did not replay the observed episodic low survival days. Further investigation should involve the role of acclimation, possible inclusion of repair effects in reproduction and survival, and the sensitivity of model predictions to the shape of the immediate effects function. Additional testing of the model with other taxa, different patterns of fluctuating exposures, and different stressors is needed to determine the model's generality and robustness. © 2013 Elsevier Ltd. All rights reserved.
Optical dynamic range maximization for humidity sensing by controlling growth of zinc oxide nanorods
NASA Astrophysics Data System (ADS)
Yusof, Haziezol Helmi Mohd; Harun, Sulaiman Wadi; Dimyati, Kaharudin; Bora, Tanujjal; Mohammed, Waleed S.; Dutta, Joydeep
2018-07-01
An experimental study of the dynamic range maximization with Zinc Oxide (ZnO) nanorods coated glass substrates for humidity and vapor sensing is reported. Growth time of the nanorods and the length of the coated segments were controlled to study the differences between a reference environmental condition (normal humidity or dry condition) and water vapor concentrations. In order to achieve long dynamic range of detection with respect to nanorods coverage, several substrates with triangular patterns of ZnO nanostructures were fabricated by selective hydrothermal growth over different durations of time (5 h, 10 h and 15 h). It was found that maximum dynamic range for the humidity sensing occurs for the combination parameters of normalized length (Z) of 0.23 and normalized scattering coefficient (ζ) of 0.3. A reduction in transmittance by 38% at humidity levels of 80% with reference point as 50% humidity was observed. The results could be correlated to a first order approximation model that assumes uniform growth and the optimum operating conditions for humidity sensing device. This study provides an option to correlate ZnO growth conditions for different vapor sensing applications which can set a platform for compact sensors where modulation of light intensity is followed.
Tumilowicz, Alison; Habicht, Jean-Pierre; Pelto, Gretel; Pelletier, David L
2015-11-01
Nearly one-half of Guatemalan children experience growth faltering, more so in indigenous than in nonindigenous children. On the basis of ethnographic interviews in Totonicapán, Guatemala, which revealed differences in maternal perceptions about food needs in infant girls and boys, we predicted a cumulative sex difference in favor of girls that occurred at ∼6 mo of age and diminished markedly thereafter. We examined whether the predicted differences in age-sex patterns were observed in the village, replicated the examination nationally for indigenous children, and examined whether the pattern in nonindigenous children was different. Ethnographic interviews (n = 24) in an indigenous village were conducted. Anthropometric measurements of the village children aged 0-35 mo (n = 119) were obtained. National-level growth patterns were analyzed for indigenous (n = 969) and nonindigenous (n = 1374) children aged 0-35 mo with the use of Demographic and Health Survey (DHS) data. Mothers reported that, compared with female infants, male infants were hungrier, were not as satisfied with breastfeeding alone, and required earlier complementary feeding. An anthropometric analysis confirmed the prediction of healthier growth in indigenous girls than in indigenous boys throughout the first year of life, which resulted in a 2.98-cm height-for-age difference (HAD) between sexes in the village and a 1.61-cm HAD (P < 0.001) in the DHS data between 6 and 17 mo of age in favor of girls. In both data sets, the growth sex differences diminished in the second year of life (P < 0.05). No such pattern was seen in nonindigenous children. We propose that the differences in the HAD that first favor girls and then favor boys in the indigenous growth patterns are due to feeding patterns on the basis of gendered cultural perceptions. Circumstances that result in differential sex growth patterns need to be elucidated, in particular the favorable growth in girls in the first year of life. © 2015 American Society for Nutrition.
Controlling the Growth of Au on Icosahedral Seeds of Pd by Manipulating the Reduction Kinetics
Lv, Tian; Yang, Xuan; Zheng, Yiqun; ...
2016-03-29
This article reports a systematic study of how Au atoms nucleate and grow on Pd icosahedral seeds with a multiply twinned structure. By manipulating the reduction kinetics, we obtained Pd–Au bimetallic nanocrystals with two distinct shapes and structures. Specifically, Pd@Au core–shell icosahedra were formed when a relatively fast reduction rate was used for the HAuCl 4 precursor. At a slow reduction rate, in contrast, the nucleation and growth of Au atoms were mainly confined to one of the vertices of a Pd icosahedral seed, resulting in the formation of a Au icosahedron by sharing five adjacent faces with the Pdmore » seed. The same growth pattern was observed for Pd icosahedral seeds with both sizes of 32 and 20 nm. Also, we have also investigated the effects of other kinetic parameters, including the concentration of reducing agent and reaction temperature, on the growth pathway undertaken by the Au atoms. In conclusion, we believe that the mechanistic insights obtained from this study can be extended to other systems, including the involvement of different metals and/or seeds with different morphologies.« less
Foster, Jane R.; D'Amato, Anthony W.; Bradford, John B.
2014-01-01
Forest biomass growth is almost universally assumed to peak early in stand development, near canopy closure, after which it will plateau or decline. The chronosequence and plot remeasurement approaches used to establish the decline pattern suffer from limitations and coarse temporal detail. We combined annual tree ring measurements and mortality models to address two questions: first, how do assumptions about tree growth and mortality influence reconstructions of biomass growth? Second, under what circumstances does biomass production follow the model that peaks early, then declines? We integrated three stochastic mortality models with a census tree-ring data set from eight temperate forest types to reconstruct stand-level biomass increments (in Minnesota, USA). We compared growth patterns among mortality models, forest types and stands. Timing of peak biomass growth varied significantly among mortality models, peaking 20–30 years earlier when mortality was random with respect to tree growth and size, than when mortality favored slow-growing individuals. Random or u-shaped mortality (highest in small or large trees) produced peak growth 25–30 % higher than the surviving tree sample alone. Growth trends for even-aged, monospecific Pinus banksiana or Acer saccharum forests were similar to the early peak and decline expectation. However, we observed continually increasing biomass growth in older, low-productivity forests of Quercus rubra, Fraxinus nigra, and Thuja occidentalis. Tree-ring reconstructions estimated annual changes in live biomass growth and identified more diverse development patterns than previous methods. These detailed, long-term patterns of biomass development are crucial for detecting recent growth responses to global change and modeling future forest dynamics.
Simulation Studies of the Effect of Forest Spatial Structure on InSAR Signature
NASA Technical Reports Server (NTRS)
Sun, Guoqing; Liu, Dawei; Ranson, K. Jon; Koetz, Benjamin
2007-01-01
The height of scattering phase retrieved from InSAR data is considered being correlated with the tree height and the spatial structure of the forest stand. Though some researchers have used simple backscattering models to estimate tree height from the height of scattering center, the effect of forest spatial structure on InSAR data is not well understood yet. A three-dimensional coherent radar backscattering model for forest canopies based on realistic three-dimensional scene was used to investigate the effect in this paper. The realistic spatial structure of forest canopies was established either by field measurements (stem map) or through use of forest growth model. Field measurements or a forest growth model parameterized using local environmental parameters provides information of forest species composition and tree sizes in certain growth phases. A fractal tree model (L-system) was used to simulate individual 3- D tree structure of different ages or heights. Trees were positioned in a stand in certain patterns resulting in a 3-D medium of discrete scatterers. The radar coherent backscatter model took the 3-D forest scene as input and simulates the coherent radar backscattering signature. Interferometric SAR images of 3D scenes were simulated and heights of scattering phase centers were estimated from the simulated InSAR data. The effects of tree height, crown cover, crown depth, and the spatial distribution patterns of trees on the scattering phase center were analyzed. The results will be presented in the paper.
Misalová, A; Durkovic, J; Mamonová, M; Priwitzer, T; Lengyelová, A; Hladká, D; Lux, A
2009-09-01
Changes in anatomical organisation of the leaf, photosynthetic performance and wood formation were examined to evaluate the temporal and spatial patterns of acclimatisation of micropropagated slow-growing black mulberry (Morus nigra L.) plantlets to the ex vitro environment. Leaf structure differentiation, the rates of net photosynthesis (P(n)), transpiration (E) and stomatal conductance (g(s)), and secondary xylem growth were determined in the course of a 56-day acclimatisation. Differentiation of palisade parenchyma was observed 7 days after transfer. At this stage, the rates of P(n), E and g(s) reached maximum values, after which the rates of all three gas exchange parameters gradually decreased. The highest proportion of woody area occupied by vessels was also observed 7 days after transfer. An important feature of developing woody tissue is the difference in patterns of vessel distribution from the characteristic differentiation patterns of earlywood and latewood vessels in mature wood of ring-porous trees. Vessels with lumen areas over 3000 microm(2) were only differentiated in acclimatised plantlets, whereas vessels in stems sampled on days 0 and 7 had very small lumen areas of up to 560 microm(2). Full acclimatisation, observed 56 days after transfer to the ex vitro environment, was associated with the rapid growth of new in vivo formed leaves, very low rates of E and g(s), and much increased secondary xylem tissue within the stem area.
A statistical model of diurnal variation in human growth hormone
NASA Technical Reports Server (NTRS)
Klerman, Elizabeth B.; Adler, Gail K.; Jin, Moonsoo; Maliszewski, Anne M.; Brown, Emery N.
2003-01-01
The diurnal pattern of growth hormone (GH) serum levels depends on the frequency and amplitude of GH secretory events, the kinetics of GH infusion into and clearance from the circulation, and the feedback of GH on its secretion. We present a two-dimensional linear differential equation model based on these physiological principles to describe GH diurnal patterns. The model characterizes the onset times of the secretory events, the secretory event amplitudes, as well as the infusion, clearance, and feedback half-lives of GH. We illustrate the model by using maximum likelihood methods to fit it to GH measurements collected in 12 normal, healthy women during 8 h of scheduled sleep and a 16-h circadian constant-routine protocol. We assess the importance of the model components by using parameter standard error estimates and Akaike's Information Criterion. During sleep, both the median infusion and clearance half-life estimates were 13.8 min, and the median number of secretory events was 2. During the constant routine, the median infusion half-life estimate was 12.6 min, the median clearance half-life estimate was 11.7 min, and the median number of secretory events was 5. The infusion and clearance half-life estimates and the number of secretory events are consistent with current published reports. Our model gave an excellent fit to each GH data series. Our analysis paradigm suggests an approach to decomposing GH diurnal patterns that can be used to characterize the physiological properties of this hormone under normal and pathological conditions.
Typology of nonlinear activity waves in a layered neural continuum.
Koch, Paul; Leisman, Gerry
2006-04-01
Neural tissue, a medium containing electro-chemical energy, can amplify small increments in cellular activity. The growing disturbance, measured as the fraction of active cells, manifests as propagating waves. In a layered geometry with a time delay in synaptic signals between the layers, the delay is instrumental in determining the amplified wavelengths. The growth of the waves is limited by the finite number of neural cells in a given region of the continuum. As wave growth saturates, the resulting activity patterns in space and time show a variety of forms, ranging from regular monochromatic waves to highly irregular mixtures of different spatial frequencies. The type of wave configuration is determined by a number of parameters, including alertness and synaptic conditioning as well as delay. For all cases studied, using numerical solution of the nonlinear Wilson-Cowan (1973) equations, there is an interval in delay in which the wave mixing occurs. As delay increases through this interval, during a series of consecutive waves propagating through a continuum region, the activity within that region changes from a single-frequency to a multiple-frequency pattern and back again. The diverse spatio-temporal patterns give a more concrete form to several metaphors advanced over the years to attempt an explanation of cognitive phenomena: Activity waves embody the "holographic memory" (Pribram, 1991); wave mixing provides a plausible cause of the competition called "neural Darwinism" (Edelman, 1988); finally the consecutive generation of growing neural waves can explain the discontinuousness of "psychological time" (Stroud, 1955).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escobedo-Cousin, Enrique; Vassilevski, Konstantin; Hopf, Toby
Patterned few-layer graphene (FLG) films were obtained by local solid phase growth from nickel silicide supersaturated with carbon, following a fabrication scheme, which allows the formation of self-aligned ohmic contacts on FLG and is compatible with conventional SiC device processing methods. The process was realised by the deposition and patterning of thin Ni films on semi-insulating 6H-SiC wafers followed by annealing and the selective removal of the resulting nickel silicide by wet chemistry. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to confirm both the formation and subsequent removal of nickel silicide. The impact of process parameters such asmore » the thickness of the initial Ni layer, annealing temperature, and cooling rates on the FLG films was assessed by Raman spectroscopy, XPS, and atomic force microscopy. The thickness of the final FLG film estimated from the Raman spectra varied from 1 to 4 monolayers for initial Ni layers between 3 and 20 nm thick. Self-aligned contacts were formed on these patterned films by contact photolithography and wet etching of nickel silicide, which enabled the fabrication of test structures to measure the carrier concentration and mobility in the FLG films. A simple model of diffusion-driven solid phase chemical reaction was used to explain formation of the FLG film at the interface between nickel silicide and silicon carbide.« less
Growth patterns of an intertidal gastropod as revealed by oxygen isotope analysis
NASA Astrophysics Data System (ADS)
Bean, J. R.; Hill, T. M.; Guerra, C.
2007-12-01
The size and morphology of mollusk shells are affected by environmental conditions. As a result, it is difficult to assess growth rate, population age structure, shell morphologies associated with ontogenetic stages, and to compare life history patterns across various environments. Oxygen isotope analysis is a useful tool for estimating minimum ages and growth rates of calcium carbonate secreting organisms. Calcite shell material from members of two northern California populations of the intertidal muricid gastropod Acanthinucella spirata was sampled for isotopic analysis. Individual shells were sampled from apex to margin, thus providing a sequential record of juvenile and adult growth. A. spirata were collected from a sheltered habitat in Tomales Bay and from an exposed reef in Bolinas. Abiotic factors, such as temperature, wave exposure, and substrate consistency, and biotic composition differ significantly between these sites, possibly resulting in local adaptations and variation in life history and growth patterns. Shell morphology of A. spirata changes with age as internal shell margin thickenings of denticle rows associated with external growth bands are irregularly accreted. It is not known when, either seasonally and/or ontogentically, these thickenings and bands form or whether inter or intra-populational variation exists. Preliminary results demonstrate the seasonal oxygen isotopic variability present at the two coastal sites, indicating 5-6 degC changes from winter to summertime temperatures; these data are consistent with local intertidal temperature records. Analysis of the seasonal patterns indicate that: 1) differences in growth rate and seasonal growth patterns at different ontogenetic stages within populations, and 2) differences in growth patterns and possibly age structure between the two A. spirata populations. These findings indicate that isotopic analyses, in addition to field observations and morphological measurements, are necessary to assess life history strategies and compare population dynamics under varying environmental conditions.
Patterned solid state growth of barium titanate crystals
NASA Astrophysics Data System (ADS)
Ugorek, Michael Stephen
An understanding of microstructure evolution in ceramic materials, including single crystal development and abnormal/enhanced grain growth should enable more controlled final ceramic element structures. In this study, two different approaches were used to control single crystal development in a patterned array. These two methods are: (1) patterned solid state growth in BaTiO 3 ceramics, and (2) metal-mediated single crystal growth in BaTiO 3. With the patterned solid state growth technique, optical photolithography was used to pattern dopants as well as [001] and [110] BaTiO3 single crystal template arrays with a 1000 microm line pattern array with 1000 microm spacings. These patterns were subsequently used to control the matrix grain growth evolution and single crystal development in BaTiO3. It was shown that the growth kinetics can be controlled by a small initial grain size, atmosphere conditions, and the introduction of a dopant at selective areas/interfaces. By using a PO2 of 1x10-5 atm during high temperature heat treatment, the matrix coarsening has been limited (to roughly 2 times the initial grain size), while retaining single crystal boundary motion up to 0.5 mm during growth for dwell times up to 9 h at 1300°C. The longitudinal and lateral growth rates were optimized at 10--15 microm/h at 1300°C in a PO2 of 1x10 -5 atm for single crystal growth with limited matrix coarsening. Using these conditions, a patterned microstructure in BaTiO3 was obtained. With the metal-mediated single crystal growth technique, a novel approach for fabricating 2-2 single crystal/polymer composites with a kerf < 5 microns was demonstrated. Surface templated grain growth was used to propagate a single crystal interface into a polycrystalline BaTiO3 or Ba(Zr0.05 Ti0.95)O3 matrix with lamellar nickel layers. The grain growth evolution and texture development were studied using both [001] and [110] BaTiO3 single crystals templates. By using a PO 2 of 1x10-11 atm during high temperature heat treatment, matrix coarsening was limited while enabling single crystal boundary motion up to 0.35 mm during growth between 1250°C and 1300°C with growth rates ˜ 3--4 microm/h for both single crystal orientations. By removing the inner electrodes, 2-2 single crystal (or ceramic) composites were prepared. The piezoelectric and dielectric properties of the composites of the two compositions were measured. The d33 and d31 of the composites were similar to the polycrystalline ceramic of the same composition.
Trace element zoning as a record of chemical disequilibrium during garnet growth
NASA Astrophysics Data System (ADS)
Chernoff, Carlotta B.; Carlson, William D.
1999-06-01
Trace element concentrations in pelitic garnets from the Picuris Range of New Mexico display precipitous changes coincident with abrupt variations in Ca concentration. These patterns probably arise from the transitory participation of different trace element enriched phases in the garnet forming reaction. Changes in the reactant and product assemblages occur at different times during the reaction history for crystals of different size, so they cannot be the result of any event affecting the entire rock, such as a change in pressure, temperature, or fluid composition. Instead, they reflect kinetic factors that cause Ca, Y, Yb, P, Ti, Sc, Zr, Hf, Sr, Na, and Li to fail to achieve chemical equilibrium during garnet growth. Caution is needed to avoid misinterpreting excursions in the concentration of these elements as event markers recording simultaneous rockwide changes in intensive parameters, when in fact they may record transient disequilibrium states that are local in scope, and not contemporaneous.
Large-scale synthesis and growth habit of 3-D flower-like crystal of PbTe
NASA Astrophysics Data System (ADS)
Zhou, Nan; Chen, Gang; Yang, Xi; Zhang, Xiaosong
2012-02-01
In this paper, 3-D flower-like crystal of PbTe was successfully synthesized using Pb(CH3COO)2·3H2O and Na2TeO3 as precursors under hydrothermal conditions, and characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction pattern (XRD). The reaction parameters that influenced the evolution of PbTe synthesis and morphology were investigated. It was shown that the flower-like crystal of PbTe was composed of a nucleus with eight pods. A possible growth mechanism was proposed based on the calculation of the surface energies of PbTe and the SEM observation. Furthermore, the temperature-dependent transport properties of 3-D flower-like crystal of PbTe specimen have been evaluated with an average thermoelectric power of 120 S cm-1 and electrical conductivity of 220 μV K-1 at 740 K.
Forecasting Financial Extremes: A Network Degree Measure of Super-Exponential Growth.
Yan, Wanfeng; van Tuyll van Serooskerken, Edgar
2015-01-01
Investors in stock market are usually greedy during bull markets and scared during bear markets. The greed or fear spreads across investors quickly. This is known as the herding effect, and often leads to a fast movement of stock prices. During such market regimes, stock prices change at a super-exponential rate and are normally followed by a trend reversal that corrects the previous overreaction. In this paper, we construct an indicator to measure the magnitude of the super-exponential growth of stock prices, by measuring the degree of the price network, generated from the price time series. Twelve major international stock indices have been investigated. Error diagram tests show that this new indicator has strong predictive power for financial extremes, both peaks and troughs. By varying the parameters used to construct the error diagram, we show the predictive power is very robust. The new indicator has a better performance than the LPPL pattern recognition indicator.
Villarreal, Miguel; Labiosa, Bill; Aiello, Danielle
2017-05-23
The Puget Sound Basin, Washington, has experienced rapid urban growth in recent decades, with varying impacts to local ecosystems and natural resources. To plan for future growth, land managers often use scenarios to assess how the pattern and volume of growth may affect natural resources. Using three different land-management scenarios for the years 2000–2060, we assessed various spatial patterns of urban growth relative to maps depicting a model-based characterization of the ecological integrity and recent development pressure of individual land parcels. The three scenarios depict future trajectories of land-use change under alternative management strategies—status quo, managed growth, and unconstrained growth. The resulting analysis offers a preliminary assessment of how future growth patterns in the Puget Sound Basin may impact land targeted for conservation and how short-term metrics of land-development pressure compare to longer term growth projections.
Growth pattern from birth to adulthood in African pygmies of known age.
Rozzi, Fernando V Ramirez; Koudou, Yves; Froment, Alain; Le Bouc, Yves; Botton, Jérémie
2015-07-28
The African pygmy phenotype stems from genetic foundations and is considered to be the product of a disturbance in the growth hormone-insulin-like growth factor (GH-IGF) axis. However, when and how the pygmy phenotype is acquired during growth remains unknown. Here we describe growth patterns in Baka pygmies based on two longitudinal studies of individuals of known age, from the time of birth to the age of 25 years. Body size at birth among the Baka is within standard limits, but their growth rate slows significantly during the first two years of life. It then more or less follows the standard pattern, with a growth spurt at adolescence. Their life history variables do not allow the Baka to be distinguished from other populations. Therefore, the pygmy phenotype in the Baka is the result of a change in growth that occurs during infancy, which differentiates them from East African pygmies revealing convergent evolution.
Beyond Corroboration: Strengthening Model Validation by Looking for Unexpected Patterns
Chérel, Guillaume; Cottineau, Clémentine; Reuillon, Romain
2015-01-01
Models of emergent phenomena are designed to provide an explanation to global-scale phenomena from local-scale processes. Model validation is commonly done by verifying that the model is able to reproduce the patterns to be explained. We argue that robust validation must not only be based on corroboration, but also on attempting to falsify the model, i.e. making sure that the model behaves soundly for any reasonable input and parameter values. We propose an open-ended evolutionary method based on Novelty Search to look for the diverse patterns a model can produce. The Pattern Space Exploration method was tested on a model of collective motion and compared to three common a priori sampling experiment designs. The method successfully discovered all known qualitatively different kinds of collective motion, and performed much better than the a priori sampling methods. The method was then applied to a case study of city system dynamics to explore the model’s predicted values of city hierarchisation and population growth. This case study showed that the method can provide insights on potential predictive scenarios as well as falsifiers of the model when the simulated dynamics are highly unrealistic. PMID:26368917
Perry, Nicholas S; Baucom, Katherine J W; Bourne, Stacia; Butner, Jonathan; Crenshaw, Alexander O; Hogan, Jasara N; Imel, Zac E; Wiltshire, Travis J; Baucom, Brian R W
2017-08-01
Researchers commonly use repeated-measures actor-partner interdependence models (RM-APIM) to understand how romantic partners change in relation to one another over time. However, traditional interpretations of the results of these models do not fully or correctly capture the dyadic temporal patterns estimated in RM-APIM. Interpretation of results from these models largely focuses on the meaning of single-parameter estimates in isolation from all the others. However, considering individual coefficients separately impedes the understanding of how these associations combine to produce an interdependent pattern that emerges over time. Additionally, positive within-person, or actor, effects are commonly misinterpreted as indicating growth from one time point to the next when they actually represent decline. We suggest that change-as-outcome RM-APIMs and vector field diagrams (VFDs) can be used to improve the understanding and presentation of dyadic patterns of association described by standard RM-APIMs. The current article briefly reviews the conceptual foundations of RM-APIMs, demonstrates how change-as-outcome RM-APIMs and VFDs can aid interpretation of standard RM-APIMs, and provides a tutorial in making VFDs using multilevel modeling. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Three-phase fracturing in granular material
NASA Astrophysics Data System (ADS)
Campbell, James; Sandnes, Bjornar
2015-04-01
There exist numerous geo-engineering scenarios involving the invasion of a gas into a water-saturated porous medium: in fracking, this may occur during the fracking process itself or during subsequent gas penetration into propant beds; the process is also at the heart of carbon dioxide sequestration. We use a bed of water-saturated glass beads confined within a Hele-Shaw cell as a model system to illuminate these processes. Depending on packing density, injection rate and other factors, air injected into this system may invade in a broad variety of patterns, including viscous fingering, capillary invasion, bubble formation and fracturing. Here we focus primarily on the latter case. Fracturing is observed when air is injected into a loosely packed bed of unconsolidated granular material. Our approach allows us to image the complete fracture pattern as it forms, and as such to study both the topographical properties of the resulting pattern (fracture density, braching frequency etc) and the dynamics of its growth. We present an overview of the fracturing phenomenon within the context of pattern formation in granular fluids as a whole. We discuss how fracturing arises from an interplay between frictional, capillary and viscous forces, and demonstrate the influence of various parameters on the result.
UV laser-ablated surface textures as potential regulator of cellular response.
Chandra, Prafulla; Lai, Karen; Sung, Hak-Joon; Murthy, N Sanjeeva; Kohn, Joachim
2010-06-01
Textured surfaces obtained by UV laser ablation of poly(ethylene terephthalate) films were used to study the effect of shape and spacing of surface features on cellular response. Two distinct patterns, cones and ripples with spacing from 2 to 25 μm, were produced. Surface features with different shapes and spacings were produced by varying pulse repetition rate, laser fluence, and exposure time. The effects of the surface texture parameters, i.e., shape and spacing, on cell attachment, proliferation, and morphology of neonatal human dermal fibroblasts and mouse fibroblasts were studied. Cell attachment was the highest in the regions with cones at ∼4 μm spacing. As feature spacing increased, cell spreading decreased, and the fibroblasts became more circular, indicating a stress-mediated cell shrinkage. This study shows that UV laser ablation is a useful alternative to lithographic techniques to produce surface patterns for controlling cell attachment and growth on biomaterial surfaces.
NASA Technical Reports Server (NTRS)
Judy, M. M.
1981-01-01
Values of mean trabecular spacing computed from optical diffraction patterns of 1:1 X-ray micrographs of tibial metaphysis and those obtained by standard image digitization techniques show excellent agreement. Upper limits on values of mean trabecular orientation deduced from diffraction patterns and the images are also in excellent agreement. Values of the ratio of mean trabecular spatial density in a region of 300 micrometers distal to the downwardly directed convexity in the cartilage growth plate to the value adjacent to the plate determined for flight animals sacrificed at recovery were significantly smaller than values for vivarium control animals. No significant differences were found in proximal regions. No significant differences in mean trabecular orientation were detected. Decreased values of trabecular spatial density and of both obsteoblastic activity and trabecular cross-sectional area noted in collateral researches suggest decreased modeling activity under weightlessness.
Ogihara, Takeshi; Mita, Tomoya; Osonoi, Yusuke; Osonoi, Takeshi; Saito, Miyoko; Tamasawa, Atsuko; Nakayama, Shiho; Someya, Yuki; Ishida, Hidenori; Gosho, Masahiko; Kanazawa, Akio; Watada, Hirotaka
2017-01-01
While individuals tend to show accumulation of certain lifestyle patterns, the effect of such patterns in real daily life on cardio-renal-metabolic parameters remains largely unknown. This study aimed to assess clustering of lifestyle patterns and investigate the relationships between such patterns and cardio-renal-metabolic parameters. The study participants were 726 Japanese type 2 diabetes mellitus (T2DM) outpatients free of history of cardiovascular diseases. The relationship between lifestyle patterns and cardio-renal-metabolic parameters was investigated by linear and logistic regression analyses. Factor analysis identified three lifestyle patterns. Subjects characterized by evening type, poor sleep quality and depressive status (type 1 pattern) had high levels of HbA1c, alanine aminotransferase and albuminuria. Subjects characterized by high consumption of food, alcohol and cigarettes (type 2 pattern) had high levels of γ-glutamyl transpeptidase, triglycerides, HDL-cholesterol, blood pressure, and brachial-ankle pulse wave velocity. Subjects characterized by high physical activity (type 3 pattern) had low uric acid and mild elevation of alanine aminotransferase and aspartate aminotransferase. In multivariate regression analysis adjusted by age, gender and BMI, type 1 pattern was associated with higher HbA1c levels, systolic BP and brachial-ankle pulse wave velocity. Type 2 pattern was associated with higher HDL-cholesterol levels, triglycerides, aspartate aminotransferase, ɤ- glutamyl transpeptidase levels, and diastolic BP. The study identified three lifestyle patterns that were associated with distinct cardio-metabolic-renal parameters in T2DM patients. UMIN000010932.
Dermatoscopic features of cutaneous non-facial non-acral lentiginous growth pattern melanomas
Keir, Jeff
2014-01-01
Background: The dermatoscopic features of facial lentigo maligna (LM), facial lentigo maligna melanoma (LMM) and acral lentiginous melanoma (ALM) have been well described. This is the first description of the dermatoscopic appearance of a clinical series of cutaneous non-facial non-acral lentiginous growth pattern melanomas. Objective: To describe the dermatoscopic features of a series of cutaneous non-facial non-acral lentiginous growth pattern melanomas in an Australian skin cancer practice. Method: Single observer retrospective analysis of dermatoscopic images of a one-year series of cutaneous non-facial, non-acral melanomas reported as having a lentiginous growth pattern detected in an open access primary care skin cancer clinic in Australia. Lesions were scored for presence of classical criteria for facial LM; modified pattern analysis (“Chaos and Clues”) criteria; and the presence of two novel criteria: a lentigo-like pigment pattern lacking a lentigo-like border, and large polygons. Results: 20 melanomas occurring in 14 female and 6 male patients were included. Average patient age was 64 years (range: 44–83). Lesion distribution was: trunk 35%; upper limb 40%; and lower limb 25%. The incidences of criteria identified were: asymmetry of color or pattern (100%); lentigo-like pigment pattern lacking a lentigo-like border (90%); asymmetrically pigmented follicular openings (APFO’s) (70%); grey blue structures (70%); large polygons (45%); eccentric structureless area (15%); bright white lines (5%). 20% of the lesions had only the novel criteria and/or APFO’s. Limitations: Single observer, single center retrospective study. Conclusions: Cutaneous non-facial non-acral melanomas with a lentiginous growth pattern may have none or very few traditional criteria for the diagnosis of melanoma. Criteria that are logically expected in lesions with a lentiginous growth pattern (lentigo-like pigment pattern lacking a lentigo-like border, APFO’s) and the novel criterion of large polygons may be useful in increasing sensitivity and specificity of diagnosis of these lesions. Further study is required to establish the significance of these observations. PMID:24520520
Dermatoscopic features of cutaneous non-facial non-acral lentiginous growth pattern melanomas.
Keir, Jeff
2014-01-01
The dermatoscopic features of facial lentigo maligna (LM), facial lentigo maligna melanoma (LMM) and acral lentiginous melanoma (ALM) have been well described. This is the first description of the dermatoscopic appearance of a clinical series of cutaneous non-facial non-acral lentiginous growth pattern melanomas. To describe the dermatoscopic features of a series of cutaneous non-facial non-acral lentiginous growth pattern melanomas in an Australian skin cancer practice. Single observer retrospective analysis of dermatoscopic images of a one-year series of cutaneous non-facial, non-acral melanomas reported as having a lentiginous growth pattern detected in an open access primary care skin cancer clinic in Australia. Lesions were scored for presence of classical criteria for facial LM; modified pattern analysis ("Chaos and Clues") criteria; and the presence of two novel criteria: a lentigo-like pigment pattern lacking a lentigo-like border, and large polygons. 20 melanomas occurring in 14 female and 6 male patients were included. Average patient age was 64 years (range: 44-83). Lesion distribution was: trunk 35%; upper limb 40%; and lower limb 25%. The incidences of criteria identified were: asymmetry of color or pattern (100%); lentigo-like pigment pattern lacking a lentigo-like border (90%); asymmetrically pigmented follicular openings (APFO's) (70%); grey blue structures (70%); large polygons (45%); eccentric structureless area (15%); bright white lines (5%). 20% of the lesions had only the novel criteria and/or APFO's. Single observer, single center retrospective study. Cutaneous non-facial non-acral melanomas with a lentiginous growth pattern may have none or very few traditional criteria for the diagnosis of melanoma. Criteria that are logically expected in lesions with a lentiginous growth pattern (lentigo-like pigment pattern lacking a lentigo-like border, APFO's) and the novel criterion of large polygons may be useful in increasing sensitivity and specificity of diagnosis of these lesions. Further study is required to establish the significance of these observations.
Tansu, Nelson; Chan, Helen M; Vinci, Richard P; Ee, Yik-Khoon; Biser, Jeffrey
2013-09-24
The use of an abbreviated GaN growth mode on nano-patterned AGOG sapphire substrates, which utilizes a process of using 15 nm low temperature GaN buffer and bypassing etch-back and recovery processes during epitaxy, enables the growth of high-quality GaN template on nano-patterned AGOG sapphire. The GaN template grown on nano-patterned AGOG sapphire by employing abbreviated growth mode has two orders of magnitude lower threading dislocation density than that of conventional GaN template grown on planar sapphire. The use of abbreviated growth mode also leads to significant reduction in cost of the epitaxy. The growths and characteristics of InGaN quantum wells (QWs) light emitting diodes (LEDs) on both templates were compared. The InGaN QWs LEDs grown on the nano-patterned AGOG sapphire demonstrated at least a 24% enhancement of output power enhancement over that of LEDs grown on conventional GaN templates.
Gaucher, Catherine; Gougeon, Sébastien; Mauffette, Yves; Messier, Christian
2005-01-01
We investigated seasonal patterns of biomass and carbohydrate partitioning in relation to shoot growth phenology in two age classes of sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britt.) seedlings growing in the understory of a partially harvested forest. The high root:shoot biomass ratio and carbohydrate concentration of sugar maple are characteristic of species with truncated growth patterns (i.e., cessation of aboveground shoot growth early in the growing season), a conservative growth strategy and high shade tolerance. The low root:shoot biomass ratio and carbohydrate concentration of yellow birch are characteristic of species with continuous growth patterns, an opportunistic growth strategy and low shade tolerance. In both species, starch represented up to 95% of total nonstructural carbohydrates and was mainly found in the roots. Contrary to our hypothesis, interspecific differences in shoot growth phenology (i.e., continuous versus truncated) did not result in differences in seasonal patterns of carbohydrate partitioning. Our results help explain the niche differentiation between sugar maple and yellow birch in temperate, deciduous understory forests.
Pattern statistics on Markov chains and sensitivity to parameter estimation
Nuel, Grégory
2006-01-01
Background: In order to compute pattern statistics in computational biology a Markov model is commonly used to take into account the sequence composition. Usually its parameter must be estimated. The aim of this paper is to determine how sensitive these statistics are to parameter estimation, and what are the consequences of this variability on pattern studies (finding the most over-represented words in a genome, the most significant common words to a set of sequences,...). Results: In the particular case where pattern statistics (overlap counting only) computed through binomial approximations we use the delta-method to give an explicit expression of σ, the standard deviation of a pattern statistic. This result is validated using simulations and a simple pattern study is also considered. Conclusion: We establish that the use of high order Markov model could easily lead to major mistakes due to the high sensitivity of pattern statistics to parameter estimation. PMID:17044916
Pattern statistics on Markov chains and sensitivity to parameter estimation.
Nuel, Grégory
2006-10-17
In order to compute pattern statistics in computational biology a Markov model is commonly used to take into account the sequence composition. Usually its parameter must be estimated. The aim of this paper is to determine how sensitive these statistics are to parameter estimation, and what are the consequences of this variability on pattern studies (finding the most over-represented words in a genome, the most significant common words to a set of sequences,...). In the particular case where pattern statistics (overlap counting only) computed through binomial approximations we use the delta-method to give an explicit expression of sigma, the standard deviation of a pattern statistic. This result is validated using simulations and a simple pattern study is also considered. We establish that the use of high order Markov model could easily lead to major mistakes due to the high sensitivity of pattern statistics to parameter estimation.
Radchuk, Volodymyr; Weier, Diana; Radchuk, Ruslana; Weschke, Winfriede; Weber, Hans
2011-01-01
After fertilization, filial grain organs are surrounded by the maternal nucellus embedded within the integuments and pericarp. Rapid early endosperm growth must be coordinated with maternal tissue development. Parameters of maternal tissue growth and development were analysed during early endosperm formation. In the pericarp, cell proliferation is accomplished around the time of fertilization, followed by cell elongation predominantly in longitudinal directions. The rapid cell expansion coincides with endosperm cellularization. Distribution of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling)-positive nuclei reveals distinct patterns starting in the nucellus at anthesis and followed later by the inner cell rows of the pericarp, then spreading to the whole pericarp. The pattern suggests timely and spatially regulated programmed cell death (PCD) processes in maternal seed tissues. When the endosperm is coenocytic, PCD events are only observed within the nucellus. Thereby, remobilization of nucellar storage compounds by PCD could nourish the early developing endosperm when functional interconnections are absent between maternal and filial seed organs. Specific proteases promote PCD events. Characterization of the barley vacuolar processing enzyme (VPE) gene family identified seven gene members specifically expressed in the developing grain. HvVPE2a (known as nucellain) together with closely similar HvVPE2b and HvVPE2d might be involved in nucellar PCD. HvVPE4 is strongly cell specific for pericarp parenchyma. Correlative evidence suggests that HvVPE4 plays a role in PCD events in the pericarp. Possible functions of PCD in the maternal tissues imply a potential nutritive role or the relief of a physical restraint for endosperm growth. PCD could also activate post-phloem transport functions.
Test Method Variability in Slow Crack Growth Properties of Sealing Glasses
NASA Technical Reports Server (NTRS)
Salem, J. A.; Tandon, R.
2010-01-01
The crack growth properties of several sealing glasses were measured by using constant stress rate testing in 2 and 95 percent RH (relative humidity). Crack growth parameters measured in high humidity are systematically smaller (n and B) than those measured in low humidity, and crack velocities for dry environments are 100x lower than for wet environments. The crack velocity is very sensitive to small changes in RH at low RH. Biaxial and uniaxial stress states produced similar parameters. Confidence intervals on crack growth parameters that were estimated from propagation of errors solutions were comparable to those from Monte Carlo simulation. Use of scratch-like and indentation flaws produced similar crack growth parameters when residual stresses were considered.
Deter, Russell L.; Lee, Wesley; Yeo, Lami; Romero, Roberto
2012-01-01
Objectives To characterize 2nd and 3rd trimester fetal growth using Individualized Growth Assessment in a large cohort of fetuses with normal growth outcomes. Methods A prospective longitudinal study of 119 pregnancies was carried out from 18 weeks, MA, to delivery. Measurements of eleven fetal growth parameters were obtained from 3D scans at 3–4 week intervals. Regression analyses were used to determine Start Points [SP] and Rossavik model [P = c (t) k + st] coefficients c, k and s for each parameter in each fetus. Second trimester growth model specification functions were re-established. These functions were used to generate individual growth models and determine predicted s and s-residual [s = pred s + s-resid] values. Actual measurements were compared to predicted growth trajectories obtained from the growth models and Percent Deviations [% Dev = {{actual − predicted}/predicted} × 100] calculated. Age-specific reference standards for this statistic were defined using 2-level statistical modeling for the nine directly measured parameters and estimated weight. Results Rossavik models fit the data for all parameters very well [R2: 99%], with SP’s and k values similar to those found in a much smaller cohort. The c values were strongly related to the 2nd trimester slope [R2: 97%] as was predicted s to estimated c [R2: 95%]. The latter was negative for skeletal parameters and positive for soft tissue parameters. The s-residuals were unrelated to estimated c’s [R2: 0%], and had mean values of zero. Rossavik models predicted 3rd trimester growth with systematic errors close to 0% and random errors [95% range] of 5.7 – 10.9% and 20.0 – 24.3% for one and three dimensional parameters, respectively. Moderate changes in age-specific variability were seen in the 3rd trimester.. Conclusions IGA procedures for evaluating 2nd and 3rd trimester growth are now established based on a large cohort [4–6 fold larger than those used previously], thus permitting more reliable growth assessment with each fetus acting as its own control. New, more rigorously defined, age-specific standards for the evaluation of 3rd trimester growth deviations are now available for 10 anatomical parameters. Our results are also consistent with the predicted s and s-residual being representatives of growth controllers operating through the insulin-like growth factor [IGF] axis. PMID:23962305
The importance of grain size to mantle dynamics and seismological observations
NASA Astrophysics Data System (ADS)
Gassmoeller, R.; Dannberg, J.; Eilon, Z.; Faul, U.; Moulik, P.; Myhill, R.
2017-12-01
Grain size plays a key role in controlling the mechanical properties of the Earth's mantle, affecting both long-timescale flow patterns and anelasticity on the timescales of seismic wave propagation. However, dynamic models of Earth's convecting mantle usually implement flow laws with constant grain size, stress-independent viscosity, and a limited treatment of changes in mineral assemblage. We study grain size evolution, its interplay with stress and strain rate in the convecting mantle, and its influence on seismic velocities and attenuation. Our geodynamic models include the simultaneous and competing effects of dynamic recrystallization resulting from dislocation creep, grain growth in multiphase assemblages, and recrystallization at phase transitions. They show that grain size evolution drastically affects the dynamics of mantle convection and the rheology of the mantle, leading to lateral viscosity variations of six orders of magnitude due to grain size alone, and controlling the shape of upwellings and downwellings. Using laboratory-derived scaling relationships, we convert model output to seismologically-observable parameters (velocity, attenuation) facilitating comparison to Earth structure. Reproducing the fundamental features of the Earth's attenuation profile requires reduced activation volume and relaxed shear moduli in the lower mantle compared to the upper mantle, in agreement with geodynamic constraints. Faster lower mantle grain growth yields best fit to seismic observations, consistent with our re-examination of high pressure grain growth parameters. We also show that ignoring grain size in interpretations of seismic anomalies may underestimate the Earth's true temperature variations.
Falcão, Daniela; Alexandrino, Henrique; Caetano Oliveira, Rui; Martins, João; Ferreira, Luís; Martins, Ricardo; Serôdio, Marco; Martins, Mónica; Tralhão, José Guilherme; Cipriano, Maria Augusta; Castro E Sousa, Francisco
2018-04-11
Liver resection combined with neoadjuvant chemotherapy (NAC) has reported notable results in patients with colorectal liver metastases (CRLM). Tumoral response to NAC is associated with specific histopathologic patterns with prognostic implications. The main objective of this study was to evaluate the influence of pathological findings on overall survival (OS), disease-free survival (DFS) and liver recurrence-free survival (LRFS). Analysis of clinical and outcome data from 110 patients who underwent first CRLM resection between January 2010 and July 2013. Blinded pathological review of histological material of several parameters: resection margin, tumor regression grade (TRG), tumor thickness at the tumor-normal interface (TTNI) and the growth pattern (GP). The median survival following hepatic resection was 52 months and 3- and 5- year Kaplan-Meier estimates were 69 and 48%, respectively. Seventy-four patients developed recurrent disease. Oxaliplatin-based chemotherapy was significantly associated with a pushing GP. A positive resection margin was an independent predictor of decreased DFS (p = 0.018) but not of decreased OS. LRFS was strongly reduced by the absence of histologic tumor response (p = 0.018). The pushing pattern had an adverse impact on both OS (p = 0.007) and DFS (p = 0.004) on multivariate analysis. The prognostic value of histopathological features in patients who underwent CRLM's resection is undeniable. The pushing GP was related with worse prognosis. Further studies are required to clarify the biological mechanisms underlying these findings in order to enhance a more personalized and efficient treatment of these patients. Copyright © 2018 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.
Ontogenetic patterns in the mechanisms of tolerance to herbivory in Plantago
Barton, Kasey E.
2013-01-01
Background and Aims Herbivory and plant defence differ markedly among seedlings and juvenile and mature plants in most species. While ontogenetic patterns of chemical resistance have been the focus of much research, comparatively little is known about how tolerance to damage changes across ontogeny. Due to dramatic shifts in plant size, resource acquisition, stored reserves and growth, it was predicted that tolerance and related underlying mechanisms would differ among ontogenetic stages. Methods Ontogenetic patterns in the mechanisms of tolerance were investigated in Plantago lanceolata and P. major (Plantaginaceae) using the genetic sib-ship approach. Pot-grown plants were subjected to 50 % defoliation at the seedling, juvenile and mature stages and either harvested in the short-term to look at plasticity in growth and photosynthesis in response to damage or allowed to grow through seed maturation to measure phenology, shoot compensation and reproductive fitness. Key Results Tolerance to defoliation was high in P. lanceolata, but low in P. major, and did not vary among ontogenetic stages in either species. Mechanisms underlying tolerance did vary across ontogeny. In P. lanceolata, tolerance was significantly related to flowering (juveniles) and pre-damage shoot biomass (mature plants). In P. major, tolerance was significantly related to pre-damage root biomass (seedlings) and induction of non-photochemical quenching, a photosynthetic parameter (juveniles). Conclusions Biomass partitioning was very plastic in response to damage and showed associations with tolerance in both species, indicating a strong role in plant defence. In contrast, photosynthesis and phenology showed weaker responses to damage and were related to tolerance only in certain ontogenetic stages. This study highlights the pivotal role of ontogeny in plant defence and herbivory. Additional studies in more species are needed to determine how seedlings tolerate herbivory in general and whether mechanisms vary across ontogeny in consistent patterns. PMID:23589631
Study of Far—Field Directivity Pattern for Linear Arrays
NASA Astrophysics Data System (ADS)
Ana-Maria, Chiselev; Luminita, Moraru; Laura, Onose
2011-10-01
A model to calculate directivity pattern in far field is developed in this paper. Based on this model, the three-dimensional beam pattern is introduced and analyzed in order to investigate geometric parameters of linear arrays and their influences on the directivity pattern. Simulations in azimuthal plane are made to highlight the influence of transducers parameters, including number of elements and inter-element spacing. It is true that these parameters are important factors that influence the directivity pattern and the appearance of side-lobes for linear arrays.
Wills, Andrew K; Strand, Bjørn Heine; Glavin, Kari; Silverwood, Richard J; Hovengen, Ragnhild
2016-04-08
Regression models are widely used to link serial measures of anthropometric size or changes in size to a later outcome. Different parameterisations of these models enable one to target different questions about the effect of growth, however, their interpretation can be challenging. Our objective was to formulate and classify several sets of parameterisations by their underlying growth pattern contrast, and to discuss their utility using an expository example. We describe and classify five sets of model parameterisations in accordance with their underlying growth pattern contrast (conditional growth; being bigger v being smaller; becoming bigger and staying bigger; growing faster v being bigger; becoming and staying bigger versus being bigger). The contrasts are estimated by including different sets of repeated measures of size and changes in size in a regression model. We illustrate these models in the setting of linking infant growth (measured on 6 occasions: birth, 6 weeks, 3, 6, 12 and 24 months) in weight-for-height-for-age z-scores to later childhood overweight at 8y using complete cases from the Norwegian Childhood Growth study (n = 900). In our expository example, conditional growth during all periods, becoming bigger in any interval and staying bigger through infancy, and being bigger from birth were all associated with higher odds of later overweight. The highest odds of later overweight occurred for individuals who experienced high conditional growth or became bigger in the 3 to 6 month period and stayed bigger, and those who were bigger from birth to 24 months. Comparisons between periods and between growth patterns require large sample sizes and need to consider how to scale associations to make comparisons fair; with respect to the latter, we show one approach. Studies interested in detrimental growth patterns may gain extra insight from reporting several sets of growth pattern contrasts, and hence an approach that incorporates several sets of model parameterisations. Co-efficients from these models require careful interpretation, taking account of the other variables that are conditioned on.
Impact of dyeing industry effluent on germination and growth of pea (Pisum sativum).
Malaviya, Piyush; Hali, Rajesh; Sharma, Neeru
2012-11-01
Dye industry effluent was analyzed for physico-chemical characteristics and its impact on germination and growth behaviour of Pea (Pisum sativum). The 100% effluent showed high pH (10.3) and TDS (1088 mg l(-1)). The germination parameters included percent germination, delay index, speed of germination, peak value and germination period while growth parameters comprised of root and shoot length, root and shootweight, root-shoot ratio and number of stipules. The study showed the maximum values of positive germination parameters viz. speed of germination (7.85), peak value (3.28), germination index (123.87) and all growth parameters at 20% effluent concentration while the values of negative germination parameters viz. delay index (-0.14) and percent inhibition (-8.34) were found to be minimum at 20% effluent concentration. The study demonstrated that at lower concentrations the dyeing industry effluent caused a positive impact on germination and growth of Pisum sativum.
Critical aspects of substrate nanopatterning for the ordered growth of GaN nanocolumns
2011-01-01
Precise and reproducible surface nanopatterning is the key for a successful ordered growth of GaN nanocolumns. In this work, we point out the main technological issues related to the patterning process, mainly surface roughness and cleaning, and mask adhesion to the substrate. We found that each of these factors, process-related, has a dramatic impact on the subsequent selective growth of the columns inside the patterned holes. We compare the performance of e-beam lithography, colloidal lithography, and focused ion beam in the fabrication of hole-patterned masks for ordered columnar growth. These results are applicable to the ordered growth of nanocolumns of different materials. PMID:22168918
Cong, Rui; Li, Jing; Guo, Song
2017-02-01
To examine the efficacy of qualitative shear wave elastography (SWE) in the classification and evaluation of solid breast masses, and to compare this method with conventional ultrasonograghy (US), quantitative SWE parameters and qualitative SWE classification proposed before. From April 2015 to March 2016, 314 consecutive females with 325 breast masses who decided to undergo core needle biopsy and/or surgical biopsy were enrolled. Conventional US and SWE were previously performed in all enrolled subjects. Each mass was classified by two different qualitative classifications. One was established in our study, herein named the Qual1. Qual1 could classify the SWE images into five color patterns by the visual evaluations: Color pattern 1 (homogeneous pattern); Color pattern 2 (comparative homogeneous pattern); Color pattern 3 (irregularly heterogeneous pattern); Color pattern 4 (intralesional echo pattern); and Color pattern 5 (the stiff rim sign pattern). The second qualitative classification was named Qual2 here, and included a four-color overlay pattern classification (Tozaki and Fukuma, Acta Radiologica, 2011). The Breast Imaging Reporting and Data System (BI-RADS) assessment and quantitative SWE parameters were recorded. Diagnostic performances of conventional US, SWE parameters, and combinations of US and SWE parameters were compared. With pathological results as the gold standard, of the 325 examined breast masses, 139 (42.77%) samples were malignant and 186 (57.23%) were benign. The Qual1 showed a higher Az value than the Qual2 and quantitative SWE parameters (all P<0.05). When applying Qual1=Color pattern 1 for downgrading and Qual1=Color pattern 5 for upgrading the BI-RADS categories, we obtained the highest Az value (0.951), and achieved a significantly higher specificity (86.56%, P=0.002) than that of the US (81.18%) with the same sensitivity (94.96%). The qualitative classification proposed in this study may be representative of SWE parameters and has potential to be relevant assistance in breast mass diagnoses. Copyright © 2016. Published by Elsevier B.V.
Stochastic nonlinear dynamics pattern formation and growth models
Yaroslavsky, Leonid P
2007-01-01
Stochastic evolutionary growth and pattern formation models are treated in a unified way in terms of algorithmic models of nonlinear dynamic systems with feedback built of a standard set of signal processing units. A number of concrete models is described and illustrated by numerous examples of artificially generated patterns that closely imitate wide variety of patterns found in the nature. PMID:17908341
Stone, Bram W G; Jackson, Colin R
2016-05-01
The phyllosphere presents a unique system of discrete and easily replicable surfaces colonized primarily by bacteria. However, the biogeography of bacteria in the phyllosphere is little understood, especially at small to intermediate scales. Bacterial communities on the leaves of 91 southern magnolia (Magnolia grandiflora) trees 1-452 m apart in a small forest plot were analyzed and fragments of the 16S ribosomal RNA (rRNA) gene sequenced using the Illumina platform. Assemblages were dominated by members of the Alphaproteobacteria, Bacteroidetes, and Acidobacteria. Patterns in community composition were measured by both relative abundance (theta) and presence-absence (Jaccard) dissimilarity metrics. Distance-based Moran's eigenvector map analyses of the distance-decay relationship found a significant, positive relationship between each dissimilarity metric and significant eigenfunctions derived from geographic distance between trees, indicating trees that were closer together had more similar bacterial phyllosphere communities. Indirect gradient analyses revealed that several environmental parameters (canopy cover, tree elevation, and the slope and aspect of the ground beneath trees) were significantly related to multivariate ordination scores based on relative bacterial sequence abundances; however, these relationships were not significant when looking at the incidence of bacterial taxa. This suggests that bacterial growth and abundance in the phyllosphere is shaped by different assembly mechanisms than bacterial presence or absence. More broadly, this study demonstrates that the distance-decay relationship applies to phyllosphere communities at local scales, and that environmental parameters as well as neutral forces may both influence spatial patterns in the phyllosphere.
ABOVE- AND BELOWGROUND CONTROLS ON FOREST TREE GROWTH, MORTALITY AND SPATIAL PATTERN
We investigated the relative importance of above- and belowground competition in controlling growth, mortality and spatial patterns of trees in a nitrogen-limited, old-growth forest in western Oregon. To assess the effects of competition for light, we applied a spatially-explici...
Composition measurement of epitaxial Sc x Ga1-x N films
NASA Astrophysics Data System (ADS)
Tsui, H. C. L.; Goff, L. E.; Barradas, N. P.; Alves, E.; Pereira, S.; Palgrave, R. G.; Davies, R. J.; Beere, H. E.; Farrer, I.; Ritchie, D. A.; Moram, M. A.
2016-06-01
Four different methods for measuring the compositions of epitaxial Sc x Ga1-x N films were assessed and compared to determine which was the most reliable and accurate. The compositions of epitaxial Sc x Ga1-x N films with 0 ≤ x ≤ 0.26 were measured directly using Rutherford backscattering (RBS) and x-ray photoelectron spectroscopy (XPS), and indirectly using c lattice parameter measurements from x-ray diffraction and c/a ratio measurements from electron diffraction patterns. RBS measurements were taken as a standard reference. XPS was found to underestimate the Sc content, whereas c lattice parameter and c/a ratio were not reliable for composition determination due to the unknown degree of strain relaxation in the film. However, the Sc flux used during growth was found to relate linearly with x and could be used to estimate the Sc content.
Özdemir, Nihal; Güran, Tülay; Akalın, Figen; Akçay, Teoman; Ayabakan, Canan; Yılmaz, Yüksel; Bereket, Abdullah
2008-01-01
We report two patients with velo−cardio−facial syndrome (VCFS) who were admitted to our pediatric endocrinology clinic because of short stature and followed longitudinally until attainment of final height. Both patients followed a growth pattern consistent with constitutional delay of puberty with normal and near normal final height. Case 2 also had partial growth hormone (GH) deficiency and severe short stature (height SDS −3.4 SDS), but showed spontaneous catch−up and ended up with a final height of −2 SDS. These cases suggest that short stature in children with VCFS is due to a pattern of growth similar to that observed in constitutional delay of growth and puberty. Conflict of interest:None declared. PMID:21318064
NASA Astrophysics Data System (ADS)
Liang, X. San; Robinson, Allan R.
2013-10-01
Frontal meanderings are generally difficult to predict. In this study, we demonstrate through an exercise with the Iceland-Faeroe Front (IFF) that satisfactory predictions may be achieved with the aid of hydrodynamic instability analysis. As discovered earlier on, underlying the IFF meandering is a convective instability in the western boundary region followed by an absolute instability in the interior; correspondingly the disturbance growth reveals a switch of pattern from spatial amplification to temporal amplification. To successfully forecast the meandering, the two instability processes must be faithfully reproduced. This sets stringent constraints for the tunable model parameters, e.g., boundary relaxation, temporal relaxation, eddy diffusivity, etc. By analyzing the instability dispersion properties, these parameters can be rather accurately set and their respective ranges of sensitivity estimated. It is shown that too much relaxation inhibits the front from varying; on the other hand, too little relaxation may have the model completely skip the spatial growth phase, leading to a meandering way more upstream along the front. Generally speaking, dissipation/diffusion tends to stabilize the simulation, but unrealistically large dissipation/diffusion could trigger a spurious absolute instability, and hence a premature meandering intrusion. The belief that taking in more data will improve the forecast does not need to be true; it depends on whether the model setup admits the two instabilities. This study may help relieve modelers from the laborious and tedious work of parameter tuning; it also provides us criteria to distinguish a physically relevant forecast from numerical artifacts.
Aguilera, Inmaculada; Garcia-Esteban, Raquel; Iñiguez, Carmen; Nieuwenhuijsen, Mark J.; Rodríguez, Àgueda; Paez, Montserrat; Ballester, Ferran; Sunyer, Jordi
2010-01-01
Background Few studies have used longitudinal ultrasound measurements to assess the effect of traffic-related air pollution on fetal growth. Objective We examined the relationship between exposure to nitrogen dioxide (NO2) and aromatic hydrocarbons [benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene (BTEX)] on fetal growth assessed by 1,692 ultrasound measurements among 562 pregnant women from the Sabadell cohort of the Spanish INMA (Environment and Childhood) study. Methods We used temporally adjusted land-use regression models to estimate exposures to NO2 and BTEX. We fitted mixed-effects models to estimate longitudinal growth curves for femur length (FL), head circumference (HC), abdominal circumference (AC), biparietal diameter (BPD), and estimated fetal weight (EFW). Unconditional and conditional SD scores were calculated at 12, 20, and 32 weeks of gestation. Sensitivity analyses were performed considering time–activity patterns during pregnancy. Results Exposure to BTEX from early pregnancy was negatively associated with growth in BPD during weeks 20–32. None of the other fetal growth parameters were associated with exposure to air pollution during pregnancy. When considering only women who spent < 2 hr/day in nonresidential outdoor locations, effect estimates were stronger and statistically significant for the association between NO2 and growth in HC during weeks 12–20 and growth in AC, BPD, and EFW during weeks 20–32. Conclusions Our results lend some support to an effect of exposure to traffic-related air pollutants from early pregnancy on fetal growth during mid-pregnancy. PMID:20103496
NASA Astrophysics Data System (ADS)
Korres, W.; Reichenau, T. G.; Schneider, K.
2012-12-01
Soil moisture is one of the fundamental variables in hydrology, meteorology and agriculture, influencing the partitioning of solar energy into latent and sensible heat flux as well as the partitioning of precipitation into runoff and percolation. Numerous studies have shown that in addition to natural factors (rainfall, soil, topography etc.) agricultural management is one of the key drivers for spatio-temporal patterns of soil moisture in agricultural landscapes. Interactions between plant growth, soil hydrology and soil nitrogen transformation processes are modeled by using a dynamically coupled modeling approach. The process-based ecohydrological model components of the integrated decision support system DANUBIA are used to identify the important processes and feedbacks determining soil moisture patterns in agroecosystems. Integrative validation of plant growth and surface soil moisture dynamics serves as a basis for a spatially distributed modeling analysis of surface soil moisture patterns in the northern part of the Rur catchment (1100 sq km), Western Germany. An extensive three year dataset (2007-2009) of surface soil moisture-, plant- (LAI, organ specific biomass and N) and soil- (texture, N, C) measurements was collected. Plant measurements were carried out biweekly for winter wheat, maize, and sugar beet during the growing season. Soil moisture was measured with three FDR soil moisture stations. Meteorological data was measured with an eddy flux station. The results of the model validation showed a very good agreement between the modeled plant parameters (biomass, green LAI) and the measured parameters with values between 0.84 and 0.98 (Willmotts index of agreement). The modeled surface soil moisture (0 - 20 cm) showed also a very favorable agreement with the measurements for winter wheat and sugar beet with an RMSE between 1.68 and 3.45 Vol.-%. For maize, the RMSE was less favorable particularly in the 1.5 months prior to harvest. The modeled soil moisture remained in contrast to the measurements very responsive to precipitation with high soil moisture after precipitation events. This behavior indicates that the soil properties might have changed due to the formation of a surface crust or seal towards the end of the growing season. Spatial soil moisture patterns were investigated using a grid resolution of 150 meter. Spatial autocorrelation was computed on a daily basis using patterns of soil texture as well as transpiration and precipitation indices as co-variables. Spatial patterns of surface soil moisture are mostly determined by the structure of the soil properties (soil type) during winter, early growing season and after harvest of all crops. Later in the growing season, after establishment of a closed canopy the dependence of the soil moisture patterns on soil texture patterns becomes smaller and diminishes quickly after precipitation events, due to differences of the transpiration rate of the different crops. When changing the spatial scale of the analysis, the highest autocorrelation values can be found on a grid cell size between 450 and 1200 meters. Thus, small scale variability of transpiration induced by the land use pattern almost averages out, leaving the larger scale structure of soil properties to explain the soil moisture patterns.
Holmgren, Anton; Niklasson, Aimon; Nierop, Andreas F M; Gelander, Lars; Aronson, A Stefan; Sjöberg, Agneta; Lissner, Lauren; Albertsson-Wikland, Kerstin
2018-05-23
Over the past 150 years, humans have become taller, and puberty has begun earlier. It is unclear if these changes are continuing in Sweden, and how longitudinal growth patterns are involved. We aimed to evaluate the underlying changes in growth patterns from birth to adulthood by QEPS estimates in two Swedish cohorts born in 1974 and 1990. Growth characteristics of the longitudinal 1974 and 1990-birth cohorts (n = 4181) were compared using the QEPS model together with adult heights. There was more rapid fetal/infancy growth in girls/boys born in 1990 compared to 1974, as shown by a faster Etimescale and they were heavier at birth. The laterborn were taller also in childhood as shown by a higher Q-function. Girls born in 1990 had earlier and more pronounced growth during puberty than girls born in 1974. Individuals in the 1990 cohort attained greater adult heights than those in the 1974 cohort; 6 mm taller for females and 10 mm for males. A positive change in adult height was attributed to more growth during childhood in both sexes and during puberty for girls. The QEPS model proved to be effective detecting small changes of growth patterns, between two longitudinal growth cohorts born only 16 years apart.
López-Luna, J; González-Chávez, M C; Esparza-García, F J; Rodríguez-Vázquez, R
2009-04-30
This work assessed the effect of soil amended with tannery sludge (0, 500, 1000, 2000, 4000 and 8000 mg Cr kg(-1)soil), Cr(3+) as CrCl(3).6H(2)O (0, 100, 250, 500, 1000 and 2000 mg Cr kg(-1)soil), and Cr(6+) as K(2)Cr(2)O(7) (0, 25, 50, 100, 200 and 500 mg Cr kg(-1)soil) on wheat, oat and sorghum plants. Seed germination, seedling growth (root and shoot) and Cr accumulation in dry tissue were measured. Toxicological parameters; medium effective concentration, no observed adverse effect concentration and low observed adverse effect concentration were determined. Root growth was the most sensitive assessment of Cr toxicity (P<0.05). There was a significant correlation (P<0.0001) between Cr accumulation in dry tissue and toxic effects on seedling growth. The three Cr sources had different accumulation and mobility patterns; tannery sludge was less toxic for all three plant species, followed by CrCl(3).6H(2)O and K(2)Cr(2)O(7).
NASA Technical Reports Server (NTRS)
Volk, Tyler
1987-01-01
The production of food for human life support for advanced space missions will require the management of many different crops. The research to design these food production capabilities along with the waste management to recycle human metabolic wastes and inedible plant components are parts of Controlled Ecological Life Support Systems (CELSS). Since complete operating CELSS were not yet built, a useful adjunct to the research developing the various pieces of a CELSS are system simulation models that can examine what is currently known about the possible assembly of subsystems into a full CELSS. The growth dynamics of four crops (wheat, soybeans, potatoes, and lettuce) are examined for their general similarities and differences within the context of their important effects upon the dynamics of the gases, liquids, and solids in the CELSS. Data for the four crops currently under active research in the CELSS program using high-production hydroponics are presented. Two differential equations are developed and applied to the general characteristics of each crop growth pattern. Model parameters are determined by closely approximating each crop's data.
Engineering of InN epilayers by repeated deposition of ultrathin layers in pulsed MOCVD growth
NASA Astrophysics Data System (ADS)
Mickevičius, J.; Dobrovolskas, D.; Steponavičius, T.; Malinauskas, T.; Kolenda, M.; Kadys, A.; Tamulaitis, G.
2018-01-01
Capabilities of repeated deposition of ultrathin layers by pulsed metalorganic chemical vapor deposition (MOCVD) for improvement of structural and luminescence properties of InN thin films on GaN/sapphire templates were studied by varying the growth temperature and the durations of pulse and pause in the delivery of In precursor. X-ray diffraction, atomic force microscopy, and spatially-resolved photoluminescence (PL) spectroscopy were exploited to characterize the structural quality, surface morphology and luminescence properties. Better structural quality is achieved by using longer trimethylindium pulses. However, it is shown that the luminescence properties of InN epilayers correlate with the pause and pulse ratio rather than with their absolute lengths, and the deposition of 1.5-2 monolayers of InN during one growth cycle is optimal to achieve the highest PL intensity. Moreover, the use of temperature ramping enabled achieving the highest PL intensity and the smallest blue shift of the PL band. The luminescence parameters are linked with the structural properties, and domain-like patterns of InN layers are revealed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, P.J.
1996-07-01
A simplified method for determining the reactive rate parameters for the ignition and growth model is presented. This simplified ignition and growth (SIG) method consists of only two adjustable parameters, the ignition (I) and growth (G) rate constants. The parameters are determined by iterating these variables in DYNA2D hydrocode simulations of the failure diameter and the gap test sensitivity until the experimental values are reproduced. Examples of four widely different explosives were evaluated using the SIG model. The observed embedded gauge stress-time profiles for these explosives are compared to those calculated by the SIG equation and the results are described.
Thermodiffusion as a means to manipulate liquid film dynamics on chemically patterned surfaces
Kalpathy, Sreeram K.; Shreyes, Amrita Ravi
2017-01-01
The model problem examined here is the stability of a thin liquid film consisting of two miscible components, resting on a chemically patterned solid substrate and heated from below. In addition to surface tension gradients, the temperature variations also induce gradients in the concentration of the film by virtue of thermodiffusion/Soret effects. We study the stability and dewetting behaviour due to the coupled interplay between thermal gradients, Soret effects, long-range van der Waals forces, and wettability gradient-driven flows. Linear stability analysis is first employed to predict growth rates and the critical Marangoni number for chemically homogeneous surfaces. Then, nonlinear simulations are performed to unravel the interfacial dynamics and possible locations of the film rupture on chemically patterned substrates. Results suggest that appropriate tuning of the Soret parameter and its direction, in conjunction with either heating or cooling, can help manipulate the location and time scales of the film rupture. The Soret effect can either potentially aid or oppose film instability depending on whether the thermal and solutal contributions to flow are cooperative or opposed to each other. PMID:28595391
NASA Astrophysics Data System (ADS)
Su, Zhongqing; Ye, Lin
2004-08-01
The practical utilization of elastic waves, e.g. Rayleigh-Lamb waves, in high-performance structural health monitoring techniques is somewhat impeded due to the complicated wave dispersion phenomena, the existence of multiple wave modes, the high susceptibility to diverse interferences, the bulky sampled data and the difficulty in signal interpretation. An intelligent signal processing and pattern recognition (ISPPR) approach using the wavelet transform and artificial neural network algorithms was developed; this was actualized in a signal processing package (SPP). The ISPPR technique comprehensively functions as signal filtration, data compression, characteristic extraction, information mapping and pattern recognition, capable of extracting essential yet concise features from acquired raw wave signals and further assisting in structural health evaluation. For validation, the SPP was applied to the prediction of crack growth in an alloy structural beam and construction of a damage parameter database for defect identification in CF/EP composite structures. It was clearly apparent that the elastic wave propagation-based damage assessment could be dramatically streamlined by introduction of the ISPPR technique.
Marchand, Adrien; Turies, Cyril; Kerambrun, Elodie; Palluel, Olivier; Bado-Nilles, Anne; Beaudouin, Rémy; Porcher, Jean-Marc; Geffard, Alain; Dedourge-Geffard, Odile
2018-01-01
Determining digestive enzyme activity is of potential interest to obtain and understand valuable information about fish digestive physiology, since digestion is an elementary process of fish metabolism. We described for the first time (i) three digestive enzymes: amylase, trypsin and intestinal alkaline phosphatase (IAP), and (ii) three gut morphometric parameters: relative gut length (RGL), relative gut mass (RGM) and Zihler’s index (ZI) in threespine stickleback (Gasterosteus aculeatus), and we studied the effect of temperature and body size on these parameters. When mimicking seasonal variation in temperature, body size had no effect on digestive enzyme activity. The highest levels of amylase and trypsin activity were observed at 18°C, while the highest IAP activity was recorded at 20°C. When sticklebacks were exposed to three constant temperatures (16, 18 and 21°C), a temporal effect correlated to fish growth was observed with inverse evolution patterns between amylase activity and the activities of trypsin and IAP. Temperature (in both experiments) had no effect on morphometric parameters. However, a temporal variation was recorded for both RGM (in the second experiment) and ZI (in both experiments), and the later was correlated to fish body mass. PMID:29614133
Hani, Younes Mohamed Ismail; Marchand, Adrien; Turies, Cyril; Kerambrun, Elodie; Palluel, Olivier; Bado-Nilles, Anne; Beaudouin, Rémy; Porcher, Jean-Marc; Geffard, Alain; Dedourge-Geffard, Odile
2018-01-01
Determining digestive enzyme activity is of potential interest to obtain and understand valuable information about fish digestive physiology, since digestion is an elementary process of fish metabolism. We described for the first time (i) three digestive enzymes: amylase, trypsin and intestinal alkaline phosphatase (IAP), and (ii) three gut morphometric parameters: relative gut length (RGL), relative gut mass (RGM) and Zihler's index (ZI) in threespine stickleback (Gasterosteus aculeatus), and we studied the effect of temperature and body size on these parameters. When mimicking seasonal variation in temperature, body size had no effect on digestive enzyme activity. The highest levels of amylase and trypsin activity were observed at 18°C, while the highest IAP activity was recorded at 20°C. When sticklebacks were exposed to three constant temperatures (16, 18 and 21°C), a temporal effect correlated to fish growth was observed with inverse evolution patterns between amylase activity and the activities of trypsin and IAP. Temperature (in both experiments) had no effect on morphometric parameters. However, a temporal variation was recorded for both RGM (in the second experiment) and ZI (in both experiments), and the later was correlated to fish body mass.
Orienteering: Growth Patterns in the United States.
ERIC Educational Resources Information Center
Jeffery, Charles F.
The history of orienteering in the United States includes both military and civilian interest, with the period of greatest growth between 1970 and 1980. To investigate growth patterns in orienteering, questionnaires were mailed to 42 civilian orienteering clubs and 286 universities supporting senior Reserve Office Training Corps (ROTC)…
Protein crystal growth in low gravity
NASA Technical Reports Server (NTRS)
Feigelson, Robert S.
1988-01-01
The solubility and growth of the protein canavalin, and the application of the schlieren technique to study fluid flow in protein crystal growth systems were investigated. These studies have resulted in the proposal of a model to describe protein crystal growth and the preliminary plans for a long-term space flight experiment. Canavalin, which may be crystallized from a basic solution by the addition of hydrogen (H+) ions, was shown to have normal solubility characteristics over the range of temperatures (5 to 25 C) and pH (5 to 7.5) studies. The solubility data combined with growth rate data gathered from the seeded growth of canavalin crystals indicated that the growth rate limiting step is a screw dislocation mechanism. A schlieren apparatus was constructed and flow patterns were observed in Rochelle salt (sodium potassium tartrate), lysozyme, and canavalin. The critical parameters were identified as the change in density with concentration (dp/dc) and the change in index of refraction with concentration (dn/dc). Some of these values were measured for the materials listed. The data for lyrozyme showed non-linearities in plots of optical properties and density vs. concentration. In conjunction with with W. A. Tiller, a model based on colloid stability theory was proposed to describe protein crystallization. The model was used to explain observations made by ourselves and others. The results of this research has lead to the development for a preliminary design for a long-term, low-g experiment. The proposed apparatus is univeral and capable of operation under microprocessor control.
Ogihara, Takeshi; Osonoi, Yusuke; Osonoi, Takeshi; Saito, Miyoko; Tamasawa, Atsuko; Nakayama, Shiho; Someya, Yuki; Ishida, Hidenori; Gosho, Masahiko; Kanazawa, Akio; Watada, Hirotaka
2017-01-01
Introduction While individuals tend to show accumulation of certain lifestyle patterns, the effect of such patterns in real daily life on cardio-renal—metabolic parameters remains largely unknown. This study aimed to assess clustering of lifestyle patterns and investigate the relationships between such patterns and cardio-renal-metabolic parameters. Participants and methods The study participants were 726 Japanese type 2 diabetes mellitus (T2DM) outpatients free of history of cardiovascular diseases. The relationship between lifestyle patterns and cardio-renal-metabolic parameters was investigated by linear and logistic regression analyses. Results Factor analysis identified three lifestyle patterns. Subjects characterized by evening type, poor sleep quality and depressive status (type 1 pattern) had high levels of HbA1c, alanine aminotransferase and albuminuria. Subjects characterized by high consumption of food, alcohol and cigarettes (type 2 pattern) had high levels of γ-glutamyl transpeptidase, triglycerides, HDL-cholesterol, blood pressure, and brachial-ankle pulse wave velocity. Subjects characterized by high physical activity (type 3 pattern) had low uric acid and mild elevation of alanine aminotransferase and aspartate aminotransferase. In multivariate regression analysis adjusted by age, gender and BMI, type 1 pattern was associated with higher HbA1c levels, systolic BP and brachial-ankle pulse wave velocity. Type 2 pattern was associated with higher HDL-cholesterol levels, triglycerides, aspartate aminotransferase, ɤ- glutamyl transpeptidase levels, and diastolic BP. Conclusions The study identified three lifestyle patterns that were associated with distinct cardio-metabolic-renal parameters in T2DM patients. Trial registration UMIN000010932 PMID:28273173
Evolving spiking neural networks: a novel growth algorithm exhibits unintelligent design
NASA Astrophysics Data System (ADS)
Schaffer, J. David
2015-06-01
Spiking neural networks (SNNs) have drawn considerable excitement because of their computational properties, believed to be superior to conventional von Neumann machines, and sharing properties with living brains. Yet progress building these systems has been limited because we lack a design methodology. We present a gene-driven network growth algorithm that enables a genetic algorithm (evolutionary computation) to generate and test SNNs. The genome for this algorithm grows O(n) where n is the number of neurons; n is also evolved. The genome not only specifies the network topology, but all its parameters as well. Experiments show the algorithm producing SNNs that effectively produce a robust spike bursting behavior given tonic inputs, an application suitable for central pattern generators. Even though evolution did not include perturbations of the input spike trains, the evolved networks showed remarkable robustness to such perturbations. In addition, the output spike patterns retain evidence of the specific perturbation of the inputs, a feature that could be exploited by network additions that could use this information for refined decision making if required. On a second task, a sequence detector, a discriminating design was found that might be considered an example of "unintelligent design"; extra non-functional neurons were included that, while inefficient, did not hamper its proper functioning.
NASA Astrophysics Data System (ADS)
Rai, Chitharanjan; Sreenivas, K.; Dharmaprakash, S. M.
2009-11-01
Single crystals of triglycine sulphate (TGS) doped with 1 mol% of 4-(dimethylamino) benzaldehyde (DB) have been grown from aqueous solution at ambient temperature by slow evaporation technique. The effect of dopant on the crystal growth and dielectric, pyroelectric and mechanical properties of TGS crystal have been investigated. X-ray powder diffraction pattern for pure and doped TGS was collected to determine the lattice parameters. FTIR spectra were employed to confirm the presence of 4-(dimethylamino) benzaldehyde in TGS crystal, qualitatively. The dielectric permittivity has been studied as a function of temperature by cooling the sample at a rate of 1 °C/min. An increase in the Curie temperature Tc=51 °C (for pure TGS, Tc=48.5 °C) and decrease in maximum permittivity has been observed for doped TGS when compared to pure TGS crystal. Pyroelectric studies on doped TGS were carried out to determine pyroelectric coefficient. The Vickers's hardness of the doped TGS crystals along (0 1 0) face is higher than that of pure TGS crystal for the same face. Domain patterns on b-cut plates were observed using scanning electron microscope. The low dielectric constant, higher pyroelectric coefficient and higher value of hardness suggest that doped TGS crystals could be a potential material for IR detectors.
NASA Astrophysics Data System (ADS)
Esmeryan, Karekin D.; Castano, Carlos E.; Mohammadi, Reza; Lazarov, Yuliyan; Radeva, Ekaterina I.
2018-02-01
Condensation frosting is an undesired natural phenomenon that could be impeded efficiently using appropriate wettability and morphologically patterned surfaces. The icephobic properties of carbon soot and the fabrication scalability of its synthesis method are a good foundation for anti-frosting applications; however, the fundamentals of frost growth and spreading on sooted surfaces have not been examined yet. In this study, we investigate the anti-frosting performance of three groups of superhydrophobic soot coatings by means of 16 MHz quartz crystal microbalances (QCMs). The analysis of the real-time sensor signal of each soot coated QCM pattern shows that frost formation and its propagation velocity depend on the quantity of oxygen functionalities and structural defects in the material. In turn, the reduction of both parameters shifts the onset of frost growth to temperatures below -20 °C, whereas the interdroplet ice bridging is slowed by a factor of four. Moreover, high-resolution scanning electron micrographs of the samples imply delamination upon defrosting of the soot with spherical-like morphology via polar interactions driven mechanism. These results reveal an opportunity for control of frost incipiency on sooted surfaces by adjusting the synthesis conditions and depositing soot coatings with as low as possible content of hydrophilic active sites.
NASA Astrophysics Data System (ADS)
Orlov, Timofey; Sadkov, Sergey; Panchenko, Evgeniy; Zverev, Andrey
2017-04-01
Peatlands occupy a significant share of the cryolithozone area. They are currently experiencing an intense affection by oil and gas field development, as well as by the construction of infrastructure. That poses the importance of the peatland studies, including those dealing with the forecast of peatland evolution. Earlier we conducted a similar probabilistic modelling for the areas of thermokarst development. Principle points of that were: 1. Appearance of a thermokarst depression within an area given is the random event which probability is directly proportional to the size of the area ( Δs). For small sites the probability of one thermokarst depression to appear is much greater than that for several ones, i.e. p1 = γ Δs + o (Δs) pk = o (Δs) \\quad k=2,3 ... 2. Growth of a new thermokarst depression is a random variable independent on other depressions' growth. It happens due to thermoabrasion and, hence, is directly proportional to the amount of heat in the lake and is inversely proportional to the lateral surface area of the lake depression. By using this model, we are able to get analytically two main laws of the morphological pattern for lake thermokarst plains. First, the distribution of a number of thermokarst depressions (centers) at a random plot obey the Poisson law: P(k,s) = (γ s)^k/k! e-γ s. where γ is an average number of depressions per area unit, s is a square of a trial sites. Second, lognormal distribution of diameters of thermokarst lakes is true at any time, i.e. density distribution is given by the equation: fd (x,t)=1/√{2πσ x √{t}} e-
Melis, Daniela; Pivonello, Rosario; Parenti, Giancarlo; Della Casa, Roberto; Salerno, Mariacarolina; Balivo, Francesca; Piccolo, Pasquale; Di Somma, Carolina; Colao, Annamaria; Andria, Generoso
2010-04-01
To investigate the growth hormone (GH)-insulin-like growth factor (IGF) system in patients with glycogen storage disease type 1 (GSD1). This was a prospective, case-control study. Ten patients with GSD1a and 7 patients with GSD1b who were given dietary treatment and 34 sex-, age-, body mass index-, and pubertal stage-matched control subjects entered the study. Auxological parameters were correlated with circulating GH, either at basal or after growth hormone releasing hormone plus arginine test, insulin-like growth factors (IGF-I and IGF-II), and anti-pituitary antibodies (APA). Short stature was detected in 10.0% of patients with GSD1a, 42.9% of patients with GSD1b (P = .02), and none of the control subjects. Serum IGF-I levels were lower in patients with GSD1b (P = .0001). An impaired GH secretion was found in 40% of patients with GSD1a (P = .008), 57.1% of patients with GSD1b (P = .006), and none of the control subjects. Short stature was demonstrated in 3 of 4 patients with GSD1b and GH deficiency. The prevalence of APA was significantly higher in patients with GSD1b than in patients with GSD1a (P = .02) and control subjects (P = .03). The GH response to the provocative test inversely correlated with the presence of APA (P = .003). Compared with levels in control subjects, serum IGF-II and insulin levels were higher in both groups of patients, in whom IGF-II levels directly correlated with height SD scores (P = .003). Patients with GSD1a have an impaired GH secretion associated with reference range serum IGF-I levels and normal stature, whereas in patients with GSD1b, the impaired GH secretion, probably because of the presence of APA, was associated with reduced IGF-I levels and increased prevalence of short stature. The increased IGF-II levels, probably caused by increased insulin levels, in patients with GSD1 are presumably responsible for the improved growth pattern observed in patients receiving strict dietary treatment. Copyright 2010 Mosby, Inc. All rights reserved.
Frank, T D
2015-04-01
Previous research has demonstrated that perceiving, thinking, and acting are human activities that correspond to self-organized patterns. The emergence of such patterns can be completely described in terms of the dynamics of the pattern amplitudes, which are referred to as order parameters. The patterns emerge at bifurcations points when certain system parameters internal and external to a human agent exceed critical values. At issue is how one might study the order parameter dynamics for sequences of consecutive, emergent perceptual, cognitive, or behavioral activities. In particular, these activities may in turn impact the system parameters that have led to the emergence of the activities in the first place. This interplay between order parameter dynamics and system parameter dynamics is discussed in general and formulated in mathematical terms. Previous work that has made use of this two-tiered framework of order parameter and system parameter dynamics are briefly addressed. As an application, a model for perception under functional fixedness is presented. Finally, it is argued that the phenomena that emerge in this framework and can be observed when human agents perceive, think, and act are just as likely to occur in pattern formation systems of the inanimate world. Consequently, these phenomena do not necessarily have a neurophysiological basis but should instead be understood from the perspective of the theory of self-organization.
Effects of reaction-kinetic parameters on modeling reaction pathways in GaN MOVPE growth
NASA Astrophysics Data System (ADS)
Zhang, Hong; Zuo, Ran; Zhang, Guoyi
2017-11-01
In the modeling of the reaction-transport process in GaN MOVPE growth, the selections of kinetic parameters (activation energy Ea and pre-exponential factor A) for gas reactions are quite uncertain, which cause uncertainties in both gas reaction path and growth rate. In this study, numerical modeling of the reaction-transport process for GaN MOVPE growth in a vertical rotating disk reactor is conducted with varying kinetic parameters for main reaction paths. By comparisons of the molar concentrations of major Ga-containing species and the growth rates, the effects of kinetic parameters on gas reaction paths are determined. The results show that, depending on the values of the kinetic parameters, the gas reaction path may be dominated either by adduct/amide formation path, or by TMG pyrolysis path, or by both. Although the reaction path varies with different kinetic parameters, the predicted growth rates change only slightly because the total transport rate of Ga-containing species to the substrate changes slightly with reaction paths. This explains why previous authors using different chemical models predicted growth rates close to the experiment values. By varying the pre-exponential factor for the amide trimerization, it is found that the more trimers are formed, the lower the growth rates are than the experimental value, which indicates that trimers are poor growth precursors, because of thermal diffusion effect caused by high temperature gradient. The effective order for the contribution of major species to growth rate is found as: pyrolysis species > amides > trimers. The study also shows that radical reactions have little effect on gas reaction path because of the generation and depletion of H radicals in the chain reactions when NH2 is considered as the end species.
Individual tree-diameter growth model for the Northeastern United States
Richard M. Teck; Donald E. Hilt
1991-01-01
Describes a distance-independent individual-tree diameter growth model for the Northeastern United States. Diameter growth is predicted in two steps using a two parameter, sigmoidal growth function modified by a one parameter exponential decay function with species-specific coefficients. Coefficients are presented for 28 species groups. The model accounts for...
Lopes, Fernando B; da Silva, Marcelo C; Marques, Ednira G; McManus, Concepta M
2012-12-01
This study was undertaken to aim of estimating the genetic parameters and trends for asymptotic weight (A) and maturity rate (k) of Nellore cattle from northern Brazil. The data set was made available by the Brazilian Association of Zebu Breeders and collected between the years of 1997 and 2007. The Von Bertalanffy, Brody, Gompertz, and logistic nonlinear models were fitted by the Gauss-Newton method to weight-age data of 45,895 animals collected quarterly of the birth to 750 days old. The curve parameters were analyzed using the procedures GLM and CORR. The estimation of (co)variance components and genetic parameters was obtained using the MTDFREML software. The estimated heritability coefficients were 0.21 ± 0.013 and 0.25 ± 0.014 for asymptotic weight and maturity rate, respectively. This indicates that selection for any trait shall results in genetic progress in the herd. The genetic correlation between A and k was negative (-0.57 ± 0.03) and indicated that animals selected for high maturity rate shall result in low asymptotic weight. The Von Bertalanffy function is adequate to establish the mean growth patterns and to predict the adult weight of Nellore cattle. This model is more accurate in predicting the birth weight of these animals and has better overall fit. The prediction of adult weight using nonlinear functions can be accurate when growth curve parameters and their (co)variance components are estimated jointly. The model used in this study can be applied to the prediction of mature weight in herds where a portion of the animals are culled before they reach the adult age.
... to improve memory in healthy adults. Male-pattern hair growth in women (hirsutism). Early research shows that drinking ... and other hormones in women with male-pattern hair growth. But it doesn't seem to greatly reduce ...
Gritsun, Taras A; le Feber, Joost; Rutten, Wim L C
2012-01-01
A typical property of isolated cultured neuronal networks of dissociated rat cortical cells is synchronized spiking, called bursting, starting about one week after plating, when the dissociated cells have sufficiently sent out their neurites and formed enough synaptic connections. This paper is the third in a series of three on simulation models of cultured networks. Our two previous studies [26], [27] have shown that random recurrent network activity models generate intra- and inter-bursting patterns similar to experimental data. The networks were noise or pacemaker-driven and had Izhikevich-neuronal elements with only short-term plastic (STP) synapses (so, no long-term potentiation, LTP, or depression, LTD, was included). However, elevated pre-phases (burst leaders) and after-phases of burst main shapes, that usually arise during the development of the network, were not yet simulated in sufficient detail. This lack of detail may be due to the fact that the random models completely missed network topology .and a growth model. Therefore, the present paper adds, for the first time, a growth model to the activity model, to give the network a time dependent topology and to explain burst shapes in more detail. Again, without LTP or LTD mechanisms. The integrated growth-activity model yielded realistic bursting patterns. The automatic adjustment of various mutually interdependent network parameters is one of the major advantages of our current approach. Spatio-temporal bursting activity was validated against experiment. Depending on network size, wave reverberation mechanisms were seen along the network boundaries, which may explain the generation of phases of elevated firing before and after the main phase of the burst shape.In summary, the results show that adding topology and growth explain burst shapes in great detail and suggest that young networks still lack/do not need LTP or LTD mechanisms.
Sediment burial stimulates the growth and propagule production of Spartina alterniflora Loisel.
NASA Astrophysics Data System (ADS)
Deng, Zifa; An, Shuqing; Zhao, Congjiao; Chen, Lin; Zhou, Changfang; Zhi, Yingbiao; Li, Hongli
2008-03-01
Spartina alterniflora Loisel., an extensively invasive species on the Chinese coast, is a focus of increasing management concern due to its high expansion rate in estuaries and tidal zone, and the significant damage it causes to native ecosystems. In order to understand the processes and mechanisms of invasion of S. alterniflora in China, the impact of three sediment types (sand, sand-loam mixture and loam) and five buried patterns (unburied, 50% burial of initial plant height, 75% burial of initial plant height, complete burial and repeated burial) on the growth of seedlings or ramets was investigated. Results showed that each of the three factors (sediment types, burial pattern and plant materials) and interactions between/among them, significantly affected height and clonal growth, and biomass accumulation and allocation. Plant height, total biomass and number of new vegetative propagules significantly increased with progressive burial treatments. However, the complete burial treatment resulted in the death of all plant materials, and the maximum values of three parameters were found in the 50% burial or repeated burial treatments. Plant responses were determined by the instantaneous thickness of sediment of each time burial rather than by the total quantity of repeated burial. The growth of S. alterniflora was not shown to be dependent on specific types of sediment in sedimentation environment. In contrast to the unburied control, the proportion of primary tillers produced directly from initial individuals and the ratio between the aboveground and belowground biomass were greater under burial treatments. Seedlings produced more new vegetative propagules than vegetative offspring in all experimental treatments, and the former were apt to produce ramets from rhizomes rather than primary tillers. It is concluded that under various sedimentation environments, the clonal spread efficiency of seedlings was higher than that of vegetative offspring, and there is a positive feedback relationship between sedimentation and the growth of S. alterniflora. Thus, moderate sedimentation may stimulate the invasion of exotic species, S. alterniflora in coastal China.
Rakocevic, Miroslava; Matsunaga, Fabio Takeshi
2018-04-05
Dynamics in branch and leaf growth parameters, such as the phyllochron, duration of leaf expansion, leaf life span and bud mortality, determine tree architecture and canopy foliage distribution. We aimed to estimate leaf growth parameters in adult Arabica coffee plants based on leaf supporter axis order and position along the vertical profile, considering their modifications related to seasonal growth, air [CO2] and water availability. Growth and mortality of leaves and terminal buds of adult Arabica coffee trees were followed in two independent field experiments in two sub-tropical climate regions of Brazil, Londrina-PR (Cfa) and Jaguariúna-SP (Cwa). In the Cwa climate, coffee trees were grown under a FACE (free air CO2 enrichment) facility, where half of those had been irrigated. Plants were observed at a 15-30 d frequency for 1 year. Leaf growth parameters were estimated on five axes orders and expressed as functions of accumulated thermal time (°Cd per leaf). The phyllochron and duration of leaf expansion increased with axis order, from the seond to the fourth. The phyllochron and life span during the reduced vegetative seasonal growth were greater than during active growth. It took more thermal time for leaves from the first- to fourth-order axes to expand their blades under irrigation compared with rainfed conditions. The compensation effects of high [CO2] for low water availability were observed on leaf retention on the second and third axes orders, and duration of leaf expansion on the first- and fourth-order axes. The second-degree polynomials modelled leaf growth parameter distribution in the vertical tree profile, and linear regressions modelled the proportion of terminal bud mortality. Leaf growth parameters in coffee plants were determined by axis order. The duration of leaf expansion contributed to phyllochron determination. Leaf growth parameters varied according the position of the axis supporter along the vertical profile, suggesting an effect of axes age and micro-environmental light modulations.
NASA Astrophysics Data System (ADS)
Cabral-Tena, Rafael A.; Sánchez, Alberto; Reyes-Bonilla, Héctor; Ruvalcaba-Díaz, Angel H.; Balart, Eduardo F.
2016-05-01
Coral δ18O variations are used as a proxy for changes in sea surface temperature (SST) and seawater isotope composition. Skeletal δ13C of coral is frequently used as a proxy for solar radiation because most of its variability is controlled by an interrelationship between three processes: photosynthesis, respiration, and feeding. Coral growth rate is known to influence the δ18O and δ13C isotope record to a lesser extent than environmental variables. Recent published data show differences in growth parameters between female and male coral in the gonochoric brooding coral Porites panamensis; thus, skeletal δ18O and δ13C are hypothesized to be different in each sex. To test this, this study describes changes in the skeletal δ18O and δ13C record of four female and six male Porites panamensis coral collected in Bahía de La Paz, Mexico, whose growth bands spanned 12 years. The isotopic data were compared to SST, precipitation, photosynthetically active radiation (PAR), chlorophyll a, and skeletal growth parameters. Porites panamensis is a known gonochoric brooder whose growth parameters are different in females and males. Splitting the data by sexes explained 81 and 93 % of the differences of δ18O, and of δ13C, respectively, in the isotope record between colonies. Both isotope records were different between sexes. δ18O was higher in female colonies than in male colonies, with a 0.31 ‰ difference; δ13C was lower in female colonies, with a 0.28 ‰ difference. A difference in the skeletal δ18O could introduce an error in SST estimates of ≈ 1.0 to ≈ 2.6 °C. The δ18O records showed a seasonal pattern that corresponded to SST, with low correlation coefficients (-0.45, -0.32), and gentle slopes (0.09, 0.10 ‰ °C-1) of the δ18O-SST relation. Seasonal variation in coral δ18O represents only 52.37 and 35.66 % of the SST cycle; 29.72 and 38.53 % can be attributed to δ18O variability in seawater. δ13C data did not correlate with any of the environmental variables; therefore, variations in skeletal δ13C appear to be driven mainly by metabolic effects. Our results support the hypothesis of a sex-associated difference in skeletal δ18O and δ13C signal, and suggest that environmental conditions and coral growth parameters affect skeletal isotopic signals differently in each sex. Although these findings relate to one gonochoric brooding species, they may have some implications for the more commonly used gonochoric spawning species such as Porites lutea and Porites lobata.
Comparing basal area growth models, consistency of parameters, and accuracy of prediction
J.J. Colbert; Michael Schuckers; Desta Fekedulegn
2002-01-01
We fit alternative sigmoid growth models to sample tree basal area historical data derived from increment cores and disks taken at breast height. We examine and compare the estimated parameters for these models across a range of sample sites. Models are rated on consistency of parameters and on their ability to fit growth data from four sites that are located across a...
Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin
2017-01-01
There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation. PMID:28225811
Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin
2017-01-01
There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation.
2009-02-19
magnesium dopant concentration. A digital micromirror device is introduced to pattern incident UV radiation during InGaN growth, demonstrating that the...magnesium dopant concentration. A digital micromirror device is introduced to pattern incident UV radiation during InGaN growth, demonstrating that the...successful compositional patterning of InGaN using in situ digital micromirror device (DMD) patterning of ultraviolet (UV
Luján, Emmanuel; Soto, Daniela; Rosito, María S; Soba, Alejandro; Guerra, Liliana N; Calvo, Juan C; Marshall, Guillermo; Suárez, Cecilia
2018-05-09
Mathematical modelling approaches have become increasingly abundant in cancer research. Tumour infiltration extent and its spatial organization depend both on the tumour type and stage and on the bio-physicochemical characteristics of the microenvironment. This sets a complex scenario that often requires a multidisciplinary and individually adjusted approach. The ultimate goal of this work is to present an experimental/numerical combined method for the development of a three-dimensional mathematical model with the ability to reproduce the growth and infiltration patterns of a given avascular microtumour in response to different microenvironmental conditions. The model is based on a diffusion-convection reaction equation that considers logistic proliferation, volumetric growth, a rim of proliferative cells at the tumour surface, and invasion with diffusive and convective components. The parameter values of the model were fitted to experimental results while radial velocity and diffusion coefficients were made spatially variable in a case-specific way through the introduction of a shape function and a diffusion-limited-aggregation (DLA)-derived fractal matrix, respectively, according to the infiltration pattern observed. The in vitro model consists of multicellular tumour spheroids (MTSs) of an epithelial mammary tumour cell line (LM3) immersed in a collagen I gel matrix with a standard culture medium ("naive" matrix) or a conditioned medium from adipocytes or preadipocytes ("conditioned" matrix). It was experimentally determined that both adipocyte and preadipocyte conditioned media had the ability to change the MTS infiltration pattern from collective and laminar to an individual and atomized one. Numerical simulations were able to adequately reproduce qualitatively and quantitatively both kinds of infiltration patterns, which were determined by area quantification, analysis of fractal dimensions and lacunarity, and Bland-Altman analysis. These results suggest that the combined approach presented here could be established as a new framework with interesting potential applications at both the basic and clinical levels in the oncology area.
Growth pattern from birth to adulthood in African pygmies of known age
Rozzi, Fernando V. Ramirez; Koudou, Yves; Froment, Alain; Le Bouc, Yves; Botton, Jérémie
2015-01-01
The African pygmy phenotype stems from genetic foundations and is considered to be the product of a disturbance in the growth hormone–insulin-like growth factor (GH–IGF) axis. However, when and how the pygmy phenotype is acquired during growth remains unknown. Here we describe growth patterns in Baka pygmies based on two longitudinal studies of individuals of known age, from the time of birth to the age of 25 years. Body size at birth among the Baka is within standard limits, but their growth rate slows significantly during the first two years of life. It then more or less follows the standard pattern, with a growth spurt at adolescence. Their life history variables do not allow the Baka to be distinguished from other populations. Therefore, the pygmy phenotype in the Baka is the result of a change in growth that occurs during infancy, which differentiates them from East African pygmies revealing convergent evolution. PMID:26218408
... raspberry ketone solution to the scalp might increase hair growth in people with hair loss. Male pattern baldness ( ... raspberry ketone solution to the scalp might increase hair growth in people with male pattern baldness Obesity. Early ...
Characteristics of proportionate growth observed in instability patterns of miscible fluids
NASA Astrophysics Data System (ADS)
Bischofberger, Irmgard; Ramachandran, Radha; Nagel, Sidney R.; Nagel lab Team
2014-11-01
As a baby mammal grows, different parts of its body develop at the nearly the same rate and thus to a good approximation in direct proportion to one another. This type of growth is called proportionate growth. As familiar as it appears to us, it is very rarely found in physical systems outside of the biological world. We here show an example of proportionate growth that occurs in the instability formed when a less viscous liquid, of viscosity ηin displaces a more viscous miscible one, of viscosity ηout. We investigate the growth of these patterns in a quasi-two-dimensional geometry. Within a range of viscosity ratios 0.1 <ηin /ηout <0.3, we observe the formation of small blunt structures that form at the edges of an inner circular region devoid of fingers. As the pattern grows, the size of these structures increases in proportion to the size of the inner circle, such that even small details in the shape of the pattern remain essentially unchanged during growth. These characteristics of proportionate growth are reflected in the shape of the interface in the third dimension as well.
Huang, Tousheng; Zhang, Huayong; Dai, Liming; Cong, Xuebing; Ma, Shengnan
2018-03-01
This research investigates the formation of banded vegetation patterns on hillslopes affected by interactions between sediment deposition and vegetation growth. The following two perspectives in the formation of these patterns are taken into consideration: (a) increased sediment deposition from plant interception, and (b) reduced plant biomass caused by sediment accumulation. A spatial model is proposed to describe how the interactions between sediment deposition and vegetation growth promote self-organization of banded vegetation patterns. Based on theoretical and numerical analyses of the proposed spatial model, vegetation bands can result from a Turing instability mechanism. The banded vegetation patterns obtained in this research resemble patterns reported in the literature. Moreover, measured by sediment dynamics, the variation of hillslope landform can be described. The model predicts how treads on hillslopes evolve with the banded patterns. Thus, we provide a quantitative interpretation for coevolution of vegetation patterns and landforms under effects of sediment redistribution. Copyright © 2018. Published by Elsevier Masson SAS.
Breakup process of cylindrical viscous liquid specimens after a strong explosion in the core
NASA Astrophysics Data System (ADS)
Bang, B. H.; Ahn, C. S.; Kim, D. Y.; Lee, J. G.; Kim, H. M.; Jeong, J. T.; Yoon, W. S.; Al-Deyab, S. S.; Yoo, J. H.; Yoon, S. S.; Yarin, A. L.
2016-09-01
Basic understanding and theoretical description of the expansion and breakup of cylindrical specimens of Newtonian viscous liquid after an explosion of an explosive material in the core are aimed in this work along with the experimental investigation of the discovered phenomena. The unperturbed motion is considered first, and then supplemented by the perturbation growth pattern in the linear approximation. It is shown that a special non-trivial case of the Rayleigh-Taylor instability sets in being triggered by the gas pressure differential between the inner and outer surfaces of the specimens. The spectrum of the growing perturbation waves is established, as well as the growth rate found, and the debris sizes evaluated. An experimental study is undertaken and both the numerical and analytical solutions developed are compared with the experimental data. A good agreement between the theory and experiment is revealed. It is shown that the debris size λ, the parameter most important practically, scales with the explosion energy E as λ ˜ E-1/2. Another practically important parameter, the number of fingers N measured in the experiments was within 6%-9% from the values predicted numerically. Moreover, N in the experiments and numerical predictions followed the scaling law predicted theoretically, N ˜ me 1 / 2 , with me being the explosive mass.
Theoretical characterization of a model of aragonite crystal orientation in red abalone nacre
NASA Astrophysics Data System (ADS)
Coppersmith, S N; Gilbert, P U P A; Metzler, R A
2009-03-01
Nacre, commonly known as mother-of-pearl, is a remarkable biomineral that in red abalone consists of layers of 400 nm thick aragonite crystalline tablets confined by organic matrix sheets, with the [0 0 1] crystal axes of the aragonite tablets oriented to within ±12° from the normal to the layer planes. Recent experiments demonstrate that greater orientational order develops over a distance of tens of layers from the prismatic boundary at which nacre formation begins. Our previous simulations of a model in which the order develops because of differential tablet growth rates (oriented tablets growing faster than misoriented ones) yield patterns of tablets that agree qualitatively and quantitatively with the experimental measurements. This paper presents an analytical treatment of this model, focusing on how the dynamical development and eventual degree of order depend on model parameters. Dynamical equations for the probability distributions governing tablet orientations are introduced whose form can be determined from symmetry considerations and for which substantial analytic progress can be made. Numerical simulations are performed to relate the parameters used in the analytic theory to those in the microscopic growth model. The analytic theory demonstrates that the dynamical mechanism is able to achieve a much higher degree of order than naive estimates would indicate.
NASA Technical Reports Server (NTRS)
Takahashi, T.; Nowakowski, R. S.; Caviness, V. S. Jr
1996-01-01
Neurons of neocortical layers II-VI in the dorsomedial cortex of the mouse arise in the pseudostratified ventricular epithelium (PVE) through 11 cell cycles over the six embryonic days 11-17 (E11-E17). The present experiments measure the proportion of daughter cells that leave the cycle (quiescent or Q fraction or Q) during a single cell cycle and the complementary proportion that continues to proliferate (proliferative or P fraction or P; P = 1 - Q). Q and P for the PVE become 0.5 in the course of the eighth cycle, occurring on E14, and Q rises to approximately 0.8 (and P falls to approximately 0.2) in the course of the 10th cycle occurring on E16. This indicates that early in neuronogenesis, neurons are produced relatively slowly and the PVE expands rapidly but that the reverse happens in the final phase of neuronogenesis. The present analysis completes a cycle of analyses that have determined the four fundamental parameters of cell proliferation: growth fraction, lengths of cell cycle, and phases Q and P. These parameters are the basis of a coherent neuronogenetic model that characterizes patterns of growth of the PVE and mathematically relates the size of the initial proliferative population to the neuronal population of the adult neocortex.
Wrinkling pattern evolution of cylindrical biological tissues with differential growth.
Jia, Fei; Li, Bo; Cao, Yan-Ping; Xie, Wei-Hua; Feng, Xi-Qiao
2015-01-01
Three-dimensional surface wrinkling of soft cylindrical tissues induced by differential growth is explored. Differential volumetric growth can cause their morphological stability, leading to the formation of hexagonal and labyrinth wrinkles. During postbuckling, multiple bifurcations and morphological transitions may occur as a consequence of continuous growth in the surface layer. The physical mechanisms underpinning the morphological evolution are examined from the viewpoint of energy. Surface curvature is found to play a regulatory role in the pattern evolution. This study may not only help understand the morphogenesis of soft biological tissues, but also inspire novel routes for creating desired surface patterns of soft materials.
Dimensionless number is central to stress relaxation and expansive growth of the cell wall.
Ortega, Joseph K E
2017-06-07
Experiments demonstrate that both plastic and elastic deformation of the cell wall are necessary for wall stress relaxation and expansive growth of walled cells. A biophysical equation (Augmented Growth Equation) was previously shown to accurately model the experimentally observed wall stress relaxation and expansive growth rate. Here, dimensional analysis is used to obtain a dimensionless Augmented Growth Equation with dimensionless coefficients (groups of variables, or Π parameters). It is shown that a single Π parameter controls the wall stress relaxation rate. The Π parameter represents the ratio of plastic and elastic deformation rates, and provides an explicit relationship between expansive growth rate and the wall's mechanical properties. Values for Π are calculated for plant, algal, and fungal cells from previously reported experimental results. It is found that the Π values for each cell species are large and very different from each other. Expansive growth rates are calculated using the calculated Π values and are compared to those measured for plant and fungal cells during different growth conditions, after treatment with IAA, and in different developmental stages. The comparison shows good agreement and supports the claim that the Π parameter is central to expansive growth rate of walled cells.
Sensitivity analysis of the add-on price estimate for the edge-defined film-fed growth process
NASA Technical Reports Server (NTRS)
Mokashi, A. R.; Kachare, A. H.
1981-01-01
The analysis is in terms of cost parameters and production parameters. The cost parameters include equipment, space, direct labor, materials, and utilities. The production parameters include growth rate, process yield, and duty cycle. A computer program was developed specifically to do the sensitivity analysis.
Control of Organ Growth by Patterning and Hippo Signaling in Drosophila
Irvine, Kenneth D.; Harvey, Kieran F.
2015-01-01
Control of organ size is of fundamental importance and is controlled by genetic, environmental, and mechanical factors. Studies in many species have pointed to the existence of both organ-extrinsic and -intrinsic size-control mechanisms, which ultimately must coordinate to regulate organ size. Here, we discuss organ size control by organ patterning and the Hippo pathway, which both act in an organ-intrinsic fashion. The influence of morphogens and other patterning molecules couples growth and patterning, whereas emerging evidence suggests that the Hippo pathway controls growth in response to mechanical stimuli and signals emanating from cell–cell interactions. Several points of cross talk have been reported between signaling pathways that control organ patterning and the Hippo pathway, both at the level of membrane receptors and transcriptional regulators. However, despite substantial progress in the past decade, key questions in the growth-control field remain, including precisely how and when organ patterning and the Hippo pathway communicate to control size, and whether these communication mechanisms are organ specific or general. In addition, elucidating mechanisms by which organ-intrinsic cues, such as patterning factors and the Hippo pathway, interface with extrinsic cues, such as hormones to control organ size, remain unresolved. PMID:26032720
Doratiotto, S; Marongiu, F; Faedda, S; Pani, P; Laconi, E
2009-01-01
Many human solid cancers arise from focal proliferative lesions that long precede the overt clinical appearance of the disease. The available evidence supports the notion that cancer precursor lesions are clonal in origin, and this notion forms the basis for most of the current theories on the pathogenesis of neoplastic disease. In contrast, far less attention has been devoted to the analysis of the phenotypic property that serves to define these focal lesions, i.e. their altered growth pattern. In fact, the latter is often considered a mere morphological by-product of clonal growth, with no specific relevance in the process. In the following study, evidence will be presented to support the concept that focal growth pattern is an inherent property of altered cells, independent of clonal growth; furthermore, it will be discussed how such a property, far from being merely descriptive, might indeed play a fundamental role in the sequence of events leading to the development of cancer. Within this paradigm, the earliest steps of neoplasia should be considered and analysed as defects in the mechanisms of tissue pattern formation.
Van Neste, D J J; Rushton, D H
2016-08-01
Hair loss is related to follicular density, programmed regrowth and hair productivity. The dissatisfaction with hair growth in patients experiencing hair loss might be due to slower linear hair growth rate (LHGR). LHGR and hair diameter was evaluated in Caucasian controls and patients with patterned hair loss employing the validated non-invasive, contrast-enhanced-phototrichogram with exogen collection. We evaluated 59,765 anagen hairs (controls 24,609, patients 35,156) and found thinner hairs grew slower than thicker hairs. LHGR in normal women was generally higher than in normal men. LHGR correlates with hair diameter (P < 0.006) and global thinning is associated with slower growth rates. Compared with hair of equal thickness in controls, subjects affected with patterned hair loss showed reduced hair growth rates, an observation found in both male and female patients. Males with pattern hair loss showed further reduction in growth rates as clinical severity worsened. However, sample size limitations prevented statistical evaluation of LHGR in severely affected females. Caucasian ethnicity. In pattern hair loss, LHGR significantly contributes to the apparent decrease in hair volume in affected areas. In early onset, LHRG might have a prognostic value in females but not in males. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karnosky, David F; Podila, G Krishna; Burton, Andrew J
2009-02-17
This project used gene expression patterns from two forest Free-Air CO2 Enrichment (FACE) experiments (Aspen FACE in northern Wisconsin and POPFACE in Italy) to examine ways to increase the aboveground carbon sequestration potential of poplars (Populus). The aim was to use patterns of global gene expression to identify candidate genes for increased carbon sequestration. Gene expression studies were linked to physiological measurements in order to elucidate bottlenecks in carbon acquisition in trees grown in elevated CO2 conditions. Delayed senescence allowing additional carbon uptake late in the growing season, was also examined, and expression of target genes was tested in elitemore » P. deltoides x P. trichocarpa hybrids. In Populus euramericana, gene expression was sensitive to elevated CO2, but the response depended on the developmental age of the leaves. Most differentially expressed genes were upregulated in elevated CO2 in young leaves, while most were downregulated in elevated CO2 in semi-mature leaves. In P. deltoides x P. trichocarpa hybrids, leaf development and leaf quality traits, including leaf area, leaf shape, epidermal cell area, stomatal number, specific leaf area, and canopy senescence were sensitive to elevated CO2. Significant increases under elevated CO2 occurred for both above- and belowground growth in the F-2 generation. Three areas of the genome played a role in determining aboveground growth response to elevated CO2, with three additional areas of the genome important in determining belowground growth responses to elevated CO2. In Populus tremuloides, CO2-responsive genes in leaves were found to differ between two aspen clones that showed different growth responses, despite similarity in many physiological parameters (photosynthesis, stomatal conductance, and leaf area index). The CO2-responsive clone shunted C into pathways associated with active defense/response to stress, carbohydrate/starch biosynthesis and subsequent growth. The CO2-unresponsive clone partitioned C into pathways associated with passive defense and cell wall thickening. These results indicate that there is significant variation in gene expression patterns between different tree genotypes. Consequently, future efforts to improve productivity or other advantageous traits for carbon sequestration should include an examination of genetic variability in CO2 responsiveness.« less
Spatial Patterning of Newly-Inserted Material during Bacterial Cell Growth
NASA Astrophysics Data System (ADS)
Ursell, Tristan
2012-02-01
In the life cycle of a bacterium, rudimentary microscopy demonstrates that cell growth and elongation are essential characteristics of cellular reproduction. The peptidoglycan cell wall is the main load-bearing structure that determines both cell shape and overall size. However, simple imaging of cellular growth gives no indication of the spatial patterning nor mechanism by which material is being incorporated into the pre-existing cell wall. We employ a combination of high-resolution pulse-chase fluorescence microscopy, 3D computational microscopy, and detailed mechanistic simulations to explore how spatial patterning results in uniform growth and maintenance of cell shape. We show that growth is happening in discrete bursts randomly distributed over the cell surface, with a well-defined mean size and average rate. We further use these techniques to explore the effects of division and cell wall disrupting antibiotics, like cephalexin and A22, respectively, on the patterning of cell wall growth in E. coli. Finally, we explore the spatial correlation between presence of the bacterial actin-like cytoskeletal protein, MreB, and local cell wall growth. Together these techniques form a powerful method for exploring the detailed dynamics and involvement of antibiotics and cell wall-associated proteins in bacterial cell growth.[4pt] In collaboration with Kerwyn Huang, Stanford University.
ERIC Educational Resources Information Center
Koss, Kalsea J.; George, Melissa R. W.; Davies, Patrick T.; Cicchetti, Dante; Cummings, E. Mark; Sturge-Apple, Melissa L.
2013-01-01
Examining children's physiological functioning is an important direction for understanding the links between interparental conflict and child adjustment. Utilizing growth mixture modeling, the present study examined children's cortisol reactivity patterns in response to a marital dispute. Analyses revealed three different patterns of cortisol…
Voller, Stephannie Baehl; Chock, Susanne; Ernst, Linda M.; Su, Emily; Liu, Xin; Farrow, Kathryn N.; Mestan, Karen K.
2014-01-01
Background Preterm infants are at risk for postnatal growth failure (PGF). Identification of biomarkers that are associated with neonatal growth may help reduce PGF and associated long-term morbidity. Objective To investigate the associations between cord blood vascular endothelial growth factor (VEGF) and its soluble receptor (sFlt-1) with birth weight (BW) and postnatal growth in premature infants. Study Design and Methods From an ongoing birth cohort, 123 premature infants from 23 to 36 weeks gestational age (GA) were studied. Cord blood plasma VEGF and sFlt-1 were measured via enzyme-linked immunoassay. Growth parameters and nutritional information were evaluated. Multivariate logistic regression models were constructed to evaluate the associations of VEGF and sFlt-1 on PGF, defined as weight < 10th percentile at 36 weeks corrected age or discharge. Results VEGF was positively correlated, and sFlt-1 was negatively correlated with BW and BW-for-GA percentiles. Higher cord blood VEGF levels were associated with reduced risk of PGF (OR=0.7; 95% CI=0.5–0.9), while higher sFlt-1 levels appeared to increase the risk of PGF (OR=1.6; 95% CI=1.1–2.4). The above biomarker associations were attenuated after adjustment for maternal preeclampsia, fetal growth restriction and related neonatal characteristics, and when taking into account placental vascular pathologies. Longitudinal growth patterns by mean weight and length percentiles were consistently lower among infants with low VEGF/sFlt-1 ratios. Conclusions Our data support that intrauterine regulation of angiogenesis is an important mechanism of fetal and postnatal growth. Cord blood VEGF and sFlt-1 are useful in elucidating how intrauterine processes may have long-standing effects on developing premature infants. PMID:24480606
Enamel formation and growth in non-mammalian cynodonts
Dirks, Wendy; Martinelli, Agustín G.
2018-01-01
The early evolution of mammals is associated with the linked evolutionary origin of diphyodont tooth replacement, rapid juvenile growth and determinate adult growth. However, specific relationships among these characters during non-mammalian cynodont evolution require further exploration. Here, polarized light microscopy revealed incremental lines, resembling daily laminations of extant mammals, in histological sections of enamel in eight non-mammalian cynodont species. In the more basal non-probainognathian group, enamel extends extremely rapidly from cusp to cervix. By contrast, the enamel of mammaliamorphs is gradually accreted, with slow rates of crown extension, more typical of the majority of non-hypsodont crown mammals. These results are consistent with the reduction in dental replacement rate across the non-mammalian cynodont lineage, with greater rates of crown extension required in most non-probainognathians, and slower crown extension rates permitted in mammaliamorphs, which have reduced patterns of dental replacement in comparison with many non-probainognathians. The evolution of mammal-like growth patterns, with faster juvenile growth and more abruptly terminating adult growth, is linked with this reduction in dental replacement rates and may provide an additional explanation for the observed pattern in enamel growth rates. It is possible that the reduction in enamel extension rates in mammaliamorphs reflects an underlying reduction in skeletal growth rates at the time of postcanine formation, due to a more abruptly terminating pattern of adult growth in these more mammal-like, crownward species. PMID:29892415
Secondary Growth and Carbohydrate Storage Patterns Differ between Sexes in Juniperus thurifera
DeSoto, Lucía; Olano, José M.; Rozas, Vicente
2016-01-01
Differences in reproductive costs between male and female plants have been shown to foster sex-related variability in growth and C-storage patterns. The extent to which differential secondary growth in dioecious trees is associated with changes in stem carbohydrate storage patterns, however, has not been fully assessed. We explored the long-term radial growth and the seasonal variation of non-structural carbohydrate (NSC) content in sapwood of 40 males and 40 females Juniperus thurifera trees at two sites. NSC content was analyzed bimonthly for 1 year, and tree-ring width was measured for the 1931–2010 period. Sex-related differences in secondary growth and carbohydrate storage were site-dependent. Under less restrictive environmental conditions females grew more and stored more non-soluble sugars than males. Our results reinforce that sex-related differences in growth and resource storage may be a consequence of local adaptation to environmental conditions. Seasonal variation in soluble sugars concentration was opposite to cambial activity, with minima seen during periods of maximal secondary growth, and did not differ between the sexes or sites. Trees with higher stem NSC levels at critical periods showed higher radial growth, suggesting a common mechanism irrespective of site or sex. Sex-related patterns of secondary growth were linked to differences in non-soluble sugars content indicating sex-specific strategies of long-term performance. PMID:27303418
Sugiura, D; Tateno, M
2013-08-01
We investigated the nitrogen and carbohydrate allocation patterns of trees under heterogeneous light environments using saplings of the devil maple tree (Acer diabolicum) with Y-shaped branches. Different branch groups were created: all branches of a sapling exposed to full light (L-branches), all branches exposed to full shade (S-branches), and half of the branches of a sapling exposed to light (HL-branches) and the other half exposed to shade (HS-branches). Throughout the growth period, nitrogen was preferentially allocated to HL-branches, whereas nitrogen allocation to HS-branches was suppressed compared to L- and S-branches. HL-branches with the highest leaf nitrogen content (N(area)) also had the highest rates of growth, and HS-branches with the lowest N(area) had the lowest observed growth rates. In addition, net nitrogen assimilation, estimated using a photosynthesis model, was strongly correlated with branch growth and whole-plant growth. In contrast, patterns of photosynthate allocation to branches and roots were not affected by the light conditions of the other branch. These observations suggest that tree canopies develop as a result of resource allocation patterns, where the growth of sun-lit branches is favoured over shaded branches, which leads to enhanced whole-plant growth in heterogeneous light environments. Our results indicate that whole-plant growth is enhanced by the resource allocation patterns created for saplings in heterogeneous light environments.
USDA-ARS?s Scientific Manuscript database
Analysis of growth parameters have been researched in a number of aquaculture species with rainbow trout having received a significant amount of attention. Typically most growth studies have evaluated changes in plasma hormone levels or expression in growth genes in fish at a certain life stage. It ...
Photopolymerized materials and patterning for improved performance of neural prosthetics
NASA Astrophysics Data System (ADS)
Tuft, Bradley William
Neural prosthetics are used to replace or substantially augment remaining motor and sensory functions of neural pathways that were lost or damaged due to physical trauma, disease, or genetics. However, due to poor spatial signal resolution, neural prostheses fail to recapitulate the intimate, precise interactions inherent to neural networks. Designing materials and interfaces that direct de novo nerve growth to spatially specific stimulating elements is, therefore, a promising method to enhance signal specificity and performance of prostheses such as the successful cochlear implant (CI) and the developing retinal implant. In this work, the spatial and temporal reaction control inherent to photopolymerization was used to develop methods to generate micro and nanopatterned materials that direct neurite growth from prosthesis relevant neurons. In particular, neurite growth and directionality has been investigated in response to physical, mechanical, and chemical cues on photopolymerized surfaces. Spiral ganglion neurons (SGNs) serve as the primary neuronal model as they are the principal target for CI stimulation. The objective of the research is to rationally design materials that spatially direct neurite growth and to translate fundamental understanding of nerve cell-material interactions into methods of nerve regeneration that improve neural prosthetic performance. A rapid, single-step photopolymerization method was developed to fabricate micro and nanopatterned physical cues on methacrylate surfaces by selectively blocking light with photomasks. Feature height is readily tuned by modulating parameters of the photopolymerizaiton including initiator concentration and species, light intensity, separation distance from the photomask, and radiation exposure time. Alignment of neural elements increases significantly with increasing feature amplitude and constant periodicity, as well as with decreasing periodicity and constant amplitude. SGN neurite alignment strongly correlates with the maximum feature slope. Neurite alignment is compared on unpatterned, unidirectional, and multidirectional photopolymerized micropatterns. The effect of substrate rigidity on neurite alignment to physical cues was determined by maintaining equivalent pattern microfeatures, afforded by the reaction control of photopolymerization, while concomitantly altering the composition of several copolymer platforms to tune matrix stiffness. For each platform, neurite alignment to unidirectional patterns increases with increasing substrate rigidity. Interestingly, SGN neurites respond to material stiffness cues that are orders of magnitude higher (GPa) than what is typically ascribed to neural environments (kPa). Finally, neurite behavior at bioactive borders of various adhesion modulating molecules was evaluated on micropatterned materials to determine which cues took precedence in establishing neurite directionality. At low microfeatures aspect ratios, neurites align to the pattern direction but are then caused to turn and repel from or turn and align to bioactive borders. Conversely, physical cues dominate neurite path-finding as pattern feature slope increases, i.e. aspect ratio of sloping photopolymerized features increases, causing neurites to readily cross bioactive borders. The photopolymerization method developed in this work to generate micro and nanopatterned materials serves as an additional surface engineering tool that enables investigation of cell-material interactions including directed de novo neurite growth. The results of this interdisciplinary effort contribute substantially to polymer neural regeneration technology and will lead to development of advanced biomaterials that improve neural prosthetic tissue integration and performance by spatially directing nerve growth.
Oscillatory cellular patterns in three-dimensional directional solidification
NASA Astrophysics Data System (ADS)
Tourret, D.; Debierre, J.-M.; Song, Y.; Mota, F. L.; Bergeon, N.; Guérin, R.; Trivedi, R.; Billia, B.; Karma, A.
2015-10-01
We present a phase-field study of oscillatory breathing modes observed during the solidification of three-dimensional cellular arrays in microgravity. Directional solidification experiments conducted onboard the International Space Station have allowed us to observe spatially extended homogeneous arrays of cells and dendrites while minimizing the amount of gravity-induced convection in the liquid. In situ observations of transparent alloys have revealed the existence, over a narrow range of control parameters, of oscillations in cellular arrays with a period ranging from about 25 to 125 min. Cellular patterns are spatially disordered, and the oscillations of individual cells are spatiotemporally uncorrelated at long distance. However, in regions displaying short-range spatial ordering, groups of cells can synchronize into oscillatory breathing modes. Quantitative phase-field simulations show that the oscillatory behavior of cells in this regime is linked to a stability limit of the spacing in hexagonal cellular array structures. For relatively high cellular front undercooling (i.e., low growth velocity or high thermal gradient), a gap appears in the otherwise continuous range of stable array spacings. Close to this gap, a sustained oscillatory regime appears with a period that compares quantitatively well with experiment. For control parameters where this gap exists, oscillations typically occur for spacings at the edge of the gap. However, after a change of growth conditions, oscillations can also occur for nearby values of control parameters where this gap just closes and a continuous range of spacings exists. In addition, sustained oscillations at to the opening of this stable gap exhibit a slow periodic modulation of the phase-shift among cells with a slower period of several hours. While long-range coherence of breathing modes can be achieved in simulations for a perfect spatial arrangement of cells as initial condition, global disorder is observed in both three-dimensional experiments and simulations from realistic noisy initial conditions. In the latter case, erratic tip-splitting events promoted by large-amplitude oscillations contribute to maintaining the long-range array disorder, unlike in thin-sample experiments where long-range coherence of oscillations is experimentally observable.
Oscillatory cellular patterns in three-dimensional directional solidification
Tourret, D.; Debierre, J. -M.; Song, Y.; ...
2015-09-11
We present a phase-field study of oscillatory breathing modes observed during the solidification of three-dimensional cellular arrays in micro-gravity. Directional solidification experiments conducted onboard the International Space Station have allowed for the first time to observe spatially extended homogeneous arrays of cells and dendrites while minimizing the amount of gravity-induced convection in the liquid. In situ observations of transparent alloys have revealed the existence, over a narrow range of control parameters, of oscillations in cellular arrays with a period ranging from about 25 to 125 minutes. Cellular patterns are spatially disordered, and the oscillations of individual cells are spatiotemporally uncorrelatedmore » at long distance. However, in regions displaying short-range spatial ordering, groups of cells can synchronize into oscillatory breathing modes. Quantitative phase-field simulations show that the oscillatory behavior of cells in this regime is linked to a stability limit of the spacing in hexagonal cellular array structures. For relatively high cellular front undercooling (\\ie low growth velocity or high thermal gradient), a gap appears in the otherwise continuous range of stable array spacings. Close to this gap, a sustained oscillatory regime appears with a period that compares quantitatively well with experiment. For control parameters where this gap exist, oscillations typically occur for spacings at the edge of the gap. However, after a change of growth conditions, oscillations can also occur for nearby values of control parameters where this gap just closes and a continuous range of spacings exists. In addition, sustained oscillations at to the opening of this stable gap exhibit a slow periodic modulation of the phase-shift among cells with a slower period of several hours. While long-range coherence of breathing modes can be achieved in simulations for a perfect spatial arrangement of cells as initial condition, global disorder is observed in both three-dimensional experiments and simulations from realistic noisy initial conditions. The, erratic tip splitting events promoted by large amplitude oscillations contribute to maintaining the long-range array disorder, unlike in thin sample experiments where long-range coherence of oscillations is experimentally observable.« less
Oscillatory cellular patterns in three-dimensional directional solidification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tourret, D.; Debierre, J. -M.; Song, Y.
We present a phase-field study of oscillatory breathing modes observed during the solidification of three-dimensional cellular arrays in micro-gravity. Directional solidification experiments conducted onboard the International Space Station have allowed for the first time to observe spatially extended homogeneous arrays of cells and dendrites while minimizing the amount of gravity-induced convection in the liquid. In situ observations of transparent alloys have revealed the existence, over a narrow range of control parameters, of oscillations in cellular arrays with a period ranging from about 25 to 125 minutes. Cellular patterns are spatially disordered, and the oscillations of individual cells are spatiotemporally uncorrelatedmore » at long distance. However, in regions displaying short-range spatial ordering, groups of cells can synchronize into oscillatory breathing modes. Quantitative phase-field simulations show that the oscillatory behavior of cells in this regime is linked to a stability limit of the spacing in hexagonal cellular array structures. For relatively high cellular front undercooling (\\ie low growth velocity or high thermal gradient), a gap appears in the otherwise continuous range of stable array spacings. Close to this gap, a sustained oscillatory regime appears with a period that compares quantitatively well with experiment. For control parameters where this gap exist, oscillations typically occur for spacings at the edge of the gap. However, after a change of growth conditions, oscillations can also occur for nearby values of control parameters where this gap just closes and a continuous range of spacings exists. In addition, sustained oscillations at to the opening of this stable gap exhibit a slow periodic modulation of the phase-shift among cells with a slower period of several hours. While long-range coherence of breathing modes can be achieved in simulations for a perfect spatial arrangement of cells as initial condition, global disorder is observed in both three-dimensional experiments and simulations from realistic noisy initial conditions. The, erratic tip splitting events promoted by large amplitude oscillations contribute to maintaining the long-range array disorder, unlike in thin sample experiments where long-range coherence of oscillations is experimentally observable.« less
NASA Astrophysics Data System (ADS)
Groß, Jasmin; Konar, Brenda; Brey, Thomas; Grebmeier, Jacqueline M.
2017-10-01
The snow crab Chionoecetes opilio and Arctic lyre crab Hyas coarctatus are prominent members of the Chukchi Sea epifaunal community. A better understanding of their life history will aid in determining their role in this ecosystem in light of the changing climate and resource development. In this study, the size frequency distribution, growth, and mortality of these two crab species was examined in 2009, 2010, 2012, and 2013 to determine temporal and spatial patterns within the eastern Chukchi Sea, and to identify potential environmental drivers of the observed patterns. Temporally, the mean size of both sexes of C. opilio and H. coarctatus decreased significantly from 2009 to 2013, with the number of rare maximum sized organisms decreasing significantly to near absence in the latter two study years. Spatially, the mean size of male and female crabs of both species showed a latitudinal trend, decreasing from south to north in the investigation area. Growth of both sexes of C. opilio and H. coarctatus was linear over the sampled size range, and mortality was highest in the latter two study years. Life history features of both species related to different environmental parameters in different years, ranging from temperature, the sediment carbon to nitrogen ratio of the organic content, and sediment grain size distribution. Likely explanations for the observed temporal and spatial variability are ontogenetic migrations of mature crabs to warmer areas possibly due to cooler water temperatures in the latter two study years, or interannual fluctuations, which have been reported for C. opilio populations in other areas where successful waves of recruitment were estimated to occur in eight year intervals. Further research is suggested to determine if the spatial and temporal patterns found in this study are part of the natural variability in this system or if they are an indication of long-term trends.
Amjadipour, Mojtaba; MacLeod, Jennifer; Lipton-Duffin, Josh; Iacopi, Francesca; Motta, Nunzio
2017-08-25
Epitaxial growth of graphene on SiC is a scalable procedure that does not require any further transfer step, making this an ideal platform for graphene nanostructure fabrication. Focused ion beam (FIB) is a very promising tool for exploring the reduction of the lateral dimension of graphene on SiC to the nanometre scale. However, exposure of graphene to the Ga + beam causes significant surface damage through amorphisation and contamination, preventing epitaxial graphene growth. In this paper we demonstrate that combining a protective silicon layer with FIB patterning implemented prior to graphene growth can significantly reduce the damage associated with FIB milling. Using this approach, we successfully achieved graphene growth over 3C-SiC/Si FIB patterned nanostructures.
Piekarska-Stachowiak, Anna; Nakielski, Jerzy
2013-12-01
In contrast to seed plants, the roots of most ferns have a single apical cell which is the ultimate source of all cells in the root. The apical cell has a tetrahedral shape and divides asymmetrically. The root cap derives from the distal division face, while merophytes derived from three proximal division faces contribute to the root proper. The merophytes are produced sequentially forming three sectors along a helix around the root axis. During development, they divide and differentiate in a predictable pattern. Such growth causes cell pattern of the root apex to be remarkably regular and self-perpetuating. The nature of this regularity remains unknown. This paper shows the 2D simulation model for growth of the root apex with the apical cell in application to Azolla pinnata. The field of growth rates of the organ, prescribed by the model, is of a tensor type (symplastic growth) and cells divide taking principal growth directions into account. The simulations show how the cell pattern in a longitudinal section of the apex develops in time. The virtual root apex grows realistically and its cell pattern is similar to that observed in anatomical sections. The simulations indicate that the cell pattern regularity results from cell divisions which are oriented with respect to principal growth directions. Such divisions are essential for maintenance of peri-anticlinal arrangement of cell walls and coordinated growth of merophytes during the development. The highly specific division program that takes place in merophytes prior to differentiation seems to be regulated at the cellular level.
NASA Astrophysics Data System (ADS)
Kumar, Mukesh; Sigdel, A. K.; Gennett, T.; Berry, J. J.; Perkins, J. D.; Ginley, D. S.; Packard, C. E.
2013-10-01
With recent advances in flexible electronics, there is a growing need for transparent conductors with optimum conductivity tailored to the application and nearly zero residual stress to ensure mechanical reliability. Within amorphous transparent conducting oxide (TCO) systems, a variety of sputter growth parameters have been shown to separately impact film stress and optoelectronic properties due to the complex nature of the deposition process. We apply a statistical design of experiments (DOE) approach to identify growth parameter-material property relationships in amorphous indium zinc oxide (a-IZO) thin films and observed large, compressive residual stresses in films grown under conditions typically used for the deposition of highly conductive samples. Power, growth pressure, oxygen partial pressure, and RF power ratio (RF/(RF + DC)) were varied according to a full-factorial test matrix and each film was characterized. The resulting regression model and analysis of variance (ANOVA) revealed significant contributions to the residual stress from individual growth parameters as well as interactions of different growth parameters, but no conditions were found within the initial growth space that simultaneously produced low residual stress and high electrical conductivity. Extrapolation of the model results to lower oxygen partial pressures, combined with prior knowledge of conductivity-growth parameter relationships in the IZO system, allowed the selection of two promising growth conditions that were both empirically verified to achieve nearly zero residual stress and electrical conductivities >1480 S/cm. This work shows that a-IZO can be simultaneously optimized for high conductivity and low residual stress.
Laurent, M; Clémancey-Marcille, G; Hollard, D
1980-03-01
Leukaemic human bone marrow and peripheral blood cells were cultured for 25 d in diffusion chambers implanted into cyclophosphamide treated mice. Normal bone marrow cells were cultured simultaneously. These cells were studied both morphologically and functionally (CFU-C). The leukaemic cells behaved heterogeneously, 2 groups being distinguishable in accordance with their initial in vitro growth pattern (1: no growth or microcluster growth. 2: macrocluster growth). Group I showed progressive cellular death with a diminution of granulocytic progenitors and the appearance of a predominantly macrophagic population. This behaviour resembled that of the control group. The initial microcluster growth pattern remained identical throughout the entire culture period. Group 2, after considerable cellular death up to d 5, showed an explosive proliferation of the granulocytic progenitors and incomplete differentiation (up to myelocyte). The initial macrocluster growth pattern remained identical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, P.J.; Isebrands, J.G.; Dickson, R.E.
1988-03-01
Oak (Quercus) seedlings exhibit a pattern of shoot growth known to place demands on carbohydrate and nutrient reserves. This study was designed to determine ontogenetic patterns in CO{sub 2} exchanges properties of red oak leaves, and to determine if individual leaf CO{sub 2} exchange rates (CER) increase in response to the assimilate demand placed on a seedling during flushing. Northern red oak (Q. rubra L.) seedlings were grown in environments favorable for multiple flushes of shoot growth. Measurements of CER on single, attached, median leaves from each flush were made over a range of photosynthetic photon flux densities on plantsmore » at nine stages of seedling development through three flushes of growth. Carbon dioxide exchange rate of red oak leaves increased during leaf development up to and beyond full leaf expansion before decreasing an unusual pattern of photosynthesis during leaf ontogeny. Furthermore, first- and second-flush leaf CER initially decreased and then increased in conjunction with the third flush of shoot growth. These patterns indicate that red oak leaves have a capacity for CER adjustment in response to increase sink demand.« less
Paul, Nicholas A; Svensson, Carl Johan; de Nys, Rocky; Steinberg, Peter D
2014-01-01
All of the theory and most of the data on the ecology and evolution of chemical defences derive from terrestrial plants, which have considerable capacity for internal movement of resources. In contrast, most macroalgae--seaweeds--have no or very limited capacity for resource translocation, meaning that trade-offs between growth and defence, for example, should be localised rather than systemic. This may change the predictions of chemical defence theories for seaweeds. We developed a model that mimicked the simple growth pattern of the red seaweed Asparagopsis armata which is composed of repeating clusters of somatic cells and cells which contain deterrent secondary chemicals (gland cells). To do this we created a distinct growth curve for the somatic cells and another for the gland cells using empirical data. The somatic growth function was linked to the growth function for defence via differential equations modelling, which effectively generated a trade-off between growth and defence as these neighbouring cells develop. By treating growth and defence as separate functions we were also able to model a trade-off in growth of 2-3% under most circumstances. However, we found contrasting evidence for this trade-off in the empirical relationships between growth and defence, depending on the light level under which the alga was cultured. After developing a model that incorporated both branching and cell division rates, we formally demonstrated that positive correlations between growth and defence are predicted in many circumstances and also that allocation costs, if they exist, will be constrained by the intrinsic growth patterns of the seaweed. Growth patterns could therefore explain contrasting evidence for cost of constitutive chemical defence in many studies, highlighting the need to consider the fundamental biology and ontogeny of organisms when assessing the allocation theories for defence.
Adaptive-Grid Methods for Phase Field Models of Microstructure Development
NASA Technical Reports Server (NTRS)
Dantzig, Jonathan A.; Goldenfeld, Nigel
2001-01-01
Modeling solidification microstructures has become an area of intense study in recent years. The properties of large scale cast products, ranging from automobile engine blocks to aircraft components and other industrial applications, are strongly dependent on the physics that occur at the mesoscopic and microscopic length scales during solidification. The predominant morphology found in solidification microstructures is the dendrite, a tree-like pattern of solid around which solidification proceeds. The microscopic properties of cast products are determined by the length scales of these dendrites, and their associated segregation profiles. For this reason understanding the mechanisms for pattern selection in dendritic growth has attracted a great deal of interest from the experimental and theoretical communities. In particular, a great deal of research has been undertaken to understand such issues as dendrite morphology, shape and growth speed. Experiments on dendrite evolution in pure materials by Glicksman and coworkers on succinonitrile (SCN), and more recently pivalic acid (PVA), as well as other transparent analogs of metals, have provided tests of theories for dendritic growth, and have stimulated considerable theoretical progress. These experiments have clearly demonstrated that in certain parameter ranges the physics of the dendrite tip can be characterized by a steady value for the dendrite tip velocity, radius of curvature and shape. Away from the tip, the time-dependent dendrite exhibits a characteristic sidebranching as it propagates, which is not yet well understood. These experiments are performed by observing individual dendrites growing into an undercooled melt. The experiments are characterized by the dimensionless undercooling. Most experiments are performed at low undercooling.
"Speaking Volumes": A Longitudinal Study of Lexical and Grammatical Growth between 17 and 42 Months
ERIC Educational Resources Information Center
Labrell, Florence; van Geert, Paul; Declercq, Christelle; Baltazart, Véronique; Caillies, Stéphanie; Olivier, Marie; Le Sourn-Bissaoui, Sandrine
2014-01-01
Dynamic analyses of language growth tell us how vocabulary and grammar develop and how the two might be intertwined. Analyses of growth curves between 17 and 42 months, based on longitudinal data for 34 children, revealed interesting patterns of vocabulary and grammatical developments. They showed that these patterns were nonlinear, but with…
Toucan hand feeding and nestling growth.
St Leger, Judy; Vince, Martin; Jennings, Jerry; McKerney, Erin; Nilson, Erika
2012-05-01
A retrospective analysis of hand-feeding records and growth data from 3 facilities was performed to determine the growth pattern for 8 toucan species raised in captivity. General philosophies of breeding and rearing were similar but approaches to hand-feeding varied. General hand-feeding and chick management records from hatch to fledging were reviewed for 2 of the 3 facilities. Effective hand-feeding formulas were commercially available and minimally modified. Growth curves were developed. Curves approximated typical expected patterns of nestling growth with no loss of weight at fledging. This study provides a basis for hand-feeding protocols and growth curves to assess development.
Evans, Erin M.; Freund, Dana M.; Sondervan, Veronica M.; Cohen, Jerry D.; Hegeman, Adrian D.
2018-01-01
In this study we describe a [15N] stable isotopic labeling study of amino acids in Spirodela polyrhiza (common duckweed) grown under three different light and carbon input conditions which represent unique potential metabolic modes. Plants were grown with a light cycle, either with supplemental sucrose (mixotrophic) or without supplemental sucrose (photoautotrophic) and in the dark with supplemental sucrose (heterotrophic). Labeling patterns, pool sizes (both metabolically active and inactive), and kinetics/turnover rates were estimated for 17 of the proteinogenic amino acids. Estimation of these parameters followed several overall trends. First, most amino acids showed plateaus in labeling patterns of <100% [15N]-labeling, indicating the possibility of a large proportion of amino acids residing in metabolically inactive metabolite pools. Second, total pool sizes appear largest in the dark (heterotrophic) condition, whereas active pool sizes appeared to be largest in the light with sucrose (mixotrophic) growth condition. In contrast turnover measurements based on pool size were highest overall in the light with sucrose experiment, with the exception of leucine/isoleucine, lysine, and arginine, which all showed higher turnover in the dark. K-means clustering analysis also revealed more rapid turnover in the light treatments with many amino acids clustering in lower-turnover groups. Emerging insights from other research were also supported, such as the prevalence of alternate pathways for serine metabolism in non-photosynthetic cells. These data provide extensive novel information on amino acid pool size and kinetics in S. polyrhiza and can serve as groundwork for future metabolic studies. PMID:29904627
Evans, Erin M; Freund, Dana M; Sondervan, Veronica M; Cohen, Jerry D; Hegeman, Adrian D
2018-01-01
In this study we describe a [ 15 N] stable isotopic labeling study of amino acids in Spirodela polyrhiza (common duckweed) grown under three different light and carbon input conditions which represent unique potential metabolic modes. Plants were grown with a light cycle, either with supplemental sucrose (mixotrophic) or without supplemental sucrose (photoautotrophic) and in the dark with supplemental sucrose (heterotrophic). Labeling patterns, pool sizes (both metabolically active and inactive), and kinetics/turnover rates were estimated for 17 of the proteinogenic amino acids. Estimation of these parameters followed several overall trends. First, most amino acids showed plateaus in labeling patterns of <100% [ 15 N]-labeling, indicating the possibility of a large proportion of amino acids residing in metabolically inactive metabolite pools. Second, total pool sizes appear largest in the dark (heterotrophic) condition, whereas active pool sizes appeared to be largest in the light with sucrose (mixotrophic) growth condition. In contrast turnover measurements based on pool size were highest overall in the light with sucrose experiment, with the exception of leucine/isoleucine, lysine, and arginine, which all showed higher turnover in the dark. K-means clustering analysis also revealed more rapid turnover in the light treatments with many amino acids clustering in lower-turnover groups. Emerging insights from other research were also supported, such as the prevalence of alternate pathways for serine metabolism in non-photosynthetic cells. These data provide extensive novel information on amino acid pool size and kinetics in S. polyrhiza and can serve as groundwork for future metabolic studies.
NASA Astrophysics Data System (ADS)
Evans, Erin M.; Freund, Dana M.; Sondervan, Veronica M.; Cohen, Jerry D.; Hegeman, Adrian D.
2018-05-01
In this study we describe a [15N] stable isotopic labeling study of amino acids in Spirodela polyrhiza (common duckweed) grown under three different light and carbon input conditions which represent unique potential metabolic modes. Plants were grown with a light cycle, either with supplemental sucrose (mixotrophic) or without supplemental sucrose (photoautotrophic) and in the dark with supplemental sucrose (heterotrophic). Labeling patterns, pool sizes (both metabolically active and inactive), and kinetics/turnover rates were estimated for fifteen of the proteinogenic amino acids. Estimation of these parameters followed several overall trends. First, most amino acids showed plateaus in labeling patterns of less than 100% [15N]-labeling, indicating the possibility of a large proportion of amino acids residing in metabolically inactive metabolite pools. Second, total pool sizes appear largest in the dark (heterotrophic) condition, whereas active pool sizes appeared to be largest in the light with sucrose (mixotrophic) growth condition. In contrast turnover measurements based on pool size were highest overall in the light with sucrose experiment, with the exception of leucine/isoleucine, lysine, and arginine, which all showed higher turnover in the dark. K-means clustering analysis also revealed more rapid turnover in the light treatments with many amino acids clustering in lower-turnover groups. Emerging insights from other research were also supported, such as the prevalence of alternate pathways for serine metabolism in non-photosynthetic cells. These data provide extensive novel information on amino acid pool size and kinetics in S. polyrhiza and can serve as groundwork for future metabolic studies.
Estimation and Simulation of Slow Crack Growth Parameters from Constant Stress Rate Data
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Weaver, Aaron S.
2003-01-01
Closed form, approximate functions for estimating the variances and degrees-of-freedom associated with the slow crack growth parameters n, D, B, and A(sup *) as measured using constant stress rate ('dynamic fatigue') testing were derived by using propagation of errors. Estimates made with the resulting functions and slow crack growth data for a sapphire window were compared to the results of Monte Carlo simulations. The functions for estimation of the variances of the parameters were derived both with and without logarithmic transformation of the initial slow crack growth equations. The transformation was performed to make the functions both more linear and more normal. Comparison of the Monte Carlo results and the closed form expressions derived with propagation of errors indicated that linearization is not required for good estimates of the variances of parameters n and D by the propagation of errors method. However, good estimates variances of the parameters B and A(sup *) could only be made when the starting slow crack growth equation was transformed and the coefficients of variation of the input parameters were not too large. This was partially a result of the skewered distributions of B and A(sup *). Parametric variation of the input parameters was used to determine an acceptable range for using closed form approximate equations derived from propagation of errors.
Understanding tree growth responses after partial cuttings: A new approach
Rossi, Sergio; Lussier, Jean-Martin; Walsh, Denis; Morin, Hubert
2017-01-01
Forest ecosystem management heads towards the use of partial cuttings. However, the wide variation in growth response of residual trees remains unexplained, preventing a suitable prediction of forest productivity. The aim of the study was to assess individual growth and identify the driving factors involved in the responses of residual trees. Six study blocks in even-aged black spruce [Picea mariana (Mill.) B.S.P.] stands of the eastern Canadian boreal forest were submitted to experimental shelterwood and seed-tree treatments. Individual-tree models were applied to 1039 trees to analyze their patterns of radial growth during the 10 years after partial cutting by using the nonlinear Schnute function on tree-ring series. The trees exhibited different growth patterns. A sigmoid growth was detected in 32% of trees, mainly in control plots of older stands. Forty-seven percent of trees located in the interior of residual strips showed an S-shape, which was influenced by stand mortality, harvested intensity and dominant height. Individuals showing an exponential pattern produced the greatest radial growth after cutting and were edge trees of younger stands with higher dominant height. A steady growth decline was observed in 4% of trees, represented by the individuals suppressed and insensitive to the treatment. The analyses demonstrated that individual nonlinear models are able to assess the variability in growth within the stand and the factors involved in the occurrence of the different growth patterns, thus improving understanding of the tree responses to partial cutting. This new approach can sustain forest management strategies by defining the best conditions to optimize the growth yield of residual trees. PMID:28222200
Understanding tree growth responses after partial cuttings: A new approach.
Montoro Girona, Miguel; Rossi, Sergio; Lussier, Jean-Martin; Walsh, Denis; Morin, Hubert
2017-01-01
Forest ecosystem management heads towards the use of partial cuttings. However, the wide variation in growth response of residual trees remains unexplained, preventing a suitable prediction of forest productivity. The aim of the study was to assess individual growth and identify the driving factors involved in the responses of residual trees. Six study blocks in even-aged black spruce [Picea mariana (Mill.) B.S.P.] stands of the eastern Canadian boreal forest were submitted to experimental shelterwood and seed-tree treatments. Individual-tree models were applied to 1039 trees to analyze their patterns of radial growth during the 10 years after partial cutting by using the nonlinear Schnute function on tree-ring series. The trees exhibited different growth patterns. A sigmoid growth was detected in 32% of trees, mainly in control plots of older stands. Forty-seven percent of trees located in the interior of residual strips showed an S-shape, which was influenced by stand mortality, harvested intensity and dominant height. Individuals showing an exponential pattern produced the greatest radial growth after cutting and were edge trees of younger stands with higher dominant height. A steady growth decline was observed in 4% of trees, represented by the individuals suppressed and insensitive to the treatment. The analyses demonstrated that individual nonlinear models are able to assess the variability in growth within the stand and the factors involved in the occurrence of the different growth patterns, thus improving understanding of the tree responses to partial cutting. This new approach can sustain forest management strategies by defining the best conditions to optimize the growth yield of residual trees.
Lilgendahl, Jennifer Pals; McAdams, Dan P.
2010-01-01
Although growth has been a central focus in narrative research, few studies have examined growth comprehensively, as a story that emerges across the interpretation of many events. In this study, we examined how individual differences in autobiographical reasoning (AR) about self-growth relate to traits and well-being in midlife adults. Two patterns of growth-related AR were identified: 1) positive processing, defined as the average tendency to interpret events positively (vs. negatively), and 2) differentiated processing, defined as the extent to which past events are interpreted as causing a variety of forms of self-growth. Results showed that positive processing was negatively related to neuroticism and predicted well-being even after controlling for the average valence of past events. Additionally, differentiated processing of negative events but not positive events was positively related to openness and predictive of well-being. Finally, growth-related AR patterns independently predicted well-being beyond the effects of traits and demographic factors. PMID:21395593
Distinct ice patterns on solid surfaces with various wettabilities
Liu, Jie; Zhu, Chongqin; Liu, Kai; Jiang, Ying; Song, Yanlin; Francisco, Joseph S.; Zeng, Xiao Cheng; Wang, Jianjun
2017-01-01
No relationship has been established between surface wettability and ice growth patterns, although ice often forms on top of solid surfaces. Here, we report experimental observations obtained using a process specially designed to avoid the influence of nucleation and describe the wettability-dependent ice morphology on solid surfaces under atmospheric conditions and the discovery of two growth modes of ice crystals: along-surface and off-surface growth modes. Using atomistic molecular dynamics simulation analysis, we show that these distinct ice growth phenomena are attributable to the presence (or absence) of bilayer ice on solid surfaces with different wettability; that is, the formation of bilayer ice on hydrophilic surface can dictate the along-surface growth mode due to the structural match between the bilayer hexagonal ice and the basal face of hexagonal ice (ice Ih), thereby promoting rapid growth of nonbasal faces along the hydrophilic surface. The dramatically different growth patterns of ice on solid surfaces are of crucial relevance to ice repellency surfaces. PMID:29073045
Distinct ice patterns on solid surfaces with various wettabilities.
Liu, Jie; Zhu, Chongqin; Liu, Kai; Jiang, Ying; Song, Yanlin; Francisco, Joseph S; Zeng, Xiao Cheng; Wang, Jianjun
2017-10-24
No relationship has been established between surface wettability and ice growth patterns, although ice often forms on top of solid surfaces. Here, we report experimental observations obtained using a process specially designed to avoid the influence of nucleation and describe the wettability-dependent ice morphology on solid surfaces under atmospheric conditions and the discovery of two growth modes of ice crystals: along-surface and off-surface growth modes. Using atomistic molecular dynamics simulation analysis, we show that these distinct ice growth phenomena are attributable to the presence (or absence) of bilayer ice on solid surfaces with different wettability; that is, the formation of bilayer ice on hydrophilic surface can dictate the along-surface growth mode due to the structural match between the bilayer hexagonal ice and the basal face of hexagonal ice (ice I h ), thereby promoting rapid growth of nonbasal faces along the hydrophilic surface. The dramatically different growth patterns of ice on solid surfaces are of crucial relevance to ice repellency surfaces. Published under the PNAS license.
Laser-assisted chemical vapor deposition setup for fast synthesis of graphene patterns
NASA Astrophysics Data System (ADS)
Zhang, Chentao; Zhang, Jianhuan; Lin, Kun; Huang, Yuanqing
2017-05-01
An automatic setup based on the laser-assisted chemical vapor deposition method has been developed for the rapid synthesis of graphene patterns. The key components of this setup include a laser beam control and focusing unit, a laser spot monitoring unit, and a vacuum and flow control unit. A laser beam with precision control of laser power is focused on the surface of a nickel foil substrate by the laser beam control and focusing unit for localized heating. A rapid heating and cooling process at the localized region is induced by the relative movement between the focalized laser spot and the nickel foil substrate, which causes the decomposing of gaseous hydrocarbon and the out-diffusing of excess carbon atoms to form graphene patterns on the laser scanning path. All the fabrication parameters that affect the quality and number of graphene layers, such as laser power, laser spot size, laser scanning speed, pressure of vacuum chamber, and flow rates of gases, can be precisely controlled and monitored during the preparation of graphene patterns. A simulation of temperature distribution was carried out via the finite element method, providing a scientific guidance for the regulation of temperature distribution during experiments. A multi-layer graphene ribbon with few defects was synthesized to verify its performance of the rapid growth of high-quality graphene patterns. Furthermore, this setup has potential applications in other laser-based graphene synthesis and processing.
NASA Astrophysics Data System (ADS)
Tambun, J.; Bakti, D.; Desrita
2018-02-01
Yellowstripe scad included the one of commodity that has an important economic value in the Malacca Strait. Fish were found mostly in Indonesian of waters made this fish as one of the main target catch. But, it can had negative impact on the population of the fish. The study is done at Belawan Waters on March until May 2017 that which is purposed to study about the frequency distribution of length, determine the parameters of growth and, determine mortality rate and the rate of exploitation in order to provide appropriate management model for the fish resource. Yellowstripe scad was observed around 360 samples with the length range between 110 - 175 mm. The fish separated by bhattacarya method used the aid software FISAT II. A pattern of growth Yellowstripe scad alometrik negative with growth coefisien (K) 1.1 with length asimtotic (L∞) 181.65. The rate of mortality total ( Z) yellowstripe scad 4.34 per year at the rate of mortality natural ( M ) 1.204 per year and rate mortality by fishing (F) 3.136 per year in order to obtain the rate of exploitation 0.722. The value of this exploitation rate has exceeded the value of the optimum exploitation of 0.5.
Pozzobon, Victor; Perre, Patrick
2018-01-21
This work provides a model and the associated set of parameters allowing for microalgae population growth computation under intermittent lightning. Han's model is coupled with a simple microalgae growth model to yield a relationship between illumination and population growth. The model parameters were obtained by fitting a dataset available in literature using Particle Swarm Optimization method. In their work, authors grew microalgae in excess of nutrients under flashing conditions. Light/dark cycles used for these experimentations are quite close to those found in photobioreactor, i.e. ranging from several seconds to one minute. In this work, in addition to producing the set of parameters, Particle Swarm Optimization robustness was assessed. To do so, two different swarm initialization techniques were used, i.e. uniform and random distribution throughout the search-space. Both yielded the same results. In addition, swarm distribution analysis reveals that the swarm converges to a unique minimum. Thus, the produced set of parameters can be trustfully used to link light intensity to population growth rate. Furthermore, the set is capable to describe photodamages effects on population growth. Hence, accounting for light overexposure effect on algal growth. Copyright © 2017 Elsevier Ltd. All rights reserved.
Müller, Martin; Seidenberg, Ruth; Schuh, Sabine K; Exadaktylos, Aristomenis K; Schechter, Clyde B; Leichtle, Alexander B; Hautz, Wolf E
2018-01-01
Patients presenting with suspected urinary tract infection are common in every day emergency practice. Urine flow cytometry has replaced microscopic urine evaluation in many emergency departments, but interpretation of the results remains challenging. The aim of this study was to develop and validate tools that predict urine culture growth out of urine flow cytometry parameter. This retrospective study included all adult patients that presented in a large emergency department between January and July 2017 with a suspected urinary tract infection and had a urine flow cytometry as well as a urine culture obtained. The objective was to identify urine flow cytometry parameters that reliably predict urine culture growth and mixed flora growth. The data set was split into a training (70%) and a validation set (30%) and different decision-making approaches were developed and validated. Relevant urine culture growth (respectively mixed flora growth) was found in 40.2% (7.2% respectively) of the 613 patients included. The number of leukocytes and bacteria in flow cytometry were highly associated with urine culture growth, but mixed flora growth could not be sufficiently predicted from the urine flow cytometry parameters. A decision tree, predictive value figures, a nomogram, and a cut-off table to predict urine culture growth from bacteria and leukocyte count were developed, validated and compared. Urine flow cytometry parameters are insufficient to predict mixed flora growth. However, the prediction of urine culture growth based on bacteria and leukocyte count is highly accurate and the developed tools should be used as part of the decision-making process of ordering a urine culture or starting an antibiotic therapy if a urogenital infection is suspected.
Seidenberg, Ruth; Schuh, Sabine K.; Exadaktylos, Aristomenis K.; Schechter, Clyde B.; Leichtle, Alexander B.; Hautz, Wolf E.
2018-01-01
Objective Patients presenting with suspected urinary tract infection are common in every day emergency practice. Urine flow cytometry has replaced microscopic urine evaluation in many emergency departments, but interpretation of the results remains challenging. The aim of this study was to develop and validate tools that predict urine culture growth out of urine flow cytometry parameter. Methods This retrospective study included all adult patients that presented in a large emergency department between January and July 2017 with a suspected urinary tract infection and had a urine flow cytometry as well as a urine culture obtained. The objective was to identify urine flow cytometry parameters that reliably predict urine culture growth and mixed flora growth. The data set was split into a training (70%) and a validation set (30%) and different decision-making approaches were developed and validated. Results Relevant urine culture growth (respectively mixed flora growth) was found in 40.2% (7.2% respectively) of the 613 patients included. The number of leukocytes and bacteria in flow cytometry were highly associated with urine culture growth, but mixed flora growth could not be sufficiently predicted from the urine flow cytometry parameters. A decision tree, predictive value figures, a nomogram, and a cut-off table to predict urine culture growth from bacteria and leukocyte count were developed, validated and compared. Conclusions Urine flow cytometry parameters are insufficient to predict mixed flora growth. However, the prediction of urine culture growth based on bacteria and leukocyte count is highly accurate and the developed tools should be used as part of the decision-making process of ordering a urine culture or starting an antibiotic therapy if a urogenital infection is suspected. PMID:29474463
Ito, Tsuyoshi; Katoh, Yoshitaka; Shimada, Yuko; Ohnuma-Koyama, Aya; Takahashi, Naofumi; Kuwahara, Maki; Harada, Takanori
2015-01-01
Extraskeletal osteosarcoma is extremely rare in mice. This case report demonstrates a spontaneous murine extraskeletal osteosarcoma that exhibited various histological growth patterns in an ICR mouse. At necropsy, the tumor mass was located in the abdominal wall and was 45 × 30 × 25 mm in size. Histopathologically, the tumor showed the following four growth patterns: a solid pattern of polygonal cells embedded in an osteoid eosinophilic matrix with calcification, an irregular sheet pattern of short spindle cells accompanying some eosinophilic multinucleated cells, a fascicular pattern of spindle cells and a cystic pattern lined by short spindle cells. Immunohistochemically, most of the tumor cells were positive for vimentin, proliferating cell nuclear antigen and osterix. The multinucleated cells mentioned above were desmin positive and were regarded as regenerative striated muscles but not tumor cells. Since no clear continuity with normal bone tissues was observed, the tumor was diagnosed as an “extraskeletal osteosarcoma.” PMID:26989300
NASA Astrophysics Data System (ADS)
Sun, Cheng; Wu, Zhi-feng; Lv, Zhi-qiang; Yao, Na; Wei, Jian-bing
2013-04-01
There is a widespread concern about urban sprawl. It has negative impacts on natural resources, economic health, and community character. Without a universal definition of urban sprawl, its quantification and modeling is difficult. Traditionally, urban sprawl was described using qualitative terms, and landscape patterns. Quantitative methods are required to help local, regional and state land use planners to better identify, understand and address it. In this study, an integrated approach of remote sensing and GIS was used to identify three urban growth types of infilling growth, outlying growth and edge-expansion growth at the city of Guangzhou, China. Spatial metrics were used to characterize long-term trends and patterns of urban growth. Result shows that the proposed method can identify and visualize different urban growth types. Infilling growth is the dominant expansion type. Edge-expansion is concentrated at suburban areas. Outlying growth mainly occurs relatively far from the urban core. The analysis shows that initially the urban area expands mainly as outlying growth, causing increased fragmentation and dispersion of urban areas. Next, growth filled in vacant non-urban area inwards, resulting into a more compact and aggregated urban pattern. The study shows an improved understanding of urban growth, and helps to provide an effective way for urban planning.
Chan, Pak Yuen; Goldenfeld, Nigel
2007-10-01
A dynamical theory of geophysical precipitation pattern formation is presented and applied to irreversible calcium carbonate (travertine) deposition. Specific systems studied here are the terraces and domes observed at geothermal hot springs, such as those at Yellowstone National Park, and speleothems, particularly stalactites and stalagmites. The theory couples the precipitation front dynamics with shallow water flow, including corrections for turbulent drag and curvature effects. In the absence of capillarity and with a laminar flow profile, the theory predicts a one-parameter family of steady state solutions to the moving boundary problem describing the precipitation front. These shapes match the measured shapes near the vent at the top of observed travertine domes well. Closer to the base of the dome, the solutions deviate from observations and circular symmetry is broken by a fluting pattern, which we show is associated with capillary forces causing thin film break-up. We relate our model to that recently proposed for stalactite growth, and calculate the linear stability spectrum of both travertine domes and stalactites. Lastly, we apply the theory to the problem of precipitation pattern formation arising from turbulent flow down an inclined plane and identify a linear instability that underlies scale-invariant travertine terrace formation at geothermal hot springs.
NASA Astrophysics Data System (ADS)
Chan, Pak Yuen; Goldenfeld, Nigel
2007-10-01
A dynamical theory of geophysical precipitation pattern formation is presented and applied to irreversible calcium carbonate (travertine) deposition. Specific systems studied here are the terraces and domes observed at geothermal hot springs, such as those at Yellowstone National Park, and speleothems, particularly stalactites and stalagmites. The theory couples the precipitation front dynamics with shallow water flow, including corrections for turbulent drag and curvature effects. In the absence of capillarity and with a laminar flow profile, the theory predicts a one-parameter family of steady state solutions to the moving boundary problem describing the precipitation front. These shapes match the measured shapes near the vent at the top of observed travertine domes well. Closer to the base of the dome, the solutions deviate from observations and circular symmetry is broken by a fluting pattern, which we show is associated with capillary forces causing thin film break-up. We relate our model to that recently proposed for stalactite growth, and calculate the linear stability spectrum of both travertine domes and stalactites. Lastly, we apply the theory to the problem of precipitation pattern formation arising from turbulent flow down an inclined plane and identify a linear instability that underlies scale-invariant travertine terrace formation at geothermal hot springs.
Redshift-space distortions around voids
NASA Astrophysics Data System (ADS)
Cai, Yan-Chuan; Taylor, Andy; Peacock, John A.; Padilla, Nelson
2016-11-01
We have derived estimators for the linear growth rate of density fluctuations using the cross-correlation function (CCF) of voids and haloes in redshift space. In linear theory, this CCF contains only monopole and quadrupole terms. At scales greater than the void radius, linear theory is a good match to voids traced out by haloes; small-scale random velocities are unimportant at these radii, only tending to cause small and often negligible elongation of the CCF near its origin. By extracting the monopole and quadrupole from the CCF, we measure the linear growth rate without prior knowledge of the void profile or velocity dispersion. We recover the linear growth parameter β to 9 per cent precision from an effective volume of 3( h-1Gpc)3 using voids with radius >25 h-1Mpc. Smaller voids are predominantly sub-voids, which may be more sensitive to the random velocity dispersion; they introduce noise and do not help to improve measurements. Adding velocity dispersion as a free parameter allows us to use information at radii as small as half of the void radius. The precision on β is reduced to 5 per cent. Voids show diverse shapes in redshift space, and can appear either elongated or flattened along the line of sight. This can be explained by the competing amplitudes of the local density contrast, plus the radial velocity profile and its gradient. The distortion pattern is therefore determined solely by the void profile and is different for void-in-cloud and void-in-void. This diversity of redshift-space void morphology complicates measurements of the Alcock-Paczynski effect using voids.
Otnes, Gaute; Barrigón, Enrique; Sundvall, Christian; Svensson, K Erik; Heurlin, Magnus; Siefer, Gerald; Samuelson, Lars; Åberg, Ingvar; Borgström, Magnus T
2018-05-09
III-V solar cells in the nanowire geometry might hold significant synthesis-cost and device-design advantages as compared to thin films and have shown impressive performance improvements in recent years. To continue this development there is a need for characterization techniques giving quick and reliable feedback for growth development. Further, characterization techniques which can improve understanding of the link between nanowire growth conditions, subsequent processing, and solar cell performance are desired. Here, we present the use of a nanoprobe system inside a scanning electron microscope to efficiently contact single nanowires and characterize them in terms of key parameters for solar cell performance. Specifically, we study single as-grown InP nanowires and use electron beam induced current characterization to understand the charge carrier collection properties, and dark current-voltage characteristics to understand the diode recombination characteristics. By correlating the single nanowire measurements to performance of fully processed nanowire array solar cells, we identify how the performance limiting parameters are related to growth and/or processing conditions. We use this understanding to achieve a more than 7-fold improvement in efficiency of our InP nanowire solar cells, grown from a different seed particle pattern than previously reported from our group. The best cell shows a certified efficiency of 15.0%; the highest reported value for a bottom-up synthesized InP nanowire solar cell. We believe the presented approach have significant potential to speed-up the development of nanowire solar cells, as well as other nanowire-based electronic/optoelectronic devices.
Perdomo, Juan Alejandro; Conesa, Miquel À; Medrano, Hipólito; Ribas-Carbó, Miquel; Galmés, Jeroni
2015-10-01
This study evaluates the long-term individual and combined effects of high temperature (HT) and water deficit (WD) stress on plant growth, leaf gas-exchange and water use efficiency in cultivars of the three most important crops worldwide, rice, wheat and maize. Total plant biomass (B t ) accumulation decreased under all treatments, being the combined HT-WD treatment the most detrimental in all three species. Although decreases in B t correlated with adjustments in biomass allocation patterns (i.e. the leaf area ratio), most of the variation observed in B t was explained by changes in leaf gas exchange parameters. Thus, integrated values of leaf carbon balance obtained from daily course measurements of photosynthesis and respiration were better predictors of plant growth than the instantaneous measurements of leaf gas exchange. Leaf water use efficiency, assessed both by gas exchange and carbon isotope measurements, was negatively correlated with B t under WD, but not under the combined WD and HT treatment. A comparative analysis of the negative effects of single and combined stresses on the main parameters showed an additive component for WD and HT in rice and maize, in contrast to wheat. Overall, the results of the specific cultivars included in the study suggest that the species native climate plays a role shaping the species acclimation potential to the applied stresses. In this regard, wheat, originated in a cold climate, was the most affected species, which foretells a higher affectation of this crop due to climate change. © 2014 Scandinavian Plant Physiology Society.
2013-01-01
Inkjet printing of functional materials has drawn tremendous interest as an alternative to the conventional photolithography-based microelectronics fabrication process development. We introduce direct selective nanowire array growth by inkjet printing of Zn acetate precursor ink patterning and subsequent hydrothermal ZnO local growth without nozzle clogging problem which frequently happens in nanoparticle inkjet printing. The proposed process can directly grow ZnO nanowires in any arbitrary patterned shape, and it is basically very fast, low cost, environmentally benign, and low temperature. Therefore, Zn acetate precursor inkjet printing-based direct nanowire local growth is expected to give extremely high flexibility in nanomaterial patterning for high-performance electronics fabrication especially at the development stage. As a proof of concept of the proposed method, ZnO nanowire network-based field effect transistors and ultraviolet photo-detectors were demonstrated by direct patterned grown ZnO nanowires as active layer. PMID:24252130
Large-scale fabrication of vertically aligned ZnO nanowire arrays
Wang, Zhong L; Das, Suman; Xu, Sheng; Yuan, Dajun; Guo, Rui; Wei, Yaguang; Wu, Wenzhuo
2013-02-05
In a method for growing a nanowire array, a photoresist layer is placed onto a nanowire growth layer configured for growing nanowires therefrom. The photoresist layer is exposed to a coherent light interference pattern that includes periodically alternately spaced dark bands and light bands along a first orientation. The photoresist layer exposed to the coherent light interference pattern along a second orientation, transverse to the first orientation. The photoresist layer developed so as to remove photoresist from areas corresponding to areas of intersection of the dark bands of the interference pattern along the first orientation and the dark bands of the interference pattern along the second orientation, thereby leaving an ordered array of holes passing through the photoresist layer. The photoresist layer and the nanowire growth layer are placed into a nanowire growth environment, thereby growing nanowires from the nanowire growth layer through the array of holes.
Effect of pre-planting irrigation, maize planting pattern and nitrogen on weed seed bank population.
Hemmati, E; Vazan, S; Oveisi, M
2011-01-01
Pre-planting irrigation and planting patterns are important factors in weed management that effect on seed bank. Additionally, the nitrogen is the most important factor in plant growth that affects weed-crop competition and ultimately, seed rain into the soil. A field experiment was conducted to study the effect of nitrogen application rates, pre-planting irrigation and maize planting patterns on weed seed bank population. Experimental factors were nitrogen rates at 4 levels (200, 300, 400 and 500 kg per hectare) as main plot; and pre-planting irrigation at 2 levels (irrigation before planting plus weeding emerged seedlings and, irrigation after sowing), and maize planting patterns (one-row and two-row planting of maize with same density per square of row length) that were assigned in a factorial arrangement to the sub plots. Soil samples were taken at the beginning of the season (before planting of maize) and at the end of the season (after harvest) at depth of 0-5 cm in the fixed quadrates (60 cm x 60 cm). The weed seeds were extracted from the soil samples and were identified using standard methods. The majority of weed seed bank populations included 6 weed species: Portulaca oleracea, Chenopodium album, Amaranthus retroflexus, Sorghum halepense, Daturea stramonium, Xanthium strumarium. Results showed that population of weed seed bank increased significantly with increasing nitrogen rate. The increasing rate was different between one-row and two-row planting patterns. The parameters indicated that seed bank population was much higher in a one row planting pattern of maize. With two-row planting, seed bank was decreased by 34, 26, 20 and 5% at 200, 300, 400 and 500 kg N/ha, respectively. Pre-planting irrigation was also found an effective implement to reduce the weed seed bank. When pre-planting irrigation was applied, seed bank was decreased by 57, 43, 34 and 9% at 200, 300, 400 and 500 kg N/ha. Increasing nitrogen because of weed's better growth and higher seed production neutralized the decreasing effect of pre-planting irrigation and two-row planting of maize on weed seed bank population.
Carrascosa, Antonio; Yeste, Diego; Moreno-Galdó, Antonio; Gussinyé, Miquel; Ferrández, Ángel; Clemente, María; Fernández-Cancio, Mónica
2018-02-20
Pubertal growth pattern differs according to age at pubertal growth spurt onset which occurs over a five years period (girls: 8-13 years, boys: 10-15 years). The need for more than one pubertal reference pattern has been proposed. We aimed to obtain five 1-year-age-interval pubertal patterns. Longitudinal (6 years of age-adult height) growth study of 1,453 healthy children to evaluate height-for-age, growth velocity-for-age and weight-for-age values. According to age at pubertal growth spurt onset girls were considered: very-early matures (8-9 years, n=119), early matures (9-10 years, n=157), intermediate matures (10-11 years, n=238), late matures (11-12 years, n=127) and very-late matures (12-13 years, n=102), and boys: very-early matures (10-11 years, n=110), early matures (11-12 years, n=139), intermediate matures (12-13 years, n=225), late matures (13-14 years, n=133) and very-late matures (14-15 years, n=103). Age at menarche and growth up to adult height were recorded. In both sexes, statistically-significant (P<.0001) and clinically-pertinent differences in pubertal growth pattern (mean height-for-age, mean growth velocity-for-age and mean pubertal height gain, values) were found among the five pubertal maturity groups and between each group and the whole population, despite similar adult height values. The same occurred for age at menarche and growth from menarche to adult height (P<.05). In both sexes, pubertal growth spurt onset is a critical milestone determining pubertal growth and sexual development. The contribution of our data to better clinical evaluation of growth according to the pubertal maturity tempo of each child will obviate the mistakes made when only one pubertal growth reference is used. Copyright © 2018. Publicado por Elsevier España, S.L.U.
Fraver, Shawn; D'Amato, Anthony W.; Bradford, John B.; Jonsson, Bengt Gunnar; Jönsson, Mari; Esseen, Per-Anders
2013-01-01
Question: What factors best characterize tree competitive environments in this structurally diverse old-growth forest, and do these factors vary spatially within and among stands? Location: Old-growth Picea abies forest of boreal Sweden. Methods: Using long-term, mapped permanent plot data augmented with dendrochronological analyses, we evaluated the effect of neighbourhood competition on focal tree growth by means of standard competition indices, each modified to include various metrics of trees size, neighbour mortality weighting (for neighbours that died during the inventory period), and within-neighbourhood tree clustering. Candidate models were evaluated using mixed-model linear regression analyses, with mean basal area increment as the response variable. We then analysed stand-level spatial patterns of competition indices and growth rates (via kriging) to determine if the relationship between these patterns could further elucidate factors influencing tree growth. Results: Inter-tree competition clearly affected growth rates, with crown volume being the size metric most strongly influencing the neighbourhood competitive environment. Including neighbour tree mortality weightings in models only slightly improved descriptions of competitive interactions. Although the within-neighbourhood clustering index did not improve model predictions, competition intensity was influenced by the underlying stand-level tree spatial arrangement: stand-level clustering locally intensified competition and reduced tree growth, whereas in the absence of such clustering, inter-tree competition played a lesser role in constraining tree growth. Conclusions: Our findings demonstrate that competition continues to influence forest processes and structures in an old-growth system that has not experienced major disturbances for at least two centuries. The finding that the underlying tree spatial pattern influenced the competitive environment suggests caution in interpreting traditional tree competition studies, in which tree spatial patterning is typically not taken into account. Our findings highlight the importance of forest structure – particularly the spatial arrangement of trees – in regulating inter-tree competition and growth in structurally diverse forests, and they provide insight into the causes and consequences of heterogeneity in this old-growth system.
NASA Astrophysics Data System (ADS)
Zhao, Yaolong; Zhao, Junsan; Murayama, Yuji
2008-10-01
The period of high economic growth in Japan which began in the latter half of the 1950s led to a massive migration of population from rural regions to the Tokyo metropolitan area. This phenomenon brought about rapid urban growth and urban structure changes in this area. Purpose of this study is to establish a constrained CA (Cellular Automata) model with GIS (Geographical Information Systems) to simulate urban growth pattern in the Tokyo metropolitan area towards predicting urban form and landscape for the near future. Urban land-use is classified into multi-categories for interpreting the effect of interaction among land-use categories in the spatial process of urban growth. Driving factors of urban growth pattern, such as land condition, railway network, land-use zoning, random perturbation, and neighborhood interaction and so forth, are explored and integrated into this model. These driving factors are calibrated based on exploratory spatial data analysis (ESDA), spatial statistics, logistic regression, and "trial and error" approach. The simulation is assessed at both macro and micro classification levels in three ways: visual approach; fractal dimension; and spatial metrics. Results indicate that this model provides an effective prototype to simulate and predict urban growth pattern of the Tokyo metropolitan area.
Nong, Duong H; Lepczyk, Christopher A; Miura, Tomoaki; Fox, Jefferson M
2018-01-01
Urbanization has been driven by various social, economic, and political factors around the world for centuries. Because urbanization continues unabated in many places, it is crucial to understand patterns of urbanization and their potential ecological and environmental impacts. Given this need, the objectives of our study were to quantify urban growth rates, growth modes, and resultant changes in the landscape pattern of urbanization in Hanoi, Vietnam from 1993 to 2010 and to evaluate the extent to which the process of urban growth in Hanoi conformed to the diffusion-coalescence theory. We analyzed the spatiotemporal patterns and dynamics of the built-up land in Hanoi using landscape expansion modes, spatial metrics, and a gradient approach. Urbanization was most pronounced in the periods of 2001-2006 and 2006-2010 at a distance of 10 to 35 km around the urban center. Over the 17 year period urban expansion in Hanoi was dominated by infilling and edge expansion growth modes. Our findings support the diffusion-coalescence theory of urbanization. The shift of the urban growth areas over time and the dynamic nature of the spatial metrics revealed important information about our understanding of the urban growth process and cycle. Furthermore, our findings can be used to evaluate urban planning policies and aid in urbanization issues in rapidly urbanizing countries.
Response to growth hormone therapy in adolescents with familial panhypopituitarism.
Kulshreshtha, B; Eunice, M; Ammini, A C
2010-04-01
Familial combined pituitary hormone deficiency is a rare endocrine disorder. We describe growth patterns of four children (3 females and 1 male) from two families with combined pituitary hormone deficiency. These children received growth hormone at ages ranging from 14.5 years to 19 years. While all the female siblings reached their target height, the male sibling was much shorter than mid parental height. The reasons for sexual dimorphism in growth patterns in these children are unclear.
Goertler, Pascale A L; Scheuerell, Mark D; Simenstad, Charles A; Bottom, Daniel L
2016-01-01
Life history variation in Pacific salmon (Oncorhynchus spp.) supports species resilience to natural disturbances and fishery exploitation. Within salmon species, life-history variation often manifests during freshwater and estuarine rearing, as variation in growth. To date, however, characterizing variability in growth patterns within and among individuals has been difficult via conventional sampling methods because of the inability to obtain repeated size measurements. In this study we related otolith microstructures to growth rates of individual juvenile Chinook salmon (O. tshawytscha) from the Columbia River estuary over a two-year period (2010-2012). We used dynamic factor analysis to determine whether there were common patterns in growth rates within juveniles based on their natal region, capture location habitat type, and whether they were wild or of hatchery origin. We identified up to five large-scale trends in juvenile growth rates depending on month and year of capture. We also found that hatchery fish had a narrower range of trend loadings for some capture groups, suggesting that hatchery fish do not express the same breadth of growth variability as wild fish. However, we were unable to resolve a relationship between specific growth patterns and habitat transitions. Our study exemplifies how a relatively new statistical analysis can be applied to dating or aging techniques to summarize individual variation, and characterize aspects of life history diversity.
Scheuerell, Mark D.; Simenstad, Charles A.; Bottom, Daniel L.
2016-01-01
Life history variation in Pacific salmon (Oncorhynchus spp.) supports species resilience to natural disturbances and fishery exploitation. Within salmon species, life-history variation often manifests during freshwater and estuarine rearing, as variation in growth. To date, however, characterizing variability in growth patterns within and among individuals has been difficult via conventional sampling methods because of the inability to obtain repeated size measurements. In this study we related otolith microstructures to growth rates of individual juvenile Chinook salmon (O. tshawytscha) from the Columbia River estuary over a two-year period (2010–2012). We used dynamic factor analysis to determine whether there were common patterns in growth rates within juveniles based on their natal region, capture location habitat type, and whether they were wild or of hatchery origin. We identified up to five large-scale trends in juvenile growth rates depending on month and year of capture. We also found that hatchery fish had a narrower range of trend loadings for some capture groups, suggesting that hatchery fish do not express the same breadth of growth variability as wild fish. However, we were unable to resolve a relationship between specific growth patterns and habitat transitions. Our study exemplifies how a relatively new statistical analysis can be applied to dating or aging techniques to summarize individual variation, and characterize aspects of life history diversity. PMID:27695094
Shishkova, Svetlana; García-Mendoza, Edith; Castillo-Díaz, Vicente; Moreno, Norma E; Arellano, Jesús; Dubrovsky, Joseph G
2007-05-01
In some Sonoran Desert Cactaceae the primary root has a determinate root growth: the cells of the root apical meristem undergo only a few cell division cycles and then differentiate. The determinate growth of primary roots in Cactaceae was found in plants cultivated under various growth conditions, and could not be reverted by any treatment tested. The mechanisms involved in root meristem maintenance and determinate root growth in plants remain poorly understood. In this study, we have shown that roots regenerated from the callus of two Cactaceae species, Stenocereus gummosus and Ferocactus peninsulae, have a determinate growth pattern, similar to that of the primary root. To demonstrate this, a protocol for root regeneration from callus was established. The determinate growth pattern of roots regenerated from callus suggests that the program of root development is very stable in these species. These findings will permit future analysis of the role of certain Cactaceae genes in the determinate pattern of root growth via the regeneration of transgenic roots from transformed calli.
NASA Astrophysics Data System (ADS)
Patel, K. C.; Ruiz, R.; Lille, J.; Wan, L.; Dobiz, E.; Gao, H.; Robertson, N.; Albrecht, T. R.
2012-03-01
Directed self-assembly is emerging as a promising technology to define sub-20nm features. However, a straightforward path to scale block copolymer lithography to single-digit fabrication remains challenging given the diverse material properties found in the wide spectrum of self-assembling materials. A vast amount of block copolymer research for industrial applications has been dedicated to polystyrene-b-methyl methacrylate (PS-b-PMMA), a model system that displays multiple properties making it ideal for lithography, but that is limited by a weak interaction parameter that prevents it from scaling to single-digit lithography. Other block copolymer materials have shown scalability to much smaller dimensions, but at the expense of other material properties that could delay their insertion into industrial lithographic processes. We report on a line doubling process applied to block copolymer patterns to double the frequency of PS-b-PMMA line/space features, demonstrating the potential of this technique to reach single-digit lithography. We demonstrate a line-doubling process that starts with directed self-assembly of PS-b-PMMA to define line/space features. This pattern is transferred into an underlying sacrificial hard-mask layer followed by a growth of self-aligned spacers which subsequently serve as hard-masks for transferring the 2x frequency doubled pattern to the underlying substrate. We applied this process to two different block copolymer materials to demonstrate line-space patterns with a half pitch of 11nm and 7nm underscoring the potential to reach single-digit critical dimensions. A subsequent patterning step with perpendicular lines can be used to cut the fine line patterns into a 2-D array of islands suitable for bit patterned media. Several integration challenges such as line width control and line roughness are addressed.
NASA Astrophysics Data System (ADS)
Tong, Hua; Tanaka, Hajime
2018-01-01
The dynamics of a supercooled liquid near the glass transition is characterized by two-step relaxation, fast β and slow α relaxations. Because of the apparently disordered nature of glassy structures, there have been long debates over whether the origin of drastic slowing-down of the α relaxation accompanied by heterogeneous dynamics is thermodynamic or dynamic. Furthermore, it has been elusive whether there is any deep connection between fast β and slow α modes. To settle these issues, here we introduce a set of new structural order parameters characterizing sterically favored structures with high local packing capability, and then access structure-dynamics correlation by a novel nonlocal approach. We find that the particle mobility is under control of the static order parameter field. The fast β process is controlled by the instantaneous order parameter field locally, resulting in short-time particle-scale dynamics. Then the mobility field progressively develops with time t , following the initial order parameter field from disorder to more ordered regions. As is well known, the heterogeneity in the mobility field (dynamic heterogeneity) is maximized with a characteristic length ξ4, when t reaches the relaxation time τα. We discover that this mobility pattern can be predicted solely by a spatial coarse graining of the initial order parameter field at t =0 over a length ξ without any dynamical information. Furthermore, we find a relation ξ ˜ξ4, indicating that the static length ξ grows coherently with the dynamic one ξ4 upon cooling. This further suggests an intrinsic link between τα and ξ : the growth of the static length ξ is the origin of dynamical slowing-down. These we confirm for the first time in binary glass formers both in two and three spatial dimensions. Thus, a static structure has two intrinsic characteristic lengths, particle size and ξ , which control dynamics in local and nonlocal manners, resulting in the emergence of the two key relaxation modes, fast β and slow α processes, respectively. Because the two processes share a common structural origin, we can even predict a dynamic propensity pattern at long timescale from the fast β pattern. The presence of such intrinsic structure-dynamics correlation strongly indicates a thermodynamic nature of glass transition.
NASA Astrophysics Data System (ADS)
Rosland, R.; Strand, Ø.; Alunno-Bruscia, M.; Bacher, C.; Strohmeier, T.
2009-08-01
A Dynamic Energy Budget (DEB) model for simulation of growth and bioenergetics of blue mussels ( Mytilus edulis) has been tested in three low seston sites in southern Norway. The observations comprise four datasets from laboratory experiments (physiological and biometrical mussel data) and three datasets from in situ growth experiments (biometrical mussel data). Additional in situ data from commercial farms in southern Norway were used for estimation of biometrical relationships in the mussels. Three DEB parameters (shape coefficient, half saturation coefficient, and somatic maintenance rate coefficient) were estimated from experimental data, and the estimated parameters were complemented with parameter values from literature to establish a basic parameter set. Model simulations based on the basic parameter set and site specific environmental forcing matched fairly well with observations, but the model was not successful in simulating growth at the extreme low seston regimes in the laboratory experiments in which the long period of negative growth caused negative reproductive mass. Sensitivity analysis indicated that the model was moderately sensitive to changes in the parameter and initial conditions. The results show the robust properties of the DEB model as it manages to simulate mussel growth in several independent datasets from a common basic parameter set. However, the results also demonstrate limitations of Chl a as a food proxy for blue mussels and limitations of the DEB model to simulate long term starvation. Future work should aim at establishing better food proxies and improving the model formulations of the processes involved in food ingestion and assimilation. The current DEB model should also be elaborated to allow shrinking in the structural tissue in order to produce more realistic growth simulations during long periods of starvation.
Mechanical Stress Induces Remodeling of Vascular Networks in Growing Leaves
Bar-Sinai, Yohai; Julien, Jean-Daniel; Sharon, Eran; Armon, Shahaf; Nakayama, Naomi; Adda-Bedia, Mokhtar; Boudaoud, Arezki
2016-01-01
Differentiation into well-defined patterns and tissue growth are recognized as key processes in organismal development. However, it is unclear whether patterns are passively, homogeneously dilated by growth or whether they remodel during tissue expansion. Leaf vascular networks are well-fitted to investigate this issue, since leaves are approximately two-dimensional and grow manyfold in size. Here we study experimentally and computationally how vein patterns affect growth. We first model the growing vasculature as a network of viscoelastic rods and consider its response to external mechanical stress. We use the so-called texture tensor to quantify the local network geometry and reveal that growth is heterogeneous, resembling non-affine deformations in composite materials. We then apply mechanical forces to growing leaves after veins have differentiated, which respond by anisotropic growth and reorientation of the network in the direction of external stress. External mechanical stress appears to make growth more homogeneous, in contrast with the model with viscoelastic rods. However, we reconcile the model with experimental data by incorporating randomness in rod thickness and a threshold in the rod growth law, making the rods viscoelastoplastic. Altogether, we show that the higher stiffness of veins leads to their reorientation along external forces, along with a reduction in growth heterogeneity. This process may lead to the reinforcement of leaves against mechanical stress. More generally, our work contributes to a framework whereby growth and patterns are coordinated through the differences in mechanical properties between cell types. PMID:27074136
Malcolm North; Jiquan Chen; Brian Oakley; Bo Song; Mark Rudnicki; Andrew Gray; Jim Innes
2004-01-01
With fire suppression, many western forests are expected to have fewer gaps and higher stem density of shade-tolerant species as light competition becomes a more significant influence on stand pattern and composition. We compared species composition, structure, spatial pattern, and environmental factors such as light and soil moisture between two old-growth forests:...
Main, Russell P
2007-01-01
Vertebrate long bone form, at both the gross and the microstructural level, is the result of many interrelated influences. One factor that is considered to have a significant effect on bone form is the mechanical environment experienced by the bone during growth. The work presented here examines the possible relationships between in vivo bone strains, bone geometry and histomorphology in the radii of three age/size groups of domestic goats. In vivo bone strain data were collected from the radii of galloping goats, and the regional cortical distribution of peak axial strain magnitudes, radial and circumferential strain gradients, and longitudinal strain rates related to regional patterns in cortical growth, porosity, remodelling and collagen fibre orientation. Although porosity and remodelling decreased and increased with age, respectively, these features showed no significant regional differences and did not correspond to regional patterns in the mechanical environment. Thicker regions of the radius's cortex were significantly related to high strain levels and higher rates of periosteal, but not endosteal, growth. However, cortical growth and strain environment were not significantly related. Collagen fibre orientation varied regionally, with a higher percentage of transverse fibres in the caudal region of the radius and primarily longitudinal fibres elsewhere, and, although consistent through growth, also did not generally correspond to regional strain patterns. Although strain magnitudes increased during ontogeny and regional strain patterns were variable over the course of a stride, mean regional strain patterns were generally consistent with growth, suggesting that regional growth patterns and histomorphology, in combination with external loads, may play some role in producing a relatively ‘predictable’ strain environment within the radius. It is further hypothesized that the absence of correlation between regional histomorphometric patterns and the measured strain environments is the result of the variable mechanical environment. However, the potential effects of other physiological and mechanical factors, such as skeletal metabolism and adjacent muscle insertions, that can influence the gross and microstructural morphology of the radius during ontogeny, cannot be ignored. PMID:17331177
Determining the Kinetic Parameters Characteristic of Microalgal Growth.
ERIC Educational Resources Information Center
Martinez Sancho, Maria Eugenie; And Others
1991-01-01
An activity in which students obtain a growth curve for algae, identify the exponential and linear growth phases, and calculate the parameters which characterize both phases is described. The procedure, a list of required materials, experimental conditions, analytical technique, and a discussion of the interpretations of individual results are…
Parameter Estimates in Differential Equation Models for Population Growth
ERIC Educational Resources Information Center
Winkel, Brian J.
2011-01-01
We estimate the parameters present in several differential equation models of population growth, specifically logistic growth models and two-species competition models. We discuss student-evolved strategies and offer "Mathematica" code for a gradient search approach. We use historical (1930s) data from microbial studies of the Russian biologist,…
Dzul, Maria C.; Yackulic, Charles B.; Stone, Dennis M.; Van Haverbeke, David R.
2016-01-01
Ecologists estimate vital rates, such as growth and survival, to better understand population dynamics and identify sensitive life history parameters for species or populations of concern. Here, we assess spatiotemporal variation in growth, movement, density, and survival of subadult humpback chub living in the Little Colorado River, Grand Canyon, AZ from 2001–2002 and 2009–2013. We divided the Little Colorado River into three reaches and used a multistate mark-recapture model to determine rates of movement and differences in survival and density between sites for different cohorts. Additionally, site-specific and year-specific effects on growth were evaluated using a linear model. Results indicate that summer growth was higher for upstream sites compared with downstream sites. In contrast, there was not a consistent spatial pattern across years in winter growth; however, river-wide winter growth was negatively related to the duration of floods from 1 October to 15 May. Apparent survival was estimated to be lower at the most downstream site compared with the upstream sites; however, this could be because in part of increased emigration into the Colorado River at downstream sites. Furthermore, the 2010 cohort (i.e. fish that are age 1 in 2010) exhibited high apparent survival relative to other years. Movement between reaches varied with year, and some years exhibited preferential upstream displacement. Improving understanding of spatiotemporal effects on age 1 humpback chub survival can help inform current management efforts to translocate humpback chub into new locations and give us a better understanding of the factors that may limit this tributary's carrying capacity for humpback chub.
Onoda, Mitsuyoshi
2014-10-01
Conductive polymers are a strong contender for making electronic circuits. The growth pattern in conductive polymer synthesis by the electrolysis polymerization method was examined. The growth pattern is deeply related to the coupling reaction of the radical cation and the deprotonation reaction following it and changes suddenly depending on the kind and concentration of the supporting electrolyte and the solvent used. That is, when the electrophilic substitution coupling reaction becomes predominant, the three-dimensional growth form is observed, and when the radical coupling reaction becomes predominant, the two-dimensional growth morphology is observed. In addition, the growth pattern can be comparatively easily controlled by changing the value of the polymerization constant current, and it is considered that the indicator and development for biocircuit research with neuron-type devices made of conjugated polymers was obtained.
Su, Wang; Zhang, Yan-Ping; Qu, Yang; Li, Cui; Miao, Jia-Yuan; Gao, Xiao-Li; Liu, Jian-Hua; Feng, Bai-Li
2014-11-01
The objective of this study was to explore the effects of mulching patterns on soil water, growth, photosynthetic characteristics, grain yield and water use efficiency (WUE) of broomcorn millet in the dryland of Loess Plateau in China. In a three-year field experiment from 2011 to 2013, we compared four different mulching patterns with traditional plat planting (no mulching) as the control (CK). The mulching patterns included W ridge covered with common plastic film + intredune covered with straw (SG), common ridge covered with common plastic film + intredune covered with straw (LM), double ridges covered with common plastic film + intredune covered with straw (QM), and the traditional plat planting covered with straw (JG). The results showed that the soil water storage in 0-100 cm layer was significantly higher in all mulching patterns than in CK, particularly in SG then followed by LM, QM and JG, and the differences among the mulching patterns reached a significant level at the different growth stages of broomcorn millet. Among all mulching patterns, SG had the greatest effect on the growth and photosynthesis of broomcorn millet, respectively increasing the yield and WUE by 55.9% and 64.9% over CK, and the differences among the mulching patterns also reached a significant level. Therefore, SG was recommended as an efficient planting pattern for broomcorn millet production in the dryland of Loess Plateau in China.
Morphogenesis of nanostructures in glancing angle deposition of metal thin film coatings
NASA Astrophysics Data System (ADS)
Brown, Timothy James
Atomic vapors condensed onto solid surfaces form a remarkable category of condensed matter materials, the so-called thin films, with a myriad of compositions, morphological structures, and properties. The dynamic process of atomic condensation exhibits self-assembled pattern formation, producing morphologies with atomic-scale three- dimensional structures of seemingly limitless variety. This study attempts to shed new light on the dynamical growth processes of thin film deposition by analyzing in detail a previously unreported specific distinct emergent structure, a crystalline triangular-shaped spike that grows within copper and silver thin films. I explored the deposition parameters that lead to the growth of these unique structures, referred to as "nanospikes", fabricating approximately 55 thin films and used scanning electron microscopy and x-ray diffraction analysis. The variation of parameters include: vapor incidence angle, film thickness, substrate temperature, deposition rate, deposition material, substrate, and source-to-substrate distance. Microscopy analysis reveals that the silver and copper films deposited at glancing vapor incidence angles, 80 degrees and greater, have a high degree of branching interconnectivity between adjacent inclined nanorods. Diffraction analysis reveals that the vapor incidence angle influences the sub-populations of crystallites in the films, producing two different [110] crystal texture orientations. I hypothesize that the growth of nanospikes from nanorods is initiated by the stochastic arrival of vapor atoms and photons emitted from the deposition source at small diameter nanorods, and then driven by localized heating from vapor condensation and photon absorption. Restricted heat flow due to nanoscale thermal conduction maintains an elevated local temperature at the nanorod, enhancing adatom diffusion and enabling fast epitaxial crystal growth, leading to the formation and growth of nanospikes. Electron microscopy and x-ray diffraction analysis, and comparisons to related scientific literature, support this hypothesis. I also designed a highly modular ultrahigh vacuum deposition chamber, capable of concurrently mounting several different pieces of deposition equipment, that allows for a high degree of control of the growth dynamics of deposited thin films. I used the newly designed chamber to fabricate tailor-made nanostructured tantalum films for use in ultracapacitors, for the Cabot Corporation.
Lower-Limb Joint Coordination Pattern in Obese Subjects
Ranavolo, Alberto; Donini, Lorenzo M.; Mari, Silvia; Serrao, Mariano; Silvetti, Alessio; Iavicoli, Sergio; Cava, Edda; Asprino, Rosa; Pinto, Alessandro; Draicchio, Francesco
2013-01-01
The coordinative pattern is an important feature of locomotion that has been studied in a number of pathologies. It has been observed that adaptive changes in coordination patterns are due to both external and internal constraints. Obesity is characterized by the presence of excess mass at pelvis and lower-limb areas, causing mechanical constraints that central nervous system could manage modifying the physiological interjoint coupling relationships. Since an altered coordination pattern may induce joint diseases and falls risk, the aim of this study was to analyze whether and how coordination during walking is affected by obesity. We evaluated interjoint coordination during walking in 25 obese subjects as well as in a control group. The time-distance parameters and joint kinematics were also measured. When compared with the control group, obese people displayed a substantial similarity in joint kinematic parameters and some differences in the time-distance and in the coupling parameters. Obese subjects revealed higher values in stride-to-stride intrasubjects variability in interjoint coupling parameters, whereas the coordinative mean pattern was unaltered. The increased variability in the coupling parameters is associated with an increased risk of falls and thus should be taken into account when designing treatments aimed at restoring a normal locomotion pattern. PMID:23484078
Effect of Growth Parameters on SnO2 Nanowires Growth by Electron Beam Evaporation Method
NASA Astrophysics Data System (ADS)
Rakesh Kumar, R.; Manjula, Y.; Narasimha Rao, K.
2018-02-01
Tin oxide (SnO2) nanowires were synthesized via catalyst assisted VLS growth mechanism by the electron beam evaporation method at a growth temperature of 450 °C. The effects of growth parameters such as evaporation rate of Tin, catalyst film thickness, and different types of substrates on the growth of SnO2 nanowires were studied. Nanowires (NWs) growth was completely seized at higher tin evaporation rates due to the inability of the catalyst particle to initiate the NWs growth. Nanowires diameters were able to tune with catalyst film thickness. Nanowires growth was completely absent at higher catalyst film thickness due to agglomeration of the catalyst film. Optimum growth parameters for SnO2 NWs were presented. Nanocomposites such as Zinc oxide - SnO2, Graphene oxide sheets- SnO2 and Graphene nanosheets-SnO2 were able to synthesize at a lower substrate temperature of 450 °C. These nanocompsoites will be useful in enhancing the capacity of Li-ion batteries, the gas sensing response and also useful in increasing the photo catalytic activity.
Zhang, Wenting; Wang, Haijun; Han, Fengxiang; Gao, Juan; Nguyen, Thuminh; Chen, Yarong; Huang, Bo; Zhan, F Benjamin; Zhou, Lequn; Hong, Song
2014-11-01
Urban growth is an unavoidable process caused by economic development and population growth. Traditional urban growth models represent the future urban growth pattern by repeating the historical urban growth regulations, which can lead to a lot of environmental problems. The Yangtze watershed is the largest and the most prosperous economic area in China, and it has been suffering from rapid urban growth from the 1970s. With the built-up area increasing from 23,238 to 31,054 km(2) during the period from 1980 to 2005, the watershed has suffered from serious nonpoint source (NPS) pollution problems, which have been mainly caused by the rapid urban growth. To protect the environment and at the same time maintain the economic development, a multiobjective optimization (MOP) is proposed to tradeoff the multiple objectives during the urban growth process of the Yangtze watershed. In particular, the four objectives of minimization of NPS pollution, maximization of GDP value, minimization of the spatial incompatibility between the land uses, and minimization of the cost of land-use change are considered by the MOP approach. Conventionally, a genetic algorithm (GA) is employed to search the Pareto solution set. In our MOP approach, a two-dimensional GA, rather than the traditional one-dimensional GA, is employed to assist with the search for the spatial optimization solution, where the land-use cells in the two-dimensional space act as genes in the GA. Furthermore, to confirm the superiority of the MOP approach over the traditional prediction approaches, a widely used urban growth prediction model, cellular automata (CA), is also carried out to allow a comparison with the Pareto solution of MOP. The results indicate that the MOP approach can make a tradeoff between the multiple objectives and can achieve an optimal urban growth pattern for Yangtze watershed, while the CA prediction model just represents the historical urban growth pattern as the future growth pattern. Moreover, according to the spatial clustering index, the urban growth pattern predicted through MOP is more reasonable. In summary, the proposed model provides a set of Pareto urban growth solutions, which compromise environmental and economic issues for the Yangtze watershed.
Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics
Prescott, Aaron M.; McCollough, Forest W.; Eldreth, Bryan L.; Binder, Brad M.; Abel, Steven M.
2016-01-01
Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. The dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i) whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii) what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB). In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB). Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations, and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms underlying ethylene signaling. Analysis of each network topology results in predictions about changes that occur in network components that can be experimentally tested to give insights into which, if either, network underlies ethylene responses. PMID:27625669
Real-Time Maps of Fluid Flow Fields in Porous Biomaterials
Mack, Julia J.; Youssef, Khalid; Noel, Onika D.V.; Lake, Michael P.; Wu, Ashley; Iruela-Arispe, M. Luisa; Bouchard, Louis-S.
2013-01-01
Mechanical forces such as fluid shear have been shown to enhance cell growth and differentiation, but knowledge of their mechanistic effect on cells is limited because the local flow patterns and associated metrics are not precisely known. Here we present real-time, noninvasive measures of local hydrodynamics in 3D biomaterials based on nuclear magnetic resonance. Microflow maps were further used to derive pressure, shear and fluid permeability fields. Finally, remodeling of collagen gels in response to precise fluid flow parameters was correlated with structural changes. It is anticipated that accurate flow maps within 3D matrices will be a critical step towards understanding cell behavior in response to controlled flow dynamics. PMID:23245922
Yang, Yan-Wen; Jiang, Yuan-Tong
2016-08-01
Study on 5 effective components and 6 soil enzyme activities of 2 different growth patterns, analyse the dates with the canonical correlation analysis, In order to reveal the relations between the effective components and soil enzyme activities. The result showed that they had a great relation between the effective components and soil enzyme activities, the activity of the same enzyme in humus soil was higher than that in farmland soil. Growth pattern of farmland soil, if the invertase and phosphatase activity were too high, which would inhibit the accumulation of total ginsenoside, water-miscible total proteins and total amino acid; Growth pattern of humus soil, if the invertase, urease and phosphatase activity were too high, which would inhibit the accumulation of total ginsenoside and the total essential oils. Integral soil enzyme activity can be used as a index of soil quality, which, together with other growth factors. The appropriate enzyme activity can accelerate the circulation and transformation of all kinds of material in the soil, improve effectively components accumulation. Copyright© by the Chinese Pharmaceutical Association.
Diel growth dynamics in tree stems: linking anatomy and ecophysiology.
Steppe, Kathy; Sterck, Frank; Deslauriers, Annie
2015-06-01
Impacts of climate on stem growth in trees are studied in anatomical, ecophysiological, and ecological disciplines, but an integrative framework to assess those impacts remains lacking. In this opinion article, we argue that three research efforts are required to provide that integration. First, we need to identify the missing links in diel patterns in stem diameter and stem growth and relate those patterns to the underlying mechanisms that control water and carbon balance. Second, we should focus on the understudied mechanisms responsible for seasonal impacts on such diel patterns. Third, information on stem anatomy and ecophysiology should be integrated in the same experiments and mechanistic plant growth models to capture both diel and seasonal scales. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eman, J.L.; Randolph, J.C.; Fan, Weihong
The transient effects of an 80-year climate change scenario on 56 tree species are evaluated within the regional forested landscape matrix of Wisconsin, Michigan, Illinois, Indiana, and Ohio. The JABOWA-II forest growth model was integrated with a GIS housing several federally-produced databases which were vital for input file development. A 4km{sup 2} resolution enabled high parameter specificity for each of the 54,345 representative 100m{sup 2} plots. Ten iterations of simulated growth response at each site followed model calibration. Changes in relative regional dominance and shifts in population centroids over two periods (1981-2020 and 2020-2060) indicated that most responses were species-specific.more » Notable among these were the substantial dominance increases of Populus tremuloides and Quercus alba from 1981-2020. Shared response patterns included conifers` centroid shifts to the northwest and overall dominance reductions.« less
NASA Astrophysics Data System (ADS)
Saad, Ali; Gandin, Charles-André; Bellet, Michel; Shevchenko, Natalia; Eckert, Sven
2015-11-01
Freckles are common defects in industrial casting. They result from thermosolutal convection due to buoyancy forces generated from density variations in the liquid. The present paper proposes a numerical analysis for the formation of channel segregation using the three-dimensional (3D) cellular automaton (CA)—finite element (FE) model. The model integrates kinetics laws for the nucleation and growth of a microstructure with the solution of the conservation equations for the casting, while introducing an intermediate modeling scale for a direct representation of the envelope of the dendritic grains. Directional solidification of a cuboid cell is studied. Its geometry, the alloy chosen as well as the process parameters are inspired from experimental observations recently reported in the literature. Snapshots of the convective pattern, the solute distribution, and the morphology of the growth front are qualitatively compared. Similitudes are found when considering the coupled 3D CAFE simulations. Limitations of the model to reach direct simulation of the experiments are discussed.
The growth pattern and fuel life cycle analysis of the electricity consumption of Hong Kong.
To, W M; Lai, T M; Lo, W C; Lam, K H; Chung, W L
2012-06-01
As the consumption of electricity increases, air pollutants from power generation increase. In metropolitans such as Hong Kong and other Asian cities, the surge of electricity consumption has been phenomenal over the past decades. This paper presents a historical review about electricity consumption, population, and change in economic structure in Hong Kong. It is hypothesized that the growth of electricity consumption and change in gross domestic product can be modeled by 4-parameter logistic functions. The accuracy of the functions was assessed by Pearson's correlation coefficient, mean absolute percent error, and root mean squared percent error. The paper also applies the life cycle approach to determine carbon dioxide, methane, nitrous oxide, sulfur dioxide, and nitrogen oxide emissions for the electricity consumption of Hong Kong. Monte Carlo simulations were applied to determine the confidence intervals of pollutant emissions. The implications of importing more nuclear power are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Novel insight into the origin of the growth dynamics of sauropod dinosaurs.
Cerda, Ignacio Alejandro; Chinsamy, Anusuya; Pol, Diego; Apaldetti, Cecilia; Otero, Alejandro; Powell, Jaime Eduardo; Martínez, Ricardo Nestor
2017-01-01
Sauropod dinosaurs include the largest terrestrial animals and are considered to have uninterrupted rapid rates of growth, which differs from their more basal relatives, which have a slower cyclical growth. Here we examine the bone microstructure of several sauropodomorph dinosaurs, including basal taxa, as well as the more derived sauropods. Although our results agree that the plesiomorphic condition for Sauropodomorpha is cyclical growth dynamics, we found that the hypothesized dichotomy between the growth patterns of basal and more derived sauropodomorphs is not supported. Here, we show that sauropod-like growth dynamics of uninterrupted rapid growth also occurred in some basal sauropodomorphs, and that some basal sauropods retained the plesiomorphic cyclical growth patterns. Among the sauropodomorpha it appears that the basal taxa exploited different growth strategies, but the more derived Eusauropoda successfully utilized rapid, uninterrupted growth strategies.
Novel insight into the origin of the growth dynamics of sauropod dinosaurs
Cerda, Ignacio Alejandro; Chinsamy, Anusuya; Pol, Diego; Apaldetti, Cecilia; Otero, Alejandro; Martínez, Ricardo Nestor
2017-01-01
Sauropod dinosaurs include the largest terrestrial animals and are considered to have uninterrupted rapid rates of growth, which differs from their more basal relatives, which have a slower cyclical growth. Here we examine the bone microstructure of several sauropodomorph dinosaurs, including basal taxa, as well as the more derived sauropods. Although our results agree that the plesiomorphic condition for Sauropodomorpha is cyclical growth dynamics, we found that the hypothesized dichotomy between the growth patterns of basal and more derived sauropodomorphs is not supported. Here, we show that sauropod-like growth dynamics of uninterrupted rapid growth also occurred in some basal sauropodomorphs, and that some basal sauropods retained the plesiomorphic cyclical growth patterns. Among the sauropodomorpha it appears that the basal taxa exploited different growth strategies, but the more derived Eusauropoda successfully utilized rapid, uninterrupted growth strategies. PMID:28654696
Fetal malnutrition--the price of upright posture?
Briend, A
1979-01-01
The pattern of preterm fetal growth faltering, normally seen in man, differs from that observed in animals. This type of fetal growth cannot be considered as an adaptation to facilitate birth but is more likely to be due to rapid evolution and imperfect adaptation to the upright posture. The pattern of posture and physical activity during pregnancy may therefore be an important determinant of fetal growth. Differences in intrauterine nutrition existing between social groups, usually ascribed to variations of maternal diet and nutrition, may well result from different patterns of maternal activity in the weeks preceding birth. PMID:476446
Singh, Bir; Cheek, Hannah D; Haigler, Candace H
2009-07-01
Use of a synthetic auxin (naphthalene-1-acetic acid, NAA) to start (Gossypium hirsutum) ovule/fiber cultures hindered fiber secondary wall cellulose synthesis compared with natural auxin (indole-3-acetic acid, IAA). In contrast, NAA promoted fiber elongation and ovule weight gain, which resulted in larger ovule/fiber units. To reach these conclusions, fiber and ovule growth parameters were measured and cell wall characteristics were examined microscopically. The differences in fiber from NAA and IAA culture were underpinned by changes in the expression patterns of marker genes for three fiber developmental stages (elongation, the transition stage, and secondary wall deposition), and these gene expression patterns were also analyzed quantitatively in plant-grown fiber. The results demonstrate that secondary wall cellulose synthesis: (1) is under strong transcriptional control that is influenced by auxin; and (2) must be specifically characterized in the cotton ovule/fiber culture system given the many protocol variables employed in different laboratories.
Mode characteristics of nonplanar double-heterojunction and large-optical-cavity laser structures
NASA Technical Reports Server (NTRS)
Butler, J. K.; Botez, D.
1982-01-01
Mode behavior of nonplanar double-heterojunction (DH) and large-optical-cavity (LOC) lasers is investigated using the effective index method to model the lateral field distribution. The thickness variations of various layers for the devices discussed are correlated with the growth characteristics of liquid-phase epitaxy over topographical features (channels, mesas) etched into the substrate. The effective dielectric profiles of constricted double-heterojunction (CDH)-LOC lasers show a strong influence on transverse mode operation: the fundamental transverse mode (i.e., in the plane perpendicular to the junction) may be laterally index-guided, while the first (high)-order mode is laterally index-antiguided. The analytical model developed uses a smoothly varying hyperbolic cosine distribution to characterize lateral index variations. The waveguide model is applied to several lasers to illustrate conditions necessary to convert leaky modes to trapped ones via the active-region gain distribution. Theoretical radiation patterns are calculated using model parameters, and matched to an experimental far-field pattern.
Growth reference for Saudi preschool children: LMS parameters and percentiles.
Shaik, Shaffi Ahamed; El Mouzan, Mohammad Issa; AlSalloum, Abdullah Abdulmohsin; AlHerbish, Abdullah Sulaiman
2016-01-01
Previous growth charts for Saudi children have not included detailed tables and parameters needed for research and incorporation in electronic records. The objective of this report is to publish the L, M, and S parameters and percentiles as well as the corresponding growth charts for Saudi preschool children. Community-based survey and measurement of growth parameters in a sample selected by a multistage probability procedure. A stratified listing of the Saudi population. Raw data from the previous nationally-representative sample were reanalyzed using the Lambda-Mu-Sigma (LMS) methodology to calculate the L, M, and S parameters of percentiles (from 3rd to 97th) for weight, length/height, head circumference, and body mass index-for-age, and weight for-length/height for boys and girls from birth to 60 months. Length or height and weight of Saudi preschool children. There were 15601 Saudi children younger than 60 months of age, 7896 (50.6 %) were boys. The LMS parameters for weight for age from birth to 60 months (5 years) are reported for the 3rd, 5th, 10th, 25th, 50th, 75th, 90th, 95th, and 97th percentiles as well as the corresponding graphs. Similarly, the LMS parameters for length/height-for-age, head circumference-for-age, weight-for-length/height and body mass index-for-age (BMi) are shown with the corresponding graphs for boys and girls. Using the data in this report, clinicians and researchers can assess the growth of Saudi preschool children. The report does not reflect interregional variations in growth.
ERIC Educational Resources Information Center
Sheaff, Katharine
The 2000 Census reveals four patterns of change in rural America. Rural areas in states such as Florida and Arizona are gaining population due to high retiree growth. These areas will experience growth in service sector jobs that have low pay and low educational requirements. Florida and Arizona trail the nation in high school and college…
Stemwood production patterns in ponderosa pine: effects of stand dynamics and other factors
Michael J. Arbaugh; David L. Peterson
1993-01-01
Growth patterns of vertical stems in nine ponderosa pines from a stand in the southern Sierra Nevada were analyzed for recent changes due to stand dominance position, age, climate, and ozone exposure. Large positive correlations were found between increments in volume growth and basal area at d.b.h. The results indicated that patterns of wood distribution along the...
Selvakumar, Govindan; Bhatt, Ravindra M; Upreti, Kaushal K; Bindu, Gurupadam Hema; Shweta, Kademani
2015-05-01
The water potential of rhizospheric soil is a key parameter that determines the availability of water, oxygen, and nutrients to plants and microbes. Recent global warming trends and erratic precipitation patterns have resulted in the emergence of drought as a major constraint of agricultural productivity. Though several strategies are being evaluated to address this issue, a novel approach is the utilization of microbes for alleviation of drought stress effects in crops. Citricoccus zhacaiensis B-4 is an osmotolerant actinobacterium isolated from banana rhizosphere on mannitol supplemented medium (-2.92 MPa osmotic potential). This isolate expressed plant growth promotion traits viz, IAA, GA3 production, phosphate, zinc solubilization, ACC deaminase activity and ammonia production under PEG induced osmotic stress and non-stress conditions. Under in vitro osmotic conditions, biopriming with the actinobacterium improved the percent germination, seedling vigour and germination rate of onion seeds (cv. Arka Kalyan) at osmotic potentials up to -0.8 MPa. Considering its novelty, osmotolerance and plant growth promoting traits, biopriming with C. zhacaiensis is suggested as a viable option for the promotion of onion seed germination under drought stressed environments.
Impact of biology knowledge on the conservation and management of large pelagic sharks.
Yokoi, Hiroki; Ijima, Hirotaka; Ohshimo, Seiji; Yokawa, Kotaro
2017-09-06
Population growth rate, which depends on several biological parameters, is valuable information for the conservation and management of pelagic sharks, such as blue and shortfin mako sharks. However, reported biological parameters for estimating the population growth rates of these sharks differ by sex and display large variability. To estimate the appropriate population growth rate and clarify relationships between growth rate and relevant biological parameters, we developed a two-sex age-structured matrix population model and estimated the population growth rate using combinations of biological parameters. We addressed elasticity analysis and clarified the population growth rate sensitivity. For the blue shark, the estimated median population growth rate was 0.384 with a range of minimum and maximum values of 0.195-0.533, whereas those values of the shortfin mako shark were 0.102 and 0.007-0.318, respectively. The maturity age of male sharks had the largest impact for blue sharks, whereas that of female sharks had the largest impact for shortfin mako sharks. Hypotheses for the survival process of sharks also had a large impact on the population growth rate estimation. Both shark maturity age and survival rate were based on ageing validation data, indicating the importance of validating the quality of these data for the conservation and management of large pelagic sharks.
Direct growth of single-crystalline III–V semiconductors on amorphous substrates
Chen, Kevin; Kapadia, Rehan; Harker, Audrey; ...
2016-01-27
The III–V compound semiconductors exhibit superb electronic and optoelectronic properties. Traditionally, closely lattice-matched epitaxial substrates have been required for the growth of high-quality single-crystal III–V thin films and patterned microstructures. To remove this materials constraint, here we introduce a growth mode that enables direct writing of single-crystalline III–V’s on amorphous substrates, thus further expanding their utility for various applications. The process utilizes templated liquid-phase crystal growth that results in user-tunable, patterned micro and nanostructures of single-crystalline III–V’s of up to tens of micrometres in lateral dimensions. InP is chosen as a model material system owing to its technological importance. Themore » patterned InP single crystals are configured as high-performance transistors and photodetectors directly on amorphous SiO 2 growth substrates, with performance matching state-of-the-art epitaxially grown devices. In conclusion, the work presents an important advance towards universal integration of III–V’s on application-specific substrates by direct growth.« less
Direct growth of single-crystalline III–V semiconductors on amorphous substrates
Chen, Kevin; Kapadia, Rehan; Harker, Audrey; Desai, Sujay; Seuk Kang, Jeong; Chuang, Steven; Tosun, Mahmut; Sutter-Fella, Carolin M.; Tsang, Michael; Zeng, Yuping; Kiriya, Daisuke; Hazra, Jubin; Madhvapathy, Surabhi Rao; Hettick, Mark; Chen, Yu-Ze; Mastandrea, James; Amani, Matin; Cabrini, Stefano; Chueh, Yu-Lun; Ager III, Joel W.; Chrzan, Daryl C.; Javey, Ali
2016-01-01
The III–V compound semiconductors exhibit superb electronic and optoelectronic properties. Traditionally, closely lattice-matched epitaxial substrates have been required for the growth of high-quality single-crystal III–V thin films and patterned microstructures. To remove this materials constraint, here we introduce a growth mode that enables direct writing of single-crystalline III–V's on amorphous substrates, thus further expanding their utility for various applications. The process utilizes templated liquid-phase crystal growth that results in user-tunable, patterned micro and nanostructures of single-crystalline III–V's of up to tens of micrometres in lateral dimensions. InP is chosen as a model material system owing to its technological importance. The patterned InP single crystals are configured as high-performance transistors and photodetectors directly on amorphous SiO2 growth substrates, with performance matching state-of-the-art epitaxially grown devices. The work presents an important advance towards universal integration of III–V's on application-specific substrates by direct growth. PMID:26813257
Zhou, Xuan; Castro, Nathan J.; Zhu, Wei; Cui, Haitao; Aliabouzar, Mitra; Sarkar, Kausik; Zhang, Lijie Grace
2016-01-01
3D printing and ultrasound techniques are showing great promise in the evolution of human musculoskeletal tissue repair and regeneration medicine. The uniqueness of the present study was to combine low intensity pulsed ultrasound (LIPUS) and advanced 3D printing techniques to synergistically improve growth and osteogenic differentiation of human mesenchymal stem cells (MSC). Specifically, polyethylene glycol diacrylate bioinks containing cell adhesive Arginine-Glycine-Aspartic acid-Serene (RGDS) peptide and/or nanocrystalline hydroxyapatite (nHA) were used to fabricate 3D scaffolds with different geometric patterns via novel table-top stereolithography 3D printer. The resultant scaffolds provide a highly porous and interconnected 3D environment to support cell proliferation. Scaffolds with small square pores were determined to be the optimal geometric pattern for MSC attachment and growth. The optimal LIPUS working parameters were determined to be 1.5 MHz, 20% duty cycle with 150 mW/cm2 intensity. Results demonstrated that RGDS peptide and nHA containing 3D printed scaffolds under LIPUS treatment can greatly promote MSC proliferation, alkaline phosphatase activity, calcium deposition and total protein content. These results illustrate the effectiveness of the combination of LIPUS and biomimetic 3D printing scaffolds as a valuable combinatorial tool for improved MSC function, thus make them promising for future clinical and various regenerative medicine application. PMID:27597635
Bayesian B-spline mapping for dynamic quantitative traits.
Xing, Jun; Li, Jiahan; Yang, Runqing; Zhou, Xiaojing; Xu, Shizhong
2012-04-01
Owing to their ability and flexibility to describe individual gene expression at different time points, random regression (RR) analyses have become a popular procedure for the genetic analysis of dynamic traits whose phenotypes are collected over time. Specifically, when modelling the dynamic patterns of gene expressions in the RR framework, B-splines have been proved successful as an alternative to orthogonal polynomials. In the so-called Bayesian B-spline quantitative trait locus (QTL) mapping, B-splines are used to characterize the patterns of QTL effects and individual-specific time-dependent environmental errors over time, and the Bayesian shrinkage estimation method is employed to estimate model parameters. Extensive simulations demonstrate that (1) in terms of statistical power, Bayesian B-spline mapping outperforms the interval mapping based on the maximum likelihood; (2) for the simulated dataset with complicated growth curve simulated by B-splines, Legendre polynomial-based Bayesian mapping is not capable of identifying the designed QTLs accurately, even when higher-order Legendre polynomials are considered and (3) for the simulated dataset using Legendre polynomials, the Bayesian B-spline mapping can find the same QTLs as those identified by Legendre polynomial analysis. All simulation results support the necessity and flexibility of B-spline in Bayesian mapping of dynamic traits. The proposed method is also applied to a real dataset, where QTLs controlling the growth trajectory of stem diameters in Populus are located.
NASA Astrophysics Data System (ADS)
Redondo-Cubero, A.; David-Bosne, E.; Wahl, U.; Miranda, P.; da Silva, M. R.; Correia, J. G.; Lorenz, K.
2018-03-01
Strain is a critical parameter affecting the growth and the performance of many semiconductor systems but, at the same time, the accurate determination of strain profiles in heterostructures can be challenging, especially at the nanoscale. Ion channelling/blocking is a powerful technique for the detection of the strain state of thin films, normally carried out through angular scans with conventional particle detectors. Here we report the novel application of position sensitive detectors for the evaluation of the strain in a series of AlInN/GaN heterostructures with different compositions and thicknesses. The tetragonal strain is varied from compressive to tensile and analysed through bidimensional blocking patterns. The results demonstrate that strain can be correctly quantified when compared to Monte Carlo channelling simulations, which are essential because of the presence of ion steering effects at the interface between the layer and the substrate. Despite this physical limitation caused by ion steering, our results show that full bidimensional patterns can be applied to detect fingerprints and enhance the accuracy for most critical cases, in which the angular shift associated to the lattice distortion is below the critical angle for channelling.
Engineered ZnO nanowire arrays using different nanopatterning techniques
NASA Astrophysics Data System (ADS)
Volk, János; Szabó, Zoltán; Erdélyi, Róbert; Khánh, Nguyen Q.
2012-02-01
The impact of various masking patterns and template layers on the wet chemically grown vertical ZnO nanowire arrays was investigated. The nanowires/nanorods were seeded at nucleation windows which were patterned in a mask layer using various techniques such as electron beam lithography, nanosphere photolithography, and atomic force microscope type nanolithography. The compared ZnO templates included single crystals, epitaxial layer, and textured polycrystalline films. Scanning electron microscopy revealed that the alignment and crystal orientation of the nanowires were dictated by the underlying seed layer, while their geometry can be tuned by the parameters of the certain nanopatterning technique and of the wet chemical process. The comparison of the alternative nanolithography techniques showed that using direct writing methods the diameter of the ordered ZnO nanowires can be as low as 30-40 nm at a density of 100- 1000 NW/μm2 in a very limited area (10 μm2-1 mm2). Nanosphere photolithography assisted growth, on the other hand, favors thicker nanopillars (~400 nm) and enables large-area, low-cost patterning (1-100 cm2). These alternative lowtemperature fabrication routes can be used for different novel optoelectronic devices, such as nanorod based ultraviolet photodiode, light emitting device, and waveguide laser.
NASA Astrophysics Data System (ADS)
Bae, Euiwon; Bai, Nan; Aroonnual, Amornrat; Bhunia, Arun K.; Robinson, J. Paul; Hirleman, E. Daniel
2009-05-01
In order to maximize the utility of the optical scattering technology in the area of bacterial colony identification, it is necessary to have a thorough understanding of how bacteria species grow into different morphological aggregation and subsequently function as distinctive optical amplitude and phase modulators to alter the incoming Gaussian laser beam. In this paper, a 2-dimentional reaction-diffusion (RD) model with nutrient concentration, diffusion coefficient, and agar hardness as variables is investigated to explain the correlation between the various environmental parameters and the distinctive morphological aggregations formed by different bacteria species. More importantly, the morphological change of the bacterial colony against time is demonstrated by this model, which is able to characterize the spatio-temporal patterns formed by the bacteria colonies over their entire growth curve. The bacteria population density information obtained from the RD model is mathematically converted to the amplitude/phase modulation factor used in the scalar diffraction theory which predicts the light scattering patterns for bacterial colonies. The conclusions drawn from the RD model combined with the scalar diffraction theory are useful in guiding the design of the optical scattering instrument aiming at bacteria colony detection and classification.
Smith, Aaron D; Holtzapple, Mark T
2010-12-01
The MixAlco process is a biorefinery based on the production of carboxylic acids via mixed-culture fermentation. Nitrogen is essential for microbial growth and metabolism, and may exist in soluble (e.g., ammonia) or insoluble forms (e.g., cells). Understanding the dynamics of nitrogen flow in a countercurrent fermentation is necessary to develop control strategies to maximize performance. To estimate nitrogen concentration profiles in a four-stage fermentation train, a mass balance-based segregated-nitrogen model was developed, which uses separate balances for solid- and liquid-phase nitrogen with nitrogen reaction flux between phases assumed to be zero. Comparison of predictions with measured nitrogen profiles from five trains, each with a different nutrient contacting pattern, shows the segregated-nitrogen model captures basic behavior and is a reasonable tool for estimating nitrogen profiles. The segregated-nitrogen model may be used to (1) estimate optimal nitrogen loading patterns, (2) develop a reaction-based model, (3) understand influence of model inputs (e.g., operating parameters, feedstock properties, nutrient loading pattern) on the steady-state nitrogen profile, and (4) determine the direction of the nitrogen reaction flux between liquid and solid phases. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Chapter 8: Demographic characteristics and population modeling
Scott H. Stoleson; Mary J. Whitfield; Mark K. Sogge
2000-01-01
An understanding of the basic demography of a species is necessary to estimate and evaluate population trends. The relative impact of different demographic parameters on growth rates can be assessed through a sensitivity analysis, in which different parameters are altered singly to assess the effect on population growth. Identification of critical parameters can allow...
Shifts in growth strategies reflect tradeoffs in cellular economics
Molenaar, Douwe; van Berlo, Rogier; de Ridder, Dick; Teusink, Bas
2009-01-01
The growth rate-dependent regulation of cell size, ribosomal content, and metabolic efficiency follows a common pattern in unicellular organisms: with increasing growth rates, cell size and ribosomal content increase and a shift to energetically inefficient metabolism takes place. The latter two phenomena are also observed in fast growing tumour cells and cell lines. These patterns suggest a fundamental principle of design. In biology such designs can often be understood as the result of the optimization of fitness. Here we show that in basic models of self-replicating systems these patterns are the consequence of maximizing the growth rate. Whereas most models of cellular growth consider a part of physiology, for instance only metabolism, the approach presented here integrates several subsystems to a complete self-replicating system. Such models can yield fundamentally different optimal strategies. In particular, it is shown how the shift in metabolic efficiency originates from a tradeoff between investments in enzyme synthesis and metabolic yields for alternative catabolic pathways. The models elucidate how the optimization of growth by natural selection shapes growth strategies. PMID:19888218