Sample records for growth promoting agents

  1. Bacteria as growth-promoting agents for citrus rootstocks.

    PubMed

    Giassi, Valdionei; Kiritani, Camila; Kupper, Katia Cristina

    2016-09-01

    The microbial community plays an essential role in maintaining the ecological balance of soils. Interactions between microorganisms and plants have a major influence on the nutrition and health of the latter, and growth-promoting rhizobacteria can be used to improve plant development through a wide range of mechanisms. Therefore, the objective of the present study was to evaluate bacteria as growth-promoting agents for citrus rootstocks. A total of 30 bacterial isolates (11 of Bacillus spp., 11 actinobacteria, and 8 lactic acid bacteria) were evaluated in vitro for indoleacetic acid production, phosphate solubilization, and nitrogen (N) fixation. In vivo testing consisted of growth promotion trials of the bacterial isolates that yielded the best results on in vitro tests with three rootstocks: Swingle citrumelo [Citrus×paradisi Macfad cv. Duncan×Poncirus trifoliata (L.) Raf.], Sunki mandarin (Citrus sunki Hort. ex Tan), and rangpur (Citrus×limonia Osbeck). The parameters of interest were height, number of leaves, stem diameter, shoot and root dry mass, and total dry mass at 150days after germination. The results showed that most bacterial isolates were capable of IAA production. Only one lactic acid bacterium isolate (BL06) solubilized phosphate, with a high solubilization index (PSI>3). In the actinobacteria group, isolates ACT01 (PSI=2.09) and ACT07 (PSI=2.01) exhibited moderate phosphate-solubilizing properties. Of the Bacillus spp. isolates, only CPMO6 and BM17 solubilized phosphate. The bacterial isolates that most fixated nitrogen were BM17, ACT11, and BL24. In the present study, some bacteria were able to promote growth of citrus rootstocks; however, this response was dependent on plant genotype and isolate. Bacillus spp. BM16 and CPMO4 were able to promote growth of Swingle citrumelo. In Sunki mandarin plants, the best treatment results were obtained with BM17 (Bacillus sp.) and ACT11 (actinobacteria). For Rangpur lime rootstock, only BM05 (Bacillus sp

  2. Modulation of normal human melanocyte dendricity by growth-promoting agents.

    PubMed

    Nakazawa, K; Damour, O; Collombel, C

    1993-12-01

    Dendrite formation and extension, which comprise a characteristic morphology of human normal melanocytes in the skin, represent one of the functional activities of melanocytes, the ability to transfer melanosomes into neighboring keratinocytes. However, the morphology of the melanocyte in vitro is usually quite different from that observed in vivo. it is probably due to the hyperproliferative condition of the melanocytes in culture. No studies have ever compared the effects of a single factor on both dendricity and proliferation at the same time. Therefore, we have compared the effects of six growth-promoting agents commonly used for melanocyte cultures on dendrite formation and proliferation. The addition of agents that increase the intracellular levels of cyclic adenosine monophosphate (cAMP)--dibutyryl cyclic adenosine monophosphate (db cAMP; 1 mM) or isobutylmethyl xanthine (IBMX; 0.1 mM)--had a strong effect on dendrite formation and a negative effect on proliferation. This was especially true with db cAMP. In the presence of 2% or 5% of heat-inactivated fetal bovine serum (FBS), dendrite formation was significantly increased as was proliferation. The number of dendrites was decreased in the culture with 12-o-tetradecanoylphorbol-13-acetate (TPA), but cell growth was slightly increased. With human recombinant basic fibroblast growth factor (bFGF) (0.5, 1.0 ng/ml) in the presence of bovine pituitary extract (BPE) (60 micrograms/ml), cell growth was increased. With 2 ng/ml of bFGF, however, a strong inhibitory effect on proliferation was observed. However, dendrite formation was constant at all concentrations of bFGF tested (0.5, 1.0 or 2.0 ng/ml) with BPE (30 or 60 micrograms/ml). In this study, we have demonstrated that dendrite formation was suppressed by the reagents that stimulate melanocyte proliferation, and vice versa, with the only exception being heat-inactivated FBS. Both dendrite formation and proliferation were induced by the heat-inactivated FBS

  3. Synthesis of tritium-labeled cyadox, a promising antimicrobial growth-promoting agent with high specific activity.

    PubMed

    Harnud, Sechenchogt; Zhang, Aiqun; Yuan, Zonghui

    2018-05-23

    Cyadox is a new antimicrobial growth-promoting agent for food-producing animals. Studies on radiolabeled compounds enable the use of sensitive radiometric analytical methods and help in the elucidation of metabolic and elimination pathways. In the present study, 6-[ 3 H]-cyadox with a high specific activity of 2.08 Ci/mmol was prepared by the catalytic bromine-tritium exchange of 4-bromo-2-nitroaniline followed by a three-step microscale synthesis, giving a high yield between 36.16% and 94.75%. Copyright © 2018. Published by Elsevier Ltd.

  4. Neuronal growth promoting sesquiterpene-neolignans; syntheses and biological studies.

    PubMed

    Cheng, Xu; Harzdorf, Nicole; Khaing, Zin; Kang, Danby; Camelio, Andrew M; Shaw, Travis; Schmidt, Christine E; Siegel, Dionicio

    2012-01-14

    The use of small molecules that can promote neuronal growth represents a promising approach to regenerative science. Along these lines we have developed separate short or modular syntheses of the natural products caryolanemagnolol and clovanemagnolol, small molecules previously shown to promote neuronal growth and induce choline acetyltransferase activity. The postulated biosynthetic pathways, potentially leading to the assembly of these molecules in nature, have guided the laboratory syntheses, allowing the preparation of both natural products in as few as two steps. With synthetic access to the compounds as single enantiomers we have examined clovanemagnolol's ability to promote the growth of embryonic hippocampal and cortical neurons. Clovanemagnolol has been shown to be a potent neurotrophic agent, promoting neuronal growth at concentrations of 10 nM.

  5. Bacillus pumilus strain YSPMK11 as plant growth promoter and bicontrol agent against Sclerotinia sclerotiorum.

    PubMed

    Kaushal, Manoj; Kumar, Ajay; Kaushal, Rajesh

    2017-06-01

    A study was executed in a direction to attenuate Sclerotinia stalk rot (SSR) disease through biocontrol agent and also to enhance crop productivity. Culture filtrate of bacterial strain YSPMK11 inhibited growth of Sclerotinia sclerotiorum in vitro which also exhibited higher plant growth promoting attributes. Interaction studies revealed maximum (81.50%) growth inhibition at 35 °C and pH 7.0 after 72 h incubation period with 15% culture filtrate. Based upon 16S rRNA gene sequence strain, YSPMK11 was identified as Bacillus pumilus. Furthermore, the genome of this isolate was searched for antimicrobial lipopeptide, i.e., ItuD and SrfC genes. The PCR amplification results showed the presence of both these lipopeptide genes in isolate YSPMK11. Iturin A as antifungal compound was identified as major components of fraction through GC/MS. In field experiments, the application of strain YSPMK11 cell suspension (10 8 CFU/ml) suppressed disease severity by 93% and increased curd yield by 36% which was more that of commercially used fungicide in farmer practices under mid-hills of Himachal Pradesh. Conclusively, our study is first to demonstrate the effect of B. pumilus strain YSPMK11 in suppression of SSR under field conditions and would be employed as an efficient biocontrol agent to replace commercial fungicides in cauliflower cropping system. In addition, the presence of both lipopeptide genes (ItuD and SrfC) and iturin A in this isolate makes him potent strain for biological control application in agriculture.

  6. Biocontrol agents promote growth of potato pathogens, depending on environmental conditions.

    PubMed

    Cray, Jonathan A; Connor, Mairéad C; Stevenson, Andrew; Houghton, Jonathan D R; Rangel, Drauzio E N; Cooke, Louise R; Hallsworth, John E

    2016-05-01

    There is a pressing need to understand and optimize biological control so as to avoid over-reliance on the synthetic chemical pesticides that can damage environmental and human health. This study focused on interactions between a novel biocontrol-strain, Bacillus sp. JC12GB43, and potato-pathogenic Phytophthora and Fusarium species. In assays carried out in vitro and on the potato tuber, the bacterium was capable of near-complete inhibition of pathogens. This Bacillus was sufficiently xerotolerant (water activity limit for growth = 0.928) to out-perform Phytophthora infestans (~0.960) and challenge Fusarium coeruleum (~0.847) and Fusarium sambucinum (~0.860) towards the lower limits of their growth windows. Under some conditions, however, strain JC12GB43 stimulated proliferation of the pathogens: for instance, Fusarium coeruleum growth-rate was increased under chaotropic conditions in vitro (132 mM urea) by >100% and on tubers (2-M glycerol) by up to 570%. Culture-based assays involving macromolecule-stabilizing (kosmotropic) compatible solutes provided proof-of-principle that the Bacillus may provide kosmotropic metabolites to the plant pathogen under conditions that destabilize macromolecular systems of the fungal cell. Whilst unprecedented, this finding is consistent with earlier reports that fungi can utilize metabolites derived from bacterial cells. Unless the antimicrobial activities of candidate biocontrol strains are assayed over a full range of field-relevant parameters, biocontrol agents may promote plant pathogen infections and thereby reduce crop yields. These findings indicate that biocontrol activity, therefore, ought to be regarded as a mode-of-behaviour (dependent on prevailing conditions) rather than an inherent property of a bacterial strain. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Using Community Health Workers in Community-Based Growth Promotion: What Stakeholders Think

    ERIC Educational Resources Information Center

    Afulani, Patience A.; Awoonor-Williams, John K.; Opoku, Ernest C.; Asunka, Joseph

    2012-01-01

    The Nutrition and Malaria Control for Child Survival Project is a community-based growth promotion project that utilizes Community Health Workers (CHWs), referred to as Community Child Growth Promoters (CCGPs), as the principal change agents. The purpose of this study was to identify perceptions of key stakeholders about the project and the role…

  8. Hair growth-promoting effect of Carthamus tinctorius floret extract.

    PubMed

    Junlatat, Jintana; Sripanidkulchai, Bungorn

    2014-07-01

    The florets of Carthamus tinctorius L. have traditionally been used for hair growth promotion. This study aimed to examine the potential of hydroxysafflor yellow A-rich C. tinctorius extract (CTE) on hair growth both in vitro and in vivo. The effect of CTE on cell proliferation and hair growth-associated gene expression in dermal papilla cells and keratinocytes (HaCaT) was determined. In addition, hair follicles from mouse neonates were isolated and cultured in media supplemented with CTE. Moreover, CTE was applied topically on the hair-shaved skin of female C57BL/6 mice, and the histological profile of the skin was investigated. C. tinctorius floret ethanolic extract promoted the proliferation of both dermal papilla cells and HaCaT and significantly stimulated hair growth-promoting genes, including vascular endothelial growth factor and keratinocyte growth factor. In contrast, CTE suppressed the expression of transforming growth factor-β1 that is the hair loss-related gene. Furthermore, CTE treatment resulted in a significant increase in the length of cultured hair follicles and stimulated the growth of hair with local effects in mice. The results provided the preclinical data to support the potential use of CTE as a hair growth-promoting agent. Copyright © 2013 John Wiley & Sons, Ltd.

  9. The Hair Growth-Promoting Effect of Rumex japonicus Houtt. Extract

    PubMed Central

    Lee, Hyunkyoung; Kim, Na-Hyun; Yang, Hyeryeon; Bae, Seong Kyeong; Heo, Yunwi; Choudhary, Indu; Kwon, Young Chul; Byun, Jae Kuk; Yim, Hyeong Jun; Noh, Byung Seung; Heo, Jeong-Doo; Kim, Euikyung

    2016-01-01

    Rumex japonicus Houtt. is traditionally used as a medicinal plant to treat patients suffering from skin disease in Korea. However, the beneficial effect of Rumex japonicus Houtt. on hair growth has not been thoroughly examined. Therefore, the present study aims to investigate the hair growth-promoting effect of Rumex japonicus (RJ) Houtt. root extract using human dermal papilla cells (DPCs), HaCaT cells, and C57BL/6 mice model. RJ induced antiapoptotic and proliferative effects on DPCs and HaCaT cells by increasing Bcl-2/Bax ratio and activating cellular proliferation-related proteins, ERK and Akt. RJ also increased β-catenin via the inhibition of GSK-3β. In C57BL/6 mice model, RJ promoted the anagen induction and maintained its period. Immunohistochemistry analysis demonstrated that RJ upregulated Ki-67 and β-catenin expressions, suggesting that the hair growth effect of RJ may be mediated through the reinforcement of hair cell proliferation. These results provided important insights for the possible mechanism of action of RJ and its potential as therapeutic agent to promote hair growth. PMID:27974900

  10. Plant growth-promoting bacterial endophytes.

    PubMed

    Santoyo, Gustavo; Moreno-Hagelsieb, Gabriel; Orozco-Mosqueda, Ma del Carmen; Glick, Bernard R

    2016-02-01

    Bacterial endophytes ubiquitously colonize the internal tissues of plants, being found in nearly every plant worldwide. Some endophytes are able to promote the growth of plants. For those strains the mechanisms of plant growth-promotion known to be employed by bacterial endophytes are similar to the mechanisms used by rhizospheric bacteria, e.g., the acquisition of resources needed for plant growth and modulation of plant growth and development. Similar to rhizospheric plant growth-promoting bacteria, endophytic plant growth-promoting bacteria can act to facilitate plant growth in agriculture, horticulture and silviculture as well as in strategies for environmental cleanup (i.e., phytoremediation). Genome comparisons between bacterial endophytes and the genomes of rhizospheric plant growth-promoting bacteria are starting to unveil potential genetic factors involved in an endophytic lifestyle, which should facilitate a better understanding of the functioning of bacterial endophytes. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Plant Growth Promoting and Biocontrol Activity of Streptomyces spp. as Endophytes.

    PubMed

    Vurukonda, Sai Shiva Krishna Prasad; Giovanardi, Davide; Stefani, Emilio

    2018-03-22

    There has been many recent studies on the use of microbial antagonists to control diseases incited by soilborne and airborne plant pathogenic bacteria and fungi, in an attempt to replace existing methods of chemical control and avoid extensive use of fungicides, which often lead to resistance in plant pathogens. In agriculture, plant growth-promoting and biocontrol microorganisms have emerged as safe alternatives to chemical pesticides. Streptomyces spp. and their metabolites may have great potential as excellent agents for controlling various fungal and bacterial phytopathogens. Streptomycetes belong to the rhizosoil microbial communities and are efficient colonizers of plant tissues, from roots to the aerial parts. They are active producers of antibiotics and volatile organic compounds, both in soil and in planta , and this feature is helpful for identifying active antagonists of plant pathogens and can be used in several cropping systems as biocontrol agents. Additionally, their ability to promote plant growth has been demonstrated in a number of crops, thus inspiring the wide application of streptomycetes as biofertilizers to increase plant productivity. The present review highlights Streptomyces spp.-mediated functional traits, such as enhancement of plant growth and biocontrol of phytopathogens.

  12. Plant growth and resistance promoted by Streptomyces spp. in tomato.

    PubMed

    Dias, Maila P; Bastos, Matheus S; Xavier, Vanessa B; Cassel, Eduardo; Astarita, Leandro V; Santarém, Eliane R

    2017-09-01

    Plant Growth Promoting Rhizobacteria (PGPR) represent an alternative to improve plant growth and yield as well as to act as agents of biocontrol. This study characterized isolates of Streptomyces spp. (Stm) as PGPR, determined the antagonism of these isolates against Pectobacterium carotovorum subsp. brasiliensis (Pcb), evaluated the ability of Stm on promoting growth and modulating the defense-related metabolism of tomato plants, and the potential of Stm isolates on reducing soft rot disease in this species. The VOC profile of Stm was also verified. Promotion of plant growth was assessed indirectly through VOC emission and by direct interaction with Stm isolates in the roots. Evaluation of soft rot disease was performed in vitro on plants treated with Stm and challenged with Pcb. Enzymes related to plant defense were then analyzed in plants treated with three selected isolates of Stm, and PM1 was chosen for further Pcb-challenging experiment. Streptomyces spp. isolates displayed characteristics of PGPR. PM3 was the isolate with efficient antagonism against Pcb by dual-culture. Most of the isolates promoted growth of root and shoot of tomato plants by VOC, and PM5 was the isolate that most promoted growth by direct interaction with Stm. Soft rot disease and mortality of plants were significantly reduced when plants were treated with StmPM1. Modulation of secondary metabolism was observed with Stm treatment, and fast response of polyphenoloxidases was detected in plants pretreated with StmPM1 and challenged with Pcb. Peroxidase was significantly activated three days after infection with Pcb in plants pretreated with StmPM1. Results suggest that Streptomyces sp. PM1 and PM5 have the potential to act as PGPR. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells

    PubMed Central

    Choi, Nahyun; Shin, Soyoung; Song, Sun U.; Sung, Jong-Hyuk

    2018-01-01

    Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif) ligand 1 (CXCL1), platelet-derived endothelial cell growth factor (PD-ECGF), and platelet-derived growth factor-C (PDGF-C). Minoxidil increased extracellular signal–regulated kinases 1/2 (ERK1/2) phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration. PMID:29495622

  14. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells.

    PubMed

    Choi, Nahyun; Shin, Soyoung; Song, Sun U; Sung, Jong-Hyuk

    2018-02-28

    Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif) ligand 1 (CXCL1), platelet-derived endothelial cell growth factor (PD-ECGF), and platelet-derived growth factor-C (PDGF-C). Minoxidil increased extracellular signal-regulated kinases 1/2 (ERK1/2) phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration.

  15. Biophysical basis of growth promotion in primary leaves of Phaseolus vulgaris L. by hormones versus light: solute accumulation and the growth potential

    NASA Technical Reports Server (NTRS)

    Brock, T. G.; Cleland, R. E.

    1990-01-01

    Rapid cell enlargement in primary leaves of bean is induced by bright white light (WL), gibberellic acid (GA3) or the cytokinin N6-benzyladenine (BA). In previous studies it has been show that all three agents cause an increase in wall extensibility, although by different mechanisms. Here we examine the effects of the three growth promoters on the osmotic potential difference (delta Psi), the accumulation of solutes (delta TSC), the wall yield threshold (Y) and the growth potential (delta Psi -Y). With GA3 and BA, but not WL, there was a rapid decline in delta Psi as measured by the osmotic concentration of expressed sap. Unlike WL, neither GA3 nor BA promoted the accumulation of osmotic solutes. The decline in delta Psi, however, was apparently counteracted by a decline in Y since the growth potential, as measured by the external-osmoticum method, remained unchanged. It is concluded that WL, GA3 and BA all promote cell enlargement of bean leaves by increasing one cellular growth parameter, wall extensibility. Only WL, however, promotes osmotic adjustment during growth.

  16. Growth Promoting Rhizospheric and Endophytic Bacteria from Curcuma longa L. as Biocontrol Agents against Rhizome Rot and Leaf Blight Diseases.

    PubMed

    Vinayarani, G; Prakash, H S

    2018-06-01

    Plant growth promoting rhizobacteria and endophytic bacteria were isolated from different varieties of turmeric ( Curcuma longa L.) from South India. Totally 50 strains representing, 30 PGPR and 20 endophytic bacteria were identified based on biochemical assays and 16S rDNA sequence analysis. The isolates were screened for antagonistic activity against Pythium aphanidermatum (Edson) Fitzp., and Rhizoctonia solani Kuhn., causing rhizome rot and leaf blight diseases in turmeric, by dual culture and liquid culture assays. Results revealed that only five isolates of PGPR and four endophytic bacteria showed more than 70% suppression of test pathogens in both assays. The SEM studies of interaction zone showed significant ultrastructural changes of the hyphae like shriveling, breakage and desication of the pathogens by PGPR B. cereus (RBac-DOB-S24) and endophyte P. aeruginosa (BacDOB-E19). Selected isolates showed multiple Plant growth promoting traits. The rhizome bacterization followed by soil application of B. cereus (RBacDOB-S24) showed lowest Percent Disease Incidence (PDI) of rhizome rot and leaf blight, 16.4% and 15.5% respectively. Similarly, P. aeruginosa (BacDOB-E19) recorded PDI of rhizome rot (17.5%) and leaf blight (17.7%). The treatment of these promising isolates exhibited significant increase in plant height and fresh rhizome yield/plant in comparison with untreated control under greenhouse condition. Thereby, these isolates can be exploited as a potential biocontrol agent for suppressing rhizome rot and leaf blight diseases in turmeric.

  17. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taghavi, S.; van der Lelie, D.; Hoffman, A.

    2010-05-13

    exploited to improve establishment and sustainable production of poplar as an energy feedstock on marginal, non-agricultural soils using endophytic bacteria as growth promoting agents. Poplar is considered as the model tree species for the production of lignocellulosic biomass destined for biofuel production. The plant growth promoting endophytic bacterium Enterobacter sp. 638 can improve the growth of poplar on marginal soils by as much as 40%. This prompted us to sequence the genome of this strain and, via comparative genomics, identify functions essential for the successful colonization and endophytic association with its poplar host. Analysis of the genome sequence, combined with metabolite analysis and quantitative PCR, pointed to a remarkable interaction between Enterobacter sp. 638 and its poplar host with the endophyte responsible for the production of a phytohormone, and a precursor for another that poplar is unable to synthesize, and where the production of the plant growth promoting compounds depended on the presence of plant synthesized compounds, such as sucrose, in the growth medium. Our results provide the basis to better understanding the synergistic interactions between poplar and Enterobacter sp. 638. This information can be further exploited to improve establishment and sustainable production of poplar on marginal, non-agricultural soils using endophytic bacteria such as Enterobacter sp. 638 as growth promoting agents.« less

  18. Biocontrol of Botrytis cinerea and Calonectria gracilis by eucalypts growth promoters Bacillus spp.

    PubMed

    Paz, Isabel Cristina Padula; Santin, Rita de Cássia Madail; Guimarães, Alexandre Martins; Rosa, Osmar Paulo Pereira da; Quecine, Maria Carolina; Silva, Michele de Cássia Pereira E; Azevedo, João Lúcio; Matsumura, Aida Terezinha Santos

    2018-05-17

    The clonal Eucalyptus plants are commonly obtained by vegetative propagation under a protected environment. This system improves the Botrytis cinerea and Calonectria spp infection on the young eucalypts plantings, resulting gray mold and cutting rot respectively. Currently, the unique available control method is based on chemicals. As alternative, novel methods to manage plant diseases, endophytic microorganisms could be an interesting alternative. Thus, we aimed to evaluate endophytic Bacillus isolated from eucalypts as a biocontrol agent against Botrytis cinerea and Calonectria gracilis, important fungal pathogens in the greenhouse, using clonal plantlets of E. urograndis. Eight endophytic strains of Bacillus, previously described as eucalyptus growth promoters, were evaluated in vitro and in vivo against Botrytis cinerea and Calonectria gracilis. The diffusible metabolites assay showed the potential of endophytic Bacillus to decrease the growth of both pathogens. Differences in the susceptibility of the pathogens to bacterial volatile metabolites were observed, B. cinerea showed more susceptible than Calonectria gracilis. In vivo assays, Bacillus amyloliquefaciens EUCB 10 demonstrated better overall reductions in these diseases. Based on the results obtained from the in vitro and in vivo analyses, we suggest that the endophytic B. amyloliquefaciens strain EUCB 10 constitutes a promising biocontrol agent against B. cinerea and Calonectria gracilis. Furthermore, this is the first reporting of B. amyloliquefaciens previously describe as plant growth promoter and also as potential control agent of B. cinerea and Calonectria gracilis to eucalyptus. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Hair growth-promoting activity of hot water extract of Thuja orientalis.

    PubMed

    Zhang, Nan-nan; Park, Dong Ki; Park, Hye-Jin

    2013-01-10

    Thuja orientalis has been traditionally used to treat patients who suffer from baldness and hair loss in East Asia. The present study sought to investigate the hair growth-promoting activity of T. orientalis hot water extract and the underlying mechanism of action. After T. orientalis extract was topically applied to the shaved dorsal skin of telogenic C57BL/6 N mice, the histomorphometric analysis was employed to study induction of the hair follicle cycle. To determine the effect of T. orientalis extract on the telogen to anagen transition, the protein expression levels of β-catenin and Sonic hedgehog (Shh) in hair follicles were determined by immunohistochemistry. We observed that T. orientalis extract promoted hair growth by inducing the anagen phase in telogenic C57BL/6 N mice. Specifically, the histomorphometric analysis data indicates that topical application of T. orientalis extract induced an earlier anagen phase and prolonged the mature anagen phase, in contrast to either the control or 1% minoxidil-treated group. We also observed increases in both the number and size of hair follicles of the T. orientalis extract-treated group. Moreover, the immunohistochemical analysis reveals earlier induction of β-catenin and Shh proteins in hair follicles of the T. orientalis extract-treated group, compared to the control or 1% minoxidil-treated group. These results suggest that T. orientalis extract promotes hair growth by inducing the anagen phase in resting hair follicles and might therefore be a potential hair growth-promoting agent.

  20. Special Agents Can Promote Cooperation in the Population

    PubMed Central

    Wang, Xin; Han, Jing; Han, Huawei

    2011-01-01

    Cooperation is ubiquitous in our real life but everyone would like to maximize her own profits. How does cooperation occur in the group of self-interested agents without centralized control? Furthermore, in a hostile scenario, for example, cooperation is unlikely to emerge. Is there any mechanism to promote cooperation if populations are given and play rules are not allowed to change? In this paper, numerical experiments show that complete population interaction is unfriendly to cooperation in the finite but end-unknown Repeated Prisoner's Dilemma (RPD). Then a mechanism called soft control is proposed to promote cooperation. According to the basic idea of soft control, a number of special agents are introduced to intervene in the evolution of cooperation. They comply with play rules in the original group so that they are always treated as normal agents. For our purpose, these special agents have their own strategies and share knowledge. The capability of the mechanism is studied under different settings. We find that soft control can promote cooperation and is robust to noise. Meanwhile simulation results demonstrate the applicability of the mechanism in other scenarios. Besides, the analytical proof also illustrates the effectiveness of soft control and validates simulation results. As a way of intervention in collective behaviors, soft control provides a possible direction for the study of reciprocal behaviors. PMID:22216202

  1. Hair growth-promoting activity of hot water extract of Thuja orientalis

    PubMed Central

    2013-01-01

    Background Thuja orientalis has been traditionally used to treat patients who suffer from baldness and hair loss in East Asia. The present study sought to investigate the hair growth-promoting activity of T. orientalis hot water extract and the underlying mechanism of action. Methods After T. orientalis extract was topically applied to the shaved dorsal skin of telogenic C57BL/6 N mice, the histomorphometric analysis was employed to study induction of the hair follicle cycle. To determine the effect of T. orientalis extract on the telogen to anagen transition, the protein expression levels of β-catenin and Sonic hedgehog (Shh) in hair follicles were determined by immunohistochemistry. Results We observed that T. orientalis extract promoted hair growth by inducing the anagen phase in telogenic C57BL/6 N mice. Specifically, the histomorphometric analysis data indicates that topical application of T. orientalis extract induced an earlier anagen phase and prolonged the mature anagen phase, in contrast to either the control or 1% minoxidil-treated group. We also observed increases in both the number and size of hair follicles of the T. orientalis extract-treated group. Moreover, the immunohistochemical analysis reveals earlier induction of β-catenin and Shh proteins in hair follicles of the T. orientalis extract-treated group, compared to the control or 1% minoxidil-treated group. Conclusion These results suggest that T. orientalis extract promotes hair growth by inducing the anagen phase in resting hair follicles and might therefore be a potential hair growth-promoting agent. PMID:23305186

  2. Effect of seed pelleting with biocontrol agents on growth and colonisation of roots of mungbean by root-infecting fungi.

    PubMed

    Ramzan, Nadia; Noreen, Nayara; Perveen, Zahida; Shahzad, Saleem

    2016-08-01

    Mungbean (Vigna radiata (L.) Wilczek) is a leguminous pulse crop that is a major source of proteins, vitamins and minerals. Root-infecting fungi produce severe plant diseases like root rot, charcoal rot, damping-off and stem rot. The soil-borne pathogens can be controlled by chemicals, but these chemicals have several negative effects. Use of microbial antagonist such as fungi and bacteria is a safe, effective and eco-friendly method for the control of many soil-borne pathogens. Biological control agents promote plant growth and develop disease resistance. Application of bacteria and fungi as seed dressing suppressed the root-infecting fungi on leguminous crops. Seeds of mungbean were pelleted with different biocontrol agents to determine their effect on plant growth and colonisation of roots by root-infecting fungi, viz. Fusarium solani, Macrophomina phaseolina, Pythium aphanidermatum, Rhizoctonia solani and Sclerotium rolfsii. Treatment of mungbean seeds with fungal antagonists showed more shoot and root length as compared to bacterial antagonists, whereas seed treated with bacterial antagonists showed maximum shoot and root weight. Trichoderma harzianum and Bacillus subtilis were the best among all the biocontrol agents since they provided the highest plant growth and greater reduction in root colonisation by all root-infecting fungi. Bacillus cereus, Trichoderma virens, Pseudomonas fluorescens and Micrococcus varians were also effective against root-infecting fungi but to a lesser extent. T. harzianum, T. virens, B. subtilis and P. fluorescens were found to be best among all biocontrol agents. The root-infecting fungi can be controlled by pelleting seeds with biocontrol agents as it is safe and effective method. Additionally, plant growth was promoted more by this method. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  3. Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site.

    PubMed

    Abanda-Nkpwatt, Daniel; Müsch, Martina; Tschiersch, Jochen; Boettner, Mewes; Schwab, Wilfried

    2006-01-01

    Four Methylobacterium extorquens strains were isolated from strawberry (Fragaria x ananassa cv. Elsanta) leaves, and one strain, called ME4, was tested for its ability to promote the growth of various plant seedlings. Seedling weight and shoot length of Nicotiana tabacum, Lycopersicon esculentum, Sinapis alba, and Fragaria vesca increased significantly in the presence of the pink-pigmented facultative methylotroph (PPFM), but the germination behaviour of seeds from six other plants was not affected. The cell-free supernatant of the bacterial culture stimulated germination, suggesting the production of a growth-promoting agent by the methylotroph. Methanol emitted from N. tabacum seedlings, as determined by proton-transfer-reaction mass spectrometry (PTR-MS), ranged from 0.4 to 0.7 ppbv (parts per billion by volume), while significantly lower levels (0.005 to 0.01 ppbv) of the volatile alcohol were measured when the seedlings were co-cultivated with M. extorquens ME4, demonstrating the consumption of the gaseous methanol by the bacteria. Additionally, by using cells of the methylotrophic yeast Pichia pastoris transformed with the pPICHS/GFP vector harbouring a methanol-sensitive promoter in combination with the green fluorescence protein (GFP) reporter gene, stomata were identified as the main source of the methanol emission on tobacco cotyledons. Methylobacterium extorquens strains can nourish themselves using the methanol released by the stomata and release an agent promoting the growth of the seedlings of some crop plants.

  4. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    PubMed Central

    Taghavi, Safiyh; van der Lelie, Daniel; Hoffman, Adam; Zhang, Yian-Biao; Walla, Michael D.; Vangronsveld, Jaco; Newman, Lee; Monchy, Sébastien

    2010-01-01

    improve establishment and sustainable production of poplar as an energy feedstock on marginal, non-agricultural soils using endophytic bacteria as growth promoting agents. PMID:20485560

  5. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors

    PubMed Central

    Butler, Jason M.; Kobayashi, Hideki; Rafii, Shahin

    2010-01-01

    The precise mechanisms whereby anti-angiogenesis therapy blocks tumour growth or causes vascular toxicity are unknown. We propose that endothelial cells establish a vascular niche that promotes tumour growth and tissue repair not only by delivering nutrients and O2 but also through an ‘angiocrine’ mechanism by producing stem and progenitor cell-active trophogens. Identification of endothelial-derived instructive angiocrine factors will allow direct tumour targeting, while diminishing the unwanted side effects associated with the use of anti-angiogenic agents. PMID:20094048

  6. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors.

    PubMed

    Butler, Jason M; Kobayashi, Hideki; Rafii, Shahin

    2010-02-01

    The precise mechanisms whereby anti-angiogenesis therapy blocks tumour growth or causes vascular toxicity are unknown. We propose that endothelial cells establish a vascular niche that promotes tumour growth and tissue repair not only by delivering nutrients and O2 but also through an 'angiocrine' mechanism by producing stem and progenitor cell-active trophogens. Identification of endothelial-derived instructive angiocrine factors will allow direct tumour targeting, while diminishing the unwanted side effects associated with the use of anti-angiogenic agents.

  7. Hydrocarbon extraction agents and microbiological processes for their production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zajic, J.E.; Gerson, D.F.

    1987-02-03

    A process is described for producing extraction agents useful in the separation of hydrocarbon values from mineral deposits. It comprises cultivating by an aerobic fermentation, in a growth promoting medium and under growth promoting conditions, and on a liquid hydrocarbon substrate, a selected microbial strain of a species of microorganism selected from the group consisting of Arthrobacter terregens, Arthrobacter xerosis, Bacillus megaterium, Corynebacterium lepus, Corynebacterium xerosis, Nocardia petroleophila, and Vibrio ficheri. This is done to produce an extraction agent of microbiological origin in the fermentation medium, subsequently recovering the extraction agent from the fermentation medium and drying the agent tomore » powdered form.« less

  8. Cloning of genes involved in the biosynthesis of pseudobactin, a high-affinity iron transport agent of a plant growth-promoting Pseudomonas strain.

    PubMed Central

    Moores, J C; Magazin, M; Ditta, G S; Leong, J

    1984-01-01

    A gene bank of DNA from plant growth-promoting Pseudomonas sp. strain B10 was constructed using the broad host-range conjugative cosmid pLAFR1. The recombinant cosmids contained insert DNA averaging 21.5 kilobase pairs in length. Nonfluorescent mutants of Pseudomonas sp. strain B10 were obtained by mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine, ethyl methanesulfonate, or UV light and were defective in the biosynthesis of its yellow-green, fluorescent siderophore (microbial iron transport agent) pseudobactin. No yellow-green, fluorescent mutants defective in the production of pseudobactin were identified. Nonfluorescent mutants were individually complemented by mating the gene bank en masse and identifying fluorescent transconjugants. Eight recombinant cosmids were sufficient to complement 154 nonfluorescent mutants. The pattern of complementation suggests that a minimum of 12 genes arranged in four gene clusters is required for the biosynthesis of pseudobactin. This minimum number of genes seems reasonable considering the structural complexity of pseudobactin. Images PMID:6690426

  9. Plant Growth Promotion Activity of Keratinolytic Fungi Growing on a Recalcitrant Waste Known as “Hair Waste”

    PubMed Central

    Cavello, Ivana A.; Crespo, Juan M.; García, Sabrina S.; Zapiola, José M.; Luna, María F.; Cavalitto, Sebastián F.

    2015-01-01

    Purpureocillium lilacinum (Thom) Samsom is one of the most studied fungi in the control of plant parasitic nematodes. However, there is not specific information on its ability to inhibit some pathogenic bacteria, fungi, or yeast. This work reports the production of several antifungal hydrolytic enzymes by a strain of P. lilacinum when it is grown in a medium containing hair waste. The growth of several plant-pathogenic fungi, Alternaria alternata, Aspergillus niger, and Fusarium culmorum, was considerably affected by the presence of P. lilacinum's supernatant. Besides antifungal activity, P. lilacinum demonstrates the capability to produce indoleacetic acid and ammonia during time cultivation on hair waste medium. Plant growth-promoting activity by cell-free supernatant was evidenced through the increase of the percentage of tomato seed germination from 71 to 85% after 48 hours. A 21-day plant growth assay using tomato plants indicates that crude supernatant promotes the growth of the plants similar to a reference fertilizer (p > 0.05). These results suggest that both strain and the supernatant may have potential to be considered as a potent biocontrol agent with multiple plant growth-promoting properties. To our knowledge, this is the first report on the antifungal, IAA production and tomato growth enhancing compounds produced by P. lilacinum LPSC #876. PMID:26697226

  10. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

    PubMed

    Gaviglio, Angela L; Knelson, Erik H; Blobe, Gerard C

    2017-05-01

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor-like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.-Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. © FASEB.

  11. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation

    PubMed Central

    Gaviglio, Angela L.; Knelson, Erik H.; Blobe, Gerard C.

    2017-01-01

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor–like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.—Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. PMID:28174207

  12. Analysis of Volatile Organic Compounds Emitted by Plant Growth-Promoting Fungus Phoma sp. GS8-3 for Growth Promotion Effects on Tobacco

    PubMed Central

    Naznin, Hushna Ara; Kimura, Minako; Miyazawa, Mitsuo; Hyakumachi, Mitsuro

    2013-01-01

    We extracted volatile organic compounds (VOCs) emitted by a plant growth-promoting fungus (PGPF) Phoma sp. GS8-3 by gas chromatography and identified them by mass spectrometry. All of the identified compounds belonged to C4-C8 hydrocarbons. Volatiles varied in number and quantity by the culture period of the fungus (in days). 2-Methyl-propanol and 3-methyl-butanol formed the main components of the volatile blends for all the culture periods of fungus. Growth-promoting effects of the identified synthetic compounds were analyzed individually and in blends using tobacco plants. We found that the mixture of volatiles extracted from 3-day-old culture showed significant growth promotion in tobacco in vitro. The volatile blend showed better growth promotion at lower than higher concentrations. Our results confirm the potential role of volatile organic compounds in the mechanism of growth enhancement by GS8-3. PMID:23080408

  13. Analysis of new growth promoting black market products.

    PubMed

    Krug, Oliver; Thomas, Andreas; Malerød-Fjeld, Helle; Dehnes, Yvette; Laussmann, Tim; Feldmann, Ingo; Sickmann, Albert; Thevis, Mario

    2018-05-19

    Detecting agents allegedly or evidently promoting growth such as human growth hormone (GH) or growth hormone releasing peptides (GHRP) in doping controls has represented a pressing issue for sports drug testing laboratories. While GH is a recombinant protein with a molecular weight of 22 kDa, the GHRPs are short (3-6 amino acids long) peptides with GH releasing properties. The endogenously produced GH (22 kDa isoform) consists of 191 amino acids and has a monoisotopic molecular mass of 22,124 Da. Within this study, a slightly modified form of GH was discovered consisting of 192 amino acids carrying an additional alanine at the N-terminus, leading to a monoisotopic mass of 22,195 Da. This was confirmed by top-down and bottom-up experiments using liquid chromatography coupled to high resolution/high accuracy mass spectrometry. Additionally, three analogues of GHRPs were identified as Gly-GHRP-6, Gly-GHRP-2 and Gly-Ipamorelin, representing the corresponding GHRP extended by a N-terminal glycine residue. The structure of these peptides was characterised by means of high resolution (tandem) mass spectrometry, and for Gly-Ipamorelin and Gly-GHRP-2 their identity was additionally confirmed by custom synthesis. Further, established in-vitro experiments provided preliminary information considering the potential metabolism after administration. Copyright © 2018. Published by Elsevier Ltd.

  14. Streptomyces cameroonensis sp. nov., a Geldanamycin Producer That Promotes Theobroma cacao Growth.

    PubMed

    Boudjeko, Thaddée; Tchinda, Romaric Armel Mouafo; Zitouni, Mina; Nana, Joëlle Aimée Vera Tchatchou; Lerat, Sylvain; Beaulieu, Carole

    2017-03-31

    The taxonomy of an actinobacterial strain, designated JJY4 T , was established using a polyphasic approach. JJY4 T was isolated from the rhizosphere of Chromolaena odorata in Yaoundé (Cameroon) during a project for the selection of biological control agents. Strain JJY4 T exhibited antimicrobial activities against bacteria, fungi, and oomycetes. Strain JJY4 T also exhibited the traits of plant growth-promoting rhizobacteria such as the solubilization of inorganic phosphate, production of siderophores and indole-3-acetic acid, and 1-aminocyclopropane-1-carboxylate deaminase activity. In planta assays performed on cocoa plantlets confirmed that strain JJY4 T exhibited strong abilities to promote plant growth and protect against Phytophthora megakarya, the main causal agent of cocoa pod rot. The formation of rugose-ornamented spores in spiral spore chains by strain JJY4 T is a typical feature of members found in the Streptomyces violaceusniger clade and, similar to some members of the clade, strain JJY4 T produces geldanamycin. A phylogenetic analysis based on 16S rRNA gene sequences confirmed this classification and suggests that strain JJY4 T be added to the subclade constituted of the type strains Streptomyces malaysiensis DSM 41697 T and Streptomyces samsunensis DSM 42010 T . However, DNA-DNA relatedness and physiological characteristics allowed for the differentiation of strain JJY4 T from its closest phylogenetic relatives. Based on these results, strain JJY4 T (=NRRL B-65369, =NBRC 112705) appears to represent a novel species in the S. violaceusniger clade for which the proposed name is Streptomyces cameroonensis sp. nov.

  15. Agent-Based Modeling of Growth Processes

    ERIC Educational Resources Information Center

    Abraham, Ralph

    2014-01-01

    Growth processes abound in nature, and are frequently the target of modeling exercises in the sciences. In this article we illustrate an agent-based approach to modeling, in the case of a single example from the social sciences: bullying.

  16. Biochar Treatment Resulted in a Combined Effect on Soybean Growth Promotion and a Shift in Plant Growth Promoting Rhizobacteria

    PubMed Central

    Egamberdieva, Dilfuza; Wirth, Stephan; Behrendt, Undine; Abd_Allah, Elsayed F.; Berg, Gabriele

    2016-01-01

    The application of biochar to soil is considered to have the potential for long-term soil carbon sequestration, as well as for improving plant growth and suppressing soil pathogens. In our study we evaluated the effect of biochar on the plant growth of soybeans, as well as on the community composition of root-associated bacteria with plant growth promoting traits. Two types of biochar, namely, maize biochar (MBC), wood biochar (WBC), and hydrochar (HTC) were used for pot experiments to monitor plant growth. Soybean plants grown in soil amended with HTC char (2%) showed the best performance and were collected for isolation and further characterization of root-associated bacteria for multiple plant growth promoting traits. Only HTC char amendment resulted in a statistically significant increase in the root and shoot dry weight of soybeans. Interestingly, rhizosphere isolates from HTC char amended soil showed higher diversity than the rhizosphere isolates from the control soil. In addition, a higher proportion of isolates from HTC char amended soil compared with control soil was found to express plant growth promoting properties and showed antagonistic activity against one or more phytopathogenic fungi. Our study provided evidence that improved plant growth by biochar incorporation into soil results from the combination of a direct effect that is dependent on the type of char and a microbiome shift in root-associated beneficial bacteria. PMID:26941730

  17. Antimicrobial and plant growth-promoting properties of the cacao endophyte Bacillus subtilis ALB629.

    PubMed

    Falcäo, L L; Silva-Werneck, J O; Vilarinho, B R; da Silva, J P; Pomella, A W V; Marcellino, L H

    2014-06-01

    To investigate the effects of the endophyte Bacillus subtilisALB629 on the growth of cacao seedlings at early developmental stage and to evaluate its antimicrobial properties. Germinating cacao seeds were inoculated with ALB629, and seedlings growth was evaluated 30 days later. Significant increase (P < 0·05) was observed in the root system (up to 30%), leaf area (14%) and stem height (7·6%). ALB629 colonized the entire plant, prevailing over indigenous micro-organisms. In addition, it was tested in vitro, by pairing assays, and showed antagonistic effect against the phytopathogenic fungi Moniliophthora perniciosa, Colletotrichum sp. and C. gossypii. When tested in cacao-grafting procedure in the field, ALB629 increased the grafting success rate (24%), indicating its protective effect. In addition, this Bacillus secretes an antagonist compound, as shown by the antifungal activity of the cell-free culture. Bacillus subtilisALB629 promotes cacao root growth, besides promoting growth of the aerial part of cacao seedlings. It has antimicrobial properties and produces an antifungal compound. ALB629 presented beneficial characteristics for cacao cultivation, being a good biological control agent candidate. Furthermore, it is a potential source of antifungal compound with potential for commercial exploitation. © 2014 The Society for Applied Microbiology.

  18. Promotion effect of constituents from the root of Polygonum multiflorum on hair growth.

    PubMed

    Sun, Ya Nan; Cui, Long; Li, Wei; Yan, Xi Tao; Yang, Seo Young; Kang, Jung Il; Kang, Hee Kyoung; Kim, Young Ho

    2013-09-01

    Two new compounds, gallic acid ester of torachrysone-8-O-β-D-glucoside (1) and (E)-2,3,5,4'-tetrahydroxystilbene-2-O-β-D-xyloside (4), along with eight known compounds (2, 3, 5-10) were isolated from a 70% ethanol extract of Polygonum multiflorum roots. The structures were determined by (1)H and (13)C NMR, HMQC, and HMBC spectrometry. Extracts of P. multiflorum have been reported to promote hair growth in vivo. This study was carried out to evaluate the effects of isolated compounds from P. multiflorum on promoting hair growth using dermal papilla cells (DPCs), which play an important role in hair growth. When DPCs were treated with compounds (1-10) from P. multiflorum, compounds 1, 2, 3, 6, and 10 increased the proliferation of DPCs compared with the control. Specifically, compound 2 (10 and 20 μM) induced a greater increase in the proliferation of DPCs than minoxidil (10 μM). Additionally, treatment of vibrissa follicles with compound 2 for 21 days increased hair-fiber length significantly. On the basis of this result, further investigation and optimization of these derivatives might help in the development of therapeutic agents for the treatment of alopecia. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas.

    PubMed

    Shen, Xuemei; Hu, Hongbo; Peng, Huasong; Wang, Wei; Zhang, Xuehong

    2013-04-22

    Some Pseudomonas strains function as predominant plant growth-promoting rhizobacteria (PGPR). Within this group, Pseudomonas chlororaphis and Pseudomonas fluorescens are non-pathogenic biocontrol agents, and some Pseudomonas aeruginosa and Pseudomonas stutzeri strains are PGPR. P. chlororaphis GP72 is a plant growth-promoting rhizobacterium with a fully sequenced genome. We conducted a genomic analysis comparing GP72 with three other pseudomonad PGPR: P. fluorescens Pf-5, P. aeruginosa M18, and the nitrogen-fixing strain P. stutzeri A1501. Our aim was to identify the similarities and differences among these strains using a comparative genomic approach to clarify the mechanisms of plant growth-promoting activity. The genome sizes of GP72, Pf-5, M18, and A1501 ranged from 4.6 to 7.1 M, and the number of protein-coding genes varied among the four species. Clusters of Orthologous Groups (COGs) analysis assigned functions to predicted proteins. The COGs distributions were similar among the four species. However, the percentage of genes encoding transposases and their inactivated derivatives (COG L) was 1.33% of the total genes with COGs classifications in A1501, 0.21% in GP72, 0.02% in Pf-5, and 0.11% in M18. A phylogenetic analysis indicated that GP72 and Pf-5 were the most closely related strains, consistent with the genome alignment results. Comparisons of predicted coding sequences (CDSs) between GP72 and Pf-5 revealed 3544 conserved genes. There were fewer conserved genes when GP72 CDSs were compared with those of A1501 and M18. Comparisons among the four Pseudomonas species revealed 603 conserved genes in GP72, illustrating common plant growth-promoting traits shared among these PGPR. Conserved genes were related to catabolism, transport of plant-derived compounds, stress resistance, and rhizosphere colonization. Some strain-specific CDSs were related to different kinds of biocontrol activities or plant growth promotion. The GP72 genome contained the cus operon

  20. Multifarious plant growth promotion by an entomopathogenic fungus Lecanicillium psalliotae.

    PubMed

    Senthil Kumar, C M; Jacob, T K; Devasahayam, S; Thomas, Stephy; Geethu, C

    2018-03-01

    An entomopathogenic fungus, Lecanicillium psalliotae strain IISR-EPF-02 previously found infectious to cardamom thrips, Sciothrips cardamomi promoted plant growth in cardamom, Elettaria cardamomum. The isolate exhibited direct plant growth promoting traits by production of indole-3-acetic acid and ammonia and by solubilizing inorganic phosphate and zinc. It also showed indirect plant growth promoting traits by producing siderophores and cell wall-degrading enzymes like, α-amylases, cellulases and proteases. In pot culture experiments, application of the fungus at the root zone of cardamom seedlings significantly increased shoot and root length, shoot and root biomass, number of secondary roots and leaves and leaf chlorophyll content compared to untreated plants. This is the first report on the plant growth promoting traits of this fungus. The entomopathogenic and multifarious growth promoting traits of L. psalliotae strain IISR-EPF-02 suggest that it has great potential for exploitation in sustainable agriculture. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Role of Arachidonic Acid in Promoting Hair Growth

    PubMed Central

    Munkhbayar, Semchin; Jang, Sunhyae; Cho, A-Ri; Choi, Soon-Jin; Shin, Chang Yup; Eun, Hee Chul; Kim, Kyu Han

    2016-01-01

    Background Arachidonic acid (AA) is an omega-6 polyunsaturated fatty acid present in all mammalian cell membranes, and involved in the regulation of many cellular processes, including cell survival, angiogenesis, and mitogenesis. The dermal papilla, composed of specialized fibroblasts located in the bulb of the hair follicle, contributes to the control of hair growth and the hair cycle. Objective This study investigated the effect of AA on hair growth by using in vivo and in vitro models. Methods The effect of AA on human dermal papilla cells (hDPCs) and hair shaft elongation was evaluated by MTT assay and hair follicle organ culture, respectively. The expression of various growth and survival factors in hDPCs were investigated by western blot or immunohistochemistry. The ability of AA to induce and prolong anagen phase in C57BL/6 mice was analyzed. Results AA was found to enhance the viability of hDPCs and promote the expression of several factors responsible for hair growth, including fibroblast growth factor-7 (FGF-7) and FGF-10. Western blotting identified the role of AA in the phosphorylation of various transcription factors (ERK, CREB, and AKT) and increased expression of Bcl-2 in hDPCs. In addition, AA significantly promoted hair shaft elongation, with increased proliferation of matrix keratinocytes, during ex vivo hair follicle culture. It was also found to promote hair growth by induction and prolongation of anagen phase in telogen-stage C57BL/6 mice. Conclusion This study concludes that AA plays a role in promoting hair growth by increasing the expression of growth factors in hDPCs and enhancing follicle proliferation and survival. PMID:26848219

  2. Modulations of the Chicken Cecal Microbiome and Metagenome in Response to Anticoccidial and Growth Promoter Treatment

    PubMed Central

    Danzeisen, Jessica L.; Kim, Hyeun Bum; Isaacson, Richard E.; Tu, Zheng Jin; Johnson, Timothy J.

    2011-01-01

    With increasing pressures to reduce or eliminate the use of antimicrobials for growth promotion purposes in production animals, there is a growing need to better understand the effects elicited by these agents in order to identify alternative approaches that might be used to maintain animal health. Antibiotic usage at subtherapeutic levels is postulated to confer a number of modulations in the microbes within the gut that ultimately result in growth promotion and reduced occurrence of disease. This study examined the effects of the coccidiostat monensin and the growth promoters virginiamycin and tylosin on the broiler chicken cecal microbiome and metagenome. Using a longitudinal design, cecal contents of commercial chickens were extracted and examined using 16S rRNA and total DNA shotgun metagenomic pyrosequencing. A number of genus-level enrichments and depletions were observed in response to monensin alone, or monensin in combination with virginiamycin or tylosin. Of note, monensin effects included depletions of Roseburia, Lactobacillus and Enterococcus, and enrichments in Coprococcus and Anaerofilum. The most notable effect observed in the monensin/virginiamycin and monensin/tylosin treatments, but not in the monensin-alone treatments, was enrichments in Escherichia coli. Analysis of the metagenomic dataset identified enrichments in transport system genes, type I fimbrial genes, and type IV conjugative secretion system genes. No significant differences were observed with regard to antimicrobial resistance gene counts. Overall, this study provides a more comprehensive glimpse of the chicken cecum microbial community, the modulations of this community in response to growth promoters, and targets for future efforts to mimic these effects using alternative approaches. PMID:22114729

  3. Method of Promoting Single Crystal Growth During Melt Growth of Semiconductors

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua (Inventor)

    2013-01-01

    The method of the invention promotes single crystal growth during fabrication of melt growth semiconductors. A growth ampoule and its tip have a semiconductor source material placed therein. The growth ampoule is placed in a first thermal environment that raises the temperature of the semiconductor source material to its liquidus temperature. The growth ampoule is then transitioned to a second thermal environment that causes the semiconductor source material in the growth ampoule's tip to attain a temperature that is below the semiconductor source material's solidus temperature. The growth ampoule so-transitioned is then mechanically perturbed to induce single crystal growth at the growth ampoule's tip.

  4. Mesenchymal stem cells promote pancreatic adenocarcinoma cells invasion by transforming growth factor-β1 induced epithelial-mesenchymal transition.

    PubMed

    Zhou, Hai-Sen; Su, Xiao-Fang; Fu, Xing-Li; Wu, Guo-Zhong; Luo, Kun-Lun; Fang, Zheng; Yu, Feng; Liu, Hong; Hu, Hong-Juan; Chen, Liu-Sheng; Cai, Bing; Tian, Zhi-Qiang

    2016-07-05

    Mesenchymal stem cells (MSCs) could be ideal delivery vehicles for antitumor biological agents in pancreatic adenocarcinoma (PA). While the role of MSCs in tumor growth is elusive. Inflammation is an important feature of PA. In this study, we reported that MSCs pre-stimulated with the combination of TNF-α and IFN-γ promote PA cells invasion. The invasion of PA cell lines were evaluate by wound healing assay and transwell assay in vitro and liver metastasis in nude mice. We observed MSCs pre-stimulated with the combination of TNF-α and IFN-γ promoted PA cells invasion in vitro and in vivo. Consistent with MSCs promoting PA cells invasion, PA cells were found undergo epithelial-mesenchymal transition (EMT). We demonstrated that MSCs pre-stimulated with both of TNF-α and IFN-γ provoked expression transforming growth factor-β1 (TGF-β1). MSCs promoting EMT-mediated PA cells invasion could be reversed by short interfering RNA of TGF-β1. Our results suggest that MSCs could promote PA cells invasion in inflammation microenvironment and should be cautious as delivery vehicles in molecular target therapy.

  5. Peppermint Oil Promotes Hair Growth without Toxic Signs

    PubMed Central

    Park, Min Ah; Kim, Young Chul

    2014-01-01

    Peppermint (Mentha piperita) is a plant native to Europe and has been widely used as a carminative and gastric stimulant worldwide. This plant also has been used in cosmetic formulations as a fragrance component and skin conditioning agent. This study investigated the effect of peppermint oil on hair growth in C57BL/6 mice. The animals were randomized into 4 groups based on different topical applications: saline (SA), jojoba oil (JO), 3% minoxidil (MXD), and 3% peppermint oil (PEO). The hair growth effects of the 4-week topical applications were evaluated in terms of hair growth, histological analysis, enzymatic activity of alkaline phosphatase (ALP), and gene expression of insulin-like growth factor-1 (IGF-1), known bio-markers for the enhanced hair growth. Of the 4 experimental groups, PEO group showed the most prominent hair growth effects; a significant increase in dermal thickness, follicle number, and follicle depth. ALP activity and IGF-1 expression also significantly increased in PEO group. Body weight gain and food efficiency were not significantly different between groups. These results suggest that PEO induces a rapid anagen stage and could be used for a practical agent for hair growth without change of body weight gain and food efficiency. PMID:25584150

  6. Oxytetracycline does not cause growth promotion in finfish.

    PubMed

    Trushenski, Jesse T; Aardsma, Matthew P; Barry, Kelli J; Bowker, James D; Jackson, Christopher J; Jakaitis, Michelle; McClure, Rebecca L; Rombenso, Artur N

    2018-05-04

    Until recently, use of antibiotics to enhance terrestrial animal growth performance was a common, U.S. Food and Drug Administration (FDA)-approved, but controversial practice. There are no FDA-approved production claims for antibiotic drug use in fish, but it is a common misconception that antibiotics are widely used for this purpose in U.S. aquaculture. Antibiotics are not thought to be effective growth promoters in fish, but there is little quantitative data available to address whether there are growth-promoting effects that might incentivize the use of antibiotics in this way, despite legal prohibitions. Therefore, this study was conducted to determine if oral administration of oxytetracycline, an antibiotic with known growth-promoting effects in terrestrial livestock, has a similar effect when applied to channel catfish Ictalurus punctatus, hybrid striped bass Morone chrysops × M. saxatilis, Nile tilapia Oreochromis niloticus, or rainbow trout Oncorhynchus mykiss. Oxytetracycline products with production claims are typically applied at doses substantially lower than the approved therapeutic doses for the same products. Medication (0, 0.24, or 1.2 g oxytetracycline dihydrate kg-1 feed) and feeding rates (3% BW d-1) were selected to achieve target daily doses of 0, 16, or 80 mg kg-1 fish representing control, subtherapeutic, and therapeutic treatments. Replicate groups of fish (N = 4) were fed accordingly for 8 wk. Overall, oral administration of oxytetracycline did not affect survival or promote growth of the selected taxa, with no significant differences observed for weight gain, feed conversion ratio, or specific growth rate (P > 0.05 in all cases). Few differences were observed in organosomatic indices and in the frequency of tissue abnormalities; where present, these differences tended to suggest a negative effect of long-term dietary exposure to oxytetracycline. These data demonstrate that there is no benefit to dietary supplementation with

  7. Compatibility of Azospirillum brasilense and Pseudomonas fluorescens in growth promotion of groundnut ( Arachis hypogea L.).

    PubMed

    Prasad, Andhare A; Babu, Subramanian

    2017-01-01

    We attempted to study the compatibility among plant beneficial bacteria in the culture level by growing them near in the nutrient agar plates. Among all the bacteria tested, Rhizobium was found to inhibit the growth of other bacteria. From the compatible group of PGPR, we have selected one biofertilizer (Azospirillum brasilense strain TNAU) and one biocontrol agent (Pseudomonas fluorescens strain PF1) for further studies in the pot culture. We have also developed a bioformulation which is talc powder based, for individual bacteria and mixed culture. This formulation was used as seed treatment, soil application, seedling root dip and foliar spray in groundnut crop in vitro germination conditions. A. brasilense was found to enhance the tap root growth and P. fluorescens, the lateral root growth. The other growth parameters like shoot growth, number of leaves were enhanced by the combination of both of the bacteria than their individual formulations. Among the method of application tested in our study, soil application was found to be the best in yielding better results of plant growth promotion.

  8. Bacillus spp. from rainforest soil promote plant growth under limited nitrogen conditions.

    PubMed

    Huang, X-F; Zhou, D; Guo, J; Manter, D K; Reardon, K F; Vivanco, J M

    2015-03-01

    The aim of this study was to evaluate effects of PGPR (plant growth-promoting rhizobacteria) isolated from rainforest soil on different plants under limited nitrogen conditions. Bacterial isolates from a Peruvian rainforest soil were screened for plant growth-promoting effects on Arabidopsis (Col-0). Four selected isolates including one Bacillus subtilis, two B. atrophaeus and one B. pumilus significantly promoted growth of Zea mays L. and Solanum lycopersicum under greenhouse conditions. Moreover, the PGPRs significantly promoted growth of S. lycopersicum in both low and nitrogen-amended soil conditions. These PGPR strains were further studied to obtain insights into possible mechanisms of plant growth promotion. Volatile chemicals from those isolates promoted Arabidopsis growth, and the expression of genes related to IAA production was induced in the Arabidopsis plants treated with PGPRs. Further, selected PGPR strains triggered induced systemic resistance (ISR) against Pseudomonas syringae pv tomato DC3000 in Arabidopsis. PGPR strains isolated from the rainforest soil promoted the plant growth of Arabidopsis, corn and tomato. New PGPR that have wider adaptability to different crops, soils and environmental conditions are needed to decrease our reliance on agricultural amendments derived from fossil-based fuels. The PGPRs isolated from a nonagricultural site constitute new plant growth-promoting strains that could be developed for agricultural uses. © 2014 The Society for Applied Microbiology.

  9. Biomimetic hybrid porous scaffolds immobilized with platelet derived growth factor-BB promote cellularization and vascularization in tissue engineering.

    PubMed

    Murali, Ragothaman; Ponrasu, Thangavel; Cheirmadurai, Kalirajan; Thanikaivelan, Palanisamy

    2016-02-01

    Development of hybrid scaffolds with synergistic combination of growth factor is a promising approach to promote early in vivo wound repair and tissue regeneration. Here, we show the rapid wound healing in Wistar albino rats using biomimetic collagen-poly(dialdehyde) guar gum based hybrid porous scaffolds covalently immobilized with platelet derived growth factor-BB. The immobilized platelet derived growth factor in the hybrid scaffolds not only enhance the total protein, collagen, hexosamine, and uronic acid contents in the granulation tissue but also provide stronger tissues. The wound closure analysis reveal that the complete epithelialization period is 15.4 ± 0.9 days for collagen-poly(dialdehyde) guar gum-platelet derived growth factor hybrid scaffolds, whereas it is significantly higher for control, collagen, collagen- poly(dialdehyde) guar gum and povidine-iodine treated groups. Further, the histological evaluation shows that the immobilized platelet derived growth factor in the hybrid scaffolds induced a more robust cellular and vascular response in the implanted site. Hence, we demonstrate that the collagen-poly(dialdehyde) guar gum hybrid scaffolds loaded with platelet derived growth factor stimulates chemotactic effects in the implanted site to promote rapid tissue regeneration and wound repair without the assistance of antibacterial agents. © 2015 Wiley Periodicals, Inc.

  10. Plant growth-promoting rhizobacteria strain Bacillus amyloliquefaciens NJN-6-enriched bio-organic fertilizer suppressed Fusarium wilt and promoted the growth of banana plants.

    PubMed

    Yuan, Jun; Ruan, Yunze; Wang, Beibei; Zhang, Jian; Waseem, Raza; Huang, Qiwei; Shen, Qirong

    2013-04-24

    Bacillus amyloliquefaciens strain NJN-6 is an important plant growth-promoting rhizobacteria (PGPR) which can produce secondary metabolites antagonistic to several soil-borne pathogens. In this study, the ability of a bio-organic fertilizer (BIO) containing NJN-6 strain to promote the growth and suppress Fusarium wilt of banana plants was evaluated in a pot experiment. The results showed that the application of BIO significantly decreased the incidence of Fusarium wilt and promoted the growth of banana plants compared to that for the organic fertilizer (OF). To determine the beneficial mechanism of the strain, the colonization of NJN-6 strain on banana roots was evaluated using scanning electron microscopy (SEM). The plant growth-promoting hormones indole-3-acetic acid (IAA) and gibberellin A3 (GA3), along with antifungal lipopeptides iturin A, were detected when the NJN-6 strain was incubated in both Landy medium with additional l-tryptophan and in root exudates of banana plants. In addition, some antifungal volatile organic compounds and iturin A were also detected in BIO. In summary, strain NJN-6 could colonize the roots of banana plants after the application of BIO and produced active compounds which were beneficial for the growth of banana plants.

  11. Plant Growth-Promoting Rhizobacteria Stimulate Vegetative Growth and Asexual Reproduction of Kalanchoe daigremontiana.

    PubMed

    Park, Yong-Soon; Park, Kyungseok; Kloepper, Joseph W; Ryu, Choong-Min

    2015-09-01

    Certain bacterial species associate with plant roots in soil. The plant growth-promoting rhizobacteria (PGPR) stimulate plant growth and yield in greenhouse and field. Here, we examined whether application of known bacilli PGPR strains stimulated growth and asexual reproduction in the succulent plant Kalanchoe daigremontiana. Four PGPR strains B. amyloliquefaciens IN937a, B. cereus BS107, B. pumilus INR7, and B. subtilis GB03 were applied to young plantlets by soil-drenching, and plant growth and development was monitored for three months. Aerial growth was significantly stimulated in PGPR-inoculated plants, which was observed as increases in plant height, shoot weight, and stem width. The stimulated growth influenced plant development by increasing the total number of leaves per plant. Treatment with bacilli also increased the total root biomass compared with that of control plants, and led to a 2-fold increase in asexual reproduction and plantlet formation on the leaf. Collectively, our results firstly demonstrate that Bacillus spp. promote vegetative development of K. daigremontiana, and the enhanced growth stimulates asexual reproduction and plantlet formation.

  12. Ecklonia cava promotes hair growth.

    PubMed

    Bak, S S; Ahn, B N; Kim, J A; Shin, S H; Kim, J C; Kim, M K; Sung, Y K; Kim, S K

    2013-12-01

    Previous studies have reported the protective effects on skin elasticity of the edible marine seaweed Ecklonia cava, which acts through regulation of both antioxidative and anti-inflammatory responses. We evaluated the effect of E. cava and one of its components, dioxinodehydroeckol, on hair-shaft growth in cultured human hair follicles and on hair growth in mice. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to check cell viability of human dermal papilla cells (DPCs) and outer root sheath (ORS) cells after treatment with E. cava and its metabolite, dioxinodehydroeckol. Hair-shaft growth was measured using the in vitro hair-follicle organ-culture system, in the presence or absence of E. cava and dioxinodehydroeckol. Anagen induction activity was examined by topical application of E. cava to the dorsal skin of C57BL/6 mice. Insulin-like growth factor (IGF)-1 expression was measured by reverse transcriptase PCR and ELISA. The proliferation activity was found to be highest for the ethyl acetate-soluble fraction of E. cava (EAFE) in DPCs and in ORS cells. Treatment with EAFE resulted in elongation of the hair shaft in cultured human hair follicles, and promoted transition of the hair cycle from the telogen to the anagen phase in the dorsal skin of C57BL/6 mice. In addition, EAFE induced an increase in IGF-1 expression in DPCs. Dioxinodehydroeckol, a component of E. cava, induced elongation of the hair shaft, an increase in proliferation of DPCs and ORS cells, and an increase in expression of IGF-1 in DPCs. These results suggest that E. cava containing dioxinodehydroeckol promotes hair growth through stimulation of DPCs and ORS cells. © 2013 British Association of Dermatologists.

  13. Agent-Based Modeling of Cancer Stem Cell Driven Solid Tumor Growth.

    PubMed

    Poleszczuk, Jan; Macklin, Paul; Enderling, Heiko

    2016-01-01

    Computational modeling of tumor growth has become an invaluable tool to simulate complex cell-cell interactions and emerging population-level dynamics. Agent-based models are commonly used to describe the behavior and interaction of individual cells in different environments. Behavioral rules can be informed and calibrated by in vitro assays, and emerging population-level dynamics may be validated with both in vitro and in vivo experiments. Here, we describe the design and implementation of a lattice-based agent-based model of cancer stem cell driven tumor growth.

  14. Isolation and characterization of phosphofungi, and screening of their plant growth-promoting activities.

    PubMed

    Wang, Xiaohui; Wang, Changdong; Sui, Junkang; Liu, Zhaoyang; Li, Qian; Ji, Chao; Song, Xin; Hu, Yurong; Wang, Changqian; Sa, Rongbo; Zhang, Jiamiao; Du, Jianfeng; Liu, Xunli

    2018-04-20

    Rhizospheric microorganisms can increase phosphorus availability in the soil. In this regard, the ability of phosphofungi to dissolve insoluble phosphorus compounds is greater than that of phosphate-solubilizing bacteria. The aim of the current study was to identify efficient phosphofungi that could be developed as commercial microbial agents. Among several phosphate-solubilizing fungal isolates screened, strain CS-1 showed the highest phosphorus-solubilization ability. Based on phylogenetic analysis of the internal transcribed spacer region sequence, it was identified as Aspergillus niger. High-performance liquid chromatography analysis revealed that the mechanism of phosphorus solubilization by CS-1 involved the synthesis and secretion of organic acids, mainly oxalic, tartaric, and citric acids. Furthermore, strain CS-1 exhibited other growth-promoting abilities, including efficient potassium release and degradation of crop straw cellulose. These properties help to returning crop residues to the soil, thereby increasing nutrient availability and sustaining organic matter concentration therein. A pot experiment revealed that CS-1 apparently increased the assessed biometric parameters of wheat seedlings, implying the potential of this strain to be developed as a commercial microbial agent. We used Illumina MiSeq sequencing to investigate the microbial community composition in the rhizosphere of uninoculated wheat plants and wheat plants inoculated with the CS-1 strain to obtain insight into the effect of the CS-1 strain inoculation. The data clearly demonstrated that CS-1 significantly reduced the content of pathogenic fungi, including Gibberella, Fusarium, Monographella, Bipolaris, and Volutella, which cause soil-borne diseases in various crops. Strain CS-1 may hence be developed into a microbial agent for plant growth improvement.

  15. Repurposing tofacitinib as an anti-myeloma therapeutic to reverse growth-promoting effects of the bone marrow microenvironment.

    PubMed

    Lam, Christine; Ferguson, Ian D; Mariano, Margarette C; Lin, Yu-Hsiu T; Murnane, Megan; Liu, Hui; Smith, Geoffrey A; Wong, Sandy W; Taunton, Jack; Liu, Jun O; Mitsiades, Constantine S; Hann, Byron C; Aftab, Blake T; Wiita, Arun P

    2018-04-05

    The myeloma bone marrow microenvironment promotes proliferation of malignant plasma cells and resistance to therapy. Activation of JAK/STAT signaling is thought to be a central component of these microenvironment-induced phenotypes. In a prior drug repurposing screen, we identified tofacitinib, a pan-JAK inhibitor FDA-approved for rheumatoid arthritis, as an agent that may reverse the tumor-stimulating effects of bone marrow mesenchymal stromal cells. Here, we validated in vitro, in stromal-responsive human myeloma cell lines, and in vivo, in orthotopic disseminated xenograft models of myeloma, that tofacitinib showed efficacy in myeloma models. Furthermore, tofacitinib strongly synergized with venetoclax in co-culture with marrow stromal cells but not in monoculture. Surprisingly, we found that ruxolitinib, an FDA-approved agent targeting JAK1 and JAK2, did not lead to the same anti-myeloma effects. Combination with a novel irreversible JAK3-selective inhibitor also did not enhance ruxolitinib effects. RNA-seq and unbiased phosphoproteomics revealed that marrow stromal cells stimulate a JAK/STAT-mediated proliferative program in myeloma plasma cells, and tofacitinib reversed the large majority of these pro-growth signals. Taken together, our results suggest that tofacitinib reverses the growth-promoting effects of the tumor microenvironment. As tofacitinib is already FDA-approved, these results can be rapidly translated into potential clinical benefits for myeloma patients. Copyright © 2018, Ferrata Storti Foundation.

  16. Hair Growth-Promoting Effects of Lavender Oil in C57BL/6 Mice

    PubMed Central

    Lee, Boo Hyeong; Lee, Jae Soon; Kim, Young Chul

    2016-01-01

    The purpose of this study was to determine the hair growth effects of lavender oil (LO) in female C57BL/6 mice. The experimental animals were divided into a normal group (N: saline), a vehicle control group (VC: jojoba oil), a positive control group (PC: 3% minoxidil), experimental group 1 (E1: 3% LO), and experimental group 2 (E2: 5% LO). Test compound solutions were topically applied to the backs of the mice (100 μL per application), once per day, 5 times a week, for 4 weeks. The changes in hair follicle number, dermal thickness, and hair follicle depth were observed in skin tissues stained with hematoxylin and eosin, and the number of mast cells was measured in the dermal and hypodermal layers stained with toluidine blue. PC, E1, and E2 groups showed a significantly increased number of hair follicles, deepened hair follicle depth, and thickened dermal layer, along with a significantly decreased number of mast cells compared to the N group. These results indicated that LO has a marked hair growth-promoting effect, as observed morphologically and histologically. There was no significant difference in the weight of the thymus among the groups. However, both absolute and relative weights of the spleen were significantly higher in the PC group than in the N, VC, E1, or E2 group at week 4. Thus, LO could be practically applied as a hair growth-promoting agent. PMID:27123160

  17. Hair Growth-Promoting Effects of Lavender Oil in C57BL/6 Mice.

    PubMed

    Lee, Boo Hyeong; Lee, Jae Soon; Kim, Young Chul

    2016-04-01

    The purpose of this study was to determine the hair growth effects of lavender oil (LO) in female C57BL/6 mice. The experimental animals were divided into a normal group (N: saline), a vehicle control group (VC: jojoba oil), a positive control group (PC: 3% minoxidil), experimental group 1 (E1: 3% LO), and experimental group 2 (E2: 5% LO). Test compound solutions were topically applied to the backs of the mice (100 μL per application), once per day, 5 times a week, for 4 weeks. The changes in hair follicle number, dermal thickness, and hair follicle depth were observed in skin tissues stained with hematoxylin and eosin, and the number of mast cells was measured in the dermal and hypodermal layers stained with toluidine blue. PC, E1, and E2 groups showed a significantly increased number of hair follicles, deepened hair follicle depth, and thickened dermal layer, along with a significantly decreased number of mast cells compared to the N group. These results indicated that LO has a marked hair growth-promoting effect, as observed morphologically and histologically. There was no significant difference in the weight of the thymus among the groups. However, both absolute and relative weights of the spleen were significantly higher in the PC group than in the N, VC, E1, or E2 group at week 4. Thus, LO could be practically applied as a hair growth-promoting agent.

  18. Natural Killer Cells Promote Fetal Development through the Secretion of Growth-Promoting Factors.

    PubMed

    Fu, Binqing; Zhou, Yonggang; Ni, Xiang; Tong, Xianhong; Xu, Xiuxiu; Dong, Zhongjun; Sun, Rui; Tian, Zhigang; Wei, Haiming

    2017-12-19

    Natural killer (NK) cells are present in large populations at the maternal-fetal interface during early pregnancy. However, the role of NK cells in fetal growth is unclear. Here, we have identified a CD49a + Eomes + subset of NK cells that secreted growth-promoting factors (GPFs), including pleiotrophin and osteoglycin, in both humans and mice. The crosstalk between HLA-G and ILT2 served as a stimulus for GPF-secreting function of this NK cell subset. Decreases in this GPF-secreting NK cell subset impaired fetal development, resulting in fetal growth restriction. The transcription factor Nfil3, but not T-bet, affected the function and the number of this decidual NK cell subset. Adoptive transfer of induced CD49a + Eomes + NK cells reversed impaired fetal growth and rebuilt an appropriate local microenvironment. These findings reveal properties of NK cells in promoting fetal growth. In addition, this research proposes approaches for therapeutic administration of NK cells in order to reverse restricted nourishments within the uterine microenvironment during early pregnancy. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Hyperphagia in male melanocortin 4 receptor deficient mice promotes growth independently of growth hormone.

    PubMed

    Tan, H Y; Steyn, F J; Huang, L; Cowley, M; Veldhuis, J D; Chen, C

    2016-12-15

    Loss of function of the melanocortin 4 receptor (MC4R) results in hyperphagia, obesity and increased growth. Despite knowing that MC4Rs control food intake, we are yet to understand why defects in the function of the MC4R receptor contribute to rapid linear growth. We show that hyperphagia following germline loss of MC4R in male mice promotes growth while suppressing the growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis. We propose that hyperinsulinaemia promotes growth while suppressing the GH-IGF-1 axis. It is argued that physiological responses essential to maintain energy flux override conventional mechanisms of pubertal growth to promote the storage of excess energy while ensuring growth. Defects in melanocortin-4-receptor (MC4R) signalling result in hyperphagia, obesity and increased growth. Clinical observations suggest that loss of MC4R function may enhance growth hormone (GH)-mediated growth, although this remains untested. Using male mice with germline loss of the MC4R, we assessed pulsatile GH release and insulin-like growth factor-1 (IGF-1) production and/or release relative to pubertal growth. We demonstrate early-onset suppression of GH release in rapidly growing MC4R deficient (MC4RKO) mice, confirming that increased linear growth in MC4RKO mice does not occur in response to enhanced activation of the GH-IGF-1 axis. The progressive suppression of GH release in MC4RKO mice occurred alongside increased adiposity and the progressive worsening of hyperphagia-associated hyperinsulinaemia. We next prevented hyperphagia in MC4RKO mice through restricting calorie intake in these mice to match that of wild-type (WT) littermates. Pair feeding of MC4RKO mice did not prevent increased adiposity, but attenuated hyperinsulinaemia, recovered GH release, and normalized linear growth rate to that seen in pair-fed WT littermate controls. We conclude that the suppression of GH release in MC4RKO mice occurs independently of increased adipose mass, and is a

  20. Hyperphagia in male melanocortin 4 receptor deficient mice promotes growth independently of growth hormone

    PubMed Central

    Tan, H. Y.; Huang, L.; Cowley, M.; Veldhuis, J. D.; Chen, C.

    2016-01-01

    Key points Loss of function of the melanocortin 4 receptor (MC4R) results in hyperphagia, obesity and increased growth.Despite knowing that MC4Rs control food intake, we are yet to understand why defects in the function of the MC4R receptor contribute to rapid linear growth.We show that hyperphagia following germline loss of MC4R in male mice promotes growth while suppressing the growth hormone–insulin‐like growth factor‐1 (GH–IGF‐1) axis.We propose that hyperinsulinaemia promotes growth while suppressing the GH–IGF‐1 axis.It is argued that physiological responses essential to maintain energy flux override conventional mechanisms of pubertal growth to promote the storage of excess energy while ensuring growth. Abstract Defects in melanocortin‐4‐receptor (MC4R) signalling result in hyperphagia, obesity and increased growth. Clinical observations suggest that loss of MC4R function may enhance growth hormone (GH)‐mediated growth, although this remains untested. Using male mice with germline loss of the MC4R, we assessed pulsatile GH release and insulin‐like growth factor‐1 (IGF‐1) production and/or release relative to pubertal growth. We demonstrate early‐onset suppression of GH release in rapidly growing MC4R deficient (MC4RKO) mice, confirming that increased linear growth in MC4RKO mice does not occur in response to enhanced activation of the GH–IGF‐1 axis. The progressive suppression of GH release in MC4RKO mice occurred alongside increased adiposity and the progressive worsening of hyperphagia‐associated hyperinsulinaemia. We next prevented hyperphagia in MC4RKO mice through restricting calorie intake in these mice to match that of wild‐type (WT) littermates. Pair feeding of MC4RKO mice did not prevent increased adiposity, but attenuated hyperinsulinaemia, recovered GH release, and normalized linear growth rate to that seen in pair‐fed WT littermate controls. We conclude that the suppression of GH release in MC4RKO mice occurs

  1. Plant growth-promoting bacteria as inoculants in agricultural soils

    PubMed Central

    de Souza, Rocheli; Ambrosini, Adriana; Passaglia, Luciane M.P.

    2015-01-01

    Abstract Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria. PMID:26537605

  2. 8-Nitro-cGMP promotes bone growth through expansion of growth plate cartilage.

    PubMed

    Hoshino, Marie; Kaneko, Kotaro; Miyamoto, Yoichi; Yoshimura, Kentaro; Suzuki, Dai; Akaike, Takaaki; Sawa, Tomohiro; Ida, Tomoaki; Fujii, Shigemoto; Ihara, Hideshi; Tanaka, Junichi; Tsukuura, Risa; Chikazu, Daichi; Mishima, Kenji; Baba, Kazuyoshi; Kamijo, Ryutaro

    2017-09-01

    In endochondral ossification, growth of bones occurs at their growth plate cartilage. While it is known that nitric oxide (NO) synthases are required for proliferation of chondrocytes in growth plate cartilage and growth of bones, the precise mechanism by which NO facilitates these process has not been clarified yet. C-type natriuretic peptide (CNP) also positively regulate elongation of bones through expansion of the growth plate cartilage. Both NO and CNP are known to use cGMP as the second messenger. Recently, 8-nitro-cGMP was identified as a signaling molecule produced in the presence of NO in various types of cells. Here, we found that 8-nitro-cGMP is produced in proliferating chondrocytes in the growth plates, which was enhanced by CNP, in bones cultured ex vivo. In addition, 8-nitro-cGMP promoted bone growth with expansion of the proliferating zone as well as increase in the number of proliferating cells in the growth plates. 8-Nitro-cGMP also promoted the proliferation of chondrocytes in vitro. On the other hand, 8-bromo-cGMP enhanced the growth of bones with expansion of hypertrophic zone of the growth plates without affecting either the width of proliferating zone or proliferation of chondrocytes. These results indicate that 8-nitro-cGMP formed in growth plate cartilage accelerates chondrocyte proliferation and bone growth as a downstream molecule of NO. Copyright © 2017. Published by Elsevier Inc.

  3. Growth inhibitory effect of shelf life extending agents on Bacillus subtilis IAM 1026.

    PubMed

    Mitsuboshi, Saori; Obitsu, Rie; Muramatsu, Kanako; Furube, Kentaro; Yoshitake, Shigehiro; Kiuchi, Kan

    2007-06-01

    Natural shelf life extending agents and sugar fatty acid esters that might inhibit the growth of B. subtilis IAM 1026 were screened, and the effective agents were as follows: beta-thujaplicin (Hinokitiol) and chitosan, inhibited the growth of IAM 1026 at a concentration of 0.001% ; epsilon-polylysine and M-1695 (a sugar fatty acid ester) at 0.005%; citrus seed extract, thiamin lauryl sulfate, and grapefruit seed extract at 0.01%; CT-1695 and L-1695 (sugar fatty acid esters) at 0.05%; pectin digests and SM-800 (a sugar fatty acid ester) at 0.5%; water pepper seed extract and the sugar fatty acid esters SM-1000 and CE-1695 at 1.0%. The growth inhibitory effects of the agents in custard cream were not necessarily similar to those in liquid culture. The agent that showed the highest inhibitory effect in custard cream was 0.3% beta-thujaplicin, followed by 0.3% epsilon-polylysine.

  4. [Characterization of growth-promoting rhizobacteria in Eucalyptus nitens seedlings].

    PubMed

    Angulo, Violeta C; Sanfuentes, Eugenio A; Rodríguez, Francisco; Sossa, Katherine E

    2014-01-01

    Rhizospheric and endophytic bacteria were isolated from the rizosphere and root tissue of Eucalyptus nitens. The objective of this work was to evaluate their capacity to promote growth in seedlings of the same species under greenhouse conditions. The isolates that improved seedling growth were identified and characterized by their capacity to produce indoleacetic acid (IAA), solubilize phosphates and increase 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. One hundred and five morphologically different strains were isolated, 15 of which promoted E. nitens seedling growth, significantly increasing the height (50%), root length (45%) as well as the aerial and root dry weight (142% and 135% respectively) of the plants. Bacteria belonged to the genus Arthrobacter, Lysinibacillus, Rahnella and Bacillus. Isolates A. phenanthrenivorans 21 and B. cereus 113 improved 3.15 times the emergence of E. nitens after 12 days, compared to control samples. Among isolated R. aquatilis, 78 showed the highest production of IAA (97.5±2.87 μg/ml) in the presence of tryptophan and the highest solubilizer index (2.4) for phosphorus, while B. amyloliquefaciens 60 isolate was positive for ACC deaminase activity. Our results reveal the potential of the studied rhizobacteria as promoters of emergence and seedling growth of E. nitens, and their possible use as PGPR inoculants, since they have more than one mechanism associated with plant growth promotion. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España. All rights reserved.

  5. Does nonylphenol promote the growth of uterine fibroids?

    PubMed

    Shen, Yang; Ren, Mu-Lan; Feng, Xu; Gao, Yong-Xing; Xu, Qian; Cai, Yun-Lang

    2014-07-01

    To study the effect and mechanism of action of nonylphenol (NP), an environmental oestrogen, on uterine leiomyoma (UL) cells. Primary culture and subculture of human UL cells, identified as smooth muscle cells by immunocytochemical staining with a monoclonal anti-α-smooth muscle actin antibody, were performed. The viability of cells treated with various concentrations of NP for 24, 48 and 72h was determined by CCK-8 assay. mRNA expression of oestrogen receptor α (ERα), insulin-like growth factor 1 (IGF-1) and vascular endothelial growth factor (VEGF) was detected using real-time quantitative polymerase chain reaction, and protein expression was detected using Western blot analysis for all groups. NP promoted the growth of UL cells and expression of ERα, IGF-1 and VEGF; this was positively correlated with the concentration and duration of NP treatment. NP promotes the growth of UL cells. The mechanism of action appears to be over-expression of IGF-1 and VEGF, up-regulated by ERα, resulting in the growth of UL cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. The Interrelationship between Promoter Strength, Gene Expression, and Growth Rate

    PubMed Central

    Klesmith, Justin R.; Detwiler, Emily E.; Tomek, Kyle J.; Whitehead, Timothy A.

    2014-01-01

    In exponentially growing bacteria, expression of heterologous protein impedes cellular growth rates. Quantitative understanding of the relationship between expression and growth rate will advance our ability to forward engineer bacteria, important for metabolic engineering and synthetic biology applications. Recently, a work described a scaling model based on optimal allocation of ribosomes for protein translation. This model quantitatively predicts a linear relationship between microbial growth rate and heterologous protein expression with no free parameters. With the aim of validating this model, we have rigorously quantified the fitness cost of gene expression by using a library of synthetic constitutive promoters to drive expression of two separate proteins (eGFP and amiE) in E. coli in different strains and growth media. In all cases, we demonstrate that the fitness cost is consistent with the previous findings. We expand upon the previous theory by introducing a simple promoter activity model to quantitatively predict how basal promoter strength relates to growth rate and protein expression. We then estimate the amount of protein expression needed to support high flux through a heterologous metabolic pathway and predict the sizable fitness cost associated with enzyme production. This work has broad implications across applied biological sciences because it allows for prediction of the interplay between promoter strength, protein expression, and the resulting cost to microbial growth rates. PMID:25286161

  7. [Antibiotic growth promoters for the view of animal nutrition].

    PubMed

    Kamphues, J

    1999-01-01

    From 01. 07./09. 1999 on six further antibiotic growth promoters have been banned--with only four substances remaining in this group of feed additives. Therefore, the discussion on a possible induction of bacterial resistance by antibiotic growth promoters, especially in potentially pathogenic bacteria, will sooner or later come to an end which is not least in the interest of the reputation of animal husbandry and food of animal origin. Unfortunately, no short-term solution for health problems by legislation--especially in the gastrointestinal tract--during rearing and the beginning of the fattening period is possible as experiences in Sweden have distinctively shown. Anyway, growth promoting feed additives were not a cure-all of rearing problems, in spite of their use considerable amounts of antibiotics were prescribed during this period. But growth promoters (especially chinoxalines) were most suitable for the prophylaxis of a microbial imbalance in the gastrointestinal tract. Therefore, after the ban of these effective representatives of feed additives the amount of prescribed antimicrobial drugs for metaphylaxis and therapy should be critically observed. The questions of practicable alternatives will be primarily addressed to the fields of animal nutrition, veterinary medicine and feed industry. To answer these questions and to evolve new solutions (as well as to check their suitability in practice) is considerably more intricate than simply to ban these substances which is more attractive for the media, however. It is no progressive solution to give up antimicrobial growth promoters as feed additives and to use the same substances (for example olaquindox) as therapeutics now (prescribed by veterinarians) or to switch to zincoxide or copper (in a dosage high above all nutrient requirements) in order to prevent postweaning problems due to E. coli. But one has to take into consideration the reasons for the use of antibiotics (growth promoters and therapeutics) or

  8. Wingless promotes proliferative growth in a gradient-independent manner.

    PubMed

    Baena-Lopez, Luis Alberto; Franch-Marro, Xavier; Vincent, Jean-Paul

    2009-10-06

    Morphogens form concentration gradients that organize patterns of cells and control growth. It has been suggested that, rather than the intensity of morphogen signaling, it is its gradation that is the relevant modulator of cell proliferation. According to this view, the ability of morphogens to regulate growth during development depends on their graded distributions. Here, we describe an experimental test of this model for Wingless, one of the key organizers of wing development in Drosophila. Maximal Wingless signaling suppresses cellular proliferation. In contrast, we found that moderate and uniform amounts of exogenous Wingless, even in the absence of endogenous Wingless, stimulated proliferative growth. Beyond a few cell diameters from the source, Wingless was relatively constant in abundance and thus provided a homogeneous growth-promoting signal. Although morphogen signaling may act in combination with as yet uncharacterized graded growth-promoting pathways, we suggest that the graded nature of morphogen signaling is not required for proliferation, at least in the developing Drosophila wing, during the main period of growth.

  9. Simulating cancer growth with multiscale agent-based modeling.

    PubMed

    Wang, Zhihui; Butner, Joseph D; Kerketta, Romica; Cristini, Vittorio; Deisboeck, Thomas S

    2015-02-01

    There have been many techniques developed in recent years to in silico model a variety of cancer behaviors. Agent-based modeling is a specific discrete-based hybrid modeling approach that allows simulating the role of diversity in cell populations as well as within each individual cell; it has therefore become a powerful modeling method widely used by computational cancer researchers. Many aspects of tumor morphology including phenotype-changing mutations, the adaptation to microenvironment, the process of angiogenesis, the influence of extracellular matrix, reactions to chemotherapy or surgical intervention, the effects of oxygen and nutrient availability, and metastasis and invasion of healthy tissues have been incorporated and investigated in agent-based models. In this review, we introduce some of the most recent agent-based models that have provided insight into the understanding of cancer growth and invasion, spanning multiple biological scales in time and space, and we further describe several experimentally testable hypotheses generated by those models. We also discuss some of the current challenges of multiscale agent-based cancer models. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Simulating Cancer Growth with Multiscale Agent-Based Modeling

    PubMed Central

    Wang, Zhihui; Butner, Joseph D.; Kerketta, Romica; Cristini, Vittorio; Deisboeck, Thomas S.

    2014-01-01

    There have been many techniques developed in recent years to in silico model a variety of cancer behaviors. Agent-based modeling is a specific discrete-based hybrid modeling approach that allows simulating the role of diversity in cell populations as well as within each individual cell; it has therefore become a powerful modeling method widely used by computational cancer researchers. Many aspects of tumor morphology including phenotype-changing mutations, the adaptation to microenvironment, the process of angiogenesis, the influence of extracellular matrix, reactions to chemotherapy or surgical intervention, the effects of oxygen and nutrient availability, and metastasis and invasion of healthy tissues have been incorporated and investigated in agent-based models. In this review, we introduce some of the most recent agent-based models that have provided insight into the understanding of cancer growth and invasion, spanning multiple biological scales in time and space, and we further describe several experimentally testable hypotheses generated by those models. We also discuss some of the current challenges of multiscale agent-based cancer models. PMID:24793698

  11. Seminal Plasma Proteins as Androgen Receptor Corregulators Promote Prostate Cancer Growth

    DTIC Science & Technology

    2016-12-01

    lines as well as the peptides described above, we will assess the efficacy of SgI peptides on tumor growth in a mouse xenograft model. Opportunities...Award Number: W81XWH-13-1-0412 TITLE: Seminal Plasma Proteins as Androgen Receptor Corregulators Promote Prostate Cancer Growth PRINCIPAL...SUBTITLE Seminal Plasma Proteins as Androgen Receptor Corregulators Promote Prostate Cancer Growth 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-13

  12. Human Milk Oligosaccharides Promote the Growth of Staphylococci

    PubMed Central

    Hunt, K. M.; Preuss, J.; Nissan, C.; Davlin, C. A.; Williams, J. E.; Shafii, B.; Richardson, A. D.; McGuire, M. K.; Bode, L.

    2012-01-01

    Human milk oligosaccharides (HMO), which constitute a major component of human milk, promote the growth of particular bacterial species in the infant's gastrointestinal tract. We hypothesized that HMO also interact with the bacterial communities present in human milk. To test this hypothesis, two experiments were conducted. First, milk samples were collected from healthy women (n = 16); culture-independent analysis of the bacterial communities was performed, HMO content was analyzed, and the relation between these factors was investigated. A positive correlation was observed between the relative abundance of Staphylococcus and total HMO content (r = 0.66). In a follow-up study, we conducted a series of in vitro growth curve experiments utilizing Staphylococcus aureus or Staphylococcus epidermidis and HMO isolated from human milk. HMO exhibited stimulatory effects on bacterial growth under various nutritional conditions. Analysis of culture supernatants from these experiments revealed that HMO did not measurably disappear from the culture medium, indicating that the growth-enhancing effects were not a result of bacterial metabolism of the HMO. Instead, stimulation of growth caused greater utilization of amino acids in minimal medium. Collectively, the data provide evidence that HMO may promote the growth of Staphylococcus species in the lactating mammary gland. PMID:22562995

  13. Fusarial wilt control and growth promotion of pigeon pea through bioactive metabolites produced by two plant growth promoting rhizobacteria.

    PubMed

    Dutta, S; Morang, P; Nishanth Kumar, S; Dileep Kumar, B S

    2014-03-01

    The bioactive metabolites produced by two plant growth promoting rhizobacteria strains, a Pseudomonas aeruginosa strain RRLJ 04 and a Bacillus cereus strain BS 03, which showed growth promotion and disease control in pigeon pea against Fusarium udum, were isolated and screened for their efficacy to control fusarial wilt of pigeon pea under gnotobiotic and nursery condition. Bioactive metabolites viz., BM 1 and BM 2 from RRLJ 04 and BM 3 from BS 03 also showed in vitro antibiosis against F. udum. Seeds treated with 50 μl seed⁻¹ of BM 1, 30 μl seed⁻¹ of BM 2 and 70 μl seed⁻¹ of BM 3 and grown in pathogen infested soil showed suppression of wilt disease besides growth enhancement. Per cent disease control was 90 % with BM 2 application as compared to 87 and 83 %, respectively in BM 1 and BM 3 after 90 days of growth. BM 2 treated plants were more resistant to the pathogen as compared to the other fractions tested. Mycelial dry weight was found to be reduced on treatment with the bioactive metabolites. Formation of chlamydospore-like structures was observed in the pathogen mycelium treated with BM 3. The analytical studies confirmed that two of these metabolites are phenazine derivatives.

  14. Two-signal requirement for growth-promoting function of Yap in hepatocytes

    PubMed Central

    Su, Tian; Bondar, Tanya; Zhou, Xu; Zhang, Cuiling; He, Hang; Medzhitov, Ruslan

    2015-01-01

    The transcriptional coactivator Yes-associated protein (Yap) promotes proliferation and inhibits apoptosis, suggesting that Yap functions as an oncogene. Most oncogenes, however, require a combination of at least two signals to promote proliferation. In this study, we present evidence that Yap activation is insufficient to promote growth in the otherwise normal tissue. Using a mosaic mouse model, we demonstrate that Yap overexpression in a fraction of hepatocytes does not lead to their clonal expansion, as proliferation is counterbalanced by increased apoptosis. To shift the activity of Yap towards growth, a second signal provided by tissue damage or inflammation is required. In response to liver injury, Yap drives clonal expansion, suppresses hepatocyte differentiation, and promotes a progenitor phenotype. These results suggest that Yap activation is insufficient to promote growth in the absence of a second signal thus coordinating tissue homeostasis and repair. DOI: http://dx.doi.org/10.7554/eLife.02948.001 PMID:25667983

  15. Fibroblast Growth Factors Stimulate Hair Growth through β-Catenin and Shh Expression in C57BL/6 Mice

    PubMed Central

    Lin, Wei-hong; Xiang, Li-Jun; Shi, Hong-Xue; Zhang, Jian; Jiang, Li-ping; Cai, Ping-tao; Lin, Zhen-Lang; Lin, Bei-Bei; Huang, Yan; Zhang, Hai-Lin; Fu, Xiao-Bing; Guo, Ding-Jiong; Li, Xiao-Kun; Wang, Xiao-Jie; Xiao, Jian

    2015-01-01

    Growth factors are involved in the regulation of hair morphogenesis and cycle hair growth. The present study sought to investigate the hair growth promoting activities of three approved growth factor drugs, fibroblast growth factor 10 (FGF-10), acidic fibroblast growth factor (FGF-1), and basic fibroblast growth factor (FGF-2), and the mechanism of action. We observed that FGFs promoted hair growth by inducing the anagen phase in telogenic C57BL/6 mice. Specifically, the histomorphometric analysis data indicates that topical application of FGFs induced an earlier anagen phase and prolonged the mature anagen phase, in contrast to the control group. Moreover, the immunohistochemical analysis reveals earlier induction of β-catenin and Sonic hedgehog (Shh) in hair follicles of the FGFs-treated group. These results suggest that FGFs promote hair growth by inducing the anagen phase in resting hair follicles and might be a potential hair growth-promoting agent. PMID:25685806

  16. Dual role of starvation signaling in promoting growth and recovery

    PubMed Central

    Leshkowitz, Dena; Barkai, Naama

    2017-01-01

    Growing cells are subject to cycles of nutrient depletion and repletion. A shortage of nutrients activates a starvation program that promotes growth in limiting conditions. To examine whether nutrient-deprived cells prepare also for their subsequent recovery, we followed the transcription program activated in budding yeast transferred to low-phosphate media and defined its contribution to cell growth during phosphate limitation and upon recovery. An initial transcription wave was induced by moderate phosphate depletion that did not affect cell growth. A second transcription wave followed when phosphate became growth limiting. The starvation program contributed to growth only in the second, growth-limiting phase. Notably, the early response, activated at moderate depletion, promoted recovery from starvation by increasing phosphate influx upon transfer to rich medium. Our results suggest that cells subject to nutrient depletion prepare not only for growth in the limiting conditions but also for their predicted recovery once nutrients are replenished. PMID:29236696

  17. Nickel detoxification and plant growth promotion by multi metal resistant plant growth promoting Rhizobium species RL9.

    PubMed

    Wani, Parvaze Ahmad; Khan, Mohammad Saghir

    2013-07-01

    Pollution of the biosphere by heavy metals is a global threat that has accelerated dramatically since the beginning of industrial revolution. The aim of the study is to check the resistance of RL9 towards the metals and to observe the effect of Rhizobium species on growth, pigment content, protein and nickel uptake by lentil in the presence and absence of nickel. The multi metal tolerant and plant growth promoting Rhizobium strain RL9 was isolated from the nodules of lentil. The strain not only tolerated nickel but was also tolerant o cadmium, chromium, nickel, lead, zinc and copper. The strain tolerated nickel 500 μg/mL, cadmium 300 μg/mL, chromium 400 μg/mL, lead 1,400 μg/mL, zinc 1,000 μg/mL and copper 300 μg/mL, produced good amount of indole acetic acid and was also positive for siderophore, hydrogen cyanide and ammonia. The strain RL9 was further assessed with increasing concentrations of nickel when lentil was used as a test crop. The strain RL9 significantly increased growth, nodulation, chlorophyll, leghaemoglobin, nitrogen content, seed protein and seed yield compared to plants grown in the absence of bioinoculant but amended with nickel The strain RL9 decreased uptake of nickel in lentil compared to plants grown in the absence of bio-inoculant. Due to these intrinsic abilities strain RL9 could be utilized for growth promotion as well as for the remediation of nickel in nickel contaminated soil.

  18. Novel components of leaf bacterial communities of field-grown tomato plants and their potential for plant growth promotion and biocontrol of tomato diseases.

    PubMed

    Romero, Fernando M; Marina, María; Pieckenstain, Fernando L

    2016-04-01

    This work aimed to characterize potentially endophytic culturable bacteria from leaves of cultivated tomato and analyze their potential for growth promotion and biocontrol of diseases caused by Botrytis cinerea and Pseudomonas syringae. Bacteria were obtained from inner tissues of surface-disinfected tomato leaves of field-grown plants. Analysis of 16S rRNA gene sequences identified bacterial isolates related to Exiguobacterium aurantiacum (isolates BT3 and MT8), Exiguobacterium spp. (isolate GT4), Staphylococcus xylosus (isolate BT5), Pantoea eucalypti (isolate NT6), Bacillus methylotrophicus (isolate MT3), Pseudomonas veronii (isolates BT4 and NT2), Pseudomonas rhodesiae (isolate BT2) and Pseudomonas cichorii (isolate NT3). After seed inoculation, BT2, BT4, MT3, MT8, NT2 and NT6 were re-isolated from leaf extracts. NT2, BT2, MT3 and NT6 inhibited growth of Botrytis cinerea and Pseudomonas syringae pv. tomato in vitro, produced antimicrobial compounds and reduced leaf damage caused by B. cinerea. Some of these isolates also promoted growth of tomato plants, produced siderophores, the auxin indole-3-acetic and solubilized inorganic phosphate. Thus, bacterial communities of leaves from field-grown tomato plants were found to harbor potentially endophytic culturable beneficial bacteria capable of antagonizing pathogenic microorganisms and promoting plant growth, which could be used as biological control agents and biofertilizers/biostimulators for promotion of tomato plant growth. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. Spinal cord injury triggers an intrinsic growth-promoting state in nociceptors.

    PubMed

    Bedi, Supinder S; Lago, Michael T; Masha, Luke I; Crook, Robyn J; Grill, Raymond J; Walters, Edgar T

    2012-03-20

    Although most investigations of the mechanisms underlying chronic pain after spinal cord injury (SCI) have examined the central nervous system (CNS), recent studies have shown that nociceptive primary afferent neurons display persistent hyperexcitability and spontaneous activity in their peripheral branches and somata in dorsal root ganglia (DRG) after SCI. This suggests that SCI-induced alterations of primary nociceptors contribute to central sensitization and chronic pain after SCI. Does SCI also promote growth of these neurons' fibers, as has been suggested in some reports? The present study tests the hypothesis that SCI induces an intrinsic growth-promoting state in DRG neurons. This was tested by dissociating DRG neurons 3 days or 1 month after spinal contusion injury at thoracic level T10 and measuring neuritic growth 1 day later. Neurons cultured 3 days after SCI exhibited longer neurites without increases in branching ("elongating growth"), compared to neurons from sham-treated or untreated (naïve) rats. Robust promotion of elongating growth was found in small and medium-sized neurons (but not large neurons) from lumbar (L3-L5) and thoracic ganglia immediately above (T9) and below (T10-T11) the contusion site, but not from cervical DRG. Elongating growth was also found in neurons immunoreactive to calcitonin gene-related peptide (CGRP), suggesting that some of the neurons exhibiting enhanced neuritic growth were nociceptors. The same measurements made on neurons dissociated 1 month after SCI revealed no evidence of elongating growth, although evidence for accelerated initiation of neurite outgrowth was found. Under certain conditions this transient growth-promoting state in nociceptors might be important for the development of chronic pain and hyperreflexia after SCI.

  20. Antimicrobial growth promoter use in livestock: a requirement to understand their modes of action to develop effective alternatives.

    PubMed

    Brown, Kirsty; Uwiera, Richard R E; Kalmokoff, Martin L; Brooks, Steve P J; Inglis, G Douglas

    2017-01-01

    Antimicrobial agents (AMAs) have been used in agriculture since the 1950s as growth-promoting agents [antimicrobial growth promoters (AGPs)]. They have provided benefits to the agricultural industry by increasing production efficiencies and maximising livestock health, yet the potential risks surrounding resistance to AMAs in medically important pathogenic bacteria have enhanced public and government scrutiny regarding AMA use in agriculture. Although it is recognised that AGP administration can select for resistance to AMAs in enteric bacteria of livestock, conclusive evidence showing a link between resistant bacteria from livestock and human health is lacking (e.g. transmission of resistant zoonotic pathogens). Livestock production output must be increased significantly due to the increase in global population, and thus the identification of non-AMA alternatives to AGP use is required. One strategy employed to identify alternatives to AGPs is an observational empirical methodology, but this approach has failed to deliver effective alternatives. A second approach is aimed at understanding the mechanisms involved in AGP function and developing alternatives that mimic the physiological responses to AGPs. New evidence indicates that AGP function is more complex than merely affecting enteric bacterial populations, and AGPs likely function by directly or indirectly modulating host responses such as the immune system. As such, a more comprehensive understanding of the mechanisms associated with AMA function as AGPs will facilitate the development of effective alternatives. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  1. Cloning the promoter for transforming growth factor-beta type III receptor. Basal and conditional expression in fetal rat osteoblasts

    NASA Technical Reports Server (NTRS)

    Ji, C.; Chen, Y.; McCarthy, T. L.; Centrella, M.

    1999-01-01

    Transforming growth factor-beta binds to three high affinity cell surface molecules that directly or indirectly regulate its biological effects. The type III receptor (TRIII) is a proteoglycan that lacks significant intracellular signaling or enzymatic motifs but may facilitate transforming growth factor-beta binding to other receptors, stabilize multimeric receptor complexes, or segregate growth factor from activating receptors. Because various agents or events that regulate osteoblast function rapidly modulate TRIII expression, we cloned the 5' region of the rat TRIII gene to assess possible control elements. DNA fragments from this region directed high reporter gene expression in osteoblasts. Sequencing showed no consensus TATA or CCAAT boxes, whereas several nuclear factors binding sequences within the 3' region of the promoter co-mapped with multiple transcription initiation sites, DNase I footprints, gel mobility shift analysis, or loss of activity by deletion or mutation. An upstream enhancer was evident 5' proximal to nucleotide -979, and a silencer region occurred between nucleotides -2014 and -2194. Glucocorticoid sensitivity mapped between nucleotides -687 and -253, whereas bone morphogenetic protein 2 sensitivity co-mapped within the silencer region. Thus, the TRIII promoter contains cooperative basal elements and dispersed growth factor- and hormone-sensitive regulatory regions that can control TRIII expression by osteoblasts.

  2. Lettuce and rhizosphere microbiome responses to growth promoting Pseudomonas species under field conditions.

    PubMed

    Cipriano, Matheus A P; Lupatini, Manoeli; Lopes-Santos, Lucilene; da Silva, Márcio J; Roesch, Luiz F W; Destéfano, Suzete A L; Freitas, Sueli S; Kuramae, Eiko E

    2016-12-01

    Plant growth promoting rhizobacteria are well described and recommended for several crops worldwide. However, one of the most common problems in research into them is the difficulty in obtaining reproducible results. Furthermore, few studies have evaluated plant growth promotion and soil microbial community composition resulting from bacterial inoculation under field conditions. Here we evaluated the effect of 54 Pseudomonas strains on lettuce (Lactuca sativa) growth. The 12 most promising strains were phylogenetically and physiologically characterized for plant growth-promoting traits, including phosphate solubilization, hormone production and antagonism to pathogen compounds, and their effect on plant growth under farm field conditions. Additionally, the impact of beneficial strains on the rhizospheric bacterial community was evaluated for inoculated plants. The strains IAC-RBcr4 and IAC-RBru1, with different plant growth promoting traits, improved lettuce plant biomass yields up to 30%. These two strains also impacted rhizosphere bacterial groups including Isosphaera and Pirellula (phylum Planctomycetes) and Acidothermus, Pseudolabrys and Singusphaera (phylum Actinobacteria). This is the first study to demonstrate consistent results for the effects of Pseudomonas strains on lettuce growth promotion for seedlings and plants grown under tropical field conditions. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Structural modulation of gut microbiota in Bama minipigs in response to treatment with a "growth-promoting agent", salbutamol.

    PubMed

    Lu, Chenyang; Zhou, Jun; Li, Yanyan; Zhang, Dijun; Wang, Zuzhong; Li, Ye; Cheong, Lingzhi; Zhang, Chundan; Su, Xiurong

    2017-07-01

    Even though salbutamol (SAL) had remarkable effects on the enhancement of growth rate and carcass composition in different livestock species such as cattle, pigs, sheep and poultry, it was banned as a growth promoter because of its adverse effects on health. However, the specific mechanism by which salbutamol enhances growth efficiency remains unknown. In this study, Bama pigs were randomly allocated to receive salbutamol (5 mg/kg) for 30 or 60 days and were compared with untreated pigs. Pigs treated with salbutamol demonstrated enhanced growth rates and carcass composition; however, they showed deterioration in blood biochemical indices and organ development. We hypothesized that salbutamol exerts its effects by modulating the composition of the gut microbiota population. The faecal microbiome of pigs was characterized via pyrosequencing of the bacterial 16S rRNA gene. The gut microbiota population analysis showed that salbutamol caused shifts in the microbial composition of less abundant species. Redundancy analysis indicated an increase in abundance of the phylum Bacteroidetes, class Betaproteobacteria, family Christensenellaceae and genus Lactobacillus, and a decreased ratio of the phylum Firmicutes, class Clostridia and genera Ruminococcus, Blautia and Subdoligranulum. In conclusion, our study provided circumstantial evidence that the various effects of salbutamol are caused by gut microbiota modulation, and several potential candidates were identified for SAL detection via the gut microbiota. Our findings provided new insights into the roles of the gut microbiota during salbutamol treatment, and these findings will aid in the screening of alternative strategies for animal health improvement and production enhancement.

  4. Pseudomonas rhizophila S211, a New Plant Growth-Promoting Rhizobacterium with Potential in Pesticide-Bioremediation

    PubMed Central

    Hassen, Wafa; Neifar, Mohamed; Cherif, Hanene; Najjari, Afef; Chouchane, Habib; Driouich, Rim C.; Salah, Asma; Naili, Fatma; Mosbah, Amor; Souissi, Yasmine; Raddadi, Noura; Ouzari, Hadda I.; Fava, Fabio; Cherif, Ameur

    2018-01-01

    A number of Pseudomonas strains function as inoculants for biocontrol, biofertilization, and phytostimulation, avoiding the use of pesticides and chemical fertilizers. Here, we present a new metabolically versatile plant growth-promoting rhizobacterium, Pseudomonas rhizophila S211, isolated from a pesticide contaminated artichoke field that shows biofertilization, biocontrol and bioremediation potentialities. The S211 genome was sequenced, annotated and key genomic elements related to plant growth promotion and biosurfactant (BS) synthesis were elucidated. S211 genome comprises 5,948,515 bp with 60.4% G+C content, 5306 coding genes and 215 RNA genes. The genome sequence analysis confirmed the presence of genes involved in plant-growth promoting and remediation activities such as the synthesis of ACC deaminase, putative dioxygenases, auxin, pyroverdin, exopolysaccharide levan and rhamnolipid BS. BS production by P. rhizophila S211 grown on olive mill wastewater based media was effectively optimized using a central-composite experimental design and response surface methodology (RSM). The optimum conditions for maximum BS production yield (720.80 ± 55.90 mg/L) were: 0.5% (v/v) inoculum size, 15% (v/v) olive oil mill wastewater (OMWW) and 40°C incubation temperature at pH 6.0 for 8 days incubation period. Biochemical and structural characterization of S211 BS by chromatography and spectroscopy studies suggested the glycolipid nature of the BS. P. rhizophila rhamnolipid was stable over a wide range of temperature (40–90°C), pH (6–10), and salt concentration (up to 300 mM NaCl). Due to its low-cost production, emulsification activities and high performance in solubilization enhancement of chemical pesticides, the indigenous BS-producing PGPR S211 could be used as a promising agent for environmental bioremediation of pesticide-contaminated agricultural soils. PMID:29527191

  5. Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria.

    PubMed

    do Amaral, Fernanda P; Pankievicz, Vânia C S; Arisi, Ana Carolina M; de Souza, Emanuel M; Pedrosa, Fabio; Stacey, Gary

    2016-04-01

    Plant growth promoting rhizobacteria (PGPR) can associate and enhance the growth of important crop grasses. However, in most cases, the molecular mechanisms responsible for growth promotion are not known. Such research could benefit by the adoption of a grass model species that showed a positive response to bacterial inoculation and was amenable to genetic and molecular research methods. In this work we inoculated different genotypes of the model grass Brachypodium distachyon with two, well-characterized PGPR bacteria, Azospirillum brasilense and Herbaspirillum seropedicae, and evaluated the growth response. Plants were grown in soil under no nitrogen or with low nitrogen (i.e., 0.5 mM KNO3). A variety of growth parameters (e.g., shoot height, root length, number of lateral roots, fresh and dry weight) were measured 35 days after inoculation. The data indicate that plant genotype plays a very important role in determining the plant response to PGPR inoculation. A positive growth response was observed with only four genotypes grown under no nitrogen and three genotypes tested under low nitrogen. However, in contrast, relatively good root colonization was seen with most genotypes, as measured by drop plate counting and direct, microscopic examination of roots. In particular, the endophytic bacteria H. seropedicae showed strong epiphytic and endophytic colonization of roots.

  6. Hippocampal and cortical neuronal growth mediated by the small molecule natural product clovanemagnolol.

    PubMed

    Khaing, Zin; Kang, Danby; Camelio, Andrew M; Schmidt, Christine E; Siegel, Dionicio

    2011-08-15

    The use of small molecule surrogates of growth factors that directly or indirectly promote growth represents an attractive approach to regenerative medicine. With synthetic access to clovanemagnolol, a small molecule initially isolated from the bark of the Bigleaf Magnolia tree, we have examined the small molecule's ability to promote growth of embryonic hippocampal and cortical neurons in serum-free medium. Comparisons with magnolol, a known promoter of growth, reveals that clovanmagnolol is a potent neurotrophic agent, promoting neuronal growth at concentrations of 10 nM. In addition, both clovanemagnolol and magnolol promote growth through a biphasic dose response. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum.

    PubMed

    Díaz Herrera, Silvana; Grossi, Cecilia; Zawoznik, Myriam; Groppa, María Daniela

    2016-01-01

    The role of endophytic communities of seeds is still poorly characterised. The purpose of this work was to survey the presence of bacterial endophytes in the seeds of a commercial wheat cultivar widely sown in Argentina and to look for plant growth promotion features and biocontrol abilities against Fusarium graminearum among them. Six isolates were obtained from wheat seeds following a culture-dependent protocol. Four isolates were assignated to Paenibacillus genus according to their 16S rRNA sequencing. The only gammaproteobacteria isolated, presumably an Enterobactereaceae of Pantoea genus, was particularly active as IAA and siderophore producer, and also solubilised phosphate and was the only one that grew on N-free medium. Several of these isolates demonstrated ability to restrain F. graminearum growth on dual culture and in a bioassay using barley and wheat kernels. An outstanding ability to form biofilm on an inert surface was corroborated for those Paenibacillus which displayed greater biocontrol of F. graminearum, and the inoculation with one of these isolates in combination with the Pantoea isolate resulted in greater chlorophyll content in barley seedlings. Our results show a significant ecological potential of some components of the wheat seed endophytic community. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Neuronal Activity Promotes Glioma Growth through Neuroligin-3 Secretion.

    PubMed

    Venkatesh, Humsa S; Johung, Tessa B; Caretti, Viola; Noll, Alyssa; Tang, Yujie; Nagaraja, Surya; Gibson, Erin M; Mount, Christopher W; Polepalli, Jai; Mitra, Siddhartha S; Woo, Pamelyn J; Malenka, Robert C; Vogel, Hannes; Bredel, Markus; Mallick, Parag; Monje, Michelle

    2015-05-07

    Active neurons exert a mitogenic effect on normal neural precursor and oligodendroglial precursor cells, the putative cellular origins of high-grade glioma (HGG). By using optogenetic control of cortical neuronal activity in a patient-derived pediatric glioblastoma xenograft model, we demonstrate that active neurons similarly promote HGG proliferation and growth in vivo. Conditioned medium from optogenetically stimulated cortical slices promoted proliferation of pediatric and adult patient-derived HGG cultures, indicating secretion of activity-regulated mitogen(s). The synaptic protein neuroligin-3 (NLGN3) was identified as the leading candidate mitogen, and soluble NLGN3 was sufficient and necessary to promote robust HGG cell proliferation. NLGN3 induced PI3K-mTOR pathway activity and feedforward expression of NLGN3 in glioma cells. NLGN3 expression levels in human HGG negatively correlated with patient overall survival. These findings indicate the important role of active neurons in the brain tumor microenvironment and identify secreted NLGN3 as an unexpected mechanism promoting neuronal activity-regulated cancer growth. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Amelogenin as a promoter of nucleation and crystal growth of apatite

    NASA Astrophysics Data System (ADS)

    Uskoković, Vuk; Li, Wu; Habelitz, Stefan

    2011-02-01

    Human dental enamel forms over a period of 2-4 years by substituting the enamel matrix, a protein gel mostly composed of a single protein, amelogenin with fibrous apatite nanocrystals. Self-assembly of amelogenin and the products of its selective proteolytic digestion are presumed to direct the growth of apatite fibers and their organization into bundles that eventually comprise the mature enamel, the hardest tissue in the mammalian body. This work aimed to establish the physicochemical and biochemical conditions for the growth of apatite crystals under the control of a recombinant amelogenin matrix (rH174) in combination with a programmable titration system. The growth of apatite substrates was initiated in the presence of self-assembling amelogenin particles. A series of constant titration rate experiments was performed that allowed for a gradual increase of the calcium and/or phosphate concentrations in the protein suspensions. We observed a significant amount of apatite crystals formed on the substrates following the titration of rH174 sols that comprised the initial supersaturation ratio equal to zero. The protein layers adsorbed onto the substrate apatite crystals were shown to act as promoters of nucleation and growth of calcium phosphates subsequently formed on the substrate surface. Nucleation lag time experiments have showed that rH174 tends to accelerate precipitation from metastable calcium phosphate solutions in proportion to its concentration. Despite their mainly hydrophobic nature, amelogenin nanospheres, the size and surface charge properties of which were analyzed using dynamic light scattering, acted as a nucleating agent for the crystallization of apatite. The biomimetic experimental setting applied in this study proves as convenient for gaining insight into the fundamental nature of the process of amelogenesis.

  10. Hpa1 harpin needs nitroxyl terminus to promote vegetative growth and leaf photosynthesis in Arabidopsis.

    PubMed

    Li, Xiaojie; Han, Liping; Zhao, Yanying; You, Zhenzhen; Dong, Hansong; Zhang, Chunling

    2014-03-01

    Hpa1 is a harpin protein produced by Xanthomonas oryzae, an important bacterial pathogen of rice, and has the growth-promoting activity in plants. To understand the molecular basis for the function of Hpa1, we generated an inactive variant protein, Hpa1 delta NT, by deleting the nitroxyl-terminal region of the Hpa1 sequence and compared Hpa1 delta NT with the full-length protein in terms of the effects on vegetative growth and related physiological responses in Arabidopsis. When Hpa1 was applied to plants, it acted to enhance the vegetative growth but did not affect the floral development. Enhanced plant growth was accompanied by induced expression of growth-promoting genes in plant leaves. The growth-promoting activity of Hpa1 was further correlated with a physiological consequence shown as promoted leaf photosynthesis as a result of facilitated CO2 conduction through leaf stomata and mesophyll cells. On the contrary, plant growth, growth-promoting gene expression, and the physiological consequence changed little in response to the Hpa1 delta NT treatment. These analyses suggest that Hpa1 requires the nitroxyl-terminus to facilitate CO2 transport inside leaf cells and promote leaf photosynthesis and vegetative growth of the plant.

  11. Spinal Cord Injury Triggers an Intrinsic Growth-Promoting State in Nociceptors

    PubMed Central

    Lago, Michael T.; Masha, Luke I.; Crook, Robyn J.; Grill, Raymond J.; Walters, Edgar T.

    2012-01-01

    Abstract Although most investigations of the mechanisms underlying chronic pain after spinal cord injury (SCI) have examined the central nervous system (CNS), recent studies have shown that nociceptive primary afferent neurons display persistent hyperexcitability and spontaneous activity in their peripheral branches and somata in dorsal root ganglia (DRG) after SCI. This suggests that SCI-induced alterations of primary nociceptors contribute to central sensitization and chronic pain after SCI. Does SCI also promote growth of these neurons' fibers, as has been suggested in some reports? The present study tests the hypothesis that SCI induces an intrinsic growth-promoting state in DRG neurons. This was tested by dissociating DRG neurons 3 days or 1 month after spinal contusion injury at thoracic level T10 and measuring neuritic growth 1 day later. Neurons cultured 3 days after SCI exhibited longer neurites without increases in branching (“elongating growth”), compared to neurons from sham-treated or untreated (naïve) rats. Robust promotion of elongating growth was found in small and medium-sized neurons (but not large neurons) from lumbar (L3–L5) and thoracic ganglia immediately above (T9) and below (T10–T11) the contusion site, but not from cervical DRG. Elongating growth was also found in neurons immunoreactive to calcitonin gene-related peptide (CGRP), suggesting that some of the neurons exhibiting enhanced neuritic growth were nociceptors. The same measurements made on neurons dissociated 1 month after SCI revealed no evidence of elongating growth, although evidence for accelerated initiation of neurite outgrowth was found. Under certain conditions this transient growth-promoting state in nociceptors might be important for the development of chronic pain and hyperreflexia after SCI. PMID:21939395

  12. Hair growth promoting activity of discarded biocomposite keratin extract.

    PubMed

    Akanda, Md Rashedunnabi; Kim, Hak-Yong; Park, Mira; Kim, In-Shik; Ahn, Dongchoon; Tae, Hyun-Jin; Park, Byung-Yong

    2017-08-01

    Keratin biomaterial has been used in regenerative medicine owing to its in-vivo and in-vitro biocompatibility. The present study was aimed to investigate the hair growth promoting activity of keratin extract and its mechanism of action. Keratin extract was topically applied on the synchronized depilated dorsal skin of telogenic C57BL/6 mice and promoted hair growth by inducing the anagen phase. The histomorphometric observation indicated significantly increases the number, shaft of hair follicles and deep subcutis area in the keratin extract treated group in contrast to the control group, which was considered an indication of anagen phase induction. Subsequently, the quantitative real-time polymerase chain reaction analysis revealed that fibroblast growth factor-10, vascular endothelial growth factor, insulin-like growth factor-1, β-catenin, and Shh were expressed earlier in the keratin extract-treated group than in the control group. Besides, keratin extract has been observed to be biocompatible when analyzed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and 4',6-diamidino-2-phenylindole staining using immortalized human keratinocyte cells, showing more than 90% cell viability. Our study demonstrated that keratin extract stimulating hair follicle growth by inducing the growth phase; anagen in telogenic C57BL/6 mice and thus the topical application of keratin extract may represent a promising biomaterial for the management and applications of hair follicle disorder.

  13. Bioagents and silicon promoting fast early upland rice growth.

    PubMed

    de Sousa, Thatyane Pereira; de Souza, Alan Carlos Alves; de Filippi, Marta Cristina Corsi; Lanna, Anna Cristina; Cortês, Marcio Vinicius; Pinheiro, Hugo Alves; da Silva, Gisele Barata

    2018-02-01

    Upland rice can overcome major challenges through the insertion of silicate fertilization and the presence of plant growth-promoting microorganisms (PGPMs) during its cultivation, as these factors promote an increase in vigor and plant disease resistance. Two consecutive experiments were conducted to evaluate the beneficial effects of silicon fertilization combined with the PGPM, Pseudomonas fluorensces, Burkholderia pyrrocinia, and a pool of Trichoderma asperellum, in upland rice seedlings, cultivar BRS Primavera CL: (a) E1, selecting PGPM type and Si doses for rice growth promotion and leaf blast supression, and (b) E2, evaluating physiological characteristics correlated with mechanisms involved in the higher vegetative growth in highlighted treatments from E1. In E1, 2 Si t ha -1 combined with the application of T. asperellum pool or PGPM mixture increased 54% in root dry matter biomass and 35 and 65% in shoot and root lengths, respectively; it also suppressed 99% of rice blast severity. In E2, shoot and root dry matter biomass and length, photosynthetic rate, water use efficiency, total soluble sugar, and chloroplastidic pigments were superior in BRS Primavera CL seedlings treated with 2 Si t ha -1 and T. asperellum pool or PGPM mixture. Higher salicilic and jasmonic acid levels were found in seedlings treated with Si and T. asperellum pool, individually. These physiological characteristics may explain, in part, the higher vigor of upland rice seedlings promoted by the synergistic effect between silicate fertilization and beneficial microorganisms.

  14. In Vitro and In Vivo Plant Growth Promoting Activities and DNA Fingerprinting of Antagonistic Endophytic Actinomycetes Associates with Medicinal Plants.

    PubMed

    Passari, Ajit Kumar; Mishra, Vineet Kumar; Gupta, Vijai Kumar; Yadav, Mukesh Kumar; Saikia, Ratul; Singh, Bhim Pratap

    2015-01-01

    plants and were shown to have antagonistic and plant growth promoting abilities. These results clearly suggest the possibility of using endophytic actinomycetes as bioinoculant for plant growth promotion, nutrient mobilization or as biocontrol agent against fungal phytopathogens for sustainable agriculture.

  15. Preferential Promotion of Lycopersicon esculentum (Tomato) Growth by Plant Growth Promoting Bacteria Associated with Tomato.

    PubMed

    Vaikuntapu, Papa Rao; Dutta, Swarnalee; Samudrala, Ram Babu; Rao, Vukanti R V N; Kalam, Sadaf; Podile, Appa Rao

    2014-12-01

    A total of 74 morphologically distinct bacterial colonies were selected during isolation of bacteria from different parts of tomato plant (rhizoplane, phylloplane and rhizosphere) as well as nearby bulk soil. The isolates were screened for plant growth promoting (PGP) traits such as production of indole acetic acid, siderophore, chitinase and hydrogen cyanide as well as phosphate solubilization. Seven isolates viz., NR4, NR6, RP3, PP1, RS4, RP6 and NR1 that exhibited multiple PGP traits were identified, based on morphological, biochemical and 16S rRNA gene sequence analysis, as species that belonged to four genera Aeromonas, Pseudomonas, Bacillus and Enterobacter. All the seven isolates were positive for 1-aminocyclopropane-1-carboxylate deaminase. Isolate NR6 was antagonistic to Fusarium solani and Fusarium moniliforme, and both PP1 and RP6 isolates were antagonistic to F. moniliforme. Except RP6, all isolates adhered significantly to glass surface suggestive of biofilm formation. Seed bacterization of tomato, groundnut, sorghum and chickpea with the seven bacterial isolates resulted in varied growth response in laboratory assay on half strength Murashige and Skoog medium. Most of the tomato isolates positively influenced tomato growth. The growth response was either neutral or negative with groundnut, sorghum and chickpea. Overall, the results suggested that bacteria with PGP traits do not positively influence the growth of all plants, and certain PGP bacteria may exhibit host-specificity. Among the isolates that positively influenced growth of tomato (NR1, RP3, PP1, RS4 and RP6) only RS4 was isolated from tomato rhizosphere. Therefore, the best PGP bacteria can also be isolated from zones other than rhizosphere or rhizoplane of a plant.

  16. Shoot-derived abscisic acid promotes root growth.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J; Ross, John J

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root-sourced ABA on root growth during water stress. Here, we tested whether foliage-derived ABA could be transported to the roots, and whether this foliage-derived ABA had an influence on root growth under well-watered conditions. Using both application studies of deuterium-labelled ABA and reciprocal grafting between wild-type and ABA-biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage-derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA-deficient scions suggest that foliage-derived ABA inhibits root growth through the root growth-inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage-derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture. © 2015 John Wiley & Sons Ltd.

  17. Growth-Promoting Relationships with Children and Youth

    ERIC Educational Resources Information Center

    Spencer, Renée; Rhodes, Jean E.

    2014-01-01

    At the heart of afterschool programs are the relationships that form between the children and youth who participate in these programs and the adults who lead them. To be effective, adults working in afterschool settings must be able to engage youth in growth-promoting relationships. This article identifies and describes four foundational ways of…

  18. A novel anticancer agent SNG1153 inhibits growth of lung cancer stem/progenitor cells

    PubMed Central

    Wang, Jing; Zhu, Hai; Han, Yuqing; Jin, Mingji; Wang, Jun; Zhou, Congya; Ma, Junfeng; Lin, Qingcong; Wang, Zhaoyi; Meng, Kun; Fu, Xueqi

    2016-01-01

    Lung cancer is the leading cause of cancer-related death in both men and women. Lung cancer contains a small population of cancer cells with stem-like features known as cancer stem cells (CSCs). CSCs are often more resistant to current therapeutic treatments. Thus, it is urgent to develop a novel agent that is able to inhibit CSCs growth. In this study, we examined the ability of SNG1153, a novel chemical agent to inhibit the growth of lung CSCs. We found that SNG1153 inhibited growth and induced apoptosis in established lung cancer cells. We also found that SNG1153 inhibited the tumorsphere formation and decreased CD133-positive (lung CSC marker) cancer cells. SNG1153 was able to attenuate tumor formation in NOD/SCID (non-obese diabetic/severe combined immunodeficient) mice injected with lung tumorsphere cells. We further demonstrated that SNG1153 induced β-catenin phosphorylation and down-regulated β-catenin. Our results thus demonstrate that SNG1153 effectively inhibits the growth of lung CSCs and suggest that SNG1153 may be a novel therapeutic agent to treat human lung cancer. PMID:27281614

  19. Bio-control and plant growth promotion potential of Salicaceae endophytes

    USDA-ARS?s Scientific Manuscript database

    Microbial endophytes are important for growth benefits in a variety of plant species. Microbial communities of the poplar (Populus sp.) and willow (Salix sp.) endosphere have been demonstrated to be important for plant growth promotion, protection from abiotic stresses, and degradation of toxic subs...

  20. Growth mechanisms of MgO nanocrystals via a sol-gel synthesis using different complexing agents

    PubMed Central

    2014-01-01

    In the preparation of nanostructured materials, it is important to optimize synthesis parameters in order to obtain the desired material. This work investigates the role of complexing agents, oxalic acid and tartaric acid, in the production of MgO nanocrystals. Results from simultaneous thermogravimetric analysis (STA) show that the two different synthesis routes yield precursors with different thermal profiles. It is found that the thermal profiles of the precursors can reveal the effects of crystal growth during thermal annealing. X-ray diffraction confirms that the final products are pure, single phase and of cubic shape. It is also found that complexing agents can affect the rate of crystal growth. The structures of the oxalic acid and tartaric acid as well as the complexation sites play very important roles in the formation of the nanocrystals. The complexing agents influence the rate of growth which affects the final crystallite size of the materials. Surprisingly, it is also found that oxalic acid and tartaric acid act as surfactants inhibiting crystal growth even at a high temperature of 950°C and a long annealing time of 36 h. The crystallite formation routes are proposed to be via linear and branched polymer networks due to the different structures of the complexing agents. PMID:24650322

  1. Carbon agent chemical vapor transport growth of Ga2O3 crystal

    NASA Astrophysics Data System (ADS)

    Jie, Su; Tong, Liu; Jingming, Liu; Jun, Yang; Guiying, Shen; Yongbiao, Bai; Zhiyuan, Dong; Youwen, Zhao

    2016-10-01

    Beta-type gallium oxide (β-Ga2O3) is a new attractive material for optoelectronic devices. Different methods had been tried to grow high quality β-Ga2O3 crystals. In this work, crystal growth of Ga2O3 has been carried out by chemical vapor transport (CVT) method in a closed quartz tube using C as transport agent and sapphire wafer as seed. The CVT mass flux has been analyzed by theoretical calculations based on equilibrium thermodynamics and 1D diffusional mass transport. The crystal growth experimental results are in agreement with the theoretical predictions. Influence factors of Ga2O3 crystal growth, such as temperature distribution, amount of C as transport agent used, have also been discussed. Structural (XRD) and optical (Raman spectroscopy, photoluminescence spectrum) properties of the CVT-Ga2O3 crystal are presented. Project supported by the National Natural Science Foundation of China (Nos. 61474104, 61504131).

  2. Growth promoting antibiotics in food animal production: an economic analysis.

    PubMed

    Graham, Jay P; Boland, John J; Silbergeld, Ellen

    2007-01-01

    Considerable controversy persists regarding the use of human antibiotics to promote growth in animals raised for food. The authors examined the economic effect of removing antibiotics used for growth promotion in commercial broiler chickens. The authors utilized data published by the Perdue company, the fourth largest poultry producer in the United States, in which a non-randomized controlled trial of growth-promoting antibiotic (GPA) use was conducted with seven million broiler chickens to evaluate the impact of removing GPAs on production. Positive production changes were associated with GPA use, but were insufficient to offset the cost of the antibiotics. The net effect of using GPAs was a lost value of 0.0093 dollars per chicken (about 0.45% of total cost). Based upon these data, the authors found no basis for the claim that the use of GPAs lowers the cost of production. Note that this study does not include veterinary cost changes or changes in performance variability associated with the removal of GPAs. This economic analysis is the first study to the authors' knowledge utilizing large-scale empirical data collected by U.S. industry, in which it is demonstrated that the use of GPAs in poultry production is associated with economic losses to the producers. These data are of considerable importance in the ongoing national debate concerning the continued use of antibiotics for growth promotion of food animals. Based on the industry study and the resulting economic impact, the use of GPAs in U.S. poultry production should be reconsidered.

  3. Plant Growth-Promoting Microorganisms for Environmental Sustainability.

    PubMed

    Abhilash, P C; Dubey, Rama Kant; Tripathi, Vishal; Gupta, Vijai K; Singh, Harikesh B

    2016-11-01

    Agrochemicals used to meet the needs of a rapidly growing human population can deteriorate the quality of ecosystems and are not affordable to farmers in low-resource environments. Here, we propose the use of plant growth-promoting microorganisms (PGPMs) as a tool for sustainable food production without compromising ecosystems services. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. 7-Phloroeckol promotes hair growth on human follicles in vitro.

    PubMed

    Bak, Soon-Sun; Sung, Young Kwan; Kim, Se-Kwon

    2014-08-01

    7-Phloroeckol, phloroglucinol derivative isolated from marine brown algae, has anti-oxidative, anti-inflammatory responses and MMP inhibitory activities. In this study, we evaluated the hair growth-promoting effects of 7-phloroeckol in human hair follicles. To investigate cell viability of human dermal papilla cells (DPCs) and outer root sheath (ORS) cells in the presence or absence of 7-phloroeckol treatment, MTT assay was employed. Moreover, gene expression and protein concentration of insulin-like growth factor (IGF)-1 was measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. 7-Phloroeckol induced an increase in proliferation of DPCs and ORS cells. In addition, hair shaft growth was measured using the hair-follicle organ culture system. 7-Phloroeckol resulted in elongation of the hair shaft in cultured human hair follicles. 7-Phloroeckol induced an IGF-1 mRNA expression and protein concentration in DPCs and conditioned media, respectively. These results suggest that 7-phloroeckol promotes hair growth through stimulation of DPCs and ORS cells.

  5. A short peptide GPIGS promotes proliferation of hair bulb keratinocytes and accelerates hair regrowth in mice.

    PubMed

    Tsuruda, Akinori; Kawano, Yasuhiro; Maekawa, Takaaki; Oka, Syuichi

    2005-03-01

    The aim of this study was to discover a novel agent that promotes hair growth. We carried out a screening test in 298 types of conditioned medium (CM) from cultures of bacteria by using a hair bulb keratinocyte (HBK) growth assay. As a result, we found a HBK growth factor in the CM of Bacillus sp. M18. This HBK growth factor was purified by collecting biologically active fractions in three steps, including HP-20 batch processing, LH-20 chromatography and C18 reverse-phase high-pressure liquid chromatography, and identified as a short peptide GPIGS. GPIGS increased Akt phosphorylation in HBKs. Moreover, the GPIGS-stimulated HBK growth was inhibited by the treatment with LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI-3K). These results suggest that GPIGS promotes HBK growth via the PI-3K/Akt pathway. In addition to in vitro tests, GPIGS was found to accelerate hair regrowth in telogen mice. Our results indicate that GPIGS is a potential agent to promote hair growth.

  6. Red clover: An alternative to antibiotic growth promoters?

    USDA-ARS?s Scientific Manuscript database

    A series of experiments were conducted at the Forage-Animal Production Research Unit to discover a growth-promoting natural product from red clover (Trifolium pratense). Previously published work included a bioassay for antimicrobial activity of phytochemicals. The bioassay was used to discover th...

  7. Mechano-growth factor protects against mechanical overload induced damage and promotes migration of growth plate chondrocytes through RhoA/YAP pathway.

    PubMed

    Jing, Xingzhi; Ye, Yaping; Bao, Yuan; Zhang, Jinming; Huang, Junming; Wang, Rui; Guo, Jiachao; Guo, Fengjing

    2018-05-15

    Epiphyseal growth plate is highly dynamic tissue which is controlled by a variety of endocrine, paracrine hormones, and by complex local signaling loops and mechanical loading. Mechano growth factor (MGF), the splice variant of the IGF-I gene, has been discovered to play important roles in tissue growth and repair. However, the effect of MGF on the growth plate remains unclear. In the present study, we found that MGF mRNA expression of growth plate chondrocytes was upregulated in response to mechanical stimuli. Treatment of MGF had no effect on growth plate chondrocytes proliferation and differentiation. But it could inhibit growth plate chondrocytes apoptosis and inflammation under mechanical overload. Moreover, both wound healing and transwell assay indicated that MGF could significantly enhance growth plate chondrocytes migration which was accompanied with YAP activation and nucleus translocation. Knockdown of YAP with YAP siRNA suppressed migration induced by MGF, indicating the essential role of YAP in MGF promoting growth plate chondrocytes migration. Furthermore, MGF promoted YAP activation through RhoA GTPase mediated cytoskeleton reorganization, RhoA inhibition using C3 toxin abrogated MGF induced YAP activation. Importantly, we found that MGF promoted focal adhesion(FA) formation and knockdown of YAP with YAP siRNA partially suppressed the activation of FA kinase, implying that YAP is associated with FA formation. In conclusion, MGF is an autocrine growth factor which is regulated by mechanical stimuli. MGF could not only protect growth plate chondrocytes against damage by mechanical overload, but also promote migration through activation of RhoA/YAP signaling axis. Most importantly, our findings indicate that MGF promote cell migration through YAP mediated FA formation to determine the FA-cytoskeleton remodeling. Copyright © 2018. Published by Elsevier Inc.

  8. Renal toxicity of anticancer agents targeting vascular endothelial growth factor (VEGF) and its receptors (VEGFRs).

    PubMed

    Cosmai, Laura; Gallieni, Maurizio; Liguigli, Wanda; Porta, Camillo

    2017-04-01

    Since angiogenesis plays a key role in tumor growth, progression and metastasization, anti-vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) agents have been developed over the years as anticancer agents, and have changed, for the better, the natural history of a number of cancer types. In the present review, the renal safety profile of presently available agents targeting either VEGF or VEGFRs will be discussed, together with the peculiarities related to their clinical use in patients with impaired renal function, or even in dialysis. Indeed, renal toxicity (especially, but not exclusively, hypertension and proteinuria) are quite commonly observed with these agents, and may be increased by the concomitant use of cytoxic chemotherapeutics. Despite all the above, kidney impairment or dialysis must not be regarded di per se as reasons not to administer or to stop an active anticancer treatment, especially considering the possibility of a significant survival improvement in many cancer patients treated with these agents.

  9. Exosomes Derived from Mesenchymal Stromal Cells Promote Axonal Growth of Cortical Neurons.

    PubMed

    Zhang, Yi; Chopp, Michael; Liu, Xian Shuang; Katakowski, Mark; Wang, Xinli; Tian, Xinchu; Wu, David; Zhang, Zheng Gang

    2017-05-01

    Treatment of brain injury with exosomes derived from mesenchymal stromal cells (MSCs) enhances neurite growth. However, the direct effect of exosomes on axonal growth and molecular mechanisms underlying exosome-enhanced neurite growth are not known. Using primary cortical neurons cultured in a microfluidic device, we found that MSC-exosomes promoted axonal growth, whereas attenuation of argonaut 2 protein, one of the primary microRNA (miRNA) machinery proteins, in MSC-exosomes abolished their effect on axonal growth. Both neuronal cell bodies and axons internalized MSC-exosomes, which was blocked by botulinum neurotoxins (BoNTs) that cleave proteins of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. Moreover, tailored MSC-exosomes carrying elevated miR-17-92 cluster further enhanced axonal growth compared to native MSC-exosomes. Quantitative RT-PCR and Western blot analysis showed that the tailored MSC-exosomes increased levels of individual members of this cluster and activated the PTEN/mTOR signaling pathway in recipient neurons, respectively. Together, our data demonstrate that native MSC-exosomes promote axonal growth while the tailored MSC-exosomes can further boost this effect and that tailored exosomes can deliver their selective cargo miRNAs into and activate their target signals in recipient neurons. Neuronal internalization of MSC-exosomes is mediated by the SNARE complex. This study reveals molecular mechanisms that contribute to MSC-exosome-promoted axonal growth, which provides a potential therapeutic strategy to enhance axonal growth.

  10. STUDIES ON X-AGENT. III. EFFECT ON THE GROWTH OF SEEDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriyama, H.

    1960-01-01

    The growth rate of seeds (grass and rape) was used to detect diurnal, seasonal, and directional variations in the intensity of this postulated cosmic radiation factor. As found earlier with bacteria, proximity to various materials changed the effect of the agent (cf. preceding abstract). (BBB)

  11. Lifshitz interaction can promote ice growth at water-silica interfaces

    NASA Astrophysics Data System (ADS)

    Boström, Mathias; Malyi, Oleksandr I.; Parashar, Prachi; Shajesh, K. V.; Thiyam, Priyadarshini; Milton, Kimball A.; Persson, Clas; Parsons, Drew F.; Brevik, Iver

    2017-04-01

    At air-water interfaces, the Lifshitz interaction by itself does not promote ice growth. On the contrary, we find that the Lifshitz force promotes the growth of an ice film, up to 1-8 nm thickness, near silica-water interfaces at the triple point of water. This is achieved in a system where the combined effect of the retardation and the zero frequency mode influences the short-range interactions at low temperatures, contrary to common understanding. Cancellation between the positive and negative contributions in the Lifshitz spectral function is reversed in silica with high porosity. Our results provide a model for how water freezes on glass and other surfaces.

  12. Plant growth-promoting rhizobacteria and root system functioning

    PubMed Central

    Vacheron, Jordan; Desbrosses, Guilhem; Bouffaud, Marie-Lara; Touraine, Bruno; Moënne-Loccoz, Yvan; Muller, Daniel; Legendre, Laurent; Wisniewski-Dyé, Florence; Prigent-Combaret, Claire

    2013-01-01

    The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture. PMID:24062756

  13. Keratin 23 promotes telomerase reverse transcriptase expression and human colorectal cancer growth.

    PubMed

    Zhang, Ningning; Zhang, Rui; Zou, Kun; Yu, Wendan; Guo, Wei; Gao, Yingying; Li, Jia; Li, Mei; Tai, Yidi; Huang, Wenlin; Song, Chun; Deng, Wuguo; Cui, Xiaonan

    2017-07-27

    The overexpression of human telomerase reverse transcriptase (hTERT) has been associated with the proliferation and migration of colorectal cancer (CRC) cells. We investigated the roles of KRT23 and hTERT in promoting CRC cell proliferation and migration. We verified the relationship between KRT23 and hTERT in CRC using streptavidin-agarose pulldown and chromatin immunoprecipitation (ChIP) assays. One hundred and fifty-four human CRC specimens were analyzed using immunohistochemistry. The roles of KRT23 and hTERT in cell growth and migration were studied using siRNA and lentiviruses in vivo and in vitro. Western blot and wound scratch analyses were used to determine the signaling pathway for KRT23-mediated activation of CRC growth and migration. Telomerase activity was measured by using the TeloTAGGG Telomerase PCR ELISA PLUS Kit. We identified KRT23 as a new hTERT promoter-binding protein. Patients with high KRT23 and hTERT expression had markedly shorter overall survival. Overexpression of KRT23 upregulated the expression of hTERT protein, hTERT promoter-driven luciferase and telomerase activity in CRC. Conversely, inhibition of KRT23 by a KRT23-specific siRNA repressed the endogenous hTERT protein, the expression of hTERT promoter-driven luciferase and telomerase activity. Overexpression of KRT23 also promoted CRC proliferation and migration. By contrast, KRT23 inhibition significantly inhibited tumor cell growth in vitro and in vivo. KRT23 promoted cancer stem cell properties and increased the expression of CD133 and CD44. These results demonstrate that KRT23 is an important cellular factor that promotes CRC growth by activating hTERT expression and that KRT23 is a potential novel therapeutic target for CRC.

  14. The effect of cilostazol, a phosphodiesterase 3 (PDE3) inhibitor, on human hair growth with the dual promoting mechanisms.

    PubMed

    Choi, Hye-In; Kim, Dong Young; Choi, Soon-Jin; Shin, Chang-Yup; Hwang, Sungjoo Tommy; Kim, Kyu Han; Kwon, Ohsang

    2018-07-01

    Cilostazol, a phosphodiesterase 3 (PDE3) inhibitor, increases the intracellular level of cyclic adenosine monophosphate to cause vasodilation. Topical application of cilostazol is reported to improve local blood flow and enhance wound healing; however, its effect on human hair follicles is unknown. The purpose of this study was to determine the effect of cilostazol on hair growth. We investigated the expression of PDE3 in human dermal papilla cells (DPCs), outer root sheath cells (ORSCs), and hair follicles. The effects of cilostazol on DPC and ORSC proliferation were evaluated using BrdU and WST-1 assays. The expression of various growth factors in DPCs was investigated by growth factor antibody array. Additionally, hair shaft elongation was measured using ex vivo hair follicle organ cultures, and anagen induction was evaluated in C57BL/6 mice. Finally, the effects of cilostazol on vessel formation and activation of the mitogen-activated protein kinase pathway were evaluated. We confirmed high mRNA and protein expression of PDE3 in human DPCs. Cilostazol not only enhanced the proliferation of human DPCs but also regulated the secretion of several growth factors responsible for hair growth. Furthermore, it promoted hair shaft elongation ex vivo, with increased proliferation of matrix keratinocytes. Cilostazol also accelerated anagen induction by stimulating vessel formation and upregulating the levels of phosphorylated extracellular signal-regulated kinase, c-Jun N-terminal kinase, and P38 after its topical application in C57BL/6 mice. Our results show that cilostazol promotes hair growth and may serve as a therapeutic agent for the treatment of alopecia. Copyright © 2018 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  15. Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds.

    PubMed

    Park, Yong-Soon; Dutta, Swarnalee; Ann, Mina; Raaijmakers, Jos M; Park, Kyungseok

    2015-05-29

    Volatile organic compounds (VOCs) from plant growth-promoting rhizobacteria (PGPR) play key roles in modulating plant growth and induced systemic resistance (ISR) to pathogens. Despite their significance, the physiological functions of the specific VOCs produced by Pseudomonas fluorescens SS101 (Pf.SS101) have not been precisely elucidated. The effects of Pf.SS101 and its VOCs on augmentation of plant growth promotion were investigated in vitro and in planta. A significant growth promotion was observed in plants exposed Pf.SS101 under both conditions, suggesting that its VOCs play a key role in promoting plant growth. Solid-phase micro-extraction (SPME) and a gas chromatography-mass spectrophotometer (GC-MS) system were used to characterize the VOCs emitted by Pf.SS101 and 11 different compounds were detected in samples inoculated this bacterium, including 13-Tetradecadien-1-ol, 2-butanone and 2-Methyl-n-1-tridecene. Application of these compounds resulted in enhanced plant growth. This study suggests that Pf.SS101 promotes the growth of plants via the release of VOCs including 13-Tetradecadien-1-ol, 2-butanone and 2-Methyl-n-1-tridecene, thus increasing understanding of the role of VOCs in plant-bacterial inter-communication. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Protein arginine methyltransferase 5 functions as an epigenetic activator of the androgen receptor to promote prostate cancer cell growth.

    PubMed

    Deng, X; Shao, G; Zhang, H-T; Li, C; Zhang, D; Cheng, L; Elzey, B D; Pili, R; Ratliff, T L; Huang, J; Hu, C-D

    2017-03-02

    Protein arginine methyltransferase 5 (PRMT5) is an emerging epigenetic enzyme that mainly represses transcription of target genes via symmetric dimethylation of arginine residues on histones H4R3, H3R8 and H2AR3. Accumulating evidence suggests that PRMT5 may function as an oncogene to drive cancer cell growth by epigenetic inactivation of several tumor suppressors. Here, we provide evidence that PRMT5 promotes prostate cancer cell growth by epigenetically activating transcription of the androgen receptor (AR) in prostate cancer cells. Knockdown of PRMT5 or inhibition of PRMT5 by a specific inhibitor reduces the expression of AR and suppresses the growth of multiple AR-positive, but not AR-negative, prostate cancer cells. Significantly, knockdown of PRMT5 in AR-positive LNCaP cells completely suppresses the growth of xenograft tumors in mice. Molecular analysis reveals that PRMT5 binds to the proximal promoter region of the AR gene and contributes mainly to the enriched symmetric dimethylation of H4R3 in the same region. Mechanistically, PRMT5 is recruited to the AR promoter by its interaction with Sp1, the major transcription factor responsible for AR transcription, and forms a complex with Brg1, an ATP-dependent chromatin remodeler, on the proximal promoter region of the AR gene. Furthermore, PRMT5 expression in prostate cancer tissues is significantly higher than that in benign prostatic hyperplasia tissues, and PRMT5 expression correlates positively with AR expression at both the protein and mRNA levels. Taken together, our results identify PRMT5 as a novel epigenetic activator of AR in prostate cancer. Given that inhibiting AR transcriptional activity or androgen synthesis remains the major mechanism of action for most existing anti-androgen agents, our findings also raise an interesting possibility that targeting PRMT5 may represent a novel approach for prostate cancer treatment by eliminating AR expression.

  17. The sub-inhibitory theory for antibiotic growth promoters.

    PubMed

    Broom, Leon J

    2017-09-01

    Antibiotics have played a critical role in the prevention, control, and treatment of bacterial diseases in humans and animals, and as growth promoters (AGPs) when used at sub-therapeutic concentrations in animal production. Numerous hypotheses have been proposed for the effectiveness of AGPs, which have largely centered on the beneficial modulation of the intestinal microbiota. However, these hypotheses have been doubted by some researchers, as AGPs are fed at concentrations that would typically be below minimum inhibitory concentrations (sub-MIC) for the antibiotic used. More recently, pro-inflammatory immune responses have been associated with poor growth performance, and this, along with reported direct, anti-inflammatory effects of some antibiotics, have led to suggestions that reducing the nutrient cost of (intestinal) inflammation may explain the growth promoting or permitting effect of AGPs. However, doubts about antibacterial effects of AGPs, and the search for alternative explanations, overlook the sub-MIC effects of antibiotics. This paper summarizes some of the reported sub-MIC effects of antibiotics and considers these in the context of helping to explain the mode of action of AGPs and effects seen in studies in vivo. This leads to suggestions for the features that alternatives to AGPs could exhibit to achieve similar performance efficacy as AGPs. © 2017 Poultry Science Association Inc.

  18. Promotion of hair growth by newly synthesized ceramide mimetic compound.

    PubMed

    Park, Bu-Mahn; Bak, Soon-Sun; Shin, Kyung-Oh; Kim, Minhee; Kim, Daehwan; Jung, Sang-Hun; Jeong, Sekyoo; Sung, Young Kwan; Kim, Hyun Jung

    2017-09-09

    Based on the crucial roles of ceramides in skin barrier function, use of ceramides or their structural mimetic compounds, pseudoceramides, as cosmetic ingredients are getting more popular. While currently used pseudoceramides are intended to substitute the structural roles of ceramides in stratum corneum, development of bioactive pseudoceramides has been repeatedly reported. In this study, based on the potential involvement of sphingolipids in hair cycle regulation, we investigated the effects of newly synthesized pseudoceramide, bis-oleamido isopropyl alcohol (BOI), on hair growth using cultured human hair follicles and animal models. BOI treatment promoted hair growth in cultured human hair follicles ex vivo and induced earlier conversion of telogen into anagen. Although we did not find a significant enhancement of growth factor expression and follicular cell proliferation, BOI treatment resulted in an increased sphinganine and sphingosine contents as well as increased ceramides contents in cultured dermal papilla (DP) cells. Taken together, our data strongly suggest that biologically active pseudoceramide promotes hair growth by stimulating do novo synthesis of sphingolipids in DP cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria.

    PubMed

    Hamedi, Javad; Mohammadipanah, Fatemeh

    2015-02-01

    Plant growth promoting (PGP) bacteria are involved in various interactions known to affect plant fitness and soil quality, thereby increasing the productivity of agriculture and stability of soil. Although the potential of actinobacteria in antibiotic production is well-investigated, their capacity to enhance plant growth is not fully surveyed. Due to the following justifications, PGP actinobacteria (PGPA) can be considered as a more promising taxonomical group of PGP bacteria: (1) high numbers of actinobacteria per gram of soil and their filamentous nature, (2) genome dedicated to the secondary metabolite production (~5 to 10 %) is distinctively more than that of other bacteria and (3) number of plant growth promoter genera reported from actinobacteria is 1.3 times higher than that of other bacteria. Mechanisms by which PGPA contribute to the plant growth by association are: (a) enhancing nutrients availability, (b) regulation of plant metabolism, (c) decreasing environmental stress, (d) control of phytopathogens and (e) improvement of soil texture. Taxonomical and chemical diversity of PGPA and their biotechnological application along with their associated challenges are summarized in this paper.

  20. Evaluation of hair growth promoting activity of Phyllanthus niruri

    PubMed Central

    Patel, Satish; Sharma, Vikas; S. Chauhan, Nagendra; Thakur, Mayank; Dixit, Vinod Kumar

    2015-01-01

    Objective: This study was designed to investigate the potential Phyllanthus niruri (P. niruri ) extracts in promotion of hair growth. Materials and Methods: Here, we studied the hair growth promoting activity of petroleum ether extract of P. niruri following its topical administration. Alopecia was induced in albino rats by subcutaneous administration of testosterone for 21 days. Evaluation of hair loss inhibition was done by concurrent administration of extract and monitoring parameters like follicular density, anagen/telogen (A/T) ratio and histological observation of animal skin sections. Finasteride solution was applied topically as standard. In vitro experiments were also performed to study the effect of extract on the activity of 5α-reductase enzyme Results: Groups treated with petroleum ether extract of plant showed hair re-growth as reflected by follicular density, A/T ratio and skin sections. Histopathology and morphologic observations of hair re-growth at shaved sites showed active follicular proliferation. In vitro experiments results showed inhibitory activity of petroleum ether extract on type-2 5α-reductase enzyme and an increase in the amount of testosterone with increasing concentrations. Conclusion: It could be concluded that petroleum ether extracts of P. niruri might be useful in the treatment of testosterone-induced alopecia in the experimental animal by inhibiting 5α-reductase enzyme. PMID:26693408

  1. Efficiency of plant growth-promoting P-solubilizing Bacillus circulans CB7 for enhancement of tomato growth under net house conditions.

    PubMed

    Mehta, Preeti; Walia, Abhishek; Kulshrestha, Saurabh; Chauhan, Anjali; Shirkot, Chand Karan

    2015-01-01

    P-solubilizing bacterial isolate CB7 isolated from apple rhizosphere soil of Himachal Pradesh, India was identified as Bacillus circulans on the basis of phenotypic characteristics, biochemical tests, fatty acid methyl esters analysis, and 16S rRNA gene sequence. The isolate exhibited plant growth-promoting traits of P-solubilization, auxin, 1-aminocyclopropane-1-carboxylate deaminase activity, siderophore, nitrogenase activity, and antagonistic activity against Dematophora necatrix. In vitro studies revealed that P-solubilization and other plant growth-promoting traits were dependent on the presence of glucose in PVK medium and removal of yeast extract had no significant effect on plant growth-promoting traits. Plant growth-promoting traits of isolate CB7 were repressed in the presence of KH2 PO4 . P-solubilization activity was associated with the release of organic acids and a drop in the pH of the Pikovskaya's medium. HPLC analysis detected gluconic and citric acid as major organic acids in the course of P-solubilization. Remarkable increase was observed in seed germination (22.32%), shoot length (15.91%), root length (25.10%), shoot dry weight (52.92%) and root dry weight (31.4%), nitrogen (18.75%), potassium (57.69%), and phosphorus (22.22%) content of shoot biomass over control. These results demonstrate that isolate CB7 has the promising PGPR attributes to be developed as a biofertilizer to enhance soil fertility and promote plant growth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Red ginseng extract promotes the hair growth in cultured human hair follicles.

    PubMed

    Park, Gyeong-Hun; Park, Ki-young; Cho, Hong-il; Lee, Sang-Min; Han, Ji Su; Won, Chong Hyun; Chang, Sung Eun; Lee, Mi Woo; Choi, Jee Ho; Moon, Kee Chan; Shin, Hyoseung; Kang, Yong Jung; Lee, Dong Hun

    2015-03-01

    Ginseng has been shown to promote hair growth in several recent studies. However, its effects on human hair follicles and its mechanisms of action have not been sufficiently elucidated. This study aimed to investigate the hair growth-promoting effects of red ginseng extract (RGE) and its ginsenosides. The proliferative activities of cultured human hair follicles treated with RGE and ginsenoside-Rb1 were assessed using Ki-67 immunostaining. Their effects on isolated human dermal papilla cells (hDPCs) were evaluated using cytotoxicity assays, immunoblot analysis of signaling proteins, and the determination of associated growth factors. We examined the ability of RGE and ginsenosides to protect hair matrix keratinocyte proliferation against dihydrotestosterone (DHT)-induced suppression and their effects on the expression of androgen receptor. The in vivo hair growth-promoting effect of RGE was also investigated in C57BL/6 mice. Both RGE and ginsenoside-Rb1 enhanced the proliferation of hair matrix keratinocytes. hDPCs treated with RGE or ginsenoside-Rb1 exhibited substantial cell proliferation and the associated phosphorylation of ERK and AKT. Moreover, RGE, ginsenoside-Rb1, and ginsenoside-Rg3 abrogated the DHT-induced suppression of hair matrix keratinocyte proliferation and the DHT-induced upregulation of the mRNA expression of androgen receptor in hDPCs. Murine experiments revealed that the subcutaneous injection of 3% RGE resulted in more rapid hair growth than the negative control. In conclusion, RGE and its ginsenosides may enhance hDPC proliferation, activate ERK and AKT signaling pathways in hDPCs, upregulate hair matrix keratinocyte proliferation, and inhibit the DHT-induced androgen receptor transcription. These results suggest that red ginseng may promote hair growth in humans.

  3. Red Ginseng Extract Promotes the Hair Growth in Cultured Human Hair Follicles

    PubMed Central

    Park, Gyeong-Hun; Park, Ki-young; Cho, Hong-il; Lee, Sang-Min; Han, Ji Su; Chang, Sung Eun; Lee, Mi Woo; Choi, Jee Ho; Moon, Kee Chan; Shin, Hyoseung; Kang, Yong Jung; Lee, Dong Hun

    2015-01-01

    Abstract Ginseng has been shown to promote hair growth in several recent studies. However, its effects on human hair follicles and its mechanisms of action have not been sufficiently elucidated. This study aimed to investigate the hair growth-promoting effects of red ginseng extract (RGE) and its ginsenosides. The proliferative activities of cultured human hair follicles treated with RGE and ginsenoside-Rb1 were assessed using Ki-67 immunostaining. Their effects on isolated human dermal papilla cells (hDPCs) were evaluated using cytotoxicity assays, immunoblot analysis of signaling proteins, and the determination of associated growth factors. We examined the ability of RGE and ginsenosides to protect hair matrix keratinocyte proliferation against dihydrotestosterone (DHT)-induced suppression and their effects on the expression of androgen receptor. The in vivo hair growth-promoting effect of RGE was also investigated in C57BL/6 mice. Both RGE and ginsenoside-Rb1 enhanced the proliferation of hair matrix keratinocytes. hDPCs treated with RGE or ginsenoside-Rb1 exhibited substantial cell proliferation and the associated phosphorylation of ERK and AKT. Moreover, RGE, ginsenoside-Rb1, and ginsenoside-Rg3 abrogated the DHT-induced suppression of hair matrix keratinocyte proliferation and the DHT-induced upregulation of the mRNA expression of androgen receptor in hDPCs. Murine experiments revealed that the subcutaneous injection of 3% RGE resulted in more rapid hair growth than the negative control. In conclusion, RGE and its ginsenosides may enhance hDPC proliferation, activate ERK and AKT signaling pathways in hDPCs, upregulate hair matrix keratinocyte proliferation, and inhibit the DHT-induced androgen receptor transcription. These results suggest that red ginseng may promote hair growth in humans. PMID:25396716

  4. Evaluation of the plant-growth-promoting abilities of endophytic bacteria from the psammophyte Ammodendron bifolium.

    PubMed

    Zhu, Yanlei; She, Xiaoping

    2018-04-01

    The objective of this study was to assess the plant-growth-promoting abilities of 45 endophytic bacterial isolates from Ammodendron bifolium through physiological characteristics detection and endophytic bacteria-plant interaction. Each of these isolates exhibited 1 or more plant-growth-promoting traits, but only 11 isolates belonging to the genera Bacillus, Staphylococcus, and Kocuria were capable of promoting seed germination and radicle growth. These results together with the results of the correlation analysis revealed that the completion of seed germination may not be due to IAA production, phosphate solubilization, pellicle formation, and ACC deaminase, protease and lipase production by endophytic bacteria, but may be closely related to amylase and cellulase production. Further, endophytic bacterial isolates with plant-growth-promoting traits may also provide beneficial effects to host plants at different growth stages. Thus, these results are of value for understanding the ecological roles of endophytic bacteria in host plant habitats and can serve as a foundation for further studies of their potential in plant regeneration.

  5. Growth promotion in plants by rice necrosis mosaic virus.

    PubMed

    Ghosh, S K

    1982-08-01

    Ludwigia perennis L. infected with rice necrosis mosaic virus (RNMV) showed an increase in both shoot growth and leaf size, along with characteristic chlorotic lesions on leaves. The promotion of growth over the controls extended over a considerable period of time (70 d). Inoculation with RNMV resulted in increased plant height, leaf size, stem diameter, and number and size of fiber bundles in Corchorus olitorius L., C. capsularis L., Hibiscus sabdariffa L. and H. cannabinus L.

  6. Ku80 cooperates with CBP to promote COX-2 expression and tumor growth

    PubMed Central

    Qin, Yu; Xuan, Yang; Jia, Yunlu; Hu, Wenxian; Yu, Wendan; Dai, Meng; Li, Zhenglin; Yi, Canhui; Zhao, Shilei; Li, Mei; Du, Sha; Cheng, Wei; Xiao, Xiangsheng; Chen, Yiming; Wu, Taihua; Meng, Songshu; Yuan, Yuhui; Liu, Quentin; Huang, Wenlin; Guo, Wei; Wang, Shusen; Deng, Wuguo

    2015-01-01

    Cyclooxygenase-2 (COX-2) plays an important role in lung cancer development and progression. Using streptavidin-agarose pulldown and proteomics assay, we identified and validated Ku80, a dimer of Ku participating in the repair of broken DNA double strands, as a new binding protein of the COX-2 gene promoter. Overexpression of Ku80 up-regulated COX-2 promoter activation and COX-2 expression in lung cancer cells. Silencing of Ku80 by siRNA down-regulated COX-2 expression and inhibited tumor cell growth in vitro and in a xenograft mouse model. Ku80 knockdown suppressed phosphorylation of ERK, resulting in an inactivation of the MAPK pathway. Moreover, CBP, a transcription co-activator, interacted with and acetylated Ku80 to co-regulate the activation of COX-2 promoter. Overexpression of CBP increased Ku80 acetylation, thereby promoting COX-2 expression and cell growth. Suppression of CBP by a CBP-specific inhibitor or siRNA inhibited COX-2 expression as well as tumor cell growth. Tissue microarray immunohistochemical analysis of lung adenocarcinomas revealed a strong positive correlation between levels of Ku80 and COX-2 and clinicopathologic variables. Overexpression of Ku80 was associated with poor prognosis in patients with lung cancers. We conclude that Ku80 promotes COX-2 expression and tumor growth and is a potential therapeutic target in lung cancer. PMID:25797267

  7. ATM regulates 3-methylpurine-DNA glycosylase and promotes therapeutic resistance to alkylating agents.

    PubMed

    Agnihotri, Sameer; Burrell, Kelly; Buczkowicz, Pawel; Remke, Marc; Golbourn, Brian; Chornenkyy, Yevgen; Gajadhar, Aaron; Fernandez, Nestor A; Clarke, Ian D; Barszczyk, Mark S; Pajovic, Sanja; Ternamian, Christian; Head, Renee; Sabha, Nesrin; Sobol, Robert W; Taylor, Michael D; Rutka, James T; Jones, Chris; Dirks, Peter B; Zadeh, Gelareh; Hawkins, Cynthia

    2014-10-01

    Alkylating agents are a first-line therapy for the treatment of several aggressive cancers, including pediatric glioblastoma, a lethal tumor in children. Unfortunately, many tumors are resistant to this therapy. We sought to identify ways of sensitizing tumor cells to alkylating agents while leaving normal cells unharmed, increasing therapeutic response while minimizing toxicity. Using an siRNA screen targeting over 240 DNA damage response genes, we identified novel sensitizers to alkylating agents. In particular, the base excision repair (BER) pathway, including 3-methylpurine-DNA glycosylase (MPG), as well as ataxia telangiectasia mutated (ATM), were identified in our screen. Interestingly, we identified MPG as a direct novel substrate of ATM. ATM-mediated phosphorylation of MPG was required for enhanced MPG function. Importantly, combined inhibition or loss of MPG and ATM resulted in increased alkylating agent-induced cytotoxicity in vitro and prolonged survival in vivo. The discovery of the ATM-MPG axis will lead to improved treatment of alkylating agent-resistant tumors. Inhibition of ATM and MPG-mediated BER cooperate to sensitize tumor cells to alkylating agents, impairing tumor growth in vitro and in vivo with no toxicity to normal cells, providing an ideal therapeutic window. ©2014 American Association for Cancer Research.

  8. Wood ash residue causes a mixture of growth promotion and toxicity in Lemna minor.

    PubMed

    Jagodzinski, Lucas S; O'Donoghue, Marian T; Heffernan, Liam B; van Pelt, Frank N A M; O'Halloran, John; Jansen, Marcel A K

    2018-06-01

    The use of wood as a sustainable biofuel results in the generation of residual wood ash. The ash contains high amounts of plant macronutrients such as phosphorus, potassium, calcium as well as several micronutrients. To explore the potential use of wood ash as a fertiliser, the growth enhancing properties of Sitka spruce (Picea sitchensis Bong.) wood ash were contrasted with the potential toxic action, using common duckweed (Lemna minor L.) as a model test species. The growth of L. minor exposed to wood bottom and fly ash solids and corresponding leachates was assessed in ultra-oligotrophic and eutrophic media. Ash solids and leachates were also tested as neutralized preparations. Suspended ash solids promoted L. minor growth up to concentrations of 2.5-5g/L. Leachates promoted growth up to 10g ash equivalents per litre, but for bottom ash only. Beneficial effects of wood ash were most pronounced on ultra-oligotrophic medium. However, on such nutrient-deficient medium severe inhibition of L. minor biomass and frond growth was observed at relatively low concentrations of fly ash (EC 50 =14g/L). On standard, eutrophic medium, higher concentrations of fly ash (EC 50 =21g/L), or neutralized fly ash (EC 50 =37g/L) were required to impede growth. Bottom ash, or neutralized bottom ash retarded growth at concentrations of 51g/L and 74g/L (EC 50 ), respectively, in eutrophic medium. It appears that phytotoxicity is due to the elemental composition of the ash, its alkaline character, and possible interactions between these two properties. Growth promotion was due to the substantial content of plant nutrients. This study underlines the importance of the receiving environment (nutrient status and pH) in determining the balance between toxicity and growth promotion, and shows that the margin between growth promoting and toxicity inducing concentrations can be enlarged through ash neutralization. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effect of metal tolerant plant growth promoting bacteria on growth and metal accumulation in Zea mays plants grown in fly ash amended soil.

    PubMed

    Kumar, Kalpna V; Patra, D D

    2013-01-01

    The present study was undertaken to examine the effect of the application of fly ash (FA) into Garden soil (GS), with and without inoculation of plant growth promoting bacteria (PGPB), on the growth and metal uptake by Zea mays plants. Three FA tolerant PGPB strains, Pseudomonas sp. PS5, PS14, and Bacillus sp. BC29 were isolated from FA contaminated soils and assessed for their plant growth promoting features on the Z. mays plants. All three strains were also examined for their ability to solubilize phosphate and to produce Indole Acetic Acid (IAA), siderophores, and hydrogencynide acid (HCN) production. Although inoculation of all strains significantly enhanced the growth of plants at both the concentration of FA but maximum growth was observed in plants inoculated with BC29 and PS14 at low level (25%) of FA concentration. The experimental results explored the plant growth promoting features of selected strains which not only enhanced growth and biomass of plants but also protected them from toxicity of FA.

  10. Functional Role of Bacteria from Invasive Phragmites australis in Promotion of Host Growth.

    PubMed

    Soares, M A; Li, H-Y; Kowalski, K P; Bergen, M; Torres, M S; White, J F

    2016-08-01

    We hypothesize that bacterial endophytes may enhance the competitiveness and invasiveness of Phragmites australis. To evaluate this hypothesis, endophytic bacteria were isolated from P. australis. The majority of the shoot meristem isolates represent species from phyla Firmicutes, Proteobacteria, and Actinobacteria. We chose one species from each phylum to characterize further and to conduct growth promotion experiments in Phragmites. Bacteria tested include Bacillus amyloliquefaciens A9a, Achromobacter spanius B1, and Microbacterium oxydans B2. Isolates were characterized for known growth promotional traits, including indole acetic acid (IAA) production, secretion of hydrolytic enzymes, phosphate solubilization, and antibiosis activity. Potentially defensive antimicrobial lipopeptides were assayed for through application of co-culturing experiments and mass spectrometer analysis. B. amyloliquefaciens A9a and M. oxydans B2 produced IAA. B. amyloliquefaciens A9a secreted antifungal lipopeptides. Capability to promote growth of P. australis under low nitrogen conditions was evaluated in greenhouse experiments. All three isolates were found to increase the growth of P. australis under low soil nitrogen conditions and showed increased absorption of isotopic nitrogen into plants. This suggests that the Phragmites microbes we evaluated most likely promote growth of Phragmites by enhanced scavenging of nitrogenous compounds from the rhizosphere and transfer to host roots. Collectively, our results support the hypothesis that endophytic bacteria play a role in enhancing growth of P. australis in natural populations. Gaining a better understanding of the precise contributions and mechanisms of endophytes in enabling P. australis to develop high densities rapidly could lead to new symbiosis-based strategies for management and control of the host.

  11. Functional role of bacteria from invasive Phragmites australis in promotion of host growth

    USGS Publications Warehouse

    Soares, M. A.; Li, H-Y; Kowalski, Kurt P.; Bergen, M.; Torres, M. S.; White, J. F.

    2016-01-01

    We hypothesize that bacterial endophytes may enhance the competitiveness and invasiveness of Phragmites australis. To evaluate this hypothesis, endophytic bacteria were isolated from P. australis. The majority of the shoot meristem isolates represent species from phyla Firmicutes, Proteobacteria, and Actinobacteria. We chose one species from each phylum to characterize further and to conduct growth promotion experiments in Phragmites. Bacteria tested include Bacillus amyloliquefaciens A9a, Achromobacter spanius B1, and Microbacterium oxydans B2. Isolates were characterized for known growth promotional traits, including indole acetic acid (IAA) production, secretion of hydrolytic enzymes, phosphate solubilization, and antibiosis activity. Potentially defensive antimicrobial lipopeptides were assayed for through application of co-culturing experiments and mass spectrometer analysis. B. amyloliquefaciens A9a and M. oxydans B2 produced IAA. B. amyloliquefaciens A9a secreted antifungal lipopeptides. Capability to promote growth of P. australis under low nitrogen conditions was evaluated in greenhouse experiments. All three isolates were found to increase the growth of P. australis under low soil nitrogen conditions and showed increased absorption of isotopic nitrogen into plants. This suggests that the Phragmites microbes we evaluated most likely promote growth of Phragmites by enhanced scavenging of nitrogenous compounds from the rhizosphere and transfer to host roots. Collectively, our results support the hypothesis that endophytic bacteria play a role in enhancing growth of P. australis in natural populations. Gaining a better understanding of the precise contributions and mechanisms of endophytes in enabling P. australis to develop high densities rapidly could lead to new symbiosis-based strategies for management and control of the host.

  12. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion

    PubMed Central

    Nieto-Jacobo, Maria F.; Steyaert, Johanna M.; Salazar-Badillo, Fatima B.; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T.; Jimenez-Bremont, Juan F.; Ohkura, Mana; Stewart, Alison

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. “atroviride B” LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions. PMID:28232840

  13. Thiazolidinediones abrogate cervical cancer growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wuertz, Beverly R., E-mail: knier003@umn.edu; Darrah, Lindsay, E-mail: ldarrah@obgynmn.com; Wudel, Justin, E-mail: drwudel@drwudel.com

    Peroxisome proliferator-activated receptor gamma (PPAR γ) is activated by thiazolidinedione drugs (TZDs) and can promote anti-cancer properties. We used three TZDs (pioglitazone, rosiglitazone, and ciglitazone) to target cervical cancer cell lines and a nude mouse animal model. Each agent increased activation of PPAR γ, as judged by a luciferase reporter gene assay in three HPV-associated cell lines (CaSki, SiHa, and HeLa cells) while decreasing cellular proliferation in a dose-dependent manner. They also promoted Oil Red O accumulation in treated cell lines and upregulated the lipid differentiation marker adipsin. Interestingly, xenograft HeLa tumors in nude mice treated with 100 mg/kg/day pioglitazonemore » exhibited decreased growth compared to control mice or mice treated with standard cervical chemotherapy. In conclusion, TZDs slow tumor cell growth in vitro and in vivo with decreases in cell proliferation and increases in PPAR γ and adipsin. These agents may be interesting treatments or treatment adjuncts for HPV-associated cancers or perhaps even precancerous conditions. - Highlights: • Thiazolidinediones decreases cervical cancer proliferation. • Pioglitazone increases cervical cancer differentiation. • Pioglitazone decreases tumor growth in mice. • Pioglitazone may be a useful treatment adjunct.« less

  14. [Experimental study on Dendrobium candidum polysaccharides on promotion of hair growth].

    PubMed

    Chen, Jian; Qi, Hui; Li, Jin-Biao; Yi, Yan-Qun; Chen, Dan; Hu, Xiao-Hong; Wang, Mei-Ling; Sun, Xing-Li; Wei, Xiao-Yong

    2014-01-01

    To observe the effect and mechanism of Dendrobium candidum polysaccharides (DCP) in promoting hair growth, in order to lay a foundation for the development and utilization of D. candidum. The water-extraction and alcohol-precipitation method was adopted to extract DCP, and the phenol-sulphuric acid method was used to determine its content. Thirty C57BL6J mice were collected to establish the hair loss model with hair removal cream. They were randomly divided into the control group, the positive control group and the DCP group, and given 0.2 mL of ultra-pure water, minoxidil tincture and DCP (5.0 g x L(-1)) 21 days. The mice hair growth scoring standard was adopted to evaluate the hair growth of C57BL/6J mice at 7, 14 d. The hairs in unit hair-losing areas of treated C57BL/6J mice at 21 d were weighed to evaluate the effect of DCP on the promotion of hair growth. MTT assay and RT-PCR method were used to evaluate the effect of DCP on the proliferatin of HaCaT cells and the mRNA expression of VEGF in HaCaT cells. The extraction percent of DCP was 29.87%, and its content was 79.65%. The average scores for the hair growth and weight of C57BL/6J mice of DCP group were much higher than the control group. The survival rate and mRNA expression of VEGF of HaCaT cells were much higher than the control group. DCP has the effect in promoting hair growth. Its mechanism may be related to the up-regulation of the mRNA expression of VEGF.

  15. Isolation and Identification of Plant Growth Promoting Rhizobacteria from Cucumber Rhizosphere and Their Effect on Plant Growth Promotion and Disease Suppression

    PubMed Central

    Islam, Shaikhul; Akanda, Abdul M.; Prova, Ananya; Islam, Md. T.; Hossain, Md. M.

    2016-01-01

    Plant growth promoting rhizobacteria (PGPR) are the rhizosphere bacteria that may be utilized to augment plant growth and suppress plant diseases. The objectives of this study were to identify and characterize PGPR indigenous to cucumber rhizosphere in Bangladesh, and to evaluate their ability to suppress Phytophthora crown rot in cucumber. A total of 66 isolates were isolated, out of which 10 (PPB1, PPB2, PPB3, PPB4, PPB5, PPB8, PPB9, PPB10, PPB11, and PPB12) were selected based on their in vitro plant growth promoting attributes and antagonism of phytopathogens. Phylogenetic analysis of 16S rRNA sequences identified these isolates as new strains of Pseudomonas stutzeri, Bacillus subtilis, Stenotrophomonas maltophilia, and Bacillus amyloliquefaciens. The selected isolates produced high levels (26.78–51.28 μg mL-1) of indole-3-acetic acid, while significant acetylene reduction activities (1.79–4.9 μmole C2H4 mg-1 protein h-1) were observed in eight isolates. Cucumber plants grown from seeds that were treated with these PGPR strains displayed significantly higher levels of germination, seedling vigour, growth, and N content in root and shoot tissue compared to non-treated control plants. All selected isolates were able to successfully colonize the cucumber roots. Moreover, treating cucumber seeds with these isolates significantly suppressed Phytophthora crown rot caused by Phytophthora capsici, and characteristic morphological alterations in P. capsici hyphae that grew toward PGPR colonies were observed. Since these PGPR inoculants exhibited multiple traits beneficial to the host plants, they may be applied in the development of new, safe, and effective seed treatments as an alternative to chemical fungicides. PMID:26869996

  16. Long non-coding RNA CRNDE promotes tumor growth in medulloblastoma.

    PubMed

    Song, H; Han, L-M; Gao, Q; Sun, Y

    2016-06-01

    Medulloblastoma is the most common malignant brain tumor in children. Despite remarkable advances over the past decades, a novel therapeutic strategy is urgently required to increase long-term survival. This study aimed to understand the role of a long non-coding RNA (lncRNA), colorectal neoplasia differentially expressed (CRNDE), in medulloblastoma tumor growth. The transcript level of CRNDE was initially examined in dissected clinical tissues and cultured cancerous cells. Effects of CRNDE knockdown on cell viability and colony formation in vitro were assessed using the CCK-8 and colony formation assays, respectively. Cell cycle progression and survival were also determined after CRNDE knockdown. A xenograft mouse model of human medulloblastoma was established by injecting nude mice with medulloblastoma cells stably depleted of CRNDE expression. Our data suggest that transcript levels of CRNDE are elevated in clinical medulloblastoma tissues instead of in adjacent non-cancerous tissues. Knockdown of CRNDE significantly slowed cell proliferation rates and inhibited colony formation in Daoy and D341 cells. Tumor growth in vivo was also inhibited after CRNDE knockdown. Moreover, after knockdown of CRNDE, cell cycle progression was arrested in S phase and apoptosis was promoted by 15-20% in Daoy and D341 cells. In vivo data further showed that proliferating cell nuclei antigen (PCNA) was decreased, whereas the apoptosis initiator cleaved-caspase-3 was increased upon CRNDE knockdown in cancerous tissues from the mouse model. All these data suggest that CRNDE promotes tumor growth both in vitro and in vivo. This growth-promotion effect might be achieved via arresting cell cycle progression and inhibiting apoptosis. Therapeutics against CRNDE may be a novel strategy for the treatment of medulloblastoma.

  17. Growth-promoting Sphingomonas paucimobilis ZJSH1 associated with Dendrobium officinale through phytohormone production and nitrogen fixation

    PubMed Central

    Yang, Suijuan; Zhang, Xinghai; Cao, Zhaoyun; Zhao, Kaipeng; Wang, Sai; Chen, Mingxue; Hu, Xiufang

    2014-01-01

    Growth-promoting Sphingomonas paucimobilis ZJSH1, associated with Dendrobium officinale, a traditional Chinese medicinal plant, was characterized. At 90 days post-inoculation, strain ZJSH1 significantly promoted the growth of D. officinale seedlings, with increases of stems by 8.6% and fresh weight by 7.5%. Interestingly, the polysaccharide content extracted from the inoculated seedlings was 0.6% higher than that of the control. Similar growth promotion was observed with the transplants inoculated with strain ZJSH1. The mechanism of growth promotion was attributed to a combination of phytohormones and nitrogen fixation. Strain ZJSH1 was found using the Kjeldahl method to have a nitrogen fixation activity of 1.15 mg l−1, which was confirmed by sequencing of the nifH gene. Using high-performance liquid chromatography-mass spectrometry, strain ZJSH1 was found to produce various phytohormones, including salicylic acid (SA), indole-3-acetic acid (IAA), Zeatin and abscisic acid (ABA). The growth curve showed that strain ZJSH1 grew well in the seedlings, especially in the roots. Accordingly, much higher contents of SA, ABA, IAA and c-ZR were detected in the inoculated seedlings, which may play roles as both phytohormones and ‘Systemic Acquired Resistance’ drivers. Nitrogen fixation and secretion of plant growth regulators (SA, IAA, Zeatin and ABA) endow S. paucimobilis ZJSH1 with growth-promoting properties, which provides a potential for application in the commercial growth of D. officinale. PMID:25142808

  18. Interaction of copper nanoparticles and an endophytic growth promoter Piriformospora indica with Cajanus cajan.

    PubMed

    Rajak, Jyoti; Bawaskar, Manisha; Rathod, Dnyaneshwar; Agarkar, Gauravi; Nagaonkar, Dipali; Gade, Aniket; Rai, Mahendra

    2017-10-01

    In recent years, agro-bionanotechnology has paved the way towards revolutionizing current practices in the food and agricultural fields. In the present study, the effect of copper nanoparticles (CuNPs) alone and in combination with the growth-promoting fungus Piriformospora indica on 2-week-old seedlings of Cajanus cajan was evaluated. Gelatin-coated stable CuNPs were synthesized by the chemical reduction method using hydrazine hydrate as a reducing agent. CuNPs were characterized by using UV-visible spectroscopy, zeta potential measurement and transmission electron microscopy. The nanoparticles were found to be quite spherical with a diameter within the range 40 ± 10 nm. After the application of CuNPs and P. indica to the host plant C. cajan, the vitality of plants was determined using a Handy-PEA (plant efficiency analyzer) instrument. Handy-PEA analysis (which measures chlorophyll a fluorescence) indicated that seedlings inoculated with a combination of CuNPs and P. indica were the healthiest and also showed maximum vitality as compared to seedlings inoculated with CuNPs or P. indica alone. These results suggest that CuNPs in combination with P. indica can serve as a nanobiofertilizer for enhancement of the growth and productivity of C. cajan. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Comparison of Saccharina japonica-Undaria pinnatifida Mixture and Minoxidil on Hair Growth Promoting Effect in Mice.

    PubMed

    Park, Ki Soo; Park, Dae Hwan

    2016-11-01

    Algae have traditionally been used for promotion of hair growth. Use of hair regrowth drugs, such as minoxidil, is limited due to side effects. The aim of this study was to examine a mixture of Saccharina japonica and Undaria pinnatifida (L-U mixture) on hair growth and to compare the promoting effect of hair growth by a 3% minoxidil and a L-U mixture. To evaluate the hair growth-promoting activity, saline, 50% ethanol, 3% minoxidil, and the L-U mixture were applied 2 times a day for a total of 14 days on the dorsal skin of C57BL/6 mice after depilation. Analysis was determined by using a high-resolution hair analysis system, real-time polymerase chain reaction, and H&E staining. On day 14, the hair growth effect of the L-U mixture was the same as that of the 3% minoxidil treatment. The L-U mixture significantly (P<0.05) stimulated hair growth-promoting genes, as vascular endothelial growth factor (VEGF) and insulin-like growth factor -1. Increase of VEGF was observed in the L-U mixture group compared with minoxidil and the negative control. In contrast, the L-U mixture suppressed the expression of transforming growth factor-β1, which is the hair loss-related gene. In histological examination in the L-U mixture and minoxidil groups, the induction of an anagen stage of hair follicles was faster than that of control groups. This study provides evidence that the L-U mixture can promote hair growth in mice, similar to the effect from minoxidil, and suggests that there is potential application for hair loss treatments.

  20. Alternative growth promoters alter broiler gut microbiome and enhance body weight gain

    USDA-ARS?s Scientific Manuscript database

    Antibiotic growth promoters (AGPs) have commonly been used to enhance growth in poultry production. However, there has been increasing concern over the impact of AGPs use in food production on acquisition of antibiotic resistance in zoonotic bacterial pathogens through inter-bacterial transfer of an...

  1. Genome-wide analysis of bacterial determinants of plant growth promotion and induced systemic resistance by Pseudomonas fluorescens.

    PubMed

    Cheng, Xu; Etalo, Desalegn W; van de Mortel, Judith E; Dekkers, Ester; Nguyen, Linh; Medema, Marnix H; Raaijmakers, Jos M

    2017-11-01

    Pseudomonas fluorescens strain SS101 (Pf.SS101) promotes growth of Arabidopsis thaliana, enhances greening and lateral root formation, and induces systemic resistance (ISR) against the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Here, targeted and untargeted approaches were adopted to identify bacterial determinants and underlying mechanisms involved in plant growth promotion and ISR by Pf.SS101. Based on targeted analyses, no evidence was found for volatiles, lipopeptides and siderophores in plant growth promotion by Pf.SS101. Untargeted, genome-wide analyses of 7488 random transposon mutants of Pf.SS101 led to the identification of 21 mutants defective in both plant growth promotion and ISR. Many of these mutants, however, were auxotrophic and impaired in root colonization. Genetic analysis of three mutants followed by site-directed mutagenesis, genetic complementation and plant bioassays revealed the involvement of the phosphogluconate dehydratase gene edd, the response regulator gene colR and the adenylsulfate reductase gene cysH in both plant growth promotion and ISR. Subsequent comparative plant transcriptomics analyses strongly suggest that modulation of sulfur assimilation, auxin biosynthesis and transport, steroid biosynthesis and carbohydrate metabolism in Arabidopsis are key mechanisms linked to growth promotion and ISR by Pf.SS101. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Stimulation of the growth of Jatropha curcas by the plant growth promoting bacterium Enterobacter cancerogenus MSA2.

    PubMed

    Jha, Chaitanya Kumar; Patel, Baldev; Saraf, Meenu

    2012-03-01

    A novel Enterobacter cancerogenus MSA2 is a plant growth promoting gamma-proteobacterium that was isolated from the rhizosphere of Jatropha cucas a potentially important biofuel feed stock plant. Based on phenotypic, physiological, biochemical and phylogenetic studies, strain MSA2 could be classified as a member of E. cancerogenus. However, comparisons of characteristics with other known species of the genus Enterobacter suggested that strain MSA2 could be a novel PGPB strain. In vitro studies were carried for the plant growth promoting attribute of this culture. It tested positive for ACC (1-aminocyclopropane-1-carboxylic acid) deaminase production, phytase, phosphate solubilization, IAA (Indole acetic acid) production, siderophore, and ammonia production. The isolate was then used as a inoculant for the vegetative study of Jatropha curcas plant. Enterobacter cancerogenus MSA2 supplemented with 1% carboxymethylcellulose showed overall plant growth promotion effect resulting in enhanced root length (124.14%), fresh root mass (81%), fresh shoot mass (120.02%), dry root mass (124%), dry shoot mass (105.54%), number of leaf (30.72%), chlorophyll content (50.41%), and biomass (87.20%) over control under the days of experimental observation. This study was designed for 120 days and was in triplicate and the data was collected at every 30 days.

  3. Promoting Moral Growth through Pluralism and Social Justice Education

    ERIC Educational Resources Information Center

    Stewart, Dafina Lazarus

    2012-01-01

    Issues of morality, including deciding among competing values and negotiating obligations to self and community, are pervasive and saturate many aspects of life. This article explores the role of educating for pluralism and social justice in promoting moral growth among college students. James Rest's four-component model of moral maturity frames…

  4. Nonrandomized Trial of Feasibility and Acceptability of Strategies for Promotion of Soapy Water as a Handwashing Agent in Rural Bangladesh

    PubMed Central

    Ashraf, Sania; Nizame, Fosiul A.; Islam, Mahfuza; Dutta, Notan C.; Yeasmin, Dalia; Akhter, Sadika; Abedin, Jaynal; Winch, Peter J.; Ram, Pavani K.; Unicomb, Leanne; Leontsini, Elli; Luby, Stephen P.

    2017-01-01

    We conducted a nonrandomized trial of strategies to promote soapy water for handwashing in rural Bangladesh and measured uptake. We enrolled households with children < 3 years for three progressively intensive study arms: promotion of soapy water (N = 120), soapy water promotion plus handwashing stations (N = 103), and soapy water promotion, stations plus detergent refills (N = 90); we also enrolled control households (N = 72). Our handwashing stations included tap-fitted buckets and soapy water bottles. Community promoters visited households and held community meetings to demonstrate soapy water preparation and promote handwashing at key times. Field workers measured uptake 4 months later. In-depth interviews and focus group discussions assessed factors associated with uptake. More households had soapy water at the handwashing place in progressively intensive arms: 18% (promotion), 60% (promotion plus station), and 71% (promotion, station with refills). Compared with the promotion-only arm, more households that received stations had soapy water at the primary handwashing station (44%, P ≤ 0.001; 71%, P < 0.001 with station plus detergent refill). Qualitative findings highlighted several dimensions that affected use: contextual (shared courtyard), psychosocial (perceived value), and technology dimensions (ease of use, convenience). Soapy water may increase habitual handwashing by addressing barriers of cost and availability of handwashing agents near water sources. Further research should inform optimal strategies to scale-up soapy water as a handwashing agent to study health impact. PMID:28025233

  5. TGF-β promotes glioma cell growth via activating Nodal expression through Smad and ERK1/2 pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jing; Liu, Su-zhi; Lin, Yan

    Highlights: •TGF-β promoted Nodal expression in glioma cells. •TGF-β promoted Nodal expression via activating Smad and ERK1/2 pathways. •TGF-β promotes glioma cell growth via activating Nodal expression. -- Abstract: While there were certain studies focusing on the mechanism of TGF-β promoting the growth of glioma cells, the present work revealed another novel mechanism that TGF-β may promote glioma cell growth via enhancing Nodal expression. Our results showed that Nodal expression was significantly upregulated in glioma cells when TGF-β was added, whereas the TGF-β-induced Nodal expression was evidently inhibited by transfection Smad2 or Smad3 siRNAs, and the suppression was especially significantmore » when the Smad3 was downregulated. Another, the attenuation of TGF-β-induced Nodal expression was observed with blockade of the ERK1/2 pathway also. Further detection of the proliferation, apoptosis, and invasion of glioma cells indicated that Nodal overexpression promoted the proliferation and invasion of tumor cells and inhibited their apoptosis, resembling the effect of TGF-β addition. Downregulation of Nodal expression via transfection Nodal-specific siRNA in the presence of TGF-β weakened the promoting effect of the latter on glioma cells growth, and transfecting Nodal siRNA alone in the absence of exogenous TGF-β more profoundly inhibited the growth of glioma cells. These results demonstrated that while both TGF-β and Nodal promoted glioma cells growth, the former might exert such effect by enhancing Nodal expression, which may form a new target for glioma therapy.« less

  6. Fibroblast growth factor-2-induced host stroma reaction during initial tumor growth promotes progression of mouse melanoma via vascular endothelial growth factor A-dependent neovascularization.

    PubMed

    Tsunoda, Satoshi; Nakamura, Toshiyuki; Sakurai, Hiroaki; Saiki, Ikuo

    2007-04-01

    Fibroblast growth factor (FGF)-2 has been considered to play a critical role in neovascularization in several tumors; however, its precise role in tumor progression is not fully understood. In the present study, we have characterized the role of FGF-2 in B16-BL6 mouse melanoma cells, focusing on effects during the initial phase of tumor growth. FGF-2 was injected at the tumor inoculation site of dorsal skin during the initial phase. FGF-2 induced marked tumor growth and lymph node metastasis. This was well correlated with an increase in neovascularization in the host stroma. FGF-2 also recruited inflammatory and mesenchymal cells in host stroma. Marked tumor growth, pulmonary metastasis and intensive neovascularization in tumor parenchyma were also observed after a single injection of FGF-2 into the footpad inoculation site. In contrast, repeated injections of FGF-2 at a site remote from the footpad tumor were ineffective in promoting tumor growth and metastasis. These promoting activities of FGF-2 were blocked by local injections of a glucocorticoid hormone, suggesting that host inflammatory responses induced by FGF-2 are associated with FGF-2-induced tumor progression. In addition, although FGF-2 did not promote cellular proliferation and vascular endothelial growth factor A (VEGFA) mRNA expression in B16-BL6 cells in vitro, FGF-2 induced VEGFA expression in host stroma rather than tumor tissue, and local injections of a neutralizing antibody against VEGFA inhibited these activities of FGF-2 in vivo. These results indicate that abundant FGF-2 during the initial phase of tumor growth induces VEGFA-dependent intensive neovascularization in host stroma, and supports marked tumor growth and metastasis.

  7. Carcinogenic Parasite Secretes Growth Factor That Accelerates Wound Healing and Potentially Promotes Neoplasia

    PubMed Central

    Smout, Michael J.; Sotillo, Javier; Laha, Thewarach; Papatpremsiri, Atiroch; Rinaldi, Gabriel; Pimenta, Rafael N.; Chan, Lai Yue; Johnson, Michael S.; Turnbull, Lynne; Whitchurch, Cynthia B.; Giacomin, Paul R.; Moran, Corey S.; Golledge, Jonathan; Daly, Norelle; Sripa, Banchob; Mulvenna, Jason P.

    2015-01-01

    Abstract Infection with the human liver fluke Opisthorchis viverrini induces cancer of the bile ducts, cholangiocarcinoma (CCA). Injury from feeding activities of this parasite within the human biliary tree causes extensive lesions, wounds that undergo protracted cycles of healing, and re-injury over years of chronic infection. We show that O. viverrini secreted proteins accelerated wound resolution in human cholangiocytes, an outcome that was compromised following silencing of expression of the fluke-derived gene encoding the granulin-like growth factor, Ov-GRN-1. Recombinant Ov-GRN-1 induced angiogenesis and accelerated mouse wound healing. Ov-GRN-1 was internalized by human cholangiocytes and induced gene and protein expression changes associated with wound healing and cancer pathways. Given the notable but seemingly paradoxical properties of liver fluke granulin in promoting not only wound healing but also a carcinogenic microenvironment, Ov-GRN-1 likely holds marked potential as a therapeutic wound-healing agent and as a vaccine against an infection-induced cancer of major public health significance in the developing world. PMID:26485648

  8. Promotion of SH-SY5Y Cell Growth by Gold Nanoparticles Modified with 6-Mercaptopurine and a Neuron-Penetrating Peptide

    NASA Astrophysics Data System (ADS)

    Xiao, Yaruo; Zhang, Enqi; Fu, Ailing

    2017-12-01

    Much effort has been devoted to the discovery of effective biomaterials for nerve regeneration. Here, we reported a novel application of gold nanoparticles (AuNPs) modified with 6-mercaptopurine (6MP) and a neuron-penetrating peptide (RDP) as a neurophic agent to promote proliferation and neurite growth of human neuroblastoma (SH-SY5Y) cells. When the cells were treated with 6MP-AuNPs-RDP conjugates, they showed higher metabolic activity than the control. Moreover, SH-SY5Y cells were transplanted onto the surface coated with 6MP-AuNPs-RDP to examine the effect of neurite development. It can be concluded that 6MP-AuNPs-RDP attached to the cell surface and then internalized into cells, leading to a significant increase of neurite growth. Even though 6MP-AuNPs-RDP-treated cells were recovered from frozen storage, the cells still maintained constant growth, indicating that the cells have excellent tolerance to 6MP-AuNPs-RDP. The results suggested that the 6MP-AuNPs-RDP had promising potential to be developed as a neurophic nanomaterial for neuronal growth.

  9. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions

    PubMed Central

    Yamakawa, Hiroyuki; Muraoka, Naoto; Miyamoto, Kazutaka; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Umei, Tomohiko; Akiyama, Mizuha; Kuishi, Yuki; Kurokawa, Junko; Furukawa, Tetsushi; Fukuda, Keiichi; Ieda, Masaki

    2015-01-01

    Summary Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming. PMID:26626177

  10. Evaluation of the plant growth-promoting activity of Pseudomonas nitroreducens in Arabidopsis thaliana and Lactuca sativa.

    PubMed

    Trinh, Cao Son; Lee, Hyeri; Lee, Won Je; Lee, Seok Jin; Chung, Namhyun; Han, Juhyeong; Kim, Jongyun; Hong, Suk-Whan; Lee, Hojoung

    2018-06-01

    Pseudomonas nitroreducens: strain IHB B 13561 (PnIHB) enhances the growth of Arabidopsis thaliana and Lactuca sativa via the stimulation of cell development and nitrate absorption. Plant growth-promoting rhizobacteria (PGPR) enhance plant development through various mechanisms; they improve the uptake of soil resources by plants to greatly promote plant growth. Here, we used Arabidopsis thaliana seedlings and Lactuca sativa to screen the growth enhancement activities of a purified PGPR, Pseudomonas nitroreducens strain IHB B 13561 (PnIHB). When cocultivated with PnIHB, both species of plants exhibited notably improved growth, particularly in regard to biomass. Quantitative reverse transcription polymerase chain reaction analysis indicated high expression levels of the nitrate transporter genes, especially NRT2.1, which plays a major role in the high-affinity nitrate transport system in roots. Moreover, enhanced activity of the cyclin-B1 promoter was observed when wild-type 'Columbia-0' Arabidopsis seedlings were exposed to PnIHB, whereas upregulation of cyclin-B also occurred in the inoculated lettuce seedlings. Overall, these results suggest that PnIHB improves A. thaliana and L. sativa growth via specific pathways involved in the promotion of cell development and enhancement of nitrate uptake.

  11. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review.

    PubMed

    Numan, Muhammad; Bashir, Samina; Khan, Yasmin; Mumtaz, Roqayya; Shinwari, Zabta Khan; Khan, Abdul Latif; Khan, Ajmal; Al-Harrasi, Ahmed

    2018-04-01

    Approximately 5.2 billion hectare agriculture land are affected by erosion, salinity and soil degradation. Salinity stress has significantly affecting the fertile lands, and therefore possesses a huge impact on the agriculture and economy of a country. Salt stress has severe effects on the growth and development of plants as well as reducing its yield. Plants are inherently equipped with stress tolerance ability to responds the specific type of stress. Plants retained specific mechanisms for salt stress mitigation, such as hormonal stimulation, ion exchange, antioxidant enzymes and activation of signaling cascades on their metabolic and genetic frontiers that sooth the stressed condition. Additional to the plant inherent mechanisms, certain plant growth promoting bacteria (PGPB) also have specialized mechanism that play key role for salt stress tolerance and plant growth promotion. These bacteria triggers plants to produce different plant growth hormones like auxin, cytokinine and gibberellin as well as volatile organic compounds. These bacteria also produces growth regulators like siderophore, which fix nitrogen, solubilize organic and inorganic phosphate. Considering the importance of PGPB in compensation of salt tolerance in plants, the present study has reviewed the different aspect and mechanism of bacteria that play key role in promoting plants growth and yield. It can be concluded that PGPB can be used as a cost effective and economical tool for salinity tolerance and growth promotion in plants. Copyright © 2018 Elsevier GmbH. All rights reserved.

  12. Making Just Tenure and Promotion Decisions Using the Objective Knowledge Growth Framework

    ERIC Educational Resources Information Center

    Chitpin, Stephanie

    2015-01-01

    Purpose: The purpose of this paper is to utilize the Objective Knowledge Growth Framework (OKGF) to promote a better understanding of the evaluating tenure and promotion processes. Design/Methodology/Approach: A scenario is created to illustrate the concept of using OKGF. Findings: The framework aims to support decision makers in identifying the…

  13. TOR Signaling Promotes Accumulation of BZR1 to Balance Growth with Carbon Availability in Arabidopsis.

    PubMed

    Zhang, Zhenzhen; Zhu, Jia-Ying; Roh, Jeehee; Marchive, Chloé; Kim, Seong-Ki; Meyer, Christian; Sun, Yu; Wang, Wenfei; Wang, Zhi-Yong

    2016-07-25

    For maintenance of cellular homeostasis, the actions of growth-promoting hormones must be attenuated when nutrient and energy become limiting. The molecular mechanisms that coordinate hormone-dependent growth responses with nutrient availability remain poorly understood in plants [1, 2]. The target of rapamycin (TOR) kinase is an evolutionarily conserved master regulator that integrates nutrient and energy signaling to regulate growth and homeostasis in both animals and plants [3-7]. Here, we show that sugar signaling through TOR controls the accumulation of the brassinosteroid (BR)-signaling transcription factor BZR1, which is essential for growth promotion by multiple hormonal and environmental signals [8-11]. Starvation, caused by shifting of light-grown Arabidopsis seedlings into darkness, as well as inhibition of TOR by inducible RNAi, led to plant growth arrest and reduced expression of BR-responsive genes. The growth arrest caused by TOR inactivation was partially recovered by BR treatment and the gain-of-function mutation bzr1-1D, which causes accumulation of active forms of BZR1 [12]. Exogenous sugar promoted BZR1 accumulation and seedling growth, but such sugar effects were largely abolished by inactivation of TOR, whereas the effect of TOR inactivation on BZR1 degradation is abolished by inhibition of autophagy and by the bzr1-1D mutation. These results indicate that cellular starvation leads sequentially to TOR inactivation, autophagy, and BZR1 degradation. Such regulation of BZR1 accumulation by glucose-TOR signaling allows carbon availability to control the growth promotion hormonal programs, ensuring supply-demand balance in plant growth. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Boundary Dpp promotes growth of medial and lateral regions of the Drosophila wing.

    PubMed

    Barrio, Lara; Milán, Marco

    2017-07-04

    The gradient of Decapentaplegic (Dpp) in the Drosophila wing has served as a paradigm to characterize the role of morphogens in regulating patterning. However, the role of this gradient in regulating tissue size is a topic of intense debate as proliferative growth is homogenous. Here, we combined the Gal4/UAS system and a temperature-sensitive Gal80 molecule to induce RNAi-mediated depletion of dpp and characterise the spatial and temporal requirement of Dpp in promoting growth. We show that Dpp emanating from the AP compartment boundary is required throughout development to promote growth by regulating cell proliferation and tissue size. Dpp regulates growth and proliferation rates equally in central and lateral regions of the developing wing appendage and reduced levels of Dpp affects similarly the width and length of the resulting wing. We also present evidence supporting the proposal that graded activity of Dpp is not an absolute requirement for wing growth.

  15. Boundary Dpp promotes growth of medial and lateral regions of the Drosophila wing

    PubMed Central

    Barrio, Lara; Milán, Marco

    2017-01-01

    The gradient of Decapentaplegic (Dpp) in the Drosophila wing has served as a paradigm to characterize the role of morphogens in regulating patterning. However, the role of this gradient in regulating tissue size is a topic of intense debate as proliferative growth is homogenous. Here, we combined the Gal4/UAS system and a temperature-sensitive Gal80 molecule to induce RNAi-mediated depletion of dpp and characterise the spatial and temporal requirement of Dpp in promoting growth. We show that Dpp emanating from the AP compartment boundary is required throughout development to promote growth by regulating cell proliferation and tissue size. Dpp regulates growth and proliferation rates equally in central and lateral regions of the developing wing appendage and reduced levels of Dpp affects similarly the width and length of the resulting wing. We also present evidence supporting the proposal that graded activity of Dpp is not an absolute requirement for wing growth. DOI: http://dx.doi.org/10.7554/eLife.22013.001 PMID:28675372

  16. Gold thread implantation promotes hair growth in human and mice

    PubMed Central

    Kim, Jong-Hwan; Cho, Eun-Young; Kwon, Euna; Kim, Woo-Ho; Park, Jin-Sung; Lee, Yong-Soon

    2017-01-01

    Thread-embedding therapy has been widely applied for cosmetic purposes such as wrinkle reduction and skin tightening. Particularly, gold thread was reported to support connective tissue regeneration, but, its role in hair biology remains largely unknown due to lack of investigation. When we implanted gold thread and Happy Lift™ in human patient for facial lifting, we unexpectedly found an increase of hair regrowth in spite of no use of hair growth medications. When embedded into the depilated dorsal skin of mice, gold thread or polyglycolic acid (PGA) thread, similarly to 5% minoxidil, significantly increased the number of hair follicles on day 14 after implantation. And, hair re-growth promotion in the gold threadimplanted mice were significantly higher than that in PGA thread group on day 11 after depilation. In particular, the skin tissue of gold thread-implanted mice showed stronger PCNA staining and higher collagen density compared with control mice. These results indicate that gold thread implantation can be an effective way to promote hair re-growth although further confirmatory study is needed for more information on therapeutic mechanisms and long-term safety. PMID:29399026

  17. Madm (Mlf1 adapter molecule) cooperates with Bunched A to promote growth in Drosophila.

    PubMed

    Gluderer, Silvia; Brunner, Erich; Germann, Markus; Jovaisaite, Virginija; Li, Changqing; Rentsch, Cyrill A; Hafen, Ernst; Stocker, Hugo

    2010-01-01

    The TSC-22 domain family (TSC22DF) consists of putative transcription factors harboring a DNA-binding TSC-box and an adjacent leucine zipper at their carboxyl termini. Both short and long TSC22DF isoforms are conserved from flies to humans. Whereas the short isoforms include the tumor suppressor TSC-22 (Transforming growth factor-beta1 stimulated clone-22), the long isoforms are largely uncharacterized. In Drosophila, the long isoform Bunched A (BunA) acts as a growth promoter, but how BunA controls growth has remained obscure. In order to test for functional conservation among TSC22DF members, we expressed the human TSC22DF proteins in the fly and found that all long isoforms can replace BunA function. Furthermore, we combined a proteomics-based approach with a genetic screen to identify proteins that interact with BunA. Madm (Mlf1 adapter molecule) physically associates with BunA via a conserved motif that is only contained in long TSC22DF proteins. Moreover, Drosophila Madm acts as a growth-promoting gene that displays growth phenotypes strikingly similar to bunA phenotypes. When overexpressed, Madm and BunA synergize to increase organ growth. The growth-promoting potential of long TSC22DF proteins is evolutionarily conserved. Furthermore, we provide biochemical and genetic evidence for a growth-regulating complex involving the long TSC22DF protein BunA and the adapter molecule Madm.

  18. Growth promotion effect of steelmaking slag on Spirulina platensis

    NASA Astrophysics Data System (ADS)

    Nogami, R.; Tam, L. T.; Anh, H. T. L.; Quynh, H. T. H.; Thom, L. T.; Nhat, P. V.; Thu, N. T. H.; Hong, D. D.; Wakisaka, M.

    2016-04-01

    A growth promotion effect of steelmaking slag on Spirulina platensis M135 was investigated. The growth promotion effect was obtained that was 1.27 times greater than that obtained by the control by adding 500 mg L-1 of steelmaking slag and culturing for 60 days. The lipid content decreased in a concentration-dependent manner with steelmaking slag, whereas the carbohydrate content remained constant. The protein content of S. platensis M135 increased in a concentration-dependent manner with steelmaking slag when cultured at day 45. The superoxide dismutase activity of S. platensis M135 exhibited a decreasing trend in a time-dependent manner and an increasing trend in the control. The superoxide dismutase activity was lower than that of the control at day 1 but was higher at day 30. No genetic damage was observed up to 500 mg L-1 of steelmaking slag at 30 days of culture. Recovery from genetic damage was observed at 1,000 mg L-1 of steelmaking slag but not at higher concentrations.

  19. INFLUENCE NETWORK AGENT EFFECTIVENESS IN PROMOTING COUPLES’ HIV COUNSELING AND TESTING IN KIGALI, RWANDA

    PubMed Central

    Wall, Kristin; Karita, Etienne; Nizam, Azhar; Bekan, Brigitte; Sardar, Gurkiran; Casanova, Debbie; Joseph, Dvora; De Clercq, Freya; Kestelyn, Evelyne; Bayingana, Roger; Tichacek, Amanda; Allen, Susan

    2013-01-01

    Objective To identify predictors of promotion of couples’ voluntary counseling and testing (CVCT) in Kigali, Rwanda Design Analysis of CVCT promotional agent (influential network leaders, INLs; influential network agents, INAs), and couple/invitation-level predictors of CVCT uptake. Methods Number of invitations and couples tested were evaluated by INL, INA, and couple/contextual factors. Multivariable logistic regression accounting for two-level clustering analyzed factors predictive of couples’ testing. Results 26 INLs recruited and mentored 118 INAs who delivered 24,991 invitations. 4,513 couples sought CVCT services after invitation. INAs distributed an average of 212 invitations resulting in an average of 38 couples tested/agent. Characteristics predictive of CVCT in multivariate analyses included the invitee and INA being socially acquainted (aOR=1.4;95%CI:1.2–1.6); invitations delivered after public endorsement (aOR=1.3;95%CI:1.1–1.5); and presence of a mobile testing unit (aOR=1.4;95%CI:1.0–2.0). In stratified analyses, predictors significant among cohabiting couples included invitation delivery to the couple (aOR=1.2;95%CI:1.0–1.4) in the home (aOR=1.3;95%CI:1.1–1.4), while among non-cohabiting couples predictors included invitations given by unemployed INAs (aOR=1.7;95%CI:1.1–2.7). Cohabiting couples with older men were more likely to test, while younger age was associated with testing among men in non-cohabiting unions. Conclusions Invitations distributed by influential people were successful in prompting couples to seek joint HIV testing, particularly if the invitation was given in the home to someone known to the INA, and accompanied by a public endorsement of CVCT. Mobile units also increased the number of couples tested. Country-specific strategies to promote CVCT programs are needed to reduce HIV transmission among those at highest risk for HIV in sub-Saharan Africa. PMID:22008653

  20. Effects of plant growth-promoting bacteria isolated from copper tailings on plants in sterilized and non-sterilized tailings.

    PubMed

    Liu, Weiqiu; Yang, Chao; Shi, Si; Shu, Wensheng

    2014-02-01

    Ten strains of Cu-tolerant bacteria with potential plant growth-promoting ability were isolated by selecting strains with the ability to use 1-aminocyclopropane-1-carboxylate as a sole nitrogen source (designated ACC-B) or fix nitrogen (designated FLN-B) originating from the rhizosphere of plants growing on copper tailings. All 10 strains proved to have intrinsic ability to produce indole acetic acid and siderophores, and most of them could mobilize insoluble phosphate. In addition, a greenhouse study showed that ACC-B, FLN-B and a mixture of both had similar, potent ability to stimulate growth of Pennisetum purpureum, Medicago sativa and Oenothera erythrosepala plants grown on sterilized tailings. For instance, above-ground biomass of P. purpureum was 278-357% greater after 60d growth on sterilized tailings in their presence. They could also significantly promote the growth of the plants grown on non-sterilized tailings, though the growth-promoting effects were much weaker. So, strategies for using of the plant growth-promoting bacteria in the practice of phytoremediation deserve further studies to get higher growth-promoting efficiency. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Agents of Change in Promoting Reflective Abstraction: A Quasi-Experimental, Study on Limits in College Calculus

    ERIC Educational Resources Information Center

    Cappetta, Robert W.; Zollman, Alan

    2013-01-01

    We measured student performance on the concept of limit by promoting reflection through four agents of change: instructor, peer, curriculum and individual. It is based on Piaget's four constructs of reflective abstraction: interiorization, coordination, encapsulation, and generalization, and includes the notion of reversal, as refined into a…

  2. In vivo hair growth-promoting effect of rice bran extract prepared by supercritical carbon dioxide fluid.

    PubMed

    Choi, Jae-Suk; Jeon, Min-Hee; Moon, Woi-Sook; Moon, Jin-Nam; Cheon, Eun Jin; Kim, Joo-Wan; Jung, Sung Kyu; Ji, Yi-Hwa; Son, Sang Wook; Kim, Mi-Ryung

    2014-01-01

    The potential hair growth-promoting activity of rice bran supercritical CO2 extract (RB-SCE) and major components of RB-SCE, linoleic acid, policosanol, γ-oryzanol, and γ-tocotrienol, were evaluated with the histological morphology and mRNA expression levels of cell growth factors using real-time reverse transcriptase-polymerase chain reaction (PCR) in C57BL/6 mice. RB-SCE showed hair growth-promoting potential to a similar extent as 3% minoxidil, showing that the hair follicles were induced to be in the anagen stage. The numbers of the hair follicles were significantly increased. In addition, mRNA expression levels of vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), and keratinocyte growth factor (KGF) were also significantly increased and that of transforming growth factor-β (TGF-β) decreased in RB-SCE-treated groups. Among the major components of RB-SCE, linoleic acid and γ-oryzanol induced the formation of hair follicles according to examination of histological morphology and mRNA expression levels of cell growth factors. In conclusion, our results demonstrate that RB-SCE, particularly linoleic acid and γ-oryzanol, promotes hair growth and suggests RB-SCE can be applied as hair loss treatment.

  3. Identifying consumer preference for beef produced with different levels of growth promotant technology

    USDA-ARS?s Scientific Manuscript database

    Objectives: Objectives of this study were to 1) evaluate growth performance and carcass characteristics, and 2) determine environmental and economic impacts of cattle raised with different levels of growth promoting technology. Materials and Methods: Angus' Simmental,and crossbred steer calves (n =...

  4. Nonrandomized Trial of Feasibility and Acceptability of Strategies for Promotion of Soapy Water as a Handwashing Agent in Rural Bangladesh.

    PubMed

    Ashraf, Sania; Nizame, Fosiul A; Islam, Mahfuza; Dutta, Notan C; Yeasmin, Dalia; Akhter, Sadika; Abedin, Jaynal; Winch, Peter J; Ram, Pavani K; Unicomb, Leanne; Leontsini, Elli; Luby, Stephen P

    2017-02-08

    We conducted a nonrandomized trial of strategies to promote soapy water for handwashing in rural Bangladesh and measured uptake. We enrolled households with children < 3 years for three progressively intensive study arms: promotion of soapy water ( N = 120), soapy water promotion plus handwashing stations ( N = 103), and soapy water promotion, stations plus detergent refills ( N = 90); we also enrolled control households ( N = 72). Our handwashing stations included tap-fitted buckets and soapy water bottles. Community promoters visited households and held community meetings to demonstrate soapy water preparation and promote handwashing at key times. Field workers measured uptake 4 months later. In-depth interviews and focus group discussions assessed factors associated with uptake. More households had soapy water at the handwashing place in progressively intensive arms: 18% (promotion), 60% (promotion plus station), and 71% (promotion, station with refills). Compared with the promotion-only arm, more households that received stations had soapy water at the primary handwashing station (44%, P ≤ 0.001; 71%, P < 0.001 with station plus detergent refill). Qualitative findings highlighted several dimensions that affected use: contextual (shared courtyard), psychosocial (perceived value), and technology dimensions (ease of use, convenience). Soapy water may increase habitual handwashing by addressing barriers of cost and availability of handwashing agents near water sources. Further research should inform optimal strategies to scale-up soapy water as a handwashing agent to study health impact. © The American Society of Tropical Medicine and Hygiene.

  5. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars.

    PubMed

    Ji, Sang Hye; Gururani, Mayank Anand; Chun, Se-Chul

    2014-01-20

    We have isolated 576 endophytic bacteria from the leaves, stems, and roots of 10 rice cultivars and identified 12 of them as diazotrophic bacteria using a specific primer set of nif gene. Through 16S rDNA sequence analysis, nifH genes were confirmed in the two species of Penibacillus, three species of Microbacterium, three Bacillus species, and four species of Klebsiella. Rice seeds treated with these plant growth-promoting bacteria (PGPB) showed improved plant growth, increased height and dry weight and antagonistic effects against fungal pathogens. In addition, auxin and siderophore producing ability, and phosphate solubilizing activity were studied for the possible mechanisms of plant growth promotion. Among 12 isolates tested, 10 strains have shown higher auxin producing activity, 6 isolates were confirmed as strains with high siderophore producing activity while 4 isolates turned out to have high phosphate-solubilizing activity. These results strongly suggest that the endophytic diazotrophic bacteria characterized in this study could be successfully used to promote plant growth and inducing fungal resistance in plants. Copyright © 2013 Elsevier GmbH. All rights reserved.

  6. Development of Mesorhizobium ciceri-Based Biofilms and Analyses of Their Antifungal and Plant Growth Promoting Activity in Chickpea Challenged by Fusarium Wilt.

    PubMed

    Das, Krishnashis; Rajawat, Mahendra Vikram Singh; Saxena, Anil Kumar; Prasanna, Radha

    2017-03-01

    Biofilmed biofertilizers have emerged as a new improved inoculant technology to provide efficient nutrient and pest management and sustain soil fertility. In this investigation, development of a Trichoderma viride - Mesorhizobium ciceri biofilmed inoculant was undertaken, which we hypothesized, would possess more effective biological nitrogen fixing ability and plant growth promoting properties. As a novel attempt, we selected Mesorhizobium ciceri spp. with good antifungal attributes with the assumption that such inoculants could also serve as biocontrol agents. These biofilms exhibited significant enhancement in several plant growth promoting attributes, including 13-21 % increase in seed germination, production of ammonia, IAA and more than onefold to twofold enhancement in phosphate solubilisation, when compared to their individual partners. Enhancement of 10-11 % in antifungal activity against Fusarium oxysporum f. sp. ciceri was also recorded, over the respective M. ciceri counterparts. The effect of biofilms and the M. ciceri cultures individual on growth parameters of chickpea under pathogen challenged soil illustrated that the biofilms performed at par with the M. ciceri strains for most plant biometrical and disease related attributes. Elicitation of defense related enzymes like l-phenylalanine ammonia lyase, peroxidase and polyphenol oxidase was higher in M. ciceri /biofilm treated plants as compared to uninoculated plants under pathogen challenged soil. Further work on the signalling mechanisms among the partners and their tripartite interactions with host plant is envisaged in future studies.

  7. Monoclonal Antibodies to Ferric Pseudobactin, the Siderophore of Plant Growth-Promoting Pseudomonas putida B10

    PubMed Central

    Buyer, Jeffrey S.; Sikora, Lawrence J.; Kratzke, Marian G.

    1990-01-01

    Monoclonal antibodies to ferric pseudobactin, the siderophore (microbial iron transport agent) of plant growth-promoting Pseudomonas putida B10, have been developed. Three immunoglobulin G subclass 1-type monoclonal antibodies have been characterized. Each antibody appears to be unique on the basis of their reactions with ferric pseudobactin and with culture supernatants from other pseudomonads. None of the three cross-reacts with ferric pseudobactin-type siderophores produced by seven other pseudomonads. However, P. aeruginosa ATCC 15692 and P. fluorescens ATCC 17400 produced relatively high-molecular-mass compounds (mass greater than approximately 30,000 daltons) that did react with the antibodies. The compound from P. aeruginosa was not iron regulated, while the compound from P. fluorescens was produced only under iron-limiting conditions. A competitive assay using these antibodies has a detection limit of 5 × 10−12 mol of ferric pseudobactin. This is, to our knowledge, the first report of monoclonal antibodies reactive with siderophores. PMID:16348116

  8. Ability of organic and inorganic bedding materials to promote growth of environmental bacteria.

    PubMed

    Godden, S; Bey, R; Lorch, K; Farnsworth, R; Rapnicki, P

    2008-01-01

    The major objective of this study was to contrast the ability of 4 commonly utilized bedding materials to promote growth of environmental bacteria under controlled conditions. A second objective was to describe the relationship between bacterial growth and specific biochemical or nutritional properties of these bedding materials. Unused samples of clean sand (CS; n = 20), recycled sand (RS; n = 21), digested manure solids (DS; n = 15), and shavings (SH; n = 15) were collected from bedding storage areas on 49 commercial Minnesota and Wisconsin dairy farms. Sterilized bedding samples were inoculated with Klebsiella pneumoniae and Enterococcus faecium then incubated, in triplicate, for 72 h at 37 degrees C. Subsamples were collected after 0, 24, 48, and 72 h of incubation for culture and enumeration of bacteria. Subsamples of bedding were also tested for pH, total C content (%), and total N content (%). If bacterial growth occurred, peak levels were typically achieved within 24 h. Digested manure solids promoted the greatest amounts of growth of K. pneumoniae, followed by RS and then SH, whereas CS promoted the least. There would seem to be a tradeoff in selecting SH as a bedding material, because it supported moderate growth of K. pneumoniae but caused a rapid decline in the numbers of E. faecium. However, RS, CS, and DS each only supported relatively small amounts of growth of E. faecium, so the benefit of SH relative to other bedding materials is limited. High bedding pH may partially explain why some bedding materials supported growth of E. faecium (e.g., DS and RS). Both high bedding pH (e.g., as for DS or RS) and high total C (%) content (e.g., as for DS and SH) may partially explain why some bedding materials supported growth of K. pneumoniae.

  9. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum).

    PubMed

    Orhan, Furkan

    2016-01-01

    In the current study, 18 halotolerant and halophilic bacteria have been investigated for their plant growth promoting abilities in vitro and in a hydroponic culture. The bacterial strains have been investigated for ammonia, indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate-deaminase production, phosphate solubilisation and nitrogen fixation activities. Of the tested bacteria, eight were inoculated with Triticum aestivum in a hydroponic culture. The investigated bacterial strains were found to have different plant-growth promoting activities in vitro. Under salt stress (200mM NaCl), the investigated bacterial strains significantly increased the root and shoot length and total fresh weight of the plants. The growth rates of the plants inoculated with bacterial strains ranged from 62.2% to 78.1%. Identifying of novel halophilic and halotolerant bacteria that promote plant growth can be used as alternatives for salt sensitive plants. Extensive research has been conducted on several halophilic and halotolerant bacterial strains to investigate their plant growth promoting activities. However, to the best of my knowledge, this is the first study to inoculate these bacterial strains with wheat. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  10. Hair growth promoting activity of cedrol isolated from the leaves of Platycladus orientalis.

    PubMed

    Zhang, Yan; Han, Ling; Chen, Shan-Shan; Guan, Jian; Qu, Fan-Zhi; Zhao, Yu-Qing

    2016-10-01

    Platycladus orientalis (L.) Franco is traditionally known to potentiate hair growth promotion. However, there has been no report on its main active ingredient responsible for the hair growth activity. In the current work, cedrol as a major constituent from P. orientalis was evaluated for its potential on hair growth in vivo. Different concentrations of cedrol (10, 20 and 30mg/mL) were applied topically over the shaved skin of C57BL/6 mice and monitored for 21days. Results indicated that cedrol significantly promoted hair growth in a dose-dependent manner, particularly for the female mice. Both male and female mice groups treated with 30mg/mL cedrol required shorter time than the blank control and 2% minoxidil groups at different growth stages. Compared with the blank control (8.87mm) and 2% minoxidil (9.94mm) groups at 21days, the hair length of female mice treated with 30mg/mL cedrol showed a remarkable increase with the value of 11.07mm. Hair in male and female mice groups treated with 30mg/mL cedrol was heavier than the 2% minoxidil (38.2 and 35.9mg, respectively) groups with the weight of 42.6 and 45.2mg, respectively. Further observation of the hair follicle demonstrated that cedrol exerted a remarkable effect on the hair follicle length. These findings suggested that cedrol may be the main active ingredient of P. orientalis and have the potential of becoming a new hair growth promoter. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Madm (Mlf1 adapter molecule) cooperates with Bunched A to promote growth in Drosophila

    PubMed Central

    2010-01-01

    Background The TSC-22 domain family (TSC22DF) consists of putative transcription factors harboring a DNA-binding TSC-box and an adjacent leucine zipper at their carboxyl termini. Both short and long TSC22DF isoforms are conserved from flies to humans. Whereas the short isoforms include the tumor suppressor TSC-22 (Transforming growth factor-β1 stimulated clone-22), the long isoforms are largely uncharacterized. In Drosophila, the long isoform Bunched A (BunA) acts as a growth promoter, but how BunA controls growth has remained obscure. Results In order to test for functional conservation among TSC22DF members, we expressed the human TSC22DF proteins in the fly and found that all long isoforms can replace BunA function. Furthermore, we combined a proteomics-based approach with a genetic screen to identify proteins that interact with BunA. Madm (Mlf1 adapter molecule) physically associates with BunA via a conserved motif that is only contained in long TSC22DF proteins. Moreover, Drosophila Madm acts as a growth-promoting gene that displays growth phenotypes strikingly similar to bunA phenotypes. When overexpressed, Madm and BunA synergize to increase organ growth. Conclusions The growth-promoting potential of long TSC22DF proteins is evolutionarily conserved. Furthermore, we provide biochemical and genetic evidence for a growth-regulating complex involving the long TSC22DF protein BunA and the adapter molecule Madm. See minireview at http://jbiol.com/content/9/1/8. PMID:20149264

  12. Plant growth-promoting rhizobacteria associated with ancient clones of creosote bush (Larrea tridentata).

    PubMed

    Jorquera, Milko A; Shaharoona, Baby; Nadeem, Sajid M; de la Luz Mora, María; Crowley, David E

    2012-11-01

    Plant growth-promoting rhizobacteria (PGPR) are common components of the rhizosphere, but their role in adaptation of plants to extreme environments is not yet understood. Here, we examined rhizobacteria associated with ancient clones of Larrea tridentata in the Mohave desert, including the 11,700-year-old King Clone, which is oldest known specimen of this species. Analysis of unculturable and culturable bacterial community by PCR-DGGE revealed taxa that have previously been described on agricultural plants. These taxa included species of Proteobacteria, Bacteroidetes, and Firmicutes that commonly carry traits associated with plant growth promotion, including genes encoding aminocyclopropane carboxylate deaminase and β-propeller phytase. The PGPR activities of three representative isolates from L. tridentata were further confirmed using cucumber plants to screen for plant growth promotion. This study provides an intriguing first view of the mutualistic bacteria that are associated with some of the world's oldest living plants and suggests that PGPR likely contribute to the adaptation of L. tridentata and other plant species to harsh environmental conditions in desert habitats.

  13. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions.

    PubMed

    Yamakawa, Hiroyuki; Muraoka, Naoto; Miyamoto, Kazutaka; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Umei, Tomohiko; Akiyama, Mizuha; Kuishi, Yuki; Kurokawa, Junko; Furukawa, Tetsushi; Fukuda, Keiichi; Ieda, Masaki

    2015-12-08

    Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Draft Genome Sequence of Acinetobacter calcoaceticus Strain P23, a Plant Growth-Promoting Bacterium of Duckweed

    PubMed Central

    Hosoyama, Akira; Yamazoe, Atsushi; Morikawa, Masaaki

    2015-01-01

    Acinetobacter calcoaceticus strain P23 is a plant growth-promoting bacterium, which was isolated from the surface of duckweed. We report here the draft genome sequence of strain P23. The genome data will serve as a valuable reference for understanding the molecular mechanism of plant growth promotion in aquatic plants. PMID:25720680

  15. Activation of Wnt Planar Cell Polarity (PCP) signaling promotes growth plate column formation in vitro.

    PubMed

    Randall, Rachel M; Shao, Yvonne Y; Wang, Lai; Ballock, R Tracy

    2012-12-01

    Disrupting the Wnt Planar Cell Polarity (PCP) signaling pathway in vivo results in loss of columnar growth plate architecture, but it is unknown whether activation of this pathway in vitro is sufficient to promote column formation. We hypothesized that activation of the Wnt PCP pathway in growth plate chondrocyte cell pellets would promote columnar organization in these cells that are normally oriented randomly in culture. Rat growth plate chondrocytes were transfected with plasmids encoding the Fzd7 cell-surface Wnt receptor, a Fzd7 deletion mutant lacking the Wnt-binding domain, or Wnt receptor-associated proteins Ror2 or Vangl2, and then cultured as three-dimensional cell pellets in the presence of recombinant Wnt5a or Wnt5b for 21 days. Cellular morphology was evaluated using histomorphometric measurements. Activation of Wnt PCP signaling components promoted the initiation of columnar morphogenesis in the chondrocyte pellet culture model, as measured by histomorphometric analysis of the column index (ANOVA p = 0.01). Activation of noncanonical Wnt signaling through overexpression of both the cell-surface Wnt receptor Fzd7 and receptor-associated protein Ror2 with addition of recombinant Wnt5a promotes the initiation of columnar architecture of growth plate chondrocytes in vitro, representing an important step toward growth plate regeneration. Copyright © 2012 Orthopaedic Research Society.

  16. Using tools and technology to promote education and adherence to oral agents for cancer.

    PubMed

    Burhenn, Peggy S; Smudde, Josephine

    2015-06-01

    The use of oral agents for cancer (OACs) is increasing, and oncology nurses are in an ideal position to educate patients about them and suggest methods to improve adherence. Once an OAC is ordered, the administration is the responsibility of the patient. Oncology nurses can use tools and technology to assist with education, which may promote adherence, and suggest reminder tools that can be used. Many electronic tools have been developed, such as smartphone applications, text messaging, electronic alarms, and glowing pill bottles. The researchers reviewed electronic devices, as well as traditional methods such as calendars and pillboxes, that can assist patients in remembering to take the medication they are administering at home. A literature search was compiled and websites were searched for patient education tools, reminder tools (electronic and manual), and smartphone applications. The project was part of the Oncology Nursing Society Putting Evidence Into Practice effort on oral adherence. Education alone is insufficient to promote adherence to oral medication regimens. Multicomponent interventions have demonstrated improved adherence, and tools and technology directed at improving adherence to oral agents can be used. The researchers found multiple reminder aids to assist patients in adhering to an oral regimen. They are highlighted in this article.

  17. Growth-promoting effects of pepsin- and trypsin-treated caseinomacropeptide from bovine milk on probiotics.

    PubMed

    Robitaille, Gilles; Champagne, Claude P

    2014-08-01

    Probiotic Lactobacillus and Bifidobacterium species are generally fastidious bacteria and require rich media for propagation. In milk-based media, they grow poorly, and nitrogen supplementation is required to produce high bacterial biomass levels. It has been reported that caseinomacropeptide (CMP), a 7-kDa peptide released from κ-casein during renneting or gastric digestion, exhibits some growth-promoting activity for lactobacilli and bifidobacteria. During the digestive process, peptides derived from CMP are detected in the intestinal lumen The aim of this study was to evaluate the effects of peptic and tryptic digests of CMP on probiotic lactic acid bacteria growth in de Man, Rogosa and Sharpe broth (MRS) and in milk during fermentation at 37 °C under anaerobic conditions. The study showed that pepsin-treated CMP used as supplements at 0.5 g/l can promote the growth of probiotics even in peptone-rich environments such as MRS. The effect was strain-dependent and evident for the strains that grow poorly in MRS, with an improvement of >1.5 times (P<0.05) by addition of pepsin-treated CMP. Trypsin-treated CMP was much less efficient as growth promoter. Moreover, pepsin-treated CMP was effective in promoting the growth in milk of all probiotic lactic acid bacteria tested, with biomass levels being improved significantly, by 1.7 to 2.6 times (P<0.05), depending on the strain. Thus, supplementation of MRS and of milk with pepsin-treated CMP would be advantageous for the production of high biomass levels for Bifidobacteria and Lactobacilli.

  18. Talk That Teaches: How to Promote Professional Dialogue and Growth

    ERIC Educational Resources Information Center

    Gibbons, Lynsey; Knapp, Melinda

    2015-01-01

    What types of talk promote teachers' professional growth? In the following vignettes, 4th-grade teachers and instructional leaders examine student work and observe classroom instruction. These learning designs encourage teachers to talk in ways that develop a shared understanding of teaching, which is instrumental to their professional growth…

  19. Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling.

    PubMed

    Kandasamy, Saveetha; Loganathan, Karthiba; Muthuraj, Raveendran; Duraisamy, Saravanakumar; Seetharaman, Suresh; Thiruvengadam, Raguchander; Ponnusamy, Balasubramanian; Ramasamy, Samiyappan

    2009-12-24

    Plant Growth Promoting Rhizobacteria (PGPR), Pseudomonas fluorescens strain KH-1 was found to exhibit plant growth promotional activity in rice under both in-vitro and in-vivo conditions. But the mechanism underlying such promotional activity of P. fluorescens is not yet understood clearly. In this study, efforts were made to elucidate the molecular responses of rice plants to P. fluorescens treatment through protein profiling. Two-dimensional polyacrylamide gel electrophoresis strategy was adopted to identify the PGPR responsive proteins and the differentially expressed proteins were analyzed by mass spectrometry. Priming of P. fluorescens, 23 different proteins found to be differentially expressed in rice leaf sheaths and MS analysis revealed the differential expression of some important proteins namely putative p23 co-chaperone, Thioredoxin h- rice, Ribulose-bisphosphate carboxylase large chain precursor, Nucleotide diPhosphate kinase, Proteosome sub unit protein and putative glutathione S-transferase protein. Functional analyses of the differential proteins were reported to be directly or indirectly involved in growth promotion in plants. Thus, this study confirms the primary role of PGPR strain KH-1 in rice plant growth promotion.

  20. Plant growth promoting potential of bacteria isolated on N free media from rhizosphere of Cassia occidentalis.

    PubMed

    Arun, B; Gopinath, B; Sharma, Shilpi

    2012-09-01

    Plant growth promoting rhizobacteria (PGPR) are an attractive eco-friendly alternative to chemicals in agriculture. While the rhizospheres of crop plants have been well studied with the objective of screening PGPR, weeds, which play an important role in maintaining ecological balance, have largely been ignored. The rhizosphere of a luxuriantly growing, medicinal weed, Cassia occidentalis was analysed by enumerating PGPR on N free media from the most diverse stage of plant (determined by profiles obtained on denaturing gradient gel electrophoresis). Each isolate was tested for other plant growth promotion assays including production of cellulase, indole acetic acid (IAA), ammonia, HCN, siderophore and chitinase to select for ones possessing multi-trait plant growth promoting (PGP) properties. Selected isolates were used for bacterization of Vigna radiata and Vigna mungo to evaluate their efficacy in promoting plant's growth in seedling germination and axenic pot conditions. Thirty five isolates were analysed further for the array of PGP properties they exhibit. A total of 6 isolates were shortlisted on the basis of maximum traits positive, amount of phosphate solubilized and IAA produced. V. radiata responded well to seed bacterization during seedling germination. A maximum increase of approximately 36 and 60 % was observed for shoot and root length, respectively in V. radiata in axenic pot culture over control plants. Extensive branching of roots was also observed with isolate NL, which produced the maximum amount of IAA. Present study investigated the plant growth promoting isolates obtained on N free media in the rhizosphere of C. occidentalis, which have the potential to be used as inoculants for other crops. This provides a new dimension to the significance of weeds in agricultural ecosystems. The study opens up possibilities for utilization of this property of weeds in plant growth promotion, and subsequent enhancement of yield for agricultural crops.

  1. Autologous platelet-rich plasma: a potential therapeutic tool for promoting hair growth.

    PubMed

    Li, Zheng Jun; Choi, Hye-In; Choi, Dae-Kyoung; Sohn, Kyung-Cheol; Im, Myung; Seo, Young-Joon; Lee, Young-Ho; Lee, Jeung-Hoon; Lee, Young

    2012-07-01

    Recently, autologous platelet-rich plasma (PRP) has attracted attention in various medical fields, including plastic and orthopedic surgery and dermatology, for its ability to promote wound healing. PRP has been tested during facelift and hair transplantation to reduce swelling and pain and to increase hair density. To investigate the effects of PRP on hair growth using in vivo and in vitro models. PRP was prepared using the double-spin method and applied to dermal papilla (DP) cells. The proliferative effect of activated PRP on DP cells was measured. To understand the mechanisms of activated PRP on hair growth, we evaluated signaling pathways. In an in vivo study, mice received subcutaneous injections of activated PRP, and their results were compared with control mice. Activated PRP increased the proliferation of DP cells and stimulated extracellular signal-regulated kinase (ERK) and Akt signaling. Fibroblast growth factor 7 (FGF-7) and beta-catenin, which are potent stimuli for hair growth, were upregulated in DP cells. The injection of mice with activated PRP induced faster telogen-to-anagen transition than was seen on control mice. Although few studies tested the effects of activated PRP on hair growth, this research provides support for possible clinical application of autologous PRP and its secretory factors for promotion of hair growth. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  2. Increasing referral of at-risk travelers to travel health clinics: evaluation of a health promotion intervention targeted to travel agents.

    PubMed

    MacDougall, L A; Gyorkos, T W; Leffondré, K; Abrahamowicz, M; Tessier, D; Ward, B J; MacLean, J D

    2001-01-01

    Increases in travel-related illness require new partnerships to ensure travelers are prepared for health risks abroad. The travel agent is one such partner and efforts to encourage travel agents to refer at-risk travelers to travel health clinics may help in reducing travel-attributable morbidity. A health promotion intervention encouraging travel agents to refer at-risk travelers to travel health clinics was evaluated. Information on the knowledge, attitudes, and behaviors of travel agents before and after the intervention was compared using two self-administered questionnaires. The Wilcoxon signed rank test was used to compare the mean difference in overall scores to evaluate the overall impact of the intervention and also subscores for each of the behavioral construct groupings (attitudes, barriers, intent, and subjective norms). Multiple regression techniques were used to evaluate which travel agent characteristics were independently associated with a stronger effect of the intervention. A small improvement in travel agents overall attitudes and beliefs (p =.03) was found, in particular their intention to refer (p =.01). Sixty-five percent of travel agents self-reported an increase in referral behavior; owners or managers of the agency were significantly more likely to do so than other travel agents (OR = 7.25; 95% CI: 1.64 32.06). Older travel agents, those that worked longer hours and those with some past referral experience, had significantly higher post-intervention scores. Travel agents can be willing partners in referral, and agencies should be encouraged to develop specific referral policies. Future research may be directed toward investigating the role of health education in certification curricula, the effectiveness of different types of health promotion interventions, including Internet-facilitated interventions, and the direct impact that such interventions would have on travelers attending travel health clinics.

  3. [The plant growth-promoting rhizobacterium Arthrobacter agilis UMCV2 endophytically colonizes Medicago truncatula].

    PubMed

    Aviles-Garcia, Maria Elizabeth; Flores-Cortez, Idolina; Hernández-Soberano, Christian; Santoyo, Gustavo; Valencia-Cantero, Eduardo

    Arthrobacter agilis UMCV2 is a rhizosphere bacterium that promotes legume growth by solubilization of iron, which is supplied to the plant. A second growth promotion mechanism produces volatile compounds that stimulate iron uptake activities. Additionally, A. agilis UMCV2 is capable of inhibiting the growth of phytopathogens. A combination of quantitative polymerase chain reaction and fluorescence in situ hybridization techniques were used here to detect and quantify the presence of the bacterium in the internal tissues of the legume Medicago truncatula. Our results demonstrate that A. agilis UMCV2 behaves as an endophytic bacterium of M. truncatula, particularly in environments where iron is available. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Growth-promoting relationships with children and youth.

    PubMed

    Spencer, Renée; Rhodes, Jean E

    2014-12-01

    At the heart of afterschool programs are the relationships that form between the children and youth who participate in these programs and the adults who lead them. To be effective, adults working in afterschool settings must be able to engage youth in growth-promoting relationships. This article identifies and describes four foundational ways of interacting with youth that foster the development of such relationships-engaging in warm and emotionally supportive connections, providing developmentally appropriate structure and support, cultivating and responding to youth initiative, and scaffolding and propelling youth learning and skill development. © 2014 WILEY PERIODICALS, INC.

  5. Exercise-Induced Changes in Glucose Metabolism Promote Physiological Cardiac Growth

    PubMed Central

    Gibb, Andrew A.; Epstein, Paul N.; Uchida, Shizuka; Zheng, Yuting; McNally, Lindsey A.; Obal, Detlef; Katragadda, Kartik; Trainor, Patrick; Conklin, Daniel J.; Brittian, Kenneth R.; Tseng, Michael T.; Wang, Jianxun; Jones, Steven P.; Bhatnagar, Aruni

    2017-01-01

    Background: Exercise promotes metabolic remodeling in the heart, which is associated with physiological cardiac growth; however, it is not known whether or how physical activity–induced changes in cardiac metabolism cause myocardial remodeling. In this study, we tested whether exercise-mediated changes in cardiomyocyte glucose metabolism are important for physiological cardiac growth. Methods: We used radiometric, immunologic, metabolomic, and biochemical assays to measure changes in myocardial glucose metabolism in mice subjected to acute and chronic treadmill exercise. To assess the relevance of changes in glycolytic activity, we determined how cardiac-specific expression of mutant forms of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase affect cardiac structure, function, metabolism, and gene programs relevant to cardiac remodeling. Metabolomic and transcriptomic screenings were used to identify metabolic pathways and gene sets regulated by glycolytic activity in the heart. Results: Exercise acutely decreased glucose utilization via glycolysis by modulating circulating substrates and reducing phosphofructokinase activity; however, in the recovered state following exercise adaptation, there was an increase in myocardial phosphofructokinase activity and glycolysis. In mice, cardiac-specific expression of a kinase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase transgene (GlycoLo mice) lowered glycolytic rate and regulated the expression of genes known to promote cardiac growth. Hearts of GlycoLo mice had larger myocytes, enhanced cardiac function, and higher capillary-to-myocyte ratios. Expression of phosphatase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in the heart (GlycoHi mice) increased glucose utilization and promoted a more pathological form of hypertrophy devoid of transcriptional activation of the physiological cardiac growth program. Modulation of phosphofructokinase activity was sufficient to regulate the

  6. Mechanisms of action of plant growth promoting bacteria.

    PubMed

    Olanrewaju, Oluwaseyi Samuel; Glick, Bernard R; Babalola, Olubukola Oluranti

    2017-10-06

    The idea of eliminating the use of fertilizers which are sometimes environmentally unsafe is slowly becoming a reality because of the emergence of microorganisms that can serve the same purpose or even do better. Depletion of soil nutrients through leaching into the waterways and causing contamination are some of the negative effects of these chemical fertilizers that prompted the need for suitable alternatives. This brings us to the idea of using microbes that can be developed for use as biological fertilizers (biofertilizers). They are environmentally friendly as they are natural living organisms. They increase crop yield and production and, in addition, in developing countries, they are less expensive compared to chemical fertilizers. These biofertilizers are typically called plant growth-promoting bacteria (PGPB). In addition to PGPB, some fungi have also been demonstrated to promote plant growth. Apart from improving crop yields, some biofertilizers also control various plant pathogens. The objective of worldwide sustainable agriculture is much more likely to be achieved through the widespread use of biofertilizers rather than chemically synthesized fertilizers. However, to realize this objective it is essential that the many mechanisms employed by PGPB first be thoroughly understood thereby allowing workers to fully harness the potentials of these microbes. The present state of our knowledge regarding the fundamental mechanisms employed by PGPB is discussed herein.

  7. Growth promotion of Euglena gracilis by ferulic acid from rice bran.

    PubMed

    Zhu, Jiangyu; Wakisaka, Minato

    2018-02-08

    A significant growth promotion of Euglena gracilis was achieved by simply adding ferulic acid from rice bran without diminishing the accumulation of valuable products like paramylon. E. gracilis is a freshwater microalga that is widely applied in cosmetics, food, medicine, and supplements, and it is considered a potential source of biofuel. It is therefore important to enhance its yield at a lower cost for its commercial viability. Introducing a growth regulator derived from agro waste is considered a cheaper and safer strategy to improve biomass productivity compared with other alternatives such as implementing genetic engineering or adding nutrients and plant hormones as growth stimulator. The effect of ferulic acid derived from rice bran on the growth and metabolism of E. gracilis was investigated in this study. To aid in the dissolution of ferulic acid, 1% dimethyl sulfoxide (DMSO) was added to Cramer-Myers medium. Ferulic acid could alleviate the inhibitory effect of DMSO and significantly promoted the growth of E. gracilis. It was found that cell density was 2.5 times greater than that of the control group and 3.6 times greater than that of the negative control group when 500 mg/L of ferulic acid was added. In addition, the photosynthetic pigment content, especially chlorophyll a, increased with increasing ferulic acid concentrations. The total paramylon production would also be enhanced by ferulic acid since the number of cells increased without reducing the cellular content of paramylon.

  8. Plant growth-promoting bacteria for phytostabilization of mine tailings.

    PubMed

    Grandlic, Christopher J; Mendez, Monica O; Chorover, Jon; Machado, Blenda; Maier, Raina M

    2008-03-15

    Eolian dispersion of mine tailings in arid and semiarid environments is an emerging global issue for which economical remediation alternatives are needed. Phytostabilization, the revegetation of these sites with native plants, is one such alternative. Revegetation often requires the addition of bulky amendments such as compost which greatly increases cost. We report the use of plant growth-promoting bacteria (PGPB) to enhance the revegetation of mine tailings and minimize the need for compost amendment. Twenty promising PGPB isolates were used as seed inoculants in a series of greenhouse studies to examine revegetation of an extremely acidic, high metal contenttailings sample previously shown to require 15% compost amendment for normal plant growth. Several isolates significantly enhanced growth of two native species, quailbush and buffalo grass, in tailings. In this study, PGPB/compost outcomes were plant specific; for quailbush, PGPB were most effective in combination with 10% compost addition while for buffalo grass, PGPB enhanced growth in the complete absence of compost. Results indicate that selected PGPB can improve plant establishment and reduce the need for compost amendment. Further, PGPB activities necessary for aiding plant growth in mine tailings likely include tolerance to acidic pH and metals.

  9. Antimicrobial peptide lysozyme has the potential to promote mouse hair follicle growth in vitro.

    PubMed

    Su, Yongsheng; Liu, Hui; Wang, Jin; Lin, Bojie; Miao, Yong; Hu, Zhiqi

    2015-10-01

    Lysozyme is a well-known antimicrobial peptide that exists widely in mammalian skin and it is also expressed by pilosebaceous units. However, the exact location of lysozyme in hair follicles and whether it exerts any direct effects on hair follicle growth are unclear. To determine whether lysozyme affected hair growth in vitro, micro-dissected mouse vibrissae follicles (VFs) were treated in serum-free organ culture for 3 days with lysozyme (1-10μg/ml). After that, the effects of lysozyme on dermal papilla (DP) cells were also investigated. Lysozyme was mainly identified in DP and dermal sheath regions of VF by immunochemistry. In addition, 5-10μg/ml lysozyme had a promoting effect on shaft production. It was also associated with significant proliferation of matrix keratinocytes by immunofluorescence observation. Furthermore, lysozyme promoted hair growth by increasing the levels of alkaline phosphatase and lymphoid enhancer factor 1 in DP, as determined by Western blotting. These results indicate that lysozyme is a promoter of VF growth via enhancing the hair-inductive capacity of DP cells during organ culture. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Protopanaxatirol type ginsenoside Re promotes cyclic growth of hair follicles via inhibiting transforming growth factor β signaling cascades.

    PubMed

    Li, Zheng; Ryu, Seung-Wook; Lee, Jungsul; Choi, Kyungsun; Kim, Sunchang; Choi, Chulhee

    2016-02-19

    Ginsenosides, the major bio-active ingredients included in Panax ginseng, have been known for the hair growth activity and used to treat patients who suffer from hair loss; however, the detailed mechanisms of this action are still largely unknown. This study was conducted to investigate the molecular and cellular mechanisms responsible for hair growth promoting effect of ginsenoside Re (GRe) in vitro and in vivo. Different doses of minoxidil and GRe were administered topically to the back regions of nude mice for up to 45 days, and hair shaft length and hair cycles were determined for hair promoting activities. Topical treatment of GRe significantly increased the hair shaft length and hair existent time, which was comparable to the action of minoxidil. We also demonstrated that GRe stimulated hair shaft elongation in the ex vivo cultures of vibrissa hair follicles isolated from C57BL/6 mouse. Systemic transcriptome analysis by next generation sequencing demonstrated that TGF-β-pathway related genes were selectively down-regulated by treatment of GRe in vivo, and the same treatment suppressed TGF-β-induced phosphorylation of ERK in HeLa cells. The results clearly indicated that GRe is the effective constituent in the ginseng on hair promotion via selective inhibition of the hair growth phase transition related signaling pathways, TGF-β signaling cascades. Copyright © 2016. Published by Elsevier Inc.

  11. A Model to Explain Plant Growth Promotion Traits: A Multivariate Analysis of 2,211 Bacterial Isolates

    PubMed Central

    da Costa, Pedro Beschoren; Granada, Camille E.; Ambrosini, Adriana; Moreira, Fernanda; de Souza, Rocheli; dos Passos, João Frederico M.; Arruda, Letícia; Passaglia, Luciane M. P.

    2014-01-01

    Plant growth-promoting bacteria can greatly assist sustainable farming by improving plant health and biomass while reducing fertilizer use. The plant-microorganism-environment interaction is an open and complex system, and despite the active research in the area, patterns in root ecology are elusive. Here, we simultaneously analyzed the plant growth-promoting bacteria datasets from seven independent studies that shared a methodology for bioprospection and phenotype screening. The soil richness of the isolate's origin was classified by a Principal Component Analysis. A Categorical Principal Component Analysis was used to classify the soil richness according to isolate's indolic compound production, siderophores production and phosphate solubilization abilities, and bacterial genera composition. Multiple patterns and relationships were found and verified with nonparametric hypothesis testing. Including niche colonization in the analysis, we proposed a model to explain the expression of bacterial plant growth-promoting traits according to the soil nutritional status. Our model shows that plants favor interaction with growth hormone producers under rich nutrient conditions but favor nutrient solubilizers under poor conditions. We also performed several comparisons among the different genera, highlighting interesting ecological interactions and limitations. Our model could be used to direct plant growth-promoting bacteria bioprospection and metagenomic sampling. PMID:25542031

  12. Growth phase-dependent induction of stationary-phase promoters of Escherichia coli in different gram-negative bacteria.

    PubMed Central

    Miksch, G; Dobrowolski, P

    1995-01-01

    RSF1010-derived plasmids carrying a fusion of a promoterless lacZ gene with the sigma s-dependent growth phase-regulated promoters of Escherichia coli, bolAp1 and fic, were constructed. The plasmids were mobilized into the gram-negative bacterial species Acetobacter methanolicus, Xanthomonas campestris, Pseudomonas putida, and Rhizobium meliloti. The beta-galactosidase activities of bacterial cultures were determined during exponential and stationary growth phases. Transcriptional activation of the fic promoter in the different bacteria was growth phase dependent as in E. coli and was initiated generally during the transition to stationary phase. The induction of the bolA promoter was also growth phase dependent in the bacteria tested. While the expression in E. coli and R. meliloti was initiated during the transition from exponential to stationary phase, the induction in A. methanolicus, P. putida, and X. campestris started some hours after stationary growth phase was reached. In all the species tested, DNA fragments hybridizing with the rpoS gene of E. coli were detected. The results show that in different gram-negative bacteria, stationary-phase-specific sigma factors which are structurally and functionally homologous to sigma s and are able to recognize the promoter sequences of both bolA and fic exist. PMID:7665531

  13. Stimulatory Effects of Arsenic-Tolerant Soil Fungi on Plant Growth Promotion and Soil Properties

    PubMed Central

    Srivastava, Pankaj Kumar; Shenoy, Belle Damodara; Gupta, Manjul; Vaish, Aradhana; Mannan, Shivee; Singh, Nandita; Tewari, Shri Krishna; Tripathi, Rudra Deo

    2012-01-01

    Fifteen fungi were obtained from arsenic-contaminated agricultural fields in West Bengal, India and examined for their arsenic tolerance and removal ability in our previous study. Of these, the four best arsenic-remediating isolates were tested for plant growth promotion effects on rice and pea in the present study. A greenhouse-based pot experiment was conducted using soil inocula of individual fungi. The results indicated a significant (P<0.05) increase in plant growth and improvement of soil properties in inoculated soils compared to the control. A significant increase in plant growth was recorded in treated soils and varied from 16–293%. Soil chemical and enzymatic properties varied from 20–222% and 34–760%, respectively, in inoculated soil. Plants inoculated with inocula of Westerdykella and Trichoderma showed better stimulatory effects on plant growth and soil nutrient availability than Rhizopus and Lasiodiplodia. These fungi improved soil nutrient content and enhanced plant growth. These fungi may be used as bioinoculants for plant growth promotion and improved soil properties in arsenic-contaminated agricultural soils. PMID:23047145

  14. Stimulatory effects of arsenic-tolerant soil fungi on plant growth promotion and soil properties.

    PubMed

    Srivastava, Pankaj Kumar; Shenoy, Belle Damodara; Gupta, Manjul; Vaish, Aradhana; Mannan, Shivee; Singh, Nandita; Tewari, Shri Krishna; Tripathi, Rudra Deo

    2012-01-01

    Fifteen fungi were obtained from arsenic-contaminated agricultural fields in West Bengal, India and examined for their arsenic tolerance and removal ability in our previous study. Of these, the four best arsenic-remediating isolates were tested for plant growth promotion effects on rice and pea in the present study. A greenhouse-based pot experiment was conducted using soil inocula of individual fungi. The results indicated a significant (P<0.05) increase in plant growth and improvement of soil properties in inoculated soils compared to the control. A significant increase in plant growth was recorded in treated soils and varied from 16-293%. Soil chemical and enzymatic properties varied from 20-222% and 34-760%, respectively, in inoculated soil. Plants inoculated with inocula of Westerdykella and Trichoderma showed better stimulatory effects on plant growth and soil nutrient availability than Rhizopus and Lasiodiplodia. These fungi improved soil nutrient content and enhanced plant growth. These fungi may be used as bioinoculants for plant growth promotion and improved soil properties in arsenic-contaminated agricultural soils.

  15. Bee Venom Promotes Hair Growth in Association with Inhibiting 5α-Reductase Expression.

    PubMed

    Park, Seeun; Erdogan, Sedef; Hwang, Dahyun; Hwang, Seonwook; Han, Eun Hye; Lim, Young-Hee

    2016-06-01

    Alopecia is an important issue that can occur in people of all ages. Recent studies show that bee venom can be used to treat certain diseases including rheumatoid arthritis, neuralgia, and multiple sclerosis. In this study, we investigated the preventive effect of bee venom on alopecia, which was measured by applying bee venom (0.001, 0.005, 0.01%) or minoxidil (2%) as a positive control to the dorsal skin of female C57BL/6 mice for 19 d. Growth factors responsible for hair growth were analyzed by quantitative real-time PCR and Western blot analysis using mice skins and human dermal papilla cells (hDPCs). Bee venom promoted hair growth and inhibited transition from the anagen to catagen phase. In both anagen phase mice and dexamethasone-induced catagen phase mice, hair growth was increased dose dependently compared with controls. Bee venom inhibited the expression of SRD5A2, which encodes a type II 5α-reductase that plays a major role in the conversion of testosterone into dihydrotestosterone. Moreover, bee venom stimulated proliferation of hDPCs and several growth factors (insulin-like growth factor 1 receptor (IGF-1R), vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF)2 and 7) in bee venom-treated hDPCs dose dependently compared with the control group. In conclusion, bee venom is a potentially potent 5α-reductase inhibitor and hair growth promoter.

  16. Acrylamide biodegradation ability and plant growth-promoting properties of Variovorax boronicumulans CGMCC 4969.

    PubMed

    Liu, Zhong-Hua; Cao, Yu-Min; Zhou, Qian-Wen; Guo, Kun; Ge, Feng; Hou, Jun-Yi; Hu, Si-Yi; Yuan, Sheng; Dai, Yi-Jun

    2013-11-01

    Species of the genus Variovorax are often isolated from nitrile or amide-containing organic compound-contaminated soil. However, there have been few biological characterizations of Variovorax and their contaminant-degrading enzymes. Previously, we reported a new soil isolate, Variovorax boronicumulans CGMCC 4969, and its nitrile hydratase that transforms the neonicotinoid insecticide thiacloprid into an amide metabolite. In this study, we showed that CGMCC 4969 is able to degrade acrylamide, a neurotoxicant and carcinogen in animals, during cell growth in a mineral salt medium as well as in its resting state. Resting cells rapidly hydrolyzed 600 mg/L acrylamide to acrylic acid with a half-life of 2.5 min. In in vitro tests, CGMCC 4969 showed plant growth-promoting properties; it produced a siderophore, ammonia, hydrogen cyanide, and the phytohormone salicylic acid. Interestingly, in soil inoculated with this strain, 200 mg/L acrylamide was completely degraded in 4 days. Gene cloning and overexpression in the Escherichia coli strain Rosetta (DE3) pLysS resulted in the production of an aliphatic amidase of 345 amino acids that hydrolyzed acrylamide into acrylic acid. The amidase contained a conserved catalytic triad, Glu59, Lys 134, and Cys166, and an "MRHGDISSS" amino acid sequence at the N-terminal region. Variovorax boronicumulans CGMCC 4969, which is able to use acrylamide for cell growth and rapidly degrade acrylamide in soil, shows promising plant growth-promoting properties. As such, it has the potential to be developed into an effective Bioaugmentation strategy to promote growth of field crops in acrylamide-contaminated soil.

  17. Growth-promoting technologies decrease the carbon footprint, ammonia emissions, and costs of California beef production systems.

    PubMed

    Stackhouse, K R; Rotz, C A; Oltjen, J W; Mitloehner, F M

    2012-12-01

    Increased animal performance is suggested as one of the most effective mitigation strategies to decrease greenhouse gas (GHG) and ammonia (NH(3)) emissions from livestock production per unit of product produced. Little information exists, however, on the effects of increased animal productivity on the net decrease in emission from beef production systems. A partial life cycle assessment (LCA) was conducted using the Integrated Farm System Model (IFSM) to estimate GHG and NH(3) emissions from representative beef production systems in California that use various management technologies to enhance animal performance. The IFSM is a farm process model that simulates crop growth, feed production, animal performance, and manure production and handling through time to predict the performance, economics, and environmental impacts of production systems. The simulated beef production systems compared were 1) Angus-natural, with no use of growth-enhancing technologies, 2) Angus-implant, with ionophore and growth-promoting implant (e.g., estrogen/trenbolone acetate-based) application, 3) Angus-ß2-adrenergic agonists (BAA; e.g., zilpaterol), with ionophore, growth-promoting implant, and BAA application, 4) Holstein-implant, with growth implant and ionophore application, and 5) Holstein-BAA, with ionophore, growth implant, and BAA use. During the feedlot phase, use of BAA decreased NH(3) emission by 4 to 9 g/kg HCW, resulting in a 7% decrease in NH(3) loss from the full production system. Combined use of ionophore, growth implant, and BAA treatments decreased NH(3) emission from the full production system by 14 g/kg HCW, or 13%. The C footprint of beef was decreased by 2.2 kg carbon dioxide equivalent (CO(2)e)/kg HCW using all the growth-promoting technologies, and the Holstein beef footprint was decreased by 0.5 kg CO(2)e/kg HCW using BAA. Over the full production systems, these decreases were relatively small at 9% and 5% for Angus and Holstein beef, respectively. The growth-promoting

  18. Draft Genome Sequence of Plant Growth-Promoting Drought-Tolerant Bacillus sp. Strain CMAA 1363 Isolated from the Brazilian Caatinga Biome.

    PubMed

    Kavamura, Vanessa Nessner; Santos, Suikinai Nobre; Taketani, Rodrigo Gouvêa; Vasconcellos, Rafael Leandro Figueiredo; Melo, Itamar Soares

    2017-02-02

    The strain of Bacillus sp. CMAA 1363 was isolated from the Brazilian Caatinga biome and showed plant growth-promoting traits and ability to promote maize growth under drought stress. Sequencing revealed genes involved in stress response and plant growth promotion. These genomic features might aid in the protection of plants against the negative effects imposed by drought. Copyright © 2017 Kavamura et al.

  19. Draft Genome Sequence of Plant Growth-Promoting Drought-Tolerant Bacillus sp. Strain CMAA 1363 Isolated from the Brazilian Caatinga Biome

    PubMed Central

    Santos, Suikinai Nobre; Taketani, Rodrigo Gouvêa; Vasconcellos, Rafael Leandro Figueiredo; Melo, Itamar Soares

    2017-01-01

    ABSTRACT The strain of Bacillus sp. CMAA 1363 was isolated from the Brazilian Caatinga biome and showed plant growth-promoting traits and ability to promote maize growth under drought stress. Sequencing revealed genes involved in stress response and plant growth promotion. These genomic features might aid in the protection of plants against the negative effects imposed by drought. PMID:28153893

  20. Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling

    PubMed Central

    2009-01-01

    Background Plant Growth Promoting Rhizobacteria (PGPR), Pseudomonas fluorescens strain KH-1 was found to exhibit plant growth promotional activity in rice under both in-vitro and in-vivo conditions. But the mechanism underlying such promotional activity of P. fluorescens is not yet understood clearly. In this study, efforts were made to elucidate the molecular responses of rice plants to P. fluorescens treatment through protein profiling. Two-dimensional polyacrylamide gel electrophoresis strategy was adopted to identify the PGPR responsive proteins and the differentially expressed proteins were analyzed by mass spectrometry. Results Priming of P. fluorescens, 23 different proteins found to be differentially expressed in rice leaf sheaths and MS analysis revealed the differential expression of some important proteins namely putative p23 co-chaperone, Thioredoxin h- rice, Ribulose-bisphosphate carboxylase large chain precursor, Nucleotide diPhosphate kinase, Proteosome sub unit protein and putative glutathione S-transferase protein. Conclusion Functional analyses of the differential proteins were reported to be directly or indirectly involved in growth promotion in plants. Thus, this study confirms the primary role of PGPR strain KH-1 in rice plant growth promotion. PMID:20034395

  1. Isolation and characterization of a plant growth-promoting rhizobacterium, Serratia sp. SY5.

    PubMed

    Koo, So-Yeon; Cho, Kyung-Suk

    2009-11-01

    The role of plant growth-promoting rhizobacteria (PGPR) in the phytoremediation of heavy-metal-contaminated soils is important in overcoming its limitations for field application. A plant growth-promoting rhizobacterium, Serratia sp. SY5, was isolated from the rhizoplane of barnyard grass (Echinochloa crus-galli) grown in petroleum and heavy-metal-contaminated soil. This isolate has shown capacities for indole acetic acid production and siderophores synthesis. Compared with a non-inoculated control, the radicular root growth of Zea mays seedlings inoculated with SY5 can be increased by 27- or 15.4-fold in the presence of 15 mg-Cd/l or 15 mg-Cu/l, respectively. The results from hydroponic cultures showed that inoculation of Serratia sp. SY5 had a favorable influence on the initial shoot growth and biomass of Zea mays under noncontaminated conditions. However, under Cd-contaminated conditions, the inoculation of SY5 significantly increased the root biomass of Zea mays. These results indicate that Serratia sp. SY5 can serve as a promising microbial inoculant for increased plant growth in heavy-metal-contaminated soils to improve the phytoremediation efficiency.

  2. ProNGF promotes neurite growth from a subset of NGF-dependent neurons by a p75NTR-dependent mechanism

    PubMed Central

    Howard, Laura; Wyatt, Sean; Nagappan, Guhan; Davies, Alun M.

    2013-01-01

    The somatosensory and sympathetic innervation of the vertebrate head is derived principally from the neurons of trigeminal and superior cervical ganglia (SCG), respectively. During development, the survival of both populations of neurons and the terminal growth and branching of their axons in the tissues they innervate is regulated by the supply of nerve growth factor (NGF) produced by these tissues. NGF is derived by proteolytic cleavage of a large precursor protein, proNGF, which is recognised to possess distinctive biological functions. Here, we show that proNGF promotes profuse neurite growth and branching from cultured postnatal mouse SCG neurons. In marked contrast, proNGF does not promote the growth of trigeminal neurites. Studies using compartment cultures demonstrated that proNGF acts locally on SCG neurites to promote growth. The neurite growth-promoting effect of proNGF is not observed in SCG neurons cultured from p75NTR-deficient mice, and proNGF does not phosphorylate the NGF receptor tyrosine kinase TrkA. These findings suggest that proNGF selectively promotes the growth of neurites from a subset of NGF-responsive neurons by a p75NTR-dependent mechanism during postnatal development when the axons of these neurons are ramifying within their targets in vivo. PMID:23633509

  3. Characterization of anticancer agents by their growth inhibitory activity and relationships to mechanism of action and structure.

    PubMed

    Keskin, O; Bahar, I; Jernigan, R L; Beutler, J A; Shoemaker, R H; Sausville, E A; Covell, D G

    2000-04-01

    An analysis of the growth inhibitory potency of 122 anticancer agents available from the National Cancer Institute anticancer drug screen is presented. Methods of singular value decomposition (SVD) were applied to determine the matrix of distances between all compounds. These SVD-derived dissimilarity distances were used to cluster compounds that exhibit similar tumor growth inhibitory activity patterns against 60 human cancer cell lines. Cluster analysis divides the 122 standard agents into 25 statistically distinct groups. The first eight groups include structurally diverse compounds with reactive functionalities that act as DNA-damaging agents while the remaining 17 groups include compounds that inhibit nucleic acid biosynthesis and mitosis. Examination of the average activity patterns across the 60 tumor cell lines reveals unique 'fingerprints' associated with each group. A diverse set of structural features are observed for compounds within these groups, with frequent occurrences of strong within-group structural similarities. Clustering of cell types by their response to the 122 anticancer agents divides the 60 cell types into 21 groups. The strongest within-panel groupings were found for the renal, leukemia and ovarian cell panels. These results contribute to the basis for comparisons between log(GI(50)) screening patterns of the 122 anticancer agents and additional tested compounds.

  4. Veterinary Drugs and Growth Promoters Residues in Meat and Processed Meats

    NASA Astrophysics Data System (ADS)

    Reig, Milagro; Toldrá, Fidel

    Veterinary drugs, which comprise a large number of different types of substances, are generally intended for therapeutic (to control infectious diseases) and prophylactic (to prevent against infections) purposes in farm animals. Other substances with growth promoting effect may exert antimicrobial effect against the microbial flora in the gut to take maximum profit of nutrients in the feed or by affecting the animal’s metabolism. Most of these substances are orally active and can be administered either in the feed or in the drinking water. Other active hormones are applied in the form of small implants into the subcutaneous tissue of the ears. These are slow release (several weeks or months) devices and the ears are discarded at the slaughter. Growth promoters allow a better efficiency in the feed conversion rate. The net effect is an increased protein deposition, partly due to muscle proteases inhibition (Fiems, Buts, Boucque, Demeyer, & Cottyn, 1990), usually linked to fat utilization (Brockman & Laarveld, 1986). The result is a leaner meat (Lone, 1997) with some toughness derived from the production of connective tissue and collagen crosslinking (Miller, Judge, Diekman, Hudgens, & Aberle, 1989; Miller, Judge, & Schanbacher, 1990). Some recent fraudulent practices, consisting of the use of a kind of “cocktails” or mixtures of several substances like β-agonists and corticosteroids at very low amounts (Monsón et al., 2007), are difficult to detect with modern analytical instrumentation. They try to obtain a synergistic effect for a similar growth promotion with lower probability of detection by official control laboratories (Reig & Toldrá, 2007).

  5. Tomato ethylene sensitivity determines interaction with plant growth-promoting bacteria.

    PubMed

    Ibort, Pablo; Molina, Sonia; Núñez, Rafael; Zamarreño, Ángel María; García-Mina, José María; Ruiz-Lozano, Juan Manuel; Orozco-Mosqueda, Maria Del Carmen; Glick, Bernard R; Aroca, Ricardo

    2017-07-01

    Plant growth-promoting bacteria (PGPB) are soil micro-organisms able to interact with plants and stimulate their growth, positively affecting plant physiology and development. Although ethylene plays a key role in plant growth, little is known about the involvement of ethylene sensitivity in bacterial inoculation effects on plant physiology. Thus, the present study was pursued to establish whether ethylene perception is critical for plant-bacteria interaction and growth induction by two different PGPB strains, and to assess the physiological effects of these strains in juvenile and mature tomato ( Solanum lycopersicum ) plants. An experiment was performed with the ethylene-insensitive tomato never ripe and its isogenic wild-type line in which these two strains were inoculated with either Bacillus megaterium or Enterobacter sp. C7. Plants were grown until juvenile and mature stages, when biomass, stomatal conductance, photosynthesis as well as nutritional, hormonal and metabolic statuses were analysed. Bacillus megaterium promoted growth only in mature wild type plants. However, Enterobacter C7 PGPB activity affected both wild-type and never ripe plants. Furthermore, PGPB inoculation affected physiological parameters and root metabolite levels in juvenile plants; meanwhile plant nutrition was highly dependent on ethylene sensitivity and was altered at the mature stage. Bacillus megaterium inoculation improved carbon assimilation in wild-type plants. However, insensitivity to ethylene compromised B. megaterium PGPB activity, affecting photosynthetic efficiency, plant nutrition and the root sugar content. Nevertheless, Enterobacter C7 inoculation modified the root amino acid content in addition to stomatal conductance and plant nutrition. Insensitivity to ethylene severely impaired B. megaterium interaction with tomato plants, resulting in physiological modifications and loss of PGPB activity. In contrast, Enterobacter C7 inoculation stimulated growth independently of

  6. Icariin promotes mouse hair follicle growth by increasing insulin-like growth factor 1 expression in dermal papillary cells.

    PubMed

    Su, Y-S; Fan, Z-X; Xiao, S-E; Lin, B-J; Miao, Y; Hu, Z-Q; Liu, H

    2017-04-01

    Icariin is a major flavonoid isolated from Epimedium spp. leaves (Epimedium Herba), and has multiple pharmacological functions, including anti-angiogenesis, anti-oxidant, anti-inflammatory and immunoprotective effects. To investigate whether icariin can stimulate growth of hair follicles in mice and the underlying mechanism. In vitro, the effect of icariin on hair growth was assessed by using a vibrissae hair follicle (VHF) organ-culture model. The proliferation of hair matrix keratinocytes and the expression of insulin-like growth factor (IGF)-1 in follicles were examined by double immunostaining for 5-bromo-2'-deoxyuridine and IGF-1, in the presence or absence of icariin. Dermal papilla cells (DPCs) were cultured and IGF-1 level was measured by reverse transcription-PCR and ELISA after icariin treatment. In vivo, the effect of icariin on hair growth was examined by gavage feeding of icariin to mice whose backs had been depilated, and the conversion of telogen to anagen hair was observed. Treatment with icariin promoted hair shaft elongation, prolonged the hair cycle growth phase (anagen) in cultured VHFs, and accelerated transition of hair cycle from telogen to anagen phase in the dorsal skin of mice. There was significant proliferation of matrix keratinocytes and an increased level of IGF-1 in cultured VHFs. Moreover, icariin treatment upregulated IGF-1 mRNA expression in DPCs and increased IGF-1 protein content in the conditioned medium of DPCs. These results suggest that icariin can promote mouse hair follicle growth via stimulation of IGF-1 expression in DPCs. © 2017 British Association of Dermatologists.

  7. Learning To Listen to Mothers: A Trainers' Manual To Strengthen Communication Skills for Nutrition and Growth Promotion.

    ERIC Educational Resources Information Center

    Vella, Jane; Uccellani, Valerie

    Counseling mothers of small children in effective growth monitoring and promotion is both an art and a science. Virtually all primary health care programs contain a Growth Monitoring and Promotion component (GMP). It is vital that supervisors and community health workers of GMP programs have a clear understanding of why communication skills are…

  8. HDM2 promotes WIP1-mediated medulloblastoma growth

    PubMed Central

    Buss, Meghan C.; Read, Tracy-Ann; Schniederjan, Matthew J.; Gandhi, Khanjan; Castellino, Robert C.

    2012-01-01

    Medulloblastoma is the most common malignant childhood brain tumor. The protein phosphatase and oncogene WIP1 is over-expressed or amplified in a significant number of primary human medulloblastomas and cell lines. In the present study, we examine an important mechanism by which WIP1 promotes medulloblastoma growth using in vitro and in vivo models. Human cell lines and intracerebellar xenografted animal models were used to study the role of WIP1 and the major TP53 regulator, HDM2, in medulloblastoma growth. Stable expression of WIP1 enhances growth of TP53 wild-type medulloblastoma cells, compared with cells with stable expression of an empty-vector or mutant WIP1. In an animal model, WIP1 enhances proliferation and reduces the survival of immunodeficient mice bearing intracerebellar xenografted human medulloblastoma cells. Cells with increased WIP1 expression also exhibit increased expression of HDM2. HDM2 knockdown or treatment with the HDM2 inhibitor Nutlin-3a, the active enantomer of Nutlin-3, specifically inhibits the growth of medulloblastoma cells with increased WIP1 expression. Nutlin-3a does not affect growth of medulloblastoma cells with stable expression of an empty vector or of mutant WIP1. Knockdown of WIP1 or treatment with the WIP1 inhibitor CCT007093 results in increased phosphorylation of known WIP1 targets, reduced HDM2 expression, and reduced growth specifically in WIP1 wild-type and high-expressing medulloblastoma cells. Combined WIP1 and HDM2 inhibition is more effective than WIP1 inhibition alone in blocking growth of WIP1 high-expressing medulloblastoma cells. Our preclinical study supports a role for therapies that target WIP1 and HDM2 in the treatment of medulloblastoma. PMID:22379189

  9. Plant Growth-Promoting Bacteria for Phytostabilization of Mine Tailings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grandlic, C.J.; Mendez, M.O.; Chorover, J.

    2009-05-19

    Eolian dispersion of mine tailings in arid and semiarid environments is an emerging global issue for which economical remediation alternatives are needed. Phytostabilization, the revegetation of these sites with native plants, is one such alternative. Revegetation often requires the addition of bulky amendments such as compost which greatly increases cost. We report the use of plant growth-promoting bacteria (PGPB) to enhance the revegetation of mine tailings and minimize the need for compost amendment. Twenty promising PGPB isolates were used as seed inoculants in a series of greenhouse studies to examine revegetation of an extremely acidic, high metal content tailings samplemore » previously shown to require 15% compost amendment for normal plant growth. Several isolates significantly enhanced growth of two native species, quailbush and buffalo grass, in tailings. In this study, PGPB/compost outcomes were plant specific; for quailbush, PGPB were most effective in combination with 10% compost addition while for buffalo grass, PGPB enhanced growth in the complete absence of compost. Results indicate that selected PGPB can improve plant establishment and reduce the need for compost amendment. Further, PGPB activities necessary for aiding plant growth in mine tailings likely include tolerance to acidic pH and metals.« less

  10. Extract of Allium tuberosum Rottler ex Spreng Promoted the Hair Growth through Regulating the Expression of IGF-1

    PubMed Central

    Park, Ki Moon; Kim, Dong Woo; Lee, Seung Ho

    2015-01-01

    Allium tuberosum Rottler ex Spreng (ATRES) has been used as a traditional medicine for the treatment of abdominal pain, diarrhea, and asthma. In this study, we investigated the hair growth promoting activities of ATRES on telogenic C57BL6/N mice. Hair growth was significantly increased in the dorsal skin of ethanol extract of ATRES treated mouse group compared with the control mouse group. To enrich the hair promoting activity, an ethanol-insoluble fraction was further extracted in sequence with n-hexane, dichloromethane, ethyl acetate, n-butanol, and distilled water. Interestingly, we found that extraction with n-butanol is most efficient in producing the hair promoting activity. In addition, the soluble fraction of the n-butanol extract was further separated by silica gel chromatography and thin layer chromatography (TLC) resulting in isolating four single fractions which have hair growth regeneration potential. Furthermore, administration of ATRES extracts to dorsal skin area increased the number of hair follicles compared with control mouse group. Interestingly, administration of ATRES extract stimulated the expression of insulin-like growth factor-1 (IGF-1) but not of keratin growth factor (KGF) or vascular endothelial growth factor (VEGF). Taken together, these results suggest that ATRES possesses strong hair growth promoting potential which controls the expression of IGF-1. PMID:26078771

  11. Elongator promotes germination and early post-germination growth.

    PubMed

    Woloszynska, Magdalena; Gagliardi, Olimpia; Vandenbussche, Filip; Van Lijsebettens, Mieke

    2018-01-02

    The Elongator complex interacts with RNA polymerase II and via histone acetylation and DNA demethylation facilitates epigenetically the transcription of genes involved in diverse processes in plants, including growth, development, and immune response. Recently, we have shown that the Elongator complex promotes hypocotyl elongation and photomorphogenesis in Arabidopsis thaliana by regulating the photomorphogenesis and growth-related gene network that converges on genes implicated in cell wall biogenesis and hormone signaling. Here, we report that germination in the elo mutant was delayed by 6 h in the dark when compared to the wild type in a time lapse and germination assay. A number of germination-correlated genes were down-regulated in the elo transcriptome, suggesting a transcriptional regulation by Elongator. We also show that the hypocotyl elongation defect observed in the elo mutants in darkness originates very early in the post-germination development and is independent from the germination delay.

  12. XRCC5 cooperates with p300 to promote cyclooxygenase-2 expression and tumor growth in colon cancers

    PubMed Central

    Hao, Jiajiao; Chen, Miao; Yu, Wendan; Guo, Wei; Chen, Yiming; Huang, Wenlin; Deng, Wuguo

    2017-01-01

    Cyclooxygenase (COX) is the rate-limiting enzyme in prostaglandins (PGs) biosynthesis. Previous studies indicate that COX-2, one of the isoforms of COX, is highly expressed in colon cancers and plays a key role in colon cancer carcinogenesis. Thus, searching for novel transcription factors regulating COX-2 expression will facilitate drug development for colon cancer. In this study, we identified XRCC5 as a binding protein of the COX-2 gene promoter in colon cancer cells with streptavidin-agarose pulldown assay and mass spectrometry analysis, and found that XRCC5 promoted colon cancer growth through modulation of COX-2 signaling. Knockdown of XRCC5 by siRNAs inhibited the growth of colon cancer cells in vitro and of tumor xenografts in a mouse model in vivo by suppressing COX-2 promoter activity and COX-2 protein expression. Conversely, overexpression of XRCC5 promoted the growth of colon cancer cells by activating COX-2 promoter and increasing COX-2 protein expression. Moreover, the role of p300 (a transcription co-activator) in acetylating XRCC5 to co-regulate COX-2 expression was also evaluated. Immunofluorescence assay and confocal microscopy showed that XRCC5 and p300 proteins were co-located in the nucleus of colon cancer cells. Co-immunoprecipitation assay also proved the interaction between XRCC5 and p300 in nuclear proteins of colon cancer cells. Cell viability assay indicated that the overexpression of wild-type p300, but not its histone acetyltransferase (HAT) domain deletion mutant, increased XRCC5 acetylation, thereby up-regulated COX-2 expression and promoted the growth of colon cancer cells. In contrast, suppression of p300 by a p300 HAT-specific inhibitor (C646) inhibited colon cancer cell growth by suppressing COX-2 expression. Taken together, our results demonstrated that XRCC5 promoted colon cancer growth by cooperating with p300 to regulate COX-2 expression, and suggested that the XRCC5/p300/COX-2 signaling pathway was a potential target in the

  13. Effects of the magnetic resonance imaging contrast agent Gd-DTPA on plant growth and root imaging in rice.

    PubMed

    Liu, Zan; Qian, Junchao; Liu, Binmei; Wang, Qi; Ni, Xiaoyu; Dong, Yaling; Zhong, Kai; Wu, Yuejin

    2014-01-01

    Although paramagnetic contrast agents have a wide range of applications in medical studies involving magnetic resonance imaging (MRI), these agents are seldom used to enhance MRI images of plant root systems. To extend the application of MRI contrast agents to plant research and to develop related techniques to study root systems, we examined the applicability of the MRI contrast agent Gd-DTPA to the imaging of rice roots. Specifically, we examined the biological effects of various concentrations of Gd-DTPA on rice growth and MRI images. Analysis of electrical conductivity and plant height demonstrated that 5 mmol Gd-DTPA had little impact on rice in the short-term. The results of signal intensity and spin-lattice relaxation time (T1) analysis suggested that 5 mmol Gd-DTPA was the appropriate concentration for enhancing MRI signals. In addition, examination of the long-term effects of Gd-DTPA on plant height showed that levels of this compound up to 5 mmol had little impact on rice growth and (to some extent) increased the biomass of rice.

  14. Biological control and plant growth promoting capacity of rhizobacteria on pepper under greenhouse and field conditions.

    PubMed

    Hahm, Mi-Seon; Sumayo, Marilyn; Hwang, Ye-Ji; Jeon, Seon-Ae; Park, Sung-Jin; Lee, Jai Youl; Ahn, Joon-Hyung; Kim, Byung-Soo; Ryu, Choong-Min; Ghim, Sa-Youl

    2012-06-01

    Plant growth promoting rhizobacteria Ochrobactrum lupini KUDC1013 and Novosphingobium pentaromativorans KUDC1065 isolated from Dokdo Island, S. Korea are capable of eliciting induced systemic resistance (ISR) in pepper against bacterial spot disease. The present study aimed to determine whether plant growth-promoting rhizobacteria (PGPR) strains including strain KUDC1013, strain KUDC1065, and Paenibacillus polymyxa E681 either singly or in combinations were evaluated to have the capacity for potential biological control and plant growth promotion effect in the field trials. Under greenhouse conditions, the induced systemic resistance (ISR) effect of treatment with strains KUDC1013 and KUDC1065 differed according to pepper growth stages. Drenching of 3-week-old pepper seedlings with the KUDC-1013 strain significantly reduced the disease symptoms. In contrast, treatment with the KUDC1065 strain significantly protected 5-week-old pepper seedlings. Under field conditions, peppers treated with PGPR mixtures containing E681 and KUDC1013, either in a two-way combination, were showed greater effect on plant growth than those treated with an individual treatment. Collectively, the application of mixtures of PGPR strains on pepper might be considered as a potential biological control under greenhouse and field conditions.

  15. Growth promotion and colonization of switchgrass (Panicum virgatum) cv. Alamo by bacterial endophyte Burkholderia phytofirmans strain PsJN

    PubMed Central

    2012-01-01

    Background Switchgrass is one of the most promising bioenergy crop candidates for the US. It gives relatively high biomass yield and can grow on marginal lands. However, its yields vary from year to year and from location to location. Thus it is imperative to develop a low input and sustainable switchgrass feedstock production system. One of the most feasible ways to increase biomass yields is to harness benefits of microbial endophytes. Results We demonstrate that one of the most studied plant growth promoting bacterial endophytes, Burkholderia phytofirmans strain PsJN, is able to colonize and significantly promote growth of switchgrass cv. Alamo under in vitro, growth chamber, and greenhouse conditions. In several in vitro experiments, the average fresh weight of PsJN-inoculated plants was approximately 50% higher than non-inoculated plants. When one-month-old seedlings were grown in a growth chamber for 30 days, the PsJN-inoculated Alamo plants had significantly higher shoot and root biomass compared to controls. Biomass yield (dry weight) averaged from five experiments was 54.1% higher in the inoculated treatment compared to non-inoculated control. Similar results were obtained in greenhouse experiments with transplants grown in 4-gallon pots for two months. The inoculated plants exhibited more early tillers and persistent growth vigor with 48.6% higher biomass than controls. We also found that PsJN could significantly promote growth of switchgrass cv. Alamo under sub-optimal conditions. However, PsJN-mediated growth promotion in switchgrass is genotype specific. Conclusions Our results show B. phytofirmans strain PsJN significantly promotes growth of switchgrass cv. Alamo under different conditions, especially in the early growth stages leading to enhanced production of tillers. This phenomenon may benefit switchgrass establishment in the first year. Moreover, PsJN significantly stimulated growth of switchgrass cv. Alamo under sub-optimal conditions

  16. The importance of expressing antimicrobial agents on water basis in growth/no growth interface models: a case study for Zygosaccharomyces bailii.

    PubMed

    Dang, T D T; Vermeulen, A; Mertens, L; Geeraerd, A H; Van Impe, J F; Devlieghere, F

    2011-01-31

    In a previous study on Zygosaccharomyces bailii, three growth/no growth models have been developed, predicting growth probability of the yeast at different conditions typical for acidified foods (Dang, T.D.T., Mertens, L., Vermeulen, A., Geeraerd, A.H., Van Impe, J.F., Debevere, J., Devlieghere, F., 2010. Modeling the growth/no growth boundary of Z. bailii in acidic conditions: A contribution to the alternative method to preserve foods without using chemical preservatives. International Journal of Food Microbiology 137, 1-12). In these broth-based models, the variables were pH, water activity and acetic acid, with acetic acid concentration expressed in volume % on the total culture medium (i.e., broth). To continue the previous study, validation experiments were performed for 15 selected combinations of intrinsic factors to assess the performance of the model at 22°C (60days) in a real food product (ketchup). Although the majority of experimental results were consistent, some remarkable deviations between prediction and validation were observed, e.g., Z. bailii growth occurred in conditions where almost no growth had been predicted. A thorough investigation revealed that the difference between two ways of expressing acetic acid concentration (i.e., on broth basis and on water basis) is rather significant, particularly for media containing high amounts of dry matter. Consequently, the use of broth-based concentrations in the models was not appropriate. Three models with acetic acid concentration expressed on water basis were established and it was observed that predictions by these models well matched the validation results; therefore a "systematic error" in broth-based models was recognized. In practice, quantities of antimicrobial agents are often calculated based on the water content of food products. Hence, to assure reliable predictions and facilitate the application of models (developed from lab media with high dry matter contents), it is important to express

  17. Growth promoting potential of fresh and stored Moringa oleifera leaf extracts in improving seedling vigor, growth and productivity of wheat crop.

    PubMed

    Khan, Shahbaz; Basra, Shahzad Maqsood Ahmed; Afzal, Irfan; Nawaz, Muhammad; Rehman, Hafeez Ur

    2017-12-01

    Wheat is staple food of region, as it contributes 60% of daily caloric intake, but its delayed sowing reduces yield due to short life span. Moringa leaf extract (MLE) is considered to improve growth and development of field crops. Study comprised of two experiments. First experiment, freshly extracted MLE and in combination with growth-promoting substances were stored at two temperature regimes. Chemical analysis, after 1, 2, and 3 months' storage period, showed that phenolics and ascorbic acid concentrations decreased with increasing storage period. Fresh extracts improved speed and spread of emergence and seedling vigor. Effectiveness of MLE in terms of phenolics and ascorbate concentrations was highest up to 1 month which decreased with prolonged storage. Growth enhancing potential of MLE also reduced with increasing storage duration. Under field conditions, the bio-efficacy of these fresh and stored MLE was compared when applied as foliar spray at tillering and booting stages of wheat. Foliar applied fresh MLE was the most effective in improving growth parameters. Fresh MLE enhanced biochemical and yield attributes in late sown wheat. This growth-promoting potential of MLE decreased with storage time. Application of fresh MLE helped to achieve higher economic yield.

  18. Secreted phosphoprotein 24 kD (Spp24) inhibits growth of human pancreatic cancer cells caused by BMP-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chen-Shuang; Tian, Haijun, E-mail: haijuntianmd@gmail.com; Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA

    The emerging role of bone morphogenetic proteins (BMPs) in the initiation and progression of multiple cancers has drawn great attention in cancer research. In this study, we report that BMP-2 can promote the proliferation of the pancreatic tumor cell line, PANC-1. Secreted phosphoprotein 24 kD (Spp24), a BMP binding protein, did not affect the proliferation of the cells but promoted the apoptosis of the cells in vitro. In a xeneograft tumor model using PANC-1 cells, BMP-2 dramatically promoted tumor growth, while Spp24 not only abolished the effect of BMP-2, but also dramatically induced tumor shrinking when used alone. Activation of Smad1/5/8 participatedmore » in this process as demonstrated by immunohistochemical staining of phosphorylated Smad 1/5/8. We conclude that Spp24 can be developed into a therapeutic agent that could be employed in clinical situations where the inhibition of BMPs and related proteins is advantageous. - Highlights: • Spp24 effectively inhibited the in vivo tumor growth of PANC-1. • BMP-2 dramatically promoted tumor growth by promoting PANC-1 proliferation. • Spp24 abolished the tumor growth effect of BMP-2 by promoting PANC-1 apoptosis. • Spp24 may be a candidate as a therapeutic agent of pancreatic cancer.« less

  19. Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea

    PubMed Central

    Sreevidya, M.; Gopalakrishnan, S.; Kudapa, H.; Varshney, R.K.

    2016-01-01

    The main objective of the present study was to isolate and characterize actinomycetes for their plant growth-promotion in chickpea. A total of 89 actinomycetes were screened for their antagonism against fungal pathogens of chickpea by dual culture and metabolite production assays. Four most promising actinomycetes were evaluated for their physiological and plant growth-promotion properties under in vitro and in vivo conditions. All the isolates exhibited good growth at temperatures from 20 °C to 40 °C, pH range of 7–11 and NaCl concentrations up to 8%. These were also found highly tolerant to Bavistin, slightly tolerant to Thiram and Captan (except VAI-7 and VAI-40) but susceptible to Benlate and Ridomil at field application levels and were found to produce siderophore, cellulase, lipase, protease, chitinase (except VAI-40), hydrocyanic acid (except VAI-7 and VAI-40), indole acetic acid and β-1,3-glucanase. When the four actinomycetes were evaluated for their plant growth-promotion properties under field conditions on chickpea, all exhibited increase in nodule number, shoot weight and yield. The actinomycetes treated plots enhanced total N, available P and organic C over the un-inoculated control. The scanning electron microscope studies exhibited extensive colonization by actinomycetes on the root surface of chickpea. The expression profiles for indole acetic acid, siderophore and β-1,3-glucanase genes exhibited up-regulation for all three traits and in all four isolates. The actinomycetes were identified as Streptomyces but different species in the 16S rDNA analysis. It was concluded that the selected actinomycetes have good plant growth-promotion and biocontrol potentials on chickpea. PMID:26887230

  20. Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action.

    PubMed

    Sánchez-López, Ángela María; Baslam, Marouane; De Diego, Nuria; Muñoz, Francisco José; Bahaji, Abdellatif; Almagro, Goizeder; Ricarte-Bermejo, Adriana; García-Gómez, Pablo; Li, Jun; Humplík, Jan F; Novák, Ondřej; Spíchal, Lukáš; Doležal, Karel; Baroja-Fernández, Edurne; Pozueta-Romero, Javier

    2016-12-01

    It is known that volatile emissions from some beneficial rhizosphere microorganisms promote plant growth. Here we show that volatile compounds (VCs) emitted by phylogenetically diverse rhizosphere and non-rhizhosphere bacteria and fungi (including plant pathogens and microbes that do not normally interact mutualistically with plants) promote growth and flowering of various plant species, including crops. In Arabidopsis plants exposed to VCs emitted by the phytopathogen Alternaria alternata, changes included enhancement of photosynthesis and accumulation of high levels of cytokinins (CKs) and sugars. Evidence obtained using transgenic Arabidopsis plants with altered CK status show that CKs play essential roles in this phenomenon, because growth and flowering responses to the VCs were reduced in mutants with CK-deficiency (35S:AtCKX1) or low receptor sensitivity (ahk2/3). Further, we demonstrate that the plant responses to fungal VCs are light-dependent. Transcriptomic analyses of Arabidopsis leaves exposed to A. alternata VCs revealed changes in the expression of light- and CK-responsive genes involved in photosynthesis, growth and flowering. Notably, many genes differentially expressed in plants treated with fungal VCs were also differentially expressed in plants exposed to VCs emitted by the plant growth promoting rhizobacterium Bacillus subtilis GB03, suggesting that plants react to microbial VCs through highly conserved regulatory mechanisms. © 2016 John Wiley & Sons Ltd.

  1. Hair growth-promoting effect of Geranium sibiricum extract in human dermal papilla cells and C57BL/6 mice.

    PubMed

    Boisvert, William A; Yu, Miri; Choi, Youngbin; Jeong, Gi Hee; Zhang, Yi-Lin; Cho, Sunghun; Choi, Changsun; Lee, Sanghyun; Lee, Bog-Hieu

    2017-02-13

    Geranium sibiricum L. has been used as a medicinal plant to treat diarrhea, bacterial infection, and cancer in Bulgaria, Peru, and Korea. However, its hair growth-promoting effect was not investigated so far. This study examined the effects of Geranium sibiricum L. extract (GSE) on hair growth, using in vitro and in vivo models. Antioxidant, proliferation and migration assay of GSE was performed with human dermal papilla cells (hDPCs). Hair-growth promoting effect was measured in animal model. Relative expression of interleukin-1, vascular endothelial growth factor, hepatocyte growth factor, and transforming growth factor beta 1 was determined by real time RT-PCR. Expression of Ki-67 and stem cell factor were analyzed by immunohistochemistry. GSE treatment proliferated and migrated human dermal papilla cells (hDPCs) more than treatment of 10 μM minoxidil. GSE significantly stimulated the expression of Ki-67 protein and the mRNA levels of hepatocyte growth factor and vascular endothelial growth factor in hDPCs. Topical application of 1,000 ppm GSE for 3 weeks promoted more significant hair growth on shaved C57BL/6 mice than did 5% minoxidil. The histological morphology of hair follicles demonstrated an active anagen phase with the induction of stem cell factor. GSE treatment significantly reduced the number of mast cells and the expression of transforming growth factor beta 1 in mouse skin tissues. These results demonstrated that GSE promotes hair growth in vitro and in vivo by regulating growth factors and the cellular response.

  2. Isolation of N2 -fixing rhizobacteria from Lolium perenne and evaluating their plant growth promoting traits.

    PubMed

    Castellano-Hinojosa, Antonio; Correa-Galeote, David; Palau, Josep; Bedmar, Eulogio J

    2016-01-01

    Twenty one dinitrogen (N2 )-fixing bacteria were isolated from the rhizosphere of Lolium perenne grown for more than 10 years without N-fertilization. The nearly complete sequence of the 16S rRNA gene of each strain and pairwise alignments among globally aligned sequences of the 16S rRNA genes clustered them into nine different groups. Out of the 21 strains, 11 were members of genus Bacillus, 3 belonged to each one of genera Paenibacillus and Pseudoxanthomonas, and the remaining 2 strains to each one of genera Burkholderia and Staphylococcus, respectively. A representative strain from each group contained the nifH gene and fixed atmospheric N2 as determined by the acetylene-dependent ethylene production assay (acetylene reduction activity, ARA). The nine selected strains were also examined to behave as plant growth promoting bacteria (PGPRs) including their ability to act as a biocontrol agent. The nine representative strains produced indol acetic acid (IAA) and solubilized calcium triphosphate, five of them, strains C2, C3, C12, C15, and C16, had ACC deaminase activity, and strains C2, C3, C4, C12, C16, and C17 produced siderophores. Strains C13, C16, and C17 had the capability to control growth of the pathogen Fusarium oxysporum mycelial growth in vitro. PCA analysis of determined PGPR properties showed that ARA, ACC deaminase activity, and siderophore production were the most valuable as they had the maximal contribution to the total variance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Mining Halophytes for Plant Growth-Promoting Halotolerant Bacteria to Enhance the Salinity Tolerance of Non-halophytic Crops

    PubMed Central

    Etesami, Hassan; Beattie, Gwyn A.

    2018-01-01

    Salinity stress is one of the major abiotic stresses limiting crop production in arid and semi-arid regions. Interest is increasing in the application of PGPRs (plant growth promoting rhizobacteria) to ameliorate stresses such as salinity stress in crop production. The identification of salt-tolerant, or halophilic, PGPRs has the potential to promote saline soil-based agriculture. Halophytes are a useful reservoir of halotolerant bacteria with plant growth-promoting capabilities. Here, we review recent studies on the use of halophilic PGPRs to stimulate plant growth and increase the tolerance of non-halophytic crops to salinity. These studies illustrate that halophilic PGPRs from the rhizosphere of halophytic species can be effective bio-inoculants for promoting the production of non-halophytic species in saline soils. These studies support the viability of bioinoculation with halophilic PGPRs as a strategy for the sustainable enhancement of non-halophytic crop growth. The potential of this strategy is discussed within the context of ensuring sustainable food production for a world with an increasing population and continuing climate change. We also explore future research needs for using halotolerant PGPRs under salinity stress. PMID:29472908

  4. Fatty acids identified in the Burmese python promote beneficial cardiac growth.

    PubMed

    Riquelme, Cecilia A; Magida, Jason A; Harrison, Brooke C; Wall, Christopher E; Marr, Thomas G; Secor, Stephen M; Leinwand, Leslie A

    2011-10-28

    Burmese pythons display a marked increase in heart mass after a large meal. We investigated the molecular mechanisms of this physiological heart growth with the goal of applying this knowledge to the mammalian heart. We found that heart growth in pythons is characterized by myocyte hypertrophy in the absence of cell proliferation and by activation of physiological signal transduction pathways. Despite high levels of circulating lipids, the postprandial python heart does not accumulate triglycerides or fatty acids. Instead, there is robust activation of pathways of fatty acid transport and oxidation combined with increased expression and activity of superoxide dismutase, a cardioprotective enzyme. We also identified a combination of fatty acids in python plasma that promotes physiological heart growth when injected into either pythons or mice.

  5. Insulin-like growth factor-I induces CLU expression through Twist1 to promote prostate cancer growth.

    PubMed

    Takeuchi, Ario; Shiota, Masaki; Beraldi, Eliana; Thaper, Daksh; Takahara, Kiyoshi; Ibuki, Naokazu; Pollak, Michael; Cox, Michael E; Naito, Seiji; Gleave, Martin E; Zoubeidi, Amina

    2014-03-25

    Clusterin (CLU) is cytoprotective molecular chaperone that is highly expressed in castrate-resistant prostate cancer (CRPC). CRPC is also characterized by increased insulin-like growth factor (IGF)-I responsiveness which induces prostate cancer survival and CLU expression. However, how IGF-I induces CLU expression and whether CLU is required for IGF-mediated growth signaling remain unknown. Here we show that IGF-I induced CLU via STAT3-Twist1 signaling pathway. In response to IGF-I, STAT3 was phosphorylated, translocated to the nucleus and bound to the Twist1 promoter to activate Twist1 transcription. In turn, Twist1 bound to E-boxes on the CLU promoter and activated CLU transcription. Inversely, we demonstrated that knocking down Twist1 abrogated IGF-I induced CLU expression, indicating that Twist1 mediated IGF-I-induced CLU expression. When PTEN knockout mice were crossed with lit/lit mice, the resultant IGF-I deficiency suppressed Twist1 as well as CLU gene expression in mouse prostate glands. Moreover, both Twist1 and CLU knockdown suppressed prostate cancer growth accelerated by IGF-I, suggesting the relevance of this signaling not only in an in vitro, but also in an in vivo. Collectively, this study indicates that IGF-I induces CLU expression through sequential activation of STAT3 and Twist1, and suggests that this signaling cascade plays a critical role in prostate cancer pathogenesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Evaluation of indigenous potent mushroom growth promoting bacteria (MGPB) on Agaricus bisporus production.

    PubMed

    Zarenejad, F; Yakhchali, B; Rasooli, I

    2012-01-01

    Mushrooms such as Agaricus bisporus, are cultivated for food worldwide. Fruit body initiation in Agaricus bisporus is a phase change from the vegetative to the reproductive stage which depends on the presence of a casing layer with particular physical, chemical and microbiological properties. The phase change is achieved practically by environmental manipulation and the presence of naturally occurring bacteria such as Pseuodomonas putida. In this study, 274 individual bacterial isolates were collected by screening the casing layer of 14 edible mushroom farms. The isolates were analysed with respect to biochemical properties, organic and inorganic phosphate solubilization, production of siderophore and growth in the presence of volatile compound of 1-octen-3-ol. It was found that approximately 97% of the strains were able to grow in the presence of 1-octen-3-ol and 36% were able to solubilize phosphorus. Among the isolates, 23 strains were selected as potent mushroom growth promoting bacteria (MGPB) for inoculation of the casing layer. Field experiments using these strains showed various promoting effects on production of mushroom. Finally, 2 strains (strains Bt4 and Ps7) showing the highest increase in A. bisporus production, were characterized as Pseuodomonas putida by molecular methods and identified as the best suited growth promoting inoculants for application in production farms for increasing the mushroom yield.

  7. Family support and the child as health promoting agent in the Arctic - "the Inuit way".

    PubMed

    Montgomery-Andersen, Ruth A; Borup, Ina

    2012-01-01

    In the context of the UN's 1990 'Convention on the Right's of the Child' 1990, and the associated definition of health promotion as a community's ability to recognise, define and make decisions on how to create a healthy society, this article describes and analyses how family support networks are conceived and present themselves in perinatal Inuit families. This literature review conducted an initial and secondary search using the keywords and combinations of the keywords: healthy families, health promoting families, resiliency, Arctic, Inuit, Family support, was executed in PubMed, Popline, CSA and CINAHL. The tertiary literature search was then combined with literature gleaned from literature lists, and other relevant articles were selected. Individual members of the family contribute to the health of the family, but the child is often the catalyst for health promotion within the family, not only the siblings to the unborn child, but also the unborn child. Perinatal entities create their own networks that support and develop concepts of family and support systems. Resiliency, kinship and ecocultural process within the family are concomitant to the health of perinatal family and of the children. More research is needed that moves children from being viewed as the receivers of health towards being seen as the promoters of health and an important actor as health promoting agent within the family.

  8. 6-Methoxyethylamino-numonafide inhibits hepatocellular carcinoma xenograft growth as a single agent and in combination with sorafenib.

    PubMed

    Liu, Yanning; Lou, Guohua; Norton, John T; Wang, Chen; Kandela, Irawati; Tang, Shuai; Shank, Nathaniel I; Gupta, Pankaj; Huang, Min; Avram, Michael J; Green, Richard; Mazar, Andrew; Appella, Daniel; Chen, Zhi; Huang, Sui

    2017-12-01

    Hepatocellular carcinoma (HCC) is the third leading form of cancer worldwide, and its incidence is increasing rapidly in the United States, tripling over the past 3 decades. The current chemotherapeutic strategies against localized and metastatic HCC are ineffective. Here we report that 6-methoxyethylamino-numonafide (MEAN) is a potent growth inhibitor of murine xenografts of 2 human HCC cell lines. At the same dose and with the same treatment strategies, MEAN was more efficacious in inhibiting tumor growth in mice than sorafenib, the only approved drug for HCC. Treatment by MEAN at an effective dose for 6 wk was well tolerated by animals. Combined therapy using both sorafenib and MEAN enhanced tumor growth inhibition over monotherapy with either agent. Additional experiments revealed that MEAN inhibited tumor growth through mechanisms distinct from those of either its parent compound, amonafide, or sorafenib. MEAN suppressed C-MYC expression and increased expression of several tumor suppressor genes, including Src homology region 2 domain-containing phosphatase-1 ( SHP-1 ) and TXNIP (thioredoxin-interacting protein). As an encouraging feature for envisioned clinical application, the IC 50 of MEAN was not significantly changed in several drug-resistant cell lines with activated P-glycoprotein drug efflux pumps compared to drug-sensitive parent cells, demonstrating the ability of MEAN to be effective in cells resistant to existing chemotherapy regimens. MEAN is a promising candidate for clinical development as a single-agent therapy or in combination with sorafenib for the management of HCC.-Liu, Y., Lou, G., Norton, J. T., Wang, C., Kandela, I., Tang, S., Shank, N. I., Gupta, P., Huang, M., Avram, M. J., Green, R., Mazar, A., Appella, D., Chen, Z., Huang, S. 6-Methoxyethylamino-numonafide inhibits hepatocellular carcinoma xenograft growth as a single agent and in combination with sorafenib. © FASEB.

  9. Immunopotentiator from Pantoea agglomerans 1 (IP-PA1) Promotes Murine Hair Growth and Human Dermal Papilla Cell Gene Expression.

    PubMed

    Wakame, Koji; Okawa, Hiroshi; Komatsu, Ken-Ich; Nakata, Akifumi; Sato, Keisuke; Ingawa, Hiroyuki; Kohchi, Chie; Nishizawa, Takashi; Soma, Gen-Ichiro

    2016-07-01

    The lipopolysaccharide (LPS)-like compound derived from Pantoea agglomerans (immunopotentiator from Pantoea agglomerans 1 (IP-PA1)) has been used not only as dietary supplement or cosmetic for humans, but also by Japanese veterinarians as an anti-tumor, anti-allergy, "keep a fine coat of fur" and hair growth-promoting functional food for dogs and cats. In the present study, we focused on the hair growth-promoting effects of IP-PA1 on a hair-shaved animal model and its mechanism of action. We also investigated its potential on gene expression after stimulating human dermal papilla cells with IP-PA1. The hair on the back of a C3H/HeN mouse was shaved and IP-PA1 was orally administered or applied to the skin. The status of hair growth was observed and recorded for 14 days. Skin was collected and histological tissue examination was performed with respect to hair growth status using hematoxylin and eosin staining. After IP-PA1 administration (2 and 10 μg/ml) to human dermal papilla cell culture system for 24 h, fibroblast growth factor-7 (FGF-7) and vascular endothelial growth factor (VEGF) mRNA expression were measured using real-time polymerase chain reaction (PCR) analysis. IP-PA1, when given orally, showed a tendency to promote hair growth in mice. In addition, skin application also significantly promoted hair growth, while histopathological examinations further demonstrated hair elongation from dermal papilla cells. In the human dermal papilla cell culture system, significant FGF-7 and VEGF mRNA expressions were observed (p<0.05). An underlying mechanism of gene expression by which IP-PA1 promotes hair growth was suggested to be different from that of medicine and traditional hair tonics, such as minoxidil and adenosine. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus.

    PubMed

    Prapagdee, Benjaphorn; Chanprasert, Maesinee; Mongkolsuk, Skorn

    2013-07-01

    Micrococcus sp. MU1 and Klebsiella sp. BAM1, the cadmium-resistant plant growth-promoting rhizobacteria (PGPR), produce high levels of indole-3-acetic acid (IAA) during the late stationary phase of their growth. The ability of PGPR to promote root elongation, plant growth and cadmium uptake in sunflowers (Helianthus annuus) was evaluated. Both species of bacteria were able to remove cadmium ions from an aqueous solution and enhanced cadmium mobilization in contaminated soil. Micrococcus sp. and Klebsiella sp. use aminocyclopropane carboxylic acid as a nitrogen source to support their growth, and the minimum inhibitory concentrations of cadmium for Micrococcus sp. and Klebsiella sp. were 1000 and 800mM, respectively. These bacteria promoted root elongation in H. annuus seedlings in both the absence and presence of cadmium compared to uninoculated seedlings. Inoculation with these bacteria was found to increase the root lengths of H. annuus that had been planted in cadmium-contaminated soil. An increase in dry weight was observed for H. annuus inoculated with Micrococcus sp. Moreover, Micrococcus sp. enhanced the accumulation of cadmium in the root and leaf of H. annuus compared to untreated plants. The highest cadmium accumulation in the whole plant was observed when the plants were treated with EDTA following the treatment with Micrococcus sp. In addition, the highest translocation of cadmium from root to the above-ground tissues of H. annuus was found after treatment with Klebsiella sp. in the fourth week after planting. Our results show that plant growth and cadmium accumulation in H. annuus was significantly enhanced by cadmium-resistant PGPRs, and these bacterial inoculants are excellent promoters of phytoextraction for the rehabilitation of heavy metal-polluted environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils.

    PubMed

    Chang, Pearl; Gerhardt, Karen E; Huang, Xiao-Dong; Yu, Xiao-Ming; Glick, Bernard R; Gerwing, Perry D; Greenberg, Bruce M

    2014-01-01

    Plant growth-promoting bacteria (PGPB) strains that contain the enzyme 1-amino-cyclopropane-1-carboxylate (ACC) deaminase can lower stress ethylene levels and improve plant growth. In this study, ACC deaminase-producing bacteria were isolated from a ) salt-impacted ( 50 dS/m) farm field, and their ability to promote plant growth of barley 1): and oats in saline soil was investigated in pouch assays (1% NaCI), greenhouse trials (9.4 dS/m), and field trials (6-24 dS/m). A mix of previously isolated PGPB strains UW3 (Pseudomonas sp.) and UW4 (P. sp.) was also tested for comparison. Rhizobacterial isolate CMH3 (P. corrugata) and UW3+UW4 partially alleviated plant salt stress in growth pouch assays. In greenhouse trials, CMH3 enhanced root biomass of barley and oats by 200% and 50%, respectively. UW3+UW4, CMH3 and isolate CMH2 also enhanced barley and oat shoot growth by 100%-150%. In field tests, shoot biomass of oats tripled when treated with UW3+UW4 and doubled with CHM3 compared with that of untreated plants. PGPB treatment did not affect salt uptake on a per mass basis; higher plant biomass led to greater salt uptake, resulting in decreased soil salinity. This study demonstrates a method for improving plant growth in marginal saline soils. Associated implications for salt

  12. Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria.

    PubMed

    Chakraborty, U; Chakraborty, B N; Chakraborty, A P; Dey, P L

    2013-05-01

    Soil microorganisms with potential for alleviation of abiotic stresses in combination with plant growth promotion would be extremely useful tools in sustainable agriculture. To this end, the present study was initiated where forty-five salt tolerant bacterial isolates with ability to grow in high salt medium were obtained from the rhizosphere of Triticum aestivum and Imperata cylindrica. These bacteria were tested for plant-growth-promoting rhizobacteria traits in vitro such as phosphate solubilization, siderophore, ACC deaminase and IAA production. Of the forty-five isolates, W10 from wheat rhizosphere and IP8 from blady grass rhizosphere, which tested positive in all the tests were identified by morpholological, biochemical and 16SrDNA sequencing as Bacillus safensis and Ochrobactrum pseudogregnonense respectively and selected for in vivo studies. Both the bacteria could promote growth in six varieties of wheat tested in terms of increase in root and shoot biomass, height of plants, yield, as well as increase in chlorophyll content. Besides, the wheat plants could withstand water stress more efficiently in presence of the bacteria as indicated by delay in appearance of wilting symptoms increases in relative water content of treated water stressed plants in comparison to untreated stressed ones, and elevated antioxidant responses. Enhanced antioxidant responses were evident as elevated activities of enzymes such as catalase, peroxidase, ascorbate peroxidase, superoxide dismutase and glutathione reductase as well as increased accumulation of antioxidants such as carotenoids and ascorbate. Results clearly indicate that the ability of wheat plants to withstand water stress is enhanced by application of these bacteria which also function as plant growth promoting rhizobacteria.

  13. Increased Growth of the Microalga Chlorella vulgaris when Coimmobilized and Cocultured in Alginate Beads with the Plant-Growth-Promoting Bacterium Azospirillum brasilense†

    PubMed Central

    Gonzalez, Luz E.; Bashan, Yoav

    2000-01-01

    Coimmobilization of the freshwater microalga Chlorella vulgaris and the plant-growth-promoting bacterium Azospirillum brasilense in small alginate beads resulted in a significantly increased growth of the microalga. Dry and fresh weight, total number of cells, size of the microalgal clusters (colonies) within the bead, number of microalgal cells per cluster, and the levels of microalgal pigments significantly increased. Light microscopy revealed that both microorganisms colonized the same cavities inside the beads, though the microalgae tended to concentrate in the more aerated periphery while the bacteria colonized the entire bead. The effect of indole-3-acetic acid addition to microalgal culture prior to immobilization of microorganisms in alginate beads partially imitated the effect of A. brasilense. We propose that coimmobilization of microalgae and plant-growth-promoting bacteria is an effective means of increasing microalgal populations within confined environments. PMID:10742237

  14. Quantitative Analysis of Intra Urban Growth Modeling using socio economic agents by combining cellular automata model with agent based model

    NASA Astrophysics Data System (ADS)

    Singh, V. K.; Jha, A. K.; Gupta, K.; Srivastav, S. K.

    2017-12-01

    Recent studies indicate that there is a significant improvement in the urban land use dynamics through modeling at finer spatial resolutions. Geo-computational models such as cellular automata and agent based model have given evident proof regarding the quantification of the urban growth pattern with urban boundary. In recent studies, socio- economic factors such as demography, education rate, household density, parcel price of the current year, distance to road, school, hospital, commercial centers and police station are considered to the major factors influencing the Land Use Land Cover (LULC) pattern of the city. These factors have unidirectional approach to land use pattern which makes it difficult to analyze the spatial aspects of model results both quantitatively and qualitatively. In this study, cellular automata model is combined with generic model known as Agent Based Model to evaluate the impact of socio economic factors on land use pattern. For this purpose, Dehradun an Indian city is selected as a case study. Socio economic factors were collected from field survey, Census of India, Directorate of economic census, Uttarakhand, India. A 3X3 simulating window is used to consider the impact on LULC. Cellular automata model results are examined for the identification of hot spot areas within the urban area and agent based model will be using logistic based regression approach where it will identify the correlation between each factor on LULC and classify the available area into low density, medium density, high density residential or commercial area. In the modeling phase, transition rule, neighborhood effect, cell change factors are used to improve the representation of built-up classes. Significant improvement is observed in the built-up classes from 84 % to 89 %. However after incorporating agent based model with cellular automata model the accuracy improved from 89 % to 94 % in 3 classes of urban i.e. low density, medium density and commercial classes

  15. Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production.

    PubMed

    Pérez-Montaño, F; Alías-Villegas, C; Bellogín, R A; del Cerro, P; Espuny, M R; Jiménez-Guerrero, I; López-Baena, F J; Ollero, F J; Cubo, T

    2014-01-01

    Plant growth-promoting rhizobacteria (PGPR) are free-living bacteria which actively colonize plant roots, exerting beneficial effects on plant development. The PGPR may (i) promote the plant growth either by using their own metabolism (solubilizing phosphates, producing hormones or fixing nitrogen) or directly affecting the plant metabolism (increasing the uptake of water and minerals), enhancing root development, increasing the enzymatic activity of the plant or "helping" other beneficial microorganisms to enhance their action on the plants; (ii) or may promote the plant growth by suppressing plant pathogens. These abilities are of great agriculture importance in terms of improving soil fertility and crop yield, thus reducing the negative impact of chemical fertilizers on the environment. The progress in the last decade in using PGPR in a variety of plants (maize, rice, wheat, soybean and bean) along with their mechanism of action are summarized and discussed here. Copyright © 2013 Elsevier GmbH. All rights reserved.

  16. Paenibacillus pabuli strain P7S promotes plant growth and induces anthocyanin accumulation in Arabidopsis thaliana.

    PubMed

    Trinh, Cao Son; Jeong, Chan Young; Lee, Won Je; Truong, Hai An; Chung, Namhyun; Han, Juhyeong; Hong, Suk-Whan; Lee, Hojoung

    2018-06-01

    In this study, a novel plant growth-promoting rhizobacteria (PGPR), the bacterial strain Paenibacillus pabuli P7S (PP7S), showed promising plant growth-promoting effects. Furthermore, it induced anthocyanin accumulation in Arabidopsis. When co-cultivated with PP7S, there was a significant increase in anthocyanin content and biomass of Arabidopsis seedlings compared with those of the control. The quantitative reverse transcription-polymerase chain reaction analysis revealed higher expression of many key genes regulating anthocyanin and flavonoid biosynthesis pathways in PP7S-treated seedlings when compared with that of the control. Furthermore, higher expression of pathogen-related genes and microbe-associated molecular pattern genes was also observed in response to PP7S, indicating that the PGPR triggered the induced systemic response (ISR) in A. thaliana. These results suggest that PP7S promotes plant growth in A. thaliana and increases anthocyanin biosynthesis by triggering specific ISRs in plant. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. Sebacina vermifera Promotes the Growth and Fitness of Nicotiana attenuata by Inhibiting Ethylene Signaling1[W

    PubMed Central

    Barazani, Oz; von Dahl, Caroline C.; Baldwin, Ian T.

    2007-01-01

    Sebacina vermifera, a growth-promoting endophytic fungus, significantly increases Nicotiana attenuata's growth but impairs both its herbivore resistance and its accumulation of the costly, jasmonic acid (JA)-regulated defense protein, trypsin proteinase inhibitor (TPI). To determine if the fungi's growth-promoting effects can be attributed to lower TPI-related defense costs, we inoculated transformed N. attenuata plants silenced in their ability to synthesize JA, JA-isoleucine, and TPI by antisense (lipoxygenase 3 [as-lox3] and Thr deaminase [as-td]) and inverted repeat (ir-tpi) expression, and found that inoculation promoted plant growth as in untransformed wild-type plants. Moreover, herbivore-elicited increases in JA and JA-isoleucine concentrations did not differ between inoculated and uninoculated wild-type plants. However, inoculation significantly reduced the morphological effect of 1-aminocyclopropane-1-carboxylic acid on wild-type seedlings in a triple response assay, suggesting that ethylene signaling was impaired. Furthermore, S. vermifera failed to promote the growth of N. attenuata plants transformed to silence ethylene production (1-aminocyclopropane-1-carboxylic acid oxidase [ir-aco]). Inoculating wild-type plants with S. vermifera decreased the ethylene burst elicited by applying Manduca sexta oral secretions to mechanical wounds. Accordingly, oral secretion-elicited transcript levels of the ethylene synthesis genes NaACS3, NaACO1, and NaACO3 in inoculated plants were significantly lower compared to these levels in uninoculated wild-type plants. Inoculation accelerated germination in wild-type seeds; however, uninoculated wild-type seeds germinated as rapidly as inoculated seeds in the presence of the ethylene scrubber KMnO4. In contrast, neither inoculation nor KMnO4 exposure influenced the germination of ir-aco seeds. We conclude that S. vermifera increases plant growth by impairing ethylene production independently of JA signaling and TPI

  18. It's in the Milk: Feeding the Microbiome to Promote Infant Growth.

    PubMed

    Bashiardes, Stavros; Thaiss, Christoph A; Elinav, Eran

    2016-03-08

    Malnutrition is a global health burden affecting the development of millions of children worldwide, but the effects of current treatment strategies are modest. Charbonneau et al. (2016) identify sialylated oligosaccharides in breast milk as microbiota-dependent growth-promoting metabolites, paving the way for a new rational treatment of severe infant stunting. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Probiotics for Plants? Growth Promotion by the Entomopathogenic Fungus Beauveria bassiana Depends on Nutrient Availability.

    PubMed

    Tall, Susanna; Meyling, Nicolai V

    2018-03-28

    Cultivation of crops requires nutrient supplements which are costly and impact the environment. Furthermore, global demands for increased crop production call for sustainable solutions to increase yield and utilize resources such as nutrients more effectively. Some entomopathogenic fungi are able to promote plant growth, but studies over such effects have been conducted under optimal conditions where nutrients are abundantly available. We studied the effects of Beauveria bassiana (strain GHA) seed treatment on the growth of maize (Zea mays) at high and low nutrient conditions during 6 weeks in greenhouse. As expected, B. bassiana seed treatment increased plant growth, but only at high nutrient conditions. In contrast, the seed treatment did not benefit plant growth at low nutrient conditions where the fungus potentially constituted a sink and tended to reduce plant growth. The occurrence of endophytic B. bassiana in experimental plant tissues was evaluated by PCR after 6 weeks, but B. bassiana was not documented in any of the above-ground plant tissues indicating that the fungus-plant interaction was independent of endophytic establishment. Our results suggest that B. bassiana seed treatment could be used as a growth promoter of maize when nutrients are abundantly available, while the fungus does not provide any growth benefits when nutrients are scarce.

  20. Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata.

    PubMed

    Xu, Jia-Yi; Han, Yong-He; Chen, Yanshan; Zhu, Ling-Jia; Ma, Lena Q

    2016-02-01

    The ability of As-resistant endophytic bacteria in As transformation and plant growth promotion was determined. The endophytes were isolated from As-hyperaccumulator Pteris vittata (PV) after growing for 60 d in a soil containing 200 mg kg(-1) arsenate (AsV). They were isolated in presence of 10 mM AsV from PV roots, stems, and leaflets, representing 4 phyla and 17 genera. All endophytes showed at least one plant growth promoting characteristics including IAA synthesis, siderophore production and P solubilization. The root endophytes had higher P solubilization ability than the leaflet (60.0 vs. 18.3 mg L(-1)). In presence of 10 mM AsV, 6 endophytes had greater growth than the control, suggesting As-stimulated growth. Furthermore, root endophytes were more resistant to AsV while the leaflet endophytes were more tolerant to arsenite (AsIII), which corresponded to the dominant As species in PV tissues. Bacterial As resistance was positively correlated to their ability in AsV reduction but not AsIII oxidation. The roles of those endophytes in promoting plant growth and As resistance in P. vittata warrant further investigation. Published by Elsevier Ltd.

  1. Cost and Selection of Ophthalmic Anti-Vascular Endothelial Growth Factor Agents.

    PubMed

    Li, Emily; Greenberg, Paul B; Voruganti, Indu; Krzystolik, Magdalena G

    2016-05-02

    Anti-vascular endothelial growth factor (anti-VEGF) drugs - ranibizumab, aflibercept, and off-label bevacizumab - are vital to the treatment of common retinal diseases, including exudative age-related macular degeneration (AMD), diabetic macular edema (DME), and macular edema (ME) associated with retinal vein occlusion (RVO). Given the high prevalence of AMD and retinal vascular diseases, anti-VEGF agents represent a large cost burden to the United States (US) healthcare system. Although ranibizumab and aflibercept are 30-fold more expensive per injection than bevacizumab, the two more costly medications are commonly used in the US, even though all three have been shown to be effective and safe for treatment of these retinal diseases. We investigated the availability and content of professional ophthalmic guidelines on cost consideration in the selection of anti-VEGF agents. We found that current professional guidelines were limited in availability and lacked specific guidance on cost-based anti-VEGF drug selection. This represents a missed opportunity to encourage the practice of value-based medicine. [Full article available at http://rimed.org/rimedicaljournal-2016-05.asp, free with no login].

  2. A Complex Molecular Interplay of Auxin and Ethylene Signaling Pathways Is Involved in Arabidopsis Growth Promotion by Burkholderia phytofirmans PsJN

    PubMed Central

    Poupin, María J.; Greve, Macarena; Carmona, Vicente; Pinedo, Ignacio

    2016-01-01

    Modulation of phytohormones homeostasis is one of the proposed mechanisms to explain plant growth promotion induced by beneficial rhizobacteria (PGPR). However, there is still limited knowledge about the molecular signals and pathways underlying these beneficial interactions. Even less is known concerning the interplay between phytohormones in plants inoculated with PGPR. Auxin and ethylene are crucial hormones in the control of plant growth and development, and recent studies report an important and complex crosstalk between them in the regulation of different plant developmental processes. The objective of this work was to study the role of both hormones in the growth promotion of Arabidopsis thaliana plants induced by the well-known PGPR Burkholderia phytofirmans PsJN. For this, the spatiotemporal expression patterns of several genes related to auxin biosynthesis, perception and response and ethylene biosynthesis were studied, finding that most of these genes showed specific transcriptional regulations after inoculation in roots and shoots. PsJN-growth promotion was not observed in Arabidopsis mutants with an impaired ethylene (ein2-1) or auxin (axr1–5) signaling. Even, PsJN did not promote growth in an ethylene overproducer (eto2), indicating that a fine regulation of both hormones signaling and homeostasis is necessary to induce growth of the aerial and root tissues. Auxin polar transport is also involved in growth promotion, since PsJN did not promote primary root growth in the pin2 mutant or under chemical inhibition of transport in wild type plants. Finally, a key role for ethylene biosynthesis was found in the PsJN-mediated increase in root hair number. These results not only give new insights of PGPR regulation of plant growth but also are also useful to understand key aspects of Arabidopsis growth control. PMID:27148317

  3. Optimize Flue Gas Settings to Promote Microalgae Growth in Photobioreactors via Computer Simulations

    PubMed Central

    He, Lian; Chen, Amelia B; Yu, Yi; Kucera, Leah; Tang, Yinjie

    2013-01-01

    Flue gas from power plants can promote algal cultivation and reduce greenhouse gas emissions1. Microalgae not only capture solar energy more efficiently than plants3, but also synthesize advanced biofuels2-4. Generally, atmospheric CO2 is not a sufficient source for supporting maximal algal growth5. On the other hand, the high concentrations of CO2 in industrial exhaust gases have adverse effects on algal physiology. Consequently, both cultivation conditions (such as nutrients and light) and the control of the flue gas flow into the photo-bioreactors are important to develop an efficient “flue gas to algae” system. Researchers have proposed different photobioreactor configurations4,6 and cultivation strategies7,8 with flue gas. Here, we present a protocol that demonstrates how to use models to predict the microalgal growth in response to flue gas settings. We perform both experimental illustration and model simulations to determine the favorable conditions for algal growth with flue gas. We develop a Monod-based model coupled with mass transfer and light intensity equations to simulate the microalgal growth in a homogenous photo-bioreactor. The model simulation compares algal growth and flue gas consumptions under different flue-gas settings. The model illustrates: 1) how algal growth is influenced by different volumetric mass transfer coefficients of CO2; 2) how we can find optimal CO2 concentration for algal growth via the dynamic optimization approach (DOA); 3) how we can design a rectangular on-off flue gas pulse to promote algal biomass growth and to reduce the usage of flue gas. On the experimental side, we present a protocol for growing Chlorella under the flue gas (generated by natural gas combustion). The experimental results qualitatively validate the model predictions that the high frequency flue gas pulses can significantly improve algal cultivation. PMID:24121788

  4. Volatile-Mediated Effects Predominate in Paraburkholderia phytofirmans Growth Promotion and Salt Stress Tolerance of Arabidopsis thaliana

    PubMed Central

    Ledger, Thomas; Rojas, Sandy; Timmermann, Tania; Pinedo, Ignacio; Poupin, María J.; Garrido, Tatiana; Richter, Pablo; Tamayo, Javier

    2016-01-01

    Abiotic stress has a growing impact on plant growth and agricultural activity worldwide. Specific plant growth promoting rhizobacteria have been reported to stimulate growth and tolerance to abiotic stress in plants, and molecular mechanisms like phytohormone synthesis and 1-aminocyclopropane-1-carboxylate deamination are usual candidates proposed to mediate these bacterial effects. Paraburkholderia phytofirmans PsJN is able to promote growth of several plant hosts, and improve their tolerance to chilling, drought and salinity. This work investigated bacterial determinants involved in PsJN stimulation of growth and salinity tolerance in Arabidopsis thaliana, showing bacteria enable plants to survive long-term salinity treatment, accumulating less sodium within leaf tissues relative to non-inoculated controls. Inactivation of specific bacterial genes encoding ACC deaminase, auxin catabolism, N-acyl-homoserine-lactone production, and flagellin synthesis showed these functions have little influence on bacterial induction of salinity tolerance. Volatile organic compound emission from strain PsJN was shown to reproduce the effects of direct bacterial inoculation of roots, increasing plant growth rate and tolerance to salinity evaluated both in vitro and in soil. Furthermore, early exposure to VOCs from P. phytofirmans was sufficient to stimulate long-term effects observed in Arabidopsis growth in the presence and absence of salinity. Organic compounds were analyzed in the headspace of PsJN cultures, showing production of 2-undecanone, 7-hexanol, 3-methylbutanol and dimethyl disulfide. Exposure of A. thaliana to different quantities of these molecules showed that they are able to influence growth in a wide range of added amounts. Exposure to a blend of the first three compounds was found to mimic the effects of PsJN on both general growth promotion and salinity tolerance. To our knowledge, this is the first report on volatile compound-mediated induction of plant abiotic

  5. [Divergence of paralogous growth-hormone-encoding genes and their promoters in Salmonidae].

    PubMed

    Kamenskaya, D N; Pankova, M V; Atopkin, D M; Brykov, V A

    2017-01-01

    In many fish species, including salmonids, the growth-hormone is encoded by two duplicated paralogous genes, gh1 and gh2. Both genes were already in place at the time of divergence of species in this group. A comparison of the entire sequence of these genes of salmonids has shown that their conserved regions are associated with exons, while their most variable regions correspond to introns. Introns C and D include putative regulatory elements (sites Pit-1, CRE, and ERE), that are also conserved. In chars, the degree of polymorphism of gh2 gene is 2-3 times as large as that in gh1 gene. However, a comparison across all Salmonidae species would not extent this observation to other species. In both these chars' genes, the promoters are conserved mainly because they correspond to putative regulatory sequences (TATA box, binding sites for the pituitary transcription factor Pit-1 (F1-F4), CRE, GRE and RAR/RXR elements). The promoter of gh2 gene has a greater degree of polymorphism compared with gh1 gene promoter in all investigated species of salmonids. The observed differences in the rates of accumulation of changes in growth hormone encoding paralogs could be explained by differences in the intensity of selection.

  6. Sialylated Milk Oligosaccharides Promote Microbiota-Dependent Growth in Models of Infant Undernutrition.

    PubMed

    Charbonneau, Mark R; O'Donnell, David; Blanton, Laura V; Totten, Sarah M; Davis, Jasmine C C; Barratt, Michael J; Cheng, Jiye; Guruge, Janaki; Talcott, Michael; Bain, James R; Muehlbauer, Michael J; Ilkayeva, Olga; Wu, Chao; Struckmeyer, Tedd; Barile, Daniela; Mangani, Charles; Jorgensen, Josh; Fan, Yue-mei; Maleta, Kenneth; Dewey, Kathryn G; Ashorn, Per; Newgard, Christopher B; Lebrilla, Carlito; Mills, David A; Gordon, Jeffrey I

    2016-02-25

    Identifying interventions that more effectively promote healthy growth of children with undernutrition is a pressing global health goal. Analysis of human milk oligosaccharides (HMOs) from 6-month-postpartum mothers in two Malawian birth cohorts revealed that sialylated HMOs are significantly less abundant in those with severely stunted infants. To explore this association, we colonized young germ-free mice with a consortium of bacterial strains cultured from the fecal microbiota of a 6-month-old stunted Malawian infant and fed recipient animals a prototypic Malawian diet with or without purified sialylated bovine milk oligosaccharides (S-BMO). S-BMO produced a microbiota-dependent augmentation of lean body mass gain, changed bone morphology, and altered liver, muscle, and brain metabolism in ways indicative of a greater ability to utilize nutrients for anabolism. These effects were also documented in gnotobiotic piglets using the same consortium and Malawian diet. These preclinical models indicate a causal, microbiota-dependent relationship between S-BMO and growth promotion. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Senescence from glioma stem cell differentiation promotes tumor growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouchi, Rie; Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550; Okabe, Sachiko

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such asmore » IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.« less

  8. Effects of antibiotic growth promoter and characterization of ecological succession in Swine gut microbiota.

    PubMed

    Unno, Tatsuya; Kim, Jung-Man; Guevarra, Robin B; Nguyen, Son G

    2015-04-01

    Ever since the ban on antibiotic growth promoters (AGPs), the livestock death rate has increased owing to pathogenic bacterial infections. There is a need of developing AGP alternatives; however, the mechanisms by which AGP enhances livestock growth performance are not clearly understood. In this study, we fed 3-week-old swine for 9 weeks with and without AGPs containing chlortetracycline, sulfathiazole, and penicillin to investigate the effects of AGPs on swine gut microbiota. Microbial community analysis was done based on bacterial 16S rRNA genes using MiSeq. The use of AGP showed no growth promoting effect, but inhibited the growth of potential pathogens during the early growth stage. Our results showed the significant increase in species richness after the stabilization of gut microbiota during the post-weaning period (4-week-old). Moreover, the swine gut microbiota was divided into four clusters based on the distribution of operational taxonomic units, which was significantly correlated to the swine weight regardless of AGP treatments. Taxonomic abundance analysis indicated a negative correlation between host weight and the abundance of the family Prevotellaceae species, but showed positive correlation to the abundance of the family Spirochaetaceae, Clostridiaceae_1, and Peptostreptococcaeae species. Although no growth performance enhancement was observed, the use of AGP inhibited the potential pathogens in the early growth stage of swine. In addition, our results indicated the ecological succession of swine gut microbiota according to swine weight. Here, we present a characterization of swine gut microbiota with respect to the effects of AGPs on growth performance.

  9. Effect of sinapic acid on hair growth promoting in human hair follicle dermal papilla cells via Akt activation.

    PubMed

    Woo, Hyunju; Lee, Seungjun; Kim, Seungbeom; Park, Deokhoon; Jung, Eunsun

    2017-07-01

    Hair loss known as alopecia is caused by abnormal hair follicle cycling including shortening of the anagen (growth) phase and changing of hair follicle morphology with miniaturization. In accordance with the life extension, the quality of life is considered to be a most important thing. The yearning for healthy and beautiful hair and low self esteem due to hair loss had negative influence on the quality of life with psychosocial maladjustment. The objective of this research was to identify new compound that can be used as a drug to promote hair growth. We investigated whether the function of sinapic acid (SA) is able to promote hair growth in human hair follicle dermal papilla cells (hHFDPC). We showed that treatment of SA in hHFDPC could induce proliferation and the activation of Akt signaling in HFDPC. In addition, SA could stimulate the expressions of the several growth factors, insulin-like growth factor 1, and vascular endothelial growth factor for hair growth. We showed that SA led to an increased level of phospho-GSK-3β and β-catenin accumulation in HFDPC. Finally, the promoting effect of SA in hHFDPC cell growth occurred by the induction of cell cycle progression. These results suggest that SA could be one of the potential candidate compounds for the treatment of alopecia by inducing hair growth through triggering the expressions of growth factors via activation of Akt and subsequent inactivation of GSK-3β /β-catenin pathway.

  10. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture.

    PubMed

    Gouda, Sushanto; Kerry, Rout George; Das, Gitishree; Paramithiotis, Spiros; Shin, Han-Seung; Patra, Jayanta Kumar

    2018-01-01

    The progression of life in all forms is not only dependent on agricultural and food security but also on the soil characteristics. The dynamic nature of soil is a direct manifestation of soil microbes, bio-mineralization, and synergistic co-evolution with plants. With the increase in world's population the demand for agriculture yield has increased tremendously and thereby leading to large scale production of chemical fertilizers. Since the use of fertilizers and pesticides in the agricultural fields have caused degradation of soil quality and fertility, thus the expansion of agricultural land with fertile soil is near impossible, hence researchers and scientists have sifted their attention for a safer and productive means of agricultural practices. Plant growth promoting rhizobacteria (PGPR) has been functioning as a co-evolution between plants and microbes showing antagonistic and synergistic interactions with microorganisms and the soil. Microbial revitalization using plant growth promoters had been achieved through direct and indirect approaches like bio-fertilization, invigorating root growth, rhizoremediation, disease resistance etc. Although, there are a wide variety of PGPR and its allies, their role and usages for sustainable agriculture remains controversial and restricted. There is also variability in the performance of PGPR that may be due to various environmental factors that might affect their growth and proliferation in the plants. These gaps and limitations can be addressed through use of modern approaches and techniques such as nano-encapsulation and micro-encapsulation along with exploring multidisciplinary research that combines applications in biotechnology, nanotechnology, agro biotechnology, chemical engineering and material science and bringing together different ecological and functional biological approaches to provide new formulations and opportunities with immense potential. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Material and method for promoting the growth of anaerobic bacteria

    DOEpatents

    Adler, Howard I.

    1984-01-01

    A material and method for promoting the growth of anaerobic bacteria which includes a nutrient media containing a hydrogen donor and sterile membrane fragments of bacteria having an electron transfer system which reduces oxygen to water. Dissolved oxygen in the medium is removed by adding the sterile membrane fragments to the nutrient medium and holding the medium at a temperature of about 10.degree. to about 60.degree. C. until the dissolved oxygen is removed.

  12. Subcutaneous fatty acid composition of steers finished as weanlings or yearlings with and without growth promotants

    PubMed Central

    2013-01-01

    Background The current study evaluated the subcutaneous fatty acid (FA) composition of calf- and yearling-fed steers with or without growth promoting implants. Crossbred steers (n = 112; 267 ± 5.0 kg) of the same contemporary group were allocated to one of four production system and implant strategy based treatments in a completely randomized design with a 2 × 2 factorial arrangement of treatments. Results There were no interactions (P > 0.05) between production systems and growth promoting implants for the total and individual subcutaneous FA. Yearling as opposed to calf finishing reduced (P < 0.05) subcutaneous proportions of C20:3n-6, trans (t)12-18:1, C14:0, several minor cis-monounsaturated FA (c-MUFA; c9-14:1, c11-16:1, c11-18:1, c12-18:1, c13-18:1, c9-20:1 and c11-20:1), and increased (P < 0 .05) subcutaneous proportions of t11c15-18:2, total and individual branched-chain FA. Subcutaneous fat from steers implanted with growth promotants had higher (P < 0.05) proportions of total polyunsaturated FA (PUFA), total n-6 PUFA, C18:2n-6 and individual t-18:1 isomers (t6 to t10) compared to non-implanted steers. Conclusions Overall, current findings show that production systems and growth promotants led to only minor differences in subcutaneous FA composition of beef steers. PMID:24188642

  13. Plant growth promotion properties of bacterial strains isolated from the rhizosphere of the Jerusalem artichoke (Helianthus tuberosus L.) adapted to saline-alkaline soils and their effect on wheat growth.

    PubMed

    Liu, Xiaolin; Li, Xiangyue; Li, Yan; Li, Runzhi; Xie, Zhihong

    2017-03-01

    The Jerusalem artichoke (JA; Helianthus tuberosus), known to be tolerant to saline-alkaline soil conditions, has been cultivated for many years in the Yellow River delta, Shandong Province coastal zone, in China. The aim of our study was to isolate nitrogen-fixing bacteria colonizing the rhizosphere of JA and to characterize other plant growth promotion properties. The ultimate goal was to identify isolates that could be used as inoculants benefiting an economic crop, in particular for improving wheat growth production in the Yellow River delta. Bacterial strains were isolated from the rhizosphere soil of JA on the basis of growth on nitrogen-free Ashby medium. Identification and phylogenetic analysis was performed after nucleotide sequencing of 16S rRNA gene. Plant-growth-promoting traits, such as nitrogen fixation activity, phosphate solubilization activity, indole-3-acetic acid production, were determined using conventional methods. Eleven strains were isolated and 6 of them were further examined for their level of salt tolerance and their effect on plant growth promotion. Inoculation of Enterobacter sp. strain N10 on JA and wheat led to significant increases in both root and shoot dry mass and shoot height. Enterobacter sp. strain N10 appeared to be the best plant-growth-promoting rhizobacteria to increase wheat productivity in future field applications.

  14. A new species of Burkholderia isolated from sugarcane roots promotes plant growth

    PubMed Central

    Paungfoo-Lonhienne, Chanyarat; Lonhienne, Thierry G A; Yeoh, Yun Kit; Webb, Richard I; Lakshmanan, Prakash; Chan, Cheong Xin; Lim, Phaik-Eem; Ragan, Mark A; Schmidt, Susanne; Hugenholtz, Philip

    2014-01-01

    Sugarcane is a globally important food, biofuel and biomaterials crop. High nitrogen (N) fertilizer rates aimed at increasing yield often result in environmental damage because of excess and inefficient application. Inoculation with diazotrophic bacteria is an attractive option for reducing N fertilizer needs. However, the efficacy of bacterial inoculants is variable, and their effective formulation remains a knowledge frontier. Here, we take a new approach to investigating diazotrophic bacteria associated with roots using culture-independent microbial community profiling of a commercial sugarcane variety (Q208A) in a field setting. We first identified bacteria that were markedly enriched in the rhizosphere to guide isolation and then tested putative diazotrophs for the ability to colonize axenic sugarcane plantlets (Q208A) and promote growth in suboptimal N supply. One isolate readily colonized roots, fixed N2 and stimulated growth of plantlets, and was classified as a new species, Burkholderia australis sp. nov. Draft genome sequencing of the isolate confirmed the presence of nitrogen fixation. We propose that culture-independent identification and isolation of bacteria that are enriched in rhizosphere and roots, followed by systematic testing and confirming their growth-promoting capacity, is a necessary step towards designing effective microbial inoculants. PMID:24350979

  15. The OXI1 Kinase Pathway Mediates Piriformospora indica-Induced Growth Promotion in Arabidopsis

    PubMed Central

    Camehl, Iris; Drzewiecki, Corinna; Vadassery, Jyothilakshmi; Shahollari, Bationa; Sherameti, Irena; Forzani, Celine; Munnik, Teun; Hirt, Heribert; Oelmüller, Ralf

    2011-01-01

    Piriformospora indica is an endophytic fungus that colonizes roots of many plant species and promotes growth and resistance to certain plant pathogens. Despite its potential use in agriculture, little is known on the molecular basis of this beneficial plant-fungal interaction. In a genetic screen for plants, which do not show a P. indica- induced growth response, we isolated an Arabidopsis mutant in the OXI1 (Oxidative Signal Inducible1) gene. OXI1 has been characterized as a protein kinase which plays a role in pathogen response and is regulated by H2O2 and PDK1 (3-PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE1). A genetic analysis showed that double mutants of the two closely related PDK1.1 and PDK1.2 genes are defective in the growth response to P. indica. While OXI1 and PDK1 gene expression is upregulated in P. indica-colonized roots, defense genes are downregulated, indicating that the fungus suppresses plant defense reactions. PDK1 is activated by phosphatidic acid (PA) and P. indica triggers PA synthesis in Arabidopsis plants. Under beneficial co-cultivation conditions, H2O2 formation is even reduced by the fungus. Importantly, phospholipase D (PLD)α1 or PLDδ mutants, which are impaired in PA synthesis do not show growth promotion in response to fungal infection. These data establish that the P. indica-stimulated growth response is mediated by a pathway consisting of the PLD-PDK1-OXI1 cascade. PMID:21625539

  16. Effect of dietary antibiotic, probiotic and prebiotic as growth promoters, on growth performance, carcass characteristics and hematological indices of broiler chickens.

    PubMed

    Ashayerizadeh, A; Dabiri, N; Ashayerizadeh, O; Mirzadeh, K H; Roshanfekr, H; Mamooee, M

    2009-01-01

    This experiment was conducted for comparison the effects of antibiotic (flavomycin), probiotic (primalac), prebiotic (Biolex-MB) and mixture ofprobiotic and prebiotic (primalac plus Biolex-MB) as dietary growth promoter on growth performance, carcass characteristics and hematological indices of broiler chickens. Three hundred day old Ross 308 broilers were equally distributed into 30 floor pens and reared for 42 day. A basal diet was formulated covering the recommendations of NRC (1994) for starter (0-21 days) and grower (22-42 days) periods and considered as control diet. Four tested diets were formulated by supplemented the basal control diet with antibiotic (flavomycin), probiotic (primalac), prebiotic (Biolex-MB) and mixture ofprimalac plus Biolex-MB, respectively. Six replicates were used for each treatment. The results of present study showed that all growth promoters used was improved growth indices of Ross 308 broilers. The highest significant (p<0.05) values of carcass and thigh were recorded for broilers fed diet supplemented with flavomycin. The highest (p>0.05) value of breast was recorded for broilers fed the diet supplemented with primalac, meanwhile the lower value were showed for birds fed either diet or diet supplemented with Biolex-MB. The percent of carcass and cuts followed the same trend. Hematological parameter including cholesterol was recorded the highest (p>0.05) values groups fed the diets either control or supplemented with flavomycin, meanwhile the lower value was showed for bird fed diet supplemented primalac plus Biolex-MB. Triglycerides and very low density lipoprotein cholesterol (VLDL) were recorded the highest concentration for bird fed both control and diet supplemented with flavomycin groups while least concentration was found for bird fed diet supplemented with primalac. The results of present study revealed that probiotic and prebiotic as growth promoters can use as alternatives non-antibiotic feed additives to their free

  17. Emodin inhibits breast cancer growth by blocking the tumor-promoting feedforward loop between cancer cells and macrophages

    PubMed Central

    Iwanowycz, Stephen; Wang, Junfeng; Hodge, Johnie; Wang, Yuzhen; Yu, Fang; Fan, Daping

    2016-01-01

    Macrophage infiltration correlates with severity in many types of cancer. Tumor cells recruit macrophages and educate them to adopt an M2-like phenotype through the secretion of chemokines and growth factors, such as MCP1 and CSF1. Macrophages in turn promote tumor growth through supporting angiogenesis, suppressing anti-tumor immunity, modulating extracellular matrix remodeling, and promoting tumor cell migration. Thus tumor cells and macrophages interact to create a feedforward loop supporting tumor growth and metastasis. In this study, we tested the ability of emodin, a Chinese herb-derived compound, to inhibit breast cancer growth in mice and examined the underlying mechanisms. Emodin was used to treat mice bearing EO771 or 4T1 breast tumors. It was shown that emodin attenuated tumor growth by inhibiting macrophage infiltration and M2-like polarization, accompanied by increased T cell activation and reduced angiogenesis in tumors. The tumor inhibitory effects of emodin were lost in tumor-bearing mice with macrophage depletion. Emodin inhibited IRF4, STAT6, and C/EBPβ signaling and increased inhibitory histone H3 lysine 27 tri-methylation (H3K27m3) on the promoters of M2 related genes in tumor-associated macrophages. In addition, emodin inhibited tumor cell secretion of MCP1and CSF1, as well as expression of surface anchoring molecule Thy-1, thus suppressing macrophage migration towards and adhesion to tumor cells. These results suggest that emodin acts on both breast cancer cells and macrophages and effectively blocks the tumor-promoting feedforward loop between the two cell types, thereby inhibiting breast cancer growth and metastasis. PMID:27196773

  18. Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense.

    PubMed

    Fibach-Paldi, Sharon; Burdman, Saul; Okon, Yaacov

    2012-01-01

    Azospirillum brasilense is a plant growth promoting rhizobacterium (PGPR) that is being increasingly used in agriculture in a commercial scale. Recent research has elucidated key properties of A. brasilense that contribute to its ability to adapt to the rhizosphere habitat and to promote plant growth. They include synthesis of the auxin indole-3-acetic acid, nitric oxide, carotenoids, and a range of cell surface components as well as the ability to undergo phenotypic variation. Storage and utilization of polybetahydroxyalkanoate polymers are important for the shelf life of the bacteria in production of inoculants, products containing bacterial cells in a suitable carrier for agricultural use. Azospirillum brasilense is able to fix nitrogen, but despite some controversy, as judging from most systems evaluated so far, contribution of fixed nitrogen by this bacterium does not seem to play a major role in plant growth promotion. In this review, we focus on recent advances in the understanding of physiological properties of A. brasilense that are important for rhizosphere performance and successful interactions with plant roots. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  19. Novel multifunctional plant growth-promoting bacteria in co-compost of palm oil industry waste.

    PubMed

    Chin, Clament Fui Seung; Furuya, Yoshihide; Zainudin, Mohd Huzairi Mohd; Ramli, Norhayati; Hassan, Mohd Ali; Tashiro, Yukihiro; Sakai, Kenji

    2017-11-01

    Previously, a unique co-compost produced by composting empty fruit bunch with anaerobic sludge from palm oil mill effluent, which contributed to establishing a zero-emission industry in Malaysia. Little was known about the bacterial functions during the composting process and fertilization capacity of this co-compost. We isolated 100 strains from the co-compost on 7 types of enumeration media and screened 25 strains using in vitro tests for 12 traits, grouping them according to three functions: plant growth promoting (fixation of nitrogen; solubilization of phosphorus, potassium, and silicate; production of 3-indoleacetic acid, ammonia, and siderophore), biocontrolling (production of chitinase and anti-Ganoderma activity), and composting (degradation of lignin, xylan, and cellulose). Using 16S rRNA gene sequence analysis, 25 strains with strong or multi-functional traits were found belong to the genera Bacillus, Paenibacillus, Citrobacter, Enterobacter, and Kosakonia. Furthermore, several strains of Citrobacter sedlakii exhibited a plant growth-stimulation in vivo komatsuna plant cultivation test. In addition, we isolated several multifunctional strains; Bacillus tequilensis CE4 (biocontrolling and composting), Enterobacter cloacae subsp. dissolvens B3 (plant growth promoting and biocontrolling), and C. sedlakii CESi7 (plant growth promoting and composting). Some bacteria in the co-compost play significant roles during the composting process and plant cultivation after fertilization, and some multifunctional strains have potential for use in accelerating the biodegradation of lignocellulosic biomass, protecting against Ganoderma boninense infection, and increasing the yield of palm oil. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Complete genome sequence of the rapeseed plant-growth promoting Serratia plymuthica strain AS9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupane, Saraswoti; Hogberg, Nils; Alstrom, Sadhna

    2012-01-01

    Serratia plymuthica are plant-associated, plant beneficial species belonging to the family Enterobacteriaceae. The members of the genus Serratia are ubiquitous in nature and their life style varies from endophytic to free-living. S. plymuthica AS9 is of special interest for its ability to inhibit fungal pathogens of rapeseed and to promote plant growth. The genome of S. plymuthica AS9 comprises a 5,442,880 bp long circular chromosome that consists of 4,952 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome is part of the project entitled Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogensmore » awarded through the 2010 DOE-JGI Community Sequencing Program (CSP2010).« less

  1. Plant growth-promoting activities of Streptomyces spp. in sorghum and rice.

    PubMed

    Gopalakrishnan, Subramaniam; Srinivas, Vadlamudi; Sree Vidya, Meesala; Rathore, Abhishek

    2013-01-01

    Five strains of Streptomyces (CAI-24, CAI-121, CAI-127, KAI-32 and KAI-90) were earlier reported by us as biological control agents against Fusarium wilt of chickpea caused by Fusarium oxysporum f. sp. ciceri (FOC). In the present study, the Streptomyces were characterized for enzymatic activities, physiological traits and further evaluated in greenhouse and field for their plant growth promotion (PGP) of sorghum and rice. All the Streptomyces produced lipase, β-1-3-glucanase and chitinase (except CAI-121 and CAI-127), grew in NaCl concentrations of up to 6%, at pH values between 5 and 13 and temperatures between 20 and 40°C and were highly sensitive to Thiram, Benlate, Captan, Benomyl and Radonil at field application level. When the Streptomyces were evaluated in the greenhouse on sorghum all the isolates significantly enhanced all the agronomic traits over the control. In the field, on rice, the Streptomyces significantly enhanced stover yield (up to 25%; except CAI-24), grain yield (up to 10%), total dry matter (up to 18%; except CAI-24) and root length, volume and dry weight (up to 15%, 36% and 55%, respectively, except CAI-24) over the control. In the rhizosphere soil, the Streptomyces significantly enhanced microbial biomass carbon (except CAI-24), nitrogen, dehydrogenase (except CAI-24), total N, available P and organic carbon (up to 41%, 52%, 75%, 122%, 53% and 13%, respectively) over the control. This study demonstrates that the selected Streptomyces which were antagonistic to FOC also have PGP properties.

  2. Effect of volatile compounds produced by Ralstonia solanacearum on plant growth promoting and systemic resistance inducing potential of Bacillus volatiles.

    PubMed

    Tahir, Hafiz Abdul Samad; Gu, Qin; Wu, Huijun; Raza, Waseem; Safdar, Asma; Huang, Ziyang; Rajer, Faheem Uddin; Gao, Xuewen

    2017-08-02

    Microbial volatiles play an expedient role in the agricultural ecological system by enhancing plant growth and inducing systemic resistance against plant pathogens, without causing hazardous effects on the environment. To explore the effects of VOCs of Ralstonia solanacearum TBBS1 (Rs) on tobacco plant growth and on plant growth promoting efficiency of VOCs produced by Bacillus subtilis SYST2, experiments were conducted both in vitro and in planta. The VOCs produced by SYST2 significantly enhanced the plant growth and induced the systemic resistance (ISR) against wilt pathogen Rs in all experiments. The SYST2-VOCs significantly increased PPO and PAL activity and over-expressed the genes relating to expansin, wilt resistance, and plant defense while repressed the genes relating to ethylene production. More interestingly, VOCs produced by pathogen, Rs had no significant effect on plant growth; however, Rs-VOCs decreased the growth promoting potential of SYST2-VOCs when plants were exposed to VOCs produced by both SYST2 and Rs. The co-culture of SYST2 and Rs revealed that they inhibited the growth of each other; however, the inhibition of Rs by SYST2-VOCs appeared to be greater than that of SYST2 by Rs-VOCs. Our findings provide new insights regarding the interaction among SYST2-VOCs, Rs-VOCs and plant, resulting in growth promotion and induced systemic resistance against the bacterial wilt pathogen Rs. This is the first report of the effect of VOCs produced by pathogenic microorganism on plant growth and on plant growth-promoting and systemic resistance-inducing potential of PGPR strain SYST2.

  3. Assessment of Culturable Tea Rhizobacteria Isolated from Tea Estates of Assam, India for Growth Promotion in Commercial Tea Cultivars

    PubMed Central

    Dutta, Jintu; Handique, Pratap J.; Thakur, Debajit

    2015-01-01

    In the present study, 217 rhizobacterial isolates were obtained from six different tea estates of Assam, India and subjected to preliminary in vitro plant growth promotion (PGP) screening for indole acetic acid (IAA) production, phosphate solubilization, siderophore production and ammonia production. Fifty isolates showed all the PGP traits and five isolates did not exhibit any PGP traits. These 50 potential isolates were further analyzed for quantitative estimation of the PGP traits along with the aminocyclopropane-1-carboxylate (ACC) deaminase, protease and cellulose production. After several rounds of screening, four rhizobacteria were selected based on their maximum ability to produce in vitro PGP traits and their partial 16S rRNA gene sequence analysis revealed that they belong to Enterobacter lignolyticus strain TG1, Burkholderia sp. stain TT6, Bacillus pseudomycoides strain SN29 and Pseudomonas aeruginosa strain KH45. To evaluate the efficacy of these four rhizobacteria as plant growth promoters, three different commercially important tea clones TV1, TV19, and TV20 plants were inoculated with these rhizobacteria in greenhouse condition and compared to the uninoculated control plants. Though, all the rhizobacterial treatments showed an increase in plant growth compared to control but the multivariate PCA analysis confirmed more growth promotion by TG1 and SN29 strains than the other treatments in all three clones. To validate this result, the fold change analysis was performed and it revealed that the tea clone TV19 plants inoculated with the E. lignolyticus strain TG1 showed maximum root biomass production with an increase in 4.3-fold, shoot biomass with increase in 3.1-fold, root length by 2.2-fold and shoot length by 1.6-fold. Moreover, two way ANOVA analysis also revealed that rhizobacterial treatment in different tea clones showed the significant increase (P < 0.05) in growth promotion compared to the control. Thus, this study indicates that the

  4. Involvement of hexokinase1 in plant growth promotion as mediated by Burkholderia phytofirmans.

    PubMed

    Park, Jae Min; Lazarovits, George

    2014-06-01

    Potato plantlets inoculated with strain PsJN of the bacterium Burkholderia phytofirmans exhibit consistent and significant increases in plant growth under in vitro conditions, when compared with uninoculated plants. The greatest influence on the degree and type of growth enhancement that develops has been shown to be mediated by the sugar concentration in the agar media. Bacterial growth promotion has been suggested in other studies to be regulated by the sugar sensor enzyme hexokinase1, the role of which is activation of glucose phosphorylation. In this present study, we examined the co-relationship between root and stem development in potato plants treated with PsJN and the activity of hexokinase1. Plants grown in the presence of 1.5% and 3% sucrose showed increased levels of hexokinase1 activity only in the roots of inoculated plants, suggesting that the increased enzyme levels may be associated with root growth. Analysis for mRNA using reverse transcriptase did not reveal any significant differences in transcription levels of the gene between inoculated and uninoculated plants. When PsJN-inoculated plants were grown in 1.5% and 3% concentrations of glucose and fructose, stem height and mass, leaf number, root mass, and overall biomass increased. No growth promotion occurred when PsJN-inoculated plants were grown in 3% maltose. Subsequently, a hexokinase1 activity assay showed that PsJN-induced growth of potato plants was found to only occur when plants were grown in the presence of sugars that are recognized by the plant hexokinase1. The results suggest that PsJN may enhance sugar uptake in plants by direct or indirect stimulation of hexokinase1 activity in roots and this results in enhanced overall plant growth.

  5. Material and method for promoting the growth of anaerobic bacteria

    DOEpatents

    Adler, H.I.

    1984-10-09

    A material and method is disclosed for promoting the growth of anaerobic bacteria which includes a nutrient media containing a hydrogen donor and sterile membrane fragments of bacteria having an electron transfer system which reduces oxygen to water. Dissolved oxygen in the medium is removed by adding the sterile membrane fragments to the nutrient medium and holding the medium at a temperature of about 10 to about 60 C until the dissolved oxygen is removed. No Drawings

  6. Phytohormone profiles induced by trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants.

    PubMed

    Martínez-Medina, Ainhoa; Del Mar Alguacil, Maria; Pascual, Jose A; Van Wees, Saskia C M

    2014-07-01

    The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the phytohormonal network of their host plant, thus leading to an improvement of plant growth and stress tolerance. In this study, we tested whether alterations in the phytohormone signature induced by different Trichoderma isolates correspond with their ability for biocontrol and growth promotion. Four Trichoderma isolates were collected from agricultural soils and were identified as the species Trichoderma harzianum (two isolates), Trichoderma ghanense, and Trichoderma hamatum. Their antagonistic activity against the plant pathogen Fusarium oxysporum f. sp. melonis was tested in vitro, and their plant growth-promoting and biocontrol activity against Fusarium wilt on melon plants was examined in vivo, and compared to that of the commercial strain T. harzianum T-22. Several growth- and defense-related phytohormones were analyzed in the shoots of plants that were root-colonized by the different Trichoderma isolates. An increase in auxin and a decrease in cytokinins and abscisic acid content were induced by the isolates that promoted the plant growth. Principal component analysis (PCA) was used to evaluate the relationship between the plant phenotypic and hormonal variables. PCA pointed to a strong association of auxin induction with plant growth stimulation by Trichoderma. Furthermore, the disease-protectant ability of the Trichoderma strains against F. oxysporum infection seems to be more related to their induced alterations in the content of the hormones abscisic acid, ethylene, and the cytokinin trans-zeatin riboside than to the in vitro antagonism activity against F. oxysporum.

  7. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review.

    PubMed

    Vejan, Pravin; Abdullah, Rosazlin; Khadiran, Tumirah; Ismail, Salmah; Nasrulhaq Boyce, Amru

    2016-04-29

    Plant growth promoting rhizobacteria (PGPR) shows an important role in the sustainable agriculture industry. The increasing demand for crop production with a significant reduction of synthetic chemical fertilizers and pesticides use is a big challenge nowadays. The use of PGPR has been proven to be an environmentally sound way of increasing crop yields by facilitating plant growth through either a direct or indirect mechanism. The mechanisms of PGPR include regulating hormonal and nutritional balance, inducing resistance against plant pathogens, and solubilizing nutrients for easy uptake by plants. In addition, PGPR show synergistic and antagonistic interactions with microorganisms within the rhizosphere and beyond in bulk soil, which indirectly boosts plant growth rate. There are many bacteria species that act as PGPR, described in the literature as successful for improving plant growth. However, there is a gap between the mode of action (mechanism) of the PGPR for plant growth and the role of the PGPR as biofertilizer-thus the importance of nano-encapsulation technology in improving the efficacy of PGPR. Hence, this review bridges the gap mentioned and summarizes the mechanism of PGPR as a biofertilizer for agricultural sustainability.

  8. RSK regulates activated BRAF signalling to mTORC1 and promotes melanoma growth

    PubMed Central

    Zindy, Pierre-Joachim; Saba-El-Leil, Marc; Lavoie, Geneviève; Dandachi, Farah; Baptissart, Marine; Borden, Katherine L. B.; Meloche, Sylvain; Roux, Philippe P.

    2015-01-01

    The Ras/mitogen-activated protein kinase (MAPK) signalling cascade regulates various biological functions, including cell growth, proliferation and survival. As such, this pathway is often deregulated in cancer, including melanomas, which frequently harbour activating mutations in the NRAS and BRAF oncogenes. Hyperactive MAPK signalling is known to promote protein synthesis, but the mechanisms by which this occurs remain poorly understood. Here, we show that expression of oncogenic forms of Ras and Raf promotes the constitutive activation of the mammalian target of rapamycin (mTOR). Using pharmacological inhibitors and RNA interference we find that the MAPK-activated protein kinase RSK (p90 ribosomal S6 kinase) is partly required for these effects. Using melanoma cell lines carrying activating BRAF mutations we show that ERK/RSK signalling regulates assembly of the translation initiation complex and polysome formation, as well as the translation of growth-related mRNAs containing a 5’ terminal oligopyrimidine (TOP) motif. Accordingly, we find that RSK inhibition abrogates tumour growth in mice. Our findings indicate that RSK may be a valuable therapeutic target for the treatment of tumours characterized by deregulated MAPK signalling, such as melanoma. PMID:22797077

  9. Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils

    PubMed Central

    Wang, Xuefei; Mavrodi, Dmitri V; Ke, Linfeng; Mavrodi, Olga V; Yang, Mingming; Thomashow, Linda S; Zheng, Na; Weller, David M; Zhang, Jibin

    2015-01-01

    The aim of this study was to inventory the types of plant growth-promoting rhizobacteria (PGPR) present in the rhizosphere of plants grown in soils contaminated with heavy metals, recalcitrant organics, petroleum sewage or salinity in China. We screened 1223 isolates for antifungal activity and about 24% inhibited Rhizoctonia solani or Sclerotinia sclerotiorum. Twenty-four strains inhibitory to R. solani, Gaeumannomyces graminis var. tritici and/or S. sclerotiorum and representing the dominant morphotypes were assayed for PGPR activity. Seven strains contained phlD, prnD, pltC or phzF genes and produced the antibiotics 2,4-diacetylphloroglucinol, pyrrolnitrin, pyoluteorin and phenazines respectively. Six strains contained acdS, which encodes 1-aminocyclopropane-1-carboxylic acid deaminase. Phylogenetic analysis of 16S rDNA and phlD, phzF and acdS genes demonstrated that some strains identified as Pseudomonas were similar to model PGPR strains Pseudomonas protegens Pf-5, Pseudomonas chlororaphis subsp. aureofaciens 30–84 and P. brassicacearum Q8r1-96. Pseudomonas protegens- and P. chlororaphis-like strains had the greatest biocontrol activity against Rhizoctonia root rot and take-all of wheat. Pseudomonas protegens and P. brassicacearum-like strains showed the greatest promotion of canola growth. Our results indicate that strains from contaminated soils are similar to well-described PGPR found in agricultural soils worldwide. Growth-promoting rhizobacteria in polluted soils PMID:25219642

  10. The Tea4-PP1 landmark promotes local growth by dual Cdc42 GEF recruitment and GAP exclusion.

    PubMed

    Kokkoris, Kyriakos; Gallo Castro, Daniela; Martin, Sophie G

    2014-05-01

    Cell polarization relies on small GTPases, such as Cdc42, which can break symmetry through self-organizing principles, and landmarks that define the axis of polarity. In fission yeast, microtubules deliver the Tea1-Tea4 complex to mark cell poles for growth, but how this complex activates Cdc42 is unknown. Here, we show that ectopic targeting of Tea4 to cell sides promotes the local activation of Cdc42 and cell growth. This activity requires that Tea4 binds the type I phosphatase (PP1) catalytic subunit Dis2 or Sds21, and ectopic targeting of either catalytic subunit is similarly instructive for growth. The Cdc42 guanine-nucleotide-exchange factor Gef1 and the GTPase-activating protein Rga4 are required for Tea4-PP1-dependent ectopic growth. Gef1 is recruited to ectopic Tea4 and Dis2 locations to promote Cdc42 activation. By contrast, Rga4 is locally excluded by Tea4, and its forced colocalization with Tea4 blocks ectopic growth, indicating that Rga4 must be present, but at sites distinct from Tea4. Thus, a Tea4-PP1 landmark promotes local Cdc42 activation and growth both through Cdc42 GEF recruitment and by creating a local trough in a Cdc42 GAP.

  11. Lack of Collagen VI Promotes Wound-Induced Hair Growth.

    PubMed

    Chen, Peiwen; Cescon, Matilde; Bonaldo, Paolo

    2015-10-01

    Collagen VI is an extracellular matrix molecule that is abundantly expressed in the skin. However, the role of collagen VI in hair follicle growth is unknown. Here, we show that collagen VI is strongly deposited in hair follicles, and is markedly upregulated by skin wounding. Lack of collagen VI in Col6a1(-/-) mice delays hair cycling and growth under physiological conditions, but promotes wound-induced hair regrowth without affecting skin regeneration. Conversely, addition of purified collagen VI rescues the abnormal wound-induced hair regrowth in Col6a1(-/-) mice. Mechanistic studies revealed that the increased wound-induced hair regrowth of Col6a1(-/-) mice is triggered by activation of the Wnt/β-catenin signaling pathway, and is abolished by inhibition of this pathway. These findings highlight the essential relationships between extracellular matrix (ECM) and hair follicle regeneration, and suggest that collagen VI could be a potential therapeutic target for hair loss and other skin-related diseases.

  12. Selective Activation of Sphingosine 1-Phosphate Receptors 1 and 3 Promotes Local Microvascular Network Growth

    PubMed Central

    Sefcik, Lauren S.; Petrie Aronin, Caren E.; Awojoodu, Anthony O.; Shin, Soo J.; Mac Gabhann, Feilim; MacDonald, Timothy L.; Wamhoff, Brian R.; Lynch, Kevin R.; Peirce, Shayn M.

    2011-01-01

    Proper spatial and temporal regulation of microvascular remodeling is critical to the formation of functional vascular networks, spanning the various arterial, venous, capillary, and collateral vessel systems. Recently, our group has demonstrated that sustained release of sphingosine 1-phosphate (S1P) from biodegradable polymers promotes microvascular network growth and arteriolar expansion. In this study, we employed S1P receptor-specific compounds to activate and antagonize different combinations of S1P receptors to elucidate those receptors most critical for promotion of pharmacologically induced microvascular network growth. We show that S1P1 and S1P3 receptors act synergistically to enhance functional network formation via increased functional length density, arteriolar diameter expansion, and increased vascular branching in the dorsal skinfold window chamber model. FTY720, a potent activator of S1P1 and S1P3, promoted a 107% and 153% increase in length density 3 and 7 days after implantation, respectively. It also increased arteriolar diameters by 60% and 85% 3 and 7 days after implantation. FTY720-stimulated branching in venules significantly more than unloaded poly(D, L-lactic-co-glycolic acid). When implanted on the mouse spinotrapezius muscle, FTY720 stimulated an arteriogenic response characterized by increased tortuosity and collateralization of branching microvascular networks. Our results demonstrate the effectiveness of S1P1 and S1P3 receptor-selective agonists (such as FTY720) in promoting microvascular growth for tissue engineering applications. PMID:20874260

  13. Foliar application of plant growth-promoting bacteria and humic acid increase maize yields

    USDA-ARS?s Scientific Manuscript database

    Plant growth promoter bacteria (PGPB) can be used to reduce fertilizer inputs to crops. Seed inoculation is the main method of PGPB application, but competition with rhizosphere microorganisms reduces their effectiveness. Here we propose a new biotechnological tool for plant stimulation using endoph...

  14. The use of heterogeneous and epitaxial nucleants to promote the growth of protein crystals

    NASA Technical Reports Server (NTRS)

    Mcpherson, Alexander; Shlichta, P.

    1988-01-01

    Fifty different mineral samples were tested as potential heterogeneous or epitaxial nucleants for four commonly crystallized proteins. It was found, using conventional protein crystallization techniques, that for each protein there was a set of mineral substrates that promoted nucleation of crystals at lower critical levels of supersaturation than required for spontaneous growth. In at least one case, the growth of lysozyme on the mineral apophyllite, it was shown by lattice analysis and X-ray diffraction that the nucleation and growth of the protein crystal on the mineral was likely to be truly epitaxial.

  15. Field monitoring of plant-growth-promoting rhizobacteria by colony immunoblotting.

    PubMed

    Krishnen, Ganisan; Kecskés, Mihály L; Rose, Michael T; Geelan-Small, Peter; Amprayn, Khanok-on; Pereg, Lily; Kennedy, Ivan R

    2011-11-01

    Inoculant plant-growth-promoting bacteria are emerging as an important component of sustainable agriculture. There is a need to develop inexpensive methods for enumerating these organisms after their application in the field, to better understand their survival and impacts on yields. Immunoblotting is one potential method to measure viable cells, but the high cost of the conventionally used nylon membranes makes this method prohibitive. In this study, less expensive alternative materials such as filter papers, glossy photo papers, and transparencies for the purpose of colony immunoblotting were evaluated and the best substance was chosen for further studies. Whatman filter paper No. 541 combined with a 0.01 mol·L(-1) H(2)SO(4) rinsing step gave similar results to nylon membranes but <20% of the overall cost of the original colony immunoblotting assay. The application of the modified immunoblot method was tested on nonsterile clay soil samples that were spiked with high numbers (>10(7) CFU·g(-1)) of the plant-growth-promoting bacteria Pseudomonas fluorescens , Azospirillum brasilense , or Rhizobium leguminosarum . The modified protocol allowed the identification and recovery of over 50% of the inoculated cells of all three strains, amidst a background of the native soil microflora. Subsequently, the survival of P. fluorescens was successfully monitored for several months after application to field-grown rice at Jerilderie, New South Wales, Australia, thus validating the procedure.

  16. Emodin Inhibits Breast Cancer Growth by Blocking the Tumor-Promoting Feedforward Loop between Cancer Cells and Macrophages.

    PubMed

    Iwanowycz, Stephen; Wang, Junfeng; Hodge, Johnie; Wang, Yuzhen; Yu, Fang; Fan, Daping

    2016-08-01

    Macrophage infiltration correlates with severity in many types of cancer. Tumor cells recruit macrophages and educate them to adopt an M2-like phenotype through the secretion of chemokines and growth factors, such as MCP1 and CSF1. Macrophages in turn promote tumor growth through supporting angiogenesis, suppressing antitumor immunity, modulating extracellular matrix remodeling, and promoting tumor cell migration. Thus, tumor cells and macrophages interact to create a feedforward loop supporting tumor growth and metastasis. In this study, we tested the ability of emodin, a Chinese herb-derived compound, to inhibit breast cancer growth in mice and examined the underlying mechanisms. Emodin was used to treat mice bearing EO771 or 4T1 breast tumors. It was shown that emodin attenuated tumor growth by inhibiting macrophage infiltration and M2-like polarization, accompanied by increased T-cell activation and reduced angiogenesis in tumors. The tumor inhibitory effects of emodin were lost in tumor-bearing mice with macrophage depletion. Emodin inhibited IRF4, STAT6, and C/EBPβ signaling and increased inhibitory histone H3 lysine 27 tri-methylation (H3K27m3) on the promoters of M2-related genes in tumor-associated macrophages. In addition, emodin inhibited tumor cell secretion of MCP1 and CSF1, as well as expression of surface anchoring molecule Thy-1, thus suppressing macrophage migration toward and adhesion to tumor cells. These results suggest that emodin acts on both breast cancer cells and macrophages and effectively blocks the tumor-promoting feedforward loop between the two cell types, thereby inhibiting breast cancer growth and metastasis. Mol Cancer Ther; 15(8); 1931-42. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants.

    PubMed

    Bal, Himadri Bhusan; Das, Subhasis; Dangar, Tushar K; Adhya, Tapan K

    2013-12-01

    Beneficial plant-associated bacteria play a key role in supporting and/or promoting plant growth and health. Plant growth promoting bacteria present in the rhizosphere of crop plants can directly affect plant metabolism or modulate phytohormone production or degradation. We isolated 355 bacteria from the rhizosphere of rice plants grown in the farmers' fields in the coastal rice field soil from five different locations of the Ganjam district of Odisha, India. Six bacteria producing both ACC deaminase (ranging from 603.94 to 1350.02 nmol α-ketobutyrate mg(-1)  h(-1) ) and indole acetic acid (IAA; ranging from 10.54 to 37.65 μM ml(-1) ) in pure cultures were further identified using polyphasic taxonomy including BIOLOG((R)) , FAME analysis and the 16S rRNA gene sequencing. Phylogenetic analyses of the isolates resulted into five major clusters to include members of the genera Bacillus, Microbacterium, Methylophaga, Agromyces, and Paenibacillus. Seed inoculation of rice (cv. Naveen) by the six individual PGPR isolates had a considerable impact on different growth parameters including root elongation that was positively correlated with ACC deaminase activity and IAA production. The cultures also had other plant growth attributes including ammonia production and at least two isolates produced siderophores. Study indicates that presence of diverse rhizobacteria with effective growth-promoting traits, in the rice rhizosphere, may be exploited for a sustainable crop management under field conditions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. IL-35 promotes pancreas cancer growth through enhancement of proliferation and inhibition of apoptosis: evidence for a role as an autocrine growth factor.

    PubMed

    Nicholl, Michael B; Ledgewood, Chelsea L; Chen, Xuhui; Bai, Qian; Qin, Chenglu; Cook, Kathryn M; Herrick, Elizabeth J; Diaz-Arias, Alberto; Moore, Bradley J; Fang, Yujiang

    2014-12-01

    Interleukin-35 (IL-35), an IL-12 cytokine family member, mediates the immune inhibitory function of regulatory T cells (Treg). We assayed the presence of IL-35 in paraffin-embedded human pancreas cancer (PCAN) and unexpectedly found IL-35 was expressed mainly by epithelial derived PCAN cells, but not by Treg. We further examined the expression and effect of exogenous IL-35 in human PCAN cell lines and found IL-35 promoted growth and inhibited apoptosis in PCAN cell lines. IL-35 induced proliferation correlated with an increase in cyclin B, cyclin D, cdk2, and cdk4 and a decrease in p27 expression, while inhibition of apoptosis was associated with an increase in Bcl-2 and a decrease in TRAILR1. We conclude IL-35 is produced by PCAN in vivo and promotes PCAN cell line growth in vitro. These results might indicate an important new role for IL-35 as an autocrine growth factor in PCAN growth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Lysophosphatidic Acid Acyltransferase β (LPAATβ) Promotes the Tumor Growth of Human Osteosarcoma

    PubMed Central

    Rastegar, Farbod; Gao, Jian-Li; Shenaq, Deana; Luo, Qing; Shi, Qiong; Kim, Stephanie H.; Jiang, Wei; Wagner, Eric R.; Huang, Enyi; Gao, Yanhong; Shen, Jikun; Yang, Ke; He, Bai-Cheng; Chen, Liang; Zuo, Guo-Wei; Luo, Jinyong; Luo, Xiaoji; Bi, Yang; Liu, Xing; Li, Mi; Hu, Ning; Wang, Linyuan; Luther, Gaurav; Luu, Hue H.; Haydon, Rex C.; He, Tong-Chuan

    2010-01-01

    Background Osteosarcoma is the most common primary malignancy of bone with poorly characterized molecular pathways important in its pathogenesis. Increasing evidence indicates that elevated lipid biosynthesis is a characteristic feature of cancer. We sought to investigate the role of lysophosphatidic acid acyltransferase β (LPAATβ, aka, AGPAT2) in regulating the proliferation and growth of human osteosarcoma cells. LPAATβ can generate phosphatidic acid, which plays a key role in lipid biosynthesis as well as in cell proliferation and survival. Although elevated expression of LPAATβ has been reported in several types of human tumors, the role of LPAATβ in osteosarcoma progression has yet to be elucidated. Methodology/Principal Findings Endogenous expression of LPAATβ in osteosarcoma cell lines is analyzed by using semi-quantitative PCR and immunohistochemical staining. Adenovirus-mediated overexpression of LPAATβ and silencing LPAATβ expression is employed to determine the effect of LPAATβ on osteosarcoma cell proliferation and migration in vitro and osteosarcoma tumor growth in vivo. We have found that expression of LPAATβ is readily detected in 8 of the 10 analyzed human osteosarcoma lines. Exogenous expression of LPAATβ promotes osteosarcoma cell proliferation and migration, while silencing LPAATβ expression inhibits these cellular characteristics. We further demonstrate that exogenous expression of LPAATβ effectively promotes tumor growth, while knockdown of LPAATβ expression inhibits tumor growth in an orthotopic xenograft model of human osteosarcoma. Conclusions/Significance Our results strongly suggest that LPAATβ expression may be associated with the aggressive phenotypes of human osteosarcoma and that LPAATβ may play an important role in regulating osteosarcoma cell proliferation and tumor growth. Thus, targeting LPAATβ may be exploited as a novel therapeutic strategy for the clinical management of osteosarcoma. This is especially

  20. Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer.

    PubMed

    Wen, Yang-An; Xing, Xiaopeng; Harris, Jennifer W; Zaytseva, Yekaterina Y; Mitov, Mihail I; Napier, Dana L; Weiss, Heidi L; Mark Evers, B; Gao, Tianyan

    2017-02-02

    Obesity has been associated with increased incidence and mortality of a wide variety of human cancers including colorectal cancer. However, the molecular mechanism by which adipocytes regulate the metabolism of colon cancer cells remains elusive. In this study, we showed that adipocytes isolated from adipose tissues of colon cancer patients have an important role in modulating cellular metabolism to support tumor growth and survival. Abundant adipocytes were found in close association with invasive tumor cells in colon cancer patients. Co-culture of adipocytes with colon cancer cells led to a transfer of free fatty acids that released from the adipocytes to the cancer cells. Uptake of fatty acids allowed the cancer cells to survive nutrient deprivation conditions by upregulating mitochondrial fatty acid β-oxidation. Mechanistically, co-culture of adipocytes or treating cells with fatty acids induced autophagy in colon cancer cells as a result of AMPK activation. Inhibition of autophagy attenuated the ability of cancer cells to utilize fatty acids and blocked the growth-promoting effect of adipocytes. In addition, we found that adipocytes stimulated the expression of genes associated with cancer stem cells and downregulated genes associated with intestinal epithelial cell differentiation in primary colon cancer cells and mouse tumor organoids. Importantly, the presence of adipocytes promoted the growth of xenograft tumors in vivo. Taken together, our results show that adipocytes in the tumor microenvironment serve as an energy provider and a metabolic regulator to promote the growth and survival of colon cancer cells.

  1. Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer

    PubMed Central

    Wen, Yang-An; Xing, Xiaopeng; Harris, Jennifer W; Zaytseva, Yekaterina Y; Mitov, Mihail I; Napier, Dana L; Weiss, Heidi L; Mark Evers, B; Gao, Tianyan

    2017-01-01

    Obesity has been associated with increased incidence and mortality of a wide variety of human cancers including colorectal cancer. However, the molecular mechanism by which adipocytes regulate the metabolism of colon cancer cells remains elusive. In this study, we showed that adipocytes isolated from adipose tissues of colon cancer patients have an important role in modulating cellular metabolism to support tumor growth and survival. Abundant adipocytes were found in close association with invasive tumor cells in colon cancer patients. Co-culture of adipocytes with colon cancer cells led to a transfer of free fatty acids that released from the adipocytes to the cancer cells. Uptake of fatty acids allowed the cancer cells to survive nutrient deprivation conditions by upregulating mitochondrial fatty acid β-oxidation. Mechanistically, co-culture of adipocytes or treating cells with fatty acids induced autophagy in colon cancer cells as a result of AMPK activation. Inhibition of autophagy attenuated the ability of cancer cells to utilize fatty acids and blocked the growth-promoting effect of adipocytes. In addition, we found that adipocytes stimulated the expression of genes associated with cancer stem cells and downregulated genes associated with intestinal epithelial cell differentiation in primary colon cancer cells and mouse tumor organoids. Importantly, the presence of adipocytes promoted the growth of xenograft tumors in vivo. Taken together, our results show that adipocytes in the tumor microenvironment serve as an energy provider and a metabolic regulator to promote the growth and survival of colon cancer cells. PMID:28151470

  2. Contrasting colonization and plant growth promoting capacity between wild type and gfp-derative of the endophyte Pseudomonas putida W619 in hybrid poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weyens N.; van der Lelie D.; Boulet, J.

    2011-06-09

    This study aims to investigate the colonization of poplar by the endophyte Pseudomonas putida W619 and its capacity to promote plant growth. Poplar cuttings were inoculated with P. putida W619 (wild-type or gfp-labelled). The colonization of both strains was investigated and morphological, physiological and biochemical parameters were analyzed to evaluate plant growth promotion. Inoculation with P. putida W619 (wild-type) resulted in remarkable growth promotion, decreased activities of antioxidative defence related enzymes, and reduced stomatal resistance, all indicative of improved plant health and growth in comparison with the non-inoculated cuttings. In contrast, inoculation with gfp-labelled P. putida W619 did not promotemore » growth; it even had a negative effect on plant health and growth. Furthermore, compared to the wildtype strain, colonization by the gfp-labelled P. putida W619::gfp1 was much lower; it only colonized the rhizosphere and root cortex while the wild-type strain also colonized the root xylem vessels. Despite the strong plant growth promoting capacity of P. putida W619 (wild-type), after gfp labelling its growth promoting characteristics disappeared and its colonization capacity was strongly influenced; for these reasons gfp labelling should be applied with sufficient caution.« less

  3. Repression of Multiple Myeloma Growth and Preservation of Bone with Combined Radiotherapy and Anti-angiogenic Agent

    PubMed Central

    Jia, Dan; Koonce, Nathan A.; Halakatti, Roopa; Li, Xin; Yaccoby, Shmuel; Swain, Frances L.; Suva, Larry J.; Hennings, Leah; Berridge, Marc S.; Apana, Scott M.; Mayo, Kevin; Corry, Peter M.; Griffin, Robert J.

    2011-01-01

    The effects of ionizing radiation, with or without the antiangiogenic agent anginex (Ax), on multiple myeloma growth were tested in a SCID-rab mouse model. Mice carrying human multiple myeloma cell-containing pre-implanted bone grafts were treated weekly with various regimens for 8 weeks. Rapid multiple myeloma growth, assessed by bioluminescence intensity (IVIS), human lambda Ig light chain level in serum (ELISA), and the volume of bone grafts (caliper), was observed in untreated mice. Tumor burden in mice receiving combined therapy was reduced to 59% (by caliper), 43% (by ELISA), and 2% (by IVIS) of baseline values after 8 weeks of treatment. Ax or radiation alone slowed but did not stop tumor growth. Four weeks after the withdrawal of the treatments, tumor burden remained minimal in mice given Ax + radiation but increased noticeably in the other three groups. Multiple myeloma suppression by Ax + radiation was accompanied by a marked decrease in the number and activity of osteoclasts in bone grafts assessed by histology. Bone graft integrity was preserved by Ax + radiation but was lost in the other three groups, as assessed by microCT imaging and radiography. These results suggest that radiotherapy, when primed by anti-angiogenic agents, may be a potent therapy for focal multiple myeloma. PMID:20518660

  4. Efficacy of topical tofacitinib in promoting hair growth in non-scarring alopecia: possible mechanism via VEGF induction.

    PubMed

    Meephansan, Jitlada; Thummakriengkrai, J; Ponnikorn, S; Yingmema, W; Deenonpoe, R; Suchonwanit, P

    2017-11-01

    Tofacitinib is a Janus kinase 3 (JAK3) inhibitor that promotes hair growth; however, the efficacy and mechanism of this effect are not yet understood. This study aimed to evaluate the efficacy and mechanism of topical tofacitinib on hair growth in mice. Eight-week-old male C57BL/6 mice were divided equally into four groups and treated topically with tofacitinib, minoxidil, or vehicle once daily for 21 days. Weekly photographs were taken to determine the area and rate of hair growth, and tissue samples were collected for histopathological evaluation. mRNA and protein expression of anagen-maintaining growth factors, including vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF-1), were determined via RT-PCR and ELISA, respectively. Tofacitinib-treated mice exhibited more hair regrowth than either minoxidil-treated or control mice did between day 7 and 21 (P < 0.05). Topical tofacitinib also promoted more rapid hair growth rate than topical minoxidil or control did (P < 0.001). Histopathology showed a distinct increase in the number of hair follicles, mostly in the anagen phase, in the tofacitinib-treated group. Hair follicles in the minoxidil- and vehicle-treated groups were more often classified as catagen and anagen. VEGF mRNA and protein expression in the tofacitinib-treated group was significantly greater than those in the other groups (P < 0.05). IGF-1 mRNA expression was not upregulated in tofacitinib-treated mice. Topical tofacitinib is effective in promoting hair growth, and the possible mechanism involves increased VEGF levels and lowered inflammation. This study will help develop a new therapeutic option for non-scarring alopecia.

  5. [Rice endogenous nitrogen fixing and growth promoting bacterium Herbaspirillum seropedicae DX35].

    PubMed

    Wang, Xiucheng; Cao, Yanhua; Tang, Xue; Ma, Xiaotong; Gao, Jusheng; Zhang, Xiaoxia

    2014-03-04

    To screen efficient nitrogen fixation endophytes from rice and to analyze their growth-promoting properties. We isolated strains from the roots of rice in the field where it has a rice-rice-green manure rotation system for 30 years. Efficient strains were screened by acetylene reduction assay. Phylogenetic analysis is based on 16S rRNA gene, nifH gene and the composition of fatty acid. In addition, we also detected the ability of indole acetic acid secretion through the Salkowski colorimetric method, measured the production of siderophore through the blue plate assay and detected phosphate solubilization, to analyze the growth-promoting properties. A total of 48 strains were isolated, in which DX35 has the highest nitrogenase activity. It belongs to Herbaspirillum seropedicae after identification. Its nitrogenase activity (181.21 nmol C2H4/(mg protein x h)) was 10 times as much as the reference strain Azotobacter chroococcum ACCC10006. In addition, it also can secrete siderophore and solubilize phosphorus. Strain DX35, belonging to Herbaspirillum seropedicae, is an efficient nitrogen fixation endophytes.

  6. Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions.

    PubMed

    Zahir, Z A; Munir, A; Asghar, H N; Shaharoona, B; Arshad, M

    2008-05-01

    A series of experiments were conducted to assess the effectiveness of rhizobacteria containing 1-aminocyclopropane- 1-carboxylate (ACC) deaminase for growth promotion of peas under drought conditions. Ten rhizobacteria isolated from the rhizosphere of different crops (peas, wheat, and maize) were screened for their growth promoting ability in peas under axenic condition. Three rhizobacterial isolates, Pseudomonas fluorescens biotype G (ACC-5), P. fluorescens (ACC-14), and P. putida biotype A (Q-7), were selected for pot trial on the basis of their source, ACC deaminase activity, root colonization, and growth promoting activity under axenic conditions. Inoculated and uninoculated (control) seeds of pea cultivar 2000 were sown in pots (4 seeds/pot) at different soil moisture levels (25, 50, 75, and 100% of field capacity). Results revealed that decreasing the soil moisture levels from 100 to 25% of field capacity significantly decreased the growth of peas. However, inoculation of peas with rhizobacteria containing ACC deaminase significantly decreased the "drought stress imposed effects" on growth of peas, although with variable efficacy at different moisture levels. At the lowest soil moisture level (25% field capacity), rhizobacterial isolate Pseudomonas fluorescens biotype G (ACC-5) was found to be more promising compared with the other isolates, as it caused maximum increases in fresh weight, dry weight, root length, shoot length, number of leaves per plant, and water use efficiency on fresh and dry weight basis (45, 150, 92, 45, 140, 46, and 147%, respectively) compared with respective uninoculated controls. It is highly likely that rhizobacteria containing ACC deaminase might have decreased the drought-stress induced ethylene in inoculated plants, which resulted in better growth of plants even at low moisture levels. Therefore, inoculation with rhizobacteria containing ACC deaminase could be helpful in eliminating the inhibitory effects of drought stress on the

  7. Promotion of human early embryonic development and blastocyst outgrowth in vitro using autocrine/paracrine growth factors.

    PubMed

    Kawamura, Kazuhiro; Chen, Yuan; Shu, Yimin; Cheng, Yuan; Qiao, Jie; Behr, Barry; Pera, Renee A Reijo; Hsueh, Aaron J W

    2012-01-01

    Studies using animal models demonstrated the importance of autocrine/paracrine factors secreted by preimplantation embryos and reproductive tracts for embryonic development and implantation. Although in vitro fertilization-embryo transfer (IVF-ET) is an established procedure, there is no evidence that present culture conditions are optimal for human early embryonic development. In this study, key polypeptide ligands known to be important for early embryonic development in animal models were tested for their ability to improve human early embryo development and blastocyst outgrowth in vitro. We confirmed the expression of key ligand/receptor pairs in cleavage embryos derived from discarded human tri-pronuclear zygotes and in human endometrium. Combined treatment with key embryonic growth factors (brain-derived neurotrophic factor, colony-stimulating factor, epidermal growth factor, granulocyte macrophage colony-stimulating factor, insulin-like growth factor-1, glial cell-line derived neurotrophic factor, and artemin) in serum-free media promoted >2.5-fold the development of tri-pronuclear zygotes to blastocysts. For normally fertilized embryos, day 3 surplus embryos cultured individually with the key growth factors showed >3-fold increases in the development of 6-8 cell stage embryos to blastocysts and >7-fold increase in the proportion of high quality blastocysts based on Gardner's criteria. Growth factor treatment also led to a 2-fold promotion of blastocyst outgrowth in vitro when day 7 surplus hatching blastocysts were used. When failed-to-be-fertilized oocytes were used to perform somatic cell nuclear transfer (SCNT) using fibroblasts as donor karyoplasts, inclusion of growth factors increased the progression of reconstructed SCNT embryos to >4-cell stage embryos. Growth factor supplementation of serum-free cultures could promote optimal early embryonic development and implantation in IVF-ET and SCNT procedures. This approach is valuable for infertility

  8. Fgf receptor 3 activation promotes selective growth and expansion of occipitotemporal cortex

    PubMed Central

    Thomson, Rachel E; Kind, Peter C; Graham, Nicholas A; Etherson, Michelle L; Kennedy, John; Fernandes, Ana C; Marques, Catia S; Hevner, Robert F; Iwata, Tomoko

    2009-01-01

    Background Fibroblast growth factors (Fgfs) are important regulators of cerebral cortex development. Fgf2, Fgf8 and Fgf17 promote growth and specification of rostromedial (frontoparietal) cortical areas. Recently, the function of Fgf15 in antagonizing Fgf8 in the rostral signaling center was also reported. However, regulation of caudal area formation by Fgf signaling remains unknown. Results In mutant mice with constitutive activation of Fgf receptor 3 (Fgfr3) in the forebrain, surface area of the caudolateral cortex was markedly expanded at early postnatal stage, while rostromedial surface area remained normal. Cortical thickness was also increased in caudal regions. The expression domain and levels of Fgf8, as well as overall patterning, were unchanged. In contrast, the changes in caudolateral surface area were associated with accelerated cell cycle in early stages of neurogenesis without an alteration of cell cycle exit. Moreover, a marked overproduction of intermediate neuronal progenitors was observed in later stages, indicating prolongation of neurogenesis. Conclusion Activation of Fgfr3 selectively promotes growth of caudolateral (occipitotemporal) cortex. These observations support the 'radial unit' and 'radial amplification' hypotheses and may explain premature sulcation of the occipitotemporal cortex in thanatophoric dysplasia, a human FGFR3 disorder. Together with previous work, this study suggests that formation of rostral and caudal areas are differentially regulated by Fgf signaling in the cerebral cortex. PMID:19192266

  9. Plant growth-promoting Burkholderia species isolated from annual ryegrass in Portuguese soils.

    PubMed

    Castanheira, N; Dourado, A C; Kruz, S; Alves, P I L; Delgado-Rodríguez, A I; Pais, I; Semedo, J; Scotti-Campos, P; Sánchez, C; Borges, N; Carvalho, G; Barreto Crespo, M T; Fareleira, P

    2016-03-01

    To search for culturable Burkholderia species associated with annual ryegrass in soils from natural pastures in Portugal, with plant growth-promoting effects. Annual ryegrass seedlings were used to trap Burkholderia from two different soils in laboratory conditions. A combined approach using genomic fingerprinting and sequencing of 16S rRNA and recA genes resulted in the identification of Burkholderia strains belonging to the species Burkholderia graminis, Burkholderia fungorum and the Burkholderia cepacia complex. Most strains were able to solubilize mineral phosphate and to synthesize indole acetic acid; some of them could produce siderophores and antagonize the phytopathogenic oomycete, Phytophthora cinnamomi. A strain (G2Bd5) of B. graminis was selected for gnotobiotic plant inoculation experiments. The main effects were the stimulation of root growth and enhancement of leaf lipid synthesis and turnover. Fluorescence in situ hybridization and confocal laser microscopy evidenced that strain G2Bd5 is a rhizospheric and endophytic colonizer of annual ryegrass. This work revealed that annual ryegrass can naturally associate with members of the genus Burkholderia. A novel plant growth promoting strain of B. graminis was obtained. The novel strain belongs to the plant-associated Burkholderia cluster and is a promising candidate for exploitation as plant inoculant in field conditions. © 2015 The Society for Applied Microbiology.

  10. Plexin-B2 promotes invasive growth of malignant glioma

    PubMed Central

    Pingle, Sandeep C.; Kesari, Santosh; Wang, Huaien; Yong, Raymund L.; Zou, Hongyan; Friedel, Roland H.

    2015-01-01

    Invasive growth is a major determinant of the high lethality of malignant gliomas. Plexin-B2, an axon guidance receptor important for mediating neural progenitor cell migration during development, is upregulated in gliomas, but its function therein remains poorly understood. Combining bioinformatic analyses, immunoblotting and immunohistochemistry of patient samples, we demonstrate that Plexin-B2 is consistently upregulated in all types of human gliomas and that its expression levels correlate with glioma grade and poor survival. Activation of Plexin-B2 by Sema4C ligand in glioblastoma cells induced actin-based cytoskeletal dynamics and invasive migration in vitro. This proinvasive effect was associated with activation of the cell motility mediators RhoA and Rac1. Furthermore, costimulation of Plexin-B2 and the receptor tyrosine kinase Met led to synergistic Met phosphorylation. In intracranial glioblastoma transplants, Plexin-B2 knockdown hindered invasive growth and perivascular spreading, and resulted in decreased tumor vascularity. Our results demonstrate that Plexin-B2 promotes glioma invasion and vascularization, and they identify Plexin-B2 as a potential novel prognostic marker for glioma malignancy. Targeting the Plexin-B2 pathway may represent a novel therapeutic approach to curtail invasive growth of glioblastoma. PMID:25762646

  11. Melasma treatment: A novel approach using a topical agent that contains an anti-estrogen and a vascular endothelial growth factor inhibitor.

    PubMed

    Cohen, Philip R

    2017-04-01

    Melasma is an acquired disorder of pigmentation that presents with asymptomatic symmetric darkening of the face. The pathogenesis of this condition is multifactorial and influenced by several factors including female sex hormones, genetic predisposition and ultraviolet light exposure. The management of melasma is usually directed at more than one of the causative etiologic factors and often incorporates a combination of topical agents, with or without the addition of physical modalities. Estrogen and angiogenesis are significant factors in the etiology of melasma. A useful addition to the therapeutic armentarium for treating melasma would include a topical agent that could effect both of these causative factors. Specifically, a topical preparation consisting of an anti-estrogen and a vascular endothelial growth factor inhibitor would accomplish this goal. Suitable candidates that target estrogen receptors and vascular endothelial growth factor are currently used in medical oncology as systemic antineoplastic agents. The anti-estrogen could be either a selective estrogen receptor modulator (such as tamoxifen or raloxifene) or an aromatase inhibitor (such as anastrozole or letrozole or exemestane). The vascular endothelial growth factor inhibitor would be bevacizumab. In conclusion, a novel-topically administered-therapy for melasma would combine an anti-estrogen and a vascular endothelial growth factor inhibitor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Isolation of Endophytic Plant Growth-Promoting Bacteria Associated with the Halophyte Salicornia europaea and Evaluation of their Promoting Activity Under Salt Stress.

    PubMed

    Zhao, Shuai; Zhou, Na; Zhao, Zheng-Yong; Zhang, Ke; Wu, Guo-Hua; Tian, Chang-Yan

    2016-10-01

    Several reports have highlighted that many plant growth-promoting endophytic bacteria (PGPE) can assist their host plants in coping with various biotic and abiotic stresses. However, information about the PGPE colonizing in the halophytes is still scarce. This study was designed to isolate and characterize PGPE from salt-accumulating halophyte Salicornia europaea grown under extreme salinity and to evaluate in vitro the bacterial mechanisms related to plant growth promotion. A total of 105 isolates were obtained from the surface-sterilized roots, stems, and assimilation twigs of S. europaea. Thirty-two isolates were initially selected for their ability to produce 1-aminocyclopropane-1-carboxylate deaminase as well as other properties such as production of indole-3-acetic acid and phosphate-solubilizing activities. The 16S rRNA gene-sequencing analysis revealed that these isolates belong to 13 different genera and 19 bacterial species. For these 32 strains, seed germination and seedling growth in axenically grown S. europaea seedlings at different NaCl concentrations (50-500 mM) were quantified. Five isolates possessing significant stimulation of the host plant growth were obtained. The five isolates were identified as Bacillus endophyticus, Bacillus tequilensis, Planococcus rifietoensis, Variovorax paradoxus, and Arthrobacter agilis. All the five strains could colonize and can be reisolated from the host plant interior tissues. These results demonstrate that habitat-adapted PGPE isolated from halophyte could enhance plant growth under saline stress conditions.

  13. A metabolic profile in Ruditapes philippinarum associated with growth-promoting effects of alginate hydrolysates

    NASA Astrophysics Data System (ADS)

    Yamasaki, Yasuhiro; Taga, Shigeru; Kishioka, Masanobu; Kawano, Shuichi

    2016-07-01

    The aim of this study is to demonstrate the growth-promoting effect of alginate hydrolysates (AHs) on the Manila clam Ruditapes philippinarum, and to verify the physiological change occurring within a living R. philippinarum stimulated by AHs. We show that growth of clams was dramatically promoted by supplementing a diet of the diatom Chaetoceros neogracile with AHs at 4 mg/mL. Furthermore, metabolomics indicates that each state of starvation, food satiation, and sexual maturation have a characteristic pattern. In the groups given AHs in addition to C. neogracile in particular, excess carbohydrate was actively utilized for the development of reproductive tissue. In contrast, it appeared that clams in the groups given C. neogracile only were actively growing, utilizing their adequate carbohydrate resources. Meanwhile, the unfed groups have slowed growth because of the lack of an energy source. Hence, supplementation of AHs in addition to the algal diet may be an inexpensive way to shorten the rearing period of R. philippinarum. Moreover, metabolomics can evaluate the growth condition of R. philippinarum in a comprehensive way, and this approach is crucially important for not only the development of a mass culture method but also for the conservation of the clam resource in the field.

  14. Autocrine CSF-1 and CSF-1 Receptor Co-expression Promotes Renal Cell Carcinoma Growth

    PubMed Central

    Menke, Julia; Kriegsmann, Jörg; Schimanski, Carl Christoph; Schwartz, Melvin M.; Schwarting, Andreas; Kelley, Vicki R.

    2011-01-01

    Renal cell carcinoma is increasing in incidence but the molecular mechanisms regulating its growth remain elusive. Co-expression of the monocytic growth factor CSF-1 and its receptor CSF-1R on renal tubular epithelial cells (TEC) will promote proliferation and anti-apoptosis during regeneration of renal tubules. Here we show that a CSF-1-dependent autocrine pathway is also responsible for the growth of renal cell carcinoma (RCC). CSF-1 and CSF-1R were co-expressed in RCC and TEC proximally adjacent to RCC. CSF-1 engagement of CSF-1R promoted RCC survival and proliferation and reduced apoptosis, in support of the likelihood that CSF-1R effector signals mediate RCC growth. In vivo CSF-1R blockade using a CSF-1R tyrosine kinase inhibitor decreased RCC proliferation and macrophage infiltration in a manner associated with a dramatic reduction in tumor mass. Further mechanistic investigations linked CSF-1 and EGF signaling in RCC. Taken together, our results suggest that budding RCC stimulates the proximal adjacent microenvironment in the kidney to release mediators of CSF-1, CSF-1R and EGF expression in RCC. Further, our findings imply that targeting CSF-1/CSF-1R signaling may be therapeutically effective in RCC. PMID:22052465

  15. Efficacy of intravitreal injection of anti-vascular endothelial growth factor agents for stage 4 retinopathy of prematurity.

    PubMed

    Cheng, Hui-Chen; Lee, Shui-Mei; Hsieh, Yi-Ting; Lin, Po-Kang

    2015-04-01

    To investigate the efficacy of intravitreal injection of anti-vascular endothelial growth factor agents for Stage 4 retinopathy of prematurity. Retrospective case series study. The medical records of patients receiving intravitreal injection of anti-vascular endothelial growth factor agents for Stage 4 retinopathy of prematurity from January 2007 to May 2012 in Taipei Veterans General Hospital were reviewed. A total of 13 eyes of 7 patients (3 boys and 4 girls) with Stage 4 retinopathy of prematurity were included. The mean gestational age and birth weight were 27.6 ± 2.6 weeks (range, 24.5-30.5 weeks) and 893.1 ± 293.2 g (range, 550-1422 g), respectively. The mean age at the time of injection was 38.2 ± 1.9 weeks (range, 36.0-41.5 weeks) postmenstrual age, and the mean follow-up period was 37.8 ± 19.5 months (range, 11.0-67.5 months). The active neovascularization regressed rapidly, and the anatomical outcomes were favorable in all patients. One eye developed recurrent retinal hemorrhage with localized retinal detachment 21 weeks after initial treatment, which resolved after a second injection. There were no ocular or systemic complications in these patients. Intravitreal injection of anti-vascular endothelial growth factor agents may be effective as monotherapy or as supplement to failed laser treatment for patients with Stage 4 retinopathy of prematurity without additional surgical intervention. Further randomized controlled trials are necessary to compare the clinical efficacy and safety with other conventional interventions.

  16. Early brush control promotes growth of ponderosa pine planted on bulldozed site

    Treesearch

    Jay R. Bentley; Stanley B. Carpenter; David A. Blakeman

    1971-01-01

    Test plots in a brushfield near Mount Shasta, California, were cleared by bulldozing in 1961, and planted with ponderosa pine seedlings in 1962. Brush regrowth was subjected to varying levels of control by spraying with herbicides. In the first 5 years, brush control definitely promoted the growth of pine seedlings. And this early control also promises to reduce the...

  17. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments.

    PubMed

    Nadeem, Sajid Mahmood; Ahmad, Maqshoof; Zahir, Zahir Ahmad; Javaid, Arshad; Ashraf, Muhammad

    2014-01-01

    Both biotic and abiotic stresses are major constrains to agricultural production. Under stress conditions, plant growth is affected by a number of factors such as hormonal and nutritional imbalance, ion toxicity, physiological disorders, susceptibility to diseases, etc. Plant growth under stress conditions may be enhanced by the application of microbial inoculation including plant growth promoting rhizobacteria (PGPR) and mycorrhizal fungi. These microbes can promote plant growth by regulating nutritional and hormonal balance, producing plant growth regulators, solubilizing nutrients and inducing resistance against plant pathogens. In addition to their interactions with plants, these microbes also show synergistic as well as antagonistic interactions with other microbes in the soil environment. These interactions may be vital for sustainable agriculture because they mainly depend on biological processes rather than on agrochemicals to maintain plant growth and development as well as proper soil health under stress conditions. A number of research articles can be deciphered from the literature, which shows the role of rhizobacteria and mycorrhizae alone and/or in combination in enhancing plant growth under stress conditions. However, in contrast, a few review papers are available which discuss the synergistic interactions between rhizobacteria and mycorrhizae for enhancing plant growth under normal (non-stress) or stressful environments. Biological interactions between PGPR and mycorrhizal fungi are believed to cause a cumulative effect on all rhizosphere components, and these interactions are also affected by environmental factors such as soil type, nutrition, moisture and temperature. The present review comprehensively discusses recent developments on the effectiveness of PGPR and mycorrhizal fungi for enhancing plant growth under stressful environments. The key mechanisms involved in plant stress tolerance and the effectiveness of microbial inoculation for

  18. Dragon (repulsive guidance molecule b, RGMb) is a novel gene that promotes colorectal cancer growth.

    PubMed

    Shi, Ying; Chen, Guo-Bin; Huang, Xiao-Xiao; Xiao, Chuan-Xing; Wang, Huan-Huan; Li, Ye-Sen; Zhang, Jin-Fang; Li, Shao; Xia, Yin; Ren, Jian-Lin; Guleng, Bayasi

    2015-08-21

    Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a major cause of cancer death. However, the molecular mechanisms underlying CRC initiation, growth and metastasis are poorly understood. Dragon (RGMb), a member of the repulsive guidance molecule (RGM) family, has been recently identified as a co-receptor for bone morphogenetic protein (BMP) signaling, but the role of Dragon in CRC development is undefined. Here, we show that Dragon expression was increased in colon cancer tissues compared to control tissues in CAC mouse model and in human patients. Dragon promoted proliferation of CT26.WT and CMT93 colon cancer cells and accelerated tumor growth in the xenograft mouse model. Dragon's action on colon cancer development was mediated via the BMP4-Smad1/5/8 and Erk1/2 pathways. Therefore, our results have revealed that Dragon is a novel gene that promotes CRC growth through the BMP pathway. Dragon may be exploited as a potential therapeutic target for CRC treatment.

  19. Dragon (repulsive guidance molecule b, RGMb) is a novel gene that promotes colorectal cancer growth

    PubMed Central

    Shi, Ying; Chen, Guo-Bin; Huang, Xiao-Xiao; Xiao, Chuan-Xing; Wang, Huan-Huan; Li, Ye-Sen; Zhang, Jin-Fang; Li, Shao; Xia, Yin; Ren, Jian-Lin; Guleng, Bayasi

    2015-01-01

    Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a major cause of cancer death. However, the molecular mechanisms underlying CRC initiation, growth and metastasis are poorly understood. Dragon (RGMb), a member of the repulsive guidance molecule (RGM) family, has been recently identified as a co-receptor for bone morphogenetic protein (BMP) signaling, but the role of Dragon in CRC development is undefined. Here, we show that Dragon expression was increased in colon cancer tissues compared to control tissues in CAC mouse model and in human patients. Dragon promoted proliferation of CT26.WT and CMT93 colon cancer cells and accelerated tumor growth in the xenograft mouse model. Dragon's action on colon cancer development was mediated via the BMP4-Smad1/5/8 and Erk1/2 pathways. Therefore, our results have revealed that Dragon is a novel gene that promotes CRC growth through the BMP pathway. Dragon may be exploited as a potential therapeutic target for CRC treatment. PMID:26029998

  20. S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth

    PubMed Central

    Albertos, Pablo; Romero-Puertas, María C.; Tatematsu, Kiyoshi; Mateos, Isabel; Sánchez-Vicente, Inmaculada; Nambara, Eiji; Lorenzo, Oscar

    2015-01-01

    Plant survival depends on seed germination and progression through post-germinative developmental checkpoints. These processes are controlled by the stress phytohormone abscisic acid (ABA). ABA regulates the basic leucine zipper transcriptional factor ABI5, a central hub of growth repression, while the reactive nitrogen molecule nitric oxide (NO) counteracts ABA during seed germination. However, the molecular mechanisms by which seeds sense more favourable conditions and start germinating have remained elusive. Here we show that ABI5 promotes growth via NO, and that ABI5 accumulation is altered in genetic backgrounds with impaired NO homeostasis. S-nitrosylation of ABI5 at cysteine-153 facilitates its degradation through CULLIN4-based and KEEP ON GOING E3 ligases, and promotes seed germination. Conversely, mutation of ABI5 at cysteine-153 deregulates protein stability and inhibition of seed germination by NO depletion. These findings suggest an inverse molecular link between NO and ABA hormone signalling through distinct posttranslational modifications of ABI5 during early seedling development. PMID:26493030

  1. Identification of a Peripheral Nerve Neurite Growth-Promoting Activity by Development and Use of an in vitro Bioassay

    NASA Astrophysics Data System (ADS)

    Sandrock, Alfred W.; Matthew, William D.

    1987-10-01

    The effective regeneration of severed neuronal axons in the peripheral nerves of adult mammals may be explained by the presence of molecules in situ that promote the effective elongation of neurites. The absence of such molecules in the central nervous system of these animals may underlie the relative inability of axons to regenerate in this tissue after injury. In an effort to identify neurite growth-promoting molecules in tissues that support effective axonal regeneration, we have developed an in vitro bioassay that is sensitive to substrate-bound factors of peripheral nerve that influence the growth of neurites. In this assay, neonatal rat superior cervical ganglion explants are placed on longitudinal cryostat sections of fresh-frozen sciatic nerve, and the regrowing axons are visualized by catecholamine histofluorescence. Axons are found to regenerate effectively over sciatic nerve tissue sections. When ganglia are similarly explanted onto cryostat sections of adult rat central nervous system tissue, however, axonal regeneration is virtually absent. We have begun to identify the molecules in peripheral nerve that promote effective axonal regeneration by examining the effect of antibodies that interfere with the activity of previously described neurite growth-promoting factors. Axonal elongation over sciatic nerve tissue was found to be sensitive to the inhibitory effects of INO (for inhibitor of neurite outgrowth), a monoclonal antibody that recognizes and inhibits a neurite growth-promoting activity from PC-12 cell-conditioned medium. The INO antigen appears to be a molecular complex of laminin and heparan sulfate proteoglycan. In contrast, a rabbit antiserum that recognizes laminin purified from mouse Engelbreth-Holm-Swarm (EHS) sarcoma, stains the Schwann cell basal lamina of peripheral nerve, and inhibits neurite growth over purified laminin substrata has no detectable effect on the rate of axonal regeneration in our assay.

  2. Disruption of lysosome function promotes tumor growth and metastasis in Drosophila.

    PubMed

    Chi, Congwu; Zhu, Huanhu; Han, Min; Zhuang, Yuan; Wu, Xiaohui; Xu, Tian

    2010-07-09

    Lysosome function is essential to many physiological processes. It has been suggested that deregulation of lysosome function could contribute to cancer. Through a genetic screen in Drosophila, we have discovered that mutations disrupting lysosomal degradation pathway components contribute to tumor development and progression. Loss-of-function mutations in the Class C vacuolar protein sorting (VPS) gene, deep orange (dor), dramatically promote tumor overgrowth and invasion of the Ras(V12) cells. Knocking down either of the two other components of the Class C VPS complex, carnation (car) and vps16A, also renders Ras(V12) cells capable for uncontrolled growth and metastatic behavior. Finally, chemical disruption of the lysosomal function by feeding animals with antimalarial drugs, chloroquine or monensin, leads to malignant tumor growth of the Ras(V12) cells. Taken together, our data provide evidence for a causative role of lysosome dysfunction in tumor growth and invasion and indicate that members of the Class C VPS complex behave as tumor suppressors.

  3. Plant Growth Promoting Rhizobacteria and Silicon Synergistically Enhance Salinity Tolerance of Mung Bean

    PubMed Central

    Mahmood, Sajid; Daur, Ihsanullah; Al-Solaimani, Samir G.; Ahmad, Shakeel; Madkour, Mohamed H.; Yasir, Muhammad; Hirt, Heribert; Ali, Shawkat; Ali, Zahir

    2016-01-01

    The present study explored the eco-friendly approach of utilizing plant-growth-promoting rhizobacteria (PGPR) inoculation and foliar application of silicon (Si) to improve the physiology, growth, and yield of mung bean under saline conditions. We isolated 18 promising PGPR from natural saline soil in Saudi Arabia, and screened them for plant-growth-promoting activities. Two effective strains were selected from the screening trial, and were identified as Enterobacter cloacae and Bacillus drentensis using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and 16S rRNA gene sequencing techniques, respectively. Subsequently, in a 2-year mung bean field trial, using a randomized complete block design with a split-split plot arrangement, we evaluated the two PGPR strains and two Si levels (1 and 2 kg ha−1), in comparison with control treatments, under three different saline irrigation conditions (3.12, 5.46, and 7.81 dS m−1). The results indicated that salt stress substantially reduced stomatal conductance, transpiration rate, relative water content (RWC), total chlorophyll content, chlorophyll a, chlorophyll b, carotenoid content, plant height, leaf area, dry biomass, seed yield, and salt tolerance index. The PGPR strains and Si levels independently improved all the aforementioned parameters. Furthermore, the combined application of the B. drentensis strain with 2 kg Si ha−1 resulted in the greatest enhancement of mung bean physiology, growth, and yield. Overall, the results of this study provide important information for the benefit of the agricultural industry. PMID:27379151

  4. Rhamnolipids production by multi-metal-resistant and plant-growth-promoting rhizobacteria.

    PubMed

    Singh, Anil Kumar; Cameotra, Swaranjit Singh

    2013-07-01

    The biosurfactant-producing Pseudomonas aeruginosa A11, with plant-growth-promoting (PGP) and multi-metal-resistant (MMR) features was isolated from the rhizosphere of a wild plant Parthenium hysterophorus. The strain A11 was able to utilize glycerol as a carbon source and produce 4,436.9 mg/L of biosurfactant after 120 h of incubation. The biosurfactants was characterized as rhamnolipids (RLs) by thin layer chromatography, Fourier transform infrared spectroscopy, nuclear magnetic resonance, and liquid chromatography-mass spectrometry analysis. Eight different RLs congeners were detected with RhaRhaC₁₀C₁₀ being most abundant. The purified rhamnolipid, dirhamnolipid, and monorhamnolipid reduced the surface tension of water to 29, 36, and 42 mN/m with critical micelle concentration of 83, 125, and 150 mg/L, respectively. The strain A11 demonstrated resistance against all the metals detected in rhizosphere except Hg and Ni. The strain A11 also possessed plant-growth-promoting features like siderophores, hydrogen cyanide, catalase, ammonia production, and phosphate solubilization. The dirhamnolipids formed crystals upon incubation at 4 °C, thus making separation of dirhamnolipids easy. Biosurfactant-producing ability along with MMR and PGP traits of the strain A11 makes it a potential candidate for application in the bacterial assisted enhancement of phytoremediation of heavy-metal-contaminated sites.

  5. After-rinsing hair growth promotion of minoxidil-containing amino alpha-cyclodextrins.

    PubMed

    Kim, Jin-Chul; Kim, Myoung-Dong

    2007-12-01

    Triamino alpha-cyclodextrin (CD) was synthesized and the inclusion complex with Minoxidil (MXD) was prepared. alpha-CD was azidated by modifying the 6-hydroxylmethyl CD rim with sodium azide. Then, mono-, di-, tri-, and tetra-azidocyclodextrins were separated by a flash column chromatography and reduced to the corresponding amines by hydrogenation with Pd/C. The substantivities of MXD included in either 2-hydroxypropyl alpha-CD (HP alpha-CD) or triamino alpha-CD were evaluated in vitro using hairless mice skins. After applying the preparations onto the skin and rinsing it, the amount of the drug left on the skin was determined using high-performance liquid chromatography (HPLC). It was the highest when the drug was included in triamino alpha-CD. The electrostatic interaction between the protonated amino CD and the negatively charged skin would be responsible for the relatively high substantivity. The in vivo hair growth promotion effect of each preparation was investigated, where the sample application onto the clipped backs of female mice (C57BL6) and the subsequent rinsing of the backs were done once a day for 30 days. Only MXD in triamino alpha-CD had hair growth promotion effect, possibly due to the significant substantivity.

  6. Evaluation of root-knot nematode disease control and plant growth promotion potential of biofertilizer Ning shield on Trichosanthes kirilowii in the field.

    PubMed

    Jiang, Chun-Hao; Xie, Ping; Li, Ke; Xie, Yue-Sheng; Chen, Liu-Jun; Wang, Jin-Suo; Xu, Quan; Guo, Jian-Hua

    Biofertilizer Ning shield was composed of different strains of plant growth promotion bacteria. In this study, the plant growth promotion and root-knot nematode disease control potential on Trichosanthes kirilowii in the field were evaluated. The application of Ning shield significantly reduced the diseases severity caused by Meloidogyne incognita, the biocontrol efficacy could reached up to 51.08%. Ning shield could also promote the growth of T. kirilowii in the field by increasing seedling emergence, height and the root weight. The results showed that the Ning shield could enhance the production yield up to 36.26%. Ning shield could also promote the plant growth by increasing the contents of available nitrogen, phosphorus, potassium and organic matter, and increasing the contents of leaf chlorophyll and carotenoid pigment. Moreover, Ning shield could efficiently enhance the medicinal compositions of Trichosanthes, referring to the polysaccharides and trichosanthin. Therefore, Ning shield is a promising biofertilizer, which can offer beneficial effects to T. kirilowii growers, including the plant growth promotion, the biological control of root-knot disease and enhancement of the yield and the medicinal quality. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  7. The Complete Genome Sequence of the Plant Growth-Promoting Bacterium Pseudomonas sp. UW4

    PubMed Central

    Duan, Jin; Jiang, Wei; Cheng, Zhenyu; Heikkila, John J.; Glick, Bernard R.

    2013-01-01

    The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs) were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated “housekeeping” genes (16S rRNA, gyrB, rpoB and rpoD) of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup. PMID:23516524

  8. The miR-24-Bim pathway promotes tumor growth and angiogenesis in pancreatic carcinoma.

    PubMed

    Liu, Rui; Zhang, Haiyang; Wang, Xia; Zhou, Likun; Li, Hongli; Deng, Ting; Qu, Yanjun; Duan, Jingjing; Bai, Ming; Ge, Shaohua; Ning, Tao; Zhang, Le; Huang, Dingzhi; Ba, Yi

    2015-12-22

    miRNAs are a group of small RNAs that have been reported to play a key role at each stage of tumorigenesis and are believed to have future practical value. We now demonstrate that Bim, which stimulates cell apoptosis, is obviously down-regulated in pancreatic cancer (PaC) tissues and cell lines. And Bim-related miR-24 is significantly up-regulated in PaC. The repressed expression of Bim is proved to be a result of miR-24, thus promoting cell growth of both cancer and vascular cells, and accelerating vascular ring formation. By using mouse tumor model, we clearly showed that miR-24 promotes tumor growth and angiogenesis by suppressing Bim expression in vivo. Therefore, a new pathway comprising miR-24 and Bim can be used in the exploration of drug-target therapy of PaC.

  9. Dietary tributyrin, an HDAC inhibitor, promotes muscle growth through enhanced terminal differentiation of satellite cells.

    PubMed

    Murray, Robert L; Zhang, Wei; Iwaniuk, Marie; Grilli, Ester; Stahl, Chad H

    2018-05-01

    Muscle growth and repair rely on two main mechanisms - myonuclear accretion and subsequent protein accumulation. Altering the ability of muscle resident stem cells (satellite cells) to progress through their myogenic lineage can have a profound effect on lifetime muscle growth and repair. The use of the histone deacetylase (HDAC) inhibitor, butyrate, has had positive outcomes on the in vitro promotion of satellite cell myogenesis. In animal models, the use of butyrate has had promising results in treating myopathic conditions as well as improving growth efficiency, but the impact of dietary butyrate on satellite cells and muscle growth has not been elucidated. We investigated the impact of tributyrin, a butyrate prodrug, on satellite cell activity and muscle growth in a piglet model. Satellite cells from tributyrin-treated piglets had altered myogenic potential, and piglets receiving tributyrin had a ~40% increase in DNA:protein ratio after 21 days, indicating the potential for enhanced muscle growth. To assess muscle growth potential, piglets were supplemented tributyrin (0.5%) during either the neonatal phase (d1-d21) and/or the nursery phase (d21-d58) in a 2 × 2 factorial design. Piglets who received tributyrin during the neonatal phase had improved growth performance at the end of the study and had a ~10% larger loin eye area and muscle fiber cross-sectional area. Tributyrin treatment in the nursery phase alone did not have a significant effect on muscle growth or feed efficiency. These findings suggest that tributyrin is a potent promoter of muscle growth via altered satellite cell myogenesis. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  10. Endogenous Abscisic Acid Promotes Hypocotyl Growth and Affects Endoreduplication during Dark-Induced Growth in Tomato (Solanum lycopersicum L.)

    PubMed Central

    Humplík, Jan F.; Bergougnoux, Véronique; Jandová, Michaela; Šimura, Jan; Pěnčík, Aleš; Tomanec, Ondřej; Rolčík, Jakub; Novák, Ondřej; Fellner, Martin

    2015-01-01

    Dark-induced growth (skotomorphogenesis) is primarily characterized by rapid elongation of the hypocotyl. We have studied the role of abscisic acid (ABA) during the development of young tomato (Solanum lycopersicum L.) seedlings. We observed that ABA deficiency caused a reduction in hypocotyl growth at the level of cell elongation and that the growth in ABA-deficient plants could be improved by treatment with exogenous ABA, through which the plants show a concentration dependent response. In addition, ABA accumulated in dark-grown tomato seedlings that grew rapidly, whereas seedlings grown under blue light exhibited low growth rates and accumulated less ABA. We demonstrated that ABA promotes DNA endoreduplication by enhancing the expression of the genes encoding inhibitors of cyclin-dependent kinases SlKRP1 and SlKRP3 and by reducing cytokinin levels. These data were supported by the expression analysis of the genes which encode enzymes involved in ABA and CK metabolism. Our results show that ABA is essential for the process of hypocotyl elongation and that appropriate control of the endogenous level of ABA is required in order to drive the growth of etiolated seedlings. PMID:25695830

  11. Neuropilin-1 modulates TGFβ signaling to drive glioblastoma growth and recurrence after anti-angiogenic therapy

    PubMed Central

    Kwiatkowski, Sam C.; Guerrero, Paola A.; Hirota, Shinya; Chen, Zhihua; Morales, John E.; Aghi, Manish

    2017-01-01

    Glioblastoma (GBM) is a rapidly progressive brain cancer that exploits the neural microenvironment, and particularly blood vessels, for selective growth and survival. Anti-angiogenic agents such as the vascular endothelial growth factor-A (VEGF-A) blocking antibody bevacizumab yield short-term benefits to patients due to blood vessel regression and stabilization of vascular permeability. However, tumor recurrence is common, and this is associated with acquired resistance to bevacizumab. The mechanisms that drive acquired resistance and tumor recurrence in response to anti-angiogenic therapy remain largely unknown. Here, we report that Neuropilin-1 (Nrp1) regulates GBM growth and invasion by balancing tumor cell responses to VEGF-A and transforming growth factor βs (TGFβs). Nrp1 is expressed in GBM cells where it promotes TGFβ receptor internalization and signaling via Smad transcription factors. GBM that recur after bevacizumab treatment show down-regulation of Nrp1 expression, indicating that altering the balance between VEGF-A and TGFβ signaling is one mechanism that promotes resistance to anti-angiogenic agents. Collectively, these data reveal that Nrp1 plays a critical role in balancing responsiveness to VEGF-A versus TGFβ to regulate GBM growth, progression, and recurrence after anti-vascular therapy. PMID:28938007

  12. Repression of myoblast proliferation and fibroblast growth factor receptor 1 promoter activity by KLF10 protein.

    PubMed

    Parakati, Rajini; DiMario, Joseph X

    2013-05-10

    FGFR1 gene expression regulates myoblast proliferation and differentiation, and its expression is controlled by Krüppel-like transcription factors. KLF10 interacts with the FGFR1 promoter, repressing its activity and cell proliferation. KLF10 represses FGFR1 promoter activity and thereby myoblast proliferation. A model of transcriptional control of chicken FGFR1 gene regulation during myogenesis is presented. Skeletal muscle development is controlled by regulation of myoblast proliferation and differentiation into muscle fibers. Growth factors such as fibroblast growth factors (FGFs) and their receptors (FGFRs) regulate cell proliferation and differentiation in numerous tissues, including skeletal muscle. Transcriptional regulation of FGFR1 gene expression is developmentally regulated by the Sp1 transcription factor, a member of the Krüppel-like factor (KLF) family of transcriptional regulators. Here, we show that another KLF transcription factor, KLF10, also regulates myoblast proliferation and FGFR1 promoter activity. Expression of KLF10 reduced myoblast proliferation by 86%. KLF10 expression also significantly reduced FGFR1 promoter activity in myoblasts and Sp1-mediated FGFR1 promoter activity in Drosophila SL2 cells. Southwestern blot, electromobility shift, and chromatin immunoprecipitation assays demonstrated that KLF10 bound to the proximal Sp factor binding site of the FGFR1 promoter and reduced Sp1 complex formation with the FGFR1 promoter at that site. These results indicate that KLF10 is an effective repressor of myoblast proliferation and represses FGFR1 promoter activity in these cells via an Sp1 binding site.

  13. A Novel Growth Factor and Anti-Apoptotic Agent for Promoting Lung Development and Treating Lung Disease | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at the NCI have developed a new therapeutic strategy for lung cancer using secretoglobin family 3A member 2 (SCGB3A2), as a cell proliferative and anti-apoptotic agent. SCGB3A2 can be used to inhibit lung damage that results from treatment with anti-cancer agents. NCI seeks parties to license or co-develop this technology.

  14. Prevention and Treatment of Colorectal Cancer by Natural Agents From Mother Nature

    PubMed Central

    Aggarwal, Bharat; Prasad, Sahdeo; Sung, Bokyung; Krishnan, Sunil; Guha, Sushovan

    2013-01-01

    Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the United States after cancers of the lung and the breast/prostate. While the incidence of CRC in the United States is among the highest in the world (approximately 52/100,000), its incidence in countries in India is among the lowest (approximately 7/100,000), suggesting that lifestyle factors may play a role in development of the disease. Whereas obesity, excessive alcohol consumption, a high-calorie diet, and a lack of physical activity promote this cancer, evidence indicates that foods containing folates, selenium, Vitamin D, dietary fiber, garlic, milk, calcium, spices, vegetables, and fruits are protective against CRC in humans. Numerous agents from “mother nature” (also called “nutraceuticals,”) that have potential to both prevent and treat CRC have been identified. The most significant discoveries relate to compounds such as cardamonin, celastrol, curcumin, deguelin, diosgenin, thymoquinone, tocotrienol, ursolic acid, and zerumbone. Unlike pharmaceutical drugs, these agents modulate multiple targets, including transcription factors, growth factors, tumor cell survival factors, inflammatory pathways, and invasion and angiogenesis linked closely to CRC. We describe the potential of these dietary agents to suppress the growth of human CRC cells in culture and to inhibit tumor growth in animal models. We also describe clinical trials in which these agents have been tested for efficacy in humans. Because of their safety and affordability, these nutraceuticals provide a novel opportunity for treatment of CRC, an “old age” disease with an “age old” solution. PMID:23814530

  15. Mechanosensation Dynamically Coordinates Polar Growth and Cell Wall Assembly to Promote Cell Survival.

    PubMed

    Davì, Valeria; Tanimoto, Hirokazu; Ershov, Dmitry; Haupt, Armin; De Belly, Henry; Le Borgne, Rémi; Couturier, Etienne; Boudaoud, Arezki; Minc, Nicolas

    2018-04-23

    How growing cells cope with size expansion while ensuring mechanical integrity is not known. In walled cells, such as those of microbes and plants, growth and viability are both supported by a thin and rigid encasing cell wall (CW). We deciphered the dynamic mechanisms controlling wall surface assembly during cell growth, using a sub-resolution microscopy approach to monitor CW thickness in live rod-shaped fission yeast cells. We found that polar cell growth yielded wall thinning and that thickness negatively influenced growth. Thickness at growing tips exhibited a fluctuating behavior with thickening phases followed by thinning phases, indicative of a delayed feedback promoting thickness homeostasis. This feedback was mediated by mechanosensing through the CW integrity pathway, which probes strain in the wall to adjust synthase localization and activity to surface growth. Mutants defective in thickness homeostasis lysed by rupturing the wall, demonstrating its pivotal role for walled cell survival. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. PreImplantation factor (PIF*) promotes embryotrophic and neuroprotective decidual genes: effect negated by epidermal growth factor.

    PubMed

    Duzyj, Christina M; Paidas, Michael J; Jebailey, Lellean; Huang, Jing Shun; Barnea, Eytan R

    2014-01-01

    Intimate embryo-maternal interaction is paramount for pregnancy success post-implantation. The embryo follows a specific developmental timeline starting with neural system, dependent on endogenous and decidual factors. Beyond altered genetics/epigenetics, post-natal diseases may initiate at prenatal/neonatal, post-natal period, or through a continuum. Preimplantation factor (PIF) secreted by viable embryos promotes implantation and trophoblast invasion. Synthetic PIF reverses neuroinflammation in non-pregnant models. PIF targets embryo proteins that protect against oxidative stress and protein misfolding. We report of PIF's embryotrophic role and potential to prevent developmental disorders by regulating uterine milieu at implantation and first trimester. PIF's effect on human implantation (human endometrial stromal cells (HESC)) and first-trimester decidua cultures (FTDC) was examined, by global gene expression (Affymetrix), disease-biomarkers ranking (GeneGo), neuro-specific genes (Ingenuity) and proteins (mass-spectrometry). PIF co-cultured epidermal growth factor (EGF) in both HESC and FTDC (Affymetrix) was evaluated. In HESC, PIF promotes neural differentiation and transmission genes (TLX2, EPHA10) while inhibiting retinoic acid receptor gene, which arrests growth. PIF promotes axon guidance and downregulates EGF-dependent neuroregulin signaling. In FTDC, PIF promotes bone morphogenetic protein pathway (SMAD1, 53-fold) and axonal guidance genes (EPH5) while inhibiting PPP2R2C, negative cell-growth regulator, involved in Alzheimer's and amyotrophic lateral sclerosis. In HESC, PIF affects angiotensin via beta-arrestin, transforming growth factor-beta (TGF-β), notch, BMP, and wingless-int (WNT) signaling pathways that promote neurogenesis involved in childhood neurodevelopmental diseases-autism and also affected epithelial-mesenchymal transition involved in neuromuscular disorders. In FTDC, PIF upregulates neural development and hormone signaling, while

  17. PreImplantation factor (PIF*) promotes embryotrophic and neuroprotective decidual genes: effect negated by epidermal growth factor

    PubMed Central

    2014-01-01

    Background Intimate embryo-maternal interaction is paramount for pregnancy success post-implantation. The embryo follows a specific developmental timeline starting with neural system, dependent on endogenous and decidual factors. Beyond altered genetics/epigenetics, post-natal diseases may initiate at prenatal/neonatal, post-natal period, or through a continuum. Preimplantation factor (PIF) secreted by viable embryos promotes implantation and trophoblast invasion. Synthetic PIF reverses neuroinflammation in non-pregnant models. PIF targets embryo proteins that protect against oxidative stress and protein misfolding. We report of PIF’s embryotrophic role and potential to prevent developmental disorders by regulating uterine milieu at implantation and first trimester. Methods PIF’s effect on human implantation (human endometrial stromal cells (HESC)) and first-trimester decidua cultures (FTDC) was examined, by global gene expression (Affymetrix), disease-biomarkers ranking (GeneGo), neuro-specific genes (Ingenuity) and proteins (mass-spectrometry). PIF co-cultured epidermal growth factor (EGF) in both HESC and FTDC (Affymetrix) was evaluated. Results In HESC, PIF promotes neural differentiation and transmission genes (TLX2, EPHA10) while inhibiting retinoic acid receptor gene, which arrests growth. PIF promotes axon guidance and downregulates EGF-dependent neuroregulin signaling. In FTDC, PIF promotes bone morphogenetic protein pathway (SMAD1, 53-fold) and axonal guidance genes (EPH5) while inhibiting PPP2R2C, negative cell-growth regulator, involved in Alzheimer’s and amyotrophic lateral sclerosis. In HESC, PIF affects angiotensin via beta-arrestin, transforming growth factor-beta (TGF-β), notch, BMP, and wingless-int (WNT) signaling pathways that promote neurogenesis involved in childhood neurodevelopmental diseases—autism and also affected epithelial-mesenchymal transition involved in neuromuscular disorders. In FTDC, PIF upregulates neural development

  18. Characterization of Cd-resistant Klebsiella michiganensis MCC3089 and its potential for rice seedling growth promotion under Cd stress.

    PubMed

    Mitra, Soumik; Pramanik, Krishnendu; Ghosh, Pallab Kumar; Soren, Tithi; Sarkar, Anumita; Dey, Ramendra Sundar; Pandey, Sanjeev; Maiti, Tushar Kanti

    2018-05-01

    Application of heavy metal resistant plant growth promoting rhizobacteria has an important role as they help to evade metal-induced toxicity in plants on one hand and enhance plant growth on the other. The present study is therefore focused on the characterization of a cadmium resistant bacterial strain isolated from heavy metal contaminated rhizospheric soil designated as S8. This S8 strain was selected in terms of cadmium resistance and plant growth promoting traits. Moreover, it also showed resistance to lead and arsenic to a considerable extent. The selected strain S8 was identified as Klebsiella michiganensis by modern approaches of bacterial taxonomy. The plant growth promoting traits exhibited by the strain include 1-aminocyclopropane-1-carboxylic acid deaminase activity (58.33 ng α-keto butyrate/mg protein/h), Indole-3-acetic acid production (671 μg/ml), phosphate solubilization (71.98 ppm), nitrogen fixation (3.72 μg of nitrogen fixed/h/mg protein) etc. Besides, the strain also exhibited high cadmium removal efficiency (73-97%) from the medium and intracellular accumulation as well. Its efficiency to alleviate cadmium-induced toxicity was determined against a rice cultivar in terms of morphological and biochemical changes. Enhanced growth and reduced oxidative stress were detected in presence of the bacterium. On the basis of these results, it can be concluded that K. michiganensis strain S8 is cadmium accumulating plant growth promoting rhizobacterium that can be applied in cadmium contaminated agricultural soil to achieve better productivity of rice. Copyright © 2018 Elsevier GmbH. All rights reserved.

  19. Does health promote economic growth? Portuguese case study: from dictatorship to full democracy.

    PubMed

    Morgado, Sónia Maria Aniceto

    2014-07-01

    This paper revisits the debate on health and economic growth (Deaton in J Econ Lit 51:113-158, 2003) focusing on the Portuguese case by testing the relationship between growth and health. We test Portuguese insights, using time series data from 1960 to 2005, taking into account different variables (life expectancy, labour, capital, infant mortality) and considering the years that included major events on the political scene, such as the dictatorship and a closed economy (1960-1974), a revolution (1974) and full democracy and an open economy (1975-2005), factors that influence major economic, cultural, social and politic indicators. Therefore the analysis is carried out adopting Lucas' (J Monet Econ 22(1):3-42, 1988) endogenous growth model that considers human capital as one factor of production, it adopts a VAR (vector autoregressive) model to test the causality between growth and health. Estimates based on the VAR seem to confirm that economic growth influences the health process, but health does not promote growth, during the period under study.

  20. Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth

    PubMed Central

    Kleffel, Sonja; Posch, Christian; Barthel, Steven R.; Mueller, Hansgeorg; Schlapbach, Christoph; Guenova, Emmanuella; Elco, Christopher P.; Lee, Nayoung; Juneja, Vikram R.; Zhan, Qian; Lian, Christine G.; Thomi, Rahel; Hoetzenecker, Wolfram; Cozzio, Antonio; Dummer, Reinhard; Mihm, Martin C.; Flaherty, Keith T.; Frank, Markus H.; Murphy, George F.; Sharpe, Arlene H.; Kupper, Thomas S.; Schatton, Tobias

    2015-01-01

    SUMMARY Therapeutic antibodies targeting programmed cell death-1 (PD-1) activate tumor-specific immunity and have shown remarkable efficacy in the treatment of melanoma. Yet, little is known about tumor cell-intrinsic PD-1 pathway effects. Here we show that murine and human melanomas contain PD-1-expressing cancer subpopulations and demonstrate that melanoma cell-intrinsic PD-1 promotes tumorigenesis, even in mice lacking adaptive immunity. PD-1 inhibition on melanoma cells by RNA interference, blocking antibodies, or mutagenesis of melanoma-PD-1 signaling motifs suppresses tumor growth in immunocompetent, immunocompromised and PD-1-deficient tumor graft recipient mice. Conversely, melanoma-specific PD-1 overexpression enhances tumorigenicity, as does engagement of melanoma-PD-1 by its ligand, PD-L1, whereas melanoma-PD-L1 inhibition or knockout of host-PD-L1 attenuate growth of PD-1-positive melanomas. Mechanistically, the melanoma-PD-1 receptor modulates downstream effectors of mTOR signaling. Our results identify melanoma cell-intrinsic functions of the PD-1:PD-L1 axis in tumor growth and suggest that blocking melanoma-PD-1 might contribute to the striking clinical efficacy of anti-PD-1 therapy. PMID:26359984

  1. Plant-growth promoting Candida sp. AVGB4 with capability of 4-nitroaniline biodegradation under drought stress.

    PubMed

    Silambarasan, Sivagnanam; Vangnai, Alisa S

    2017-05-01

    This study focused on rhizospheric yeast capable of degrading a priority pollutant, 4-nitroaniline (4-NA), under drought stress. Candida sp. AVGB4 (AVGB4) inhabiting in soil was isolated and characterized with plant-growth promoting (PGP) traits. 4-NA-dependent growth kinetic and biodegradation kinetics were analyzed and revealed 4-NA complete degradation and tolerance property. AVGB4 proliferation, PGP activities, and 4-NA degradation activity were well maintained under drought stress induced by PEG-6000 incorporation, and could be strengthened in the presence of succinate, an organic compound generally found in plant root exudates. The in vitro experiments proved that AVGB4 significantly enhanced plant growth and increased the shoot and root biomass of Vigna radiata plant in the absence or presence of 4-NA. The overall results including cytogenotoxicity and phytotoxicity test with legumes indicated that not only AVGB4 was capable of 4-NA detoxification facilitating plants to cope with chemical-toxicity stress, but it also has advantageous role in promoting plant growth and sustainable rhizoremediation of 4-NA contaminated sites. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Epigenetic repression of regulator of G-protein signaling 2 promotes androgen-independent prostate cancer cell growth.

    PubMed

    Wolff, Dennis W; Xie, Yan; Deng, Caishu; Gatalica, Zoran; Yang, Mingjie; Wang, Bo; Wang, Jincheng; Lin, Ming-Fong; Abel, Peter W; Tu, Yaping

    2012-04-01

    G-protein-coupled receptor (GPCR)-stimulated androgen-independent activation of androgen receptor (AR) contributes to acquisition of a hormone-refractory phenotype by prostate cancer. We previously reported that regulator of G-protein signaling (RGS) 2, an inhibitor of GPCRs, inhibits androgen-independent AR activation (Cao et al., Oncogene 2006;25:3719-34). Here, we show reduced RGS2 protein expression in human prostate cancer specimens compared to adjacent normal or hyperplastic tissue. Methylation-specific PCR analysis and bisulfite sequencing indicated that methylation of the CpG island in the RGS2 gene promoter correlated with RGS2 downregulation in prostate cancer. In vitro methylation of this promoter suppressed reporter gene expression in transient transfection studies, whereas reversal of this promoter methylation with 5-aza-2'-deoxycytidine (5-Aza-dC) induced RGS2 reexpression in androgen-independent prostate cancer cells and inhibited their growth under androgen-deficient conditions. Interestingly, the inhibitory effect of 5-Aza-dC was significantly reduced by an RGS2-targeted short hairpin RNA, indicating that reexpressed RGS2 contributed to this growth inhibition. Restoration of RGS2 levels by ectopic expression in androgen-independent prostate cancer cells suppressed growth of xenografts in castrated mice. Thus, RGS2 promoter hypermethylation represses its expression and unmasks a latent pathway for AR transactivation in prostate cancer cells. Targeting this reversible process may provide a new strategy for suppressing prostate cancer progression by reestablishing its androgen sensitivity. Copyright © 2011 UICC.

  3. Pim Kinases Promote Migration and Metastatic Growth of Prostate Cancer Xenografts

    PubMed Central

    Santio, Niina M.; Eerola, Sini K.; Paatero, Ilkka; Yli-Kauhaluoma, Jari; Anizon, Fabrice; Moreau, Pascale; Tuomela, Johanna; Härkönen, Pirkko; Koskinen, Päivi J.

    2015-01-01

    Background and methods Pim family proteins are oncogenic kinases implicated in several types of cancer and involved in regulation of cell proliferation, survival as well as motility. Here we have investigated the ability of Pim kinases to promote metastatic growth of prostate cancer cells in two xenograft models for human prostate cancer. We have also evaluated the efficacy of Pim-selective inhibitors to antagonize these effects. Results We show here that tumorigenic growth of both subcutaneously and orthotopically inoculated prostate cancer xenografts is enhanced by stable overexpression of either Pim-1 or Pim-3. Moreover, Pim-overexpressing orthotopic prostate tumors are highly invasive and able to migrate not only to the nearby prostate-draining lymph nodes, but also into the lungs to form metastases. When the xenografted mice are daily treated with the Pim-selective inhibitor DHPCC-9, both the volumes as well as the metastatic capacity of the tumors are drastically decreased. Interestingly, the Pim-promoted metastatic growth of the orthotopic xenografts is associated with enhanced angiogenesis and lymphangiogenesis. Furthermore, forced Pim expression also increases phosphorylation of the CXCR4 chemokine receptor, which may enable the tumor cells to migrate towards tissues such as the lungs that express the CXCL12 chemokine ligand. Conclusions Our results indicate that Pim overexpression enhances the invasive properties of prostate cancer cells in vivo. These effects can be reduced by the Pim-selective inhibitor DHPCC-9, which can reach tumor tissues without serious side effects. Thus, Pim-targeting therapies with DHPCC-9-like compounds may help to prevent progression of local prostate carcinomas to fatally metastatic malignancies. PMID:26075720

  4. Enhanced performance of the microalga Chlorella sorokiniana remotely induced by the plant growth-promoting bacteria Azospirillum brasilense and Bacillus pumilus

    PubMed Central

    Amavizca, Edgar; Bashan, Yoav; Ryu, Choong-Min; Farag, Mohamed A.; Bebout, Brad M.; de-Bashan, Luz E.

    2017-01-01

    Remote effects (occurring without physical contact) of two plant growth-promoting bacteria (PGPB) Azospirillum brasilense Cd and Bacilus pumilus ES4 on growth of the green microalga Chlorella sorokiniana UTEX 2714 were studied. The two PGPB remotely enhanced the growth of the microalga, up to six-fold, and its cell volume by about three-fold. In addition to phenotypic changes, both bacteria remotely induced increases in the amounts of total lipids, total carbohydrates, and chlorophyll a in the cells of the microalga, indicating an alteration of the microalga’s physiology. The two bacteria produced large amounts of volatile compounds, including CO2, and the known plant growth-promoting volatile 2,3-butanediol and acetoin. Several other volatiles having biological functions in other organisms, as well as numerous volatile compounds with undefined biological roles, were detected. Together, these bacteria-derived volatiles can positively affect growth and metabolic parameters in green microalgae without physical attachment of the bacteria to the microalgae. This is a new paradigm on how PGPB promote growth of microalgae which may serve to improve performance of Chlorella spp. for biotechnological applications. PMID:28145473

  5. Interactions with Astroglia Influence the Shape of the Developing Dendritic Arbor and Restrict Dendrite Growth Independent of Promoting Synaptic Contacts

    PubMed Central

    Farley, Jennifer R.; Sterritt, Jeffrey R.; Crane, Andrés B.; Wallace, Christopher S.

    2017-01-01

    Astroglia play key roles in the development of neurons, ranging from regulating neuron survival to promoting synapse formation, yet basic questions remain about whether astrocytes might be involved in forming the dendritic arbor. Here, we used cultured hippocampal neurons as a simple in vitro model that allowed dendritic growth and geometry to be analyzed quantitatively under conditions where the extent of interactions between neurons and astrocytes varied. When astroglia were proximal to neurons, dendrites and dendritic filopodia oriented toward them, but the general presence of astroglia significantly reduced overall dendrite growth. Further, dendritic arbors in partial physical contact with astroglia developed a pronounced pattern of asymmetrical growth, because the dendrites in direct contact were significantly smaller than the portion of the arbor not in contact. Notably, thrombospondin, the astroglial factor shown previously to promote synapse formation, did not inhibit dendritic growth. Thus, while astroglia promoted the formation of presynaptic contacts onto dendrites, dendritic growth was constrained locally within a developing arbor at sites where dendrites contacted astroglia. Taken together, these observations reveal influences on spatial orientation of growth as well as influences on morphogenesis of the dendritic arbor that have not been previously identified. PMID:28081563

  6. Microenvironmental autophagy promotes tumour growth.

    PubMed

    Katheder, Nadja S; Khezri, Rojyar; O'Farrell, Fergal; Schultz, Sebastian W; Jain, Ashish; Rahman, Mohammed M; Schink, Kay O; Theodossiou, Theodossis A; Johansen, Terje; Juhász, Gábor; Bilder, David; Brech, Andreas; Stenmark, Harald; Rusten, Tor Erik

    2017-01-19

    As malignant tumours develop, they interact intimately with their microenvironment and can activate autophagy, a catabolic process which provides nutrients during starvation. How tumours regulate autophagy in vivo and whether autophagy affects tumour growth is controversial. Here we demonstrate, using a well characterized Drosophila melanogaster malignant tumour model, that non-cell-autonomous autophagy is induced both in the tumour microenvironment and systemically in distant tissues. Tumour growth can be pharmacologically restrained using autophagy inhibitors, and early-stage tumour growth and invasion are genetically dependent on autophagy within the local tumour microenvironment. Induction of autophagy is mediated by Drosophila tumour necrosis factor and interleukin-6-like signalling from metabolically stressed tumour cells, whereas tumour growth depends on active amino acid transport. We show that dormant growth-impaired tumours from autophagy-deficient animals reactivate tumorous growth when transplanted into autophagy-proficient hosts. We conclude that transformed cells engage surrounding normal cells as active and essential microenvironmental contributors to early tumour growth through nutrient-generating autophagy.

  7. SRF phosphorylation by glycogen synthase kinase-3 promotes axon growth in hippocampal neurons.

    PubMed

    Li, Cong L; Sathyamurthy, Aruna; Oldenborg, Anna; Tank, Dharmesh; Ramanan, Narendrakumar

    2014-03-12

    The growth of axons is an intricately regulated process involving intracellular signaling cascades and gene transcription. We had previously shown that the stimulus-dependent transcription factor, serum response factor (SRF), plays a critical role in regulating axon growth in the mammalian brain. However, the molecular mechanisms underlying SRF-dependent axon growth remains unknown. Here we report that SRF is phosphorylated and activated by GSK-3 to promote axon outgrowth in mouse hippocampal neurons. GSK-3 binds to and directly phosphorylates SRF on a highly conserved serine residue. This serine phosphorylation is necessary for SRF activity and for its interaction with MKL-family cofactors, MKL1 and MKL2, but not with TCF-family cofactor, ELK-1. Axonal growth deficits caused by GSK-3 inhibition could be rescued by expression of a constitutively active SRF. The SRF target gene and actin-binding protein, vinculin, is sufficient to overcome the axonal growth deficits of SRF-deficient and GSK-3-inhibited neurons. Furthermore, short hairpin RNA-mediated knockdown of vinculin also attenuated axonal growth. Thus, our findings reveal a novel phosphorylation and activation of SRF by GSK-3 that is critical for SRF-dependent axon growth in mammalian central neurons.

  8. POOLED ESTIMATES OF INCIDENCE OF ENDOPHTHALMITIS AFTER INTRAVITREAL INJECTION OF ANTI-VASCULAR ENDOTHELIAL GROWTH FACTOR AGENTS WITH AND WITHOUT TOPICAL ANTIBIOTIC PROPHYLAXIS.

    PubMed

    Reibaldi, Michele; Pulvirenti, Alfredo; Avitabile, Teresio; Bonfiglio, Vincenza; Russo, Andrea; Mariotti, Cesare; Bucolo, Claudio; Mastropasqua, Rodolfo; Parisi, Guglielmo; Longo, Antonio

    2018-01-01

    To assess the effect of topical antibiotic prophylaxis on postoperative endophthalmitis after intravitreal injection of anti-vascular endothelial growth factor agents. A systematic literature search was performed from inception to March 2016 using PubMed, Medline, Web of Science, Embase, and the Cochrane Library, to identify articles that reported cases of endophthalmitis after intravitreal injection of anti-vascular endothelial growth factor agents. We used a pooled analysis to estimate the incidence of cases of endophthalmitis who developed after injections performed with and without topical antibiotic prophylaxis. We used regression analysis to explore the effects of study characteristics on heterogeneity. From our search of electronic databases, we identified and screened 4,561 unique records. We judged 60 articles to have reported findings for cohorts of patients who met our inclusion criteria, (12 arms of randomized clinical trials, 11 prospective cohort studies, and 37 retrospective cohort studies), which included 244 cases of endophthalmitis and 639,391 intravitreal injections of anti-vascular endothelial growth factor agents. The final pooled estimate endophthalmitis proportions were 9/10,000 (95% confidence interval, 7/10,000-12/10,000) in the antibiotic-treated group and 3/10,000 (95% confidence interval, 2/10,000-5/10,000) in the untreated group. The estimated incidence of endophthalmitis with topical antibiotic prophylaxis was approximated three times the incidence without prophylaxis. Random effects regression showed that none of the study characteristics significantly affected the effect size in either group. Topical antibiotic after intravitreal injection of anti-vascular endothelial growth factor agents is associated with a higher risk of endophthalmitis.

  9. Antimicrobial Growth Promoters and Salmonella spp., Campylobacter spp. in Poultry and Swine, Denmark

    PubMed Central

    Wegener, Henrik C.

    2003-01-01

    The use of antimicrobial growth promoters in Danish food animal production was discontinued in 1998. Contrary to concerns that pathogen load would increase; we found a significant decrease in Salmonella in broilers before and after slaughter of swine and pork and no change in the prevalence of Campylobacter in broilers. PMID:12702233

  10. Plant growth-promoting potential of bacteria isolated from active volcano sites of Barren Island, India.

    PubMed

    Amaresan, N; Kumar, K; Sureshbabu, K; Madhuri, K

    2014-02-01

    To elucidate the biodiversity of plant growth-promoting (PGP) bacteria in active volcano sites of Barren Island, India, a total of 102 bacteria were isolated and screened for their multifunctional PGP properties. The results revealed that 21 isolates (20.6%) survived heat shock at 72°C and 11 (10.8%) isolates were able to grow exposed to 25% NaCl (w/v). In assaying for PGP properties, 59 (57.8%) isolates shown indole acetic acid (IAA) like substances production, 57 isolates (55.9%) produced siderophore and 34 (33.3%) solubilized inorganic phosphate qualitatively. Whereas in the production of extracellular enzymes, 42 isolates (41.2%) produced protease and amylase, 26 (25.5%) isolates produced lipase and 24 (23.5%) isolates produced cellulase. In antagonistic activity, 30 isolates (29.4%) were found antagonistic against Macrophomina sp., 20 isolates (19.6%) against Rhizoctonia solani and 15 isolates (14.7%) against Sclerotium rolfsii. The results based on 16 rRNA gene sequencing revealed that the PGP bacteria belonged to 22 different species comprising 13 genera. Based on multifunctional properties, nine isolates were further selected to determine the PGP in brinjal and chilli seeds. Of the bacteria tested, the isolate BAN87 showed increased root and shoot length of both the crops followed in plant growth promotion by BAN86 and BAN43. The outcome of this research proves plausible practical applicability of these PGPB for crop production in soils of saline and arid environments. The present research shows diverse plant growth-promoting (PGP) bacteria could be isolated from the active volcano site and suggests that volcano sites represent an ecological niche, which harbours a diverse and hitherto largely uncharacterized microbial population with yet unknown and untapped potential biotechnological applications, for example, plant growth promoters, as evidenced from this study. The outcome of this research may have a practical effect on crop production methodologies in

  11. Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger.

    PubMed

    Dinesh, Raghavan; Anandaraj, Muthuswamy; Kumar, Aundy; Bini, Yogiyar Kundil; Subila, Kizhakke Purayil; Aravind, Ravindran

    2015-04-01

    In this study, 100 PGPR strains isolated from different varieties of ginger (Zingiber officinale Rosc.) were first characterized for their morphological, biochemical, and nutrient mobilization traits in vitro. The PGPR were also screened in vitro for inhibition of Pythium myriotylum causing soft rot in ginger. Results revealed that only five PGPR showed >70% suppression of P. myriotylum. These 5 PGPR viz., GRB (Ginger rhizobacteria) 25--Burkholderia cepacia, GRB35--Bacillus amyloliquefaciens; GRB58--Serratia marcescens; GRB68--S. marcescens; GRB91--Pseudomonas aeruginosa were used for further growth promotion and biocontrol studies in the green house and field. The green house study revealed that GRB35 (B. amyloliquefaciens) and GRB68 (S. marcescens) registered markedly higher sprouting (96.3%) and lower disease incidence (48.1%) and greater rhizome yield (365.6 g pot(-1) and 384.4 g pot(-1), respectively), while control registered the lowest sprouting (66%), maximum soft rot incidence (100%) and lowest rhizome yield (134.4 g pot(-1)). In the field experiments also, GRB68 (S. marcescens) and GRB35 (B. amyloliquefaciens) registered the greatest sprouting (80% each), markedly lower soft rot incidence (5.2% and 7.3%, respectively) and higher yield (5.0 and 4.3 kg(3)m(-2), respectively) compared to chemicals like Streptomycin sulphate (73.0%, 18.5% and 2.3 kg(3)m(-2), respectively), Metalaxyl-Mancozeb (73.0%, 14.0% and 3.8 kg(3)m(-2), respectively) and control (73.0%, 25.1% and 2.2 kg 3m(-2), respectively). Overall, the results suggested that for growth promotion and management of soft rot disease in ginger, GRB35 B. amyloliquefaciens and GRB68 S. marcescens could be good alternatives to chemical measures. Since, the latter has been reported to be an opportunistic human pathogen, we recommend the use of B. amyloliquefaciens for integration into nutrient and disease management schedules for ginger cultivation. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. S100B promotes glioma growth through chemoattraction of myeloid-derived macrophages.

    PubMed

    Wang, Huaqing; Zhang, Leying; Zhang, Ian Y; Chen, Xuebo; Da Fonseca, Anna; Wu, Shihua; Ren, Hui; Badie, Sam; Sadeghi, Sam; Ouyang, Mao; Warden, Charles D; Badie, Behnam

    2013-07-15

    S100B is member of a multigenic family of Ca(2+)-binding proteins, which is overexpressed by gliomas. Recently, we showed that low concentrations of S100B attenuated microglia activation through the induction of Stat3. We hypothesized that overexpression of S100B in gliomas could promote tumor growth by modulating the activity of tumor-associated macrophages (TAM). We stably transfected GL261 glioma cell lines with constructs that overexpressed (S100B(high)) or underexpressed (S100B(low)) S100B and compared their growth characteristics to intracranial wild-type (S100B(wt)) tumors. Downregulation of S100B in gliomas had no impact on cell division in vitro but abrogated tumor growth in vivo. Interestingly, compared to S100B(low) tumors, S100B(wt) and S100B(high) intracranial gliomas exhibited higher infiltration of TAMs, stronger inflammatory cytokine expression, and increased vascularity. To identify the potential mechanisms involved, the expression of the S100B receptor, receptor for advanced glycation end products (RAGE), was evaluated in gliomas. Although S100B expression induced RAGE in vivo, RAGE ablation in mice did not significantly inhibit TAM infiltration into gliomas, suggesting that other pathways were involved in this process. To evaluate other mechanisms responsible for TAM chemoattraction, we then examined chemokine pathways and found that C-C motif ligand 2 (CCL2) was upregulated in S100B(high) tumors. Furthermore, analysis of The Cancer Genome Atlas's glioma data bank showed a positive correlation between S100B and CCL2 expression in human proneural and neural glioma subtypes, supporting our finding. These observations suggest that S100B promotes glioma growth by TAM chemoattraction through upregulation of CCL2 and introduces the potential utility of S100B inhibitors for glioma therapy.

  13. S100B Promotes Glioma Growth through Chemoattraction of Myeloid-Derived Macrophages

    PubMed Central

    Wang, Huaqing; Zhang, Leying; Zhang, Ian Y.; Chen, Xuebo; Da Fonseca, Anna; Wu, Shihua; Ren, Hui; Badie, Sam; Sadeghi, Sam; Ouyang, Mao; Warden, Charles D.; Badie, Behnam

    2013-01-01

    Purpose S100B is member of a multigenic family of Ca2+-binding proteins that is overexpressed by gliomas. Recently, we demonstrated that low concentrations of S100B attenuated microglia activation through the induction of Stat3. We hypothesized that overexpression of S100B in gliomas could promote tumor growth by modulating the activity of tumor-associated macrophages (TAMs). Experimental Design We stably transfected GL261 glioma cell lines with constructs that overexpressed (S100Bhigh) or underexpressed (S100Blow) S100B and compared their growth characteristics to intracranial wild-type (S100Bwt) tumors. Results Downregulation of S100B in gliomas had no impact on cell division in vitro but abrogated tumor growth in vivo. Interestingly, compared to S100Blow tumors, S100Bwt and S100Bhigh intracranial gliomas exhibited higher infiltration of TAMs, stronger inflammatory cytokine expression, and increased vascularity. To identify the potential mechanisms involved, the expression of the S100B receptor, RAGE (receptor for advanced glycation end products), was evaluated in gliomas. Although S100B expression induced RAGE in vivo, RAGE ablation in mice did not significantly inhibit TAM infiltration into gliomas, suggesting that other pathways were involved in this process. To evaluate other mechanisms responsible for TAM chemoattraction, we then examined chemokine pathways and found that CCL2 was upregulated in S100Bhigh tumors. Furthermore, analysis of TCGA’s glioma data bank demonstrated a positive correlation between S100B and CCL2 expression in human proneural and neural glioma subtypes, supporting our finding. Conclusions These observations suggest that S100B promotes glioma growth by TAM chemoattraction through upregulation of CCL2 and introduces the potential utility of S100B inhibitors for glioma therapy. PMID:23719262

  14. Potential synergistic effects of human placental extract and minoxidil on hair growth-promoting activity in C57BL/6J mice.

    PubMed

    Kwon, T-R; Oh, C T; Park, H M; Han, H J; Ji, H J; Kim, B J

    2015-08-01

    Human placenta extract (HPE) has been used to alleviate tiredness and promote wound healing, and for its antiageing functions; however, it has not yet been studied for its effects on hair growth. In the present study, we evaluated the in vitro effect of HPE on hair growth by observing its actions on human dermal papilla cells (DPCs). To define how HPE promotes induction of anagen hair growth during the telogen phase, and to understand the synergistic molecular mechanisms of HPE and minoxidil (MXD) actions on hair growth. We examined the effects of HPE and MXD on C57BL6/J mice using haematoxylin and eosin staining, quantitative histomorphometry, hair growth scoring, immunohistochemistry and immunofluorescence on the dorsal skins of C57BL/6J mice. We found that HPE synergistically augmented the effects of MXD, a promoter of hair growth. In particular, histomorphometric analysis data indicated that subcutaneous injection of HPE induced an earlier anagen phase and prolonged the anagen phase. It also stimulated increases in both the number and size of hair follicles in groups treated with HPE alone and HPE + MXD. From our data, we conclude that HPE increases β-catenin and Wnt3a expression levels. Overall, our findings suggest that HPE in combination with MXD has hair growth-promoting activity and is a potential novel therapeutic treatment for alopecia or baldness in humans. © 2015 British Association of Dermatologists.

  15. Occurrence and Characterization of Steroid Growth Promoters Associated with Particulate Matter Originating from Beef Cattle Feedyards.

    PubMed

    Blackwell, Brett R; Wooten, Kimberly J; Buser, Michael D; Johnson, Bradley J; Cobb, George P; Smith, Philip N

    2015-07-21

    Studies of steroid growth promoters from beef cattle feedyards have previously focused on effluent or surface runoff as the primary route of transport from animal feeding operations. There is potential for steroid transport via fugitive airborne particulate matter (PM) from cattle feedyards; therefore, the objective of this study was to characterize the occurrence and concentration of steroid growth promoters in PM from feedyards. Air sampling was conducted at commercial feedyards (n = 5) across the Southern Great Plains from 2010 to 2012. Total suspended particulates (TSP), PM10, and PM2.5 were collected for particle size analysis and steroid growth promoter analysis. Particle size distributions were generated from TSP samples only, while steroid analysis was conducted on extracts of PM samples using liquid chromatography mass spectrometry. Of seven targeted steroids, 17α-estradiol and estrone were the most commonly detected, identified in over 94% of samples at median concentrations of 20.6 and 10.8 ng/g, respectively. Melengestrol acetate and 17α-trenbolone were detected in 31% and 39% of all PM samples at median concentrations of 1.3 and 1.9 ng/g, respectively. Results demonstrate PM is a viable route of steroid transportation and may be a significant contributor to environmental steroid hormone loading from cattle feedyards.

  16. Antibiotic growth promoter-induced changes in the chicken intestine: A metabolomics analysis of virginiamycin and bacitracin methylene disalicylate

    USDA-ARS?s Scientific Manuscript database

    Abstract Although dietary antibiotic growth promoters have long been used to increase growth performance in commercial food animal production, the biochemical details associated with these effects remain poorly defined. A metabolomics approach was used to characterize and identify the biochemical co...

  17. Genome Sequence of Herbaspirillum sp. Strain GW103, a Plant Growth-Promoting Bacterium

    PubMed Central

    Lee, Gun Woong; Lee, Kui-Jae

    2012-01-01

    Herbaspirillum sp. strain GW103 was isolated from rhizosphere soil of the reed Phragmites australis on reclaimed land. Here we report the 5.05-Mb draft genome sequence of the strain, providing bioinformation about the agronomic benefits of this strain, such as multiple traits relevant to plant root colonization and plant growth promotion. PMID:22815460

  18. Bridging Grafts and Transient Nerve Growth Factor Infusions Promote Long-Term Central Nervous System Neuronal Rescue and Partial Functional Recovery

    NASA Astrophysics Data System (ADS)

    Tuszynski, Mark H.; Gage, Fred H.

    1995-05-01

    Grafts of favorable axonal growth substrates were combined with transient nerve growth factor (NGF) infusions to promote morphological and functional recovery in the adult rat brain after lesions of the septohippocampal projection. Long-term septal cholinergic neuronal rescue and partial hippocampal reinnervation were achieved, resulting in partial functional recovery on a simple task assessing habituation but not on a more complex task assessing spatial reference memory. Control animals that received transient NGF infusions without axonal-growth-promoting grafts lacked behavioral recovery but also showed long-term septal neuronal rescue. These findings indicate that (i) partial recovery from central nervous system injury can be induced by both preventing host neuronal loss and promoting host axonal regrowth and (ii) long-term neuronal loss can be prevented with transient NGF infusions.

  19. Plant growth promotion, metabolite production and metal tolerance of dark septate endophytes isolated from metal-polluted poplar phytomanagement sites.

    PubMed

    Berthelot, Charlotte; Leyval, Corinne; Foulon, Julie; Chalot, Michel; Blaudez, Damien

    2016-10-01

    Numerous studies address the distribution and the diversity of dark septate endophytes (DSEs) in the literature, but little is known about their ecological role and their effect on host plants, especially in metal-polluted soils. Seven DSE strains belonging to Cadophora, Leptodontidium, Phialophora and Phialocephala were isolated from roots of poplar trees from metal-polluted sites. All strains developed on a wide range of carbohydrates, including cell-wall-related compounds. The strains evenly colonized birch, eucalyptus and ryegrass roots in re-synthesis experiments. Root and shoot growth promotion was observed and was both plant and strain dependent. Two Phialophora and Leptodontidium strains particularly improved plant growth. However, there was no correlation between the level of root colonization by DSEs and the intensity of growth promotion. All strains produced auxin and six also stimulated plant growth through the release of volatile organic compounds (VOCs). SPME-GC/MS analyses revealed four major VOCs emitted by Cadophora and Leptodontidium The strains exhibited growth at high concentrations of several metals. The ability of metal-resistant DSE strains to produce both soluble and volatile compounds for plant growth promotion indicates interesting microbial resources with high potential to support sustainable production of bioenergy crops within the context of the phytomanagement of metal-contaminated sites. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. The Role of Plant Growth-Promoting Bacteria in Metal Phytoremediation.

    PubMed

    Kong, Zhaoyu; Glick, Bernard R

    2017-01-01

    Phytoremediation is a promising technology that uses plants and their associated microbes to clean up contaminants from the environment. In recent years, phytoremediation assisted by plant growth-promoting bacteria (PGPB) has been highly touted for cleaning up toxic metals from soil. PGPB include rhizospheric bacteria, endophytic bacteria and the bacteria that facilitate phytoremediation by other means. This review provides information about the traits and mechanisms possessed by PGPB that improve plant metal tolerance and growth, and illustrate mechanisms responsible for plant metal accumulation/translocation in plants. Several recent examples of phytoremediation of metals facilitated by PGPB are reviewed. Although many encouraging results have been reported in the past years, there have also been numerous challenges encountered in phytoremediation in the field. To implement PGPB-assisted phytoremediation of metals in the natural environment, there is also a need to critically assess the ecological effects of PGPB, especially for those nonnative bacteria. © 2017 Elsevier Ltd All rights reserved.

  1. Progesterone and HMOX-1 promote fetal growth by CD8+ T cell modulation

    PubMed Central

    Solano, María Emilia; Kowal, Mirka Katharina; O’Rourke, Greta Eugenia; Horst, Andrea Kristina; Modest, Kathrin; Plösch, Torsten; Barikbin, Roja; Remus, Chressen Catharina; Berger, Robert G.; Jago, Caitlin; Ho, Hoang; Sass, Gabriele; Parker, Victoria J.; Lydon, John P.; DeMayo, Francesco J.; Hecher, Kurt; Karimi, Khalil; Arck, Petra Clara

    2015-01-01

    Intrauterine growth restriction (IUGR) affects up to 10% of pregnancies in Western societies. IUGR is a strong predictor of reduced short-term neonatal survival and impairs long-term health in children. Placental insufficiency is often associated with IUGR; however, the molecular mechanisms involved in the pathogenesis of placental insufficiency and IUGR are largely unknown. Here, we developed a mouse model of fetal-growth restriction and placental insufficiency that is induced by a midgestational stress challenge. Compared with control animals, pregnant dams subjected to gestational stress exhibited reduced progesterone levels and placental heme oxygenase 1 (Hmox1) expression and increased methylation at distinct regions of the placental Hmox1 promoter. These stress-triggered changes were accompanied by an altered CD8+ T cell response, as evidenced by a reduction of tolerogenic CD8+CD122+ T cells and an increase of cytotoxic CD8+ T cells. Using progesterone receptor– or Hmox1-deficient mice, we identified progesterone as an upstream modulator of placental Hmox1 expression. Supplementation of progesterone or depletion of CD8+ T cells revealed that progesterone suppresses CD8+ T cell cytotoxicity, whereas the generation of CD8+CD122+ T cells is supported by Hmox1 and ameliorates fetal-growth restriction in Hmox1 deficiency. These observations in mice could promote the identification of pregnancies at risk for IUGR and the generation of clinical interventional strategies. PMID:25774501

  2. Plant Growth Promoting Rhizobacteria in Amelioration of Salinity Stress: A Systems Biology Perspective

    PubMed Central

    Ilangumaran, Gayathri; Smith, Donald L.

    2017-01-01

    Salinity affects plant growth and is a major abiotic stress that limits crop productivity. It is well-understood that environmental adaptations and genetic traits regulate salinity tolerance in plants, but imparting the knowledge gained towards crop improvement remain arduous. Harnessing the potential of beneficial microorganisms present in the rhizosphere is an alternative strategy for improving plant stress tolerance. This review intends to elucidate the understanding of salinity tolerance mechanisms attributed by plant growth promoting rhizobacteria (PGPR). Recent advances in molecular studies have yielded insights into the signaling networks of plant–microbe interactions that contribute to salt tolerance. The beneficial effects of PGPR involve boosting key physiological processes, including water and nutrient uptake, photosynthesis, and source-sink relationships that promote growth and development. The regulation of osmotic balance and ion homeostasis by PGPR are conducted through modulation of phytohormone status, gene expression, protein function, and metabolite synthesis in plants. As a result, improved antioxidant activity, osmolyte accumulation, proton transport machinery, salt compartmentalization, and nutrient status reduce osmotic stress and ion toxicity. Furthermore, in addition to indole-3-acetic acid and 1-aminocyclopropane-1-carboxylic acid deaminase biosynthesis, other extracellular secretions of the rhizobacteria function as signaling molecules and elicit stress responsive pathways. Application of PGPR inoculants is a promising measure to combat salinity in agricultural fields, thereby increasing global food production. PMID:29109733

  3. Influence of promoter/enhancer region haplotypes on MGMT transcriptional regulation: a potential biomarker for human sensitivity to alkylating agents.

    PubMed

    Xu, Meixiang; Nekhayeva, Ilona; Cross, Courtney E; Rondelli, Catherine M; Wickliffe, Jeffrey K; Abdel-Rahman, Sherif Z

    2014-03-01

    The O6-methylguanine-DNA methyltransferase gene (MGMT) encodes the direct reversal DNA repair protein that removes alkyl adducts from the O6 position of guanine. Several single-nucleotide polymorphisms (SNPs) exist in the MGMT promoter/enhancer (P/E) region. However, the haplotype structure encompassing these SNPs and their functional/biological significance are currently unknown. We hypothesized that MGMT P/E haplotypes, rather than individual SNPs, alter MGMT transcription and can thus alter human sensitivity to alkylating agents. To identify the haplotype structure encompassing the MGMT P/E region SNPs, we sequenced 104 DNA samples from healthy individuals and inferred the haplotypes using the data generated. We identified eight SNPs in this region, namely T7C (rs180989103), T135G (rs1711646), G290A (rs61859810), C485A (rs1625649), C575A (rs113813075), G666A (rs34180180), C777A (rs34138162) and C1099T (rs16906252). Phylogenetics and Sequence Evolution analysis predicted 21 potential haplotypes that encompass these SNPs ranging in frequencies from 0.000048 to 0.39. Of these, 10 were identified in our study population as 20 paired haplotype combinations. To determine the functional significance of these haplotypes, luciferase reporter constructs representing these haplotypes were transfected into glioblastoma cells and their effect on MGMT promoter activity was determined. Compared with the most common (reference) haplotype 1, seven haplotypes significantly upregulated MGMT promoter activity (18-119% increase; P < 0.05), six significantly downregulated MGMT promoter activity (29-97% decrease; P < 0.05) and one haplotype had no effect. Mechanistic studies conducted support the conclusion that MGMT P/E haplotypes, rather than individual SNPs, differentially regulate MGMT transcription and could thus play a significant role in human sensitivity to environmental and therapeutic alkylating agents.

  4. Growth promotion of Lactuca sativa in response to volatile organic compounds emitted from diverse bacterial species.

    PubMed

    Fincheira, Paola; Venthur, Herbert; Mutis, Ana; Parada, Maribel; Quiroz, Andrés

    2016-12-01

    Agrochemicals are currently used in horticulture to increase crop production. Nevertheless, their indiscriminate use is a relevant issue for environmental and legal aspects. Alternative tools for reducing fertilizers and synthetic phytohormones are being investigated, such as the use of volatile organic compounds (VOCs) as growth inducers. Some soil bacteria, such as Pseudomonas and Bacillus, stimulate Arabidopsis and tobacco growth by releasing VOCs, but their effects on vegetables have not been investigated. Lactuca sativa was used as model vegetable to investigate bacterial VOCs as growth inducers. We selected 10 bacteria strains, belonging to Bacillus, Staphylococcus and Serratia genera that are able to produce 3-hydroxy-2-butanone (acetoin), a compound with proven growth promoting activity. Two-day old-seedlings of L. sativa were exposed to VOCs emitted by the selected bacteria grown in different media cultures for 7 days. The results showed that the VOCs released from the bacteria elicited an increase in the number of lateral roots, dry weight, root growth and shoot length, depending on the media used. Three Bacillus strains, BCT53, BCT9 and BCT4, were selected according to its their growth inducing capacity. The BCT9 strain elicited the greatest increases in dry weight and primary root length when L. sativa seedlings were subjected to a 10-day experiment. Finally, because acetoin only stimulated root growth, we suggest that other volatiles could be responsible for the growth promotion of L. sativa. In conclusion, our results strongly suggest that bacteria volatiles can be used as growth-inducers as alternative or complementary strategies for application in horticulture species. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Nontherapeutic Use of Antimicrobial Agents in Animal Agriculture: Implications for Pediatrics.

    PubMed

    Paulson, Jerome A; Zaoutis, Theoklis E

    2015-12-01

    Antimicrobial resistance is one of the most serious threats to public health globally and threatens our ability to treat infectious diseases. Antimicrobial-resistant infections are associated with increased morbidity, mortality, and health care costs. Infants and children are affected by transmission of susceptible and resistant food zoonotic pathogens through the food supply, direct contact with animals, and environmental pathways. The overuse and misuse of antimicrobial agents in veterinary and human medicine is, in large part, responsible for the emergence of antibiotic resistance. Approximately 80% of the overall tonnage of antimicrobial agents sold in the United States in 2012 was for animal use, and approximately 60% of those agents are considered important for human medicine. Most of the use involves the addition of low doses of antimicrobial agents to the feed of healthy animals over prolonged periods to promote growth and increase feed efficiency or at a range of doses to prevent disease. These nontherapeutic uses contribute to resistance and create new health dangers for humans. This report describes how antimicrobial agents are used in animal agriculture, reviews the mechanisms of how such use contributes to development of resistance, and discusses US and global initiatives to curb the use of antimicrobial agents in agriculture. Copyright © 2015 by the American Academy of Pediatrics.

  6. Barium promotes anchorage-independent growth and invasion of human HaCaT keratinocytes via activation of c-SRC kinase.

    PubMed

    Thang, Nguyen Dinh; Yajima, Ichiro; Kumasaka, Mayuko Y; Ohnuma, Shoko; Yanagishita, Takeshi; Hayashi, Rumiko; Shekhar, Hossain U; Watanabe, Daisuke; Kato, Masashi

    2011-01-01

    Explosive increases in skin cancers have been reported in more than 36 million patients with arsenicosis caused by drinking arsenic-polluted well water. This study and previous studies showed high levels of barium as well as arsenic in the well water. However, there have been no reports showing a correlation between barium and cancer. In this study, we examined whether barium (BaCl(2)) may independently have cancer-related effects on human precancerous keratinocytes (HaCaT). Barium (5-50 µM) biologically promoted anchorage-independent growth and invasion of HaCaT cells in vitro. Barium (5 µM) biochemically enhanced activities of c-SRC, FAK, ERK and MT1-MMP molecules, which regulate anchorage-independent growth and/or invasion. A SRC kinase specific inhibitor, protein phosphatase 2 (PP2), blocked barium-mediated promotion of anchorage-independent growth and invasion with decreased c-SRC kinase activity. Barium (2.5-5 µM) also promoted anchorage-independent growth and invasion of fibroblasts (NIH3T3) and immortalized nontumorigenic melanocytes (melan-a), but not transformed cutaneous squamous cell carcinoma (HSC5 and A431) and malignant melanoma (Mel-ret) cells, with activation of c-SRC kinase. Taken together, our biological and biochemical findings newly suggest that the levels of barium shown in drinking well water independently has the cancer-promoting effects on precancerous keratinocytes, fibroblast and melanocytes in vitro.

  7. Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects

    USDA-ARS?s Scientific Manuscript database

    Plant growth-promoting rhizobacteria (PGPR) have garnered interest in agriculture due to their ability to influence the growth and production of host plants. ATP-binding cassette (ABC) transporters play important roles in plant-microbe interactions by modulating plant root exudation. The present stu...

  8. Promotion of couples’ voluntary HIV counselling and testing in Lusaka, Zambia by influence network leaders and agents

    PubMed Central

    Wall, Kristin M; Kilembe, William; Nizam, Azhar; Vwalika, Cheswa; Kautzman, Michelle; Chomba, Elwyn; Tichacek, Amanda; Sardar, Gurkiran; Casanova, Deborah; Henderson, Faith; Mulenga, Joseph; Kleinbaum, David; Allen, Susan

    2012-01-01

    Objectives Hypothesising that couples’ voluntary counselling and testing (CVCT) promotions can increase CVCT uptake, this study identified predictors of successful CVCT promotion in Lusaka, Zambia. Design Cohort study. Setting Lusaka, Zambia. Participants 68 influential network leaders (INLs) identified 320 agents (INAs) who delivered 29 119 CVCT invitations to heterosexual couples. Intervention The CVCT promotional model used INLs who identified INAs, who in turn conducted community-based promotion and distribution of CVCT invitations in two neighbourhoods over 18 months, with a mobile unit in one neighbourhood crossing over to the other mid-way through. Primary outcome The primary outcome of interest was couple testing (yes/no) after receipt of a CVCT invitation. INA, couple and invitation characteristics predictive of couples’ testing were evaluated accounting for two-level clustering. Results INAs delivered invitations resulting in 1727 couples testing (6% success rate). In multivariate analyses, INA characteristics significantly predictive of CVCT uptake included promoting in community-based (adjusted OR (aOR)=1.3; 95% CI 1.0 to 1.8) or health (aOR=1.5; 95% CI 1.2 to 2.0) networks versus private networks; being employed in the sales/service industry (aOR=1.5; 95% CI 1.0 to 2.1) versus unskilled manual labour; owning a home (aOR=0.7; 95% CI 0.6 to 0.9) versus not; and having tested for HIV with a partner (aOR=1.4; 95% CI 1.1 to 1.7) or alone (aOR=1.3; 95% CI 1.0 to 1.6) versus never having tested. Cohabiting couples were more likely to test (aOR=1.4; 95% CI 1.2 to 1.6) than non-cohabiting couples. Context characteristics predictive of CVCT uptake included inviting couples (aOR=1.2; 95% CI 1.0 to 1.4) versus individuals; the woman (aOR=1.6; 95% CI 1.2 to 2.2) or couple (aOR=1.4; 95% CI 1.0 to 1.8) initiating contact versus the INA; the couple being socially acquainted with the INA (aOR=1.6; 95% CI 1.4 to 1.9) versus having just met; home invitation

  9. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp.

    NASA Astrophysics Data System (ADS)

    Rodriguez, Hilda; Gonzalez, Tania; Goire, Isabel; Bashan, Yoav

    2004-11-01

    In vitro gluconic acid formation and phosphate solubilization from sparingly soluble phosphorus sources by two strains of the plant growth-promoting bacteria A. brasilense (Cd and 8-I) and one strain of A. lipoferum JA4 were studied. Strains of A. brasilense were capable of producing gluconic acid when grown in sparingly soluble calcium phosphate medium when their usual fructose carbon source is amended with glucose. At the same time, there is a reduction in pH of the medium and release of soluble phosphate. To a greater extent, gluconic acid production and pH reduction were observed for A. lipoferum JA4. For the three strains, clearing halos were detected on solid medium plates with calcium phosphate. This is the first report of in vitro gluconic acid production and direct phosphate solubilization by A. brasilense and the first report of P solubilization by A. lipoferum. This adds to the very broad spectrum of plant growth-promoting abilities of this genus.

  10. Nicotine Promotes Cholangiocarcinoma Growth in Xenograft Mice.

    PubMed

    Martínez, Allyson K; Jensen, Kendal; Hall, Chad; O'Brien, April; Ehrlich, Laurent; White, Tori; Meng, Fanyin; Zhou, Tianhao; Greene, John; Bernuzzi, Francesca; Invernizzi, Pietro; Dostal, David E; Lairmore, Terry; Alpini, Gianfranco; Glaser, Shannon S

    2017-05-01

    Nicotine, the main addictive substance in tobacco, is known to play a role in the development and/or progression of a number of malignant tumors. However, nicotine's involvement in the pathogenesis of cholangiocarcinoma is controversial. Therefore, we studied the effects of nicotine on the growth of cholangiocarcinoma cells in vitro and the progression of cholangiocarcinoma in a mouse xenograft model. The predominant subunit responsible for nicotine-mediated proliferation in normal and cancer cells, the α7 nicotinic acetylcholine receptor (α7-nAChR), was more highly expressed in human cholangiocarcinoma cell lines compared with normal human cholangiocytes. Nicotine also stimulated the proliferation of cholangiocarcinoma cell lines and promoted α7-nAChR-dependent activation of proliferation and phosphorylation of extracellular-regulated kinase in Mz-ChA-1 cells. In addition, nicotine and PNU282987 (α7-nAChR agonist) accelerated the growth of the cholangiocarcinoma tumors in our xenograft mouse model and increased fibrosis, proliferation of the tumor cells, and phosphorylation of extracellular-regulated kinase activation. Finally, α7-nAChR was expressed at significantly higher levels in human cholangiocarcinoma compared with normal human control liver samples. Taken together, results of this study suggest that nicotine acts through α7-nAChR and plays a novel role in the pathogenesis of cholangiocarcinoma. Furthermore, nicotine may act as a mitogen in cholestatic liver disease processes, thereby facilitating malignant transformation. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Bioaccumulation of nickel by E. sativa and role of plant growth promoting rhizobacteria (PGPRs) under nickel stress.

    PubMed

    Kamran, Muhammad Aqeel; Eqani, Syed Ali Musstjab Akber Shah; Bibi, Sadia; Xu, Ren-Kou; Amna; Monis, Muhammad Farooq Hussain; Katsoyiannis, Athanasios; Bokhari, Habib; Chaudhary, Hassan Javed

    2016-04-01

    Phytoremediation potential of plants can be enhanced in association with microbes. Further, many plant growth-promoting rhizobacteria can improve growth under stress. The present study was conducted to investigate the effect of Pseudomonas putida (P. putida) on nickel (Ni) uptake and on growth of Eruca sativa (E. sativa). Three different levels of Ni (low; 150 ug/g, medium; 250 ug/g and high; 500 ug/g) were applied to the soil containing E. sativa seedlings, with or without P. putida. Ni-toxicity was measured by metamorphic parameters including shoot length, root length, biomass, chlorophyll and proline and Ni contents. Inoculation with P. putida increased 34% and 41% in root and shoot length and 38% and 24% in fresh, dry weight respectively, as compared to non-inoculated plants. Similarly, Ni uptake increased by up to 46% following P. putida inoculation as compared to non-inoculated plants. Indole acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity in the growing media enhanced growth and Ni uptake in E. sativa. The present results offer insight on Plant Growth Promoting Rhizobacteria (PGPR), such as P. putida, for the potential to enhance the plant growth by inhibiting the adverse effects of Ni in E. sativa. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Growth Hormone and Insulin-Like Growth Factor-1.

    PubMed

    Nicholls, Adam R; Holt, Richard I G

    2016-01-01

    Human growth hormone (GH) was first isolated from the human pituitary gland in 1945 and found to promote the growth of children with hypopituitarism. Since the formation of the World Anti-Doping Association, human GH has appeared on the list of forbidden substances. There is a significant amount of anecdotal evidence that human GH is misused by athletes to enhance performance, and there have been a number of high-profile cases of GH use in professional sport. GH secretagogues (GH-Ss), which increase GH secretion, and insulin-like growth factor (IGF-1), which mediates many of the effects of GH, are also misused, although there is less evidence for this. The effectiveness of GH, IGF-1, and GH-Ss as performance-enhancing drugs remains unclear. Evidence from studies of GH use in people with hypopituitarism show several desirable outcomes, including increased lean body mass, increased strength, and increased exercise capacity. These anabolic and metabolic properties, coupled with the difficulty in detecting them, make them attractive as agents of misuse. Studies in healthy young adults have also demonstrated a performance benefit with GH and IGF-1. © 2016 S. Karger AG, Basel.

  13. Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria--as revealed by different combinations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaderlund, Lotta; Arthurson, Veronica; Granhall, Ulf

    2008-05-15

    The interactions between two plant growth promoting rhizobacteria (PGPR), Pseudomonas fluorescens SBW25 and Paenibacillus brasilensis PB177, two arbuscular mycorrhizal (AM) fungi (Glomus mosseae and G. intraradices) and one pathogenic fungus (Microdochium nivale) were investigated on winter wheat (Triticum aestivum cultivar Tarso) in a greenhouse trial. PB177, but not SBW25, had strong inhibitory effects on M. nivale in dual culture plate assays. The results from the greenhouse experiment show very specific interactions; e.g. the two AM fungi react differently when interacting with the same bacteria on plants. G. intraradices (single inoculation or together with SBW25) increased plant dry weight on M.more » nivale infested plants, suggesting that the pathogenic fungus is counteracted by G. intraradices, but PB177 inhibited this positive effect. This is an example of two completely different reactions between the same AM fungus and two species of bacteria, previously known to enhance plant growth and inhibit pathogens. When searching for plant growth promoting microorganisms it is therefore important to test for the most suitable combination of plant, bacteria and fungi in order to get satisfactory plant growth benefits.« less

  14. Differential oxidative and antioxidative response of duckweed Lemna minor toward plant growth promoting/inhibiting bacteria.

    PubMed

    Ishizawa, Hidehiro; Kuroda, Masashi; Morikawa, Masaaki; Ike, Michihiko

    2017-09-01

    Bacteria colonizing the plant rhizosphere are believed to positively or negatively affect the host plant productivity. This feature has inspired researchers to engineer such interactions to enhance crop production. However, it remains to be elucidated whether rhizobacteria influences plant oxidative stress vis-a-vis other environmental stressors, and whether such influence is associated with their growth promoting/inhibiting ability. In this study, two plant growth-promoting bacteria (PGPB) and two plant growth-inhibiting bacteria (PGIB) were separately inoculated into axenic duckweed (Lemna minor) culture under laboratory conditions for 4 and 8 days in order to investigate their effects on plant oxidative stress and antioxidant activities. As previously characterized, the inoculation of PGPB and PGIB strains accelerated and reduced the growth of L. minor, respectively. After 4 and 8 days of cultivation, compared to the PGPB strains, the PGIB strains induced larger amounts of O 2 •- , H 2 O 2 , and malondialdehyde (MDA) in duckweed, although all bacterial strains consistently increased O 2 •- content by two times more than that in the aseptic control plants. Activities of five antioxidant enzymes were also elevated by the inoculation of PGIB, confirming the severe oxidative stress condition in plants. These results suggest that the surface attached bacteria affect differently on host oxidative stress and its response, which degree correlates negatively to their effects on plant growth. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Enhanced root and shoot growth of wheat (Triticum aestivum L.) by Trichoderma harzianum from Turkey.

    PubMed

    Kucuk, Cigdem

    2014-01-01

    It is well known that Trichoderma species can be used as biocontrol and plant growth promote agent. In this study, Trichoderma harzianum isolates were evaluated for their growth promotion effects on wheat in greenhouse experiments. Two isolates of T. harzianum were used. The experimental design was a randomized complete block with three replications. Seeds were inoculated with conidial suspensions of each isolate. Wheat plants grown in steriled soil in pots. T. harzianum T8 and T15 isolates increased wheat length, root dry weight and shoot dry weight according to untreated control. Turkish isolates T8 and T15 did not produce damage in seeds nor in plants.

  16. Akt1-Inhibitor of DNA binding2 is essential for growth cone formation and axon growth and promotes central nervous system axon regeneration

    PubMed Central

    Ko, Hyo Rim; Kwon, Il-Sun; Hwang, Inwoo; Jin, Eun-Ju; Shin, Joo-Ho; Brennan-Minnella, Angela M; Swanson, Raymond; Cho, Sung-Woo; Lee, Kyung-Hoon; Ahn, Jee-Yin

    2016-01-01

    Mechanistic studies of axon growth during development are beneficial to the search for neuron-intrinsic regulators of axon regeneration. Here, we discovered that, in the developing neuron from rat, Akt signaling regulates axon growth and growth cone formation through phosphorylation of serine 14 (S14) on Inhibitor of DNA binding 2 (Id2). This enhances Id2 protein stability by means of escape from proteasomal degradation, and steers its localization to the growth cone, where Id2 interacts with radixin that is critical for growth cone formation. Knockdown of Id2, or abrogation of Id2 phosphorylation at S14, greatly impairs axon growth and the architecture of growth cone. Intriguingly, reinstatement of Akt/Id2 signaling after injury in mouse hippocampal slices redeemed growth promoting ability, leading to obvious axon regeneration. Our results suggest that Akt/Id2 signaling is a key module for growth cone formation and axon growth, and its augmentation plays a potential role in CNS axonal regeneration. DOI: http://dx.doi.org/10.7554/eLife.20799.001 PMID:27938661

  17. The DEK oncogene activates VEGF expression and promotes tumor angiogenesis and growth in HIF-1α-dependent and -independent manners

    PubMed Central

    Li, Yang; Lv, Zhaohui; Zhu, Jie; Lin, Jing; Ding, Lihua; Ye, Qinong

    2016-01-01

    The DEK oncogene is overexpressed in various cancers and overexpression of DEK correlates with poor clinical outcome. Vascular endothelial growth factor (VEGF) is the most important regulator of tumor angiogenesis, a process essential for tumor growth and metastasis. However, whether DEK enhances tumor angiogenesis remains unclear. Here, we show that DEK is a key regulator of VEGF expression and tumor angiogenesis. Using chromatin immunoprecipitation assay, we found that DEK promoted VEGF transcription in breast cancer cells (MCF7, ZR75-1 and MDA-MB-231) by directly binding to putative DEK-responsive element (DRE) of the VEGF promoter and indirectly binding to hypoxia response element (HRE) upstream of the DRE through its interaction with the transcription factor hypoxia-inducible factor 1α (HIF-1α), a master regulator of tumor angiogenesis and growth. DEK is responsible for recruitment of HIF-1α and the histone acetyltransferase p300 to the VEGF promoter. DEK-enhanced VEGF increases vascular endothelial cell proliferation, migration and tube formation as well as angiogenesis in the chick chorioallantoic membrane. DEK promotes tumor angiogenesis and growth in nude mice in HIF-1α-dependent and -independent manners. Immunohistochemical staining showed that DEK expression positively correlates with the expression of VEGF and microvessel number in 58 breast cancer patients. Our data establish DEK as a sequence-specific binding transcription factor, a novel coactivator for HIF-1α in regulation of VEGF transcription and a novel promoter of angiogenesis. PMID:26988756

  18. Effect of Plant Growth Promoting Bacteria Associated with Halophytic Weed (Psoralea corylifolia L) on Germination and Seedling Growth of Wheat Under Saline Conditions.

    PubMed

    Sorty, Ajay M; Meena, Kamlesh K; Choudhary, Khushboo; Bitla, Utkarsh M; Minhas, P S; Krishnani, K K

    2016-11-01

    Halotolerant bacteria associated with Psoralea corylifolia L., a luxuriantly growing annual weed in salinity-affected semi-arid regions of western Maharashtra, India were evaluated for their plant growth-promoting activity in wheat. A total of 79 bacteria associated with different parts viz., root, shoot and nodule endophytes, rhizosphere, rhizoplane, and leaf epiphytes, were isolated and grouped based on their habitat. Twelve bacteria isolated for their potential in plant growth promotion were further selected for in vitro studies. Molecular identification showed the presence of the genera Bacillus, Pantoea, Marinobacterium, Acinetobacter, Enterobacter, Pseudomonas, Rhizobium, and Sinorhizobium (LC027447-53; LC027455; LC027457, LC027459, and LC128410). The phylogenetic studies along with carbon source utilization profiles using the Biolog® indicated the presence of novel species and the in planta studies revealed promising results under salinity stress. Whereas the nodule endophytes had minute plant growth-promoting (PGP) activity, the cell free culture filtrates of these strains enhanced seed germination of wheat (Triticum aestivum L). The maximum vigor index was monitored in isolate Y7 (Enterobacter sp strain NIASMVII). Indole acetic acid (IAA) production by the isolates ranged between 0.22 and 25.58 μg mL -1 . This signifies the need of exploration of their individual metabolites for developing next-generation bio-inoculants through co-inoculation with other compatible microbes. This study has potential in utilization of the weed-associated microbiome in terms of alleviation of salinity stress in crop plants.

  19. MicroRNA-155 promotes gastric cancer growth and invasion by negatively regulating transforming growth factor-β receptor 2.

    PubMed

    Qu, Yajing; Zhang, Haiyang; Sun, Wu; Han, Yueting; Li, Shuang; Qu, Yanjun; Ying, Guoguang; Ba, Yi

    2018-03-01

    Gastric cancer (GC) is one of the most common malignancies worldwide and has high morbidity and mortality rates. It is essential to elucidate the molecular events of GC proliferation and invasion, which will provide new therapeutic targets for GC. The inactivation of transforming growth factor-β receptor 2 (TGFβR2) correlates with cancer cell growth and metastasis, but the mechanisms underlying the downregulation of TGFβR2 expression remain unknown. MicroRNAs (miRNAs) act as post-transcriptional regulators and play a key role in the development of cancers. Bioinformatics analysis and luciferase reporter assays have shown that miR-155 directly binds to the 3'-UTR of TGFβR2 mRNA. In this study, we found that the TGFβR2 protein levels, but not mRNA levels, were downregulated in GC tissues, and the levels of miR-155 were significantly increased in GC tissues. We deduced that miR-155 was inversely correlated with TGFβR2 in GC cells. In vitro studies showed that overexpression of miR-155 in SGC7901 inhibited the expression of TGFβR2 and then promoted GC cell proliferation and migration, whereas miR-155 inhibitor showed opposite effects. In addition, the tumor-suppressing function of TGFβR2 was verified by using siRNA and TGFβR2 overexpressing plasmids. The results showed that miR-155 promotes cell growth and migration by negatively regulating TGFβR2. Thus, miR-155-regulated TGFβR2 as a potential therapeutic target in GC. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  20. Alteration of the ileal microbiota of weanling piglets by the growth-promoting antibiotic chlortetracycline.

    PubMed

    Rettedal, Elizabeth; Vilain, Sébastien; Lindblom, Stacy; Lehnert, Kelly; Scofield, Clay; George, Sajan; Clay, Sharon; Kaushik, Radhey S; Rosa, Artur J M; Francis, David; Brözel, Volker S

    2009-09-01

    Antibiotics such as chlortetracycline (CTC) have been used to promote growth of pigs for decades, but concerns over increased antibiotic-resistant infections in humans have prompted the development of alternative strategies. Developing alternatives to antibiotic growth promoters (AGPs) could be informed by information on the mechanisms of growth promotion, notably, how AGPs affect the microbial populations of the gastrointestinal tract. Pigs from three sows were aseptically delivered by cesarean section. Six piglets were distributed to each of two foster mothers until weaning, when piglets were fed a diet with or without 50 mg/kg CTC for 2 weeks. The ileal bacterial microbiota was characterized by using a cultivation-independent approach based on DNA extraction, PCR amplification, cloning, and sequencing of the 16S rRNA gene pool. The ileal and mucosal communities of these growing pigs were dominated by Lactobacillus bacteria, various members of the family Clostridiaceae, and members of the poorly known genus Turicibacter. Overall, CTC treatment resulted in three shifts: a decrease in Lactobacillus johnsonii, an increase in L. amylovorus, and a decrease in Turicibacter phylotypes. The composition of the microbiota varied considerably between individual pigs, as revealed by shared operational taxonomic units (OTUs) and similarity (SONS) analysis (theta(YC) values). While the observed variation between untreated pigs obscured the possible effect of CTC, integral-LIBSHUFF and SONS analyses of pooled libraries indicated a significant shift due to CTC in both the lumen and the mucosa, with some OTUs unique to either treated or control ileum. DOTUR analysis revealed little overlap between control and treated communities at the 3% difference level, indicating unique ileal communities in the presence of CTC.

  1. Id-1 promotes osteosarcoma cell growth and inhibits cell apoptosis via PI3K/AKT signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Liang; Liao, Qi; Tang, Qiang

    2016-02-12

    Accumulating evidence reveals that Id-1 is upregulated and functions as a potential tumor promoter in several human cancer types. However, the role of Id-1 in osteosarcoma (OS) is unknown. In present study, we found that Id-1 expression was elevated in OS tissues than adjacent normal bone tissues. More importantly, we demonstrated that overexpression of Id-1 is significantly correlated with tumor progression and poor survival in OS patients. Furthermore, increased expression of Id-1 was observed in OS cell lines and ectopic expression of Id-1 significantly enhanced in vitro cell proliferation and promoted in vivo tumor growth, whereas knockdown of Id-1 suppressed OS cellsmore » growth. Moreover, our experimental data revealed that Id-1 promotes cell proliferation by facilitating cell cycle progression and inhibits cell apoptosis. Mechanistically, the effects of Id-1 in OS cells is at least partly through activation of PI3K/Akt signaling pathway. Therefore, we identified a tumorigenic role of Id-1 in OS and suggested a potential therapeutic target for OS patients. - Highlights: • Id-1 expression is positively correlated in OS patients with poor prognosis. • Overexpression of Id-1 promotes OS cell growth in vitro and in vivo. • Id-1induces cell cycle progression and inhibits cell apoptosis. • PI3K/Akt signaling pathway contributed to the oncogenic effects of Id-1 in OS cells.« less

  2. Wnt-10b, uniquely among Wnts, promotes epithelial differentiation and shaft growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouji, Yukiteru; Yoshikawa, Masahide; Moriya, Kei

    2008-03-07

    Although Wnts are expressed in hair follicles throughout life from embryo to adult, and considered to be critical for their development and maturation, their roles remain largely unknown. In the present study, we investigated the effects of Wnts (Wnt-3a, Wnt-5a, Wnt-10b, and Wnt-11) on epithelial cell differentiation using adult mouse-derived primary skin epithelial cell (MPSEC) cultures and hair growth using hair follicle organ cultures. Only Wnt-10b showed evident promotion of epithelial cell differentiation and hair shaft growth, in contrast to Wnt-3a, 5a, and 11. Our results suggest that Wnt-10b is unique and plays an important role in differentiation of epithelialmore » cells in the hair follicle.« less

  3. Burkholderia ambifaria and B. caribensis Promote Growth and Increase Yield in Grain Amaranth (Amaranthus cruentus and A. hypochondriacus) by Improving Plant Nitrogen Uptake

    PubMed Central

    Parra-Cota, Fannie I.; Peña-Cabriales, Juan J.; de los Santos-Villalobos, Sergio; Martínez-Gallardo, Norma A.; Délano-Frier, John P.

    2014-01-01

    Grain amaranth is an emerging crop that produces seeds having high quality protein with balanced amino-acid content. However, production is restricted by agronomic limitations that result in yields that are lower than those normally produced by cereals. In this work, the use of five different rhizobacteria were explored as a strategy to promote growth and yields in Amaranthus hypochondriacus cv. Nutrisol and A. cruentus cv. Candil, two commercially important grain amaranth cultivars. The plants were grown in a rich substrate, high in organic matter, nitrogen (N), and phosphorus (P) and under greenhouse conditions. Burkholderia ambifaria Mex-5 and B. caribensis XV proved to be the most efficient strains and significantly promoted growth in both grain amaranth species tested. Increased grain yield and harvest index occurred in combination with chemical fertilization when tested in A. cruentus. Growth-promotion and improved yields correlated with increased N content in all tissues examined. Positive effects on growth also occurred in A. cruentus plants grown in a poor soil, even after N and P fertilization. No correlation between non-structural carbohydrate levels in roots of inoculated plants and growth promotion was observed. Conversely, gene expression assays performed at 3-, 5- and 7-weeks after seed inoculation in plants inoculated with B. caribensis XV identified a tissue-specific induction of several genes involved in photosynthesis, sugar- and N- metabolism and transport. It is concluded that strains of Burkholderia effectively promote growth and increase seed yields in grain amaranth. Growth promotion was particularly noticeable in plants grown in an infertile soil but also occurred in a well fertilized rich substrate. The positive effects observed may be attributed to a bio-fertilization effect that led to increased N levels in roots and shoots. The latter effect correlated with the differential induction of several genes involved in carbon and N metabolism

  4. Partner switching promotes cooperation among myopic agents on a geographical plane

    NASA Astrophysics Data System (ADS)

    Li, Yixiao; Min, Yong; Zhu, Xiaodong; Cao, Jie

    2013-02-01

    We study the coupling dynamics between the evolution of cooperation and the evolution of partnership network on a geographical plane. While agents play networked prisoner’s dilemma games, they can dynamically adjust their partnerships based on local information about reputation. We incorporate geographical features into the process of the agent’s partner switching and investigate the corresponding effects. At each time step of the coevolution, a random agent can either update his strategy by imitation or adjust his partnership by switching from the lowest reputation partner to the highest reputation one among his neighbors. We differentiate two types of neighbors: geographical neighbors (i.e., the set of agents who are close to the focal agent in terms of geographical distance) and connectivity neighbors (i.e., the set of agents who are close to the focal agent in the partnership network in terms of geodesic distance). We find that switching to either geographical neighbors or connectivity neighbors enhances cooperation greatly in a wide parameter range. Cooperation can be favored in a much stricter condition when agents switch to connectivity neighbors more frequently. However, an increasing tendency of reconnecting to geographical neighbors shortens the geographical distance between a pair of partners on average. When agents consider the cost of geographical distance in adjusting the partnership, they are prone to reconnect to geographical neighbors.

  5. A Meta-Analysis of the Efficacy and Safety of Using Oil Massage to Promote Infant Growth.

    PubMed

    Li, Xiwen; Zhong, Qingling; Tang, Longhua

    2016-01-01

    The synthesizing evidence on the effectiveness of using oil massage to promote the growth of infants is still lacking. This paper aims to determine whether oil massage can promote the physical and neurobehavioral growth of infants according to variables and to evaluate whether oil massage is safe for infant skin. The randomized controlled trials, clinical controlled trials and quasi-experimentally designed trials published prior to or in 2014 were searched according to predetermined inclusion criteria and exclusion criteria in Medline, PubMed, Ovid, the Cochran Library, and Chinese databases, including the China National Knowledge Infrastructure, Wan Fang database and VIP journal integration platform. Besides, the grey lectures were searched as well through Open Grey, GrayLIT Network and Clinical Trials.gov. Eight studies out of 625 retrieved articles were eligible for inclusion. Oil massage increased the infant weights, lengths and head circumferences. However, it did not promote a significant advantage in neurobehavioral scores or cause a significant risk of adverse skin reactions. The core mechanisms and standard procedures of oil massage as well as the preferred oil type should be the focus of future nursing practice and research. Oil massage may effectively improve the physical growth of infants, and it presents a limited risk of adverse skin reactions. However, the relationship between neurodevelopment and oil massage requires further study. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Molecular characterization of plant growth promoting rhizobacteria that enhance peroxidase and phenylalanine ammonia-lyase activities in chile (Capsicum annuum L.) and tomato (Lycopersicon esculentum Mill.).

    PubMed

    Sharma, Alok; Pathak, Ashutosh; Sahgal, Manvika; Meyer, Jean-Marie; Wray, Victor; Johri, Bhavdish N

    2007-11-01

    Pythium and Phytophthora species are associated with damping-off diseases in vegetable nurseries and reduce seedling stand and yield. In this study, bacterial isolates were selected on the basis of in vitro antagonism potential to inhibit mycelial growth of damping-off pathogens along with plant growth properties for field assessment in wet and winter seasons. We demonstrate efficacy of bacterial isolates to protect chile and tomato plants under natural vegetable nursery and artificially created pathogen-infested (Pythium and Phytophthora spp.) nursery conditions. After 21 days of sowing, chile and tomato plants were harvested and analysed for peroxidase and phenylalanine ammonia-lyase activities. Pseudomonas sp. strains FQP PB-3, FQA PB-3 and GRP(3 )were most effective in increasing shoot length (P > 0.05%) in both artificial and natural field sites. For example, Pseudomonas sp. FQA PB-3 treatment increased shoot length by 40% in the artificial Pythium 4746 infested nursery site in chile plants in the wet season. The bacterial treatments significantly increased the activity of peroxidase and phenylalanine ammonia-lyase in chile and tomato plant tissues, which are well known as indicators of an active lignification process. Thus, we conclude that treatment with potential bacterial plant growth promoting agents help plants against pathogen invasion by modulating plant peroxidase and phenylalanine ammonia-lyase activities.

  7. Barium Promotes Anchorage-Independent Growth and Invasion of Human HaCaT Keratinocytes via Activation of c-SRC Kinase

    PubMed Central

    Thang, Nguyen Dinh; Yajima, Ichiro; Kumasaka, Mayuko Y.; Ohnuma, Shoko; Yanagishita, Takeshi; Hayashi, Rumiko; Shekhar, Hossain U.; Watanabe, Daisuke; Kato, Masashi

    2011-01-01

    Explosive increases in skin cancers have been reported in more than 36 million patients with arsenicosis caused by drinking arsenic-polluted well water. This study and previous studies showed high levels of barium as well as arsenic in the well water. However, there have been no reports showing a correlation between barium and cancer. In this study, we examined whether barium (BaCl2) may independently have cancer-related effects on human precancerous keratinocytes (HaCaT). Barium (5–50 µM) biologically promoted anchorage-independent growth and invasion of HaCaT cells in vitro. Barium (5 µM) biochemically enhanced activities of c-SRC, FAK, ERK and MT1-MMP molecules, which regulate anchorage-independent growth and/or invasion. A SRC kinase specific inhibitor, protein phosphatase 2 (PP2), blocked barium-mediated promotion of anchorage-independent growth and invasion with decreased c-SRC kinase activity. Barium (2.5–5 µM) also promoted anchorage-independent growth and invasion of fibroblasts (NIH3T3) and immortalized nontumorigenic melanocytes (melan-a), but not transformed cutaneous squamous cell carcinoma (HSC5 and A431) and malignant melanoma (Mel-ret) cells, with activation of c-SRC kinase. Taken together, our biological and biochemical findings newly suggest that the levels of barium shown in drinking well water independently has the cancer-promoting effects on precancerous keratinocytes, fibroblast and melanocytes in vitro. PMID:22022425

  8. Novel Quorum-Quenching Agents Promote Methicillin-Resistant Staphylococcus aureus (MRSA) Wound Healing and Sensitize MRSA to β-Lactam Antibiotics

    PubMed Central

    Kuo, David; Yu, Guanping; Hoch, Wyatt; Gabay, Dean; Long, Lisa; Ghannoum, Mahmoud; Nagy, Nancy; Harding, Clifford V.; Viswanathan, Rajesh

    2014-01-01

    The dwindling repertoire of antibiotics to treat methicillin-resistant Staphylococcus aureus (MRSA) calls for novel treatment options. Quorum-quenching agents offer an alternative or an adjuvant to antibiotic therapy. Three biaryl hydroxyketone compounds discovered previously (F1, F12, and F19; G. Yu, D. Kuo, M. Shoham, and R. Viswanathan, ACS Comb Sci 16:85–91, 2014) were tested for efficacy in MRSA-infected animal models. Topical therapy of compounds F1 and F12 in a MRSA murine wound infection model promotes wound healing compared to the untreated control. Compounds F1, F12, and F19 afford significant survival benefits in a MRSA insect larva model. Combination therapy of these quorum-quenching agents with cephalothin or nafcillin, antibiotics to which MRSA is resistant in monotherapy, revealed additional survival benefits. The quorum-quenching agents sensitize MRSA to the antibiotic by a synergistic mode of action that also is observed in vitro. An adjuvant of 1 μg/ml F1, F12, or F19 reduces the MIC of nafcillin and cephalothin about 50-fold to values comparable to those for vancomycin, the antibiotic often prescribed for MRSA infections. These findings suggest that it is possible to resurrect obsolete antibiotic therapies in combination with these novel quorum-quenching agents. PMID:25534736

  9. Ligand-mediated Galectin-1 endocytosis prevents intraneural H2O2 production promoting F-actin dynamics reactivation and axonal re-growth.

    PubMed

    Quintá, Héctor R; Wilson, Carlos; Blidner, Ada G; González-Billault, Christian; Pasquini, Laura A; Rabinovich, Gabriel A; Pasquini, Juana M

    2016-09-01

    Axonal growth cone collapse following spinal cord injury (SCI) is promoted by semaphorin3A (Sema3A) signaling via PlexinA4 surface receptor. This interaction triggers intracellular signaling events leading to increased hydrogen peroxide levels which in turn promote filamentous actin (F-actin) destabilization and subsequent inhibition of axonal re-growth. In the current study, we demonstrated that treatment with galectin-1 (Gal-1), in its dimeric form, promotes a decrease in hydrogen peroxide (H2O2) levels and F-actin repolimerization in the growth cone and in the filopodium of neuron surfaces. This effect was dependent on the carbohydrate recognition activity of Gal-1, as it was prevented using a Gal-1 mutant lacking carbohydrate-binding activity. Furthermore, Gal-1 promoted its own active ligand-mediated endocytosis together with the PlexinA4 receptor, through mechanisms involving complex branched N-glycans. In summary, our results suggest that Gal-1, mainly in its dimeric form, promotes re-activation of actin cytoskeleton dynamics via internalization of the PlexinA4/Gal-1 complex. This mechanism could explain, at least in part, critical events in axonal regeneration including the full axonal re-growth process, de novo formation of synapse clustering, axonal re-myelination and functional recovery of coordinated locomotor activities in an in vivo acute and chronic SCI model. Axonal regeneration is a response of injured nerve cells critical for nerve repair in human spinal cord injury. Understanding the molecular mechanisms controlling nerve repair by Galectin-1, may be critical for therapeutic intervention. Our results show that Galectin-1; in its dimeric form, interferes with hydrogen peroxide production triggered by Semaphorin3A. The high levels of this reactive oxygen species (ROS) seem to be the main factor preventing axonal regeneration due to promotion of actin depolymerization at the axonal growth cone. Thus, Galectin-1 administration emerges as a novel

  10. Hair growth-promoting effect of Aconiti Ciliare Tuber extract mediated by the activation of Wnt/β-catenin signaling.

    PubMed

    Park, Phil-June; Moon, Byoung-San; Lee, Soung-Hoon; Kim, Su-Na; Kim, Ah-Reum; Kim, Hyung-Jun; Park, Won-Seok; Choi, Kang-Yell; Cho, Eun-Gyung; Lee, Tae Ryong

    2012-11-02

    The activation of Wnt/β-catenin signaling pathway plays an important role in hair follicle morphogenesis by stimulating bulge stem cells. This study was to obtain the activator of Wnt/β-catenin signaling pathway from natural products and to determine whether this activator can induce anagen hair growth in mice. To identify materials that activate Wnt/β-catenin signaling pathway, 800 natural product extracts were screened using pTOPFlash assay and neural progenitor cell (NPC) differentiation assay. A selected extract was further tested for its effects on alkaline phosphatase (ALP) activity in human immortalized dermal papilla cell (iDPC) and the proliferation in iDPC and immortalized rat vibrissa DPC (RvDP). Finally, hair growth-promoting effects were evaluated in the dorsal skin of C57BL/6 mice. Aconiti Ciliare Tuber (ACT) extract was one of the most active materials in both pTOPFlash and NPC differentiation assays. It promoted the differentiation of NPC cells even under proliferation-stimulating conditions (basic fibroblast growth factor: bFGF). It also increased ALP activity and proliferation of iDPC in dose-dependent manners, and it stimulated the induction of the anagen hair growth in C57BL/6 mice. These results suggest that ACT extract activates the Wnt/β-catenin signaling pathway by enhancing β-catenin transcription and has the potential to promote the induction of hair growth via activation of the stem cell activity of the dermal papilla cells. This is the first report indicating benefits of ACT extract in hair loss prevention by triggering the activation of Wnt/β-catenin signaling pathway and induction of the anagen hair growth in mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Chronic alcohol intake promotes tumor growth in a diethylnitrosamine-induced hepatocarcinogenesis mouse model through increased Wnt/Beta-catenin signaling

    USDA-ARS?s Scientific Manuscript database

    Ethanol (EtOH) metabolism is involved in both initiating and promoting mechanisms in hepatocellular carcinoma progression in chronic alcoholics. In this study, we developed a mouse model to test the hypothesis that chronic EtOH consumption promotes tumor growth irrespective of EtOH-related initiati...

  12. An In vitro Study of Bio-Control and Plant Growth Promotion Potential of Salicaceae Endophytes.

    PubMed

    Kandel, Shyam L; Firrincieli, Andrea; Joubert, Pierre M; Okubara, Patricia A; Leston, Natalie D; McGeorge, Kendra M; Mugnozza, Giuseppe S; Harfouche, Antoine; Kim, Soo-Hyung; Doty, Sharon L

    2017-01-01

    Microbial communities in the endosphere of Salicaceae plants, poplar ( Populus trichocarpa ) and willow ( Salix sitchensis ), have been demonstrated to be important for plant growth promotion, protection from biotic and abiotic stresses, and degradation of toxic compounds. Our study aimed to investigate bio-control activities of Salicaceae endophytes against various soil borne plant pathogens including Rhizoctonia solani AG-8, Fusarium culmorum, Gaeumannomyces graminis var. tritici , and Pythium ultimum . Additionally, different plant growth promoting traits such as biological nitrogen fixation (BNF), indole-3-acetic acid (IAA) biosynthesis, phosphate solubilization, and siderophore production were assessed in all bio-control positive strains. Burkholderia, Rahnella, Pseudomonas , and Curtobacterium were major endophyte genera that showed bio-control activities in the in-vitro assays. The bio-control activities of Burkholderia strains were stronger across all tested plant pathogens as compared to other stains. Genomes of sequenced Burkholderia strains WP40 and WP42 were surveyed to identify the putative genes involved in the bio-control activities. The ocf and hcnABC gene clusters responsible for biosynthesis of the anti-fungal metabolites, occidiofungin and hydrogen cyanide, are present in the genomes of WP40 and WP42. Nearly all endophyte strains showing the bio-control activities produced IAA, solubilized tricalcium phosphate, and synthesized siderophores in the culture medium. Moreover, some strains reduced acetylene into ethylene in the acetylene reduction assay, a common assay used for BNF. Salicaceae endophytes could be useful for bio-control of various plant pathogens, and plant growth promotion possibly through the mechanisms of BNF, IAA production, and nutrient acquisition.

  13. Bradykinin Promotes Cell Proliferation, Migration, Invasion, and Tumor Growth of Gastric Cancer Through ERK Signaling Pathway.

    PubMed

    Wang, Guojun; Sun, Junfeng; Liu, Guanghui; Fu, Yang; Zhang, Xiefu

    2017-12-01

    Bradykinin (BK) has been reported to be involved in the progression of diverse types of cancer. In the present study, we investigated the possible role of BK in cell proliferation, migration, invasion, and tumor growth of gastric cancer (GC). Cell proliferation was evaluated by MTT assays. Cell migration and invasion were assessed by Transwell assays. Tumor growth of nude mice was detected by establishing subcutaneous xenograft tumor model. Silencing of bradykinin B1 receptor (B1R) and the bradykinin B2 receptor (B2R) was performed by transfecting cells with si-B1R and si-B2R, respectively. The protein expression levels of phospho-ERK1/2 (p-ERK1/2), matrix metalloproteinase (MMP)-2, MMP-9, and E-Cadherin were examined by Western blot. Data revealed that BK promoted cell proliferation, migration, invasion, and the in vivo tumor growth of GC cells SGC-7901 and HGC-27. Furthermore, BK elevated the protein levels of p-ERK1/2, MMP-2, and MMP-9, but reduced E-Cadherin. In addition, by repressing B2R using si-B2R or inhibiting ERK signaling pathway using PD98059, BK-mediated promotion of cell proliferation, migration, and invasion and upregulation of p-ERK1/2, MMP-2/9, as well as downregulation of E-Cadherin were attenuated. Taken together, the present study demonstrated that BK promoted cell proliferation, migration, invasion, and tumor growth by binding to B2R via ERK signaling pathway. Our findings may provide promising options for the further treatment of GC. J. Cell. Biochem. 118: 4444-4453, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Blockade of Tumor-Expressed PD-1 promotes lung cancer growth

    PubMed Central

    Du, Shisuo; McCall, Neal; Park, Kyewon; Guan, Qing; Fontina, Paolo; Ertel, Adam; Zhan, Tingting; Dicker, Adam P.; Lu, Bo

    2018-01-01

    ABSTRACT Anti-PD-1 immunotherapy is the standard of care for treating many patients with non-small cell lung cancer (NSCLC), yet mechanisms of treatment failure are emerging. We present a case of NSCLC, who rapidly progressed during a trial (NCT02318771) combining palliative radiotherapy and pembrolizumab. Planned tumor biopsy demonstrated PD-1 expression by NSCLC cells. We validated this observation by detecting PD-1 transcript in lung cancer cells and by co-localizing PD-1 and lung cancer-specific markers in resected lung cancer tissues. We further investigated the biological role of cancer-intrinsic PD-1 in a mouse lung cancer cell line, M109. Knockout or antibody blockade of PD-1 enhanced M109 viability in-vitro, while PD-1 overexpression and exposure to recombinant PD-L1 diminished viability. PD-1 blockade accelerated growth of M109-xenograft tumors with increased proliferation and decreased apoptosis in immune-deficient mice. This represents a first-time report of NSCLC-intrinsic PD-1 expression and a potential mechanism by which PD-1 blockade may promote cancer growth. PMID:29632720

  15. Blockade of Tumor-Expressed PD-1 promotes lung cancer growth.

    PubMed

    Du, Shisuo; McCall, Neal; Park, Kyewon; Guan, Qing; Fontina, Paolo; Ertel, Adam; Zhan, Tingting; Dicker, Adam P; Lu, Bo

    2018-01-01

    Anti-PD-1 immunotherapy is the standard of care for treating many patients with non-small cell lung cancer (NSCLC), yet mechanisms of treatment failure are emerging. We present a case of NSCLC, who rapidly progressed during a trial (NCT02318771) combining palliative radiotherapy and pembrolizumab. Planned tumor biopsy demonstrated PD-1 expression by NSCLC cells. We validated this observation by detecting PD-1 transcript in lung cancer cells and by co-localizing PD-1 and lung cancer-specific markers in resected lung cancer tissues. We further investigated the biological role of cancer-intrinsic PD-1 in a mouse lung cancer cell line, M109. Knockout or antibody blockade of PD-1 enhanced M109 viability in-vitro, while PD-1 overexpression and exposure to recombinant PD-L1 diminished viability. PD-1 blockade accelerated growth of M109-xenograft tumors with increased proliferation and decreased apoptosis in immune-deficient mice. This represents a first-time report of NSCLC-intrinsic PD-1 expression and a potential mechanism by which PD-1 blockade may promote cancer growth.

  16. PAS Kinase Promotes Cell Survival and Growth Through Activation of Rho1

    PubMed Central

    Cardon, Caleb M.; Beck, Thomas; Hall, Michael N.; Rutter, Jared

    2014-01-01

    In Saccharomyces cerevisiae, phosphorylation of Ugp1 by either of the yeast PASK family protein kinases (yPASK), Psk1 or Psk2, directs this metabolic enzyme to deliver glucose to the periphery for synthesis of the cell wall. However, we isolated PSK1 and PSK2 in a high-copy suppressor screen of a temperature-sensitive mutant of target of rapamycin 2 (TOR2). Posttranslational activation of yPASK, either by cell integrity stress or by growth on nonfermentative carbon sources, also suppressed the growth defect resulting from tor2 mutation. Although suppression of the tor2 mutant growth phenotype by activation of the kinase activity of yPASK required phosphorylation of the metabolic enzyme Ugp1 on serine 11, this resulted in the formation of a complex that induced Rho1 activation, rather than required the glucose partitioning function of Ugp1. In addition to phosphorylated Ugp1, this complex contained Rom2, a Rho1 guanine nucleotide exchange factor, and Ssd1, an mRNA-binding protein. Activation of yPASK-dependent Ugp1 phosphorylation, therefore, enables two processes that are required for cell growth and stress resistance: synthesis of the cell wall through partitioning glucose to the periphery and the formation of the signaling complex with Rom2 and Ssd1 to promote Rho1-dependent polarized cell growth. This complex may integrate metabolic and signaling responses required for cell growth and survival in suboptimal conditions. PMID:22296835

  17. Endophytic fungal diversity in Theobroma cacao (cacao) and T. grandiflorum (cupuaçu) trees and their potential for growth promotion and biocontrol of black-pod disease.

    PubMed

    Hanada, Rogério Eiji; Pomella, Alan William V; Costa, Heron Salazar; Bezerra, José Luiz; Loguercio, Leandro L; Pereira, José O

    2010-01-01

    The endophytic niches of plants are a rich source of microbes that can directly and indirectly promote plant protection, growth and development. The diversity of culturable endophytic fungi from stems and branches of Theobroma cacao (cacao) and Theobroma grandiflorum (cupuaçu) trees growing in the Amazon region of Brazil was assessed. The collection of fungal endophytic isolates obtained was applied in field experiments to evaluate their potential as biocontrol agents against Phytophthora palmivora, the causal agent of the black-pod rot disease of cacao, one of the most important pathogens in cocoa-producing regions worldwide. The isolated endophytic fungi from 60 traditional, farmer-planted, healthy cacao and 10 cupuaçu plants were cultured in PDA under conditions inducing sporulation. Isolates were classified based upon the morphological characteristics of their cultures and reproductive structures. Spore suspensions from a total of 103 isolates that could be classified at least up to genus level were tested against P. palmivora in pods attached to cacao trees in the field. Results indicated that ∼70% of isolates showed biocontrol effects to a certain extent, suggesting that culturable endophytic fungal biodiversity in this system is of a mostly mutualistic type of interaction with the host. Eight isolates from genera Trichoderma (reference isolate), Pestalotiopsis, Curvularia, Tolypocladium and Fusarium showed the highest level of activity against the pathogen, and were further characterized. All demonstrated their endophytic nature by colonizing axenic cacao plantlets, and confirmed their biocontrol activity on attached pods trials by showing significant decrease in disease severity in relation to the positive control. None, however, showed detectable growth-promotion effects. Aspects related to endophytic biodiversity and host-pathogen-endophyte interactions in the environment of this study were discussed on the context of developing sustainable strategies

  18. Protein Kinase C Activation Promotes Microtubule Advance in Neuronal Growth Cones by Increasing Average Microtubule Growth Lifetimes

    PubMed Central

    Kabir, Nurul; Schaefer, Andrew W.; Nakhost, Arash; Sossin, Wayne S.; Forscher, Paul

    2001-01-01

    We describe a novel mechanism for protein kinase C regulation of axonal microtubule invasion of growth cones. Activation of PKC by phorbol esters resulted in a rapid, robust advance of distal microtubules (MTs) into the F-actin rich peripheral domain of growth cones, where they are normally excluded. In contrast, inhibition of PKC activity by bisindolylmaleimide and related compounds had no perceptible effect on growth cone motility, but completely blocked phorbol ester effects. Significantly, MT advance occurred despite continued retrograde F-actin flow—a process that normally inhibits MT advance. Polymer assembly was necessary for PKC-mediated MT advance since it was highly sensitive to a range of antagonists at concentrations that specifically interfere with microtubule dynamics. Biochemical evidence is presented that PKC activation promotes formation of a highly dynamic MT pool. Direct assessment of microtubule dynamics and translocation using the fluorescent speckle microscopy microtubule marking technique indicates PKC activation results in a nearly twofold increase in the typical lifetime of a MT growth episode, accompanied by a 1.7-fold increase and twofold decrease in rescue and catastrophe frequencies, respectively. No significant effects on instantaneous microtubule growth, shortening, or sliding rates (in either anterograde or retrograde directions) were observed. MTs also spent a greater percentage of time undergoing retrograde transport after PKC activation, despite overall MT advance. These results suggest that regulation of MT assembly by PKC may be an important factor in determining neurite outgrowth and regrowth rates and may play a role in other cellular processes dependent on directed MT advance. PMID:11238458

  19. The Role of Mesenchymal Stem Cells in Promoting Ovarian Cancer Growth and Spread

    DTIC Science & Technology

    2013-09-01

    Promoting Ovarian Cancer Growth and Spread PRINCIPAL INVESTIGATOR: Aline M. Betancourt, PhD CONTRACTING ORGANIZATION: Tulane... Aline M. Betancourt, PhD Betty Diamond 5d. PROJECT NUMBER 5e. TASK NUMBER E-Mail: alibscan@tulane.edu 5f. WORK UNIT NUMBER 7...Bonvillain, Svitlana Danchuk, Deborah E. Sullivan, Aline M. Betancourt, Julie A. Semon, Michelle E. Eagle, Jacques P. Mayeux, Ashley N. Gregory, Guangdi

  20. Microbial shifts in the swine distal gut in response to the treatment with antimicrobial growth promoter, tylosin

    PubMed Central

    Kim, Hyeun Bum; Borewicz, Klaudyna; White, Bryan A.; Singer, Randall S.; Sreevatsan, Srinand; Tu, Zheng Jin; Isaacson, Richard E.

    2012-01-01

    Antimicrobials have been used extensively as growth promoters (AGPs) in agricultural animal production. However, the specific mechanism of action for AGPs has not yet been determined. The work presented here was to determine and characterize the microbiome of pigs receiving one AGP, tylosin, compared with untreated pigs. We hypothesized that AGPs exerted their growth promoting effect by altering gut microbial population composition. We determined the fecal microbiome of pigs receiving tylosin compared with untreated pigs using pyrosequencing of 16S rRNA gene libraries. The data showed microbial population shifts representing both microbial succession and changes in response to the use of tylosin. Quantitative and qualitative analyses of sequences showed that tylosin caused microbial population shifts in both abundant and less abundant species. Our results established a baseline upon which mechanisms of AGPs in regulation of health and growth of animals can be investigated. Furthermore, the data will aid in the identification of alternative strategies to improve animal health and consequently production. PMID:22955886

  1. Impact of lead tolerant plant growth promoting rhizobacteria on growth, physiology, antioxidant activities, yield and lead content in sunflower in lead contaminated soil.

    PubMed

    Saleem, Muhammad; Asghar, Hafiz Naeem; Zahir, Zahir Ahmad; Shahid, Muhammad

    2018-03-01

    Present study was conducted to evaluate the effect of lead tolerant plant growth promoting rhizobacteria (LTPGPR) on growth, physiology, yield, antioxidant activities and lead uptake in sunflower in soil contaminated with lead under pot conditions. Three pre-characterized LTPGP strains (S2 (Pseudomonas gessardii strain BLP141), S5 (Pseudomonas fluorescens A506) and S10 (Pseudomonas fluorescens strain LMG 2189)) were used to inoculate sunflower growing in soil contaminated with different levels (300, 600 and 900 mg kg -1 ) of lead by using lead nitrate salt as source of lead. Treatments were arranged according to completely randomized design with factorial arrangements. At harvesting, data regarding growth attributes (root shoot length, root shoot fresh and dry weights), yield per plant, physiological attributes (Chlorophyll 'a', 'b' and carotenoids content), antioxidant activities (Ascorbate peroxidase, catalase, superoxide dismutase and glutathione reductase), proline and malanodialdehyde content, and lead content in root, shoot and achenes of sunflower were recorded. Data were analysed by standard statistical procedures. Results showed that lead contamination reduced the plants growth, physiology and yield at all levels of lead stress. But application of LTPGPR in soil contaminated with lead improved plant growth, physiology, yield, and antioxidant activities, proline, and reduced the malanodialdehyde content (that is reduced by the application of different strains in lead contamination) of sunflower as compared to plants grown in soil without inoculation. Inoculation also promoted the uptake of lead in root, shoots and reduced the uptake of lead in achenes of plants as compared to plants in lead contamination without inoculation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. S100A9 Interaction with TLR4 Promotes Tumor Growth

    PubMed Central

    Källberg, Eva; Vogl, Thomas; Liberg, David; Olsson, Anders; Björk, Per; Wikström, Pernilla; Bergh, Anders; Roth, Johannes; Ivars, Fredrik; Leanderson, Tomas

    2012-01-01

    By breeding TRAMP mice with S100A9 knock-out (S100A9−/−) animals and scoring the appearance of palpable tumors we observed a delayed tumor growth in animals devoid of S100A9 expression. CD11b+ S100A9 expressing cells were not observed in normal prostate tissue from control C57BL/6 mice but were readily detected in TRAMP prostate tumors. Also, S100A9 expression was observed in association with CD68+ macrophages in biopsies from human prostate tumors. Delayed growth of TRAMP tumors was also observed in mice lacking the S100A9 ligand TLR4. In the EL-4 lymphoma model tumor growth inhibition was observed in S100A9−/− and TLR4−/−, but not in RAGE−/− animals lacking an alternative S100A9 receptor. When expression of immune-regulating genes was analyzed using RT-PCR the only common change observed in mice lacking S100A9 and TLR4 was a down-regulation of TGFβ expression in splenic CD11b+ cells. Lastly, treatment of mice with a small molecule (ABR-215050) that inhibits S100A9 binding to TLR4 inhibited EL4 tumor growth. Thus, S100A9 and TLR4 appear to be involved in promoting tumor growth in two different tumor models and pharmacological inhibition of S100A9-TLR4 interactions is a novel and promising target for anti-tumor therapies. PMID:22470535

  3. Mesotrypsin promotes malignant growth of breast cancer cells through shedding of CD109

    PubMed Central

    Hockla, Alexandra; Radisky, Derek C.

    2010-01-01

    Serine proteases have been implicated in many stages of cancer development, facilitating tumor cell growth, invasion, and metastasis, and naturally occurring serine protease inhibitors have shown promise as potential anticancer therapeutics. Optimal design of inhibitors as potential therapeutics requires the identification of the specific serine proteases involved in disease progression and the functional targets responsible for the tumor-promoting properties. Here, we use the HMT-3522 breast cancer progression series grown in 3D organotypic culture conditions to find that serine protease inhibitors cause morphological reversion of the malignant T4-2 cells, assessed by inhibition of proliferation and formation of acinar structures with polarization of basal markers, implicating serine protease activity in their malignant growth behavior. We identify PRSS3/mesotrypsin upregulation in T4-2 cells as compared to their nonmalignant progenitors, and show that knockdown of PRSS3 attenuates, and treatment with recombinant purified mesotrypsin enhances, the malignant growth phenotype. Using proteomic methods, we identify CD109 as the functional proteolytic target of mesotrypsin. Our study identifies a new mediator and effector of breast cancer growth and progression. PMID:20035377

  4. Impact of Feed Supplementation with Antimicrobial Agents on Growth Performance of Broiler Chickens, Clostridium perfringens and Enterococcus Counts, and Antibiotic Resistance Phenotypes and Distribution of Antimicrobial Resistance Determinants in Escherichia coli Isolates▿

    PubMed Central

    Diarra, Moussa S.; Silversides, Fred G.; Diarrassouba, Fatoumata; Pritchard, Jane; Masson, Luke; Brousseau, Roland; Bonnet, Claudie; Delaquis, Pascal; Bach, Susan; Skura, Brent J.; Topp, Edward

    2007-01-01

    The effects of feed supplementation with the approved antimicrobial agents bambermycin, penicillin, salinomycin, and bacitracin or a combination of salinomycin plus bacitracin were evaluated for the incidence and distribution of antibiotic resistance in 197 commensal Escherichia coli isolates from broiler chickens over 35 days. All isolates showed some degree of multiple antibiotic resistance. Resistance to tetracycline (68.5%), amoxicillin (61.4%), ceftiofur (51.3%), spectinomycin (47.2%), and sulfonamides (42%) was most frequent. The levels of resistance to streptomycin, chloramphenicol, and gentamicin were 33.5, 35.5, and 25.3%, respectively. The overall resistance levels decreased from day 7 to day 35 (P < 0.001). Comparing treatments, the levels of resistance to ceftiofur, spectinomycin, and gentamicin (except for resistance to bacitracin treatment) were significantly higher in isolates from chickens receiving feed supplemented with salinomycin than from the other feeds (P < 0.001). Using a DNA microarray analysis capable of detecting commonly found antimicrobial resistance genes, we characterized 104 tetracycline-resistant E. coli isolates from 7- to 28-day-old chickens fed different growth promoters. Results showed a decrease in the incidence of isolates harboring tet(B), blaTEM, sulI, and aadA and class 1 integron from days 7 to 35 (P < 0.01). Of the 84 tetracycline-ceftiofur-resistant E. coli isolates, 76 (90.5%) were positive for blaCMY-2. The proportions of isolates positive for sulI, aadA, and integron class 1 were significantly higher in salinomycin-treated chickens than in the control or other treatment groups (P < 0.05). These data demonstrate that multiantibiotic-resistant E. coli isolates can be found in broiler chickens regardless of the antimicrobial growth promoters used. However, the phenotype and the distribution of resistance determinants in E. coli can be modulated by feed supplementation with some of the antimicrobial agents used in broiler

  5. Promotion

    PubMed Central

    Alam, Hasan B.

    2013-01-01

    This article gives an overview of the promotion process in an academic medical center. A description of different promotional tracks, tenure and endowed chairs, and the process of submitting an application is provided. Finally, some practical advice about developing skills and attributes that can help with academic growth and promotion is dispensed. PMID:24436683

  6. Plant growth promoting rhizobacteria reduce aphid population and enhance the productivity of bread wheat.

    PubMed

    Naeem, Muhammad; Aslam, Zubair; Khaliq, Abdul; Ahmed, Jam Nazir; Nawaz, Ahmad; Hussain, Mubshar

    2018-04-24

    Plant growth promoting rhizobacteria increase plant growth and give protection against insect pests and pathogens. Due to the negative impact of chemical pesticides on environment, alternatives to these chemicals are needed. In this scenario, the biological methods of pest control offer an eco-friendly and an attractive option. In this study, the effect of two plant growth promoting rhizobacterial strains (Bacillus sp. strain 6 and Pseudomonas sp. strain 6K) on aphid population and wheat productivity was evaluated in an aphid susceptible (Pasban-90) and resistant (Inqlab-91) wheat cultivar. The seeds were inoculated with each PGPR strain, separately or the combination of both. The lowest aphid population (2.1tiller -1 ), and highest plant height (85.8cm), number of spikelets per spike (18), grains per spike (44), productive tillers (320m -2 ), straw yield (8.6Mgha -1 ), and grain yield (4.8Mgha -1 ) were achieved when seeds were inoculated with Bacillus sp. strain 6+Pseudomonas sp. strain 6K. The grain yield of both varieties was enhanced by 35.5-38.9% with seed inoculation with both bacterial strains. Thus, the combine use of both PGPR strains viz. Bacillus sp. strain 6+Pseudomonas sp. strain 6K offers an attractive option to reduce aphid population tied with better wheat productivity. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  7. Extinguishing agent for combustible metal fires

    DOEpatents

    Riley, John F.; Stauffer, Edgar Eugene

    1976-10-12

    A low chloride extinguishing agent for combustible metal fires comprising from substantially 75 to substantially 94 weight percent of sodium carbonate as the basic fire extinguishing material, from substantially 1 to substantially 5 weight percent of a water-repellent agent such as a metal stearate, from substantially 2 to substantially 10 weight percent of a flow promoting agent such as attapulgus clay, and from substantially 3 to substantially 15 weight percent of a polyamide resin as a crusting agent.

  8. Isolation and characterization of N2 -fixing bacteria from giant reed and switchgrass for plant growth promotion and nutrient uptake.

    PubMed

    Xu, Jia; Kloepper, Joseph W; Huang, Ping; McInroy, John A; Hu, Chia H

    2018-05-01

    The aims of this study were to isolate and characterize N 2 -fixing bacteria from giant reed and switchgrass and evaluate their plant growth promotion and nutrient uptake potential for use as biofertilizers. A total of 190 bacteria were obtained from rhizosphere soil and inside stems and roots of giant reed and switchgrass. All the isolates were confirmed to have nitrogenase activity, 96.9% produced auxin, and 85% produced siderophores. Then the top six strains, including Sphingomonas trueperi NNA-14, Sphingomonas trueperi NNA-19, Sphingomonas trueperi NNA-17, Sphingomonas trueperi NNA-20, Psychrobacillus psychrodurans NP-3, and Enterobacter oryzae NXU-38, based on nitrogenase activity, were inoculated on maize and wheat seeds in greenhouse tests to assess their potential benefits to plants. All the selected strains promoted plant growth by increasing at least one plant growth parameter or increasing the nutrient concentration of maize or wheat plants. NNA-14 outperformed others in promoting early growth and nutrient uptake by maize. Specifically, NNA-14 significantly increased root length, surface area, and fine roots of maize by 14%, 12%, and 17%, respectively, and enhanced N, Ca, S, B, Cu, and Zn in maize. NNA-19 and NXU-38 outperformed others in promoting both early growth and nutrient uptake by wheat. Specifically, NNA-19 significantly increased root dry weight and number of root tips of wheat by 25% and 96%, respectively, and enhanced Ca in wheat. NXU-38 significantly increased root length, surface area, and fine roots of wheat by 21%, 13%, and 26%, respectively, and enhanced levels of Ca and Mg in wheat. It is concluded that switchgrass and giant reed are colonized by N 2 -fixing bacteria that have the potential to contribute to plant growth and nutrient uptake by agricultural crops. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Expression of wheat expansin driven by the RD29 promoter in tobacco confers water-stress tolerance without impacting growth and development.

    PubMed

    Li, Feng; Han, Yangyang; Feng, Yanan; Xing, Shichao; Zhao, Meirong; Chen, Yanhui; Wang, Wei

    2013-02-10

    Expansins are the key regulators of cell wall extension during plant growth. Previously, we produced transgenic tobacco plants with increased tolerance to water stress by overexpressing the wheat expansin gene TaEXPB23 driven by the constitutive 35S cauliflower mosaic virus (CaMV) promoter. However, the growth and development of 35S::TaEXPB23 transgenic tobacco plants were altered under normal growth conditions, with a faster growth rate at the seedling stage, earlier flowering and maturation, and a shorter plant height compared to WT. In the current study, we determined that cellular characteristics and carbohydrate metabolism were altered in 35S::TaEXPB23 transgenic tobacco plants. We also generated transgenic Arabidopsis plants using the same vector. The transgenic Arabidopsis plants had the same phenotype as the transgenic tobacco plants, which may have resulted from the altered expression of several flowering-related genes. We then produced TaEXPB23 transgenic tobacco plants using the stress-inducible RD29A promoter. The use of this promoter reduced the negative effects of TaEXPB23 on plant growth and development. The RD29A::TaEXPB23 transgenic tobacco plants had greater tolerance to water stress than WT, as determined by examining physiological and biochemical parameters. Therefore, the use of stress-inducible promoters, such as RD29A, may minimize the negative effects of constitutive transgene expression and improve the water-stress tolerance of plants. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Effect of tungsten concentration on growth of acetobacter xylinum as a promising agent for eco-friendly recycling system

    NASA Astrophysics Data System (ADS)

    Nandiyanto, A. B. D.; Halimatul, H. S.; Rosyid, N. H.; Effendi, D. B.

    2016-04-01

    Effect of tungsten (W) concentration on Acetobacter xylinum growth was studied. In the experimental procedure, concentration of W in the bacterial growth medium containing pineapple peels waste was varied from 0.5 to 50 ppm. To confirm the influence of W, the bacterial incubation process was carried out for 72 hours. Spectrophotometer analysis showed that the growth rate of Acetobacter xylinum decreased with increasing concentration of W. The result from fourier transform infra red analysis showed a slightly change on the absorption peak intensities and informing the interaction of W ion and bacteria cell. The result confirmed that Acetobacter xylinum was able to uptake W concentration up to 15 ppm, indicating that Acetobacter xylinum might act as a promising agent for eco-friendly recycling system.

  11. Growth in liverworts of the Marchantiales is promoted by epiphytic methylobacteria

    NASA Astrophysics Data System (ADS)

    Kutschera, U.; Koopmann, V.

    2005-07-01

    Liverworts, the most basal lineage of extant land plants, have been used as model systems in the reconstruction of adaptations to life on land. In this study, we used gemmae (specialized propagules) that were isolated from mature gemma cups of two distantly related species of liverworts, Marchantia polymorpha L. and Lunularia cruciata L. (order Marchantiales). We show that methylobacteria (genus Methylobacterium), microbes that inhabit the surfaces of land plants where they secrete phytohormones (cytokinines), promote the growth of isolated gemmae cultivated on agar plates. As a control, two species of higher plants, maize (Zea mays L.) and sunflower (Helianthus annuus L.) were raised aseptically from sterile seeds (i.e., caryopses, achenes). Inoculation of these propagules with methylobacteria was without effect on growth in the above-ground phytosphere (expansion of stems and leaves). We conclude that normal development in Marchantia and Lunularia is dependent on (and possibly regulated by) epiphytic methylobacteria, whereas representative higher plants grow at optimal rates in the absence of these prokaryotic epiphytes.

  12. Growth in liverworts of the Marchantiales is promoted by epiphytic methylobacteria.

    PubMed

    Kutschera, U; Koopmann, V

    2005-07-01

    Liverworts, the most basal lineage of extant land plants, have been used as model systems in the reconstruction of adaptations to life on land. In this study, we used gemmae (specialized propagules) that were isolated from mature gemma cups of two distantly related species of liverworts, Marchantia polymorpha L. and Lunularia cruciata L. (order Marchantiales). We show that methylobacteria (genus Methylobacterium), microbes that inhabit the surfaces of land plants where they secrete phytohormones (cytokinines), promote the growth of isolated gemmae cultivated on agar plates. As a control, two species of higher plants, maize (Zea mays L.) and sunflower (Helianthus annuus L.) were raised aseptically from sterile seeds (i.e., caryopses, achenes). Inoculation of these propagules with methylobacteria was without effect on growth in the above-ground phytosphere (expansion of stems and leaves). We conclude that normal development in Marchantia and Lunularia is dependent on (and possibly regulated by) epiphytic methylobacteria, whereas representative higher plants grow at optimal rates in the absence of these prokaryotic epiphytes.

  13. Predicting the impact of combined therapies on myeloma cell growth using a hybrid multi-scale agent-based model.

    PubMed

    Ji, Zhiwei; Su, Jing; Wu, Dan; Peng, Huiming; Zhao, Weiling; Nlong Zhao, Brian; Zhou, Xiaobo

    2017-01-31

    Multiple myeloma is a malignant still incurable plasma cell disorder. This is due to refractory disease relapse, immune impairment, and development of multi-drug resistance. The growth of malignant plasma cells is dependent on the bone marrow (BM) microenvironment and evasion of the host's anti-tumor immune response. Hence, we hypothesized that targeting tumor-stromal cell interaction and endogenous immune system in BM will potentially improve the response of multiple myeloma (MM). Therefore, we proposed a computational simulation of the myeloma development in the complicated microenvironment which includes immune cell components and bone marrow stromal cells and predicted the effects of combined treatment with multi-drugs on myeloma cell growth. We constructed a hybrid multi-scale agent-based model (HABM) that combines an ODE system and Agent-based model (ABM). The ODEs was used for modeling the dynamic changes of intracellular signal transductions and ABM for modeling the cell-cell interactions between stromal cells, tumor, and immune components in the BM. This model simulated myeloma growth in the bone marrow microenvironment and revealed the important role of immune system in this process. The predicted outcomes were consistent with the experimental observations from previous studies. Moreover, we applied this model to predict the treatment effects of three key therapeutic drugs used for MM, and found that the combination of these three drugs potentially suppress the growth of myeloma cells and reactivate the immune response. In summary, the proposed model may serve as a novel computational platform for simulating the formation of MM and evaluating the treatment response of MM to multiple drugs.

  14. SAP97 Binding Partner CRIPT Promotes Dendrite Growth In Vitro and In Vivo

    PubMed Central

    Zhang, Lei; Jablonski, Angela Marie; Neve, Rachael; Zhai, JinBin

    2017-01-01

    Abstract The dendritic tree is a key determinant of neuronal information processing. In the motor system, the dendritic tree of spinal cord neurons undergoes dramatic remodeling in an activity-dependent manner during early postnatal life. This leads to the proper segmental spinal cord connectivity that subserves normal locomotor behavior. One molecular system driving the establishment of dendrite architecture of mammalian motor neurons relies on AMPA receptors (AMPA-Rs) assembled with the GluA1 subunit, and this occurs in an NMDA receptor (NMDA-R)-independent manner. The dendrite growth promoting activity of GluA1-containing AMPA-Rs depends on its intracellular binding partner, SAP97, and SAP97’s PDZ3 domain. We show here that cysteine-rich interactor of PDZ3 (CRIPT) is a bona fide SAP97 PDZ3-domain binding partner, localizes to synapses with GluA1 and SAP97 along the dendritic tree, and is a determinant of the dendritic growth of mammalian spinal cord neurons. We further show that CRIPT has a well-conserved ortholog in the nematode, Caenorhabditis elegans, and animals lacking CRIPT display decreased dendrite branching of the well-studied PVD neuron in vivo. The lack of CRIPT leads to a selective defect in touch perception, and this is rescued by expression of wild-type (WT) human CRIPT (hCRIPT) in the nervous system. This work brings new light into the molecular machinery that drives dendritic growth during development and may prove relevant to the promotion of nervous system plasticity following insult. PMID:29218323

  15. Effect of plant growth-promoting rhizobacteria (PGPRs) on plant growth, yield, and quality of tomato (Lycopersicon esculentum Mill.) under simulated seawater irrigation.

    PubMed

    Shen, Min; Jun Kang, Yi; Li Wang, Huan; Sheng Zhang, Xiang; Xin Zhao, Qing

    2012-01-01

    To determine the effects of three PGPRs on plant growth, yield, and quality of tomato under simulated seawater irrigation, a two consecutive seasons' field experiment was conducted in Yancheng Teachers University plot from April to June and August to October, 2011. The results showed that Erwinia persicinus RA2 containing ACC deaminase exhibited the best ability compared with Bacillus pumilus WP8 and Pseudomonas putida RBP1 which had no ACC deaminase activity to enhance marketable yields of fresh and dried fruits in tomato under simulated seawater irrigation especially under HS condition. B. pumilus WP8 had significant effects on improving tomato fruit quality under the conditions of irrigating with 1.0% NaCl solution (MS) and with 2.0% NaCl solution (HS). Na(+) contents were generally accumulated much more in tomato plant mid-shoot leaves than in fruits whatever the salt concentration. More sodium accumulation in leaves of E. persicinus RA2 and B. pumilus WP8 treatments under HS condition were found than in control. E. persicinus RA2 and B. pumilus WP8 can promote tomato growth, improve fruit quality more firmly than P. putida RBP1 during two consecutive seasons. Our study suggested that E. persicinus RA2 and B. pumilus WP8 are considered to be promising PGPR strains which are suited for application in salt marsh planting, ACC deaminase activity was not unique index on screening for PGPRs with the aim of salt stress tolerance, and plant growth promoting activities may be relevant to different growth indices and different stress conditions.

  16. Enhancing the growth, photosynthetic capacity and artemisinin content in Artemisia annua L. by irradiated sodium alginate

    NASA Astrophysics Data System (ADS)

    Aftab, Tariq; Khan, M. Masroor A.; Idrees, M.; Naeem, M.; Moinuddin; Hashmi, Nadeem; Varshney, Lalit

    2011-07-01

    Degrading the natural bioactive agents by ionizing radiation and then using them as growth promoting substances is a novel emerging technology to exploit the genetic potential of crops in terms of growth, yield and quality. Polysaccharides, such as sodium alginate, have proven to be wonderful growth promoting substances in their depolymerized form for various plants. The effect of depolymerized form of sodium alginate, produced by irradiating the latter by 60Co gamma rays, was studied on Artemisia annua L. with regard to growth attributes, physiological and biochemical parameters and artemisinin content. The study revealed that the irradiated sodium alginate (ISA), applied as leaf-sprays at a concentration of 20-120 mg L -1, improved the growth attributes, photosynthetic capability, enzyme activities and artemisinin content of the plant significantly. Application of ISA at 80 mg L -1 increased the values of the attributes studied to the maximum extent. The enhancement of leaf-artemisinin content was ascribed to the ISA-enhanced H 2O 2 content in the leaves.

  17. Biocontrol of Fusarium Crown and Root Rot and Promotion of Growth of Tomato by Paenibacillus Strains Isolated from Soil

    PubMed Central

    Xu, Sheng Jun

    2014-01-01

    In this study, bacterial strains were isolated from soils from 30 locations of Samcheok, Gangwon province. Of the isolated strains, seven showed potential plant growth promoting and antagonistic activities. Based on cultural and morphological characterization, and 16S rRNA gene sequencing, these strains were identified as Paenibacillus species. All seven strains produced ammonia, cellulase, hydrocyanic acid, indole-3-acetic acid, protease, phosphatase, and siderophores. They also inhibited the mycelial growth of Fusarium oxysporum f. sp. radicis-lycopersici in vitro. The seven Paenibacillus strains enhanced a range of growth parameters in tomato plants under greenhouse conditions, in comparison with non-inoculated control plants. Notably, treatment of tomato plants with one identified strain, P. polymyxa SC09-21, resulted in 80.0% suppression of fusarium crown and root rot under greenhouse conditions. The plant growth promoting and antifungal activity of P. polymyxa SC09-21 identified in this study highlight its potential suitability as a bioinoculant. PMID:25071385

  18. Fluoxetine regulates cell growth inhibition of interferon-α.

    PubMed

    Lin, Yu-Min; Yu, Bu-Chin; Chiu, Wen-Tai; Sun, Hung-Yu; Chien, Yu-Chieh; Su, Hui-Chen; Yen, Shu-Yang; Lai, Hsin-Wen; Bai, Chyi-Huey; Young, Kung-Chia; Tsao, Chiung-Wen

    2016-10-01

    Fluoxetine, a well-known anti-depression agent, may act as a chemosensitizer to assist and promote cancer therapy. However, how fluoxetine regulates cellular signaling to enhance cellular responses against tumor cell growth remains unclear. In the present study, addition of fluoxetine promoted growth inhibition of interferon-alpha (IFN-α) in human bladder carcinoma cells but not in normal uroepithelial cells through lessening the IFN-α-induced apoptosis but switching to cause G1 arrest, and maintaining the IFN-α-mediated reduction in G2/M phase. Activations and signal transducer and transactivator (STAT)-1 and peroxisome proliferator-activated receptor alpha (PPAR-α) were involved in this process. Chemical inhibitions of STAT-1 or PPAR-α partially rescued bladder carcinoma cells from IFN-α-mediated growth inhibition via blockades of G1 arrest, cyclin D1 reduction, p53 downregulation and p27 upregulation in the presence of fluoxetine. However, the functions of both proteins were not involved in the control of fluoxetine over apoptosis and maintained the declined G2/M phase of IFN-α. These results indicated that activation of PPAR-α and STAT-1 participated, at least in part, in growth inhibition of IFN-α in the presence of fluoxetine.

  19. The intracellular portion of GITR enhances NGF-promoted neurite growth through an inverse modulation of Erk and NF-κB signalling

    PubMed Central

    McKelvey, Laura; Gutierrez, Humberto; Nocentini, Giuseppe; Crampton, Sean J.; Davies, Alun M.; Riccardi, Carlo R.; O’keeffe, Gerard W.

    2012-01-01

    Summary NF-κB transcription factors play a key role in regulating the growth of neural processes in the developing PNS. Although several secreted proteins have been shown to activate NF-κB to inhibit the growth of developing sympathetic neurons, it is unknown how the endogenous level of NF-κB activity present in these neurons is restricted to allow neurite growth to occur during their normal development. Here we show that activation of the glucocorticoid-induced tumour necrosis factor receptor (GITR) inhibits NF-κB activation while promoting the activation of Erk in developing sympathetic neurons. Conversely, inhibition of GITR results in an increase in NF-κB dependent gene transcription and a decrease in Erk activation leading to a reduction in neurite growth. These findings show that GITR signalling can regulate the extent of sympathetic neurite growth through an inverse modulation of Erk and NF-κB signalling, which provides an optimal environment for NGF-promoted growth. PMID:23213379

  20. Novel quorum-quenching agents promote methicillin-resistant Staphylococcus aureus (MRSA) wound healing and sensitize MRSA to β-lactam antibiotics.

    PubMed

    Kuo, David; Yu, Guanping; Hoch, Wyatt; Gabay, Dean; Long, Lisa; Ghannoum, Mahmoud; Nagy, Nancy; Harding, Clifford V; Viswanathan, Rajesh; Shoham, Menachem

    2015-03-01

    The dwindling repertoire of antibiotics to treat methicillin-resistant Staphylococcus aureus (MRSA) calls for novel treatment options. Quorum-quenching agents offer an alternative or an adjuvant to antibiotic therapy. Three biaryl hydroxyketone compounds discovered previously (F1, F12, and F19; G. Yu, D. Kuo, M. Shoham, and R. Viswanathan, ACS Comb Sci 16:85-91, 2014) were tested for efficacy in MRSA-infected animal models. Topical therapy of compounds F1 and F12 in a MRSA murine wound infection model promotes wound healing compared to the untreated control. Compounds F1, F12, and F19 afford significant survival benefits in a MRSA insect larva model. Combination therapy of these quorum-quenching agents with cephalothin or nafcillin, antibiotics to which MRSA is resistant in monotherapy, revealed additional survival benefits. The quorum-quenching agents sensitize MRSA to the antibiotic by a synergistic mode of action that also is observed in vitro. An adjuvant of 1 μg/ml F1, F12, or F19 reduces the MIC of nafcillin and cephalothin about 50-fold to values comparable to those for vancomycin, the antibiotic often prescribed for MRSA infections. These findings suggest that it is possible to resurrect obsolete antibiotic therapies in combination with these novel quorum-quenching agents. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Successful Formulation and Application of Plant Growth-Promoting Kosakonia radicincitans in Maize Cultivation

    PubMed Central

    Berger, Beatrice; Patz, Sascha; Ruppel, Silke; Dietel, Kristin; Faetke, Sebastian; Junge, Helmut

    2018-01-01

    The global market for biosupplements is expected to grow by 14 percent between 2014 and 2019 as a consequence of the proven benefits of biosupplements on crop yields, soil fertility, and fertilizer efficiency. One important segment of biosupplements is plant growth-promoting bacteria (PGPB). Although many potential PGPB have been discovered, suitable biotechnological processing and shelf-life stability of the bacteria are challenges to overcome for their successful use as biosupplements. Here, the plant growth-promoting Gram-negative strain Kosakonia radicincitans DSM 16656T (family Enterobacteriaceae) was biotechnologically processed and applied in the field. Solid or liquid formulations of K. radicincitans were diluted in water and sprayed on young maize plants (Zea mays L.). Shelf-life stability tests of formulated bacteria were performed under 4°C and −20°C storage conditions. In parallel, the bacterial formulations were tested at three different farm level field plots characterized by different soil properties. Maize yield was recorded at harvest time, and both formulations increased maize yields in silage as well as grain maize, underlining their positive impact on different agricultural systems. Our results demonstrate that bacteria of the family Enterobacteriaceae, although incapable of forming spores, can be processed to successful biosupplements. PMID:29789802

  2. Antimicrobial growth promoters modulate host responses in mice with a defined intestinal microbiota

    PubMed Central

    Brown, Kirsty; Zaytsoff, Sarah J. M.; Uwiera, Richard R. E.; Inglis, G. Douglas

    2016-01-01

    Antibiotics can promote growth in livestock (antimicrobial growth promoters, AGPs), however lack of knowledge regarding mechanisms has hampered the development of effective non-antibiotic alternatives. Antibiotics affect eukaryotic cells at therapeutic concentrations, yet effects of AGPs on host physiology are relatively understudied, partially due to the complexity of host-microorganism interactions within the gastrointestinal tract. To determine the direct effects of AGPs on the host, we generated Altered Schaedler Flora (ASF) mice, and administered chlortetracycline (CTC) and tylosin phosphate (TYL) in feed. Mice were challenged with Citrobacter rodentium to determine how AGPs alter host responses to physiological stress. Although CTC and TYL had inconsistent effects on the ASF taxa, AGPs protected mice from weight loss following C. rodentium inoculation. Mice treated with either CTC or TYL had lower expression of βd1 and Il17a in the intestine and had a robust induction of Il17a and Il10. Furthermore, AGP administration resulted in a lower hepatic expression of acute phase proteins (Saa1, Hp, and Cp) in liver tissue, and ameliorated C. rodentium-induced reductions in the expression of genes involved in lipogenesis (Hmgcl and Fabp1). Collectively, this indicates that AGPs directly affect host physiology, and highlights important considerations in the development of non-antibiotic alternatives. PMID:27929072

  3. ING3 promotes prostate cancer growth by activating the androgen receptor.

    PubMed

    Nabbi, Arash; McClurg, Urszula L; Thalappilly, Subhash; Almami, Amal; Mobahat, Mahsa; Bismar, Tarek A; Binda, Olivier; Riabowol, Karl T

    2017-05-16

    The androgen receptor (AR) is a major driver of prostate cancer, and increased AR levels and co-activators of the receptor promote the development of prostate cancer. INhibitor of Growth (ING) proteins target lysine acetyltransferase or lysine deacetylase complexes to the histone H3K4Me3 mark of active transcription, to affect chromatin structure and gene expression. ING3 is a stoichiometric member of the TIP60 lysine acetyltransferase complex implicated in prostate cancer development. Biopsies of 265 patients with prostate cancer were stained for ING3, pan-cytokeratin, and DNA. LNCaP and C4-2 androgen-responsive cells were used for in vitro assays including immunoprecipitation, western blotting, Luciferase reporter assay and quantitative polymerase chain reaction. Cell viability and migration assays were performed in prostate cancer cell lines using scrambled siRNA or siRNA targeting ING3. We find that ING3 levels and AR activity positively correlate in prostate cancer. ING3 potentiates androgen effects, increasing expression of androgen-regulated genes and androgen response element-driven reporters to promote growth and anchorage-independent growth. Conversely, ING3 knockdown inhibits prostate cancer cell growth and invasion. ING3 activates the AR by serving as a scaffold to increase interaction between TIP60 and the AR in the cytoplasm, enhancing receptor acetylation and translocation to the nucleus. Activation is independent of ING3's ability to target the TIP60 complex to H3K4Me3, identifying a previously unknown chromatin-independent cytoplasmic activity for ING3. In agreement with in vitro observations, analysis of The Cancer Genome Atlas (TCGA) data (n = 498) and a prostate cancer tissue microarray (n = 256) show that ING3 levels are higher in aggressive prostate cancers, with high levels of ING3 predicting shorter patient survival in a low AR subgroup. Including ING3 levels with currently used indicators such as the Gleason score provides more

  4. Angelica polysaccharides inhibit the growth and promote the apoptosis of U251 glioma cells in vitro and in vivo.

    PubMed

    Zhang, Wen-Feng; Yang, Yan; Li, Xin; Xu, Da-Yan; Yan, Yu-Li; Gao, Qiao; Jia, Ai-Ling; Duan, Ming-Hua

    2017-09-15

    Angelica sinensis (Oliv) Diels (Apiaceae) is a traditional medicine that has been used for more than 2000 years in China. It exhibits various therapeutic effects including neuroprotective, anti-oxidant, anti-inflammatory, and immunomodulatory activities. Angelica polysaccharides (APs), bioactive constituents of Angelica have been shown to be responsible for these effects; however, the utility of APs for the treatment of glioma and their mechanism of action remain to be elucidated. In this study, we investigated the inhibitory effects of APs on a glioma cell line and their molecular mechanism of action. U251 cells were utilized to confirm the effects of APs on glioma. The human glioblastoma cell line U251 was utilized for both in vitro and in vivo models, in which we tested the effects of APs. Flow cytometry, gene expression analysis, western blotting, and MTT assays were used to elucidate the effects of APs on cell proliferation, cell cycle, and apoptosis. The results demonstrated that APs significantly inhibited the growth and proliferation of U251 cells and induced their apoptosis. Furthermore, APs effectively reduced the expression of several cell cycle regulators: cyclins D1, B, and E. The apoptosis suppressor protein Bcl-2 was also downregulated, and the expression of pro-apoptotic proteins Bax and cleaved-caspase-3 increased. Additionally, APs inhibited the transforming growth factor (TGF)-β signaling pathway and stimulated the expression of E-cadherin, thus prohibiting cell growth. In conclusion, the results indicate that APs attenuate the tumorigenicity of glioma cells and promote their apoptosis by suppressing the TGF-β signaling pathway. The present study therefore provides evidence of the inhibitory effects of APs against glioma progression, and proposes their potential application as alternative therapeutic agents for glioma. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Phytohormonal basis for the plant growth promoting action of naturally occurring biostimulators.

    PubMed

    Kurepin, Leonid V; Zaman, Mohammad; Pharis, Richard P

    2014-07-01

    There is increasing interest in the use of naturally occurring 'biostimulators' for enhancing the growth of agricultural and horticultural crops. Bacteria, fungi and protozoa, as well as marine algae-based seaweed extracts, can produce or contain biostimulators. The activity of biostimulators to promote plant growth is often attributed to their ability to directly or indirectly provide mineral nutrients (mostly N, but also P, S and other macro- and micro-nutrients) to plants. Alternatively, biostimulators are postulated to increase the plant's ability to assimilate these mineral nutrients, often in return for photo-assimilates (as occurs with certain bacteria and fungi associations). Although optimal growth of plants depends on the availability of adequate mineral nutritients, that growth (and also development, including reproduction) is also regulated by plant hormones (phytohormones), including gibberellins, auxins and cytokinins. This review describes and discusses the evidence that the presence or application of biostimulators also increases plant growth directly via phytohormone action and also influences the plant's ability to control its own hormone biosynthesis and homeostasis. Finally, it discusses the need for a better understanding of the role(s) that are played by the naturally occurring biostimulators associated with the plant in the crop field. It is suggested that better understanding will allow for optimal crop yield returns, since disruptions of phytohormone homeostasis in plant organs and tissues can yield either beneficial or sub-optimal outcomes. © 2013 Society of Chemical Industry.

  6. An engineered promoter driving expression of a microbial avirulence gene confers recognition of TAL effectors and reduces growth of diverse Xanthomonas strains in citrus.

    PubMed

    Shantharaj, Deepak; Römer, Patrick; Figueiredo, Jose F L; Minsavage, Gerald V; Krönauer, Christina; Stall, Robert E; Moore, Gloria A; Fisher, Latanya C; Hu, Yang; Horvath, Diana M; Lahaye, Thomas; Jones, Jeffrey B

    2017-09-01

    Xanthomonas citri ssp. citri (X. citri), causal agent of citrus canker, uses transcription activator-like effectors (TALEs) as major pathogenicity factors. TALEs, which are delivered into plant cells through the type III secretion system (T3SS), interact with effector binding elements (EBEs) in host genomes to activate the expression of downstream susceptibility genes to promote disease. Predictably, TALEs bind EBEs in host promoters via known combinations of TALE amino acids to DNA bases, known as the TALE code. We introduced 14 EBEs, matching distinct X. citri TALEs, into the promoter of the pepper Bs3 gene (ProBs3 1EBE ), and fused this engineered promoter with multiple EBEs (ProBs3 14EBE ) to either the β-glucuronidase (GUS) reporter gene or the coding sequence (cds) of the pepper gene, Bs3. TALE-induced expression of the Bs3 cds in citrus leaves resulted in no visible hypersensitive response (HR). Therefore, we utilized a different approach in which ProBs3 1EBE and ProBs3 14EBE were fused to the Xanthomonas gene, avrGf1, which encodes a bacterial effector that elicits an HR in grapefruit and sweet orange. We demonstrated, in transient assays, that activation of ProBs3 14EBE by X. citri TALEs is T3SS dependent, and that the expression of AvrGf1 triggers HR and correlates with reduced bacterial growth. We further demonstrated that all tested virulent X. citri strains from diverse geographical locations activate ProBs3 14EBE . TALEs are essential for the virulence of X. citri strains and, because the engineered promoter traps are activated by multiple TALEs, this concept has the potential to confer broad-spectrum, durable resistance to citrus canker in stably transformed plants. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  7. Use of impact fees to incentivize low-impact development and promote compact growth.

    PubMed

    Lu, Zhongming; Noonan, Douglas; Crittenden, John; Jeong, Hyunju; Wang, Dali

    2013-10-01

    Low-impact development (LID) is an innovative stormwater management strategy that restores the predevelopment hydrology to prevent increased stormwater runoff from land development. Integrating LID into residential subdivisions and increasing population density by building more compact living spaces (e.g., apartment homes) can result in a more sustainable city by reducing stormwater runoff, saving infrastructural cost, increasing the number of affordable homes, and supporting public transportation. We develop an agent-based model (ABM) that describes the interactions between several decision-makers (i.e., local government, a developer, and homebuyers) and fiscal drivers (e.g., property taxes, impact fees). The model simulates the development of nine square miles of greenfield land. A more sustainable development (MSD) scenario introduces an impact fee that developers must pay if they choose not to use LID to build houses or apartment homes. Model simulations show homeowners selecting apartment homes 60% or 35% of the time after 30 years of development in MSD or business as usual (BAU) scenarios, respectively. The increased adoption of apartment homes results from the lower cost of using LID and improved quality of life for apartment homes relative to single-family homes. The MSD scenario generates more tax revenue and water savings than does BAU. A time-dependent global sensitivity analysis quantifies the importance of socioeconomic variables on the adoption rate of apartment homes. The top influential factors are the annual pay rates (or capital recovery factor) for single-family houses and apartment homes. The ABM can be used by city managers and policymakers for scenario exploration in accordance with local conditions to evaluate the effectiveness of impact fees and other policies in promoting LID and compact growth.

  8. Inoculation of Schizolobium parahyba with Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria Increases Wood Yield under Field Conditions.

    PubMed

    Cely, Martha V T; Siviero, Marco A; Emiliano, Janaina; Spago, Flávia R; Freitas, Vanessa F; Barazetti, André R; Goya, Erika T; Lamberti, Gustavo de Souza; Dos Santos, Igor M O; De Oliveira, Admilton G; Andrade, Galdino

    2016-01-01

    Schizolobium parahyba var. amazonicum (Huber ex Ducke) occurs naturally in the Brazilian Amazon. Currently, it is being planted extensively because of its fast growth and excellent use in forestry. Consequently, there is great interest in new strategies to increase wood production. The interaction between soil microorganisms and plants, specifically in the roots, provides essential nutrients for plant growth. These interactions can have growth-promoting effects. In this way, this study assessed the effect of the inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on growth of S. parahyba var. amazonicum under field conditions. We used two native species of arbuscular mycorrhizal fungi, Claroideoglomus etunicatum (Ce), and Acaulospora sp. (Ac); two native strains of Rhizobium sp. (Rh1 and Rh2); and a non-native strain of Burkholderia sp. Different combinations of microorganisms were supplemented with chemical fertilizers (doses D1 and D2) in two planting methods, seed sowing and seedling planting. In seed sowing, the results showed that treatments with Ce/Rh1/Fertilizer D2 and Ac/No PGPR/Fertilizer D2 increased wood yield. In seedling planting, two combinations (Ac/Rh2/Fertilizer D1 and Ac/Rh1/Fertilizer D1) were more effective in increasing seedling growth. In these experiments, inoculation with AMF and PGPR increased wood yield by about 20% compared to the application of fertilizer alone.

  9. Inoculation of Schizolobium parahyba with Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria Increases Wood Yield under Field Conditions

    PubMed Central

    Cely, Martha V. T.; Siviero, Marco A.; Emiliano, Janaina; Spago, Flávia R.; Freitas, Vanessa F.; Barazetti, André R.; Goya, Erika T.; Lamberti, Gustavo de Souza; dos Santos, Igor M. O.; De Oliveira, Admilton G.; Andrade, Galdino

    2016-01-01

    Schizolobium parahyba var. amazonicum (Huber ex Ducke) occurs naturally in the Brazilian Amazon. Currently, it is being planted extensively because of its fast growth and excellent use in forestry. Consequently, there is great interest in new strategies to increase wood production. The interaction between soil microorganisms and plants, specifically in the roots, provides essential nutrients for plant growth. These interactions can have growth-promoting effects. In this way, this study assessed the effect of the inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on growth of S. parahyba var. amazonicum under field conditions. We used two native species of arbuscular mycorrhizal fungi, Claroideoglomus etunicatum (Ce), and Acaulospora sp. (Ac); two native strains of Rhizobium sp. (Rh1 and Rh2); and a non-native strain of Burkholderia sp. Different combinations of microorganisms were supplemented with chemical fertilizers (doses D1 and D2) in two planting methods, seed sowing and seedling planting. In seed sowing, the results showed that treatments with Ce/Rh1/Fertilizer D2 and Ac/No PGPR/Fertilizer D2 increased wood yield. In seedling planting, two combinations (Ac/Rh2/Fertilizer D1 and Ac/Rh1/Fertilizer D1) were more effective in increasing seedling growth. In these experiments, inoculation with AMF and PGPR increased wood yield by about 20% compared to the application of fertilizer alone. PMID:27920781

  10. Seeded growth of gold nanorods: the effect of sulfur-containing quenching agents

    NASA Astrophysics Data System (ADS)

    Gobbo, Alberto; Marin, Riccardo; Canton, Patrizia

    2018-03-01

    Herein we present a study on the efficacy of selected sulfur-containing species as growth quenchers and metal ion scavengers in the framework of gold nanorod (GNR) synthesis. The here utilized seeded growth method is the reference GNR synthesis approach. However, GNRs synthesized according to it are prone to morphological changes upon aging, promoted by the presence of unreacted metal ions in the stock suspension. This, in turn, leads to optical property changes. Sodium sulfide is an efficient GNR growth quencher and metal ion scavenger, because sulfide ion has a strong affinity towards noble metals used for the GNRs' synthesis. Moving from these considerations, different sulfur-containing molecules were selected and their interaction with GNR surface was investigated: sulfate, sulfite, thiourea, and dodecyl sulfate were chosen for their difference in terms of net charge, size, and hydrophobicity. We initially assessed the best synthesis conditions in terms of reaction time, seed amount, silver concentration, and quencher amount. Consequently, the quencher/scavenger was varied. Thiourea, sulfite, and sulfate ions all showed a feeble, yet non-negligible, interaction with metals. Although sodium sulfide turned out to be the most efficient quencher/scavenger, also dodecyl sulfate showed evidences of adsorption on the GNR surface, probably prompted by hydrophobic interactions. These findings are expected to contribute as a background for further advancements in the perfection of GNR synthetic approaches specifically in terms of post-synthesis treatments.

  11. Indoleacetic acid production and plant growth promoting potential of bacterial endophytes isolated from rice (Oryza sativa L.) seeds.

    PubMed

    Shahzad, Raheem; Waqas, Muhammad; Khan, Abdul Latif; Al-Hosni, Khadija; Kang, Sang-Mo; Seo, Chang-Woo; Lee, In-Jung

    2017-06-01

    Bacterial endophytes from the phyllosphere and rhizosphere have been used to produce bioactive metabolites and to promote plant growth. However, little is known about the endophytes residing in seeds. This study aimed to isolate and identify seed-borne bacterial endophytes from rice and elucidate their potential for phytohormone production and growth enhancement. The isolated endophytes included Micrococcus yunnanensis RWL-2, Micrococcus luteus RWL-3, Enterobacter soli RWL-4, Leclercia adecarboxylata RWL-5, Pantoea dispersa RWL-6, and Staphylococcus epidermidis RWL-7, which were identified using 16S rRNA sequencing and phylogenetic analysis. These strains were analyzed for indoleacetic acid (IAA) production by using GC-MS and IAA was found in the range of 11.50 ± 0.77 μg ml -1 to 38.80 ± 1.35 μg ml -1 . We also assessed the strains for plant growth promoting potential because these isolates were able to produce IAA in pure culture. Most of the growth attributes of rice plants (shoot and root length, fresh and dry biomass, and chlorophyll content) were significantly increased by bacterial endophytes compared to the controls. These results show that IAA producing bacterial endophytes can improve hostplant growth traits and can be used as bio-fertilizers.

  12. Endophytic fungi isolated from wheat (Triticum durum Desf.): evaluation of their antimicrobial activity, antioxidant activity and host growth promotion.

    PubMed

    Harzallah, Daoud; Sadrati, Nouari; Zerroug, Amina; Dahamna, Saliha; Bouharati, Saddek

    2012-01-01

    The emergence of antibiotic-resistant micro-organisms calls for inventive research and development strategies. The screening for antimicrobial compounds from endophytes is a promising way to meet the increasing threat of drug-resistant strains of human and plant pathogens. Endophytes may be defined as "microbes that colonize living, internal tissues of plants without causing any immediate, overt negative effects". Endophytes are relatively unstudied as potential sources of novel natural products for exploitation in medicine, agriculture, and industry. The purpose of this study was to evaluate several isolated fungi from wheat (Triticum durum Desf.) Mohamed Ben Bachir variety and to select endophytic fungi for further evaluation of its antimicrobial, antioxidant activities and host growth promotion. A total of 20 endophytic fungi have been isolated. Antimicrobial activity was evaluated for crude ethyl acetate extracts using an agar diffusion assay. All extracts showed inhibitory activity on at least one or more pathogenic microorganism, with an average zone of inhibition varied between 7 mm to 25 mm, a large zone of 23 and 25mm against candida albicans and Escherichia coli respectively. The antioxidant capacity of the extracts was evaluated by beta-carotene/linoleic acid assay. Results showed that 70% of these extracts have antioxidant activity, exhibiting 50, 57% to 78, 96% inhibitions. While 30% from them, their inhibitory activity for oxidation of linoleic acid Were less than 50%. Growth promotion ability of these endophytes was tested on seed germination among ten isolates tested, two isolates showed significant growth promotion effects on wheat seeds. From the present work we can conclude that these microorganisms could be promising source of bioactive compounds, growth promotion and warrant further study.

  13. Fertility rescue and ovarian follicle growth promotion by bone marrow stem cell infusion.

    PubMed

    Herraiz, Sonia; Buigues, Anna; Díaz-García, César; Romeu, Mónica; Martínez, Susana; Gómez-Seguí, Inés; Simón, Carlos; Hsueh, Aaron J; Pellicer, Antonio

    2018-05-01

    To assess if infusion of human bone marrow-derived stem cells (BMDSCs) could promote follicle development in patients with impaired ovarian functions. Experimental design. University research laboratories. Immunodeficient NOD/SCID female mice. Human BMDSCs were injected into mice with chemotherapy-induced ovarian damage and into immunodeficient mice xenografted with human cortex from poor-responder patients (PRs). Follicle development, ovulation, and offspring. Apoptosis, proliferation, and vascularization were evaluated in mouse and human ovarian stroma. Fertility rescue and spontaneous pregnancies were achieved in mice ovaries mimicking PRs and ovarian insufficiency, induced by chemotherapy, after BMDSC infusion. Furthermore, BMDSC treatment resulted in production of higher numbers of preovulatory follicles, metaphase II oocytes, 2-cell embryos, and healthy pups. Stem cells promoted ovarian vascularization and cell proliferation, along with reduced apoptosis. In xenografted human ovarian tissues from PRs, infusion of BMDSCs and their CD133+ fraction led to their engraftment close to follicles, resulting in promotion of follicular growth, increases in E 2 secretion, and enhanced local vascularization. Our results raised the possibility that promoting ovarian angiogenesis by BMDSC infusion could be an alternative approach to improve follicular development in women with impaired ovarian function. NCT02240342. Copyright © 2018 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Knowledge Ecology for Conceptual Growth: Teachers as Active Agents in Developing a Pluriliteracies Approach to Teaching for Learning (PTL)

    ERIC Educational Resources Information Center

    Coyle, Do; Halbach, Ana; Meyer, Oliver; Schuck, Kevin

    2018-01-01

    This article explores how a group of educators and researchers enacted an inclusive process of conceptual growth involving teachers and teacher educators as active agents, knowledge builders and meaning-makers in the development of a Pluriliteracies approach to Teaching for Learning (PTL). The evolution of a working model based on five emergent…

  15. Microbial populations and activities in the rhizoplane of rock-weathering desert plants. II. Growth promotion of cactus seedlings.

    PubMed

    Puente, M E; Li, C Y; Bashan, Y

    2004-09-01

    Four bacterial species isolated from the rhizoplane of cacti growing in bare lava rocks were assessed for growth promotion of giant cardon cactus seedlings (Pachycereus pringlei). These bacteria fixed N(2), dissolved P, weathered extrusive igneous rock, marble, and limestone, and significantly mobilized useful minerals, such as P, K, Mg, Mn, Fe, Cu, and Zn in rock minerals. Cardon cactus seeds inoculated with these bacteria were able to sprout and grow normally without added nutrients for at least 12 months in pulverized extrusive igneous rock (ancient lava flows) mixed with perlite. Cacti that were not inoculated grew less vigorously and some died. The amount of useful minerals (P, K, Fe, Mg) for plant growth extracted from the pulverized lava, measured after cultivation of inoculated plants, was significant. This study shows that rhizoplane bacteria isolated from rock-growing cacti promote growth of a cactus species, and can help supply essential minerals for a prolonged period of time.

  16. Disulfiram Suppresses Growth of the Malignant Pleural Mesothelioma Cells in Part by Inducing Apoptosis

    PubMed Central

    Muthu, Magesh; Jamal, Shazia; Chen, Di; Yang, Huanjie; Polin, Lisa A.; Tarca, Adi L.; Pass, Harvey I.; Dou, Q. Ping; Sharma, Sunita; Wali, Anil; Rishi, Arun K.

    2014-01-01

    Dithiocarbamate compound Disulfiram (DSF) that binds with copper and functions as an inhibitor of aldehyde dehydrogenase is a Food and Drug Administration approved agent for treatment of alcoholism. Copper complexed DSF (DSF-Cu) also possesses anti-tumor and chemosensitizing properties; however, its molecular mechanisms of action remain unclear. Here we investigated malignant pleural mesothelioma (MPM) suppressive effects of DSF-Cu and the molecular mechanisms involved. DSF-Cu inhibited growth of the murine as well as human MPM cells in part by increasing levels of ubiquitinated proteins. DSF-Cu exposure stimulated apoptosis in MPM cells that involved activation of stress-activated protein kinases (SAPKs) p38 and JNK1/2, caspase-3, and cleavage of poly-(ADP-ribose)-polymerase, as well as increased expression of sulfatase 1 and apoptosis transducing CARP-1/CCAR1 protein. Gene-array based analyses revealed that DSF-Cu suppressed cell growth and metastasis-promoting genes including matrix metallopeptidase 3 and 10. DSF inhibited MPM cell growth and survival by upregulating cell cycle inhibitor p27Kip1, IGFBP7, and inhibitors of NF-κB such as ABIN 1 and 2 and Inhibitory κB (IκB)α and β proteins. DSF-Cu promoted cleavage of vimentin, as well as serine-phosphorylation and lysine-63 linked ubiquitination of podoplanin. Administration of 50 mg/kg DSF-Cu by daily i.p injections inhibited growth of murine MPM cell-derived tumors in vivo. Although podoplanin expression often correlates with metastatic disease and poor prognosis, phosphorylation of serines in cytoplasmic domain of podoplanin has recently been shown to interfere with cellular motility and migration signaling. Post-translational modification of podoplanin and cleavage of vimentin by DSF-Cu underscore a metastasis inhibitory property of this agent and together with our in vivo studies underscore its potential as an anti-MPM agent. PMID:24690739

  17. Hair growth is promoted by BeauTop via expression of EGF and FGF-7

    PubMed Central

    Lee, Chien-Ying; Yang, Chi-Yu; Lin, Ching-Che; Yu, Min-Chien; Sheu, Shuenn-Jyi; Kuan, Yu-Hsiang

    2018-01-01

    Minoxidil and finasteride have been approved to treat hair loss by the Food and Drug Administration. However, the further elucidation of treatments for hair loss, including those using Chinese herbal medicine, remains important clinically. BeauTop (BT) is a health food supplement which contains Ginseng radix, Astragali radix, Radix Angelicae sinensis, Ligustri fructus, Rehmannia glutinosa and Eclipta prostrata (Linn). Susbsequent to oral administration of BT at 0.6 g/kg/day to wax/rosin-induced alopecia in C57BL/6 mice, BT significantly induced hair growth at day 8 compared with control treatment (P<0.05). The expression levels of epidermal growth factor (EGF), and fibroblast growth factor (FGF)-7 were increased compared with control animals on day 8. In contrast, levels of FGF-5 of the BT group were reduced compared with the control on day 12. There were no effects on the expression of insulin-like growth factor 1. The results demonstrated that the mechanism of BT improving alopecia is potentially associated with modulation of EGF and FGF-7 levels. Taken together, it is suggested that BT may have a potential effect of the promotion of hair growth. PMID:29693180

  18. Cow dung extract: a medium for the growth of pseudomonads enhancing their efficiency as biofertilizer and biocontrol agent in rice.

    PubMed

    Srivastava, Rashmi; Aragno, Michel; Sharma, A K

    2010-09-01

    Some pseudomands are being utilized as biofertilizers and biopesticides because of their role in plant growth promotion and plant protection against root parasites, respectively. Two strains of Pseudomonas, P. jessenii LHRE62 and P. synxantha HHRE81, recovered from wheat rhizosphere, have shown their potential in field bioinoculation tests under rice-wheat and pulse-wheat rotation systems. Normally, pseudomonads are cultivated on synthetic media-like King's B and used for inoculation on seeds/soil drench with talcum or charcoal as carrier material. Cow dung is being used for different purposes from the ancient time and has a significant role in crop growth because of the content in humic compounds and fertilizing bioelements available in it. Here, cow dung extract was tested as a growth medium for strains LHRE62 and HHRE81, in comparison with growth in King's B medium. The log phase was delayed by 2 h as compared to growth in King's B medium. The bacterial growth yield, lower in plain cow dung extract as compared to King's B medium, was improved upon addition of different carbon substrates. Growth of rice var. Pant Dhan 4 in pot cultures was increased using liquid formulation of cow dung extract and bacteria as foliar spray, compared to their respective controls. Biocontrol efficacy of the bioagents was assessed by challenging rice crop with Rhizoctonia solani, a sheath blight pathogen. The growth promotion and biocontrol efficiencies were more pronounced in the case of mixed inocula of strains LHRE62 and HHRE81.

  19. Diseases as agents of disturbance in ponderosa pine

    Treesearch

    Gregory M. Filip

    2005-01-01

    Several diseases affect the growth and survival of ponderosa pine in the Pacific Northwest and serve as agents of disturbance. Probably the most widespread and damaging class of disease agents is dwarf mistletoe, which causes serious growth loss and mortality of ponderosa pine. Dwarf mistletoes (Arceuthobium spp.) are seed plants that can parasitize...

  20. Evaluation of multifarious plant growth promoting traits, antagonistic potential and phylogenetic affiliation of rhizobacteria associated with commercial tea plants grown in Darjeeling, India.

    PubMed

    Dutta, Jintu; Thakur, Debajit

    2017-01-01

    Plant growth promoting rhizobacteria (PGPR) are studied in different agricultural crops but the interaction of PGPR of tea crop is not yet studied well. In the present study, the indigenous tea rhizobacteria were isolated from seven tea estates of Darjeeling located in West Bengal, India. A total of 150 rhizobacterial isolates were screened for antagonistic activity against six different fungal pathogens i.e. Nigrospora sphaerica (KJ767520), Pestalotiopsis theae (ITCC 6599), Curvularia eragostidis (ITCC 6429), Glomerella cingulata (MTCC 2033), Rhizoctonia Solani (MTCC 4633) and Fusarium oxysporum (MTCC 284), out of which 48 isolates were antagonist to at least one fungal pathogen used. These 48 isolates exhibited multifarious antifungal properties like the production of siderophore, chitinase, protease and cellulase and also plant growth promoting (PGP) traits like IAA production, phosphate solubilization, ammonia and ACC deaminase production. Amplified ribosomal DNA restriction analysis (ARDRA) and BOX-PCR analysis based genotyping clustered the isolates into different groups. Finally, four isolates were selected for plant growth promotion study in two tea commercial cultivars TV-1 and Teenali-17 in nursery conditions. The plant growth promotion study showed that the inoculation of consortia of these four PGPR isolates significantly increased the growth of tea plant in nursery conditions. Thus this study underlines the commercial potential of these selected PGPR isolates for sustainable tea cultivation.

  1. Can Choice Promote Education for All? Evidence from Growth in Private Primary Schooling in India

    ERIC Educational Resources Information Center

    Harma, Joanna

    2009-01-01

    This paper examines whether the recent growth in "low-fee private" (LFP) schools is able to promote Education for All by being accessible to the poor. Based primarily on a 13-village survey of 250 households and visits to 26 private and government schools in rural Uttar Pradesh, India, this paper explores who "chooses" private…

  2. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers.

    PubMed

    Adesemoye, A O; Torbert, H A; Kloepper, J W

    2009-11-01

    The search for microorganisms that improve soil fertility and enhance plant nutrition has continued to attract attention due to the increasing cost of fertilizers and some of their negative environmental impacts. The objectives of this greenhouse study with tomato were to determine (1) if reduced rates of inorganic fertilizer coupled with microbial inoculants will produce plant growth, yield, and nutrient uptake levels equivalent to those with full rates of the fertilizer and (2) the minimum level to which fertilizer could be reduced when inoculants were used. The microbial inoculants used in the study were a mixture of plant growth-promoting rhizobacteria (PGPR) strains Bacillus amyloliquefaciens IN937a and Bacillus pumilus T4, a formulated PGPR product, and the arbuscular mycorrhiza fungus (AMF), Glomus intraradices. Results showed that supplementing 75% of the recommended fertilizer rate with inoculants produced plant growth, yield, and nutrient (nitrogen and phosphorus) uptake that were statistically equivalent to the full fertilizer rate without inoculants. When inoculants were used with rates of fertilizer below 75% of the recommended rate, the beneficial effects were usually not consistent; however, inoculation with the mixture of PGPR and AMF at 70% fertility consistently produced the same yield as the full fertility rate without inoculants. Without inoculants, use of fertilizer rates lower than the recommended resulted in significantly less plant growth, yield, and nutrient uptake or inconsistent impacts. The results suggest that PGPR-based inoculants can be used and should be further evaluated as components of integrated nutrient management strategies.

  3. Arsenic-resistant and plant growth-promoting Firmicutes and γ-Proteobacteria species from industrially polluted irrigation water and corresponding cropland.

    PubMed

    Qamar, N; Rehman, Y; Hasnain, S

    2017-09-01

    The aim of the study was to explore irrigation water polluted with industrial waste and corresponding cropland to screen bacteria for As detoxification and plant growth promotion. Plant growth-promoting (PGP) As-resistant cropland bacteria were isolated from contaminated irrigation water and corresponding agricultural soil. Phylogenetic analysis revealed that the isolates belonged to two distinct bacterial lineages; Firmicutes and γ-Proteobacteria. Maximum As(V) resistance was exhibited by Klebsiella pneumoniae T22 and Klebsiella oxytoca N53 (550 mmol l -1 ), whereas maximum resistance against As(III) was exhibited by K. oxytoca N53 (200 mmol l -1 ). Maximum As(V) reduction was shown by K. pneumoniae T22 (6·7 mmol l -1 ), whereas maximum As(III) oxidation was exhibited by Bacillus subtilis T23 (4·8 mmol l -1 ). As resistance genes arsB and ACR3 were detected in many of the isolates through polymerase chain reaction. Many of these isolates exhibited PGP traits such as hydrogen cyanide and auxin production as well as phosphate solubilization. The bacterial strains were able to enhance Triticum aestivum growth both in the absence and presence of As, and statistically significant increase in shoot and root lengths was observed especially in case of Acinetobacter lwoffii T24 and Citrobacter freundii N52-treated plants. Cropland bacteria have the ability to support plant growth. Bacteria of croplands irrigated with industrially polluted water develop resistance against toxicants. These bacteria are helpful for the plant growth in such contaminated lands. The bacteria capable of both As detoxification and plant growth promotion, such as A. lwoffii T24 and C. freundii N52, are ideal for remediation and reclamation of polluted lands for agriculture purposes. © 2017 The Society for Applied Microbiology.

  4. Pin1 promotes transforming growth factor-beta-induced migration and invasion.

    PubMed

    Matsuura, Isao; Chiang, Keng-Nan; Lai, Chen-Yu; He, Dongming; Wang, Guannan; Ramkumar, Romila; Uchida, Takafumi; Ryo, Akihide; Lu, Kunping; Liu, Fang

    2010-01-15

    Transforming growth factor-beta (TGF-beta) regulates a wide variety of biological activities. It induces potent growth-inhibitory responses in normal cells but promotes migration and invasion of cancer cells. Smads mediate the TGF-beta responses. TGF-beta binding to the cell surface receptors leads to the phosphorylation of Smad2/3 in their C terminus as well as in the proline-rich linker region. The serine/threonine phosphorylation sites in the linker region are followed by the proline residue. Pin1, a peptidyl-prolyl cis/trans isomerase, recognizes phosphorylated serine/threonine-proline motifs. Here we show that Smad2/3 interacts with Pin1 in a TGF-beta-dependent manner. We further show that the phosphorylated threonine 179-proline motif in the Smad3 linker region is the major binding site for Pin1. Although epidermal growth factor also induces phosphorylation of threonine 179 and other residues in the Smad3 linker region the same as TGF-beta, Pin1 is unable to bind to the epidermal growth factor-stimulated Smad3. Further analysis suggests that phosphorylation of Smad3 in the C terminus is necessary for the interaction with Pin1. Depletion of Pin1 by small hairpin RNA does not significantly affect TGF-beta-induced growth-inhibitory responses and a number of TGF-beta/Smad target genes analyzed. In contrast, knockdown of Pin1 in human PC3 prostate cancer cells strongly inhibited TGF-beta-mediated migration and invasion. Accordingly, TGF-beta induction of N-cadherin, which plays an important role in migration and invasion, is markedly reduced when Pin1 is depleted in PC3 cells. Because Pin1 is overexpressed in many cancers, our findings highlight the importance of Pin1 in TGF-beta-induced migration and invasion of cancer cells.

  5. Isolation and Molecular Characterization of a Model Antagonistic Pseudomonas aeruginosa Divulging In Vitro Plant Growth Promoting Characteristics.

    PubMed

    Uzair, Bushra; Kausar, Rehana; Bano, Syeda Asma; Fatima, Sammer; Badshah, Malik; Habiba, Ume; Fasim, Fehmida

    2018-01-01

    The use of microbial technologies in agriculture is currently expanding quite rapidly with the identification of new bacterial strains, which are more effective in promoting plant growth. In the present study 18 strains of Pseudomonas were isolated from soil sample of Balochistan coastline. Among isolated Pseudomonas strains four designated as SP19, SP22, PS24, and SP25 exhibited biocontrol activities against phytopathogenic fungi, that is, Rhizopus microsporus, Fusarium oxysporum, Aspergillus niger, Alternaria alternata, and Penicillium digitatum ; PS24 identified as Pseudomonas aeruginosa by 16srRNA gene bank accession number EU081518 was selected on the basis of its antifungal activity to explore its potential as plant growth promotion. PS24 showed multiple plant growth promoting attributes such as phosphate solubilization activity, indole acetic acid (IAA), siderophore, and HCN production. In order to determine the basis for antifungal properties, antibiotics were extracted from King B broth of PS24 and analyzed by TLC. Pyrrolnitrin antibiotic was detected in the culture of strain PS24. PS24 exhibited antifungal activities found to be positive for hydrogen cyanide synthase Hcn BC gene. Sequencing of gene of Hcn BC gene of strain PS24 revealed 99% homology with the Pseudomonas aeruginosa strain PA01 . The sequence of PS24 had been submitted in gene bank accession number KR605499. Ps. aeruginosa PS24 with its multifunctional biocontrol possessions can be used to bioprotect the crop plants from phytopathogens.

  6. Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils.

    PubMed

    Mapelli, Francesca; Marasco, Ramona; Rolli, Eleonora; Barbato, Marta; Cherif, Hanene; Guesmi, Amel; Ouzari, Imen; Daffonchio, Daniele; Borin, Sara

    2013-01-01

    Soil salinity and drought are among the environmental stresses that most severely affect plant growth and production around the world. In this study the rhizospheres of Salicornia plants and bulk soils were collected from Sebkhet and Chott hypersaline ecosystems in Tunisia. Depiction of bacterial microbiome composition by Denaturing Gradient Gel Electrophoresis unveiled the occurrence of a high bacterial diversity associated with Salicornia root system. A large collection of 475 halophilic and halotolerant bacteria was established from Salicornia rhizosphere and the surrounding bulk soil, and the bacteria were characterized for the resistance to temperature, osmotic and saline stresses, and plant growth promotion (PGP) features. Twenty Halomonas strains showed resistance to a wide set of abiotic stresses and were able to perform different PGP activities in vitro at 5% NaCl, including ammonia and indole-3-acetic acid production, phosphate solubilisation, and potential nitrogen fixation. By using a gfp-labelled strain it was possible to demonstrate that Halomonas is capable of successfully colonising Salicornia roots in the laboratory conditions. Our results indicated that the culturable halophilic/halotolerant bacteria inhabiting salty and arid ecosystems have a potential to contribute to promoting plant growth under the harsh salinity and drought conditions. These halophilic/halotolerant strains could be exploited in biofertilizer formulates to sustain crop production in degraded and arid lands.

  7. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Wei; Chai, Hongyan; Li, Ying

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressingmore » cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP

  8. Comparison of alternative beef production systems based on forage finishing or grain-forage diets with or without growth promotants: 1. Feedlot performance, carcass quality, and production costs.

    PubMed

    Berthiaume, R; Mandell, I; Faucitano, L; Lafrenière, C

    2006-08-01

    Forty Angus-cross steers were used to evaluate 5 beef cattle management regimens for their effect on growth performance, carcass characteristics, and cost of production. A 98-d growing phase was incorporated using grass silage with or without growth promotants (trenbolone acetate + estradiol implants, and monensin in the feed) or soybean meal. Dietary treatments in the finishing phase were developed, with or without addition of the same growth promotants, based on exclusive feeding of forages with minimal supplementation or the feeding of barley-based diets. Overall, ADG for animals treated with growth promotants or fed supplemented diets (soybean meal and barley) was increased (P < 0.01) by 25 and 21%, respectively, compared with steers reared on grass silage alone and not treated with growth promotants. Except for HCW (P < 0.01), the use of growth promotants did not affect carcass measurements. Increasing the proportion of barley in the diet of steers finished on forage produced a heavier HCW (P < 0.01) and a greater (P < 0.01) quality grade. Because of their lower HCW and quality grade, cattle targeted to a forage-fed, nonimplanted beef market would need to garner a 16% premium to be economically competitive with cattle finished conventionally.

  9. Investigation of the Optimum Farming Temperature for Grifola frondosa and Growth Promotion using the Bio-Electric Potential as an Index

    NASA Astrophysics Data System (ADS)

    Yanagibashi, Hideyuki; Hirama, Junji; Matsuda, Masato; Miyamoto, Toshio

    The purpose of this study was to investigate the optimum farming conditions for mushrooms from the view point of engineering field. As the bio-electric potential of mushrooms is considered to be closely related to the activation of mushroom cells, this relationship has been used to analyze the dependence of the morphogenetic characteristics of Grifola frondosa on farming temperatures (from 16 to 22 degree C). The experimental results indicated that a maximum response was exhibited, with correspondingly favorable morphogenesis obtained at 18 degree C. Based on the experimental results, including those in a previous study, it was assumed that the larger the bio-electric potential becomes, the higher the growth yield reaches. In order to support this assumption, growth promotion was conducted by intentionally activating the bio-electric potential within the mushrooms by stimulating them with short bursts of illumination. The resulting observation of growth promotion permitted the conclusion that the bio-electric potential can, indeed, be regarded as an index of growth.

  10. Extravascular red blood cells and hemoglobin promote tumor growth and therapeutic resistance as endogenous danger signals.

    PubMed

    Yin, Tao; He, Sisi; Liu, Xiaoling; Jiang, Wei; Ye, Tinghong; Lin, Ziqiang; Sang, Yaxiong; Su, Chao; Wan, Yang; Shen, Guobo; Ma, Xuelei; Yu, Min; Guo, Fuchun; Liu, Yanyang; Li, Ling; Hu, Qiancheng; Wang, Yongsheng; Wei, Yuquan

    2015-01-01

    Hemorrhage is a common clinical manifestation in patients with cancer. Intratumor hemorrhage has been demonstrated to be a poor prognostic factor for cancer patients. In this study, we investigated the role of RBCs and hemoglobin (Hb) in the process of tumor progression and therapeutical response. RBCs and Hb potently promoted tumor cell proliferation and syngenic tumor growth. RBCs and Hb activated the reactive oxygen species-NF-κB pathway in both tumor cells and macrophages. RBCs and Hb also induced chemoresistance mediated, in part, by upregulating ABCB1 gene expression. Tumor growth induced by RBCs was accompanied by an inflammatory signature, increased tumor vasculature, and influx of M2 macrophages. In both the peritoneal cavity and tumor microenvironment, extravascular RBCs rapidly recruited monocyte-macrophages into the lesion sites. In addition, RBCs and Hb increased several nucleotide-binding oligomerization domain-like receptors' expression and induced IL-1β release. Our results provide novel insights into the protumor function of RBCs and Hb as endogenous danger signals, which can promote tumor cell proliferation, macrophage recruitment, and polarization. Hemorrhage may represent a useful prognostic factor for cancer patients because of its role in tumor promotion and chemoresistance. Copyright © 2014 by The American Association of Immunologists, Inc.

  11. Agro-food industry growth and obesity in China: what role for regulating food advertising and promotion and nutrition labelling?

    PubMed

    Hawkes, C

    2008-03-01

    Taking a food supply chain approach, this paper examines the regulation of food marketing and nutrition labelling as strategies to help combat obesity in China in an era of rapid agro-food industry growth. China is the largest food producer and consumer in the world. Since the early 1980s, the agro-food industry has undergone phenomenal expansion throughout the food supply chain, from agricultural production to trade, agro-food processing to food retailing, and from food service to advertising and promotion. This industry growth, alongside related socioeconomic changes and government policies, has encouraged a 'nutrition transition'. China's population, especially in urban areas, is now consuming significantly more energy from dietary fat, which is leading to higher rates of obesity. Regulation of food advertising and promotion and nutrition labelling has the potential to help prevent the further growth of obesity in China and encourage the agro-food industry to supplier healthier foods. Government legislation and guidance, as well as self-regulation and voluntary initiatives, are needed to reduce children's exposure to food advertising and promotion, and increase the effectiveness of nutrition labelling. Policies on food marketing and nutrition labelling should be adapted to the China context, and accompanied by further action throughout the food supply chain. Given China's unique characteristics and position in the world today, there is an opportunity for the government and the agro-food industry to lead the world by creating a balanced, health promoting model of complementary legislation and industry action.

  12. Concomitant Mycobacterium tuberculosis infection promotes lung tumor growth through enhancing Treg development.

    PubMed

    Zhou, Yan; Hu, Zhangguo; Cao, Shuhui; Yan, Bo; Qian, Jialin; Zhong, Hua

    2017-08-01

    Lung cancer is the most common malignancy in humans. An increased population of CD4+Foxp3+ regulatory T cells (Tregs) in the tumor-associated microenvironment plays an important role in cancer immune evasion. The exact role and the involved mechanisms of concomitant H37Rv infection in non-small cell lung cancer (NSCLC) development are still not clear. Here, we showed that H37Rv infection promoted NSCLC cell growth with a higher percentage of Tregs found in draining lymph nodes. We also determined in vitro that H37Rv infection induced macrophage maturation and PD-L1 expression, which promoted Treg proportion, with enhanced proliferation suppression function. Mechanism analysis revealed that AKT-mTORC1 signal was important for PD-L1 expression induced by H37Rv infection. Suppressing of AKT-mTORC1 signal by rapamycin or raptor deficiency showed decreased PD-L1 levels which further reduced Treg proportion in a co-culture system. Finally, tumor-bearing mice injected with H37Rv plus rapamycin enhance the immune response of lung cancer compared with injected with H37Rv alone. This study demonstrated that concomitant H37Rv infection promote NSCLC tumor immune eacape through enhancing Treg proportion.

  13. Platelets promote osteosarcoma cell growth through activation of the platelet-derived growth factor receptor-Akt signaling axis.

    PubMed

    Takagi, Satoshi; Takemoto, Ai; Takami, Miho; Oh-Hara, Tomoko; Fujita, Naoya

    2014-08-01

    The interactions of tumor cells with platelets contribute to the progression of tumor malignancy, and the expression levels of platelet aggregation-inducing factors positively correlate with the metastatic potential of osteosarcoma cells. However, it is unclear how tumor-platelet interaction contributes to the proliferation of osteosarcomas. We report here that osteosarcoma-platelet interactions induce the release of platelet-derived growth factor (PDGF) from platelets, which promotes the proliferation of osteosarcomas. Co-culture of platelets with MG63 or HOS osteosarcoma cells, which could induce platelet aggregation, enhanced the proliferation of each cell line in vitro. Analysis of phospho-antibody arrays revealed that co-culture of MG63 cells with platelets induced the phosphorylation of platelet derived growth factor receptor (PDGFR) and Akt. The addition of supernatants of osteosarcoma-platelet reactants also increased the growth of MG63 and HOS cells as well as the level of phosphorylated-PDGFR and -Akt. Sunitinib or LY294002, but not erlotinib, significantly inhibited the platelet-induced proliferation of osteosarcoma cells, indicating that PDGF released from platelets plays an important role in the proliferation of osteosarcomas by activating the PDGFR and then Akt. Our results suggest that inhibitors that specifically target osteosarcoma-platelet interactions may eradicate osteosarcomas. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  14. An Arf-GAP promotes endocytosis and hyphal growth of Ashbya gossypii.

    PubMed

    Oscarsson, Therese; Walther, Andrea; Lengeler, Klaus B; Wendland, Jürgen

    2017-12-29

    The ADP-ribosylation factor (ARF) family of GTPases are highly conserved from yeast to human and regulate vesicle budding. Sec7 domain containing proteins stimulate the guanine nucleotide exchange on Arf proteins, while ARF-GTPase activating proteins stimulate the hydrolysis of GTP. Since vesicle trafficking is important for hyphal growth, we studied the Ashbya gossypii homolog of Saccharomyces cerevisiae ARF3 along with its putative GEF and GTPase-activating protein (GAP) encoded by YEL1 and GTS1, respectively. Deletion of YEL1 had no discernible phenotype and deletion of ARF3 had only a minor defect in vacuolar fusion. In contrast, deletion of GTS1 severely impaired hyphal growth, and mutants showed defects in the maintenance of polarity and the localization of cortical actin patches. The uptake of the lipophilic dye FM4-64 was delayed in gts1 hyphae, indicating a defect in endocytosis. Gts1 has several protein domains, of which the Arf-GAP domain is required for complementation of the gts1 mutant phenotype. GFP-tagged GTS1 under control of its endogenous promoter localized to the plasma membrane but was enriched at hyphal tips and septal sites corresponding to a role in polarized vesicle trafficking. Our results indicate that this ARF-GTPase module plays an important role for filamentous hyphal growth. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Candida parapsilosis as a Potent Biocontrol Agent against Growth and Aflatoxin Production by Aspergillus Species

    PubMed Central

    Niknejad, F; Zaini, F; Faramarzi, MA; Amini, M; Kordbacheh, P; Mahmoudi, M; Safara, M

    2012-01-01

    Background: Aflatoxin contamination of food and feed stuff is a serious health problem and significant economic concerns. In the present study, the inhibitory effect of Candida parapsilosis IP1698 on mycelial growth and aflatoxin production in aflatoxigenic strains of Aspergillus species was investigated. Methods: Mycelial growth inhibitions of nine strains of aflatoxigenic and non-aflatoxigenic Aspergillus species in the presence of C. parapsilosis investigated by pour plate technique at different pH, temperature and time of incubation. Reduction of aflatoxin was evaluated in co-cultured fungi in yeast extract sucrose broth after seven days of incubation using HPLC method. The data were analyzed by SPSS 11.5. Results: The presence of the C. parapsilosis at different pH did not affect significantly the growth rate of Aspergillus isolates. On the other hand, temperature and time of incubation showed to be significantly effective when compared to controls without C. parapsilosis (P≤0.05). In aflatoxigenic strains, minimum percentage of reductions in total aflatoxin and B1, B2, G1, G2 fractions were 92.98, 92.54, 77.48, 54.54 and 72.22 and maximum percentage of reductions were 99.59, not detectable, 94.42, and not detectable in both G1 and G2, respectively. Conclusion: C. parapsilosis might employ as a good biocontrol agent against growth and aflatoxin production by aflatoxigenic Aspergillus species PMID:23308351

  16. Stromal Tissue Rigidity Promotes Mesenchymal Stem Cell-Mediated Corneal Wound Healing Through the Transforming Growth Factor β Signaling Pathway.

    PubMed

    Yang, Yun-Hsiang; Hsieh, Ting-Lieh; Ji, Andrea Tung-Qian; Hsu, Wei-Tse; Liu, Chia-Yu; Lee, Oscar Kuang-Sheng; Ho, Jennifer Hui-Chun

    2016-10-01

    The healing of a corneal epithelial defect is essential for preventing infectious corneal ulcers and subsequent blindness. We previously demonstrated that mesenchymal stem cells (MSCs) in the corneal stroma, through a paracrine mechanism, yield a more favorable therapeutic benefit for corneal wound re-epithelialization than do MSCs in the corneal epithelium. In this study, MSCs were grown on a matrix with the rigidity of the physiological human vitreous (1 kPa), corneal epithelium (8 kPa), or corneal stroma (25 kPa) for investigating the role of corneal tissue rigidity in MSC functions regarding re-epithelialization promotion. MSC growth on a 25-kPa dish significantly promoted the wound healing of human corneal epithelial (HCE-T) cells. Among growth factors contributing to corneal epithelial wound healing, corneal stromal rigidity selectively enhanced transforming growth factor-beta (TGF-β) secretion from MSCs. Inhibitors of TGF-β pan receptor, TGF-β receptor 1, and Smad2 dose dependently abrogated MSC-mediated HCE-T wound healing. Furthermore, MSCs growth on a matrix with corneal stromal rigidity enhanced the ability of themselves to promote corneal re-epithelialization by activating matrix metalloproteinase (MMP) expression and integrin β1 production in HCE-T cells through TGF-β signaling pathway activation. Smad2 activation resulted in the upregulation of MMP-2 and -13 expression in HCE-T cells, whereas integrin β1 production favored a Smad2-independent TGF-β pathway. Altogether, we conclude that corneal stromal rigidity is a critical factor for MSC-induced promotion of corneal re-epithelialization. The activation of the TGF-β signaling pathway, which maintains the balance between integrin and MMP expression, in HCE-T cells is the major pathway responsible for MSC-mediated wound healing. Stem Cells 2016;34:2525-2535. © 2016 AlphaMed Press.

  17. Biodegradation of 4-nitroaniline by plant-growth promoting Acinetobacter sp. AVLB2 and toxicological analysis of its biodegradation metabolites.

    PubMed

    Silambarasan, Sivagnanam; Vangnai, Alisa S

    2016-01-25

    4-nitroaniline (4-NA) is one of the major priority pollutants generated from industrial productions and pesticide transformation; however very limited biodegradation details have been reported. This work is the first to report 4-NA biodegradation kinetics and toxicity reduction using a newly isolated plant-growth promoting bacterium, Acinetobacter sp. AVLB2. The 4-NA-dependent growth kinetics parameters: μmax, Ks and Ki, were determined to be 0.039 h(-1), 6.623 mg L(-1) and 25.57 mg L(-1), respectively using Haldane inhibition model, while the maximum biodegradation rate (Vmax) of 4-NA was at 0.541 mg L(-1) h(-1) and 0.551 mg L(-1) h(-1), following Michaelis-Menten and Hanes-Woolf models, respectively. Biodegradation pathway of 4-NA by Acinetobacter sp. AVLB2 was proposed, and successfully led to the reduction of 4-NA toxicity according to the following toxicity assessments: microbial toxicity using Escherichia coli DH5α, phytotoxicity with Vigna radiata and Crotalaria juncea, and cytogenotoxicity with Allium cepa root-tip cells. In addition, Acinetobacter sp. AVLB2 possess important plant-growth promoting traits, both in the presence and absence of 4-NA. This study has provided a new insight into 4-NA biodegradation ability and concurrent plant-growth promoting activities of Acinetobacter sp. AVLB2, which may indicate its potential role for rhizoremediation, while sustaining crop production even under 4-NA stressed environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Promoting motivation with virtual agents and avatars: role of visual presence and appearance.

    PubMed

    Baylor, Amy L

    2009-12-12

    Anthropomorphic virtual agents can serve as powerful technological mediators to impact motivational outcomes such as self-efficacy and attitude change. Such anthropomorphic agents can be designed as simulated social models in the Bandurian sense, providing social influence as virtual 'role models'. Of particular value is the capacity for designing such agents as optimized social models for a target audience and context. Importantly, the visual presence and appearance of such agents can have a major impact on motivation and affect regardless of the underlying technical sophistication. Empirical results of different instantiations of agent presence and appearance are reviewed for both autonomous virtual agents and avatars that represent a user.

  19. Tricalcium phosphate solubilization and nitrogen fixation by newly isolated Aneurinibacillus aneurinilyticus CKMV1 from rhizosphere of Valeriana jatamansi and its growth promotional effect.

    PubMed

    Chauhan, Anjali; Guleria, Shiwani; Balgir, Praveen P; Walia, Abhishek; Mahajan, Rishi; Mehta, Preeti; Shirkot, Chand Karan

    Aneurinibacillus aneurinilyticus strain CKMV1 was isolated from rhizosphere of Valeriana jatamansi and possessed multiple plant growth promoting traits like production of phosphate solubilization (260mg/L), nitrogen fixation (202.91nmolethylenemL -1 h -1 ), indole-3-acetic acid (IAA) (8.1μg/mL), siderophores (61.60%), HCN (hydrogen cyanide) production and antifungal activity. We investigated the ability of isolate CKMV1 to solubilize insoluble P via mechanism of organic acid production. High-performance liquid chromatography (HPLC) study showed that isolate CKMV1 produced mainly gluconic (1.34%) and oxalic acids. However, genetic evidences for nitrogen fixation and phosphate solubilization by organic acid production have been reported first time for A. aneurinilyticus strain CKMV1. A unique combination of glucose dehydrogenase (gdh) gene and pyrroloquinoline quinone synthase (pqq) gene, a cofactor of gdh involved in phosphate solubilization has been elucidated. Nitrogenase (nif H) gene for nitrogen fixation was reported from A. aneurinilyticus. It was notable that isolate CKMV1 exhibited highest antifungal against Sclerotium rolfsii (93.58%) followed by Fusarium oxysporum (64.3%), Dematophora necatrix (52.71%), Rhizoctonia solani (91.58%), Alternaria sp. (71.08%) and Phytophthora sp. (71.37%). Remarkable increase was observed in seed germination (27.07%), shoot length (42.33%), root length (52.6%), shoot dry weight (62.01%) and root dry weight (45.7%) along with NPK (0.74, 0.36, 1.82%) content of tomato under net house condition. Isolate CKMV1 possessed traits related to plant growth promotion, therefore, could be a potential candidate for the development of biofertiliser or biocontrol agent and this is the first study to include the Aneurinibacillus as PGPR. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  20. A dual role for glucocorticoid-induced leucine zipper in glucocorticoid function: tumor growth promotion or suppression?

    PubMed

    Ayroldi, Emira; Cannarile, Lorenza; Delfino, Domenico V; Riccardi, Carlo

    2018-04-26

    Glucocorticoids (GCs), important therapeutic tools to treat inflammatory and immunosuppressive diseases, can also be used as part of cancer therapy. In oncology, GCs are used as anticancer drugs for lymphohematopoietic malignancies, while in solid neoplasms primarily to control the side effects of chemo/radiotherapy treatments. The molecular mechanisms underlying the effects of GCs are numerous and often overlapping, but not all have been elucidated. In normal, cancerous, and inflammatory tissues, the response to GCs differs based on the tissue type. The effects of GCs are dependent on several factors: the tumor type, the GC therapy being used, the expression level of the glucocorticoid receptor (GR), and the presence of any other stimuli such as signals from immune cells and the tumor microenvironment. Therefore, GCs may either promote or suppress tumor growth via different molecular mechanisms. Stress exposure results in dysregulation of the hypothalamic-pituitary-adrenal axis with increased levels of endogenous GCs that promote tumorigenesis, confirming the importance of GCs in tumor growth. Most of the effects of GCs are genomic and mediated by the modulation of GR gene transcription. Moreover, among the GR-induced genes, glucocorticoid-induced leucine zipper (GILZ), which was cloned and characterized primarily in our laboratory, mediates many GC anti-inflammatory effects. In this review, we analyzed the possible role for GILZ in the effects GCs have on tumors cells. We also suggest that GILZ, by affecting the immune system, tumor microenvironment, and directly cancer cell biology, has a tumor-promoting function. However, it may also induce apoptosis or decrease the proliferation of cancer cells, thus inhibiting tumor growth. The potential therapeutic implications of GILZ activity on tumor cells are discussed here.

  1. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings.

    PubMed

    Liu, Fangchun; Xing, Shangjun; Ma, Hailin; Du, Zhenyu; Ma, Bingyao

    2013-10-01

    One of the proposed mechanisms through which plant growth-promoting rhizobacteria (PGPR) enhance plant growth is the production of plant growth regulators, especially cytokinin. However, little information is available regarding cytokinin-producing PGPR inoculation on growth and water stress consistence of forest container seedlings under drought condition. This study determined the effects of Bacillus subtilis on hormone concentration, drought resistance, and plant growth under water-stressed conditions. Although no significant difference was observed under well-watered conditions, leaves of inoculated Platycladus orientalis (oriental thuja) seedlings under drought stress had higher relative water content and leaf water potential compared with those of noninoculated ones. Regardless of water supply levels, the root exudates, namely sugars, amino acids and organic acids, significantly increased because of B. subtilis inoculation. Water stress reduced shoot cytokinins by 39.14 %. However, inoculation decreased this deficit to only 10.22 %. The elevated levels of cytokinins in P. orientalis shoot were associated with higher concentration of abscisic acid (ABA). Stomatal conductance was significantly increased by B. subtilis inoculation in well-watered seedlings. However, the promoting effect of cytokinins on stomatal conductance was hampered, possibly by the combined action of elevated cytokinins and ABA. B. subtilis inoculation increased the shoot dry weight of well-watered and drought seedlings by 34.85 and 19.23 %, as well as the root by 15.445 and 13.99 %, respectively. Consequently, the root/shoot ratio significantly decreased, indicative of the greater benefits of PGPR on shoot growth than root. Thus, inoculation of cytokinin-producing PGPR in container seedlings can alleviate the drought stress and interfere with the suppression of shoot growth, showing a real potential to perform as a drought stress inhibitor in arid environments.

  2. Is There a Relationship Between Use of Anti-Vascular Endothelial Growth Factor Agents and Atrophic Changes in Age-Related Macular Degeneration Patients?

    PubMed

    Kaynak, Süleyman; Kaya, Mahmut; Kaya, Derya

    2018-04-01

    Choroidal neovascularization due to age-related macular degeneration (AMD) is currently treated successfully with anti-vascular endothelial growth factor (VEGF) intravitreal agents. Emerging evidence suggests that anti-VEGF treatment may potentially increase development of geographic atrophy. However, there is not yet direct proof of a causal relationship between geographic atrophy and use of anti-VEGF agents in neovaskuler AMD. The aim of this review is to discuss the evidence concerning the association between anti-VEGF therapy and progression of geographic atrophy.

  3. Development of a promoter shutoff system in Aspergillus oryzae using a sorbitol-sensitive promoter.

    PubMed

    Oda, Ken; Terado, Shiho; Toyoura, Rieko; Fukuda, Hisashi; Kawauchi, Moriyuki; Iwashita, Kazuhiro

    2016-09-01

    Promoter shutoff is a general method for analyzing essential genes, but in the fungus Aspergillus oryzae, no tightly repressed promoters have been reported. To overcome the current limitations of conditional promoters, we examined sorbitol- and galactose-responsive genes using microarrays to identify regulatable genes with only minor physiological and genetic effects. We identified two sorbitol-induced genes (designated as sorA and sorB), cloned their promoters, and built a regulated egfp and brlA expression system. Growth medium-dependent enhanced green fluorescence protein (EGFP) fluorescence and conidiation were confirmed for egfp and brlA under the control of their respective promoters. We also used this shutoff system to regulate the essential rhoA, which demonstrated the expected growth inhibition under repressed growth conditions. Our new sorbitol promoter shutoff system developed can serve as a valuable new tool for essential gene analyses of filamentous fungi.

  4. Complete genome analysis of Serratia marcescens RSC-14: A plant growth-promoting bacterium that alleviates cadmium stress in host plants

    PubMed Central

    Khan, Abdur Rahim; Park, Gun-Seok; Asaf, Sajjad; Hong, Sung-Jun; Jung, Byung Kwon

    2017-01-01

    Serratia marcescens RSC-14 is a Gram-negative bacterium that was previously isolated from the surface-sterilized roots of the Cd-hyperaccumulator Solanum nigrum. The strain stimulates plant growth and alleviates Cd stress in host plants. To investigate the genetic basis for these traits, the complete genome of RSC-14 was obtained by single-molecule real-time sequencing. The genome of S. marcescens RSC-14 comprised a 5.12-Mbp-long circular chromosome containing 4,593 predicted protein-coding genes, 22 rRNA genes, 88 tRNA genes, and 41 pseudogenes. It contained genes with potential functions in plant growth promotion, including genes involved in indole-3-acetic acid (IAA) biosynthesis, acetoin synthesis, and phosphate solubilization. Moreover, annotation using NCBI and Rapid Annotation using Subsystem Technology identified several genes that encode antioxidant enzymes as well as genes involved in antioxidant production, supporting the observed resistance towards heavy metals, such as Cd. The presence of IAA pathway-related genes and oxidative stress-responsive enzyme genes may explain the plant growth-promoting potential and Cd tolerance, respectively. This is the first report of a complete genome sequence of Cd-tolerant S. marcescens and its plant growth promotion pathway. The whole-genome analysis of this strain clarified the genetic basis underlying its phenotypic and biochemical characteristics, underpinning the beneficial interactions between RSC-14 and plants. PMID:28187139

  5. Draft Genome Sequence of Bacillus amyloliquefaciens EBL11, a New Strain of Plant Growth-Promoting Bacterium Isolated from Rice Rhizosphere

    PubMed Central

    Wang, Yinghuan; Greenfield, Paul; Jin, Decai

    2014-01-01

    Bacillus amyloliquefaciens strain EBL11 is a bacterium that can promote plant growth by inhibiting the growth of fungi on plant surfaces and providing nutrients as a nonchemical biofertilizer. The estimated genome of this strain is 4.05 Mb in size and harbors 3,683 coding genes (CDSs). PMID:25059875

  6. Aspirin inhibits the growth of Helicobacter pylori and enhances its susceptibility to antimicrobial agents

    PubMed Central

    Wang, W H; Wong, W M; Dailidiene, D; Berg, D E; Gu, Q; Lai, K C; Lam, S K; Wong, B C Y

    2003-01-01

    Background and aim: The role of Helicobacter pylori and aspirin in peptic ulcer formation and recurrence remains an important clinical topic. The interaction between aspirin and H pylori in vitro is also not clear. We investigated the effect of aspirin on the growth of H pylori and on the susceptibility of H pylori to antimicrobials. Methods: Time killing studies of H pylori were performed with different concentrations of aspirin and salicylate. Growth of bacteria was assessed spectrophotometrically and by viable colony count. The effects of aspirin on the efficiency of colony formation and on metronidazole induced mutation to rifampicin resistance in H pylori were determined. Minimal inhibitory concentrations (MICs) of aspirin and metronidazole were tested by the standard agar dilution method. MICs of amoxycillin and clarithromycin were determined by the E test method. Results: Aspirin and salicylate inhibited the growth of H pylori in a dose dependent manner and bactericidal activity was due to cell lysis. Aspirin 400 μg/ml caused a 2 logs decrease in colony forming units/ml at 48 hours, and suppressed the normal ability of metronidazole to induce new mutations to rifampicin. The IC90 of aspirin was 512 μg/ml. Increased susceptibility of amoxycillin, clarithromycin, and metronidazole to H pylori was observed at 1 mM (180 μg/ml) aspirin. Conclusions: Aspirin inhibited the growth of H pylori, suppressed the mutagenic effect of metronidazole, and enhanced the susceptibility of H pylori to antimicrobial agents. This mechanism is important in future drug development for effective clearing and overcoming resistance. PMID:12631656

  7. Isolation and characterization of novel plant growth promoting Micrococcus sp NII-0909 and its interaction with cowpea.

    PubMed

    Dastager, Syed G; Deepa, C K; Pandey, Ashok

    2010-12-01

    A phosphate-solubilizing bacterial strain NII-0909 isolated from the Western ghat forest soil in India was identified as Micrococcus sp on the basis of phenotypic characteristics, carbon source utilization pattern, fatty acid methyl esters analysis, and 16S rRNA gene sequence. The strain exhibited the plant growth-promoting attributes of phosphate solubilization, auxin production, 1-aminocyclopropane-1-carboxylate deaminase activity, and siderophore production. It was able to solubilize (122.4μg of Ca(3)PO(4) ml(-1)), and produce IAA (109μgml(-1)) at 30°C. P-solubilizing activity of the strain NII-0909 was associated with the release of organic acids and a drop in the pH of the NBRIP medium. HPLC analysis detected two organic acids in the course of P-solubilization. A significant increase in the growth of cow pea was recorded for inoculations under controlled conditions. Scanning electron microscopic study revealed the root colonization of strain on cow pea seedlings. These results demonstrate that isolates NII-0909 has the promising PGPR attributes to be develop as a biofertilizer to enhance soil fertility and promote the plant growth. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  8. 14,15-EET induces the infiltration and tumor-promoting function of neutrophils to trigger the growth of minimal dormant metastases

    PubMed Central

    Luo, Chao; Wang, Yu; Li, Dong; Shu, Yu; Wang, Shan-Shan; Qin, Jian; Li, Yong-Chao; Zou, Jiu-Ming; Tian, De-An; Zhang, Gui-Mei; Feng, Zuo-Hua

    2016-01-01

    Infiltrating neutrophils are known to promote in thedevelopment of tumor. However, it is unclear whether and how neutrophils areinvolved in triggering the growth of dormant metastases. Here we show that14,15-epoxyeicosatrienoic acid (14,15-EET) can trigger the growth of dormantmicrometastases by inducing neutrophilic infiltration and converting neutrophilfunction. 14,15-EET triggered neutrophil infiltration in metastatic lesions byactivating STAT3 and JNK pathways to induce the expression of human IL-8 andmurine CXCL15 in corresponding tumor cells. The continuous expression ofhIL-8/mCXCL15 was maintained by the sustained and enhanced activation of JNKpathway. 14,15-EET up-regulated miR-155 expression by activating STAT3 and JNKpathways. miR-155 in turn down-regulated the expression of SHIP1 and DET1, thusaugmenting the activation of JNK and c-Jun. Moreover, the function ofneutrophils was converted from tumor-suppressing to tumor-promoting by14,15-EET in vivo. By inducing the production of G-CSF/IL-6 in vivo, 14,15-EET induced the enhancement of STAT3 activation in neutrophilsto increase MMP-9 expression and decrease TRAIL expression. Neutrophil-derivedMMP-9 was required for 14,15-EET to induce angiogenesis during the growth ofdormant micrometastases. Depleting neutrophils or inhibiting hIL-8/mCXCL15up-regulation resulted in the failure of 14,15-EET to promote the developmentof micrometastases. These findings reveal a mechanism through which theinfiltration and tumor-promoting function of neutrophils could be induced totrigger the growth of dormant metastases, which might be a driving force forthe tumor recurrence based on dormant metastases. PMID:27270316

  9. Copper-tolerant rhizosphere bacteria-characterization and assessment of plant growth promoting factors.

    PubMed

    Rathi, Manohari; Nandabalan, Yogalakshmi Kadapakkam

    2017-04-01

    Remediation of heavy metal contaminated soil is a major problem or concern worldwide. Heavy metal accumulation in the soil is increasing day by day by industries, mines, agriculture, fuel combustion and municipal waste discharge. Such contaminated soils harbour a large number of resistant microbial populations. Screening and isolation of such microbes would be utilized for natural remediation of metal contaminated soils. Therefore, in the present study, highly copper-tolerant bacteria from rhizosphere soil of Cynodon dactylon grown in brass effluent contaminated soil were isolated and assessed for plant growth promoting factors. A total of 61 isolates were isolated from the rhizosphere of three contaminated sites. Six highly copper-tolerant isolates named as MYS1, MYS2, MYS3, MYS4, MYS5 and MYS6 were isolated through enrichment in copper containing nutrient broth. 16S rRNA analysis revealed that the isolates were from genera Stenotrophomonas and Brevundimonas and belong to classes Alpha Proteobacteriacea and Gamma Proteobacteriacea, respectively. Strain MYS1, MYS2 and MYS4 showed 95-99% similarity with Stenotrophomonas acidaminiphila, strain MYS3 and MYS5 showed 99 and 97% similarity with Stenotrophomonas maltophilia and Stenotrophomonas sp. Strain MYS6 showed 94% similarity with Brevundimonas diminuta. All the rhizobacteria showed plant growth promoting traits such as production of siderophores, indole acetic acid (IAA), phosphate solubilization and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. From this study, we can conclude that all the isolates possess copper resistance and potential for phytoremediation of copper polluted soils.

  10. The effect of gamma irradiation on chitosan and its application as a plant growth promoter in Chinese kale (Brassica alboglabra)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isa, Mohd Hafez Mohd, E-mail: m.hafez@usim.edu.my; Hasan, Abu Bakar; Fadilah, Nur Izzah Md

    This research project was conducted to study the effects of irradiation on chitosan and its potential application as a plant growth promoter. Chitosan in the form of flakes was irradiated with gamma rays at irradiation dosage of 50 kGy, 100 kGy, 200 kGy and 400 kGy. The effect of irradiation on chitosan in terms of intrinsic viscosity and average molecular weight was measured using Ubbelohde capillary viscometry technique and the results obtained showed irradiation at doses of up to 50 kGy had caused an extremely significant reduction of both parameters and this trend continued at higher irradiation doses, although themore » decrease were not significant. The effect of various concentrations of chitosan and irradiated chitosan on growth promotion of Chinese kale (Brassica alboglabra) was hydroponically grown and cultivated for 50 days. Statistical analysis showed addition of 10 ppm of irradiated chitosan of 200 kGy and 400 kGy, respectively, resulted in an extremely significant increase in the percentage weight gain of Chinese kale (Brassica alboglabra). Results obtained in this study showed the potential use of irradiated chitosan as a plant growth promoter for plants grown hydroponically.« less

  11. The effect of gamma irradiation on chitosan and its application as a plant growth promoter in Chinese kale (Brassica alboglabra)

    NASA Astrophysics Data System (ADS)

    Isa, Mohd Hafez Mohd; Yasir, Muhamad Samudi; Hasan, Abu Bakar; Fadilah, Nur Izzah Md; Hassan, Abdul Rahman

    2016-01-01

    This research project was conducted to study the effects of irradiation on chitosan and its potential application as a plant growth promoter. Chitosan in the form of flakes was irradiated with gamma rays at irradiation dosage of 50 kGy, 100 kGy, 200 kGy and 400 kGy. The effect of irradiation on chitosan in terms of intrinsic viscosity and average molecular weight was measured using Ubbelohde capillary viscometry technique and the results obtained showed irradiation at doses of up to 50 kGy had caused an extremely significant reduction of both parameters and this trend continued at higher irradiation doses, although the decrease were not significant. The effect of various concentrations of chitosan and irradiated chitosan on growth promotion of Chinese kale (Brassica alboglabra) was hydroponically grown and cultivated for 50 days. Statistical analysis showed addition of 10 ppm of irradiated chitosan of 200 kGy and 400 kGy, respectively, resulted in an extremely significant increase in the percentage weight gain of Chinese kale (Brassica alboglabra). Results obtained in this study showed the potential use of irradiated chitosan as a plant growth promoter for plants grown hydroponically.

  12. Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.).

    PubMed

    Venkatachalam, P; Priyanka, N; Manikandan, K; Ganeshbabu, I; Indiraarulselvi, P; Geetha, N; Muralikrishna, K; Bhattacharya, R C; Tiwari, M; Sharma, N; Sahi, S V

    2017-01-01

    This report focuses on application of zinc oxide nanoparticles (ZnONPs) carrying phycomolecule ligands as a novel plant growth promoter aimed at increasing the crop productivity. The present investigation examined the effect of ZnONPs on plant growth characteristics, and associated biochemical changes in cotton (Gossypium hirsutum L.) following growth in a range of concentrations (25-200 mg L -l ZnONPs) in combination with 100 mM P in a hydroponic system. Treated plants registered an increase in growth and total biomass by 130.6% and 131%, respectively, over control. Results demonstrated a significant increase in the level of chlorophyll a (141.6%), b (134.7%), carotenoids (138.6%), and total soluble protein contents (179.4%); at the same time, a significant reduction (68%) in the level of malondialdehyde (MDA) in leaves with respect to control. Interestingly, a significant increase in superoxide dismutase (SOD, 264.2%), and peroxidase (POX, 182.8%) enzyme activities followed by a decrease in the catalase (CAT) activity, in response to above treatments. These results suggest that bioengineered ZnONPs interact with meristematic cells triggering biochemical pathways conducive to an accumulation of biomass. Further investigations will map out the mode of action involved in growth promotion. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Halotolerant plant-growth promoting rhizobacteria modulate gene expression and osmolyte production to improve salinity tolerance and growth in Capsicum annum L.

    PubMed

    Yasin, Nasim Ahmad; Akram, Waheed; Khan, Waheed Ullah; Ahmad, Sajid Rashid; Ahmad, Aqeel; Ali, Aamir

    2018-06-04

    Some rhizobacteria have demonstrated a noteworthy role in regulation of plant growth and biomass production under biotic and abiotic stresses. The present study was intended to explicate the ameliorative consequences of halotolerant plant growth-promoting rhizobacteria (HPGPR) on growth of capsicum plants subjected to salt stress. Salt stress was ascertained by supplementing 1 and 2 g NaCl kg -1 soil. The HPGPR positively invigorated growth attributes, chlorophyll, protein contents, and water use efficiency (WUE) of supplemented capsicum plants under salinity stress conditions. Bacillus fortis strain SSB21 caused highest significant increase in shoot length, root length, and fresh and dry biomass production of capsicum plants grown under saline conditions. This multi-trait bacterium also increased biosynthesis of proline and up-regulated the expression profiles of stress related genes including CAPIP2, CaKR1, CaOSM1, and CAChi2. On the other hand, B. fortis strain SSB21 inoculated plants exhibited reduced level of ethylene, lipid peroxidation, and reactive oxygen species (ROS). All these together contribute to activate physiological and biochemical processes involved in the mitigation of the salinity induced stress in capsicum plants.

  14. Inflammatory stimuli promote growth and invasion of pancreatic cancer cells through NF-κB pathway dependent repression of PP2Ac

    PubMed Central

    Tao, Min; Liu, Lu; Shen, Meng; Zhi, Qiaoming; Gong, Fei-Ran; Zhou, Binhua P.; Wu, Yadi; Liu, Haiyan; Chen, Kai; Shen, Bairong; Wu, Meng-Yao; Shou, Liu-Mei; Li, Wei

    2016-01-01

    ABSTRACT Previous studies have indicated that inflammatory stimulation represses protein phosphatase 2A (PP2A), a well-known tumor suppressor. However, whether PP2A repression participates in pancreatic cancer progression has not been verified. We used lipopolysaccharide (LPS) and macrophage-conditioned medium (MCM) to establish in vitro inflammation models, and investigated whether inflammatory stimuli affect pancreatic cancer cell growth and invasion PP2A catalytic subunit (PP2Ac)-dependently. Via nude mouse models of orthotopic tumor xenografts and dibutyltin dichloride (DBTC)-induced chronic pancreatitis, we evaluated the effect of an inflammatory microenvironment on PP2Ac expression in vivo. We cloned the PP2Acα and PP2Acβ isoform promoters to investigate the PP2Ac transcriptional regulation mechanisms. MCM accelerated pancreatic cancer cell growth; MCM and LPS promoted cell invasion. DBTC promoted xenograft growth and metastasis, induced tumor-associated macrophage infiltration, promoted angiogenesis, activated the nuclear factor-κB (NF-κB) pathway, and repressed PP2Ac expression. In vitro, LPS and MCM downregulated PP2Ac mRNA and protein. PP2Acα overexpression attenuated JNK, ERK, PKC, and IKK phosphorylation, and impaired LPS/MCM-stimulated cell invasion and MCM-promoted cell growth. LPS and MCM activated the NF-κB pathway in vitro. LPS and MCM induced IKK and IκB phosphorylation, leading to p65/RelA nuclear translocation and transcriptional activation. Overexpression of the dominant negative forms of IKKα attenuated LPS and MCM downregulation of PP2Ac, suggesting inflammatory stimuli repress PP2Ac expression NF-κB pathway–dependently. Luciferase reporter gene assay verified that LPS and MCM downregulated PP2Ac transcription through an NF-κB–dependent pathway. Our study presents a new mechanism in inflammation-driven cancer progression through NF-κB pathway–dependent PP2Ac repression. PMID:26761431

  15. Plant growth promoting capability and genetic diversity of bacteria isolated from mud volcano and lime cave of Andaman and Nicobar Islands

    PubMed Central

    Venkadesaperumal, Gopu; Amaresan, Natrajan; Kumar, Krishna

    2014-01-01

    Twenty four bacterial strains from four different regions of mud volcano and lime cave were isolated to estimate their diversity, plant growth promoting and biocontrol activities to use them as inoculant strains in the fields. An excellent antagonistic effect against four plant pathogens and plant growth promoting properties such as IAA production, HCN production, phosphate solubilization, siderophore production, starch hydrolysis and hydrolytic enzymes syntheses were identified in OM5 (Pantoea agglomerans) and EM9 (Exiguobacterium sp.) of 24 studied isolates. Seeds (Chili and tomato) inoculation with plant growth promoting strains resulted in increased percentage of seedling emergence, root length and plant weight. Results indicated that co-inoculation gave a more pronounced effects on seedling emergence, secondary root numbers, primary root length and stem length, while inoculation by alone isolate showed a lower effect. Our results suggest that the mixed inocula of OM5 and EM9 strains as biofertilizers could significantly increase the production of food crops in Andaman archipelago by means of sustainable and organic agricultural system. PMID:25763031

  16. Plant growth promoting capability and genetic diversity of bacteria isolated from mud volcano and lime cave of Andaman and Nicobar Islands.

    PubMed

    Venkadesaperumal, Gopu; Amaresan, Natrajan; Kumar, Krishna

    2014-01-01

    Twenty four bacterial strains from four different regions of mud volcano and lime cave were isolated to estimate their diversity, plant growth promoting and biocontrol activities to use them as inoculant strains in the fields. An excellent antagonistic effect against four plant pathogens and plant growth promoting properties such as IAA production, HCN production, phosphate solubilization, siderophore production, starch hydrolysis and hydrolytic enzymes syntheses were identified in OM5 (Pantoea agglomerans) and EM9 (Exiguobacterium sp.) of 24 studied isolates. Seeds (Chili and tomato) inoculation with plant growth promoting strains resulted in increased percentage of seedling emergence, root length and plant weight. Results indicated that co-inoculation gave a more pronounced effects on seedling emergence, secondary root numbers, primary root length and stem length, while inoculation by alone isolate showed a lower effect. Our results suggest that the mixed inocula of OM5 and EM9 strains as biofertilizers could significantly increase the production of food crops in Andaman archipelago by means of sustainable and organic agricultural system.

  17. Hair growth is promoted by BeauTop via expression of EGF and FGF‑7.

    PubMed

    Lee, Chien-Ying; Yang, Chi-Yu; Lin, Ching-Che; Yu, Min-Chien; Sheu, Shuenn-Jyi; Kuan, Yu-Hsiang

    2018-06-01

    Minoxidil and finasteride have been approved to treat hair loss by the Food and Drug Administration. However, the further elucidation of treatments for hair loss, including those using Chinese herbal medicine, remains important clinically. BeauTop (BT) is a health food supplement which contains Ginseng radix, Astragali radix, Radix Angelicae sinensis, Ligustri fructus, Rehmannia glutinosa and Eclipta prostrata (Linn). Susbsequent to oral administration of BT at 0.6 g/kg/day to wax/rosin‑induced alopecia in C57BL/6 mice, BT significantly induced hair growth at day 8 compared with control treatment (P<0.05). The expression levels of epidermal growth factor (EGF), and fibroblast growth factor (FGF)‑7 were increased compared with control animals on day 8. In contrast, levels of FGF‑5 of the BT group were reduced compared with the control on day 12. There were no effects on the expression of insulin‑like growth factor 1. The results demonstrated that the mechanism of BT improving alopecia is potentially associated with modulation of EGF and FGF‑7 levels. Taken together, it is suggested that BT may have a potential effect of the promotion of hair growth.

  18. Valproic acid promotes human hair growth in in vitro culture model.

    PubMed

    Jo, Seong Jin; Choi, Soon-Jin; Yoon, Sun-Young; Lee, Ji Yeon; Park, Won-Seok; Park, Phil-June; Kim, Kyu Han; Eun, Hee Chul; Kwon, Ohsang

    2013-10-01

    β-Catenin, the transducer of Wnt signaling, is critical for the development and growth of hair follicles. In the absence of Wnt signals, cytoplasmic β-catenin is phosphorylated by glycogen synthase kinase (GSK)-3 and then degraded. Therefore, inhibition of GSK-3 may enhance hair growth via β-catenin stabilization. Valproic acid is an anticonvulsant and a mood-stabilizing drug that has been used for decades. Recently, valproic acid was reported to inhibit GSK-3β in neuronal cells, but its effect on human hair follicles remains unknown. To determine the effect of VPA on human hair growth. We investigated the effect of VPA on cultured human dermal papilla cells and outer root sheath cells and on an in vitro culture of human hair follicles, which were obtained from scalp skin samples of healthy volunteers. Anagen induction by valproic acid was evaluated using C57BL/6 mice model. Valproic acid not only enhanced the viability of human dermal papilla cells and outer root sheath cells but also promoted elongation of the hair shaft and reduced catagen transition of human hair follicles in organ culture model. Valproic acid treatment of human dermal papilla cells led to increased β-catenin levels and nuclear accumulation and inhibition of GSK-3β by phosphorylation. In addition, valproic acid treatment accelerated the induction of anagen hair in 7-week-old female C57BL/6 mice. Valproic acid enhanced human hair growth by increasing β-catenin and therefore may serve as an alternative therapeutic option for alopecia. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Inflammation and cancer: advances and new agents.

    PubMed

    Crusz, Shanthini M; Balkwill, Frances R

    2015-10-01

    Tumour-promoting inflammation is considered one of the enabling characteristics of cancer development. Chronic inflammatory disease increases the risk of some cancers, and strong epidemiological evidence exists that NSAIDs, particularly aspirin, are powerful chemopreventive agents. Tumour microenvironments contain many different inflammatory cells and mediators; targeting these factors in genetic, transplantable and inducible murine models of cancer substantially reduces the development, growth and spread of disease. Thus, this complex network of inflammation offers targets for prevention and treatment of malignant disease. Much potential exists in this area for novel cancer prevention and treatment strategies, although clinical research to support targeting of cancer-related inflammation and innate immunity in patients with advanced-stage cancer remains in its infancy. Following the initial successes of immunotherapies that modulate the adaptive immune system, we assert that inflammation and innate immunity are important targets in patients with cancer on the basis of extensive preclinical and epidemiological data. The adaptive immune response is heavily dependent on innate immunity, therefore, inhibiting some of the tumour-promoting immunosuppressive actions of the innate immune system might enhance the potential of immunotherapies that activate a nascent antitumour response.

  20. Xanthones from Mangosteen Extracts as Natural Chemopreventive Agents: Potential Anticancer Drugs

    PubMed Central

    Shan, T.; Ma, Q.; Guo, K.; Liu, J.; Li, W.; Wang, F.; Wu, E.

    2011-01-01

    Despite decades of research, the treatment and management of malignant tumors still remain a formidable challenge for public health. New strategies for cancer treatment are being developed, and one of the most promising treatment strategies involves the application of chemopreventive agents. The search for novel and effective cancer chemopreventive agents has led to the identification of various naturally occurring compounds. Xanthones, from the pericarp, whole fruit, heartwood, and leaf of mangosteen (Garcinia mangostana Linn., GML), are known to possess a wide spectrum of pharmacologic properties, including anti-oxidant, anti-tumor, anti-allergic, anti-inflammatory, anti-bacterial, anti-fungal, and anti-viral activities. The potential chemopreventive and chemotherapeutic activities of xanthones have been demonstrated in different stages of carcinogenesis (initiation, promotion, and progression) and are known to control cell division and growth, apoptosis, inflammation, and metastasis. Multiple lines of evidence from numerous in vitro and in vivo studies have confirmed that xanthones inhibit proliferation of a wide range of human tumor cell types by modulating various targets and signaling transduction pathways. Here we provide a concise and comprehensive review of preclinical data and assess the observed anticancer effects of xanthones, supporting its remarkable potential as an anticancer agent. PMID:21902651

  1. Tennessee Extension Agents' Perceptions of Performance Appraisal

    ERIC Educational Resources Information Center

    Donaldson, Joseph L.; French, Russell L.

    2013-01-01

    Performance appraisal is necessary for summative decisions about employees, such as merit pay and promotion. The research reported here describes Extension agent perceptions of their performance appraisal system. The population studied consisted of all Tennessee Extension agents (N = 312). Surveys were completed by 218 respondents, for a completed…

  2. Autocatalytic caspase-3 driven by human telomerase reverse transcriptase promoter suppresses human ovarian carcinoma growth in vitro and in mice.

    PubMed

    Song, Yue; Xia, Zhijun; Shen, Keng; Zhai, Xingyue

    2013-05-01

    To construct recombinant adenoviruses AdHT-rev-casp3 and Ad-rev-casp3, which express autocatalysis caspase-3 driven by human telomerase reverse transcriptase promoter and cytomegalovirus promoter, respectively; and to investigate their antitumor effects on ovarian cancer in vitro and in vivo. Cell viabilities were determined using the cell counting kit 8 and flow cytometry. Reverse transcriptase polymerase chain reaction and immunoblotting assays were used to detect cellular apoptotic activities after treatments. Tumor growth and survival of mice bearing AO cells were studied. AdHT-rev-casp3 significantly suppressed the survival of AO cells in a dose-dependent modality with a viability rate of 60.45% ± 7.8% at an multiplicity of infection (MOI) of 70 and 42.18 ± 5.3% at an MOI of 100, which was somewhat lower than that of the AO cells treated with Ad-rev-casp3 (32.28% ± 5.3% and 21.84% ± 3.4%, respectively). In contrast, AdHT-rev-casp3 induced little human umbilical vein epithelial cell (HUVEC) death with a viability rate of 98.52% ± 6.9% at an MOI of 70, whereas Ad-rev-casp3 induced significant cell death in HUVEC with a viability rate of 27.14% ± 5.4%. Additionally, AdHT-rev-casp3 (MOI = 70) caused significant apoptosis in AO cells with an apoptotic rate of 25.97%, whereas it caused undetectable apoptosis in HUVECs with the rate of only 1.75%. Ad-rev-casp3 (MOI = 70) caused strong apoptosis in both AO and HUVECs, with the rate of 35.82% and 38.12%, respectively. AdHT-rev-casp3 caused markedly higher levels of active caspase-3, causing no detectable active caspase-3 expression in HUVECs. The tumor growth suppression rate of AdHT-rev-casp3 was 54.94%, significantly higher than that of phosphate-buffered saline at the end point of the study. AdHT-rev-casp3 significantly improved the survival of mice receiving intraperitoneal inoculation of AO cells with little liver damage, with the mean survival of 177 ± 12 days. AdHT-rev-casp3 causes effective apoptosis

  3. Xyloglucan oligosaccharides promote growth and activate cellulase: Evidence for a role of cellulase in cell expansion. [Pisum sativum L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDougall, G.J.; Fry, S.C.

    1990-07-01

    Oligosaccharides produced by the action of fungal cellulase on xyloglucans promoted the elongation of etiolated pea (Pisum sativum L.) stem segments in a straight-growth bioassay designed for the determination of auxins. The oligosaccharides were most active at about 1 micromolar. We tested the relative growth-promoting activities of four HPLC-purified oligosaccharides which shared a common glucose{sub 4} {center dot} xylose{sub 3} (XG7) core. The substituted oligosaccharides XG8 (glucose{sub 4} {center dot} xylose{sub 3} {center dot} galactose) and XG9n (glucose{sub 4} {center dot} xylose{sub 3} {center dot} galactose{sub 2}) were more effective than XG7 itself and XG9 (glucose{sub 4} {center dot} xylose{submore » 3} {center dot} galactose {center dot} fucose). The same oligosaccharides also promoted the degradation, assayed viscometrically, of xyloglucan by an acidic cellulase from bean (Phaseolus vulgaris L.) leaves. The oligosaccharides were highly active at 10{sup {minus}4} molar, causing up to a fourfold increase in activity, but the effect was still detectable at 1 micromolar. Those oligosaccharides (XG8 and XG9n) which best promoted growth, stimulated cellulase activity to the greatest extent. The oligosaccharides did not stimulate the action of the cellulase in an assay based on the conversion of ({sup 3}H)xyloglucan to ethanol-soluble fragments. This suggests that the oligosaccharides enhanced the midchain hydrolysis of xyloglucan molecules (which would rapidly reduce the viscosity of the solution), at the expense of cleavage near the termini (which would yield ethanol-soluble products).« less

  4. The rhizobacterium Variovorax paradoxus 5C-2, containing ACC deaminase, promotes growth and development of Arabidopsis thaliana via an ethylene-dependent pathway

    PubMed Central

    Dodd, Ian C.

    2013-01-01

    Many plant-growth-promoting rhizobacteria (PGPR) associated with plant roots contain the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase and can metabolize ACC, the immediate precursor of the plant hormone ethylene, thereby decreasing plant ethylene production and increasing plant growth. However, relatively few studies have explicitly linked ethylene emission and/or action to growth promotion in these plant–microbe interactions. This study examined effects of the PGPR Variovorax paradoxus 5C-2 containing ACC deaminase on the growth and development of Arabidopsis thaliana using wild-type (WT) plants and several ethylene-related mutants (etr1-1, ein2-1, and eto1-1). Soil inoculation with V. paradoxus 5C-2 promoted growth (leaf area and shoot biomass) of WT plants and the ethylene-overproducing mutant eto1-1, and also enhanced floral initiation of WT plants by 2.5 days. However, these effects were not seen in ethylene-insensitive mutants (etr1-1 and ein2-1) even though bacterial colonization of the root system was similar. Furthermore, V. paradoxus 5C-2 decreased ACC concentrations of rosette leaves of WT plants by 59% and foliar ethylene emission of both WT plants and eto1-1 mutants by 42 and 37%, respectively. Taken together, these results demonstrate that a fully functional ethylene signal transduction pathway is required for V. paradoxus 5C-2 to stimulate leaf growth and flowering of A. thaliana. PMID:23404897

  5. The rhizobacterium Variovorax paradoxus 5C-2, containing ACC deaminase, promotes growth and development of Arabidopsis thaliana via an ethylene-dependent pathway.

    PubMed

    Chen, Lin; Dodd, Ian C; Theobald, Julian C; Belimov, Andrey A; Davies, William J

    2013-04-01

    Many plant-growth-promoting rhizobacteria (PGPR) associated with plant roots contain the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase and can metabolize ACC, the immediate precursor of the plant hormone ethylene, thereby decreasing plant ethylene production and increasing plant growth. However, relatively few studies have explicitly linked ethylene emission and/or action to growth promotion in these plant-microbe interactions. This study examined effects of the PGPR Variovorax paradoxus 5C-2 containing ACC deaminase on the growth and development of Arabidopsis thaliana using wild-type (WT) plants and several ethylene-related mutants (etr1-1, ein2-1, and eto1-1). Soil inoculation with V. paradoxus 5C-2 promoted growth (leaf area and shoot biomass) of WT plants and the ethylene-overproducing mutant eto1-1, and also enhanced floral initiation of WT plants by 2.5 days. However, these effects were not seen in ethylene-insensitive mutants (etr1-1 and ein2-1) even though bacterial colonization of the root system was similar. Furthermore, V. paradoxus 5C-2 decreased ACC concentrations of rosette leaves of WT plants by 59% and foliar ethylene emission of both WT plants and eto1-1 mutants by 42 and 37%, respectively. Taken together, these results demonstrate that a fully functional ethylene signal transduction pathway is required for V. paradoxus 5C-2 to stimulate leaf growth and flowering of A. thaliana.

  6. Unravelling variation in feeding, social interaction and growth patterns among pigs using an agent-based model.

    PubMed

    Boumans, Iris J M M; de Boer, Imke J M; Hofstede, Gert Jan; Bokkers, Eddie A M

    2018-07-01

    Domesticated pigs, Sus scrofa, vary considerably in feeding, social interaction and growth patterns. This variation originates partly from genetic variation that affects physiological factors and partly from behavioural strategies (avoid or approach) in competitive food resource situations. Currently, it is unknown how variation in physiological factors and in behavioural strategies among animals contributes to variation in feeding, social interaction and growth patterns in animals. The aim of this study was to unravel causation of variation in these patterns among pigs. We used an agent-based model to explore the effects of physiological factors and behavioural strategies in pigs on variation in feeding, social interaction and growth patterns. Model results show that variation in feeding, social interaction and growth patterns are caused partly by chance, such as time effects and coincidence of conflicts. Furthermore, results show that seemingly contradictory empirical findings in literature can be explained by variation in pig characteristics (i.e. growth potential, positive feedback, dominance, and coping style). Growth potential mainly affected feeding and growth patterns, whereas positive feedback, dominance and coping style affected feeding patterns, social interaction patterns, as well as growth patterns. Variation in behavioural strategies among pigs can reduce aggression at group level, but also make some pigs more susceptible to social constraints inhibiting them from feeding when they want to, especially low-ranking pigs and pigs with a passive coping style. Variation in feeding patterns, such as feeding rate or meal frequency, can indicate social constraints. Feeding patterns, however, can say something different about social constraints at group versus individual level. A combination of feeding patterns, such as a decreased feed intake, an increased feeding rate, and an increased meal frequency might, therefore, be needed to measure social constraints

  7. Plant growth promoting rhizobacterium

    DOEpatents

    Doktycz, Mitchel John; Pelletier, Dale A.; Schadt, Christopher Warren; Tuskan, Gerald A.; Weston, David

    2015-08-11

    The present invention is directed to the Pseudomonas fluorescens strain GM30 deposited under ATCC Accession No. PTA-13340, compositions containing the GM30 strain, and methods of using the GM30 strain to enhance plant growth and/or enhance plant resistance to pathogens.

  8. Epidermal growth factor receptor is required for colonic tumor promotion by dietary fat in the azoxymethane/dextran sulfate sodium model: roles of transforming growth factor-{alpha} and PTGS2.

    PubMed

    Dougherty, Urszula; Cerasi, Dario; Taylor, Ieva; Kocherginsky, Masha; Tekin, Ummuhan; Badal, Shamiram; Aluri, Lata; Sehdev, Amikar; Cerda, Sonia; Mustafi, Reba; Delgado, Jorge; Joseph, Loren; Zhu, Hongyan; Hart, John; Threadgill, David; Fichera, Alessandro; Bissonnette, Marc

    2009-11-15

    Colon cancer is a major cause of cancer deaths. Dietary factors contribute substantially to the risk of this malignancy. Western-style diets promote development of azoxymethane-induced colon cancer. Although we showed that epidermal growth factor receptors (EGFR) controlled azoxymethane tumorigenesis in standard fat conditions, the role of EGFR in tumor promotion by high dietary fat has not been examined. A/J x C57BL6/J mice with wild-type Egfr (Egfr(wt)) or loss-of-function waved-2 Egfr (Egfr(wa2)) received azoxymethane followed by standard (5% fat) or western-style (20% fat) diet. As F(1) mice were resistant to azoxymethane, we treated mice with azoxymethane followed by one cycle of inflammation-inducing dextran sulfate sodium to induce tumorigenesis. Mice were sacrificed 12 weeks after dextran sulfate sodium. Tumors were graded for histology and assessed for EGFR ligands and proto-oncogenes by immunostaining, Western blotting, and real-time PCR. Egfr(wt) mice gained significantly more weight and had exaggerated insulin resistance compared with Egfr(wa2) mice on high-fat diet. Dietary fat promoted tumor incidence (71.2% versus 36.7%; P < 0.05) and cancer incidence (43.9% versus 16.7%; P < 0.05) only in Egfr(wt) mice. The lipid-rich diet also significantly increased tumor and cancer multiplicity only in Egfr(wt) mice. In tumors, dietary fat and Egfr(wt) upregulated transforming growth factor-alpha, amphiregulin, CTNNB1, MYC, and CCND1, whereas PTGS2 was only increased in Egfr(wt) mice and further upregulated by dietary fat. Notably, dietary fat increased transforming growth factor-alpha in normal colon. EGFR is required for dietary fat-induced weight gain and tumor promotion. EGFR-dependent increases in receptor ligands and PTGS2 likely drive diet-related tumor promotion.

  9. Do growth monitoring and promotion programs answer the performance criteria of a screening program? A critical analysis based on a systematic review.

    PubMed

    Roberfroid, D; Kolsteren, P; Hoerée, T; Maire, B

    2005-11-01

    Growth Monitoring and Promotion programs (GMP) have been intensively promoted to improve children's health in developing countries. It has been hoped that regularly weighing children would result in the early detection of growth falterers, and that the growth chart would serve as an educational tool to make that state apparent to both health workers and caretakers in order to trigger improved caring practices. Our objective was to review whether GMP answers the theoretical grounds of a screening and intervention program. A systematic literature review was performed. The WHO framework developed by Wilson and Jungner for planning and evaluating screening programs guided the analysis. Sixty-nine studies were retrieved. Overall, evidence is weak on the performance of GMP as a screening program for malnutrition through early detection of growth falterers. The main results are: (1) malnutrition remains a public health problem, but its importance is context specific; (2) the value of a low weight velocity to predict malnutrition is unknown and likely to vary in different contexts; (3) the performance of GMP for improving nutrition status of children and in reducing mortality and morbidity is unknown; (4) the performance of the screening is affected by the unreliability of weight measurements; (5) the promotional and educational effectiveness of GMP is low, in particular the growth chart is poorly understood by mothers; (6) the acceptability seems low in regards of low attendance rates; (7) evidence is lacking regarding cost-effectiveness. We conclude that there is too little scientific evidence to indiscriminately support international promotion of GMP. However GMP could constitute a valid strategy of public nutrition in specific situations. We indicate paths for further research and how prevention programs could be developed.

  10. SPARC promotes leukemic cell growth and predicts acute myeloid leukemia outcome.

    PubMed

    Alachkar, Houda; Santhanam, Ramasamy; Maharry, Kati; Metzeler, Klaus H; Huang, Xiaomeng; Kohlschmidt, Jessica; Mendler, Jason H; Benito, Juliana M; Hickey, Christopher; Neviani, Paolo; Dorrance, Adrienne M; Anghelina, Mirela; Khalife, Jihane; Tarighat, Somayeh S; Volinia, Stefano; Whitman, Susan P; Paschka, Peter; Hoellerbauer, Pia; Wu, Yue-Zhong; Han, Lina; Bolon, Brad N; Blum, William; Mrózek, Krzysztof; Carroll, Andrew J; Perrotti, Danilo; Andreeff, Michael; Caligiuri, Michael A; Konopleva, Marina; Garzon, Ramiro; Bloomfield, Clara D; Marcucci, Guido

    2014-04-01

    Aberrant expression of the secreted protein, acidic, cysteine-rich (osteonectin) (SPARC) gene, which encodes a matricellular protein that participates in normal tissue remodeling, is associated with a variety of diseases including cancer, but the contribution of SPARC to malignant growth remains controversial. We previously reported that SPARC was among the most upregulated genes in cytogenetically normal acute myeloid leukemia (CN-AML) patients with gene-expression profiles predictive of unfavorable outcome, such as mutations in isocitrate dehydrogenase 2 (IDH2-R172) and overexpression of the oncogenes brain and acute leukemia, cytoplasmic (BAALC) and v-ets erythroblastosis virus E26 oncogene homolog (ERG). In contrast, SPARC was downregulated in CN-AML patients harboring mutations in nucleophosmin (NPM1) that are associated with favorable prognosis. Based on these observations, we hypothesized that SPARC expression is clinically relevant in AML. Here, we found that SPARC overexpression is associated with adverse outcome in CN-AML patients and promotes aggressive leukemia growth in murine models of AML. In leukemia cells, SPARC expression was mediated by the SP1/NF-κB transactivation complex. Furthermore, secreted SPARC activated the integrin-linked kinase/AKT (ILK/AKT) pathway, likely via integrin interaction, and subsequent β-catenin signaling, which is involved in leukemia cell self-renewal. Pharmacologic inhibition of the SP1/NF-κB complex resulted in SPARC downregulation and leukemia growth inhibition. Together, our data indicate that evaluation of SPARC expression has prognosticative value and SPARC is a potential therapeutic target for AML.

  11. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils.

    PubMed

    Ma, Y; Prasad, M N V; Rajkumar, M; Freitas, H

    2011-01-01

    Technogenic activities (industrial-plastic, textiles, microelectronics, wood preservatives; mining-mine refuse, tailings, smelting; agrochemicals-chemical fertilizers, farm yard manure, pesticides; aerosols-pyrometallurgical and automobile exhausts; biosolids-sewage sludge, domestic waste; fly ash-coal combustion products) are the primary sources of heavy metal contamination and pollution in the environment in addition to geogenic sources. During the last two decades, bioremediation has emerged as a potential tool to clean up the metal-contaminated/polluted environment. Exclusively derived processes by plants alone (phytoremediation) are time-consuming. Further, high levels of pollutants pose toxicity to the remediating plants. This situation could be ameliorated and accelerated by exploring the partnership of plant-microbe, which would improve the plant growth by facilitating the sequestration of toxic heavy metals. Plants can bioconcentrate (phytoextraction) as well as bioimmobilize or inactivate (phytostabilization) toxic heavy metals through in situ rhizospheric processes. The mobility and bioavailability of heavy metal in the soil, particularly at the rhizosphere where root uptake or exclusion takes place, are critical factors that affect phytoextraction and phytostabilization. Developing new methods for either enhancing (phytoextraction) or reducing the bioavailability of metal contaminants in the rhizosphere (phytostabilization) as well as improving plant establishment, growth, and health could significantly speed up the process of bioremediation techniques. In this review, we have highlighted the role of plant growth promoting rhizo- and/or endophytic bacteria in accelerating phytoremediation derived benefits in extensive tables and elaborate schematic sketches. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Fungal Disease Prevention in Seedlings of Rice (Oryza sativa) and Other Grasses by Growth-Promoting Seed-Associated Endophytic Bacteria from Invasive Phragmites australis

    PubMed Central

    Verma, Satish K.; Kingsley, Kathryn L.; Bergen, Marshall S.; White, James F.

    2018-01-01

    Non-cultivated plants carry microbial endophytes that may be used to enhance development and disease resistance of crop species where growth-promoting and protective microbes may have been lost. During seedling establishment, seedlings may be infected by several fungal pathogens that are seed or soil borne. Several species of Fusarium, Pythium and other water moulds cause seed rots during germination. Fusarium blights of seedlings are also very common and significantly affect seedling development. In the present study we screened nine endophytic bacteria isolated from the seeds of invasive Phragmites australis by inoculating onto rice, Bermuda grass (Cynodon dactylon), or annual bluegrass (Poa annua) seeds to evaluate plant growth promotion and protection from disease caused by Fusarium oxysporum. We found that three bacteria belonging to genus Pseudomonas spp. (SLB4-P. fluorescens, SLB6-Pseudomonas sp. and SY1-Pseudomonas sp.) promoted seedling development, including enhancement of root and shoot growth, and stimulation of root hair formation. These bacteria were also found to increase phosphate solubilization in in vitro experiments. Pseudomonas sp. (SY1) significantly protected grass seedlings from Fusarium infection. In co-culture experiments, strain SY1 strongly inhibited fungal pathogens with 85.71% growth inhibition of F. oxysporum, 86.33% growth inhibition of Curvularia sp. and 82.14% growth inhibition of Alternaria sp. Seedlings previously treated with bacteria were found much less infected by F. oxysporum in comparison to non-treated controls. On microscopic observation we found that bacteria appeared to degrade fungal mycelia actively. Metabolite products of strain SY1 in agar were also found to inhibit fungal growth on nutrient media. Pseudomonas sp. (SY1) was found to produce antifungal volatiles. Polymerase chain reaction (PCR) amplification using specific primers for pyrrolnitirin synthesis and HCN (hydrogen cyanide) production suggested presence of

  13. Fungal Disease Prevention in Seedlings of Rice (Oryza sativa) and Other Grasses by Growth-Promoting Seed-Associated Endophytic Bacteria from Invasive Phragmites australis.

    PubMed

    Verma, Satish K; Kingsley, Kathryn L; Bergen, Marshall S; Kowalski, Kurt P; White, James F

    2018-03-08

    Non-cultivated plants carry microbial endophytes that may be used to enhance development and disease resistance of crop species where growth-promoting and protective microbes may have been lost. During seedling establishment, seedlings may be infected by several fungal pathogens that are seed or soil borne. Several species of Fusarium , Pythium and other water moulds cause seed rots during germination. Fusarium blights of seedlings are also very common and significantly affect seedling development. In the present study we screened nine endophytic bacteria isolated from the seeds of invasive Phragmites australis by inoculating onto rice, Bermuda grass ( Cynodon dactylon ), or annual bluegrass ( Poa annua ) seeds to evaluate plant growth promotion and protection from disease caused by Fusarium oxysporum . We found that three bacteria belonging to genus Pseudomonas spp. (SLB4- P. fluorescens , SLB6- Pseudomonas sp. and SY1- Pseudomonas sp.) promoted seedling development, including enhancement of root and shoot growth, and stimulation of root hair formation. These bacteria were also found to increase phosphate solubilization in in vitro experiments. Pseudomonas sp. (SY1) significantly protected grass seedlings from Fusarium infection. In co-culture experiments, strain SY1 strongly inhibited fungal pathogens with 85.71% growth inhibition of F. oxysporum , 86.33% growth inhibition of Curvularia sp. and 82.14% growth inhibition of Alternaria sp. Seedlings previously treated with bacteria were found much less infected by F. oxysporum in comparison to non-treated controls. On microscopic observation we found that bacteria appeared to degrade fungal mycelia actively. Metabolite products of strain SY1 in agar were also found to inhibit fungal growth on nutrient media. Pseudomonas sp. (SY1) was found to produce antifungal volatiles. Polymerase chain reaction (PCR) amplification using specific primers for pyrrolnitirin synthesis and HCN (hydrogen cyanide) production suggested

  14. Biocontrol and plant growth promoting activities of a Streptomyces corchorusii strain UCR3-16 and preparation of powder formulation for application as biofertilizer agents for rice plant.

    PubMed

    Tamreihao, K; Ningthoujam, Debananda S; Nimaichand, Salam; Singh, Elangbam Shanta; Reena, Pascal; Singh, Salam Herojeet; Nongthomba, Upendra

    2016-11-01

    Streptomyces corchorusii strain UCR3-16, obtained from rice rhizospheric soils showed antifungal activities against 6 major rice fungal pathogens by diffusible and volatile compounds production. The strain was found positive for production of fungal cell wall degrading enzymes such as chitinase, β-1,3-glucanase, β-1,4-glucanase, lipase and protease. The strain was also positive for plant growth promoting traits. It produced up to 30.5μg/ml of IAA and solubilized a significant amount of inorganic phosphate (up to 102μg/ml). It also produced 69% siderophore units. The strain also produced ammonia and gave positive result for ACC deaminase activity. Highest vigor index of inoculated seedlings was observed when rice seeds were treated with cell suspension of UCR3-16 corresponding to 4.5×10(8)cfu/ml. Bioinoculant-treated seeds also showed similar results under pathogen challenged conditions. In pot trial experiments, UCR3-16-treated rice plants showed significantly increased growth and grain yield production. Powder formulation of the strain was developed using talcum and corn starch as carriers and the shelf-lives were monitored. Talcum formulation showed higher cell-count than corn starch even after 6 months of storage, and optimum condition for storage of the powder formulation were found to be at 4°C. Pot trial experiments using talcum powder formulation also showed significant positive effects on growth of rice plants. Field trial using talcum powder formulation also exhibited significant enhancement in shoot length and weight of shoot and root, and total grain yield and weight of grains in rice plants. Talcum formulation also significantly reduced the sheath blight disease in rice leaves. Copyright © 2016. Published by Elsevier GmbH.

  15. Stripping Away the Soil: Plant Growth Promoting Microbiology Opportunities in Aquaponics.

    PubMed

    Bartelme, Ryan P; Oyserman, Ben O; Blom, Jesse E; Sepulveda-Villet, Osvaldo J; Newton, Ryan J

    2018-01-01

    As the processes facilitated by plant growth promoting microorganisms (PGPMs) become better characterized, it is evident that PGPMs may be critical for successful sustainable agricultural practices. Microbes enrich plant growth through various mechanisms, such as enhancing resistance to disease and drought, producing beneficial molecules, and supplying nutrients and trace metals to the plant rhizosphere. Previous studies of PGPMs have focused primarily on soil-based crops. In contrast, aquaponics is a water-based agricultural system, in which production relies upon internal nutrient recycling to co-cultivate plants with fish. This arrangement has management benefits compared to soil-based agriculture, as system components may be designed to directly harness microbial processes that make nutrients bioavailable to plants in downstream components. However, aquaponic systems also present unique management challenges. Microbes may compete with plants for certain micronutrients, such as iron, which makes exogenous supplementation necessary, adding production cost and process complexity, and limiting profitability and system sustainability. Research on PGPMs in aquaponic systems currently lags behind traditional agricultural systems, however, it is clear that certain parallels in nutrient use and plant-microbe interactions are retained from soil-based agricultural systems.

  16. Stripping Away the Soil: Plant Growth Promoting Microbiology Opportunities in Aquaponics

    PubMed Central

    Bartelme, Ryan P.; Oyserman, Ben O.; Blom, Jesse E.; Sepulveda-Villet, Osvaldo J.; Newton, Ryan J.

    2018-01-01

    As the processes facilitated by plant growth promoting microorganisms (PGPMs) become better characterized, it is evident that PGPMs may be critical for successful sustainable agricultural practices. Microbes enrich plant growth through various mechanisms, such as enhancing resistance to disease and drought, producing beneficial molecules, and supplying nutrients and trace metals to the plant rhizosphere. Previous studies of PGPMs have focused primarily on soil-based crops. In contrast, aquaponics is a water-based agricultural system, in which production relies upon internal nutrient recycling to co-cultivate plants with fish. This arrangement has management benefits compared to soil-based agriculture, as system components may be designed to directly harness microbial processes that make nutrients bioavailable to plants in downstream components. However, aquaponic systems also present unique management challenges. Microbes may compete with plants for certain micronutrients, such as iron, which makes exogenous supplementation necessary, adding production cost and process complexity, and limiting profitability and system sustainability. Research on PGPMs in aquaponic systems currently lags behind traditional agricultural systems, however, it is clear that certain parallels in nutrient use and plant-microbe interactions are retained from soil-based agricultural systems. PMID:29403461

  17. Perlecan and vascular endothelial growth factor-encoding DNA-loaded chitosan scaffolds promote angiogenesis and wound healing.

    PubMed

    Lord, Megan S; Ellis, April L; Farrugia, Brooke L; Whitelock, John M; Grenett, Hernan; Li, Chuanyu; O'Grady, Robert L; DeCarlo, Arthur A

    2017-03-28

    The repair of dermal wounds, particularly in the diabetic population, poses a significant healthcare burden. The impaired wound healing of diabetic wounds is attributed to low levels of endogenous growth factors, including vascular endothelial growth factor (VEGF), that normally stimulate multiple phases of wound healing. In this study, chitosan scaffolds were prepared via freeze drying and loaded with plasmid DNA encoding perlecan domain I and VEGF189 and analyzed in vivo for their ability to promote dermal wound healing. The plasmid DNA encoding perlecan domain I and VEGF189 loaded scaffolds promoted dermal wound healing in normal and diabetic rats. This treatment resulted in an increase in the number of blood vessels and sub-epithelial connective tissue matrix components within the wound beds compared to wounds treated with chitosan scaffolds containing control DNA or wounded controls. These results suggest that chitosan scaffolds containing plasmid DNA encoding VEGF189 and perlecan domain I have the potential to induce angiogenesis and wound healing. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Mucin can enhance growth, biofilm formation, and survival of Streptococcus mutans.

    PubMed

    Mothey, Deepa; Buttaro, Bettina A; Piggot, Patrick J

    2014-01-01

    Streptococcus mutans is a member of the dental plaque and is the primary causative agent of dental caries. It can survive extended periods of starvation, which may occur in different niches within the oral cavity. We have found that mucin compensated for the absence of amino acids to promote exponential growth and biofilm formation of S. mutans in minimal medium supplemented with glucose and sucrose, respectively. Mucin extended survival in conditions where there was no net growth provided the operon encoding the pyruvate dehydrogenase complex was intact. Mucin extended survival in conditions of amino acid sufficiency provided the tagatose pathway for galactose utilization was intact, suggesting that S. mutans can scavenge sufficient galactose from mucin to enhance survival, although not to serve as a primary carbon and energy source. The results suggest that mucin has a metabolic role in promoting survival of S. mutans. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. Stromal CCR6 drives tumor growth in a murine transplantable colon cancer through recruitment of tumor-promoting macrophages

    PubMed Central

    Nandi, Bisweswar; Shapiro, Mia; Samur, Mehmet K.; Pai, Christine; Frank, Natasha Y.; Yoon, Charles; Prabhala, Rao H.; Munshi, Nikhil C.; Gold, Jason S.

    2016-01-01

    ABSTRACT Interactions between the inflammatory chemokine CCL20 and its receptor CCR6 have been implicated in promoting colon cancer; however, the mechanisms behind this effect are poorly understood. We have previously demonstrated that deficiency of CCR6 is associated with decreased tumor macrophage accumulation in a model of sporadic intestinal tumorigenesis. In this study, we aimed to determine the role of stromal CCR6 expression in a murine syngeneic transplantable colon cancer model. We show that deficiency of host CCR6 is associated with decreased growth of syngeneic CCR6-expressing colon cancers. Colon cancers adoptively transplanted into CCR6-deficient mice have decreased tumor-associated macrophages without alterations in the number of monocytes in blood or bone marrow. CCL20, the unique ligand for CCR6, promotes migration of monocytes in vitro and promotes accumulation of macrophages in vivo. Depletion of tumor-associated macrophages decreases the growth of tumors in the transplantable tumor model. Macrophages infiltrating the colon cancers in this model secrete the inflammatory mediators CCL2, IL-1α, IL-6 and TNFα. Ccl2, Il1α and Il6 are consequently downregulated in tumors from CCR6-deficient mice. CCL2, IL-1α and IL-6 also promote proliferation of colon cancer cells, linking the decreased macrophage migration into tumors mediated by CCL20–CCR6 interactions to the delay in tumor growth in CCR6-deficient hosts. The relevance of these findings in human colon cancer is demonstrated through correlation of CCR6 expression with that of the macrophage marker CD163 as well as that of CCL2, IL1α and TNFα. Our findings support the exploration of targeting the CCL20–CCR6 pathway for the treatment of colon cancer. PMID:27622061

  20. All-trans retinoyl beta-glucose: chemical synthesis, growth-promoting activity, and metabolism in the rat.

    PubMed

    Barua, A B; Olson, J A

    1991-01-01

    All-trans retinoyl beta-glucose was chemically synthesized in good yield by reaction of retinoyl fluoride with glucose. Retinoyl glucose, which is soluble in water, shows growth-promoting activity similar to retinyl acetate in vitamin A-deficient rats. In metabolic studies, retinoyl glucose was found to be hydrolyzed to retinoic acid, but at a slower rate. The possible therapeutic uses of retinoyl glucose are discussed.

  1. Synergistic use of biochar, compost and plant growth-promoting rhizobacteria for enhancing cucumber growth under water deficit conditions.

    PubMed

    Nadeem, Sajid M; Imran, Muhammad; Naveed, Muhammad; Khan, Muhammad Y; Ahmad, Maqshoof; Zahir, Zahir A; Crowley, David E

    2017-12-01

    Limited information is available about the effectiveness of biochar with plant growth-promoting rhizobacteria (PGPR) and compost. A greenhouse study was conducted to evaluate the effect of biochar in combination with compost and PGPR (Pseudomonas fluorescens) for alleviating water deficit stress. Both inoculated and un-inoculated cucumber seeds were sown in soil treated with biochar, compost and biochar + compost. Three water levels - field capacity (D0), 75% field capacity (D1) and 50% field capacity (D2) - were maintained. The results showed that water deficit stress significantly suppressed the growth of cucumber; however, synergistic use of biochar, compost and PGPR mitigated the negative impact of stress. At D2, the synergistic use of biochar, compost and PGPR caused significant increases in shoot length, shoot biomass, root length and root biomass, which were respectively 88, 77, 89 and 74% more than in the un-inoculated control. Significant improvements in chlorophyll and relative water contents as well as reduction in leaf electrolyte leakage demonstrated the effectiveness of this approach. Moreover, the highest population of P. fluorescens was observed where biochar and compost were applied together. These results suggest that application of biochar with PGPR and/or compost could be an effective strategy for enhancing plant growth under stress. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. APELA promotes tumour growth and cell migration in ovarian cancer in a p53-dependent manner.

    PubMed

    Yi, Yuyin; Tsai, Shu-Huei; Cheng, Jung-Chien; Wang, Evan Y; Anglesio, Michael S; Cochrane, Dawn R; Fuller, Megan; Gibb, Ewan A; Wei, Wei; Huntsman, David G; Karsan, Aly; Hoodless, Pamela A

    2017-12-01

    APELA is a small, secreted peptide that can function as a ligand for the G-protein coupled receptor, Apelin Receptor (APLNR, APJ). APELA plays an essential role in endoderm differentiation and cardiac development during embryogenesis. We investigated whether APELA exerts any functions in cancer progression. The Cancer Genome Atlas (TCGA) RNA sequencing datasets, microarray from an OCCC mouse model, and RNA isolated from fresh frozen and FFPE patient tissue were used to assess APELA expression. APELA knockout ovarian clear cell carcinoma (OCCC) cell lines were generated using CRISPR/Cas9. APELA was expressed in various ovarian cancer histotypes and was especially elevated in OCCC. Disruption of APELA expression in OCCC cell lines suppressed cell growth and migration, and altered cell-cycle progression. Moreover, addition of human recombinant APELA peptide to the OCCC cell line OVISE promoted cell growth and migration. Interestingly, OVISE cells do not express APLNR, suggesting that APELA can function through an APLNR-independent pathway. Furthermore, APELA affected cell growth and cell cycle progression in a p53-dependent manner. In addition, APELA knockdown induced p53 expression in cancer cell lines. Our findings uncover a potential oncogenic role for APELA in promoting ovarian tumour progression and provide a possible therapeutic strategy in ovarian cancer by targeting APELA. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Three branches of phospholipase C signaling pathway promote hepatocyte growth in rat liver regeneration.

    PubMed

    Xu, G G; Geng, Z; Zhou, X C; He, Y G; He, T T; Mei, J X; Yang, Y J; Liu, Y Q; Xu, C S

    2015-05-29

    In general, the phospholipase C (PLC) signaling pathway is involved in many physiological activities, including cell growth. However, little is known regarding how the PLC signaling pathway participates in regulating hepatocyte (HC) growth during liver regeneration (LR). To further explore the influence of the PLC signaling pathway on HCs at the cellular level, HCs of high purity and vitality were isolated using Percoll density-gradient centrifugation after partial hepatectomy. The genes of the PLC signaling pathway and target genes of transcription factors in the pathway were obtained by searching the pathways and transcription factor databases, and changes in gene expression of isolated HCs were examined using the Rat Genome 230 2.0 Microarray. The results suggested that various genes involved in the pathway (including 151 known genes and 39 homologous genes) and cell growth (including 262 known genes and 37 homologous genes) were associated with LR. Subsequently, the synergetic effect of these genes in LR was analyzed using a mathematical model (Et) according to their expression profiles. The results showed that the Et values of G protein-coupled receptor/PLC, integrin/PLC, and growth factor receptor/PLC branches of the PLC pathway were all significantly strengthened during the progression and termination phases of LR. The synergetic effect of target genes, in parallel with target gene-related cell growth, was also enhanced during whole rat LR, suggesting the potential positive effect of PLC on HC growth. The present data indicate that the PLC signaling pathway may promote HC growth through 3 mechanisms during rat LR after partial hepatectomy.

  4. Perceptions of growth monitoring and promotion among an international panel of district medical officers.

    PubMed

    Roberfroid, Dominique; Lefèvre, Pierre; Hoerée, Tom; Kolsteren, Patrick

    2005-09-01

    The growth chart has been proposed as an educational tool to make the child's growth visible to both health workers and caregivers and to enhance communication between them. In the case of growth faltering, this would trigger timely corrective measures. Although the relevance of growth monitoring and promotion (GMP) has often been questioned in the literature, opinions of District Medical Officers responsible for local implementation of GMP are unknown. The aim of this qualitative research was to explore the perceptions and difficulties of an international panel of District Medical Officers regarding GMP. As an exploratory study, in-depth interviews of an international panel of District Medical Officers (n=19) were conducted. Data were coded using the QSR Nudist 5.0 software. A discrepancy between intended purposes and practice of GMP was detected at two levels. First, lack of participation of care-givers was reported. Second, the District Medical Officers expressed a restrictive interpretation of the concept of growth monitoring. The communication with parents was never reported as a means or a result of GMP, neither as an evaluation criterion of programme efficiency. The growth chart was mainly considered a tool intended to be used by health services for the purpose of diagnosis. This two-fold discrepancy between the intention of international policy-planners and practice of local programme implementers could be a crucial factor affecting the performance of GMP. More emphasis should be put on social communication and involvement of caregivers.

  5. Growth and (137)Cs uptake of four Brassica species influenced by inoculation with a plant growth-promoting rhizobacterium Bacillus pumilus in three contaminated farmlands in Fukushima prefecture, Japan.

    PubMed

    Aung, Han Phyo; Djedidi, Salem; Oo, Aung Zaw; Aye, Yi Swe; Yokoyama, Tadashi; Suzuki, Sohzoh; Sekimoto, Hitoshi; Bellingrath-Kimura, Sonoko Dorothea

    2015-07-15

    The effectiveness of the plant growth-promoting rhizobacterium Bacillus pumilus regarding growth promotion and radiocesium ((137)Cs) uptake was evaluated in four Brassica species grown on different (137)Cs contaminated farmlands at Fukushima prefecture in Japan from June to August 2012. B. pumilus inoculation did not enhance growth in any of the plants, although it resulted in a significant increase of (137)Cs concentration and higher (137)Cs transfer from the soil to plants. The Brassica species exhibited different (137)Cs uptake abilities in the order Komatsuna>turnip>mustard>radish. TF values of (137)Cs ranged from 0.018 to 0.069 for all vegetables. Komatsuna possessed the largest root surface area and root volume, and showed a higher (137)Cs concentration in plant tissue and higher (137)Cs TF values (0.060) than the other vegetables. Higher (137)Cs transfer to plants was prominent in soil with a high amount of organic matter and an Al-vermiculite clay mineral type. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Neurotrophin-3 Induces BMP-2 and VEGF Activities and Promotes the Bony Repair of Injured Growth Plate Cartilage and Bone in Rats.

    PubMed

    Su, Yu-Wen; Chung, Rosa; Ruan, Chun-Sheng; Chim, Shek Man; Kuek, Vincent; Dwivedi, Prem P; Hassanshahi, Mohammadhossein; Chen, Ke-Ming; Xie, Yangli; Chen, Lin; Foster, Bruce K; Rosen, Vicki; Zhou, Xin-Fu; Xu, Jiake; Xian, Cory J

    2016-06-01

    Injured growth plate is often repaired by bony tissue causing bone growth defects, for which the mechanisms remain unclear. Because neurotrophins have been implicated in bone fracture repair, here we investigated their potential roles in growth plate bony repair in rats. After a drill-hole injury was made in the tibial growth plate and bone, increased injury site mRNA expression was observed for neurotrophins NGF, BDNF, NT-3, and NT-4 and their Trk receptors. NT-3 and its receptor TrkC showed the highest induction. NT-3 was localized to repairing cells, whereas TrkC was observed in stromal cells, osteoblasts, and blood vessel cells at the injury site. Moreover, systemic NT-3 immunoneutralization reduced bone volume at injury sites and also reduced vascularization at the injured growth plate, whereas recombinant NT-3 treatment promoted bony repair with elevated levels of mRNA for osteogenic markers and bone morphogenetic protein (BMP-2) and increased vascularization and mRNA for vascular endothelial growth factor (VEGF) and endothelial cell marker CD31 at the injured growth plate. When examined in vitro, NT-3 promoted osteogenesis in rat bone marrow stromal cells, induced Erk1/2 and Akt phosphorylation, and enhanced expression of BMPs (particularly BMP-2) and VEGF in the mineralizing cells. It also induced CD31 and VEGF mRNA in rat primary endothelial cell culture. BMP activity appears critical for NT-3 osteogenic effect in vitro because it can be almost completely abrogated by co-addition of the BMP inhibitor noggin. Consistent with its angiogenic effect in vivo, NT-3 promoted angiogenesis in metatarsal bone explants, an effect abolished by co-treatment with anti-VEGF. This study suggests that NT-3 may be an osteogenic and angiogenic factor upstream of BMP-2 and VEGF in bony repair, and further studies are required to investigate whether NT-3 may be a potential target for preventing growth plate faulty bony repair or for promoting bone fracture healing. © 2016

  7. Melanogenic actinomycetes from rhizosphere soil-antagonistic activity against Xanthomonas oryzae and plant-growth-promoting traits.

    PubMed

    Muangham, Supattra; Pathom-Aree, Wasu; Duangmal, Kannika

    2015-02-01

    A total of 210 melanogenic actinomycetes were isolated from 75 rhizospheric soils using ISP6 and ISP7 agar supplemented with antifungal and antibacterial agents. Their morphological characteristics and the presence of ll-diaminopimelic acid in whole-cell hydrolyzates revealed that all isolates belonged to the genus Streptomyces. Their ability to inhibit the growth of 2 pathogenic rice bacteria, Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola, was observed using the agar overlay method. The results indicated that 61.9% of the isolates could inhibit at least one of the tested rice pathogens. Among these, isolate TY68-3 showed the highest antibacterial activity and siderophore production. The 16S rRNA gene sequence analysis of 46 representative isolates revealed that isolates with high similarity to Streptomyces bungoensis were frequently found. The present study indicated the potential of melanogenic actinomycetes for use as biocontrol agents against X. oryzae as well as their diversity in rhizospheric soils.

  8. Regulating Set-β's Subcellular Localization Toggles Its Function between Inhibiting and Promoting Axon Growth and Regeneration

    PubMed Central

    Wang, Yan; Morkin, Melina I.; Fernandez, Stephanie G.; Mlacker, Gregory M.; Shechter, Jesse M.; Liu, Xiongfei; Patel, Karan H.; Lapins, Allison; Yang, Steven; Dombrowski, Susan M.

    2014-01-01

    The failure of the CNS neurons to regenerate axons after injury or stroke is a major clinical problem. Transcriptional regulators like Set-β are well positioned to regulate intrinsic axon regeneration capacity, which declines developmentally in maturing CNS neurons. Set-β also functions at cellular membranes and its subcellular localization is disrupted in Alzheimer's disease, but many of its biological mechanisms have not been explored in neurons. We found that Set-β was upregulated postnatally in CNS neurons, and was primarily localized to the nucleus but was also detected in the cytoplasm and adjacent to the plasma membrane. Remarkably, nuclear Set-β suppressed, whereas Set-β localized to cytoplasmic membranes promoted neurite growth in rodent retinal ganglion cells and hippocampal neurons. Mimicking serine 9 phosphorylation, as found in Alzheimer's disease brains, delayed nuclear import and furthermore blocked the ability of nuclear Set-β to suppress neurite growth. We also present data on gene regulation and protein binding partner recruitment by Set-β in primary neurons, raising the hypothesis that nuclear Set-β may preferentially regulate gene expression whereas Set-β at cytoplasmic membranes may regulate unique cofactors, including PP2A, which we show also regulates axon growth in vitro. Finally, increasing recruitment of Set-β to cellular membranes promoted adult rat optic nerve axon regeneration after injury in vivo. Thus, Set-β differentially regulates axon growth and regeneration depending on subcellular localization and phosphorylation. PMID:24849368

  9. Phylloplane bacteria of Jatropha curcas: diversity, metabolic characteristics, and growth-promoting attributes towards vigor of maize seedling.

    PubMed

    Dubey, Garima; Kollah, Bharati; Ahirwar, Usha; Mandal, Asit; Thakur, Jyoti Kumar; Patra, Ashok Kumar; Mohanty, Santosh Ranjan

    2017-10-01

    The complex role of phylloplane microorganisms is less understood than that of rhizospheric microorganisms in lieu of their pivotal role in plant's sustainability. This experiment aims to study the diversity of the culturable phylloplane bacteria of Jatropha curcas and evaluate their growth-promoting activities towards maize seedling vigor. Heterotrophic bacteria were isolated from the phylloplane of J. curcas and their 16S rRNA genes were sequenced. Sequences of the 16S rRNA gene were very similar to those of species belonging to the classes Bacillales (50%), Gammaproteobacteria (21.8%), Betaproteobacteria (15.6%), and Alphaproteobacteria (12.5%). The phylloplane bacteria preferred to utilize alcohol rather than monosaccharides and polysaccharides as a carbon source. Isolates exhibited ACC (1-aminocyclopropane-1-carboxylic acid) deaminase, phosphatase, potassium solubilization, and indole acetic acid (IAA) production activities. The phosphate-solubilizing capacity (mg of PO 4 solubilized by 10 8 cells) varied from 0.04 to 0.21. The IAA production potential (μg IAA produced by 10 8 cells in 48 h) of the isolates varied from 0.41 to 9.29. Inoculation of the isolates to maize seed significantly increased shoot and root lengths of maize seedlings. A linear regression model of the plant-growth-promoting activities significantly correlated (p < 0.01) with the growth parameters. Similarly, a correspondence analysis categorized ACC deaminase and IAA production as the major factors contributing 41% and 13.8% variation, respectively, to the growth of maize seedlings.

  10. Waste materials derived bio-effectors used as growth promoters for strawberry plants. An agronomic and metabolomic study

    NASA Astrophysics Data System (ADS)

    Vasileva, Brankica; Chami, Ziad Al; De Pascali, Sandra; Cavoski, Ivana; Fanizzi, Francesco Paolo

    2015-04-01

    Recently, a novel concept of bio-effectors has emerged to describe a group of products that are able to improve plant performance more than fertilizers. In this study, three different agro-industrial residues, i.e. brewers' spent grain (BSG), fennel processing residues (FPR) and lemon processing residues (LPR) were chosen as potential bio-effectors. A greenhouse soilless pot experiment was conducted on strawberry plants (Fragaria x ananassa var. Festival) in order to study the effect of BSG, FPR and LPR water extracts, at different concentrations, on plant growth and fruit quality. Their effect was compared with humic-like substances as a positive/reference control (Ctrl+) and with Hoagland solution as a negative control (Ctrl-). Agronomic parameters and the nutrient uptake were measured on shoots, roots and fruits. Metabolomic profiling tests were carried out on leaves, roots and fruit juices through the NMR technique. Plants treated with the FPR extract showed better vegetative growth, while plants treated with the BSG extract gave higher yield and better fruit size. Metabolomic profiling showed that fruits and roots of plants treated with FPR and LPR extracts had higher concentrations of sucrose, malate and acetate, while BSG treated plants had higher concentrations of citrate and β-glucose. In conclusion, according to the results achieved, the bio-effectors used in this study promote plant growth and fruit quality regardless of their nutritional content. Keywords: bio-effectors, agro-industrial waste, nuclear magnetic resonance (NMR), strawberry, growth promotion, fruit quality.

  11. Opposite Smad and chicken ovalbumin upstream promoter transcription factor inputs in the regulation of the collagen VII gene promoter by transforming growth factor-beta.

    PubMed

    Calonge, María Julia; Seoane, Joan; Massagué, Joan

    2004-05-28

    A critical component of the epidermal basement membrane, collagen type VII, is produced by keratinocytes and fibroblasts, and its production is stimulated by the cytokine transforming growth factor-beta (TGF-beta). The gene, COL7A1, is activated by TGF-beta via Smad transcription factors in cooperation with AP1. Here we report a previously unsuspected level of complexity in this regulatory process. We provide evidence that TGF-beta may activate the COL7A1 promoter by two distinct inputs operating through a common region of the promoter. One input is provided by TGF-beta-induced Smad complexes via two Smad binding elements that function redundantly depending on the cell type. The second input is provided by relieving the COL7A1 promoter from chicken ovalbumin upstream promoter transcription factor (COUP-TF)-mediated transcriptional repression. We identified COUP-TFI and -TFII as factors that bind to the TGF-beta-responsive region of the COL7A1 promoter in an expression library screening. COUP-TFs bind to a site between the two Smad binding elements independently of Smad or AP1 and repress the basal and TGF-beta-stimulated activities of this promoter. We provide evidence that endogenous COUP-TF activity represses the COL7A1 promoter. Furthermore, we show that TGF-beta addition causes a rapid and profound down-regulation of COUP-TF expression in keratinocytes and fibroblasts. The results suggest that TGF-beta signaling may exert tight control over COL7A1 by offsetting the balance between opposing Smad and COUP-TFs.

  12. Low-cost fabrication of ternary CuInSe{sub 2} nanocrystals by colloidal route using a novel combination of volatile and non-volatile capping agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chawla, Parul; Narain Sharma, Shailesh, E-mail: shailesh@nplindia.org; Singh, Son

    2014-11-15

    Wet-route synthesis of CuInSe{sub 2} (CISe) nanocrystals has been envisaged with the utilization of the unique combination of coordinating ligand and non coordinating solvent. Our work demonstrates the formation of a single-phase, nearly stoichiometric and monodispersive, stable and well-passivated colloidal ternary CISe nanocrystals (band gap (E{sub g})∼1.16 eV) using a novel combination of ligands; viz. volatile arylamine aniline and non-volatile solvent 1-octadecene. The synthesis and growth conditions have been manoeuvred using the colligative properties of the mixture and thus higher growth temperature (∼250 °C) could be attained that promoted larger grain growth. The beneficial influence of the capping agents (anilinemore » and 1-octadecene) on the properties of chalcopyrite nanocrystals has enabled us to pictorally model the structural, morphological and optoelectronic aspects of CISe nanoparticles. - Graphical abstract: Without resorting to any post-selenization process and using the colligative properties of the mixture comprising of volatile aniline and non-volatile 1-octadecene to manoeuvre the growth conditions to promote Ostwald ripening, a single phase, monodispersive and nearly stoichiometric ternary CISe nanocrystals are formed by wet-synthesis route. - Highlights: • Wet-route synthesis of CISe nanocrystals reported without post-selenization process. • Single-phase, stable and well-passivated colloidal ternary CISe nanocrystals formed. • Novel combination of capping agents: volatile aniline and non-volatile 1-octadecene. • Higher growth temperature attained using the colligative properties of the mixture. • Metallic salts presence explains exp. and theoretical boiling point difference.« less

  13. Methylobacterium populi VP2: Plant Growth-Promoting Bacterium Isolated from a Highly Polluted Environment for Polycyclic Aromatic Hydrocarbon (PAH) Biodegradation

    PubMed Central

    Piccolo, Alessandro; Carotenuto, Rita; Pepe, Olimpia

    2014-01-01

    The use of microorganisms to accelerate the natural detoxification processes of toxic substances in the soil represents an alternative ecofriendly and low-cost method of environmental remediation compared to harmful incineration and chemical treatments. Fourteen strains able to grow on minimal selective medium with a complex mixture of different classes of xenobiotic compounds as the sole carbon source were isolated from the soil of the ex-industrial site ACNA (Aziende Chimiche Nazionali Associate) in Cengio (Savona, Italy). The best putative degrading isolate, Methylobacterium populi VP2, was identified using a polyphasic approach on the basis of its phenotypic, biochemical, and molecular characterisation. Moreover, this strain also showed multiple plant growth promotion activities: it was able to produce indole-3-acetic acid (IAA) and siderophores, solubilise phosphate, and produce a biofilm in the presence of phenanthrene and alleviate phenanthrene stress in tomato seeds. This is the first report on the simultaneous occurrence of the PAH-degrading ability by Methylobacterium populi and its multiple plant growth-promoting activities. Therefore, the selected indigenous strain, which is naturally present in highly contaminated soils, is good candidate for plant growth promotion and is capable of biodegrading xenobiotic organic compounds to remediate contaminated soil alone and/or soil associated with plants. PMID:25152928

  14. Comparative genomic and functional analysis reveal conservation of plant growth promoting traits in Paenibacillus polymyxa and its closely related species

    PubMed Central

    Xie, Jianbo; Shi, Haowen; Du, Zhenglin; Wang, Tianshu; Liu, Xiaomeng; Chen, Sanfeng

    2016-01-01

    Paenibacillus polymyxa has widely been studied as a model of plant-growth promoting rhizobacteria (PGPR). Here, the genome sequences of 9 P. polymyxa strains, together with 26 other sequenced Paenibacillus spp., were comparatively studied. Phylogenetic analysis of the concatenated 244 single-copy core genes suggests that the 9 P. polymyxa strains and 5 other Paenibacillus spp., isolated from diverse geographic regions and ecological niches, formed a closely related clade (here it is called Poly-clade). Analysis of single nucleotide polymorphisms (SNPs) reveals local diversification of the 14 Poly-clade genomes. SNPs were not evenly distributed throughout the 14 genomes and the regions with high SNP density contain the genes related to secondary metabolism, including genes coding for polyketide. Recombination played an important role in the genetic diversity of this clade, although the rate of recombination was clearly lower than mutation. Some genes relevant to plant-growth promoting traits, i.e. phosphate solubilization and IAA production, are well conserved, while some genes relevant to nitrogen fixation and antibiotics synthesis are evolved with diversity in this Poly-clade. This study reveals that both P. polymyxa and its closely related species have plant growth promoting traits and they have great potential uses in agriculture and horticulture as PGPR. PMID:26856413

  15. Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana.

    PubMed

    Poupin, María Josefina; Timmermann, Tania; Vega, Andrea; Zuñiga, Ana; González, Bernardo

    2013-01-01

    Plant growth-promoting rhizobacteria (PGPR) induce positive effects in plants, such as increased growth or reduced stress susceptibility. The mechanisms behind PGPR/plant interaction are poorly understood, as most studies have described short-term responses on plants and only a few studies have analyzed plant molecular responses under PGPR colonization. Here, we studied the effects of the PGPR bacterial model Burkholderiaphytofirmans PsJN on the whole life cycle of Arabidopsis thaliana plants. We reported that at different plant developmental points, strain PsJN can be found in the rhizosphere and also colonizing their internal tissues. In early ontogeny, strain PsJN increased several growth parameters and accelerated growth rate of the plants. Also, an Arabidopsis transcriptome analysis revealed that 408 genes showed differential expression in PsJN-inoculated plants; some of these genes are involved in stress response and hormone pathways. Specifically, genes implicated in auxin and gibberellin pathways were induced. Quantitative transcriptional analyses of selected genes in different developmental stages revealed that the beginning of these changes could be evidenced early in development, especially among the down-regulated genes. The inoculation with heat-killed bacteria provoked a more severe transcriptional response in plants, but was not able to induce plant growth-promotion. Later in ontogeny, the growth rates of inoculated plants decreased with respect to the non-inoculated group and, interestingly, the inoculation accelerated the flowering time and the appearance of senescence signs in plants; these modifications correlate with the early up-regulation of flowering control genes. Then, we show that a single inoculation with a PGPR could affect the whole life cycle of a plant, accelerating its growth rate and shortening its vegetative period, both effects relevant for most crops. Thus, these findings provide novel and interesting aspects of these relevant

  16. Purple corn-associated rhizobacteria with potential for plant growth promotion.

    PubMed

    Castellano-Hinojosa, A; Pérez-Tapia, V; Bedmar, E J; Santillana, N

    2018-05-01

    Purple corn (Zea mays var. purple amylaceum) is a native variety of the Peruvian Andes, cultivated at 3000 m since the pre-Inca times without N fertilization. We aimed to isolate and identify native plant growth-promoting rhizobacteria (PGPR) for future microbial-based inoculants. Eighteen strains were isolated from the rhizosphere of purple corn plants grown without N fertilization in Ayacucho (Peru). The 16S rRNA gene clustered the 18 strains into nine groups that contained species of Bacillus, Stenotrophomonas, Achromobacter, Paenibacillus, Pseudomonas and Lysinibacillus. A representative strain from each group was selected and assayed for N 2 fixation, phosphate solubilization, indole acetic and siderophore production, 1-aminocyclopropane-1-carboxylic acid deaminase activity and biocontrol abilities. Inoculation of purple corn plants with single and combined strains selected after a principal component analysis caused significant increases in root and shoot dry weight, total C and N contents of the plants. PGPRs can support growth and crop production of purple corn in the Peruvian Andes and constitute the base for microbial-based inoculants. This study enlarges our knowledge on plant-microbial interactions in high altitude mountains and provides new applications for PGPR inoculation in purple amylaceum corn, which is part of the staple diet for the native Quechua communities. © 2018 The Society for Applied Microbiology.

  17. The expression of asparaginyl endopeptidase promotes growth potential in epithelial ovarian cancer.

    PubMed

    Zhu, Qinyi; Tang, Meiling; Wang, Xipeng

    2017-04-03

    Epithelial ovarian cancer (EOC) is the most common and lethal cancer-related death among females in the world. Asparaginyl endopeptidase (AEP) is a member of C13 family peptidases and expressed in the extracellular matrix and tumor cells. The aim of this article is to explore the function of asparaginyl endopeptidase in epithelial ovarian cancer. The expression of AEP was examined in 20 EOC samples, 3 EOC metastasis samples, 6 fallopian tube metastasis samples, 4 peritoneum metastasis samples and 20 benign ovarian tumor samples by immunohistochemistry. The expression of AEP was also evaluated in serum and ascites of EOC patients by elisa. And we used a lentiviral vector to overexpress AEP in human epithelial ovarian cancer cell lines SKOV3ip and detected the function of AEP-SKOV3ip cells both in vitro and in vivo. The growth of AEP-SKOV3ip cells was observed by MTT, migration and tube formation assays in vitro. Additionally, the subcutaneous mice model was used to identify the tumor growth and metastasis in vivo. Mice tumors were stained for CD31 to determine the microvessel density (MVD). We demonstrated that AEP was highly expressed in the EOC patient tissues and ascites. The AEP transfected SKOV3ip cells could both promote tumor growth in vitro and in vivo. The MVD in AEP-SKOV3ip group was higher than that in NC-SKOV3ip group. Therefore, our results demonstrated that AEP could induce EOC growth and progressionboth in vitro and in vivo.

  18. Cardiac progenitor cell‑derived exosomes promote H9C2 cell growth via Akt/mTOR activation.

    PubMed

    Li, Shentang; Jiang, Jie; Yang, Zuocheng; Li, Zhuoying; Ma, Xing; Li, Xin

    2018-05-21

    Exosomes are cell‑derived vesicles released from a variety of mammalian cells that are involved in cell‑to‑cell signalling. It has been reported that cardiac progenitor cells (CPCs) derived from an adult heart are one of the most promising stem cell types for cardioprotection and repair. The mammalian target of rapamycin (mTOR) signalling pathway is a pivotal regulator in CPCs, therefore, CPC‑derived exosomes were used in the present study to investigate whether it can promote H9C2 cell growth through the protein kinase B (PKB, or Akt)/mTOR signalling pathway. The CPCs were isolated from Sprague‑Dawley hearts. Following treatment with a specific medium, the exosomes were purified and identified by electron micrograph and western blot assays, using CD63 and CD81 as markers. The methyl‑thiazolyl‑tetrazolium and 5‑ethynyl‑2'‑deoxyuridine methods were used to detect H9C2 cell growth. The expression of Akt and mTOR were detected by western blot analysis following treatment with 200 or 400 µg/ml of exosomes for 24 or 48 h, respectively. It was found that, compared with higher concentrations of exosomes, prolonging the duration of exposure promoted cell growth. Accordingly, CPC‑derived exosomes stimulated the expression of Akt to a marked degree; groups treated with exosomes for 48 h showed higher expression of Akt than those treated for 24 h at the same concentration. mTOR was also stimulated by CPC‑derived exosomes. The activation of mTOR increased in accordance with the treatment time at an exosome concentration of 200 µg/ml and decreased with treatment time at an exosome concentration of 400 µg/ml. In conclusion, the present study demonstrated that CPC‑derived exosomes promoted H9C2 cell growth via the activation of Akt/mTOR in a time‑dependent manner at a relatively low exosome concentration, which may provide a novel therapy for cardiovascular disease.

  19. PPMP, a novel tubulin-depolymerizing agent against esophageal cancer in patient-derived tumor xenografts.

    PubMed

    Sheng, Yuqiao; Liu, Kangdong; Wu, Qiong; Oi, Naomi; Chen, Hanyong; Reddy, Kanamata; Jiang, Yanan; Yao, Ke; Li, Haitao; Li, Wei; Zhang, Yi; Saleem, Mohammad; Ma, Wei-Ya; Bode, Ann M; Dong, Ziming; Dong, Zigang

    2016-05-24

    Esophageal cancer is one of the least studied and deadliest cancers worldwide with a poor prognosis due to limited options for treatment. Chemotherapy agents such as the microtubule-targeting compounds are the mainstay of palliation for advanced esophageal cancer treatment. However, the toxicity and side effects of tubulin-binding agents (TBAs) have promoted the development of novel, more potent but less toxic TBAs. Herein, we identified 2-[4-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrazol-5-yl]-5-[(2-methylprop-2-en-1-yl)oxy] phenol (PPMP) as a novel TBA for esophageal cancer treatment. PPMP markedly inhibited tubulin polymerization, and decreased viability and anchorage-independent growth of esophageal cancer cell lines, effects that were accompanied by G2/M arrest and apoptosis. Importantly, we produced patient-derived esophageal cancer xenografts to evaluate the therapeutic effect of PPMP in a setting that best mimics the clinical context in patients with esophageal cancer. Overall, we identified PPMP as a novel microtubule-destabilizing compound and as a new therapeutic agent against esophageal carcinoma.

  20. Intertissue Flow of Glutathione (GSH) as a Tumor Growth-promoting Mechanism

    PubMed Central

    Obrador, Elena; Benlloch, María; Pellicer, José A.; Asensi, Miguel; Estrela, José M.

    2011-01-01

    B16 melanoma F10 (B16-F10) cells with high glutathione (GSH) content show high metastatic activity in vivo. An intertissue flow of GSH, where the liver is the main reservoir, can increase GSH content in metastatic cells and promote their growth. We have studied here possible tumor-derived molecular signals that could activate GSH release from hepatocytes. GSH efflux increases in hepatocytes isolated from mice bearing liver or lung metastases, thus suggesting a systemic mechanism. Fractionation of serum-free conditioned medium from cultured B16-F10 cells and monoclonal antibody-induced neutralization techniques facilitated identification of interleukin (IL)-6 as a tumor-derived molecule promoting GSH efflux in hepatocytes. IL-6 activates GSH release through a methionine-sensitive/organic anion transporter polypeptide 1- and multidrug resistance protein 1-independent channel located on the sinusoidal site of hepatocytes. Specific siRNAs were used to knock down key factors in the main signaling pathways activated by IL-6, which revealed a STAT3-dependent mechanism. Our results show that IL-6 (mainly of tumor origin in B16-F10-bearing mice) may facilitate GSH release from hepatocytes and its interorgan transport to metastatic growing foci. PMID:21393247