Science.gov

Sample records for growth promoting signaling

  1. Plant growth promotion by Bacillus megaterium involves cytokinin signaling

    PubMed Central

    Ortíz-Castro, Randy; Valencia-Cantero, Eduardo

    2008-01-01

    Accumulating evidence indicates that plant growth promoting rhizobacteria (PGPR) influence plant growth and development by the production of phytohormones such as auxins, gibberellins, and cytokinins. Little is known on the genetic basis and signal transduction components that mediate the beneficial effects of PGPRs in plants. We recently reported the identification of a Bacillus megaterium strain that promoted growth of A. thaliana and P. vulgaris seedlings. In this addendum, the role of cytokinin signaling in mediating the plant responses to bacterial inoculation was investigated using A. thaliana mutants lacking one, two or three of the putative cytokinin receptors CRE1, AHK2 and AHK3, and RPN12 a gene involved in cytokinin signaling. We show that plant growth promotion by B. megaterium is reduced in AHK2-2 single and double mutant combinations and in RPN12. Furthermore, the triple cytokinin-receptor CRE1-12/AHK2-2/AHK3-3 knockout was insensitive to inoculation in terms of growth promotion and root developmental responses. Our results indicate that cytokinin receptors play a complimentary role in plant growth promotion by B. megaterium. PMID:19704649

  2. TNFα reverse signaling promotes sympathetic axon growth and target innervation

    PubMed Central

    Kisiswa, Lilian; Osório, Catarina; Erice, Clara; Vizard, Thomas; Wyatt, Sean; Davies, Alun M

    2013-01-01

    Reverse signaling via members of the tumor necrosis factor (TNF) superfamily is increasingly recognized among cells of the immune system where it controls multiple aspects of immune function. Here we document TNFα reverse signaling in the nervous system for the first time and show that it plays a crucial role in establishing sympathetic innervation. During postnatal development, sympathetic axons express TNFα as they grow and branch in their target tissues which in turn express TNFR1. In culture, soluble forms of TNFR1 act directly on postnatal sympathetic axons to promote growth and branching by a mechanism that depends on membrane integrated TNFα and downstream MEK/ERK activation. Sympathetic innervation density is significantly reduced in several tissues in postnatal and adult mice lacking either TNFα or TNFR1. These findings reveal that target-derived TNFR1 acts as a reverse signaling ligand for membrane-integrated TNFα to promote sympathetic axon growth and branching. PMID:23749144

  3. Disordered hepcidin-ferroportin signaling promotes breast cancer growth.

    PubMed

    Zhang, Shuping; Chen, Yue; Guo, Wenli; Yuan, Lin; Zhang, Daoqiang; Xu, Yong; Nemeth, Elizabeta; Ganz, Tomas; Liu, Sijin

    2014-11-01

    Iron homeostasis is strictly governed in mammals; however, disordered iron metabolism (such as excess iron burden) is recognized as a risk factor for various types of diseases including cancers. Burgeoning evidence indicates that the central signaling of iron homeostasis, the hepcidin-ferroportin axis, is misregulated in cancers. Nonetheless, the mechanisms of misregulated expression of iron-related genes along this signaling in cancers remain largely unknown. In the current study, we found increased levels of serum hepcidin in breast cancer patients. Reduction of hepatic hepcidin through administration of heparin restrained tumorigenic properties of breast tumor cells. Mechanistic investigation revealed that increased iron, bone morphogenetic protein-6 (BMP6) and interleukin-6 (IL-6) jointly promoted the synthesis of hepatic hepcidin. Tumor hepcidin expression was marginally increased in breast tumors relative to adjacent tissues. In contrast, tumor ferroportin concentration was greatly reduced in breast tumors, especially in malignant tumors, compared to adjacent tissues. Elevation of ferroportin concentration inhibited cell proliferation in vitro and in vivo by knocking down tumor hepcidin expression. Additionally, increased IL-6 was demonstrated to jointly enhance the tumorigenic effects of iron through enforcing cell growth. Our combined data overall deciphered the machinery that altered the hepcidin-ferroportin signaling in breast cancers. Thus, targeting the hepcidin-ferroportin signaling would represent a promising therapeutics to restrain breast cancer growth.

  4. Pharmacologic inhibition of JAK-STAT signaling promotes hair growth.

    PubMed

    Harel, Sivan; Higgins, Claire A; Cerise, Jane E; Dai, Zhenpeng; Chen, James C; Clynes, Raphael; Christiano, Angela M

    2015-10-01

    Several forms of hair loss in humans are characterized by the inability of hair follicles to enter the growth phase (anagen) of the hair cycle after being arrested in the resting phase (telogen). Current pharmacologic therapies have been largely unsuccessful in targeting pathways that can be selectively modulated to induce entry into anagen. We show that topical treatment of mouse and human skin with small-molecule inhibitors of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway results in rapid onset of anagen and subsequent hair growth. We show that JAK inhibition regulates the activation of key hair follicle populations such as the hair germ and improves the inductivity of cultured human dermal papilla cells by controlling a molecular signature enriched in intact, fully inductive dermal papillae. Our findings open new avenues for exploration of JAK-STAT inhibition for promotion of hair growth and highlight the role of this pathway in regulating the activation of hair follicle stem cells.

  5. Pharmacologic inhibition of JAK-STAT signaling promotes hair growth

    PubMed Central

    Harel, Sivan; Higgins, Claire A.; Cerise, Jane E.; Dai, Zhenpeng; Chen, James C.; Clynes, Raphael; Christiano, Angela M.

    2015-01-01

    Several forms of hair loss in humans are characterized by the inability of hair follicles to enter the growth phase (anagen) of the hair cycle after being arrested in the resting phase (telogen). Current pharmacologic therapies have been largely unsuccessful in targeting pathways that can be selectively modulated to induce entry into anagen. We show that topical treatment of mouse and human skin with small-molecule inhibitors of the Janus kinase (JAK)–signal transducer and activator of transcription (STAT) pathway results in rapid onset of anagen and subsequent hair growth. We show that JAK inhibition regulates the activation of key hair follicle populations such as the hair germ and improves the inductivity of cultured human dermal papilla cells by controlling a molecular signature enriched in intact, fully inductive dermal papillae. Our findings open new avenues for exploration of JAK-STAT inhibition for promotion of hair growth and highlight the role of this pathway in regulating the activation of hair follicle stem cells. PMID:26601320

  6. P2X7R suppression promotes glioma growth through epidermal growth factor receptor signal pathway.

    PubMed

    Fang, Jingqin; Chen, Xiao; Zhang, Letian; Chen, Jinhua; Liang, Yi; Li, Xue; Xiang, Jianbo; Wang, Lili; Guo, Guangkuo; Zhang, Bo; Zhang, Weiguo

    2013-06-01

    P2X7 receptor (P2X7R) has been shown to mediate an anticancer effect via apoptosis in different types of cancer. However, whether P2X7R exerts a promoting or suppressive effect on brain glioma is still a controversial issue and its underlying mechanism remains unknown. We showed here that P2X7R suppression exerted a pro-growth effect on glioma through directly promoting cells proliferation and pro-angiogenesis, which was associated with epidermal growth factor receptor (EGFR) signaling. The P2X7R was markedly downregulated by cells exposure to the P2X7R antagonist, brilliant blue G (BBG), moreover, the cells proliferation was enhanced in a dose-dependent manner and the expression of EGFR or p-EGFR protein was significantly upregulated. By constructing C6 cells with reduced expression of P2X7R using shRNA, we also demonstrated strong upregulation in cells proliferation and EGFR/p-EGFR expression. However, this effect of BBG was reversed in the presence of gefitinib or suramin. Magnetic resonance imaging and computed tomography perfusion showed that the BBG or P2X7R shRNA promoted the tumor growth by about 40% and 50%, respectively, and significantly increased angiogenesis. Nissl and Ki-67 staining also confirmed that BBG or P2X7R shRNA notably increased the tumor growth. More importantly, either BBG or P2X7R shRNA could markedly upregulated the expression of EGFR, p-EGFR, HIF-1α and VEGF in glioma cells. In conclusion, P2X7R suppression exerts a promoting effect on glioma growth, which is likely to be related to upregulated EGFR, HIF-1α and VEGF expression. These findings provide important clues to the molecular basis of anticancer effect of targeting purinergic receptors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. TOR Signaling Promotes Accumulation of BZR1 to Balance Growth with Carbon Availability in Arabidopsis.

    PubMed

    Zhang, Zhenzhen; Zhu, Jia-Ying; Roh, Jeehee; Marchive, Chloé; Kim, Seong-Ki; Meyer, Christian; Sun, Yu; Wang, Wenfei; Wang, Zhi-Yong

    2016-07-25

    For maintenance of cellular homeostasis, the actions of growth-promoting hormones must be attenuated when nutrient and energy become limiting. The molecular mechanisms that coordinate hormone-dependent growth responses with nutrient availability remain poorly understood in plants [1, 2]. The target of rapamycin (TOR) kinase is an evolutionarily conserved master regulator that integrates nutrient and energy signaling to regulate growth and homeostasis in both animals and plants [3-7]. Here, we show that sugar signaling through TOR controls the accumulation of the brassinosteroid (BR)-signaling transcription factor BZR1, which is essential for growth promotion by multiple hormonal and environmental signals [8-11]. Starvation, caused by shifting of light-grown Arabidopsis seedlings into darkness, as well as inhibition of TOR by inducible RNAi, led to plant growth arrest and reduced expression of BR-responsive genes. The growth arrest caused by TOR inactivation was partially recovered by BR treatment and the gain-of-function mutation bzr1-1D, which causes accumulation of active forms of BZR1 [12]. Exogenous sugar promoted BZR1 accumulation and seedling growth, but such sugar effects were largely abolished by inactivation of TOR, whereas the effect of TOR inactivation on BZR1 degradation is abolished by inhibition of autophagy and by the bzr1-1D mutation. These results indicate that cellular starvation leads sequentially to TOR inactivation, autophagy, and BZR1 degradation. Such regulation of BZR1 accumulation by glucose-TOR signaling allows carbon availability to control the growth promotion hormonal programs, ensuring supply-demand balance in plant growth. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Histone deacetylase 6 promotes growth of glioblastoma through inhibition of SMAD2 signaling.

    PubMed

    Li, Shun; Liu, Xiao; Chen, Xiangrong; Zhang, Liu; Wang, Xiangyu

    2015-12-01

    Histone deacetylases (HDACs) play a role in the tumorigenesis of glioblastoma multiforme (GBM), whereas the underlying mechanism has not been elucidated. Here, we reported significantly higher HDAC6 levels in GBM from the patients. GBM cell growth was significantly inhibited by ACY-1215, a specific HDAC6 inhibitor. Further analyses show that HDAC6 may promote growth of GBM cells through inhibition of SMAD2 phosphorylation to downregulate p21. Thus, our data demonstrate a previously unrecognized regulation pathway in that HDAC6 increases GBM growth through attenuating transforming growth factor β (TGFβ) receptor signaling.

  9. Canonical Wnt signaling functions in second heart field to promote right ventricular growth

    PubMed Central

    Ai, Di; Fu, Xueyao; Wang, Jun; Lu, Mei-Fang; Chen, Li; Baldini, Antonio; Klein, William H.; Martin, James F.

    2007-01-01

    The second heart field (SHF), progenitor cells that are initially sequestered outside the heart, migrates into the heart and gives rise to endocardium, myocardium, and smooth muscle. Because of its distinct developmental history, the SHF is likely subjected to different signals from that of the first heart field. Previous experiments revealed that canonical Wnt signaling negatively regulated first heart field specification. We inactivated the obligate canonical Wnt effector β-catenin using a β-catenin conditional null allele and the Mef2c AHF cre driver that directs cre activity specifically in SHF. We also expressed a stabilized form of β-catenin to model continuous Wnt signaling in SHF. Our data indicate that Wnt signaling acts in a positive fashion to promote right ventricular and interventricular myocardial expansion. Cyclin D2 and Tgfβ2 expression was drastically reduced in β-catenin loss-of-function mutants, indicating that Wnt signaling is required for patterning and expansion of SHF derivatives. Our findings reveal that Wnt signaling plays a major positive role in promoting growth and diversification of SHF precursors into right ventricular and interventricular myocardium. PMID:17519332

  10. Gamma-glutamylcyclotransferase promotes the growth of human glioma cells by activating Notch-Akt signaling

    SciTech Connect

    Shen, Shang-Hang; Yu, Ning; Liu, Xi-Yao; Tan, Guo-Wei; Wang, Zhan-Xiang

    2016-03-18

    Glioma as an aggressive type tumor is rapidly growing and has become one of the leading cause of cancer-related death worldwide. γ-Glutamylcyclotransferase (GGCT) has been shown as a diagnostic marker in various cancers. To reveal whether there is a correlation between GGCT and human glioma, GGCT expression in human glioma tissues and cell lines was first determined. We found that GGCT expression was up-regulated in human glioma tissues and cell lines. Further, we demonstrate that GGCT knockdown inhibits glioma cell T98G and U251 proliferation and colony formation, whereas GGCT overexpression leads to oppose effects. GGCT overexpression promotes the expression of Notch receptors and activates Akt signaling in glioma cells, and Notch-Akt signaling is activated in glioma tissues with high expression of GGCT. Finally, we show that inhibition of Notch-Akt signaling with Notch inhibitor MK-0752 blocks the effects of GGCT on glioma proliferation and colony formation. In conclusion, GGCT plays a critical role in glioma cell proliferation and may be a potential cancer therapeutic target. - Highlights: • GGCT expression is up-regulated in human glioma tissues and cell lines. • GGCT promotes glioma cell growth and colony formation. • GGCT promotes the activation of Notch-Akt signaling in glioma cells and tissues. • Notch inhibition blocks the role of GGCT in human glioma cells.

  11. Incomplete Dll4/Notch signaling inhibition promotes functional angiogenesis supporting the growth of skin papillomas.

    PubMed

    Djokovic, Dusan; Trindade, Alexandre; Gigante, Joana; Pinho, Mario; Harris, Adrian L; Duarte, Antonio

    2015-08-28

    In invasive malignancies, Dll4/Notch signaling inhibition enhances non-functional vessel proliferation and limits tumor growth by reducing its blood perfusion. To assess the effects of targeted Dll4 allelic deletion in the incipient stages of tumor pathogenesis, we chemically induced skin papillomas in wild-type and Dll4 (+/-) littermates, and compared tumor growth, their histological features, vascularization and the expression of angiogenesis-related molecules. We observed that Dll4 down-regulation promotes productive angiogenesis, although with less mature vessels, in chemically-induced pre-cancerous skin papillomas stimulating their growth. The increase in endothelial activation was associated with an increase in the VEGFR2 to VEGFR1 ratio, which neutralized the tumor-suppressive effect of VEGFR-targeting sorafenib. Thus, in early papillomas, lower levels of Dll4 increase vascularization through raised VEGFR2 levels, enhancing sensitivity to endogenous levels of VEGF, promoting functional angiogenesis and tumor growth. Tumor promoting effect of low-dosage inhibition needs to be considered when implementing Dll4 targeting therapies.

  12. Protopanaxatirol type ginsenoside Re promotes cyclic growth of hair follicles via inhibiting transforming growth factor β signaling cascades.

    PubMed

    Li, Zheng; Ryu, Seung-Wook; Lee, Jungsul; Choi, Kyungsun; Kim, Sunchang; Choi, Chulhee

    2016-02-19

    Ginsenosides, the major bio-active ingredients included in Panax ginseng, have been known for the hair growth activity and used to treat patients who suffer from hair loss; however, the detailed mechanisms of this action are still largely unknown. This study was conducted to investigate the molecular and cellular mechanisms responsible for hair growth promoting effect of ginsenoside Re (GRe) in vitro and in vivo. Different doses of minoxidil and GRe were administered topically to the back regions of nude mice for up to 45 days, and hair shaft length and hair cycles were determined for hair promoting activities. Topical treatment of GRe significantly increased the hair shaft length and hair existent time, which was comparable to the action of minoxidil. We also demonstrated that GRe stimulated hair shaft elongation in the ex vivo cultures of vibrissa hair follicles isolated from C57BL/6 mouse. Systemic transcriptome analysis by next generation sequencing demonstrated that TGF-β-pathway related genes were selectively down-regulated by treatment of GRe in vivo, and the same treatment suppressed TGF-β-induced phosphorylation of ERK in HeLa cells. The results clearly indicated that GRe is the effective constituent in the ginseng on hair promotion via selective inhibition of the hair growth phase transition related signaling pathways, TGF-β signaling cascades.

  13. PKCλ/ι signaling promotes triple-negative breast cancer growth and metastasis.

    PubMed

    Paul, A; Gunewardena, S; Stecklein, S R; Saha, B; Parelkar, N; Danley, M; Rajendran, G; Home, P; Ray, S; Jokar, I; Vielhauer, G A; Jensen, R A; Tawfik, O; Paul, S

    2014-09-01

    Triple-negative breast cancer (TNBC) is a distinct breast cancer subtype defined by the absence of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2/neu), and the patients with TNBC are often diagnosed with higher rates of recurrence and metastasis. Because of the absence of ER, PR and HER2/neu expressions, TNBC patients are insensitive to HER2-directed and endocrine therapies available for breast cancer treatment. Here, we report that expression of atypical protein kinase C isoform, PKCλ/ι, significantly increased and activated in all invasive breast cancer (invasive ductal carcinoma or IDC) subtypes including the TNBC subtype. Because of the lack of targeted therapies for TNBC, we choose to study PKCλ/ι signaling as a potential therapeutic target for TNBC. Our observations indicated that PKCλ/ι signaling is highly active during breast cancer invasive progression, and metastatic breast cancers, the advanced stages of breast cancer disease that developed more frequently in TNBC patients, are also characterized with high levels of PKCλ/ι expression and activation. Functional analysis in experimental mouse models revealed that depletion of PKCλ/ι significantly reduces TNBC growth as well as lung metastatic colonization. Furthermore, we have identified a PKCλ/ι-regulated gene signature consisting of 110 genes, which are significantly associated with indolent to invasive progression of human breast cancer and poor prognosis. Mechanistically, cytokines such as TGFβ and IL1β could activate PKCλ/ι signaling in TNBC cells and depletion of PKCλ/ι impairs NF-κB p65 (RelA) nuclear localization. We observed that cytokine-PKCλ/ι-RelA signaling axis, at least in part, involved in modulating gene expression to regulate invasion of TNBC cells. Overall, our results indicate that induction and activation of PKCλ/ι promote TNBC growth, invasion and metastasis. Thus, targeting PKCλ/ι signaling could be a

  14. Extravascular red blood cells and hemoglobin promote tumor growth and therapeutic resistance as endogenous danger signals.

    PubMed

    Yin, Tao; He, Sisi; Liu, Xiaoling; Jiang, Wei; Ye, Tinghong; Lin, Ziqiang; Sang, Yaxiong; Su, Chao; Wan, Yang; Shen, Guobo; Ma, Xuelei; Yu, Min; Guo, Fuchun; Liu, Yanyang; Li, Ling; Hu, Qiancheng; Wang, Yongsheng; Wei, Yuquan

    2015-01-01

    Hemorrhage is a common clinical manifestation in patients with cancer. Intratumor hemorrhage has been demonstrated to be a poor prognostic factor for cancer patients. In this study, we investigated the role of RBCs and hemoglobin (Hb) in the process of tumor progression and therapeutical response. RBCs and Hb potently promoted tumor cell proliferation and syngenic tumor growth. RBCs and Hb activated the reactive oxygen species-NF-κB pathway in both tumor cells and macrophages. RBCs and Hb also induced chemoresistance mediated, in part, by upregulating ABCB1 gene expression. Tumor growth induced by RBCs was accompanied by an inflammatory signature, increased tumor vasculature, and influx of M2 macrophages. In both the peritoneal cavity and tumor microenvironment, extravascular RBCs rapidly recruited monocyte-macrophages into the lesion sites. In addition, RBCs and Hb increased several nucleotide-binding oligomerization domain-like receptors' expression and induced IL-1β release. Our results provide novel insights into the protumor function of RBCs and Hb as endogenous danger signals, which can promote tumor cell proliferation, macrophage recruitment, and polarization. Hemorrhage may represent a useful prognostic factor for cancer patients because of its role in tumor promotion and chemoresistance.

  15. PGE2 signal through EP2 promotes the growth of articular chondrocytes.

    PubMed

    Aoyama, Tomoki; Liang, Bojian; Okamoto, Takeshi; Matsusaki, Takashi; Nishijo, Koichi; Ishibe, Tatsuya; Yasura, Ko; Nagayama, Satoshi; Nakayama, Tomitaka; Nakamura, Takashi; Toguchida, Junya

    2005-03-01

    EP2 was identified as the major PGE2 receptor expressed in articular cartilage. An EP2 agonist increased intracellular cAMP in articular chondrocytes, stimulating DNA synthesis in both monolayer and 3D cultures. Hence, the EP2 agonist may be a potent therapeutic agent for degenerative cartilage diseases. Prostaglandin E2 (PGE2) exhibits pleiotropic effects in various types of tissue through four types of receptors, EP1-4. We examined the expression of EPs and effects of agonists for each EP on articular chondrocytes. The expression of each EP in articular chondrocytes was examined by immunohistochemistry and RT-PCR. A chondrocyte cell line, MMA2, was established from articular cartilage of p53(-/-) mice and used to analyze the effects of agonists for each EP. A search for molecules downstream of the PGE2 signal through the EP2 agonist was made by cDNA microarray analysis. The growth-promoting effect of the EP2 agonist on chondrocytes surrounded by cartilage matrix was examined in an organ culture of rat femora. EP2 was identified as the major EP expressed in articular cartilage. Treatment of MMA2 cells with specific agonists for each EP showed that only the EP2 agonist significantly increased intracellular cAMP levels in a dose-dependent manner. Gene expression profiling of MMA2 revealed a set of genes upregulated by the EP2 agonist, including several growth-promoting and apoptosis-protecting genes such as the cyclin D1, fibronectin, integrin alpha5, AP2alpha, and 14-3-3gamma genes. The upregulation of these genes by the EP2 agonist was confirmed in human articular chondrocytes by quantitative mRNA analysis. On treatment with the EP2 agonist, human articular chondrocytes showed an increase in the incorporation of 5-bromo-2-deoxyuracil (BrdU), and the organ culture of rat femora showed an increase of proliferating cell nuclear antigen (PCNA) staining in articular chondrocytes surrounded by cartilage matrix, suggesting growth-promoting effects of the PGE2 signal

  16. Gibberellin Signaling Requires Chromatin Remodeler PICKLE to Promote Vegetative Growth and Phase Transitions1[OPEN

    PubMed Central

    Nguyen, Khoa Thi; Ogas, Joe; Choi, Giltsu

    2017-01-01

    PICKLE (PKL) is an ATP-dependent chromodomain-helicase-DNA-binding domain (CHD3) chromatin remodeling enzyme in Arabidopsis (Arabidopsis thaliana). Previous studies showed that PKL promotes embryonic-to-vegetative transition by inhibiting expression of seed-specific genes during seed germination. The pkl mutants display a low penetrance of the “pickle root” phenotype, with a thick and green primary root that retains embryonic characteristics. The penetrance of this pickle root phenotype in pkl is dramatically increased in gibberellin (GA)-deficient conditions. At adult stages, the pkl mutants are semidwarfs with delayed flowering time, which resemble reduced GA-signaling mutants. These findings suggest that PKL may play a positive role in regulating GA signaling. A recent biochemical analysis further showed that PKL and GA signaling repressors DELLAs antagonistically regulate hypocotyl cell elongation genes by direct protein-protein interaction. To elucidate further the role of PKL in GA signaling and plant development, we studied the genetic interaction between PKL and DELLAs using the hextuple mutant containing pkl and della pentuple (dP) mutations. Here, we show that PKL is required for most of GA-promoted developmental processes, including vegetative growth such as hypocotyl, leaf, and inflorescence stem elongation, and phase transitions such as juvenile-to-adult leaf and vegetative-to-reproductive phase. The removal of all DELLA functions (in the dP background) cannot rescue these phenotypes in pkl. RNA-sequencing analysis using the ga1 (a GA-deficient mutant), pkl, and the ga1 pkl double mutant further shows that expression of 80% of GA-responsive genes in seedlings is PKL dependent, including genes that function in cell elongation, cell division, and phase transitions. These results indicate that the CHD3 chromatin remodeler PKL is required for regulating gene expression during most of GA-regulated developmental processes. PMID:28057895

  17. Fibroblast growth factor-2 promotes in vitro mitral valve interstitial cell repair through transforming growth factor-β/Smad signaling.

    PubMed

    Han, Li; Gotlieb, Avrum I

    2011-01-01

    Transforming growth factor (TGF)-β and fibroblast growth factor (FGF)-2 both promote repair in valve interstitial cell (VIC) injury models; however, the relationship between TGF-β and FGF-2 in wound repair are not well understood. VIC confluent monolayers were wounded by mechanical injury and incubated separately or in combination with FGF-2, neutralizing antibody to FGF-2, neutralizing antibody to TGF-β, and betaglycan antibody for 24 hours after wounding. Phosphorylated Smad2/3 (pSmad2/3) was localized at the wound edge (WE) and at the monolayer away from the WE. Down-regulation of pSmad2/3 protein expression via small-interfering RNA transfection was performed. The extent of wound closure was monitored for up to 96 hours. FGF-2 incubation resulted in a significant increase in nuclear pSmad2/3 staining at the WE. Neutralizing antibody to TGF-β alone or with FGF-2 present resulted in a similar significant decrease in pSmad2/3. Neutralizing antibody to FGF-2 alone or with FGF-2 present showed a similar significant decrease in pSmad2/3; however, significantly more staining was observed than treatment with neutralizing antibody to TGF-β. Incubation with betaglycan antibody inhibited FGF-2-mediated pSmad2/3 signaling. Wound closure corresponded with pSmad2/3 staining at the WE. Down-regulation of pSmad2/3 via small-interfering RNA transfection significantly reduced the extent to which FGF-2 promoted wound closure. Fibroblast growth factor-2 promotes in vitro VIC wound repair, at least in part, through the TGF-β/Smad2/3 signaling pathway.

  18. ROCK signaling promotes collagen remodeling to facilitate invasive pancreatic ductal adenocarcinoma tumor cell growth.

    PubMed

    Rath, Nicola; Morton, Jennifer P; Julian, Linda; Helbig, Lena; Kadir, Shereen; McGhee, Ewan J; Anderson, Kurt I; Kalna, Gabriela; Mullin, Margaret; Pinho, Andreia V; Rooman, Ilse; Samuel, Michael S; Olson, Michael F

    2017-02-01

    Pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer death; identifying PDAC enablers may reveal potential therapeutic targets. Expression of the actomyosin regulatory ROCK1 and ROCK2 kinases increased with tumor progression in human and mouse pancreatic tumors, while elevated ROCK1/ROCK2 expression in human patients, or conditional ROCK2 activation in a Kras(G12D)/p53(R172H) mouse PDAC model, was associated with reduced survival. Conditional ROCK1 or ROCK2 activation promoted invasive growth of mouse PDAC cells into three-dimensional collagen matrices by increasing matrix remodeling activities. RNA sequencing revealed a coordinated program of ROCK-induced genes that facilitate extracellular matrix remodeling, with greatest fold-changes for matrix metalloproteinases (MMPs) Mmp10 and Mmp13 MMP inhibition not only decreased collagen degradation and invasion, but also reduced proliferation in three-dimensional contexts. Treatment of Kras(G12D)/p53(R172H) PDAC mice with a ROCK inhibitor prolonged survival, which was associated with increased tumor-associated collagen. These findings reveal an ancillary role for increased ROCK signaling in pancreatic cancer progression to promote extracellular matrix remodeling that facilitates proliferation and invasive tumor growth.

  19. Antibody-mediated inhibition of Nogo-A signaling promotes neurite growth in PC-12 cells

    PubMed Central

    Yazdi, Iman K; Taghipour, Nima; Hmaidan, Sarah; Palomba, Roberto; Scaria, Shilpa; Munoz, Alvaro; Boone, Timothy B; Tasciotti, Ennio

    2016-01-01

    The use of a monoclonal antibody to block the neurite outgrowth inhibitor Nogo-A has been of great interest for promoting axonal recovery as a treatment for spinal cord injury. While several cellular and non-cellular assays have been developed to quantify the bioactive effects of Nogo-A signaling, demand still exists for the development of a reliable approach to characterize the effectiveness of the anti-Nogo-A antibody. In this study, we developed and validated a novel cell-based approach to facilitate the biological quantification of a Nogo-A antibody using PC-12 cells as an in vitro neuronal cell model. Changes in the mRNA levels of the neuronal differentiation markers, growth-associated protein 43 and neurofilament light-polypeptide, suggest that activation of the Nogo-A pathway suppresses axonal growth and dendrite formation in the tested cell line. We found that application of anti-Nogo-A monoclonal antibody can significantly enhance the neuronal maturity of PC-12 cells by blocking the Nogo-A inhibitory effects, providing enhanced effects on neural maturity at the molecular level. No adverse effects were observed on cell viability. PMID:27027860

  20. Subcutaneous Adipocytes Promote Melanoma Cell Growth by Activating the Akt Signaling Pathway

    PubMed Central

    Kwan, Hiu Yee; Fu, Xiuqiong; Liu, Bin; Chao, Xiaojuan; Chan, Chi Leung; Cao, Huihui; Su, Tao; Tse, Anfernee Kai Wing; Fong, Wang Fun; Yu, Zhi-Ling

    2014-01-01

    Tumorigenesis involves constant communication between tumor cells and neighboring normal cells such as adipocytes. The canonical function of adipocytes is to store triglyceride and release fatty acids for other tissues. This study was aimed to find out if adipocytes promoted melanoma cell growth and to investigate the underlying mechanism. Here we isolated adipocytes from inguinal adipose tissue in mice and co-cultured with melanoma cells. We found that the co-cultured melanoma had higher lipid accumulation compared with mono-cultured melanoma. In addition, fluorescently labeled fatty acid BODIPY® FLC16 signal was detected in melanoma co-cultured with the adipocytes that had been loaded with the fluorescent dye, suggesting that the adipocytes provide fatty acids to melanoma cells. Compared with mono-cultured melanoma, co-cultured melanoma cells had a higher proliferation and phospho-Akt (Ser-473 and Thr-450) expression. Overexpression of Akt mutants in melanoma cells reduced the co-culture-enhanced proliferation. A lipidomic study showed that the co-cultured melanoma had an elevated palmitic acid level. Interestingly, we found that palmitic acid stimulated melanoma cell proliferation, changed the cell cycle distribution, and increased phospho-Akt (Ser-473 and Thr-450) and PI3K but not phospho-PTEN (phosphophosphatase and tensin homolog) expressions. More importantly, the palmitic acid-stimulated proliferation was further enhanced in the Akt-overexpressed melanoma cells and was reduced by LY294002 or knockdown of endogenous Akt or overexpression of Akt mutants. We also found that palmitic acid-pretreated B16F10 cells were grown to a significantly larger tumor in mice compared with control cells. Taken together, we suggest that adipocytes may serve as an exogenous source of palmitic acid that promotes melanoma cell growth by activating Akt. PMID:25228694

  1. Subcutaneous adipocytes promote melanoma cell growth by activating the Akt signaling pathway: role of palmitic acid.

    PubMed

    Kwan, Hiu Yee; Fu, Xiuqiong; Liu, Bin; Chao, Xiaojuan; Chan, Chi Leung; Cao, Huihui; Su, Tao; Tse, Anfernee Kai Wing; Fong, Wang Fun; Yu, Zhi-Ling

    2014-10-31

    Tumorigenesis involves constant communication between tumor cells and neighboring normal cells such as adipocytes. The canonical function of adipocytes is to store triglyceride and release fatty acids for other tissues. This study was aimed to find out if adipocytes promoted melanoma cell growth and to investigate the underlying mechanism. Here we isolated adipocytes from inguinal adipose tissue in mice and co-cultured with melanoma cells. We found that the co-cultured melanoma had higher lipid accumulation compared with mono-cultured melanoma. In addition, fluorescently labeled fatty acid BODIPY® FLC16 signal was detected in melanoma co-cultured with the adipocytes that had been loaded with the fluorescent dye, suggesting that the adipocytes provide fatty acids to melanoma cells. Compared with mono-cultured melanoma, co-cultured melanoma cells had a higher proliferation and phospho-Akt (Ser-473 and Thr-450) expression. Overexpression of Akt mutants in melanoma cells reduced the co-culture-enhanced proliferation. A lipidomic study showed that the co-cultured melanoma had an elevated palmitic acid level. Interestingly, we found that palmitic acid stimulated melanoma cell proliferation, changed the cell cycle distribution, and increased phospho-Akt (Ser-473 and Thr-450) and PI3K but not phospho-PTEN (phosphophosphatase and tensin homolog) expressions. More importantly, the palmitic acid-stimulated proliferation was further enhanced in the Akt-overexpressed melanoma cells and was reduced by LY294002 or knockdown of endogenous Akt or overexpression of Akt mutants. We also found that palmitic acid-pretreated B16F10 cells were grown to a significantly larger tumor in mice compared with control cells. Taken together, we suggest that adipocytes may serve as an exogenous source of palmitic acid that promotes melanoma cell growth by activating Akt.

  2. Mutant p53 amplifies Epidermal Growth Factor Receptor family signaling to promote mammary tumorigenesis

    PubMed Central

    Yallowitz, Alisha; Li, Dun; Lobko, Antony; Nemajerova, Alice; Marchenko, Natalia

    2016-01-01

    The epidermal growth factor receptor family (ErbB2/Her2 and EGFR/ErbB1/Her1) often modulates the transcriptional program involved in promoting mammary tumorigenesis. In humans, more than 70% of ErbB2-positive sporadic breast cancers harbor p53 mutations, which correlate with poor prognosis. Also, the extremely high incidence of ErbB2-positive breast cancer in women with p53 germ-line mutations (Li-Fraumeni Syndrome) suggests the key role of mutant p53 specifically in ErbB2-mediated mammary tumorigenesis. To examine the role of mutant p53 during ErbB2-mediated mammary tumorigenesis we introduced a mutant p53 R172H allele into a (MMTV)-ErbB2/Neu mouse model. We show in heterozygous p53 mice that mutp53 R172H is a more potent activator of ErbB2-mediated mammary tumorigenesis than simple loss of p53. The more aggressive disease in mutant p53 animals was reflected by earlier tumor onset, increased mammary tumor multiplicity, and shorter survival. We provide molecular evidence that mutant p53 amplifies ErbB2 and EGFR signaling to promote the expansion of mammary stem cells and induce cancer cell proliferation. This study therefore identifies mutant p53 as an essential player in ErbB2 and EGFR-mediated breast cancer and indicates the potential translational importance of targeting mutant p53 in this subset of breast cancer patients. PMID:25573952

  3. Multiple signaling pathways promote B lymphocyte stimulator–dependent B-cell growth and survival

    PubMed Central

    Fox, Casey J.; Schmidt, Madelyn R.; Hammerman, Peter S.; Opferman, Joseph T.; Korsmeyer, Stanley J.; Hilbert, David M.; Thompson, Craig B.

    2008-01-01

    We investigated the mechanism by which B lymphocyte stimulator (BLyS)/BAFF, a tumor necrosis factor superfamily ligand, promotes B-cell survival and resistance to atrophy. BLyS stimulation activates 2 independent signaling pathways, Akt/mTOR and Pim 2, associated with cell growth and survival. BLyS blocks the cell volume loss (atrophy) that freshly isolated B cells normally undergo when maintained in vitro while concurrently increasing glycolytic activity and overall metabolism. This atrophy resistance requires Akt/mTOR. We used a genetic approach to resolve the contributions of Akt/mTOR and Pim kinase pathways to BLyS-mediated survival. Pim 2–deficient B cells are readily protected from death by BLyS stimulation, but this protection is completely abrogated by treatment with the mTOR inhibitor rapamycin. Furthermore, rapamycin treatment in vivo significantly reduces both follicular and marginal zone B cells in Pim-deficient but not healthy hosts. BLyS-dependent survival requires the antiapoptotic protein Mcl-1. Mcl-1 protein levels rise and fall in response to BLyS addition and withdrawal, respectively, and conditional deletion of the Mcl-1 gene renders B cells refractory to BLyS-mediated protection. Because BlyS is required for the normal homeostasis of all B cells, these data suggest a therapeutic strategy simultaneously inhibiting mTOR and Pim 2 could target pathogenic B cells. PMID:17942753

  4. Hedgehog signaling promotes basal progenitor expansion and the growth and folding of the neocortex

    PubMed Central

    Wang, Lei; Hou, Shirui; Han, Young-Goo

    2016-01-01

    The unique mental abilities of humans are rooted in the immensely expanded and folded neocortex, which reflects the expansion of neural progenitors, especially basal progenitors including basal radial glia (bRGs, also called outer RGs) and intermediate progenitor cells (IPCs). Here, we show that constitutively active Shh signaling expanded bRGs and IPCs and induced folding in the otherwise smooth mouse neocortex, whereas the loss of Shh signaling decreased the number of bRGs and IPCs and the size of the neocortex. SHH signaling was strongly active in the human fetal neocortex but not in the mouse embryonic neocortex, and blocking SHH signaling in human cerebral organoids decreased the number of bRGs. Mechanistically, Shh signaling increased the initial generation and self-renewal of bRGs as well as increasing IPC proliferation. Thus, robust SHH signaling in the human fetal neocortex may contribute to bRG and IPC expansion and neocortical growth and folding. PMID:27214567

  5. Human platelet lysate versus minoxidil stimulates hair growth by activating anagen promoting signaling pathways.

    PubMed

    Dastan, Maryam; Najafzadeh, Nowruz; Abedelahi, Ali; Sarvi, Mohammadreza; Niapour, Ali

    2016-12-01

    Minoxidil and human platelet lysate (HPL) are commonly used to treat patients with hair loss. However, the roles of HPL versus minoxidil in hair follicle biology largely remain unknown. Here, we hypothesized that bulge and dermal papilla (DP) cells may express specific genes, including Kras, Erk, Akt, Shh and β-catenin after exposure to minoxidil or HPL. The mouse hair follicles were isolated on day 10 after depilation and bulge or DP regions were dissected. The bulge and DP cells were cultured for 14days in DMEM/F12 medium. Then, the cells were treated with 100μM minoxidil and 10% HPL for 10 days. Nuclear morphology was identified using DAPi staining. Reverse transcriptase and real-time polymerase chain reaction (PCR) analysis were also performed to examine the expression of Kras, Erk, Akt, Shh and β-catenin mRNA levels in the treated bulge and DP regions after organ culture. Here, we found that minoxidil influences bulge and DP cell survival (P<0.05). Apoptosis in DP cells was also meaningfully decreased by HPL treatment (P=0.014). In addition, Kras, Akt, Erk, Shh and β-catenin mRNA levels were changed in response to minoxidil treatment in both bulge and DP cells. HPL mediated Erk upregulation in both bulge and DP cells (P<0.05), but Kras and Akt mRNA levels were not considerably different in the HPL-treated cells. β-catenin mRNA level was also significantly increased in the bulge region by HPL. We also found that Shh mRNA level was considerably higher in HPL-treated bulge cells than in minoxidil-treated bulge cells. In contrast, the expression of β-cateinin and Shh in the DP cells was not meaningfully increased after treatment with HPL. Our results suggest that minoxidil and HPL can promote hair growth by activating the main anagen inducing signaling pathways.

  6. Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth

    PubMed Central

    Shi, Yu; Ping, Yi-Fang; Zhou, Wenchao; He, Zhi-Cheng; Chen, Cong; Bian, Bai-Shi-Jiao; Zhang, Lin; Chen, Lu; Lan, Xun; Zhang, Xian-Chao; Zhou, Kai; Liu, Qing; Long, Hua; Fu, Ti-Wei; Zhang, Xiao-Ning; Cao, Mian-Fu; Huang, Zhi; Fang, Xiaoguang; Wang, Xiuxing; Feng, Hua; Yao, Xiao-Hong; Yu, Shi-Cang; Cui, You-Hong; Zhang, Xia; Rich, Jeremy N; Bao, Shideng; Bian, Xiu-Wu

    2017-01-01

    Intense infiltration of tumour-associated macrophages (TAMs) facilitates malignant growth of glioblastoma (GBM), but the underlying mechanisms remain undefined. Herein, we report that TAMs secrete abundant pleiotrophin (PTN) to stimulate glioma stem cells (GSCs) through its receptor PTPRZ1 thus promoting GBM malignant growth through PTN–PTPRZ1 paracrine signalling. PTN expression correlates with infiltration of CD11b+/CD163+ TAMs and poor prognosis of GBM patients. Co-implantation of M2-like macrophages (MLCs) promoted GSC-driven tumour growth, but silencing PTN expression in MLCs mitigated their pro-tumorigenic activity. The PTN receptor PTPRZ1 is preferentially expressed in GSCs and also predicts GBM poor prognosis. Disrupting PTPRZ1 abrogated GSC maintenance and tumorigenic potential. Moreover, blocking the PTN–PTPRZ1 signalling by shRNA or anti-PTPRZ1 antibody potently suppressed GBM tumour growth and prolonged animal survival. Our study uncovered a critical molecular crosstalk between TAMs and GSCs through the PTN–PTPRZ1 paracrine signalling to support GBM malignant growth, indicating that targeting this signalling axis may have therapeutic potential. PMID:28569747

  7. Inhibition of transforming growth factor β signaling promotes epiblast formation in mouse embryos.

    PubMed

    Ghimire, Sabitri; Heindryckx, Björn; Van der Jeught, Margot; Neupane, Jitesh; O'Leary, Thomas; Lierman, Sylvie; De Vos, Winnok H; Chuva de Sousa Lopes, Susana; Deroo, Tom; De Sutter, Petra

    2015-02-15

    Early lineage segregation in preimplantation embryos and maintenance of pluripotency in embryonic stem cells (ESCs) are both regulated by specific signaling pathways. Small molecules have been shown to modulate these signaling pathways. We examined the influence of several small molecules and growth factors on second-lineage segregation of the inner cell mass toward hypoblast and epiblast lineage during mouse embryonic preimplantation development. We found that the second-lineage segregation is influenced by activation or inhibition of the transforming growth factor (TGF)β pathway. Inhibition of the TGFβ pathway from the two-cell, four-cell, and morula stages onward up to the blastocyst stage significantly increased the epiblast cell proliferation. The epiblast formed in the embryos in which TGFβ signaling was inhibited was fully functional as demonstrated by the potential of these epiblast cells to give rise to pluripotent ESCs. Conversely, activating the TGFβ pathway reduced epiblast formation. Inhibition of the glycogen synthase kinase (GSK)3 pathway and activation of bone morphogenetic protein 4 signaling reduced the formation of both epiblast and hypoblast cells. Activation of the protein kinase A pathway and of the Janus kinase/signal transducer and activator of transcription 3 pathway did not influence the second-lineage segregation in mouse embryos. The simultaneous inhibition of three pathways--TGFβ, GSK3β, and the fibroblast growth factor (FGF)/extracellular signal-regulated kinases (Erk)--significantly enhanced the proliferation of epiblast cells than that caused by inhibition of either TGFβ pathway alone or by combined inhibition of the GSK3β and FGF/Erk pathways only.

  8. Root-Shoot Signaling crosstalk involved in the shoot growth promoting action of rhizospheric humic acids

    PubMed Central

    Olaetxea, Maite; Mora, Verónica; García, Andrés Calderin; Santos, Leandro Azevedo; Baigorri, Roberto; Fuentes, Marta; Garnica, María; Berbara, Ricardo Luis Louro; Zamarreño, Angel Maria; Garcia-Mina, Jose M.

    2016-01-01

    ABSTRACT Numerous studies have shown the ability of humic substances to improve plant development. This action is normally reflected in an enhancement of crop yields and quality. However, the mechanisms responsible for this action of humic substances remain rather unknown. Our studies have shown that the shoot promoting action of sedimentary humic acids is dependent of its ability to increase root hydraulic conductivity through signaling pathways related to ABA, which in turn is affected in roots by humic acids in an IAA-NO dependent way. Furthermore, these studies also indicate that the primary action of humic acids in roots might also be physical, resulting from a transient mild stress caused by humic acids associated with a fouling-cleaning cycle of wall cell pores. Finally the role of alternative signal molecules, such as ROS, and corresponding signaling pathways are also discussed and modeled in the context of the above-mentioned framework. PMID:26966789

  9. Root-Shoot Signaling crosstalk involved in the shoot growth promoting action of rhizospheric humic acids.

    PubMed

    Olaetxea, Maite; Mora, Verónica; García, Andrés Calderin; Santos, Leandro Azevedo; Baigorri, Roberto; Fuentes, Marta; Garnica, María; Berbara, Ricardo Luis Louro; Zamarreño, Angel Maria; Garcia-Mina, Jose M

    2016-01-01

    Numerous studies have shown the ability of humic substances to improve plant development. This action is normally reflected in an enhancement of crop yields and quality. However, the mechanisms responsible for this action of humic substances remain rather unknown. Our studies have shown that the shoot promoting action of sedimentary humic acids is dependent of its ability to increase root hydraulic conductivity through signaling pathways related to ABA, which in turn is affected in roots by humic acids in an IAA-NO dependent way. Furthermore, these studies also indicate that the primary action of humic acids in roots might also be physical, resulting from a transient mild stress caused by humic acids associated with a fouling-cleaning cycle of wall cell pores. Finally the role of alternative signal molecules, such as ROS, and corresponding signaling pathways are also discussed and modeled in the context of the above-mentioned framework.

  10. Decoction and Fermentation of Selected Medicinal Herbs Promote Hair Regrowth by Inducing Hair Follicle Growth in Conjunction with Wnts Signaling

    PubMed Central

    Jang, Su Kil; Kim, Seung Tae; Lee, Do Ik; Park, Jun Sub; Jo, Bo Ram; Park, Jung Youl; Heo, Jong; Joo, Seong Soo

    2016-01-01

    It is well recognized that regulating the hair follicle cycle in association with Wnt signaling is one of the most interesting targets for promoting hair regrowth. In this study, we examined whether selected herbal medicines processed by decoction and fermentation promote hair growth by upregulating the number and size of hair follicles and Wnt signaling, including activation of β-catenin and Akt in telogen-synchronized C57BL/6N mice. The results revealed that the fermented extract after decoction (FDE) more effectively promoted hair growth than that of a nonfermented extract (DE). Notably, FDE effectively enhanced formation of hair follicles with clearer differentiation between the inner and outer root sheath, which is observed during the anagen phase. Mechanistic evidence was found for increased β-catenin and Akt phosphorylation levels in dorsal skin tissue along with elevated expression of hair regrowth-related genes, such as Wnt3/10a/10b, Lef1, and fibroblast growth factor 7. In conclusion, our findings suggest that FDE plays an important role in regulating the hair cycle by increasing expression of hair regrowth-related genes and activating downstream Wnt signaling targets. PMID:27110266

  11. Decoction and Fermentation of Selected Medicinal Herbs Promote Hair Regrowth by Inducing Hair Follicle Growth in Conjunction with Wnts Signaling.

    PubMed

    Jang, Su Kil; Kim, Seung Tae; Lee, Do Ik; Park, Jun Sub; Jo, Bo Ram; Park, Jung Youl; Heo, Jong; Joo, Seong Soo

    2016-01-01

    It is well recognized that regulating the hair follicle cycle in association with Wnt signaling is one of the most interesting targets for promoting hair regrowth. In this study, we examined whether selected herbal medicines processed by decoction and fermentation promote hair growth by upregulating the number and size of hair follicles and Wnt signaling, including activation of β-catenin and Akt in telogen-synchronized C57BL/6N mice. The results revealed that the fermented extract after decoction (FDE) more effectively promoted hair growth than that of a nonfermented extract (DE). Notably, FDE effectively enhanced formation of hair follicles with clearer differentiation between the inner and outer root sheath, which is observed during the anagen phase. Mechanistic evidence was found for increased β-catenin and Akt phosphorylation levels in dorsal skin tissue along with elevated expression of hair regrowth-related genes, such as Wnt3/10a/10b, Lef1, and fibroblast growth factor 7. In conclusion, our findings suggest that FDE plays an important role in regulating the hair cycle by increasing expression of hair regrowth-related genes and activating downstream Wnt signaling targets.

  12. SOXC Transcription Factors Induce Cartilage Growth Plate Formation in Mouse Embryos by Promoting Noncanonical WNT Signaling.

    PubMed

    Kato, Kenji; Bhattaram, Pallavi; Penzo-Méndez, Alfredo; Gadi, Abhilash; Lefebvre, Véronique

    2015-09-01

    Growth plates are specialized cartilage structures that ensure the elongation of most skeletal primordia during vertebrate development. They are made by chondrocytes that proliferate in longitudinal columns and then progress in a staggered manner towards prehypertrophic, hypertrophic and terminal maturation. Complex molecular networks control the formation and activity of growth plates, but remain incompletely understood. We investigated here the importance of the SoxC genes, which encode the SOX4, SOX11 and SOX12 transcription factors, in growth plates. We show that the three genes are expressed robustly in perichondrocytes and weakly in growth plate chondrocytes. SoxC(Prx1Cre) mice, which deleted SoxC genes in limb bud skeletogenic mesenchyme, were born with tiny appendicular cartilage primordia because of failure to form growth plates. In contrast, SoxC(Col2Cre) and SoxC(ATC) mice, which deleted SoxC genes primarily in chondrocytes, were born with mild dwarfism and fair growth plates. Chondrocytes in the latter mutants matured normally, but formed irregular columns, proliferated slowly and died ectopically. Asymmetric distribution of VANGL2 was defective in both SoxC(Prx1Cre) and SoxC(ATC) chondrocytes, indicating impairment of planar cell polarity, a noncanonical WNT signaling pathway that controls growth plate chondrocyte alignment, proliferation and survival. Accordingly, SoxC genes were necessary in perichondrocytes for expression of Wnt5a, which encodes a noncanonical WNT ligand required for growth plate formation, and in chondrocytes and perichondrocytes for expression of Fzd3 and Csnk1e, which encode a WNT receptor and casein kinase-1 subunit mediating planar cell polarity, respectively. Reflecting the differential strengths of the SOXC protein transactivation domains, SOX11 was more powerful than SOX4, and SOX12 interfered with the activity of SOX4 and SOX11. Altogether, these findings provide novel insights into the molecular regulation of skeletal

  13. Id-1 promotes osteosarcoma cell growth and inhibits cell apoptosis via PI3K/AKT signaling pathway

    SciTech Connect

    Hao, Liang; Liao, Qi; Tang, Qiang; Deng, Huan; Chen, Lu

    2016-02-12

    Accumulating evidence reveals that Id-1 is upregulated and functions as a potential tumor promoter in several human cancer types. However, the role of Id-1 in osteosarcoma (OS) is unknown. In present study, we found that Id-1 expression was elevated in OS tissues than adjacent normal bone tissues. More importantly, we demonstrated that overexpression of Id-1 is significantly correlated with tumor progression and poor survival in OS patients. Furthermore, increased expression of Id-1 was observed in OS cell lines and ectopic expression of Id-1 significantly enhanced in vitro cell proliferation and promoted in vivo tumor growth, whereas knockdown of Id-1 suppressed OS cells growth. Moreover, our experimental data revealed that Id-1 promotes cell proliferation by facilitating cell cycle progression and inhibits cell apoptosis. Mechanistically, the effects of Id-1 in OS cells is at least partly through activation of PI3K/Akt signaling pathway. Therefore, we identified a tumorigenic role of Id-1 in OS and suggested a potential therapeutic target for OS patients. - Highlights: • Id-1 expression is positively correlated in OS patients with poor prognosis. • Overexpression of Id-1 promotes OS cell growth in vitro and in vivo. • Id-1induces cell cycle progression and inhibits cell apoptosis. • PI3K/Akt signaling pathway contributed to the oncogenic effects of Id-1 in OS cells.

  14. Reactivation of Embryonic Nodal Signaling is Associated with Tumor Progression and Promotes the Growth of Prostate Cancer Cells

    PubMed Central

    Lawrence, Mitchell G.; Margaryan, Naira V.; Loessner, Daniela; Collins, Angus; Kerr, Kris M.; Turner, Megan; Seftor, Elisabeth A.; Stephens, Carson R.; Lai, John; BioResource, APC; Postovit, Lynne-Marie; Clements, Judith A.; Hendrix, Mary J.C.

    2011-01-01

    Background Nodal is a member of the Transforming Growth Factor β (TGFβ) superfamily that directs embryonic patterning and promotes the plasticity and tumorigenicity of tumor cells, but its role in the prostate is unknown. The goal of this study was to characterize the expression and function of Nodal in prostate cancer and determine whether, like other TGFβ ligands, it modulates androgen receptor (AR) activity. Methods Nodal expression was investigated using immunohistochemistry of tissue microarrays and Western blots of prostate cell lines. The functional role of Nodal was examined using Matrigel and soft agar growth assays. Cross-talk between Nodal and AR signaling was assessed with luciferase reporter assays and expression of endogenous androgen regulated genes. Results Significantly increased Nodal expression was observed in cancer compared with benign prostate specimens. Nodal was only expressed by DU145 and PC3 cells. All cell lines expressed Nodal’s co-receptor, Cripto-1, but lacked Lefty, a critical negative regulator of Nodal signaling. Recombinant human Nodal triggered downstream Smad2 phosphorylation in DU145 and LNCaP cells, and stable transfection of pre-pro-Nodal enhanced the growth of LNCaP cells in Matrigel and soft agar. Finally, Nodal attenuated AR signaling, reducing the activity of a PSA promoter construct in luciferase assays and down-regulating the endogenous expression of androgen regulated genes. Conclusions An aberrant Nodal signaling pathway is re-expressed and functionally active in prostate cancer cells. PMID:21656830

  15. The Endothelial Transcription Factor ERG Promotes Vascular Stability and Growth through Wnt/β-Catenin Signaling

    PubMed Central

    Birdsey, Graeme M.; Shah, Aarti V.; Dufton, Neil; Reynolds, Louise E.; Osuna Almagro, Lourdes; Yang, Youwen; Aspalter, Irene M.; Khan, Samia T.; Mason, Justin C.; Dejana, Elisabetta; Göttgens, Berthold; Hodivala-Dilke, Kairbaan; Gerhardt, Holger; Adams, Ralf H.; Randi, Anna M.

    2015-01-01

    Summary Blood vessel stability is essential for embryonic development; in the adult, many diseases are associated with loss of vascular integrity. The ETS transcription factor ERG drives expression of VE-cadherin and controls junctional integrity. We show that constitutive endothelial deletion of ERG (ErgcEC-KO) in mice causes embryonic lethality with vascular defects. Inducible endothelial deletion of ERG (ErgiEC-KO) results in defective physiological and pathological angiogenesis in the postnatal retina and tumors, with decreased vascular stability. ERG controls the Wnt/β-catenin pathway by promoting β-catenin stability, through signals mediated by VE-cadherin and the Wnt receptor Frizzled-4. Wnt signaling is decreased in ERG-deficient endothelial cells; activation of Wnt signaling with lithium chloride, which stabilizes β-catenin levels, corrects vascular defects in ErgcEC-KO embryos. Finally, overexpression of ERG in vivo reduces permeability and increases stability of VEGF-induced blood vessels. These data demonstrate that ERG is an essential regulator of angiogenesis and vascular stability through Wnt signaling. PMID:25584796

  16. Fas signal promotes lung cancer growth by recruiting myeloid-derived suppressor cells via cancer cell-derived PGE2.

    PubMed

    Zhang, Yongliang; Liu, Qiuyan; Zhang, Minggang; Yu, Yizhi; Liu, Xia; Cao, Xuetao

    2009-03-15

    Fas/FasL system has been extensively investigated with respect to its capacity to induce cellular apoptosis. However, accumulated evidences show that Fas signaling also exhibits nonapoptotic functions, such as induction of cell proliferation and differentiation. Lung cancer is one of cancer's refractory to the immunotherapy, however, the underlying mechanisms remain to be fully understood. In this study, we show that Fas overexpression does not affect in vitro growth of 3LL cells, but promotes lung cancer growth in vivo. However, such tumor-promoting effect is not observed in FasL-deficient (gld) mice, and also not observed in the immune competent mice once inoculation with domain-negative Fas-overexpressing 3LL cells, suggesting the critical role of Fas signal in the promotion of lung cancer growth in vivo. More accumulation of myeloid-derived suppressor cells (MDSC) and Foxp3(+) regulatory T cells is found in tumors formed by inoculation with Fas-overexpressing 3LL cells, but not domain-negative Fas-overexpressing 3LL cells. Accordingly, Fas-ligated 3LL lung cancer cells can chemoattract more MDSC but not regulatory T cells in vitro. Furthermore, Fas ligation induces 3LL lung cancer cells to produce proinflammatory factor PGE(2) by activating p38 pathway, and in turn, 3LL cells-derived PGE(2) contribute to the Fas ligation-induced MDSC chemoattraction. Furthermore, in vivo administration of cyclooxygenase-2 inhibitor can significantly reduce MDSC accumulation in the Fas-overexpressing tumor. Therefore, our results demonstrate that Fas signal can promote lung cancer growth by recruiting MDSC via cancer cell-derived PGE(2), thus providing new mechanistic explanation for the role of inflammation in cancer progression and immune escape.

  17. Integrin α6β4 Promotes Autocrine Epidermal Growth Factor Receptor (EGFR) Signaling to Stimulate Migration and Invasion toward Hepatocyte Growth Factor (HGF).

    PubMed

    Carpenter, Brittany L; Chen, Min; Knifley, Teresa; Davis, Kelley A; Harrison, Susan M W; Stewart, Rachel L; O'Connor, Kathleen L

    2015-11-06

    Integrin α6β4 is up-regulated in pancreatic adenocarcinomas where it contributes to carcinoma cell invasion by altering the transcriptome. In this study, we found that integrin α6β4 up-regulates several genes in the epidermal growth factor receptor (EGFR) pathway, including amphiregulin (AREG), epiregulin (EREG), and ectodomain cleavage protease MMP1, which is mediated by promoter demethylation and NFAT5. The correlation of these genes with integrin α6β4 was confirmed in The Cancer Genome Atlas Pancreatic Cancer Database. Based on previous observations that integrin α6β4 cooperates with c-Met in pancreatic cancers, we examined the impact of EGFR signaling on hepatocyte growth factor (HGF)-stimulated migration and invasion. We found that AREG and EREG were required for autocrine EGFR signaling, as knocking down either ligand inhibited HGF-mediated migration and invasion. We further determined that HGF induced secretion of AREG, which is dependent on integrin-growth factor signaling pathways, including MAPK, PI3K, and PKC. Moreover, matrix metalloproteinase activity and integrin α6β4 signaling were required for AREG secretion. Blocking EGFR signaling with EGFR-specific antibodies or an EGFR tyrosine kinase inhibitor hindered HGF-stimulated pancreatic carcinoma cell chemotaxis and invasive growth in three-dimensional culture. Finally, we found that EGFR was phosphorylated in response to HGF stimulation that is dependent on EGFR kinase activity; however, c-Met phosphorylation in response to HGF was unaffected by EGFR signaling. Taken together, these data illustrate that integrin α6β4 stimulates invasion by promoting autocrine EGFR signaling through transcriptional up-regulation of key EGFR family members and by facilitating HGF-stimulated EGFR ligand secretion. These signaling events, in turn, promote pancreatic carcinoma migration and invasion.

  18. G-Protein Signaling Protein-17 (RGS17) is Upregulated and Promotes Tumor Growth and Migration in Human Colorectal Carcinoma.

    PubMed

    Li, Ling; Luo, He-Sheng

    2017-03-23

    Colorectal carcinoma is one of the leading causes of cancer-related deaths and has a high tendency for metastasis, which makes it a priority to find novel methods to diagnose and treat colorectal carcinoma in the very early stage. Herein, we studied the role of regulators of G-protein signaling (RGS) family protein RGS17 in colorectal carcinoma growth and metastasis. We found that RGS17 was upregulated in both clinical colorectal carcinoma tissues and cultured colorectal carcinoma cells. Knockdown of RGS17 by specific siRNA decreased, whereas overexpression of RGS17 with expression plasmid increased cell proliferation rate in cultured cells. Consistently, a mouse model of colorectal carcinoma also showed that depletion of RGS17 significantly inhibited tumor growth in vivo. Moreover, transwell assay showed that RGS17 promoted colorectal carcinoma cell migration and invasion abilities. These data suggest that RGS17 is overexpressed in colorectal carcinoma and promotes cell proliferation, migration and invasion.

  19. K-Ras promotes growth transformation and invasion of immortalized human pancreatic cells by Raf and phosphatidylinositol 3-kinase signaling.

    PubMed

    Campbell, Paul M; Groehler, Angela L; Lee, Kwang M; Ouellette, Michel M; Khazak, Vladimir; Der, Channing J

    2007-03-01

    Mutational activation of the K-Ras oncogene is well established as a key genetic step in the development and growth of pancreatic adenocarcinomas. However, the mechanism by which aberrant Ras signaling promotes uncontrolled pancreatic tumor cell growth remains to be fully elucidated. The recent use of primary human cells to study Ras-mediated oncogenesis provides important model cell systems to dissect this mechanism. We have used a model of telomerase-immortalized human pancreatic duct-derived cells (E6/E7/st) to study mechanisms of Ras growth transformation. First, we found that human papillomavirus E6 and E7 oncogenes, which block the function of the p53 and Rb tumor suppressors, respectively, and SV40 small t antigen were required to allow mutant K-Ras(12D) growth transformation. Second, K-Ras(12D) caused growth transformation in vitro, including enhanced growth rate and loss of density dependency for growth, anchorage independence, and invasion through reconstituted basement membrane proteins, and tumorigenic transformation in vivo. Third, we determined that the Raf, phosphatidylinositol 3-kinase (PI3K), and Ral guanine nucleotide exchange factor effector pathways were activated, although extracellular signal-regulated kinase (ERK) activity was not up-regulated persistently. Finally, pharmacologic inhibition of Raf/mitogen-activated protein kinase/ERK and PI3K signaling impaired K-Ras-induced anchorage-independent growth and invasion. In summary, our studies established, characterized, and validated E6/E7/st cells for the study of Ras-induced oncogenesis.

  20. Lack of transforming growth factor-β signaling promotes collective cancer cell invasion through tumor-stromal crosstalk

    PubMed Central

    2012-01-01

    Introduction Transforming growth factor beta (TGF-β) has a dual role during tumor progression, initially as a suppressor and then as a promoter. Epithelial TGF-β signaling regulates fibroblast recruitment and activation. Concurrently, TGF-β signaling in stromal fibroblasts suppresses tumorigenesis in adjacent epithelia, while its ablation potentiates tumor formation. Much is known about the contribution of TGF-β signaling to tumorigenesis, yet the role of TGF-β in epithelial-stromal migration during tumor progression is poorly understood. We hypothesize that TGF-β is a critical regulator of tumor-stromal interactions that promote mammary tumor cell migration and invasion. Methods Fluorescently labeled murine mammary carcinoma cells, isolated from either MMTV-PyVmT transforming growth factor-beta receptor II knockout (TβRII KO) or TβRIIfl/fl control mice, were combined with mammary fibroblasts and xenografted onto the chicken embryo chorioallantoic membrane. These combinatorial xenografts were used as a model to study epithelial-stromal crosstalk. Intravital imaging of migration was monitored ex ovo, and metastasis was investigated in ovo. Epithelial RNA from in ovo tumors was isolated by laser capture microdissection and analyzed to identify gene expression changes in response to TGF-β signaling loss. Results Intravital microscopy of xenografts revealed that mammary fibroblasts promoted two migratory phenotypes dependent on epithelial TGF-β signaling: single cell/strand migration or collective migration. At epithelial-stromal boundaries, single cell/strand migration of TβRIIfl/fl carcinoma cells was characterized by expression of α-smooth muscle actin and vimentin, while collective migration of TβRII KO carcinoma cells was identified by E-cadherin+/p120+/β-catenin+ clusters. TβRII KO tumors also exhibited a twofold greater metastasis than TβRIIfl/fl tumors, attributed to enhanced extravasation ability. In TβRII KO tumor epithelium compared with T

  1. LIM-homeobox gene 2 promotes tumor growth and metastasis by inducing autocrine and paracrine PDGF-B signaling.

    PubMed

    Kuzmanov, Aleksandar; Hopfer, Ulrike; Marti, Patricia; Meyer-Schaller, Nathalie; Yilmaz, Mahmut; Christofori, Gerhard

    2014-03-01

    An epithelial-mesenchymal transition (EMT) is a critical process during embryonic development and the progression of epithelial tumors to metastatic cancers. Gene expression profiling has uncovered the transcription factor LIM homeobox gene 2 (Lhx2) with up-regulated expression during TGFβ-induced EMT in normal and cancerous breast epithelial cells. Loss and gain of function experiments in transgenic mouse models of breast cancer and of insulinoma in vivo and in breast cancer cells in vitro indicate that Lhx2 plays a critical role in primary tumor growth and metastasis. Notably, the transgenic expression of Lhx2 during breast carcinogenesis promotes vessel maturation, primary tumor growth, tumor cell intravasation and metastasis by directly inducing the expression of platelet-derived growth factor (PDGF)-B in tumor cells and by indirectly increasing the expression of PDGF receptor-β (PDGFRβ) on tumor cells and pericytes. Pharmacological inhibition of PDGF-B/PDGFRβ signaling reduces vessel functionality and tumor growth and Lhx2-induced cell migration and cell invasion. The data indicate a dual role of Lhx2 during EMT and tumor progression: by inducing the expression of PDGF-B, Lhx2 provokes an autocrine PDGF-B/PDGFRβ loop required for cell migration, invasion and metastatic dissemination and paracrine PDGF-B/PDGFRβ signaling to support blood vessel functionality and, thus, primary tumor growth.

  2. Nicotine promotes gastric tumor growth and neovascularization by activating extracellular signal-regulated kinase and cyclooxygenase-2.

    PubMed

    Shin, Vivian Y; Wu, William K K; Ye, Yi-Ni; So, Wallace H L; Koo, Marcel W L; Liu, Edgar S L; Luo, Jiing-Chyuan; Cho, Chi-Hin

    2004-12-01

    Early studies revealed that cigarette smoke promotes gastric cancer growth through the induction of cyclooxygenase-2 (COX-2). Nicotine, one of the active ingredients in cigarette smoke, has detrimental effects in the stomach. To date, there is no direct evidence to validate the effect of nicotine on gastric tumor growth and its carcinogenic mechanism(s). We therefore investigated whether nicotine could promote tumor growth and neovascularization in vivo, and the biological mechanism(s) in connection with the signaling cascade involving COX-2 and extracellular signal-regulated protein kinase (ERK). Athymic nude mice, with gastric cancer cells (AGS) orthotopically implanted into the gastric wall, treated with nicotine (50 or 200 microg/ml) in their drinking water for 3 months developed larger tumor areas than mice in the control group. Nicotine further increased proliferating cellular nuclear antigen (PCNA) staining and microvessel density by 70 and 30%, respectively, with concomitant activation of ERK phosphorylation, COX-2 and vascular endothelial growth factor (VEGF) expression in the tumors. Intraperitoneal administration of a selective COX-2 inhibitor (SC-236, 2 mg/kg) prevented the nicotine-induced tumor growth and neovascularization dose-dependently. Consistent with our animal model, an in vitro study also demonstrated that incubation with nicotine (50-200 microg/ml) for 5 h stimulated cell proliferation dose-dependently and increased COX-2 expression, prostaglandin E(2) (PGE(2)) and VEGF release, as well as activation of ERK phosphorylation. Pre-treatment with specific mitogen-activated protein kinase kinase (MEK) inhibitors (U0126 or PD98059) attenuated COX-2 expression and subsequent PGE(2) release by nicotine. Furthermore, the stimulatory action of nicotine on cancer cell growth and angiogenic factor VEGF production was suppressed by inhibitors of MEK (U0126) and COX-2 (SC-236). These findings reveal a direct promoting action of nicotine on the growth of

  3. Activation of NOTCH Signaling by Tenascin-C Promotes Growth of Human Brain Tumor-Initiating Cells.

    PubMed

    Sarkar, Susobhan; Mirzaei, Reza; Zemp, Franz J; Wei, Wu; Senger, Donna L; Robbins, Stephen M; Yong, V Wee

    2017-06-15

    Oncogenic signaling by NOTCH is elevated in brain tumor-initiating cells (BTIC) in malignant glioma, but the mechanism of its activation is unknown. Here we provide evidence that tenascin-C (TNC), an extracellular matrix protein prominent in malignant glioma, increases NOTCH activity in BTIC to promote their growth. We demonstrate the proximal localization of TNC and BTIC in human glioblastoma specimens and in orthotopic murine xenografts of human BTIC implanted intracranially. In tissue culture, TNC was superior amongst several extracellular matrix proteins in enhancing the sphere-forming capacity of glioma patient-derived BTIC. Exogenously applied or autocrine TNC increased BTIC growth through an α2β1 integrin-mediated mechanism that elevated NOTCH ligand Jagged1 (JAG1). Microarray analyses and confirmatory PCR and Western analyses in BTIC determined that NOTCH signaling components including JAG1, ADAMTS15, and NICD1/2 were elevated in BITC after TNC exposure. Inhibition of γ-secretase and metalloproteinase proteolysis in the NOTCH pathway, or silencing of α2β1 integrin or JAG1, reduced the proliferative effect of TNC on BTIC. Collectively, our findings identified TNC as a pivotal initiator of elevated NOTCH signaling in BTIC and define the establishment of a TN-α2β1-JAG1-NOTCH signaling axis as a candidate therapeutic target in glioma patients. Cancer Res; 77(12); 3231-43. ©2017 AACR. ©2017 American Association for Cancer Research.

  4. Versican G3 Promotes Mouse Mammary Tumor Cell Growth, Migration, and Metastasis by Influencing EGF Receptor Signaling

    PubMed Central

    Du, William Weidong; Yang, Burton B.; Shatseva, Tatiana A.; Yang, Bing L.; Deng, Zhaoqun; Shan, Sze Wan; Lee, Daniel Y.; Seth, Arun; Yee, Albert J.

    2010-01-01

    Increased versican expression in breast tumors is predictive of relapse and has negative impact on survival rates. The C-terminal G3 domain of versican influences local and systemic tumor invasiveness in pre-clinical murine models. However, the mechanism(s) by which G3 influences breast tumor growth and metastasis is not well characterized. Here we evaluated the expression of versican in mouse mammary tumor cell lines observing that 4T1 cells expressed highest levels while 66c14 cells expressed low levels. We exogenously expressed a G3 construct in 66c14 cells and analyzed its effects on cell proliferation, migration, cell cycle progression, and EGFR signaling. Experiments in a syngeneic orthotopic animal model demonstrated that G3 promoted tumor growth and systemic metastasis in vivo. Activation of pERK correlated with high levels of G3 expression. In vitro, G3 enhanced breast cancer cell proliferation and migration by up-regulating EGFR signaling, and enhanced cell motility through chemotactic mechanisms to bone stromal cells, which was prevented by inhibitor AG 1478. G3 expressing cells demonstrated increased CDK2 and GSK-3β (S9P) expression, which were related to cell growth. The activity of G3 on mouse mammary tumor cell growth, migration and its effect on spontaneous metastasis to bone in an orthotopic model was modulated by up-regulating the EGFR-mediated signaling pathway. Taken together, EGFR-signaling appears to be an important pathway in versican G3-mediated breast cancer tumor invasiveness and metastasis. PMID:21079779

  5. mTORC2 Signaling Promotes Skeletal Growth and Bone Formation in Mice

    PubMed Central

    Chen, Jianquan; Holguin, Nilsson; Shi, Yu; Silva, Matthew J.; Long, Fanxin

    2015-01-01

    Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase controlling many physiological processes in mammals. mTOR functions in two distinct protein complexes, namely mTORC1 and mTORC2. Compared to mTORC1, the specific roles of mTORC2 are less well understood. To investigate the potential contribution of mTORC2 to skeletal development and homeostasis, we have genetically deleted Rictor, an essential component of mTORC2, in the limb skeletogenic mesenchyme of the mouse embryo. Loss of Rictor leads to shorter and narrower skeletal elements in both embryos and postnatal mice. In the embryo, Rictor deletion reduces the width but not the length of the initial cartilage anlage. Subsequently, the embryonic skeletal elements are shortened due to a delay in chondrocyte hypertrophy, with no change in proliferation, apoptosis, cell size, or matrix production. Postnatally, Rictor-deficient mice exhibit impaired bone formation, resulting in thinner cortical bone, but the trabecular bone mass is relatively normal thanks to a concurrent decrease in bone resorption. Moreover, Rictor-deficient bones exhibit a lesser anabolic response to mechanical loading. Thus, mTORC2 signaling is necessary for optimal skeletal growth and bone anabolism. PMID:25196701

  6. mTORC2 signaling promotes skeletal growth and bone formation in mice.

    PubMed

    Chen, Jianquan; Holguin, Nilsson; Shi, Yu; Silva, Matthew J; Long, Fanxin

    2015-02-01

    Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase controlling many physiological processes in mammals. mTOR functions in two distinct protein complexes, namely mTORC1 and mTORC2. Compared to mTORC1, the specific roles of mTORC2 are less well understood. To investigate the potential contribution of mTORC2 to skeletal development and homeostasis, we have genetically deleted Rictor, an essential component of mTORC2, in the limb skeletogenic mesenchyme of the mouse embryo. Loss of Rictor leads to shorter and narrower skeletal elements in both embryos and postnatal mice. In the embryo, Rictor deletion reduces the width but not the length of the initial cartilage anlage. Subsequently, the embryonic skeletal elements are shortened due to a delay in chondrocyte hypertrophy, with no change in proliferation, apoptosis, cell size, or matrix production. Postnatally, Rictor-deficient mice exhibit impaired bone formation, resulting in thinner cortical bone, but the trabecular bone mass is relatively normal thanks to a concurrent decrease in bone resorption. Moreover, Rictor-deficient bones exhibit a lesser anabolic response to mechanical loading. Thus, mTORC2 signaling is necessary for optimal skeletal growth and bone anabolism. © 2014 American Society for Bone and Mineral Research.

  7. Interleukin 6 promotes endometrial cancer growth through an autocrine feedback loop involving ERK–NF-κB signaling pathway

    SciTech Connect

    Che, Qi; Liu, Bin-Ya; Wang, Fang-Yuan; He, Yin-Yan; Lu, Wen; Liao, Yun; Gu, Wei; Wan, Xiao-Ping

    2014-03-28

    Highlights: • IL-6 could promote endometrial cancer cells proliferation. • IL-6 promotes its own production through an autocrine feedback loop. • ERK and NF-κB pathway inhibitors inhibit IL-6 production and tumor growth. • IL-6 secretion relies on the activation of ERK–NF-κB pathway axis. • An orthotopic nude endometrial carcinoma model confirms the effect of IL-6. - Abstract: Interleukin (IL)-6 as an inflammation factor, has been proved to promote cancer proliferation in several human cancers. However, its role in endometrial cancer has not been studied clearly. Previously, we demonstrated that IL-6 promoted endometrial cancer progression through local estrogen biosynthesis. In this study, we proved that IL-6 could directly stimulate endometrial cancer cells proliferation and an autocrine feedback loop increased its production even after the withdrawal of IL-6 from the medium. Next, we analyzed the mechanism underlying IL-6 production in the feedback loop and found that its production and IL-6-stimulated cell proliferation were effectively blocked by pharmacologic inhibitors of nuclear factor-kappa B (NF-κB) and extra-cellular signal-regulated kinase (ERK). Importantly, activation of ERK was upstream of the NF-κB pathways, revealing the hierarchy of this event. Finally, we used an orthotopic nude endometrial carcinoma model to confirm the effects of IL-6 on the tumor progression. Taken together, these data indicate that IL-6 promotes endometrial carcinoma growth through an expanded autocrine regulatory loop and implicate the ERK–NF-κB pathway as a critical mediator of IL-6 production, implying IL-6 to be an important therapeutic target in endometrial carcinoma.

  8. Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth

    PubMed Central

    Pietras, Alexander; Katz, Amanda M.; Ekström, Elin J.; Wee, Boyoung; Halliday, John J.; Pitter, Kenneth L.; Werbeck, Jillian L.; Amankulor, Nduka M.; Huse, Jason T.; Holland, Eric C.

    2014-01-01

    Summary Stem-like glioma cells reside within a perivascular niche and display hallmark radiation resistance. Understanding of the mechanisms underlying these properties will be vital for the development of effective therapies. Here we show that the stem cell marker CD44 promotes cancer stem cell phenotypes and radiation resistance. In a mouse model of glioma, Cd44−/− and Cd44+/− animals showed improved survival compared to controls. The CD44 ligand Osteopontin shared a perivascular expression pattern with CD44 and promoted glioma stem cell-like phenotypes. These effects were mediated via the γ-secretase regulated intracellular domain of CD44, which promoted aggressive glioma growth in vivo and stem cell-like phenotypes via CBP/p300-dependent enhancement of HIF-2α activity. In human glioblastoma multiforme, expression of CD44 correlated with hypoxia-induced gene signatures and poor survival. Together, these data suggest that in the glioma perivascular niche, Osteopontin promotes stem cell-like properties and radiation resistance in adjacent tumor cells via activation of CD44 signaling. PMID:24607407

  9. The potency of STAT (signal transducers and activators of transcription) 3 protein as growth promoter for chicken

    NASA Astrophysics Data System (ADS)

    Ma'ruf, Anwar; Iswati, Sri; Hidajati, Nove; Damayanti, Ratna

    2017-09-01

    The long-term objective of this study was to produce STAT synthetic protein in chicken during growth period resulting from the increase of growth hormone (GH) as growth promoter. This study used ten male chicken Lohman from PT. Multibreeder Indonesia. The chicken were kept within batteried cage, with a capacity of one chicken in each cage. The chickens were fed twice a day, at 6 a.m. and 6 p.m. with the amount of feed 10% less than standard. On day 21 the chicken were slaughtered to obtain the samples, i.e., adipose, liver and muscles for the following examinations (1) isolation of STAT-3 signaling protein from adipose, liver and muscles of the chicken, (2) analysis of STAT-3 signaling protein using SDS-PAGE method, and (3) identification of STAT-3 signaling protein using Western blot method by means of protein detection using electrophoresis with polyacrylamide gels. Results of examination on protein in hepatic, muscle and adipose of chickens in growth period revealed that STAT protein was positively present in those tissues. This finding was followed-up with SDS-PAGE examination, from which we found the presence of protein band between the markers of 116 kDa and 14.4 kDa. The protein band was supposedly the STAT-3 protein. To prove that protein band formed was the STAT-3, Western blot examination was conducted using rabbit polyclonal antibody STAT-3. The result showed the formation of the protein band, indicating the presence of reaction between antigen (STAT-3 protein) and STAT-3 protein antibody. In conclusion, STAT-3 protein is present in hepatic, muscular, and adipose tissues, with molecular weight of 59.4 kDa.

  10. Taurolithocholic acid promotes intrahepatic cholangiocarcinoma cell growth via muscarinic acetylcholine receptor and EGFR/ERK1/2 signaling pathway

    PubMed Central

    AMONYINGCHAROEN, SUMET; SURIYO, TAWIT; THIANTANAWAT, APINYA; WATCHARASIT, PIYAJIT; SATAYAVIVAD, JUTAMAAD

    2015-01-01

    Cholangiocarcinoma (CCA) is a malignant cancer of the biliary tract and its occurrence is associated with chronic cholestasis which causes an elevation of bile acids in the liver and bile duct. The present study aimed to investigate the role and mechanistic effect of bile acids on the CCA cell growth. Intrahepatic CCA cell lines, RMCCA-1 and HuCCA-1, were treated with bile acids and their metabolites to determine the growth promoting effect. Cell viability, cell cycle analysis, EdU incorporation assays were conducted. Intracellular signaling proteins were detected by western immunoblotting. Among eleven forms of bile acids and their metabolites, only taurolithocholic acid (TLCA) concentration dependently (1–40 μM) increased the cell viability of RMCCA-1, but not HuCCA-1 cells. The cell cycle analysis showed induction of cells in the S phase and the EdU incorporation assay revealed induction of DNA synthesis in the TLCA-treated RMCCA-1 cells. Moreover, TLCA increased the phosphorylation of EGFR, ERK 1/2 and also increased the expression of cyclin D1 in RMCCA-1 cells. Furthermore, TLCA-induced RMCCA-1 cell growth could be inhibited by atropine, a non-selective muscarinic acetylcholine receptor (mAChR) antagonist, AG 1478, a specific EGFR inhibitor, or U 0126, a specific MEK 1/2 inhibitor. These results suggest that TLCA induces CCA cell growth via mAChR and EGFR/EKR1/2 signaling pathway. Moreover, the functional presence of cholinergic system plays a certain role in TLCA-induced CCA cell growth. PMID:25815516

  11. PI3K/Akt signaling mediated Hexokinase-2 expression inhibits cell apoptosis and promotes tumor growth in pediatric osteosarcoma

    SciTech Connect

    Zhuo, Baobiao; Li, Yuan; Li, Zhengwei; Qin, Haihui; Sun, Qingzeng; Zhang, Fengfei; Shen, Yang; Shi, Yingchun; Wang, Rong

    2015-08-21

    Accumulating evidence has shown that PI3K/Akt pathway is frequently hyperactivated in osteosarcoma (OS) and contributes to tumor initiation and progression. Altered phenotype of glucose metabolism is a key hallmark of cancer cells including OS. However, the relationship between PI3K/Akt pathway and glucose metabolism in OS remains largely unexplored. In this study, we showed that elevated Hexokinase-2 (HK2) expression, which catalyzes the first essential step of glucose metabolism by conversion of glucose into glucose-6-phosphate, was induced by activated PI3K/Akt signaling. Immunohistochemical analysis showed that HK2 was overexpressed in 83.3% (25/30) specimens detected and was closely correlated with Ki67, a cell proliferation index. Silencing of endogenous HK2 resulted in decreased aerobic glycolysis as demonstrated by reduced glucose consumption and lactate production. Inhibition of PI3K/Akt signaling also suppressed aerobic glycolysis and this effect can be reversed by reintroduction of HK2. Furthermore, knockdown of HK2 led to increased cell apoptosis and reduced ability of colony formation; meanwhile, these effects were blocked by 2-Deoxy-D-glucose (2-DG), a glycolysis inhibitor through its actions on hexokinase, indicating that HK2 functions in cell apoptosis and growth were mediated by altered aerobic glycolysis. Taken together, our study reveals a novel relationship between PI3K/Akt signaling and aerobic glycolysis and indicates that PI3K/Akt/HK2 might be potential therapeutic approaches for OS. - Highlights: • PI3K/Akt signaling contributes to elevated expression of HK2 in osteosarcoma. • HK2 inhibits cell apoptosis and promotes tumor growth through enhanced Warburg effect. • Inhibition of glycolysis blocks the oncogenic activity of HK2.

  12. Tumor necrosis factor receptor 2 promotes growth of colorectal cancer via the PI3K/AKT signaling pathway

    PubMed Central

    Zhao, Tao; Li, Huihui; Liu, Zifeng

    2017-01-01

    Tumor necrosis factor receptor 2 (TNFR2) is the receptor for tumor necrosis factor α (TNF-α). TNFR2 differs from tumor necrosis factor 1 (TNFR1) in various ways and is mainly expressed in hematopoietic and endothelial cells. However, studies about its functions in tumors are limited. The contributions of TNFR2 in colorectal cancer (CRC) remain unknown. In the present study, it was found that TNFR2 was positively associated with Ki67 expression in CRC tissues using immunohistochemistry (IHC), and western blot analysis found that Ki67 was upregulated by overexpressing TNFR2 in SW1116 cells and inhibited by silencing TNFR2 in HT29 cells. Methyl thiazolyl tetrazolium assay found that growth of SW1116 cells overexpressing TNFR2 was significantly increased compared with the control group and that the growth of HT29 cells subsequent to silencing TNFR2 was significantly decreased compared with the control group. Clone formation assay found that more clones were formed in SW1116 cells overexpressing TNFR2 than the control group, and less clones formed in HT29 cells subsequent to silencing TNFR2 than the control group. In addition, western blot analysis found that phosphorylation of protein kinase B (AKT) was activated subsequent to overexpressing TNFR2 in SW1116 cells, and inhibited following silencing of TNFR2 in HT29 cells. Additionally, treatment using LY294002 significantly abrogated the promotion of Ki67 expression, growth and clone formation abilities induced by TNFR2 overexpression in SW1116 cells. All the results suggest that TNFR2 can significantly promote CRC growth via the phosphoinositide 3-kinase/AKT signaling pathway; this provides evidential support for taking TNFR2 as a new target for CRC treatment. PMID:28123565

  13. Up-regulation of C1GALT1 promotes breast cancer cell growth through MUC1-C signaling pathway

    PubMed Central

    Chou, Chih-Hsing; Huang, Miao-Juei; Chen, Chi-Hau; Shyu, Ming-Kwang; Huang, John; Hung, Ji-Shiang; Huang, Chiun-Sheng; Huang, Min-Chuan

    2015-01-01

    Aberrant glycosylation is frequently observed in cancers. Core 1 β1,3-galactosyltransferase (C1GALT1) is an exclusive enzyme in humans that catalyzes the biosynthesis of core 1 O-glycan structure, Gal-GalNAc-O-Ser/Thr, whose expression is commonly up-regulated during tumorigenesis. Little is known about the function of C1GALT1 in breast cancer. This study aims to determine the correlation between C1GALT1 expression and breast cancer clinicopathological features and roles of C1GALT1 in breast cancer malignant phenotypes. Public databases and our data showed that C1GALT1 mRNA and C1GALT1 protein are frequently up-regulated in breast cancer; and increased C1GALT1 expression correlates with higher histological grade and advanced tumor stage. Overexpression of C1GALT1 enhanced breast cancer cell growth, migration, and invasion in vitro as well as tumor growth in vivo. Conversely, C1GALT1 knockdown suppressed these malignant phenotypes. Furthermore, C1GALT1 modulates O-glycan structures on Mucin (MUC) 1 and promotes MUC1-C/β-catenin signaling in breast cancer cells. These findings suggest that C1GALT1 enhances breast cancer malignant progression through promoting MUC1-C/β-catenin signaling pathway. Unveiling the function of C1GALT1 in breast cancer opens new insights to the roles of C1GALT1 and O-glycosylation in tumorigenesis and renders the potential of C1GALT1 as a target of novel therapeutic agent development. PMID:25762620

  14. PSMB4 promotes multiple myeloma cell growth by activating NF-κB-miR-21 signaling

    SciTech Connect

    Zheng, Peihao; Guo, Honggang; Li, Guangchao; Han, Siqi; Luo, Fei; Liu, Yi

    2015-03-06

    Proteasomal subunit PSMB4, was recently identified as potential cancer driver genes in several tumors. However, the regulatory mechanism of PSMB4 on carcinogenesis process remains unclear. In this study, we investigated the expression and roles of PSMB4 in multiple myeloma (MM). We found a significant up-regulation of PSMB4 in MM plasma and cell lines. Ectopic overexpression of PSMB4 promoted cell growth and colony forming ability of MM cells, whereas inhibition of PSMB4 led to a decrease of such events. Furthermore, our results demonstrated the up-regulation of miR-21 and a positive correlation between the levels of miR-21 and PSMB4 in MM. Re-expression of miR-21 markedly rescued PSMB4 knockdown-mediated suppression of cell proliferation and clone-formation. Additionally, while enforced expression of PSMB4 profoundly increased NF-κB activity and the level of miR-21, PSMB4 knockdown or NF-κB inhibition suppressed miR-21 expression in MM cells. Taken together, our results demonstrated that PSMB4 regulated MM cell growth in part by activating NF-κB-miR-21 signaling, which may represent promising targets for novel specific therapies. - Highlights: • First reported upregulation of PSMB4 in MM plasma and cell lines. • PSMB4 promoted MM cell growth and colony forming ability. • Further found miR-21 was up-regulated by PSMB4 in MM plasma and cell lines. • PSMB4-induced miR-21 expression was modulated by NF-κB. • PSMB4-NF-κB-miR-21 axis may be potential therapeutic targets of MM.

  15. Glypican-6 promotes the growth of developing long bones by stimulating Hedgehog signaling.

    PubMed

    Capurro, Mariana; Izumikawa, Tomomi; Suarez, Philippe; Shi, Wen; Cydzik, Marzena; Kaneiwa, Tomoyuki; Gariepy, Jean; Bonafe, Luisa; Filmus, Jorge

    2017-09-04

    Autosomal-recessive omodysplasia (OMOD1) is a genetic condition characterized by short stature, shortened limbs, and facial dysmorphism. OMOD1 is caused by loss-of-function mutations of glypican 6 (GPC6). In this study, we show that GPC6-null embryos display most of the abnormalities found in OMOD1 patients and that Hedgehog (Hh) signaling is significantly reduced in the long bones of these embryos. The Hh-stimulatory activity of GPC6 was also observed in cultured cells, where this GPC increased the binding of Hh to Patched 1 (Ptc1). Consistent with this, GPC6 interacts with Hh through its core protein and with Ptc1 through its glycosaminoglycan chains. Hh signaling is triggered at the primary cilium. In the absence of Hh, we observed that GPC6 is localized outside of the cilium but moves into the cilium upon the addition of Hh. We conclude that GPC6 stimulates Hh signaling by binding to Hh and Ptc1 at the cilium and increasing the interaction of the receptor and ligand. © 2017 Capurro et al.

  16. Indole production promotes Escherichia coli mixed-culture growth with Pseudomonas aeruginosa by inhibiting quorum signaling.

    PubMed

    Chu, Weihua; Zere, Tesfalem R; Weber, Mary M; Wood, Thomas K; Whiteley, Marvin; Hidalgo-Romano, Benjamin; Valenzuela, Ernesto; McLean, Robert J C

    2012-01-01

    Indole production by Escherichia coli, discovered in the early 20th century, has been used as a diagnostic marker for distinguishing E. coli from other enteric bacteria. By using transcriptional profiling and competition studies with defined mutants, we show that cyclic AMP (cAMP)-regulated indole formation is a major factor that enables E. coli growth in mixed biofilm and planktonic populations with Pseudomonas aeruginosa. Mutants deficient in cAMP production (cyaA) or the cAMP receptor gene (crp), as well as indole production (tnaA), were not competitive in coculture with P. aeruginosa but could be restored to wild-type competitiveness by supplementation with a physiologically relevant indole concentration. E. coli sdiA mutants, which lacked the receptor for both indole and N-acyl-homoserine lactones (AHLs), showed no change in competitive fitness, suggesting that indole acted directly on P. aeruginosa. An E. coli tnaA mutant strain regained wild-type competiveness if grown with P. aeruginosa AHL synthase (rhlI and rhlI lasI) mutants. In contrast to the wild type, P. aeruginosa AHL synthase mutants were unable to degrade indole. Indole produced during mixed-culture growth inhibited pyocyanin production and other AHL-regulated virulence factors in P. aeruginosa. Mixed-culture growth with P. aeruginosa stimulated indole formation in E. coli cpdA, which is unable to regulate cAMP levels, suggesting the potential for mixed-culture gene activation via cAMP. These findings illustrate how indole, an early described feature of E. coli central metabolism, can play a significant role in mixed-culture survival by inhibiting quorum-regulated competition factors in P. aeruginosa.

  17. DEPDC1 promotes cell proliferation and tumor growth via activation of E2F signaling in prostate cancer.

    PubMed

    Huang, Lin; Chen, Keng; Cai, Zhao-Peng; Chen, Fu-Chao; Shen, Hui-Yong; Zhao, Wei-Hua; Yang, Song-Jie; Chen, Xu-Biao; Tang, Guo-Xue; Lin, Xi

    2017-08-26

    DEP domain containing 1 (DEPDC1) is recently reported to be overexpressed in several types of human cancer; however the role of DEPDC1 in prostate cancer remains to be investigated. Herein, we identified that the DEPDC1 mRNA and protein expression levels were dramatically increased in prostate cancer tissues and cell lines. Overexpression of DEPDC1 promoted, but depletion of DEPDC1 inhibited cell proliferation by regulating the G1-S phase cell cycle transition. Importantly, we found that DEPDC1 was essential for the tumor growth and formation of bone metastases of prostate cancer cells in vivo. Finally, we demonstrated that DEPDC1 interacted with E2F1 and increased its transcriptional activity, leading to hyper-activation of E2F signaling in prostate cancer cells. Our findings reveal an oncogenic role of DEPDC1 in prostate cancer progression via activation of E2F signaling, and suggest DEPDC1 might be a potential therapeutic target against the disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Brittlestars contain highly sulfated chondroitin sulfates/dermatan sulfates that promote fibroblast growth factor 2-induced cell signaling

    PubMed Central

    Ramachandra, Rashmi; Namburi, Ramesh B; Ortega-Martinez, Olga; Shi, Xiaofeng; Zaia, Joseph; Dupont, Sam T; Thorndyke, Michael C; Lindahl, Ulf; Spillmann, Dorothe

    2014-01-01

    Glycosaminoglycans (GAGs) isolated from brittlestars, Echinodermata class Ophiuroidea, were characterized, as part of attempts to understand the evolutionary development of these polysaccharides. A population of chondroitin sulfate/dermatan sulfate (CS/DS) chains with a high overall degree of sulfation and hexuronate epimerization was the major GAG found, whereas heparan sulfate (HS) was below detection level. Enzymatic digestion with different chondroitin lyases revealed exceptionally high proportions of di- and trisulfated CS/DS disaccharides. The latter unit appears much more abundant in one of four individual species of brittlestars, Amphiura filiformis, than reported earlier in other marine invertebrates. The brittlestar CS/DS was further shown to bind to growth factors such as fibroblast growth factor 2 and to promote FGF-stimulated cell signaling in GAG-deficient cell lines in a manner similar to that of heparin. These findings point to a potential biological role for the highly sulfated invertebrate GAGs, similar to those ascribed to HS in vertebrates. PMID:24253764

  19. A Complex Molecular Interplay of Auxin and Ethylene Signaling Pathways Is Involved in Arabidopsis Growth Promotion by Burkholderia phytofirmans PsJN

    PubMed Central

    Poupin, María J.; Greve, Macarena; Carmona, Vicente; Pinedo, Ignacio

    2016-01-01

    Modulation of phytohormones homeostasis is one of the proposed mechanisms to explain plant growth promotion induced by beneficial rhizobacteria (PGPR). However, there is still limited knowledge about the molecular signals and pathways underlying these beneficial interactions. Even less is known concerning the interplay between phytohormones in plants inoculated with PGPR. Auxin and ethylene are crucial hormones in the control of plant growth and development, and recent studies report an important and complex crosstalk between them in the regulation of different plant developmental processes. The objective of this work was to study the role of both hormones in the growth promotion of Arabidopsis thaliana plants induced by the well-known PGPR Burkholderia phytofirmans PsJN. For this, the spatiotemporal expression patterns of several genes related to auxin biosynthesis, perception and response and ethylene biosynthesis were studied, finding that most of these genes showed specific transcriptional regulations after inoculation in roots and shoots. PsJN-growth promotion was not observed in Arabidopsis mutants with an impaired ethylene (ein2-1) or auxin (axr1–5) signaling. Even, PsJN did not promote growth in an ethylene overproducer (eto2), indicating that a fine regulation of both hormones signaling and homeostasis is necessary to induce growth of the aerial and root tissues. Auxin polar transport is also involved in growth promotion, since PsJN did not promote primary root growth in the pin2 mutant or under chemical inhibition of transport in wild type plants. Finally, a key role for ethylene biosynthesis was found in the PsJN-mediated increase in root hair number. These results not only give new insights of PGPR regulation of plant growth but also are also useful to understand key aspects of Arabidopsis growth control. PMID:27148317

  20. Proteasome activator subunit 3 promotes pancreatic cancer growth via c-Myc-glycolysis signaling axis.

    PubMed

    Guo, Jiefang; Hao, Jun; Jiang, Hongxue; Jin, Jing; Wu, Hongyu; Jin, Zhendong; Li, Zhaoshen

    2017-02-01

    Pancreatic cancer has the worst prognosis among all cancers and novel markers and therapeutic targets are desperately needed for this terribly deadly disease. Proteasome activator subunit 3 (PSME3) is highly involved in the initiation and progression of many human cancers. However, the potential effect of PSME3 on pancreatic cancer remains largely unknown. In the present study, we first found that PSME3 was significantly upregulated in pancreatic cancer cells and tissues at both mRNA and protein levels using qRT-PCR, western blot analysis, Oncomine data mining and immunohistochemical analysis. High PSME3 expression was positively correlated with tumor size and pM stage, and was significantly correlated with poor prognosis in pancreatic cancer patients revealed by Kaplan-Meier analysis. Gene set enrichment analysis demonstrated that the gene sets related to cell proliferation and metastasis were positively correlated with elevated PSME3 expression. Consistently, silencing of PSME3 suppressed cell proliferation and invasive capacity of pancreatic cancer. Mechanistically, PSME3 inhibited the degradation of c-Myc and thus enhanced glycolysis, which ultimately led to the oncogenic effects of PSME3 on pancreatic cancer. Collectively, our data suggest that PSME3 plays oncogenic roles in pancreatic cancer by inhibiting c-Myc degradation to promote glycolysis, and could serve as a novel therapeutic target for pancreatic cancer treatment. Copyright © 2016. Published by Elsevier Ireland Ltd.

  1. De-ubiquitinating enzyme, USP11, promotes transforming growth factor β-1 signaling through stabilization of transforming growth factor β receptor II

    PubMed Central

    Jacko, A M; Nan, L; Li, S; Tan, J; Zhao, J; Kass, D J; Zhao, Y

    2016-01-01

    The transforming growth factor β-1 (TGFβ-1) signaling pathway plays a central role in the pathogenesis of pulmonary fibrosis. Two TGFβ-1 receptors, TβRI and TβRII, mediate this pathway. TβRI protein stability, as mediated by the ubiquitin/de-ubiquitination system, has been well studied; however, the molecular regulation of TβRII still remains unclear. Here we reveal that a de-ubiquitinating enzyme, USP11, promotes TGFβ-1 signaling through de-ubiquitination and stabilization of TβRII. We elucidate the role that mitoxantrone (MTX), an USP11 inhibitor, has in the attenuation of TGFβ-1 signaling. Inhibition or downregulation of USP11 results in increases in TβRII ubiquitination and reduction of TβRII stability. Subsequently, TGFβ-1 signaling is greatly attenuated, as shown by the decreases in phosphorylation of SMAD2/3 levels as well as that of fibronectin (FN) and smooth muscle actin (SMA). Overexpression of USP11 reduces TβRII ubiquitination and increases TβRII stabilization, thereby elevating phosphorylation of SMAD2/3 and the ultimate expression of FN and SMA. Further, elevated expression of USP11 and TβRII were detected in lung tissues from bleomycin-challenged mice and IPF patients. Therefore, USP11 may contribute to the pathogenesis of pulmonary fibrosis by stabilization of TβRII and promotion of TGFβ-1 signaling. This study provides mechanistic evidence for development of USP11 inhibitors as potential antifibrotic drugs for pulmonary fibrosis. PMID:27853171

  2. Growth hormone signaling pathways.

    PubMed

    Carter-Su, Christin; Schwartz, Jessica; Argetsinger, Lawrence S

    2016-06-01

    Over 20years ago, our laboratory showed that growth hormone (GH) signals through the GH receptor-associated tyrosine kinase JAK2. We showed that GH binding to its membrane-bound receptor enhances binding of JAK2 to the GHR, activates JAK2, and stimulates tyrosyl phosphorylation of both JAK2 and GHR. The activated JAK2/GHR complex recruits a variety of signaling proteins, thereby initiating multiple signaling pathways and cellular responses. These proteins and pathways include: 1) Stat transcription factors implicated in the expression of multiple genes, including the gene encoding insulin-like growth factor 1; 2) Shc adapter proteins that lead to activation of the grb2-SOS-Ras-Raf-MEK-ERK1,2 pathway; 3) insulin receptor substrate proteins implicated in the phosphatidylinositol-3-kinase and Akt pathway; 4) signal regulatory protein α, a transmembrane scaffold protein that recruits proteins including the tyrosine phosphatase SHP2; and 5) SH2B1, a scaffold protein that can activate JAK2 and enhance GH regulation of the actin cytoskeleton. Our recent work has focused on the function of SH2B1. We have shown that SH2B1β is recruited to and phosphorylated by JAK2 in response to GH. SH2B1 localizes to the plasma membrane, cytoplasm and focal adhesions; it also cycles through the nucleus. SH2B1 regulates the actin cytoskeleton and promotes GH-dependent motility of RAW264.7 macrophages. Mutations in SH2B1 have been found in humans exhibiting severe early-onset childhood obesity and insulin resistance. These mutations impair SH2B1 enhancement of GH-induced macrophage motility. As SH2B1 is expressed ubiquitously and is also recruited to a variety of receptor tyrosine kinases, our results raise the possibility that effects of SH2B1 on the actin cytoskeleton in various cell types, including neurons, may play a role in regulating body weight.

  3. Brassinosteroid-promoted growth.

    PubMed

    Müssig, C

    2005-03-01

    Brassinosteroids (BRs) are highly potent growth-promoting sterol derivatives. BR-deficient or BR-insensitive mutants display dwarfism. Whole plants and excised tissues have been used to analyse the mechanisms involved in BR-promoted growth. BR stimulates cell elongation and cell division, and BR has specific effects on differentiation. Underlying physiological pathways include modification of cell wall properties, effects on carbohydrate assimilation and allocation, and control of aquaporin activities. BR apparently coordinates and integrates diverse processes required for growth, partly via interactions with other phytohormones setting the frame for BR responses. Ultimately, BR-promoted growth is mediated through genomic pathways. Positive regulators of the BR response (such as BZR1 and BES1) and putative downstream components (such as EXO) are involved in the regulation of BR-responsive genes and growth promotion. BR-responsive genes have been identified in several plant species. However, causal links between physiological effects and changes of transcript patterns, for the most part, are still unresolved. This review focuses on physiology and molecular mechanisms underlying BR-promoted growth in the different plant organs. Interactions with other phytohormones are discussed.

  4. [Growth hormone signaling pathways].

    PubMed

    Zych, Sławomir; Szatkowska, Iwona; Czerniawska-Piatkowska, Ewa

    2006-01-01

    The substantial improvement in the studies on a very complicated mechanism-- growth hormone signaling in a cell, has been noted in last decade. GH-induced signaling is characterized by activation of several pathways, including extracellular signal-regulated kinase (ERK), the signal transducer and activator of transcription and phosphatidylinositol-3 kinase (PI3) pathways. This review shows a current model of the growth hormone receptor dimerization, rotation of subunits and JAK2 kinase activation as the initial steps in the cascade of events. In the next stages of the signaling process, the GH-(GHR)2-(JAK2)2 complex may activate signaling molecules such as Stat, IRS-1 and IRS-2, and particularly all cascade proteins that activate MAP kinase. These pathways regulate basal cellular functions including target gene transcription, enzymatic activity and metabolite transport. Therefore growth hormone is considered as a major regulator of postnatal growth and metabolism, probably for mammary gland growth and development too.

  5. The inhibitory effects of carnosic acid on cervical cancer cells growth by promoting apoptosis via ROS-regulated signaling pathway.

    PubMed

    Su, Ke; Wang, Chun-Fang; Zhang, Ying; Cai, Yu-Jie; Zhang, Yan-Yan; Zhao, Qian

    2016-08-01

    Cervical cancer has been the fourth most common cancer killing many women across the world. Carnosic acid (CA), as a phenolic diterpene, has been suggested to against cancer, exerting protective effects associated with inflammatory cytokines. It is aimed to demonstrate the therapeutic role of carnosic acid against cervical cancer and indicate its underlying molecular mechanisms. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) was performed to assess the possible anti-proliferative effects of carnosic acid. And also, colony formation was used to further estimate carnosic acid's ability in suppressing cervical cancer cells proliferation. Flow cytometry assays were performed here to indicate the alterations of cervical cancer cells cycle and the development of apoptosis. Western blot assays and RT-PCR were also applied to clarify the apoptosis-associated signaling pathways affected by reactive oxygen species (ROS) generation. And immunofluorescence was used to detect ROS-positive cells. In vivo experiments, CaSki xenograft model samples of nude mice were involved to further elucidate the effects of carnosic acid. In our results, we found that carnosic acid exerted anti-tumor ability in vitro supported by up-regulation of apoptosis and ROS production in cervical cancer cells. Also, acceleration of ROS led to the phospharylation of (c-Jun N-terminal kinase (JNK) and its-related signals, as well as activation of Endoplasmic Reticulum (ER) stress, promoting the progression of apoptosis via stimulating Caspase3 expression. The development and growth of xenograft tumors in nude mice were found to be inhibited by the administration of carnosic acid for five weeks. And the suppressed role of carnosic acid in proliferation of cervical cancer cells and apoptosis of nude mice with tumor tissues were observed in our study. Taken together, our data indicated that carnosic acid resulted in apoptosis both in vitro and vivo experiments via promoting ROS and

  6. c-Myc promotes renal fibrosis by inducing integrin αv-mediated transforming growth factor-β signaling.

    PubMed

    Shen, Yang; Miao, Naijun; Wang, Bao; Xu, Jinlan; Gan, Xinxin; Xu, Dan; Zhou, Li; Xue, Hong; Zhang, Wei; Yang, Li; Lu, Limin

    2017-10-01

    Fibrogenesis involves the activation of renal fibroblasts upon kidney injury. However, the mechanisms underlying renal fibroblast activation are poorly characterized. c-Myc is a predominant oncogene encoding a pleiotropic transcription factor that participates in the regulation of various genes, including genes vital for regulating the cell cycle, cell proliferation, and apoptosis. Here we tested whether renal fibrosis in unilateral ureteral obstruction and folic acid-induced renal fibrosis mouse models are associated with the overexpression of c-Myc. Transforming growth factor-β (TGF-β) has been identified as a key mediator of renal fibrosis, and it is secreted in an inactive form as a complex with latency-associated peptide and latent TGF-β-binding proteins. Five αv-containing integrins with different β -subunits can activate TGF-β, and consistent with this we found that c-Myc bound directly to the promoter of integrin αv in renal fibroblasts activating its transcription. This, in turn, induced activation of TGF-β signaling. Pharmacological blockade of c-Myc attenuated renal fibrosis in vivo in the ureteral obstruction and folic acid-treated mouse models and inhibited the proliferation and activation of renal fibroblasts in vitro. Thus, c-Myc overexpression stimulated proliferation and activation of renal fibroblasts by inducing integrin αv -mediated TGF-β signaling. Hence, targeting c-Myc may have clinical utility in the treatment of renal fibrosis. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  7. EGF-mediated EGFR/ERK signaling pathway promotes germinative cell proliferation in Echinococcus multilocularis that contributes to larval growth and development.

    PubMed

    Cheng, Zhe; Liu, Fan; Li, Xiu; Dai, Mengya; Wu, Jianjian; Guo, Xinrui; Tian, Huimin; Heng, Zhijie; Lu, Ying; Chai, Xiaoli; Wang, Yanhai

    2017-02-01

    Larvae of the tapeworm E. multilocularis cause alveolar echinococcosis (AE), one of the most lethal helminthic infections in humans. A population of stem cell-like cells, the germinative cells, is considered to drive the larval growth and development within the host. The molecular mechanisms controlling the behavior of germinative cells are largely unknown. Using in vitro cultivation systems we show here that the EGFR/ERK signaling in the parasite can promote germinative cell proliferation in response to addition of human EGF, resulting in stimulated growth and development of the metacestode larvae. Inhibition of the signaling by either the EGFR inhibitors CI-1033 and BIBW2992 or the MEK/ERK inhibitor U0126 impairs germinative cell proliferation and larval growth. These data demonstrate the contribution of EGF-mediated EGFR/ERK signaling to the regulation of germinative cells in E. multilocularis, and suggest the EGFR/ERK signaling as a potential therapeutic target for AE and perhaps other human cestodiasis.

  8. Insulin-like growth factor-1 (IGF-1) promotes myoblast proliferation and skeletal muscle growth of embryonic chickens via the PI3K/Akt signalling pathway.

    PubMed

    Yu, Minli; Wang, Huan; Xu, Yali; Yu, Debing; Li, Dongfeng; Liu, Xiuhong; Du, Wenxing

    2015-08-01

    During embryonic development, IGF-1 fulfils crucial roles in skeletal myogenesis. However, the involvement of IGF-1-induced myoblast proliferation in muscle growth is still unclear. In the present study, we have characterised the role of IGF-1 in myoblast proliferation both in vitro and in vivo and have revealed novel details of how exogenous IGF-1 influences myogenic genes in chicken embryos. The results show that IGF-1 significantly induces the proliferation of cultured myoblasts in a dose-dependent manner. Additionally, the IGF-1 treatment significantly promoted myoblasts entering a new cell cycle and increasing the mRNA expression levels of cell cycle-dependent genes. However, these effects were inhibited by the PI3K inhibitor LY294002 and the Akt inhibitor KP372-1. These data indicated that the pro-proliferative effect of IGF-1 was mediated in response to the PI3K/Akt signalling pathway. Moreover, we also showed that exogenous IGF-1 stimulated myoblast proliferation in vivo. IGF-1 administration obviously promoted the incorporation of BrdU and remarkably increased the number of PAX7-positive cells in the skeletal muscle of chicken embryos. Administration of IGF-1 also significantly induced the upregulation of myogenic factors gene, the enhancement of c-Myc and the inhibition of myostatin (Mstn) expression. These findings demonstrate that IGF-1 has strong activity as a promoter of myoblast expansion and muscle fiber formation during early myogenesis. Therefore, this study offers insight into the mechanisms responsible for IGF-1-mediated stimulation of embryonic skeletal muscle development, which could have important implications for the improvement of chicken meat production. © 2015 International Federation for Cell Biology.

  9. EGFR signaling enhances aerobic glycolysis in triple negative breast cancer cells to promote tumor growth and immune escape

    PubMed Central

    Lim, Seung-Oe; Li, Chia-Wei; Xia, Weiya; Lee, Heng-Huan; Chang, Shih-Shin; Shen, Jia; Hsu, Jennifer L.; Raftery, Dan; Djukovic, Danijel; Gu, Haiwei; Chang, Wei-Chao; Wang, Hung-Ling; Chen, Mong-Liang; Huo, Longfei; Chen, Chung-Hsuan; Wu, Yun; Sahin, Aysegul; Hanash, Samir M.; Hortobagyi, Gabriel N.; Hung, Mien-Chie

    2016-01-01

    Oncogenic signaling reprograms cancer cell metabolism to augment the production of glycolytic metabolites in favor of tumor growth. The ability of cancer cells to evade immunosurveillance and the role of metabolic regulators in T cell functions suggest that oncogene-induced metabolic reprogramming may be linked to immune escape. Epidermal growth factor (EGF) signaling, frequently dysregulated in triple-negative breast cancer (TNBC), is also associated with increased glycolysis. Here, we demonstrated in TNBC cells that EGF signaling activates the first step in glycolysis, but impedes the last step, leading to an accumulation of metabolic intermediates in this pathway. Furthermore, we showed that one of these intermediates, fructose 1,6 bisphosphate (F1,6BP), directly binds to and enhances the activity of the EGF receptor (EGFR), thereby increasing lactate excretion which leads to inhibition of local cytotoxic T cell activity. Notably, combining the glycolysis inhibitor 2-deoxy-D-glucose (2-DG) with the EGFR inhibitor gefitinib effectively suppressed TNBC cell proliferation and tumor growth. Our results illustrate how jointly targeting the EGFR/F1,6BP signaling axis may offer an immediately applicable therapeutic strategy to treat TNBC. PMID:26759242

  10. The Pollen Receptor Kinase LePRK2 Mediates Growth-Promoting Signals and Positively Regulates Pollen Germination and Tube Growth

    USDA-ARS?s Scientific Manuscript database

    In flowering plants, the process of pollen germination and tube growth is required for successful fertilization. A pollen receptor kinase from tomato, LePRK2, has been implicated in signaling during pollen germination and tube growth as well as in mediating pollen (tube)-pistil communication. Here w...

  11. Toll Like Receptor 2, 4, and 9 Signaling Promotes Autoregulative Tumor Cell Growth and VEGF/PDGF Expression in Human Pancreatic Cancer

    PubMed Central

    Grimmig, Tanja; Moench, Romana; Kreckel, Jennifer; Haack, Stephanie; Rueckert, Felix; Rehder, Roberta; Tripathi, Sudipta; Ribas, Carmen; Chandraker, Anil; Germer, Christoph T.; Gasser, Martin; Waaga-Gasser, Ana Maria

    2016-01-01

    Toll like receptor (TLR) signaling has been suggested to play an important role in the inflammatory microenvironment of solid tumors and through this inflammation-mediated tumor growth. Here, we studied the role of tumor cells in their process of self-maintaining TLR expression independent of inflammatory cells and cytokine milieu for autoregulative tumor growth signaling in pancreatic cancer. We analyzed the expression of TLR2, -4, and -9 in primary human cancers and their impact on tumor growth via induced activation in several established pancreatic cancers. TLR-stimulated pancreatic cancer cells were specifically investigated for activated signaling pathways of VEGF/PDGF and anti-apoptotic Bcl-xL expression as well as tumor cell growth. The primary pancreatic cancers and cell lines expressed TLR2, -4, and -9. TLR-specific stimulation resulted in activated MAP-kinase signaling, most likely via autoregulative stimulation of demonstrated TLR-induced VEGF and PDGF expression. Moreover, TLR activation prompted the expression of Bcl-xL and has been demonstrated for the first time to induce tumor cell proliferation in pancreatic cancer. These findings strongly suggest that pancreatic cancer cells use specific Toll like receptor signaling to promote tumor cell proliferation and emphasize the particular role of TLR2, -4, and -9 in this autoregulative process of tumor cell activation and proliferation in pancreatic cancer. PMID:27941651

  12. Hepatocyte growth factor promoting the proliferation of human eccrine sweat gland epithelial cells is relative to AKT signal channel and β-catenin.

    PubMed

    Lei, Xia; Wu, Jinjin; Liu, Bo; Lu, Yuangang

    2012-01-01

    Hepatocyte growth factor (HGF) is a multi-effective molecule, playing important roles in organ growth, tumorigenesis and trauma healing. This experiment aims at studying the promoting function of HGF on the proliferation of human eccrine sweat gland epithelial cells (hESGc) and its relative signal channels. After HGF at different concentrations were added into cells, MTT was adopted to detect the cell proliferations, Annexin-V/PI the cell apoptosis, and Westernblot the expressions of p-AKT, AKT, p-ERK, p-GSK3β, p-IKBα, and β-catenin in hESGc. After adding siRNA c-Met to block HGF or LY294002 to inhibit p-AKT, we used MTT to detect the proliferation of hESGc and Westernblot to detect the expression of β-catenin. As a result, 20-40 ng/mL HGF could promote the proliferation of hESGc and inhibit its apoptosis. HGF could promote the expressions of p-AKT1/2/3, p-ERK, p-GSK3β, p-IKBα, and β-catenin. The additions of siRNA c-Met to block HGF or LY294002 to inhibit p-AKT could downregulate β-catenin and inhibit the proliferation promotion caused by HGF. Consequently, we concluded HGF can promote the proliferation of human eccrine sweat gland epithelial cells, which is relative to AKT signal channel and β-catenin.

  13. Antagonism of the Met5-enkephalin-opioid growth factor receptor-signaling axis promotes MSC to differentiate into osteoblasts.

    PubMed

    Thakur, Nikhil A; DeBoyace, Sean D; Margulies, Bryan S

    2016-07-01

    Chronic opioid therapy is associated with bone loss. This led us to hypothesize that the opioid antagonists, that include naloxone, would stimulate bone formation by regulating MSC differentiation. The opioid growth factor receptor (OGFR) is a non-canonical opioid receptor that binds naloxone with high affinity whereas the native opioid growth factor, met5-enkephalin (met5), binds both the OGFR and the canonical delta opioid receptor (OPRD). Naloxone and an shRNA OGFR lentivirus were employed to disrupt the OGFR-signaling axis in cultured MSC. In parallel, naloxone was administered to bone marrow using a mouse unicortical defect model. OPRD, OGFR, and the met5-ligand were highly expressed in MSC and osteoblasts. A pulse-dose of naloxone increased mineral formation in MSC cultures in contrast to MSC treated with continuous naloxone or OGFR deficient MSC. Importantly, SMAD1 and SMAD8/9 expression increased after a pulse dose of naloxone whereas SMAD1, SMAD7, and ID1 were increased in the OGFR deficient MSC. Inhibited OGFR signaling decreased proliferation and increased p21 expression. The addition of naloxone to the unicortical defect resulted in increased bone formation within the defect. Our data suggest that novel mechanism through which signaling through the OGFR regulates osteogenesis via negative regulation of SMAD1 and p21. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1195-1205, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. Fibroblast growth factor 18 promotes proliferation and migration of H460 cells via the ERK and p38 signaling pathways.

    PubMed

    Chen, Taotao; Gong, Weiyue; Tian, Haishan; Wang, Haijun; Chu, Shenghui; Ma, Jisheng; Yang, Huanhuan; Cheng, Jiliang; Liu, Min; Li, Xiaokun; Jiang, Chao

    2017-02-01

    Recently, fibroblast growth factor 18 (FGF18) expression was reported to be upregulated in colon cancer and ovarian cancer, and increased expression of FGF18 mRNA and protein is associated with tumor progression and poor overall survival in patients; however, its role in lung cancer remains to be explored. In the present study, the effect and underlying molecular mechanisms of FGF18 on H460 cells were investigated. Cell proliferation and cell cycle alterations were detected using a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay and flow cytometry. A wound healing assay was conducted to detect cell migration. Reverse transcription-quantitative polymerase chain reaction and western blotting were performed to measure extracellular signal-regulated kinase (ERK), p38 and matrix metalloproteinase 26 (MMP26) expression. Knockdown of FGF18 using short interfering RNA (siRNA-FGF18) suppressed H460 cell proliferation, inhibited cell migration via the downregulation of MMP26 levels, with siRNA-FGF18 additionally inhibiting the ERK and p38 signaling pathway. The present study indicates that FGF18 serves an essential role in the growth and migration of non-small cell lung cancer (NSCLC) cells by regulating the ERK, p38 signaling pathways and MMP26 protein levels, suggesting that FGF18 may be a potential molecular drug target for the treatment NSCLC.

  15. Sulfatase 2 up-regulates glypican 3, promotes fibroblast growth factor signaling, and decreases survival in hepatocellular carcinoma.

    PubMed

    Lai, Jin-Ping; Sandhu, Dalbir S; Yu, Chunrong; Han, Tao; Moser, Catherine D; Jackson, Kenard K; Guerrero, Ruben Bonilla; Aderca, Ileana; Isomoto, Hajime; Garrity-Park, Megan M; Zou, Hongzhi; Shire, Abdirashid M; Nagorney, David M; Sanderson, Schuyler O; Adjei, Alex A; Lee, Ju-Seog; Thorgeirsson, Snorri S; Roberts, Lewis R

    2008-04-01

    It has been shown that the heparin-degrading endosulfatase, sulfatase 1 (SULF1), functions as a liver tumor suppressor, but the role of the related sulfatase, sulfatase 2 (SULF2), in liver carcinogenesis remains to be elucidated. We investigated the effect of SULF2 on liver tumorigenesis. Expression of SULF2 was increased in 79 (57%) of 139 hepatocellular carcinomas (HCCs) and 8 (73%) of 11 HCC cell lines. Forced expression of SULF2 increased HCC cell growth and migration, whereas knockdown of SULF2 using short hairpin RNA targeting SULF2 abrogated HCC cell proliferation and migration in vitro. Because SULF1 and SULF2 desulfate heparan sulfate proteoglycans (HSPGs) and the HSPG glypican 3 (GPC3) is up-regulated in HCC, we investigated the effects of SULF2 on GPC3 expression and the association of SULF2 with GPC3. SULF2-mediated cell growth was associated with increased binding of fibroblast growth factor 2 (FGF2), phosphorylation of extracellular signal-regulated kinase and AKT, and expression of GPC3. Knockdown of GPC3 attenuated FGF2 binding in SULF2-expressing HCC cells. The effects of SULF2 on up-regulation of GPC3 and tumor growth were confirmed in nude mouse xenografts. Moreover, HCC patients with increased SULF2 expression in resected HCC tissues had a worse prognosis and a higher rate of recurrence after surgery. In contrast to the tumor suppressor effect of SULF1, SULF2 has an oncogenic effect in HCC mediated in part through up-regulation of FGF signaling and GPC3 expression.

  16. Cell-cell signalling promotes ferric iron uptake in Xanthomonas oryzae pv. oryzicola that contribute to its virulence and growth inside rice.

    PubMed

    Rai, Rikky; Javvadi, Sreegowrinadh; Chatterjee, Subhadeep

    2015-05-01

    Cell-cell communication mediated by diffusible signal factor (DSF) plays an important role in virulence of several Xanthomonas group of plant pathogens. In the bacterial pathogen of rice, Xanthomonas oryzae pv. oryzicola, DSF is required for virulence and in planta growth. In order to understand the role of DSF in promoting in planta growth and virulence, we have characterized the DSF deficient mutant of X. oryzae pv. oryzicola. Mutant analysis by expression analysis, radiolabelled iron uptake studies and growth under low-iron conditions indicated that DSF positively regulates ferric iron uptake. Further, the DSF deficient mutant of X. oryzae pv. oryzicola exhibited a reduced capacity to use ferric form of iron for growth under low-iron conditions. Exogenous iron supplementation in the rice leaves rescued the in planta growth deficiency of the DSF deficient mutant. These data suggest that DSF promotes in planta growth of X. oryzae pv. oryzicola by positively regulating functions involved in ferric iron uptake which is important for its virulence. Our results also indicate that requirement of iron uptake strategies to utilize either Fe(3+) or Fe(2+) form of iron for colonization may vary substantially among closely related members of the Xanthomonas group of plant pathogens. © 2015 John Wiley & Sons Ltd.

  17. Role of PI3K/Akt signaling in insulin-like growth factor-1 (IGF-1) skin tumor promotion.

    PubMed

    Wilker, Erik; Lu, Jerry; Rho, Okkyung; Carbajal, Steve; Beltrán, Linda; DiGiovanni, John

    2005-10-01

    Overexpression of human IGF-1 with the bovine keratin 5 (BK5) promoter (BK5.IGF-1 transgenic mice) induces persistent epidermal hyperplasia and leads to spontaneous skin tumor formation. In previous work, PI3K and Akt activities were found to be elevated in the epidermis of BK5.IGF-1 transgenic mice compared to nontransgenic littermates. In the present study, we examined the importance of the PI3K/Akt signaling pathway in mediating the skin phenotype and the skin tumor promoting action of IGF-1 in these mice. Western blot analyses with epidermal lysates showed that signaling components downstream of PI3K/Akt were altered in epidermis of BK5.IGF-1 mice. Increased phosphorylation of GSK-3 (Ser(9/21)), TSC2(Thr(1462)), and mTOR(Ser(2448)) was observed. In addition, hypophosphorylation and increased protein levels of beta-catenin were observed in the epidermis of BK5.IGF-1 mice. These data suggested that components downstream of Akt might be affected, including cell cycle machinery in the epidermis of BK5.IGF-1 mice. Protein levels of cyclins (D1, E, A), E2F1, and E2F4 were all elevated in the epidermis of BK5.IGF-1 mice. Also, immunoprecipitation experiments demonstrated an increase in cdk4/cyclin D1 and cdk2/cyclin E complex formation, suggesting increased cdk activity in the epidermis of transgenic mice. In further studies, the PI3K inhibitor, LY294002, significantly blocked IGF-1-mediated epidermal proliferation and skin tumor promotion in DMBA-initiated BK5.IGF-1 mice. In addition, inhibition of PI3K/Akt with LY294002 reversed many of the cell cycle related changes observed in untreated transgenic animals. Collectively, the current results supported the hypothesis that elevated PI3K/Akt activity and subsequent activation of one or more downstream effector pathways contributed significantly to the tumor promoting action of IGF-1 in the epidermis of BK5.IGF-1 mice.

  18. Autocrine VEGF–VEGFR2–Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth

    PubMed Central

    Hamerlik, Petra; Lathia, Justin D.; Rasmussen, Rikke; Wu, Qiulian; Bartkova, Jirina; Lee, MyungHee; Moudry, Pavel; Bartek, Jiri; Fischer, Walter; Lukas, Jiri

    2012-01-01

    Although vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) is traditionally regarded as an endothelial cell protein, evidence suggests that VEGFRs may be expressed by cancer cells. Glioblastoma multiforme (GBM) is a lethal cancer characterized by florid vascularization and aberrantly elevated VEGF. Antiangiogenic therapy with the humanized VEGF antibody bevacizumab reduces GBM tumor growth; however, the clinical benefits are transient and invariably followed by tumor recurrence. In this study, we show that VEGFR2 is preferentially expressed on the cell surface of the CD133+ human glioma stem-like cells (GSCs), whose viability, self-renewal, and tumorigenicity rely, at least in part, on signaling through the VEGF-VEGFR2–Neuropilin-1 (NRP1) axis. We find that the limited impact of bevacizumab-mediated VEGF blockage may reflect ongoing autocrine signaling through VEGF–VEGFR2–NRP1, which is associated with VEGFR2–NRP1 recycling and a pool of active VEGFR2 within a cytosolic compartment of a subset of human GBM cells. Whereas bevacizumab failed to inhibit prosurvival effects of VEGFR2-mediated signaling, GSC viability under unperturbed or radiation-evoked stress conditions was attenuated by direct inhibition of VEGFR2 tyrosine kinase activity and/or shRNA-mediated knockdown of VEGFR2 or NRP1. We propose that direct inhibition of VEGFR2 kinase may block the highly dynamic VEGF–VEGFR2–NRP1 pathway and inspire a GBM treatment strategy to complement the currently prevalent ligand neutralization approach. PMID:22393126

  19. Chlorpyrifos promotes colorectal adenocarcinoma H508 cell growth through the activation of EGFR/ERK1/2 signaling pathway but not cholinergic pathway.

    PubMed

    Suriyo, Tawit; Tachachartvanich, Phum; Visitnonthachai, Daranee; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2015-12-02

    Aside from the effects on neuronal cholinergic system, epidemiological studies suggest an association between chlorpyrifos (CPF) exposure and cancer risk. This in vitro study examined the effects of CPF and its toxic metabolite, chlorpyrifos oxon (CPF-O), on the growth of human colorectal adenocarcinoma H508, colorectal adenocarcinoma HT-29, normal colon epithelial CCD841, liver hepatocellular carcinoma HepG2, and normal liver hepatocyte THLE-3 cells. The results showed that CPF (5-100 μM) concentration-dependently increased viability of H508 and CCD841 cells in serum-free conditions. This increasing trend was not found in HT-29, HepG2 and THLE-3 cells. In contrast, CPF-O (50-100 μM) reduced the viability of all cell lines. Cell cycle analysis showed the induction of cells in the S phase, and EdU incorporation assay revealed the induction of DNA synthesis in CPF-treated H508 cells indicating that CPF promotes cell cycle progression. Despite the observation of acetylcholinesterase activity inhibition and reactive oxygen species (ROS) generation, atropine (a non-selective muscarinic acetylcholine receptor antagonist) and N-acetylcysteine (a potent antioxidant) failed to inhibit the growth-promoting effect of CPF. CPF increased the phosphorylation of epidermal growth factor receptor (EGFR) and its downstream effector, extracellular signal regulated kinase (ERK1/2), in H508 cells. AG-1478 (a specific EGFR tyrosine kinase inhibitor) and U0126 (a specific MEK inhibitor) completely mitigated the growth promoting effect of CPF. Altogether, these results suggest that EGFR/ERK1/2 signaling pathway but not cholinergic pathway involves in CPF-induced colorectal adenocarcinoma H508 cell growth.

  20. EGF-mediated EGFR/ERK signaling pathway promotes germinative cell proliferation in Echinococcus multilocularis that contributes to larval growth and development

    PubMed Central

    Li, Xiu; Dai, Mengya; Wu, Jianjian; Guo, Xinrui; Tian, Huimin; Heng, Zhijie; Lu, Ying; Chai, Xiaoli

    2017-01-01

    Background Larvae of the tapeworm E. multilocularis cause alveolar echinococcosis (AE), one of the most lethal helminthic infections in humans. A population of stem cell-like cells, the germinative cells, is considered to drive the larval growth and development within the host. The molecular mechanisms controlling the behavior of germinative cells are largely unknown. Methodology/Principal findings Using in vitro cultivation systems we show here that the EGFR/ERK signaling in the parasite can promote germinative cell proliferation in response to addition of human EGF, resulting in stimulated growth and development of the metacestode larvae. Inhibition of the signaling by either the EGFR inhibitors CI-1033 and BIBW2992 or the MEK/ERK inhibitor U0126 impairs germinative cell proliferation and larval growth. Conclusions/Significance These data demonstrate the contribution of EGF-mediated EGFR/ERK signaling to the regulation of germinative cells in E. multilocularis, and suggest the EGFR/ERK signaling as a potential therapeutic target for AE and perhaps other human cestodiasis. PMID:28241017

  1. Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating Notch signalling in brain.

    PubMed

    Xing, Fei; Kobayashi, Aya; Okuda, Hiroshi; Watabe, Misako; Pai, Sudha K; Pandey, Puspa R; Hirota, Shigeru; Wilber, Andrew; Mo, Yin-Yuan; Moore, Brian E; Liu, Wen; Fukuda, Koji; Iiizumi, Megumi; Sharma, Sambad; Liu, Yin; Wu, Kerui; Peralta, Elizabeth; Watabe, Kounosuke

    2013-03-01

    Brain metastasis of breast cancer profoundly affects the cognitive and sensory functions as well as morbidity of patients, and the 1 year survival rate among these patients remains less than 20%. However, the pathological mechanism of brain metastasis is as yet poorly understood. In this report, we found that metastatic breast tumour cells in the brain highly expressed IL-1β which then 'activated' surrounding astrocytes. This activation significantly augmented the expression of JAG1 in the astrocytes, and the direct interaction of the reactivated astrocytes and cancer stem-like cells (CSCs) significantly stimulated Notch signalling in CSCs. We also found that the activated Notch signalling in CSCs up-regulated HES5 followed by promoting self-renewal of CSCs. Furthermore, we have shown that the blood-brain barrier permeable Notch inhibitor, Compound E, can significantly suppress the brain metastasis in vivo. These results represent a novel paradigm for the understanding of how metastatic breast CSCs re-establish their niche for their self-renewal in a totally different microenvironment, which opens a new avenue to identify a novel and specific target for the brain metastatic disease.

  2. Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating Notch signalling in brain

    PubMed Central

    Xing, Fei; Kobayashi, Aya; Okuda, Hiroshi; Watabe, Misako; Pai, Sudha K; Pandey, Puspa R; Hirota, Shigeru; Wilber, Andrew; Mo, Yin-Yuan; Moore, Brian E; Liu, Wen; Fukuda, Koji; Iiizumi, Megumi; Sharma, Sambad; Liu, Yin; Wu, Kerui; Peralta, Elizabeth; Watabe, Kounosuke

    2013-01-01

    Brain metastasis of breast cancer profoundly affects the cognitive and sensory functions as well as morbidity of patients, and the 1 year survival rate among these patients remains less than 20%. However, the pathological mechanism of brain metastasis is as yet poorly understood. In this report, we found that metastatic breast tumour cells in the brain highly expressed IL-1β which then ‘activated’ surrounding astrocytes. This activation significantly augmented the expression of JAG1 in the astrocytes, and the direct interaction of the reactivated astrocytes and cancer stem-like cells (CSCs) significantly stimulated Notch signalling in CSCs. We also found that the activated Notch signalling in CSCs up-regulated HES5 followed by promoting self-renewal of CSCs. Furthermore, we have shown that the blood-brain barrier permeable Notch inhibitor, Compound E, can significantly suppress the brain metastasis in vivo. These results represent a novel paradigm for the understanding of how metastatic breast CSCs re-establish their niche for their self-renewal in a totally different microenvironment, which opens a new avenue to identify a novel and specific target for the brain metastatic disease. PMID:23495140

  3. Non-coding RNA 886 promotes renal cell carcinoma growth and metastasis through the Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway.

    PubMed

    Lei, Jun; Xiao, Ju-Hua; Zhang, Shou-Hua; Liu, Zhi-Qiang; Huang, Kai; Luo, Zhi-Peng; Xiao, Xin-Lan; Hong, Zheng-Dong

    2017-10-01

    Non-coding RNA 886 (nc886) has been suggested to serve tumor-suppressing roles in several cancer cells. However, the expression pattern of nc886 and its function in renal cell carcinoma (RCC) has not been reported until now. The present study aimed to examine the expression of nc886 in human RCC tissues and to investigate the role of nc886 in RCC cell proliferation, apoptosis and invasion in vitro. Furthermore, whether nc886 exerts its function on RCC via Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling was investigated. It was demonstrated that nc886 is overexpressed in human RCC tissues compared with normal tissues, as determined by reverse transcription-quantitative polymerase chain reaction analysis. The nc886 mimic and inhibitor were transfected into the A‑498 cells to overexpress or knock down nc886 expression. Cell proliferation, cell apoptosis rate and cell invasion ability were determined by MTT, flow cytometry and Transwell‑Matrigel invasion assays. The results demonstrated that nc886 overexpression promotes A‑498 cell proliferation and invasion, and inhibits cell apoptosis, while nc886 knockdown resulted in the opposite effects. Furthermore, nc886 could activate the JAK2/STAT3 signaling pathway in A‑498 cells. AG490, an inhibitor of JAK2, could attenuate the effects of nc886 on cell proliferation, apoptosis and invasion. In conclusion, to the best of our knowledge, the present study for the first time revealed the expression profile and the tumor‑promoting role of nc886 in RCC. nc886 affects RCC cell proliferation, apoptosis and invasion at least partially via the activation of JAK2/STAT3 signaling. This study may provide a useful therapeutic target for RCC.

  4. LINE-1 ORF-1p functions as a novel HGF/ETS-1 signaling pathway co-activator and promotes the growth of MDA-MB-231 cell.

    PubMed

    Yang, Qian; Feng, Fan; Zhang, Fan; Wang, Chunping; Lu, Yinying; Gao, Xudong; Zhu, Yunfeng; Yang, Yongping

    2013-12-01

    Long interspersed nucleotide element (LINE)-1 ORF-1p is encoded by the human pro-oncogene LINE-1. It is involved in the development and progression of several human carcinomas, such as hepatocellular carcinoma and lung and breast cancers. The hepatocyte growth factor (HGF)/ETS-1 signaling pathway is involved in regulation of cancer cell proliferation, metastasis and invasion. The biological function of the interaction between LINE-1 ORF-1p and the HGF/ETS-1 signaling pathway in regulation of human breast cancer proliferation remains largely unknown. Here, we showed that LINE-1 ORF-1p enhanced ETS-1 transcriptional activity and increased expression of downstream genes of ETS-1. Interaction between ETS-1 and LINE-1 ORF-1p was identified by immunoprecipitation assays. LINE-1 ORF-1p modulated ETS-1 activity through cytoplasm/nucleus translocation and recruitment to the ETS-1 binding element in the MMP1 gene promoter. We also showed that LINE-1 ORF-1p promoted proliferation and anchorage-independent growth of MDA-MB-231 breast cancer cells. By investigating a novel role of the LINE-1 ORF-1p in the HGF/ETS-1 signaling pathway and MDA-MB-231 cells, we demonstrated that LINE-1 ORF-1p may be a novel ETS-1 coactivator and molecular target for therapy of human triple negative breast cancer. © 2013.

  5. Nerve growth factor regulates CD133 function to promote tumor cell migration and invasion via activating ERK1/2 signaling in pancreatic cancer.

    PubMed

    Xin, Beibei; He, Xiaodan; Wang, Juan; Cai, Jun; Wei, Wei; Zhang, Ti; Shen, Xiaohong

    Perineural invasion (PNI) is extremely high frequency among the various metastatic routes in pancreatic cancer. Nerve growth factor, secreted by astroglial cells, exerts effects on tumor invasion in some cancer cells, but its function on migration and invasion in pancreatic cancer is still unclear. In the present study, we determined the effects of NGF on modulating tumor cell metastatic potential and invasion activity and explored its mechanisms in pancreatic cancer. NGF and CD133 expression were detected in tumor tissues using immunohistochemical analysis and Western blotting analysis. The effects of NGF on the regulation of CD133 expression and the promotion of cancer migration and invasion were investigated using wound healing and matrigel transwell assay. A related mechanism that NGF regulates CD133's function via activating ERK1/2 signaling also was observed. NGF/CD133 is overexpressed in human pancreatic cancer and promotes the migration and invasion of human pancreatic cancer cells through the activation of the ERK/CD133 signaling cascade. NGF/ERK signaling modulates the cancer cell EMT process, migration and invasion through the regulation of CD133 expression and its subcellular localization. NGF/CD133 signaling initiated the migration and invasion of pancreatic cancer cells. NGF/CD133 might be an effective and potent therapeutic target for pancreatic cancer metastasis, particularly in PNI. Copyright © 2016 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  6. DNA signals at isoform promoters

    PubMed Central

    Dai, Zhiming; Xiong, Yuanyan; Dai, Xianhua

    2016-01-01

    Transcriptional heterogeneity is extensive in the genome, and most genes express variable transcript isoforms. However, whether variable transcript isoforms of one gene are regulated by common promoter elements remain to be elucidated. Here, we investigated whether isoform promoters of one gene have separated DNA signals for transcription and translation initiation. We found that TATA box and nucleosome-disfavored DNA sequences are prevalent in distinct transcript isoform promoters of one gene. These DNA signals are conserved among species. Transcript isoform has a RNA-determined unstructured region around its start site. We found that these DNA/RNA features facilitate isoform transcription and translation. These results suggest a DNA-encoded mechanism by which transcript isoform is generated. PMID:27353836

  7. Aberrant amino acid signaling promotes growth and metastasis of hepatocellular carcinomas through Rab1A-dependent activation of mTORC1 by Rab1A

    PubMed Central

    Yang, Yang; Zhang, Mei-Yin; Rao, Hui-Lan; Wang, Hui-Yun; Zheng, X.F. Steven

    2015-01-01

    mTORC1 is a master regulator of cell growth and proliferation, and an established anticancer drug target. Aberrant mTORC1 signaling is common in hepatocellular carcinoma (HCC), but the underlying mechanism remains elusive. Rab1A is a newly identified mTORC1 activator that mediates an alternative amino acid (AA) signaling branch to Rag GTPases. Because liver is a physiological hub for nutrient sensing and metabolic homeostasis, we investigated the possible role of Rab1A in HCC. We found that Rab1A is frequently overexpressed in HCC, which enhances hyperactive AA-mTORC1 signaling, promoting malignant growth and metastasis of HCC in vitro and in vivo. Moreover, aberrant Rab1A expression is closely associated with poor prognosis. Strikingly, aberrant Rab1A overexpression leads to increased rapamycin sensitivity, indicating that inappropriate activation of AA signaling is a cancer-driving event in HCC. Our findings further suggest that Rab1A is a valuable biomarker for prognosis and personalized mTORC1-targeted therapy in liver cancer. PMID:26308575

  8. Valosin-containing protein (VCP) promotes the growth, invasion, and metastasis of colorectal cancer through activation of STAT3 signaling.

    PubMed

    Fu, Qianfeng; Jiang, Yuling; Zhang, Daxin; Liu, Xiuli; Guo, Junfeng; Zhao, Jinlong

    2016-07-01

    Valosin-containing protein (VCP) was previously shown to exhibit high expression in colorectal cancer (CRC) tissues as compared with that in normal tissues; however, the role of VCP in human CRC cells has remained to be elucidated. Two colorectal cancer cell lines HCT116 and RKO were used in the experiment. We introduced lentiviral constructs expressing VCP to infect RKO cells and lenti-shRNA targeting VCP into HCT116 cells, respectively. Cell proliferation, invasion, apoptosis, and cell cycle arrest were subsequently examined by MTT assay, transwell chamber assay, flow cytometry, and western blot analysis, respectively. Furthermore, a subcutaneous tumor mouse model and lung metastasis model was used to investigate the effects of VCP on the growth and metastasis of CRC cells in vivo. VCP knockdown was shown to inhibit cell proliferation, chemoresistance and invasion, and induce apoptosis in the HCT116 CRC cells, whereas VCP over-expression suppressed apoptosis and chemoresponse, promoted proliferation and invasion of the RKO CRC cells. In addition, in the subcutaneous tumor and lung metastasis mouse model, VCP knockdown in HCT116 cells suppressed carcinogenesis and metastasis in vivo. The findings of the present study indicated that VCP is very important for the proliferation and metastasis of CRC; therefore, targeting VCP and its downstream targets may represent novel therapies for the treatment of CRC.

  9. A novel signaling pathway of tissue kallikrein in promoting keratinocyte migration: Activation of proteinase-activated receptor 1 and epidermal growth factor receptor

    SciTech Connect

    Gao, Lin; Chao, Lee; Chao, Julie

    2010-02-01

    Biological functions of tissue kallikrein (TK, KLK1) are mainly mediated by kinin generation and subsequent kinin B2 receptor activation. In this study, we investigated the potential role of TK and its signaling pathways in cultured human keratinocyte migration and in a rat skin wound healing model. Herein, we show that TK promoted cell migration and proliferation in a concentration- and time-dependent manner. Inactive TK or kinin had no significant effect on cell migration. Interestingly, cell migration induced by active TK was not blocked by icatibant or L-NAME, indicating an event independent of kinin B2 receptor and nitric oxide formation. TK's stimulatory effect on cell migration was inhibited by small interfering RNA for proteinase-activated receptor 1 (PAR{sub 1}), and by PAR{sub 1} inhibitor. TK-induced migration was associated with increased phosphorylation of epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase (ERK), which was blocked by inhibition of protein kinase C (PKC), Src, EGFR and ERK. TK-induced cell migration and EGFR phosphorylation were blocked by metalloproteinase (MMP) inhibitor, heparin, and antibodies against EGFR external domain, heparin-binding EGF-like growth factor (HB-EGF) and amphiregulin (AR). Local application of TK promoted skin wound healing in rats, whereas icatibant and EGFR inhibitor blocked TK's effect. Skin wound healing was further delayed by aprotinin and neutralizing TK antibody. This study demonstrates a novel role of TK in skin wound healing and uncovers new signaling pathways mediated by TK in promoting keratinocyte migration through activation of the PAR{sub 1}-PKC-Src-MMP pathway and HB-EGF/AR shedding-dependent EGFR transactivation.

  10. FBI-1 Is Overexpressed in Gestational Trophoblastic Disease and Promotes Tumor Growth and Cell Aggressiveness of Choriocarcinoma via PI3K/Akt Signaling.

    PubMed

    Mak, Victor C Y; Wong, Oscar G W; Siu, Michelle K Y; Wong, Esther S Y; Ng, Wai-Yan; Wong, Richard W C; Chan, Ka-Kui; Ngan, Hextan Y S; Cheung, Annie N Y

    2015-07-01

    Human placental trophoblasts can be considered pseudomalignant, with tightly controlled proliferation, apoptosis, and invasiveness. Gestational trophoblastic disease (GTD) represents a family of heterogeneous trophoblastic lesions with aberrant apoptotic and proliferative activities and dysregulation of cell signaling pathways. We characterize the oncogenic effects of factor that binds to the inducer of short transcripts of HIV-1 [FBI-1, alias POZ and Krüppel erythroid myeloid ontogenic factor (POKEMON)/ZBTB7A] in GTD and its role in promoting cell aggressiveness in vitro and tumor growth in vivo. IHC studies showed increased nuclear expression of FBI-1, including hydatidiform moles, choriocarcinoma (CCA), and placental site trophoblastic tumor, in GTD. In JAR and JEG-3 CCA cells, ectopic FBI-1 expression opposed apoptosis through repression of proapoptotic genes (eg, BAK1, FAS, and CASP8). FBI-1 overexpression also promoted Akt activation, as indicated by Akt-pS473 phosphorylation. FBI-1 overexpression promoted mobility and invasiveness of JEG-3 and JAR, but not in the presence of the phosphoinositide 3-kinase inhibitor LY294002. These findings suggest that FBI-1 could promote cell migration and invasion via phosphoinositide 3-kinase/Akt signaling. In vivo, nude mice injected with CCA cells with stable FBI-1 knockdown demonstrated reduced tumor growth compared with that in control groups. These findings suggest that FBI-1 is clinically associated with the progression of, and may be a therapeutic target in, GTD, owing to its diverse oncogenic effects on dysregulated trophoblasts. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. The Pseudomonas secondary metabolite 2,4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion.

    PubMed

    Combes-Meynet, Emeline; Pothier, Joël F; Moënne-Loccoz, Yvan; Prigent-Combaret, Claire

    2011-02-01

    During evolution, plants have become associated with guilds of plant-growth-promoting rhizobacteria (PGPR), which raises the possibility that individual PGPR populations may have developed mechanisms to cointeract with one another on plant roots. We hypothesize that this has resulted in signaling phenomena between different types of PGPR colonizing the same roots. Here, the objective was to determine whether the Pseudomonas secondary metabolite 2,4-diacetylphloroglucinol (DAPG) can act as a signal on Azospirillum PGPR and enhance the phytostimulation effects of the latter. On roots, the DAPG-producing Pseudomonas fluorescens F113 strain but not its phl-negative mutant enhanced the phytostimulatory effect of Azospirillum brasilense Sp245-Rif on wheat. Accordingly, DAPG enhanced Sp245-Rif traits involved in root colonization (cell motility, biofilm formation, and poly-β-hydroxybutyrate production) and phytostimulation (auxin production). A differential fluorescence induction promoter-trapping approach based on flow cytometry was then used to identify Sp245-Rif genes upregulated by DAPG. DAPG enhanced expression of a wide range of Sp245-Rif genes, including genes involved in phytostimulation. Four of them (i.e., ppdC, flgE, nirK, and nifX-nifB) tended to be upregulated on roots in the presence of P. fluorescens F113 compared with its phl-negative mutant. Our results indicate that DAPG can act as a signal by which some beneficial pseudomonads may stimulate plant-beneficial activities of Azospirillum PGPR.

  12. Genome-wide survey of two-component signal transduction systems in the plant growth-promoting bacterium Azospirillum.

    PubMed

    Borland, Stéphanie; Oudart, Anne; Prigent-Combaret, Claire; Brochier-Armanet, Céline; Wisniewski-Dyé, Florence

    2015-10-22

    Two-component systems (TCS) play critical roles in sensing and responding to environmental cues. Azospirillum is a plant growth-promoting rhizobacterium living in the rhizosphere of many important crops. Despite numerous studies about its plant beneficial properties, little is known about how the bacterium senses and responds to its rhizospheric environment. The availability of complete genome sequenced from four Azospirillum strains (A. brasilense Sp245 and CBG 497, A. lipoferum 4B and Azospirillum sp. B510) offers the opportunity to conduct a comprehensive comparative analysis of the TCS gene family. Azospirillum genomes harbour a very large number of genes encoding TCS, and are especially enriched in hybrid histidine kinases (HyHK) genes compared to other plant-associated bacteria of similar genome sizes. We gained further insight into HyHK structure and architecture, revealing an intriguing complexity of these systems. An unusual proportion of TCS genes were orphaned or in complex clusters, and a high proportion of predicted soluble HKs compared to other plant-associated bacteria are reported. Phylogenetic analyses of the transmitter and receiver domains of A. lipoferum 4B HyHK indicate that expansion of this family mainly arose through horizontal gene transfer but also through gene duplications all along the diversification of the Azospirillum genus. By performing a genome-wide comparison of TCS, we unraveled important 'genus-defining' and 'plant-specifying' TCS. This study shed light on Azospirillum TCS which may confer important regulatory flexibility. Collectively, these findings highlight that Azospirillum genomes have broad potential for adaptation to fluctuating environments.

  13. HSPRO acts via SnRK1-mediated signaling in the regulation of Nicotiana attenuata seedling growth promoted by Piriformospora indica

    PubMed Central

    Schuck, Stefan; Baldwin, Ian T.; Bonaventure, Gustavo

    2013-01-01

    Nicotiana attenuata HSPRO (NaHSPRO) is a negative regulator of seedling growth promoted by the fungus Piriformospora indica. Homologs of NaHSPRO in Arabidopsis thaliana (i.e., AtHSPRO1 and AtHSPRO2) are known to physically interact with the AKINβγ subunit of the SnRK1 complex.2 To investigate whether NaHSPRO is associated with SnRK1 function during the stimulation of seedling growth by P. indica, we studied N. attenuata plants silenced in the expression of NaGAL83 (as-gal83 plants)—a gene that encodes for the regulatory β-subunit of SnRK1—and plants silenced in the expression of both NaHSPRO and NaGAL83 (ir-hspro/as-gal83 plants). The results showed that P. indica differentially stimulated the growth of both as-gal83 and ir-hspro/as-gal83 seedlings compared with control seedlings, with a magnitude similar to that observed in ir-hspro seedlings. Thus, we showed that, similar to NaHSPRO, NaGAL83 is a negative regulator of seedling growth stimulated by P. indica. We propose that the effect of NaHSPRO on seedling growth is associated with SnRK1 signaling. PMID:23333980

  14. Astrocyte transforming growth factor beta 1 promotes inhibitory synapse formation via CaM kinase II signaling.

    PubMed

    Diniz, Luan Pereira; Tortelli, Vanessa; Garcia, Matheus Nunes; Araújo, Ana Paula Bérgamo; Melo, Helen M; Silva, Gisele S Seixas da; Felice, Fernanda G De; Alves-Leon, Soniza Vieira; Souza, Jorge Marcondes de; Romão, Luciana Ferreira; Castro, Newton Gonçalves; Gomes, Flávia Carvalho Alcantara

    2014-12-01

    The balance between excitatory and inhibitory synaptic inputs is critical for the control of brain function. Astrocytes play important role in the development and maintenance of neuronal circuitry. Whereas astrocytes-derived molecules involved in excitatory synapses are recognized, molecules and molecular mechanisms underlying astrocyte-induced inhibitory synapses remain unknown. Here, we identified transforming growth factor beta 1 (TGF-β1), derived from human and murine astrocytes, as regulator of inhibitory synapse in vitro and in vivo. Conditioned media derived from human and murine astrocytes induce inhibitory synapse formation in cerebral cortex neurons, an event inhibited by pharmacologic and genetic manipulation of the TGF-β pathway. TGF-β1-induction of inhibitory synapse depends on glutamatergic activity and activation of CaM kinase II, which thus induces localization and cluster formation of the synaptic adhesion protein, Neuroligin 2, in inhibitory postsynaptic terminals. Additionally, intraventricular injection of TGF-β1 enhanced inhibitory synapse number in the cerebral cortex. Our results identify TGF-β1/CaMKII pathway as a novel molecular mechanism underlying astrocyte control of inhibitory synapse formation. We propose here that the balance between excitatory and inhibitory inputs might be provided by astrocyte signals, at least partly achieved via TGF-β1 downstream pathways. Our work contributes to the understanding of the GABAergic synapse formation and may be of relevance to further the current knowledge on the mechanisms underlying the development of various neurological disorders, which commonly involve impairment of inhibitory synapse transmission. © 2014 Wiley Periodicals, Inc.

  15. A novel mitochondrial DnaJ/Hsp40 family protein BIL2 promotes plant growth and resistance against environmental stress in brassinosteroid signaling.

    PubMed

    Bekh-Ochir, Davaapurev; Shimada, Setsuko; Yamagami, Ayumi; Kanda, Satomi; Ogawa, Kenji; Nakazawa, Miki; Matsui, Minami; Sakuta, Masaaki; Osada, Hiroyuki; Asami, Tadao; Nakano, Takeshi

    2013-06-01

    Plant steroid hormones, brassinosteroids, are essential for growth, development and responses to environmental stresses in plants. Although BR signaling proteins are localized in many organelles, i.e., the plasma membrane, nuclei, endoplasmic reticulum and vacuole, the details regarding the BR signaling pathway from perception at the cellular membrane receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) to nuclear events include several steps. Brz (Brz220) is a specific inhibitor of BR biosynthesis. In this study, we used Brz-mediated chemical genetics to identify Brz-insensitive-long hypocotyls 2-1D (bil2-1D). The BIL2 gene encodes a mitochondrial-localized DnaJ/Heat shock protein 40 (DnaJ/Hsp40) family, which is involved in protein folding. BIL2-overexpression plants (BIL2-OX) showed cell elongation under Brz treatment, increasing the growth of plant inflorescence and roots, the regulation of BR-responsive gene expression and suppression against the dwarfed BRI1-deficient mutant. BIL2-OX also showed resistance against the mitochondrial ATPase inhibitor oligomycin and higher levels of exogenous ATP compared with wild-type plants. BIL2 participates in resistance against salinity stress and strong light stress. Our results indicate that BIL2 induces cell elongation during BR signaling through the promotion of ATP synthesis in mitochondria.

  16. GATA6 Promotes Angiogenic Function and Survival in Endothelial Cells by Suppression of Autocrine Transforming Growth Factor β/Activin Receptor-like Kinase 5 Signaling*

    PubMed Central

    Froese, Natali; Kattih, Badder; Breitbart, Astrid; Grund, Andrea; Geffers, Robert; Molkentin, Jeffery D.; Kispert, Andreas; Wollert, Kai C.; Drexler, Helmut; Heineke, Joerg

    2011-01-01

    Understanding the transcriptional regulation of angiogenesis could lead to the identification of novel therapeutic targets. We showed here that the transcription factor GATA6 is expressed in different human primary endothelial cells as well as in vascular endothelial cells of mice in vivo. Activation of endothelial cells was associated with GATA6 nuclear translocation, chromatin binding, and enhanced GATA6-dependent transcriptional activation. siRNA-mediated down-regulation of GATA6 after growth factor stimulation led to a dramatically reduced capacity of macro- and microvascular endothelial cells to proliferate, migrate, or form capillary-like structures on Matrigel. Adenoviral overexpression of GATA6 in turn enhanced angiogenic function, especially in cardiac endothelial microvascular cells. Furthermore, GATA6 protected endothelial cells from undergoing apoptosis during growth factor deprivation. Mechanistically, down-regulation of GATA6 in endothelial cells led to increased expression of transforming growth factor (TGF) β1 and TGFβ2, whereas enhanced GATA6 expression, accordingly, suppressed Tgfb1 promoter activity. High TGFβ1/β2 expression in GATA6-depleted endothelial cells increased the activation of the activin receptor-like kinase 5 (ALK5) and SMAD2, and suppression of this signaling axis by TGFβ neutralizing antibody or ALK5 inhibition restored angiogenic function and survival in endothelial cells with reduced GATA6 expression. Together, these findings indicate that GATA6 plays a crucial role for endothelial cell function and survival, at least in part, by suppressing autocrine TGFβ expression and ALK5-dependent signaling. PMID:21127043

  17. Endoglin promotes transforming growth factor beta-mediated Smad 1/5/8 signaling and inhibits endothelial cell migration through its association with GIPC.

    PubMed

    Lee, Nam Y; Ray, Bridgette; How, Tam; Blobe, Gerard C

    2008-11-21

    Transforming growth factor beta (TGF-beta) signals through two distinct pathways to regulate endothelial cell proliferation, migration, and angiogenesis, the ALK-1/Smad 1/5/8 and ALK-5/Smad2/3 pathways. Endoglin is a co-receptor predominantly expressed in endothelial cells that participates in TGFbeta-mediated signaling with ALK-1 and ALK-5 and regulates critical aspects of cellular and biological responses. The embryonic lethal phenotype of knock-out mice because of defects in angiogenesis and disease-causing mutations resulting in human vascular diseases both support essential roles for endoglin, ALK-1, and ALK-5 in the vasculature. However, the mechanism by which endoglin mediates TGF-beta signaling through ALK-1 and ALK-5 has remained elusive. Here we describe a novel interaction between endoglin and GIPC, a scaffolding protein known to regulate cell surface receptor expression and trafficking. Co-immunoprecipitation and immunofluorescence confocal studies both demonstrate a specific interaction between endoglin and GIPC in endothelial cells, mediated by a class I PDZ binding motif in the cytoplasmic domain of endoglin. Subcellular distribution studies demonstrate that endoglin recruits GIPC to the plasma membrane and co-localizes with GIPC in a TGFbeta-independent manner, with GIPC-promoting cell surface retention of endoglin. Endoglin specifically enhanced TGF-beta1-induced phosphorylation of Smad 1/5/8, increased a Smad 1/5/8 responsive promoter, and inhibited endothelial cell migration in a manner dependent on the ability of endoglin to interact with GIPC. These studies define a novel mechanism for the regulation of endoglin signaling and function in endothelial cells and demonstrate a new role for GIPC in TGF-beta signaling.

  18. Endoglin Promotes Transforming Growth Factor β-mediated Smad 1/5/8 Signaling and Inhibits Endothelial Cell Migration through Its Association with GIPC*

    PubMed Central

    Lee, Nam Y.; Ray, Bridgette; How, Tam; Blobe, Gerard C.

    2008-01-01

    Transforming growth factor β (TGF-β) signals through two distinct pathways to regulate endothelial cell proliferation, migration, and angiogenesis, the ALK-1/Smad 1/5/8 and ALK-5/Smad2/3 pathways. Endoglin is a co-receptor predominantly expressed in endothelial cells that participates in TGFβ-mediated signaling with ALK-1 and ALK-5 and regulates critical aspects of cellular and biological responses. The embryonic lethal phenotype of knock-out mice because of defects in angiogenesis and disease-causing mutations resulting in human vascular diseases both support essential roles for endoglin, ALK-1, and ALK-5 in the vasculature. However, the mechanism by which endoglin mediates TGF-β signaling through ALK-1 and ALK-5 has remained elusive. Here we describe a novel interaction between endoglin and GIPC, a scaffolding protein known to regulate cell surface receptor expression and trafficking. Co-immunoprecipitation and immunofluorescence confocal studies both demonstrate a specific interaction between endoglin and GIPC in endothelial cells, mediated by a class I PDZ binding motif in the cytoplasmic domain of endoglin. Subcellular distribution studies demonstrate that endoglin recruits GIPC to the plasma membrane and co-localizes with GIPC in a TGFβ-independent manner, with GIPC-promoting cell surface retention of endoglin. Endoglin specifically enhanced TGF-β1-induced phosphorylation of Smad 1/5/8, increased a Smad 1/5/8 responsive promoter, and inhibited endothelial cell migration in a manner dependent on the ability of endoglin to interact with GIPC. These studies define a novel mechanism for the regulation of endoglin signaling and function in endothelial cells and demonstrate a new role for GIPC in TGF-β signaling. PMID:18775991

  19. KIT Signaling Promotes Growth of Colon Xenograft Tumors in Mice and Is Up-Regulated in a Subset of Human Colon Cancers.

    PubMed

    Chen, Evan C; Karl, Taylor A; Kalisky, Tomer; Gupta, Santosh K; O'Brien, Catherine A; Longacre, Teri A; van de Rijn, Matt; Quake, Stephen R; Clarke, Michael F; Rothenberg, Michael E

    2015-09-01

    Receptor tyrosine kinase (RTK) inhibitors have advanced colon cancer treatment. We investigated the role of the RTK KIT in development of human colon cancer. An array of 137 patient-derived colon tumors and their associated xenografts were analyzed by immunohistochemistry to measure levels of KIT and its ligand KITLG. KIT and/or KITLG was stably knocked down by expression of small hairpin RNAs from lentiviral vectors in DLD1, HT29, LS174T, and COLO320 DM colon cancer cell lines, and in UM-COLON#8 and POP77 xenografts; cells transduced with only vector were used as controls. Cells were analyzed by real-time quantitative reverse transcription polymerase chain reaction, single-cell gene expression analysis, flow cytometry, and immunohistochemical, immunoblot, and functional assays. Xenograft tumors were grown from control and KIT-knockdown DLD1 and UM-COLON#8 cells in immunocompromised mice and compared. Some mice were given the RTK inhibitor imatinib after injection of cancer cells; tumor growth was measured based on bioluminescence. We assessed tumorigenicity using limiting dilution analysis. KIT and KITLG were expressed heterogeneously by a subset of human colon tumors. Knockdown of KIT decreased proliferation of colon cancer cell lines and growth of xenograft tumors in mice compared with control cells. KIT knockdown cells had increased expression of enterocyte markers, decreased expression of cycling genes, and, unexpectedly, increased expression of LGR5 associated genes. No activating mutations in KIT were detected in DLD1, POP77, or UM-COLON#8 cells. However, KITLG-knockdown DLD1 cells formed smaller xenograft tumors than control cells. Gene expression analysis of single CD44(+) cells indicated that KIT can promote growth via KITLG autocrine and/or paracrine signaling. Imatinib inhibited growth of KIT(+) colon cancer organoids in culture and growth of xenograft tumors in mice. Cancer cells with endogenous KIT expression were more tumorigenic in mice. KIT and

  20. NFATC1 promotes cell growth and tumorigenesis in ovarian cancer up-regulating c-Myc through ERK1/2/p38 MAPK signal pathway.

    PubMed

    Xu, Wenwen; Gu, Junjie; Ren, Qingling; Shi, Yanqiu; Xia, Qinhua; Wang, Jing; Wang, Suli; Wang, Yingchun; Wang, Jinhua

    2016-04-01

    It has been reported that nuclear factor of activated T cells (NFATC1) was up-regulated in cancers mediating malignant behaviors. However, the role of NFATC1 in ovarian cancer has not been elucidated. In the present study, we undertook to explore the clinicopathological significance of NFATC1 expression and the mechanism by which NFATC1 works in ovarian cancer. Expression status of NFATC1 was examined using immunohistochemistry. Both knockdown and re-expression of NFATC1 on ovarian cancer cells were employed to observe the effect overgrowth. It was found that NFATC1 was significantly overexpressed in ovarian cancer tissues in comparison with paired normal control tissues and that overexpression of NFATC1 was significantly associated with metastasis and poor prognosis on clinical tissue level. In in vitro ovarian cancer cell lines, we found that NFATC1 can promote proliferation up-regulating c-myc through activation of ERK1/2/p38/MAPK signal pathway. Together, the results we obtained demonstrated that NFATC1 played oncogenic role in ovarian cancer. Mechanistically, NFATC1 promoted growth of ovarian cancer cells up-regulating c-myc through activation of ERK1/2/p38/MAPK signal pathway, suggesting that NFATC1 might be used as a therapeutic target for ovarian cancer.

  1. NRSN2 promotes osteosarcoma cell proliferation and growth through PI3K/Akt/MTOR and Wnt/β-catenin signaling

    PubMed Central

    Keremu, Ajimu; Maimaiti, Xiayimaierdan; Aimaiti, Abudusaimi; Yushan, Maimaiaili; Alike, Yamuhanmode; Yilihamu, Yilizati; Yusufu, Aihemaitijiang

    2017-01-01

    Osteosarcoma is the most common bone cancer in children and adults. However, its pathogenesis, especially molecular mechanisms remain elusive. In current study, we screened GEO Database and found a poorly studied protein Neurensin-2 (NRSN2), which is highly expressed in osteosarcoma tissues. Neurensin-2 (NRSN2) is a small neuronal membrane protein and localized in small vesicles in neural cells, previous study found that it has been implicated in hepatocellular carcinoma (HCC) and non-small cell lung cancer (NSCLC). We here report that the expression of NRSN2 is more commonlyelevated in 18 fresh osteosarcoma tissues. Furthermore, both loss- and gain-functions assays revealed that NRSN2 could promote osteosarcoma cell proliferation and growth both in vitro and in vivo. In addition, we further found that those effects on osteosarcoma by NRSN2 are associated with the dysregulated PI3K/AKT/mTOR signaling and Wnt/β-catenin signaling. In conclusion, our study found a novel oncogenic protein, NRSN2, which promotes osteosarcoma cell proliferation and as a membrane protein, NRSN2 also could be a potential treatment target for osteosarcoma. PMID:28401012

  2. Calcium Input Potentiates the Transforming Growth Factor (TGF)-β1-dependent Signaling to Promote the Export of Inorganic Pyrophosphate by Articular Chondrocyte*

    PubMed Central

    Cailotto, Frederic; Reboul, Pascal; Sebillaud, Sylvie; Netter, Patrick; Jouzeau, Jean-Yves; Bianchi, Arnaud

    2011-01-01

    Transforming growth factor (TGF)-β1 stimulates extracellular PPi (ePPi) generation and promotes chondrocalcinosis, which also occurs secondary to hyperparathyroidism-induced hypercalcemia. We previously demonstrated that ANK was up-regulated by TGF-β1 activation of ERK1/2 and Ca2+-dependent protein kinase C (PKCα). Thus, we investigated mechanisms by which calcium could affect ePPi metabolism, especially its main regulating proteins ANK and PC-1 (plasma cell membrane glycoprotein-1). We stimulated articular chondrocytes with TGF-β1 under extracellular (eCa2+) or cytosolic Ca2+ (cCa2+) modulations. We studied ANK, PC-1 expression (quantitative RT-PCR, Western blotting), ePPi levels (radiometric assay), and cCa2+ input (fluorescent probe). Voltage-operated Ca2+-channels (VOC) and signaling pathways involved were investigated with selective inhibitors. Finally, Ank promoter activity was evaluated (gene reporter). TGF-β1 elevated cCa2+ and ePPi levels (by up-regulating Ank and PC-1 mRNA/proteins) in an eCa2+ dose-dependent manner. TGF-β1 effects were suppressed by cCa2+ chelation or L- and T-VOC blockade while being mostly reproduced by ionomycin. In the same experimental conditions, the activation of Ras, the phosphorylation of ERK1/2 and PKCα, and the stimulation of Ank promoter activity were affected similarly. Activation of SP1 (specific protein 1) and ELK-1 (Ets-like protein-1) transcription factors supported the regulatory role of Ca2+. SP1 or ELK-1 overexpression or blockade experiments demonstrated a major contribution of ELK-1, which acted synergistically with SP1 to activate Ank promoter in response to TGF-β1. TGF-β1 promotes input of eCa2+ through opening of L- and T-VOCs, to potentiate ERK1/2 and PKCα signaling cascades, resulting in an enhanced activation of Ank promoter and ePPi production in chondrocyte. PMID:21471198

  3. Calcium input potentiates the transforming growth factor (TGF)-beta1-dependent signaling to promote the export of inorganic pyrophosphate by articular chondrocyte.

    PubMed

    Cailotto, Frederic; Reboul, Pascal; Sebillaud, Sylvie; Netter, Patrick; Jouzeau, Jean-Yves; Bianchi, Arnaud

    2011-06-03

    Transforming growth factor (TGF)-β1 stimulates extracellular PP(i) (ePP(i)) generation and promotes chondrocalcinosis, which also occurs secondary to hyperparathyroidism-induced hypercalcemia. We previously demonstrated that ANK was up-regulated by TGF-β1 activation of ERK1/2 and Ca(2+)-dependent protein kinase C (PKCα). Thus, we investigated mechanisms by which calcium could affect ePP(i) metabolism, especially its main regulating proteins ANK and PC-1 (plasma cell membrane glycoprotein-1). We stimulated articular chondrocytes with TGF-β1 under extracellular (eCa(2+)) or cytosolic Ca(2+) (cCa(2+)) modulations. We studied ANK, PC-1 expression (quantitative RT-PCR, Western blotting), ePP(i) levels (radiometric assay), and cCa(2+) input (fluorescent probe). Voltage-operated Ca(2+)-channels (VOC) and signaling pathways involved were investigated with selective inhibitors. Finally, Ank promoter activity was evaluated (gene reporter). TGF-β1 elevated cCa(2+) and ePP(i) levels (by up-regulating Ank and PC-1 mRNA/proteins) in an eCa(2+) dose-dependent manner. TGF-β1 effects were suppressed by cCa(2+) chelation or L- and T-VOC blockade while being mostly reproduced by ionomycin. In the same experimental conditions, the activation of Ras, the phosphorylation of ERK1/2 and PKCα, and the stimulation of Ank promoter activity were affected similarly. Activation of SP1 (specific protein 1) and ELK-1 (Ets-like protein-1) transcription factors supported the regulatory role of Ca(2+). SP1 or ELK-1 overexpression or blockade experiments demonstrated a major contribution of ELK-1, which acted synergistically with SP1 to activate Ank promoter in response to TGF-β1. TGF-β1 promotes input of eCa(2+) through opening of L- and T-VOCs, to potentiate ERK1/2 and PKCα signaling cascades, resulting in an enhanced activation of Ank promoter and ePP(i) production in chondrocyte.

  4. Androgen receptor promotes sex-independent angiogenesis in response to ischemia and is required for activation of vascular endothelial cell growth factor receptor signaling

    PubMed Central

    Yoshida, Sumiko; Aihara, Ken-ichi; Ikeda, Yasumasa; Sumitomo-Ueda, Yuka; Uemoto, Ryoko; Ishikawa, Kazue; Ise, Takayuki; Yagi, Shusuke; Iwase, Takashi; Mouri, Yasuhiro; Sakari, Matomo; Matsumoto, Takahiro; Takeyama, Ken-ichi; Akaike, Masashi; Matsumoto, Mitsuru; Sata, Masataka; Walsh, Kenneth; Kato, Shigeaki; Matsumoto, Toshio

    2014-01-01

    Background Hypoandrogenemia is associated with an increased risk of ischemic diseases. Since actions of androgens are exerted through androgen receptor (AR) activation, we studied hind limb ischemia in AR knockout (KO) mice to elucidate the role of AR in response to ischemia. Methods and Results Both male and female ARKO mice exhibited impaired blood flow recovery, more cellular apoptosis and a higher incidence of autoamputation after ischemia. In ex vivo and in vivo angiogenesis studies, AR-deficient vascular endothelial cells showed reduced angiogenic capability. In ischemic limbs of ARKO mice, reductions in the phosphorylation of the Akt protein kinase and endothelial nitric oxide synthase (eNOS) were observed despite a robust increase in hypoxia-inducible factor 1α and vascular endothelial cell growth factor (VEGF) gene expression. In in vitro studies, siRNA-mediated ablation of AR in vascular endothelial cells blunted VEGF-stimulated phosphorylation of Akt and eNOS. Immunoprecipitation experiments documented an association between AR and kinase insert domain protein receptor (KDR) that promoted the recruitment of downstream signaling components. Conclusion These results document a physiological role of AR in gender-independent angiogenic potency and provide evidence for a novel cross-talk between androgen/AR signaling and VEGF/KDR signaling pathways. PMID:23723256

  5. Disruption of transforming growth factor-β signaling in thyroid follicular epithelial cells or intrathyroidal fibroblasts does not promote thyroid carcinogenesis.

    PubMed

    Shimamura, Mika; Nakahara, Mami; Kurashige, Tomomi; Yasui, Kazuaki; Nakashima, Masahiro; Nagayama, Yuji

    2014-01-01

    Transforming growth factor β (TGF-β) members, pleiotropic cytokines, play a critical role for carcinogenesis generally as a tumor suppressor in the early cancer development, but as a tumor promoter in the late stage of cancer progression. The present study was designed to clarify the role for TGF-β signaling in early thyroid carcinogenesis using the conditional Tgfbr2(floxE2/floxE2) knock-in mice, having 2 loxP sites at introns 1 and 2 of Tgfb2r gene. When these mice were crossed with thyroid peroxidase (TPO)-Cre or fibroblast-specific protein-1 (FSP1)-Cre, the resultant mice, Tgfbr2(tpoKO) and Tgfbr2(fspKO), lost TGF-β II receptor expression (thereby TGF-β signaling) specifically in the thyroid follicular epithelial cells or fibroblasts, respectively. The thyroid morphology was monitored up to 52 weeks in these mice, showing no tumor development, except one Tgfbr2(tpoKO) mouse developing follicular adenoma like-lesion. Our data suggest that TGF-β signaling in mesenchymal or follicular epithelial cells of the thyroid does not appear to function as a tumor suppressive barrier at the early stage of thyroid carcinogenesis.

  6. Growth Factor Midkine Promotes T-Cell Activation through Nuclear Factor of Activated T Cells Signaling and Th1 Cell Differentiation in Lupus Nephritis.

    PubMed

    Masuda, Tomohiro; Maeda, Kayaho; Sato, Waichi; Kosugi, Tomoki; Sato, Yuka; Kojima, Hiroshi; Kato, Noritoshi; Ishimoto, Takuji; Tsuboi, Naotake; Uchimura, Kenji; Yuzawa, Yukio; Maruyama, Shoichi; Kadomatsu, Kenji

    2017-04-01

    Activated T cells play crucial roles in the pathogenesis of autoimmune diseases, including lupus nephritis (LN). The activation of calcineurin/nuclear factor of activated T cells (NFAT) and STAT4 signaling is essential for T cells to perform various effector functions. Here, we identified the growth factor midkine (MK; gene name, Mdk) as a novel regulator in the pathogenesis of 2,6,10,14-tetramethylpentadecane-induced LN via activation of NFAT and IL-12/STAT4 signaling. Wild-type (Mdk(+/+)) mice showed more severe glomerular injury than MK-deficient (Mdk(-/-)) mice, as demonstrated by mesangial hypercellularity and matrix expansion, and glomerular capillary loops with immune-complex deposition. Compared with Mdk(-/-) mice, the frequency of splenic CD69(+) T cells and T helper (Th) 1 cells, but not of regulatory T cells, was augmented in Mdk(+/+) mice in proportion to LN disease activity, and was accompanied by skewed cytokine production. MK expression was also enhanced in activated CD4(+) T cells in vivo and in vitro. MK induced activated CD4(+) T cells expressing CD69 through nuclear activation of NFAT transcription and selectively increased in vitro differentiation of naive CD4(+) T cells into Th1 cells by promoting IL-12/STAT4 signaling. These results suggest that MK serves an indispensable role in the NFAT-regulated activation of CD4(+) T cells and Th1 cell differentiation, eventually leading to the exacerbation of LN.

  7. Plant growth promoting rhizobacterium

    DOEpatents

    Doktycz, Mitchel John; Pelletier, Dale A.; Schadt, Christopher Warren; Tuskan, Gerald A.; Weston, David

    2015-08-11

    The present invention is directed to the Pseudomonas fluorescens strain GM30 deposited under ATCC Accession No. PTA-13340, compositions containing the GM30 strain, and methods of using the GM30 strain to enhance plant growth and/or enhance plant resistance to pathogens.

  8. Fibroblast growth factor receptor 2 promotes osteogenic differentiation in mesenchymal cells via ERK1/2 and protein kinase C signaling.

    PubMed

    Miraoui, Hichem; Oudina, Karim; Petite, Hervé; Tanimoto, Yukiho; Moriyama, Keiji; Marie, Pierre J

    2009-02-20

    Mesenchymal stem cells (MSCs) are able to differentiate into several lineages including osteoblasts. The signaling mechanisms involved in the osteogenic differentiation of MSCs are however not fully understood. We investigated the role of fibroblast growth factor receptor 2 (FGFR2) in osteoblast committment and differentiation of murine mesenchymal C3H10T1/2 cells stably transfected with wild type (WT) or activated FGFR2 due to Apert S252W genetic mutation (MT). WT FGFR2 slightly increased, whereas MT FGFR2 strongly increased, FGFR2 tyrosine phosphorylation, indicating activation of the receptor. WT and MT FGFR2 increased C3H10T1/2 cell proliferation but not survival. Both WT and MT FGFR2 increased early and late osteoblast gene expression and matrix mineralization. Forced expression of WT and MT FGFR2 also increased osteoblast gene expression in MC3T3-E1 calvaria osteoblasts. In both cell types, MT FGFR2 was more effective than WT FGFR2. In contrast, WT and MT FGFR2 decreased adipocyte differentiation of C3H10T1/2 cells. WT and MT FGFR2 induced ERK1/2 but not JNK or PI3K/AKT phosphorylation. MT, but not WT, also increased protein kinase C (PKC) activity. Pharmacological inhibition of ERK1/2 prevented cell proliferation induced by WT and MT FGFR2. Using dominant-negative ERK and PKCalpha vectors, we demonstrated that WT and MT FGFR2 promoted osteoblast gene expression through ERK1/2 and PKCalpha signaling, respectively. This study identifies FGFR2 as a novel regulatory molecule that promotes osteogenic differentiation in murine MSCs. The promoting effect of WT and MT FGFR2 is mediated by ERK1/2 and PKCalpha pathways that play essential and distinct roles in FGFR2-induced osteogenic differentiation of mesenchymal cells.

  9. Plant-growth-promoting rhizobacteria.

    PubMed

    Lugtenberg, Ben; Kamilova, Faina

    2009-01-01

    Several microbes promote plant growth, and many microbial products that stimulate plant growth have been marketed. In this review we restrict ourselves to bacteria that are derived from and exert this effect on the root. Such bacteria are generally designated as PGPR (plant-growth-promoting rhizobacteria). The beneficial effects of these rhizobacteria on plant growth can be direct or indirect. This review begins with describing the conditions under which bacteria live in the rhizosphere. To exert their beneficial effects, bacteria usually must colonize the root surface efficiently. Therefore, bacterial traits required for root colonization are subsequently described. Finally, several mechanisms by which microbes can act beneficially on plant growth are described. Examples of direct plant growth promotion that are discussed include (a) biofertilization, (b) stimulation of root growth, (c) rhizoremediation, and (d) plant stress control. Mechanisms of biological control by which rhizobacteria can promote plant growth indirectly, i.e., by reducing the level of disease, include antibiosis, induction of systemic resistance, and competition for nutrients and niches.

  10. Epidermal growth factor-like domain 7 promotes migration and invasion of human trophoblast cells through activation of MAPK, PI3K and NOTCH signaling pathways.

    PubMed

    Massimiani, M; Vecchione, L; Piccirilli, D; Spitalieri, P; Amati, F; Salvi, S; Ferrazzani, S; Stuhlmann, H; Campagnolo, L

    2015-05-01

    Epidermal growth factor-like domain 7 (Egfl7) is a gene that encodes a partially secreted protein and whose expression is largely restricted to the endothelia. We recently reported that EGFL7 is also expressed by trophoblast cells in mouse and human placentas. Here, we investigated the molecular pathways that are regulated by EGFL7 in trophoblast cells. Stable EGFL7 overexpression in a Jeg3 human choriocarcinoma cell line resulted in significantly increased cell migration and invasiveness, while cell proliferation was unaffected. Analysis of mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways showed that EGFL7 promotes Jeg3 cell motility by activating both pathways. We show that EGFL7 activates the epidermal growth factor receptor (EGFR) in Jeg3 cells, resulting in downstream activation of extracellular regulated kinases (ERKs). In addition, we provide evidence that EGFL7-triggered migration of Jeg3 cells involves activation of NOTCH signaling. EGFL7 and NOTCH1 are co-expressed in Jeg3 cells, and blocking of NOTCH activation abrogates enhanced migration of Jeg3 cells overexpressing EGFL7. We also demonstrate that signaling through EGFR and NOTCH converged to mediate EGFL7 effects. Reduction of endogenous EGFL7 expression in Jeg3 cells significantly decreased cell migration. We further confirmed that EGFL7 stimulates cell migration by using primary human first trimester trophoblast (PTB) cells overexpressing EGFL7. In conclusion, our data suggest that in trophoblast cells, EGFL7 regulates cell migration and invasion by activating multiple signaling pathways. Our results provide a possible explanation for the correlation between reduced expression of EGFL7 and inadequate trophoblast invasion observed in placentopathies.

  11. Promotion of Cell Growth and Adhesion of a Peptide Hydrogel Scaffold via mTOR/Cadherin Signaling.

    PubMed

    Wei, Guojun; Wang, Liping; Dong, Daming; Teng, Zhaowei; Shi, Zuowei; Wang, Kaifu; An, Gang; Guan, Ying; Han, Bo; Yao, Meng; Xian, Cory J

    2017-02-18

    Understanding neurite outgrowth, orientation, and migration is important for the design of biomaterials that interface with the neural tissue. However, the molecular signaling alternations have not been well elucidated to explain the impact of hydrogels on cell morphology. In our previous studies, a silk fibroin peptide (SF16) hydrogel was found to be an effective matrix for the viability, morphology and proliferation of PC12 rat pheocrhomocytoma cells. We found that PC12 cells in the peptide hydrogel exhibited adhesive morphology compared to those cultured in agarose or collagen. Moreover, we identified that cell adhesion molecules (E- and N-cadherin) controlled by mTOR signaling were highly induced in PC12 cells cultured in the SF16 peptide hydrogel. Our findings suggest that the SF16 peptide might be suitable to be a cell-adhesion material in cell culture or tissue engineering, and mTOR/cadherin signaling is required for the cell adhesion in the SF16-peptide hydrogel. This article is protected by copyright. All rights reserved.

  12. A novel rice protein family of OsHIGDs may be involved in early signalling of hypoxia-promoted stem growth in deepwater rice.

    PubMed

    Hwang, Soong-Taek; Choi, Dongsu

    2016-10-01

    OsHIGDs was identified as a novel hypoxia-responsive protein family. Among them, OsHIGD2 is characterized as a mitochondrial protein and is related to hypoxia signalling through interacting with mitochondrial proteins of critical functions in reducing cell damages caused by hypoxia. Recent evidence supports ethylene as a key factor in modulating plant responses to submergence stress. Meanwhile, there has been general consent that ethylene is not the only signal for the submergence-induced stem growth. In this study, we confirmed that hypoxia also promotes stem elongation in deepwater rice even in the absence of ethylene. As components of ethylene-independent hypoxia signalling, five HIGD (hypoxia-induced gene domain) protein genes were identified. Among the genes, OsHIGD2 showed the fastest and strongest induction by hypoxia as well as submergence. Co-expression analysis indicated that OsHIGD2 had a simultaneous expression pattern with fermentation-related genes, such as ADH1 (alcohol dehydrogenase 1) and PDC2 (pyruvate decarboxylase 2). Transient expression of OsHIGD2 in leaf epidermal cells of Nicotiana benthamiana provided evidence that the protein is localized to mitochondria. We further identified OsHIGD2-interacting proteins through the yeast two-hybrid assay using OsHIGD2 as bait. As a result, three mitochondrial proteins were discovered that function in the regulation of redox potential or reduction of protein damages caused by reactive oxygen species. In this report, we propose that OsHIGD2 is a mitochondrial protein which takes part in the early stage of hypoxia signalling by interacting with proteins that are related to oxygen utilization.

  13. Transforming growth factor alpha promotes osteosarcoma metastasis by ICAM-1 and PI3K/Akt signaling pathway.

    PubMed

    Hou, Chun-Han; Lin, Feng-Ling; Tong, Kai-Biao; Hou, Sheng-Mon; Liu, Ju-Fang

    2014-06-15

    Osteosarcoma is the most common primary malignancy of bone and is characterized by a high malignant and metastatic potential. Transforming growth factor alpha (TGF-α) is classified as the EGF (epidermal growth factor)-like family, which is involved in cancer cellular activities such as proliferation, motility, migration, adhesion and invasion abilities. However, the effect of TGF-α on human osteosarcoma is largely unknown. We found that TGF-α increased the cell migration and expression of intercellular adhesion molecule-1 (ICAM-1) in human osteosarcoma cells. Transfection of cells with ICAM-1 siRNA reduced TGF-α-mediated cell migration. We also found that the phosphatidylinositol 3'-kinase (PI3K)/Akt/NF-κB pathway was activated after TGF-α treatment, and TGF-α-induced expression of ICAM-1 and cell migration was inhibited by the specific inhibitors and siRNAs of PI3K, Akt, and NF-κB cascades. In addition, knockdown of TGF-α expression markedly decreased cell metastasis in vitro and in vivo. Our results indicate that TGF-α/EGFR interaction elicits PI3K and Akt activation, which in turn activates NF-κB, resulting in the expression of ICAM-1 and contributing the migration of human osteosarcoma cells.

  14. Overexpression of activin-A and -B in malignant mesothelioma – Attenuated Smad3 signaling responses and ERK activation promote cell migration and invasive growth

    SciTech Connect

    Tamminen, Jenni A.; Yin, Miao; Rönty, Mikko; Sutinen, Eva; Pasternack, Arja; Ritvos, Olli; Myllärniemi, Marjukka; Koli, Katri

    2015-03-01

    Activin-A and activin-B, members of the TGF-β superfamily, are regulators of reproductive functions, inflammation and wound healing. These dimeric molecules regulate various cellular activities such as proliferation, migration and suvival. Malignant mesothelioma is an asbestos exposure related tumor affecting mainly pleura and it usually has a dismal prognosis. Here, we demonstrate that both activin-A and -B are abundantly expressed in mesothelioma tumor tissue as well as in cultured primary and established mesothelioma cells. Migratory and invasive mesothelioma cells were also found to have attenuated activation of the Smad2/3 pathway in response to activins. Migration and invasive growth of the cells in three-dimentional matrix was prevented by inhibition of activin activity using a soluble activin receptor 2B (sActR2B-Fc). This was associated with decreased ERK activity. Furthermore, migration and invasive growth was significantly inhibited by blocking ERK phosphorylation. Mesothelioma tumors are locally invasive and our results clearly suggest that acivins have a tumor-promoting function in mesothelioma through increasing expression and switching from canonical Smad3 pathway to non-canonical ERK pathway signaling. Blocking activin activity offers a new therapeutic approach for inhibition of mesothelioma invasive growth. - Highlights: • Activin-A and activin-B are highly expressed in mesothelioma. • Mesothelioma cell migration and invasive growth can be blocked with sActR2B. • Activin induced Smad3 activity is attenuated in invasive mesothelioma cells. • Activins induce ERK activity in mesothelioma cells.

  15. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways.

    PubMed

    Niu, Dong-Dong; Liu, Hong-Xia; Jiang, Chun-Hao; Wang, Yun-Peng; Wang, Qing-Ya; Jin, Hai-Ling; Guo, Jian-Hua

    2011-05-01

    Bacillus cereus AR156 is a plant growth-promoting rhizobacterium that induces resistance against a broad spectrum of pathogens including Pseudomonas syringae pv. tomato DC3000. This study analyzed AR156-induced systemic resistance (ISR) to DC3000 in Arabidopsis ecotype Col-0 plants. Compared with mock-treated plants, AR156-treated ones showed an increase in biomass and reductions in disease severity and pathogen density in the leaves. The defense-related genes PR1, PR2, PR5, and PDF1.2 were concurrently expressed in the leaves of AR156-treated plants, suggesting simultaneous activation of the salicylic acid (SA)- and the jasmonic acid (JA)- and ethylene (ET)-dependent signaling pathways by AR156. The above gene expression was faster and stronger in plants treated with AR156 and inoculated with DC3000 than that in plants only inoculated with DC3000. Moreover, the cellular defense responses hydrogen peroxide accumulation and callose deposition were induced upon challenge inoculation in the leaves of Col-0 plants primed by AR156. Also, pretreatment with AR156 led to a higher level of induced protection against DC3000 in Col-0 than that in the transgenic NahG, the mutant jar1 or etr1, but the protection was absent in the mutant npr1. Therefore, AR156 triggers ISR in Arabidopsis by simultaneously activating the SA- and JA/ET-signaling pathways in an NPR1-dependent manner that leads to an additive effect on the level of induced protection.

  16. Oncogenic K-Ras signals through epidermal growth factor receptor and wild-type H-Ras to promote radiation survival in pancreatic and colorectal carcinoma cells.

    PubMed

    Cengel, Keith A; Voong, K Rahn; Chandrasekaran, Sanjay; Maggiorella, Laurence; Brunner, Thomas B; Stanbridge, Eric; Kao, Gary D; McKenna, W Gillies; Bernhard, Eric J

    2007-04-01

    Pancreatic and colorectal carcinomas frequently express oncogenic/mutant K-Ras that contributes to both tumorigenesis and clinically observed resistance to radiation treatment. We have previously shown that farnesyltransferase inhibitors (FTI) radiosensitize many pancreatic and colorectal cancer cell lines that express oncogenic K-ras at doses that inhibit the prenylation and activation of H-Ras but not K-Ras. In the present study, we have examined the mechanism of FTI-mediated radiosensitization in cell lines that express oncogenic K-Ras and found that wild-type H-Ras is a contributor to radiation survival in tumor cells that express oncogenic K-Ras. In these experiments, inhibiting the expression of oncogenic K-Ras, wild-type H-Ras, or epidermal growth factor receptor (EGFR) led to similar levels of radiosensitization as treatment with the FTI tipifarnib. Treatment with the EGFR inhibitor gefitinib led to similar levels of radiosensitization, and the combinations of tipifarnib or gefitinib plus inhibition of K-Ras, H-Ras, or EGFR expression did not provide additional radiosensitization compared with tipifarnib or gefitinib alone. Finally, supplementing culture medium with the EGFR ligand transforming growth factor alpha was able to reverse the radiosensitizing effect of inhibiting K-ras expression. Taken together, these findings suggest that EGFR-activated H-Ras signaling is initiated by oncogenic K-Ras to promote radiation survival in pancreatic and colorectal cancers.

  17. Oncogenic K-Ras Signals through Epidermal Growth Factor Receptor and Wild-Type H-Ras to Promote Radiation Survival in Pancreatic and Colorectal Carcinoma Cells1

    PubMed Central

    Cengel, Keith A.; Voong, K. Rahn; Chandrasekaran, Sanjay; Maggiorella, Laurence; Brunner, Thomas B.; Stanbridge, Eric; Kao, Gary D.; McKenna, W. Gillies; Bernhard, Eric J.

    2007-01-01

    Pancreatic and colorectal carcinomas frequently express oncogenic/mutant K-Ras that contributes to both tumorigenesis and clinically observed resistance to radiation treatment. We have previously shown that farnesyltransferase inhibitors (FTI) radiosensitize many pancreatic and colorectal cancer cell lines that express oncogenic K-ras at doses that inhibit the prenylation and activation of H-Ras but not K-Ras. In the present study, we have examined the mechanism of FTI-mediated radiosensitization in cell lines that express oncogenic K-Ras and found that wild-type H-Ras is a contributor to radiation survival in tumor cells that express oncogenic K-Ras. In these experiments, inhibiting the expression of oncogenic K-Ras, wild-type H-Ras, or epidermal growth factor receptor (EGFR) led to similar levels of radiosensitization as treatment with the FTI tipifarnib. Treatment with the EGFR inhibitor gefitinib led to similar levels of radiosensitization, and the combinations of tipifarnib or gefitinib plus inhibition of K-Ras, H-Ras, or EGFR expression did not provide additional radiosensitization compared with tipifarnib or gefitinib alone. Finally, supplementing culture medium with the EGFR ligand transforming growth factor α was able to reverse the radiosensitizing effect of inhibiting K-ras expression. Taken together, these findings suggest that EGFR-activated H-Ras signaling is initiated by oncogenic K-Ras to promote radiation survival in pancreatic and colorectal cancers. PMID:17460778

  18. Vascular Endothelial Growth Factor (VEGF) Promotes Assembly of the p130Cas Interactome to Drive Endothelial Chemotactic Signaling and Angiogenesis*

    PubMed Central

    Evans, Ian M.; Kennedy, Susan A.; Paliashvili, Ketevan; Santra, Tapesh; Yamaji, Maiko; Lovering, Ruth C.; Britton, Gary; Frankel, Paul; Kolch, Walter; Zachary, Ian C.

    2017-01-01

    p130Cas is a polyvalent adapter protein essential for cardiovascular development, and with a key role in cell movement. In order to identify the pathways by which p130Cas exerts its biological functions in endothelial cells we mapped the p130Cas interactome and its dynamic changes in response to VEGF using high-resolution mass spectrometry and reconstruction of protein interaction (PPI) networks with the aid of multiple PPI databases. VEGF enriched the p130Cas interactome in proteins involved in actin cytoskeletal dynamics and cell movement, including actin-binding proteins, small GTPases and regulators or binders of GTPases. Detailed studies showed that p130Cas association of the GTPase-binding scaffold protein, IQGAP1, plays a key role in VEGF chemotactic signaling, endothelial polarization, VEGF-induced cell migration, and endothelial tube formation. These findings indicate a cardinal role for assembly of the p130Cas interactome in mediating the cell migratory response to VEGF in angiogenesis, and provide a basis for further studies of p130Cas in cell movement. PMID:28007913

  19. Increased Serotonin Signaling Contributes to the Warburg Effect in Pancreatic Tumor Cells Under Metabolic Stress and Promotes Growth of Pancreatic Tumors in Mice.

    PubMed

    Jiang, Shu-Heng; Li, Jun; Dong, Fang-Yuan; Yang, Jian-Yu; Liu, De-Jun; Yang, Xiao-Mei; Wang, Ya-Hui; Yang, Min-Wei; Fu, Xue-Liang; Zhang, Xiao-Xin; Li, Qing; Pang, Xiu-Feng; Huo, Yan-Miao; Li, Jiao; Zhang, Jun-Feng; Lee, Ho-Young; Lee, Su-Jae; Qin, Wen-Xin; Gu, Jian-Ren; Sun, Yong-Wei; Zhang, Zhi-Gang

    2017-07-01

    of 5-HT to be increased in human PDAC tissues compared with non-tumor pancreatic tissues, and PDAC cell lines compared with non-transformed pancreatic cells. Incubation of PDAC cell lines with 5-HT increased proliferation and prevented apoptosis. Agonists of HTR2B, but not other 5-HT receptors, promoted proliferation and prevented apoptosis of PDAC cells. Knockdown of HTR2B in PDAC cells, or incubation of cells with HTR2B inhibitors, reduced their growth as xenograft tumors in mice. We observed a correlation between 5-HT and glycolytic flux in PDAC cells; levels of metabolic enzymes involved in glycolysis, the phosphate pentose pathway, and hexosamine biosynthesis pathway increased significantly in PDAC cells following 5-HT stimulation. 5-HT stimulation led to formation of the HTR2B-LYN-p85 complex, which increased PI3K-Akt-mTOR signaling and the Warburg effect by increasing protein levels of MYC and HIF1A. Administration of SB204741 to KPC mice slowed growth and metabolism of established pancreatic tumors and prolonged survival of the mice. Human PDACs have increased levels of 5-HT, and PDAC cells increase expression of its receptor, HTR2B. These increases allow for tumor glycolysis under metabolic stress and promote growth of pancreatic tumors and PDAC xenograft tumors in mice. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  20. Epidermal growth factor receptor signaling promotes pancreatic β-cell proliferation in response to nutrient excess in rats through mTOR and FOXM1.

    PubMed

    Zarrouki, Bader; Benterki, Isma; Fontés, Ghislaine; Peyot, Marie-Line; Seda, Ondrej; Prentki, Marc; Poitout, Vincent

    2014-03-01

    The cellular and molecular mechanisms underpinning the compensatory increase in β-cell mass in response to insulin resistance are essentially unknown. We previously reported that a 72-h coinfusion of glucose and Intralipid (GLU+IL) induces insulin resistance and a marked increase in β-cell proliferation in 6-month-old, but not in 2-month-old, Wistar rats. The aim of the current study was to identify the mechanisms underlying nutrient-induced β-cell proliferation in this model. A transcriptomic analysis identified a central role for the forkhead transcription factor FOXM1 and its targets, and for heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF), a ligand of the EGF receptor (EGFR), in nutrient-induced β-cell proliferation. Phosphorylation of ribosomal S6 kinase, a mammalian target of rapamycin (mTOR) target, was increased in islets from GLU+IL-infused 6-month-old rats. HB-EGF induced proliferation of insulin-secreting MIN6 cells and isolated rat islets, and this effect was blocked in MIN6 cells by the EGFR inhibitor AG1478 or the mTOR inhibitor rapamycin. Coinfusion of either AG1478 or rapamycin blocked the increase in FOXM1 signaling, β-cell proliferation, and β-cell mass and size in response to GLU+IL infusion in 6-month-old rats. We conclude that chronic nutrient excess promotes β-cell mass expansion via a pathway that involves EGFR signaling, mTOR activation, and FOXM1-mediated cell proliferation.

  1. Chronic alcohol intake promotes tumor growth in a diethylnitrosamine-induced hepatocarcinogenesis mouse model through increased Wnt/Beta-catenin signaling

    USDA-ARS?s Scientific Manuscript database

    Ethanol (EtOH) metabolism is involved in both initiating and promoting mechanisms in hepatocellular carcinoma progression in chronic alcoholics. In this study, we developed a mouse model to test the hypothesis that chronic EtOH consumption promotes tumor growth irrespective of EtOH-related initiati...

  2. Signal verification can promote reliable signalling

    PubMed Central

    Broom, Mark; Ruxton, Graeme D.; Schaefer, H. Martin

    2013-01-01

    The central question in communication theory is whether communication is reliable, and if so, which mechanisms select for reliability. The primary approach in the past has been to attribute reliability to strategic costs associated with signalling as predicted by the handicap principle. Yet, reliability can arise through other mechanisms, such as signal verification; but the theoretical understanding of such mechanisms has received relatively little attention. Here, we model whether verification can lead to reliability in repeated interactions that typically characterize mutualisms. Specifically, we model whether fruit consumers that discriminate among poor- and good-quality fruits within a population can select for reliable fruit signals. In our model, plants either signal or they do not; costs associated with signalling are fixed and independent of plant quality. We find parameter combinations where discriminating fruit consumers can select for signal reliability by abandoning unprofitable plants more quickly. This self-serving behaviour imposes costs upon plants as a by-product, rendering it unprofitable for unrewarding plants to signal. Thus, strategic costs to signalling are not a prerequisite for reliable communication. We expect verification to more generally explain signal reliability in repeated consumer–resource interactions that typify mutualisms but also in antagonistic interactions such as mimicry and aposematism. PMID:24068354

  3. Promoting Intellectual Growth in Adulthood.

    ERIC Educational Resources Information Center

    Kehle, Thomas J.; Bray, Melissa A.; Chafouleas, Sandra M; McLoughlin, Caven S.

    2002-01-01

    Article discusses problems associated with promoting intellectual growth in adulthood. Defines characteristics of intelligent behavior as incorporating individual attainment of Resources, Intimacy, Competence, and Health (RICH). Presents the RICH theory as a way to define and address the goals of intelligent enhancement. (JDM)

  4. Sequential Transphosphorylation of the BRI1/BAK1 Receptor Kinase Pair Regulates Early Events of the Brassinosteriod Signaling Pathway Promoting Plant Growth and Development

    USDA-ARS?s Scientific Manuscript database

    Brassinosteroids (BRs) regulate multiple aspects of plant growth and development through a signal transduction pathway that is initiated by BR binding to the transmembrane receptor kinase BRI1. Activated BRI1 heterodimerizes with a second receptor kinase, BAK1, leading to enhanced signaling output. ...

  5. A Novel Osteogenic Oxysterol Compound for Therapeutic Development to Promote Bone Growth: Activation of Hedgehog Signaling and Osteogenesis through Smoothened Binding

    PubMed Central

    Montgomery, Scott R.; Nargizyan, Taya; Meliton, Vicente; Nachtergaele, Sigrid; Rohatgi, Rajat; Stappenbeck, Frank; Jung, Michael E.; Johnson, Jared S.; Aghdasi, Bayan; Tian, Haijun; Weintraub, Gil; Inoue, Hirokazu; Atti, Elisa; Tetradis, Sotirios; Pereira, Renata C; Hokugo, Akishige; Alobaidaan, Raed; Tan, Yanlin; Hahn, Theodor J.; Wang, Jeffrey C; Parhami, Farhad

    2015-01-01

    Osteogenic factors are often used in orthopedics to promote bone growth, improve fracture healing, and induce spine fusion. Osteogenic oxysterols are naturally occurring molecules that were shown to induce osteogenic differentiation in vitro and promote spine fusion in vivo. The purpose of this study was to identify an osteogenic oxysterol more suitable for clinical development than those previously reported, and evaluate its ability to promote osteogenesis in vitro and spine fusion in rats in vivo. Among more than 100 oxysterol analogues synthesized, Oxy133 induced significant expression of osteogenic markers Runx2, osterix (OSX), alkaline phosphatase (ALP), bone sialoprotein (BSP), and osteocalcin (OCN) in C3H10T1/2 mouse embryonic fibroblasts and in M2-10B4 mouse marrow stromal cells. Oxy133-induced activation of an 8×-Gli luciferase reporter, its direct binding to Smoothened, and the inhibition of Oxy133-induced osteogenic effects by the Hedgehog (Hh) pathway inhibitor, cyclopamine, demonstrated the role of Hh pathway in mediating osteogenic responses to Oxy133. Oxy133 did not stimulate osteogenesis via BMP or Wnt signaling. Oxy133 induced the expression of OSX, BSP, and OCN and stimulated robust mineralization in primary human mesenchymal stem cells. In vivo, bilateral spine fusion occurred through endochondral ossification and was observed in animals treated with Oxy133 at the fusion site on xray after 4 weeks and confirmed with manual assessment, micro CT (μCT), and histology after 8 weeks, with equal efficiency to recombinant human bone morphogenetic protein-2 (rhBMP-2). Unlike rhBMP-2, Oxy133 did not induce adipogenesis in the fusion mass and resulted in denser bone evidenced by greater BV/TV ratio and smaller trabecular separation. Findings here suggest that Oxy133 has significant potential as an osteogenic molecule with greater ease of synthesis and improved time to fusion compared to previously studied oxysterols. Small molecule osteogenic oxysterols

  6. Microenvironmental autophagy promotes tumour growth.

    PubMed

    Katheder, Nadja S; Khezri, Rojyar; O'Farrell, Fergal; Schultz, Sebastian W; Jain, Ashish; Rahman, Mohammed M; Schink, Kay O; Theodossiou, Theodossis A; Johansen, Terje; Juhász, Gábor; Bilder, David; Brech, Andreas; Stenmark, Harald; Rusten, Tor Erik

    2017-01-19

    As malignant tumours develop, they interact intimately with their microenvironment and can activate autophagy, a catabolic process which provides nutrients during starvation. How tumours regulate autophagy in vivo and whether autophagy affects tumour growth is controversial. Here we demonstrate, using a well characterized Drosophila melanogaster malignant tumour model, that non-cell-autonomous autophagy is induced both in the tumour microenvironment and systemically in distant tissues. Tumour growth can be pharmacologically restrained using autophagy inhibitors, and early-stage tumour growth and invasion are genetically dependent on autophagy within the local tumour microenvironment. Induction of autophagy is mediated by Drosophila tumour necrosis factor and interleukin-6-like signalling from metabolically stressed tumour cells, whereas tumour growth depends on active amino acid transport. We show that dormant growth-impaired tumours from autophagy-deficient animals reactivate tumorous growth when transplanted into autophagy-proficient hosts. We conclude that transformed cells engage surrounding normal cells as active and essential microenvironmental contributors to early tumour growth through nutrient-generating autophagy.

  7. Growth factors, nutrient signaling, and cardiovascular aging

    PubMed Central

    Fontana, Luigi; Vinciguerra, Manlio; Longo, Valter D.

    2012-01-01

    Growth factors regulated by specific macronutrients have been shown to promote aging and accelerate mortality in the great majority of the organisms studied. In particular, the enzymes activated by growth hormone (GH), insulin and insulin-like growth factor 1 (IGF-I) in mammals and their orthologs in simple model organisms represent perhaps the best-understood proteins involved in the aging process. Dietary restriction (DR), which reduces the level of IGF-I and of other growth factors, has been associated with protection from diabetes, cancer, and cardiovascular diseases and deficiencies in GH signaling and IGF-I are strongly associated with protection from cancer and diabetes in both mice and humans, but their role in cardiac function and cardiovascular diseases is controversial. Here we review the link between growth factors, cardiac function and heart disease with focus on the cardioprotective and sensitizing effect of growth factors in both model organisms and humans. PMID:22499903

  8. Syndecan-2 Exerts Antifibrotic Effects by Promoting Caveolin-1–mediated Transforming Growth Factor-β Receptor I Internalization and Inhibiting Transforming Growth Factor-β1 Signaling

    PubMed Central

    Shi, Yuanyuan; Gochuico, Bernadette R.; Yu, Guoying; Tang, Xiaomeng; Osorio, Juan C.; Fernandez, Isis E.; Risquez, Cristobal F.; Patel, Avignat S.; Shi, Ying; Wathelet, Marc G.; Goodwin, Andrew J.; Haspel, Jeffrey A.; Ryter, Stefan W.; Billings, Eric M.; Kaminski, Naftali; Morse, Danielle

    2013-01-01

    Rationale: Alveolar transforming growth factor (TGF)-β1 signaling and expression of TGF-β1 target genes are increased in patients with idiopathic pulmonary fibrosis (IPF) and in animal models of pulmonary fibrosis. Internalization and degradation of TGF-β receptor TβRI inhibits TGF-β signaling and could attenuate development of experimental lung fibrosis. Objectives: To demonstrate that after experimental lung injury, human syndecan-2 confers antifibrotic effects by inhibiting TGF-β1 signaling in alveolar epithelial cells. Methods: Microarray assays were performed to identify genes differentially expressed in alveolar macrophages of patients with IPF versus control subjects. Transgenic mice that constitutively overexpress human syndecan-2 in macrophages were developed to test the antifibrotic properties of syndecan-2. In vitro assays were performed to determine syndecan-2–dependent changes in epithelial cell TGF-β1 signaling, TGF-β1, and TβRI internalization and apoptosis. Wild-type mice were treated with recombinant human syndecan-2 during the fibrotic phase of bleomycin-induced lung injury. Measurements and Main Results: We observed significant increases in alveolar macrophage syndecan-2 levels in patients with IPF. Macrophage-specific overexpression of human syndecan-2 in transgenic mice conferred antifibrotic effects after lung injury by inhibiting TGF-β1 signaling and downstream expression of TGF-β1 target genes, reducing extracellular matrix production and alveolar epithelial cell apoptosis. In vitro, syndecan-2 promoted caveolin-1–dependent internalization of TGF-β1 and TβRI in alveolar epithelial cells, which inhibited TGF-β1 signaling and epithelial cell apoptosis. Therapeutic administration of human syndecan-2 abrogated lung fibrosis in mice. Conclusions: Alveolar macrophage syndecan-2 exerts antifibrotic effects by promoting caveolin-1–dependent TGF-β1 and TβRI internalization and inhibiting TGF-β1 signaling in alveolar epithelial

  9. Involvement of the salicylic acid signaling pathway in the systemic resistance induced in Arabidopsis by plant growth-promoting fungus Fusarium equiseti GF19-1.

    PubMed

    Kojima, Hanae; Hossain, Md Motaher; Kubota, Mayumi; Hyakumachi, Mitsuro

    2013-01-01

    Plant growth-promoting fungi (PGPF) are effective biocontrol agents for a number of soil-borne diseases and are known for their ability to trigger induced systemic resistance (ISR). In this study, we investigated the mechanisms triggered by PGPF Fusarium equiseti GF19-1, which is known to increase pathogen resistance in plants, by using GF19-1 spores and the culture filtrate (CF) to treat the roots of Arabidopsis thaliana. Subsequently, the leaves were challenged with Pseudomonas syringae pv tomato DC3000 (Pst) bacteria. Arabidopsis plants treated with GF19-1 spores or the CF elicited ISR against the Pst pathogen, resulting in a restriction of disease severity and suppression of pathogen proliferation. Examination of ISR in various signaling mutants and transgenic plants showed that GF19-1-induced protection was observed in the jasmonate response mutant jar1 and the ethylene response mutant etr1, whereas it was blocked in Arabidopsis plants expressing the NahG transgene or demonstrating a disruption of the NPR1 gene (npr1). Analysis of systemic gene expression revealed that GF19-1 modulates the expression of salicylic acid (SA)-responsive PR-1, PR-2, and PR-5 genes. Moreover, transient accumulation of SA was observed in GF19-1-treated plant, whereas the level was further enhanced after Pst infection of GF19-1-pretreated plants, indicating that accumulation of SA was potentiated when Arabidopsis plants were primed for disease resistance by GF19-1. In conclusion, these findings imply that the induced protective effect conferred by F. equiseti GF19-1 against the leaf pathogen Pst requires responsiveness to an SA-dependent pathway.

  10. 2-Amino-3-methylimidazo[4,5-f]quinoline (IQ) promotes mouse hepatocarcinogenesis by activating transforming growth factor-β and Wnt/β-catenin signaling pathways.

    PubMed

    Xie, Xiao-Li; Wei, Min; Kakehashi, Anna; Yamano, Shotaro; Tajiri, Masaki; Wanibuchi, Hideki

    2012-02-01

    The purposes of the present study were to investigate the modifying effects of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), a genotoxic carcinogen produced during cooking of protein-rich foods, and elucidate underlying mechanisms in a two-stage hepatocarcinogenesis mice model. Six-week-old B6C3F1 mice were subjected to two-thirds partial hepatectomy at the beginning of the study, followed by an intraperitoneal injection of diethylnitrosamine on day 1. Starting 1 week later, they were fed diets containing IQ at doses of 30, 100, or 300 ppm for 39 weeks. A dose-dependent trend for increase in eosinophilic altered foci as well as eosinophilic hepatocellular adenomas was observed, along with significant elevation in the incidence of hepatocellular carcinomas in the 100- and 300-ppm IQ groups as compared with initiation control group. Furthermore, IQ elevated the protein expression levels of Wnt1, transforming growth factor-β (TGF-β), TGF-β receptors 1 and 2 (TβR1 and TβR2), and phosphorylated c-Jun (p-c-Jun), while suppressing those of E-cadherin and p21(WAF1/Cip1). Moreover, translocation of β-catenin to the nuclei as well as upregulated nuclear expression of c-Myc and cyclin D1, which are downstream targets of β-catenin and p-c-Jun, were detected at 100 and 300 ppm. These findings suggest that IQ exerts dose-dependent promoting effects on mice hepatocarcinogenesis by activating TGF-β and Wnt/β-catenin signaling pathways and inhibiting cell adhesion.

  11. Herbivory-induced jasmonates constrain plant sugar accumulation and growth by antagonizing gibberellin signaling and not by promoting secondary metabolite production.

    PubMed

    Machado, Ricardo A R; Baldwin, Ian T; Erb, Matthias

    2017-07-01

    Plants respond to herbivory by reconfiguring hormonal networks, increasing secondary metabolite production and decreasing growth. Furthermore, some plants display a decrease in leaf energy reserves in the form of soluble sugars and starch, leading to the hypothesis that herbivory-induced secondary metabolite production and growth reduction may be linked through a carbohydrate-based resource trade-off. In order to test the above hypothesis, we measured leaf carbohydrates and plant growth in seven genetically engineered Nicotiana attenuata genotypes that are deficient in one or several major herbivore-induced, jasmonate-dependent defensive secondary metabolites and proteins. Furthermore, we manipulated gibberellin and jasmonate signaling, and quantified the impact of these phytohormones on secondary metabolite production, sugar accumulation and growth. Simulated herbivore attack by Manduca sexta specifically reduced leaf sugar concentrations and growth in a jasmonate-dependent manner. These effects were similar or even stronger in defenseless genotypes with intact jasmonate signaling. Gibberellin complementation rescued carbohydrate accumulation and growth in induced plants without impairing the induction of defensive secondary metabolites. These results are consistent with a hormonal antagonism model rather than a resource-cost model to explain the negative relationship between herbivory-induced defenses, leaf energy reserves and growth. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  12. 3-Deoxysappanchalcone Promotes Proliferation of Human Hair Follicle Dermal Papilla Cells and Hair Growth in C57BL/6 Mice by Modulating WNT/β-Catenin and STAT Signaling

    PubMed Central

    Kim, Young Eun; Choi, Hyung Chul; Lee, In-Chul; Yuk, Dong Yeon; Lee, Hyosung; Choi, Bu Young

    2016-01-01

    3-Deoxysappanchalcone (3-DSC) has been reported to possess anti-allergic, antiviral, anti-inflammatory and antioxidant activities. In the present study, we investigated the effects of 3-DSC on the proliferation of human hair follicle dermal papilla cells (HDPCs) and mouse hair growth in vivo. A real-time cell analyzer system, luciferase assay, Western blot and real-time polymerase chain reaction (PCR) were employed to measure the biochemical changes occurring in HDPCs in response to 3-DSC treatment. The effect of 3-DSC on hair growth in C57BL/6 mice was also examined. 3-DSC promoted the proliferation of HDPCs, similar to Tofacitinib, an inhibitor of janus-activated kinase (JAK). 3-DSC promoted phosphorylation of β-catenin and transcriptional activation of the T-cell factor. In addition, 3-DSC potentiated interleukin-6 (IL-6)-induced phosphorylation and subsequent transactivation of signal transducer and activator of transcription-3 (STAT3), thereby increasing the expression of cyclin-dependent kinase-4 (Cdk4), fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF). On the contrary, 3-DSC attenuated STAT6 mRNA expression and IL4-induced STAT6 phosphorylation in HDPCs. Finally, we observed that topical application of 3-DSC promoted the anagen phase of hair growth in C57BL/6 mice. 3-DSC stimulates hair growth possibly by inducing proliferation of follicular dermal papilla cells via modulation of WNT/β-catenin and STAT signaling. PMID:27795451

  13. FGFR signaling promotes the growth of triple-negative and basal-like breast cancer cell lines both in vitro and in vivo.

    PubMed

    Sharpe, Rachel; Pearson, Alex; Herrera-Abreu, Maria T; Johnson, Damian; Mackay, Alan; Welti, Jonathan C; Natrajan, Rachael; Reynolds, Andrew R; Reis-Filho, Jorge S; Ashworth, Alan; Turner, Nicholas C

    2011-08-15

    The oncogenic drivers of triple-negative (TN) and basal-like breast cancers are largely unknown. Substantial evidence now links aberrant signaling by the fibroblast growth factor receptors (FGFR) to the development of multiple cancer types. Here, we examined the role of FGFR signaling in TN breast cancer. We examined the sensitivity of a panel of 31 breast cancer cell lines to the selective FGFR inhibitor PD173074 and investigated the potential mechanisms underlying sensitivity. TN breast cancer cell lines were more sensitive to PD173074 than comparator cell lines (P = 0.011), with 47% (7/15) of TN cell lines showing significantly reduced growth. The majority of TN cell lines showed only modest sensitivity to FGFR inhibition in two-dimensional growth but were highly sensitive in anchorage-independent conditions. PD173074 inhibited downstream mitogen-activated protein kinase and PI3K-AKT signaling and induced cell-cycle arrest and apoptosis. Basal-like breast cancer cell lines were found to express FGF2 ligand (11/21 positive) and, similarly, 62% of basal-like breast cancers expressed FGF2, as assessed by immunohistochemistry compared with 5% of nonbasal breast cancers (P < 0.0001). RNA interference targeting of FGF2 in basal-like cell lines significantly reduced growth in vitro and reduced down stream signaling, suggesting an autocrine FGF2 signaling loop. Treatment with PD173074 significantly reduced the growth of CAL51 basal-like breast cancer cell line xenografts in vivo. Basal-like breast cancer cell lines, and breast cancers, express autocrine FGF2 and show sensitivity to FGFR inhibitors, identifying a potential novel therapeutic approach for these cancers. ©2011 AACR.

  14. Human placental extract exerts hair growth-promoting effects through the GSK-3β signaling pathway in human dermal papilla cells.

    PubMed

    Kwon, Tae-Rin; Oh, Chang Taek; Choi, Eun Ja; Park, Hye Min; Han, Hae Jung; Ji, Hyi Jeong; Kim, Beom Joon

    2015-10-01

    Human placental extract (HPE) is widely used in Korea to relieve fatigue. However, its effects on human dermal papilla cells (hDPCs) remain unknown. In the present study, in an effort to develop novel therapies to promote hair growth, we screened HPE. We demonstrate that HPE has hair growth‑promoting activities and induces β‑catenin expression through the inhibition of glycogen synthase kinase‑3β (GSK‑3β) by phosphorylation in hDPCs. Treatment with HPE significantly increased the viability of the hDPCs in a concentration‑dependent manner, as shown by bromodeoxyuridine (BrdU) assay. HPE also significantly increased the alkaline phosphatase (ALP) expression levels. The increased β‑catenin levels and the inhibition of GSK‑3β (Ser9) by phosphorylation suggested that HPE promoted the hair-inductive capacity of hDPCs. We compared the effects of treatment with HPE alone and treatment with HPE in conjunction with minoxidil (MXD). We found that HPE plus MXD effectively inhibited GSK‑3β by phosphorylation (Ser9) in the hDPCs. Moreover, we demonstrated that HPE was effective in inducing root hair elongation in rat vibrissa hair follicles, and that treatment with HPE led to a delay in catagen progression. Overall, our findings suggest that HPE promotes hair growth and may thus provide the basis of a novel therapeutic strategy for the clinical treatment of hair loss.

  15. HPV-16 E6 promotes cell growth of esophageal cancer via downregulation of miR-125b and activation of Wnt/β-catenin signaling pathway.

    PubMed

    Zang, Bao; Huang, Guojin; Wang, Xiaowei; Zheng, Shiying

    2015-01-01

    High-risk human papillomavirus (HPV) is a possible cause of esophageal cancer. However, the molecular pathogenesis of HPV-infected esophageal cancer remains unclear. The expression levels of some microRNAs including miR-125b have been negatively correlated with HPV infection, and miR-125b downregulation is associated with tumorigenesis. In addition, Wnt/β-catenin signaling pathway has been suggested to play an important role in esophageal cancer (EC). We examined miR-125b and Wnt/β-catenin signaling pathway in HPV-16 E6 promoted tumor progression in EC. HPV-16 E6 transfection decreased markedly the expression levels of miR-125b and promoted the colony formation in the Eca 109 and Kyse 150 cell lines, and restoration of miR-125b expression level antagonized the increased colony formation in HPV-16 E6 transfected cell lines. We also demonstrated that overexpression of E6 upregulated the Wnt/β-catenin signaling activity via modulating the multiple regulators including TLE1, GSK3β, and sFRP4. Overexpression of miR-125b restored the expression levels of these proteins. Expression of miR-125b was lower in HPV-16 E6 positive esophageal cancer tissues, and was negatively correlated with E6 mRNA levels. Our results indicate that HPV-16 E6 promotes tumorigenesis in EC via down-regulation of miR-125b, and this underlying mechanism may be involved in the activation of the Wnt/β-catenin signaling pathway.

  16. Ubiquitin E3 ligase Nedd4-1 acts as a downstream target of PI3K/PTEN-mTORC1 signaling to promote neurite growth

    PubMed Central

    Hsia, Hung-En; Kumar, Rohit; Luca, Rossella; Takeda, Michiko; Courchet, Julien; Nakashima, Jonathan; Wu, Shumin; Goebbels, Sandra; An, Wenlin; Eickholt, Britta J.; Polleux, Franck; Rotin, Daniela; Wu, Hong; Rossner, Moritz J.; Bagni, Claudia; Rhee, Jeong-Seop; Brose, Nils; Kawabe, Hiroshi

    2014-01-01

    Protein ubiquitination is a core regulatory determinant of neural development. Previous studies have indicated that the Nedd4-family E3 ubiquitin ligases Nedd4-1 and Nedd4-2 may ubiquitinate phosphatase and tensin homolog (PTEN) and thereby regulate axonal growth in neurons. Using conditional knockout mice, we show here that Nedd4-1 and Nedd4-2 are indeed required for axonal growth in murine central nervous system neurons. However, in contrast to previously published data, we demonstrate that PTEN is not a substrate of Nedd4-1 and Nedd4-2, and that aberrant PTEN ubiquitination is not involved in the impaired axon growth upon deletion of Nedd4-1 and Nedd4-2. Rather, PTEN limits Nedd4-1 protein levels by modulating the activity of mTORC1, a protein complex that controls protein synthesis and cell growth. Our data demonstrate that Nedd4-family E3 ligases promote axonal growth and branching in the developing mammalian brain, where PTEN is not a relevant substrate. Instead, PTEN controls neurite growth by regulating Nedd4-1 expression. PMID:25157163

  17. Identification of a non-growth factor role for GM-CSF in advanced atherosclerosis: promotion of macrophage apoptosis and plaque necrosis through IL-23 signaling.

    PubMed

    Subramanian, Manikandan; Thorp, Edward; Tabas, Ira

    2015-01-16

    Granulocyte macrophage colony-stimulating factor (GM-CSF, Csf2) is a growth factor for myeloid-lineage cells that has been implicated in the pathogenesis of atherosclerosis and other chronic inflammatory diseases. However, the role of GM-CSF in advanced atherosclerotic plaque progression, the process that gives rise to clinically dangerous plaques, is unknown. To understand the role of GM-CSF in advanced atherosclerotic plaque progression. Ldlr(-/-) mice and Csf2(-/-)Ldlr(-/-) mice were fed a Western-type diet for 12 weeks, and then parameters of advanced plaque progression in the aortic root were quantified. Lesions from the GM-CSF-deficient mice showed a substantial decrease in 2 key hallmarks of advanced atherosclerosis, lesional macrophage apoptosis and plaque necrosis, which indicates that GM-CSF promotes plaque progression. Based on a combination of in vitro and in vivo studies, we show that the mechanism involves GM-CSF-mediated production of interleukin-23, which increases apoptosis susceptibility in macrophages by promoting proteasomal degradation of the cell survival protein Bcl-2 (B-cell lymphoma 2) and by increasing oxidative stress. In low-density lipoprotein-driven atherosclerosis in mice, GM-CSF promotes advanced plaque progression by increasing macrophage apoptosis susceptibility. This action of GM-CSF is mediated by its interleukin-23-inducing activity rather than its role as a growth factor. © 2014 American Heart Association, Inc.

  18. A synthetic mechano-growth factor E peptide promotes rat tenocyte migration by lessening cell stiffness and increasing F-actin formation via the FAK-ERK1/2 signaling pathway

    SciTech Connect

    Zhang, Bingyu; Luo, Qing; Mao, Xinjian; Xu, Baiyao; Yang, Li; Ju, Yang; Song, Guanbin

    2014-03-10

    Tendon injuries are common in sports and are frequent reasons for orthopedic consultations. The management of damaged tendons is one of the most challenging problems in orthopedics. Mechano-growth factor (MGF), a recently discovered growth repair factor, plays positive roles in tissue repair through the improvement of cell proliferation and migration and the protection of cells against injury-induced apoptosis. However, it remains unclear whether MGF has the potential to accelerate tendon repair. We used a scratch wound assay in this study to demonstrate that MGF-C25E (a synthetic mechano-growth factor E peptide) promotes the migration of rat tenocytes and that this promotion is accompanied by an elevation in the expression of the following signaling molecules: focal adhesion kinase (FAK) and extracellular signal regulated kinase1/2 (ERK1/2). Inhibitors of the FAK and ERK1/2 pathways inhibited the MGF-C25E-induced tenocyte migration, indicating that MGF-C25E promotes tenocyte migration through the FAK-ERK1/2 signaling pathway. The analysis of the mechanical properties showed that the Young's modulus of tenocytes was decreased through treatment of MGF-C25E, and an obvious formation of pseudopodia and F-actin was observed in MGF-C25E-treated tenocytes. The inhibition of the FAK or ERK1/2 signals restored the decrease in Young's modulus and inhibited the formation of pseudopodia and F-actin. Overall, our study demonstrated that MGF-C25E promotes rat tenocyte migration by lessening cell stiffness and increasing pseudopodia formation via the FAK-ERK1/2 signaling pathway. - Highlights: • Mechano-growth factor E peptide (MGF-C25E) promotes migration of rat tenocytes. • MGF-C25E activates the FAK-ERK1/2 pathway in rat tenocytes. • MGF-C25E induces the actin remodeling and the formation of pseudopodia, and decreases the stiffness in rat tenocytes. • MGF-C25E promotes tenocyte migration via altering stiffness and forming pseudopodia by the activation of the FAK-ERK1

  19. Plant growth-promoting bacterial endophytes.

    PubMed

    Santoyo, Gustavo; Moreno-Hagelsieb, Gabriel; Orozco-Mosqueda, Ma del Carmen; Glick, Bernard R

    2016-02-01

    Bacterial endophytes ubiquitously colonize the internal tissues of plants, being found in nearly every plant worldwide. Some endophytes are able to promote the growth of plants. For those strains the mechanisms of plant growth-promotion known to be employed by bacterial endophytes are similar to the mechanisms used by rhizospheric bacteria, e.g., the acquisition of resources needed for plant growth and modulation of plant growth and development. Similar to rhizospheric plant growth-promoting bacteria, endophytic plant growth-promoting bacteria can act to facilitate plant growth in agriculture, horticulture and silviculture as well as in strategies for environmental cleanup (i.e., phytoremediation). Genome comparisons between bacterial endophytes and the genomes of rhizospheric plant growth-promoting bacteria are starting to unveil potential genetic factors involved in an endophytic lifestyle, which should facilitate a better understanding of the functioning of bacterial endophytes.

  20. Growth hormone stimulates hepatic expression of bovine growth hormone receptor messenger ribonucleic acid through signal transducer and activator of transcription 5 activation of a major growth hormone receptor gene promoter.

    PubMed

    Jiang, Honglin; Wang, Ying; Wu, Miaozong; Gu, Zhiliang; Frank, Stuart J; Torres-Diaz, Roberto

    2007-07-01

    The objective of this study was to determine whether and how GH regulates hepatic expression of GH receptor (GHR) mRNA in cattle. Ribonuclease protection assays revealed that injection of GH in a slow-release formula increased both hepatic GHR and IGF-I mRNAs 1 wk after the injection. The increases in GHR and IGF-I mRNAs were highly correlated. Western blot analysis showed that the injection also increased liver GHR protein level. In cattle and other mammals, hepatic GHR mRNA is expressed as variants that differ in the 5'-untranslated region due to the use of different promoters in transcription and/or alternative splicing. We found that GH increased the expression of the liver-specific GHR mRNA variant GHR1A without affecting the other two major GHR mRNA variants in the bovine liver, GHR1B and GHR1C. In transient transfection analyses, GH could robustly activate reporter gene expression from a 2.7-kb GHR1A promoter, suggesting that GH augmentation of GHR1A mRNA expression in the liver is at least partially mediated at the transcriptional level. Additional transfection analyses of serially 5'-truncated fragments of this promoter narrowed the GH-responsive sequence element down to a 210-bp region that contained a putative signal transducer and activator of transcription 5 (STAT5) binding site. EMSAs demonstrated that this putative STAT5 binding site was able to bind to STAT5b protein. In cotransfection assays, deletion of this putative STAT5 binding site abolished most of the GH response of the GHR1A promoter. Like 1-wk GH action, 6-h (i.e. short-term) GH action also increased liver expression of GHR1A and total GHR mRNAs in cattle. These observations together suggest that GH directly stimulates the expression of one GHR mRNA variant, GHR1A, through binding STAT5 to its promoter, thereby increasing GHR mRNA and protein expression in the bovine liver.

  1. L-Arginine promotes protein synthesis and cell growth in brown adipocyte precursor cells via the mTOR signal pathway.

    PubMed

    Ma, Xi; Han, Meng; Li, Defa; Hu, Shengdi; Gilbreath, Kyler R; Bazer, Fuller W; Wu, Guoyao

    2017-05-01

    L-Arginine has been reported to enhance brown adipose tissue developments in fetal lambs of obese ewes, but the underlying mechanism is unknown. The present study tested the hypothesis that L-arginine stimulates growth and development of brown adipocyte precursor cells (BAPCs) through activation of mammalian target of rapamycin cell signaling. BAPCs isolated from fetal lambs at day 90 of gestation were incubated   for 6 h in arginine-free DMEM, and then cultured in DMEM with concentrations of 50, 100, 200, 500 or 1000 μmol L-arginine/L for 24-96 h. Cell proliferation, protein turnover, the mammalian target of rapamycin (mTOR) signaling pathway and pre-adipocyte differentiation markers were determined. L-arginine treatment enhanced (P < 0.05) BAPC growth and protein synthesis, while inhibiting proteolysis in a dose-dependent manner. Compared with 50 and 100 μmol/L (the concentrations of arginine in the maternal plasma of obese ewes), 200 μmol L-arginine/L (the concentrations of arginine in the maternal plasma of obese ewes receiving arginine supplementation) increased (P < 0.05) the abundances of phosphorylated mTOR, P70(S6K) and 4EBP1, as well as the abundances of PGC1α, UCP1, BMP7 and PRDM16. These novel findings indicate that increasing extra-cellular arginine concentration from 50 to 200 µmol/L activates mTOR cell signaling in BAPCs and enhances their growth and development in a dose-dependent manner. Our results provide a mechanism for arginine supplementation to enhance the development of brown adipose tissue in fetal lambs.

  2. Downregulated MicroRNA-200a in Meningiomas Promotes Tumor Growth by Reducing E-Cadherin and Activating the Wnt/β-Catenin Signaling Pathway▿

    PubMed Central

    Saydam, Okay; Shen, Yiping; Würdinger, Thomas; Senol, Ozlem; Boke, Elvan; James, Marianne F.; Tannous, Bakhos A.; Stemmer-Rachamimov, Anat O.; Yi, Ming; Stephens, Robert M.; Fraefel, Cornel; Gusella, James F.; Krichevsky, Anna M.; Breakefield, Xandra O.

    2009-01-01

    Meningiomas, one of the most common human brain tumors, are derived from arachnoidal cells associated with brain meninges, are usually benign, and are frequently associated with neurofibromatosis type 2. Here, we define a typical human meningioma microRNA (miRNA) profile and characterize the effects of one downregulated miRNA, miR-200a, on tumor growth. Elevated levels of miR-200a inhibited meningioma cell growth in culture and in a tumor model in vivo. Upregulation of miR-200a decreased the expression of transcription factors ZEB1 and SIP1, with consequent increased expression of E-cadherin, an adhesion protein associated with cell differentiation. Downregulation of miR-200a in meningiomas and arachnoidal cells resulted in increased expression of β-catenin and cyclin D1 involved in cell proliferation. miR-200a was found to directly target β-catenin mRNA, thereby inhibiting its translation and blocking Wnt/β-catenin signaling, which is frequently involved in cancer. A direct correlation was found between the downregulation of miR-200a and the upregulation of β-catenin in human meningioma samples. Thus, miR-200a appears to act as a multifunctional tumor suppressor miRNA in meningiomas through effects on the E-cadherin and Wnt/β-catenin signaling pathways. This reveals a previously unrecognized signaling cascade involved in meningioma tumor development and highlights a novel molecular interaction between miR-200a and Wnt signaling, thereby providing insights into novel therapies for meningiomas. PMID:19703993

  3. FGF signalling regulates bone growth through autophagy.

    PubMed

    Cinque, Laura; Forrester, Alison; Bartolomeo, Rosa; Svelto, Maria; Venditti, Rossella; Montefusco, Sandro; Polishchuk, Elena; Nusco, Edoardo; Rossi, Antonio; Medina, Diego L; Polishchuk, Roman; De Matteis, Maria Antonietta; Settembre, Carmine

    2015-12-10

    Skeletal growth relies on both biosynthetic and catabolic processes. While the role of the former is clearly established, how the latter contributes to growth-promoting pathways is less understood. Macroautophagy, hereafter referred to as autophagy, is a catabolic process that plays a fundamental part in tissue homeostasis. We investigated the role of autophagy during bone growth, which is mediated by chondrocyte rate of proliferation, hypertrophic differentiation and extracellular matrix (ECM) deposition in growth plates. Here we show that autophagy is induced in growth-plate chondrocytes during post-natal development and regulates the secretion of type II collagen (Col2), the major component of cartilage ECM. Mice lacking the autophagy related gene 7 (Atg7) in chondrocytes experience endoplasmic reticulum storage of type II procollagen (PC2) and defective formation of the Col2 fibrillary network in the ECM. Surprisingly, post-natal induction of chondrocyte autophagy is mediated by the growth factor FGF18 through FGFR4 and JNK-dependent activation of the autophagy initiation complex VPS34-beclin-1. Autophagy is completely suppressed in growth plates from Fgf18(-/-) embryos, while Fgf18(+/-) heterozygous and Fgfr4(-/-) mice fail to induce autophagy during post-natal development and show decreased Col2 levels in the growth plate. Strikingly, the Fgf18(+/-) and Fgfr4(-/-) phenotypes can be rescued in vivo by pharmacological activation of autophagy, pointing to autophagy as a novel effector of FGF signalling in bone. These data demonstrate that autophagy is a developmentally regulated process necessary for bone growth, and identify FGF signalling as a crucial regulator of autophagy in chondrocytes.

  4. The Systemic Acquired Resistance Regulator OsNPR1 Attenuates Growth by Repressing Auxin Signaling through Promoting IAA-Amido Synthase Expression.

    PubMed

    Li, Xiaozun; Yang, Dong-Lei; Sun, Li; Li, Qun; Mao, Bizeng; He, Zuhua

    2016-09-01

    Systemic acquired resistance is a long-lasting and broad-spectrum disease resistance to pathogens. Our previous study demonstrated that overexpression of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (OsNPR1), a master gene for systemic acquired resistance in rice (Oryza sativa), greatly enhanced resistance to bacterial blight caused by Xanthomonas oryzae pv oryzae However, the growth and development of the OsNPR1 overexpression (OsNPR1-OX) plants were restrained, and the mechanism remained elusive. In this study, we dissected the OsNPR1-induced growth inhibition. We found that the OsNPR1-OX lines displayed phenotypes mimicking auxin-defective mutants, with decreases in root system, seed number and weight, internode elongation, and tiller number. Whole-genome expression analysis revealed that genes related to the auxin metabolism and signaling pathway were differentially expressed between the OsNPR1-OX and wild-type plants. Consistently, the indole-3-acetic acid (IAA) content was decreased and the auxin distribution pattern was altered in OsNPR1-OX plants. Importantly, we found that some GH3 family members, in particular OsGH3.8 coding IAA-amido synthetase, were constitutively up-regulated in OsNPR1-OX plants. Decreased OsGH3.8 expression by RNA interference could partially restore IAA level and largely rescue the restrained growth and development phenotypes but did not affect the disease resistance of OsNPR1-OX plants. Taken together, we revealed that OsNPR1 affects rice growth and development by disrupting the auxin pathway at least partially through indirectly up-regulating OsGH3.8 expression.

  5. The Systemic Acquired Resistance Regulator OsNPR1 Attenuates Growth by Repressing Auxin Signaling through Promoting IAA-Amido Synthase Expression1[OPEN

    PubMed Central

    2016-01-01

    Systemic acquired resistance is a long-lasting and broad-spectrum disease resistance to pathogens. Our previous study demonstrated that overexpression of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (OsNPR1), a master gene for systemic acquired resistance in rice (Oryza sativa), greatly enhanced resistance to bacterial blight caused by Xanthomonas oryzae pv oryzae. However, the growth and development of the OsNPR1 overexpression (OsNPR1-OX) plants were restrained, and the mechanism remained elusive. In this study, we dissected the OsNPR1-induced growth inhibition. We found that the OsNPR1-OX lines displayed phenotypes mimicking auxin-defective mutants, with decreases in root system, seed number and weight, internode elongation, and tiller number. Whole-genome expression analysis revealed that genes related to the auxin metabolism and signaling pathway were differentially expressed between the OsNPR1-OX and wild-type plants. Consistently, the indole-3-acetic acid (IAA) content was decreased and the auxin distribution pattern was altered in OsNPR1-OX plants. Importantly, we found that some GH3 family members, in particular OsGH3.8 coding IAA-amido synthetase, were constitutively up-regulated in OsNPR1-OX plants. Decreased OsGH3.8 expression by RNA interference could partially restore IAA level and largely rescue the restrained growth and development phenotypes but did not affect the disease resistance of OsNPR1-OX plants. Taken together, we revealed that OsNPR1 affects rice growth and development by disrupting the auxin pathway at least partially through indirectly up-regulating OsGH3.8 expression. PMID:27378815

  6. Fascin 1 promoted the growth and migration of non-small cell lung cancer cells by activating YAP/TEAD signaling.

    PubMed

    Liang, Zhigang; Wang, Ying; Shen, Zhenya; Teng, Xiaomei; Li, Xinjian; Li, Chenwei; Wu, Weijie; Zhou, Zenghui; Wang, Zishan

    2016-08-01

    Fascin 1 (Fascin actin-bundling protein 1) is an actin-binding protein. Although several studies have reported the dysregulation of Fascin 1 in non-small cell lung cancer (NSCLC), its functions in the progression of NSCLC and the related molecular mechanism were not fully understood. In this study, the expression of Fascin 1 in NSCLC tissues was determined using quantitative PCR (qPCR), and the roles of Fascin 1 in the progression of NSCLC were investigated. It was found that both the messenger RNA (mRNA) level and the protein level of Fascin 1 were upregulated in NSCLC tissues. Forced expression of Fascin 1 promoted the growth and migration of NSCLC cells, while knocking down the expression of Fascin 1 inhibited the growth, migration, and tumorigenesis of NSCLC cells. Mechanism studies showed that Fascin 1 increased the transcriptional activity of the YAP/TEAD (Yes-associated protein/TEA domain transcriptional factor) complex, and knocking down the expression of Fascin 1 attenuated the expression of target genes downstream the YAP/TEAD complex. In addition, MST1 interacted with Fascin 1. Taken together, Fascin 1 plays an oncogenic role in NSCLC by activating the transcriptional activity of the YAP/TEAD complex.

  7. Follicle-stimulating hormone promotes age-related endometrial atrophy through cross-talk with transforming growth factor beta signal transduction pathway.

    PubMed

    Zhang, Dan; Li, Jingyi; Xu, Gufeng; Zhang, Runjv; Zhou, Chengliang; Qian, Yeqing; Liu, Yifeng; Chen, Luting; Zhu, Bo; Ye, Xiaoqun; Qu, Fan; Liu, Xinmei; Shi, Shuai; Yang, Weijun; Sheng, Jianzhong; Huang, Hefeng

    2015-04-01

    It is widely believed that endometrial atrophy in postmenopausal women is due to an age-related reduction in estrogen level. But the role of high circulating follicle-stimulating hormone (FSH) in postmenopausal syndrome is not clear. Here, we explored the role of high circulating FSH in physiological endometrial atrophy. We found that FSH exacerbated post-OVX endometrial atrophy in mice, and this effect was ameliorated by lowering FSH with Gonadotrophin-releasing hormone agonist (GnRHa). In vitro, FSH inhibited endometrial proliferation and promoted the apoptosis of primary cultured endometrial cells in a dose-dependent manner. In addition, upregulation of caspase3, caspase8, caspase9, autophagy-related proteins (ATG3, ATG5, ATG7, ATG12 and LC3) and downregulation of c-Jun were also observed in endometrial adenocytes. Furthermore, smad2 and smad3 showed a time-dependent activation in endometrial cells which can be partly inhibited by blocking the transforming growth factor beta receptor II (TβRII). In conclusion, FSH regulated endometrial atrophy by affecting the proliferation, autophagy and apoptosis of endometrial cells partly through activation of the transforming growth factor beta (TGFβ) pathway.

  8. IL-6 promotes the expression of vascular endothelial growth factor through the p38 signalling pathway in hypertrophied adenoids in children.

    PubMed

    Wang, Hongtian; Bai, Jing; Zhang, Jing; Yang, Wu; Zuo, Kejun; Li, Huabin

    2013-02-01

    To examine the expression of vascular endothelial growth factor (VEGF) in hypertrophied adenoids in children and investigate the possible regulatory mechanism. Thirty-eight children with hypertrophied adenoids (moderate, 16; severe, 22) were enrolled to investigate the VEGF expression in the adenoid tissues using immunohistochemistry (IHC) and quantitative reverse transcription polymerase chain reaction (qRT-PCR). The IL-6 concentration in the nasopharyngeal secretions was measured using an enzyme-linked immunosorbent assay (ELISA). VEGF mRNA expression was further measured in isolated adenoidal cells in vitro after IL-6 stimulation, and the activation of the p38 signalling pathway was determined by Western blot analysis. Our findings showed extensive immunoreactivity of VEGF in the hypertrophied adenoids in children. The levels of VEGF protein and mRNA were significantly higher in severely hypertrophied adenoids than in moderately hypertrophied adenoids (P<0.05). The expression of IL-6 was detectable in the nasopharyngeal secretions, which was significantly associated with the severity of the hypertrophied adenoid. VEGF mRNA expression was upregulated in isolated adenoidal cells in vitro after IL-6 stimulation, and the p38 signalling pathway was activated. The increased expression of VEGF in adenoid tissues suggests a possible role of the IL-6/VEGF axis in the pathogenesis of hypertrophied adenoids in children. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Interleukin17A Promotes Postoperative Cognitive Dysfunction by Triggering β-Amyloid Accumulation via the Transforming Growth Factor-β (TGFβ)/Smad Signaling Pathway

    PubMed Central

    Tian, Ayong; Ma, Hong; Zhang, Rongwei; Tan, Wenfei; Wang, Xiaolong; Wu, Binyang; Wang, Jun; Wan, Chengfu

    2015-01-01

    Although postoperative cognitive dysfunction (POCD) is relatively common in elderly patients who have undergone major surgery, the mechanisms underlying this postoperative complication are unclear. Previously, we have investigated the role of cytokine-mediated hippocampal inflammation in the development of POCD in a rat model. Here, we sought to determine in mice the role of cytokine interleukin17A (IL17A) in POCD and to characterize the associated signaling pathways. Old mice underwent hepatectomy surgery in the presence or absence of IL17A monoclonal antibody, and cognitive function, hippocampal neuroinflammation, and pathologic markers of Alzheimer’s disease (AD) were assessed. We found that the level of IL17A in the hippocampus was increased in hepatectomy mice and that cognitive impairment after surgery was associated with the appearance of certain pathological hallmarks of AD: activation of astrocytes, β-amyloid1-42 (Aβ1–42) production, upregulation of transforming growth factor-β (TGFβ), and increased phosphorylation of signaling mother against decapentaplegic peptide 3 (Smad3) protein in the hippocampus. Surgery-induced changes in cognitive dysfunction and changes in Aβ1–42 and TGFβ/Smad signaling were prevented by the administration of IL17A monoclonal antibody. In addition, IL17A-stimulated TGFβ/Smad activation and Aβ1–42 expression were reversed by IL17A receptor small interfering RNA and a TGFβ receptor inhibitor in cultured astrocytes. Our findings suggest that surgery can provoke IL17A-related hippocampal damage, as characterized by activation of astrocytes and TGFβ/Smad pathway dependent Aβ1–42 accumulation in old subjects. These changes likely contribute to the cognitive decline seen in POCD. PMID:26509545

  10. Hydrogen peroxide inhibits transforming growth factor-β1-induced cell cycle arrest by promoting Smad3 linker phosphorylation through activation of Akt-ERK1/2-linked signaling pathway.

    PubMed

    Choi, Jiyeon; Park, Seong Ji; Jo, Eun Ji; Lee, Hui-Young; Hong, Suntaek; Kim, Seong-Jin; Kim, Byung-Chul

    2013-06-14

    Hydrogen peroxide (H2O2) functions as a second messenger in growth factor receptor-mediated intracellular signaling cascade and is tumorigenic by virtue of its ability to promote cell proliferation; however, the mechanisms underlying the growth stimulatory action of H2O2 are less understood. Here we report an important mechanism for antagonistic effects of H2O2 on growth inhibitory response to transforming growth factor-β1 (TGF-β1). In Mv1Lu and HepG2 cells, pretreatment of H2O2 (0.05-0.2 mM) completely blocked TGF-β1-mediated induction of p15(INK4B) expression and increase of its promoter activity. Interestingly, H2O2 selectively suppressed the transcriptional activation potential of Smad3, not Smad2, in the absence of effects on TGF-β1-induced phosphorylation of the COOH-tail SSXS motif of Smad3 and its nuclear translocation. Mechanism studies showed that H2O2 increases the phosphorylation of Smad3 at the middle linker region in a concentration- and time-dependent manner and this effect is mediated by activation of extracellular signal-activated kinase 1/2 through Akt. Furthermore, expression of a mutant Smad3 in which linker phosphorylation sites were ablated significantly abrogated the inhibitory effects of H2O2 on TGF-β1-induced increase of p15(INK4B)-Luc reporter activity and blockade of cell cycle progression from G1 to S phase. These findings for the first time define H2O2 as a signaling molecule that modulate Smad3 linker phosphorylation and its transcriptional activity, thus providing a potential mechanism whereby H2O2 antagonizes the cytostatic function of TGF-β1.

  11. Hepatocyte growth factor promotes proliferation, invasion, and metastasis of myeloid leukemia cells through PI3K-AKT and MAPK/ERK signaling pathway

    PubMed Central

    Guo, Jiang-Rui; Li, Wei; Wu, Yong; Wu, Lin-Qing; Li, Xin; Guo, Ya-Fei; Zheng, Xiao-Hui; Lian, Xiao-Lan; Huang, Hui-Fang; Chen, Yuan-Zhong

    2016-01-01

    This study aims to investigate effects of HGF expression on biological behaviors of Kasumi-1 and HL60. Expression of HGF and c-Met gene were detected using qRT-PCR. Short hairpin RNA (shRNA) was used to reduce HGF expression. Silencing effect of shRNA was verified by qRT-PCR and western blot. Cell reproductive capacity, cell clonality and cell cycle (apoptosis) were detected by CCK-8, clone formation, flow cytometry (FCM), respectively. Cell adhesion, cell invasion ability and cell proliferation were also examined. Changes of PI3K-AKT, MAPK/ERK signaling factors were detected by western blot. HGF and c-Met expression in first-vist AML group was significantly higher than in AML-relief and normal control group. HGF shRNA can inhibit cell proliferation, inhibit cloning ability. Compared with control group, apoptosis ratios of Kasumi-1 and HL60 cell in interference groups were significantly higher. After shRNA interference, the number of adherent cells and transmembrane cells were significantly decreased compared with control group. Meanwhile, shRNA also down-regulated Bad, Bcl-XL, Bcl-2, CDK1, Cyclin B, MMP2, MMP9, and up-regulated cleaved caspase9, cleaved caspase3, cleaved PARP, Bax, and P21. Moreover, phosphorylated c-Met, AKT, Erk, and mTOR were also reduced. In conclusion, HGF and c-Met gene highly expressed among first-visit AML patients, but decreased after relief treatment. HGF may promote proliferation, invasion, and metastasis of AML cells through PI3K-AKT and MAPK/ERK signaling pathway. Therefore, proliferation and invasion ability of AML cell can be inhibited by down-regulating HGF gene to retardate cell in G2/M stage. PMID:27725846

  12. FERM Domain Interaction Promotes FAK Signaling

    PubMed Central

    Dunty, Jill M.; Gabarra-Niecko, Veronica; King, Michelle L.; Ceccarelli, Derek F. J.; Eck, Michael J.; Schaller, Michael D.

    2004-01-01

    From the results of deletion analyses, the FERM domain of FAK has been proposed to inhibit enzymatic activity and repress FAK signaling. We have identified a sequence in the FERM domain that is important for FAK signaling in vivo. Point mutations in this sequence had little effect upon catalytic activity in vitro. However, the mutant exhibits reduced tyrosine phosphorylation and dramatically reduced Src family kinase binding. Further, the abilities of the mutant to transduce biochemical signals and to promote cell migration were severely impaired. The results implicate a FERM domain interaction in cell adhesion-dependent activation of FAK and downstream signaling. We also show that the purified FERM domain of FAK interacts with full-length FAK in vitro, and mutation of this sequence disrupts the interaction. These findings are discussed in the context of models of FAK regulation by its FERM domain. PMID:15169899

  13. Inhibiting glycogen synthase kinase-3 and transforming growth factor-β signaling to promote epithelial transition of human adipose mesenchymal stem cells.

    PubMed

    Setiawan, Melina; Tan, Xiao-Wei; Goh, Tze-Wei; Hin-Fai Yam, Gary; Mehta, Jodhbir S

    2017-09-02

    This study was aimed to investigate the epithelial differentiation of human adipose-derived mesenchymal stem cells (ADSCs) by inhibiting glycogen synthase kinase-3 (GSK3) and transforming growth factor β (TGFβ) signaling. STEMPRO human ADSCs at passage 2 were treated with CHIR99021 (GSK3 inhibitor), E-616452 (TGFβ1 receptor kinase inhibitor), A-83-01 (TGFβ type 1 receptor inhibitor), valproic acid (histone deacetylase inhibitor), tranylcypromine (monoamine oxidase inhibitor) and all-trans retinoic acid for 72 h. The mesenchymal-epithelial transition was shown by down-regulation of mesenchymal genes (Slug, Zinc Finger E-box Binding Homeobox 1 ZEB1, integrin α5 ITGA5 and vimentin VIM) and up-regulation of epithelial genes (E-cadherin, Epithelial Cell Adhesion Molecule EpCAM, Zonula Occludens-1 ZO-1, occludin, deltaN p63 δNp63, Transcription Factor 4 TCF4 and Twist Family bHLH Transcription Factor TWIST), compared to untreated ADSCs. Cell morphology and stress fiber pattern were examined and the treated cells became less migratory in scratch wound closure assay. The formation of cell junction complexes was observed under transmission electron microscopy. Global gene expression using GeneChip(®) Human Genome U133 Array (Affymetrix) showed that the treatment up-regulated 540 genes (containing genes for cell cycle, cytoskeleton reorganization, chemotaxis, epithelium development and regulation of cell migration) and down-regulated 483 genes. Human ADSCs were transited to epithelial lineage by inhibiting GSK3 and TGFβ signaling. It can be an adult stem cell source for epithelial cell-based therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Basic fibroblast growth factor promotes melanocyte migration via activating PI3K/Akt-Rac1-FAK-JNK and ERK signaling pathways.

    PubMed

    Shi, Hongxue; Lin, Beibei; Huang, Yan; Wu, Jiang; Zhang, Hongyu; Lin, Cai; Wang, Zhouguang; Zhu, Jingjing; Zhao, Yingzhen; Fu, Xiaobing; Lou, Zhencai; Li, Xiaokun; Xiao, Jian

    2016-09-01

    Vitiligo is a depigmentation disorder characterized by loss of functional melanocytes of the skin epidermis. The pathogenesis of vitiligo remains elusive. The purpose of this study is to investigate the effects of basic fibroblast growth factor (bFGF) on melanocyte migration, including its biochemical mechanism using transwell assay in vitro. We found that melanocyte treated with bFGF showed a significant increase in migration and cytoskeletal rearrangement. These changes were associated with increased activation of PI3K/Akt, Rac1, FAK, JNK, and ERK. Likewise, reduction of PI3K/Akt, Rac1, FAK, JNK, and ERK activity using selective inhibitors or siRNA was associated with impediment of bFGF-induced melanocyte migration. In addition, activity of Rac1, FAK, and JNK was reduced in cells in which PI3K/Akt was inhibited, activity of FAK and JNK was reduced in cells in which the Rac1 was inhibited, and activity of JNK was reduced in cells in which the FAK was inhibited. Collectively, these data demonstrate that bFGF facilitated melanocyte migration via PI3K/Akt-Rac1-FAK-JNK and ERK signaling pathways. © 2016 IUBMB Life, 68(9):735-747, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  15. Noisy signaling through promoter logic gates

    NASA Astrophysics Data System (ADS)

    Gerstung, Moritz; Timmer, Jens; Fleck, Christian

    2009-01-01

    We study the influence of noisy transcription factor signals on cis-regulatory promoter elements. These elements process the probability of binary binding events analogous to computer logic gates. At equilibrium, this probability is given by the so-called input function. We show that transcription factor noise causes deviations from the equilibrium value due to the nonlinearity of the input function. For a single binding site, the correction is always negative resulting in an occupancy below the mean-field level. Yet for more complex promoters it depends on the correlation of the transcription factor signals and the geometry of the input function. We present explicit solutions for the basic types of AND and OR gates. The correction size varies among these different types of gates and signal types, mainly being larger in AND gates and for correlated fluctuations. In all cases we find excellent agreement between the analytical results and numerical simulations. We also study the E. coli Lac operon as an example of an AND NOR gate. We present a consistent mathematical method that allows one to separate different sources of noise and quantifies their effect on promoter occupation. A surprising result of our analysis is that Poissonian molecular fluctuations, in contrast to external fluctuations, do no contribute to the correction.

  16. Hydrogen peroxide inhibits transforming growth factor-β1-induced cell cycle arrest by promoting Smad3 linker phosphorylation through activation of Akt-ERK1/2-linked signaling pathway

    SciTech Connect

    Choi, Jiyeon; Park, Seong Ji; Jo, Eun Ji; Lee, Hui-Young; Hong, Suntaek; Kim, Seong-Jin; Kim, Byung-Chul

    2013-06-14

    Highlights: •H{sub 2}O{sub 2} inhibits TGF-β1-induced cell cycle arrest. •H{sub 2}O{sub 2} induces Smad3 linker phosphorylation through Akt-ERK1/2 pathway. •H{sub 2}O{sub 2}-mediated suppression of TGF-β signal requires Smad3 linker phosphorylation. •This is a first report about interplay between H{sub 2}O{sub 2} and growth inhibition pathway. -- Abstract: Hydrogen peroxide (H{sub 2}O{sub 2}) functions as a second messenger in growth factor receptor-mediated intracellular signaling cascade and is tumorigenic by virtue of its ability to promote cell proliferation; however, the mechanisms underlying the growth stimulatory action of H{sub 2}O{sub 2} are less understood. Here we report an important mechanism for antagonistic effects of H{sub 2}O{sub 2} on growth inhibitory response to transforming growth factor-β1 (TGF-β1). In Mv1Lu and HepG2 cells, pretreatment of H{sub 2}O{sub 2} (0.05–0.2 mM) completely blocked TGF-β1-mediated induction of p15{sup INK4B} expression and increase of its promoter activity. Interestingly, H{sub 2}O{sub 2} selectively suppressed the transcriptional activation potential of Smad3, not Smad2, in the absence of effects on TGF-β1-induced phosphorylation of the COOH-tail SSXS motif of Smad3 and its nuclear translocation. Mechanism studies showed that H{sub 2}O{sub 2} increases the phosphorylation of Smad3 at the middle linker region in a concentration- and time-dependent manner and this effect is mediated by activation of extracellular signal-activated kinase 1/2 through Akt. Furthermore, expression of a mutant Smad3 in which linker phosphorylation sites were ablated significantly abrogated the inhibitory effects of H{sub 2}O{sub 2} on TGF-β1-induced increase of p15{sup INK4B}-Luc reporter activity and blockade of cell cycle progression from G1 to S phase. These findings for the first time define H{sub 2}O{sub 2} as a signaling molecule that modulate Smad3 linker phosphorylation and its transcriptional activity, thus providing

  17. Human Growth Hormone Promotes Corneal Epithelial Cell Migration in Vitro

    PubMed Central

    Ding, Juan; Wirostko, Barbara; Sullivan, David A

    2015-01-01

    Purpose Corneal wound healing is a highly regulated process that requires the proliferation and migration of epithelial cells and interactions between epithelial cells and stromal fibroblasts. Compounds that can be applied topically to the ocular surface and that have the capability of activating corneal epithelial cells to proliferate and/or migrate would be useful to promote corneal wound healing. We hypothesize that human growth hormone (HGH) will activate Signal Transducer and Activators of Transcription-5 (STAT5) signaling and promote corneal wound healing by enhancing corneal epithelial cell and fibroblast proliferation and/or migration in vitro. The purpose of this study is to test these hypotheses. Methods We studied cell signaling, proliferation and migration using an immortalized human corneal epithelial cell line and primary human corneal fibroblasts in vitro. We also examined whether insulin-like growth factor-1 (IGF-1), a hormone known to mediate many of HGH’s growth promoting actions, may play a role in this effect. Results We show that HGH activates STAT5 signaling and promotes corneal epithelial cell migration in vitro. The migratory effect requires an intact communication between corneal epithelia and fibroblasts, and is not mediated by IGF-1. Conclusion HGH may represent a topical therapeutic to promote corneal epithelial wound healing. This warrants further investigation. PMID:25782399

  18. Hedgehog signaling in myofibroblasts directly promotes prostate tumor cell growth†

    PubMed Central

    Domenech, Maribella; Bjerregaard, Robert; Bushman, Wade; Beebe, David J.

    2012-01-01

    Despite strong evidence for the involvement of the stroma in Hedgehog signaling, little is known about the identity of the stromal cells and the signaling mechanisms that mediate the growth promoting effect of Hh signaling. We developed an in vitro co-culture model using microchannel technology to examine the effect of paracrine Hh signaling on proliferation of prostate cancer cells. We show here that activation of Hh signaling in myofibroblasts is sufficient to accelerate tumor cell growth. This effect was independent of any direct effect of Hh ligand on tumor cells or other cellular components of the tumor stroma. Further, the trophic effect of Hh pathway activation in myofibroblasts does not require collaboration of other elements of the stroma or direct physical interaction with the cancer cells. By isolating the tropic effect of Hh pathway activation in prostate stroma, we have taken the first step toward identifying cell-specific mechanisms that mediate the effect of paracrine Hh signaling on tumor growth. PMID:22234342

  19. Protein phosphatase 2A is a critical regulator of protein kinase C zeta signaling targeted by SV40 small t to promote cell growth and NF-kappaB activation.

    PubMed Central

    Sontag, E; Sontag, J M; Garcia, A

    1997-01-01

    We have reported that inhibition of protein phosphatase 2A (PP2A) by expression of SV40 small t stimulates the mitogenic MAP kinase cascade. Here, we show that SV40 small t can substitute for tumor necrosis factor-alpha (TNF-alpha) or serum and stimulate atypical protein kinase C zeta (PKC zeta) activity, resulting in MEK activation, cell proliferation and NF-kappaB-dependent gene transcriptional activation in CV-1 and NIH 3T3 cells. These effects were abrogated by co-expression of kinase-deficient PKC zeta and inhibition of phosphatidylinositol 3-kinase p85alpha-p110 by wortmannin, LY294002 and a dominant-negative mutant of p85alpha. In contrast, expression of kinase-inactive ERK2 inhibited small t-dependent cell growth but was unable to abolish small t-induced NF-kappaB transactivation. Our results provide the first in vivo evidence for a critical regulatory role of PP2A in bifunctional PKC zeta signaling pathways controlled by phosphatidylinositol 3-kinase. Constitutive activation of PKC zeta and NF-kappaB following inhibition of PP2A supports new mechanisms by which SV40 small t promotes cell growth and transformation. By establishing PP2A as a key player in the response of cells to growth factors and stress signals like TNF-alpha, our findings could explain why PP2A is a primary target utilized during SV40 infection to alter cellular behavior. PMID:9312025

  20. Transforming growth factor-β-sphingosine kinase 1/S1P signaling upregulates microRNA-21 to promote fibrosis in renal tubular epithelial cells.

    PubMed

    Liu, Xiujuan; Hong, Quan; Wang, Zhen; Yu, Yanyan; Zou, Xin; Xu, Lihong

    2016-02-01

    Renal fibrosis is a progressive pathological change characterized by tubular cell apoptosis, tubulointerstitial fibroblast proliferation, and excessive deposition of extracellular matrix (ECM). miR-21 has been implicated in transforming growth factor-β (TGF-β)-stimulated tissue fibrosis. Recent studies showed that sphingosine kinase/sphingosine-1-phosphate (SphK/S1P) are also critical for TGF-β-stimulated tissue fibrosis; however, it is not clear whether SphK/S1P interacts with miR-21 or not. In this study, we hypothesized that SphK/S1P signaling is linked to upregulation of miR-21 by TGF-β. To verify this hypothesis, we first determined that miR-21 was highly expressed in renal tubular epithelial cells (TECs) stimulated with TGF-β by using qRT-PCR and Northern blotting. Simultaneously, inhibition of miR-21, mediated by the corresponding antimir, markedly decreased the expression and deposition of type I collagen, fibronectin (Fn), cysteine-rich protein 61 (CCN1), α-smooth muscle actin, and fibroblast-specific protein1 in TGF-β-treated TECs. ELISA and qRT-PCR were used to measure the S1P and SphK1 levels in TECs. S1P production was induced by TGF-β through activation of SphK1. Furthermore, it was observed that TGF-β-stimulated upregulation of miR-21 was abolished by SphK1 siRNA and was restored by the addition of exogenous S1P. Blocking S1PR2 also inhibited upregulation of miR-21. Additionally, miR-21 overexpression attenuated the repression of TGF-β-stimulated ECM deposition and epithelial-mesenchymal transition by SphK1 and S1PR2 siRNA. In summary, our study demonstrates a link between SphK1/S1P and TGF-β-induced miR-21 in renal TECs and may represent a novel therapeutic target in renal fibrosis. © 2015 by the Society for Experimental Biology and Medicine.

  1. Transforming growth factor-β-sphingosine kinase 1/S1P signaling upregulates microRNA-21 to promote fibrosis in renal tubular epithelial cells

    PubMed Central

    Hong, Quan; Wang, Zhen; Yu, Yanyan; Zou, Xin; Xu, Lihong

    2015-01-01

    Renal fibrosis is a progressive pathological change characterized by tubular cell apoptosis, tubulointerstitial fibroblast proliferation, and excessive deposition of extracellular matrix (ECM). miR-21 has been implicated in transforming growth factor-β (TGF-β)-stimulated tissue fibrosis. Recent studies showed that sphingosine kinase/sphingosine-1-phosphate (SphK/S1P) are also critical for TGF-β-stimulated tissue fibrosis; however, it is not clear whether SphK/S1P interacts with miR-21 or not. In this study, we hypothesized that SphK/S1P signaling is linked to upregulation of miR-21 by TGF-β. To verify this hypothesis, we first determined that miR-21 was highly expressed in renal tubular epithelial cells (TECs) stimulated with TGF-β by using qRT-PCR and Northern blotting. Simultaneously, inhibition of miR-21, mediated by the corresponding antimir, markedly decreased the expression and deposition of type I collagen, fibronectin (Fn), cysteine-rich protein 61 (CCN1), α-smooth muscle actin, and fibroblast-specific protein1 in TGF-β-treated TECs. ELISA and qRT-PCR were used to measure the S1P and SphK1 levels in TECs. S1P production was induced by TGF-β through activation of SphK1. Furthermore, it was observed that TGF-β-stimulated upregulation of miR-21 was abolished by SphK1 siRNA and was restored by the addition of exogenous S1P. Blocking S1PR2 also inhibited upregulation of miR-21. Additionally, miR-21 overexpression attenuated the repression of TGF-β-stimulated ECM deposition and epithelial–mesenchymal transition by SphK1 and S1PR2 siRNA. In summary, our study demonstrates a link between SphK1/S1P and TGF-β-induced miR-21 in renal TECs and may represent a novel therapeutic target in renal fibrosis. PMID:26376826

  2. Brassinosteroids promote Arabidopsis pollen germination and growth.

    PubMed

    Vogler, Frank; Schmalzl, Christina; Englhart, Maria; Bircheneder, Martin; Sprunck, Stefanie

    2014-09-01

    Pollen tubes are among the fastest tip-growing plant cells and represent an excellent experimental system for studying the dynamics and spatiotemporal control of polarized cell growth. However, investigating pollen tube tip growth in the model plant Arabidopsis remains difficult because in vitro pollen germination and pollen tube growth rates are highly variable and largely different from those observed in pistils, most likely due to growth-promoting properties of the female reproductive tract. We found that in vitro grown Arabidopsis pollen respond to brassinosteroid (BR) in a dose-dependent manner. Pollen germination and pollen tube growth increased nine- and fivefold, respectively, when media were supplemented with 10 µM epibrassinolide (epiBL), resulting in growth kinetics more similar to growth in vivo. Expression analyses show that the promoter of one of the key enzymes in BR biosynthesis, CYP90A1/CPD, is highly active in the cells of the reproductive tract that form the pathway for pollen tubes from the stigma to the ovules. Pollen tubes grew significantly shorter through the reproductive tract of a cyp90a1 mutant compared to the wild type, or to a BR perception mutant. Our results show that epiBL promotes pollen germination and tube growth in vitro and suggest that the cells of the reproductive tract provide BR compounds to stimulate pollen tube growth.

  3. A role for TOR complex 2 signaling in promoting autophagy.

    PubMed

    Vlahakis, Ariadne; Powers, Ted

    2014-01-01

    The conserved target of rapamycin (TOR) kinase is a central regulator of cell growth in response to nutrient availability. TOR forms 2 structurally and functionally distinct complexes, TORC1 and TORC2, and negatively regulates autophagy via TORC1. Here we demonstrate TOR also operates independently through the TORC2 signaling pathway to promote autophagy upon amino acid limitation. Under these conditions, TORC2, through its downstream target kinase Ypk1, inhibits the Ca(2+)- and Cmd1/calmodulin-dependent phosphatase, calcineurin, to enable the activation of the amino acid-sensing EIF2S1/eIF2α kinase, Gcn2, and promote autophagy. Thus TORC2 signaling regulates autophagy in a pathway distinct from TORC1 to provide a tunable response to the cellular metabolic state.

  4. Mediator of ERBB2-driven cell motility (MEMO) promotes extranuclear estrogen receptor signaling involving the growth factor receptors IGF1R and ERBB2.

    PubMed

    Jiang, Kai; Yang, Zhihong; Cheng, Long; Wang, Shibin; Ning, Kang; Zhou, Lei; Lin, Jing; Zhong, Hui; Wang, Lisheng; Li, Yang; Huang, Junjian; Zhang, Hao; Ye, Qinong

    2013-08-23

    In addition to nuclear estrogen receptor (ER) acting as a transcription factor, extranuclear ER also plays an important role in cancer cell growth regulation through activation of kinase cascades. However, the molecular mechanisms by which extranuclear ER exerts its function are still poorly understood. Here, we report that mediator of ERBB2-driven cell motility (MEMO) regulates extranuclear functions of ER. MEMO physically and functionally interacted with ER. Through its interaction with the growth factor receptors IGF1R and ERBB2, MEMO mediated extranuclear functions of ER, including activation of mitogen-activated protein kinase (MAPK) and protein kinase B/AKT, two important growth regulatory protein kinases, and integration of function with nuclear ER. Activation of MAPK and AKT was responsible for MEMO modulation of ER phosphorylation and estrogen-responsive gene expression. Moreover, MEMO increased anchorage-dependent and -independent growth of ER-positive breast cancer cells in vitro and was required for estrogen-induced breast tumor growth in nude mice. Together, our studies identified MEMO as a new component of extranuclear ER signalosome and suggest an essential role for MEMO in the regulation of ER-positive breast cancer cell growth.

  5. Light signaling and the phytohormonal regulation of shoot growth.

    PubMed

    Kurepin, Leonid V; Pharis, Richard P

    2014-12-01

    Shoot growth of dicot plants is rigorously controlled by the interactions of environmental cues with several groups of phytohormones. The signaling effects of light on shoot growth are of special interest, as both light irradiance and light quality change rapidly throughout the day, causing profound changes in stem elongation and leaf area growth. Among the several dicot species examined, we have focused on sunflower (Helianthus annuus L.) because its shoots are robust and their growth is highly plastic. Sunflower shoots thus constitute an ideal tissue for assessing responses to both light irradiance and light quality signals. Herein, we discuss the possible roles of gibberellins, auxin, ethylene, cytokinins and brassinosteroids in mediating the stem elongation and leaf area growth that is induced by shade light. To do this we uncoupled the plant's responses to changes in the red to far-red [R/FR] light ratio from its responses to changes in irradiance of photosynthetically active radiation [PAR]. Reducing each of R/FR light ratio and PAR irradiance results in increased sunflower stem elongation. However, the plant's response for leaf area growth differs considerably, with a low R/FR ratio generally promoting leaf area growth, whereas low irradiance PAR inhibits it. The increased stem elongation that occurs in response to lowering R/FR ratio and PAR irradiance is accomplished at the expense of leaf area growth. In effect, the low PAR irradiance signal overrides the low R/FR ratio signal in shade light's control of leaf growth and development. Three hormone groups, gibberellins, auxin and ethylene are directly involved in regulating these light-mediated shoot growth changes. Gibberellins and auxin function as growth promoters, with auxin likely acting as an up-regulator of gibberellin biosynthesis. Ethylene functions as a growth-inhibitor and probably interacts with gibberellins in regulating both stem and leaf growth of the sunflower shoot. Copyright © 2014

  6. NMU signaling promotes endometrial cancer cell progression by modulating adhesion signaling

    PubMed Central

    Lin, Ting-Yu; Wu, Fang-Ju; Chang, Chia-Lin; Li, Zhongyou; Luo, Ching-Wei

    2016-01-01

    Neuromedin U (NMU) was originally named based on its strong uterine contractile activity, but little is known regarding its signaling/functions in utero. We identified that NMU and one of its receptors, NMUR2, are not only present in normal uterine endometrium but also co-expressed in endometrial cancer tissues, where the NMU level is correlated with the malignant grades and survival of patients. Cell-based assays further confirmed that NMU signaling can promote cell motility and proliferation of endometrial cancer cells derived from grade II tumors. Activation of NMU pathway in these endometrial cancer cells is required in order to sustain expression of various adhesion molecules, such as CD44 and integrin alpha1, as well as production of their corresponding extracellular matrix ligands, hyaluronan and collagen IV; it also increased the activity of SRC and its downstream proteins RHOA and RAC1. Thus, it is concluded that NMU pathway positively controls the adhesion signaling-SRC-Rho GTPase axis in the tested endometrial cancer cells and that changes in cell motility and proliferation can occur when there is manipulation of NMU signaling in these cells either in vitro or in vivo. Intriguingly, this novel mechanism also explains how NMU signaling promotes the EGFR-driven and TGFβ receptor-driven mesenchymal transitions. Through the above axis, NMU signaling not only can promote malignancy of the tested endometrial cancer cells directly, but also helps these cells to become more sensitive to niche growth factors in their microenvironment. PMID:26849234

  7. Glut1 promotes cell proliferation, migration and invasion by regulating epidermal growth factor receptor and integrin signaling in triple-negative breast cancer cells.

    PubMed

    Oh, Sunhwa; Kim, Hyungjoo; Nam, KeeSoo; Shin, Incheol

    2017-03-01

    Elevated glucose levels in cancer cells can be attributed to increased levels of glucose transporter (GLUT) proteins. Glut1 expression is increased in human malignant cells. To investigate alternative roles of Glut1 in breast cancer, we silenced Glut1 in triple-negative breast-cancer cell lines using a short hairpin RNA (shRNA) system. Glut1 silencing was verified by Western blotting and qRT-PCR. Knockdown of Glut1 resulted in decreased cell proliferation, glucose uptake, migration, and invasion through modulation of the EGFR/ MAPK signaling pathway and integrin β1/Src/FAK signaling pathways. These results suggest that Glut1 not only plays a role as a glucose transporter, but also acts as a regulator of signaling cascades in the tumorigenesis of breast cancer. [BMB Reports 2017; 50(3): 132-137].

  8. Growth-promotant implants: managing the tools.

    PubMed

    Reinhardt, Chris

    2007-07-01

    Great contemplation, conversation, and controversy have surrounded the use of growth-promotant implants since their inception in the 1950s. Since the very beginning, the purpose of growth promotants has been to enhance production efficiency, reduce the cost of production, and improve profitability. Changes in our understanding of the physiologic mechanisms involved in growth promotion have not altered this fundamental purpose. With enhanced knowledge of the impact of various compounds and doses on different classes of animals, and with the introduction of numerous products providing those compounds and doses, planning implant programs has become difficult. However, the net return from a well-designed implant program may mean the difference between profit and loss on a given set of cattle.

  9. Body size regulation and insulin-like growth factor signaling.

    PubMed

    Hyun, Seogang

    2013-07-01

    How animals achieve their specific body size is a fundamental, but still largely unresolved, biological question. Over the past decades, studies on the insect model system have provided some important insights into the process of body size determination and highlighted the importance of insulin/insulin-like growth factor signaling. Fat body, the Drosophila counterpart of liver and adipose tissue, senses nutrient availability and controls larval growth rate by modulating peripheral insulin signaling. Similarly, insulin-like growth factor I produced from liver and muscle promotes postnatal body growth in mammals. Organismal growth is tightly coupled with the process of sexual maturation wherein the sex steroid hormone attenuates body growth. This review summarizes some important findings from Drosophila and mammalian studies that shed light on the general mechanism of animal size determination.

  10. 22-Oxocholestanes as plant growth promoters.

    PubMed

    Zeferino-Diaz, Reyna; Hilario-Martinez, J Ciciolil; Rodriguez-Acosta, Maricela; Sandoval-Ramirez, Jesus; Fernandez-Herrera, Maria A

    2015-06-01

    The spirostanic steroidal side-chain of diosgenin and hecogenin was modified to produce 22-oxocholestane derivatives. This type of side-chain was obtained in good yields through a straightforward four-step pathway. These compounds show potent brassinosteroid-like growth promoting activity evaluated via the rice lamina joint inclination bioassay. This is the first report of steroidal skeletons bearing the 22-oxocholestane side-chain and preserving the basic structure (A-D rings) from their corresponding parent compounds acting as plant growth promoters. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The plant growth-promoting fungus Penicillium simplicissimum GP17-2 induces resistance in Arabidopsis thaliana by activation of multiple defense signals.

    PubMed

    Hossain, Md Motaher; Sultana, Farjana; Kubota, Mayumi; Koyama, Hiroyuki; Hyakumachi, Mitsuro

    2007-12-01

    Arabidopsis thaliana grown in soil amended with barley grain inocula of Penicillium simplicissimum GP17-2 or receiving root treatment with its culture filtrate (CF) exhibited clear resistance to Pseudomonas syringae pv. tomato DC3000 (Pst). To assess the contribution of different defense pathways, Arabidopsis genotypes implicated in salicylic acid (SA) signaling expressing the NahG transgene or carrying disruption in NPR1 (npr1), jasmonic acid (JA) signaling (jar1) and ethylene (ET) signaling (ein2) were tested. All genotypes screened were protected by GP17-2 or its CF. However, the level of protection was significantly lower in NahG and npr1 plants than it was in similarly treated wild-type plants, indicating that the SA signaling pathway makes a minor contribution to the GP17-2-mediated resistance and is insufficient for a full response. Examination of local and systemic gene expression revealed that GP17-2 and its CF modulate the expression of genes involved in both the SA and JA/ET signaling pathways. Subsequent challenge of GP17-2-colonized plants with Pst was accompanied by direct activation of SA-inducible PR-2 and PR-5 genes as well as potentiated expression of the JA-inducible Vsp gene. In contrast, CF-treated plants infected with Pst exhibited elevated expression of most defense-related genes (PR-1, PR-2, PR-5, PDF1.2 and Hel) studied. Moreover, an initial elevation of SA responses was followed by late induction of JA responses during Pst infection of induced systemic resistance (ISR)-expressing plants. In conclusion, we hypothesize the involvement of multiple defense mechanisms leading to an ISR of Arabidopsis by GP17-2.

  12. Shoot-derived abscisic acid promotes root growth.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J; Ross, John J

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root-sourced ABA on root growth during water stress. Here, we tested whether foliage-derived ABA could be transported to the roots, and whether this foliage-derived ABA had an influence on root growth under well-watered conditions. Using both application studies of deuterium-labelled ABA and reciprocal grafting between wild-type and ABA-biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage-derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA-deficient scions suggest that foliage-derived ABA inhibits root growth through the root growth-inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage-derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture.

  13. ET-1-induced growth promoting responses involving ERK1/2 and PKB signaling and Egr-1 expression are mediated by Ca2+/CaM-dependent protein kinase-II in vascular smooth muscle cells.

    PubMed

    Bouallegue, Ali; Simo Cheyou, Estelle R; Anand-Srivastava, Madhu B; Srivastava, Ashok K

    2013-12-01

    Endothelin-1 (ET-1), a potent vasoactive peptide with a pathogenic role in vascular diseases, has been shown to induce the activation of ERK1/2, PKB and the expression of a transcriptional regulator, the early growth response 1 (Egr-1), key mediators of hypertrophic and proliferative responses in vascular smooth muscle cells (VSMC). We have demonstrated earlier that ET-1 requires H2O2 generation to activate these signaling pathways and Ca2+, calmodulin (CaM) and Ca2+/CaM-dependent protein kinase II (CaMKII), play a critical role to trigger H2O2-induced effects in VSMC. However, an involvement of CaMKII in mediating ET-1-induced responses in VSMC remains unknown. Therefore, by utilizing pharmacological inhibitors of CaM, CaMKII, a CaMKII inhibitor peptide and CaMKII knockdown techniques, we have investigated the contribution of CaM and CaMKII in ET-1-induced ERK1/2 and PKB signaling, Egr-1 expression and hypertrophic and proliferative responses in VSMC. W-7 and calmidazolium, antagonists of CaM, as well as KN-93, an inhibitor of CaMKII activity, attenuated ET-1-induced ERK1/2 and PKB phosphorylation. In addition, transfection of VSMC with a CaMKII inhibitory peptide suppressed ET-1-evoked ERK1/2 and PKB phosphorylation. Similarly, siRNA-mediated CaMKII silencing reduced ET-1-produced ERK1/2 and PKB phosphorylation. CaM and CaMKII blockade also significantly lowered the ET-1-induced protein and DNA synthesis as well as Egr-1 expression. These findings demonstrate that CaMKII plays a critical role in ET-1-induced growth promoting signaling pathways as well as hypertrophic and proliferative responses in VSMC. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Neurodevelopmental effects of insulin-like growth factor signaling

    PubMed Central

    O’Kusky, John; Ye, Ping

    2012-01-01

    Insulin-like growth factor (IGF) signaling greatly impacts the development and growth of the central nervous system (CNS). IGF-I and IGF-II, two ligands of the IGF system, exert a wide variety of actions both during development and in adulthood, promoting the survival and proliferation of neural cells. The IGFs also influence the growth and maturation of neural cells, augmenting dendritic growth and spine formation, axon outgrowth, synaptogenesis, and myelination. Specific IGF actions, however, likely depend on cell type, developmental stage, and local microenvironmental milieu within the brain. Emerging research also indicates that alterations in IGF signaling likely contribute to the pathogenesis of some neurological disorders. This review summarizes experimental studies and shed light on the critical roles of IGF signaling, as well as its mechanisms, during CNS development. PMID:22710100

  15. Insulin signaling regulates neurite growth during metamorphic neuronal remodeling

    PubMed Central

    Gu, Tingting; Zhao, Tao; Hewes, Randall S.

    2014-01-01

    Summary Although the growth capacity of mature neurons is often limited, some neurons can shift through largely unknown mechanisms from stable maintenance growth to dynamic, organizational growth (e.g. to repair injury, or during development transitions). During insect metamorphosis, many terminally differentiated larval neurons undergo extensive remodeling, involving elimination of larval neurites and outgrowth and elaboration of adult-specific projections. Here, we show in the fruit fly, Drosophila melanogaster (Meigen), that a metamorphosis-specific increase in insulin signaling promotes neuronal growth and axon branching after prolonged stability during the larval stages. FOXO, a negative effector in the insulin signaling pathway, blocked metamorphic growth of peptidergic neurons that secrete the neuropeptides CCAP and bursicon. RNA interference and CCAP/bursicon cell-targeted expression of dominant-negative constructs for other components of the insulin signaling pathway (InR, Pi3K92E, Akt1, S6K) also partially suppressed the growth of the CCAP/bursicon neuron somata and neurite arbor. In contrast, expression of wild-type or constitutively active forms of InR, Pi3K92E, Akt1, Rheb, and TOR, as well as RNA interference for negative regulators of insulin signaling (PTEN, FOXO), stimulated overgrowth. Interestingly, InR displayed little effect on larval CCAP/bursicon neuron growth, in contrast to its strong effects during metamorphosis. Manipulations of insulin signaling in many other peptidergic neurons revealed generalized growth stimulation during metamorphosis, but not during larval development. These findings reveal a fundamental shift in growth control mechanisms when mature, differentiated neurons enter a new phase of organizational growth. Moreover, they highlight strong evolutionarily conservation of insulin signaling in neuronal growth regulation. PMID:24357229

  16. Mitogen-activated Protein Kinase Kinase 2 (MEK2), a Novel E2-interacting Protein, Promotes the Growth of Classical Swine Fever Virus via Attenuation of the JAK-STAT Signaling Pathway.

    PubMed

    Wang, Jinghan; Chen, Shucheng; Liao, Yajin; Zhang, Enyu; Feng, Shuo; Yu, Shaoxiong; Li, Lian-Feng; He, Wen-Rui; Li, Yongfeng; Luo, Yuzi; Sun, Yuan; Zhou, Mo; Wang, Xiao; Munir, Muhammad; Li, Su; Qiu, Hua-Ji

    2016-09-07

    Mitogen-activated protein kinase kinase/extracellular regulated kinase (MEK1/2/ERK1/2) cascade is involved in the replication of several members of the Flaviviridae family including hepatitis C virus and dengue virus. The effects of the cascade on the replication of classical swine fever virus (CSFV), a fatal pestivirus of pigs, remain unknown. In this study, MEK2 was identified as a novel binding partner of the E2 protein of CSFV using yeast two-hybrid screening. The E2-MEK2 interaction was confirmed by glutathione S-transferase pulldown, coimmunoprecipitation, and laser confocal microscopy assays. The C-termini of E2 [amino acids (aa) 890-1053] and MEK2 (aa 266-400) were mapped to be crucial for the interaction. Overexpression of MEK2 significantly promoted the replication of CSFV, whereas knockdown of MEK2 by lentivirus-mediated small hairpin RNAs dramatically inhibited CSFV replication. In addition, CSFV infection induced a biphasic activation of ERK1/2, the downstream signaling molecules of MEK2. Furthermore, the replication of CSFV was markedly inhibited in PK-15 cells treated with U0126, a specific inhibitor for MEK1/2/ERK1/2, whereas MEK2 did not affect CSFV replication after blocking the interferon-induced Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway by ruxolitinib, a JAK-STAT-specific inhibitor. Taken together, our results indicate that MEK2 positively regulates the replication of CSFV through inhibiting the JAK-STAT signaling pathway. Mitogen-activated protein kinase kinase 2 (MEK2) is a kinase that operates immediately upstream of extracellular regulated kinase 1/2 (ERK1/2) and links to Raf and ERK via phosphorylation. Currently, little is known about the role of MEK2 in the replication of classical swine fever virus (CSFV), a devastating porcine pestivirus. Here, we investigate the roles of MEK2 and the MEK2/ERK1/2 cascade in the growth of CSFV for the first time. We show that MEK2 positively regulates CSFV

  17. Mitogen-Activated Protein Kinase Kinase 2, a Novel E2-Interacting Protein, Promotes the Growth of Classical Swine Fever Virus via Attenuation of the JAK-STAT Signaling Pathway

    PubMed Central

    Wang, Jinghan; Chen, Shucheng; Liao, Yajin; Zhang, Enyu; Feng, Shuo; Yu, Shaoxiong; Li, Lian-Feng; He, Wen-Rui; Li, Yongfeng; Luo, Yuzi; Sun, Yuan; Zhou, Mo; Wang, Xiao; Munir, Muhammad

    2016-01-01

    ABSTRACT The mitogen-activated protein kinase kinase/extracellular regulated kinase (MEK1/2/ERK1/2) cascade is involved in the replication of several members of the Flaviviridae family, including hepatitis C virus and dengue virus. The effects of the cascade on the replication of classical swine fever virus (CSFV), a fatal pestivirus of pigs, remain unknown. In this study, MEK2 was identified as a novel binding partner of the E2 protein of CSFV using yeast two-hybrid screening. The E2-MEK2 interaction was confirmed by glutathione S-transferase pulldown, coimmunoprecipitation, and laser confocal microscopy assays. The C termini of E2 (amino acids [aa] 890 to 1053) and MEK2 (aa 266 to 400) were mapped to be crucial for the interaction. Overexpression of MEK2 significantly promoted the replication of CSFV, whereas knockdown of MEK2 by lentivirus-mediated small hairpin RNAs dramatically inhibited CSFV replication. In addition, CSFV infection induced a biphasic activation of ERK1/2, the downstream signaling molecules of MEK2. Furthermore, the replication of CSFV was markedly inhibited in PK-15 cells treated with U0126, a specific inhibitor for MEK1/2/ERK1/2, whereas MEK2 did not affect CSFV replication after blocking the interferon-induced Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway by ruxolitinib, a JAK-STAT-specific inhibitor. Taken together, our results indicate that MEK2 positively regulates the replication of CSFV through inhibiting the JAK-STAT signaling pathway. IMPORTANCE Mitogen-activated protein kinase kinase 2 (MEK2) is a kinase that operates immediately upstream of extracellular regulated kinase 1/2 (ERK1/2) and links to Raf and ERK via phosphorylation. Currently, little is known about the role of MEK2 in the replication of classical swine fever virus (CSFV), a devastating porcine pestivirus. Here, we investigated the roles of MEK2 and the MEK2/ERK1/2 cascade in the growth of CSFV for the first time. We show

  18. An unnatural PIP simulates growth factor signaling.

    PubMed

    Swan, Laura

    2009-11-25

    In this issue of Chemistry & Biology, Laketa et al. describe the synthesis of a membrane permeant phosphoinositide lipid that acts to stimulate PI(3,4,5)P(3)-dependent signaling without the need of growth factor stimulation.

  19. RNA-binding Protein Insulin-like Growth Factor mRNA-binding Protein 3 (IMP-3) Promotes Cell Survival via Insulin-like Growth Factor II Signaling after Ionizing Radiation*

    PubMed Central

    Liao, Baisong; Hu, Yan; Brewer, Gary

    2011-01-01

    Ionizing radiation (IR) induces proapoptotic gene expression programs that inhibit cell survival. These programs often involve RNA-binding proteins that associate with their mRNA targets to elicit changes in mRNA stability and/or translation. The RNA-binding protein IMP-3 is an oncofetal protein overexpressed in many human malignancies. IMP-3 abundance correlates with tumor aggressiveness and poor prognosis. As such, IMP-3 is proving to be a highly significant biomarker in surgical pathology. Among its many mRNA targets, IMP-3 binds to and promotes translation of insulin-like growth factor II (IGFII) mRNA. Our earlier studies showed that reducing IMP-3 abundance with siRNAs reduced proliferation of human K562 chronic myeloid leukemia cells because of reduced IGF-II biosynthesis. However, the role of IMP-3 in apoptosis is unknown. Here, we have used IR-induced apoptosis of K562 cells as a model to explore a role for IMP-3 in cell survival. Knockdown of IMP-3 with siRNA increased susceptibility of cells to IR-induced apoptosis and led to reduced IGF-II production. Gene reporter assays revealed that IMP-3 acts through the 5′ UTR of IGFII mRNA during apoptosis to promote translation. Finally, culture of IR-treated cells with recombinant IGF-II partially reversed the effects of IMP-3 knockdown on IR-induced apoptosis. Together, these results indicate that IMP-3 acts in part through the IGF-II pathway to promote cell survival in response to IR. Thus, IMP-3 might serve as a new drug target to increase sensitivity of CML cells or other cancers to IR therapy. PMID:21757716

  20. RNA-binding protein insulin-like growth factor mRNA-binding protein 3 (IMP-3) promotes cell survival via insulin-like growth factor II signaling after ionizing radiation.

    PubMed

    Liao, Baisong; Hu, Yan; Brewer, Gary

    2011-09-09

    Ionizing radiation (IR) induces proapoptotic gene expression programs that inhibit cell survival. These programs often involve RNA-binding proteins that associate with their mRNA targets to elicit changes in mRNA stability and/or translation. The RNA-binding protein IMP-3 is an oncofetal protein overexpressed in many human malignancies. IMP-3 abundance correlates with tumor aggressiveness and poor prognosis. As such, IMP-3 is proving to be a highly significant biomarker in surgical pathology. Among its many mRNA targets, IMP-3 binds to and promotes translation of insulin-like growth factor II (IGFII) mRNA. Our earlier studies showed that reducing IMP-3 abundance with siRNAs reduced proliferation of human K562 chronic myeloid leukemia cells because of reduced IGF-II biosynthesis. However, the role of IMP-3 in apoptosis is unknown. Here, we have used IR-induced apoptosis of K562 cells as a model to explore a role for IMP-3 in cell survival. Knockdown of IMP-3 with siRNA increased susceptibility of cells to IR-induced apoptosis and led to reduced IGF-II production. Gene reporter assays revealed that IMP-3 acts through the 5' UTR of IGFII mRNA during apoptosis to promote translation. Finally, culture of IR-treated cells with recombinant IGF-II partially reversed the effects of IMP-3 knockdown on IR-induced apoptosis. Together, these results indicate that IMP-3 acts in part through the IGF-II pathway to promote cell survival in response to IR. Thus, IMP-3 might serve as a new drug target to increase sensitivity of CML cells or other cancers to IR therapy.

  1. HES6 promotes prostate cancer aggressiveness independently of Notch signalling.

    PubMed

    Carvalho, Filipe L F; Marchionni, Luigi; Gupta, Anuj; Kummangal, Basheer A; Schaeffer, Edward M; Ross, Ashley E; Berman, David M

    2015-07-01

    Notch signalling is implicated in the pathogenesis of a variety of cancers, but its role in prostate cancer is poorly understood. However, selected Notch pathway members are overrepresented in high-grade prostate cancers. We comprehensively profiled Notch pathway components in prostate cells and found prostate cancer-specific up-regulation of NOTCH3 and HES6. Their expression was particularly high in androgen responsive lines. Up- and down-regulating Notch in these cells modulated expression of canonical Notch targets, HES1 and HEY1, which could also be induced by androgen. Surprisingly, androgen treatment also suppressed Notch receptor expression, suggesting that androgens can activate Notch target genes in a receptor-independent manner. Using a Notch-sensitive Recombination signal binding protein for immunoglobulin kappa J region (RBPJ) reporter assay, we found that basal levels of Notch signalling were significantly lower in prostate cancer cells compared to benign cells. Accordingly pharmacological Notch pathway blockade did not inhibit cancer cell growth or viability. In contrast to canonical Notch targets, HES6, a HES family member known to antagonize Notch signalling, was not regulated by Notch signalling, but relied instead on androgen levels, both in cultured cells and in human cancer tissues. When engineered into prostate cancer cells, reduced levels of HES6 resulted in reduced cancer cell invasion and clonogenic growth. By molecular profiling, we identified potential roles for HES6 in regulating hedgehog signalling, apoptosis and cell migration. Our results did not reveal any cell-autonomous roles for canonical Notch signalling in prostate cancer. However, the results do implicate HES6 as a promoter of prostate cancer progression.

  2. Fibroblast growth factor 21 protects rat cardiomyocytes from endoplasmic reticulum stress by promoting the fibroblast growth factor receptor 1-extracellular signal‑regulated kinase 1/2 signaling pathway.

    PubMed

    Liang, Pingping; Zhong, Lin; Gong, Lei; Wang, Jiahui; Zhu, Yujie; Liu, Weifeng; Yang, Jun

    2017-09-19

    Fibroblast growth factor 21 (FGF21), as an endocrine factor, is secreted into circulation by injured cardiomyocytes. Endoplasmic reticulum (ER) stress-induced apoptosis has been proposed as an important pathophysiological mechanism for cardiomyocyte injury. However, whether the enhanced expression of FGF21 in cardiomyocytes is linked to ER stress, and the effect and underlying mechanism of FGF21 on ER stress-induced cardiomyocyte apoptosis remain unclear. In the present study, it was demonstrated that mild ER stress resulted in upregulated expression levels of FGF21 and its main receptors, as a response to cell compensation, at the induction of ≤5 µM tunicamycin (TM). However, excessive ER stress (TM ≥10 µM) activated the ER stress-mediated apoptosis signaling pathways, including PKR-like ER kinase (PERK)-eukaryotic translational initiation factor 2α (eIF2α)-activating transcription factor 4 (ATF4)-CCAAT/-enhancer-binding protein homologous protein (CHOP) and inositol-requiring kinase 1α (IRE1α)-c-Jun N-terminal kinases (JNK), as well as inhibited the expression of FGF21 and its primary receptors. In addition, FGF21 overexpression provided protection against ER stress-induced cardiomyocyte injury, as evidenced by increased cell viability and reduced apoptosis. These changes were associated with the inhibition of ER stress-mediated apoptosis signaling pathways, as well as increased phosphorylation of FGFR1 and ERK1/2. However, the protective effects of overexpressed FGF21 were abolished following treatment with FGFR1 and ERK1/2 inhibitors. Thus, mild ER stress may induce the expression of FGF21 and its primary receptors in cardiomyocytes. FGF21 inhibits ER stress-induced cardiomyocyte injury as least in part via the FGFR1-ERK1/2 signaling pathway.

  3. Plasma Kallikrein Promotes Epidermal Growth Factor Receptor Transactivation and Signaling in Vascular Smooth Muscle through Direct Activation of Protease-activated Receptors*

    PubMed Central

    Abdallah, Rany T.; Keum, Joo-Seob; Lee, Mi-Hye; Wang, Bing; Gooz, Monika; Luttrell, Deirdre K.; Luttrell, Louis M.; Jaffa, Ayad A.

    2010-01-01

    The kallikrein-kinin system, along with the interlocking renin-angiotensin system, is a key regulator of vascular contractility and injury response. The principal effectors of the kallikrein-kinin system are plasma and tissue kallikreins, proteases that cleave high molecular weight kininogen to produce bradykinin. Most of the cellular actions of kallikrein (KK) are thought to be mediated by bradykinin, which acts via G protein-coupled B1 and B2 bradykinin receptors on VSMCs and endothelial cells. Here, we find that primary aortic vascular smooth muscle but not endothelial cells possess the ability to activate plasma prekallikrein. Surprisingly, exposing VSMCs to prekallikrein leads to activation of the ERK1/2 mitogen-activated protein kinase cascade via a mechanism that requires kallikrein activity but does not involve bradykinin receptors. In transfected HEK293 cells, we find that plasma kallikrein directly activates G protein-coupled protease-activated receptors (PARs) 1 and 2, which possess consensus kallikrein cleavage sites, but not PAR4. In vascular smooth muscles, KK stimulates ADAM (a disintegrin and metalloprotease) 17 activity via a PAR1/2 receptor-dependent mechanism, leading sequentially to release of the endogenous ADAM17 substrates, amphiregulin and tumor necrosis factor-α, metalloprotease-dependent transactivation of epidermal growth factor receptors, and metalloprotease and epidermal growth factor receptor-dependent ERK1/2 activation. These results suggest a novel mechanism of bradykinin-independent kallikrein action that may contribute to the regulation of vascular responses in pathophysiologic states, such as diabetes mellitus. PMID:20826789

  4. Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth.

    PubMed

    Singh, Mangal; Awasthi, Ashutosh; Soni, Sumit K; Singh, Rakshapal; Verma, Rajesh K; Kalra, Alok

    2015-10-27

    An assessment of roles of rhizospheric microbial diversity in plant growth is helpful in understanding plant-microbe interactions. Using random combinations of rhizospheric bacterial species at different richness levels, we analysed the contribution of species richness, compositions, interactions and identity on soil microbial respiration and plant biomass. We showed that bacterial inoculation in plant rhizosphere enhanced microbial respiration and plant biomass with complementary relationships among bacterial species. Plant growth was found to increase linearly with inoculation of rhizospheric bacterial communities with increasing levels of species or plant growth promoting trait diversity. However, inoculation of diverse bacterial communities having single plant growth promoting trait, i.e., nitrogen fixation could not enhance plant growth over inoculation of single bacteria. Our results indicate that bacterial diversity in rhizosphere affect ecosystem functioning through complementary relationship among plant growth promoting traits and may play significant roles in delivering microbial services to plants.

  5. Eucalyptus growth promotion by endophytic Bacillus spp.

    PubMed

    Paz, I C P; Santin, R C M; Guimarães, A M; Rosa, O P P; Dias, A C F; Quecine, M C; Azevedo, J L; Matsumura, A T S

    2012-10-11

    Clonal eucalyptus plantings have increased in recent years; however, some clones with high production characteristics have vegetative propagation problems because of weak root and aerial development. Endophytic microorganisms live inside healthy plants without causing any damage to their hosts and can be beneficial, acting as plant growth promoters. We isolated endophytic bacteria from eucalyptus plants and evaluated their potential in plant growth promotion of clonal plantlets of Eucalyptus urophylla x E. grandis, known as the hybrid, E. urograndis. Eighteen isolates of E. urograndis, clone 4622, were tested for plant growth promotion using the same clone. These isolates were also evaluated for indole acetic acid production and their potential for nitrogen fixation and phosphate solubilization. The isolates were identified by partial sequencing of 16S rRNA. Bacillus subtilis was the most prevalent species. Several Bacillus species, including B. licheniformis and B. subtilis, were found for the first time as endophytes of eucalyptus. Bacillus sp strain EUCB 10 significantly increased the growth of the root and aerial parts of eucalyptus plantlets under greenhouse conditions, during the summer and winter seasons.

  6. Prostaglandin E2 promotes the cell growth and invasive ability of hepatocellular carcinoma cells by upregulating c-Myc expression via EP4 receptor and the PKA signaling pathway.

    PubMed

    Xia, Shukai; Ma, Juan; Bai, Xiaoming; Zhang, Hai; Cheng, Shanyu; Zhang, Min; Zhang, Li; Du, Mingzhan; Wang, Yipin; Li, Hai; Rong, Rong; Shi, Feng; Yang, Qinyi; Leng, Jing

    2014-10-01

    Hepatocellular carcinoma (HCC) represents a major health problem worldwide. Prostaglandin E2 (PGE2), the predominant product of cyclooxygenase-2, has been implicated in hepatocarcinogenesis. However, the underlying molecular mechanisms remain to be further elucidated. c-myc, a cellular proto-oncogene, is activated or overexpressed in many types of human cancer, including HCC. The present study was designed to investigate the internal relationship and molecular mechanisms between PGE2 and c-Myc in HCC, and to define its role in HCC cell growth and invasion. Our results showed that PGE2 significantly upregulated c-Myc expression at both the mRNA and protein levels, and knockdown of c-Myc blocked PGE2-induced HCC cell growth and invasive ability in human HCC Huh-7 cells. The effect of PGE2 on c-Myc expression was mainly through the EP4 receptor, and EP4 receptor-mediated c-Myc protein upregulation largely depended on de novo biosynthesis of c-Myc mRNA and its protein. EP4 receptor signaling activated GS/AC and increased the intracellular cAMP level in Huh-7 cells. The adenylate cyclase (AC) activator forskolin mimicked the effects of the EP4 receptor agonist on c-Myc expression, while the AC inhibitor SQ22536 reduced EP4 receptor-mediated c-Myc upregulation. These data confirm the involvement of the GS/AC/cAMP pathway in EP4 receptor-mediated c-Myc upregulation. Moreover, the phosphorylation levels of CREB protein were markedly elevated by EP4 receptor signaling, and by using specific inhibitor and siRNA interference, we demonstrated that PKA/CREB was also involved in the EP4 receptor-mediated c-Myc upregulation. In summary, the present study revealed that PGE2 significantly upregulates c-Myc expression at both mRNA and protein levels through the EP4R/GS/AC/cAMP/PKA/CREB signaling pathway, thus promoting cell growth and invasion in HCC cells. Targeting of the PGE2/EP4R/c-Myc pathway may be a new therapeutic strategy to prevent and cure human HCC.

  7. Plant growth-promoting rhizobacteria and root system functioning

    PubMed Central

    Vacheron, Jordan; Desbrosses, Guilhem; Bouffaud, Marie-Lara; Touraine, Bruno; Moënne-Loccoz, Yvan; Muller, Daniel; Legendre, Laurent; Wisniewski-Dyé, Florence; Prigent-Combaret, Claire

    2013-01-01

    The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture. PMID:24062756

  8. Plant growth-promoting rhizobacteria and root system functioning.

    PubMed

    Vacheron, Jordan; Desbrosses, Guilhem; Bouffaud, Marie-Lara; Touraine, Bruno; Moënne-Loccoz, Yvan; Muller, Daniel; Legendre, Laurent; Wisniewski-Dyé, Florence; Prigent-Combaret, Claire

    2013-09-17

    The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture.

  9. cJun promotes CNS axon growth

    PubMed Central

    Lerch, Jessica K; Martinez, Yania; Bixby, John L; Lemmon, Vance P

    2014-01-01

    A number of genes regulate regeneration of peripheral axons, but their ability to drive axon growth and regeneration in the central nervous system (CNS) remains largely untested. To address this question we overexpressed eight transcription factors and one small GTPase alone and in pairwise combinations to test whether combinatorial overexpression would have a synergistic impact on CNS neuron neurite growth. The Jun oncogene/signal transducer and activator of transcription 6 (JUN/STAT6) combination increased neurite growth in dissociated cortical neurons and in injured cortical slices. In injured cortical slices, JUN overexpression increased axon growth to a similar extent as JUN and STAT6 together. Interestingly, JUN overexpression was not associated with increased growth associated protein 43 (GAP43) or integrin alpha 7 (ITGA7) expression, though these are predicted transcriptional targets. This study demonstrates that JUN overexpression in cortical neurons stimulates axon growth, but does so independently of changes in expression of genes thought to be critical for JUN’s effects on axon growth. We conclude that JUN activity underlies this CNS axonal growth response, and that it is mechanistically distinct from peripheral regeneration responses, in which increases in JUN expression coincide with increases in GAP43 expression. PMID:24521823

  10. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture.

    PubMed

    Bhattacharyya, P N; Jha, D K

    2012-04-01

    Plant growth-promoting rhizobacteria (PGPR) are the rhizosphere bacteria that can enhance plant growth by a wide variety of mechanisms like phosphate solubilization, siderophore production, biological nitrogen fixation, rhizosphere engineering, production of 1-Aminocyclopropane-1-carboxylate deaminase (ACC), quorum sensing (QS) signal interference and inhibition of biofilm formation, phytohormone production, exhibiting antifungal activity, production of volatile organic compounds (VOCs), induction of systemic resistance, promoting beneficial plant-microbe symbioses, interference with pathogen toxin production etc. The potentiality of PGPR in agriculture is steadily increased as it offers an attractive way to replace the use of chemical fertilizers, pesticides and other supplements. Growth promoting substances are likely to be produced in large quantities by these rhizosphere microorganisms that influence indirectly on the overall morphology of the plants. Recent progress in our understanding on the diversity of PGPR in the rhizosphere along with their colonization ability and mechanism of action should facilitate their application as a reliable component in the management of sustainable agricultural system. The progress to date in using the rhizosphere bacteria in a variety of applications related to agricultural improvement along with their mechanism of action with special reference to plant growth-promoting traits are summarized and discussed in this review.

  11. Senescent stromal-derived osteopontin promotes preneoplastic cell growth.

    PubMed

    Pazolli, Ermira; Luo, Xianmin; Brehm, Sarah; Carbery, Kelly; Chung, Jun-Jae; Prior, Julie L; Doherty, Jason; Demehri, Shadmehr; Salavaggione, Lorena; Piwnica-Worms, David; Stewart, Sheila A

    2009-02-01

    Alterations in the tissue microenvironment collaborate with cell autonomous genetic changes to contribute to neoplastic progression. The importance of the microenvironment in neoplastic progression is underscored by studies showing that fibroblasts isolated from a tumor stimulate the growth of preneoplastic and neoplastic cells in xenograft models. Similarly, senescent fibroblasts promote preneoplastic cell growth in vitro and in vivo. Because senescent cells accumulate with age, their presence is hypothesized to facilitate preneoplastic cell growth and tumor formation in older individuals. To identify senescent stromal factors directly responsible for stimulating preneoplastic cell growth, we carried out whole-genome transcriptional profiling and compared senescent fibroblasts with their younger counterparts. We identified osteopontin (OPN) as one of the most highly elevated transcripts in senescent fibroblasts. Importantly, reduction of OPN protein levels by RNA interference did not affect senescence induction in fibroblasts; however, it dramatically reduced the growth-promoting activities of senescent fibroblasts in vitro and in vivo, showing that OPN is necessary for paracrine stimulation of preneoplastic cell growth. In addition, we found that recombinant OPN was sufficient to stimulate preneoplastic cell growth. Finally, we show that OPN is expressed in senescent stroma within preneoplastic lesions that arise following 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate treatment of mice, suggesting that stromal-derived OPN-mediated signaling events affect neoplastic progression.

  12. Senescent Stromal-Derived Osteopontin Promotes Preneoplastic Cell Growth

    PubMed Central

    Pazolli, Ermira; Luo, Xianmin; Brehm, Sarah; Carbery, Kelly; Chung, Jun-Jae; Prior, Julie L.; Doherty, Jason; Demehri, Shadmehr; Salavaggione, Lorena; Piwnica-Worms, David; Stewart, Sheila A.

    2008-01-01

    Alterations in the tissue microenvironment collaborate with cell autonomous genetic changes to contribute to neoplastic progression. The importance of the microenvironment in neoplastic progression is underscored by studies demonstrating that fibroblasts isolated from a tumor stimulate the growth of preneoplastic and neoplastic cells in xenograft models. Similarly, senescent fibroblasts promote preneoplastic cell growth in vitro and in vivo. Because senescent cells accumulate with age, their presence is hypothesized to facilitate preneoplastic cell growth and tumor formation in older individuals. To identify senescent stromal factors directly responsible for stimulating preneoplastic cell growth, we carried out whole genome transcriptional profiling and compared senescent fibroblasts to their younger counterparts. We identified osteopontin (OPN) as one of the most highly elevated transcripts in senescent fibroblasts. Importantly, reduction of OPN protein levels by RNAi did not impact senescence induction in fibroblasts; however, it dramatically reduced the growth-promoting activities of senescent fibroblasts in vitro and in vivo, demonstrating that OPN is necessary for paracrine stimulation of preneoplastic cell growth. In addition, we found that recombinant OPN was sufficient to stimulate preneoplastic cell growth. Finally, we demonstrate that OPN is expressed in senescent stroma within preneoplastic lesions that arise following DMBA/TPA treatment of mice, suggesting that stromal-derived OPN-mediated signaling events impact neoplastic progression. PMID:19155301

  13. Hyperphagia in male melanocortin 4 receptor deficient mice promotes growth independently of growth hormone.

    PubMed

    Tan, H Y; Steyn, F J; Huang, L; Cowley, M; Veldhuis, J D; Chen, C

    2016-12-15

    Loss of function of the melanocortin 4 receptor (MC4R) results in hyperphagia, obesity and increased growth. Despite knowing that MC4Rs control food intake, we are yet to understand why defects in the function of the MC4R receptor contribute to rapid linear growth. We show that hyperphagia following germline loss of MC4R in male mice promotes growth while suppressing the growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis. We propose that hyperinsulinaemia promotes growth while suppressing the GH-IGF-1 axis. It is argued that physiological responses essential to maintain energy flux override conventional mechanisms of pubertal growth to promote the storage of excess energy while ensuring growth. Defects in melanocortin-4-receptor (MC4R) signalling result in hyperphagia, obesity and increased growth. Clinical observations suggest that loss of MC4R function may enhance growth hormone (GH)-mediated growth, although this remains untested. Using male mice with germline loss of the MC4R, we assessed pulsatile GH release and insulin-like growth factor-1 (IGF-1) production and/or release relative to pubertal growth. We demonstrate early-onset suppression of GH release in rapidly growing MC4R deficient (MC4RKO) mice, confirming that increased linear growth in MC4RKO mice does not occur in response to enhanced activation of the GH-IGF-1 axis. The progressive suppression of GH release in MC4RKO mice occurred alongside increased adiposity and the progressive worsening of hyperphagia-associated hyperinsulinaemia. We next prevented hyperphagia in MC4RKO mice through restricting calorie intake in these mice to match that of wild-type (WT) littermates. Pair feeding of MC4RKO mice did not prevent increased adiposity, but attenuated hyperinsulinaemia, recovered GH release, and normalized linear growth rate to that seen in pair-fed WT littermate controls. We conclude that the suppression of GH release in MC4RKO mice occurs independently of increased adipose mass, and is a

  14. KLUH/CYP78A5-dependent growth signaling coordinates floral organ growth in Arabidopsis.

    PubMed

    Eriksson, Sven; Stransfeld, Lena; Adamski, Nikolai Maria; Breuninger, Holger; Lenhard, Michael

    2010-03-23

    Growth control in animals and plants involves mobile signals. Depending on their range of action, these signals coordinate the growth of cells within an organ or the growth of different organs in a larger, functionally integrated structure. In plants, flowers are such integrated structures, yet it remains poorly understood how growth of the constituent organs is coordinated to ensure their correct relative sizes. The cytochrome P450 KLUH/CYP78A5 and its homolog CYP78A7 promote organ growth via a non-cell-autonomous signal; however, the range of this signal and thus its developmental function are unknown. Here we use a system for the predictable generation of chimeric plants to determine the range of the KLUH-dependent signal. In contrast with the largely autonomous behavior of another tested growth-control gene, we find that KLUH activity extends beyond individual organs and flowers. Its overall activity is integrated across an inflorescence to determine final organ size, which is largely independent of the genotype of the individual organs. Thus, the KLUH-dependent signal appears to move beyond individual organs in a flower, providing a mechanism for coordinating their growth and ensuring floral symmetry as an important determinant of a plant's attractiveness to pollinators. 2010 Elsevier Ltd. All rights reserved.

  15. Promotion of Bone Morphogenetic Protein Signaling by Tetraspanins and Glycosphingolipids

    PubMed Central

    Szymczak, Lindsey C.; Aydin, Taner; Yun, Sijung; Constas, Katharine; Schaeffer, Arielle; Ranjan, Sinthu; Kubba, Saad; Alam, Emad; McMahon, Devin E.; He, Jingpeng; Shwartz, Neta; Tian, Chenxi; Plavskin, Yevgeniy; Lindy, Amanda; Dad, Nimra Amir; Sheth, Sunny; Amin, Nirav M.; Zimmerman, Stephanie; Liu, Dennis; Schwarz, Erich M.; Smith, Harold; Krause, Michael W.; Liu, Jun

    2015-01-01

    Bone morphogenetic proteins (BMPs) belong to the transforming growth factor β (TGFβ) superfamily of secreted molecules. BMPs play essential roles in multiple developmental and homeostatic processes in metazoans. Malfunction of the BMP pathway can cause a variety of diseases in humans, including cancer, skeletal disorders and cardiovascular diseases. Identification of factors that ensure proper spatiotemporal control of BMP signaling is critical for understanding how this pathway is regulated. We have used a unique and sensitive genetic screen to identify the plasma membrane-localized tetraspanin TSP-21 as a key new factor in the C. elegans BMP-like “Sma/Mab” signaling pathway that controls body size and postembryonic M lineage development. We showed that TSP-21 acts in the signal-receiving cells and genetically functions at the ligand-receptor level. We further showed that TSP-21 can associate with itself and with two additional tetraspanins, TSP-12 and TSP-14, which also promote Sma/Mab signaling. TSP-12 and TSP-14 can also associate with SMA-6, the type I receptor of the Sma/Mab pathway. Finally, we found that glycosphingolipids, major components of the tetraspanin-enriched microdomains, are required for Sma/Mab signaling. Our findings suggest that the tetraspanin-enriched membrane microdomains are important for proper BMP signaling. As tetraspanins have emerged as diagnostic and prognostic markers for tumor progression, and TSP-21, TSP-12 and TSP-14 are all conserved in humans, we speculate that abnormal BMP signaling due to altered expression or function of certain tetraspanins may be a contributing factor to cancer development. PMID:25978409

  16. ERK and Akt signaling pathways function through parallel mechanisms to promote mTORC1 signaling

    PubMed Central

    Winter, Jeremiah N.; Jefferson, Leonard S.

    2011-01-01

    The mammalian target of rapamycin (mTOR) is a protein kinase that, when present in a complex referred to as mTOR complex 1 (mTORC1), acts as an important regulator of growth and metabolism. The activity of the complex is regulated through multiple upstream signaling pathways, including those involving Akt and the extracellular-regulated kinase (ERK). Previous studies have shown that, in part, Akt and ERK promote mTORC1 signaling through phosphorylation of a GTPase activator protein (GAP), referred to as tuberous sclerosis complex 2 (TSC2), that acts as an upstream inhibitor of mTORC1. In the present study we extend the earlier studies to show that activation of the Akt and ERK pathways acts in a synergistic manner to promote mTORC1 signaling. Moreover, we provide evidence that the Akt and ERK signaling pathways converge on TSC2, and that Akt phosphorylates residues on TSC2 distinct from those phosphorylated by ERK. The results also suggest that leucine-induced stimulation of mTORC1 signaling occurs through a mechanism distinct from TSC2 and the Akt and ERK signaling pathways. Overall, the results are consistent with a model in which Akt and ERK phosphorylate distinct sites on TSC2, leading to greater repression of its GAP activity, and consequently a magnified stimulation of mTORC1 signaling, when compared with either input alone. The results further suggest that leucine acts through a mechanism distinct from TSC2 to stimulate mTORC1 signaling. PMID:21289294

  17. Metabolic sugar signal promotes Arabidopsis meristematic proliferation via G2

    PubMed Central

    Skylar, Anna; Sung, Frances; Hong, Fangxin; Chory, Joanne; Wu, Xuelin

    2011-01-01

    Most organs in higher plants are generated postembryonically from the meristems, which harbor continuously dividing stem cells throughout a plant's life cycle. In addition to developmental regulations, mitotic activities in the meristematic tissues are modulated by nutritional cues, including carbon source availability. Here we further analyze the relationship between the sugar signal and seedling meristem establishment, taking advantage of our previous observation that exogenously supplied metabolic sugars can rescue the meristem growth arrest phenotype of the Arabidopsis stip mutant seedlings. Our results show that metabolic sugars reactivate the stip meristems by activating the expression of key cell cycle regulators, and therefore, promoting G2 to M transition in Arabidopsis meristematic tissues. One of the early events in this process is the transcriptional repression of TSS, a genetic suppressor of the stip mutations, by sugar signals, suggesting that TSS may act as an integrator of developmental and nutritional signals in regulating meristematic proliferation. We also present evidence that metabolic sugar signals are required for the activation of mitotic entry during de novo meristem formation from G2 arrested cells. Our observations, together with the recent findings that nutrient deprivation leads to G2 arrest of animal germline stem cells, suggest that carbohydrate availability-regulated G2 to M transition may represent a common mechanism in stem cell division regulation in multicellular organisms. PMID:21185286

  18. Plant growth promotion and Penicillium citrinum

    PubMed Central

    Khan, Sumera Afzal; Hamayun, Muhammad; Yoon, Hyeokjun; Kim, Ho-Youn; Suh, Seok-Jong; Hwang, Seon-Kap; Kim, Jong-Myeong; Lee, In-Jung; Choo, Yeon-Sik; Yoon, Ung-Han; Kong, Won-Sik; Lee, Byung-Moo; Kim, Jong-Guk

    2008-01-01

    Background Endophytic fungi are known plant symbionts. They produce a variety of beneficial metabolites for plant growth and survival, as well as defend their hosts from attack of certain pathogens. Coastal dunes are nutrient deficient and offer harsh, saline environment for the existing flora and fauna. Endophytic fungi may play an important role in plant survival by enhancing nutrient uptake and producing growth-promoting metabolites such as gibberellins and auxins. We screened roots of Ixeris repenes (L.) A. Gray, a common dune plant, for the isolation of gibberellin secreting endophytic fungi. Results We isolated 15 endophytic fungi from the roots of Ixeris repenes and screened them for growth promoting secondary metabolites. The fungal isolate IR-3-3 gave maximum plant growth when applied to waito-c rice and Atriplex gemelinii seedlings. Analysis of the culture filtrate of IR-3-3 showed the presence of physiologically active gibberellins, GA1, GA3, GA4 and GA7 (1.95 ng/ml, 3.83 ng/ml, 6.03 ng/ml and 2.35 ng/ml, respectively) along with other physiologically inactive GA5, GA9, GA12, GA15, GA19, GA20 and, GA24. The plant growth promotion and gibberellin producing capacity of IR-3-3 was much higher than the wild type Gibberella fujikuroi, which was taken as control during present study. GA5, a precursor of bioactive GA3 was reported for the first time in fungi. The fungal isolate IR-3-3 was identified as a new strain of Penicillium citrinum (named as P. citrinum KACC43900) through phylogenetic analysis of 18S rDNA sequence. Conclusion Isolation of new strain of Penicillium citrinum from the sand dune flora is interesting as information on the presence of Pencillium species in coastal sand dunes is limited. The plant growth promoting ability of this fungal strain may help in conservation and revegetation of the rapidly eroding sand dune flora. Penicillium citrinum is already known for producing mycotoxin citrinin and cellulose digesting enzymes like cellulase and

  19. Leptin-Induced JAK/STAT Signaling and Cancer Growth

    PubMed Central

    Mullen, McKay; Gonzalez-Perez, Ruben Rene

    2016-01-01

    Growth factor and cytokine signaling can influence the development of several cancer types. One of the key players in the development of cancer is the Janus kinas (JAK) signal transducer of activators of transcription (STAT) signaling pathway. The majority of growth factors and cytokine interactions with their membrane-bound receptors trigger JAK-STAT activation. The influential relationship between obesity and cancer is a fact. However, there is a complex sequence of events contributing to the regulation of this mechanism to promote tumor growth, yet to be fully elucidated. The JAK-STAT pathway is influenced by obesity-associated changes that have been shown to impact cancer growth and progression. This intricate process is highly regulated by a vast array of adipokines and cytokines that exert their pleiotropic effects on cancer cells to enhance metastasis to distant target sites. Leptin is a cytokine, or more precise, an adipokine secreted mainly by adipose tissue that requires JAK-STAT activation to exert its biological functions. Leptin is the central regulator of energy balance and appetite. Leptin binding to its receptor OB-R in turn activates JAK-STAT, which induces proliferation, angiogenesis, and anti-apoptotic events in normal cells and malignant cells expressing the receptor. Leptin also induces crosstalk with Notch and IL-1 (NILCO), which involves other angiogenic factors promoting tumor growth. Therefore, the existence of multiple novel classes of therapeutics that target the JAK/STAT pathway has significant clinical implications. Then, the identification of the signaling networks and factors that regulate the obesity-cancer link to which potential pharmacologic interventions can be implemented to inhibit tumor growth and metastasis. In this review, we will discuss the specific relationship between leptin-JAK-STAT signaling and cancer. PMID:27472371

  20. Sonic Hedgehog Signaling Promotes Tumor Growth

    DTIC Science & Technology

    2006-02-01

    UGSM-2 cells were determined to be tetraploid by comparison to ploidy number of known diploid cells: freshly isolated splenocytes from the spleen of a...propagated continuously without evi- dence of crisis. Immortalized mouse cells are typically tetraploid and these cells remained stably tetraploid for... tetraploid (Fig. 1B). Recent studies revealed that INK4a/ MEFs can acquire chromosomal rearrangements at high passage [29]. To assess tumorigenicity

  1. Sonic Hedgehog Signaling Promotes Tumor Growth

    DTIC Science & Technology

    2007-02-01

    phase. PloidyAnalysis UGSM-2 cells were determined to be tetraploid by comparison to ploidy number of known diploid cells: freshly isolated splenocytes...continuously without evi- dence of crisis. Immortalized mouse cells are typically tetraploid and these cells remained stably tetraploid for over 100...line, UGSM-2, was selected for use in subsequent experi- ments. Like the parent mixed cell population, UGSM-2 cellswere found to be stably tetraploid

  2. Interleukin-6 (IL-6) Trans Signaling Drives a STAT3-dependent Pathway That Leads to Hyperactive Transforming Growth Factor-β (TGF-β) Signaling Promoting SMAD3 Activation and Fibrosis via Gremlin Protein

    PubMed Central

    O'Reilly, Steven; Ciechomska, Marzena; Cant, Rachel; van Laar, Jacob M.

    2014-01-01

    Fibrosis is a common and intractable condition associated with various pathologies. It is characterized by accumulation of an excessive amount of extracellular matrix molecules that primarily include collagen type I. IL-6 is a profibrotic cytokine that is elevated in the prototypic fibrotic autoimmune condition systemic sclerosis and is known to induce collagen I expression, but the mechanism(s) behind this induction are currently unknown. Using healthy dermal fibroblasts in vitro, we analyzed the signaling pathways that underscore the IL-6-mediated induction of collagen. We show that IL-6 trans signaling is important and that the effect is dependent on STAT3; however, the effect is indirect and mediated through enhanced TGF-β signaling and the classic downstream cellular mediator Smad3. This is due to induction of the bone morphogenetic protein (BMP) antagonist Gremlin-1, and we show that Gremlin-1 is profibrotic and is mediated through canonical TGF-β signaling. PMID:24550394

  3. Interleukin-6 (IL-6) trans signaling drives a STAT3-dependent pathway that leads to hyperactive transforming growth factor-β (TGF-β) signaling promoting SMAD3 activation and fibrosis via Gremlin protein.

    PubMed

    O'Reilly, Steven; Ciechomska, Marzena; Cant, Rachel; van Laar, Jacob M

    2014-04-04

    Fibrosis is a common and intractable condition associated with various pathologies. It is characterized by accumulation of an excessive amount of extracellular matrix molecules that primarily include collagen type I. IL-6 is a profibrotic cytokine that is elevated in the prototypic fibrotic autoimmune condition systemic sclerosis and is known to induce collagen I expression, but the mechanism(s) behind this induction are currently unknown. Using healthy dermal fibroblasts in vitro, we analyzed the signaling pathways that underscore the IL-6-mediated induction of collagen. We show that IL-6 trans signaling is important and that the effect is dependent on STAT3; however, the effect is indirect and mediated through enhanced TGF-β signaling and the classic downstream cellular mediator Smad3. This is due to induction of the bone morphogenetic protein (BMP) antagonist Gremlin-1, and we show that Gremlin-1 is profibrotic and is mediated through canonical TGF-β signaling.

  4. Microaerophilic Conditions Promote Growth of Mycobacterium genavense

    PubMed Central

    Realini, L.; De Ridder, K.; Palomino, J.-C.; Hirschel, B.; Portaels, F.

    1998-01-01

    Our studies show that microaerophilic conditions promote the growth of Mycobacterium genavense in semisolid medium. The growth of M. genavense at 2.5 or 5% oxygen was superior to that obtained at 21% oxygen in BACTEC primary cultures (Middlebrook 7H12, pH 6.0, without additives). By using nondecontaminated specimens, it was possible to detect growth with very small inocula (25 bacilli/ml) of 12 different M. genavense strains (from nude mice) within 6 weeks of incubation under low oxygen tension; conversely, with 21% oxygen, no growth of 8 of 12 (66.7%) M. genavense strains was detected (growth index, <10). The same beneficial effect of 2.5 or 5% oxygen was observed in primary cultures of a decontaminated clinical specimen. Low oxygen tension (2.5 or 5%) is recommended for the primary isolation of M. genavense. Microaerophilic cultivation of other atypical mycobacteria, especially slow-growing (e.g., Mycobacterium avium) and difficult-to-grow (e.g., Mycobacterium ulcerans) species, is discussed. PMID:9705393

  5. Soliton growth-signal transduction in topologically quantized T cells

    NASA Astrophysics Data System (ADS)

    Matsson, Leif

    1993-09-01

    A model for growth-signal transduction of the T cell and its growth factor, interleukin-2, is presented. It is obtained as a generalization of the usual rate equation and is founded on the observation that a definite number of receptor occupations must take place in order to promote transition to the S phase and subsequent DNA replication. The generalized rate equation is identified as the equation of motion of a Lagrangian field theory of Ginzburg-Landau (Goldstone) type. However it is not an ad hoc model but is a microscopic theory of the interaction of interleukin-2 and its receptor. The topological quantum number of the model is related to the observed definite number of receptor occupations required to elicit growth-signal transduction. Individual receptor quanta, up to this limit, are subjected to a type of Bose condensation. This collective excitation constitutes the growth signal in the form of a topological kink soliton which is then launched by the next potential receptor occupation that makes the interaction repulsive. The model provides a possible long-absent explanation of the triggering mechanism for growth-signal transduction by means of the ambivalent interaction, which switches sign after a definite number of receptor occupations. Moreover, it offers an explanation of how Nature screens out fractional signals in the growth-signal-transduction process of T cells. Although the model is derived for assumed point-like cells and certain other restrictions, the obtained dose-response curves are in striking agreement with proliferation data from studies of both the leukemic T cell line MLA-144 from gibbon ape and normal human T cells in, and without, the presence of monoclonal anti-Tac antibodies.

  6. The Fibroblast Growth Factor signaling pathway

    PubMed Central

    Ornitz, David M; Itoh, Nobuyuki

    2015-01-01

    The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. © 2015 Wiley Periodicals, Inc. PMID:25772309

  7. Biosensor for organoarsenical herbicides and growth promoters.

    PubMed

    Chen, Jian; Sun, Samio; Li, Chen-Zhong; Zhu, Yong-Guan; Rosen, Barry P

    2014-01-21

    The toxic metalloid arsenic is widely distributed in food, water, and soil. While inorganic arsenic enters the environment primarily from geochemical sources, methylarsenicals either result from microbial biotransformation of inorganic arsenic or are introduced anthropogenically. Methylarsenicals such as monosodium methylarsonic acid (MSMA) have been extensively utilized as herbicides, and aromatic arsenicals such as roxarsone (Rox) are used as growth promoters for poultry and swine. Organoarsenicals are degraded to inorganic arsenic. The toxicological effects of arsenicals depend on their oxidation state, chemical composition, and bioavailability. Here we report that the active forms are the trivalent arsenic-containing species. We constructed a whole-cell biosensor utilizing a modified ArsR repressor that is highly selective toward trivalent methyl and aromatic arsenicals, with essentially no response to inorganic arsenic. The biosensor was adapted for in vitro detection of organoarsenicals using fluorescence anisotropy of ArsR-DNA interactions. It detects bacterial biomethylation of inorganic arsenite both in vivo and in vitro with detection limits of 10(-7) M and linearity to 10(-6) M for phenylarsenite and 5 × 10(-6) M for methylarsenite. The biosensor detects reduced forms of MSMA and roxarsone and offers a practical, low cost method for detecting activate forms and breakdown products of organoarsenical herbicides and growth promoters.

  8. Androgen receptor signaling regulates growth of glioblastoma multiforme in men.

    PubMed

    Yu, Xiaoming; Jiang, Yuhua; Wei, Wei; Cong, Ping; Ding, Yinlu; Xiang, Lei; Wu, Kang

    2015-02-01

    Although glioblastoma multiforme (GBM) is the most malignant primary human brain cancer with surprisingly high incidence rate in adult men than in women, the exact mechanism underlying this pronounced epidemiology is unclear. Here, we showed significant upregulated androgen receptor (AR) expression in the GBM tissue compared to the periphery normal brain tissue in patients. An expression of AR was further detected in all eight examined human GBM cell lines. To figure out whether AR signaling may play a role in GBM, we used high AR-expressing U87-MG GBM line for further study. We found that activation of transforming growth factor β (TGFβ) receptor signaling by TGFβ1 in GBM significantly inhibited cell growth and increased apoptosis. Moreover, application of active AR ligand 5α-dihydrotestosterone (DHT) significantly decreased the effect of TGFβ1 on GBM growth and apoptosis, suggesting that AR signaling pathway may contradict the effect of TGFβ receptor signaling in GBM. However, neither total protein nor the phosphorylated protein of SMAD3, a major TGFβ receptor signaling downstream effector in GBM, was affected by DHT, suggesting that AR activation may not affect the SMAD3 protein production or phosphorylation of TGFβ receptor and SMAD3. Finally, immunoprecipitation followed by immunoblot confirmed binding of pAR to pSMAD3, which may prevent the DNA binding of pSMAD3 and subsequently prevent its effect on cell growth in GBM. Taken together, our study suggests that AR signaling may promote tumorigenesis of GBM in adult men by inhibiting TGFβ receptor signaling.

  9. The role of microbial signals in plant growth and development

    PubMed Central

    Ortíz-Castro, Randy; Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes

    2009-01-01

    Plant growth and development involves a tight coordination of the spatial and temporal organization of cell division, cell expansion and cell differentiation. Orchestration of these events requires the exchange of signaling molecules between the root and shoot, which can be affected by both biotic and abiotic factors. The interactions that occur between plants and their associated microorganisms have long been of interest, as knowledge of these processes could lead to the development of novel agricultural applications. Plants produce a wide range of organic compounds including sugars, organic acids and vitamins, which can be used as nutrients or signals by microbial populations. On the other hand, microorganisms release phytohormones, small molecules or volatile compounds, which may act directly or indirectly to activate plant immunity or regulate plant growth and morphogenesis. In this review, we focus on recent developments in the identification of signals from free-living bacteria and fungi that interact with plants in a beneficial way. Evidence has accumulated indicating that classic plant signals such as auxins and cytokinins can be produced by microorganisms to efficiently colonize the root and modulate root system architecture. Other classes of signals, including N-acyl-L-homoserine lactones, which are used by bacteria for cell-to-cell communication, can be perceived by plants to modulate gene expression, metabolism and growth. Finally, we discuss the role played by volatile organic compounds released by certain plant growth-promoting rhizobacteria in plant immunity and developmental processes. The picture that emerges is one in which plants and microbes communicate themselves through transkingdom signaling systems involving classic and novel signals. PMID:19820333

  10. The role of microbial signals in plant growth and development.

    PubMed

    Ortíz-Castro, Randy; Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes; López-Bucio, José

    2009-08-01

    Plant growth and development involves a tight coordination of the spatial and temporal organization of cell division, cell expansion and cell differentiation. Orchestration of these events requires the exchange of signaling molecules between the root and shoot, which can be affected by both biotic and abiotic factors. The interactions that occur between plants and their associated microorganisms have long been of interest, as knowledge of these processes could lead to the development of novel agricultural applications. Plants produce a wide range of organic compounds including sugars, organic acids and vitamins, which can be used as nutrients or signals by microbial populations. On the other hand, microorganisms release phytohormones, small molecules or volatile compounds, which may act directly or indirectly to activate plant immunity or regulate plant growth and morphogenesis. In this review, we focus on recent developments in the identification of signals from free-living bacteria and fungi that interact with plants in a beneficial way. Evidence has accumulated indicating that classic plant signals such as auxins and cytokinins can be produced by microorganisms to efficiently colonize the root and modulate root system architecture. Other classes of signals, including N-acyl-L-homoserine lactones, which are used by bacteria for cell-to-cell communication, can be perceived by plants to modulate gene expression, metabolism and growth. Finally, we discuss the role played by volatile organic compounds released by certain plant growth-promoting rhizobacteria in plant immunity and developmental processes. The picture that emerges is one in which plants and microbes communicate themselves through transkingdom signaling systems involving classic and novel signals.

  11. Plant growth promoting rhizobia: challenges and opportunities.

    PubMed

    Gopalakrishnan, Subramaniam; Sathya, Arumugam; Vijayabharathi, Rajendran; Varshney, Rajeev Kumar; Gowda, C L Laxmipathi; Krishnamurthy, Lakshmanan

    2015-08-01

    Modern agriculture faces challenges, such as loss of soil fertility, fluctuating climatic factors and increasing pathogen and pest attacks. Sustainability and environmental safety of agricultural production relies on eco-friendly approaches like biofertilizers, biopesticides and crop residue return. The multiplicity of beneficial effects of microbial inoculants, particularly plant growth promoters (PGP), emphasizes the need for further strengthening the research and their use in modern agriculture. PGP inhabit the rhizosphere for nutrients from plant root exudates. By reaction, they help in (1) increased plant growth through soil nutrient enrichment by nitrogen fixation, phosphate solubilization, siderophore production and phytohormones production (2) increased plant protection by influencing cellulase, protease, lipase and β-1,3 glucanase productions and enhance plant defense by triggering induced systemic resistance through lipopolysaccharides, flagella, homoserine lactones, acetoin and butanediol against pests and pathogens. In addition, the PGP microbes contain useful variation for tolerating abiotic stresses like extremes of temperature, pH, salinity and drought; heavy metal and pesticide pollution. Seeking such tolerant PGP microbes is expected to offer enhanced plant growth and yield even under a combination of stresses. This review summarizes the PGP related research and its benefits, and highlights the benefits of PGP rhizobia belonging to the family Rhizobiaceae, Phyllobacteriaceae and Bradyrhizobiaceae.

  12. Mincle Signaling Promotes Con A Hepatitis.

    PubMed

    Greco, Stephanie H; Torres-Hernandez, Alejandro; Kalabin, Aleksandr; Whiteman, Clint; Rokosh, Rae; Ravirala, Sushma; Ochi, Atsuo; Gutierrez, Johana; Salyana, Muhammad Atif; Mani, Vishnu R; Nagaraj, Savitha V; Deutsch, Michael; Seifert, Lena; Daley, Donnele; Barilla, Rocky; Hundeyin, Mautin; Nikifrov, Yuriy; Tejada, Karla; Gelb, Bruce E; Katz, Steven C; Miller, George

    2016-10-01

    Con A hepatitis is regarded as a T cell-mediated model of acute liver injury. Mincle is a C-type lectin receptor that is critical in the immune response to mycobacteria and fungi but does not have a well-defined role in preclinical models of non-pathogen-mediated inflammation. Because Mincle can ligate the cell death ligand SAP130, we postulated that Mincle signaling drives intrahepatic inflammation and liver injury in Con A hepatitis. Acute liver injury was assessed in the murine Con A hepatitis model using C57BL/6, Mincle(-/-), and Dectin-1(-/-) mice. The role of C/EBPβ and hypoxia-inducible factor-1α (HIF-1α) signaling was assessed using selective inhibitors. We found that Mincle was highly expressed in hepatic innate inflammatory cells and endothelial cells in both mice and humans. Furthermore, sterile Mincle ligands and Mincle signaling intermediates were increased in the murine liver in Con A hepatitis. Most significantly, Mincle deletion or blockade protected against Con A hepatitis, whereas Mincle ligation exacerbated disease. Bone marrow chimeric and adoptive transfer experiments suggested that Mincle signaling in infiltrating myeloid cells dictates disease phenotype. Conversely, signaling via other C-type lectin receptors did not alter disease course. Mechanistically, we found that Mincle blockade decreased the NF-κβ-related signaling intermediates C/EBPβ and HIF-1α, both of which are necessary in macrophage-mediated inflammatory responses. Accordingly, Mincle deletion lowered production of nitrites in Con A hepatitis and inhibition of both C/EBPβ and HIF-1α reduced the severity of liver disease. Our work implicates a novel innate immune driver of Con A hepatitis and, more broadly, suggests a potential role for Mincle in diseases governed by sterile inflammation.

  13. Mincle Signaling Promotes Con-A Hepatitis

    PubMed Central

    Greco, Stephanie H.; Torres-Hernandez, Alejandro; Kalabin, Aleksandr; Whiteman, Clint; Rokosh, Rae; Ravirala, Sushma; Ochi, Atsuo; Gutierrez, Johana; Salyana, Muhammad Atif; Mani, Vishnu R.; Nagaraj, Savitha V.; Deutsch, Michael; Seifert, Lena; Daley, Donnele; Barilla, Rocky; Hundeyin, Mautin; Nikifrov, Yuriy; Tejada, Karla; Gelb, Bruce E.; Katz, Steven C.; Miller, George

    2016-01-01

    Concanavalin-A (Con-A) hepatitis is regarded as a T cell-mediated model of acute liver injury. Mincle is a C-type lectin receptor (CLR) that is critical in the immune response to mycobacteria and fungi, but does not have a well-defined role in pre-clinical models of non-pathogen mediated inflammation. Since Mincle can ligate the cell death ligand SAP130, we postulated that Mincle signaling drives intrahepatic inflammation and liver injury in Con-A hepatitis. Acute liver injury was assessed in the murine Con-A hepatitis model using C57BL/6, Mincle−/−, and Dectin-1−/− mice. The role of C/EBPβ and HIF-1α signaling was assessed using selective inhibitors. We found that Mincle was highly expressed in hepatic innate inflammatory cells and endothelial cells in both mice and humans. Furthermore, sterile Mincle ligands and Mincle signaling intermediates were increased in the murine liver in Con-A hepatitis. Most significantly, Mincle deletion or blockade protected against Con-A hepatitis whereas Mincle ligation exacerbated disease. Bone marrow chimeric and adoptive transfer experiments suggested that Mincle signaling in infiltrating myeloid cells dictates disease phenotype. Conversely, signaling via other CLRs did not alter disease course. Mechanistically, we found that Mincle blockade decreased the NF-κβ related signaling intermediates, C/EBPβ and HIF-1α, both of which are necessary in macrophage-mediated inflammatory responses. Accordingly, Mincle deletion lowered production of nitrites in Con-A hepatitis and inhibition of both C/EBPβ and HIF1-α reduced the severity of liver disease. Our work implicates a novel innate immune driver of Con-A hepatitis and, more broadly, suggests a potential role for Mincle in diseases governed by sterile inflammation. PMID:27559045

  14. Sonic Hedgehog-GLI Family Zinc Finger 1 Signaling Pathway Promotes the Growth and Migration of Pancreatic Cancer Cells by Regulating the Transcription of Eukaryotic Translation Initiation Factor 5A2.

    PubMed

    Xu, Xuanfu; Liu, Hua; Zhang, Hui; Dai, Weiqi; Guo, Chuanyong; Xie, Chuangao; Wei, Shumei; He, Shengli; Xu, Xiaorong

    2015-11-01

    The Hh (hedgehog) signaling pathway is still waiting for further studies because its downstream molecular mechanism remains elusive. Because EIF5A2 (eukaryotic translation initiation factor 5A2) gene was up-regulated upon Gli1 (GLI family zinc finger 1) in pancreatic cancer (PC) cells, we speculated that this pathway might promote tumor progression through regulating EIF5A2. We investigated regulation effect of Hh signaling pathway to EIF5A2 gene transcription by Gli1 knockdown or overexpression in PC cell lines first. Then, the regulation mechanism of Gli1 to EIF5A2 gene was studied at transcription level. Finally, we studied cancer-promoting effects of Gli1-dependent EIF5A2 in PC cells. The data showed that Gli1 up-regulated expression of EIF5A2 by promoting transcription via cis-acting elements in PC cells. Moreover, vimentin gene was up-regulated significantly by sonic hedgehog (SHh)/Gli1 expression increasing, and E-cadherin was significantly reduced. The EIF5A2 knockdown partially reversed cell proliferation and migration induced by artificial SHh overexpression and inhibited epithelial mesenchymal transition process in PC cells with SHh overexpression (P < 0.05). Our data establish a novel transcription mechanism of Gli1 to EIF5A2 gene in cis-regulatory manner in PC cells. Thus, EIF5A2 oncogene effect could be incorporated into cancer-promoting molecular network upon Hh signaling pathway.

  15. Hippo signaling promotes JNK-dependent cell migration

    PubMed Central

    Ma, Xianjue; Wang, Hongxiang; Ji, Jiansong; Xu, Wenyan; Sun, Yihao; Li, Wenzhe; Zhang, Xiaoping; Chen, Juxiang; Xue, Lei

    2017-01-01

    Overwhelming studies show that dysregulation of the Hippo pathway is positively correlated with cell proliferation, growth, and tumorigenesis. Paradoxically, the detailed molecular roles of the Hippo pathway in cell invasion remain debatable. Using a Drosophila invasion model in wing epithelium, we show herein that activated Hippo signaling promotes cell invasion and epithelial-mesenchymal transition through JNK, as inhibition of JNK signaling dramatically blocked Hippo pathway activation-induced matrix metalloproteinase 1 expression and cell invasion. Furthermore, we identify bantam-Rox8 modules as essential components downstream of Yorkie in mediating JNK-dependent cell invasion. Finally, we confirm that YAP (Yes-associated protein) expression negatively regulates TIA1 (Rox8 ortholog) expression and cell invasion in human cancer cells. Together, these findings provide molecular insights into Hippo pathway-mediated cell invasion and also raise a noteworthy concern in therapeutic interventions of Hippo-related cancers, as simply inhibiting Yorkie or YAP activity might paradoxically accelerate cell invasion and metastasis. PMID:28174264

  16. Ribonucleotides and RNA Promote Peptide Chain Growth.

    PubMed

    Griesser, Helmut; Tremmel, Peter; Kervio, Eric; Pfeffer, Camilla; Steiner, Ulrich E; Richert, Clemens

    2017-01-24

    All known forms of life use RNA-mediated polypeptide synthesis to produce the proteins encoded in their genes. Because the principal parts of the translational machinery consist of RNA, it is likely that peptide synthesis was achieved early in the prebiotic evolution of an RNA-dominated molecular world. How RNA attracted amino acids and then induced peptide formation in the absence of enzymes has been unclear. Herein, we show that covalent capture of an amino acid as a phosphoramidate favors peptide formation. Peptide coupling is a robust process that occurs with different condensation agents. Kinetics show that covalent capture can accelerate chain growth over oligomerization of the free amino acid by at least one order of magnitude, so that there is no need for enzymatic catalysis for peptide synthesis to begin. Peptide chain growth was also observed on phosphate-terminated RNA strands. Peptide coupling promoted by ribonucleotides or ribonucleotide residues may have been an important transitional form of peptide synthesis that set in when amino acids were first captured by RNA. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Decreased Ferroportin Promotes Myeloma Cell Growth and Osteoclast Differentiation

    PubMed Central

    Gu, Zhimin; Wang, He; Xia, Jiliang; Yang, Ye; Jin, Zhendong; Xu, Hongwei; Shi, Jumei; De Domenico, Ivana; Tricot, Guido; Zhan, Fenghuang

    2016-01-01

    Iron homeostasis is disrupted in multiple myeloma, a difficult-to-cure plasma cell malignancy with lytic bone lesions. Here, we systematically analyzed iron gene expression signature and demonstrated that mRNA expression of iron exporter ferroportin (FPN1) is significantly downregulated in myeloma cells and correlates negatively with clinic outcome. Restoring expression of FPN1 reduces intracellular liable iron pool, inhibits STAT3-MCL-1 signaling, and suppresses myeloma cells growth. Furthermore, we demonstrated that mRNA of FPN1 is also downregulated at the initial stages of osteoclast differentiation and suppresses myeloma cell–induced osteoclast differentiation through regulating iron regulator TFRC, NF-κB, and JNK pathways. Altogether, we demonstrated that downregulation of FPN1 plays critical roles in promoting myeloma cell growth and bone resorption in multiple myeloma. PMID:25855377

  18. HER3 and LINC00052 interplay promotes tumor growth in breast cancer

    PubMed Central

    Salameh, Ahmad; Fan, Xuejun; Choi, Byung-Kwon; Zhang, Shu; Zhang, Ningyan; An, Zhiqiang

    2017-01-01

    Here we report that the lncRNA LINC00052 expression correlates positively with HER3/ErbB3 levels in breast cancer cells. Gene silencing of LINC00052 diminished both LINC00052 and HER3 expression and reduced cancer cell growth in vitro and in vivo. LINC00052 overexpression promoted cancer cell growth in vitro and in vivo and increased HER3-mediated downstream signaling. Importantly, neutralization of HER3 signaling with HER3 targeting monoclonal antibodies blocked LINC00052 mediated cancer cell proliferation in vitro and tumor growth in vivo, suggesting LINC00052 promoting cancer growth through HER3 signaling. Taken together, our results indicate that high LINC00052 levels predict activation of HER3-mediated signaling, and LINC00052 expression level may serve as a potential biomarker for HER3 targeted antibody cancer therapies. PMID:28036286

  19. Epidermal growth factor receptor signaling in tissue

    SciTech Connect

    Shvartsman, Stanislav; Wiley, H. S.; Lauffenburger, Douglas A.

    2004-08-01

    Abstract: A peptide purified from the salivary gland of a mouse was shown few years ago to accelerate incisor eruption and eyelid opening in newborn mice, and was named epidermal growth factor (EGF). The members of this family of peptide growth factors had been identified in numerous physiological and pathological contexts. EGF binds to a cell surface EGF receptor, which induces a biochemical modification (phosphorylation) of the receptor's cytoplasmic tail. There is a growing consensus in the research community that, in addition to cellular and molecular studies, the dynamics of the EGFR network and its operation must be examined in tissues. A key challenge is to integrate the existing molecular and cellular information into a system-level description of the EGFR network at the tissue and organism level. In this paper, the two examples of EGFR signaling in tissues are described, and the recent efforts to model EGFR autocrine loops, which is a predominant mode of EGFR activation in vivo, are summarized.

  20. Nicotine Promotes Cholangiocarcinoma Growth in Xenograft Mice.

    PubMed

    Martínez, Allyson K; Jensen, Kendal; Hall, Chad; O'Brien, April; Ehrlich, Laurent; White, Tori; Meng, Fanyin; Zhou, Tianhao; Greene, John; Bernuzzi, Francesca; Invernizzi, Pietro; Dostal, David E; Lairmore, Terry; Alpini, Gianfranco; Glaser, Shannon S

    2017-05-01

    Nicotine, the main addictive substance in tobacco, is known to play a role in the development and/or progression of a number of malignant tumors. However, nicotine's involvement in the pathogenesis of cholangiocarcinoma is controversial. Therefore, we studied the effects of nicotine on the growth of cholangiocarcinoma cells in vitro and the progression of cholangiocarcinoma in a mouse xenograft model. The predominant subunit responsible for nicotine-mediated proliferation in normal and cancer cells, the α7 nicotinic acetylcholine receptor (α7-nAChR), was more highly expressed in human cholangiocarcinoma cell lines compared with normal human cholangiocytes. Nicotine also stimulated the proliferation of cholangiocarcinoma cell lines and promoted α7-nAChR-dependent activation of proliferation and phosphorylation of extracellular-regulated kinase in Mz-ChA-1 cells. In addition, nicotine and PNU282987 (α7-nAChR agonist) accelerated the growth of the cholangiocarcinoma tumors in our xenograft mouse model and increased fibrosis, proliferation of the tumor cells, and phosphorylation of extracellular-regulated kinase activation. Finally, α7-nAChR was expressed at significantly higher levels in human cholangiocarcinoma compared with normal human control liver samples. Taken together, results of this study suggest that nicotine acts through α7-nAChR and plays a novel role in the pathogenesis of cholangiocarcinoma. Furthermore, nicotine may act as a mitogen in cholestatic liver disease processes, thereby facilitating malignant transformation. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. Promotion of growth by elevated carbon dioxide is coordinated through a flexible transcriptional network in Arabidopsis.

    PubMed

    Ribeiro, Dimas M; Mueller-Roeber, Bernd; Schippers, Jos H M

    2013-03-01

    Although gibberellins (GAs) promote many developmental responses in plants, little is known about how the hormone interacts with environmental signals at the molecular level for regulating plant growth. Recently, we have demonstrated that inhibition of growth by the GA biosynthesis inhibitor paclobutrazol (PAC) at ambient [CO₂] (350 µmol CO₂ mol(-1)) is reverted by elevated [CO₂] (750 μmol CO₂ mol(-1)). Our finding points to an important role of elevated [CO₂] as a signal allowing higher growth rates of low-GA plants. GA promotes plant growth via a complex transcriptional network that integrates multiple signaling pathways. Herein, we discuss how elevated [CO₂] stimulates biomass accumulation in a GA-independent manner by regulating the expression of growth-related genes.

  2. The plant growth-promoting fungus Aspergillus ustus promotes growth and induces resistance against different lifestyle pathogens in Arabidopsis thaliana.

    PubMed

    Salas-Marina, Miguel Angel; Silva-Flores, Miguel Angel; Cervantes-Badillo, Mayte Guadalupe; Rosales-Saavedra, Maria Teresa; Islas-Osuna, Maria Auxiliadora; Casas-Flores, Sergio

    2011-07-01

    To deal with pathogens, plants have evolved sophisticated mechanisms including constitutive and induced defense mechanisms. Phytohormones play important roles in plant growth and development, as well as in the systemic response induced by beneficial and pathogen microorganisms. In this work, we identified an Aspergillus ustus isolate that promotes growth and induces developmental changes in Solanum tuberosum and Arabidopsis thaliana. A. ustus inoculation on A. thaliana and S. tuberosum roots induced an increase in shoot and root growth, and lateral root and root hair numbers. Assays performed on Arabidopsis lines to measure reporter gene expression of auxin-induced/ repressed or cell cycle controlled genes (DR5 and CycB1, respectively) showed enhanced GUS activity, when compared with mock-inoculated seedlings. To determine the contribution of phytohormone signaling pathways in the effect elicited by A. ustus, we evaluated the response of a collection of hormone mutants of Arabidopsis defective in auxin, ethylene, cytokinin, or abscisic acid signaling to the inoculation with this fungus. All mutant lines inoculated with A. ustus showed increased biomass production, suggesting that these genes are not required to respond to this fungus. Moreover, we demonstrated that A. ustus synthesizes auxins and gibberellins in liquid cultures. In addition, A. ustus induced systemic resistance against the necrotrophic fungus Botrytis cinerea and the hemibiotrophic bacterium Pseudomonas syringae DC3000, probably through the induction of the expression of salicylic acid, jasmonic acid/ethylene, and camalexin defense-related genes in Arabidopsis.

  3. Endocrine fibroblast growth factor FGF19 promotes prostate cancer progression.

    PubMed

    Feng, Shu; Dakhova, Olga; Creighton, Chad J; Ittmann, Michael

    2013-04-15

    Prostate cancer is the most common visceral malignancy and the second leading cause of cancer deaths in US men. There is broad evidence that fibroblast growth factor (FGF) receptors are important in prostate cancer initiation and progression, but the contribution of particular FGFs in this disease is not fully understood. The FGF family members FGF19, FGF21, and FGF23 comprise a distinct subfamily that circulate in serum and act in an endocrine manner. These endocrine FGFs require α-Klotho (KL) and/or β-Klotho (KLB), two related single-pass transmembrane proteins restricted in their tissue distribution, to act as coreceptors along with classic FGF receptors (FGFR) to mediate potent biologic activity. Here we show that FGF19 is expressed in primary and metastatic prostate cancer tissues, where it functions as an autocrine growth factor. Exogenous FGF19 promoted the growth, invasion, adhesion, and colony formation of prostate cancer cells at low ligand concentrations. FGF19 silencing in prostate cancer cells expressing autocrine FGF19 decreased invasion and proliferation in vitro and tumor growth in vivo. Consistent with these observations, KL and/or KLB were expressed in prostate cancer cells in vitro and in vivo, raising the possibility that additional endocrine FGFs may also exert biologic effects in prostate cancer. Our findings support the concept that therapies targeting FGFR signaling may have efficacy in prostate cancer and highlight FGF19 as a relevant endocrine FGF in this setting.

  4. [Do adults' pretense signals promote pretend play behavior in children?].

    PubMed

    Ban, Midori; Uchiyama, Ichiro

    2015-10-01

    Our goal in this study was to examine whether controlled pretense signal presentation by an adult promoted pretend play behavior in toddlers. Seventy-two Japanese toddlers (24 toddlers in the 18-month-old group, 24 toddlers in the 24-month-old group, and 24 toddlers in the 30-month-old group) participated in one of two experimental conditions: signal and signal-less. In the signal condition, the experimenter presented children with pretend play behaviors (eating, drinking, pouring, and wiping) accompanied by a smile, speech including sound effects, and gazing. In the signal-less condition, the experimenter presented only pretend play behavior with a neutral facial expression without speech or gazing. For each child, we coded the number of pretend play behaviors and recorded the number of seconds the toddler engaged in the behavior. Results indicated that 18- and 24-month-old toddlers' pretend play behavior lasted longer in the signal condition than it did in the signal-less condition. However, the 30-month-old toddlers showed no difference in pretend play behaviors between the signal conditions. In sum, adults' pretense signals promoted pretend play behavior only in 18- and 24-month-olds, and not in 30-month-olds.

  5. Signal integration on plant promoters: a case study in maize.

    PubMed

    Horst, Ina; Heimann, Louisa; Peterhansel, Christoph

    2013-09-01

    Gene promoters perceive numerous signals and integrate this information into a single response, the transcriptional activity of a gene. It was speculated that covalent modification of histones on the promoters might have an important function in storage and integration of signals. Using the genes for the core proteins of C4 metabolism in maize as a model, we associated the perception of specific signals with the establishment of individual histone modifications. Core elements of the histone code defined in these studies are conserved on all C4 genes and on other maize genes that respond to similar stimuli. Moreover, the code is used in independent C4 lineages. However, our data also advise caution because interpretation of histone modifications might differ dependent on the promoter position of the modification. The model provided here constitutes a starting point for genome-wide decoding of stimulus-modification pairs in epigenetic gene regulation.

  6. Duel nature of TGF-beta signaling: tumor suppressor vs. tumor promoter.

    PubMed

    Bachman, Kurtis E; Park, Ben Ho

    2005-01-01

    Transforming growth factor beta type I (TGF-beta) is a ubiquitous cytokine that is well known for its ability to inhibit epithelial cell proliferation. Somatic mutations abrogating the TGF-beta signal transduction pathway are found in many gastrointestinal cancers, confirming its importance as a tumor suppressor. In contrast, many nongastrointestinal epithelial malignancies lack these somatic alterations, yet these cancers still acquire resistance to the growth-inhibitory effects of TGF-beta. In many instances, this resistance is part of a signaling switch whereby TGF-beta loses its growth inhibitory effects and is then used by the epithelial cell in a growth-promoting fashion. The mechanisms that underlie this change in the phenotypic growth response to TGF-beta are now being elucidated. This review focuses on recent advances in understanding the dual nature of the TGF-beta pathway as it relates to human carcinogenesis. Elucidating the molecular basis that enables epithelial cells to change from a growth-suppressive to growth-stimulatory phenotype on TGF-beta exposure is an area of active research. Besides enhancing cancer cell growth, TGF-beta is also thought to promote a malignant cell's ability to metastasize by mediating changes in the cytoskeletal architecture, known as an epithelial-to-mesenchymal transition. This process enables a cancer cell to invade and spread to distal sites. Strong evidence has now emerged suggesting that the ability of a cell to use TGF-beta as a growth-promoting/invasive cytokine is a result of a number of different cellular and nuclear factors, including the absence or disruption of cyclin-dependent kinase inhibitors. This imbalance in cell cycle regulators may be the key element that dictates a cell's response to TGF-beta as growth-inhibitory versus growth-stimulatory, thus explaining the dual nature of TGF-beta signaling. Current studies are beginning to shed light on the mechanisms that allow some nongastrointestinal epithelial

  7. A natural plant growth promoter calliterpenone from a plant Callicarpa macrophylla Vahl improves the plant growth promoting effects of plant growth promoting rhizobacteria (PGPRs).

    PubMed

    Maji, Deepamala; Barnawal, Deepti; Gupta, Aakansha; King, Shikha; Singh, A K; Kalra, A

    2013-05-01

    Experiments were conducted to evaluate the efficacy of calliterpenone, a natural plant growth promoter from a shrub Callicarpa macrophylla Vahl., in enhancing the growth and yield promoting effects of plant growth promoting rhizobacteria (PGPRs), in menthol mint (Mentha arvensis L).This study is based on our previous results indicating the microbial growth promotion by calliterpenone and assumption that application of calliterpenone along with PGPRs will improve the population of PGPRs resulting in higher impacts on plant growth and yield. Of the 15 PGPRs (identified as potent ones in our laboratory), 25 μl of 0.01 mM calliterpenone (8.0 μg/100 ml) was found to be useful in improving the population of nine PGPRs in culture media. The five selected strains of PGPRs exhibiting synergy with calliterpenone in enhancing growth of maize compared to PGPR or calliterpenone alone were selected and tested on two cultivars (cvs. Kosi and Kushal) of M. arvensis. Of the five strains, Bacillus subtilis P-20 (16S rDNA sequence homologous to Accession No NR027552) and B. subtilis Daz-26 (16SrDNA sequence homologuos to Accession No GU998816) were found to be highly effective in improving the herb and essential oil yield in the cultivars Kushal and Kosi respectively when co-treated with calliterpenone. The results open up the possibilities of using a natural growth promoter along with PGPRs as a bio-agri input for sustainable and organic agriculture.

  8. Hair Growth Promotion Activity and Its Mechanism of Polygonum multiflorum

    PubMed Central

    Li, Yunfei; Han, Mingnuan; Lin, Pei; He, Yanran; Yu, Jie; Zhao, Ronghua

    2015-01-01

    Polygonum multiflorum Radix (PMR) has long history in hair growth promotion and hair coloring in clinical applications. However, several crucial problems in its clinic usage and mechanisms are still unsolved or lack scientific evidences. In this research, C57BL/6J mice were used to investigate hair growth promotion activity and possible mechanism of PMR and Polygonum multiflorum Radix Preparata (PMRP). Hair growth promotion activities were investigated by hair length, hair covered skin ratio, the number of follicles, and hair color. Regulation effects of several cytokines involved in the hair growth procedure were tested, such as fibroblast growth factor (FGF-7), Sonic Hedgehog (SHH), β-catenin, insulin-like growth factor-1 (IGF-1), and hepatocyte growth factor (HGF). Oral PMR groups had higher hair covered skin ratio (100 ± 0.00%) than oral PMRP groups (48%~88%). However, topical usage of PMRP had about 90% hair covered skin ratio. Both oral administration of PMR and topically given PMRP showed hair growth promotion activities. PMR was considered to be more suitable for oral administration, while PMRP showed greater effects in external use. The hair growth promotion effect of oral PMR was most probably mediated by the expression of FGF-7, while topical PMRP promoted hair growth by the stimulation of SHH expression. PMID:26294926

  9. Preferential Promotion of Lycopersicon esculentum (Tomato) Growth by Plant Growth Promoting Bacteria Associated with Tomato.

    PubMed

    Vaikuntapu, Papa Rao; Dutta, Swarnalee; Samudrala, Ram Babu; Rao, Vukanti R V N; Kalam, Sadaf; Podile, Appa Rao

    2014-12-01

    A total of 74 morphologically distinct bacterial colonies were selected during isolation of bacteria from different parts of tomato plant (rhizoplane, phylloplane and rhizosphere) as well as nearby bulk soil. The isolates were screened for plant growth promoting (PGP) traits such as production of indole acetic acid, siderophore, chitinase and hydrogen cyanide as well as phosphate solubilization. Seven isolates viz., NR4, NR6, RP3, PP1, RS4, RP6 and NR1 that exhibited multiple PGP traits were identified, based on morphological, biochemical and 16S rRNA gene sequence analysis, as species that belonged to four genera Aeromonas, Pseudomonas, Bacillus and Enterobacter. All the seven isolates were positive for 1-aminocyclopropane-1-carboxylate deaminase. Isolate NR6 was antagonistic to Fusarium solani and Fusarium moniliforme, and both PP1 and RP6 isolates were antagonistic to F. moniliforme. Except RP6, all isolates adhered significantly to glass surface suggestive of biofilm formation. Seed bacterization of tomato, groundnut, sorghum and chickpea with the seven bacterial isolates resulted in varied growth response in laboratory assay on half strength Murashige and Skoog medium. Most of the tomato isolates positively influenced tomato growth. The growth response was either neutral or negative with groundnut, sorghum and chickpea. Overall, the results suggested that bacteria with PGP traits do not positively influence the growth of all plants, and certain PGP bacteria may exhibit host-specificity. Among the isolates that positively influenced growth of tomato (NR1, RP3, PP1, RS4 and RP6) only RS4 was isolated from tomato rhizosphere. Therefore, the best PGP bacteria can also be isolated from zones other than rhizosphere or rhizoplane of a plant.

  10. Nicotinic Acetylcholine Receptor Signaling in Tumor Growth and Metastasis

    PubMed Central

    Singh, Sandeep; Pillai, Smitha; Chellappan, Srikumar

    2011-01-01

    Cigarette smoking is highly correlated with the onset of a variety of human cancers, and continued smoking is known to abrogate the beneficial effects of cancer therapy. While tobacco smoke contains hundreds of molecules that are known carcinogens, nicotine, the main addictive component of tobacco smoke, is not carcinogenic. At the same time, nicotine has been shown to promote cell proliferation, angiogenesis, and epithelial-mesenchymal transition, leading to enhanced tumor growth and metastasis. These effects of nicotine are mediated through the nicotinic acetylcholine receptors that are expressed on a variety of neuronal and nonneuronal cells. Specific signal transduction cascades that emanate from different nAChR subunits or subunit combinations facilitate the proliferative and prosurvival functions of nicotine. Nicotinic acetylcholine receptors appear to stimulate many downstream signaling cascades induced by growth factors and mitogens. It has been suggested that antagonists of nAChR signaling might have antitumor effects and might open new avenues for combating tobacco-related cancer. This paper examines the historical data connecting nicotine tumor progression and the recent efforts to target the nicotinic acetylcholine receptors to combat cancer. PMID:21541211

  11. Multitrait plant growth promoting (PGP) rhizobacterial isolates from Brassica juncea rhizosphere : Keratin degradation and growth promotion.

    PubMed

    Anwar, Mohmmad Shahbaz; Siddique, Mohammad Tahir; Verma, Amit; Rao, Yalaga Rama; Nailwal, Tapan; Ansari, Mohammad; Pande, Veena

    2014-01-01

    Plant growth promoting (PGP) rhizobacteria, a beneficial microbe colonizing plant roots, enhanced crop productivity and offers an attractive way to replace chemical fertilizers, pesticides, and supplements. The keratinous waste which comprises feathers, hairs, nails, skin and wool creates problem of solid waste management due to presence of highly recalcitrant keratin. The multi traits rhizobacteria effective to remove both keratine from the environment by producing keratinase enzyme and to eradicate the chemical fertilizer by providing different PGP activity is novel achievement. In the present study, the effective PM2 strain of PGPR was isolated from rhizospheric soil of mustard (Brassica juncea) field, Pantnagar and they were identified on the basis of different biochemical tests as belonging to Bacillus genera. Different plant growth promoting activity, feather degradation and keratinolytic activity was performed and found very effective toward all the parameters. Furthermore, the efficient strain PM2 was identified on the basis of 16s rRNA sequencing and confirmed as Bacillus cereus. The strain PM2 might be used efficiently for keratinous waste management and PGP activity. Therefore, the present study suggests that Bacillus cereus have multi traits activity which extremely useful for different PGP activity and biotechnological process involving keratin hydrolysis, feather biodegradation or in the leather industry.

  12. Plant growth-promoting oligosaccharides produced from tomato waste.

    PubMed

    Suzuki, Toshisada; Tomita-Yokotani, Kaori; Tsubura, Hirokazu; Yoshida, Shigeki; Kusakabe, Isao; Yamada, Kosumi; Miki, Yoichi; Hasegawa, Koji

    2002-01-01

    Tomato juice waste was hydrolyzed with acid. Tomato juice waste (500 g; wet weight) was heated with 0.5 N HCl (2.5 l) at 70 degrees C for 4 h. After neutralization, the growth-promoting extracts (300 g; dry weight) in the plants were produced from the tomato waste. The acid extract significantly promoted the growth of cockscomb (Celosia argentea L.) and tomato (Lycopersicon esculentum L.) seedlings. We have recognized potent plant growth-promoting substances in the acid extract from tomato waste. The most effective components in the active fraction were almost all oligogalacturonic acids (DP 6-12). This paper is the first report that plant growth-promoting oligosaccharides can be directly produced from tomato juice waste. It is possible that the substances from the tomato waste can become useful plant growth regulators in the agriculture field in the future.

  13. Fibroblast Growth Factor Signaling in Metabolic Regulation

    PubMed Central

    Nies, Vera J. M.; Sancar, Gencer; Liu, Weilin; van Zutphen, Tim; Struik, Dicky; Yu, Ruth T.; Atkins, Annette R.; Evans, Ronald M.; Jonker, Johan W.; Downes, Michael Robert

    2016-01-01

    The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions. PMID:26834701

  14. Plant growth-promoting hormones activate mammalian guanylate cyclase activity.

    PubMed

    Vesely, D L; Hudson, J L; Pipkin, J L; Pack, L D; Meiners, S E

    1985-05-01

    In vivo injections of plant growth-promoting hormones increase the growth of animals as well as plants. Plant growth-promoting hormones and positive plant growth regulators are known to increase RNA and protein synthesis. Since cyclic GMP also increases RNA and protein synthesis, the object of the present investigation was to determine whether physiological levels of plant growth-promoting hormones and positive plant growth regulators have part of their mechanism(s) of action through stimulation of the guanylate cyclase (EC 4.6.1.2)-cyclic GMP system. Representatives of the three classes of growth-promoting hormones were investigated. Thus, auxins (indole-3-acetic acid, indole-3-butyric acid, beta-naphthoxyacetic acid, and 2,4,5-trichlorophenoxy acetic acid), gibberellins (gibberellic acid), and cytokinins [N6-benzyl adenine, kinetin (6-furfuryl aminopurine), and beta-(2-furyl) acrylic acid] all increased rat lung, small intestine, liver, and renal cortex guanylate cyclase activity 2- to 4-fold at the 1 microM concentration. Dose response curves revealed that maximal stimulation of guanylate cyclase by these plant growth regulators was at 1 microM; there was no augmented cyclase activity at 1 nM. The guanylate cyclase cationic cofactor manganese was not essential for augmentation of guanylate cyclase by these plant growth-promoting regulators. The antioxidant butylated hydroxytoluene did not block the enhancement of guanylate cyclase by these plant growth-promoting factors. These data suggest that guanylate cyclase may play a role in the mechanism of action of plant growth-promoting hormones and even of positive plant regulators at the cellular level.

  15. Notch signaling promotes nephrogenesis by downregulating Six2

    PubMed Central

    Chung, Eunah; Deacon, Patrick; Marable, Sierra; Shin, Juhyun

    2016-01-01

    During nephrogenesis, multipotent mesenchymal nephron progenitors develop into distinct epithelial segments. Each nephron segment has distinct cell types and physiological function. In the current model of kidney development, Notch signaling promotes the formation of proximal tubules and represses the formation of distal tubules. Here, we present a novel role of Notch in nephrogenesis. We show in mice that differentiation of nephron progenitors requires downregulation of Six2, a transcription factor required for progenitor maintenance, and that Notch signaling is necessary and sufficient for Six2 downregulation. Furthermore, we find that nephron progenitors lacking Notch signaling fail to differentiate into any nephron segments, not just proximal tubules. Our results demonstrate how cell fates of progenitors are regulated by a transcription factor governing progenitor status and by a differentiation signal in nephrogenesis. PMID:27633993

  16. Transforming growth factor-beta induces endothelin-1 expression through activation of the Smad signaling pathway.

    PubMed

    Rodríguez-Pascual, Fernando; Reimunde, Francisco Manuel; Redondo-Horcajo, Mariano; Lamas, Santiago

    2004-11-01

    Expression of the endothelin-1 gene is subject to complex regulation by different factors, among which transforming growth factor-beta is one of the most important. We have analyzed the mechanism by which transforming growth factor-beta increases endothelin-1 expression in vascular endothelial cells. Transcriptional activation of the endothelin-1 promoter accounted for the transforming growth factor-beta-induced increase in endothelin-1 mRNA levels. Two DNA elements within the promoter are responsible for this effect: a Smad binding element and a proximal activator protein-1 site. Mutation of both elements abolished transforming growth factor-beta responsiveness. Overexpression of the Smad3 isoform strongly potentiates transforming growth factor-beta- induced endothelin-1 promoter activity in a phosphorylation-dependent manner. These results demonstrate that transforming growth factor-beta induces endothelin-1 expression by a functional cooperation between Smads and activator protein-1 through activation of the Smad signaling pathway.

  17. Plant perceptions of plant growth-promoting Pseudomonas.

    PubMed Central

    Preston, Gail M

    2004-01-01

    Plant-associated Pseudomonas live as saprophytes and parasites on plant surfaces and inside plant tissues. Many plant-associated Pseudomonas promote plant growth by suppressing pathogenic micro-organisms, synthesizing growth-stimulating plant hormones and promoting increased plant disease resistance. Others inhibit plant growth and cause disease symptoms ranging from rot and necrosis through to developmental dystrophies such as galls. It is not easy to draw a clear distinction between pathogenic and plant growth-promoting Pseudomonas. They colonize the same ecological niches and possess similar mechanisms for plant colonization. Pathogenic, saprophytic and plant growth-promoting strains are often found within the same species, and the incidence and severity of Pseudomonas diseases are affected by environmental factors and host-specific interactions. Plants are faced with the challenge of how to recognize and exclude pathogens that pose a genuine threat, while tolerating more benign organisms. This review examines Pseudomonas from a plant perspective, focusing in particular on the question of how plants perceive and are affected by saprophytic and plant growth-promoting Pseudomonas (PGPP), in contrast to their interactions with plant pathogenic Pseudomonas. A better understanding of the molecular basis of plant-PGPP interactions and of the key differences between pathogens and PGPP will enable researchers to make more informed decisions in designing integrated disease-control strategies and in selecting, modifying and using PGPP for plant growth promotion, bioremediation and biocontrol. PMID:15306406

  18. Plant growth-promoting bacteria: mechanisms and applications.

    PubMed

    Glick, Bernard R

    2012-01-01

    The worldwide increases in both environmental damage and human population pressure have the unfortunate consequence that global food production may soon become insufficient to feed all of the world's people. It is therefore essential that agricultural productivity be significantly increased within the next few decades. To this end, agricultural practice is moving toward a more sustainable and environmentally friendly approach. This includes both the increasing use of transgenic plants and plant growth-promoting bacteria as a part of mainstream agricultural practice. Here, a number of the mechanisms utilized by plant growth-promoting bacteria are discussed and considered. It is envisioned that in the not too distant future, plant growth-promoting bacteria (PGPB) will begin to replace the use of chemicals in agriculture, horticulture, silviculture, and environmental cleanup strategies. While there may not be one simple strategy that can effectively promote the growth of all plants under all conditions, some of the strategies that are discussed already show great promise.

  19. Hospicells promote upregulation of the ATP-binding cassette genes by insulin-like growth factor-I via the JAK2/STAT3 signaling pathway in an ovarian cancer cell line

    PubMed Central

    BENABBOU, NADIA; MIRSHAHI, PEZHMAN; CADILLON, MÉLODIE; SORIA, JEANNETTE; THERWATH, AMU; MIRSHAHI, MASSOUD

    2013-01-01

    Interaction between tumor cells and their microenvironment has a crucial role in the development, progression and drug resistance of cancer. Our objective was to confirm the role of Hospicells, which are stromal cells from the cancer microenvironment, in drug resistance and tumor cell growth. We demonstrated that soluble factors secreted by Hospicells activate several genes and upregulate the JAK/STAT signaling pathway in ovarian cancer cell lines. Hospicells express all insulin-like growth factor (IGF) family as detected by gene array, RT-PCR, protein array and immunocytochemistry. While focusing attention on the microenvironment, we considered the role of IGF-I in proliferation and survival of ovarian cancer cells. Indeed, IGF-I is a major regulator of different stages of cancer development. We studied the effect of exogenously added IGF-I on the regulation of ATP-binding cassette (ABC) genes (MDR1, MRP1, MRP2, MRP3, MRP5 and BCRP) in the ovarian cancer cell line OVCAR3 and validated the results obtained using the IGF-IR antagonist picropodophyllin. IGF-I regulates the expression of ABC genes in OVCAR3 cells via the PI3-kinase, MEK and JAK2/STAT3 signaling pathways. The OVCAR3 cell line when co-cultured with Hospicells showed a marked degree of drug resistance. The drug resistance observed could be amplified with exogenous IGF-I. Addition of IGF-IR inhibitor, however, reduced the degree of resistance in these exposed cells. Cells that were treated with anticancer drugs and then exposed to IGF-I showed an increase in drug resistance and, thereby, an increase in cell survival. This observation indicates that drug resistance of OVCAR3 cells increases when there is synergy between OVCAR3 cells and Hospicells and it is amplified when IGF-I was exogenously added. In conclusion, inhibition of IGF-IR and targeting of the JAK2/STAT3 signaling pathway can be a target for ovarian cancer therapy. PMID:23857432

  20. [Health council report: "Antimicrobial growth promoters"].

    PubMed

    Goettsch, W; Degener, J E

    1999-03-01

    The Health Council of the Netherlands has issued a report on the risk of development of resistance among bacteria as result of the use of antibiotics as growth promotors in livestock farming. The committee appointed by the Health Council conclude that the use of antimicrobial growth promotors contributes to the problem of resistance among human pathogens. The conclusions are based on evidence regarding the development of resistance in livestock as the result of the use of antimicrobial growth promotors, the possibility of colonisation/infection of humans with resistant bacteria from the intestinal flora of productive livestock, and the transfer of resistance genes from livestock bacteria to human pathogenic microorganisms. Effective measures for the limitation of the public health risk should focus on termination of the use of antimicrobial growth promotors that confer resistance to (related) antibiotics currently used (or which will be available) to treat patients suffering from bacterial infections. In addition, the committee advised ending the use of antimicrobial growth promotors in 3 years.

  1. Hair growth-promoting effect of Carthamus tinctorius floret extract.

    PubMed

    Junlatat, Jintana; Sripanidkulchai, Bungorn

    2014-07-01

    The florets of Carthamus tinctorius L. have traditionally been used for hair growth promotion. This study aimed to examine the potential of hydroxysafflor yellow A-rich C. tinctorius extract (CTE) on hair growth both in vitro and in vivo. The effect of CTE on cell proliferation and hair growth-associated gene expression in dermal papilla cells and keratinocytes (HaCaT) was determined. In addition, hair follicles from mouse neonates were isolated and cultured in media supplemented with CTE. Moreover, CTE was applied topically on the hair-shaved skin of female C57BL/6 mice, and the histological profile of the skin was investigated. C. tinctorius floret ethanolic extract promoted the proliferation of both dermal papilla cells and HaCaT and significantly stimulated hair growth-promoting genes, including vascular endothelial growth factor and keratinocyte growth factor. In contrast, CTE suppressed the expression of transforming growth factor-β1 that is the hair loss-related gene. Furthermore, CTE treatment resulted in a significant increase in the length of cultured hair follicles and stimulated the growth of hair with local effects in mice. The results provided the preclinical data to support the potential use of CTE as a hair growth-promoting agent.

  2. Promoter nucleosome dynamics regulated by signalling through the CTD code

    PubMed Central

    Materne, Philippe; Anandhakumar, Jayamani; Migeot, Valerie; Soriano, Ignacio; Yague-Sanz, Carlo; Hidalgo, Elena; Mignion, Carole; Quintales, Luis; Antequera, Francisco; Hermand, Damien

    2015-01-01

    The phosphorylation of the RNA polymerase II C-terminal domain (CTD) plays a key role in delineating transcribed regions within chromatin by recruiting histone methylases and deacetylases. Using genome-wide nucleosome mapping, we show that CTD S2 phosphorylation controls nucleosome dynamics in the promoter of a subset of 324 genes, including the regulators of cell differentiation ste11 and metabolic adaptation inv1. Mechanistic studies on these genes indicate that during gene activation a local increase of phospho-S2 CTD nearby the promoter impairs the phospho-S5 CTD-dependent recruitment of Set1 and the subsequent recruitment of specific HDACs, which leads to nucleosome depletion and efficient transcription. The early increase of phospho-S2 results from the phosphorylation of the CTD S2 kinase Lsk1 by MAP kinase in response to cellular signalling. The artificial tethering of the Lsk1 kinase at the ste11 promoter is sufficient to activate transcription. Therefore, signalling through the CTD code regulates promoter nucleosomes dynamics. DOI: http://dx.doi.org/10.7554/eLife.09008.001 PMID:26098123

  3. MOLECULAR CONSTITUTION OF BREAST BUT NOT OTHER REPRODUCTIVE TISSUES IS RICH IN GROWTH PROMOTING MOLECULES

    PubMed Central

    Poola, Indira; Abraham, Jessy; Marshalleck, Josephine J.; Yue, Qingqi; Fu, Sidney W.; Viswanath, Lokesh; Sharma, Nikhil; Hill, Russel; DeWitty, Robert L.; Bonney, George

    2009-01-01

    In the current study we tested if highest incidence of benign as well as cancer growths in breast tissue is due to constitutive molecular composition of this tissue. To delineate the molecular basis, we compared the expression of nine functional gene modules (total 578 genes) that regulate major positive growth and negative inhibitory signals in normal breast with two other reproductive tissues, ovary and uterus. We present data to demonstrate that breast tissues constitutively have very highly elevated levels of several growth promoting molecules and diminished levels of inhibitory molecules which may, in part, contribute for highest incidence of tumor growths in this tissue. PMID:19698714

  4. ERK5 signalling in prostate cancer promotes an invasive phenotype

    PubMed Central

    Ramsay, A K; McCracken, S R C; Soofi, M; Fleming, J; Yu, A X; Ahmad, I; Morland, R; Machesky, L; Nixon, C; Edwards, D R; Nuttall, R K; Seywright, M; Marquez, R; Keller, E; Leung, H Y

    2011-01-01

    Background: Aberrant mitogen/extracellular signal-regulated kinase 5 (MEK5)–extracellular signal-regulated protein kinase 5 (ERK5)-mediated signalling has been implicated in a number of tumour types including prostate cancer (PCa). The molecular basis of ERK5-driven carcinogenesis and its clinical relevance remain to be fully characterised. Methods: Modulation of ERK5 expression or function in human PCa PC3 and PC3–ERK5 (stably transfected with ERK5) cells was performed using siRNA-mediated knockdown or the MEK inhibitor PD18435 respectively. In vitro significance of ERK5 signalling was assessed by assays for proliferation, motility, invasion and invadopodia. Expression of matrix metalloproteinases/tissue inhibitors of metalloproteases was determined by Q-RT–PCR. Extracellular signal-regulated protein kinase 5 expression in primary and metastatic PCa was examined using immunohistochemistry. Results: Reduction of ERK5 expression or signalling significantly inhibited the motility and invasive capability of PC3 cells. Extracellular signal-regulated protein kinase 5-mediated signalling significantly promoted formation of in vivo metastasis in an orthotopic PCa model (P<0.05). Invadopodia formation was also enhanced by forced ERK5 expression in PC3 cells. Furthermore, in metastatic PCa, nuclear ERK5 immunoreactivity was significantly upregulated when compared with benign prostatic hyperplasia and primary PCa (P=0.013 and P<0.0001, respectively). Conclusion: Our in vitro, in vivo and clinical data support an important role for the MEK5–ERK5 signalling pathway in invasive PCa, which represents a potential target for therapy in primary and metastatic PCa. PMID:21266977

  5. Comparison of signaling interactions determining annual and perennial plant growth in response to low temperature

    PubMed Central

    Wingler, Astrid

    2015-01-01

    Low temperature inhibits plant growth despite the fact that considerable rates of photosynthetic activity can be maintained. Instead of lower rates of photosynthesis, active inhibition of cell division and expansion is primarily responsible for reduced growth. This results in sink limitation and enables plants to accumulate carbohydrates that act as compatible solutes or are stored throughout the winter to enable re-growth in spring. Regulation of growth in response to temperature therefore requires coordination with carbon metabolism, e.g., via the signaling metabolite trehalose-6-phosphate. The phytohormones gibberellin (GA) and jasmonate (JA) play an important role in regulating growth in response to temperature. Growth restriction at low temperature is mainly mediated by DELLA proteins, whose degradation is promoted by GA. For annual plants, it has been shown that the GA/DELLA pathway interacts with JA signaling and C-repeat binding factor dependent cold acclimation, but these interactions have not been explored in detail for perennials. Growth regulation in response to seasonal factors is, however, particularly important in perennials, especially at high latitudes. In autumn, growth cessation in trees is caused by shortening of the daylength in interaction with phytohormone signaling. In perennial grasses seasonal differences in the sensitivity to GA may enable enhanced growth in spring. This review provides an overview of the signaling interactions that determine plant growth at low temperature and highlights gaps in our knowledge, especially concerning the seasonality of signaling responses in perennial plants. PMID:25628637

  6. Interleukin-27 signaling promotes immunity against endogenously arising murine tumors.

    PubMed

    Natividad, Karlo D T; Junankar, Simon R; Mohd Redzwan, Norhanani; Nair, Radhika; Wirasinha, Rushika C; King, Cecile; Brink, Robert; Swarbrick, Alexander; Batten, Marcel

    2013-01-01

    Interleukin-27 (IL-27) is a pleiotropic cytokine but its immunosuppressive effects predominate during many in vivo immunological challenges. Despite this, evidence from tumor cell line transfer models suggested that IL-27 could promote immune responses in the tumor context. However, the role of IL-27 in immunity against tumors that develop in situ and in tumor immunosurveillance remain undefined. In this study, we demonstrate that tumor development and growth are accelerated in IL-27 receptor α (Il27ra)-deficient mice. Enhanced tumor growth in both carcinogen-induced fibrosarcoma and oncogene-driven mammary carcinoma was associated with decreased interferon-γ production by CD4 and CD8 T cells and increased numbers of regulatory T-cells (Treg). This is the first study to show that IL-27 promotes protective immune responses against endogenous tumors, which is critical as the basis for future development of an IL-27 based therapeutic agent.

  7. Interleukin-27 Signaling Promotes Immunity against Endogenously Arising Murine Tumors

    PubMed Central

    Natividad, Karlo D. T.; Junankar, Simon R.; Mohd Redzwan, Norhanani; Nair, Radhika; Wirasinha, Rushika C.; King, Cecile; Brink, Robert; Swarbrick, Alexander; Batten, Marcel

    2013-01-01

    Interleukin-27 (IL-27) is a pleiotropic cytokine but its immunosuppressive effects predominate during many in vivo immunological challenges. Despite this, evidence from tumor cell line transfer models suggested that IL-27 could promote immune responses in the tumor context. However, the role of IL-27 in immunity against tumors that develop in situ and in tumor immunosurveillance remain undefined. In this study, we demonstrate that tumor development and growth are accelerated in IL-27 receptor α (Il27ra)-deficient mice. Enhanced tumor growth in both carcinogen-induced fibrosarcoma and oncogene-driven mammary carcinoma was associated with decreased interferon-γ production by CD4 and CD8 T cells and increased numbers of regulatory T-cells (Treg). This is the first study to show that IL-27 promotes protective immune responses against endogenous tumors, which is critical as the basis for future development of an IL-27 based therapeutic agent. PMID:23554861

  8. dFoxO promotes Wingless signaling in Drosophila

    PubMed Central

    Zhang, Shiping; Guo, Xiaowei; Chen, Changyan; Chen, Yujun; Li, Jikai; Sun, Ying; Wu, Chenxi; Yang, Yang; Jiang, Cizhong; Li, Wenzhe; Xue, Lei

    2016-01-01

    The Wnt/β-catenin signaling is an evolutionarily conserved pathway that regulates a wide range of physiological functions, including embryogenesis, organ maintenance, cell proliferation and cell fate decision. Dysregulation of Wnt/β-catenin signaling has been implicated in various cancers, but its role in cell death has not yet been fully elucidated. Here we show that activation of Wg signaling induces cell death in Drosophila eyes and wings, which depends on dFoxO, a transcription factor known to be involved in cell death. In addition, dFoxO is required for ectopic and endogenous Wg signaling to regulate wing patterning. Moreover, dFoxO is necessary for activated Wg signaling-induced target genes expression. Furthermore, Arm is reciprocally required for dFoxO-induced cell death. Finally, dFoxO physically interacts with Arm both in vitro and in vivo. Thus, we have characterized a previously unknown role of dFoxO in promoting Wg signaling, and that a dFoxO-Arm complex is likely involved in their mutual functions, e.g. cell death. PMID:26936649

  9. ASIC1 promotes differentiation of neuroblastoma by negatively regulating Notch signaling pathway.

    PubMed

    Liu, Mingli; Inoue, Koichi; Leng, Tiandong; Zhou, An; Guo, Shanchun; Xiong, Zhi-Gang

    2017-01-31

    In neurons, up-regulation of Notch activity either inhibits neurite extension or causes retraction of neurites. Conversely, inhibition of Notch1 facilitates neurite extension. Acid-sensing ion channels (ASICs) are a family of proton-gated cation channels, which play critical roles in synaptic plasticity, learning and memory and spine morphogenesis. Our pilot proteomics data from ASIC1a knock out mice implicated that ASIC1a may play a role in regulating Notch signaling, therefore, we explored whether or not ASIC1a regulates neurite growth during neuronal development through Notch signaling. In this study, we determined the effects of ASIC1a on neurite growth in a mouse neuroblastoma cell line, NS20Y cells, by modulating ASIC1a expression. We also determined the relationship between ASIC1a and Notch signaling on neuronal differentiation. Our results showed that down-regulation of ASIC1a in NS20Y cells inhibits CPT-cAMP induced neurite growth, while over expression of ASIC1a promotes its growth. In addition, down-regulation of ASIC1a increased the expression of Notch1 and its target gene Survivin while inhibitor of Notch significantly prevented the neurite extension induced by ASIC1a in NS20Y cells. These data indicate that Notch1 signaling may be required for ASIC1a-mediated neurite growth and neuronal differentiation.

  10. The Eya1 phosphatase promotes Shh signaling during hindbrain development and oncogenesis.

    PubMed

    Eisner, Adriana; Pazyra-Murphy, Maria F; Durresi, Ershela; Zhou, Pengcheng; Zhao, Xuesong; Chadwick, Emily C; Xu, Pin-Xian; Hillman, R Tyler; Scott, Matthew P; Greenberg, Michael E; Segal, Rosalind A

    2015-04-06

    Sonic hedgehog (Shh) signaling is critical in development and oncogenesis, but the mechanisms regulating this pathway remain unclear. Although protein phosphorylation clearly affects Shh signaling, little is known about phosphatases governing the pathway. Here, we conducted a small hairpin RNA (shRNA) screen of the phosphatome and identified Eya1 as a positive regulator of Shh signaling. We find that the catalytically active phosphatase Eya1 cooperates with the DNA-binding protein Six1 to promote gene induction in response to Shh and that Eya1/Six1 together regulate Gli transcriptional activators. We show that Eya1, which is mutated in a human deafness disorder, branchio-oto-renal syndrome, is critical for Shh-dependent hindbrain growth and development. Moreover, Eya1 drives the growth of medulloblastoma, a Shh-dependent hindbrain tumor. Together, these results identify Eya1 and Six1 as key components of the Shh transcriptional network in normal development and in oncogenesis.

  11. Method of Promoting Single Crystal Growth During Melt Growth of Semiconductors

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua (Inventor)

    2013-01-01

    The method of the invention promotes single crystal growth during fabrication of melt growth semiconductors. A growth ampoule and its tip have a semiconductor source material placed therein. The growth ampoule is placed in a first thermal environment that raises the temperature of the semiconductor source material to its liquidus temperature. The growth ampoule is then transitioned to a second thermal environment that causes the semiconductor source material in the growth ampoule's tip to attain a temperature that is below the semiconductor source material's solidus temperature. The growth ampoule so-transitioned is then mechanically perturbed to induce single crystal growth at the growth ampoule's tip.

  12. Ethylene signaling and regulation in plant growth and stress responses.

    PubMed

    Wang, Feifei; Cui, Xiankui; Sun, Yue; Dong, Chun-Hai

    2013-07-01

    Gaseous phytohormone ethylene affects many aspects of plant growth and development. The ethylene signaling pathway starts when ethylene binds to its receptors. Since the cloning of the first ethylene receptor ETR1 from Arabidopsis, a large number of studies have steadily improved our understanding of the receptors and downstream components in ethylene signal transduction pathway. This article reviews the regulation of ethylene receptors, signal transduction, and the posttranscriptional modulation of downstream components. Functional roles and importance of the ethylene signaling components in plant growth and stress responses are also discussed. Cross-reactions of ethylene with auxin and other phytohormones in plant organ growth will be analyzed. The studies of ethylene signaling in plant growth, development, and stress responses in the past decade greatly advanced our knowledge of how plants respond to endogenous signals and environmental factors.

  13. USP6 oncogene promotes Wnt signaling by deubiquitylating Frizzleds

    PubMed Central

    Madan, Babita; Walker, Matthew P.; Young, Robert; Quick, Laura; Orgel, Kelly A.; Ryan, Meagan; Gupta, Priti; Henrich, Ian C.; Ferrer, Marc; Marine, Shane; Roberts, Brian S.; Arthur, William T.; Berndt, Jason D.; Oliveira, Andre M.; Moon, Randall T.; Chou, Margaret M.; Major, Michael B.

    2016-01-01

    The Wnt signaling pathways play pivotal roles in carcinogenesis. Modulation of the cell-surface abundance of Wnt receptors is emerging as an important mechanism for regulating sensitivity to Wnt ligands. Endocytosis and degradation of the Wnt receptors Frizzled (Fzd) and lipoprotein-related protein 6 (LRP6) are regulated by the E3 ubiquitin ligases zinc and ring finger 3 (ZNRF3) and ring finger protein 43 (RNF43), which are disrupted in cancer. In a genome-wide small interfering RNA screen, we identified the deubiquitylase ubiquitin-specific protease 6 (USP6) as a potent activator of Wnt signaling. USP6 enhances Wnt signaling by deubiquitylating Fzds, thereby increasing their cell-surface abundance. Chromosomal translocations in nodular fasciitis result in USP6 overexpression, leading to transcriptional activation of the Wnt/β-catenin pathway. Inhibition of Wnt signaling using Dickkopf-1 (DKK1) or a Porcupine (PORCN) inhibitor significantly decreased the growth of USP6-driven xenograft tumors, indicating that Wnt signaling is a key target of USP6 during tumorigenesis. Our study defines an additional route to ectopic Wnt pathway activation in human disease, and identifies a potential approach to modulate Wnt signaling for therapeutic benefit. PMID:27162353

  14. Growth-related alterations during liver carcinogenesis: Effect of promoters

    SciTech Connect

    Seglen, P.O.; Gerlyng, P. )

    1990-08-01

    Bromodeoxyuridine labeling of DNA, binuclearity counting, and flow cytometric analysis of isolated hepatocytes and hepatocyte nuclei has been used to assess heptocellular growth patterns related to liver carcinogenesis. Three growth patterns can be distinguished. Mononucleating growth is observed during liver regeneration and after treatment with the tumor promoter 2-acetylaminofluorene (2-AAF) and its analogue 4-AAF. In this growth mode binucleation does not occur, resulting in a decrease in the fraction of binucleated cells. Binucleating growth is observed during normal liver development and after treatment with compounds such as phenobarbital, characterized by progressive polyploidization and maintenance of a binucleated cell fraction. Diploid growth is the growth pattern of neoplastic liver hepatocytes. Most of the cells in neoplastic lesions (foci, nodules, and carcinomas) are diploid, in contrast to the normal liver. Diploid tumor cells have a much higher proliferative activity than tetraploid tumor cells, suggesting that the latter may posses a limited growth potential that makes abrogation of binucleation proliferatively advantageous.

  15. Bacterial cell-to-cell signaling promotes the evolution of resistance to parasitic bacteriophages.

    PubMed

    Moreau, Pierre; Diggle, Stephen P; Friman, Ville-Petri

    2017-03-01

    The evolution of host-parasite interactions could be affected by intraspecies variation between different host and parasite genotypes. Here we studied how bacterial host cell-to-cell signaling affects the interaction with parasites using two bacteria-specific viruses (bacteriophages) and the host bacterium Pseudomonas aeruginosa that communicates by secreting and responding to quorum sensing (QS) signal molecules. We found that a QS-signaling proficient strain was able to evolve higher levels of resistance to phages during a short-term selection experiment. This was unlikely driven by demographic effects (mutation supply and encounter rates), as nonsignaling strains reached higher population densities in the absence of phages in our selective environment. Instead, the evolved nonsignaling strains suffered relatively higher growth reduction in the absence of the phage, which could have constrained the phage resistance evolution. Complementation experiments with synthetic signal molecules showed that the Pseudomonas quinolone signal (PQS) improved the growth of nonsignaling bacteria in the presence of a phage, while the activation of las and rhl quorum sensing systems had no effect. Together, these results suggest that QS-signaling can promote the evolution of phage resistance and that the loss of QS-signaling could be costly in the presence of phages. Phage-bacteria interactions could therefore indirectly shape the evolution of intraspecies social interactions and PQS-mediated virulence in P. aeruginosa.

  16. Ethanolamine Signaling Promotes Salmonella Niche Recognition and Adaptation during Infection

    PubMed Central

    Anderson, Christopher J.; Clark, David E.; Adli, Mazhar; Kendall, Melissa M.

    2015-01-01

    Chemical and nutrient signaling are fundamental for all cellular processes, including interactions between the mammalian host and the microbiota, which have a significant impact on health and disease. Ethanolamine is an essential component of cell membranes and has profound signaling activity within mammalian cells by modulating inflammatory responses and intestinal physiology. Here, we describe a virulence-regulating pathway in which the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) exploits ethanolamine signaling to recognize and adapt to distinct niches within the host. The bacterial transcription factor EutR promotes ethanolamine metabolism in the intestine, which enables S. Typhimurium to establish infection. Subsequently, EutR directly activates expression of the Salmonella pathogenicity island 2 in the intramacrophage environment, and thus augments intramacrophage survival. Moreover, EutR is critical for robust dissemination during mammalian infection. Our findings reveal that S. Typhimurium co-opts ethanolamine as a signal to coordinate metabolism and then virulence. Because the ability to sense ethanolamine is a conserved trait among pathogenic and commensal bacteria, our work indicates that ethanolamine signaling may be a key step in the localized adaptation of bacteria within their mammalian hosts. PMID:26565973

  17. Steroid signaling promotes stem cell maintenance in the Drosophila testis.

    PubMed

    Li, Yijie; Ma, Qing; Cherry, Christopher M; Matunis, Erika L

    2014-10-01

    Stem cell regulation by local signals is intensely studied, but less is known about the effects of hormonal signals on stem cells. In Drosophila, the primary steroid twenty-hydroxyecdysone (20E) regulates ovarian germline stem cells (GSCs) but was considered dispensable for testis GSC maintenance. Male GSCs reside in a microenvironment (niche) generated by somatic hub cells and adjacent cyst stem cells (CySCs). Here, we show that depletion of 20E from adult males by overexpressing a dominant negative form of the Ecdysone receptor (EcR) or its heterodimeric partner ultraspiracle (usp) causes GSC and CySC loss that is rescued by 20E feeding, uncovering a requirement for 20E in stem cell maintenance. EcR and USP are expressed, activated and autonomously required in the CySC lineage to promote CySC maintenance, as are downstream genes ftz-f1 and E75. In contrast, GSCs non-autonomously require ecdysone signaling. Global inactivation of EcR increases cell death in the testis that is rescued by expression of EcR-B2 in the CySC lineage, indicating that ecdysone signaling supports stem cell viability primarily through a specific receptor isoform. Finally, EcR genetically interacts with the NURF chromatin-remodeling complex, which we previously showed maintains CySCs. Thus, although 20E levels are lower in males than females, ecdysone signaling acts through distinct cell types and effectors to ensure both ovarian and testis stem cell maintenance.

  18. Gα12/13 signaling promotes cervical cancer invasion through the RhoA/ROCK-JNK signaling axis

    SciTech Connect

    Yuan, Bo; Cui, Jinquan Wang, Wuliang; Deng, Kehong

    2016-05-13

    Several reports have indicated a role for the members of the G12 family of heterotrimeric G proteins (Gα12 and Gα13) in oncogenesis and tumor cell growth. The aims of the present study were to evaluate the role of G12 signaling in cervical cancer. We demonstrated that expression of the G12 proteins was highly upregulated in cervical cancer cells. Additionally, expression of the activated forms of Gα12/Gα13 but not expression of activated Gαq induced cell invasion through the activation of the RhoA family of G proteins, but had no effect on cell proliferation in the cervical cancer cells. Inhibition of G12 signaling by expression of the RGS domain of the p115-Rho-specific guanine nucleotide exchange factor (p115-RGS) blocked thrombin-stimulated cell invasion, but did not inhibit cell proliferation in cervical cells, whereas the inhibition of Gαq (RGS2) had no effect. Furthermore, G12 signaling was able to activate Rho proteins, and this stimulation was inhibited by p115-RGS, and Gα12-induced invasion was blocked by an inhibitor of RhoA/B/C (C3 toxin). Pharmacological inhibition of JNK remarkably decreased G12-induced JNK activation. Both a JNK inhibitor (SP600125) and a ROCK inhibitor (Y27632) reduced G12-induced JNK and c-Jun activation, and markedly inhibited G12-induced cellular invasion. Collectively, these findings demonstrate that stimulation of G12 proteins is capable of promoting invasion through RhoA/ROCK-JNK activation. -- Highlights: •Gα12/Gα13 is upregulated in cervical cancer cell lines. •Gα12/Gα13 is not involved in cervical cancer cell proliferation. •Gα12/Gα13 promotes cervical cancer cell invasion. •The role of Rho G proteins in G12-promoted cervical cancer cell invasion. •G12 promotes cell invasion through activation of the ROCK-JNK signaling axis.

  19. Nerve growth factor promotes human hemopoietic colony growth and differentiation.

    PubMed Central

    Matsuda, H; Coughlin, M D; Bienenstock, J; Denburg, J A

    1988-01-01

    Nerve growth factor (NGF) is a neurotropic polypeptide necessary for the survival and growth of some central neurons, as well as sensory afferent and sympathetic neurons. Much is now known of the structural and functional characteristics of NGF, whose gene has recently been cloned. Since it is synthesized in largest amounts by the male mouse submandibular gland, its role exclusively in nerve growth is questionable. NGF also causes histamine release from rat peritoneal mast cells in vitro, and we have shown elsewhere that it causes significant, dose-dependent, generalized mast cell proliferation in the rat in vivo when administered neonatally. Our experiments now indicate that NGF causes a significant stimulation of granulocyte colonies grown from human peripheral blood in standard hemopoietic methylcellulose assays. Further, NGF appears to act in a relatively selective fashion to induce the differentiation of eosinophils and basophils/mast cells. Depletion experiments show that the NGF effect may be T-cell dependent and that NGF augments the colony-stimulating effect of supernatants from the leukemic T-cell (Mo) line. The hemopoietic activity of NGF is blocked by polyclonal and monoclonal antibodies to NGF. We conclude that NGF may indirectly act as a local growth factor in tissues other than those of the nervous system by causing T cells to synthesize or secrete molecules with colony-stimulating activity. In view of the synthesis of NGF in tissue injury, the involvement of basophils/mast cells and eosinophils in allergic and other inflammatory processes, and the association of mast cells with fibrosis and tissue repair, we postulate that NGF plays an important biological role in a variety of repair processes. PMID:3413109

  20. ATR promotes cilia signalling: links to developmental impacts

    PubMed Central

    Stiff, Tom; Casar Tena, Teresa; O'Driscoll, Mark; Jeggo, Penny A.; Philipp, Melanie

    2016-01-01

    Mutations in ATR (ataxia telangiectasia and RAD3-related) cause Seckel syndrome (ATR-SS), a microcephalic primordial dwarfism disorder. Hitherto, the clinical manifestation of ATR deficiency has been attributed to its canonical role in DNA damage response signalling following replication fork stalling/collapse. Here, we show that ATR regulates cilia-dependent signalling in a manner that can be uncoupled from its function during replication. ATR-depleted or patient-derived ATR-SS cells form cilia of slightly reduced length but are dramatically impaired in cilia-dependent signalling functions, including growth factor and Sonic hedgehog signalling. To better understand the developmental impact of ATR loss of function, we also used zebrafish as a model. Zebrafish embryos depleted of Atr resembled ATR-SS morphology, showed a modest but statistically significant reduction in cilia length and other morphological features indicative of cilia dysfunction. Additionally, they displayed defects in left-right asymmetry including ambiguous expression of southpaw, incorrectly looped hearts and randomized localization of internal organs including the pancreas, features typically conferred by cilia dysfunction. Our findings reveal a novel role for ATR in cilia signalling distinct from its canonical function during replication and strengthen emerging links between cilia function and development. PMID:26908596

  1. Pancreas development is promoted by cyclopamine, a hedgehog signaling inhibitor.

    PubMed

    Kim, S K; Melton, D A

    1998-10-27

    Exposure to cyclopamine, a steroid alkaloid that blocks Sonic hedgehog (Shh) signaling, promotes pancreatic expansion in embryonic chicks. Heterotopic development of pancreatic endocrine and exocrine structures occurs in regions adjacent to the pancreas including stomach and duodenum, and insulin-producing islets in the pancreas are enlarged. The homeodomain transcription factor PDX1, required for pancreas development, is expressed broadly in the posterior foregut but pancreas development normally initiates only in a restricted region of PDX1-expressing posterior foregut where endodermal Shh expression is repressed. The results suggests that cyclopamine expands the endodermal region where Shh signaling does not occur, resulting in pancreatic differentiation in a larger region of PDX1-expressing foregut endoderm. Cyclopamine reveals the capacity of a broad region of the posterior embryonic foregut to form pancreatic cells and provides a means for expanding embryonic pancreas development.

  2. Integrins promote cytokinesis through the RSK signaling axis

    PubMed Central

    Mathew, Shomita S.; Nieves, Bethsaida; Sequeira, Sharon; Sambandamoorthy, Savitha; Pumiglia, Kevin; Larsen, Melinda; LaFlamme, Susan E.

    2014-01-01

    ABSTRACT Cytokinesis is the final stage in cell division. Although integrins can regulate cytokinesis, the mechanisms involved are not fully understood. In this study, we demonstrate that integrin-regulated ERK (extracellular signal-related kinase) and RSK (p90 ribosomal S6 kinase) signaling promotes successful cytokinesis. Inhibiting the activation of ERK and RSK in CHO cells by a mutation in the integrin β1 cytoplasmic tail or with pharmacological inhibitors results in the accumulation of cells with midbodies and the formation of binucleated cells. Activation of ERK and RSK signaling by the expression of constitutively active RAF1 suppresses the mutant phenotype in a RSK-dependent manner. Constitutively active RSK2 also restores cytokinesis inhibited by the mutant integrin. Importantly, the regulatory role of the RSK pathway is not specific to CHO cells. MCF-10A human mammary epithelial cells and HPNE human pancreatic ductal epithelial cells exhibit a similar dependence on RSK for successful cytokinesis. In addition, depriving mitotic MCF10A cells of integrin-mediated adhesion by incubating them in suspension suppressed ERK and RSK activation and resulted in a failure of cytokinesis. Furthermore, inhibition of RSK or integrins within the 3D context of a developing salivary gland organ explant also leads to an accumulation of epithelial cells with midbodies, suggesting a similar defect in cytokinesis. Interestingly, neither ERK nor RSK regulates cytokinesis in human fibroblasts, suggesting cell-type specificity. Taken together, our results identify the integrin–RSK signaling axis as an important regulator of cytokinesis in epithelial cells. We propose that the proper interaction of cells with their microenvironment through integrins contributes to the maintenance of genomic stability by promoting the successful completion of cytokinesis. PMID:24284076

  3. Activation of the Notch1/STAT3/Twist signaling axis promotes gastric cancer progression.

    PubMed

    Hsu, Kai-Wen; Hsieh, Rong-Hong; Huang, Kuo-Hung; Fen-Yau Li, Anna; Chi, Chin-Wen; Wang, Tzu-Yin; Tseng, Min-Jen; Wu, Kou-Juey; Yeh, Tien-Shun

    2012-08-01

    Gastric carcinoma is one of the most common malignancies and a lethal cancer in the world. Notch signaling and transcription factors STAT3 (signal transducer and activator of transcription 3) and Twist regulate tumor development and are critical regulators of gastric cancer progression. Herein, the relationship among Notch, STAT3 and Twist pathways in the control of gastric cancer progression was studied. We found that Twist and phosphorylated STAT3 levels were promoted by the activated Notch1 receptor in human stomach adenocarcinoma SC-M1, embryonic kidney HEK293 and erythroleukemia K562 cells. Notch1 signaling dramatically induced Twist promoter activity through a C promoter binding factor-1-independent manner and STAT3 phosphorylation. Overexpression of Notch1 receptor intracellular domain (N1IC) enhanced the interaction between nuclear STAT3 and Twist promoter in cells. Gastric cancer progression of SC-M1 cells was promoted by N1IC through STAT3 phosphorylation and Twist expression including colony formation, migration and invasion. STAT3 regulated gastric cancer progression of SC-M1 cells via Twist. N1IC also elevated the progression of other gastric cancer cells such as AGS and KATO III cells through STAT3 and Twist. The N1IC-promoted tumor growth and lung metastasis of SC-M1 cells in mice were suppressed by the STAT3 inhibitor JSI-124 and Twist knockdown. Furthermore, Notch1 and Notch ligand Jagged1 expressions were significantly associated with phosphorylated STAT3 and Twist levels in gastric cancer tissues of patients. Taken together, these results suggest that Notch1/STAT3/Twist signaling axis is involved in progression of human gastric cancer and modulation of this cascade has potential for the targeted combination therapy.

  4. Spenito and Split ends act redundantly to promote Wingless signaling.

    PubMed

    Chang, Jinhee L; Lin, Hua V; Blauwkamp, Timothy A; Cadigan, Ken M

    2008-02-01

    Wingless (Wg)/Wnt signaling directs a variety of cellular processes during animal development by promoting the association of Armadillo/beta-catenin with TCFs on Wg-regulated enhancers (WREs). Split ends (Spen), a nuclear protein containing RNA recognition motifs (RRMs) and a SPOC domain, is required for optimal Wg signaling in several fly tissues. In this report, we demonstrate that Spenito (Nito), the only other fly protein containing RRMs and a SPOC domain, acts together with Spen to positively regulate Wg signaling. The partial defect in Wg signaling observed with spen RNAi was enhanced by simultaneous knockdown of nito while it was rescued by expression of nito in wing imaginal discs. In cell culture, depletion of both factors causes a greater defect in the activation of several Wg targets than RNAi of either spen or nito alone. These nuclear proteins are not required for Armadillo stabilization or the recruitment of TCF and Armadillo to a WRE. Loss of Wg target gene activation in cells depleted for spen and nito was not dependent on the transcriptional repressor Yan or Suppressor of Hairless, two previously identified targets of Spen. We propose that Spen and Nito act redundantly downstream of TCF/Armadillo to activate many Wg transcriptional targets.

  5. The glucose-sensing transcription factor MLX promotes myogenesis via myokine signaling

    PubMed Central

    Hunt, Liam C.; Xu, Beisi; Finkelstein, David; Fan, Yiping; Carroll, Patrick A.; Cheng, Pei-Feng; Eisenman, Robert N.; Demontis, Fabio

    2015-01-01

    Metabolic stress and changes in nutrient levels modulate many aspects of skeletal muscle function during aging and disease. Growth factors and cytokines secreted by skeletal muscle, known as myokines, are important signaling factors, but it is largely unknown whether they modulate muscle growth and differentiation in response to nutrients. Here, we found that changes in glucose levels increase the activity of the glucose-responsive transcription factor MLX (Max-like protein X), which promotes and is necessary for myoblast fusion. MLX promotes myogenesis not via an adjustment of glucose metabolism but rather by inducing the expression of several myokines, including insulin-like growth factor 2 (IGF2), whereas RNAi and dominant-negative MLX reduce IGF2 expression and block myogenesis. This phenotype is rescued by conditioned medium from control muscle cells and by recombinant IGF2, which activates the myogenic kinase Akt. Importantly, MLX-null mice display decreased IGF2 induction and diminished muscle regeneration in response to injury, indicating that the myogenic function of MLX is manifested in vivo. Thus, glucose is a signaling molecule that regulates myogenesis and muscle regeneration via MLX/IGF2/Akt signaling. PMID:26584623

  6. The glucose-sensing transcription factor MLX promotes myogenesis via myokine signaling.

    PubMed

    Hunt, Liam C; Xu, Beisi; Finkelstein, David; Fan, Yiping; Carroll, Patrick A; Cheng, Pei-Feng; Eisenman, Robert N; Demontis, Fabio

    2015-12-01

    Metabolic stress and changes in nutrient levels modulate many aspects of skeletal muscle function during aging and disease. Growth factors and cytokines secreted by skeletal muscle, known as myokines, are important signaling factors, but it is largely unknown whether they modulate muscle growth and differentiation in response to nutrients. Here, we found that changes in glucose levels increase the activity of the glucose-responsive transcription factor MLX (Max-like protein X), which promotes and is necessary for myoblast fusion. MLX promotes myogenesis not via an adjustment of glucose metabolism but rather by inducing the expression of several myokines, including insulin-like growth factor 2 (IGF2), whereas RNAi and dominant-negative MLX reduce IGF2 expression and block myogenesis. This phenotype is rescued by conditioned medium from control muscle cells and by recombinant IGF2, which activates the myogenic kinase Akt. Importantly, MLX-null mice display decreased IGF2 induction and diminished muscle regeneration in response to injury, indicating that the myogenic function of MLX is manifested in vivo. Thus, glucose is a signaling molecule that regulates myogenesis and muscle regeneration via MLX/IGF2/Akt signaling.

  7. Transforming growth factor β signaling in uterine development and function.

    PubMed

    Li, Qinglei

    2014-01-01

    Transforming growth factor β (TGFβ) superfamily is evolutionarily conserved and plays fundamental roles in cell growth and differentiation. Mounting evidence supports its important role in female reproduction and development. TGFBs1-3 are founding members of this growth factor family, however, the in vivo function of TGFβ signaling in the uterus remains poorly defined. By drawing on mouse and human studies as a main source, this review focuses on the recent progress on understanding TGFβ signaling in the uterus. The review also considers the involvement of dysregulated TGFβ signaling in pathological conditions that cause pregnancy loss and fertility problems in women.

  8. Transgenic tomato plants alter quorum sensing in plant growth-promoting rhizobacteria.

    PubMed

    Barriuso, Jorge; Ramos Solano, Beatriz; Fray, Rupert G; Cámara, Miguel; Hartmann, Anton; Gutiérrez Mañero, F Javier

    2008-06-01

    Two Gram-negative, plant growth-promoting rhizobacteria (PGPRs), denominated as M12 and M14, were classified by 16S rDNA sequencing as Burkholderia graminis species. Both strains were shown to produce a variety of N-acyl-homoserine lactone (AHL) quorum sensing (QS) signalling molecules. The involvement of these molecules in plant growth promotion and the induction of protection against salt stress was examined. AHL production was evaluated in vitro by thin-layer chromatography using AHL biosensors, and the identity of the AHLs produced was determined by liquid chromatography-tandem mass spectrometry. The in situ production of AHLs by M12 and M14 in the rhizosphere of Arabidopsis thaliana plants was detected by co-inoculation with green fluorescent protein-based biosensor strains and confocal laser scanning microscopy. To determine whether plant growth promotion and protection against salt stress were mediated by QS, these PGPRs were assayed on wild-type tomato plants, as well as their corresponding transgenics expressing YenI (short-chain AHL producers) and LasI (long-chain AHL producers). In wild-type tomato plants, only M12 promoted plant growth, and this effect disappeared in both transgenic lines. In contrast, M14 did not promote growth in wild-type tomatoes, but did so in the LasI transgenic line. Resistance to salt stress was induced by M14 in wild-type tomato, but this effect disappeared in both transgenic lines. The strain M12, however, did not induce salt resistance in wild-type tomato, but did so in LasI tomato plants. These results reveal that AHL QS signalling molecules mediate the ability of both PGPR strains M12 and M14 to promote plant growth and to induce protection against salt stress.

  9. Rapamycin promotes Schwann cell migration and nerve growth factor secretion

    PubMed Central

    Liu, Fang; Zhang, Haiwei; Zhang, Kaiming; Wang, Xinyu; Li, Shipu; Yin, Yixia

    2014-01-01

    Rapamycin, similar to FK506, can promote neural regeneration in vitro. We assumed that the mechanisms of action of rapamycin and FK506 in promoting peripheral nerve regeneration were similar. This study compared the effects of different concentrations of rapamycin and FK506 on Schwann cells and investigated effects and mechanisms of rapamycin on improving peripheral nerve regeneration. Results demonstrated that the lowest rapamycin concentration (1.53 nmol/L) more significantly promoted Schwann cell migration than the highest FK506 concentration (100μmol/L). Rapamycin promoted the secretion of nerve growth factors and upregulated growth-associated protein 43 expression in Schwann cells, but did not significantly affect Schwann cell proliferation. Therefore, rapamycin has potential application in peripheral nerve regeneration therapy. PMID:25206862

  10. Central IL-1 receptor signaling regulates bone growth and mass

    PubMed Central

    Bajayo, Alon; Goshen, Inbal; Feldman, Sharon; Csernus, Valer; Iverfeldt, Kerstin; Shohami, Esther; Yirmiya, Raz; Bab, Itai

    2005-01-01

    The proinflammatory cytokine IL-1, acting via the hypothalamic IL-1 receptor type 1 (IL-1RI), activates pathways known to suppress bone formation such as the hypothalamo pituitary-adrenocortical axis and the sympathetic nervous system. In addition, peripheral IL-1 has been implicated as a mediator of the bone loss induced by sex hormone depletion and TNF. Here, we report an unexpected low bone mass (LBM) phenotype, including impairment of bone growth, in IL-1RI-deficient mice (IL-1rKO mice). Targeted overexpression of human IL-1 receptor antagonist to the central nervous system using the murine glial fibrillary acidic protein promoter (IL-1raTG mice) resulted in a similar phenotype, implying that central IL-1RI silencing is the causative process in the LBM induction. Analysis of bone remodeling indicates that the process leading to the LBM in both IL-1rKO and IL-1raTG is characterized mainly by doubling the osteoclast number. Either genetic modification does not decrease testosterone or increase corticosterone serum levels, suggesting that systems other than the gonads and hypothalamo pituitary-adrenocortical axis mediate the central IL-1RI effect on bone. We further demonstrate that WT mice express mouse IL-1ra in bone but not in the hypothalamus. Because low levels of IL-1 are present in both tissues, it is suggested that skeletal IL-1 activity is normally suppressed, whereas central IL-1 produces a constant physiologic stimulation of IL-1RI signaling. Although the pathway connecting the central IL-1RI signaling to bone remodeling remains unknown, the outburst of osteoclastogenesis in its absence suggests that normally it controls bone growth and mass by tonically restraining bone resorption. PMID:16126903

  11. Rheb/mTORC1 Signaling Promotes Kidney Fibroblast Activation and Fibrosis

    PubMed Central

    Jiang, Lei; Xu, Lingling; Mao, Junhua; Li, Jianzhong; Fang, Li; Zhou, Yang; Liu, Wei; He, Weichun; Zhao, Allan Zijian

    2013-01-01

    Ras homolog enriched in brain (Rheb) is a small GTPase that regulates cell growth, differentiation, and survival by upregulating mammalian target of rapamycin complex 1 (mTORC1) signaling. The role of Rheb/mTORC1 signaling in the activation of kidney fibroblasts and the development of kidney fibrosis remains largely unknown. In this study, we found that Rheb/mTORC1 signaling was activated in interstitial myofibroblasts from fibrotic kidneys. Treatment of rat kidney interstitial fibroblasts (NRK-49F cell line) with TGFβ1 also activated Rheb/mTORC1 signaling. Blocking Rheb/mTORC1 signaling with rapamycin or Rheb small interfering RNA abolished TGFβ1-induced fibroblast activation. In a transgenic mouse, ectopic expression of Rheb activated kidney fibroblasts. These Rheb transgenic mice exhibited increased activation of mTORC1 signaling in both kidney tubular and interstitial cells as well as progressive interstitial renal fibrosis; rapamycin inhibited these effects. Similarly, mice with fibroblast-specific deletion of Tsc1, a negative regulator of Rheb, exhibited activated mTORC1 signaling in kidney interstitial fibroblasts and increased renal fibrosis, both of which rapamycin abolished. Taken together, these results suggest that Rheb/mTORC1 signaling promotes the activation of kidney fibroblasts and contributes to the development of interstitial fibrosis, possibly providing a therapeutic target for progressive renal disease. PMID:23661807

  12. Epiphyseal growth plate growth hormone receptor signaling is decreased in chronic kidney disease-related growth retardation.

    PubMed

    Troib, Ariel; Landau, Daniel; Kachko, Leonid; Rabkin, Ralph; Segev, Yael

    2013-11-01

    Linear growth retardation in children with chronic kidney disease (CKD) has been ascribed to insensitivity to growth hormone. This resistance state has been attributed to impaired growth hormone signaling through the JAK2/STAT5 pathway in liver and skeletal muscle leading to reduced insulin-like growth factor-I (IGF-I). Here we determine whether systemic and growth plate alterations in growth hormone signaling contribute to CKD-induced linear growth retardation using partially nephrectomized and pair-fed control 20-day-old rats. Serum growth hormone did not change in rats with CKD, yet serum IGF-I levels were decreased and growth retarded. The tibial growth plate hypertrophic zone was wider and vascularization at the primary ossification center was reduced in CKD. This was associated with a decrease in growth plate vascular endothelial growth factor (VEGF) mRNA and immunostainable VEGF and IGF-I levels. Growth plate growth hormone receptor and STAT5 protein levels were unchanged, while JAK2 was reduced. Despite comparable growth hormone and growth hormone receptor levels in CKD and control rats, relative STAT5 phosphorylation was significantly depressed in CKD. Of note, the mRNA of SOCS2, an inhibitor of growth hormone signaling, was increased. Thus, linear growth impairment in CKD can in part be explained by impaired long bone growth plate growth hormone receptor signaling through the JAK2/STAT5 pathway, an abnormality that may be caused by an increase in SOCS2 expression.

  13. Halotolerant Rhizobacteria Promote Growth and Enhance Salinity Tolerance in Peanut.

    PubMed

    Sharma, Sandeep; Kulkarni, Jayant; Jha, Bhavanath

    2016-01-01

    Use of Plant growth promoting rhizobacteria (PGPR) is a promising strategy to improve the crop production under optimal or sub-optimal conditions. In the present study, five diazotrophic salt tolerant bacteria were isolated from the roots of a halophyte, Arthrocnemum indicum. The isolates were partially characterized in vitro for plant growth promoting traits and evaluated for their potential to promote growth and enhanced salt tolerance in peanut. The 16S rRNA gene sequence homology indicated that these bacterial isolates belong to the genera, Klebsiella, Pseudomonas, Agrobacterium, and Ochrobactrum. All isolates were nifH positive and able to produce indole -3-acetic acid (ranging from 11.5 to 19.1 μg ml(-1)). The isolates showed phosphate solubilisation activity (ranging from 1.4 to 55.6 μg phosphate /mg dry weight), 1-aminocyclopropane-1-carboxylate deaminase activity (0.1 to 0.31 μmol α-kB/μg protein/h) and were capable of reducing acetylene in acetylene reduction assay (ranging from 0.95 to 1.8 μmol C2H4 mg protein/h). These isolates successfully colonized the peanut roots and were capable of promoting the growth under non-stress condition. A significant increase in total nitrogen (N) content (up to 76%) was observed over the non-inoculated control. All isolates showed tolerance to NaCl ranging from 4 to 8% in nutrient broth medium. Under salt stress, inoculated peanut seedlings maintained ion homeostasis, accumulated less reactive oxygen species (ROS) and showed enhanced growth compared to non-inoculated seedlings. Overall, the present study has characterized several potential bacterial strains that showed an enhanced growth promotion effect on peanut under control as well as saline conditions. The results show the possibility to reduce chemical fertilizer inputs and may promote the use of bio-inoculants.

  14. Halotolerant Rhizobacteria Promote Growth and Enhance Salinity Tolerance in Peanut

    PubMed Central

    Sharma, Sandeep; Kulkarni, Jayant; Jha, Bhavanath

    2016-01-01

    Use of Plant growth promoting rhizobacteria (PGPR) is a promising strategy to improve the crop production under optimal or sub-optimal conditions. In the present study, five diazotrophic salt tolerant bacteria were isolated from the roots of a halophyte, Arthrocnemum indicum. The isolates were partially characterized in vitro for plant growth promoting traits and evaluated for their potential to promote growth and enhanced salt tolerance in peanut. The 16S rRNA gene sequence homology indicated that these bacterial isolates belong to the genera, Klebsiella, Pseudomonas, Agrobacterium, and Ochrobactrum. All isolates were nifH positive and able to produce indole -3-acetic acid (ranging from 11.5 to 19.1 μg ml−1). The isolates showed phosphate solubilisation activity (ranging from 1.4 to 55.6 μg phosphate /mg dry weight), 1-aminocyclopropane-1-carboxylate deaminase activity (0.1 to 0.31 μmol α-kB/μg protein/h) and were capable of reducing acetylene in acetylene reduction assay (ranging from 0.95 to 1.8 μmol C2H4 mg protein/h). These isolates successfully colonized the peanut roots and were capable of promoting the growth under non-stress condition. A significant increase in total nitrogen (N) content (up to 76%) was observed over the non-inoculated control. All isolates showed tolerance to NaCl ranging from 4 to 8% in nutrient broth medium. Under salt stress, inoculated peanut seedlings maintained ion homeostasis, accumulated less reactive oxygen species (ROS) and showed enhanced growth compared to non-inoculated seedlings. Overall, the present study has characterized several potential bacterial strains that showed an enhanced growth promotion effect on peanut under control as well as saline conditions. The results show the possibility to reduce chemical fertilizer inputs and may promote the use of bio-inoculants. PMID:27790198

  15. Signalling of abscisic acid to regulate plant growth.

    PubMed Central

    Himmelbach, A; Iten, M; Grill, E

    1998-01-01

    Abscisic acid (ABA) mediated growth control is a fundamental response of plants to adverse environmental cues. The linkage between ABA perception and growth control is currently being unravelled by using different experimental approaches such as mutant analysis and microinjection experiments. So far, two protein phosphatases, ABI1 and ABI2, cADPR, pH, and Ca2+ have been identified as main components of the ABA signalling pathway. Here, the ABA signal transduction pathway is compared to signalling cascades from yeast and mammalian cells. A model for a bifurcated ABA signal transduction pathway exerting a positive and negative control mechanism is proposed. PMID:9800207

  16. T-type Ca2+ channels are required for enhanced sympathetic axon growth by TNFα reverse signalling

    PubMed Central

    Kisiswa, Lilian; Erice, Clara; Ferron, Laurent; Wyatt, Sean; Osório, Catarina; Dolphin, Annette C.

    2017-01-01

    Tumour necrosis factor receptor 1 (TNFR1)-activated TNFα reverse signalling, in which membrane-integrated TNFα functions as a receptor for TNFR1, enhances axon growth from developing sympathetic neurons and plays a crucial role in establishing sympathetic innervation. Here, we have investigated the link between TNFα reverse signalling and axon growth in cultured sympathetic neurons. TNFR1-activated TNFα reverse signalling promotes Ca2+ influx, and highly selective T-type Ca2+ channel inhibitors, but not pharmacological inhibitors of L-type, N-type and P/Q-type Ca2+ channels, prevented enhanced axon growth. T-type Ca2+ channel-specific inhibitors eliminated Ca2+ spikes promoted by TNFα reverse signalling in axons and prevented enhanced axon growth when applied locally to axons, but not when applied to cell somata. Blocking action potential generation did not affect the effect of TNFα reverse signalling on axon growth, suggesting that propagated action potentials are not required for enhanced axon growth. TNFα reverse signalling enhanced protein kinase C (PKC) activation, and pharmacological inhibition of PKC prevented the axon growth response. These results suggest that TNFα reverse signalling promotes opening of T-type Ca2+ channels along sympathetic axons, which is required for enhanced axon growth. PMID:28100666

  17. PTH-IGF SIGNALING PROMOTES BONE FORMATION THROUGH GLYCOLYSIS

    PubMed Central

    Esen, Emel; Lee, Seung-Yon; Wice, Burton M; Long, Fanxin

    2016-01-01

    Teriparatide, a recombinant peptide corresponding to amino acids 1-34 of human parathyroid hormone (PTH), has been an effective bone anabolic drug for over a decade. However, the mechanism whereby PTH stimulates bone formation remains poorly understood. Here we report that in cultures of osteoblast-lineage cells, PTH stimulates glucose consumption and lactate production in the presence of oxygen, a hallmark of aerobic glycolysis, also known as Warburg effect. Experiments with radioactively labeled glucose demonstrate that PTH suppresses glucose entry into the tricarboxylic acid cycle (TCA cycle). Mechanistically, the increase in aerobic glycolysis is secondary to insulin-like growth factor (Igf) signaling induced by PTH, whereas the metabolic effect of Igf is dependent on activation of mammalian target of rapamycin complex 2 (mTORC2). Importantly, pharmacological perturbation of glycolysis suppresses the bone anabolic effect of intermittent PTH in the mouse. Thus, stimulation of aerobic glycolysis via Igf signaling contributes to bone anabolism in response to PTH. PMID:25990470

  18. [Characterization of growth-promoting rhizobacteria in Eucalyptus nitens seedlings].

    PubMed

    Angulo, Violeta C; Sanfuentes, Eugenio A; Rodríguez, Francisco; Sossa, Katherine E

    2014-01-01

    Rhizospheric and endophytic bacteria were isolated from the rizosphere and root tissue of Eucalyptus nitens. The objective of this work was to evaluate their capacity to promote growth in seedlings of the same species under greenhouse conditions. The isolates that improved seedling growth were identified and characterized by their capacity to produce indoleacetic acid (IAA), solubilize phosphates and increase 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. One hundred and five morphologically different strains were isolated, 15 of which promoted E. nitens seedling growth, significantly increasing the height (50%), root length (45%) as well as the aerial and root dry weight (142% and 135% respectively) of the plants. Bacteria belonged to the genus Arthrobacter, Lysinibacillus, Rahnella and Bacillus. Isolates A. phenanthrenivorans 21 and B. cereus 113 improved 3.15 times the emergence of E. nitens after 12 days, compared to control samples. Among isolated R. aquatilis, 78 showed the highest production of IAA (97.5±2.87 μg/ml) in the presence of tryptophan and the highest solubilizer index (2.4) for phosphorus, while B. amyloliquefaciens 60 isolate was positive for ACC deaminase activity. Our results reveal the potential of the studied rhizobacteria as promoters of emergence and seedling growth of E. nitens, and their possible use as PGPR inoculants, since they have more than one mechanism associated with plant growth promotion. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España. All rights reserved.

  19. Growth promotion and gut microbiota: insights from antibiotic use.

    PubMed

    Brüssow, Harald

    2015-07-01

    Antibiotics have been proposed as supplements in re-feeding programmes for malnourished children. A review of paediatric literature showed that growth promotion by antibiotics, when it was observed, was mostly mediated by its anti-infective properties. Despite the widespread use of antibiotics as growth promoters in animal rearing, the available evidence again points to the suppression of infections as the underlying mechanism. Under controlled hygienic conditions, growth promotion was frequently not observed. Models for 'sub-inhibitory' antibiotic effects on gut bacteria have been proposed, and direct antibiotic effects on host physiology are accumulating. Human gut microbiota analyses in malnourished children (restricted to stool as convenience samples) displayed developmental immaturity of the gut microbiota and growth deficits that were only transiently ameliorated by nutritional interventions. These studies need to be complemented by microbiota analysis in the upper small intestine where bacterial overgrowth, frequently reported in people of the developing world, may directly compete with nutrient absorption by the human host. So far, however, the available medical and veterinary literature suggests that the growth promoting effect of antibiotics mostly works through prevention of infection and a concomitant decrease of the caloric burden of an inflammatory response.

  20. Attenuation of epidermal growth factor (EGF) signaling by growth hormone (GH).

    PubMed

    González, Lorena; Miquet, Johanna G; Irene, Pablo E; Díaz, M Eugenia; Rossi, Soledad P; Sotelo, Ana I; Frungieri, Mónica B; Hill, Cristal M; Bartke, Andrzej; Turyn, Daniel

    2017-05-01

    Transgenic mice overexpressing growth hormone (GH) show increased hepatic protein content of the epidermal growth factor receptor (EGFR), which is broadly associated with cell proliferation and oncogenesis. However, chronically elevated levels of GH result in desensitization of STAT-mediated EGF signal and similar response of ERK1/2 and AKT signaling to EGF compared to normal mice. To ascertain the mechanisms involved in GH attenuation of EGF signaling and the consequences on cell cycle promotion, phosphorylation of signaling mediators was studied at different time points after EGF stimulation, and induction of proteins involved in cell cycle progression was assessed in normal and GH-overexpressing transgenic mice. Results from kinetic studies confirmed the absence of STAT3 and 5 activation and comparable levels of ERK1/2 phosphorylation upon EGF stimulation, which was associated with diminished or similar induction of c-MYC, c-FOS, c-JUN, CYCLIN D1 and CYCLIN E in transgenic compared to normal mice. Accordingly, kinetics of EGF-induced c-SRC and EGFR phosphorylation at activating residues demonstrated that activation of these proteins was lower in the transgenic mice with respect to normal animals. In turn, EGFR phosphorylation at serine 1046/1047, which is implicated in the negative regulation of the receptor, was increased in the liver of GH-overexpressing transgenic mice both in basal conditions and upon EGF stimulus. Increased basal phosphorylation and activation of the p38-mitogen-activated protein kinase might account for increased Ser 1046/1047 EGFR. Hyperphosphorylation of EGFR at serine residues would represent a compensatory mechanism triggered by chronically elevated levels of GH to mitigate the proliferative response induced by EGF.

  1. Cytokinin signaling promotes differential stability of type-B ARRs

    PubMed Central

    Shull, Timothy E.; Kurepa, Jasmina; Smalle, Jan A.

    2016-01-01

    ABSTRACT Cytokinins control key aspects of plant growth, including shoot and root meristem development and the timing of senescence of leaves and stems. Cytokinin perception triggers a 2-component signaling mechanism that ultimately leads to phosphorylation-dependent activation of a class of transcriptional regulators called type-B ARRs (RRBs). We have recently shown that the stability of the RRB family member ARR1 is increased in response to elevated cytokinin concentrations. In contrast, cytokinin decreases the stability of the closely related RRB member ARR2. The molecular mechanism governing the differential stability regulation of these 2 closely related RRBs remains unknown. PMID:27031369

  2. Role of Arachidonic Acid in Promoting Hair Growth

    PubMed Central

    Munkhbayar, Semchin; Jang, Sunhyae; Cho, A-Ri; Choi, Soon-Jin; Shin, Chang Yup; Eun, Hee Chul; Kim, Kyu Han

    2016-01-01

    Background Arachidonic acid (AA) is an omega-6 polyunsaturated fatty acid present in all mammalian cell membranes, and involved in the regulation of many cellular processes, including cell survival, angiogenesis, and mitogenesis. The dermal papilla, composed of specialized fibroblasts located in the bulb of the hair follicle, contributes to the control of hair growth and the hair cycle. Objective This study investigated the effect of AA on hair growth by using in vivo and in vitro models. Methods The effect of AA on human dermal papilla cells (hDPCs) and hair shaft elongation was evaluated by MTT assay and hair follicle organ culture, respectively. The expression of various growth and survival factors in hDPCs were investigated by western blot or immunohistochemistry. The ability of AA to induce and prolong anagen phase in C57BL/6 mice was analyzed. Results AA was found to enhance the viability of hDPCs and promote the expression of several factors responsible for hair growth, including fibroblast growth factor-7 (FGF-7) and FGF-10. Western blotting identified the role of AA in the phosphorylation of various transcription factors (ERK, CREB, and AKT) and increased expression of Bcl-2 in hDPCs. In addition, AA significantly promoted hair shaft elongation, with increased proliferation of matrix keratinocytes, during ex vivo hair follicle culture. It was also found to promote hair growth by induction and prolongation of anagen phase in telogen-stage C57BL/6 mice. Conclusion This study concludes that AA plays a role in promoting hair growth by increasing the expression of growth factors in hDPCs and enhancing follicle proliferation and survival. PMID:26848219

  3. Caffeine promotes wakefulness via dopamine signaling in Drosophila.

    PubMed

    Nall, Aleksandra H; Shakhmantsir, Iryna; Cichewicz, Karol; Birman, Serge; Hirsh, Jay; Sehgal, Amita

    2016-02-12

    Caffeine is the most widely-consumed psychoactive drug in the world, but our understanding of how caffeine affects our brains is relatively incomplete. Most studies focus on effects of caffeine on adenosine receptors, but there is evidence for other, more complex mechanisms. In the fruit fly Drosophila melanogaster, which shows a robust diurnal pattern of sleep/wake activity, caffeine reduces nighttime sleep behavior independently of the one known adenosine receptor. Here, we show that dopamine is required for the wake-promoting effect of caffeine in the fly, and that caffeine likely acts presynaptically to increase dopamine signaling. We identify a cluster of neurons, the paired anterior medial (PAM) cluster of dopaminergic neurons, as the ones relevant for the caffeine response. PAM neurons show increased activity following caffeine administration, and promote wake when activated. Also, inhibition of these neurons abrogates sleep suppression by caffeine. While previous studies have focused on adenosine-receptor mediated mechanisms for caffeine action, we have identified a role for dopaminergic neurons in the arousal-promoting effect of caffeine.

  4. Nuclear phytochrome A signaling promotes phototropism in Arabidopsis.

    PubMed

    Kami, Chitose; Hersch, Micha; Trevisan, Martine; Genoud, Thierry; Hiltbrunner, Andreas; Bergmann, Sven; Fankhauser, Christian

    2012-02-01

    Phototropin photoreceptors (phot1 and phot2 in Arabidopsis thaliana) enable responses to directional light cues (e.g., positive phototropism in the hypocotyl). In Arabidopsis, phot1 is essential for phototropism in response to low light, a response that is also modulated by phytochrome A (phyA), representing a classical example of photoreceptor coaction. The molecular mechanisms underlying promotion of phototropism by phyA remain unclear. Most phyA responses require nuclear accumulation of the photoreceptor, but interestingly, it has been proposed that cytosolic phyA promotes phototropism. By comparing the kinetics of phototropism in seedlings with different subcellular localizations of phyA, we show that nuclear phyA accelerates the phototropic response, whereas in the fhy1 fhl mutant, in which phyA remains in the cytosol, phototropic bending is slower than in the wild type. Consistent with this data, we find that transcription factors needed for full phyA responses are needed for normal phototropism. Moreover, we show that phyA is the primary photoreceptor promoting the expression of phototropism regulators in low light (e.g., PHYTOCHROME KINASE SUBSTRATE1 [PKS1] and ROOT PHOTO TROPISM2 [RPT2]). Although phyA remains cytosolic in fhy1 fhl, induction of PKS1 and RPT2 expression still occurs in fhy1 fhl, indicating that a low level of nuclear phyA signaling is still present in fhy1 fhl.

  5. Caffeine promotes wakefulness via dopamine signaling in Drosophila

    PubMed Central

    Nall, Aleksandra H.; Shakhmantsir, Iryna; Cichewicz, Karol; Birman, Serge; Hirsh, Jay; Sehgal, Amita

    2016-01-01

    Caffeine is the most widely-consumed psychoactive drug in the world, but our understanding of how caffeine affects our brains is relatively incomplete. Most studies focus on effects of caffeine on adenosine receptors, but there is evidence for other, more complex mechanisms. In the fruit fly Drosophila melanogaster, which shows a robust diurnal pattern of sleep/wake activity, caffeine reduces nighttime sleep behavior independently of the one known adenosine receptor. Here, we show that dopamine is required for the wake-promoting effect of caffeine in the fly, and that caffeine likely acts presynaptically to increase dopamine signaling. We identify a cluster of neurons, the paired anterior medial (PAM) cluster of dopaminergic neurons, as the ones relevant for the caffeine response. PAM neurons show increased activity following caffeine administration, and promote wake when activated. Also, inhibition of these neurons abrogates sleep suppression by caffeine. While previous studies have focused on adenosine-receptor mediated mechanisms for caffeine action, we have identified a role for dopaminergic neurons in the arousal-promoting effect of caffeine. PMID:26868675

  6. BMP signaling regulates satellite cell-dependent postnatal muscle growth.

    PubMed

    Stantzou, Amalia; Schirwis, Elija; Swist, Sandra; Alonso-Martin, Sonia; Polydorou, Ioanna; Zarrouki, Faouzi; Mouisel, Etienne; Beley, Cyriaque; Julien, Anaïs; Le Grand, Fabien; Garcia, Luis; Colnot, Céline; Birchmeier, Carmen; Braun, Thomas; Schuelke, Markus; Relaix, Frédéric; Amthor, Helge

    2017-08-01

    Postnatal growth of skeletal muscle largely depends on the expansion and differentiation of resident stem cells, the so-called satellite cells. Here, we demonstrate that postnatal satellite cells express components of the bone morphogenetic protein (BMP) signaling machinery. Overexpression of noggin in postnatal mice (to antagonize BMP ligands), satellite cell-specific knockout of Alk3 (the gene encoding the BMP transmembrane receptor) or overexpression of inhibitory SMAD6 decreased satellite cell proliferation and accretion during myofiber growth, and ultimately retarded muscle growth. Moreover, reduced BMP signaling diminished the adult satellite cell pool. Abrogation of BMP signaling in satellite cell-derived primary myoblasts strongly diminished cell proliferation and upregulated the expression of cell cycle inhibitors p21 and p57 In conclusion, these results show that BMP signaling defines postnatal muscle development by regulating satellite cell-dependent myofiber growth and the generation of the adult muscle stem cell pool. © 2017. Published by The Company of Biologists Ltd.

  7. Genomic locus and promoter region of rat Smad7, an important antagonist of TGFbeta signaling.

    PubMed

    Stopa, M; Benes, V; Ansorge, W; Gressner, A M; Dooley, S

    2000-02-01

    SMAD proteins are essential components of the intracellular signaling pathways utilized by members of the transforming growth factor beta (TGFbeta) superfamily of growth factors. Certain SMAD proteins (Smad1, 2, 3, and 5) can act as regulated transcriptional activators. This process involves phosphorylation of these proteins by activated TGFbeta receptors. Recently, Smad6 and Smad7 were identified; they antagonize TGFbeta signaling by preventing the activation of signal-transducing SMAD complexes. TGFbeta rapidly induces the expression of Smad7 mRNA, suggesting participation of Smad7 in a negative feedback loop to control TGFbeta responses. Similarly, epidermal growth factor (EGF) and interferon gamma (IFN-gamma) have been reported to induce Smad7 expression. In a rat model system of liver fibrosis, TGFbeta inducibility of Smad7 is abrogated during transformation of hepatic stellate cells (HSC), indicating an important switch in transcriptional regulation of the gene. With the detailed characterization of the rat Smad7 genomic organization including the promoter region, we present the first identified Smad7 gene so far. The gene is composed of four exons separated by three introns covering a DNA region of about 30 kilobases (kb) in total. The major transcription start site is conserved between rat and mouse, and two polyadenylation signals were detected. In the promoter region, a potential CAGA box, a signal transducer and activator of transcription (STAT) factor-related recognition site, and different AP1 sites were identified, which could be the targets of TGFbeta, IFN-gamma, and EGF-dependent Smad7 transcription initiation.

  8. Biochar Treatment Resulted in a Combined Effect on Soybean Growth Promotion and a Shift in Plant Growth Promoting Rhizobacteria

    PubMed Central

    Egamberdieva, Dilfuza; Wirth, Stephan; Behrendt, Undine; Abd_Allah, Elsayed F.; Berg, Gabriele

    2016-01-01

    The application of biochar to soil is considered to have the potential for long-term soil carbon sequestration, as well as for improving plant growth and suppressing soil pathogens. In our study we evaluated the effect of biochar on the plant growth of soybeans, as well as on the community composition of root-associated bacteria with plant growth promoting traits. Two types of biochar, namely, maize biochar (MBC), wood biochar (WBC), and hydrochar (HTC) were used for pot experiments to monitor plant growth. Soybean plants grown in soil amended with HTC char (2%) showed the best performance and were collected for isolation and further characterization of root-associated bacteria for multiple plant growth promoting traits. Only HTC char amendment resulted in a statistically significant increase in the root and shoot dry weight of soybeans. Interestingly, rhizosphere isolates from HTC char amended soil showed higher diversity than the rhizosphere isolates from the control soil. In addition, a higher proportion of isolates from HTC char amended soil compared with control soil was found to express plant growth promoting properties and showed antagonistic activity against one or more phytopathogenic fungi. Our study provided evidence that improved plant growth by biochar incorporation into soil results from the combination of a direct effect that is dependent on the type of char and a microbiome shift in root-associated beneficial bacteria. PMID:26941730

  9. Biochar Treatment Resulted in a Combined Effect on Soybean Growth Promotion and a Shift in Plant Growth Promoting Rhizobacteria.

    PubMed

    Egamberdieva, Dilfuza; Wirth, Stephan; Behrendt, Undine; Abd Allah, Elsayed F; Berg, Gabriele

    2016-01-01

    The application of biochar to soil is considered to have the potential for long-term soil carbon sequestration, as well as for improving plant growth and suppressing soil pathogens. In our study we evaluated the effect of biochar on the plant growth of soybeans, as well as on the community composition of root-associated bacteria with plant growth promoting traits. Two types of biochar, namely, maize biochar (MBC), wood biochar (WBC), and hydrochar (HTC) were used for pot experiments to monitor plant growth. Soybean plants grown in soil amended with HTC char (2%) showed the best performance and were collected for isolation and further characterization of root-associated bacteria for multiple plant growth promoting traits. Only HTC char amendment resulted in a statistically significant increase in the root and shoot dry weight of soybeans. Interestingly, rhizosphere isolates from HTC char amended soil showed higher diversity than the rhizosphere isolates from the control soil. In addition, a higher proportion of isolates from HTC char amended soil compared with control soil was found to express plant growth promoting properties and showed antagonistic activity against one or more phytopathogenic fungi. Our study provided evidence that improved plant growth by biochar incorporation into soil results from the combination of a direct effect that is dependent on the type of char and a microbiome shift in root-associated beneficial bacteria.

  10. Sensitization of epithelial growth factor receptors by nicotine exposure to promote breast cancer cell growth

    PubMed Central

    2011-01-01

    Introduction Tobacco smoke is known to be the main cause of lung, head and neck tumors. Recently, evidence for an increasing breast cancer risk associated with tobacco smoke exposure has been emerging. We and other groups have shown that nicotine, as a non-conventional carcinogen, has the potential to facilitate cancer genesis and progression. However, the underlying mechanisms by which the smoke affects the breast, rather than the lung, remain unclear. Here, we examine possible downstream signaling pathways of the nicotinic acetylcholine receptor (nAChR) and their role in breast cancer promotion. Methods Using human benign MCF10A and malignant MDA-MB-231 breast cells and specific inhibitors of possible downstream kinases, we identified nAChR effectors that were activated by treatment with nicotine. We further tested the effects of these effector pathways on the regulation of E2F1 activation, cell cycle progression and on Bcl-2 expression and long-term cell survival. Results In this study, we demonstrated a novel signaling mechanism by which nicotine exposure activated Src to sensitize epidermal growth factor receptor (EGFR)-mediated pathways for breast cancer cell growth promotion. After the ligation of nAChR with nicotine, EGFR was shown to be activated and then internalized in both MCF10A and MDA-MB-231 breast cancer cells. Subsequently, Src, Akt and ERK1/2 were phosphorylated at different time points following nicotine treatment. We further demonstrated that through Src, the ligation of nicotine with nAChR stimulated the EGFR/ERK1/2 pathway for the activation of E2F1 and further cell progression. Our data also showed that Akt functioned directly downstream of Src and was responsible for the increase of Bcl-2 expression and long-term cell survival. Conclusions Our study reveals the existence of a potential, regulatory network governed by the interaction of nicotine and nAChR that integrates the conventional, mitogenic Src and EGFR signals for breast cancer

  11. Sensitization of epithelial growth factor receptors by nicotine exposure to promote breast cancer cell growth.

    PubMed

    Nishioka, Takashi; Kim, Hyun-Seok; Luo, Ling-Yu; Huang, Yi; Guo, Jinjin; Chen, Chang Yan

    2011-01-01

    Tobacco smoke is known to be the main cause of lung, head and neck tumors. Recently, evidence for an increasing breast cancer risk associated with tobacco smoke exposure has been emerging. We and other groups have shown that nicotine, as a non-conventional carcinogen, has the potential to facilitate cancer genesis and progression. However, the underlying mechanisms by which the smoke affects the breast, rather than the lung, remain unclear. Here, we examine possible downstream signaling pathways of the nicotinic acetylcholine receptor (nAChR) and their role in breast cancer promotion. Using human benign MCF10A and malignant MDA-MB-231 breast cells and specific inhibitors of possible downstream kinases, we identified nAChR effectors that were activated by treatment with nicotine. We further tested the effects of these effector pathways on the regulation of E2F1 activation, cell cycle progression and on Bcl-2 expression and long-term cell survival. In this study, we demonstrated a novel signaling mechanism by which nicotine exposure activated Src to sensitize epidermal growth factor receptor (EGFR)-mediated pathways for breast cancer cell growth promotion. After the ligation of nAChR with nicotine, EGFR was shown to be activated and then internalized in both MCF10A and MDA-MB-231 breast cancer cells. Subsequently, Src, Akt and ERK1/2 were phosphorylated at different time points following nicotine treatment. We further demonstrated that through Src, the ligation of nicotine with nAChR stimulated the EGFR/ERK1/2 pathway for the activation of E2F1 and further cell progression. Our data also showed that Akt functioned directly downstream of Src and was responsible for the increase of Bcl-2 expression and long-term cell survival. Our study reveals the existence of a potential, regulatory network governed by the interaction of nicotine and nAChR that integrates the conventional, mitogenic Src and EGFR signals for breast cancer development.

  12. PHF11 promotes DSB resection, ATR signaling, and HR

    PubMed Central

    Gong, Yi; Handa, Naofumi; Kowalczykowski, Stephen C.; de Lange, Titia

    2017-01-01

    Resection of double-strand breaks (DSBs) plays a critical role in their detection and appropriate repair. The 3′ ssDNA protrusion formed through resection activates the ATR-dependent DNA damage response (DDR) and is required for DSB repair by homologous recombination (HR). Here we report that PHF11 (plant homeodomain finger 11) encodes a previously unknown DDR factor involved in 5′ end resection, ATR signaling, and HR. PHF11 was identified based on its association with deprotected telomeres and localized to sites of DNA damage in S phase. Depletion of PHF11 diminished the ATR signaling response to telomere dysfunction and genome-wide DNA damage, reduced end resection at sites of DNA damage, resulted in compromised HR and misrejoining of S-phase DSBs, and increased the sensitivity to DNA-damaging agents. PHF11 interacted with the ssDNA-binding protein RPA and was found in a complex with several nucleases, including the 5′ dsDNA exonuclease EXO1. Biochemical experiments demonstrated that PHF11 stimulates EXO1 by overcoming its inhibition by RPA, suggesting that PHF11 acts (in part) by promoting 5′ end resection at RPA-bound sites of DNA damage. These findings reveal a role for PHF11 in DSB resection, DNA damage signaling, and DSB repair. PMID:28115467

  13. PHF11 promotes DSB resection, ATR signaling, and HR.

    PubMed

    Gong, Yi; Handa, Naofumi; Kowalczykowski, Stephen C; de Lange, Titia

    2017-01-01

    Resection of double-strand breaks (DSBs) plays a critical role in their detection and appropriate repair. The 3' ssDNA protrusion formed through resection activates the ATR-dependent DNA damage response (DDR) and is required for DSB repair by homologous recombination (HR). Here we report that PHF11 (plant homeodomain finger 11) encodes a previously unknown DDR factor involved in 5' end resection, ATR signaling, and HR. PHF11 was identified based on its association with deprotected telomeres and localized to sites of DNA damage in S phase. Depletion of PHF11 diminished the ATR signaling response to telomere dysfunction and genome-wide DNA damage, reduced end resection at sites of DNA damage, resulted in compromised HR and misrejoining of S-phase DSBs, and increased the sensitivity to DNA-damaging agents. PHF11 interacted with the ssDNA-binding protein RPA and was found in a complex with several nucleases, including the 5' dsDNA exonuclease EXO1. Biochemical experiments demonstrated that PHF11 stimulates EXO1 by overcoming its inhibition by RPA, suggesting that PHF11 acts (in part) by promoting 5' end resection at RPA-bound sites of DNA damage. These findings reveal a role for PHF11 in DSB resection, DNA damage signaling, and DSB repair.

  14. Plant growth and resistance promoted by Streptomyces spp. in tomato.

    PubMed

    Dias, Maila P; Bastos, Matheus S; Xavier, Vanessa B; Cassel, Eduardo; Astarita, Leandro V; Santarém, Eliane R

    2017-09-01

    Plant Growth Promoting Rhizobacteria (PGPR) represent an alternative to improve plant growth and yield as well as to act as agents of biocontrol. This study characterized isolates of Streptomyces spp. (Stm) as PGPR, determined the antagonism of these isolates against Pectobacterium carotovorum subsp. brasiliensis (Pcb), evaluated the ability of Stm on promoting growth and modulating the defense-related metabolism of tomato plants, and the potential of Stm isolates on reducing soft rot disease in this species. The VOC profile of Stm was also verified. Promotion of plant growth was assessed indirectly through VOC emission and by direct interaction with Stm isolates in the roots. Evaluation of soft rot disease was performed in vitro on plants treated with Stm and challenged with Pcb. Enzymes related to plant defense were then analyzed in plants treated with three selected isolates of Stm, and PM1 was chosen for further Pcb-challenging experiment. Streptomyces spp. isolates displayed characteristics of PGPR. PM3 was the isolate with efficient antagonism against Pcb by dual-culture. Most of the isolates promoted growth of root and shoot of tomato plants by VOC, and PM5 was the isolate that most promoted growth by direct interaction with Stm. Soft rot disease and mortality of plants were significantly reduced when plants were treated with StmPM1. Modulation of secondary metabolism was observed with Stm treatment, and fast response of polyphenoloxidases was detected in plants pretreated with StmPM1 and challenged with Pcb. Peroxidase was significantly activated three days after infection with Pcb in plants pretreated with StmPM1. Results suggest that Streptomyces sp. PM1 and PM5 have the potential to act as PGPR. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. The nexus between growth and defence signalling: auxin and cytokinin modulate plant immune response pathways.

    PubMed

    Naseem, Muhammad; Kaltdorf, Martin; Dandekar, Thomas

    2015-08-01

    Plants deploy a finely tuned balance between growth and defence responses for better fitness. Crosstalk between defence signalling hormones such as salicylic acid (SA) and jasmonates (JAs) as well as growth regulators plays a significant role in mediating the trade-off between growth and defence in plants. Here, we specifically discuss how the mutual antagonism between the signalling of auxin and SA impacts on plant growth and defence. Furthermore, the synergism between auxin and JA benefits a class of plant pathogens. JA signalling also poses growth cuts through auxin. We discuss how the effect of cytokinins (CKs) is multifaceted and is effective against a broad range of pathogens in mediating immunity. The synergism between CKs and SA promotes defence against biotrophs. Reciprocally, SA inhibits CK-mediated growth responses. Recent reports show that CKs promote JA responses; however, in a feedback loop, JA suppresses CK responses. We also highlight crosstalk between auxin and CKs and discuss their antagonistic effects on plant immunity. Efforts to minimize the negative effects of auxin on immunity and a reduction in SA- and JA-mediated growth losses should lead to better sustainable plant protection strategies.

  16. The impact of growth promoters on muscle growth and the potential consequences for meat quality.

    PubMed

    Parr, Tim; Mareko, Molebeledi H D; Ryan, Kevin J P; Hemmings, Krystal M; Brown, David M; Brameld, John M

    2016-10-01

    To meet the demands of increased global meat consumption, animal production systems will have to become more efficient, or at least maintain the current efficiency utilizing feed ingredients that are not also used for human consumption. Use of growth promoters is a potential option for increasing production animal feed efficiency and increased muscle growth. The objective of this manuscript is to describe the mechanisms by which the growth promoters, beta-adrenergic agonists and growth hormone, mediate their effects, with specific consideration of the aspects which have implications for meat quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Insights into the Transforming Growth Factor-β Signaling Pathway in Cutaneous Melanoma

    PubMed Central

    Perrot, Carole Yolande; Javelaud, Delphine

    2013-01-01

    Transforming growth factor-β (TGF-β) is a pleiotropic growth factor with broad tissue distribution that plays critical roles during embryonic development, normal tissue homeostasis, and cancer. While its cytostatic activity on normal epithelial cells initially defined TGF-β signaling as a tumor suppressor pathway, there is ample evidence indicating that TGF-β is a potent pro-tumorigenic agent, acting via autocrine and paracrine mechanisms to promote peri-tumoral angiogenesis, together with tumor cell migration, immune escape, and dissemination to metastatic sites. This review summarizes the current knowledge on the implication of TGF-β signaling in melanoma. PMID:23717002

  18. A Novel Growth-Promoting Pathway Formed by GDNF-Overexpressing Schwann Cells Promotes Propriospinal Axonal Regeneration, Synapse formation, and Partial Recovery of Function after Spinal Cord Injury

    PubMed Central

    Deng, Lingxiao; Deng, Ping; Ruan, Yiwen; Xu, Zao Cheng; Liu, Naikui; Wen, Xuejun; Smith, George M.; Xu, Xiao-Ming

    2013-01-01

    Descending propriospinal neurons (DPSN) are known to establish functional relays for supraspinal signals, and they display a greater growth response after injury than do the long projecting axons. However, their regenerative response is still deficient due to their failure to depart from growth supportive cellular transplants back into the host spinal cord, which contains numerous impediments to axon growth. Here we report the construction of a continuous growth-promoting pathway in adult rats, formed by grafted Schwann cells (SCs) overexpressing glial cell line-derived neurotrophic factor (GDNF). We demonstrate that such a growth-promoting pathway, extending from the axonal cut ends to the site of innervation in the distal spinal cord, promoted regeneration of DPSN axons through and beyond the lesion gap of a spinal cord hemisection. Within the distal host spinal cord, regenerated DPSN axons formed synapses with host neurons leading to the restoration of action potentials and partial recovery of function. PMID:23536080

  19. The Role of Target of Rapamycin Signaling Networks in Plant Growth and Metabolism1

    PubMed Central

    Sheen, Jen

    2014-01-01

    The target of rapamycin (TOR) kinase, a master regulator that is evolutionarily conserved among yeasts (Saccharomyces cerevisiae), plants, animals, and humans, integrates nutrient and energy signaling to promote cell proliferation and growth. Recent breakthroughs made possible by integrating chemical, genetic, and genomic analyses have greatly increased our understanding of the molecular functions and dynamic regulation of the TOR kinase in photosynthetic plants. TOR signaling plays fundamental roles in embryogenesis, meristem activation, root and leaf growth, flowering, senescence, and life span determination. The molecular mechanisms underlying TOR-mediated ribosomal biogenesis, translation promotion, readjustment of metabolism, and autophagy inhibition are now being uncovered. Moreover, monitoring photosynthesis-derived Glc and bioenergetics relays has revealed that TOR orchestrates unprecedented transcriptional networks that wire central metabolism and biosynthesis for energy and biomass production. In addition, these networks integrate localized stem/progenitor cell proliferation through interorgan nutrient coordination to control developmental transitions and growth. PMID:24385567

  20. Plant Growth-Promoting Bacteria: Mechanisms and Applications

    PubMed Central

    Glick, Bernard R.

    2012-01-01

    The worldwide increases in both environmental damage and human population pressure have the unfortunate consequence that global food production may soon become insufficient to feed all of the world's people. It is therefore essential that agricultural productivity be significantly increased within the next few decades. To this end, agricultural practice is moving toward a more sustainable and environmentally friendly approach. This includes both the increasing use of transgenic plants and plant growth-promoting bacteria as a part of mainstream agricultural practice. Here, a number of the mechanisms utilized by plant growth-promoting bacteria are discussed and considered. It is envisioned that in the not too distant future, plant growth-promoting bacteria (PGPB) will begin to replace the use of chemicals in agriculture, horticulture, silviculture, and environmental cleanup strategies. While there may not be one simple strategy that can effectively promote the growth of all plants under all conditions, some of the strategies that are discussed already show great promise. PMID:24278762

  1. Red clover: An alternative to antibiotic growth promoters?

    USDA-ARS?s Scientific Manuscript database

    A series of experiments were conducted at the Forage-Animal Production Research Unit to discover a growth-promoting natural product from red clover (Trifolium pratense). Previously published work included a bioassay for antimicrobial activity of phytochemicals. The bioassay was used to discover th...

  2. Promoting Moral Growth through Pluralism and Social Justice Education

    ERIC Educational Resources Information Center

    Stewart, Dafina Lazarus

    2012-01-01

    Issues of morality, including deciding among competing values and negotiating obligations to self and community, are pervasive and saturate many aspects of life. This article explores the role of educating for pluralism and social justice in promoting moral growth among college students. James Rest's four-component model of moral maturity frames…

  3. Promoting Moral Growth through Pluralism and Social Justice Education

    ERIC Educational Resources Information Center

    Stewart, Dafina Lazarus

    2012-01-01

    Issues of morality, including deciding among competing values and negotiating obligations to self and community, are pervasive and saturate many aspects of life. This article explores the role of educating for pluralism and social justice in promoting moral growth among college students. James Rest's four-component model of moral maturity frames…

  4. Talk That Teaches: How to Promote Professional Dialogue and Growth

    ERIC Educational Resources Information Center

    Gibbons, Lynsey; Knapp, Melinda

    2015-01-01

    What types of talk promote teachers' professional growth? In the following vignettes, 4th-grade teachers and instructional leaders examine student work and observe classroom instruction. These learning designs encourage teachers to talk in ways that develop a shared understanding of teaching, which is instrumental to their professional growth…

  5. Growth-Promoting Relationships with Children and Youth

    ERIC Educational Resources Information Center

    Spencer, Renée; Rhodes, Jean E.

    2014-01-01

    At the heart of afterschool programs are the relationships that form between the children and youth who participate in these programs and the adults who lead them. To be effective, adults working in afterschool settings must be able to engage youth in growth-promoting relationships. This article identifies and describes four foundational ways of…

  6. Phytochrome B promotes branching in Arabidopsis by suppressing auxin signaling.

    PubMed

    Krishna Reddy, Srirama; Finlayson, Scott A

    2014-03-01

    Many plants respond to competition signals generated by neighbors by evoking the shade avoidance syndrome, including increased main stem elongation and reduced branching. Vegetation-induced reduction in the red light:far-red light ratio provides a competition signal sensed by phytochromes. Plants deficient in phytochrome B (phyB) exhibit a constitutive shade avoidance syndrome including reduced branching. Because auxin in the polar auxin transport stream (PATS) inhibits axillary bud outgrowth, its role in regulating the phyB branching phenotype was tested. Removing the main shoot PATS auxin source by decapitation or chemically inhibiting the PATS strongly stimulated branching in Arabidopsis (Arabidopsis thaliana) deficient in phyB, but had a modest effect in the wild type. Whereas indole-3-acetic acid (IAA) levels were elevated in young phyB seedlings, there was less IAA in mature stems compared with the wild type. A split plate assay of bud outgrowth kinetics indicated that low auxin levels inhibited phyB buds more than the wild type. Because the auxin response could be a result of either the auxin signaling status or the bud's ability to export auxin into the main shoot PATS, both parameters were assessed. Main shoots of phyB had less absolute auxin transport capacity compared with the wild type, but equal or greater capacity when based on the relative amounts of native IAA in the stems. Thus, auxin transport capacity was unlikely to restrict branching. Both shoots of young phyB seedlings and mature stem segments showed elevated expression of auxin-responsive genes and expression was further increased by auxin treatment, suggesting that phyB suppresses auxin signaling to promote branching.

  7. [Antibiotic growth promoters for the view of animal nutrition].

    PubMed

    Kamphues, J

    1999-01-01

    From 01. 07./09. 1999 on six further antibiotic growth promoters have been banned--with only four substances remaining in this group of feed additives. Therefore, the discussion on a possible induction of bacterial resistance by antibiotic growth promoters, especially in potentially pathogenic bacteria, will sooner or later come to an end which is not least in the interest of the reputation of animal husbandry and food of animal origin. Unfortunately, no short-term solution for health problems by legislation--especially in the gastrointestinal tract--during rearing and the beginning of the fattening period is possible as experiences in Sweden have distinctively shown. Anyway, growth promoting feed additives were not a cure-all of rearing problems, in spite of their use considerable amounts of antibiotics were prescribed during this period. But growth promoters (especially chinoxalines) were most suitable for the prophylaxis of a microbial imbalance in the gastrointestinal tract. Therefore, after the ban of these effective representatives of feed additives the amount of prescribed antimicrobial drugs for metaphylaxis and therapy should be critically observed. The questions of practicable alternatives will be primarily addressed to the fields of animal nutrition, veterinary medicine and feed industry. To answer these questions and to evolve new solutions (as well as to check their suitability in practice) is considerably more intricate than simply to ban these substances which is more attractive for the media, however. It is no progressive solution to give up antimicrobial growth promoters as feed additives and to use the same substances (for example olaquindox) as therapeutics now (prescribed by veterinarians) or to switch to zincoxide or copper (in a dosage high above all nutrient requirements) in order to prevent postweaning problems due to E. coli. But one has to take into consideration the reasons for the use of antibiotics (growth promoters and therapeutics) or

  8. Catecholamines promote Actinobacillus pleuropneumoniae growth by regulating iron metabolism.

    PubMed

    Li, Lu; Chen, Zhaohui; Bei, Weicheng; Su, Zhipeng; Huang, Qi; Zhang, Liang; Chen, Huanchun; Zhou, Rui

    2015-01-01

    Catecholamines are host stress hormones that can induce the growth of many bacteria by facilitating iron utilization and/or regulate the expression of virulence genes through specific hormone receptors. Whether these two responsive pathways are interconnected is unknown. In our previous study, it was found that catecholamines can regulate the expression of a great number of genes of Actinobacillus pleuropneumoniae, an important swine respiratory pathogen. However, bacterial growth was not affected by catecholamines in rich medium. In this study, it was discovered that catecholamines affected A. pleuropneumoniae growth in chemically defined medium (CDM). We found that serum inhibited A. pleuropneumoniae growth in CDM, while epinephrine, norepinephrine and dopamine promoted A. pleuropneumoniae growth in the CDM containing serum. The known bacterial hormone receptor QseC didn't play roles in this process. Ion-supplementation and transcriptome analysis indicated that serum addition resulted in iron-restricted conditions which were alleviated by the addition of catecholamines. Transferrin, one of the components in serum, inhibited the growth of A. pleuropneumoniae in CDM, an effect reversed by addition of catecholamines in a TonB2-dependent manner. Our data demonstrate that catecholamines promote A. pleuropneumoniae growth by regulating iron-acquisition and metabolism, which is independent of the adrenergic receptor QseC.

  9. Catecholamines Promote Actinobacillus pleuropneumoniae Growth by Regulating Iron Metabolism

    PubMed Central

    Li, Lu; Chen, Zhaohui; Bei, Weicheng; Su, Zhipeng; Huang, Qi; Zhang, Liang; Chen, Huanchun; Zhou, Rui

    2015-01-01

    Catecholamines are host stress hormones that can induce the growth of many bacteria by facilitating iron utilization and/or regulate the expression of virulence genes through specific hormone receptors. Whether these two responsive pathways are interconnected is unknown. In our previous study, it was found that catecholamines can regulate the expression of a great number of genes of Actinobacillus pleuropneumoniae, an important swine respiratory pathogen. However, bacterial growth was not affected by catecholamines in rich medium. In this study, it was discovered that catecholamines affected A. pleuropneumoniae growth in chemically defined medium (CDM). We found that serum inhibited A. pleuropneumoniae growth in CDM, while epinephrine, norepinephrine and dopamine promoted A. pleuropneumoniae growth in the CDM containing serum. The known bacterial hormone receptor QseC didn’t play roles in this process. Ion-supplementation and transcriptome analysis indicated that serum addition resulted in iron-restricted conditions which were alleviated by the addition of catecholamines. Transferrin, one of the components in serum, inhibited the growth of A. pleuropneumoniae in CDM, an effect reversed by addition of catecholamines in a TonB2-dependent manner. Our data demonstrate that catecholamines promote A. pleuropneumoniae growth by regulating iron-acquisition and metabolism, which is independent of the adrenergic receptor QseC. PMID:25849041

  10. Ecdysone promotes growth of imaginal discs through the regulation of Thor in D. melanogaster

    PubMed Central

    Herboso, Leire; Oliveira, Marisa M.; Talamillo, Ana; Pérez, Coralia; González, Monika; Martín, David; Sutherland, James D.; Shingleton, Alexander W.; Mirth, Christen K.; Barrio, Rosa

    2015-01-01

    Animals have a determined species-specific body size that results from the combined action of hormones and signaling pathways regulating growth rate and duration. In Drosophila, the steroid hormone ecdysone controls developmental transitions, thereby regulating the duration of the growth period. Here we show that ecdysone promotes the growth of imaginal discs in mid-third instar larvae, since imaginal discs from larvae with reduced or no ecdysone synthesis are smaller than wild type due to smaller and fewer cells. We show that insulin-like peptides are produced and secreted normally in larvae with reduced ecdysone synthesis, and upstream components of insulin/insulin-like signaling are activated in their discs. Instead, ecdysone appears to regulate the growth of imaginal discs via Thor/4E-BP, a negative growth regulator downstream of the insulin/insulin-like growth factor/Tor pathways. Discs from larvae with reduced ecdysone synthesis have elevated levels of Thor, while mutations in Thor partially rescue their growth. The regulation of organ growth by ecdysone is evolutionarily conserved in hemimetabolous insects, as shown by our results obtained using Blattella germanica. In summary, our data provide new insights into the relationship between components of the insulin/insulin-like/Tor and ecdysone pathways in the control of organ growth. PMID:26198204

  11. Plant growth-promoting bacteria as inoculants in agricultural soils.

    PubMed

    Souza, Rocheli de; Ambrosini, Adriana; Passaglia, Luciane M P

    2015-12-01

    Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria.

  12. Plant growth-promoting bacteria as inoculants in agricultural soils

    PubMed Central

    de Souza, Rocheli; Ambrosini, Adriana; Passaglia, Luciane M.P.

    2015-01-01

    Abstract Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria. PMID:26537605

  13. Antibiotic growth promoters in agriculture: history and mode of action.

    PubMed

    Dibner, J J; Richards, J D

    2005-04-01

    This report will review the history of antibiotic growth promoter (AGP) use in the animal industry, concerns about development of antimicrobial resistance, and response in the European Union and United States to these concerns. A brief description of the history of legislation regarding feed use of antimicrobials in Denmark and the experience of animal producers following the 1998 ban will serve to illustrate the consequences on animal performance and health of withdrawing the approval for this use. The biological basis for antibiotic effects on animal growth efficiency will consider effects on intestinal microbiota and effects on the host animal and will use the germ-free animal to illustrate effects of the conventional microflora. The probability that no single compound will replace all of the functions of antimicrobial growth promoters will be considered, and methods to consolidate and analyze the enlarging database will be discussed.

  14. Interleukin 37 promotes angiogenesis through TGF-β signaling.

    PubMed

    Zhao, Mengmeng; Hu, Yongguang; Jin, Jiayi; Yu, Ying; Zhang, Shanshan; Cao, Jingjing; Zhai, Yuanfen; Wei, Rongbin; Shou, Juanjuan; Cai, Wenping; Liu, Shangfeng; Yang, Xiaoping; Xu, Guo-Tong; Yang, Jianhua; Corry, David B; Su, Shao Bo; Liu, Xialin; Yang, Tianshu

    2017-07-21

    IL-37 is a novel pro-angiogenic cytokine that potently promotes endothelial cell activation and pathological angiogenesis in our previous study, but the mechanisms behind the pro-angiogenic effect of IL-37 are less well understood. Extending our observations, we found that TGF-β interacts with IL-37, and potently enhances the binding affinity of IL-37 to the ALK1 receptor complex, thus allowing IL-37 to signal through ALK1 to activate pro-angiogenic responses. We further show that TGF-β and ALK1 are required in IL-37 induced pro-angiogenic response in ECs and in the mouse model of Matrigel plug and oxygen-induced retinopathy. The result suggests that IL-37 induces pro-angiogenic responses through TGF-β, which may act as the bridging molecule that mediates IL-37 binding to the TGF-β receptor complex.

  15. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation

    SciTech Connect

    Retamales, A.; Zuloaga, R.; Valenzuela, C.A.; Gallardo-Escarate, C.; Molina, A.; Valdés, J.A.

    2015-08-21

    Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletal myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast.

  16. Bacteria as growth-promoting agents for citrus rootstocks.

    PubMed

    Giassi, Valdionei; Kiritani, Camila; Kupper, Katia Cristina

    2016-09-01

    The microbial community plays an essential role in maintaining the ecological balance of soils. Interactions between microorganisms and plants have a major influence on the nutrition and health of the latter, and growth-promoting rhizobacteria can be used to improve plant development through a wide range of mechanisms. Therefore, the objective of the present study was to evaluate bacteria as growth-promoting agents for citrus rootstocks. A total of 30 bacterial isolates (11 of Bacillus spp., 11 actinobacteria, and 8 lactic acid bacteria) were evaluated in vitro for indoleacetic acid production, phosphate solubilization, and nitrogen (N) fixation. In vivo testing consisted of growth promotion trials of the bacterial isolates that yielded the best results on in vitro tests with three rootstocks: Swingle citrumelo [Citrus×paradisi Macfad cv. Duncan×Poncirus trifoliata (L.) Raf.], Sunki mandarin (Citrus sunki Hort. ex Tan), and rangpur (Citrus×limonia Osbeck). The parameters of interest were height, number of leaves, stem diameter, shoot and root dry mass, and total dry mass at 150days after germination. The results showed that most bacterial isolates were capable of IAA production. Only one lactic acid bacterium isolate (BL06) solubilized phosphate, with a high solubilization index (PSI>3). In the actinobacteria group, isolates ACT01 (PSI=2.09) and ACT07 (PSI=2.01) exhibited moderate phosphate-solubilizing properties. Of the Bacillus spp. isolates, only CPMO6 and BM17 solubilized phosphate. The bacterial isolates that most fixated nitrogen were BM17, ACT11, and BL24. In the present study, some bacteria were able to promote growth of citrus rootstocks; however, this response was dependent on plant genotype and isolate. Bacillus spp. BM16 and CPMO4 were able to promote growth of Swingle citrumelo. In Sunki mandarin plants, the best treatment results were obtained with BM17 (Bacillus sp.) and ACT11 (actinobacteria). For Rangpur lime rootstock, only BM05 (Bacillus sp

  17. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy.

    PubMed

    Sugg, Kristoffer B; Korn, Michael A; Sarver, Dylan C; Markworth, James F; Mendias, Christopher L

    2017-03-01

    The platelet-derived growth factor receptors alpha and beta (PDGFRα and PDGFRβ) mark fibroadipogenic progenitor cells/fibroblasts and pericytes in skeletal muscle, respectively. While the role that these cells play in muscle growth and development has been evaluated, it was not known whether the PDGF receptors activate signaling pathways that control transcriptional and functional changes during skeletal muscle hypertrophy. To evaluate this, we inhibited PDGFR signaling in mice subjected to a synergist ablation muscle growth procedure, and performed analyses 3 and 10 days after induction of hypertrophy. The results from this study indicate that PDGF signaling is required for fiber hypertrophy, extracellular matrix production, and angiogenesis that occur during muscle growth.

  18. FMRFamide signaling promotes stress-induced sleep in Drosophila

    PubMed Central

    Lenz, Olivia; Xiong, Jianmei; Nelson, Matthew D.; Raizen, David M.; Williams, Julie A.

    2015-01-01

    Enhanced sleep in response to cellular stress is a conserved adaptive behavior across multiple species, but the mechanism of this process is poorly understood. Drosophila melanogaster increases sleep following exposure to septic or aseptic injury, and Caenorhabditis elegans displays sleep-like quiescence following exposure to high temperatures that stress cells. We show here that, similar to C. elegans, Drosophila responds to heat stress with an increase in sleep. In contrast to Drosophila infection-induced sleep, heat-induced sleep is not sensitive to the time-of-day of the heat pulse. Moreover, the sleep response to heat stress does not require Relish, the NFκB transcription factor that is necessary for infection-induced sleep, indicating that sleep is induced by multiple mechanisms from different stress modalities. We identify a sleep-regulating role for a signaling pathway involving FMRFamide neuropeptides and their receptor FR. Animals mutant for either FMRFamide or for the FMRFamide receptor (FR) have a reduced recovery sleep in response to heat stress. FR mutants, in addition, show reduced sleep responses following infection with Serratia marcescens, and succumb to infection at a faster rate than wild-type controls. Together, these findings support the hypothesis that FMRFamide and its receptor promote an adaptive increase in sleep following stress. Because an FMRFamide-like neuropeptide plays a similar role in C. elegans, we propose that FRMFamide neuropeptide signaling is an ancient regulator of recovery sleep which occurs in response to cellular stress. PMID:25668617

  19. FMRFamide signaling promotes stress-induced sleep in Drosophila.

    PubMed

    Lenz, Olivia; Xiong, Jianmei; Nelson, Matthew D; Raizen, David M; Williams, Julie A

    2015-07-01

    Enhanced sleep in response to cellular stress is a conserved adaptive behavior across multiple species, but the mechanism of this process is poorly understood. Drosophila melanogaster increases sleep following exposure to septic or aseptic injury, and Caenorhabditis elegans displays sleep-like quiescence following exposure to high temperatures that stress cells. We show here that, similar to C. elegans, Drosophila responds to heat stress with an increase in sleep. In contrast to Drosophila infection-induced sleep, heat-induced sleep is not sensitive to the time-of-day of the heat pulse. Moreover, the sleep response to heat stress does not require Relish, the NFκB transcription factor that is necessary for infection-induced sleep, indicating that sleep is induced by multiple mechanisms from different stress modalities. We identify a sleep-regulating role for a signaling pathway involving FMRFamide neuropeptides and their receptor FR. Animals mutant for either FMRFamide or for the FMRFamide receptor (FR) have a reduced recovery sleep in response to heat stress. FR mutants, in addition, show reduced sleep responses following infection with Serratia marcescens, and succumb to infection at a faster rate than wild-type controls. Together, these findings support the hypothesis that FMRFamide and its receptor promote an adaptive increase in sleep following stress. Because an FMRFamide-like neuropeptide plays a similar role in C. elegans, we propose that FRMFamide neuropeptide signaling is an ancient regulator of recovery sleep which occurs in response to cellular stress.

  20. PEGylation of a Maltose Biosensor Promotes Enhanced Signal Response

    SciTech Connect

    Dattelbaum, Andrew; Baker, Gary A; Fox, John M; Iyer, Srinivas; Dattelbaum, Jonathan

    2009-01-01

    A robust method to immobilize a maltose biosensor is described using an engineered maltose periplasmic binding protein (PBP) covalently coupled to NBDamide, an environmentally sensitive fluorophore. A mesoporous silica sol-gel derived from diglycerylsilane (DGS) was constructed to embed the maltose biosensor, and the ligand reporting fluorescence properties were meas red. When sequestered in the DGS-derived silica matrix, the biosensor retained maltose-dependent fluorescence sensing capability with micromolar affinity, which is consistent with the protein free in solution. The MBP-NBD conjugate was further modified by covalent conjugation with poly(ethylene glycol)-5000 (PEG) to promote the retention of water molecules around the protein and to reduce possible steric effects between the silica matrix and protein. Bioconjugation with PEG molecules does not significantly affect the signaling response of the protein in solution. When immobilized in the DGS polymer, a consistent increase in fluorescence intensity was observed as compared to the protein not functionalized with PEG. To our knowledge, this report presents the first successful method to embed a PBP biosensor in a polymerized matrix and retain signaling response using an environmentally sensitive probe. The immobilization method presented here should be easily adaptable to all conformation-dependent biosensors.

  1. Drosophila Spidey/Kar Regulates Oenocyte Growth via PI3-Kinase Signaling

    PubMed Central

    Cinnamon, Einat; Sawala, Annick; Tittiger, Claus; Paroush, Ze'ev

    2016-01-01

    Cell growth and proliferation depend upon many different aspects of lipid metabolism. One key signaling pathway that is utilized in many different anabolic contexts involves Phosphatidylinositide 3-kinase (PI3K) and its membrane lipid products, the Phosphatidylinositol (3,4,5)-trisphosphates. It remains unclear, however, which other branches of lipid metabolism interact with the PI3K signaling pathway. Here, we focus on specialized fat metabolizing cells in Drosophila called larval oenocytes. In the presence of dietary nutrients, oenocytes undergo PI3K-dependent cell growth and contain very few lipid droplets. In contrast, during starvation, oenocytes decrease PI3K signaling, shut down cell growth and accumulate abundant lipid droplets. We now show that PI3K in larval oenocytes, but not in fat body cells, functions to suppress lipid droplet accumulation. Several enzymes of fatty acid, triglyceride and hydrocarbon metabolism are required in oenocytes primarily for lipid droplet induction rather than for cell growth. In contrast, a very long chain fatty-acyl-CoA reductase (FarO) and a putative lipid dehydrogenase/reductase (Spidey, also known as Kar) not only promote lipid droplet induction but also inhibit oenocyte growth. In the case of Spidey/Kar, we show that the growth suppression mechanism involves inhibition of the PI3K signaling pathway upstream of Akt activity. Together, the findings in this study show how Spidey/Kar and FarO regulate the balance between the cell growth and lipid storage of larval oenocytes. PMID:27500738

  2. Human milk oligosaccharides promote the growth of staphylococci.

    PubMed

    Hunt, K M; Preuss, J; Nissan, C; Davlin, C A; Williams, J E; Shafii, B; Richardson, A D; McGuire, M K; Bode, L; McGuire, M A

    2012-07-01

    Human milk oligosaccharides (HMO), which constitute a major component of human milk, promote the growth of particular bacterial species in the infant's gastrointestinal tract. We hypothesized that HMO also interact with the bacterial communities present in human milk. To test this hypothesis, two experiments were conducted. First, milk samples were collected from healthy women (n = 16); culture-independent analysis of the bacterial communities was performed, HMO content was analyzed, and the relation between these factors was investigated. A positive correlation was observed between the relative abundance of Staphylococcus and total HMO content (r = 0.66). In a follow-up study, we conducted a series of in vitro growth curve experiments utilizing Staphylococcus aureus or Staphylococcus epidermidis and HMO isolated from human milk. HMO exhibited stimulatory effects on bacterial growth under various nutritional conditions. Analysis of culture supernatants from these experiments revealed that HMO did not measurably disappear from the culture medium, indicating that the growth-enhancing effects were not a result of bacterial metabolism of the HMO. Instead, stimulation of growth caused greater utilization of amino acids in minimal medium. Collectively, the data provide evidence that HMO may promote the growth of Staphylococcus species in the lactating mammary gland.

  3. Fibroblast Growth Factor Signaling in the Developing Neuroendocrine Hypothalamus

    PubMed Central

    Tsai, Pei-San; Brooks, Leah R.; Rochester, Johanna R.; Kavanaugh, Scott I.; Chung, Wilson C. J.

    2011-01-01

    Fibroblast growth factor (FGF) signaling is pivotal to the formation of numerous central regions. Increasing evidence suggests FGF signaling also directs the development of the neuroendocrine hypothalamus, a collection of neuroendocrine neurons originating primarily within the nose and the ventricular zone of the diencephalon. This review outlines evidence for a role of FGF signaling in the prenatal and postnatal development of several hypothalamic neuroendocrine systems. The emphasis is placed on the nasally derived gonadotropin- releasing hormone neurons, which depend on neurotrophic cues from FGF signaling throughout the neurons' lifetime. Although less is known about neuroendocrine neurons derived from the diencephalon, recent studies suggest they also exhibit variable levels of dependence on FGF signaling. Overall, FGF signaling provides a broad spectrum of cues that ranges from genesis, cell survival/death, migration, morphological changes, to hormone synthesis in the neuroendocrine hypothalamus. Abnormal FGF signaling will deleteriously impact multiple hypothalamic neuroendocrine systems, resulting in the disruption of diverse physiological functions. PMID:21129392

  4. Coordinated niche-associated signals promote germline homeostasis in the Drosophila ovary.

    PubMed

    Liu, Zhong; Zhong, Guohua; Chai, Phing Chian; Luo, Lichao; Liu, Sen; Yang, Ying; Baeg, Gyeong-Hun; Cai, Yu

    2015-10-26

    Stem cell niches provide localized signaling molecules to promote stem cell fate and to suppress differentiation. The Drosophila melanogaster ovarian niche is established by several types of stromal cells, including terminal filament cells, cap cells, and escort cells (ECs). Here, we show that, in addition to its well-known function as a niche factor expressed in cap cells, the Drosophila transforming growth factor β molecule Decapentaplegic (Dpp) is expressed at a low level in ECs to maintain a pool of partially differentiated germline cells that may dedifferentiate to replenish germline stem cells upon their depletion under normal and stress conditions. Our study further reveals that the Dpp level in ECs is modulated by Hedgehog (Hh) ligands, which originate from both cap cells and ECs. We also demonstrate that Hh signaling exerts its function by suppressing Janus kinase/signal transducer activity, which promotes Dpp expression in ECs. Collectively, our data suggest a complex interplay of niche-associated signals that controls the development of a stem cell lineage.

  5. Direct regulation of GAS6/AXL signaling by HIF promotes renal metastasis through SRC and MET

    PubMed Central

    Rankin, Erinn B.; Fuh, Katherine C.; Castellini, Laura; Viswanathan, Kartik; Finger, Elizabeth C.; Diep, Anh N.; LaGory, Edward L.; Kariolis, Mihalis S.; Chan, Andy; Lindgren, David; Axelson, Håkan; Miao, Yu R.; Krieg, Adam J.; Giaccia, Amato J.

    2014-01-01

    Dysregulation of the von Hippel–Lindau/hypoxia-inducible transcription factor (HIF) signaling pathway promotes clear cell renal cell carcinoma (ccRCC) progression and metastasis. The protein kinase GAS6/AXL signaling pathway has recently been implicated as an essential mediator of metastasis and receptor tyrosine kinase crosstalk in cancer. Here we establish a molecular link between HIF stabilization and induction of AXL receptor expression in metastatic ccRCC. We found that HIF-1 and HIF-2 directly activate the expression of AXL by binding to the hypoxia-response element in the AXL proximal promoter. Importantly, genetic and therapeutic inactivation of AXL signaling in metastatic ccRCC cells reversed the invasive and metastatic phenotype in vivo. Furthermore, we define a pathway by which GAS6/AXL signaling uses lateral activation of the met proto-oncogene (MET) through SRC proto-oncogene nonreceptor tyrosine kinase to maximize cellular invasion. Clinically, AXL expression in primary tumors of ccRCC patients correlates with aggressive tumor behavior and patient lethality. These findings provide an alternative model for SRC and MET activation by growth arrest-specific 6 in ccRCC and identify AXL as a therapeutic target driving the aggressive phenotype in renal clear cell carcinoma. PMID:25187556

  6. Neurotensin, a novel target of Wnt/β-catenin pathway, promotes growth of neuroendocrine tumor cells.

    PubMed

    Kim, Ji Tae; Liu, Chunming; Zaytseva, Yekaterina Y; Weiss, Heidi L; Townsend, Courtney M; Evers, B Mark

    2015-03-15

    Wnt/β-catenin signaling plays a pivotal role in regulating cell growth and differentiation by activation of the β-catenin/T-cell factor (TCF) complex and subsequent regulation of a set of target genes that have one or more TCF-binding elements (TBEs). Hyperactivation of this pathway has been implicated in numerous malignancies including human neuroendocrine tumors (NETs). Neurotensin (NT), an intestinal hormone, induces proliferation of several gastrointestinal (GI) cancers including cancers of the pancreas and colon. Here, we analyzed the human NT promoter in silico and found at least four consensus TBEs within the proximal promoter region. Using a combination of ChIP and luciferase reporter assays, we identified one TBE (located ∼900 bp proximal from the transcription start site) that was immunoprecipitated efficiently by TCF4-targeting antibody; mutation of this site attenuated the responsiveness to β-catenin. We also confirmed that the promoter activity and the mRNA and protein expression levels of NT were increased by various Wnt pathway activators and decreased by Wnt inhibitors in NET cell lines BON and QGP-1, which express and secrete NT. Similarly, the intracellular content and secretion of NT were induced by Wnt3a in these cells. Finally, inhibition of NT signaling suppressed cell proliferation and anchorage-independent growth and decreased expression levels of growth-related proteins in NET cells. Our results indicate that NT is a direct target of the Wnt/β-catenin pathway and may be a mediator for NET cell growth.

  7. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates

    PubMed Central

    Oteino, Nicholas; Lally, Richard D.; Kiwanuka, Samuel; Lloyd, Andrew; Ryan, David; Germaine, Kieran J.; Dowling, David N.

    2015-01-01

    The use of plant growth promoting bacterial inoculants as live microbial biofertilizers provides a promising alternative to chemical fertilizers and pesticides. Inorganic phosphate solubilization is one of the major mechanisms of plant growth promotion by plant associated bacteria. This involves bacteria releasing organic acids into the soil which solubilize the phosphate complexes converting them into ortho-phosphate which is available for plant up-take and utilization. The study presented here describes the ability of endophytic bacteria to produce gluconic acid (GA), solubilize insoluble phosphate, and stimulate the growth of Pisum sativum L. plants. This study also describes the genetic systems within three of these endophyte strains thought to be responsible for their effective phosphate solubilizing abilities. The results showed that many of the endophytic strains produced GA (14–169 mM) and have moderate to high phosphate solubilization capacities (~400–1300 mg L−1). When inoculated into P. sativum L. plants grown in soil under soluble phosphate limiting conditions, the endophytes that produced medium-high levels of GA displayed beneficial plant growth promotion effects. PMID:26257721

  8. Growth of Third-Harmonic Signal in Optical Glass Fibre

    DTIC Science & Technology

    1990-01-01

    harmonic signal In optical glass fibres , illuminated vith 10kV peak pover pulses from A NdYAG lasers has been observed. Broadband fluores.enc from the third...J’T. Al-0002 GROWTH OF THIFRO-HARMVONIC SIGNAL IN OPTICAL GLASS FIORE Irdexim tems 0,rkl f. N motwvij p~ .G For mo i fibres the Sit signal strtd g0r...Amorphous nature of glass ) but with time, as the fibre is illuminated with inltense laser light at 4 w1O6pm, the S1t signal 3rows. What is believed to

  9. Major vault protein regulates cell growth/survival signaling through oxidative modifications.

    PubMed

    Das, Dividutta; Wang, Yi-Hsuan; Hsieh, Cheng-Ying; Suzuki, Yuichiro J

    2016-01-01

    Major vault protein forms a hollow, barrel-like structure in the cell called the vault, whose functions and regulation are not well understood. The present study reports that major vault protein regulates growth/survival signaling in human airway smooth muscle cells through oxidative modifications. The promotion of protein S-glutathionylation by asthma mediators such as interleukin-22 and platelet-derived growth factor or by knocking down glutaredoxin-1 or thioredoxin activated cell growth signaling. Mass spectrometry identified that major vault protein is glutathionylated. Major vault protein knockdown enhanced cell death and inhibited STAT3 and Akt signaling. We identified a protein partner of major vault protein that is regulated by glutaredoxin-1, namely myosin-9, which was found to serve as a cell death factor. Knocking down myosin-9 or promoting protein S-glutathionylation by knocking down glutaredoxin-1 inhibited the death of airway smooth muscle cells by heating to simulate bronchial thermoplasty, a clinically successful procedure for the treatment of severe asthma. These results establish a novel signaling pathway in which ligand/receptor-mediated oxidation promotes the S-glutathionylation of major vault protein, which in turn binds to myosin-9 to suppress the heating-induced death of airway smooth muscle cells.

  10. Plant growth promoting bacteria from Crocus sativus rhizosphere.

    PubMed

    Ambardar, Sheetal; Vakhlu, Jyoti

    2013-12-01

    Present study deals with the isolation of rhizobacteria and selection of plant growth promoting bacteria from Crocus sativus (Saffron) rhizosphere during its flowering period (October-November). Bacterial load was compared between rhizosphere and bulk soil by counting CFU/gm of roots and soil respectively, and was found to be ~40 times more in rhizosphere. In total 100 bacterial isolates were selected randomly from rhizosphere and bulk soil (50 each) and screened for in-vitro and in vivo plant growth promoting properties. The randomly isolated bacteria were identified by microscopy, biochemical tests and sequence homology of V1-V3 region of 16S rRNA gene. Polyphasic identification categorized Saffron rhizobacteria and bulk soil bacteria into sixteen different bacterial species with Bacillus aryabhattai (WRF5-rhizosphere; WBF3, WBF4A and WBF4B-bulk soil) common to both rhizosphere as well as bulk soil. Pseudomonas sp. in rhizosphere and Bacillus and Brevibacterium sp. in the bulk soil were the predominant genera respectively. The isolated rhizobacteria were screened for plant growth promotion activity like phosphate solubilization, siderophore and indole acetic acid production. 50 % produced siderophore and 33 % were able to solubilize phosphate whereas all the rhizobacterial isolates produced indole acetic acid. The six potential PGPR showing in vitro activities were used in pot trial to check their efficacy in vivo. These bacteria consortia demonstrated in vivo PGP activity and can be used as PGPR in Saffron as biofertilizers.This is the first report on the isolation of rhizobacteria from the Saffron rhizosphere, screening for plant growth promoting bacteria and their effect on the growth of Saffron plant.

  11. Red Ginseng Extract Promotes the Hair Growth in Cultured Human Hair Follicles

    PubMed Central

    Park, Gyeong-Hun; Park, Ki-young; Cho, Hong-il; Lee, Sang-Min; Han, Ji Su; Chang, Sung Eun; Lee, Mi Woo; Choi, Jee Ho; Moon, Kee Chan; Shin, Hyoseung; Kang, Yong Jung; Lee, Dong Hun

    2015-01-01

    Abstract Ginseng has been shown to promote hair growth in several recent studies. However, its effects on human hair follicles and its mechanisms of action have not been sufficiently elucidated. This study aimed to investigate the hair growth-promoting effects of red ginseng extract (RGE) and its ginsenosides. The proliferative activities of cultured human hair follicles treated with RGE and ginsenoside-Rb1 were assessed using Ki-67 immunostaining. Their effects on isolated human dermal papilla cells (hDPCs) were evaluated using cytotoxicity assays, immunoblot analysis of signaling proteins, and the determination of associated growth factors. We examined the ability of RGE and ginsenosides to protect hair matrix keratinocyte proliferation against dihydrotestosterone (DHT)-induced suppression and their effects on the expression of androgen receptor. The in vivo hair growth-promoting effect of RGE was also investigated in C57BL/6 mice. Both RGE and ginsenoside-Rb1 enhanced the proliferation of hair matrix keratinocytes. hDPCs treated with RGE or ginsenoside-Rb1 exhibited substantial cell proliferation and the associated phosphorylation of ERK and AKT. Moreover, RGE, ginsenoside-Rb1, and ginsenoside-Rg3 abrogated the DHT-induced suppression of hair matrix keratinocyte proliferation and the DHT-induced upregulation of the mRNA expression of androgen receptor in hDPCs. Murine experiments revealed that the subcutaneous injection of 3% RGE resulted in more rapid hair growth than the negative control. In conclusion, RGE and its ginsenosides may enhance hDPC proliferation, activate ERK and AKT signaling pathways in hDPCs, upregulate hair matrix keratinocyte proliferation, and inhibit the DHT-induced androgen receptor transcription. These results suggest that red ginseng may promote hair growth in humans. PMID:25396716

  12. Red ginseng extract promotes the hair growth in cultured human hair follicles.

    PubMed

    Park, Gyeong-Hun; Park, Ki-young; Cho, Hong-il; Lee, Sang-Min; Han, Ji Su; Won, Chong Hyun; Chang, Sung Eun; Lee, Mi Woo; Choi, Jee Ho; Moon, Kee Chan; Shin, Hyoseung; Kang, Yong Jung; Lee, Dong Hun

    2015-03-01

    Ginseng has been shown to promote hair growth in several recent studies. However, its effects on human hair follicles and its mechanisms of action have not been sufficiently elucidated. This study aimed to investigate the hair growth-promoting effects of red ginseng extract (RGE) and its ginsenosides. The proliferative activities of cultured human hair follicles treated with RGE and ginsenoside-Rb1 were assessed using Ki-67 immunostaining. Their effects on isolated human dermal papilla cells (hDPCs) were evaluated using cytotoxicity assays, immunoblot analysis of signaling proteins, and the determination of associated growth factors. We examined the ability of RGE and ginsenosides to protect hair matrix keratinocyte proliferation against dihydrotestosterone (DHT)-induced suppression and their effects on the expression of androgen receptor. The in vivo hair growth-promoting effect of RGE was also investigated in C57BL/6 mice. Both RGE and ginsenoside-Rb1 enhanced the proliferation of hair matrix keratinocytes. hDPCs treated with RGE or ginsenoside-Rb1 exhibited substantial cell proliferation and the associated phosphorylation of ERK and AKT. Moreover, RGE, ginsenoside-Rb1, and ginsenoside-Rg3 abrogated the DHT-induced suppression of hair matrix keratinocyte proliferation and the DHT-induced upregulation of the mRNA expression of androgen receptor in hDPCs. Murine experiments revealed that the subcutaneous injection of 3% RGE resulted in more rapid hair growth than the negative control. In conclusion, RGE and its ginsenosides may enhance hDPC proliferation, activate ERK and AKT signaling pathways in hDPCs, upregulate hair matrix keratinocyte proliferation, and inhibit the DHT-induced androgen receptor transcription. These results suggest that red ginseng may promote hair growth in humans.

  13. Singlet oxygen signaling links photosynthesis to translation and plant growth.

    PubMed

    Reinbothe, Christiane; Pollmann, Stephan; Reinbothe, Steffen

    2010-09-01

    Translation is a major target of metabolic and growth control in animals and plants. Changes in the phosphorylation status of ribosomal protein S6 are responsible for rapid adjustments in the growth pattern of higher plants in response to changes in the environment. In this review, we illuminate some common and unique aspects of translational control in animals and plants and discuss recent studies that link photosynthesis to growth via specific signal transduction cascades, one of which relies on singlet oxygen and the plant growth regulator jasmonic acid (JA). It is the aim of this review to discuss the role of the target of rapamycin (TOR) signaling network in plants and what mechanisms could contribute to growth control in response to the changing environment.

  14. [Influence endophytic bacteria to promote plants growth in stress conditions].

    PubMed

    Napora, Anna; Kacprzak, Małgorzata; Nowak, Kamil; Grobelak, Anna

    2015-01-01

    The growth of plants under stress conditions is often assisted by microorganisms colonizing the rhizosphere (the root zone of the highest microbial activity). One of the most important bacterial groups to encourage the growth of plants (PGPB) are endophytes. These microorganisms penetrate living cells of plants and there they lead the microbiological activity as endosymbionts. These microorganisms can effectively promote the growth of plants under stress conditions and stimulate biochemical activities: nitrogen fixation, production of growth hormones (auxins, cytokinins and gibberellins), reduction of the high concentration of ethylene as well as facilitation of the collection plant minerals and water. This paper is an attempt to summarize the current state of knowledge about the biochemical activity of bacterial endophytes.

  15. Siderophores from Neighboring Organisms Promote the Growth of Uncultured Bacteria

    PubMed Central

    D’Onofrio, Anthony; Crawford, Jason M.; Stewart, Eric J.; Witt, Kathrin; Gavrish, Ekaterina; Epstein, Slava; Clardy, Jon; Lewis, Kim

    2010-01-01

    Summary The majority of bacterial species do not grow on synthetic media. Many non-growers require growth factors from other bacteria, but the nature of these compounds is largely unknown. We show here that previously uncultured isolates from marine sediment biofilm grow on a Petri dish in the presence of cultured organisms from the same environment. The growth factors produced by one cultured helper strain were identified as new acyl-desferrioxamine siderophores. A panel of previously uncultured isolates exhibited a range of siderophore promiscuity for growth promotion. This siderophore-based approach has enabled the culturing of organisms only distantly related to previously cultured microbes. The lack of growth in the lab for many strains from this habitat stems from an inability to autonomously produce siderophores, and the resulting chemical dependence on other microorganisms regulates community establishment in the environment. PMID:20338517

  16. Auxins as one of the factors of plant growth improvement by plant growth promoting rhizobacteria.

    PubMed

    Ahmed, Ambreen; Hasnain, Shahida

    2014-01-01

    Plant growth promoting rhizobacteria (PGPR) promote plant growth by various mechanisms such as phytohormone production, enhanced water and nutrient uptake, improved nitrogen availability in the soil, production of ACC-deaminase for ethylene breakdown, phosphate solubilization, siderophore production etc. Microbial auxin production is the major factor not only responsible for strengthening the plant-microbe relationship but it also promotes plant growth and development in a positive manner. Thus, bacterial auxin production potential can be exploited for plant growth improvement that may be effective in reducing the hazardous effects of chemical fertilizers on the ecosystem used to obtain higher yields. The present review gives a better understanding of various factors and mechanisms involved in auxin production by PGPR that may be helpful in proper exploitation of these natural resources in a beneficial way.

  17. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria.

    PubMed

    Dey, R; Pal, K K; Bhatt, D M; Chauhan, S M

    2004-01-01

    Although plant growth-promoting rhizobacteria (PGPR) have been reported to influence plant growth, yield and nutrient uptake by an array of mechanisms, the specific traits by which PGPR promote plant growth, yield and nutrient uptake were limited to the expression of one or more of the traits expressed at a given environment of plant-microbe interaction. We selected nine different isolates of PGPR from a pool of 233 rhizobacterial isolates obtained from the peanut rhizosphere on the basis of ACC-deaminase activity. The nine isolates were selected, initially, on the basis of germinating seed bioassay in which the root length of the seedling was enhanced significantly over the untreated control. All the nine isolates were identified as Pseudomonas spp. Four of these isolates, viz. PGPR1, PGPR2, PGPR4 and PGPR7 (all fluorescent pseudomonads), were the best in producing siderophore and indole acetic acid (IAA). In addition to IAA and siderophore-producing attributes, Pseudomonas fluorescens PGPR1 also possessed the characters like tri-calcium phosphate solubilization, ammonification and inhibited Aspergillus niger and A. flavus in vitro. P. fluorescens PGPR2 differed from PGPR1 in the sense that it did not show ammonification. In addition to the traits exhibited by PGPR1, PGPR4 showed strong in vitro inhibition to Sclerotium rolfsii. The performances of these selected plant growth-promoting rhizobacterial isolates were repeatedly evaluated for 3 years in pot and field trials. Seed inoculation of these three isolates, viz. PGPR1, PGPR2 and PGPR4, resulted in a significantly higher pod yield than the control, in pots, during rainy and post-rainy seasons. The contents of nitrogen and phosphorus in soil, shoot and kernel were also enhanced significantly in treatments inoculated with these rhizobacterial isolates in pots during both the seasons. In the field trials, however, there was wide variation in the performance of the PGPR isolates in enhancing the growth and yield

  18. DSCAM promotes axon fasciculation and growth in the developing optic pathway

    PubMed Central

    Bruce, Freyja M.; Brown, Samantha; Smith, Jonathan N.; Fuerst, Peter G.; Erskine, Lynda

    2017-01-01

    Although many aspects of optic pathway development are beginning to be understood, the mechanisms promoting the growth of retinal ganglion cell (RGC) axons toward visual targets remain largely unknown. Down syndrome cell adhesion molecule (Dscam) is expressed by mouse RGCs shortly after they differentiate at embryonic day 12 and is essential for multiple aspects of postnatal visual system development. Here we show that Dscam is also required during embryonic development for the fasciculation and growth of RGC axons. Dscam is expressed along the developing optic pathway in a pattern consistent with a role in regulating RGC axon outgrowth. In mice carrying spontaneous mutations in Dscam (Dscamdel17; Dscam2J), RGC axons pathfind normally, but growth from the chiasm toward their targets is impaired, resulting in a delay in RGC axons reaching the dorsal thalamus compared with that seen in wild-type littermates. Conversely, Dscam gain of function results in exuberant growth into the dorsal thalamus. The growth of ipsilaterally projecting axons is particularly affected. Axon organization in the optic chiasm and tract and RGC growth cone morphologies are also altered in Dscam mutants. In vitro DSCAM promotes RGC axon growth and fasciculation, and can act independently of cell contact. In vitro and in situ DSCAM is required both in the RGC axons and in their environment for the promotion of axon outgrowth, consistent with a homotypic mode of action. These findings identify DSCAM as a permissive signal that promotes the growth and fasciculation of RGC axons, controlling the timing of when RGC axons reach their targets. PMID:28137836

  19. DSCAM promotes axon fasciculation and growth in the developing optic pathway.

    PubMed

    Bruce, Freyja M; Brown, Samantha; Smith, Jonathan N; Fuerst, Peter G; Erskine, Lynda

    2017-02-14

    Although many aspects of optic pathway development are beginning to be understood, the mechanisms promoting the growth of retinal ganglion cell (RGC) axons toward visual targets remain largely unknown. Down syndrome cell adhesion molecule (Dscam) is expressed by mouse RGCs shortly after they differentiate at embryonic day 12 and is essential for multiple aspects of postnatal visual system development. Here we show that Dscam is also required during embryonic development for the fasciculation and growth of RGC axons. Dscam is expressed along the developing optic pathway in a pattern consistent with a role in regulating RGC axon outgrowth. In mice carrying spontaneous mutations in Dscam (Dscam(del17) ; Dscam(2J)), RGC axons pathfind normally, but growth from the chiasm toward their targets is impaired, resulting in a delay in RGC axons reaching the dorsal thalamus compared with that seen in wild-type littermates. Conversely, Dscam gain of function results in exuberant growth into the dorsal thalamus. The growth of ipsilaterally projecting axons is particularly affected. Axon organization in the optic chiasm and tract and RGC growth cone morphologies are also altered in Dscam mutants. In vitro DSCAM promotes RGC axon growth and fasciculation, and can act independently of cell contact. In vitro and in situ DSCAM is required both in the RGC axons and in their environment for the promotion of axon outgrowth, consistent with a homotypic mode of action. These findings identify DSCAM as a permissive signal that promotes the growth and fasciculation of RGC axons, controlling the timing of when RGC axons reach their targets.

  20. Male germline stem cell division and spermatocyte growth require insulin signaling in Drosophila.

    PubMed

    Ueishi, Satoru; Shimizu, Hanako; H Inoue, Yoshihiro

    2009-01-01

    Spermatogenesis in Drosophila commences with cell division of germline stem cells (GSCs) to produce male germline cells at the tip of the testis. However, molecular mechanisms inducing division of male GSCs have not been reported. Insulin-like peptides are known to play an essential role in stimulation of proliferation and growth of somatic cells, and it has recently been reported that such peptides promote cell division in female Drosophila GSCs. However, their effects on male germline cells have not been characterized. We found that inhibition of insulin production and insulin signaling mutations resulted in decreased numbers of germline cells in Drosophila testes. GSC numbers were maintained in young mutant males, with a gradual decrease in abundance of GSCs with age. Furthermore, in mutants, fewer germline cysts originated from GSCs and a lower frequency of GSC division was seen. Insulin signaling was found to promote cell cycle progression of the male GSCs at the G(2)/M phase. The cell volume of spermatocytes increases up to 25 times before initiation of meiosis in Drosophila. We examined whether insulin signaling extrinsically induces the greatest cell growth in Drosophila diploid cells and found that spermatocyte growth was affected in mutants. The results indicate that in addition to its function in somatic cells, insulin signaling plays an essential role in cell proliferation and growth during male Drosophila gametogenesis and that sperm production is regulated by hormonal control via insulin-like peptides.

  1. Plant growth promotion traits of phosphobacteria isolated from Puna, Argentina.

    PubMed

    Viruel, Emilce; Lucca, María E; Siñeriz, Faustino

    2011-07-01

    The ability of soil microorganisms to solubilize phosphate is an important trait of plant growth-promoting bacteria leading to increased yields and smaller use of fertilizers. This study presents the isolation and characterization of phosphobacteria from Puna, northwestern Argentina and the ability to produce phosphate solubilization, alkaline phosphatase, siderophores, and indole acetic acid. The P-solubilizing activity was coincidental with a decrease in pH values of the tricalcium phosphate medium for all strains after 72 h of incubation. All the isolates showed the capacity to produce siderophores and indoles. Identification by 16S rDNA sequencing and phylogenetic analysis revealed that these strains belong to the genera Pantoea, Serratia, Enterobacter, and Pseudomonas. These isolates appear attractive for exploring their plant growth-promoting activity and potential field application.

  2. Notch signaling promotes the corneal epithelium wound healing.

    PubMed

    Lu, Huayi; Lu, Qingxian; Zheng, Yajuan; Li, Qiutang

    2012-01-01

    The Notch signaling pathway plays crucial roles in regulation of cell proliferation, differentiation and cell fate decision in multiple tissues and cell types. This study was designed to test the effects of enhanced Notch activity on corneal epithelium homeostasis and wound healing using the transgenic mice that overexpressed an activated Notch1 (NICD) in cornea epithelium. The studies were performed on R26(fN1-ICD) transgenic mice that carry a NICD cDNA (cDNA) whose expression is prevented by a "Lox-STOP-Lox" cassette. When this transgenic mouse is bred to a mouse strain carrying a Cre recombinase expression cassette driven by a tissue-specific keratin 14 (K14) promoter, the floxed "STOP" cassette is excised and NICD is expressed in the cornea epithelium. The expression level of NICD and its downstream target genes, hairy and enhancer of split 1 (Hes1) and hairy/enhancer-of-split related with YRPW motif 1 (Hey1), in the transgenic corneal epithelium was examined by quantitative PCR (qPCR). The phenotypes and morphology of the transgenic corneal epithelium were compared with that of wild type (WT) controls. The proliferation rate of the epithelial cells was assessed by 5-bromo-2'-deoxyuridine (BrdU) incorporation and the differentiation statues were examined by K14, tumor protein p63 (p63), K12, and zona occludens 1 (ZO-1) immunoreactivity at either normal developmental condition or after corneal epithelial debridement. The corneal epithelial response to wound healing was studied by fluorescent staining and Richardson's staining macroscopically and by H&E staining at microscope level at 0, 6, 12, 18, and 24 h post injury. Although overexpression of NICD in cornea epithelium led to upregulation of its downstream targets, i.e., Hes1 and Hey1, this did not alter corneal epithelial cell proliferation and differentiation. However, wound healing induced Notch activity and overexpression of NICD promoted corneal epithelial wound healing, which was in agreement with more

  3. Metabolic pathways promoting cancer cell survival and growth

    PubMed Central

    Boroughs, Lindsey K.; DeBerardinis, Ralph J.

    2016-01-01

    Activation of oncogenes and loss of tumour suppressors promote metabolic reprogramming in cancer, resulting in enhanced nutrient uptake to supply energetic and biosynthetic pathways. However, nutrient limitations within solid tumours may require that malignant cells exhibit metabolic flexibility to sustain growth and survival. Here, we highlight these adaptive mechanisms and also discuss emerging approaches to probe tumour metabolism in vivo and their potential to expand the metabolic repertoire of malignant cells even further. PMID:25774832

  4. Metabolic pathways promoting cancer cell survival and growth.

    PubMed

    Boroughs, Lindsey K; DeBerardinis, Ralph J

    2015-04-01

    Activation of oncogenes and loss of tumour suppressors promote metabolic reprogramming in cancer, resulting in enhanced nutrient uptake to supply energetic and biosynthetic pathways. However, nutrient limitations within solid tumours may require that malignant cells exhibit metabolic flexibility to sustain growth and survival. Here, we highlight these adaptive mechanisms and also discuss emerging approaches to probe tumour metabolism in vivo and their potential to expand the metabolic repertoire of malignant cells even further.

  5. Material and method for promoting the growth of anaerobic bacteria

    DOEpatents

    Adler, H.I.

    1984-10-09

    A material and method is disclosed for promoting the growth of anaerobic bacteria which includes a nutrient media containing a hydrogen donor and sterile membrane fragments of bacteria having an electron transfer system which reduces oxygen to water. Dissolved oxygen in the medium is removed by adding the sterile membrane fragments to the nutrient medium and holding the medium at a temperature of about 10 to about 60 C until the dissolved oxygen is removed. No Drawings

  6. Material and method for promoting the growth of anaerobic bacteria

    DOEpatents

    Adler, Howard I.

    1984-01-01

    A material and method for promoting the growth of anaerobic bacteria which includes a nutrient media containing a hydrogen donor and sterile membrane fragments of bacteria having an electron transfer system which reduces oxygen to water. Dissolved oxygen in the medium is removed by adding the sterile membrane fragments to the nutrient medium and holding the medium at a temperature of about 10.degree. to about 60.degree. C. until the dissolved oxygen is removed.

  7. Axon Growth and Guidance: Receptor Regulation and Signal Transduction

    PubMed Central

    O’Donnell, Michael; Chance, Rebecca K.; Bashaw, Greg J.

    2016-01-01

    The development of precise connectivity patterns during the establishment of the nervous system depends on the regulated action of diverse, conserved families of guidance cues and their neuronal receptors. Determining how these signaling pathways function to regulate axon growth and guidance is fundamentally important to understanding wiring specificity in the nervous system and will undoubtedly shed light on many neural developmental disorders. Considerable progress has been made in defining the mechanisms that regulate the correct spatial and temporal distribution of guidance receptors and how these receptors in turn signal to the growth cone cytoskeleton to control steering decisions. This review focuses on recent advances in our understanding of the mechanisms mediating growth cone guidance with a particular emphasis on the control of guidance receptor regulation and signaling. PMID:19400716

  8. Axon growth and guidance: receptor regulation and signal transduction.

    PubMed

    O'Donnell, Michael; Chance, Rebecca K; Bashaw, Greg J

    2009-01-01

    The development of precise connectivity patterns during the establishment of the nervous system depends on the regulated action of diverse, conserved families of guidance cues and their neuronal receptors. Determining how these signaling pathways function to regulate axon growth and guidance is fundamentally important to understanding wiring specificity in the nervous system and will undoubtedly shed light on many neural developmental disorders. Considerable progress has been made in defining the mechanisms that regulate the correct spatial and temporal distribution of guidance receptors and how these receptors in turn signal to the growth cone cytoskeleton to control steering decisions. This review focuses on recent advances in our understanding of the mechanisms mediating growth cone guidance with a particular emphasis on the control of guidance receptor regulation and signaling.

  9. PDGFRβ signalling regulates local inflammation and synergizes with hypercholesterolaemia to promote atherosclerosis.

    PubMed

    He, Chaoyong; Medley, Shayna C; Hu, Taishan; Hinsdale, Myron E; Lupu, Florea; Virmani, Renu; Olson, Lorin E

    2015-07-17

    Platelet-derived growth factor (PDGF) is a mitogen and chemoattractant for vascular smooth muscle cells (VSMCs). However, the direct effects of PDGF receptor β (PDGFRβ) activation on VSMCs have not been studied in the context of atherosclerosis. Here we present a new mouse model of atherosclerosis with an activating mutation in PDGFRβ. Increased PDGFRβ signalling induces chemokine secretion and leads to leukocyte accumulation in the adventitia and media of the aorta. Furthermore, PDGFRβ(D849V) amplifies and accelerates atherosclerosis in hypercholesterolemic ApoE(-/-) or Ldlr(-/-) mice. Intriguingly, increased PDGFRβ signalling promotes advanced plaque formation at novel sites in the thoracic aorta and coronary arteries. However, deletion of the PDGFRβ-activated transcription factor STAT1 in VSMCs alleviates inflammation of the arterial wall and reduces plaque burden. These results demonstrate that PDGFRβ pathway activation has a profound effect on vascular disease and support the conclusion that inflammation in the outer arterial layers is a driving process for atherosclerosis.

  10. Diurnal dependence of growth responses to shade in Arabidopsis: role of hormone, clock, and light signaling.

    PubMed

    Sellaro, Romina; Pacín, Manuel; Casal, Jorge J

    2012-05-01

    We investigated the diurnal dependence of the hypocotyl-growth responses to shade under sunlight-night cycles in Arabidopsis thaliana. Afternoon shade events promoted hypocotyl growth, while morning shade was ineffective. The lhy-D, elf3, lux, pif4 pif5, toc1, and quadruple della mutants retained the response to afternoon shade and the lack of response to morning shade while the lhy cca1 mutant responded to both morning and afternoon shade. The phyB mutant, plants overexpressing the multidrug resistance-like membrane protein ABCB19, and the iaa17/axr3 loss-of-function mutant failed to respond to shade. Transient exposure of sunlight-grown seedlings to synthetic auxin in the afternoon caused a stronger promotion of hypocotyl growth than morning treatments. The promotion of hypocotyl growth by afternoon shade or afternoon auxin required light perceived by phytochrome A or cryptochromes during the previous hours of the photoperiod. Although the ELF4-ELF3-LUX complex, PIF4, PIF5, and DELLA are key players in the generation of diurnal hypocotyl-growth patterns, they exert a minor role in the control of the diurnal pattern of growth responses to shade. We conclude that the strong diurnal dependency of hypocotyl-growth responses to shade relates to the balance between the antagonistic actions of LHY-CCA1 and a light-derived signal.

  11. Conjugated bile acids promote cholangiocarcinoma cell invasive growth through activation of sphingosine 1-phosphate receptor 2

    PubMed Central

    Liu, Runping; Zhao, Renping; Zhou, Xiqiao; Liang, Xiuyin; Campbell, Deanna JW; Zhang, Xiaoxuan; Zhang, Luyong; Shi, Ruihua; Wang, Guangji; Pandak, William M; Sirica, Alphonse E; Hylemon, Phillip B; Zhou, Huiping

    2014-01-01

    Cholangiocarcinoma (CCA) is an often fatal primary malignancy of the intra- and extrahepatic biliary tract that is commonly associated with chronic cholestasis and significantly elevated levels of primary and conjugated bile acids (CBAs), which are correlated with bile duct obstruction (BDO). BDO has also recently been shown to promote CCA progression. However, whereas there is increasing evidence linking chronic cholestasis and abnormal bile acid profiles to CCA development and progression, the specific mechanisms by which bile acids may be acting to promote cholangiocarcinogenesis and invasive biliary tumor growth have not been fully established. Recent studies have shown that CBAs, but not free bile acids, stimulate CCA cell growth, and that an imbalance in the ratio of free to CBAs may play an important role in the tumorigenesis of CCA. Also, CBAs are able to activate extracellular signal-regulated kinase (ERK)1/2- and phosphatidylinositol-3-kinase/protein kinase B (AKT)-signaling pathways through sphingosine 1-phosphate receptor 2 (S1PR2) in rodent hepatocytes. In the current study, we demonstrate S1PR2 to be highly expressed in rat and human CCA cells, as well as in human CCA tissues. We further show that CBAs activate the ERK1/2- and AKT-signaling pathways and significantly stimulate CCA cell growth and invasion in vitro. Taurocholate (TCA)-mediated CCA cell proliferation, migration, and invasion were significantly inhibited by JTE-013, a chemical antagonist of S1PR2, or by lentiviral short hairpin RNA silencing of S1PR2. In a novel organotypic rat CCA coculture model, TCA was further found to significantly increase the growth of CCA cell spheroidal/“duct-like” structures, which was blocked by treatment with JTE-013. Conclusion: Our collective data support the hypothesis that CBAs promote CCA cell-invasive growth through S1PR2. PMID:24700501

  12. Effect-based proteomic detection of growth promoter abuse.

    PubMed

    McGrath, Terence F; van Meeuwen, Jeroen A; Massart, Anne-Cécile; de Pauw, Edwin; Delahaut, Philippe; Buijs, Jos; Bergwerff, Aldert A; Elliott, Christopher T; Mooney, Mark H

    2013-02-01

    Unregulated growth promoter use in food-producing animals is an issue of concern both from food safety and animal welfare perspectives. However, the monitoring of such practices is analytically challenging due to the concerted actions of users to evade detection. Techniques based on the monitoring of biological responses to exogenous administrations have been proposed as more sensitive methods to identify treated animals. This study has, for the first time, profiled plasma proteome responses in bovine animals to treatment with nortestosterone decanoate and 17β-oestradiol benzoate, followed by dexamethasone administration. Two-dimensional fluorescence differential in-gel electrophoresis analysis revealed a series of hepatic and acute-phase proteins within plasma whose levels were up- or down-regulated within phases of the treatment regime. Surface plasmon resonance (SPR) immuno-assays were developed to quantify responses of identified protein markers during the experimental treatment study with a view to developing methods which can be used as screening tools for growth promoter abuse detection. SPR analysis demonstrated the potential for plasma proteins to be used as indicative measures of growth promoter administrations and concludes that the sensitivity and robustness of any detection approach based on plasma proteome analysis would benefit from examination of a range of proteins representative of diverse biological processes rather being reliant on specific individual markers.

  13. A comprehensive pathway map of epidermal growth factor receptor signaling

    PubMed Central

    Oda, Kanae; Matsuoka, Yukiko; Funahashi, Akira; Kitano, Hiroaki

    2005-01-01

    The epidermal growth factor receptor (EGFR) signaling pathway is one of the most important pathways that regulate growth, survival, proliferation, and differentiation in mammalian cells. Reflecting this importance, it is one of the best-investigated signaling systems, both experimentally and computationally, and several computational models have been developed for dynamic analysis. A map of molecular interactions of the EGFR signaling system is a valuable resource for research in this area. In this paper, we present a comprehensive pathway map of EGFR signaling and other related pathways. The map reveals that the overall architecture of the pathway is a bow-tie (or hourglass) structure with several feedback loops. The map is created using CellDesigner software that enables us to graphically represent interactions using a well-defined and consistent graphical notation, and to store it in Systems Biology Markup Language (SBML). PMID:16729045

  14. A Naturally Associated Rhizobacterium of Arabidopsis thaliana Induces a Starvation-Like Transcriptional Response while Promoting Growth

    PubMed Central

    Thormählen, Ina; Bernholz, Carolin; Kunz, Sabine; Brouwer, Stephan; Schwochow, Melanie; Köhl, Karin; van Dongen, Joost T.

    2011-01-01

    Plant growth promotion by rhizobacteria is a known phenomenon but the underlying mechanisms are poorly understood. We searched for plant growth-promoting rhizobacteria that are naturally associated with Arabidopsis thaliana to investigate the molecular mechanisms that are involved in plant growth-promotion. We isolated a Pseudomonas bacterium (Pseudomonas sp. G62) from roots of field-grown Arabidopsis plants that has not been described previously and analyzed its effect on plant growth, gene expression and the level of sugars and amino acids in the host plant. Inoculation with Pseudomonas sp. G62 promoted plant growth under various growth conditions. Microarray analysis revealed rapid changes in transcript levels of genes annotated to energy-, sugar- and cell wall metabolism in plants 6 h after root inoculation with P. sp. G62. The expression of several of these genes remained stable over weeks, but appeared differentially regulated in roots and shoots. The global gene expression profile observed after inoculation with P. sp. G62 showed a striking resemblance with previously described carbohydrate starvation experiments, although plants were not depleted from soluble sugars, and even showed a slight increase of the sucrose level in roots 5 weeks after inoculation. We suggest that the starvation-like transcriptional phenotype - while steady state sucrose levels are not reduced - is induced by a yet unknown signal from the bacterium that simulates sugar starvation. We discuss the potential effects of the sugar starvation signal on plant growth promotion. PMID:22216267

  15. Harmine promotes osteoblast differentiation through bone morphogenetic protein signaling

    SciTech Connect

    Yonezawa, Takayuki; Lee, Ji-Won; Hibino, Ayaka; Asai, Midori; Hojo, Hironori; Cha, Byung-Yoon; Teruya, Toshiaki; Nagai, Kazuo; Chung, Ung-Il; Yagasaki, Kazumi; and others

    2011-06-03

    Highlights: {yields} Harmine promotes the activity and mRNA expression of ALP. {yields} Harmine enhances the expressions of osteocalcin mRNA and protein. {yields} Harmine induces osteoblastic mineralization. {yields} Harmine upregulates the mRNA expressions of BMPs, Runx2 and Osterix. {yields} BMP signaling pathways are involved in the actions of harmine. -- Abstract: Bone mass is regulated by osteoblast-mediated bone formation and osteoclast-mediated bone resorption. We previously reported that harmine, a {beta}-carboline alkaloid, inhibits osteoclast differentiation and bone resorption in vitro and in vivo. In this study, we investigated the effects of harmine on osteoblast proliferation, differentiation and mineralization. Harmine promoted alkaline phosphatase (ALP) activity in MC3T3-E1 cells without affecting their proliferation. Harmine also increased the mRNA expressions of the osteoblast marker genes ALP and Osteocalcin. Furthermore, the mineralization of MC3T3-E1 cells was enhanced by treatment with harmine. Harmine also induced osteoblast differentiation in primary calvarial osteoblasts and mesenchymal stem cell line C3H10T1/2 cells. Structure-activity relationship studies using harmine-related {beta}-carboline alkaloids revealed that the C3-C4 double bond and 7-hydroxy or 7-methoxy group of harmine were important for its osteogenic activity. The bone morphogenetic protein (BMP) antagonist noggin and its receptor kinase inhibitors dorsomorphin and LDN-193189 attenuated harmine-promoted ALP activity. In addition, harmine increased the mRNA expressions of Bmp-2, Bmp-4, Bmp-6, Bmp-7 and its target gene Id1. Harmine also enhanced the mRNA expressions of Runx2 and Osterix, which are key transcription factors in osteoblast differentiation. Furthermore, BMP-responsive and Runx2-responsive reporters were activated by harmine treatment. Taken together, these results indicate that harmine enhances osteoblast differentiation probably by inducing the expressions of

  16. Epithelial NF-κB signaling promotes EGFR-driven lung carcinogenesis via macrophage recruitment

    PubMed Central

    Saxon, Jamie A.; Sherrill, Taylor P.; Polosukhin, Vasiliy V.; Sai, Jiqing; Zaynagetdinov, Rinat; McLoed, Allyson G.; Gulleman, Peter M.; Barham, Whitney; Cheng, Dong-Sheng; Hunt, Raphael P.; Gleaves, Linda A.; Richmond, Ann; Young, Lisa R.; Yull, Fiona E.; Blackwell, Timothy S.

    2016-01-01

    ABSTRACT Several studies have demonstrated that NF-κB activation is common in lung cancer; however, the mechanistic links between NF-κB signaling and tumorigenesis remain to be fully elucidated. We investigated the function of NF-κB signaling in epidermal growth factor receptor (EGFR)-mutant lung tumors using a transgenic mouse model with doxycycline (dox)-inducible expression of oncogenic EGFR in the lung epithelium with or without a dominant inhibitor of NF-κB signaling. NF-κB inhibition resulted in a significant reduction in tumor burden in both EGFR tyrosine kinase inhibitor (TKI)-sensitive and resistant tumors. However, NF-κB inhibition did not alter epithelial cell survival in vitro or in vivo, and no changes were detected in activation of EGFR downstream signaling pathways. Instead, we observed an influx of inflammatory cells (macrophages and neutrophils) in the lungs of mice with oncogenic EGFR expression that was blocked in the setting of NF-κB inhibition. To investigate whether inflammatory cells play a role in promoting EGFR-mutant lung tumors, we depleted macrophages and neutrophils during tumorigenesis and found that neutrophil depletion had no effect on tumor formation, but macrophage depletion caused a significant reduction in tumor burden. Together, these data suggest that epithelial NF-κB signaling supports carcinogenesis in a non-cell autonomous manner in EGFR-mutant tumors through recruitment of pro-tumorigenic macrophages. PMID:27471643

  17. Fibroblast growth factor signaling during early vertebrate development.

    PubMed

    Böttcher, Ralph T; Niehrs, Christof

    2005-02-01

    Fibroblast growth factors (FGFs) have been implicated in diverse cellular processes including apoptosis, cell survival, chemotaxis, cell adhesion, migration, differentiation, and proliferation. This review presents our current understanding on the roles of FGF signaling, the pathways employed, and its regulation. We focus on FGF signaling during early embryonic processes in vertebrates, such as induction and patterning of the three germ layers as well as its function in the control of morphogenetic movements.

  18. Tuning plant signaling and growth to survive salt.

    PubMed

    Julkowska, Magdalena M; Testerink, Christa

    2015-09-01

    Salinity is one of the major abiotic factors threatening food security worldwide. Recently, our understanding of early processes underlying salinity tolerance has expanded. In this review, early signaling events, such as phospholipid signaling, calcium ion (Ca(2+)) responses, and reactive oxygen species (ROS) production, together with salt stress-induced abscisic acid (ABA) accumulation, are brought into the context of long-term salt stress-specific responses and alteration of plant growth. Salt-induced quiescent and recovery growth phases rely on modification of cell cycle activity, cell expansion, and cell wall extensibility. The period of initial growth arrest varies among different organs, leading to altered plant morphology. Studying stress-induced changes in growth dynamics can be used for screening to discover novel genes contributing to salt stress tolerance in model species and crops.

  19. Fusarium Oxysporum Volatiles Enhance Plant Growth Via Affecting Auxin Transport and Signaling

    PubMed Central

    Bitas, Vasileios; McCartney, Nathaniel; Li, Ningxiao; Demers, Jill; Kim, Jung-Eun; Kim, Hye-Seon; Brown, Kathleen M.; Kang, Seogchan

    2015-01-01

    Volatile organic compounds (VOCs) have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption. PMID:26617587

  20. Fusarium Oxysporum Volatiles Enhance Plant Growth Via Affecting Auxin Transport and Signaling.

    PubMed

    Bitas, Vasileios; McCartney, Nathaniel; Li, Ningxiao; Demers, Jill; Kim, Jung-Eun; Kim, Hye-Seon; Brown, Kathleen M; Kang, Seogchan

    2015-01-01

    Volatile organic compounds (VOCs) have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption.

  1. Soil bacteria as sources of virulence signal providers promoting plant infection by Phytophthora pathogens

    PubMed Central

    Kong, Ping; Hong, Chuanxue

    2016-01-01

    Phytophthora species are known as “plant destroyers” capable of initiating single zoospore infection in the presence of a quorum of chemical signals from the same or closely related species of oomycetes. Since the natural oomycete population is too low to reach a quorum necessary to initiate a disease epidemic, creation of the quorum is reliant on alternate sources. Here, we show that a soil bacterial isolate, Bacillus megaterium Sb5, promotes plant infection by Phytophthora species. In the presence of Sb5 exudates, colonization of rhododendron leaf discs by 12 Phytophthora species/isolates was significantly enhanced, single zoospores of P. nicotianae infected annual vinca and P. sojae race 25 successfully attacked a non-host plant, Nicotiana benthamiana as well as resistant soybean cultivars with RPS1a or RPS3a. Sb5 exudates, most notably the fractions larger than 3 kDa, promoted plant infection by improving zoospore swimming, germination and plant attachment. Sb5 exudates also stimulated infection hypha growth and upregulated effector gene expression. These results suggest that environmental bacteria are important sources of virulence signal providers that promote plant infection by Phytophthora species, advancing our understanding of biotic factors in the environmental component of the Phytophthora disease triangle and of communal infection of plant pathogens. PMID:27616267

  2. Bile signalling promotes chronic respiratory infections and antibiotic tolerance

    PubMed Central

    Reen, F. Jerry; Flynn, Stephanie; Woods, David F.; Dunphy, Niall; Chróinín, Muireann Ní; Mullane, David; Stick, Stephen; Adams, Claire; O’Gara, Fergal

    2016-01-01

    Despite aggressive antimicrobial therapy, many respiratory pathogens persist in the lung, underpinning the chronic inflammation and eventual lung decline that are characteristic of respiratory disease. Recently, bile acid aspiration has emerged as a major comorbidity associated with a range of lung diseases, shaping the lung microbiome and promoting colonisation by Pseudomonas aeruginosa in Cystic Fibrosis (CF) patients. In order to uncover the molecular mechanism through which bile modulates the respiratory microbiome, a combination of global transcriptomic and phenotypic analyses of the P. aeruginosa response to bile was undertaken. Bile responsive pathways responsible for virulence, adaptive metabolism, and redox control were identified, with macrolide and polymyxin antibiotic tolerance increased significantly in the presence of bile. Bile acids, and chenodeoxycholic acid (CDCA) in particular, elicited chronic biofilm behaviour in P. aeruginosa, while induction of the pro-inflammatory cytokine Interleukin-6 (IL-6) in lung epithelial cells by CDCA was Farnesoid X Receptor (FXR) dependent. Microbiome analysis of paediatric CF sputum samples demonstrated increased colonisation by P. aeruginosa and other Proteobacterial pathogens in bile aspirating compared to non-aspirating patients. Together, these data suggest that bile acid signalling is a leading trigger for the development of chronic phenotypes underlying the pathophysiology of chronic respiratory disease. PMID:27432520

  3. Fibroblast growth factor (FGF) signaling in development and skeletal diseases.

    PubMed

    Teven, Chad M; Farina, Evan M; Rivas, Jane; Reid, Russell R

    2014-12-01

    Fibroblast growth factors (FGF) and their receptors serve many functions in both the developing and adult organism. Humans contain 18 FGF ligands and four FGF receptors (FGFR). FGF ligands are polypeptide growth factors that regulate several developmental processes including cellular proliferation, differentiation, and migration, morphogenesis, and patterning. FGF-FGFR signaling is also critical to the developing axial and craniofacial skeleton. In particular, the signaling cascade has been implicated in intramembranous ossification of cranial bones as well as cranial suture homeostasis. In the adult, FGFs and FGFRs are crucial for tissue repair. FGF signaling generally follows one of three transduction pathways: RAS/MAP kinase, PI3/AKT, or PLCγ. Each pathway likely regulates specific cellular behaviors. Inappropriate expression of FGF and improper activation of FGFRs are associated with various pathologic conditions, unregulated cell growth, and tumorigenesis. Additionally, aberrant signaling has been implicated in many skeletal abnormalities including achondroplasia and craniosynostosis. The biology and mechanisms of the FGF family have been the subject of significant research over the past 30 years. Recently, work has focused on the therapeutic targeting and potential of FGF ligands and their associated receptors. The majority of FGF-related therapy is aimed at age-related disorders. Increased understanding of FGF signaling and biology may reveal additional therapeutic roles, both in utero and postnatally. This review discusses the role of FGF signaling in general physiologic and pathologic embryogenesis and further explores it within the context of skeletal development.

  4. Fibroblast growth factor (FGF) signaling in development and skeletal diseases

    PubMed Central

    Teven, Chad M.; Farina, Evan M.; Rivas, Jane; Reid, Russell R.

    2014-01-01

    Fibroblast growth factors (FGF) and their receptors serve many functions in both the developing and adult organism. Humans contain 18 FGF ligands and four FGF receptors (FGFR). FGF ligands are polypeptide growth factors that regulate several developmental processes including cellular proliferation, differentiation, and migration, morphogenesis, and patterning. FGF-FGFR signaling is also critical to the developing axial and craniofacial skeleton. In particular, the signaling cascade has been implicated in intramembranous ossification of cranial bones as well as cranial suture homeostasis. In the adult, FGFs and FGFRs are crucial for tissue repair. FGF signaling generally follows one of three transduction pathways: RAS/MAP kinase, PI3/AKT, or PLCγ. Each pathway likely regulates specific cellular behaviors. Inappropriate expression of FGF and improper activation of FGFRs are associated with various pathologic conditions, unregulated cell growth, and tumorigenesis. Additionally, aberrant signaling has been implicated in many skeletal abnormalities including achondroplasia and craniosynostosis. The biology and mechanisms of the FGF family have been the subject of significant research over the past 30 years. Recently, work has focused on the therapeutic targeting and potential of FGF ligands and their associated receptors. The majority of FGF-related therapy is aimed at age-related disorders. Increased understanding of FGF signaling and biology may reveal additional therapeutic roles, both in utero and postnatally. This review discusses the role of FGF signaling in general physiologic and pathologic embryogenesis and further explores it within the context of skeletal development. PMID:25679016

  5. Cytokinin production by plant growth promoting rhizobacteria and selected mutants.

    PubMed

    García de Salamone, I E; Hynes, R K; Nelson, L M

    2001-05-01

    One of the proposed mechanisms by which rhizobacteria enhance plant growth is through the production of plant growth regulators. Five plant growth promoting rhizobacterial (PGPR) strains produced the cytokinin dihydrozeatin riboside (DHZR) in pure culture. Cytokinin production by Pseudomonas fluorescens G20-18, a rifampicin-resistant mutant (RIF), and two TnphoA-derived mutants (CNT1, CNT2), with reduced capacity to synthesize cytokinins, was further characterized in pure culture using immunoassay and thin layer chromatography. G20-18 produced higher amounts of three cytokinins, isopentenyl adenosine (IPA), trans-zeatin ribose (ZR), and DHZR than the three mutants during stationary phase. IPA was the major metabolite produced, but the proportion of ZR and DHZR accumulated by CNT1 and CNT2 increased with time. No differences were observed between strain G20-18 and the mutants in the amounts of indole acetic acid synthesized, nor were gibberellins detected in supernatants of any of the strains. Addition of 10(-5) M adenine increased cytokinin production in 96- and 168-h cultures of strain G20-18 by approximately 67%. G20-18 and the mutants CNT1 and CNT2 may be useful for determination of the role of cytokinin production in plant growth promotion by PGPR.

  6. Promotion of hair growth by newly synthesized ceramide mimetic compound.

    PubMed

    Park, Bu-Mahn; Bak, Soon-Sun; Shin, Kyung-Oh; Kim, Minhee; Kim, Daehwan; Jung, Sang-Hun; Jeong, Sekyoo; Sung, Young Kwan; Kim, Hyun Jung

    2017-09-09

    Based on the crucial roles of ceramides in skin barrier function, use of ceramides or their structural mimetic compounds, pseudoceramides, as cosmetic ingredients are getting more popular. While currently used pseudoceramides are intended to substitute the structural roles of ceramides in stratum corneum, development of bioactive pseudoceramides has been repeatedly reported. In this study, based on the potential involvement of sphingolipids in hair cycle regulation, we investigated the effects of newly synthesized pseudoceramide, bis-oleamido isopropyl alcohol (BOI), on hair growth using cultured human hair follicles and animal models. BOI treatment promoted hair growth in cultured human hair follicles ex vivo and induced earlier conversion of telogen into anagen. Although we did not find a significant enhancement of growth factor expression and follicular cell proliferation, BOI treatment resulted in an increased sphinganine and sphingosine contents as well as increased ceramides contents in cultured dermal papilla (DP) cells. Taken together, our data strongly suggest that biologically active pseudoceramide promotes hair growth by stimulating do novo synthesis of sphingolipids in DP cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. 7-Phloroeckol promotes hair growth on human follicles in vitro.

    PubMed

    Bak, Soon-Sun; Sung, Young Kwan; Kim, Se-Kwon

    2014-08-01

    7-Phloroeckol, phloroglucinol derivative isolated from marine brown algae, has anti-oxidative, anti-inflammatory responses and MMP inhibitory activities. In this study, we evaluated the hair growth-promoting effects of 7-phloroeckol in human hair follicles. To investigate cell viability of human dermal papilla cells (DPCs) and outer root sheath (ORS) cells in the presence or absence of 7-phloroeckol treatment, MTT assay was employed. Moreover, gene expression and protein concentration of insulin-like growth factor (IGF)-1 was measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. 7-Phloroeckol induced an increase in proliferation of DPCs and ORS cells. In addition, hair shaft growth was measured using the hair-follicle organ culture system. 7-Phloroeckol resulted in elongation of the hair shaft in cultured human hair follicles. 7-Phloroeckol induced an IGF-1 mRNA expression and protein concentration in DPCs and conditioned media, respectively. These results suggest that 7-phloroeckol promotes hair growth through stimulation of DPCs and ORS cells.

  8. Evaluation of hair growth promoting activity of Phyllanthus niruri

    PubMed Central

    Patel, Satish; Sharma, Vikas; S. Chauhan, Nagendra; Thakur, Mayank; Dixit, Vinod Kumar

    2015-01-01

    Objective: This study was designed to investigate the potential Phyllanthus niruri (P. niruri ) extracts in promotion of hair growth. Materials and Methods: Here, we studied the hair growth promoting activity of petroleum ether extract of P. niruri following its topical administration. Alopecia was induced in albino rats by subcutaneous administration of testosterone for 21 days. Evaluation of hair loss inhibition was done by concurrent administration of extract and monitoring parameters like follicular density, anagen/telogen (A/T) ratio and histological observation of animal skin sections. Finasteride solution was applied topically as standard. In vitro experiments were also performed to study the effect of extract on the activity of 5α-reductase enzyme Results: Groups treated with petroleum ether extract of plant showed hair re-growth as reflected by follicular density, A/T ratio and skin sections. Histopathology and morphologic observations of hair re-growth at shaved sites showed active follicular proliferation. In vitro experiments results showed inhibitory activity of petroleum ether extract on type-2 5α-reductase enzyme and an increase in the amount of testosterone with increasing concentrations. Conclusion: It could be concluded that petroleum ether extracts of P. niruri might be useful in the treatment of testosterone-induced alopecia in the experimental animal by inhibiting 5α-reductase enzyme. PMID:26693408

  9. Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria.

    PubMed

    Hamedi, Javad; Mohammadipanah, Fatemeh

    2015-02-01

    Plant growth promoting (PGP) bacteria are involved in various interactions known to affect plant fitness and soil quality, thereby increasing the productivity of agriculture and stability of soil. Although the potential of actinobacteria in antibiotic production is well-investigated, their capacity to enhance plant growth is not fully surveyed. Due to the following justifications, PGP actinobacteria (PGPA) can be considered as a more promising taxonomical group of PGP bacteria: (1) high numbers of actinobacteria per gram of soil and their filamentous nature, (2) genome dedicated to the secondary metabolite production (~5 to 10 %) is distinctively more than that of other bacteria and (3) number of plant growth promoter genera reported from actinobacteria is 1.3 times higher than that of other bacteria. Mechanisms by which PGPA contribute to the plant growth by association are: (a) enhancing nutrients availability, (b) regulation of plant metabolism, (c) decreasing environmental stress, (d) control of phytopathogens and (e) improvement of soil texture. Taxonomical and chemical diversity of PGPA and their biotechnological application along with their associated challenges are summarized in this paper.

  10. Histone Acetylation Inhibitors Promote Axon Growth in Adult DRG neurons

    PubMed Central

    Lin, Shen; Nazif, Kutaiba; Smith, Alexander; Baas, Peter W; Smith, George M

    2015-01-01

    Intrinsic mechanisms that guide damaged axons to regenerate following spinal cord injury remain poorly understood. Manipulation of posttranslational modifications of key proteins in mature neurons could re-invigorate growth machinery after injury. One such modification is acetylation, a reversible process controlled by two enzyme families acting in opposition, the Histone Deacetylases (HDACs) and the Histone Acetyl Transferases (HATs). While acetylated histones in the nucleus is associated with upregulation of growth promoting genes, de-acetylated tubulin in the axoplasm is associated with more labile microtubules, conducive to axon growth. In this study we investigated the effects of HAT inhibitors and HDAC inhibitors on cultured adult dorsal root ganglia (DRG) neurons. We found that inhibition of HATs, using Anacardic Acid or CPTH2, improved axon outgrowth, while inhibition of HDACs using TSA or Tubacin, inhibited axon growth. Furthermore, Anacardic Acid increased the number of axons able to cross an inhibitory chondroitin sulfate proteoglycan (CSPG) border. Histone acetylation, but not tubulin acetylation levels, was affected by HAT inhibitors, whereas tubulin acetylation levels were increased in the presence of HDAC inhibitor Tubacin. Although microtubule stabilizing drug taxol did not have an effect on the lengths of DRG axons, nocodazole decreased axon lengths. While the mechanistic basis will require future studies, our data show that inhibitors of HAT can augment axon growth in adult DRG neurons, with the potential of aiding axon growth over inhibitory substrates produced by the glial scar. PMID:25702820

  11. Cardiac hypertrophy: signal transduction, transcriptional adaptation, and altered growth control.

    PubMed

    Wagner, M; Mascareno, E; Siddiqui, M A

    1999-06-30

    Cardiac hypertrophy results from the enlargement of cardiac muscle and fibroblast cells. This abnormal pattern of growth can be elicited by a number of hypertrophic agents, such as cytokines and hormones that participate in normal cell-cell signaling events during development. Under conditions yet to be defined, these same signaling molecules can cause hypertrophy of the heart. Intracellular signal transduction pathways appear to be the prime means by which the hypertrophic signal is transduced in cardiomyocytes. There is no evidence that the signal transduction pathways in hypertrophic cardiomyocytes differ from those of normal cardiomyocytes. Perhaps the signal itself is aberrant, mistimed, misplaced, or occurring at non-physiological concentrations. Alternatively, as a quiescent cell, the cardiomyocyte may not be able to respond completely to a growth signal by turning on its proliferative machinery. Three avenues of research are described: (1) the study of the upregulation of the cardiac MLC-2 gene, (2) STAT proteins and activation of angiotensin II, and (3) hypertrophy as a perturbation of cell cycle controls.

  12. Fibroblast growth factor signaling in skeletal development and disease

    PubMed Central

    Ornitz, David M.; Marie, Pierre J.

    2015-01-01

    Fibroblast growth factor (FGF) signaling pathways are essential regulators of vertebrate skeletal development. FGF signaling regulates development of the limb bud and formation of the mesenchymal condensation and has key roles in regulating chondrogenesis, osteogenesis, and bone and mineral homeostasis. This review updates our review on FGFs in skeletal development published in Genes & Development in 2002, examines progress made on understanding the functions of the FGF signaling pathway during critical stages of skeletogenesis, and explores the mechanisms by which mutations in FGF signaling molecules cause skeletal malformations in humans. Links between FGF signaling pathways and other interacting pathways that are critical for skeletal development and could be exploited to treat genetic diseases and repair bone are also explored. PMID:26220993

  13. Reck enables cerebrovascular development by promoting canonical Wnt signaling

    PubMed Central

    Ulrich, Florian; Carretero-Ortega, Jorge; Menéndez, Javier; Narvaez, Carlos; Sun, Belinda; Lancaster, Eva; Pershad, Valerie; Trzaska, Sean; Véliz, Evelyn; Kamei, Makoto; Prendergast, Andrew; Kidd, Kameha R.; Shaw, Kenna M.; Castranova, Daniel A.; Pham, Van N.; Lo, Brigid D.; Martin, Benjamin L.; Raible, David W.; Weinstein, Brant M.; Torres-Vázquez, Jesús

    2016-01-01

    The cerebral vasculature provides the massive blood supply that the brain needs to grow and survive. By acquiring distinctive cellular and molecular characteristics it becomes the blood-brain barrier (BBB), a selectively permeable and protective interface between the brain and the peripheral circulation that maintains the extracellular milieu permissive for neuronal activity. Accordingly, there is great interest in uncovering the mechanisms that modulate the formation and differentiation of the brain vasculature. By performing a forward genetic screen in zebrafish we isolated no food for thought (nft y72), a recessive late-lethal mutant that lacks most of the intracerebral central arteries (CtAs), but not other brain blood vessels. We found that the cerebral vascularization deficit of nft y72 mutants is caused by an inactivating lesion in reversion-inducing cysteine-rich protein with Kazal motifs [reck; also known as suppressor of tumorigenicity 15 protein (ST15)], which encodes a membrane-anchored tumor suppressor glycoprotein. Our findings highlight Reck as a novel and pivotal modulator of the canonical Wnt signaling pathway that acts in endothelial cells to enable intracerebral vascularization and proper expression of molecular markers associated with BBB formation. Additional studies with cultured endothelial cells suggest that, in other contexts, Reck impacts vascular biology via the vascular endothelial growth factor (VEGF) cascade. Together, our findings have broad implications for both vascular and cancer biology. PMID:26657775

  14. GIV/girdin links vascular endothelial growth factor signaling to Akt survival signaling in podocytes independent of nephrin.

    PubMed

    Wang, Honghui; Misaki, Taro; Taupin, Vanessa; Eguchi, Akiko; Ghosh, Pradipta; Farquhar, Marilyn G

    2015-02-01

    Podocytes are critically involved in the maintenance of the glomerular filtration barrier and are key targets of injury in many glomerular diseases. Chronic injury leads to progressive loss of podocytes, glomerulosclerosis, and renal failure. Thus, it is essential to maintain podocyte survival and avoid apoptosis after acute glomerular injury. In normal glomeruli, podocyte survival is mediated via nephrin-dependent Akt signaling. In several glomerular diseases, nephrin expression decreases and podocyte survival correlates with increased vascular endothelial growth factor (VEGF) signaling. How VEGF signaling contributes to podocyte survival and prevents apoptosis remains unknown. We show here that Gα-interacting, vesicle-associated protein (GIV)/girdin mediates VEGF receptor 2 (VEGFR2) signaling and compensates for nephrin loss. In puromycin aminonucleoside nephrosis (PAN), GIV expression increased, GIV was phosphorylated by VEGFR2, and p-GIV bound and activated Gαi3 and enhanced downstream Akt2, mammalian target of rapamycin complex 1 (mTORC1), and mammalian target of rapamycin complex-2 (mTORC2) signaling. In GIV-depleted podocytes, VEGF-induced Akt activation was abolished, apoptosis was triggered, and cell migration was impaired. These effects were reversed by introducing GIV but not a GIV mutant that cannot activate Gαi3. Our data indicate that after PAN injury, VEGF promotes podocyte survival by triggering assembly of an activated VEGFR2/GIV/Gαi3 signaling complex and enhancing downstream PI3K/Akt survival signaling. Because of its important role in promoting podocyte survival, GIV may represent a novel target for therapeutic intervention in the nephrotic syndrome and other proteinuric diseases.

  15. SRPK2 promotes the growth and migration of the colon cancer cells.

    PubMed

    Wang, Jian; Wu, Hai-Feng; Shen, Wei; Xu, Dong-Yan; Ruan, Ting-Yan; Tao, Guo-Qing; Lu, Pei-Hua

    2016-07-15

    Colon cancer is one of the major causes of cancer-related death in the world. Understanding the molecular mechanism underlying this malignancy will facilitate the diagnosis and treatment. Serine-arginine protein kinase 2 (SRPK2) has been reported to be upregulated in several cancer types. However, its expression and functions in colon cancer remains unknown. In this study, it was found that the expression of SRPK2 was up-regulated in the clinical colon cancer samples. Overexpression of SRPK2 promoted the growth and migration of colon cancer cells, while knocking down the expression of SRPK2 inhibited the growth, migration and tumorigenecity of colon cancer cells. Molecular mechanism studies revealed that SRPK2 activated ERK signaling in colon cancer cells. Taken together, our study demonstrated the tumor promoting roles of SRPK2 in colon cancer cells and SRPK2 might be a promising therapeutic target for colon cancer.

  16. [New strategy to promote adult spinal cord regeneration: enhance adult neurons' intrinsic growth capability].

    PubMed

    Yang, Ping

    2009-01-01

    Injured adult spinal cord neurons are usually unable to regenerate their axons due to the inhibitory environment and low intrinsic regenerative capability. One of the main strategies to promote spinal cord regeneration is blocking and/or neutralizing the inhibitory factors or their common inhibitory signal pathway. However, overcoming inhibition alone is insufficient to cause extensive regeneration when neurons' intrinsic growth state has not been activated. Therefore, it becomes one of the most interested targets for promoting spinal cord regeneration that how to enhance adult neurons' intrinsic growth capability, such as elevating adult neuron cAMP/PKA level, blocking Rho/ROCK pathway, modulating transcriptional factors etc., such that they no longer response to inhibitory environment. In this paper we will review the current research findings and recent progresses in this field.

  17. CEACAM6 promotes tumor angiogenesis and vasculogenic mimicry in gastric cancer via FAK signaling.

    PubMed

    Zang, Mingde; Zhang, Yunqiang; Zhang, Baogui; Hu, Lei; Li, Jianfang; Fan, Zhiyuan; Wang, Hexiao; Su, Liping; Zhu, Zhenggang; Li, Chen; Yan, Chao; Gu, Qinlong; Liu, Bingya; Yan, Min

    2015-05-01

    CEACAM6 is a member of glycosylphosphatidylinositol-linked immunoglobulin superfamily that is implicated in a variety of human cancers. In our previous study, we reported that CEACAM6 was overexpressed in gastric cancer tissues and promoted cancer metastasis. The purpose of this study is to determine the role of CEACAM6 in tumor angiogenesis and mimicry formation. We found that overexpressed CEACAM6 promoted tubule formation dependent on HUVEC cells and vasculogenic mimicry formation of gastric cancer cells; opposing results were achieved in CEACAM6-silenced groups. Moreover, we found that mosaic vessels formed by HUVEC cells and gastric cancer cells were observed in vitro by 3D-culture assay. Overexpressed CEACAM6 in gastric cancer cells promoted tumor growth, VEGF expression and vasculogenic mimicry structures formation in vivo. In accordance with these observations, we found that phosphorylation of FAK and phosphorylation of paxillin were up-regulated in CEACAM6-overexpressing gastric cancer cells, and FAK inhibitor Y15 could reduce tubule and vasculogenic mimicry formation. These findings suggest that CEACAM6 promotes tumor angiogenesis and vasculogenic mimicry formation via FAK signaling in gastric cancer and CEACAM6 may be a new target for cancer anti-vascular treatment.

  18. Promotion

    PubMed Central

    Alam, Hasan B.

    2013-01-01

    This article gives an overview of the promotion process in an academic medical center. A description of different promotional tracks, tenure and endowed chairs, and the process of submitting an application is provided. Finally, some practical advice about developing skills and attributes that can help with academic growth and promotion is dispensed. PMID:24436683

  19. Chemokines induce axon outgrowth downstream of Hepatocyte Growth Factor and TCF/β-catenin signaling

    PubMed Central

    Bhardwaj, Deepshikha; Náger, Mireia; Camats, Judith; David, Monica; Benguria, Alberto; Dopazo, Ana; Cantí, Carles; Herreros, Judit

    2013-01-01

    Axon morphogenesis is a complex process regulated by a variety of secreted molecules, including morphogens and growth factors, resulting in the establishment of the neuronal circuitry. Our previous work demonstrated that growth factors [Neurotrophins (NT) and Hepatocyte Growth Factor (HGF)] signal through β-catenin during axon morphogenesis. HGF signaling promotes axon outgrowth and branching by inducing β-catenin phosphorylation at Y142 and transcriptional regulation of T-Cell Factor (TCF) target genes. Here, we asked which genes are regulated by HGF signaling during axon morphogenesis. An array screening indicated that HGF signaling elevates the expression of chemokines of the CC and CXC families. In line with this, CCL7, CCL20, and CXCL2 significantly increase axon outgrowth in hippocampal neurons. Experiments using blocking antibodies and chemokine receptor antagonists demonstrate that chemokines act downstream of HGF signaling during axon morphogenesis. In addition, qPCR data demonstrates that CXCL2 and CCL5 expression is stimulated by HGF through Met/b-catenin/TCF pathway. These results identify CC family members and CXCL2 chemokines as novel regulators of axon morphogenesis downstream of HGF signaling. PMID:23641195

  20. Targeting Oct1 genomic function inhibits androgen receptor signaling and castration-resistant prostate cancer growth.

    PubMed

    Obinata, D; Takayama, K; Fujiwara, K; Suzuki, T; Tsutsumi, S; Fukuda, N; Nagase, H; Fujimura, T; Urano, T; Homma, Y; Aburatani, H; Takahashi, S; Inoue, S

    2016-12-08

    Androgen receptor (AR) functions as a ligand-dependent transcription factor to regulate its downstream signaling for prostate cancer progression. AR complex formation by multiple transcription factors is important for enhancer activity and transcriptional regulation. However, the significance of such collaborative transcription factors has not been fully understood. In this study, we show that Oct1, an AR collaborative factor, coordinates genome-wide AR signaling for prostate cancer growth. Using global analysis by chromatin immunoprecipitation sequencing (ChIP-seq), we found that Oct1 is recruited to AR-binding enhancer/promoter regions and facilitates androgen signaling. Moreover, a major target of AR/Oct1 complex, acyl-CoA synthetase 3 (ACSL3), contributes to tumor growth in nude mice, and its high expression is associated with poor prognosis in prostate cancer patients. Next, we examined the therapeutic effects of pyrrole-imidazole polyamides that target the Oct1-binding sequence identified in the center of the ACSL3 AR-binding site. We observed that treatment with Oct1 polyamide severely blocked the Oct1 binding at the ACSL3 enhancer responsible for its transcriptional activity and ACSL3 induction. In addition, Oct1 polyamides suppressed castration-resistant tumor growth and specifically repressed global Oct1 chromatin association and androgen signaling in prostate cancer cells, with few nonspecific effects on basal promoter activity. Thus, targeting Oct1 binding could be a novel therapeutic strategy for AR-activated castration-resistant prostate cancer.

  1. [Genotypic analysis and plant growth-promoting ability of four plant growth-promoting bacteria from mangrove].

    PubMed

    Lu, Junkun; Chen, Jun; Kang, Lihua

    2010-10-01

    We identified four strains of plant growth-promoting bacteria (PGPB) and their plant growth-promoting ability. Four PGPB strains were genetically analyzed by PCR detection of nifH and 16S rRNA gene. Phosphate-solubilizing and nitrogen-fixation capacity were examined by spectrophotometric quantification and acetylene reduction assay, respectively. Effect of strain inoculation on plant growth was also evaluated. Phylogenetic analysis based on nifH and 16S rRNA gene sequences indicated that strain HN011 was mostly related to Vibrio natriegens, and SZ7-1 and SZ7-2 resembled Klebsiella oxytoca. Although similarity of 16S rRNA sequence showed that SZ002 belongs to Paenibacillus sp., nifH gene of SZ002 had high sequence similarity with Klebsiella genus. Phosphate solubilization showed that insoluble phosphate was well solubilized in the liquid medium by all four strains of PGPB, which also had high nitrogen-fixation capacity. Plant dry weight, total N and total P were higher in some inoculated than in the non-inoculated plants (P < 0.05). Our results showed that all four strains of PGPB isolated from mangrove had both phosphate solubilization and nitrogen fixation ability, resulting in beneficial effects on growth.

  2. Fusarial wilt control and growth promotion of pigeon pea through bioactive metabolites produced by two plant growth promoting rhizobacteria.

    PubMed

    Dutta, S; Morang, P; Nishanth Kumar, S; Dileep Kumar, B S

    2014-03-01

    The bioactive metabolites produced by two plant growth promoting rhizobacteria strains, a Pseudomonas aeruginosa strain RRLJ 04 and a Bacillus cereus strain BS 03, which showed growth promotion and disease control in pigeon pea against Fusarium udum, were isolated and screened for their efficacy to control fusarial wilt of pigeon pea under gnotobiotic and nursery condition. Bioactive metabolites viz., BM 1 and BM 2 from RRLJ 04 and BM 3 from BS 03 also showed in vitro antibiosis against F. udum. Seeds treated with 50 μl seed⁻¹ of BM 1, 30 μl seed⁻¹ of BM 2 and 70 μl seed⁻¹ of BM 3 and grown in pathogen infested soil showed suppression of wilt disease besides growth enhancement. Per cent disease control was 90 % with BM 2 application as compared to 87 and 83 %, respectively in BM 1 and BM 3 after 90 days of growth. BM 2 treated plants were more resistant to the pathogen as compared to the other fractions tested. Mycelial dry weight was found to be reduced on treatment with the bioactive metabolites. Formation of chlamydospore-like structures was observed in the pathogen mycelium treated with BM 3. The analytical studies confirmed that two of these metabolites are phenazine derivatives.

  3. Signaling pathways regulating cartilage growth plate formation and activity.

    PubMed

    Samsa, William E; Zhou, Xin; Zhou, Guang

    2017-02-01

    The growth plate is a highly specialized and dynamic cartilage structure that serves many essential functions in skeleton patterning, growth and endochondral ossification in developing vertebrates. Major signaling pathways initiated by classical morphogens and by other systemic and tissue-specific factors are intimately involved in key aspects of growth plate development. As a corollary of these essential functions, disturbances in these pathways due to mutations or environmental factors lead to severe skeleton disorders. Here, we review these pathways and the most recent progress made in understanding their roles in chondrocyte differentiation in growth plate development and activity. Furthermore, we discuss newly uncovered pathways involved in growth plate formation, including mTOR, the circadian clock, and the COP9 signalosome.

  4. Disruption of Retinoic Acid Receptor Alpha Reveals the Growth Promoter Face of Retinoic Acid

    PubMed Central

    Ren, MingQiang; Ghidoni, Riccardo; Sacchi, Nicoletta

    2007-01-01

    Background Retinoic acid (RA), the bioactive derivative of Vitamin A, by epigenetically controlling transcription through the RA-receptors (RARs), exerts a potent antiproliferative effect on human cells. However, a number of studies show that RA can also promote cell survival and growth. In the course of one of our studies we observed that disruption of RA-receptor alpha, RARα, abrogates the RA-mediated growth-inhibitory effects and unmasks the growth-promoting face of RA (Ren et al., Mol. Cell. Biol., 2005, 25:10591). The objective of this study was to investigate whether RA can differentially govern cell growth, in the presence and absence of RARα, through differential regulation of the “rheostat” comprising ceramide (CER), the sphingolipid with growth-inhibitory activity, and sphingosine-1-phosphate (S1P), the sphingolipid with prosurvival activity. Methodology/Principal Findings We found that functional inhibition of endogenous RARα in breast cancer cells by using either RARα specific antagonists or a dominant negative RARα mutant hampers on one hand the RA-induced upregulation of neutral sphingomyelinase (nSMase)-mediated CER synthesis, and on the other hand the RA-induced downregulation of sphingosine kinase 1, SK1, pivotal for S1P synthesis. In association with RA inability to regulate the sphingolipid rheostat, cells not only survive, but also grow more in response to RA both in vitro and in vivo. By combining genetic, pharmacological and biochemical approaches, we mechanistically demonstrated that RA-induced growth is, at least in part, due to non-RAR-mediated activation of the SK1-S1P signaling. Conclusions/Significance In the presence of functional RARα, RA inhibits cell growth by concertedly, and inversely, modulating the CER and S1P synthetic pathways. In the absence of a functional RARα, RA–in a non-RAR-mediated fashion–promotes cell growth by activating the prosurvival S1P signaling. These two distinct, yet integrated processes

  5. Chrysosporium pseudomerdarium produces gibberellins and promotes plant growth.

    PubMed

    Hamayun, Muhammad; Khan, Sumera Afzal; Iqbal, Ilyas; Na, Chae-In; Khan, Abdul Latif; Hwang, Young-Hyun; Lee, Byung-Hyun; Lee, In-Jung

    2009-08-01

    We isolated 10 endophytic fungi from the roots of drought stressed soybean cultivar Hwangkeumkong and bioassayed on waito-c rice and soybean seedlings, in order to identify plant growth-promoting fungi. The fungal isolate D-2-1 provided the best result for plant height and biomass promotion as compared to wild type Gibberella fujikuroi. The D-2-1 culture filtrate (CF) was analyzed for the presence of gibberellins (GAs) and it was observed that all physiologically active GAs, especially gibberellic acid, were present in higher amounts (GA1, 0.24 ng/ml; GA3, 8.99 ng/ml; GA4, 2.58 ng/ml and GA7, 1.39 ng/ml) in conjunction with physiologically inactive GA5, GA9, GA15, GA19, and GA24. The fungal isolate D-2-1 was identified as a new strain of Chrysosporium pseudomerdarium through phylogenetic analysis of 18S rDNA sequence. Plant growth promotion and GAs production capacity of genus Chrysosporium have been reported for the first time in this study.

  6. Activated Notch signaling is required for hepatitis B virus X protein to promote proliferation and survival of human hepatic cells.

    PubMed

    Wang, Fan; Zhou, Haiyan; Xia, Xiumei; Sun, Qian; Wang, Ying; Cheng, Bin

    2010-12-01

    Hepatitis B virus X protein (HBx) is a multifunctional oncoprotein which plays a crucial role in the pathogenesis of hepatocellular carcinoma (HCC). However, the exact mechanisms remain controversial. Here we show that HBx strongly stimulated cell growth, promoted cell cycle progression and inhibited apoptosis of human non-tumor hepatic cell line L02 cells. It also accelerated tumor formation of L02 cells in BALB/c nude mice. Furthermore, Notch signaling components were upregulated in HBx-expressing L02 cells compared to normal L02 cells. However, blocking Notch signaling with a γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT) attenuated cell growth, shortened the S phase of cell cycle and promoted apoptosis of HBx-expressing L02 cell in a dose- and time-dependent manner, but normal L02 cells were not significantly affected by Notch signaling blocking. Therefore, our findings demonstrate that HBx could promote the growth of human non-tumor hepatic cell line L02 cells both in vitro and in vivo, which may require the activation of Notch signaling pathway.

  7. Activation of PI3K and R-Ras signaling promotes the extension of sensory axons on inhibitory chondroitin sulfate proteoglycans.

    PubMed

    Silver, Lee; Michael, James V; Goldfinger, Lawrence E; Gallo, Gianluca

    2014-09-01

    Chondroitin sulfate proteoglycans (CSPGs) are extracellular inhibitors of axon extension and plasticity, and cause growth cones to exhibit dystrophic behaviors. Phosphoinositide 3-kinase (PI3K) is a lipid kinase activated by axon growth promoting signals. In this study, we used embryonic chicken dorsal root ganglion neurons to determine if CSPGs impair signaling through PI3K. We report that CSPGs inhibit PI3K signaling in axons and growth cones, as evidenced by decreased levels of phosphorylated downstream kinases (Akt and S6). Direct activation of PI3K signaling, using a cell permeable phosphopeptide (PI3Kpep), countered the effects of CSPGs on growth cones and axon extension. Both overnight and acute treatment with PI3Kpep promoted axon extension on CSPG-coated substrates. The R-Ras GTPase is an upstream positive regulator of PI3K signaling. Expression of constitutively active R-Ras promoted axon extension and growth cone elaboration on CSPGs and permissive substrata. In contrast, an N-terminus-deleted constitutively active R-Ras, deficient in PI3K activation, promoted axon extension but not growth cone elaboration on CSPGs and permissive substrata. These data indicate that activation of R-Ras-PI3K signaling may be a viable approach for manipulating axon extension on CSPGs. © 2014 Wiley Periodicals, Inc.

  8. Extracellular signal regulated kinase 5 mediates signals triggered by the novel tumor promoter palytoxin

    SciTech Connect

    Charlson, Aaron T.; Zeliadt, Nicholette A.; Wattenberg, Elizabeth V.

    2009-12-01

    Palytoxin is classified as a non-12-O-tetradecanoylphorbol-13-acetate (TPA)-type skin tumor because it does not bind to or activate protein kinase C. Palytoxin is thus a novel tool for investigating alternative signaling pathways that may affect carcinogenesis. We previously showed that palytoxin activates three major members of the mitogen activated protein kinase (MAPK) family, extracellular signal regulated kinase 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. Here we report that palytoxin also activates another MAPK family member, called ERK5, in HeLa cells and in keratinocytes derived from initiated mouse skin (308 cells). By contrast, TPA does not activate ERK5 in these cell lines. The major cell surface receptor for palytoxin is the Na+,K+-ATPase. Accordingly, ouabain blocked the ability of palytoxin to activate ERK5. Ouabain alone did not activate ERK5. ERK5 thus represents a divergence in the signaling pathways activated by these two agents that bind to the Na+,K+-ATPase. Cycloheximide, okadaic acid, and sodium orthovanadate did not mimic the effect of palytoxin on ERK5. These results indicate that the stimulation of ERK5 by palytoxin is not simply due to inhibition of protein synthesis or inhibition of serine/threonine or tyrosine phosphatases. Therefore, the mechanism by which palytoxin activates ERK5 differs from that by which it activates ERK1/2, JNK, and p38. Finally, studies that used pharmacological inhibitors and shRNA to block ERK5 action indicate that ERK5 contributes to palytoxin-stimulated c-Fos gene expression. These results suggest that ERK5 can act as an alternative mediator for transmitting diverse tumor promoter-stimulated signals.

  9. Plant growth-promoting bacteria for phytostabilization of mine tailings.

    PubMed

    Grandlic, Christopher J; Mendez, Monica O; Chorover, Jon; Machado, Blenda; Maier, Raina M

    2008-03-15

    Eolian dispersion of mine tailings in arid and semiarid environments is an emerging global issue for which economical remediation alternatives are needed. Phytostabilization, the revegetation of these sites with native plants, is one such alternative. Revegetation often requires the addition of bulky amendments such as compost which greatly increases cost. We report the use of plant growth-promoting bacteria (PGPB) to enhance the revegetation of mine tailings and minimize the need for compost amendment. Twenty promising PGPB isolates were used as seed inoculants in a series of greenhouse studies to examine revegetation of an extremely acidic, high metal contenttailings sample previously shown to require 15% compost amendment for normal plant growth. Several isolates significantly enhanced growth of two native species, quailbush and buffalo grass, in tailings. In this study, PGPB/compost outcomes were plant specific; for quailbush, PGPB were most effective in combination with 10% compost addition while for buffalo grass, PGPB enhanced growth in the complete absence of compost. Results indicate that selected PGPB can improve plant establishment and reduce the need for compost amendment. Further, PGPB activities necessary for aiding plant growth in mine tailings likely include tolerance to acidic pH and metals.

  10. Plant Growth-Promoting Bacteria for Phytostabilization of Mine Tailings

    SciTech Connect

    Grandlic, C.J.; Mendez, M.O.; Chorover, J.; Machado, B.; Maier, R.M.

    2009-05-19

    Eolian dispersion of mine tailings in arid and semiarid environments is an emerging global issue for which economical remediation alternatives are needed. Phytostabilization, the revegetation of these sites with native plants, is one such alternative. Revegetation often requires the addition of bulky amendments such as compost which greatly increases cost. We report the use of plant growth-promoting bacteria (PGPB) to enhance the revegetation of mine tailings and minimize the need for compost amendment. Twenty promising PGPB isolates were used as seed inoculants in a series of greenhouse studies to examine revegetation of an extremely acidic, high metal content tailings sample previously shown to require 15% compost amendment for normal plant growth. Several isolates significantly enhanced growth of two native species, quailbush and buffalo grass, in tailings. In this study, PGPB/compost outcomes were plant specific; for quailbush, PGPB were most effective in combination with 10% compost addition while for buffalo grass, PGPB enhanced growth in the complete absence of compost. Results indicate that selected PGPB can improve plant establishment and reduce the need for compost amendment. Further, PGPB activities necessary for aiding plant growth in mine tailings likely include tolerance to acidic pH and metals.

  11. Signal Transduction by Vascular Endothelial Growth Factor Receptors

    PubMed Central

    Koch, Sina; Claesson-Welsh, Lena

    2012-01-01

    Vascular endothelial growth factors (VEGFs) are master regulators of vascular development and of blood and lymphatic vessel function during health and disease in the adult. It is therefore important to understand the mechanism of action of this family of five mammalian ligands, which act through three receptor tyrosine kinases (RTKs). In addition, coreceptors like neuropilins (NRPs) and integrins associate with the ligand/receptor signaling complex and modulate the output. Therapeutics to block several of the VEGF signaling components have been developed with the aim to halt blood vessel formation, angiogenesis, in diseases that involve tissue growth and inflammation, such as cancer. In this review, we outline the current information on VEGF signal transduction in relation to blood and lymphatic vessel biology. PMID:22762016

  12. The Growth Hormone Secretagogue Receptor: Its Intracellular Signaling and Regulation

    PubMed Central

    Yin, Yue; Li, Yin; Zhang, Weizhen

    2014-01-01

    The growth hormone secretagogue receptor (GHSR), also known as the ghrelin receptor, is involved in mediating a wide variety of biological effects of ghrelin, including: stimulation of growth hormone release, increase of food intake and body weight, modulation of glucose and lipid metabolism, regulation of gastrointestinal motility and secretion, protection of neuronal and cardiovascular cells, and regulation of immune function. Dependent on the tissues and cells, activation of GHSR may trigger a diversity of signaling mechanisms and subsequent distinct physiological responses. Distinct regulation of GHSR occurs at levels of transcription, receptor interaction and internalization. Here we review the current understanding on the intracellular signaling pathways of GHSR and its modulation. An overview of the molecular structure of GHSR is presented first, followed by the discussion on its signaling mechanisms. Finally, potential mechanisms regulating GHSR are reviewed. PMID:24651458

  13. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

    PubMed

    Gaviglio, Angela L; Knelson, Erik H; Blobe, Gerard C

    2017-02-07

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low Schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor-like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.-Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

  14. Chromatographic analysis of banned antibacterial growth promoters in animal feed.

    PubMed

    Samanidou, Victoria F; Evaggelopoulou, Evaggelia N

    2008-06-01

    The issue of antimicrobial use in animals used as food is of global concern. Antimicrobials are used in animal agriculture to improve health and welfare of animals, meat quality, the economic efficiency of growth and production and public health by decreasing shedding of zoonotic pathogens. However, large quantities are often used without professional supervision. The growth-promotant (now reclassified as zootechnical feed additives) effect of low levels of antibiotics in animal feeds was first described in the late 1940s. Already in 1969 the Swann Committee recommended that use of antibiotics as a supplement in animal feedstuff should be restricted to those with little or no application as therapeutic agents for humans and animals, which would not impair the efficacy of therapeutic antibiotics through the development of resistant strains of organisms. Antimicrobials like avoparcin, ardacin, zinc bacitracin, virginiamycin, tylosin, spriramycin, carbadox and olaquindox were withdrawn within the period 1997-1999. Four others (monensin sodium, salinomycin sodium, avilamycin and flavophospholipol) were still permitted for use as growth promoters in animal feed to animals marketed in the European Union (EU). Since January 2006, they have been banned as well. This review focuses on the analytical methods developed to be an effective tool for monitoring compliance with the ban.

  15. Cloning and characterization of the GNA11 promoter and its regulation by early growth response 1.

    PubMed

    Klenke, Stefanie; Siffert, Winfried; Frey, Ulrich Hermann

    2013-11-01

    GNAQ and GNA11, encoding the G-proteins Gα(q) and Gα₁₁, are members of the Gα(q)/Gα₁₁ subfamily, which transmits signals from the cell surface to intracellular signalling cascades. The GNAQ promoter was already characterized, and regulation by the transcription factor early growth response 1 (Egr-1) was demonstrated. Interestingly, in silico analysis revealed putative Egr-1 binding sites in sequences potentially representing the GNA11 promoter. However, the GNA11 promoter has not been characterized so far. Therefore, the purpose of the study was the characterization of the GNA11 promoter and investigation of its potential regulation by Egr-1. The putative GNA11 promoter was cloned, and deletion constructs were generated. Luciferase assays were performed, and essential regulatory regions identified between nt-805/-177. In electrophoretic mobility shift assays (EMSAs), one specific Egr-1 binding site at nt-475/-445 was identified. An Egr-1 expression plasmid was generated, which evoked increased Egr-1 content in nuclear extracts and a > 2-fold increase in GNA11 promoter activity in construct nt-805/+54 (p = 0.035). Finally, real-time PCR analysis was performed, and an increased Gα₁₁ mRNA (p = 0.035) expression induced by Egr-1 was found. Here, we characterize for the first time the GNA11 promoter and its specific interaction with Egr-1. Both the GNAQ and the GNA11 promoter appear to be regulated by the same transcription factor, Egr-1, which may be a molecular mechanism leading to Gα(q)-/Gα₁₁-associated phenotypes. © 2013 Nordic Pharmacological Society. Published by John Wiley & Sons Ltd.

  16. Overexpression of ankyrin1 promotes pancreatic cancer cell growth

    PubMed Central

    Omura, Noriyuki; Mizuma, Masamichi; MacGregor, Anne; Hong, Seung-Mo; Ayars, Michael; Almario, Jose Alejandro; Borges, Michael; Kanda, Mitsuro; Li, Ang; Vincent, Audrey; Maitra, Anirban; Goggins, Michael

    2016-01-01

    The methylation status of a promoter influences gene expression and aberrant methylation during tumor development has important functional consequences for pancreatic and other cancers. Using methylated CpG island amplification and promoter microarrays, we identified ANK1 as hypomethylated in pancreatic cancers. Expression analysis determined ANK1 as commonly overexpressed in pancreatic cancers relative to normal pancreas. ANK1 was co-expressed with miR-486 in pancreatic cancer cells. Stable knockdown of ANK1 in the pancreatic cancer cell line AsPC1 led to changes in cell morphology, and decreases in colony formation. Stable knockdown of ANK1 also marked reduced the growth of tumors in athymic nude mice. Among patients undergoing pancreaticoduodenectomy, those with pancreatic cancers expressing ANK1 had a poorer prognosis than those without ANK1 expression. These findings indicate a role for ANK1 overexpression in mediating pancreatic cancer tumorigenicity. PMID:27144336

  17. Platelet-derived growth factor (PDGF) signalling in cancer: rapidly emerging signalling landscape.

    PubMed

    Farooqi, Ammad Ahmad; Siddik, Zahid H

    2015-07-01

    Platelet-derived growth factor (PDGF)-mediated signalling has emerged as one of the most extensively and deeply studied biological mechanism reported to be involved in regulation of growth and survival of different cell types. However, overwhelmingly increasing scientific evidence is also emphasizing on dysregulation of spatio-temporally controlled PDGF-induced signalling as a basis for cancer development. We partition this multi-component review into recently developing understanding of dysregulation PDGF signalling in different cancers, how PDGF receptors are quantitatively controlled by microRNAs. Moreover, we also summarize most recent advancements in therapeutic targeting of PDGFR as evidenced by preclinical studies. Better understanding of the PDGF-induced intracellular signalling in different cancers will be helpful in catalysing the transition from a segmented view of cancer biology to a conceptual continuum.

  18. An update on alternatives to antimicrobial growth promoters for broilers.

    PubMed

    Huyghebaert, Gerard; Ducatelle, Richard; Van Immerseel, Filip

    2011-02-01

    Livestock performance and feed efficiency are closely interrelated with the qualitative and quantitative microbial load of the animal gut, the morphological structure of the intestinal wall and the activity of the immune system. Antimicrobial growth promoters have made a tremendous contribution to profitability in intensive husbandry, but as a consequence of the increasing concern about the potential for antibiotic resistant strains of bacteria, the European Commission decided to ban all commonly used feed antibiotics. There are a number of non-therapeutic alternatives, including enzymes, (in)organic acids, probiotics, prebiotics, etheric oils and immunostimulants. Their efficacy and mode of action are briefly described in this review.

  19. Growth-promoting relationships with children and youth.

    PubMed

    Spencer, Renée; Rhodes, Jean E

    2014-12-01

    At the heart of afterschool programs are the relationships that form between the children and youth who participate in these programs and the adults who lead them. To be effective, adults working in afterschool settings must be able to engage youth in growth-promoting relationships. This article identifies and describes four foundational ways of interacting with youth that foster the development of such relationships-engaging in warm and emotionally supportive connections, providing developmentally appropriate structure and support, cultivating and responding to youth initiative, and scaffolding and propelling youth learning and skill development.

  20. The statistical mechanics of complex signaling networks: nerve growth factor signaling

    NASA Astrophysics Data System (ADS)

    Brown, K. S.; Hill, C. C.; Calero, G. A.; Myers, C. R.; Lee, K. H.; Sethna, J. P.; Cerione, R. A.

    2004-10-01

    The inherent complexity of cellular signaling networks and their importance to a wide range of cellular functions necessitates the development of modeling methods that can be applied toward making predictions and highlighting the appropriate experiments to test our understanding of how these systems are designed and function. We use methods of statistical mechanics to extract useful predictions for complex cellular signaling networks. A key difficulty with signaling models is that, while significant effort is being made to experimentally measure the rate constants for individual steps in these networks, many of the parameters required to describe their behavior remain unknown or at best represent estimates. To establish the usefulness of our approach, we have applied our methods toward modeling the nerve growth factor (NGF)-induced differentiation of neuronal cells. In particular, we study the actions of NGF and mitogenic epidermal growth factor (EGF) in rat pheochromocytoma (PC12) cells. Through a network of intermediate signaling proteins, each of these growth factors stimulates extracellular regulated kinase (Erk) phosphorylation with distinct dynamical profiles. Using our modeling approach, we are able to predict the influence of specific signaling modules in determining the integrated cellular response to the two growth factors. Our methods also raise some interesting insights into the design and possible evolution of cellular systems, highlighting an inherent property of these systems that we call 'sloppiness.'

  1. Endosomal Signaling of Epidermal Growth Factor Receptor Stimulates Signal Transduction Pathways Leading to Cell Survival

    PubMed Central

    Wang, Yi; Pennock, Steven; Chen, Xinmei; Wang, Zhixiang

    2002-01-01

    In spite of intensified efforts to understand cell signaling from endosomes, there is no direct evidence demonstrating that endosomal signaling is sufficient to activate signal transduction pathways and no evidence to demonstrate that endosomal signaling is able to produce a biological outcome. The lack of breakthrough is due in part to the lack of means to generate endosomal signals without plasma membrane signaling. In this paper, we report the establishment of a system to specifically activate epidermal growth factor (EGF) receptor (EGFR) when it endocytoses into endosomes. We treated cells with EGF in the presence of AG-1478, a specific EGFR tyrosine kinase inhibitor, and monensin, which blocks the recycling of EGFR. This treatment led to the internalization of nonactivated EGF-EGFR complexes into endosomes. The endosome-associated EGFR was then activated by removing AG-1478 and monensin. During this procedure we did not observe any surface EGFR phosphorylation. We also achieved specific activation of endosome-associated EGFR without using monensin. By using this system, we provided original evidence demonstrating that (i) the endosome can serve as a nucleation site for the formation of signaling complexes, (ii) endosomal EGFR signaling is sufficient to activate the major signaling pathways leading to cell proliferation and survival, and (iii) endosomal EGFR signaling is sufficient to suppress apoptosis induced by serum withdrawal. PMID:12242303

  2. Plant Growth-Promoting Rhizobacteria Stimulate Vegetative Growth and Asexual Reproduction of Kalanchoe daigremontiana.

    PubMed

    Park, Yong-Soon; Park, Kyungseok; Kloepper, Joseph W; Ryu, Choong-Min

    2015-09-01

    Certain bacterial species associate with plant roots in soil. The plant growth-promoting rhizobacteria (PGPR) stimulate plant growth and yield in greenhouse and field. Here, we examined whether application of known bacilli PGPR strains stimulated growth and asexual reproduction in the succulent plant Kalanchoe daigremontiana. Four PGPR strains B. amyloliquefaciens IN937a, B. cereus BS107, B. pumilus INR7, and B. subtilis GB03 were applied to young plantlets by soil-drenching, and plant growth and development was monitored for three months. Aerial growth was significantly stimulated in PGPR-inoculated plants, which was observed as increases in plant height, shoot weight, and stem width. The stimulated growth influenced plant development by increasing the total number of leaves per plant. Treatment with bacilli also increased the total root biomass compared with that of control plants, and led to a 2-fold increase in asexual reproduction and plantlet formation on the leaf. Collectively, our results firstly demonstrate that Bacillus spp. promote vegetative development of K. daigremontiana, and the enhanced growth stimulates asexual reproduction and plantlet formation.

  3. Plant Growth-Promoting Rhizobacteria Stimulate Vegetative Growth and Asexual Reproduction of Kalanchoe daigremontiana

    PubMed Central

    Park, Yong-Soon; Park, Kyungseok; Kloepper, Joseph W.; Ryu, Choong-Min

    2015-01-01

    Certain bacterial species associate with plant roots in soil. The plant growth-promoting rhizobacteria (PGPR) stimulate plant growth and yield in greenhouse and field. Here, we examined whether application of known bacilli PGPR strains stimulated growth and asexual reproduction in the succulent plant Kalanchoe daigremontiana. Four PGPR strains B. amyloliquefaciens IN937a, B. cereus BS107, B. pumilus INR7, and B. subtilis GB03 were applied to young plantlets by soil-drenching, and plant growth and development was monitored for three months. Aerial growth was significantly stimulated in PGPR-inoculated plants, which was observed as increases in plant height, shoot weight, and stem width. The stimulated growth influenced plant development by increasing the total number of leaves per plant. Treatment with bacilli also increased the total root biomass compared with that of control plants, and led to a 2-fold increase in asexual reproduction and plantlet formation on the leaf. Collectively, our results firstly demonstrate that Bacillus spp. promote vegetative development of K. daigremontiana, and the enhanced growth stimulates asexual reproduction and plantlet formation. PMID:26361480

  4. Mangrove endophyte promotes reforestation tree (Acacia polyphylla) growth.

    PubMed

    Castro, Renata Assis; Dourado, Manuella Nóbrega; Almeida, Jaqueline Raquel de; Lacava, Paulo Teixeira; Nave, André; Melo, Itamar Soares de; Azevedo, João Lucio de; Quecine, Maria Carolina

    2017-07-19

    Mangroves are ecosystems located in the transition zone between land and sea that serve as a potential source of biotechnological resources. Brazil's extensive coast contains one of the largest mangrove forests in the world (encompassing an area of 25,000km(2) along all the coast). Endophytic bacteria were isolated from the following three plant species: Rhizophora mangle, Laguncularia racemosa and Avicennia nitida. A large number of these isolates, 115 in total, were evaluated for their ability to fix nitrogen and solubilize phosphorous. Bacteria that tested positive for both of these tests were examined further to determine their level of indole acetic acid production. Two strains with high indole acetic acid production were selected for use as inoculants for reforestation trees, and then the growth of the plants was evaluated under field conditions. The bacterium Pseudomonas fluorescens (strain MCR1.10) had a low phosphorus solubilization index, while this index was higher in the other strain used, Enterobacter sp. (strain MCR1.48). We used the reforestation tree Acacia polyphylla. The results indicate that inoculation with the MCR1.48 endophyte increases Acacia polyphylla shoot dry mass, demonstrating that this strain effectively promotes the plant's growth and fitness, which can be used in the seedling production of this tree. Therefore, we successfully screened the biotechnological potential of endophyte isolates from mangrove, with a focus on plant growth promotion, and selected a strain able to provide limited nutrients and hormones for in plant growth. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  5. Ethylene promotes pollen tube growth by affecting actin filament organization via the cGMP-dependent pathway in Arabidopsis thaliana.

    PubMed

    Jia, Honglei; Yang, Jun; Liesche, Johannes; Liu, Xin; Hu, Yanfeng; Si, Wantong; Guo, Junkang; Li, Jisheng

    2017-09-01

    Ethylene and cGMP are key regulators of plant developmental processes. In this study, we demonstrate that ethylene or cGMP promote pollen tube growth in a dose-dependent manner. The etr1-1 mutant was found to be insensitive to ethylene with regard to pollen tube growth, while the growth-promoting effect of ethylene in etr2-2, ein4-4, or ein4-7 did not change, suggesting that ethylene signaling was mainly perceived by ETR1. However, the function of cGMP was not inhibited in etr1-1 and pollen tubes became insensitive to ethylene when the endogenous cGMP level was artificially decreased. This shows that cGMP is necessary for the control of pollen tube growth and that it might be a downstream component of ETR1 in the ethylene signaling pathway. Our study also found that ethylene or cGMP increase the actin bundles and elevated the percentage of relative amount of F-actin, while removal of cGMP decreased actin bundles abundance and altered the ratio of F-actin in the tip and base regions of pollen tubes. In conclusion, our data suggests that ethylene functions as the upstream signal of cGMP, and that both signals promote pollen germination and tube growth by regulating F-actin, which is essential for vesicular transport and cytoplasmic streaming.

  6. Cytokinin interplay with ethylene, auxin, and glucose signaling controls Arabidopsis seedling root directional growth.

    PubMed

    Kushwah, Sunita; Jones, Alan M; Laxmi, Ashverya

    2011-08-01

    Optimal root architecture is established by multiple intrinsic (e.g. hormones) and extrinsic (e.g. gravity and touch) signals and is established, in part, by directed root growth. We show that asymmetrical exposure of cytokinin (CK) at the root tip in Arabidopsis (Arabidopsis thaliana) promotes cell elongation that is potentiated by glucose in a hexokinase-influenced, G protein-independent manner. This mode of CK signaling requires the CK receptor, ARABIDOPSIS HISTIDINE KINASE4 and, at a minimum, its cognate type B ARABIDOPSIS RESPONSE REGULATORS ARR1, ARR10, and ARR11 for full responsiveness, while type A response regulators act redundantly to attenuate this CK response. Ethylene signaling through the ethylene receptor ETHYLENE RESISTANT1 and its downstream signaling element ETHYLENE INSENSITIVE2 are required for CK-induced root cell elongation. Negative and positive feedback loops are reinforced by CK regulation of the expression of the genes encoding these elements in both the CK and ethylene signaling pathways. Auxin transport facilitated by PIN-FORMED2 as well as auxin signaling through control of the steady-state level of transcriptional repressors INDOLE-3-ACETIC ACID7 (IAA7), IAA14, and IAA17 via TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX PROTEIN are involved in CK-induced root cell elongation. This action lies downstream of ethylene and CK induction. Intrinsic signaling in this response operates independently of the extrinsic signal touch, although actin filament organization, which is important in the touch response, may be important for this response, since latrunculin B can induce similar growth. This root growth response may have adaptive significance, since CK responsiveness is inversely related to root coiling and waving, two root behaviors known to be important for fitness.

  7. Fatty acids identified in the Burmese python promote beneficial cardiac growth.

    PubMed

    Riquelme, Cecilia A; Magida, Jason A; Harrison, Brooke C; Wall, Christopher E; Marr, Thomas G; Secor, Stephen M; Leinwand, Leslie A

    2011-10-28

    Burmese pythons display a marked increase in heart mass after a large meal. We investigated the molecular mechanisms of this physiological heart growth with the goal of applying this knowledge to the mammalian heart. We found that heart growth in pythons is characterized by myocyte hypertrophy in the absence of cell proliferation and by activation of physiological signal transduction pathways. Despite high levels of circulating lipids, the postprandial python heart does not accumulate triglycerides or fatty acids. Instead, there is robust activation of pathways of fatty acid transport and oxidation combined with increased expression and activity of superoxide dismutase, a cardioprotective enzyme. We also identified a combination of fatty acids in python plasma that promotes physiological heart growth when injected into either pythons or mice.

  8. CD43 promotes cells transformation by preventing merlin-mediated contact inhibition of growth.

    PubMed

    Camacho-Concha, Nohemi; Olivos-Ortiz, Amiel; Nuñez-Rivera, Alfredo; Pedroza-Saavedra, Adolfo; Gutierrez-Xicotencatl, Lourdes; Rosenstein, Yvonne; Pedraza-Alva, Gustavo

    2013-01-01

    In normal tissues, strict control of tissue size is achieved by regulating cell numbers. The mechanism that controls total cell number is known as contact inhibition of growth and it depends on the NF2/Merlin pathway. Negative regulation of this pathway by deleterious mutations or by oncogenes results in cell transformation and tumor progression. Here we provide evidence that the CD43 sialomucin cooperates with oncogenic signals to promote cell transformation by abrogating the contact inhibition of growth through a molecular mechanism that involves AKT-dependent Merlin phosphorylation and degradation. Accordingly, inhibition of endogenous CD43 expression by RNA interference in lung, cervix and colon human cancer cells impaired tumor growth in vivo. These data underscore a previously unidentified role for CD43 in non-hematopoietic tumor progression.

  9. CD43 Promotes Cells Transformation by Preventing Merlin-Mediated Contact Inhibition of Growth

    PubMed Central

    Camacho-Concha, Nohemi; Olivos-Ortiz, Amiel; Nuñez-Rivera, Alfredo; Pedroza-Saavedra, Adolfo; Gutierrez-Xicotencatl, Lourdes; Rosenstein, Yvonne; Pedraza-Alva, Gustavo

    2013-01-01

    In normal tissues, strict control of tissue size is achieved by regulating cell numbers. The mechanism that controls total cell number is known as contact inhibition of growth and it depends on the NF2/Merlin pathway. Negative regulation of this pathway by deleterious mutations or by oncogenes results in cell transformation and tumor progression. Here we provide evidence that the CD43 sialomucin cooperates with oncogenic signals to promote cell transformation by abrogating the contact inhibition of growth through a molecular mechanism that involves AKT-dependent Merlin phosphorylation and degradation. Accordingly, inhibition of endogenous CD43 expression by RNA interference in lung, cervix and colon human cancer cells impaired tumor growth in vivo. These data underscore a previously unidentified role for CD43 in non-hematopoietic tumor progression. PMID:24260485

  10. Role of fibroblast growth factor receptor signaling in kidney development.

    PubMed

    Bates, Carlton M

    2011-08-01

    Fibroblast growth factor receptors (Fgfrs) consist of four signaling family members and one nonsignaling "decoy" receptor, Fgfr-like 1 (Fgfrl1), all of which are expressed in the developing kidney. Several studies have shown that exogenous fibroblast growth factors (Fgfs) affect growth and maturation of the metanephric mesenchyme (MM) and ureteric bud (UB) in cultured tissues. Transgenic and conditional knockout approaches in whole animals have shown that Fgfr1 and Fgfr2 (predominantly the IIIc isoform) in kidney mesenchyme are critical for early MM and UB formation. Conditional deletion of the ligand, Fgf8, in nephron precursors or global deletion of Fgfrl1 interrupts nephron formation. Fgfr2 (likely the IIIb isoform signaling downstream of Fgf7 and Fgf10) is critical for ureteric morphogenesis. Moreover, Fgfr2 appears to act independently of Frs2α (the major signaling adapter for Fgfrs) in regulating UB branching. Loss of Fgfr2 in the MM leads to many kidney and urinary tract anomalies, including vesicoureteral reflux. Thus Fgfr signaling is critical for patterning of virtually all renal lineages at early and later stages of development.

  11. Promotion of protein crystal growth by actively switching crystal growth mode via femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Tominaga, Yusuke; Maruyama, Mihoko; Yoshimura, Masashi; Koizumi, Haruhiko; Tachibana, Masaru; Sugiyama, Shigeru; Adachi, Hiroaki; Tsukamoto, Katsuo; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Inoue, Tsuyoshi; Yoshikawa, Hiroshi Y.; Mori, Yusuke

    2016-11-01

    Large single crystals with desirable shapes are essential for various scientific and industrial fields, such as X-ray/neutron crystallography and crystalline devices. However, in the case of proteins the production of such crystals is particularly challenging, despite the efforts devoted to optimization of the environmental, chemical and physical parameters. Here we report an innovative approach for promoting the growth of protein crystals by directly modifying the local crystal structure via femtosecond laser ablation. We demonstrate that protein crystals with surfaces that are locally etched (several micrometers in diameter) by femtosecond laser ablation show enhanced growth rates without losing crystal quality. Optical phase-sensitive microscopy and X-ray topography imaging techniques reveal that the local etching induces spiral growth, which is energetically advantageous compared with the spontaneous two-dimensional nucleation growth mode. These findings prove that femtosecond laser ablation can actively switch the crystal growth mode, offering flexible control over the size and shape of protein crystals.

  12. The OXI1 Kinase Pathway Mediates Piriformospora indica-Induced Growth Promotion in Arabidopsis

    PubMed Central

    Camehl, Iris; Drzewiecki, Corinna; Vadassery, Jyothilakshmi; Shahollari, Bationa; Sherameti, Irena; Forzani, Celine; Munnik, Teun; Hirt, Heribert; Oelmüller, Ralf

    2011-01-01

    Piriformospora indica is an endophytic fungus that colonizes roots of many plant species and promotes growth and resistance to certain plant pathogens. Despite its potential use in agriculture, little is known on the molecular basis of this beneficial plant-fungal interaction. In a genetic screen for plants, which do not show a P. indica- induced growth response, we isolated an Arabidopsis mutant in the OXI1 (Oxidative Signal Inducible1) gene. OXI1 has been characterized as a protein kinase which plays a role in pathogen response and is regulated by H2O2 and PDK1 (3-PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE1). A genetic analysis showed that double mutants of the two closely related PDK1.1 and PDK1.2 genes are defective in the growth response to P. indica. While OXI1 and PDK1 gene expression is upregulated in P. indica-colonized roots, defense genes are downregulated, indicating that the fungus suppresses plant defense reactions. PDK1 is activated by phosphatidic acid (PA) and P. indica triggers PA synthesis in Arabidopsis plants. Under beneficial co-cultivation conditions, H2O2 formation is even reduced by the fungus. Importantly, phospholipase D (PLD)α1 or PLDδ mutants, which are impaired in PA synthesis do not show growth promotion in response to fungal infection. These data establish that the P. indica-stimulated growth response is mediated by a pathway consisting of the PLD-PDK1-OXI1 cascade. PMID:21625539

  13. Fibroblast growth factor signaling in mammalian tooth development.

    PubMed

    Li, Chun-Ying; Prochazka, Jan; Goodwin, Alice F; Klein, Ophir D

    2014-01-01

    In this review, we discuss the central role of fibroblast growth factor (FGF) signaling in mammalian tooth development. The FGF family consists of 22 members, most of which bind to four different receptor tyrosine kinases, which in turn signal through a cascade of intracellular proteins. This signaling regulates a number of cellular processes, including proliferation, differentiation, cell adhesion and cell mobility. FGF signaling first becomes important in the presumptive dental epithelium at the initiation stage of tooth development, and subsequently, it controls the invagination of the dental epithelium into the underlying mesenchyme. Later, FGFs are critical in tooth shape formation and differentiation of ameloblasts and odontoblasts, as well as in the development and homeostasis of the stem cell niche that fuels the continuously growing mouse incisor. In addition, FGF signaling is critical in human teeth, as mutations in genes encoding FGF ligands or receptors result in several congenital syndromes characterized by alterations in tooth number, morphology or enamel structure. The parallel roles of FGF signaling in mouse and human tooth development demonstrate the conserved importance of FGF signaling in mammalian odontogenesis.

  14. Sulfs are regulators of growth factor signaling for satellite cell differentiation and muscle regeneration.

    PubMed

    Langsdorf, Aliete; Do, Anh-Tri; Kusche-Gullberg, Marion; Emerson, Charles P; Ai, Xingbin

    2007-11-15

    Heparan sulfate proteoglycans (HSPGs) are required during muscle regeneration for regulating extracellular signaling pathways. HSPGs interact with growth factors and receptors through heparan sulfate (HS) chains. However, the regulatory mechanisms that control HS sulfation to affect the growth factor-dependent proliferation and differentiation of satellite cells are yet unknown. Here we report the essential functions of extracellular HS 6-O-endosulfatases (Sulfs) during muscle regeneration. We show that quiescent and activated satellite cells differentially express mouse Sulf1 (MSulf1) and MSulf2. MSulfs are not required for the formation of skeletal muscles and satellite cells, but they have redundant, essential roles to promote muscle regeneration, as MSulf double mutant mice exhibit delayed myogenic differentiation and prolonged Pax7 expression after cardiotoxin-induced skeletal muscle injury, while single MSulf knockouts regenerate normally. HS structural analysis demonstrates that Sulfs are regulatory HS-modifying enzymes that control HS 6-O-desulfation of activated satellite cells. Mechanistically, we show that MSulfs repress FGF2 signaling in activated satellite cells, leading us to propose that MSulfs are growth factor signaling sensors to control the proliferation to differentiation switch of satellite cells to initiate differentiation during regeneration. Our results establish Sulfs as essential regulators of HS-dependent growth factor signaling in the adult muscle stem cell niche.

  15. Akt1-Inhibitor of DNA binding2 is essential for growth cone formation and axon growth and promotes central nervous system axon regeneration

    PubMed Central

    Ko, Hyo Rim; Kwon, Il-Sun; Hwang, Inwoo; Jin, Eun-Ju; Shin, Joo-Ho; Brennan-Minnella, Angela M; Swanson, Raymond; Cho, Sung-Woo; Lee, Kyung-Hoon; Ahn, Jee-Yin

    2016-01-01

    Mechanistic studies of axon growth during development are beneficial to the search for neuron-intrinsic regulators of axon regeneration. Here, we discovered that, in the developing neuron from rat, Akt signaling regulates axon growth and growth cone formation through phosphorylation of serine 14 (S14) on Inhibitor of DNA binding 2 (Id2). This enhances Id2 protein stability by means of escape from proteasomal degradation, and steers its localization to the growth cone, where Id2 interacts with radixin that is critical for growth cone formation. Knockdown of Id2, or abrogation of Id2 phosphorylation at S14, greatly impairs axon growth and the architecture of growth cone. Intriguingly, reinstatement of Akt/Id2 signaling after injury in mouse hippocampal slices redeemed growth promoting ability, leading to obvious axon regeneration. Our results suggest that Akt/Id2 signaling is a key module for growth cone formation and axon growth, and its augmentation plays a potential role in CNS axonal regeneration. DOI: http://dx.doi.org/10.7554/eLife.20799.001 PMID:27938661

  16. Akt1-Inhibitor of DNA binding2 is essential for growth cone formation and axon growth and promotes central nervous system axon regeneration.

    PubMed

    Ko, Hyo Rim; Kwon, Il-Sun; Hwang, Inwoo; Jin, Eun-Ju; Shin, Joo-Ho; Brennan-Minnella, Angela M; Swanson, Raymond; Cho, Sung-Woo; Lee, Kyung-Hoon; Ahn, Jee-Yin

    2016-12-12

    Mechanistic studies of axon growth during development are beneficial to the search for neuron-intrinsic regulators of axon regeneration. Here, we discovered that, in the developing neuron from rat, Akt signaling regulates axon growth and growth cone formation through phosphorylation of serine 14 (S14) on Inhibitor of DNA binding 2 (Id2). This enhances Id2 protein stability by means of escape from proteasomal degradation, and steers its localization to the growth cone, where Id2 interacts with radixin that is critical for growth cone formation. Knockdown of Id2, or abrogation of Id2 phosphorylation at S14, greatly impairs axon growth and the architecture of growth cone. Intriguingly, reinstatement of Akt/Id2 signaling after injury in mouse hippocampal slices redeemed growth promoting ability, leading to obvious axon regeneration. Our results suggest that Akt/Id2 signaling is a key module for growth cone formation and axon growth, and its augmentation plays a potential role in CNS axonal regeneration.

  17. Extracellular Superoxide Dismutase: Growth Promoter or Tumor Suppressor?

    PubMed Central

    Laukkanen, Mikko O.

    2016-01-01

    Extracellular superoxide dismutase (SOD3) gene transfer to tissue damage results in increased healing, increased cell proliferation, decreased apoptosis, and decreased inflammatory cell infiltration. At molecular level, in vivo SOD3 overexpression reduces superoxide anion (O2−) concentration and increases mitogen kinase activation suggesting that SOD3 could have life-supporting characteristics. The hypothesis is further strengthened by the observations showing significantly increased mortality in conditional knockout mice. However, in cancer SOD3 has been shown to either increase or decrease cell proliferation and survival depending on the model system used, indicating that SOD3-derived growth mechanisms are not completely understood. In this paper, the author reviews the main discoveries in SOD3-dependent growth regulation and signal transduction. PMID:27293512

  18. PTHrP promotes malignancy of human oral cancer cell downstream of the EGFR signaling

    SciTech Connect

    Yamada, Tamaki; Tsuda, Masumi; Ohba, Yusuke Kawaguchi, Hideaki; Totsuka, Yasunori; Shindoh, Masanobu

    2008-04-11

    Parathyroid hormone-related protein (PTHrP) is detected in many aggressive tumors and involved in malignant conversion; however, the underlying mechanism remains obscure. Here, we identified PTHrP as a mediator of epidermal growth factor receptor (EGFR) signaling to promote the malignancies of oral cancers. PTHrP mRNA was abundantly expressed in most of the quiescent oral cancer cells, and was significantly upregulated by EGF stimulation via ERK and p38 MAPK. PTHrP silencing by RNA interference, as well as EGFR inhibitor AG1478 treatment, significantly suppressed cell proliferation, migration, and invasiveness. Furthermore, combined treatment of AG1478 and PTHrP knockdown achieved synergistic inhibition of malignant phenotypes. Recombinant PTHrP substantially promoted cell motility, and rescued the inhibition by PTHrP knockdown, suggesting the paracrine/autocrine function of PTHrP. These data indicate that PTHrP contributes to the malignancy of oral cancers downstream of EGFR signaling, and may thus provide a therapeutic target for oral cancer.

  19. Auxin homeostasis, signaling, and interaction with other growth hormones during the clubroot disease of Brassicaceae.

    PubMed

    Ludwig-Müller, Jutta

    2014-01-01

    The obligate biotrophic protist Plasmodiophora brassicae causes worldwide devastating losses on Brassica crops. Among these are oilseed rape, vegetable brassicas, and turnips. However, the fact that Arabidopsis thaliana is a good host for P. brassicae, has boosted research on the molecular interaction using the resources available for this model plant. Due to the uncontrolled growth of infected host root tissues the disease has been coined "clubroot." Consequently, during the last years, alterations in host hormone metabolisms have been described. Influencing the hormonal balance leads to aberrant growth responses in the clubbed roots. The discussion presented in the following will focus on growth promoting hormones, mainly auxins, with the interaction to other growth associated hormonal signaling pathways, such as cytokinins and brassinosteroids.

  20. A Hox complex activates and potentiates the Epidermal Growth Factor signaling pathway to specify Drosophila oenocytes.

    PubMed

    Wang, Guolun; Gutzwiller, Lisa; Li-Kroeger, David; Gebelein, Brian

    2017-07-01

    Hox transcription factors specify distinct cell types along the anterior-posterior axis of metazoans by regulating target genes that modulate signaling pathways. A well-established example is the induction of Epidermal Growth Factor (EGF) signaling by an Abdominal-A (Abd-A) Hox complex during the specification of Drosophila hepatocyte-like cells (oenocytes). Previous studies revealed that Abd-A is non-cell autonomously required to promote oenocyte fate by directly activating a gene (rhomboid) that triggers EGF secretion from sensory organ precursor (SOP) cells. Neighboring cells that receive the EGF signal initiate a largely unknown pathway to promote oenocyte fate. Here, we show that Abd-A also plays a cell autonomous role in inducing oenocyte fate by activating the expression of the Pointed-P1 (PntP1) ETS transcription factor downstream of EGF signaling. Genetic studies demonstrate that both PntP1 and PntP2 are required for oenocyte specification. Moreover, we found that PntP1 contains a conserved enhancer (PntP1OE) that is activated in oenocyte precursor cells by EGF signaling via direct regulation by the Pnt transcription factors as well as a transcription factor complex consisting of Abd-A, Extradenticle, and Homothorax. Our findings demonstrate that the same Abd-A Hox complex required for sending the EGF signal from SOP cells, enhances the competency of receiving cells to select oenocyte cell fate by up-regulating PntP1. Since PntP1 is a downstream effector of EGF signaling, these findings provide insight into how a Hox factor can both trigger and potentiate the EGF signal to promote an essential cell fate along the body plan.

  1. Alteration in temporal kinetics of Ca2+ signaling and control of growth and proliferation.

    PubMed

    Lipskaia, Larissa; Lompré, Anne-Marie

    2004-02-01

    Calcium is a ubiquitous second messenger controlling a broad range of cellular functions including growth and proliferation. Quiescent, hyperthrophic and proliferating cells have different types of calcium signal. In quiescent cells the calcium signal mostly involves elementary calcium events such as sparks and puffs, produced by localized Ca2+ release via a cluster of intracellular calcium channels, IP3 receptors and ryanodine receptors. This type of calcium signal promotes activation of the transcription factor CREB (cAMP response element binding protein) leading to cell cycle arrest in G1 phase via transactivation of p53/p21 signaling pathways. Proliferation is induced by phosphoinositide-coupled agonists and is associated with a sustained increase in cytosolic calcium due to 1.) enhanced excitability of IP3Rs after IP3 binding; 2.) enhanced activity of store-operated Ca2+ channels and T-type voltage-operated Ca2+ channels; 3.) decreased cytosolic Ca2+ removal due to inhibition of PMCA (plasma membrane Ca(2+)-ATPase) and SERCA (sarco/endoplasmic reticulum Ca(2+)-ATPase) calcium pumps. This type of calcium signal favors activation of the transcription factor NFAT (nuclear factor of activated T lymphocytes) that promotes hypertrophic growth and/or cell cycle progression. We suggest that the two main Ca(2+)-regulated transcription factors, CREB and NFAT, exert opposite control over cell growth and/or proliferation. Therapeutic strategies based on lowering intracellular Ca2+ or targeting of Ca(2+)-regulated transcription factors seems to be a promising approach to arrest growth and/or proliferation.

  2. Pericyte–fibroblast transition promotes tumor growth and metastasis

    PubMed Central

    Hosaka, Kayoko; Yang, Yunlong; Seki, Takahiro; Fischer, Carina; Dubey, Olivier; Fredlund, Erik; Hartman, Johan; Religa, Piotr; Ishii, Yoko; Sasahara, Masakiyo; Larsson, Ola; Cossu, Giulio; Cao, Renhai; Lim, Sharon; Cao, Yihai

    2016-01-01

    Vascular pericytes, an important cellular component in the tumor microenvironment, are often associated with tumor vasculatures, and their functions in cancer invasion and metastasis are poorly understood. Here we show that PDGF-BB induces pericyte–fibroblast transition (PFT), which significantly contributes to tumor invasion and metastasis. Gain- and loss-of-function experiments demonstrate that PDGF-BB-PDGFRβ signaling promotes PFT both in vitro and in in vivo tumors. Genome-wide expression analysis indicates that PDGF-BB–activated pericytes acquire mesenchymal progenitor features. Pharmacological inhibition and genetic deletion of PDGFRβ ablate the PDGF-BB–induced PFT. Genetic tracing of pericytes with two independent mouse strains, TN-AP-CreERT2:R26R-tdTomato and NG2-CreERT2:R26R-tdTomato, shows that PFT cells gain stromal fibroblast and myofibroblast markers in tumors. Importantly, coimplantation of PFT cells with less-invasive tumor cells in mice markedly promotes tumor dissemination and invasion, leading to an increased number of circulating tumor cells and metastasis. Our findings reveal a mechanism of vascular pericytes in PDGF-BB–promoted cancer invasion and metastasis by inducing PFT, and thus targeting PFT may offer a new treatment option of cancer metastasis. PMID:27608497

  3. Growth promotion effect of steelmaking slag on Spirulina platensis

    NASA Astrophysics Data System (ADS)

    Nogami, R.; Tam, L. T.; Anh, H. T. L.; Quynh, H. T. H.; Thom, L. T.; Nhat, P. V.; Thu, N. T. H.; Hong, D. D.; Wakisaka, M.

    2016-04-01

    A growth promotion effect of steelmaking slag on Spirulina platensis M135 was investigated. The growth promotion effect was obtained that was 1.27 times greater than that obtained by the control by adding 500 mg L-1 of steelmaking slag and culturing for 60 days. The lipid content decreased in a concentration-dependent manner with steelmaking slag, whereas the carbohydrate content remained constant. The protein content of S. platensis M135 increased in a concentration-dependent manner with steelmaking slag when cultured at day 45. The superoxide dismutase activity of S. platensis M135 exhibited a decreasing trend in a time-dependent manner and an increasing trend in the control. The superoxide dismutase activity was lower than that of the control at day 1 but was higher at day 30. No genetic damage was observed up to 500 mg L-1 of steelmaking slag at 30 days of culture. Recovery from genetic damage was observed at 1,000 mg L-1 of steelmaking slag but not at higher concentrations.

  4. Mechanisms of action of plant growth promoting bacteria.

    PubMed

    Olanrewaju, Oluwaseyi Samuel; Glick, Bernard R; Babalola, Olubukola Oluranti

    2017-10-06

    The idea of eliminating the use of fertilizers which are sometimes environmentally unsafe is slowly becoming a reality because of the emergence of microorganisms that can serve the same purpose or even do better. Depletion of soil nutrients through leaching into the waterways and causing contamination are some of the negative effects of these chemical fertilizers that prompted the need for suitable alternatives. This brings us to the idea of using microbes that can be developed for use as biological fertilizers (biofertilizers). They are environmentally friendly as they are natural living organisms. They increase crop yield and production and, in addition, in developing countries, they are less expensive compared to chemical fertilizers. These biofertilizers are typically called plant growth-promoting bacteria (PGPB). In addition to PGPB, some fungi have also been demonstrated to promote plant growth. Apart from improving crop yields, some biofertilizers also control various plant pathogens. The objective of worldwide sustainable agriculture is much more likely to be achieved through the widespread use of biofertilizers rather than chemically synthesized fertilizers. However, to realize this objective it is essential that the many mechanisms employed by PGPB first be thoroughly understood thereby allowing workers to fully harness the potentials of these microbes. The present state of our knowledge regarding the fundamental mechanisms employed by PGPB is discussed herein.

  5. A biosensor for organoarsenical herbicides and growth promoters

    PubMed Central

    Chen, Jian; Sun, Samio; Li, Chen-Zhong; Zhu, Yong-Guan; Rosen, Barry P.

    2014-01-01

    The toxic metalloid arsenic is widely distributed in food, water, and soil. While inorganic arsenic enters the environment primarily from geochemical sources, methylarsenicals either result from microbial biotransformation of inorganic arsenic or are introduced anthropogenically. Methylarsenicals such as monosodium methylarsonic acid (MSMA) have been extensively utilized as herbicides, and aromatic arsenicals such as roxarsone (Rox) are used as growth promoters for poultry and swine. Organoarsenicals are degraded to inorganic arsenic. The toxicological effects of arsenicals depend on their oxidation state, chemical composition, and bioavailability. Here we report that the active forms are the trivalent arsenic-containing species. We constructed a whole-cell biosensor utilizing a modified ArsR repressor that is highly selective toward trivalent methyl and aromatic arsenicals, with essentially no response to inorganic arsenic. The biosensor was adapted for in vitro detection of organoarsenicals using fluorescence anisotropy of ArsR-DNA interactions. It detects bacterial biomethylation of inorganic arsenite both in vivo and in vitro with detection limits of 10−7 M and linearity to 10−6 M for phenylarsenite and 5×10−6 M for methylarsenite. The biosensor detects reduced forms of MSMA and roxarsone and offers a practical, low cost method for detecting activate forms and breakdown products of organoarsenical herbicides and growth promoters. PMID:24359149

  6. Senescence from glioma stem cell differentiation promotes tumor growth

    SciTech Connect

    Ouchi, Rie; Okabe, Sachiko; Migita, Toshiro; Nakano, Ichiro; Seimiya, Hiroyuki

    2016-02-05

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.

  7. DOSAGE-DEPENDENT REGULATION OF PANCREATIC CANCER GROWTH AND ANGIOGENESIS BY HEDGEHOG SIGNALING

    PubMed Central

    Mathew, Esha; Zhang, Yaqing; Holtz, Alexander M.; Kane, Kevin T.; Song, Jane Y.; Allen, Benjamin L.; Pasca di Magliano, Marina

    2014-01-01

    Summary Pancreatic cancer, a hypovascular and highly desmoplastic cancer, is characterized by tumor expression of Hedgehog (HH) ligands which signal to fibroblasts in the surrounding stroma that in turn promote tumor survival and growth. However, the mechanisms and consequences of stromal HH pathway activation are not well understood. Here we show that the HH co-receptors GAS1, BOC, and CDON are expressed in cancer-associated fibroblasts. Deletion of two co-receptors (Gas1 and Boc) in fibroblasts reduces HH-responsiveness. Strikingly, these fibroblasts promote greater tumor growth in vivo that correlates with increased tumor-associated vascularity. In contrast, deletion of all three co-receptors (Gas1, Boc and Cdon) results in the near complete abrogation of HH signaling and a corresponding failure to promote tumorigenesis and angiogenesis. Collectively, these data identify a novel role for HH-dosage in pancreatic cancer promotion and may explain the clinical failure of HH pathway blockade as a therapeutic approach in pancreatic cancer. PMID:25310976

  8. Small molecules dorsomorphin and LDN-193189 inhibit myostatin/GDF8 signaling and promote functional myoblast differentiation.

    PubMed

    Horbelt, Daniel; Boergermann, Jan H; Chaikuad, Apirat; Alfano, Ivan; Williams, Eleanor; Lukonin, Ilya; Timmel, Tobias; Bullock, Alex N; Knaus, Petra

    2015-02-06

    GDF8, or myostatin, is a member of the TGF-β superfamily of secreted polypeptide growth factors. GDF8 is a potent negative regulator of myogenesis both in vivo and in vitro. We found that GDF8 signaling was inhibited by the small molecule ATP competitive inhibitors dorsomorphin and LDN-193189. These compounds were previously shown to be potent inhibitors of BMP signaling by binding to the BMP type I receptors ALK1/2/3/6. We present the crystal structure of the type II receptor ActRIIA with dorsomorphin and demonstrate that dorsomorphin or LDN-193189 target GDF8 induced Smad2/3 signaling and repression of myogenic transcription factors. As a result, both inhibitors rescued myogenesis in myoblasts treated with GDF8. As revealed by quantitative live cell microscopy, treatment with dorsomorphin or LDN-193189 promoted the contractile activity of myotubular networks in vitro. We therefore suggest these inhibitors as suitable tools to promote functional myogenesis.

  9. Triiodothyronine inhibits transcription from the human growth hormone promoter.

    PubMed

    Morin, A; Louette, J; Voz, M L; Tixier-Vidal, A; Belayew, A; Martial, J A

    1990-07-09

    Three DNA constructs, the natural human growth hormone gene (hGH-hGH) its 500 bp promoter linked to the chloramphenicol acetyl transferase reporter gene (hGH-CAT), and its structural part linked to the herpes virus thymidine kinase promoter (TK-hGH) were introduced into rat pituitary GC cells by DEAE-dextran transfection. Transient expression was followed as a function of triiodothyronine (T3) concentration. The hGH-CAT expression was specifically inhibited by T3 following a typical dose-response curve while hGH-GH gene expression was not significantly modified. The transient expression of TK-hGH increased as a function of T3 concentration. These results indicate that T3 exerts two opposite effects on hGH gene expression. First, it down-regulates expression by acting on the promoter; second, it up-regulates expression by acting on the structural part of the gene. These action could be due to regulation of transcription and mRNA stabilization, respectively.

  10. Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria.

    PubMed

    do Amaral, Fernanda P; Pankievicz, Vânia C S; Arisi, Ana Carolina M; de Souza, Emanuel M; Pedrosa, Fabio; Stacey, Gary

    2016-04-01

    Plant growth promoting rhizobacteria (PGPR) can associate and enhance the growth of important crop grasses. However, in most cases, the molecular mechanisms responsible for growth promotion are not known. Such research could benefit by the adoption of a grass model species that showed a positive response to bacterial inoculation and was amenable to genetic and molecular research methods. In this work we inoculated different genotypes of the model grass Brachypodium distachyon with two, well-characterized PGPR bacteria, Azospirillum brasilense and Herbaspirillum seropedicae, and evaluated the growth response. Plants were grown in soil under no nitrogen or with low nitrogen (i.e., 0.5 mM KNO3). A variety of growth parameters (e.g., shoot height, root length, number of lateral roots, fresh and dry weight) were measured 35 days after inoculation. The data indicate that plant genotype plays a very important role in determining the plant response to PGPR inoculation. A positive growth response was observed with only four genotypes grown under no nitrogen and three genotypes tested under low nitrogen. However, in contrast, relatively good root colonization was seen with most genotypes, as measured by drop plate counting and direct, microscopic examination of roots. In particular, the endophytic bacteria H. seropedicae showed strong epiphytic and endophytic colonization of roots.

  11. Tuberatolide B Suppresses Cancer Progression by Promoting ROS-Mediated Inhibition of STAT3 Signaling

    PubMed Central

    Choi, Youn Kyung; Kim, Junseong; Lee, Kang Min; Choi, Yu-Jeong; Ye, Bo-Ram; Kim, Min-Sun; Ko, Seong-Gyu; Lee, Seung-Hong; Kang, Do-Hyung; Heo, Soo-Jin

    2017-01-01

    Tuberatolide B (TTB, C27H34O4) is a diastereomeric meroterpenoid isolated from the Korean marine algae Sargassum macrocarpum. However, the anticancer effects of TTB remain unknown. In this study, we demonstrate that TTB inhibits tumor growth in breast, lung, colon, prostate, and cervical cancer cells. To examine the mechanism by which TTB suppresses cell growth, we determined the effect of TTB on apoptosis, ROS generation, DNA damage, and signal transduction. TTB induced ROS production in MDA-MB-231, A549, and HCT116 cells. Moreover, TTB enhanced DNA damage by inducing γH2AX foci formation and the phosphorylation of DNA damage-related proteins such as Chk2 and H2AX. Furthermore, TTB selectively inhibited STAT3 activation, which resulted in a reduction in cyclin D1, MMP-9, survivin, VEGF, and IL-6. In addition, TTB-induced ROS generation caused STAT3 inhibition, DNA damage, and apoptotic cell death. Therefore, TTB suppresses cancer progression by promoting ROS-mediated inhibition of STAT3 signaling, suggesting that TTB is useful for the treatment of cancer. PMID:28245605

  12. Tuberatolide B Suppresses Cancer Progression by Promoting ROS-Mediated Inhibition of STAT3 Signaling.

    PubMed

    Choi, Youn Kyung; Kim, Junseong; Lee, Kang Min; Choi, Yu-Jeong; Ye, Bo-Ram; Kim, Min-Sun; Ko, Seong-Gyu; Lee, Seung-Hong; Kang, Do-Hyung; Heo, Soo-Jin

    2017-02-25

    Tuberatolide B (TTB, C27H34O₄) is a diastereomeric meroterpenoid isolated from the Korean marine algae Sargassum macrocarpum. However, the anticancer effects of TTB remain unknown. In this study, we demonstrate that TTB inhibits tumor growth in breast, lung, colon, prostate, and cervical cancer cells. To examine the mechanism by which TTB suppresses cell growth, we determined the effect of TTB on apoptosis, ROS generation, DNA damage, and signal transduction. TTB induced ROS production in MDA-MB-231, A549, and HCT116 cells. Moreover, TTB enhanced DNA damage by inducing γH2AX foci formation and the phosphorylation of DNA damage-related proteins such as Chk2 and H2AX. Furthermore, TTB selectively inhibited STAT3 activation, which resulted in a reduction in cyclin D1, MMP-9, survivin, VEGF, and IL-6. In addition, TTB-induced ROS generation caused STAT3 inhibition, DNA damage, and apoptotic cell death. Therefore, TTB suppresses cancer progression by promoting ROS-mediated inhibition of STAT3 signaling, suggesting that TTB is useful for the treatment of cancer.

  13. Phosphoinositide 3-kinase signaling to Akt promotes keratinocyte differentiation versus death.

    PubMed

    Calautti, Enzo; Li, Jian; Saoncella, Stefania; Brissette, Janice L; Goetinck, Paul F

    2005-09-23

    Signaling pathways regulating the differentiation program of epidermal cells overlap widely with those activated during apoptosis. How differentiating cells remain protected from premature death, however, is still poorly defined. We show here that the phosphoinositide 3-kinase (PI3K)/Akt pathway is activated at early stages of mouse keratinocyte differentiation both in culture and in the intact epidermis in vivo. Expression of active Akt in keratinocytes promotes growth arrest and differentiation, whereas pharmacological blockade of PI3K inhibits the expression of "late" differentiation markers and leads to death of cells that would otherwise differentiate. Mechanistically, the activation of the PI3K/Akt pathway in keratinocyte differentiation depends on the activity of the epidermal growth factor receptor and Src families of tyrosine kinases and the engagement of E-cadherin-mediated adhesion. During this process, PI3K associates increasingly with cadherin-catenin protein complexes bearing tyrosine phosphorylated YXXM motifs. Thus, the PI3K signaling pathway regulates the choice between epidermal cell differentiation and death at the cross-talk between tyrosine kinases and cadherin-associated catenins.

  14. Phosphorylation of Notch1 by Pim kinases promotes oncogenic signaling in breast and prostate cancer cells

    PubMed Central

    Vahtera, Laura; Ylä-Pelto, Jani; Paloniemi, Elina; Imanishi, Susumu Y.; Corthals, Garry; Varjosalo, Markku; Manoharan, Ganesh Babu; Uri, Asko; Lendahl, Urban; Sahlgren, Cecilia; Koskinen, Päivi J.

    2016-01-01

    Tumorigenesis is a multistep process involving co-operation between several deregulated oncoproteins. In this study, we unravel previously unrecognized interactions and crosstalk between Pim kinases and the Notch signaling pathway, with implications for both breast and prostate cancer. We identify Notch1 and Notch3, but not Notch2, as novel Pim substrates and demonstrate that for Notch1, the serine residue 2152 is phosphorylated by all three Pim family kinases. This target site is located in the second nuclear localization sequence (NLS) of the Notch1 intracellular domain (N1ICD), and is shown to be important for both nuclear localization and transcriptional activity of N1ICD. Phosphorylation-dependent stimulation of Notch1 signaling promotes migration of prostate cancer cells, balances glucose metabolism in breast cancer cells, and supports in vivo growth of both types of cancer cells on chick embryo chorioallantoic membranes. Furthermore, Pim-induced growth of orthotopic prostate xenografts in mice is associated with enhanced nuclear Notch1 activity. Finally, simultaneous inhibition of Pim and Notch abrogates the cellular responses more efficiently than individual treatments, opening up new vistas for combinatorial cancer therapy. PMID:27281612

  15. Comparison of melatonin with growth factors in promoting precursor cells proliferation in adult mouse subventricular zone

    PubMed Central

    Sotthibundhu, Areechun; Ekthuwapranee, Kasima; Govitrapong, Piyarat

    2016-01-01

    Melatonin, secreted mainly by the pineal gland, plays roles in various physiological functions including protecting cell death. We showed in previous study that the proliferation and differentiation of precursor cells from the adult mouse subventricular zone (SVZ) can be modulated by melatonin via the MT1 melatonin receptor. Since melatonin and epidermal growth factor receptor (EGFR) share some signaling pathway components, we investigated whether melatonin can promote the proliferation of precursor cells from the adult mouse SVZ via the extracellular signal-regulated protein kinase /mitogen-activated protein kinase (ERK/MAPK) pathways in comparison with epidermal growth factor (EGF). Melatonin-induced ERK/MAPK pathways compared with EGF were measured by using in vitro and vivo models. We used neurosphere proliferation assay, immunocytochemistry, and immuno-blotting to analyze significant differences between melatonin and growth factor treatment. We also used specific antagonist and inhibitors to confirm the exactly signaling pathway including luzindole and U0126. We found that significant increase in proliferation was observed when two growth factors (EGF+bFGF) and melatonin were used simultaneously compared with EGF + bFGF or compared with melatonin alone. In addition, the present result suggested the synergistic effect occurred of melatonin and growth factors on the activating the ERK/MAPK pathway. This study exhibited that melatonin could act as a trophic factor, increasing proliferation in precursor cells mediated through the melatonin receptor coupled to ERK/MAPK signaling pathways. Understanding the mechanism by which melatonin regulates precursor cells may conduct to the development of novel strategies for neurodegenerative disease therapy. PMID:28275319

  16. Growth hormone STAT5-mediated signaling and its modulation in mice liver during the growth period.

    PubMed

    Martinez, Carolina S; Piazza, Verónica G; Ratner, Laura D; Matos, Marina N; González, Lorena; Rulli, Susana B; Miquet, Johanna G; Sotelo, Ana I

    2013-01-01

    Postnatal growth exhibits two instances of rapid growth in mice: the first is perinatal and independent of growth hormone (GH), the second is peripuberal and GH-dependent. Signal transducer and activator of transcription 5b (STAT5b) is the main GH-signaling mediator and it is related to IGF1 synthesis and somatic growth. The aim of this work was to assess differential STAT5 sensitivity to GH during the growth period in mouse liver of both sexes. Three representative ages were selected: 1-week-old animals, in the GH-independent phase of growth; 2.5-week-old mice, at the onset of the GH-dependent phase of growth; and 9-week-old young adults. GH-signaling mediators were assessed by immunoblotting, quantitative RT-PCR and immunohistochemistry. GH-induced STAT5 phosphorylation is low at one-week and maximal at 2.5-weeks of age when compared to young adults, accompanied by higher protein content at the onset of growth. Suppressor CIS and phosphatase PTP1B exhibit high levels in one-week animals, which gradually decline, while SOCS2 and SOCS3 display higher levels at adulthood. Nuclear phosphorylated STAT5 is low in one-week animals while in 2.5-week animals it is similar to 9-week control; expression of SOCS3, an early response GH-target gene, mimics this pattern. STAT5 coactivators glucocorticoid receptor (GR) and hepatic nuclear factor 1 (HNF1) abundance is higher in adulthood. Therefore, GH-induced STAT5 signaling presents age-dependent activity in liver, with its maximum coinciding with the onset of GH-dependent phase of growth, accompanied by an age-dependent variation of modulating factors. This work contributes to elucidate the molecular mechanisms implicated in GH responsiveness during growth.

  17. Neurotensin, a novel target of Wnt/β-catenin pathway, promotes growth of neuroendocrine tumor cells

    PubMed Central

    Kim, Ji Tae; Liu, Chunming; Zaytseva, Yekaterina Y.; Weiss, Heidi L.; Townsend, Courtney M.; Evers, B. Mark

    2014-01-01

    Wnt/β-catenin signaling plays a pivotal role in regulating cell growth and differentiation by activation of the β-catenin/T-cell factor (TCF) complex and subsequent regulation of a set of target genes that have one or more TCF-binding elements (TBEs). Hyperactivation of this pathway has been implicated in numerous malignancies including human neuroendocrine tumors (NETs). Neurotensin (NT), an intestinal hormone, induces proliferation of several gastrointestinal (GI) cancers including cancers of the pancreas and colon. Here, we analyzed the human NT promoter in silico and found at least four consensus TBEs within the proximal promoter region. Using a combination of ChIP and luciferase reporter assays, we identified one TBE (located approximately 900 bp proximal from the transcription start site) that was immunoprecipitated efficiently by TCF4-targeting antibody; mutation of this site attenuated the responsiveness to β-catenin. We also confirmed that the promoter activity and the mRNA and protein expression levels of NT were increased by various Wnt pathway activators and decreased by Wnt inhibitors in NET cell lines BON and QGP-1, which express and secrete NT. Similarly, the intracellular content and secretion of NT were induced by Wnt3a in these cells. Finally, inhibition of NT signaling suppressed cell proliferation and anchorage-independent growth and decreased expression levels of growth-related proteins in NET cells. Our results indicate that NT is a direct target of the Wnt/β-catenin pathway and may be a mediator for NET cell growth. PMID:25098665

  18. Carboxypeptidase Z (CPZ) links thyroid hormone and Wnt signaling pathways in growth plate chondrocytes.

    PubMed

    Wang, Lai; Shao, Yvonne Y; Ballock, R Tracy

    2009-02-01

    Carboxypeptidase Z (CPZ) removes carboxyl-term