J. Y. Zhu; C. T. Scott; K. L. Scallon; G. C. Myers
2006-01-01
This study demonstrated that average ring width (or average annual radial growth rate) is a reliable parameter to quantify the effects of tree plantation ndensity (growth suppression) on wood density and tracheid anatomical properties. The average ring width successfully correlated wood density and tracheid anatomical properties of red pines (Pinus resinosa Ait.) from...
Teng, Li; Xing-Yuan, He; Zhen-Ju, Chen
2014-07-01
Mongolian oak is one of the most important broad-leaved tree species in forests, Northeast China. Based on the methodology of dendrochronology, the variations of tree ring radial growth of Mongolian oak in Qianshan Mountains, south of Northeast China, were analyzed. Combined with the temperature and precipitation data from meteorological stations since 1951, the relationships between standardized tree ring width chronology and main climatic factors were analyzed. In this region, the precipitation between April and July of the current year had an significant relationship with the tree ring width of Mongolian oak, and was the main factor limiting the radial growth. The extreme maximum temperature of May was also a key factor influencing the tree ring width, which had a significant on the tree ring width of Mongolian oak. The precipitation in April had a significant and stable relationship with the growth of Mongolian oak since the 1950s. The 'divergence problem' was found in the study area, which the sensitivity of tree growth to summer temperature reduced since the 1980s. The tree growth response to temperature showed a seasonal change from summer to spring.
Differences in delta13C and diameter growth among remnant Scots pine populations in Scotland.
Brendel, Oliver; Handley, Linda; Griffiths, Howard
2002-10-01
Published data suggest that differences in wood cellulose carbon isotope composition (delta13C) and xylem ring width among natural populations of Scots pine in Scotland (Pinus sylvestris L.) are attributable to the persistence of palaeotypes of various post-glacial migratory origins. We assessed differences in wood cellulose delta13C and ring width among Scottish Scots pine populations grown in a clone bank and in natural stands at various locations in northern and central Scotland. Ring width and wood cellulose delta13C varied significantly among natural stands. Potential water deficit was positively correlated with wood cellulose delta13C and xylem ring width in the natural stands. Neither wood cellulose delta13C nor xylem ring width of clone bank trees correlated with any climate variables at the sites from which the trees originated, indicating little adaptation to climate for these traits. Xylem ring width showed a site x population interaction for the growth sites (i.e., natural stands versus clone bank), but wood cellulose delta13C did not. These results suggest that climate variation in Scotland has not resulted in significant genetic variation in wood cellulose delta13C or xylem ring width in post-glacial populations.
Sheppard, P.R.; Ort, M.H.; Anderson, K.C.; Clynne, M.A.; May, E.M.
2009-01-01
Two dendrochronological properties – ring width and ring chemistry – were investigated in trees near Cinder Cone in Lassen Volcanic National Park, northeastern California, for the purpose of re-evaluating the date of its eruption. Cinder Cone is thought to have erupted in AD 1666 based on ring-width evidence, but interpreting ring-width changes alone is not straightforward because many forest disturbances can cause changes in ring width. Old Jeffrey pines growing in Cinder Cone tephra and elsewhere for control comparison were sampled. Trees growing in tephra show synchronous ring-width changes at AD 1666, but this ring-width signal could be considered ambiguous for dating the eruption because changes in ring width can be caused by other events. Trees growing in tephra also show changes in ring phosphorus, sulfur, and sodium during the late 1660s, but inter-tree variability in dendrochemical signals makes dating the eruption from ring chemistry alone difficult. The combination of dendrochemistry and ring-width signals improves confidence in dating the eruption of Cinder Cone over the analysis of just one ring-growth property. These results are similar to another case study using dendrochronology of ring width and ring chemistry at Parícutin, Michoacán, Mexico, a cinder cone that erupted beginning in 1943. In both cases, combining analysis with ring width and ring chemistry improved confidence in the dendro-dating of the eruptions.
Douglas J. Stevenson; Thomas B. Lynch; James M. Guldin
2013-01-01
Width reduction in growth rings in shortleaf pine (Pinus echinata Mill.) following glaze ice conditions produces a characteristic pattern dependent on live-crown ratio and extent of crown loss. Ring widths of 133 trees for 3 years preceding and 7 years following the December 2000 ice storm (Bragg and others 2002) in western Arkansas and eastern...
NASA Astrophysics Data System (ADS)
Sullivan, Patrick F.; Pattison, Robert R.; Brownlee, Annalis H.; Cahoon, Sean M. P.; Hollingsworth, Teresa N.
2016-11-01
Boreal forests are critical sinks in the global carbon cycle. However, recent studies have revealed increasing frequency and extent of wildfires, decreasing landscape greenness, increasing tree mortality and declining growth of black and white spruce in boreal North America. We measured ring widths from a large set of increment cores collected across a vast area of interior Alaska and examined implications of data processing decisions for apparent trends in black and white spruce growth. We found that choice of detrending method had important implications for apparent long-term growth trends and the strength of climate-growth correlations. Trends varied from strong increases in growth since the Industrial Revolution, when ring widths were detrended using single-curve regional curve standardization (RCS), to strong decreases in growth, when ring widths were normalized by fitting a horizontal line to each ring width series. All methods revealed a pronounced growth peak for black and white spruce centered near 1940. Most detrending methods showed a decline from the peak, leaving recent growth of both species near the long-term mean. Climate-growth analyses revealed negative correlations with growing season temperature and positive correlations with August precipitation for both species. Multiple-curve RCS detrending produced the strongest and/or greatest number of significant climate-growth correlations. Results provide important historical context for recent growth of black and white spruce. Growth of both species might decline with future warming, if not mitigated by increasing precipitation. However, widespread drought-induced mortality is probably not imminent, given that recent growth was near the long-term mean.
Comparative Analysis of Growth Rings in Perennial Forbs Grown in an Alpine Restoration Experiment
DIETZ, H.; FATTORINI, M.
2002-01-01
Recent studies have demonstrated that growth rings are widespread in the roots of forbs, and there is evidence that the rings are formed annually. However, the annual nature and development of the growth rings has not yet been examined in comparative experimental studies. In this study growth rings were analysed in the main roots of four alpine forbs (Lotus alpinus, Trifolium thalii, Silene willdenowii and Potentilla aurea) that were grown in an alpine restoration experiment for 6 years. All individuals of L. alpinus and T. thalii, and some individuals of S. willdenowii showed six clearly demarcated growth rings, demonstrating that the rings were formed annually. P. aurea did not show distinguishable growth rings. In L. alpinus and T. thalii there were fluctuations in growth ring width that were consistent between individuals and also between species, and matched variations in climatic growth conditions. Results of the present study indicate that conclusions drawn from previous studies suggesting that growth rings in the roots of forb species are most likely formed annually are also valid for alpine plants. In terms of annual ring width patterns, this study also provides the first strong evidence for consistent responses of different forb species and individuals to commonly experienced variations in habitat conditions. PMID:12466107
H.J. Renninger; B.L. Gartner; F.C. Meinzer
2006-01-01
We assessed differences in growth-ring width, specific conductivity (Ks), tracheid dimensions, moisture content, and wood density in suppressed Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and western hemlock (Tsuga heterophylla (Raf.) Sarg.) trees and trees released from suppression. Growth-ring width was 370 percent...
Climate change at upper treeline: How do trees on the edge react to increasing temperatures?
NASA Astrophysics Data System (ADS)
Jochner, Matthias; Bugmann, Harald; Nötzli, Magdalena; Bigler, Christof
2017-04-01
Treeline ecotones are thought to be particularly sensitive to climate warming, and an alteration of their growth conditions may have important implications for the ecosystem services they supply in mountain regions. We use a novel approach to quantify effects of a changing climate on tree growth, using case studies in the European Alps. We compiled tree-ring data from almost 600 trees of four species at treeline in three climate regions of Switzerland. Temperature loggers installed along transects provided data for a precise interpolation of temperatures experienced by the sampled trees. To assess the influence of temperature on annual growth, we used linear mixed-effects models, allowing us to quantify effect sizes and to account for between-tree growth variability. After removing biological growth trends, we isolated temporal trends of ring-width indices. Furthermore, we fitted non-linear regression models to radial growth rates of individual years with temperature and tree age as predicting covariates for a fine-scale investigation of the temperature dependency of tree growth. For all species, climate-growth linear mixed-effects models indicated strong positive responses of ring-width indices to temperature in early summer and previous year's autumn, featuring considerable between-tree variability. All species showed positive ring-width index trends at treeline but different interactions with elevation: Larix decidua exhibited a declining ring-width index trend with decreasing elevation, whereas Picea abies, Pinus cembra and Pinus mugo showed increasing and/or stable trends. Not only reflected our findings the effects of ameliorated growth conditions, they might have also revealed suspected negative and positive feedbacks of climate change on growth, and increased the knowledge about the functional form and parameterization of the temperature dependency of tree growth.
J. Y. Zhu; C. Tim Scott; Karen L. Scallon; Gary C. Myers
2007-01-01
This study demonstrated that average ring width (or average annual radial growth rate) is a reliable parameter to quantify the effects of tree plantation density (growth suppression) on wood density and tracheid anatomical properties. The average ring width successfully correlated wood density and tracheid anatomical properties of red pines (Pinus resinosa Ait.) from a...
Reconstruction of late Holocene climate based on tree growth and mechanistic hierarchical models
Tipton, John; Hooten, Mevin B.; Pederson, Neil; Tingley, Martin; Bishop, Daniel
2016-01-01
Reconstruction of pre-instrumental, late Holocene climate is important for understanding how climate has changed in the past and how climate might change in the future. Statistical prediction of paleoclimate from tree ring widths is challenging because tree ring widths are a one-dimensional summary of annual growth that represents a multi-dimensional set of climatic and biotic influences. We develop a Bayesian hierarchical framework using a nonlinear, biologically motivated tree ring growth model to jointly reconstruct temperature and precipitation in the Hudson Valley, New York. Using a common growth function to describe the response of a tree to climate, we allow for species-specific parameterizations of the growth response. To enable predictive backcasts, we model the climate variables with a vector autoregressive process on an annual timescale coupled with a multivariate conditional autoregressive process that accounts for temporal correlation and cross-correlation between temperature and precipitation on a monthly scale. Our multi-scale temporal model allows for flexibility in the climate response through time at different temporal scales and predicts reasonable climate scenarios given tree ring width data.
Anomalous dark growth rings in black cherry
Robert P. Long; David W. Trimpey; Michael C. Wiemann; Susan L. Stout
2012-01-01
Anomalous dark growth rings have been observed in black cherry (Prunus serotina) sawlogs from northwestern Pennsylvania making the logs unsuitable for veneer products. Thirty-six cross sections with dark rings, each traceable to one of ten stands, were obtained from a local mill and sections were dated and annual ring widths were measured. One or...
Arbellay, Estelle; Jarvis, Ingrid; Chavardès, Raphaël D; Daniels, Lori D; Stoffel, Markus
2018-05-19
Reconstructions of defoliation by larch bud moth (LBM, Zeiraphera diniana Gn.) based on European larch (Larix decidua Mill.) tree rings have unraveled outbreak patterns over exceptional temporal and spatial scales. In this study, we conducted tree-ring analyses on 105 increment cores of European larch from the Valais Alps, Switzerland. The well-documented history of LBM outbreaks in Valais provided a solid baseline for evaluating the LBM defoliation signal in multiple tree-ring parameters. First, we used tree-ring width measurements along with regional records of LBM outbreaks to reconstruct the occurrence of these events at two sites within the Swiss Alps. Second, we measured earlywood width, latewood width and blue intensity, and compared these parameters with tree-ring width to assess the capacity of each proxy to detect LBM defoliation. A total of six LBM outbreaks were reconstructed for the two sites between AD 1850 and 2000. Growth suppression induced by LBM was, on average, highest in latewood width (59%), followed by total ring width (54%), earlywood width (51%) and blue intensity (26%). We show that latewood width and blue intensity can improve the temporal accuracy of LBM outbreak reconstructions, as both proxies systematically detected LBM defoliation in the first year it occurred, as well as the differentiation between defoliation and non-defoliation years. This study introduces blue intensity as a promising new proxy of insect defoliation and encourages its use in conjunction with latewood width.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacoby, G.C.; D`Arrigo, R.D.; Davaajamts, T.
A 450-year tree-ring width chronology of Siberian pine (Pinus sibirica Du Tour) growing at timberline (2450 meters) in the Tarvagatay Mountains in west central Mongolia shows wide annual growth rings for the recent century. Ecological site observations and comparisons with instrumental temperature records indicate that the ring widths of these trees are sensitive to annual temperature variations. Low-frequency variations in the Tarvagatay tree-ring record are similar to those in a reconstruction of Arctic annual temperatures, which is based on 20 tree-ring width series from northern North America, Scandinavia, and western Russia. The results indicate that recent warming is unusual relativemore » to temperatures of the past 450 years. 29 refs., 2 figs.« less
Strip-Bark Morphology and Radial Growth Trends in Ancient Pinus sibirica Trees From Central Mongolia
NASA Astrophysics Data System (ADS)
Leland, Caroline; Cook, Edward R.; Andreu-Hayles, Laia; Pederson, Neil; Hessl, Amy; Anchukaitis, Kevin J.; Byambasuren, Oyunsanaa; Nachin, Baatarbileg; Davi, Nicole; D'Arrigo, Rosanne; Griffin, Kevin; Bishop, Daniel A.; Rao, Mukund Palat
2018-03-01
Some of the oldest and most important trees used for dendroclimatic reconstructions develop strip-bark morphology, in which only a portion of the stem contains living tissue. Yet the ecophysiological factors initiating strip bark and the potential effect of cambial dieback on annual ring widths and tree-ring estimates of past climate remain poorly understood. Using a combination of field observations and tree-ring data, we investigate the causes and timing of cambial dieback events in Pinus sibirica strip-bark trees from central Mongolia and compare the radial growth rates and trends of strip-bark and whole-bark trees over the past 515 years. Results indicate that strip bark is more common on the southern aspect of trees, and dieback events were most prevalent in the 19th century, a cold and dry period. Further, strip-bark and whole-bark trees have differing centennial trends, with strip-bark trees exhibiting notably large increases in ring widths at the beginning of the 20th century. We find a steeper positive trend in the strip-bark chronology relative to the whole-bark chronology when standardizing with age-dependent splines. We hypothesize that localized warming on the southern side of stems due to solar irradiance results in physiological damage and dieback and leads to increasing tree-ring increment along the living portion of strip-bark trees. Because the impact of cambial dieback on ring widths likely varies depending on species and site, we suggest conducting a comparison of strip-bark and whole-bark ring widths before statistically treating ring-width data for climate reconstructions.
NASA Astrophysics Data System (ADS)
Leland, C.; Cook, E. R.; Andreu-Hayles, L.; Pederson, N.; Hessl, A. E.; Anchukaitis, K. J.; Byambasuren, O.; Nachin, B.; Davi, N. K.; D'Arrigo, R.; Griffin, K. L.; Bishop, D. A.; Rao, M. P.
2017-12-01
Ancient trees can exhibit strip-bark morphology in which a portion of the cambium, the active layer of growth in the stem, dies in response to environmental stress. Partial cambial dieback has been linked to several different ecological and physiological factors, but the causes of dieback vary depending on site conditions. Further, the implications of such morphology on radial growth trends and its importance for tree-ring-based climate reconstructions remain unclear. We investigate the timing and potential environmental drivers of cambial dieback in Pinus sibirica trees from a xeric site in central Mongolia, and compare growth patterns of strip and whole-bark (full cambium) trees over the past 500 years. Cambial dieback occurred primarily on the southern side of trees, and was most common during the cold and dry 19th century. These unfavorable climatic conditions, combined with high exposure to solar radiation, suggested by the orientation of strip bark, might be responsible for cambial dieback. Increasing ring-width trends are gradual in most strip-bark trees, and do not immediately follow dieback dates detected for individual stems. However, a mean ring-width chronology of all strip-bark trees abruptly increases and significantly exceeds ring widths of coeval whole-bark trees in the early 20th century. After standardizing strip and whole-bark series to remove allometric trends, the differences in recent growth trends persist. Before using strip-bark trees for climate reconstruction, we suggest comparing strip and whole-bark ring-width trends in order to determine appropriate methods for removing potential morphology-related growth trends. We extend this study by analyzing stable carbon isotopes in tree rings to evaluate whether there are physiological differences between strip-bark and whole-bark trees, and to determine if δ13C can be used as an additional parameter for climate reconstruction.
Kilpeläinen, Antti; Peltola, Heli; Ryyppö, Aija; Kellomäki, Seppo
2005-01-01
Growth and wood properties of 20-year-old Scots pine (Pinus sylvestris L.) trees were studied for 6 years in 16 closed chambers providing a factorial combination of two temperature regimes (ambient and elevated) and two carbon dioxide concentrations ([CO2]) (ambient and twice ambient). The elevation of temperature corresponded to the predicted effect at the site of a doubling in atmospheric [CO2]. Annual height and radial growth and wood properties were analyzed during 1997-2002. Physical wood properties analyzed included early- and latewood widths and their proportions, intra-ring wood densities, early- and latewood density and mean fiber length. Chemical wood properties analyzed included concentrations of acetone-soluble extractives, lignin, cellulose and hemicellulose. There were no significant treatment effects on height growth during the 6-year study. Elevated [CO2] increased ring width by 66 and 47% at ambient and elevated temperatures, respectively. At ambient [CO2], elevated temperature increased ring width by 19%. Increased ring width in response to elevated [CO2] resulted from increases in both early- and latewood width; however, there was no effect of the treatments on early- and latewood proportions. Mean wood density, earlywood density and fiber length increased in response to elevated temperature. The chemical composition of wood was affected by elevated [CO2], which reduced the cellulose concentration, and by elevated temperature, which reduced the concentration of acetone-soluble extractives. Thus, over the 6-year period, radial growth was significantly increased by elevated [CO2], and some wood properties were significantly affected by elevated temperature or elevated [CO2], or both, indicating that climate change may affect the material properties of wood.
Validation of annual growth rings in freshwater mussel shells using cross dating .Can
Andrew L. Rypel; Wendell R. Haag; Robert H. Findlay
2009-01-01
We examined the usefulness of dendrochronological cross-dating methods for studying long-term, interannual growth patterns in freshwater mussels, including validation of annual shell ring formation. Using 13 species from three rivers, we measured increment widths between putative annual rings on shell thin sections and then removed age-related variation by...
NASA Astrophysics Data System (ADS)
Dannenberg, Matthew P.; Wise, Erika K.
2016-04-01
Projected changes in the seasonality of hydroclimatic regimes are likely to have important implications for water resources and terrestrial ecosystems in the U.S. Pacific Northwest. The tree ring record, which has frequently been used to position recent changes in a longer-term context, typically relies on signals embedded in the total ring width of tree rings. Additional climatic inferences at a subannual temporal scale can be made using alternative tree ring metrics such as earlywood and latewood widths and the density of tree ring latewood. Here we examine seasonal precipitation and temperature signals embedded in total ring width, earlywood width, adjusted latewood width, and blue intensity chronologies from a network of six Pinus ponderosa sites in and surrounding the upper Columbia River Basin of the U.S. Pacific Northwest. We also evaluate the potential for combining multiple tree ring metrics together in reconstructions of past cool- and warm-season precipitation. The common signal among all metrics and sites is related to warm-season precipitation. Earlywood and latewood widths differ primarily in their sensitivity to conditions in the year prior to growth. Total and earlywood widths from the lowest elevation sites also reflect cool-season moisture. Effective correlation analyses and composite-plus-scale tests suggest that combining multiple tree ring metrics together may improve reconstructions of warm-season precipitation. For cool-season precipitation, total ring width alone explains more variance than any other individual metric or combination of metrics. The composite-plus-scale tests show that variance-scaled precipitation reconstructions in the upper Columbia River Basin may be asymmetric in their ability to capture extreme events.
Brienen, Roel J W; Zuidema, Pieter A
2005-11-01
Many tropical regions show one distinct dry season. Often, this seasonality induces cambial dormancy of trees, particularly if these belong to deciduous species. This will often lead to the formation of annual rings. The aim of this study was to determine whether tree species in the Bolivian Amazon region form annual rings and to study the influence of the total amount and seasonal distribution of rainfall on diameter growth. Ring widths were measured on stem discs of a total of 154 trees belonging to six rain forest species. By correlating ring width and monthly rainfall data we proved the annual character of the tree rings for four of our study species. For two other species the annual character was proved by counting rings on trees of known age and by radiocarbon dating. The results of the climate-growth analysis show a positive relationship between tree growth and rainfall in certain periods of the year, indicating that rainfall plays a major role in tree growth. Three species showed a strong relationship with rainfall at the beginning of the rainy season, while one species is most sensitive to the rainfall at the end of the previous growing season. These results clearly demonstrate that tree ring analysis can be successfully applied in the tropics and that it is a promising method for various research disciplines.
Trees, History, and Isotopes - the Late Maunder Minimum (1675-1715) in the Pannonian Basin, Hungary
NASA Astrophysics Data System (ADS)
Kazmer, M.; Demeny, A.; Grynaeus, A.; Racz, L.; Varkonyi, A.
2002-05-01
First results of a comprehensive study on climate change in the Pannonian Basin during the Late Maunder Minimum (1675-1715) are presented. The Pannonian Basin has continental climate, distinctly warm and dry in summer, cold in winter, unlike the Atlantic-type climate of Western Europe. Surrounded by the arc of the Carpathians, exposed to Atlantic, Mediterranean, and Siberian influences, the regional climate displays steep gradients. More than one tree-ring chronology for oak is being built, independent of the south German series. Rethly's rich database of historical sources has been assembled, and completed with recently published letters. Ring-width series are measured on oak, and skeleton plots are logged. Study of hydrogen isotope composition of tree rings is in progress. Tree-ring width faithfully reflects historical indices on spring (i.e. earlywood growth season) precipitation. Generally, precipitation - as shown both by indices and tree-ring width - was high and temperature low during the growth season in the first half of the LMM. The second half has seen a retardation in oak growth and an increase in spring temperature. The decades of the Late Maunder Minimum was a politically turbulent era: it saw the decline and fall of the Ottoman domination in Hungary, followed by a rebellion against Austrian rule, associated with disruption of national economy.
Increased spruce tree growth in Central Europe since 1960s.
Cienciala, Emil; Altman, Jan; Doležal, Jiří; Kopáček, Jiří; Štěpánek, Petr; Ståhl, Göran; Tumajer, Jan
2018-04-01
Tree growth response to recent environmental changes is of key interest for forest ecology. This study addressed the following questions with respect to Norway spruce (Picea abies, L. Karst.) in Central Europe: Has tree growth accelerated during the last five decades? What are the main environmental drivers of the observed tree radial stem growth and how much variability can be explained by them? Using a nationwide dendrochronological sampling of Norway spruce in the Czech Republic (1246 trees, 266 plots), novel regional tree-ring width chronologies for 40(±10)- and 60(±10)-year old trees were assembled, averaged across three elevation zones (break points at 500 and 700m). Correspondingly averaged drivers, including temperature, precipitation, nitrogen (N) deposition and ambient CO 2 concentration, were used in a general linear model (GLM) to analyze the contribution of these in explaining tree ring width variability for the period from 1961 to 2013. Spruce tree radial stem growth responded strongly to the changing environment in Central Europe during the period, with a mean tree ring width increase of 24 and 32% for the 40- and 60-year old trees, respectively. The indicative General Linear Model analysis identified CO 2 , precipitation during the vegetation season, spring air temperature (March-May) and N-deposition as the significant covariates of growth, with the latter including interactions with elevation zones. The regression models explained 57% and 55% of the variability in the two tree ring width chronologies, respectively. Growth response to N-deposition showed the highest variability along the elevation gradient with growth stimulation/limitation at sites below/above 700m. A strong sensitivity of stem growth to CO 2 was also indicated, suggesting that the effect of rising ambient CO 2 concentration (direct or indirect by increased water use efficiency) should be considered in analyses of long-term growth together with climatic factors and N-deposition. Copyright © 2017 Elsevier B.V. All rights reserved.
Record of the Solar Activity and of Other Geophysical Phenomenons in Tree Ring
NASA Astrophysics Data System (ADS)
Rigozo, Nivaor Rodolfo
1999-01-01
Tree ring studies are usually used to determine or verify climatic factors which prevail in a given place or region and may cause tree ring width variations. Few studies are dedicated to the geophysical phenomena which may underlie these tree ring width variations. In order to look for periodicities which may be associated to the solar activity and/or to other geophysical phenomena which may influence tree ring growth, a new interactive image analysis method to measure tree ring width was developed and is presented here. This method makes use of a computer and a high resolution flatbed scanner; a program was also developed in Interactive Data Language (IDL 5.0) to study ring digitized images and transform them into time series. The main advantage of this method is the tree ring image interactive analysis without needing complex and high cost instrumentation. Thirty-nine samples were collected: 12 from Concordia - S. C., 9 from Canela - R. S., 14 from Sao Francisco de Paula - R. S., one from Nova Petropolis - R. S., 2 from Sao Martinho da Serra - R. S. e one from Chile. Fit functions are applied to ring width time series to obtain the best long time range trend (growth rate of every tree) curves and are eliminated through a standardization process that gives the tree ring index time series from which is performed spectral analysis by maximum entropy method and iterative regression. The results obtained show periodicities close to 11 yr, 22 yr Hale solar cycles and 5.5 yr for all sampling locations 52 yr and Gleissberg cycles for Concordia - S. C. and Chile samples. El Nino events were also observed with periods around 4 e 7 yr.
Peng, Jian-Feng; Li, Guo-Dong; Li, Ling-Ling
2014-07-01
By using the dendrochronology research methods, this paper developed the 1915-2011 tree ring-width standard chronology of the Huangshan pine (Pinus taiwanesis) at the north slope of western Dabie Mountains in the junction of Hubei, Henan and Anhui provinces. High mean sensitivity (MS) indicated that there was conspicuous high-frequency climate signals and high first-order autocorrelation (AC) showed there were significant lag-effects of tree previous growth. The higher signal-to-noise ratio (SNR) and expressed population signal (EPS) indicated that the trees had high levels of common climate signals. Correlations between the tree ring-width standard chronology and climatic factors (1959-2011) revealed the significant influences of temperature, precipitation and relative humidity on the tree width growth of Huangshan pine by the end of growing season (September and October). Significant positive correlations were found between the tree-ring indices and the Palmer drought severity index (PDSI) of current September and October. In conclusion, the combination of water and heat of September and October is the major effect factor for the growth of Huangshan pine in western Dabie Mountains.
NASA Astrophysics Data System (ADS)
Ma, L.; Stine, A.
2016-12-01
Tree-ring width from treeline environments tend to covary with local interannual temperature variabilities. However, other environmental factors such as moisture and light availability may further modulate tree growth in cold climates. We investigate the influence of various environmental factors on a tree-ring record from a research plot near Sonora Pass, CA (38.32N, 119.64W; elev. 3130 m). This treeline ecotone is dominated by whitebark pine (Pinus albicaulis) growing as individuals and as stands, and at the transition between tree form and krummholtz. We surveyed all trees in the 160m x 90m site, mapping and coring all trees with a diameter at breast height greater than 10 cm. We use survey data to test for an influence of inter-tree competition on growth. We also test for modulation of growth by variation in distance from surface water, aspect and slope, and soil types. Initial result shows a relationship between tree ring width and local May-July temperature (R = 0.33, p < 0.01), suggesting summer temperature as a large-scale control on growth. Incorporating the tree-level metadata, we test for the effect of spatial variability on mean growth rate and on reconstructed temperatures. Trees that have larger or closer neighboring trees experience greater competition, and we hypothesize that competition will be inversely related to average growth rate. Further, we test the sensitivity of ring-width interannual variability to other non-temperature environmental drivers such as moisture availability, light competition, and spatial relations in the microenvironment. We hypothesize that trees that have ready access to light and water will likely produce ring records more closely correlated with the temperature record, and thus will produce a temperature reconstruction with a higher signal-to-noise ratio; whereas trees that experience more microenvironment limitations or competition will produce ring records resembling temperature and additional environmental factors or will contain more noise.
Tree growth and vegetation activity at the ecosystem-scale in the eastern Mediterranean
NASA Astrophysics Data System (ADS)
Coulthard, Bethany L.; Touchan, Ramzi; Anchukaitis, Kevin J.; Meko, David M.; Sivrikaya, Fatih
2017-08-01
Linking annual tree growth with remotely-sensed terrestrial vegetation indices provides a basis for using tree rings as proxies for ecosystem primary productivity over large spatial and long temporal scales. In contrast with most previous tree ring/remote sensing studies that have focused on temperature-limited boreal and taiga environments, here we compare the normalized difference vegetation index (NDVI) with a network of Pinus brutia tree ring width chronologies collected along ecological gradients in semiarid Cyprus, where both radial tree growth and broader vegetation activity are controlled by drought. We find that the interaction between precipitation, elevation, and land-cover type generate a relationship between radial tree growth and NDVI. While tree ring chronologies at higher-elevation forested sites do not exhibit climate-driven linkages with NDVI, chronologies at lower-elevation dry sites are strongly correlated with NDVI during the winter precipitation season. At lower-elevation sites, land cover is dominated by grasslands and shrublands and tree ring widths operate as a proxy for ecosystem-scale vegetation activity. Tree rings can therefore be used to reconstruct productivity in water-limited grasslands and shrublands, where future drought stress is expected to alter the global carbon cycle, biodiversity, and ecosystem functioning in the 21st century.
NASA Astrophysics Data System (ADS)
Iszkuło, Grzegorz; Boratyński, Adam
2011-03-01
Dioecious species are a very interesting object of study because of predicted differences between male and female individuals. Most dioecious species have a higher reproductive effort in female individuals in comparison with males. The object of this study was common juniper ( Juniperus communis subsp. communis), dioecious shrubs or small trees. This study examined differences in radial growth rate between male and female individuals and the effect of climatic factors on tree-ring width in this species. Wood samples were taken from 30 trees (15 females and 15 males) and subjected to the standard procedure of dendrochronological dating. Females had lower growth rates than males after the age of 17 years. The greatest differences between genders in growth rate were observed between 17 and 25 years. After 26 years, male tree-rings were still wider, but the differences were much smaller. The differentiation of tree-ring width between males and females probably started when the female trees reached sexual maturity and started to produce seed cones. Differences between sexes in tree-ring width were noticed also in their reaction to climatic conditions. When compared to males, female individuals tended to be more sensitive to low temperature and low precipitation. This sensitivity of dioecious species could be one reason for their greater susceptibility to extinction in times of progressive climatic changes.
[Dendrochronology of Chinese pine in Mulan-Weichang, Hebei Province: a primary study].
Cui, Ming-xing; He, Xing-yuan; Chen, Wei; Chen, Zhen-ju; Zhou, Chang-hong; Wu, Tao
2008-11-01
Dendroclimatic methods were used to investigate the relationships between the growth of Chinese pine (Pinus tabulaeformis Carr.) and the climatic parameters in Mulan-Weichang of Hebei Province. The results showed that Chinese pine presented high sensitivity to climatic changes, and its earlywood width showed the highest sensitivity. There was a significant negative correlation between the tree-ring width chronology of Chinese pine and the air temperature in May-June. The precipitation and relative humidity in June had strong positive effects on the growth of earlywood, the precipitation from September to next September had significant positive effects on Chinese pine growth, and the relative humidity in winter more strongly affected the growth of latewood than of earlywood. There was a definite correlation between the tree-ring width chronology of Chinese pine and the large scale climate fluctuation. From 1951 to 2006, the increase of air temperature in study area was significant, and the sensitivity of Chinese pine to the variations of local temperature and precipitation decreased, presenting an inverse transforming trend with increasing temperature. Greater differences were observed between the reconstructed and observed data of mean temperature in May - June in a century scale, suggesting that the tree-ring growth of Chinese pine in study area had a greater fluctuation of sensitivity to the variation of climatic factors.
Climate Response of Tree Radial Growth at Different Timescales in the Qinling Mountains.
Sun, Changfeng; Liu, Yu
2016-01-01
The analysis of the tree radial growth response to climate is crucial for dendroclimatological research. However, the response relationships between tree-ring indices and climatic factors at different timescales are not yet clear. In this study, the tree-ring width of Huashan pine (Pinus armandii) from Huashan in the Qinling Mountains, north-central China, was used to explore the response differences of tree growth to climatic factors at daily, pentad (5 days), dekad (10 days) and monthly timescales. Correlation function and linear regression analysis were applied in this paper. The tree-ring width showed a more sensitive response to daily and pentad climatic factors. With the timescale decreasing, the absolute value of the maximum correlation coefficient between the tree-ring data and precipitation increases as well as temperature (mean, minimum and maximum temperature). Compared to the other three timescales, pentad was more suitable for analysing the response of tree growth to climate. Relative to the monthly climate data, the association between the tree-ring data and the pentad climate data was more remarkable and accurate, and the reconstruction function based on the pentad climate was also more reliable and stable. We found that the major climatic factor limiting Huashan pine growth was the precipitation of pentads 20-35 (from April 6 to June 24) rather than the well-known April-June precipitation. The pentad was also proved to be a better timescale for analysing the climate and tree growth in the western and eastern Qinling Mountains. The formation of the earlywood density of Chinese pine (Pinus tabulaeformis) from Shimenshan in western Qinling was mainly affected by the maximum temperature of pentads 28-32 (from May 16 to June 9). The maximum temperature of pentads 28-33 (from May 16 to June 14) was the major factor affecting the ring width of Chinese pine from Shirenshan in eastern Qinling.
Warm season tree growth and precipitation over Mexico
NASA Astrophysics Data System (ADS)
Therrell, Matthew D.; Stahle, David W.; Cleaveland, Malcolm K.; Villanueva-Diaz, Jose
2002-07-01
We have developed a network of 18 new tree ring chronologies to examine the history of warm season tree growth over Mexico from 1780 to 1992. The chronologies include Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) and Montezuma pine (Pinus montezumae Lamb.) latewood width, and Montezuma bald cypress (Taxodium mucronatum Ten.) total ring width. They are located in southwestern Texas, the Sierra Madre Oriental, Sierra Madre Occidental, and southern Mexico as far south as Oaxaca. Seven of these chronologies are among the first precipitation sensitive tree ring records from the American tropics. Principal component analysis of the chronologies indicates that the primary modes of tree growth variability are divided north and south by the Tropic of Cancer. The tree ring data in northern Mexico (PC1) are most sensitive to June-August rainfall, while the data from southern Mexico (PC2) are sensitive to rainfall in April-June. We find that the mode of tree growth variability over southern Mexico is significantly correlated with the onset of the North American Monsoon. Anomalies in monsoon onset, spring precipitation, and tree growth in southern Mexico all tend to be followed by precipitation anomalies of opposite sign later in the summer over most of central Mexico.
Total water storage dynamics derived from tree-ring records and terrestrial gravity observations
NASA Astrophysics Data System (ADS)
Creutzfeldt, Benjamin; Heinrich, Ingo; Merz, Bruno
2015-10-01
For both societal and ecological reasons, it is important to understand past and future subsurface water dynamics but estimating subsurface water storage is notoriously difficult. In this pilot study, we suggest the reconstruction of subsurface water dynamics by a multi-disciplinary approach combining hydrology, dendrochronology and geodesy. In a first step, nine complete years of high-precision gravimeter observations are used to estimate water storage changes in the subsurface at the Geodetic Observatory Wettzell in the Bavarian Forest, Germany. The record is extended to 63 years by calibrating a hydrological model against the 9 years of gravimeter observations. The relationship between tree-ring growth and water storage changes is evaluated as well as that between tree-ring growth and supplementary hydro-meteorological data. Results suggest that tree-ring growth is influenced primarily by subsurface water storage. Other variables related to the overall moisture status (e.g., Standardized Precipitation Index, Palmer Drought Severity Index, streamflow) are also strongly correlated with tree-ring width. While these indices are all indicators of water stored in the landscape, water storage changes of the subsurface estimated by depth-integral measurements give us the unique opportunity to directly reconstruct subsurface water storage dynamics from records of tree-ring width. Such long reconstructions will improve our knowledge of past water storage variations and our ability to predict future developments. Finally, knowing the relationship between subsurface storage dynamics and tree-ring growth improves the understanding of the different signal components contained in tree-ring chronologies.
Williams, A Park; Still, Christopher J; Fischer, Douglas T; Leavitt, Steven W
2008-06-01
The coast of California is home to numerous rare, endemic conifers and other plants that are limited in distribution by drought sensitivity and the summer-dry climate that prevails across most of the state. Ecologists have long assumed that some coastal plant populations survived the early Pleistocene transition to a warmer and drier environment because they benefit from frequent fog and stratus clouds that provide water and shade during the rainless summer. One such population is that of Torrey pine (Pinus torreyana ssp. Insularis) on Santa Rosa Island in Channel Islands National Park. Here we report that the tree-ring width record from this population indicates strong growth sensitivities to summer fog drip and cloud shading. We quantified the effects of summer cloud cover by comparing ring-width indices to coastal airport cloud-frequency records (1944-2004). For the first time observed, summertime cloud frequency correlated positively with ring-width indices, regardless of whether the effect of rainfall was first removed from the ring-width record. The effect of ground-level fog was strongest in July early mornings (03:00 PST, R(2) = 0.262, P < 0.0002). The effect of clouds high enough to provide shade but not fog water was also strongest in July, but climbed steadily throughout the day before becoming strongest in late afternoon (16:00-18:00 PST, R(2) = 0.148, P < 0.004). Correlations were substantially stronger in years with higher soil moisture, suggesting that growth response to summer clouds is strongly affected by pre-summer rainfall. A change in the height and/or timing of coastal cloud formation with climate change would likely affect this and other populations of California's coastal vegetation.
Monsoon climate response in Indian teak (Tectona grandis L.f.) along a transect from coast to inland
NASA Astrophysics Data System (ADS)
Sengupta, Saikat; Borgaonkar, Hemant; Joy, Reji Mariya; Ram, Somaru
2017-11-01
Indian monsoon (June-September) and post monsoon (October-November) rainfall show a distinct trend from coast to inland primarily due to moisture availability. However, the response of this synoptic-scale variation of rainfall amount to annual ring growth of Indian teak has not been studied systematically yet. The study is important as (1) ring width of Indian teak is considered as a reliable proxy for studying monsoon climate variability in multi-centennial time scale and (2) observed meteorological data show systematic changes in rainfall variation from coast to inland since last three decades. Towards this, we present here tree-ring width data from two locations—Thatibanda (1747-1979) and Nagzira (1728-2000) and use similar published data from two other locations—Allapalli (1866-1897) and Edugurapalli (1827-2000). The locations fall along a southeast northwest transect from south east Indian coast to inland. Monthly mean data from nearest observatories show an increasing trend in monsoon rainfall and a pronounced decreasing trend in post monsoon rainfall towards inland. Ring width data show moderately positive response to monsoon rainfall and negative response to summer (March-May) temperature for all stations suggesting moisture deficit in hot summer and intense precipitation in monsoon affect ring growth pattern in different ways. Ring width indices also exhibit significantly positive response with post monsoon rainfall at coastal location. The response gradually reduces towards inland. This preliminary study, thus, suggests that Indian teak has a potential to capture signals of the synoptic variation of post monsoon rainfall from coast to inland.
Tree-ring width reveals the preparation of the 1974 Mt. Etna eruption
Seiler, Ruedi; Houlié, Nicolas; Cherubini, Paolo
2017-01-01
Reduced near-infrared reflectance observed in September 1973 in Skylab images of the western flank of Mt. Etna has been interpreted as an eruption precursor of the January 1974 eruption. Until now, it has been unclear when this signal started, whether it was sustained and which process(es) could have caused it. By analyzing tree-ring width time-series, we show that the reduced near-infrared precursory signal cannot be linked to a reduction in annual tree growth in the area. However, comparing the tree-ring width time-series with both remote sensing observations and volcano-seismic activity enables us to discuss the starting date of the pre-eruptive period of the 1974 eruption. PMID:28266610
NASA Astrophysics Data System (ADS)
Rahman, Mizanur; Islam, Rofiqul; Islam, Mahmuda
2017-04-01
Tropical forests are carbon rich ecosystems and small changes in tropical forest tree growth substantially influence the global carbon cycle. Forest monitoring studies report inconsistent growth changes in tropical forest trees over the past decades. Most of the studies highlighted changes in the forest level carbon gain, neglecting the species-specific growth changes which ultimately determine community-level responses. Tree-ring analysis can provide historical data on species-specific tree growth with annual resolution. Such studies are inadequate in Bangladesh, which is one of the most climate sensitive regions in the tropics. In this study, we investigated long-term growth rates of Toona ciliata in a moist tropical forest of Bangladesh by using tree-ring analysis. We sampled 50 trees of varying size, obtained increment cores from these trees and measured tree-ring width. Analyses of growth patterns revealed size-dependent growth increments. After correcting for the effect of tree size on tree growth (ontogenetic changes) by two different methods we found declining growth rates in T. ciliata from 1960 to 2013. Standardized ring-width index (RWI) was strongly negatively correlated with annual mean and maximum temperatures suggesting that rising temperature might cause the observed growth decline in T. ciliata. Assuming that global temperatures will rise at the current rate, the observed growth decline is assumed to continue. The analysis of stable carbon and oxygen isotopes may reveal more insight on the physiological response of this species to future climatic changes.
Zhang, Xing-Liang; He, Xing-Yuan; Chen, Zhen-Ju; Cui, Ming-Xing; Li, Na
2011-12-01
Based on the theory and methodology of dendrochronology, the tree ring width chronology of Pinus sylvestris var. mongolica in Mangui of Great Xing' an Mountains was developed, and the relationships between the standardized tree ring width chronology and local climate factors (temperature and precipitation) as well as the effects of climate factors on the P. sylvestris var. mongolica radial growth were analyzed. In this region, the mean monthly temperature in April-August of current year was the main factor limiting the radial growth, and the increasing mean monthly temperature from April to August had negative effects to the radial growth. The simulation of the variations of the radial growth by the mean monthly temperature change in April-August showed that the radial growth of P. sylvestris var. mongolica would present a declining trend accompanied with the warmer and drier regional climate condition.
Forward modeling of tree-ring data: a case study with a global network
NASA Astrophysics Data System (ADS)
Breitenmoser, P. D.; Frank, D.; Brönnimann, S.
2012-04-01
Information derived from tree-rings is one of the most powerful tools presently available for studying past climatic variability as well as identifying fundamental relationships between tree-growth and climate. Climate reconstructions are typically performed by extending linear relationships, established during the overlapping period of instrumental and climate proxy archives into the past. Such analyses, however, are limited by methodological assumptions, including stationarity and linearity of the climate-proxy relationship. We investigate climate and tree-ring data using the Vaganov-Shashkin-Lite (VS-Lite) forward model of tree-ring width formation to examine the relations among actual tree growth and climate (as inferred from the simulated chronologies) to reconstruct past climate variability. The VS-lite model has been shown to produce skill comparable to that achieved using classical dendrochronological statistical modeling techniques when applied on simulations of a network of North American tree-ring chronologies. Although the detailed mechanistic processes such as photosynthesis, storage, or cell processes are not modeled directly, the net effect of the dominating nonlinear climatic controls on tree-growth are implemented into the model by the principle of limiting factors and threshold growth response functions. The VS-lite model requires as inputs only latitude, monthly mean temperature and monthly accumulated precipitation. Hence, this simple, process-based model enables ring-width simulation at any location where monthly climate records exist. In this study, we analyse the growth response of simulated tree-rings to monthly climate conditions obtained from the 20th century reanalysis project back to 1871. These simulated tree-ring chronologies are compared to the climate-driven variability in worldwide observed tree-ring chronologies from the International Tree Ring Database. Results point toward the suitability of the relationship among actual tree growth and climate (as inferred from the simulated chronologies) for use in global palaeoclimate reconstructions.
NASA Astrophysics Data System (ADS)
Riechelmann, Dana F. C.; Esper, Jan
2017-04-01
State-of-the-art millennial long temperature reconstructions from the European Alps integrate wood samples of Larix decidua Mill. from the Lötschental and Simplon regions in Switzerland (Büntgen et al., 2005; 2006). Some of the oldest samples that enable the extension of the time-series back into the first millennium AD are obtained from old buildings in Simplon Village, through the precise location of these samples and the elevation of sampling sites remain unknown. We here evaluate the growth characteristics of larch tree-ring width data along a vertical transect in the Simplon and Rhône valleys. 330 trees from nine sites in 985, 1100, 1400, 1575, 1710, 1712, 1900, 2020, and 2150 m asl have been sampled and analysed for their climate signals. The results indicate a stronger temperature signal in the tree-ring width with increasing elevation. The lower the sites the more a drought signal is imprinted in the ring width data. The intermediate site at 1400 m asl does not show any pronounced climate signal. A comparison of growth patterns of living-tree sites with samples from the historical buildings in Simplon Village (Riechelmann et al., 2013) indicates the construction timber to origin from intermediate to higher elevations. We therefore do not expect strong temperature signal from these timbers. References: Büntgen, U., Esper, J., Frank, D.C., Nicolussi, K., Schmidhalter, M., 2005. A 1052-year tree-ring proxy for Alpine summer temperatures. Climate Dynamics 25: 141-153. Büntgen, U., Frank, D.C., Nievergelt, D., Esper J., 2006. Summer temperature variations in the European Alps, A.D. 755-2004. Journal of Climate 19: 5606-5623. Riechelmann, D.F.C., Schmidhalter, M., Büntgen, U., Esper, J., 2013. Extending a high-elevation larch ring width chronology from the Simplon region in the Swiss Alps over the past millenium. TRACE 11:103-108.
Regional tree growth and inferred summer climate in the Winnipeg River basin, Canada, since AD 1783
NASA Astrophysics Data System (ADS)
St. George, Scott; Meko, David M.; Evans, Michael N.
2008-09-01
A network of 54 ring-width chronologies is used to estimate changes in summer climate within the Winnipeg River basin, Canada, since AD 1783. The basin drains parts of northwestern Ontario, northern Minnesota and southeastern Manitoba, and is a key area for hydroelectric power production. Most chronologies were developed from Pinus resinosa and P. strobus, with a limited number of Thuja occidentalis, Picea glauca and Pinus banksiana. The dominant pattern of regional tree growth can be recovered using only the nine longest chronologies, and is not affected by the method used to remove variability related to age or stand dynamics from individual trees. Tree growth is significantly, but weakly, correlated with both temperature (negatively) and precipitation (positively) during summer. Simulated ring-width chronologies produced by a process model of tree-ring growth exhibit similar relationships with summer climate. High and low growth across the region is associated with cool/wet and warm/dry summers, respectively; this relationship is supported by comparisons with archival records from early 19th century fur-trading posts. The tree-ring record indicates that summer droughts were more persistent in the 19th and late 18th century, but there is no evidence that drought was more extreme prior to the onset of direct monitoring.
Oliver Konter; Jan Esper; Andrew Liebhold; Tomas Kyncl; Lea Schneider; Elisabeth Düthorn; Ulf Buntgen
2015-01-01
The absence of larch budmoth outbreaks and subsequent consequences on tree rings together with a distinct climate–growth relationship enhance the dendroclimatic potential of larch ring width data from the Tatra Mountains. Regular population oscillations are generally considered to arise from trophic interactions, though it is unclear how such cycles are...
Patrick F Sullivan; Robert R Pattison; Annalis H Brownlee; Sean M P Cahoon; Teresa N Hollingsworth
2016-01-01
Boreal forests are critical sinks in the global carbon cycle. However, recent studies have revealed increasing frequency and extent of wildfires, decreasing landscape greenness, increasing tree mortality and declining growth of black and white spruce in boreal North America. We measured ring widths from a large set of increment cores collected across a vast area of...
NASA Astrophysics Data System (ADS)
Li, X.; St George, S.
2013-12-01
Both dendrochronological theory and regional and global networks of tree-ring width measurements indicate that trees can respond to climate variations quite differently from one location to another. To explain these geographical differences at hemispheric scale, we used a process-based model of tree-ring formation (the Vaganov-Shashkin model) to simulate tree growth at over 6000 locations across the Northern Hemisphere. We compared the seasonality and strength of climate signals in the simulated tree-ring records against parallel analysis conducted on a hemispheric network of real tree-ring observations, tested the ability of the model to reproduce behaviors that emerge from large networks of tree-ring widths and used the model outputs to explain why the network exhibits these behaviors. The simulated tree-ring records are consistent with observations with respect to the seasonality and relative strength of the encoded climate signals, and time-related changes in these climate signals can be predicted using the modeled relative growth rate due to temperature or soil moisture. The positive imprint of winter (DJF) precipitation is strongest in simulations from the American Southwest and northern Mexico as well as selected locations in the Mediterranean and central Asia. Summer (JJA) precipitation has higher positive correlations with simulations in the mid-latitudes, but some high-latitude coastal sites exhibit a negative association. The influence of summer temperature is mainly positive at high-latitude or high-altitude sites and negative in the mid-latitudes. The absolute magnitude of climate correlations are generally higher in simulations than in observations, but the pattern and geographical differences remain the same, demonstrating that the model has skill in reproducing tree-ring growth response to climate variability in the Northern Hemisphere. Because the model uses only temperature, precipitation and latitude as input and is not adjusted for species or other biological factors, the fact that the climate response of the simulations largely agrees with the observations may imply that climate, rather than biology, is the main factor that influences large-scale patterns of the climate information recorded by tree rings. Our results also suggest that the Vaganov-Shashkin model could be used to estimate the likely climate response of trees in ';frontier' areas that have not been sampled extensively. Seasonal Climate Correlations of Simulated Tree-ring Records
Cosmin N. Filipescue; Eini C. Lowell; Ross Koppenaal; Al K. Mitchell
2014-01-01
Characteristics of annual rings are reliable indicators of growth and wood quality in trees. The main objective of our study was to model the variation in annual ring attributes due to intensive silviculture and inherent regional differences in climate and site across a wide geographic range of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco)....
Klemen Novak; Martin de Luis; Miguel A. Saz; Luis A. Longares; Roberto Serrano-Notivoli; Josep Raventos; Katarina Cufar; Jozica Gricar; Alfredo Di Filippo; Gianluca Piovesan; Cyrille B.K. Rathgeber; Andreas Papadopoulos; Kevin T. Smith
2016-01-01
Climate predictions for the Mediterranean Basin include increased temperatures, decreased precipitation, and increased frequency of extreme climatic events (ECE). These conditions are associated with decreased tree growth and increased vulnerability to pests and diseases. The anatomy of tree rings responds to these environmental conditions. Quantitatively, the width of...
Brito, Patricia; Grams, Thorsten E E; Matysssek, Rainer; Jimenez, Maria S; Gonzalez-Rodríguez, Agueda M; Oberhuber, Walter; Wieser, Gerhard
2016-09-01
Intrinsic water-use efficiency of Pinus canariensis (Sweet ex Spreng.) growing at a semi-arid treeline has increased during the past 37 years. Tree-ring width by contrast has declined, likely caused by reduced stomatal conductance due to increasing aridity. Rising atmospheric CO 2 concentration ( C a ) has been related to tree growth enhancement accompanied by increasing intrinsic water-use-efficiency (iWUE). Nevertheless, the extent of rising C a on long-term changes in iWUE and growth has remained poorly understood to date in Mediterranean treeline ecosystems. This study aimed to examine radial growth and physiological responses of P. canariensis in relation to rising C a and increasing aridity at treeline in Tenerife, Canary Islands, Spain. We evaluated temporal changes in secondary growth (tree-ring width; TRW) and tree ring stable C isotope signature for assessing iWUE from 1975 through 2011. Precipitation was the main factor controlling secondary growth. Over the last 36 years P. canariensis showed a decline in TRW at enhanced iWUE, likely caused by reduced stomatal conductance due to increasing aridity. Our results indicate that increasing aridity has overridden the potential CO 2 fertilization on tree growth of P. canariensis at its upper distribution limit.
Brito, Patricia; Grams, Thorsten E.E.; Matysssek, Rainer; Jimenez, Maria S.; Gonzalez-Rodríguez, Agueda M.; Oberhuber, Walter; Wieser, Gerhard
2016-01-01
Key message Intrinsic water-use efficiency of Pinus canariensis (Sweet ex Spreng.) growing at a semi-arid treeline has increased during the past 37 years. Tree-ring width by contrast has declined, likely caused by reduced stomatal conductance due to increasing aridity. Context Rising atmospheric CO2 concentration (Ca) has been related to tree growth enhancement accompanied by increasing intrinsic water-use-efficiency (iWUE). Nevertheless, the extent of rising Ca on long-term changes in iWUE and growth has remained poorly understood to date in Mediterranean treeline ecosystems. Aims This study aimed to examine radial growth and physiological responses of P. canariensis in relation to rising Ca and increasing aridity at treeline in Tenerife, Canary Islands, Spain. Methods We evaluated temporal changes in secondary growth (tree-ring width; TRW) and tree ring stable C isotope signature for assessing iWUE from 1975 through 2011. Results Precipitation was the main factor controlling secondary growth. Over the last 36 years P. canariensis showed a decline in TRW at enhanced iWUE, likely caused by reduced stomatal conductance due to increasing aridity. Conclusion Our results indicate that increasing aridity has overridden the potential CO2 fertilization on tree growth of P. canariensis at its upper distribution limit. PMID:27482149
Response of Tree Rings Growth to Various Climatological Indices in the Sierra Nevada Mountains
NASA Astrophysics Data System (ADS)
Shamir, E.; Kaliff, R.; Graham, R.; Lepley, K. S.; Meko, D. M.; Touchan, R.
2017-12-01
Tree rings properties have been used to reconstruct historic regional climatological proxies. In this study, we examine whether tree rings can inform us on the basin scale spatial variability of the snow pack and soil moisture. Cores from seven sites and nine tree species of conifers were sampled in a vertical transect along the American River watershed at the Sierra Nevada Mountains. The tree cores were then cross-dated and chronologies of total ring width, early wood width, late wood width and late wood density measured by blue intensity methodology were developed. For each sampling site, a high-resolution land surface model was implemented to simulate 6-hour climatological time series of snow and soil moisture that are congruent in time and space for 1912- 2016. These time series were then used to derive independent indices that represent key climatological features that were thought to impact the tree growth. These indices include for example the duration of the dormancy season (winter), the duration of the growth season (spring), the duration of the dry season (summer) and the available seasonal soil moisture at the root zone. A comprehensive analysis of these indices with respect to the tree chronologies revealed that although different sites responded differently to these indices, all the sites were relatively insensitive to the winter temperature. Initial results suggest that warming condition and early spring onset as during the recent (2012-2015) drought increase growth in the high elevation that had a short winter with ample moisture while suppressing growth in lower elevation that experiences long dry summers. It is also interesting to note that the growth at the high elevation sites was found to be associated with the available moisture from the previous year, while in lower elevations growth responded to moisture conditions of the current year.
Tree-ring based history of climate and disease in western Oregon forests
Annual tree-ring width data are often used to make inferences of past climate and the spatiotemporal climate-growth relationships. However, the climatic signal may be confounded with non-climatic signals such as disease or pest disturbances at unknown times in the past. Signal e...
Tree-ring width based temperature and precipitation reconstruction in southeastern China
NASA Astrophysics Data System (ADS)
Shi, Jiangfeng; Shi, Shiyuan; Zhao, Yesi; Lu, Huayu
2017-04-01
Southeastern China is a subtropical region where the climate is dominated by the Asian monsoon climate system, with high temperature and precipitation in summer, and low temperature and precipitation in winter. Tree-ring research has been developed very fast in the past decade in the region. Some studies show that coniferous tree growth in the region is limited by temperatures in prior winter and during the growing season (i.e., prior November to current April, April to July, etc.), however to different limiting levels. Higher temperature in the dormant season means less damage to leaves and roots, and less consumption of previously stored carbohydrates and starches that can be used for tree growth in the coming year. The mechanism of positive relationships with the growing season is the same as that in high-latitude and high-elevation regions. The temperature reconstructions match each other very well at decadal to multi-decadal scales during the past 150 years at a large spatial scale, that is, of 700 km away, even though there are some discrepancies in the early part of the comparisons. Possible reasons for the discrepancies may include local temperature differences, small sample depth in the early part of the reconstructions, and/or juvenile effects. Generally, there is a weak precipitation signal in tree-ring width chronlogies. However, some studies have shown potentials in precipitation reconstruction in recent years, such as using tree-ring width chrnologies by taking samples at some special sites, using adjusted late-wood width chronlogies, and using stable isotopes. Thus, we might have a comprehensive understanding of the Asian monsson climate system over the past several centuries through temperature and precipitation reconstruction together using tree-ring series.
NASA Astrophysics Data System (ADS)
Deshpande, A. G.; Lafon, C. W.; Hyodo, A.; Boutton, T. W.; Moore, G. W.
2017-12-01
Over the last three decades, South-Central Texas has experienced an increase in frequency and intensity of hydro-climatic anomalies such as extreme droughts and floods. These extreme events can have negative impacts on forest health and can strongly alter a wide range of ecosystem processes. Tree increment growth in bottomland hardwood forests is influenced by droughts and floods, which affects the carbon isotope values (δ13C) in tree-ring cellulose. This study aims to assess the impacts of hydro-climate change on the growth and physiological response of bottomland hardwood forests by investigating variations in radial growth and tree-ring carbon isotopic composition. Annual ring-width chronologies for 41 years (1975-2016) were developed from 24 water oak (Quercus nigra) trees at 4 sites along a 25 km transect located in the San Bernard River watershed. The δ13C values in cellulose were measured from 4-year ring composites including years with anomalously high and low precipitation. Dendroclimatology analysis involved correlating ring-width index with precipitation records and Palmer Drought Sensitivity Index (PDSI). Radial growth was more closely associated with spring-summer (Feb-Aug) precipitation (R2 = 0.42, p<0.001) and PDSI (R2 = 0.39, p<0.001), especially the months of May, June and July. Specifically, ring widths were found to be most sensitive to the drought intensity for July. We found that both excessive drought and excessive wetness induced stress, as indicated by narrower growth rings and increased cellulose δ13C. However, the inter-site variation in δ13C indicated large hydro-climatic variation between sites (2.79-4.24‰ for wet years and 0.53-1.50‰ for drought years). δ13C values showed an increase of 0.78‰ and 2.40‰ from the wettest (1991-1994) to the driest period (2008-2011) at two of our sites, possibly due to drought-induced moisture-deficit-stress. However, at the other two sites, the δ13C values of tree rings from the same periods decreased by 0.65‰ and 1.19‰, possibly emanating from flooding-induced stress caused by waterlogging. This study provides insights on how hydro-climatic variations affect riparian forest health in the region and acts as a baseline for predicting future ecohydrological impacts of floods and droughts on these forests.
NASA Astrophysics Data System (ADS)
Babushkina, Elena A.; Belokopytova, Liliana V.; Shah, Santosh K.; Zhirnova, Dina F.
2018-05-01
Interrelations of the yield variability of the main crops (wheat, barley, and oats) with hydrothermal regime and growth of conifer trees ( Pinus sylvestris and Larix sibirica) in forest-steppes were investigated in Khakassia, South Siberia. An attempt has been made to understand the role and mechanisms of climatic impact on plants productivity. It was found that amongst variables describing moisture supply, wetness index had maximum impact. Strength of climatic response and correlations with tree growth are different for rain-fed and irrigated crops yield. Separated high-frequency variability components of yield and tree-ring width have more pronounced relationships between each other and with climatic variables than their chronologies per se. Corresponding low-frequency variability components are strongly correlated with maxima observed after 1- to 5-year time shift of tree-ring width. Results of analysis allowed us to develop original approach of crops yield dynamics reconstruction on the base of high-frequency variability component of the growth of pine and low-frequency one of larch.
Drought frequency in central California since 101 B.C. recordered in giant sequoia tree rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, M.K.; Brown, P.M.
1992-01-01
Well replicated tree-ring width index chronologies have been developed for giant sequoia at three sites in the Sierra Nevada, California. Extreme low-growth events in these chronologies correspond with regional drought events in the twentieth century in the San Joaquin drainage, in which the giant sequoia sites are located. This relationship is based upon comparison of tree-ring indices with August Palmer Drought Severity Indices for California Climate Division 5. Ring-width indices in the lowest decile from each site were compared. The frequency of low-growth events which occurred at all three sites in the same year is reconstructed from 101 B.C. tomore » A.D. 1988. The inferred frequency of severe drought events changes through time, sometimes suddenly. The period from roughly 1850 to 1950 had one of the lowest frequencies of drought of any one hundred year period in the 2089 year record. The twentieth century so far has had a below-average frequency of extreme droughts. 26 refs., 6 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Davi, Nicole K.; Jacoby, Gordon C.; Wiles, Gregory C.
2003-11-01
Variations in both width and density of annual rings from a network of tree chronologies were used to develop high-resolution proxies to extend the climate record in the Wrangell Mountain region of Alaska. We developed a warm-season (July-September) temperature reconstruction that spans A.D. 1593-1992 based on the first eigenvector from principal component analysis of six maximum latewood density (MXD) chronologies. The climate/tree-growth model accounts for 51% of the temperature variance from 1958 to 1992 and shows cold in the late 1600s-early 1700s followed by a warmer period, cooling in the late 1700s-early 1800s, and warming in the 20th century. The 20th century is the warmest of the past four centuries. Several severely cold warm-seasons coincide with major volcanic eruptions. The first eigenvector from a ring-width (RW) network, based on nine chronologies from the Wrangell Mountain region (A.D. 1550-1970), is correlated positively with both reconstructed and recorded Northern Hemisphere temperatures. RW shows a temporal history similar to that of MXD by increased growth (warmer) and decreased growth (cooler) intervals and trends. After around 1970 the RW series show a decrease in growth, while station data show continued warming, which may be related to increasing moisture stress or other factors. Both the temperature history based on MXD and the growth trends from the RW series are consistent with well-dated glacier fluctuations in the Wrangell Mountains and some of the temperature variations also correspond to variations in solar activity.
Salix polaris growth responses to active layer detachment and solifluction processes in High Arctic.
NASA Astrophysics Data System (ADS)
Siekacz, Liliana
2015-04-01
The work is dedicated to demonstrate the potential of Salix polaris grow properties in the dendrogemorphologic image, analyzing periglacially induced slope processes in the high Arctic.. Observed anatomical and morphological plants responses to solifluction and active layer detachment processes are presented qualitatively and quantitatively as a summary of presented features frequency. The results are discussed against the background of the other research results in this field. The investigations was performed in Ebba valley, in the vicinity of Petunia Bay, northernmost part of Billefjorden in central Spitsbergen (Svalbard). Environmental conditions are characterized by annual precipitation sum lower than 200 mm (Hagen et al.,1993) and average summer temperature of about 5°C, with maximum daily temperatures rarely exceeding 10°C (Rachlewicz, 2009). Collected shrub material was prepared according to the methods presented by Schweingruber and Poschlod (2005). Thin (approx. 15-20μm) sections of the whole cross-section were prepared with a sledge microtome, stained with Safranine and Astra blue and finally permanently fixed on microslides with Canada balsam and dried. Snapshots were taken partially for each cross-section with digital camera (ColorView III, Olympus) connected to a microscope (Olympus BX41) and merged into one, high resolution image. After all, ring widths were measured in 3-4 radii in every single cross-section using ImageJ software. Analyzed plants revealed extremely harsh environmental conditions of their growth. Buchwał et al. (2013) provided quantitative data concerning missing rings and partially missing rings in shrubs growing on Ebba valley floor. Mean ring width at the level of 79μm represents one of the smallest values of yearly growth ever noted. The share of missing rings and partially missing rings was 11,2% and 13,6% respectively. Plants growing on Ebba valley slope indicate almost twice smaller values of ring width (41μm), and higher participation of missing and partially missing rings. Share of missing rings in shrubs growing within an active layer detachment on the valley slope reached 16,22% and 15,36%. Even higher variation is observed in partially missing rings which account for 31,07% within detachment and 23,39% on surrounding slope. Those values are more than twice higher comparing to the valley floor. There is also noticeable difference between detachment and surrounding slope indicating that wedging rings are an effect of mechanical stress that is higher within the detachment. Comparing growth patterns in aboveground and belowground plant parts different growth allocation is noticed. Years of detachment event growth rings were present only in aboveground parts. It is supposed that mechanical stress delays the onset of the growing season similarly to low temperatures (Buchwał et al., 2013), resulting in not enough time to fully allocate resources for growth in the belowground parts. Growth pattern is extremely irregular, indicating that the slope is in constant movement, which disrupts growth conditions. Analyzed shrubs showed two possible event years: 2006 and 2008, with the highest participation of missing and partially missing rings. Air and ground temperature data were also analyzed and confirmed that active layer detachment happened in 2006. REFERENCES Buchwał A, Rachlewicz G, Fonti P, Cherubini P, Gärtner H, (2013) Temperature modulates intra-plant growth of Salix Polaris from a high Arctic site (Svalbard). Polar Biol 36:1305-1318. Hagen J O, Liestøl O, Roland E, Jørgensen T, (1993) Glacier atlas of Svalbard and Jan Mayen. Norsk Polarinstitutt Meddelelser 129: 160. Rachlewicz G, (2009) Contemporary sediment fluxes and relief changes in high Arctic glacierized valley systems (Billefjorden, Central Spitsbergen). Wyd. Nauk. UAM Poznań, seria Geografia 87:204. Schweingruber FH, Poschlod P, (2005) Growth rings in herbs and shrubs: life span, age determination and stem anatomy. For Snow Landsc Res 79:195-415
δ 18O in the Tropical Conifer Agathis robusta Records ENSO-Related Precipitation Variations
Boysen, Bjorn M. M.; Evans, Michael N.; Baker, Patrick J.
2014-01-01
Long-lived trees from tropical Australasia are a potential source of information about internal variability of the El Niño-Southern Oscillation (ENSO), because they occur in a region where precipitation variability is closely associated with ENSO activity. We measured tree-ring width and oxygen isotopic composition (O) of -cellulose from Agathis robusta (Queensland Kauri) samples collected in the Atherton Tablelands, Queensland, Australia. Standard ring-width chronologies yielded low internal consistency due to the frequent presence of false ring-like anatomical features. However, in a detailed examination of the most recent 15 years of growth (1995–2010), we found significant correlation between O and local precipitation, the latter associated with ENSO activity. The results are consistent with process-based forward modeling of the oxygen isotopic composition of -cellulose. The O record also enabled us to confirm the presence of a false growth ring in one of the three samples in the composite record, and to determine that it occurred as a consequence of anomalously low rainfall in the middle of the 2004/5 rainy season. The combination of incremental growth and isotopic measures may be a powerful approach to development of long-term (150+ year) ENSO reconstructions from the terrestrial tropics of Australasia. PMID:25062034
New self-limiting assembly model for Si quantum rings on Si(100).
Yu, L W; Chen, K J; Song, J; Xu, J; Li, W; Li, X F; Wang, J M; Huang, X F
2007-04-20
We propose a new self-limiting assembly model for Si quantum rings on Si(100) where the ring's formation and evolution are driven by a growth-etching competition mechanism. The as-grown ring structure in a plasma enhanced chemical vapor deposition system has excellent rotational symmetry and superior morphology with a typical diameter, edge width, and height of 150-300, 10, and 5 nm, respectively. Based on this model, the size and morphology can be controlled well by simply tuning the timing procedure. We suggest that this growth model is not limited to certain material system, but provides a general scheme to control and tailor the self-assembly nanostructures into the desired size, shape, and complexity.
Kerhoulas, Lucy P; Kane, Jeffrey M
2012-01-01
Most dendrochronological studies focus on cores sampled from standard positions (main stem, breast height), yet vertical gradients in hydraulic constraints and priorities for carbon allocation may contribute to different growth sensitivities with position. Using cores taken from five positions (coarse roots, breast height, base of live crown, mid-crown branch and treetop), we investigated how radial growth sensitivity to climate over the period of 1895-2008 varies by position within 36 large ponderosa pines (Pinus ponderosa Dougl.) in northern Arizona. The climate parameters investigated were Palmer Drought Severity Index, water year and monsoon precipitation, maximum annual temperature, minimum annual temperature and average annual temperature. For each study tree, we generated Pearson correlation coefficients between ring width indices from each position and six climate parameters. We also investigated whether the number of missing rings differed among positions and bole heights. We found that tree density did not significantly influence climatic sensitivity to any of the climate parameters investigated at any of the sample positions. Results from three types of analyses suggest that climatic sensitivity of tree growth varied with position height: (i) correlations of radial growth and climate variables consistently increased with height; (ii) model strength based on Akaike's information criterion increased with height, where treetop growth consistently had the highest sensitivity and coarse roots the lowest sensitivity to each climatic parameter; and (iii) the correlation between bole ring width indices decreased with distance between positions. We speculate that increased sensitivity to climate at higher positions is related to hydraulic limitation because higher positions experience greater xylem tensions due to gravitational effects that render these positions more sensitive to climatic stresses. The low sensitivity of root growth to all climatic variables measured suggests that tree carbon allocation to coarse roots is independent of annual climate variability. The greater number of missing rings in branches highlights the fact that canopy development is a low priority for carbon allocation during poor growing conditions.
Li, Dawen; Fang, Keyan; Li, Yingjun; Chen, Deliang; Liu, Xiaohong; Dong, Zhipeng; Zhou, Feifei; Guo, Guoyang; Shi, Feng; Xu, Chenxi; Li, Yanping
2017-01-01
Influence of long-term changes in climate and CO2 concentration on intrinsic water-use efficiency (iWUE), defined as the ratio between net photosynthesis (A) and leaf conductance (g), and tree growth remain not fully revealed in humid subtropical China, which is distinct from other arid subtropical areas with dense coverage of broadleaf forests. This study presented the first tree-ring stable carbon isotope (δ13C) and iWUE series of Pinus massoniana from 1865 to 2013 in Fujian province, humid subtropical China, and the first tree-ring width standard chronology during the period of 1836–2013 for the Niumulin Nature Reserve (NML). Tree-ring width growth was limited by precipitation in July-August (r = 0.40, p < 0.01). The tree-ring carbon isotope discrimination (Δ13C) was mainly controlled by the sunshine hours (r = -0.66, p < 0.001) and relative humidity (r = 0.58, p < 0.001) in September-October, a season with rapid latewood formation in this area. The iWUE increased by 42.6% and the atmospheric CO2 concentration (ca) explained 92.6% of the iWUE variance over the last 150 years. The steady increase in iWUE suggests an active response with a proportional increase in intercellular CO2 concentration (ci) in response to increase in ca. The contribution of iWUE to tree growth in the study region is not conspicuous, which points to influences of other factors such as climate. PMID:28182751
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Rebekah J.; Kaye, Margot W.; Abrams, Marc D.
2012-01-01
We examined the relationship among ambient and manipulated precipitation, wood chemistry, and their relationship with radial growth for two oak species in eastern Tennessee. The study took place on the Walker Branch Throughfall Displacement Experiment (TDE) site, located at the Oak Ridge National Laboratory in Oak Ridge, TN. Two dominant species, white oak (Quercus alba) and chestnut oak (Quercus prinus), were selected for study from a 13-year experiment of whole-stand precipitation manipulation (wet, ambient and dry). The relationships between tree-ring width and climate were compared for both species to determine the impact of precipitation manipulations on ring width index. Thismore » study used experimental spectroscopy techniques to measure the sensitivity of tree-ring responses to directional changes in precipitation over 13 years, and the results suggest that oaks at this study site are resilient to imposed changes, but sensitive to inter-annual variations in climate. Laser-induced breakdown spectroscopy (LIBS) allowed us to measure nutrient intensities (similar to element concentrations) at 0.5-1.0 mm spacing along the radial growth axis of trees growing in the wet, ambient, and dry treatment sites. A difference in stemwood nutrient levels was observed between the two oak species and among the three treatments. Significant variation in element intensity was observed across treatments for some elements (Ca, K, Mg, Na, N and P) suggesting the potential for long-term impacts on growth under a changing climate regimes for southeastern oaks.« less
Yang, Bao; He, Minhui; Melvin, Thomas M.; Zhao, Yan; Briffa, Keith R.
2013-01-01
It is generally hypothesized that tree growth at the upper treeline is normally controlled by temperature while that at the lower treeline is precipitation limited. However, uniform patterns of inter-annual ring-width variations along altitudinal gradients are also observed in some situations. How changing elevation influences tree growth in the cold and arid Qilian Mountains, on the northeastern Tibetan Plateau, is of considerable interest because of the sensitivity of the region’s local climate to different atmospheric circulation patterns. Here, a network of four Qilian juniper (Sabina przewalskii Kom.) ring-width chronologies was developed from trees distributed on a typical mountain slope at elevations ranging from 3000 to 3520 m above sea level (a.s.l.). The statistical characteristics of the four tree-ring chronologies show no significant correlation with increasing elevation. All the sampled tree growth was controlled by a common climatic signal (local precipitation) across the investigated altitudinal gradient (520 m). During the common reliable period, covering the past 450 years, the four chronologies have exhibited coherent growth patterns in both the high- and low-frequency domains. These results contradict the notion of contrasting climate growth controls at higher and lower elevations, and specifically the assumption that inter-annual tree-growth variability is controlled by temperature at the upper treeline. It should be stressed that these results relate to the relatively arid conditions at the sampling sites in the Qilian Mountains. PMID:23874871
NASA Astrophysics Data System (ADS)
Nelson, E. A.; Thomas, S. C.
2007-12-01
Global increases in temperature and atmospheric CO2 concentration are predicted to enhance tree growth in the short term, but studies of current impacts of climate change on Canada's forests are limited. This study examined the effects of increasing temperature and atmospheric CO2 concentration on tree ring growth in west-central Manitoba and northern Ontario, sampling white spruce (Picea glauca) and black spruce (Picea mariana), respectively. Over 50 tree cores from each site were sampled, analysed for ring-width, cross-dated and detrended, generating a ~100 y chronology for each population. We found a positive correlation between ring-width increment and spring temperatures (April-May: p<0.005) in Ontario. In Manitoba, however, we found a negative correlation between summer temperatures (Jul-Aug: p<0.005) and ring-width increment coincident with a positive relationship with summer precipitation (July: p<0.03). We examined the residuals following a regression with temperature for a positive trend over time, which has been interpreted in prior studies as evidence for a CO2 fertilization effect. We detected no such putative CO2 fertilization signal in either spruce population. Our results suggest that temperature-limited lowland black spruce communities may respond positively to moderate warming, but that water-limited upland white spruce communities may suffer from drought stress under high temperature conditions. Neither population appears to benefit from increasing CO2 availability.
NASA Astrophysics Data System (ADS)
He, Minhui; Yang, Bao; Datsenko, Nina M.
2014-08-01
The recent unprecedented warming found in different regions has aroused much attention in the past years. How temperature has really changed on the Tibetan Plateau (TP) remains unknown since very limited high-resolution temperature series can be found over this region, where large areas of snow and ice exist. Herein, we develop two Juniperus tibetica Kom. tree-ring width chronologies from different elevations. We found that the two tree-ring series only share high-frequency variability. Correlation, response function and partial correlation analysis indicate that prior year annual (January-December) minimum temperature is most responsible for the higher belt juniper radial growth, while more or less precipitation signal is contained by the tree-ring width chronology at the lower belt and is thus excluded from further analysis. The tree growth-climate model accounted for 40 % of the total variance in actual temperature during the common period 1957-2010. The detected temperature signal is further robustly verified by other results. Consequently, a six century long annual minimum temperature history was firstly recovered for the Yushu region, central TP. Interestingly, the rapid warming trend during the past five decades is identified as a significant cold phase in the context of the past 600 years. The recovered temperature series reflects low-frequency variability consistent with other temperature reconstructions over the whole TP region. Furthermore, the present recovered temperature series is associated with the Asian monsoon strength on decadal to multidecadal scales over the past 600 years.
Species distribution models predict temporal but not spatial variation in forest growth.
van der Maaten, Ernst; Hamann, Andreas; van der Maaten-Theunissen, Marieke; Bergsma, Aldo; Hengeveld, Geerten; van Lammeren, Ron; Mohren, Frits; Nabuurs, Gert-Jan; Terhürne, Renske; Sterck, Frank
2017-04-01
Bioclimate envelope models have been widely used to illustrate the discrepancy between current species distributions and their potential habitat under climate change. However, the realism and correct interpretation of such projections has been the subject of considerable discussion. Here, we investigate whether climate suitability predictions correlate to tree growth, measured in permanent inventory plots and inferred from tree-ring records. We use the ensemble classifier RandomForest and species occurrence data from ~200,000 inventory plots to build species distribution models for four important European forestry species: Norway spruce, Scots pine, European beech, and pedunculate oak. We then correlate climate-based habitat suitability with volume measurements from ~50-year-old stands, available from ~11,000 inventory plots. Secondly, habitat projections based on annual historical climate are compared with ring width from ~300 tree-ring chronologies. Our working hypothesis is that habitat suitability projections from species distribution models should to some degree be associated with temporal or spatial variation in these growth records. We find that the habitat projections are uncorrelated with spatial growth records (inventory plot data), but they do predict interannual variation in tree-ring width, with an average correlation of .22. Correlation coefficients for individual chronologies range from values as high as .82 or as low as -.31. We conclude that tree responses to projected climate change are highly site-specific and that local suitability of a species for reforestation is difficult to predict. That said, projected increase or decrease in climatic suitability may be interpreted as an average expectation of increased or reduced growth over larger geographic scales.
Liang, Eryuan; Lu, Xiaoming; Ren, Ping; Li, Xiaoxia; Zhu, Liping; Eckstein, Dieter
2012-03-01
Dendroclimatology is playing an important role in understanding past climatic changes on the Tibetan Plateau. Forests, however, are mainly confined to the eastern Tibetan Plateau. On the central Tibetan Plateau, in contrast, shrubs and dwarf shrubs need to be studied instead of trees as a source of climate information. The objectives of this study were to check the dendrochronological potential of the dwarf shrub Wilson juniper (Juniperus pingii var. wilsonii) growing from 4740 to 4780 m a.s.l. and to identify the climatic factors controlling its radial growth. Forty-three discs from 33 stems of Wilson juniper were sampled near the north-eastern shore of the Nam Co (Heavenly Lake). Cross-dating was performed along two directions of each stem, avoiding the compression-wood side as far as possible. A ring-width chronology was developed after a negative exponential function or a straight line of any slope had been fit to the raw measurements. Then, correlations were calculated between the standard ring-width chronology and monthly climate data recorded by a weather station around 100 km away. Our study has shown high dendrochronological potential of Wilson juniper, based on its longevity (one individual was 324 years old), well-defined growth rings, reliable cross-dating between individuals and distinct climatic signals reflected by the ring-width variability. Unlike dwarf shrubs in the circum-arctic tundra ecosystem which positively responded to above-average temperature in the growing season, moisture turned out to be growth limiting for Wilson juniper, particularly the loss of moisture caused by high maximum temperatures in May-June. Because of the wide distribution of shrub and dwarf shrub species on the central Tibetan Plateau, an exciting prospect was opened up to extend the presently existing tree-ring networks far up into one of the largest tundra regions of the world.
NASA Astrophysics Data System (ADS)
Iturrate Garcia, M.; Heijmans, M.; Schweingruber, F. H.; Niklaus, P. A.; Schaepman-Strub, G.
2015-12-01
Climate warming is suggested as the main driver of shrub expansion in arctic tundra regions. Shrub expansion may have consequences on biodiversity and climate, especially through its feedbacks with the energy budget. A better understanding of shrub expansion mechanisms, including growth rate patterns and stem anatomy changes, and their sensitivity to climate is needed in order to quantify related feedbacks. We present a novel dendroecological approach to determine the response of three arctic shrub species to increased soil temperature and nutrients. A full factorial block-design experiment was run for four years with a total of thirty plots. Six individuals of each species were sampled from each plot to test for treatment effects on growth rate and stem anatomy. We compared the ring width of the four years of experiment with the one of the four previous years. The preliminary results for Betula nana and Salix pulchra suggest a significant effect of the treatments on the growth ring width. The response is stronger in Salix pulchra than in Betula nana individuals. And, while Salix pulchra is more sensitive to the combined soil warming and fertilization treatment, Betula nana is to the fertilization treatment. We could not observe an effect of treatment on the stem anatomy, likely because bark thickness co-varies with age. We found significant positive correlations of cork, cortex and phloem thickness with xylem thickness (used as a proxy of age), and a significant difference in stem anatomy between species. The results suggest species-specific growth sensitivity to soil warming and nutrient enhancement. The use of experimental dendroecology by manipulating environmental conditions according to future climate scenarios and testing effects on shrub anatomy and annual growth will increase our understanding on shrub expansion mechanisms. Ongoing plant trait analysis and consecutive application in a 3D radiative transfer model will allow to quantify the feedback of increased shrub growth on the land surface energy budget.
Blasing, T. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duvick, D. N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Building Technologies Research and Integration Center (BTRIC)
2012-01-01
Tree core samples (4 mm in diameter) were extracted from the trunks of white oak (Quercus alba) at three sites in central Iowa (Duvick Back Woods, Ledges State Park, and Pammel). At least 60 trees were sampled at each site, and at least two cores were taken from each tree. The growth rings of each core were dated by calendar year and measured; the measurements were then transformed into dimensionless ring-width indices and correlated with annual precipitation. Data were collected for the years 1680 through 1979. Each tree ring was characterized by the site, year, tree-ring-width index, number of core samples, decade year, and the annual reconstructed precipitation estimate. These data have more than 50% of their variance in common with the known annual statewide average precipitation for Iowa and serve as useful indicators of the precipitation and drought history of the region for the past 300 years. The data are in two files: tree-ring-chronology data (8 kB) and the annual reconstructed precipitation data for central Iowa (2 kB).
[Effects of elevated ozone on Pinus armandii growth: a simulation study with open-top chamber].
Liu, Chang-Fu; Liu, Chen; He, Xing-Yuan; Ruan, Ya-Nan; Xu, Sheng; Chen, Zhen-Ju; Peng, Jun-Jie; Li, Teng
2013-10-01
By using open-top chamber (OTC) and the techniques of dendrochronology, this paper studied the growth of Pinus armandii under elevated ozone, and explored the evolution dynamics and adaptation mechanisms of typical forest ecosystems to ozone enrichment. Elevated ozone inhibited the stem growth of P. armandii significantly, with the annual growth of the stem length and diameter reduced by 35.0% and 12.9%, respectively. The annual growth of tree-ring width and the annual ring cells number decreased by 11.5% and 54.1%, respectively, but no significant change was observed in the diameter of tracheid. At regional scale, the fluctuation of ozone concentration showed significant correlation with the variation of local vegetation growth (NDVI).
Growth response of oaks, beech and pine to Standardized Precipitation Index (SPI)
NASA Astrophysics Data System (ADS)
Stojanovic, Dejan; Levanič, Tom; Matović, Bratislav; Orlović, Saša
2017-04-01
Climate change may have various consequences on forests, from more frequent forest fires and windstorms to pest and disease outbreaks. Standardized Precipitation Index (SPI) was chosen for the evaluation of climate change impact to radial forest growth, after comprehensive testing of different climate parameters from CARPATCLIM database. SPI was calculated for periods between 3 and 36 months for different forest stands (lowland and mountainous parts of Serbia, Southeast Europe). Observed were following tree species: Quercus robur, Q. cerris, Fagus sylvatica and Pinus sylvestris. Bootstrapped Pearson's correlation between SPI monthly indices and tree-ring widths was calculated and ranked for all species. We found that 12-month SPI for summer months may be a good predictor for growth of different species at different sites. The strongest positive correlation between tree-ring width indices and SPI was particularly from the year of growth, since the strongest negative correlation for all four species was exclusively from the year prior to growth. The strongest positive correlation were between 12 and 14-month SPI from June to September, which suggests that the high growth rates are expected when autumn of previous-year, winter, spring and summer of the current year are with high precipitation rates.
High sensitivity of northeastern broadleaf forest trees to water availability
NASA Astrophysics Data System (ADS)
Levesque, M.; Pederson, N.; Andreu-Hayles, L.
2015-12-01
Temperate deciduous forests of eastern US provide goods and services to millions of people and play a vital role in the terrestrial carbon and hydrological cycles. However, ongoing climate change and increased in CO2 concentration in the atmosphere (ca) are expected to alter growth and gas exchange of trees, and ultimately forest productivity. Still, the magnitude of these effects is unclear. A better comprehension of the species-specific responses to environmental changes will better inform models and managers on the vulnerability and resiliency of these forests. Tree-ring analysis was combined with δ¹³C and δ18O measurements to investigate growth and physiological responses of red oak (Quercus rubra L.) and tulip poplar (Liriodendron tulipifera L.) in northeastern US to changes in water availability and ca for the period 1950-2014. We found very strong correlations between summer climatic water balance (June-August) and isotopic tree-ring series for δ¹³C (r = -0.65 and -0.73), and δ18O (r = -0.59 and -0.70), for red oak and tulip poplar, respectively. In contrast, tree-ring width was less sensitive to summer water availability (r = 0.33-0.39). Prior to the mid 1980s, low water availability resulted in low stomatal conductance, photosynthesis, and growth. Since that period, pluvial conditions occurring in northeastern US have increased stomatal conductance, carbon uptake, and growth of both species. These findings demonstrate that broadleaf trees in this region could be more sensitive to drought than expected. This appears especially true since much of the calibration period looks wet in a multi-centennial perspective. Further, stronger spatial correlations were found between climate data with tree-ring isotopes than with tree-ring width and the geographical area of the observed δ18O-precipitation response (i.e. the area over which correlations are > 0.5) covers most of the northeastern US. Given the good fit between the isotopic time series and water availability, the robustness of the hydroclimatic reconstructions in this region could be improved considerably with further isotopic research. Overall, the results indicate that stable isotopes yield valuable climatic and physiological information that could be undetected when using solely tree-ring width.
Arctic tree rings as recorders of variations in light availability
Stine, A. R.; Huybers, P.
2014-01-01
Annual growth ring variations in Arctic trees are often used to reconstruct surface temperature. In general, however, the growth of Arctic vegetation is limited both by temperature and light availability, suggesting that variations in atmospheric transmissivity may also influence tree-ring characteristics. Here we show that Arctic tree-ring density is sensitive to changes in light availability across two distinct phenomena: explosive volcanic eruptions (P<0.01) and the recent epoch of global dimming (P<0.01). In each case, the greatest response is found in the most light-limited regions of the Arctic. Essentially no late 20th century decline in tree-ring density relative to temperature is seen in the least light-limited regions of the Arctic. Consistent results follow from analysis of tree-ring width and from individually analysing each of seven tree species. Light availability thus appears an important control, opening the possibility for using tree rings to reconstruct historical changes in surface light intensity. PMID:24805143
Rita, Angelo; Cherubini, Paolo; Leonardi, Stefano; Todaro, Luigi; Borghetti, Marco
2015-08-01
The present study assessed the effects of climatic conditions on radial growth and functional anatomical traits, including ring width, vessel size, vessel frequency and derived variables, i.e., potential hydraulic conductivity and xylem vulnerability to cavitation in Ilex aquifolium L. trees using long-term tree-ring time series obtained at two climatically contrasting sites, one mesic site in Switzerland (CH) and one drought-prone site in Italy (ITA). Relationships were explored by examining different xylem traits, and point pattern analysis was applied to investigate vessel clustering. We also used generalized additive models and bootstrap correlation functions to describe temperature and precipitation effects. Results indicated modified radial growth and xylem anatomy in trees over the last century; in particular, vessel frequency increased markedly at both sites in recent years, and all xylem traits examined, with the exception of xylem cavitation vulnerability, were higher at the CH mesic compared with the ITA drought site. A significant vessel clustering was observed at the ITA site, which could contribute to an enhanced tolerance to drought-induced embolism. Flat and negative relationships between vessel size and ring width were observed, suggesting carbon was not allocated to radial growth under conditions which favored stem water conduction. Finally, in most cases results indicated that climatic conditions influenced functional anatomical traits more substantially than tree radial growth, suggesting a crucial role of functional xylem anatomy in plant acclimation to future climatic conditions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Guo, Ming-ming; Zhang, Yuan-dong; Wang, Xiao-chun; Liu, Shi-rong
2015-08-01
To explore the responses of different tree species growth to climate change in the semi-humid region of the eastern Tibetan Plateau, we investigated climate-growth relationships of Tsuga chinensis, Abies faxoniana, Picea purpurea at an altitude of 3000 m (low altitude) and A. faxoniana and Larix mastersiana at an altitude of 4000 m (high altitude) using tree ring-width chronologies (total of 182 cores) developed from Miyaluo, western Sichuan, China. Five residual chronologies were developed from the cross-dated ring width series using the program ARSTAN, and the relationships between monthly climate variables and tree-ring index were analyzed. Results showed that the chronologies of trees at low altitudes were negatively correlated with air temperature but positively with precipitation in April and May. This indicated that drought stress limited tree growth at low altitude, but different tree species showed significant variations. T. chinensis was most severely affected by drought stress, followed by A. faxoniana and P. purpurea. Trees at high altitude were mainly affected by growing season temperature. Tree-ring index of A. faxoniana was positively correlated with monthly minimum temperature in February and July of the current year and monthly maximum temperature in October of the previous year. Radial growth of L. mastersiana was positively correlated with monthly maximum temperature in May, and negatively with monthly mean temperature in February and monthly minimum temperature in March. In recent decadal years, the climate in northeast Tibetan Plateau had a warming and drying trend. If this trend continues, we could deduce that P. purpurea should grow faster than T. chinensis and A. faxoniana at low altitudes, while A. faxoniana would benefit more from global warming at high altitudes.
Araucaria growth response to solar and climate variability in South Brazil
NASA Astrophysics Data System (ADS)
Prestes, Alan; Klausner, Virginia; Rojahn da Silva, Iuri; Ojeda-González, Arian; Lorensi, Caren
2018-05-01
In this work, the Sun-Earth-climate relationship is studied using tree growth rings of Araucaria angustifolia (Bertol.) O. Kuntze collected in the city of Passo Fundo, located in the state of Rio Grande do Sul (RS), Brazil. These samples were previously studied by Rigozo et al. (2008); however, their main interest was to search for the solar periodicities in the tree-ring width mean time series without interpreting the rest of the periodicities found. The question arises as to what are the drivers related to those periodicities. For this reason, the classical method of spectral analysis by iterative regression and wavelet methods are applied to find periodicities and trends present in each tree-ring growth, in Southern Oscillation Index (SOI), and in annual mean temperature anomaly between the 24 and 44° S. In order to address the aforementioned question, this paper discusses the correlation between the growth rate of the tree rings with temperature and SOI. In each tree-ring growth series, periods between 2 and 7 years were found, possibly related to the El Niño/La Niña phenomena, and a ˜ 23-year period was found, which may be related to temperature variation. These novel results might represent the tree-ring growth response to local climate conditions during its lifetime, and to nonlinear coupling between the Sun and the local climate variability responsible to the regional climate variations.
Salzer, Matthew W.; Hughes, Malcolm K.; Bunn, Andrew G.; Kipfmueller, Kurt F.
2009-01-01
Great Basin bristlecone pine (Pinus longaeva) at 3 sites in western North America near the upper elevation limit of tree growth showed ring growth in the second half of the 20th century that was greater than during any other 50-year period in the last 3,700 years. The accelerated growth is suggestive of an environmental change unprecedented in millennia. The high growth is not overestimated because of standardization techniques, and it is unlikely that it is a result of a change in tree growth form or that it is predominantly caused by CO2 fertilization. The growth surge has occurred only in a limited elevational band within ≈150 m of upper treeline, regardless of treeline elevation. Both an independent proxy record of temperature and high-elevation meteorological temperature data are positively and significantly correlated with upper-treeline ring width both before and during the high-growth interval. Increasing temperature at high elevations is likely a prominent factor in the modern unprecedented level of growth for Pinus longaeva at these sites. PMID:19918054
NASA Astrophysics Data System (ADS)
Friedrich, Michael; Kromer, Bernd; Kaiser, Klaus F.; Spurk, Marco; Hughen, Konrad A.; Johnsen, Sigfus J.
2001-05-01
Lateglacial and Holocene tree-ring chronologies are unique archives, which provide various information on past environments on a true annual time scale. Changes in ring-width can be related to past climate anomalies and dendrodated wood provides an ideal source for radiocarbon calibration. We present a 1051 year tree-ring chronology from the Late Glacial, built from subfossil Scots pines (Pinus sylvestris) that grew in different regions of Central and Southern Europe. Through a series of high-precision radiocarbon measurements we obtained a floating radiocarbon chronology, which allowed accurate wiggle-matching to the INTCAL98 calibration curve. The trees show a coherent pattern in ring-width variations throughout Central Europe, and extending into the Mediterranean, which indicates a strong external climatic factor, most probably temperature during the growing season. We identified major growth events, which appear synchronous with events seen in isotopic and tracer signals in the Greenland ice cores and with changes in the strength of upwelling in the Cariaco Basin.
NASA Astrophysics Data System (ADS)
Wilmking, Martin; Buras, Allan; Heinrich, Ingo; Scharnweber, Tobias; Simard, Sonia; Smiljanic, Marko; van der Maaten, Ernst; van der Maaten-Theunissen, Marieke
2014-05-01
Trees are sessile, long-living organisms and as such constantly need to adapt to changing environmental conditions. Accordingly, they often show high phenotypic plasticity (the ability to change phenotypic traits, such as allocation of resources) in response to environmental change. This high phenotypic plasticity is generally considered as one of the main ingredients for a sessile organism to survive and reach high ages. Precisely because of the ability of trees to reach old age and their in-ability to simply run away when conditions get worse, growth information recorded in tree rings has long been used as a major environmental proxy, covering time scales from decades to millennia. Past environmental conditions (e.g. climate) are recorded in i.e. annual tree-ring width, early- and latewood width, wood density, isotopic concentrations, cell anatomy or wood chemistry. One prerequisite for a reconstruction is that the relationship between the environmental variable influencing tree growth and the tree-growth variable itself is stable through time. This, however, might contrast the ecological theory of high plasticity and the trees ability to adapt to change. To untangle possible mechanisms leading to stable or unstable relationships between tree growth and environmental variables, it is helpful to have exact site information and several proxy variables of each tree-ring series available. Although we gain insight into the environmental history of a sampling site when sampling today, this is extremely difficult when using archeological wood. In this latter case, we face the additional challenge of unknown origin, provenance and (or) site conditions, making it even more important to use multiple proxy time-series from the same sample. Here, we review typical examples, where the relationship between tree growth and environmental variables seems 1) stable and 2) instable through time, and relate these two cases to ecological theory. Based on ecological theory, we then give recommendations to improve the reliability of environmental reconstructions using tree rings.
Shang, Zhi-Yuan; Wang, Jian; Zhang, Wen; Li, Yan-Yan; Cui, Ming-Xing; Chen, Zhen-Ju; Zhao, Xing-Yun
2013-01-01
A measurement was made on the vertical direction tree ring stable carbon isotope ratio (delta13C) and tree ring width of Pinus sylvestris var. mongolica in northern Daxing' an Mountains of Northeast China, with the relationship between the vertical direction variations of the tree ring delta13C and tree ring width analyzed. In the whole ring of xylem, earlywood (EW) and bark endodermis, the delta13C all exhibited an increasing trend from the top to the base at first, with the maximum at the bottom of tree crown, and then, decreased rapidly to the minimum downward. The EW and late-wood (LW) had an increasing ratio of average tree ring width from the base to the top. The average annual sequence of the delta13C in vertical direction had an obvious reverse correspondence with the average annual sequence of tree ring width, and had a trend comparatively in line with the average annual sequence of the tree ring width ratio of EW to LW above tree crown. The variance analysis showed that there existed significant differences in the sequences of tree ring delta13C and ring width in vertical direction, and the magnitude of vertical delta13C variability was basically the same as that of the inter-annual delta13C variability. The year-to-year variation trend of the vertical delta13C sequence was approximately identical. For each sample, the delta13C sequence at the same heights was negatively correlated with the ring width sequence, but the statistical significance differed with tree height.
NASA Astrophysics Data System (ADS)
Balanzategui, Daniel; Heußner, Karl-Uwe; Wazny, Tomasz; Helle, Gerd; Heinrich, Ingo
2017-04-01
Tree-ring based temperature reconstructions from the temperate lowlands worldwide are largely missing due to diffuse climate signals so far found in tree-ring widths. This motivated us to concentrate our efforts on the wood anatomies of two common European tree species, the European oak (Quercus robur) and Scots pine (Pinus sylvestris). We combined core samples of living trees with archaeological wood from northern Germany and Poland. We measured approx. 46,000 earlywood oak vessels of 34 trees covering the period AD 1500 to 2016 and approx. 7.5 million pine tracheid cells of 41 trees covering the period AD 1300 to 2010. First climate growth analyses indicate that both oak earlywood vessel and pine tracheid parameters contain climate signals which are different and more significant than those found in tree-ring widths. Preliminary results will be presented and discussed at EGU for the first time.
Kilpeläinen, Antti; Peltola, Heli; Ryyppö, Aija; Sauvala, Kari; Laitinen, Kaisa; Kellomäki, Seppo
2003-09-01
Impacts of elevated temperature and carbon dioxide concentration ([CO2]) on wood properties of 15-year-old Scots pines (Pinus sylvestris L.) grown under conditions of low nitrogen supply were investigated in open-top chambers. The treatments consisted of (i) ambient temperature and ambient [CO2] (AT+AC), (ii) ambient temperature and elevated [CO2] (AT+EC), (iii) elevated temperature and ambient [CO2] (ET+AC) and (iv) elevated temperature and elevated [CO2] (ET+EC). Wood properties analyzed for the years 1992-1994 included ring width, early- and latewood width and their proportions, intra-ring wood density (minimum, maximum and mean, as well as early- and latewood densities), mean fiber length and chemical composition of the wood (cellulose, hemicellulose, lignin and acetone extractive concentration). Absolute radial growth over the 3-year period was 54% greater in AT+EC trees and 30 and 25% greater in ET+AC and ET+EC trees, respectively, than in AT+AC trees. Neither elevated temperature nor elevated [CO2] had a statistically significant effect on ring width, early- and latewood widths or their proportions. Both latewood density and maximum intra-ring density were increased by elevated [CO2], whereas fiber length was increased by elevated temperature. Hemicellulose concentration decreased and lignin concentration increased significantly in response to elevated temperature. There were no statistically significant interaction effects of elevated temperature and elevated [CO2] on the wood properties, except on earlywood density.
NASA Astrophysics Data System (ADS)
Rigozo, Nr; Nordemann, Djr; Faria, Hh; Echer, E.; Vieira, Lea; Prestes, A.
This work presents a study of the relations between solar and climate variations during the last four centuries by spectral analysis of tree ring index and sunspot number time series. Trees used for this study were Pilgerodendron cupressoides from Glaciar Pio XI, in Chile. The spectral analysis of tree ring index shows that 11, 22 and 80 year periodicities of the solar cycle were present in this tree ring data with 0.95 confidence level. This result suggests a solar modulation of climate variations, as recorded by the tree ring growth. Short-term variations, between 2 - 7 years, are also present in tree ring data. Therefore spectral analysis clearly shows that both, solar and climate factors, are recorded in the tree ring data.
Pattern Formation of Bacterial Colonies by Escherichia coli
NASA Astrophysics Data System (ADS)
Tokita, Rie; Katoh, Takaki; Maeda, Yusuke; Wakita, Jun-ichi; Sano, Masaki; Matsuyama, Tohey; Matsushita, Mitsugu
2009-07-01
We have studied the morphological diversity and change in bacterial colonies, using the bacterial species Escherichia coli, as a function of both agar concentration Ca and nutrient concentration Cn. We observed various colony patterns, classified them into four types by pattern characteristics and established a morphological diagram by dividing it into four regions. They are regions A [diffusion-limited aggregation (DLA)-like], B (Eden-like), C (concentric-ring), and D (fluid-spreading). In particular, we have observed a concentric-ring colony growth for E. coli. We focused on the periodic growth in region C and obtained the following results: (i) A colony grows cyclically with the growing front repeating an advance (migration phase) and a momentary rest (consolidation phase) alternately. (ii) The growth width L and the bulge width W in one cycle decrease asymptotically to certain values, when Ca is increased. (iii) L does not depend on Cn, while W is an increasing function of Cn. Plausible mechanisms are proposed to explain the experimental results, by comparing them with those obtained for other bacterial species such as Proteus mirabilis and Bacillus subtilis.
Analysis of biweight site chronologies: relative weights of individual trees over time
Kurt H. Riitters
1990-01-01
The relative weights on individual trees in a biweight site chronology can indicate the consistency of tree growth responses to macroclimate and can be the basis for stratifying trees in climate-growth analyses. This was explored with 45 years of ring-width indices for 200 trees from five even-aged jack pine (Pinus hanksiana Lamb.) stands. Average individual-tree...
Tree growth inference and prediction from diameter censuses and ring widths
James S. Clark; Michael Wolosin; Michael Dietze; Ines Ibanez; Shannon LaDeau; Miranda Welsh; Brian Kloeppel
2007-01-01
Knowledge of tree growth is needed to understand population dynamics (Condit et al. 1993, Fastie 1995, Frelich and Reich 1995, Clark and Clark 1999, Wyckoff and Clark 2002, 2005, Webster and Lorimer 2005), species interactions (Swetnam and Lynch 1993), carbon sequestration (DeLucia et al. 1999, Casperson et al. 2000), forest response to climate change (Cook 1987,...
Spatiotemporal patterns of ring-width variability in the northern interior west
R. Justin DeRose; John D. Shaw; James N. Long
2015-01-01
A fundamental goal of forest biogeography is to understand the factors that drive spatiotemporal variability in forest growth across large areas (e.g., states or regions). The ancillary collection of increment cores as part of the IW FIA Program represents an important non-traditional role for the development of unprecedented data sets. Individual-tree growth data from...
Radial growth trends of loblolly pine in the Virginia Coastal Plain
Gregory A. Reams
1996-01-01
A number of recent studies have shown reduced individual-treerowth throughout the 1970s and early 1980s in natural loblolly pine (Pinus taeda L.) stands in the southeastern United States. This study updates radial growth trends of loblolly pine in the Virginia Coastal Plain through1989.Ring-width series were initially grouped into two age-classes (=150...
Herrera-Ramirez, David; Andreu-Hayles, Laia; Del Valle, Jorge I; Santos, Guaciara M; Gonzalez, Paula L M
2017-08-01
In temperate climates, tree growth dormancy usually ensures the annual nature of tree rings, but in tropical environments, determination of annual periodicity can be more complex. The purposes of the work are as follows: (1) to generate a reliable tree-ring width chronology for Prioria copaifera Griseb. (Leguminoceae), a tropical tree species dwelling in the Atrato River floodplains, Colombia; (2) to assess the climate signal recorded by the tree-ring records; and (3) to validate the annual periodicity of the tree rings using independent methods. We used standard dendrochronological procedures to generate the P. copaifera tree-ring chronology. We used Pearson correlations to evaluate the relationship of the chronology with the meteorological records, climate regional indices, and gridded precipitation/sea surface temperature products. We also evaluated 24 high-precision 14 C measurements spread over a range of preselected tree rings, with assigned calendar years by dendrochronological techniques, before and after the bomb spike in order to validate the annual nature of the tree rings. The tree-ring width chronology was statistically reliable, and it correlated significantly with local records of annual and October-December (OND) streamflow and precipitation across the upper river watershed (positive), and OND temperature (negative). It was also significantly related to the Oceanic Niño Index, Pacific Decadal Oscillation, and the Southern Oscillation Index, as well as sea surface temperatures over the Caribbean and the Pacific region. However, 14 C high-precision measurements over the tree rings demonstrated offsets of up to 40 years that indicate that P. copaifera can produce more than one ring in certain years. Results derived from the strongest climate-growth relationship during the most recent years of the record suggest that the climatic signal reported may be due to the presence of annual rings in some of those trees in recent years. Our study alerts about the risk of applying dendrochronology in species with challenging anatomical features defining tree rings, commonly found in the tropics, without an independent validation of annual periodicity of tree rings. High-precision 14 C measurements in multiple trees are a useful method to validate the identification of annual tree rings.
Liang, Eryuan; Eckstein, Dieter
2009-09-01
Shrubs and dwarf shrubs are wider spread on the Tibetan Plateau than trees and hence offer a unique opportunity to expand the present dendrochronological network into extreme environments beyond the survival limit of trees. Alpine shrublands on the Tibetan Plateau are characterized by rhododendron species. The dendrochronological potential of one alpine rhododendron species and its growth response to the extreme environment on the south-east Tibetan Plateau were investigated. Twenty stem discs of the alpine snowy rhododendron (Rhododendron nivale) were collected close to the tongue of the Zuoqiupu Glacier in south-east Tibet, China. The skeleton plot technique was used for inter-comparison between samples to detect the growth pattern of each stem section. The ring-width chronology was developed by fitting a negative exponential function or a straight line of any slope. Bootstrapping correlations were calculated between the standard chronology and monthly climate data. The wood of snowy rhododendron is diffuse-porous with evenly distributed small-diameter vessels. It has well-defined growth rings. Most stem sections can be visually and statistically cross-dated. The resulting 75-year-long standard ring-width chronology is highly correlated with a timberline fir chronology about 200 km apart, providing a high degree of confidence in the cross-dating. The climate/growth association of alpine snowy rhododendron and of this timberline fir is similar, reflecting an impact of monthly mean minimum temperatures in November of the previous year and in July during the year of ring formation. The alpine snowy rhododendron offers new research directions to investigate the environmental history of the Tibetan Plateau in those regions where up to now there was no chance of applying dendrochronology.
Leland, Caroline; Hom, John; Skowronski, Nicholas; Ledig, F Thomas; Krusic, Paul J; Cook, Edward R; Martin-Benito, Dario; Martin-Fernandez, Javier; Pederson, Neil
2016-01-01
Provenance studies are an increasingly important analog for understanding how trees adapted to particular climatic conditions might respond to climate change. Dendrochronological analysis can illuminate differences among trees from different seed sources in terms of absolute annual growth and sensitivity to external growth factors. We analyzed annual radial growth of 567 36-year-old pitch pine (Pinus rigida Mill.) trees from 27 seed sources to evaluate their performance in a New Jersey Pine Barrens provenance experiment. Unexpectedly, missing rings were prevalent in most trees, and some years-1992, 1999, and 2006-had a particularly high frequency of missing rings across the plantation. Trees from local seed sources (<55 km away from the plantation) had a significantly smaller percentage of missing rings from 1980-2009 (mean: 5.0%), relative to northernmost and southernmost sources (mean: 9.3% and 7.9%, respectively). Some years with a high frequency of missing rings coincide with outbreaks of defoliating insects or dry growing season conditions. The propensity for missing rings synchronized annual variations in growth across all trees and might have complicated the detection of potential differences in interannual variability among seed sources. Average ring width was significantly larger in seed sources from both the southernmost and warmest origins compared to the northernmost and coldest seed sources in most years. Local seed sources had the highest average radial growth. Adaptation to local environmental conditions and disturbances might have influenced the higher growth rate found in local seed sources. These findings underscore the need to understand the integrative impact of multiple environmental drivers, such as disturbance agents and climate change, on tree growth, forest dynamics, and the carbon cycle.
Leland, Caroline; Hom, John; Skowronski, Nicholas; Krusic, Paul J.; Cook, Edward R.; Martin-Benito, Dario; Martin-Fernandez, Javier; Pederson, Neil
2016-01-01
Provenance studies are an increasingly important analog for understanding how trees adapted to particular climatic conditions might respond to climate change. Dendrochronological analysis can illuminate differences among trees from different seed sources in terms of absolute annual growth and sensitivity to external growth factors. We analyzed annual radial growth of 567 36-year-old pitch pine (Pinus rigida Mill.) trees from 27 seed sources to evaluate their performance in a New Jersey Pine Barrens provenance experiment. Unexpectedly, missing rings were prevalent in most trees, and some years—1992, 1999, and 2006—had a particularly high frequency of missing rings across the plantation. Trees from local seed sources (<55 km away from the plantation) had a significantly smaller percentage of missing rings from 1980–2009 (mean: 5.0%), relative to northernmost and southernmost sources (mean: 9.3% and 7.9%, respectively). Some years with a high frequency of missing rings coincide with outbreaks of defoliating insects or dry growing season conditions. The propensity for missing rings synchronized annual variations in growth across all trees and might have complicated the detection of potential differences in interannual variability among seed sources. Average ring width was significantly larger in seed sources from both the southernmost and warmest origins compared to the northernmost and coldest seed sources in most years. Local seed sources had the highest average radial growth. Adaptation to local environmental conditions and disturbances might have influenced the higher growth rate found in local seed sources. These findings underscore the need to understand the integrative impact of multiple environmental drivers, such as disturbance agents and climate change, on tree growth, forest dynamics, and the carbon cycle. PMID:27182599
Does Forest Continuity Enhance the Resilience of Trees to Environmental Change?
von Oheimb, Goddert; Härdtle, Werner; Eckstein, Dieter; Engelke, Hans-Hermann; Hehnke, Timo; Wagner, Bettina; Fichtner, Andreas
2014-01-01
There is ample evidence that continuously existing forests and afforestations on previously agricultural land differ with regard to ecosystem functions and services such as carbon sequestration, nutrient cycling and biodiversity. However, no studies have so far been conducted on possible long-term (>100 years) impacts on tree growth caused by differences in the ecological continuity of forest stands. In the present study we analysed the variation in tree-ring width of sessile oak (Quercus petraea (Matt.) Liebl.) trees (mean age 115-136 years) due to different land-use histories (continuously existing forests, afforestations both on arable land and on heathland). We also analysed the relation of growth patterns to soil nutrient stores and to climatic parameters (temperature, precipitation). Tree rings formed between 1896 and 2005 were widest in trees afforested on arable land. This can be attributed to higher nitrogen and phosphorous availability and indicates that former fertilisation may continue to affect the nutritional status of forest soils for more than one century after those activities have ceased. Moreover, these trees responded more strongly to environmental changes - as shown by a higher mean sensitivity of the tree-ring widths - than trees of continuously existing forests. However, the impact of climatic parameters on the variability in tree-ring width was generally small, but trees on former arable land showed the highest susceptibility to annually changing climatic conditions. We assume that incompletely developed humus horizons as well as differences in the edaphon are responsible for the more sensitive response of oak trees of recent forests (former arable land and former heathland) to variation in environmental conditions. We conclude that forests characterised by a long ecological continuity may be better adapted to global change than recent forest ecosystems.
Does Forest Continuity Enhance the Resilience of Trees to Environmental Change?
von Oheimb, Goddert; Härdtle, Werner; Eckstein, Dieter; Engelke, Hans-Hermann; Hehnke, Timo; Wagner, Bettina; Fichtner, Andreas
2014-01-01
There is ample evidence that continuously existing forests and afforestations on previously agricultural land differ with regard to ecosystem functions and services such as carbon sequestration, nutrient cycling and biodiversity. However, no studies have so far been conducted on possible long-term (>100 years) impacts on tree growth caused by differences in the ecological continuity of forest stands. In the present study we analysed the variation in tree-ring width of sessile oak (Quercus petraea (Matt.) Liebl.) trees (mean age 115–136 years) due to different land-use histories (continuously existing forests, afforestations both on arable land and on heathland). We also analysed the relation of growth patterns to soil nutrient stores and to climatic parameters (temperature, precipitation). Tree rings formed between 1896 and 2005 were widest in trees afforested on arable land. This can be attributed to higher nitrogen and phosphorous availability and indicates that former fertilisation may continue to affect the nutritional status of forest soils for more than one century after those activities have ceased. Moreover, these trees responded more strongly to environmental changes – as shown by a higher mean sensitivity of the tree-ring widths – than trees of continuously existing forests. However, the impact of climatic parameters on the variability in tree-ring width was generally small, but trees on former arable land showed the highest susceptibility to annually changing climatic conditions. We assume that incompletely developed humus horizons as well as differences in the edaphon are responsible for the more sensitive response of oak trees of recent forests (former arable land and former heathland) to variation in environmental conditions. We conclude that forests characterised by a long ecological continuity may be better adapted to global change than recent forest ecosystems. PMID:25494042
Does prism width from the shell prismatic layer have a random distribution?
NASA Astrophysics Data System (ADS)
Vancolen, Séverine; Verrecchia, Eric
2008-10-01
A study of the distribution of the prism width inside the prismatic layer of Unio tumidus (Philipsson 1788, Diss Hist-Nat, Berling, Lundæ) from Lake Neuchâtel, Switzerland, has been conducted in order to determine whether or not this distribution is random. Measurements of 954 to 1,343 prism widths (depending on shell sample) have been made using a scanning electron microscope in backscattered electron mode. A white noise test has been applied to the distribution of prism sizes (i.e. width). It shows that there is no temporal cycle that could potentially influence their formation and growth. These results suggest that prism widths are randomly distributed, and related neither to external rings nor to environmental constraints.
Diverse growth trends and climate responses across Eurasia’s boreal forest
NASA Astrophysics Data System (ADS)
Hellmann, Lena; Agafonov, Leonid; Charpentier Ljungqvist, Fredrik; Churakova (Sidorova, Olga; Düthorn, Elisabeth; Esper, Jan; Hülsmann, Lisa; Kirdyanov, Alexander V.; Moiseev, Pavel; Myglan, Vladimir S.; Nikolaev, Anatoly N.; Reinig, Frederick; Schweingruber, Fritz H.; Solomina, Olga; Tegel, Willy; Büntgen, Ulf
2016-07-01
The area covered by boreal forests accounts for ˜16% of the global and 22% of the Northern Hemisphere landmass. Changes in the productivity and functioning of this circumpolar biome not only have strong effects on species composition and diversity at regional to larger scales, but also on the Earth’s carbon cycle. Although temporal inconsistency in the response of tree growth to temperature has been reported from some locations at the higher northern latitudes, a systematic dendroecological network assessment is still missing for most of the boreal zone. Here, we analyze the geographical patterns of changes in summer temperature and precipitation across northern Eurasia >60 °N since 1951 AD, as well as the growth trends and climate responses of 445 Pinus, Larix and Picea ring width chronologies in the same area and period. In contrast to widespread summer warming, fluctuations in precipitation and tree growth are spatially more diverse and overall less distinct. Although the influence of summer temperature on ring formation is increasing with latitude and distinct moisture effects are restricted to a few southern locations, growth sensitivity to June-July temperature variability is only significant at 16.6% of all sites (p ≤ 0.01). By revealing complex climate constraints on the productivity of Eurasia’s northern forests, our results question the a priori suitability of boreal tree-ring width chronologies for reconstructing summer temperatures. This study further emphasizes regional climate differences and their role on the dynamics of boreal ecosystems, and also underlines the importance of free data access to facilitate the compilation and evaluation of massively replicated and updated dendroecological networks.
NASA Astrophysics Data System (ADS)
Appleton, S.; St George, S.
2014-12-01
This study investigates the climate sensitivity of mountain hemlock (Tsuga mertensiana (Bong.) Carr.) near the southern limit of its range, tests the stability of its climate-tree relations over the last few decades, and explores its potential as a hydroclimatic proxy for Crater Lake National Park. We collected tree cores at seven locations around the caldera rim, focusing on hemlock growing at higher elevations (2000-2400 masl). The median length of all ring-width series is 283 years, and the oldest hemlock sample extends back to C.E. 1450. Several types of anatomical anomalies, including frost rings, traumatic resin ducts, false rings, and light late-wood bands were observed within the specimens, the most common feature being a false ring in C.E. 1810. Each set of standardized ring-width measurements has a strong common signal, with between-tree correlations (r-bar) ranging from 0.31 to 0.49. Preliminary analysis suggests hemlock growth across the park is strongly and inversely related to total cool-season precipitation, and is also influenced positively (albeit more weakly) by mean summer temperature. Most sites are significantly and negatively correlated with total December-to-February precipitation (r = -0.41) and total precipitation from December to August (r = -0.48). Compared to other ring-width records exhibiting similar negative responses to winter precipitation, these hemlocks appear to track that specific signal quite clearly and, as a result, these data may be suitable to reconstruct past changes in cool-season moisture in Crater Lake National Park and across the broader southern Cascades.
Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia.
Liu, Hongyan; Park Williams, A; Allen, Craig D; Guo, Dali; Wu, Xiuchen; Anenkhonov, Oleg A; Liang, Eryuan; Sandanov, Denis V; Yin, Yi; Qi, Zhaohuan; Badmaeva, Natalya K
2013-08-01
Forests around the world are subject to risk of high rates of tree growth decline and increased tree mortality from combinations of climate warming and drought, notably in semi-arid settings. Here, we assess how climate warming has affected tree growth in one of the world's most extensive zones of semi-arid forests, in Inner Asia, a region where lack of data limits our understanding of how climate change may impact forests. We show that pervasive tree growth declines since 1994 in Inner Asia have been confined to semi-arid forests, where growing season water stress has been rising due to warming-induced increases in atmospheric moisture demand. A causal link between increasing drought and declining growth at semi-arid sites is corroborated by correlation analyses comparing annual climate data to records of tree-ring widths. These ring-width records tend to be substantially more sensitive to drought variability at semi-arid sites than at semi-humid sites. Fire occurrence and insect/pathogen attacks have increased in tandem with the most recent (2007-2009) documented episode of tree mortality. If warming in Inner Asia continues, further increases in forest stress and tree mortality could be expected, potentially driving the eventual regional loss of current semi-arid forests. © 2013 John Wiley & Sons Ltd.
Drought-induced weakening of growth-temperature associations in high-elevation Iberian pines
NASA Astrophysics Data System (ADS)
Diego Galván, J.; Büntgen, Ulf; Ginzler, Christian; Grudd, Håkan; Gutiérrez, Emilia; Labuhn, Inga; Julio Camarero, J.
2015-01-01
The growth/climate relationship of theoretically temperature-controlled high-elevation forests has been demonstrated to weaken over recent decades. This is likely due to new tree growth limiting factors, such as an increasing drought risk for ecosystem functioning and productivity across the Mediterranean Basin. In addition, declining tree growth sensitivity to spring temperature may emerge in response to increasing drought stress. Here, we evaluate these ideas by assessing the growth/climate sensitivity of 1500 tree-ring width (TRW) and 102 maximum density (MXD) measurement series from 711 and 74 Pinus uncinata trees, respectively, sampled at 28 high-elevation forest sites across the Pyrenees and two relict populations of the Iberian System. Different dendroclimatological standardization and split period approaches were used to assess the high- to low-frequency behavior of 20th century tree growth in response to temperature means, precipitation totals and drought indices. Long-term variations in TRW track summer temperatures until about 1970 but diverge afterwards, whereas MXD captures the recent temperature increase in the low-frequency domain fairly well. On the other hand summer drought has increasingly driven TRW along the 20th century. Our results suggest fading temperature sensitivity of Iberian high-elevation P. uncinata forest growth, and reveal the importance of summer drought that is becoming the emergent limiting factor of tree ring width formation in many parts of the Mediterranean Basin.
Dobbertin, Matthias; Eilmann, Britta; Bleuler, Peter; Giuggiola, Arnaud; Graf Pannatier, Elisabeth; Landolt, Werner; Schleppi, Patrick; Rigling, Andreas
2010-03-01
In Valais, Switzerland, Scots pines (Pinus sylvestris L.) are declining, mainly following drought. To assess the impact of drought on tree growth and survival, an irrigation experiment was initiated in 2003 in a mature pine forest, approximately doubling the annual precipitation. Tree crown transparency (lack of foliage) and leaf area index (LAI) were annually assessed. Seven irrigated and six control trees were felled in 2006, and needles, stem discs and branches were taken for growth analysis. Irrigation in 2004 and 2005, both with below-average precipitation, increased needle size, area and mass, stem growth and, with a 1-year delay, shoot length. This led to a relative decrease in tree crown transparency (-14%) and to an increase in stand LAI (+20%). Irrigation increased needle length by 70%, shoot length by 100% and ring width by 120%, regardless of crown transparency. Crown transparency correlated positively with mean needle size, shoot length and ring width and negatively with specific leaf area. Trees with high crown transparency (low growth, short needles) experienced similar increases in needle mass and growth with irrigation than trees with low transparency (high growth, long needles), indicating that seemingly declining trees were able to 'recover' when water supply became sufficient. A simple drought index before and during the irrigation explained most of the variation found in the parameters for both irrigated and control trees.
Ling, Hongbo; Zhang, Pei; Guo, Bin; Xu, Hailiang; Ye, Mao; Deng, Xiaoya
2017-01-01
Drought stress changes the relationship between the growth of tree rings and variations in ambient temperature. However, it is not clear how the growth of trees changes in response to drought of varying intensities, especially in arid areas. Therefore, Tree rings were studied for 6years in Populus euphratica to assess the impacts of abrupt changes in environment on tree rings using the theories and methods in dendrohydrology, ecology and phytophysiology. The width of tree rings increased by 8.7% after ecological water conveyance downstream of Tarim River compared to that when the river water had been cut off. However, during intermediate drought, as the depth of the groundwater increases, the downward trend in the tree rings was reversed because of changes in the physiology of the tree. Therefore, the growth of tree rings shows a negative feedback to intermediate drought stress, an observation that challenges the homogenization theory of tree ring reconstruction based on the traditional methods. Owing to the time lag, the cumulative effect and the negative feedback between the growth of tree rings and drought stress, the reconstruction of past environment by studying the patterns of tree rings is often inaccurate. Our research sets out to verify the hypothesis that intermediate drought stress results in a negative feedback adjustment and thus to answers two scientific questions: (1) How does the negative feedback adjustment promote the growth of tree rings as a result of intermediate drought stress? (2) How does the negative feedback adjustment lower the accuracy with which the past is reconstructed based on tree rings? This research not only enriches the connotations of intermediate disturbance hypothesis and reconstruction theory of tree rings, but also provides a scientific basis for the conservation of desert riparian forests worldwide. Copyright © 2016 Elsevier B.V. All rights reserved.
Yanosky, Thomas M.
1983-01-01
Ash trees along the Potomac River flood plain near Washington, D.C., were studied to determine changes in wood anatomy related to flood damage, and anomalous growth was compared to flood records for April 15 to August 31, 1930-79. Collectively, anatomical evidence was detected for 33 of the 34 growing-season floods during the study period. Evidence of 12 floods prior to 1930 was also noted, including catastrophic ones in 1889 and 1924. Trees damaged after the transition from earlywood to latewood growth typically formed ' flood rings ' of enlarged vessels within the latewood zone. Trees damaged near the beginning of the growth year developed flood rings within, or contiguous with, the earlywood. Both patterns are assumed to have developed when flood-damaged trees produced a second crop of leaves. Trees damaged by high-magnitude floods developed well formed flood rings along the entire height and around the entire circumference of the stem. Small floods were generally associated wtih diffuse or discontinuous anomalies restricted to stem apices. Frequency of flood rings was positively related to flood magnitude, and time of flood generation during the tree-growth season was estimated from the radial position of anomalous growth relative to annual ring width. Reconstructing tree heights in a year of flood-ring formation gives a minimum stage estimate along local stream reaches. Some trees provided evidence of numerous floods. Those with the greatest number of flood rings grew on frequently flooded surfaces subject to flood-flow velocities of at least 1 m/s, and more typically greater than 2 m/s. Tree size, more than age, was related to flood-ring formation. Trees kept small by frequent flood damage had more flood rings than taller trees of comparable age. (USGS)
NASA Astrophysics Data System (ADS)
Koprowski, Marcin; Przybylak, Rajmund; Zielski, Andrzej; Pospieszyńska, Aleksandra
2012-01-01
Scots pine ( Pinus sylvestris) is a very common tree in Polish forests, and therefore was widely used as timber. A relatively large amount of available wood allowed a long-term chronology to be built up and used as a source of information about past climate. The analysis of reconstructed indexed values of mean temperature in 51-year moving intervals allowed the recognition of the coldest periods in the years 1207-1346, 1383-1425, 1455-1482, 1533-1574, 1627-1646, and 1694-1785. The analysis of extreme wide and narrow rings forms a complementary method of examining climatic data within tree rings. The tree ring widths, early wood and late wood widths of 16 samples were assessed during the period 1581-1676. The most apparent effect is noted in the dry summer of 1616. According to previous research and our findings, temperature from February to March seems to be one of the most stable climatic factors which influenced pine growth in Poland. Correlation coefficients in the calibration and validation procedure gave promising results for temperature reconstruction from the pine chronology.
Koprowski, Marcin; Przybylak, Rajmund; Zielski, Andrzej; Pospieszyńska, Aleksandra
2012-01-01
Scots pine (Pinus sylvestris) is a very common tree in Polish forests, and therefore was widely used as timber. A relatively large amount of available wood allowed a long-term chronology to be built up and used as a source of information about past climate. The analysis of reconstructed indexed values of mean temperature in 51-year moving intervals allowed the recognition of the coldest periods in the years 1207-1346, 1383-1425, 1455-1482, 1533-1574, 1627-1646, and 1694-1785. The analysis of extreme wide and narrow rings forms a complementary method of examining climatic data within tree rings. The tree ring widths, early wood and late wood widths of 16 samples were assessed during the period 1581-1676. The most apparent effect is noted in the dry summer of 1616. According to previous research and our findings, temperature from February to March seems to be one of the most stable climatic factors which influenced pine growth in Poland. Correlation coefficients in the calibration and validation procedure gave promising results for temperature reconstruction from the pine chronology.
Continuing upward trend in Mt Read Huon pine ring widths - Temperature or divergence?
NASA Astrophysics Data System (ADS)
Allen, K. J.; Cook, E. R.; Buckley, B. M.; Larsen, S. H.; Drew, D. M.; Downes, G. M.; Francey, R. J.; Peterson, M. J.; Baker, P. J.
2014-10-01
To date, no attempt has been made to assess the presence or otherwise of the “Divergence Problem” (DP) in existing multi-millennial Southern Hemisphere tree-ring chronologies. We have updated the iconic Mt Read Huon pine chronology from Tasmania, southeastern Australia, to now include the warmest decade on record, AD 2000-2010, and used the Kalman Filter (KF) to examine it for signs of divergence against four different temperature series available for the region. Ring-width growth for the past two decades is statistically unprecedented for the past 1048 years. Although we have identified a decoupling between temperature and growth in the past two decades, the relationship between some of the temperature records and growth has varied over time since the start of instrumental records. Rather than the special case of ‘divergence', we have identified a more general time-dependence between growth and temperature over the last 100 years. This time-dependence appears particularly problematic at interdecadal time scales. Due to the time-dependent relationships, and uncertainties related to the climate data, the use of any of the individual temperature series examined here potentially complicates temperature reconstruction. Some of the uncertainty in the climate data may be associated with changing climatic conditions, such as the intensification of the sub-tropical ridge (STR) and its impact on the frequency of anticyclonic conditions over the Mt Read site. Increased growth at the site, particularly in the last decade, over and above what would be expected based on a linear temperature model alone, may be consistent with a number of hypotheses. Existing uncertainties in the climate data need to be resolved and independent physiological information obtained before a range of hypotheses for this increased growth can be effectively evaluated.
Radial widths, optical depths, and eccentricities of the Uranian rings
NASA Technical Reports Server (NTRS)
Nicholson, P. D.; Matthews, K.; Goldreich, P.
1982-01-01
Observations of the stellar occultation by the Uranian rings of 15/16 August 1980 are used to estimate radial widths and normal optical depths for segments of rings 6, 5, 4, alpha, beta, eta, gamma, and delta. Synthetic occultation profiles are generated to match the observed light curves. A review of published data confirms the existence of width-radius relations for rings alpha and beta, and indicates that the optical depths of these two rings vary inversely with their radial widths. Masses are obtained for rings alpha and beta, on the assumption that differential precession is prevented by their self-gravity. A quantitative comparison of seven epsilon-ring occultation profiles obtained over a period of 3.4 yr reveals a consistent structure, which may reflect the presence of unresolved gaps and subrings.
Graham, John H.; Duda, Jeffrey J.; Brown, Michelle L.; Kitchen, Stanley G.; Emlen, John M.; Malol, Jagadish; Bankstahl, Elizabeth; Krzysik, Anthony J.; Balbach, Harold E.; Freeman, D. Carl
2012-01-01
Ecological indicators provide early warning of adverse environmental change, helping land managers adaptively manage their resources while minimizing costly remediation. In 1999 and 2000, we studied two such indicators, growth and developmental instability, of loblolly pine (Pinus taeda L.) influenced by mechanized infantry training at Fort Benning, Georgia. Disturbed areas were used for military training; tracked and wheeled vehicles damaged vegetation and soils. Highly disturbed sites had fewer trees, diminished ground cover, warmer soils in the summer, and more compacted soils with a shallower A-horizon. We hypothesized that disturbance would decrease the growth of needles, branches, and tree rings, increase the complexity of tree rings, and increase the developmental instability of needles. Contrary to our expectations, however, disturbance enhanced growth in the first year of the study, possibly by reducing competition. In the second year, a drought reduced growth of branches and needles, eliminating the stimulatory effect of disturbance. Growth-ring widths increased with growing-season precipitation, and decreased with growing-season temperature over the last 40 years. Disturbance had no effect on tree-ring complexity, as measured by the Hurst exponent. Within-fascicle variation of current-year needle length, a measure of developmental instability, differed among the study populations, but appeared unrelated to mechanical disturbance or drought.
Radial growth of Qilian juniper on the Northeast Tibetan Plateau and potential climate associations.
Qin, Chun; Yang, Bao; Melvin, Thomas M; Fan, Zexin; Zhao, Yan; Briffa, Keith R
2013-01-01
There is controversy regarding the limiting climatic factor for tree radial growth at the alpine treeline on the northeastern Tibetan Plateau. In this study, we collected 594 increment cores from 331 trees, grouped within four altitude belts spanning the range 3550 to 4020 m.a.s.l. on a single hillside. We have developed four equivalent ring-width chronologies and shown that there are no significant differences in their growth-climate responses during 1956 to 2011 or in their longer-term growth patterns during the period AD 1110-2011. The main climate influence on radial growth is shown to be precipitation variability. Missing ring analysis shows that tree radial growth at the uppermost treeline location is more sensitive to climate variation than that at other elevations, and poor tree radial growth is particularly linked to the occurrence of serious drought events. Hence water limitation, rather than temperature stress, plays the pivotal role in controlling the radial growth of Sabina przewalskii Kom. at the treeline in this region. This finding contradicts any generalisation that tree-ring chronologies from high-elevation treeline environments are mostly indicators of temperature changes.
Radial Growth of Qilian Juniper on the Northeast Tibetan Plateau and Potential Climate Associations
Qin, Chun; Yang, Bao; Melvin, Thomas M.; Fan, Zexin; Zhao, Yan; Briffa, Keith R.
2013-01-01
There is controversy regarding the limiting climatic factor for tree radial growth at the alpine treeline on the northeastern Tibetan Plateau. In this study, we collected 594 increment cores from 331 trees, grouped within four altitude belts spanning the range 3550 to 4020 m.a.s.l. on a single hillside. We have developed four equivalent ring-width chronologies and shown that there are no significant differences in their growth-climate responses during 1956 to 2011 or in their longer-term growth patterns during the period AD 1110–2011. The main climate influence on radial growth is shown to be precipitation variability. Missing ring analysis shows that tree radial growth at the uppermost treeline location is more sensitive to climate variation than that at other elevations, and poor tree radial growth is particularly linked to the occurrence of serious drought events. Hence water limitation, rather than temperature stress, plays the pivotal role in controlling the radial growth of Sabina przewalskii Kom. at the treeline in this region. This finding contradicts any generalisation that tree-ring chronologies from high-elevation treeline environments are mostly indicators of temperature changes. PMID:24244488
Can dendrochronology procedures estimate historical Tree Water Footprint?
NASA Astrophysics Data System (ADS)
Fernandes, Tarcísio J. G.; Del Campo, Antonio D.; Molina, Antonio J.
2013-04-01
Whole estimates of tree water use are becoming increasingly important in forest science and forest scientists have long sought to develop reliable techniques to estimate tree water use. In this sense accurately determining or estimate the quantity of water transpired by trees and forests is important and can be used to determine "green" water footprint. The use of dendrochronology is relative common in the study of effects and interactions between growth and climatic variables, but few studies deal with the relationship with water footprint. The main objective of this study is determining the historical tree water-use in a planted stand by dendrochronological approaches. This study was performed in South-eastern Spain, in an area covered by 50-60 years old Pinus halepensis Mil. plantations with high tree density (ca.1288/ha) due to low forest management. The experimental set-up consisted of two plots (30x30m), one corresponding to a thinning treatment performed in 2008 (t10) and the other thinned in 1998 (t1) to assess the mid-term effects of thinning. After one year of thinning four representative trees were select in each plot to measure transpiration by heat pulse sensor (sapflow velocity, vs). The accumulated daily values of transpiration (L day-1) were estimated multiplying the values of vs by sapwood area of each selected tree. After transpiration measurements two cores per tree were taken for establishing the tree-rings chronologies. The cores were prepared, their ring-width were measured and standardised in basal area increment index (BAI-i) following usual dendrochronological methods. The dendrochronology analyses showed a general variability in ring width during the initial growth (15 years), while in the following years the width rings were very small, conditioned by climate. The year after thinning (1999 or 2009) all trees in the treatments showed significant increases in ring width. The average vs for t1 and t10 were 3.59 cm h-1 and 1.95 cm h-1, and transformed into tree transpiration using sapwood area, obtaining 6,768 and 5,844 litres per tree, respectively. BAI-i and vs were significantly related. The Pearson correlation was higher and positive when the growth from the rings formed during the span of sap flow measurement was considered, i.e., the 2009 and 2010 rings. An empirical model was fitted for the BAI-i and vs allowing a preliminary reconstruction of the stand's transpiration history. Linear regressions between vs and BAI-i were significant (R2 ≈ 0.65). Applying the linear equation in each BAI-i along the time (1960-2010) it was possible to reconstruct water use per tree, sometimes defined as the "green" water footprint. In conclusion dendrochronology methods can be used to estimate the Tree-Water-Footprint, and more experimental data should be used for better accuracy.
Cottonwood Tree Rings and Climate in Western North America
NASA Astrophysics Data System (ADS)
Friedman, J. M.; Edmondson, J.; Griffin, E. R.; Meko, D. M.; Merigliano, M. F.; Scott, J. A.; Scott, M. L.; Touchan, R.
2012-12-01
In dry landscapes of interior western USA, cottonwood (Populus spp.) seedling establishment often occurs only close to river channels after floods. Where winter is sufficiently cold, cottonwoods also have distinct annual rings and can live up to 370 years, allowing us to reconstruct the long-term history of river flows and channel locations. We have analyzed the annual rate of cottonwood establishment along streams in Montana, Wyoming, Colorado, North Dakota and Idaho. Because the trees germinate next to the river, establishment rates are strongly correlated with the rate of channel migration driven by floods. Along large rivers dominated by snowmelt from the mountains, interannual variation in peak flows and cottonwood establishment is small, and century-scale variation driven by climate change is apparent. The upper Snake, Yellowstone and Green rivers all show a strong decrease in cottonwood establishment beginning in the late 1800s and continuing to the present, indicating a decrease in peak flows prior to flow regulation by large dams. This is consistent with published tree-ring studies of montane conifers showing decreases in snowpack at the same time scale. In contrast, beginning in the late 1800s cottonwood ring widths along the Little Missouri River, North Dakota show an increase in annual growth that continues into the present. Because annual growth is strongly correlated with April-July flows (r=0.69) the ring-width data suggest an increase in April-July flows at the same time tree establishment dates suggest a decrease in peak flows. These results may be reconciled by the hypothesis that increases in low temperatures have decreased snowpack while lengthening the growing season.
J.Y. Zhu; David W. Vahey; C. Tim Scott
2008-01-01
This study used ring width correlations to examine the effects of tree-growth suppression on within-tree local wood density and tracheid anatomical properties. A wood core sample was taken from a 70-yr-old Douglas-fir that grew under various degrees of suppression in a natural forest setting. SilviScan and an imaging technique were used to obtain wood density and...
NASA Astrophysics Data System (ADS)
Büntgen, Ulf; Martínez-Peña, Fernando; Aldea, Jorge; Rigling, Andreas; Fischer, Erich M.; Camarero, J. Julio; Hayes, Michael J.; Fatton, Vincent; Egli, Simon
2013-08-01
Growing evidence suggests environmental change to be most severe across the semi-arid subtropics, with past, present and projected drying of the Mediterranean Basin posing a key multidisciplinary challenge. Consideration of a single climatic factor, however, often fails to explain spatiotemporal growth dynamics of drought-prone ecosystems. Here, we present annually resolved and absolutely dated ring width measurements of 871 Scots pines (Pinus sylvestris) from 18 individual plot sites in the Central Spanish Pinar Grande forest reserve. Although comprising tree ages from 6 to 175 years, this network correlates surprisingly well with the inverse May-July diurnal temperature range (r = 0.84; p < 0.00011956-2011). Ring width extremes were triggered by pressure anomalies of the North Atlantic Oscillation, and the long-term growth decline coincided with Iberian-wide drying since the mid-1970s. Climate model simulations not only confirm this negative trend over the last decades but also project drought to continuously increase over the 21st century. Associated ecological effects and socio-economic consequences should be considered to improve adaptation strategies of agricultural and forest management, as well as biodiversity conservation and ecosystem service.
Assimilation of pseudo-tree-ring-width observations into an atmospheric general circulation model
NASA Astrophysics Data System (ADS)
Acevedo, Walter; Fallah, Bijan; Reich, Sebastian; Cubasch, Ulrich
2017-05-01
Paleoclimate data assimilation (DA) is a promising technique to systematically combine the information from climate model simulations and proxy records. Here, we investigate the assimilation of tree-ring-width (TRW) chronologies into an atmospheric global climate model using ensemble Kalman filter (EnKF) techniques and a process-based tree-growth forward model as an observation operator. Our results, within a perfect-model experiment setting, indicate that the "online DA" approach did not outperform the "off-line" one, despite its considerable additional implementation complexity. On the other hand, it was observed that the nonlinear response of tree growth to surface temperature and soil moisture does deteriorate the operation of the time-averaged EnKF methodology. Moreover, for the first time we show that this skill loss appears significantly sensitive to the structure of the growth rate function, used to represent the principle of limiting factors (PLF) within the forward model. In general, our experiments showed that the error reduction achieved by assimilating pseudo-TRW chronologies is modulated by the magnitude of the yearly internal variability in the model. This result might help the dendrochronology community to optimize their sampling efforts.
A model analysis of climate and CO2 controls on tree growth in a semi-arid woodland
NASA Astrophysics Data System (ADS)
Li, G.; Harrison, S. P.; Prentice, I. C.
2015-03-01
We used a light-use efficiency model of photosynthesis coupled with a dynamic carbon allocation and tree-growth model to simulate annual growth of the gymnosperm Callitris columellaris in the semi-arid Great Western Woodlands, Western Australia, over the past 100 years. Parameter values were derived from independent observations except for sapwood specific respiration rate, fine-root turnover time, fine-root specific respiration rate and the ratio of fine-root mass to foliage area, which were estimated by Bayesian optimization. The model reproduced the general pattern of interannual variability in radial growth (tree-ring width), including the response to the shift in precipitation regimes that occurred in the 1960s. Simulated and observed responses to climate were consistent. Both showed a significant positive response of tree-ring width to total photosynthetically active radiation received and to the ratio of modeled actual to equilibrium evapotranspiration, and a significant negative response to vapour pressure deficit. However, the simulations showed an enhancement of radial growth in response to increasing atmospheric CO2 concentration (ppm) ([CO2]) during recent decades that is not present in the observations. The discrepancy disappeared when the model was recalibrated on successive 30-year windows. Then the ratio of fine-root mass to foliage area increases by 14% (from 0.127 to 0.144 kg C m-2) as [CO2] increased while the other three estimated parameters remained constant. The absence of a signal of increasing [CO2] has been noted in many tree-ring records, despite the enhancement of photosynthetic rates and water-use efficiency resulting from increasing [CO2]. Our simulations suggest that this behaviour could be explained as a consequence of a shift towards below-ground carbon allocation.
Wilkinson, Sarah; Ogée, Jérôme; Domec, Jean-Christophe; Rayment, Mark; Wingate, Lisa
2015-03-01
Process-based models that link seasonally varying environmental signals to morphological features within tree rings are essential tools to predict tree growth response and commercially important wood quality traits under future climate scenarios. This study evaluated model portrayal of radial growth and wood anatomy observations within a mature maritime pine (Pinus pinaster (L.) Aït.) stand exposed to seasonal droughts. Intra-annual variations in tracheid anatomy and wood density were identified through image analysis and X-ray densitometry on stem cores covering the growth period 1999-2010. A cambial growth model was integrated with modelled plant water status and sugar availability from the soil-plant-atmosphere transfer model MuSICA to generate estimates of cell number, cell volume, cell mass and wood density on a weekly time step. The model successfully predicted inter-annual variations in cell number, ring width and maximum wood density. The model was also able to predict the occurrence of special anatomical features such as intra-annual density fluctuations (IADFs) in growth rings. Since cell wall thickness remained surprisingly constant within and between growth rings, variations in wood density were primarily the result of variations in lumen diameter, both in the model and anatomical data. In the model, changes in plant water status were identified as the main driver of the IADFs through a direct effect on cell volume. The anatomy data also revealed that a trade-off existed between hydraulic safety and hydraulic efficiency. Although a simplified description of cambial physiology is presented, this integrated modelling approach shows potential value for identifying universal patterns of tree-ring growth and anatomical features over a broad climatic gradient. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Elevation Pattern in Growth Coherency on the Southeastern Tibetan Plateau
Lyu, Lixin; Deng, Xu; Zhang, Qi-Bin
2016-01-01
It is generally expected that inter-annual changes in radial growth among trees would be similar to the increase in altitude due to the limitation of increasingly harsher climatic factors. Here, we examine whether this pattern exists in alpine forests on the southeastern Tibetan Plateau. Increment cores were collected from mature trees at the lower, middle and upper limits of balfour spruce (Picea likiangensis var. balfouriana (Rehd. et Wils.) Hillier ex Slsvin) forests at the Buze and Yela Mountains in Basu County, Changdu Prefecture of Tibet, China. The treeline elevations are 4320 m and 4510 m a.s.l. for Buze and Yela, respectively. Tree-ring widths were measured, crossdated, and detrended to obtain a sequence of ring-width indices for each individual sample. Annual growth rate, climate sensitivity, growth-climate relationships, and growth synchrony among trees were calculated and compared across altitudes. In Buze Mountain, the annual growth rate of trees has no significant difference across altitudes. The mean sensitivity of trees is lower at the treelines than at lower elevations. Tree growth has stronger correlation with winter temperature at upper elevations than at lower elevations, has significant correlation with moisture, not temperature, in the growing season, and the growth response to moisture is lower at the treeline than at lower elevations. The correlation among individual tree-ring sequences is lower at the treeline than at sites at lower elevation. In Yela Mountain, the characterisitics of annual growth rate, mean sensitivity, tree growth-climate relationships, and inter-serial correlation are similar to those in Buze, but their differences along altitudinal gradients are less significant as those in Buze. Our data do not support the general expectation of growth convergence among individuals with increasing altitude. We conclude that individual heterogeneity and microhabitat diversity are important features for treeline trees that may dampen the growth synchrony in trees. The results obtained in this study expand our knowledge about the pattern of forest growth along altitudinal gradients in high-elevation regions and demonstrate the importance of checking the growth of tree individuals before analyzing the average signal. PMID:27685668
Elevation Pattern in Growth Coherency on the Southeastern Tibetan Plateau.
Lyu, Lixin; Deng, Xu; Zhang, Qi-Bin
It is generally expected that inter-annual changes in radial growth among trees would be similar to the increase in altitude due to the limitation of increasingly harsher climatic factors. Here, we examine whether this pattern exists in alpine forests on the southeastern Tibetan Plateau. Increment cores were collected from mature trees at the lower, middle and upper limits of balfour spruce (Picea likiangensis var. balfouriana (Rehd. et Wils.) Hillier ex Slsvin) forests at the Buze and Yela Mountains in Basu County, Changdu Prefecture of Tibet, China. The treeline elevations are 4320 m and 4510 m a.s.l. for Buze and Yela, respectively. Tree-ring widths were measured, crossdated, and detrended to obtain a sequence of ring-width indices for each individual sample. Annual growth rate, climate sensitivity, growth-climate relationships, and growth synchrony among trees were calculated and compared across altitudes. In Buze Mountain, the annual growth rate of trees has no significant difference across altitudes. The mean sensitivity of trees is lower at the treelines than at lower elevations. Tree growth has stronger correlation with winter temperature at upper elevations than at lower elevations, has significant correlation with moisture, not temperature, in the growing season, and the growth response to moisture is lower at the treeline than at lower elevations. The correlation among individual tree-ring sequences is lower at the treeline than at sites at lower elevation. In Yela Mountain, the characterisitics of annual growth rate, mean sensitivity, tree growth-climate relationships, and inter-serial correlation are similar to those in Buze, but their differences along altitudinal gradients are less significant as those in Buze. Our data do not support the general expectation of growth convergence among individuals with increasing altitude. We conclude that individual heterogeneity and microhabitat diversity are important features for treeline trees that may dampen the growth synchrony in trees. The results obtained in this study expand our knowledge about the pattern of forest growth along altitudinal gradients in high-elevation regions and demonstrate the importance of checking the growth of tree individuals before analyzing the average signal.
The Structure of Chariklo’s Rings from Stellar Occultations
NASA Astrophysics Data System (ADS)
Bérard, D.; Sicardy, B.; Camargo, J. I. B.; Desmars, J.; Braga-Ribas, F.; Ortiz, J.-L.; Duffard, R.; Morales, N.; Meza, E.; Leiva, R.; Benedetti-Rossi, G.; Vieira-Martins, R.; Gomes Júnior, A.-R.; Assafin, M.; Colas, F.; Dauvergne, J.-L.; Kervella, P.; Lecacheux, J.; Maquet, L.; Vachier, F.; Renner, S.; Monard, B.; Sickafoose, A. A.; Breytenbach, H.; Genade, A.; Beisker, W.; Bath, K.-L.; Bode, H.-J.; Backes, M.; Ivanov, V. D.; Jehin, E.; Gillon, M.; Manfroid, J.; Pollock, J.; Tancredi, G.; Roland, S.; Salvo, R.; Vanzi, L.; Herald, D.; Gault, D.; Kerr, S.; Pavlov, H.; Hill, K. M.; Bradshaw, J.; Barry, M. A.; Cool, A.; Lade, B.; Cole, A.; Broughton, J.; Newman, J.; Horvat, R.; Maybour, D.; Giles, D.; Davis, L.; Paton, R. A.; Loader, B.; Pennell, A.; Jaquiery, P.-D.; Brillant, S.; Selman, F.; Dumas, C.; Herrera, C.; Carraro, G.; Monaco, L.; Maury, A.; Peyrot, A.; Teng-Chuen-Yu, J.-P.; Richichi, A.; Irawati, P.; De Witt, C.; Schoenau, P.; Prager, R.; Colazo, C.; Melia, R.; Spagnotto, J.; Blain, A.; Alonso, S.; Román, A.; Santos-Sanz, P.; Rizos, J.-L.; Maestre, J.-L.; Dunham, D.
2017-10-01
Two narrow and dense rings (called C1R and C2R) were discovered around the Centaur object (10199) Chariklo during a stellar occultation observed on 2013 June 3. Following this discovery, we planned observations of several occultations by Chariklo’s system in order to better characterize the physical properties of the ring and main body. Here, we use 12 successful occulations by Chariklo observed between 2014 and 2016. They provide ring profiles (physical width, opacity, edge structure) and constraints on the radii and pole position. Our new observations are currently consistent with the circular ring solution and pole position, to within the ±3.3 km formal uncertainty for the ring radii derived by Braga-Ribas et al. The six resolved C1R profiles reveal significant width variations from ˜5 to 7.5 km. The width of the fainter ring C2R is less constrained, and may vary between 0.1 and 1 km. The inner and outer edges of C1R are consistent with infinitely sharp boundaries, with typical upper limits of one kilometer for the transition zone between the ring and empty space. No constraint on the sharpness of C2R’s edges is available. A 1σ upper limit of ˜20 m is derived for the equivalent width of narrow (physical width < 4 km) rings up to distances of 12,000 km, counted in the ring plane.
Puchałka, Radosław; Koprowski, Marcin; Przybylak, Julia; Przybylak, Rajmund; Dąbrowski, Henryk P
2016-08-01
Trees are sensitive to extreme weather and environmental conditions. This sensitivity is visible in tree-ring widths and cell structure. In our study, we hypothesized that the sudden frost noted at the beginning of May in both 2007 and 2011 affected cambial activity and, consequently, the number and size of vessels in the tree rings. It was decided to test this hypothesis after damage to leaves was observed. The applied response function model did not show any significant relationships between spring temperature and growth. However, this method uses average values for long periods and sometimes misses the short-term effects. This is why we decided to study each ring separately, comparing them with rings unaffected by the late frost. Our study showed that the short-term effect of sudden frost in late spring did not affect tree rings and selected cell parameters. The most likely reasons for this are (i) cambial activity producing the earlywood vessels before the occurrence of the observed leaf damage, (ii) the forest micro-climate protecting the trees from the harsh frost and (iii) the temperature decline being too short-lived an event to affect the oaks. On the other hand, the visible damage may be occasional and not affect cambium activity and tree vitality at all. We conclude that oak is well-adapted to this phenomenon.
New star on the stage: amount of ray parenchyma in tree rings shows a link to climate.
Olano, José Miguel; Arzac, Alberto; García-Cervigón, Ana I; von Arx, Georg; Rozas, Vicente
2013-04-01
Tree-ring anatomy reflects the year-by-year impact of environmental factors on tree growth. Up to now, research in this field has mainly focused on the hydraulic architecture, with ray parenchyma neglected despite the growing recognition of its relevance for xylem function. Our aim was to address this gap by exploring the potential of the annual patterns of xylem parenchyma as a climate proxy. We constructed ring-width and ray-parenchyma chronologies from 1965 to 2004 for 20 Juniperus thurifera trees growing in a Mediterranean continental climate. Chronologies were related to climate records by means of correlation, multiple regression and partial correlation analyses. Ray parenchyma responded to climatic conditions at critical stages during the xylogenetic process; namely, at the end of the previous year's xylogenesis (October) and at the onset of earlywood (May) and latewood formation (August). Ray parenchyma-based chronologies have potential to complement ring-width chronologies as a tool for climate reconstructions. Furthermore, medium- and low-frequency signals in the variation of ray parenchyma may improve our understanding of how trees respond to environmental fluctuations and to global change. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Dannenberg, M.; Wise, E. K.; Keung, J. H.
2014-12-01
Proxy-based reconstructions of past climate have played an integral role in assessments of historical climate change, and tree-ring widths (TRW) have a long history of use in this paleoclimate research due to their annual resolution, widespread availability, and sensitivity of growth processes to variation in temperature and water availability. Increasingly, studies have shown that additional tree-ring metrics—including earlywood and latewood widths (EW and LW, respectively), maximum latewood density, and the intensity of reflected blue light from latewood (BI)—can provide additional information on seasonal climatic variability that is not present in TRW alone due to different processes that affect growth in different parts of the growing season. Studies of these additional tree-ring metrics highlight their utility in climate reconstructions, but to date they have mostly been limited to a few tree species and regions. Here, we extend the range of previous studies on alternative tree-ring metrics by evaluating the seasonal climate signals in TRW, EW, LW, and BI of Pinus ponderosa at six semiarid sites surrounding the Columbia River basin in the U.S. Pacific Northwest (PNW). Cores from each site were cross-dated and EW, LW, and TRW were measured using standard dendrochronological procedures. BI was obtained using a high-resolution flatbed scanner and CooRecorder software. To evaluate the unique climate processes and seasonalities contributing to different dendrochronological metrics, monthly temperature and precipitation from each site were obtained from the PRISM climate model and were correlated with each of the tree-ring metrics using the MATLAB program SEASCORR. We also evaluate the potential of using multiple tree-ring metrics (rather than a single proxy) in reconstructions of precipitation in the PNW. Initial results suggest that 1) tree growth at each site is water-limited but with substantial differences among the sites in the strength and seasonality of correlations between precipitation and tree-ring metrics, and 2) EW tends to be more dependent on conditions in the prior growing season while LW tends to be related to water availability early in the current growing season. Results from this study illustrate the potential utility of multiproxy dendroclimatology for paleoclimate research.
Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches
Chen, Lingxiu; He, Li; Wang, Hui Shan; Wang, Haomin; Tang, Shujie; Cong, Chunxiao; Xie, Hong; Li, Lei; Xia, Hui; Li, Tianxin; Wu, Tianru; Zhang, Daoli; Deng, Lianwen; Yu, Ting; Xie, Xiaoming; Jiang, Mianheng
2017-01-01
Graphene nanoribbons (GNRs) are ultra-narrow strips of graphene that have the potential to be used in high-performance graphene-based semiconductor electronics. However, controlled growth of GNRs on dielectric substrates remains a challenge. Here, we report the successful growth of GNRs directly on hexagonal boron nitride substrates with smooth edges and controllable widths using chemical vapour deposition. The approach is based on a type of template growth that allows for the in-plane epitaxy of mono-layered GNRs in nano-trenches on hexagonal boron nitride with edges following a zigzag direction. The embedded GNR channels show excellent electronic properties, even at room temperature. Such in-plane hetero-integration of GNRs, which is compatible with integrated circuit processing, creates a gapped channel with a width of a few benzene rings, enabling the development of digital integrated circuitry based on GNRs. PMID:28276532
Zhao, Zhi-Jiang; Tan, Liu-Yi; Kang, Dong-Wei; Liu, Qi-Jing; Li, Jun-Qing
2012-03-01
Picea likiangensis (Franch. ) Pritz. primary forest is one of the dominant forest types in the Small Zhongdian area in Shangri-La County of Yunnan Province. In this paper, the responses of P. likiangensis tree-ring width to climate change were analyzed by dendrochronological methods, and the dendrochronology was built by using relatively conservative detrending negative exponential curves or linear regression. Correlation analysis and response function analysis were applied to explore the relationships between the residual chronology series (RES) and climatic factors at different time scales, and pointer year analysis was used to explain the reasons of producing narrow and wide rings. In the study area, the radial growth of P. likiangensis and the increasing air temperature from 1990 to 2008 had definite 'abruption'. The temperature and precipitation in previous year growth season were the main factors limiting the present year radial growth, and especially, the temperature in previous July played a negative feedback role in the radial growth, while the sufficient precipitation in previous July promoted the radial growth. The differences in the temperature variation and precipitation variation in previous year were the main reasons for the formation of narrow and wide rings. P. likiangensis radial growth was not sensitive to the variation of PDSI.
NASA Astrophysics Data System (ADS)
Andreu-Hayles, Laia; Gaglioti, Benjamin V.; D'Arrigo, Rosanne; Anchukaitis, Kevin J.; Goetz, Scott
2017-04-01
Shrub expansion into Arctic and alpine tundra ecosystems has been documented during the last several decades based on repeat aerial photography, remote sensing, and ground-truthed estimates of vegetation cover. Today, summer temperatures limit the northern limit of Arctic shrubs, and warmer summers have been shown to have higher NDVI in shrub tundra zones. Although global warming has been considered the main driver of shrub expansion, soil types, shrub species and non-linear responses can moderate how sensitive shrub growth is to climate warming. Here, we assess the sensitivity of shrub growth to inter-annual climate variability using a newly generated network of 18 shrub ring-width chronologies in the tundra regions of the North Slope of Alaska. We then test whether the dendroclimatic patterns we observe at individual sites are representative of the broader region using remotely sensed productivity data (NDVI). The common period of both satellite and shrub ring data from all sites was 1982 to 2010. Instrumental daily data from Toolik Lake and interpolated products was compared to detrended growth rates of Salix spp. (willow) and Alnus sp. (alder), located on and to the west of the Dalton Highway ( 68-70°N 148°W). Whereas summer temperatures were found to enhance shrub growth, warm temperatures outside the core of the growing season have the inverse effect in some chronologies. All tundra shrub chronologies shared a common strong positive response to summer temperatures despite growing in heterogeneous site conditions and belonging to different species. In this work we will discuss shrub climate sensitive across Alaska and how NDVI data compared to the shrub ring-width network.
NASA Astrophysics Data System (ADS)
Belmecheri, S.; Maxwell, S.; Davis, K. J.; Alan, T. H.
2012-12-01
Improving the prediction skill of terrestrial carbon cycle models is important for reducing the uncertainties in global carbon cycle and climate projections. Additional evaluation and calibration of carbon models is required, using both observations and long-term proxy-derived data. Centennial-length data could be obtained from tree-rings archives that provide long continuous series of past forest growth changes with accurate annual resolution. Here we present results from a study conducted at Harvard Forest (Petersham, Massachusetts). The study examines the potential relationship between δ13C in dominant trees and GPP and/or NEE measured by the Harvard Forest flux tower (1992-2010). We have analyzed the δ13C composition of late wood-cellulose over the last 18 years from eastern hemlock (Tsuga canadensis) and northern red oak (Quercus rubra) trees growing in the flux tower footprint. δ13C values, corrected for the declining trend of atmospheric δ13C, show a decreasing trend from 1992 to 2010 and therefore a significant increase in discrimination (Δ). The intra-cellular CO2 (Ci) calculated from Δ shows a significant increase for both tree species and follows the same rate of atmospheric CO2 (Ca) increase (Ci/Ca increases). Interestingly, the net Ci and Δ increase observed for both species did not result in an increase of the iWUE. Ci/Ca is strongly related to the growing season Palmer Drought Severity Index (PDSI) for both species thus indicating a significant relationship between soil moisture conditions and stomatal conductance. The Ci trend is interpreted as a result of higher CO2 assimilation in response to increasing soil moisture allowing a longer stomata opening and therefore stimulating tree growth. This interpretation is consistent with the observed increase in GPP and the strengthening of the carbon sink (more negative NEE). Additionally, the decadal trends of basal area increment (BAI) calculated from tree-ring widths exhibit a positive trend over the last two decade. Tree-ring width and δ13C results show the potential of these parameters as proxies for reconstructions of past CO2 assimilation and carbon sequestration by woody biomass beyond the time span covered by calibration data, and extending to the centennial time scales encompassed by tree-ring records.
Kurz-Besson, Cathy B; Lousada, José L; Gaspar, Maria J; Correia, Isabel E; David, Teresa S; Soares, Pedro M M; Cardoso, Rita M; Russo, Ana; Varino, Filipa; Mériaux, Catherine; Trigo, Ricardo M; Gouveia, Célia M
2016-01-01
Western Iberia has recently shown increasing frequency of drought conditions coupled with heatwave events, leading to exacerbated limiting climatic conditions for plant growth. It is not clear to what extent wood growth and density of agroforestry species have suffered from such changes or recent extreme climate events. To address this question, tree-ring width and density chronologies were built for a Pinus pinaster stand in southern Portugal and correlated with climate variables, including the minimum, mean and maximum temperatures and the number of cold days. Monthly and maximum daily precipitations were also analyzed as well as dry spells. The drought effect was assessed using the standardized precipitation-evapotranspiration (SPEI) multi-scalar drought index, between 1 to 24-months. The climate-growth/density relationships were evaluated for the period 1958-2011. We show that both wood radial growth and density highly benefit from the strong decay of cold days and the increase of minimum temperature. Yet the benefits are hindered by long-term water deficit, which results in different levels of impact on wood radial growth and density. Despite of the intensification of long-term water deficit, tree-ring width appears to benefit from the minimum temperature increase, whereas the effects of long-term droughts significantly prevail on tree-ring density. Our results further highlight the dependency of the species on deep water sources after the juvenile stage. The impact of climate changes on long-term droughts and their repercussion on the shallow groundwater table and P. pinaster's vulnerability are also discussed. This work provides relevant information for forest management in the semi-arid area of the Alentejo region of Portugal. It should ease the elaboration of mitigation strategies to assure P. pinaster's production capacity and quality in response to more arid conditions in the near future in the region.
Kurz-Besson, Cathy B.; Lousada, José L.; Gaspar, Maria J.; Correia, Isabel E.; David, Teresa S.; Soares, Pedro M. M.; Cardoso, Rita M.; Russo, Ana; Varino, Filipa; Mériaux, Catherine; Trigo, Ricardo M.; Gouveia, Célia M.
2016-01-01
Western Iberia has recently shown increasing frequency of drought conditions coupled with heatwave events, leading to exacerbated limiting climatic conditions for plant growth. It is not clear to what extent wood growth and density of agroforestry species have suffered from such changes or recent extreme climate events. To address this question, tree-ring width and density chronologies were built for a Pinus pinaster stand in southern Portugal and correlated with climate variables, including the minimum, mean and maximum temperatures and the number of cold days. Monthly and maximum daily precipitations were also analyzed as well as dry spells. The drought effect was assessed using the standardized precipitation-evapotranspiration (SPEI) multi-scalar drought index, between 1 to 24-months. The climate-growth/density relationships were evaluated for the period 1958-2011. We show that both wood radial growth and density highly benefit from the strong decay of cold days and the increase of minimum temperature. Yet the benefits are hindered by long-term water deficit, which results in different levels of impact on wood radial growth and density. Despite of the intensification of long-term water deficit, tree-ring width appears to benefit from the minimum temperature increase, whereas the effects of long-term droughts significantly prevail on tree-ring density. Our results further highlight the dependency of the species on deep water sources after the juvenile stage. The impact of climate changes on long-term droughts and their repercussion on the shallow groundwater table and P. pinaster’s vulnerability are also discussed. This work provides relevant information for forest management in the semi-arid area of the Alentejo region of Portugal. It should ease the elaboration of mitigation strategies to assure P. pinaster’s production capacity and quality in response to more arid conditions in the near future in the region. PMID:27570527
Detecting long-term growth trends using tree rings: a critical evaluation of methods.
Peters, Richard L; Groenendijk, Peter; Vlam, Mart; Zuidema, Pieter A
2015-05-01
Tree-ring analysis is often used to assess long-term trends in tree growth. A variety of growth-trend detection methods (GDMs) exist to disentangle age/size trends in growth from long-term growth changes. However, these detrending methods strongly differ in approach, with possible implications for their output. Here, we critically evaluate the consistency, sensitivity, reliability and accuracy of four most widely used GDMs: conservative detrending (CD) applies mathematical functions to correct for decreasing ring widths with age; basal area correction (BAC) transforms diameter into basal area growth; regional curve standardization (RCS) detrends individual tree-ring series using average age/size trends; and size class isolation (SCI) calculates growth trends within separate size classes. First, we evaluated whether these GDMs produce consistent results applied to an empirical tree-ring data set of Melia azedarach, a tropical tree species from Thailand. Three GDMs yielded similar results - a growth decline over time - but the widely used CD method did not detect any change. Second, we assessed the sensitivity (probability of correct growth-trend detection), reliability (100% minus probability of detecting false trends) and accuracy (whether the strength of imposed trends is correctly detected) of these GDMs, by applying them to simulated growth trajectories with different imposed trends: no trend, strong trends (-6% and +6% change per decade) and weak trends (-2%, +2%). All methods except CD, showed high sensitivity, reliability and accuracy to detect strong imposed trends. However, these were considerably lower in the weak or no-trend scenarios. BAC showed good sensitivity and accuracy, but low reliability, indicating uncertainty of trend detection using this method. Our study reveals that the choice of GDM influences results of growth-trend studies. We recommend applying multiple methods when analysing trends and encourage performing sensitivity and reliability analysis. Finally, we recommend SCI and RCS, as these methods showed highest reliability to detect long-term growth trends. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Berner, Logan T.; Beck, Pieter S. A.; Bunn, Andrew G.; Lloyd, Andrea H.; Goetz, Scott J.
2011-03-01
Vegetation in northern high latitudes affects regional and global climate through energy partitioning and carbon storage. Spaceborne observations of vegetation, largely based on the normalized difference vegetation index (NDVI), suggest decreased productivity during recent decades in many regions of the Eurasian and North American boreal forests. To improve interpretation of NDVI trends over forest regions, we examined the relationship between NDVI from the advanced very high resolution radiometers and tree ring width measurements, a proxy of tree productivity. We collected tree core samples from spruce, pine, and larch at 22 sites in northeast Russia and northwest Canada. Annual growth rings were measured and used to generate site-level ring width index (RWI) chronologies. Correlation analysis was used to assess the association between RWI and summer NDVI from 1982 to 2008, while linear regression was used to examine trends in both measurements. The correlation between NDVI and RWI was highly variable across sites, though consistently positive (r = 0.43, SD = 0.19, n = 27). We observed significant temporal autocorrelation in both NDVI and RWI measurements at sites with evergreen conifers (spruce and pine), though weak autocorrelation at sites with deciduous conifers (larch). No sites exhibited a positive trend in both NDVI and RWI, although five sites showed negative trends in both measurements. While there are technological and physiological limitations to this approach, these findings demonstrate a positive association between NDVI and tree ring measurements, as well as the importance of considering lagged effects when modeling vegetation productivity using satellite data.
Guada, Guillermo; Camarero, J. Julio; Sánchez-Salguero, Raúl; Cerrillo, Rafael M. Navarro
2016-01-01
Mediterranean pine forests display high resilience after extreme climatic events such as severe droughts. However, recent dry spells causing growth decline and triggering forest dieback challenge the capacity of some forests to recover following major disturbances. To describe how resilient the responses of forests to drought can be, we quantified growth dynamics in plantations of two pine species (Scots pine, black pine) located in south-eastern Spain and showing drought-triggered dieback. Radial growth was characterized at inter- (tree-ring width) and intra-annual (xylogenesis) scales in three defoliation levels. It was assumed that the higher defoliation the more negative the impact of drought on tree growth. Tree-ring width chronologies were built and xylogenesis was characterized 3 years after the last severe drought occurred. Annual growth data and the number of tracheids produced in different stages of xylem formation were related to climate data at several time scales. Drought negatively impacted growth of the most defoliated trees in both pine species. In Scots pine, xylem formation started earlier in the non-defoliated than in the most defoliated trees. Defoliated trees presented the shortest duration of the radial-enlargement phase in both species. On average the most defoliated trees formed 60% of the number of mature tracheids formed by the non-defoliated trees in both species. Since radial enlargement is the xylogenesis phase most tightly related to final growth, this explains why the most defoliated trees grew the least due to their altered xylogenesis phases. Our findings indicate a very limited resilience capacity of drought-defoliated Scots and black pines. Moreover, droughts produce legacy effects on xylogenesis of highly defoliated trees which could not recover previous growth rates and are thus more prone to die. PMID:27066053
NASA Astrophysics Data System (ADS)
Tiwari, A.; Zhe-Kun, Z.
2016-12-01
Investigations of growth-climate relationships are important to understand the response of forest growth and the dendroclimatic reconstructions (Briffa et al., 1998a; Tessier et al., 1997). This also provides crucial information to assess future forest productivity, growth performance, vegetation dynamics and tree species distributions (Thuiller et al., 2005; Tardif et al., 2006). We explored growth climate response of Abies spectabilis, Betula utilis and Picea smithiana at different elevations of same mountain slope from the semi-arid trans-Himalayan zone of central Himalaya (Mustang, Nepal) in order to observe their drought tolerance. The ring width indices were correlated with the instrumental data (1970-2013 AD) from the nearest climate station to observe the growth climate response. Spring season (March-May) moisture was found to be highly critical for radial growth in all species. Further, we compared the basal area increment (BAI) trend among different species as BAI is the strong indicator of growth trend over the conventional detrended tree ring width indices. Our results demonstrated that BAI is rapidly declining for Betula utilis among three species irrespective of being distributed comparatively to the moist region in the mountain indicating that drought tolerance is highly species specific, as an early warning signal of climate change. Since the global climate models disagree on predicting precipitation intensity and seasonality in the coming decades, and more extreme precipitation events are likely worldwide (IPCC 2013), the least drought tolerant species like birch would be threatened to their survival and might decline due to warming induced drought stress which is already seen with rapid growth decline in the recent decades.
Lake trout otolith chronologies as multidecadal indicators of high-latitude freshwater ecosystems
Black, B.A.; Von Biela, V.R.; Zimmerman, C.E.; Brown, Randy J.
2013-01-01
High-latitude ecosystems are among the most vulnerable to long-term climate change, yet continuous, multidecadal indicators by which to gauge effects on biology are scarce, especially in freshwater environments. To address this issue, dendrochronology (tree-ring analysis) techniques were applied to growth-increment widths in otoliths from lake trout (Salvelinus namaycush) from the Chandler Lake system, Alaska (68.23°N, 152.70°W). All otoliths were collected in 1987 and exhibited highly synchronous patterns in growth-increment width. Increments were dated, the widths were measured, and age-related growth declines were removed using standard dendrochronology techniques. The detrended time series were averaged to generate an annually resolved chronology, which continuously spanned 1964–1984. The chronology positively and linearly correlated with August air temperature over the 22-year interval (p < 0.01), indicating that warmer summers were beneficial for growth, perhaps by increasing fish metabolic rate or lake productivity. Given the broad distribution of lake trout within North America, this study suggests that otolith chronologies could be used to examine responses between freshwater ecosystems and environmental variability across a range of temporal and spatial scales.
How to make a tree ring: Coupling stem water flow and cambial activity in mature Alpine conifers
NASA Astrophysics Data System (ADS)
Peters, Richard L.; Frank, David C.; Treydte, Kerstin; Steppe, Kathy; Kahmen, Ansgar; Fonti, Patrick
2017-04-01
Inter-annual tree-ring measurements are used to understand tree-growth responses to climatic variability and reconstruct past climate conditions. In parallel, mechanistic models use experimentally defined plant-atmosphere interactions to explain past growth responses and predict future environmental impact on forest productivity. Yet, substantial inconsistencies within mechanistic model ensembles and mismatches with empirical data indicate that significant progress is still needed to understand the processes occurring at an intra-annual resolution that drive annual growth. However, challenges arise due to i) few datasets describing climatic responses of high-resolution physiological processes over longer time-scales, ii) uncertainties on the main mechanistic process limiting radial stem growth and iii) complex interactions between multiple environmental factors which obscure detection of the main stem growth driver, generating a gap between our understanding of intra- and inter-annual growth mechanisms. We attempt to bridge the gap between inter-annual tree-ring width and sub-daily radial stem-growth and provide a mechanistic perspective on how environmental conditions affect physiological processes that shape tree rings in conifers. We combine sub-hourly sap flow and point dendrometer measurements performed on mature Alpine conifers (Larix decidua) into an individual-based mechanistic tree-growth model to simulate sub-hourly cambial activity. The monitored trees are located along a high elevational transect in the Swiss Alps (Lötschental) to analyse the effect of increasing temperature. The model quantifies internal tree hydraulic pathways that regulate the turgidity within the cambial zone and induce cell enlargement for radial growth. The simulations are validated against intra-annual growth patterns derived from xylogenesis data and anatomical analyses. Our efforts advance the process-based understanding of how climate shapes the annual tree-ring structures and could potentially improve our ability to reconstruct the climate of the past and predict future growth under changing climate.
Age, allocation, and availability of nonstructural carbohydrates in red maple
NASA Astrophysics Data System (ADS)
Carbone, Mariah; Keenan, Trevor; Czimczik, Claudia; Murakami, Paula; O'Keefe, John; Pederson, Neil; Schaberg, Paul; Xu, Xiaomei; Richardson, Andrew
2013-04-01
Nonstructural carbohydrates (NSC) are the primary products of photosynthesis, composed mostly of sugars and starch. Recent studies show that NSC pools in mature trees can be quite large and on average a decade old. Thus, NSC pools integrate years of carbon assimilation and represent significant ecological memory at the whole plant and ecosystem level. However, we know very little about how older stored NSC versus newly assimilated NSC are used to support growth and metabolism, or how available older NSC are to trees during stress or following disturbance. To better understand these potential lags in NSC allocation, we studied mature red maple (Acer rubrum) trees in New England temperate forests. Applying the radiocarbon (14C) "bomb spike" approach, we estimated the age of carbon in stemwood NSC, ring cellulose, bole respiration, and stump sprouts regenerated following harvesting. These measurements allowed us to compare the NSC used for metabolic demands, annual growth, and the NSC available for regrowth following disturbance to the NSC actually present in the stemwood. Finally, tree ring widths were analyzed to determine the annual autocorrelation in radial wood increment. We found that the mean age of stemwood sugars was 9.8 ± 5 y. The age of NSC used to support metabolism (bole respiration) was much younger than the mean age of stemwood sugars, indicating preferential use of more recently assimilated NSC. In the spring before leaves emerged, bole respiration was between 1-2 y, whereas it was composed of newly assimilated NSC in the late summer. The ring cellulose 14C age was on average 0.8 y older than direct ring counts (within error of 14C measurement) which may or may not indicate a stored NSC contribution. Tree ring width analyses indicate strong autocorrelation between ring growth in one year and in the following year, in agreement with ring cellulose 14C ages. However, autocorrelation weakened over the following 10 years, consistent with the measured mean age of the NSC pool. The stump sprouts were formed from NSC 1-17 y old, (mean 5.8 ± 5 y), with older trees using older NSC to produce stump sprouts, indicating that some of the older NSC reserves are available to the tree for use following major disturbance. These results highlight the importance of ecological memory in NSC pools for understanding tree carbon allocation and overall ecosystem carbon balance.
Otolith research for Puget Sound
Larsen, K.; Reisenbichler, R.
2007-01-01
Otoliths are hard structures located in the brain cavity of fish. These structures are formed by a buildup of calcium carbonate within a gelatinous matrix that produces light and dark bands similar to the growth rings in trees. The width of the bands corresponds to environmental factors such as temperature and food availability. As juvenile salmon encounter different environments in their migration to sea, they produce growth increments of varying widths and visible 'checks' corresponding to times of stress or change. The resulting pattern of band variations and check marks leave a record of fish growth and residence time in each habitat type. This information helps Puget Sound restoration by determining the importance of different habitats for the optimal health and management of different salmon populations. The USGS Western Fisheries Research Center (WFRC) provides otolith research findings directly to resource managers who put this information to work.
Solar and climate signal records in tree ring width from Chile (AD 1587 1994)
NASA Astrophysics Data System (ADS)
Rodolfo Rigozo, Nivaor; Roger Nordemann, Daniel Jean; Evangelista da Silva, Heitor; Pereira de Souza Echer, Mariza; Echer, Ezequiel
2007-01-01
Tree growth rings represent an important natural record of past climate variations and solar activity effects registered on them. We performed in this study a wavelet analysis of tree ring samples of Pilgerodendron cupressoides species, from Glaciar Pio XI (Lat: 49°12'S; 74°55'W; Alt: 25 m), Chile. We obtained an average chronology of about 400 years from these trees. The 11-yr solar cycle was present during the whole period in tree ring data, being more intense during Maunder minimum (1645-1715). The short-term periods, around 2-7 yr, that were found are more likely associated with ENSO effects. Further, we found significant periods around 52 and 80-100 yr. These periodicities are coincident with the fourth harmonic (52 yr) of the Suess cycle (208 yr) and Gleissberg (˜80-100 yr) solar cycles. Therefore, the present analysis shows evidence of solar activity effect/modulation on climatic conditions that affect tree ring growth. Although we cannot say with the present analysis if this effect is on local, regional or global climate, these results add evidence to an important role of solar activity over terrestrial climate over the past ˜400 yr.
Some climatic indicators in the period A.D. 1200-1400 in New Mexico
Leopold, Luna Bergere; Leopold, Estella B.; Wendorf, F.
1963-01-01
Three centuries before Columbus landed in America, the alluvial valleys of the south-western United States teemed with activity. The indigenous peoples had been building for 300 years a culture centred around community life based on flood-water farming and on hunting. A large number of pueblos had developed on sites earlier occupied by pit-house people. Community organization had brought advances in the ceramic and decorative arts, and changes in these artistic activities were sufficiently rapid that accurate chronologies have become available through the work of archaeologists during the twentieth century. These chronologies were at first unrelated to absolute dates, but the excavations of the 1920s at Chaco Canyon (New Mexico) provided the materials through which absolute dates could be established. This was accomplished by matching the changes in tree-ring width backward in time from living trees through successively older samples. Trees overlapping in age provided, by unique successions of distinctive tree-ring widths, a calendar by which individual logs could be dated. Beams found in the excavations at Chaco Canyon gave the first material by which the cultural developments culminating about A.D. 1300 could be dated.As a result of the time sequence provided by the tree-ring calendar, the dates within which different pottery types were developed could be accurately established. The dates of pottery types have been checked at a sufficiently large number of sites throughout the south-western United States that absolute dating of a large number of distinctive patterns can be considered unassailable. The sequence of tree-ring widths gives some climatic indications of great interest both to archaeologists and to climatologists. A relatively large number of logs spanning the period from A.D. 1200 to 1300 and, in particular, the years between 1276 and 1299, indicate that this period was generally characterized by smaller tree-ring widths than in the centuries immediately before and after. As a first approximation, the hundred years of narrow tree-ring widths were interpreted as a time of relative aridity, and have been referred to as the “Pueblo Drought”. More recent studies of tree-ring widths using sophisticated statistical techniques have thrown some doubts on any direct correlation of tree-ring widths with rainfall. Such doubts have been put forward before by Glock (1955) whose studies have been aimed at separating the various effects of seasonal occurrence of precipitation, the amount falling in various seasons, and other climatic factors in their relative influence on tree-ring widths. At present, then, tree-ring widths may be considered more satisfactory for reading chronology than for reading climate. It is this concern about direct correlation of tree-ring width with climate that led to initiation of the present study. This work is a preliminary attempt to obtain independent evidence from pollen concerning the probable nature of the vegetation and thus the climate in a period known to be characterized by narrow tree rings.
Effects of wastewater on forested wetlands
Doyle, Thomas W.
2002-01-01
Cycling nutrient-enriched wastewater from holding ponds through natural, forested wetlands is a practice that municipal waste treatment managers are considering as a viable option for disposing of wastewater. In this wastewater cycling process, sewer effluent that has been circulated through aerated ponds is discharged into neighboring wetland systems. To understand how wastewater cycling affects forest and species productivity, researchers at the USGS National Wetlands Research Center conducted dendroecological investigations in a swamp system and in a bog system that have been exposed to wastewater effluent for many decades. Dendroecology involves the study of forest changes over time as interpreted from tree rings. Tree-ring chronologies describe the pattern and history of growth suppression and release that can be associated with aging and disturbances such as hurricanes, floods, and fires. But because of limited monitoring, little is known about the potential for long-term effects on forested wetlands as a result of wastewater flooding. USGS researchers used tree rings to detect the effect of wastewater cycling on tree growth. Scientists expected to find that tree-ring width would be increased as a result of added nutrients.
Recognizing Non-Stationary Climate Response in Tree Growth for Southern Coastal Alaska, USA
NASA Astrophysics Data System (ADS)
Wiles, G. C.; Jarvis, S. K.; D'Arrigo, R.; Vargo, L. J.; Appleton, S. N.
2012-12-01
Stationarity in growth response of trees to climate over time is assumed in dendroclimatic studies. Recent studies of Alaskan yellow-cedar (Chamaecyparis nootkatensis (D. Don) Spach) have identified warming-induced early loss of insulating snowpack and frost damage as a mechanism that can lead to decline in tree growth, which for this species is documented over the last century. A similar stress may be put on temperature-sensitive mountain hemlock (Tsuga mertensiana (Bong.) Carrière) trees at low elevations, which in some cases show a decline in tree growth with warming temperatures. One of the challenges of using tree-ring based SAT, SST, PDO and PNA-related reconstructions for southern coastal Alaska has been understanding the response of tree-ring chronologies to the warming temperatures over the past 50 years. Comparisons of tree growth with long meteorological records from Sitka Alaska that extend back to 1830 suggest many mountain hemlock sites at low elevations are showing decreasing ring-widths, at mid elevations most sites show a steady increasing growth tracking warming, and at treeline a release is documented. The recognition of this recent divergence or decoupling of tree-ring and temperature trends allows for divergence-free temperature reconstructions using trees from moderate elevations. These reconstructions now provide a better perspective for comparing recent warming to Medieval warming and a better understanding of forest dynamics as biomes shift in response to the transition from the Little Ice Age to contemporary warming. Reconstructed temperatures are consistent with well-established, entirely independent tree-ring dated ice advances of land-terminating glaciers along the Gulf of Alaska providing an additional check for stationarity in the reconstructed interval.
NASA Astrophysics Data System (ADS)
Ziehmer, Malin Michelle; Nicolussi, Kurt; Schlüchter, Christian; Leuenberger, Markus
2017-04-01
High-resolution climate reconstructions based on tree-ring proxies are often limited by the individual segment length of living trees selected at the defined sampling sites, which mostly results in relatively short multi-centennial proxy series. A potential extension of living wood records comprise the addition of subfossil and archeological wood remains resulting in chronologies and associated climate reconstructions which are able to cover a few millennia in central Europe (e.g. Büntgen et al., 2011). However, existing multi-millennial tree-ring width chronologies in central Europe rank among the longest continuous chronologies world-wide and span the entire Holocene (Becker et al., 1993; Nicolussi et al. 2009). So far, these chronologies have mainly been used for dating subfossil wood samples, floating chronologies and archeological artifacts, but only in parts for reconstructing climate. Finds of Holocene wood remains in glacier forefields, peat bogs and small lakes allow us not only to establish such long-term tree-ring width records; further they offer the possibility to establish multi-millennial proxy records for the entire Holocene by using a multi-proxy approach which includes both tree-ring width and triple stable isotope ratios. As temperature limits tree growth at the Alpine upper tree line, the existing tree-ring width records are currently limited to reconstruct a single environmental variable. In the framework of the project Alpine Holocene Tree Ring Isotope Records, we combine tree-ring width, cellulose content as well as carbon, oxygen and hydrogen isotope series in a multi-proxy approach which allows the reconstruction of past environments by combining both Holocene wood remains and recent tree samples from two Alpine tree-line species. For this purpose, α-cellulose is prepared from 5-year tree ring blocks following the procedure after Boettger et al. (2007) and subsequently crushed by ultrasonic homogenization (Laumer et al., 2009). The cellulose content is determined for each individual sample and carbon, oxygen and hydrogen isotopic ratios are measured simultaneously (Loader et al., 2015). The isotope records of carbon, oxygen and hydrogen show distinct low-frequency trends for the Early- and Mid-Holocene, but the individual series per proxy are often offset in their isotopic signature. As the sampling sites in our study are distributed along a SW-NE transect, the influence of the site conditions (latitude, longitude, elevation, exposition) and the tree species is tested and subsequently a correction is applied to the individual series. In addition, the tree-ring width records operate as a helpful tool in detecting and attributing the influence of larch budmoth outbreaks on the cellulose content and isotope records. We here present a synthesis of the applied multi-proxy approach and its ability to reconstruct Holocene climate variability for the time span from 9000 to 3500 years b2k covering the Early-Holocene (9000 to 7200 years b2k) and Mid-Holocene (7200 to 4200 years b2k) and the transition to the late Holocene (4200 to 3500 years b2k) as well as the recent 400 years including the modern warming. References Becker, B., & Kromer, B. Palaeogeogr. Palaeoclimatol. Palaeoecol., 1993, 103(1): 67-71 Boettger, T., et al. Anal. Chem., 2007, 79: 4603-4612 Büntgen, U. et al. Science, 2011, 331(6017): 578-582 Laumer, W., et al. Rapid Commun. Mass Spectrom., 2009, 23: 1934-1940 Loader, N.J., et al. Anal. Chem., 2015, 87: 376-380 Nicolussi K., et al. The Holocene, 2009, 19(6): 909-920
Decadal record of monsoon dynamics across the Himalayas using tree ring data
NASA Astrophysics Data System (ADS)
Brunello, Camilla Francesca; Andermann, Christoff; Helle, Gerhard; Comiti, Francesco; Tonon, Giustino; Ventura, Maurizio; Hovius, Niels
2017-04-01
The temporal variability of the Indian monsoon penetrating through the Himalayan range and into the southern Tibetan Plateau is poorly understood. Intermittent ingress of wet monsoon air masses into the otherwise arid and deserted landscapes beyond the orographic barrier can have consequences for erosion and flooding, as well as for water availability. Furthermore, the latitudinal rainfall distribution across the mountain range is crucial to better understand the hydrological cycles of rivers originating there. Because instrumental measurements are rare in the High Himalayas and on the Plateau, hydro-climatic sensitive proxies, such as oxygen stable isotope ratios in cellulose of tree-rings, are a valuable source of data covering decades to centuries. Here we present new findings on how often and how far the Indian monsoon penetrated into trans-Himalayan region over the last century. To cope with the lack of direct measurements, we strive to reconstruct a record of intense monsoon years based on tree-ring width chronologies along a latitudinal gradient. Thus, we need to answer whether water availability is the main driver of tree growth in the trans-Himalayan region and how dendro-isotopic data relate to seasonal precipitation inputs and sources. In order to study the monsoon dynamics, we selected four sites along the Kali Gandaki River valley in the central Himalayas (Nepal). This valley connects the very wet, monsoon dominated south Himalayan front with the arid trans-Himalayan region and the southern Tibetan Plateau. Our study area covers the sensitive northern end of the precipitation gradient, located in the upper part of the catchment. Water availability, which drastically varies at each site, was explored by using the climate signal- and isotope-transfer within arboreal systems composed of Juniperus sp., Cupressus sp. and Pinus sp. Results from continuous dendrometer measurements for the entire growing season (Mar-Oct) allowed us to assess the link between tree growth and precipitation, confirming the sensitivity of the trees to water availability. A set of cores from at least 20 individual trees was collected at each site. Dating revealed records with lengths from 80 to 500 years. Tree-ring width measurements were detrended to minimize the ecological influence on growth, and analyzed against local climate parameters such as temperature and precipitation. The site chronologies were compared to highlight the propagation of the monsoonal events along the latitudinal transect. Additionally, 80-year tree-ring oxygen isotope records from the lowest site (Lete, 2500 m a.s.l.) of the transect were compared with precipitation patterns derived from historical rain gauge and satellite data. This study provides first insights into the relationship among tree-ring width, cellulose isotopes and monsoon signature, shedding light on decadal variations of precipitation in the high-elevated arid area of the High Himalayas.
Forest responses to increasing aridity and warmth in the southwestern United States
P. Williams; C.D. Allen; C.I. Millar; T.W. Swetnam; J. Michaelsen; C.J. Still; S.W. Leavitt
2010-01-01
In recent decades, intense droughts, insect outbreaks, and wildfires have led to decreasing tree growth and increasingmortality in many temperate forests. We compared annual tree-ring width data from 1,097 populations in the coterminous United States to climate data and evaluated site-specific tree responses to climate variations throughout the 20th century. For each...
NASA Astrophysics Data System (ADS)
Gerhart, L. M.; Harris, J. M.; Ward, J. K.
2011-12-01
During the Last Glacial Maximum, atmospheric [CO2] was as low as 180 ppm and has currently risen to a modern value of 393 ppm as a result of fossil fuel combustion and deforestation. In order to understand how changing [CO2] influenced trees over the last 50,000 years, we analyzed carbon isotope ratios and width of individual tree rings from glacial Juniperus specimens preserved in the Rancho La Brea tar pits in southern California (aged 14-49 kyr BP). Modern trees were also analyzed to compare effects of changing precipitation, temperature and atmospheric [CO2] on physiology and growth. To assess physiological responses, we calculated ci/ca (intercellular [CO2]/atmospheric [CO2]) for each annual ring of each tree. This ratio incorporates numerous aspects of plant physiology, including stomatal conductance and photosynthetic capacity. In addition, we measured ring widths for each sample, and standardized these measurements into indices in order to compare across individuals. Mean ci/ca values remained constant throughout 50,000 years despite major environmental changes, indicating a long-term physiological set point for ci/ca in this group. Constant ci/ca ratios would be maintained through offsetting changes in stomatal conductance and photosynthetic capacity. Glacial Juniperus never experienced ci values below 90 ppm, suggesting a survival compensation point for Juniperus. In addition, glacial trees showed significantly reduced interannual variation in ci/ca, even though interannual climatic variability was as high during the LGM in this region as it is today. A lack of variability in ci/ca of glacial trees suggests that tree physiology was dominated by low [CO2], which shows low interannual variation. Modern trees showed high interannual variation in ci/ca, since water availability dominates current physiological responses and varies greatly from year to year. Interestingly, interannual variation in ring width index did not show significant differences between glacial and modern trees, suggesting these trees were adapted to maintain growth under low [CO2]. These adaptations may constrain the ability of modern trees to fully utilize increases in atmospheric [CO2]. These results have significant implications for our understanding of the adaptations of trees to changing [CO2] and indicate that the environmental factors that most strongly influence plant physiology may have changed over geologic time scales.
Stevenson Douglas; Thomas Hennessey; Thomas Lynch; Giulia Caterina; Rodolfo Mota; Robert Heineman; Randal Holeman; Dennis Wilson; Keith Anderson
2016-01-01
A loblolly pine plantation near Eagletown, Oklahoma was used to test standardized tree ring widths in detecting snow and ice storms. Widths of two rings immediately following suspected storms were standardized against widths of seven rings following the storm (Stan1 and Stan2). Values of Stan1 less than -0.900 predict a severe (usually ice) storm when Stan 2 is less...
A measuring tool for tree-rings analysis
NASA Astrophysics Data System (ADS)
Shumilov, Oleg; Kanatjev, Alexander; Kasatkina, Elena
2013-04-01
A special tool has been created for the annual tree-ring widths measurement and analysis. It consists of professional scanner, computer system and software. This created complex in many aspects does not yield the similar systems (LINTAB, WinDENDRO), but in comparison to manual measurement systems, it offers a number of advantages: productivity gain, possibility of archiving the results of the measurements at any stage of the processing, operator comfort. It has been developed a new software, allowing processing of samples of different types (cores, saw cuts), including those which is difficult to process, having got a complex wood structure (inhomogeneity of growing in different directions, missed, light and false rings etc.). This software can analyze pictures made with optical scanners, analog or digital cameras. The complex software program was created on programming language C++, being compatible with modern operating systems like Windows X. Annual ring widths are measured along paths traced interactively. These paths can have any orientation and can be created so that ring widths are measured perpendicular to ring boundaries. A graphic of ring-widths in function of the year is displayed on a screen during the analysis and it can be used for visual and numerical cross-dating and comparison with other series or master-chronologies. Ring widths are saved to the text files in a special format, and those files are converted to the format accepted for data conservation in the International Tree-Ring Data Bank. The created complex is universal in application that will allow its use for decision of the different problems in biology and ecology. With help of this complex it has been reconstructed a long-term juniper (1328-2004) and pine (1445-2005) tree-ring chronologies on the base of samples collected at Kola Peninsula (northwestern Russia).
Wavelength-tunable optical ring resonators
Watts, Michael R [Albuquerque, NM; Trotter, Douglas C [Albuquerque, NM; Young, Ralph W [Albuquerque, NM; Nielson, Gregory N [Albuquerque, NM
2009-11-10
Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.
Wavelength-tunable optical ring resonators
Watts, Michael R [Albuquerque, NM; Trotter, Douglas C [Albuquerque, NM; Young, Ralph W [Albuquerque, NM; Nielson, Gregory N [Albuquerque, NM
2011-07-19
Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.
A comparison of chronologies from tree rings
Kurt H. Riitters
1990-01-01
Forty-five-year ring width index chronologies were estimated by five mean-value functions applied to 183 ring width series from four similar sites. The effects of autocorrelation on the comparisons among mean-value functions were explored by fitting box-Jenkins models to individual-tree index services prior to pooling (prewhitening), and to the pooled chronologies...
High sensitivity of broadleaf trees to water availability in northeastern United States
NASA Astrophysics Data System (ADS)
Levesque, Mathieu; Andreu-Hayles, Laia; Pederson, Neil
2016-04-01
Broadleaf dominated forests of eastern US cover more than one million km2 and provide ecosystem services to millions of people. High species diversity and a varied sensitivity to drought make it uncertain whether these forests will be carbon sinks or sources under climate change. Ongoing climate change, increased in atmospheric CO2 concentration (ca) and strong reductions in acidic depositions are expected to alter growth and gas exchange of trees, and ultimately forest productivity. Still, the magnitude of these effects is unclear. A better comprehension of the species-specific responses to environmental changes will better inform models and managers on the vulnerability and resiliency of these forests. Here, we combined tree-ring width data with δ13C and δ18O measurements to investigate growth and physiological responses of red oak (Quercus rubra L.) and tulip poplar (Liriodendron tulipifera L.) in northeastern US to changes in water availability, ca and acidic depositions for the period 1950-2014. Based on structural equation modeling approaches, we found that summer water availability (June-August) is the main environmental variable driving growth, water-use efficiency and δ18O of broadleaf trees whereas ca and acidic depositions have little effects. This high sensitivity to moisture availability was also supported by the very strong correlations found between summer vapor pressure deficit (VPD) and tree-ring δ13C (r = 0.67 and 0.71), and δ18O series (r = 0.62 and 0.72), for red oak and tulip poplar, respectively. In contrast, tree-ring width was less sensitive to summer VPD (r = -0.44 and-0.31). Since the mid 1980s, pluvial conditions occurring in northeastern US have increased stomatal conductance, carbon uptake, and growth of both species. Further, the strong spatial field correlations found between the tree-ring δ13C and δ18O and summer VPD indicate a greater sensitivity of eastern US broadleaf forests to moisture availability than previously known. This appears especially true since much of the calibration period looks wet in a multi-centennial perspective. Overall, our findings indicate a great potential for the use of tree-ring stable isotopes in large-scale hydroclimatic reconstructions studies in eastern US.
Forest responses to increasing aridity and warmth in the southwestern United States.
Williams, A Park; Allen, Craig D; Millar, Constance I; Swetnam, Thomas W; Michaelsen, Joel; Still, Christopher J; Leavitt, Steven W
2010-12-14
In recent decades, intense droughts, insect outbreaks, and wildfires have led to decreasing tree growth and increasing mortality in many temperate forests. We compared annual tree-ring width data from 1,097 populations in the coterminous United States to climate data and evaluated site-specific tree responses to climate variations throughout the 20th century. For each population, we developed a climate-driven growth equation by using climate records to predict annual ring widths. Forests within the southwestern United States appear particularly sensitive to drought and warmth. We input 21st century climate projections to the equations to predict growth responses. Our results suggest that if temperature and aridity rise as they are projected to, southwestern trees will experience substantially reduced growth during this century. As tree growth declines, mortality rates may increase at many sites. Increases in wildfires and bark-beetle outbreaks in the most recent decade are likely related to extreme drought and high temperatures during this period. Using satellite imagery and aerial survey data, we conservatively calculate that ≈ 2.7% of southwestern forest and woodland area experienced substantial mortality due to wildfires from 1984 to 2006, and ≈ 7.6% experienced mortality associated with bark beetles from 1997 to 2008. We estimate that up to ≈ 18% of southwestern forest area (excluding woodlands) experienced mortality due to bark beetles or wildfire during this period. Expected climatic changes will alter future forest productivity, disturbance regimes, and species ranges throughout the Southwest. Emerging knowledge of these impending transitions informs efforts to adaptively manage southwestern forests.
Forest responses to increasing aridity and warmth in the southwestern United States
Williams, A.P.; Allen, Craig D.; Millar, C.I.; Swetnam, T.W.; Michaelsen, J.; Still, C.J.; Leavitt, Steven W.
2010-01-01
In recent decades, intense droughts, insect outbreaks, and wildfires have led to decreasing tree growth and increasing mortality in many temperate forests. We compared annual tree-ring width data from 1,097 populations in the coterminous United States to climate data and evaluated site-specific tree responses to climate variations throughout the 20th century. For each population, we developed a climate-driven growth equation by using climate records to predict annual ring widths. Forests within the southwestern United States appear particularly sensitive to drought and warmth. We input 21st century climate projections to the equations to predict growth responses. Our results suggest that if temperature and aridity rise as they are projected to, southwestern trees will experience substantially reduced growth during this century. As tree growth declines, mortality rates may increase at many sites. Increases in wildfires and bark-beetle outbreaks in the most recent decade are likely related to extreme drought and high temperatures during this period. Using satellite imagery and aerial survey data, we conservatively calculate that ≈2.7% of southwestern forest and woodland area experienced substantial mortality due to wildfires from 1984 to 2006, and ≈7.6% experienced mortality associated with bark beetles from 1997 to 2008. We estimate that up to ≈18% of southwestern forest area (excluding woodlands) experienced mortality due to bark beetles or wildfire during this period. Expected climatic changes will alter future forest productivity, disturbance regimes, and species ranges throughout the Southwest. Emerging knowledge of these impending transitions informs efforts to adaptively manage southwestern forests.
NASA Astrophysics Data System (ADS)
Albrecht, Franziska; Dorigo, Wouter; Gruber, Alexander; Wagner, Wolfgang; Kainz, Wolfgang
2014-05-01
Climate change induced drought variability impacts global forest ecosystems and forest carbon cycle dynamics. Physiological drought stress might even become an issue in regions generally not considered water-limited. The water balance at the soil surface is essential for forest growth. Soil moisture is a key driver linking precipitation and tree development. Tree ring based analyses are a potential approach to study the driving role of hydrological parameters for tree growth. However, at present two major research gaps are apparent: i) soil moisture records are hardly considered and ii) only a few studies are linking tree ring chronologies and satellite observations. Here we used tree ring chronologies obtained from the International Tree ring Data Bank (ITRDB) and remotely sensed soil moisture observations (ECV_SM) to analyze the moisture-tree growth relationship. The ECV_SM dataset, which is being distributed through ESA's Climate Change Initiative for soil moisture covers the period 1979 to 2010 at a spatial resolution of 0.25°. First analyses were performed for Mongolia, a country characterized by a continental arid climate. We extracted 13 tree ring chronologies suitable for our analysis from the ITRDB. Using monthly satellite based soil moisture observations we confirmed previous studies on the seasonality of soil moisture in Mongolia. Further, we investigated the relationship between tree growth (as reflected by tree ring width index) and remotely sensed soil moisture records by applying correlation analysis. In terms of correlation coefficient a strong response of tree growth to soil moisture conditions of current April to August was observed, confirming a strong linkage between tree growth and soil water storage. The highest correlation was found for current April (R=0.44), indicating that sufficient water supply is vital for trees at the beginning of the growing season. To verify these results, we related the chronologies to reanalysis precipitation and temperature datasets. Precipitation was important during both the current and previous growth season. Temperature showed the strongest correlation for previous (R=0.12) and current October (R=0.21). Hence, our results demonstrated that water supply is most likely limiting tree growth during the growing season, while temperature is determining its length. We are confident that long-term satellite based soil moisture observations can bridge spatial and temporal limitations that are inherent to in situ measurements, which are traditionally used for tree ring research. Our preliminary results are a foundation for further studies linking remotely sensed datasets and tree ring chronologies, an approach that has not been widely investigated among the scientific community.
Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees.
Vlam, Mart; Baker, Patrick J; Bunyavejchewin, Sarayudh; Zuidema, Pieter A
2014-04-01
Climate change effects on growth rates of tropical trees may lead to alterations in carbon cycling of carbon-rich tropical forests. However, climate sensitivity of broad-leaved lowland tropical trees is poorly understood. Dendrochronology (tree-ring analysis) provides a powerful tool to study the relationship between tropical tree growth and annual climate variability. We aimed to establish climate-growth relationships for five annual-ring forming tree species, using ring-width data from 459 canopy and understory trees from a seasonal tropical forest in western Thailand. Based on 183/459 trees, chronologies with total lengths between 29 and 62 years were produced for four out of five species. Bootstrapped correlation analysis revealed that climate-growth responses were similar among these four species. Growth was significantly negatively correlated with current-year maximum and minimum temperatures, and positively correlated with dry-season precipitation levels. Negative correlations between growth and temperature may be attributed to a positive relationship between temperature and autotrophic respiration rates. The positive relationship between growth and dry-season precipitation levels likely reflects the strong water demand during leaf flush. Mixed-effect models yielded results that were consistent across species: a negative effect of current wet-season maximum temperatures on growth, but also additive positive effects of, for example, prior dry-season maximum temperatures. Our analyses showed that annual growth variability in tropical trees is determined by a combination of both temperature and precipitation variability. With rising temperature, the predominantly negative relationship between temperature and growth may imply decreasing growth rates of tropical trees as a result of global warming.
Makeyev, Oleksandr; Lee, Colin; Besio, Walter G
2017-07-01
Tripolar concentric ring electrodes are showing great promise in a range of applications including braincomputer interface and seizure onset detection due to their superiority to conventional disc electrodes, in particular, in accuracy of surface Laplacian estimation. Recently, we proposed a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2 that allows cancellation of all the truncation terms up to the order of 2n. This approach has been used to introduce novel multipolar and variable inter-ring distances concentric ring electrode configurations verified using finite element method. The obtained results suggest their potential to improve Laplacian estimation compared to currently used constant interring distances tripolar concentric ring electrodes. One of the main limitations of the proposed (4n + 1)-point method is that the radius of the central disc and the widths of the concentric rings are not included and therefore cannot be optimized. This study incorporates these two parameters by representing the central disc and both concentric rings as clusters of points with specific radius and widths respectively as opposed to the currently used single point and concentric circles. A proof of concept Laplacian estimate is derived for a tripolar concentric ring electrode with non-negligible radius of the central disc and non-negligible widths of the concentric rings clearly demonstrating how both of these parameters can be incorporated into the (4n + 1)-point method.
NASA Astrophysics Data System (ADS)
Gagen, Mary; McCarroll, Danny; Loader, Neil; Young, Giles; Robertson, Iain
2015-04-01
Stable carbon isotope (δ13C) measurements from the annual rings of trees are increasingly used to explore long term changes in plant-carbon-water relations, via changes in intrinsic water use efficiency (iWUE); the ratio of photosynthetic rate to stomatal conductance. Many studies report a significant increase in iWEU since industrialisation, which tracks rising global atmospheric CO2. Such changes are logical are trees are known to change their stomatal geometry, number and action in response to rising CO2. However, which increasing iWUE suggests physiological changes which should lead to increased growth increasing iWUE is rarely matched by enhanced tree growth when tree rings are measured, despite increases of up to 30% in iWUE over the recent past (van der Sleen et al 2015). Explanations for the mismatch between iWUE and tree growth records encompass questions over the veracity of δ13C records for recording physiological change (Silva and Howarth 2013), suggestions that moisture stress in warming climates becomes a limit to growth and prevents opportunistic use of rising CO2 by trees (Andreu-Hayles et al 2011) and questions regarding the use of tree ring width, which does not record tree height gain, to record growth. Here we present an extensive range of long term iWUE records, derived broadly from the temperate, high latitude and one tropical forest site to explore the palaeoclimatic perspective on the iWUE-fertilization conundrum in a spatio temporally extensive manner.
The ancient blue oak woodlands of California: longevity and hydroclimatic history
Stahle, D.W.; Griffin, R.D.; Meko, D.M.; Therrell, M.D.; Edmondson, J.R.; Cleaveland, M.K.; Burnette, D.J.; Abatzoglou, J.T.; Redmond, K.T.; Dettinger, M.D.; Cayan, D.R.
2013-01-01
Ancient blue oak trees are still widespread across the foothills of the Coast Ranges, Cascades, and Sierra Nevada in California. The most extensive tracts of intact old-growth blue oak woodland appear to survive on rugged and remote terrain in the south Coast Ranges and on the foothills west and southwest of Mt. Lassen. In our sampling of old-growth stands, most blue oak appear to have recruited to the canopy in the mid- to late-19th century. The oldest living blue oak tree sampled was over 459-years old and several dead blue oak logs had over 500 annual rings. Precipitation sensitive tree-ring chronologies up to 700-years long have been developed from old blue oak trees and logs. Annual ring-width chronologies of blue oak are strongly correlated with cool season precipitation totals, streamflow in the major rivers of California, and the estuarine water quality of San Francisco Bay. A new network of 36 blue oak chronologies records spatial anomalies in growth that arise from latitudinal changes in the mean storm track and location of landfalling atmospheric rivers. These long, climate-sensitive blue oak chronologies have been used to reconstruct hydroclimatic history in California and will help to better understand and manage water resources. The environmental history embedded in blue oak growth chronologies may help justify efforts to conserve these authentic old-growth native woodlands.
NASA Astrophysics Data System (ADS)
Venegas-González, Alejandro; Chagas, Matheus Peres; Anholetto Júnior, Claudio Roberto; Alvares, Clayton Alcarde; Roig, Fidel Alejandro; Tomazello Filho, Mario
2016-01-01
We explored the relationship between tree growth in two tropical species and local and large-scale climate variability in Southeastern Brazil. Tree ring width chronologies of Tectona grandis (teak) and Pinus caribaea (Caribbean pine) trees were compared with local (Water Requirement Satisfaction Index—WRSI, Standardized Precipitation Index—SPI, and Palmer Drought Severity Index—PDSI) and large-scale climate indices that analyze the equatorial pacific sea surface temperature (Trans-Niño Index-TNI and Niño-3.4-N3.4) and atmospheric circulation variations in the Southern Hemisphere (Antarctic Oscillation-AAO). Teak trees showed positive correlation with three indices in the current summer and fall. A significant correlation between WRSI index and Caribbean pine was observed in the dry season preceding tree ring formation. The influence of large-scale climate patterns was observed only for TNI and AAO, where there was a radial growth reduction in months preceding the growing season with positive values of the TNI in teak trees and radial growth increase (decrease) during December (March) to February (May) of the previous (current) growing season with positive phase of the AAO in teak (Caribbean pine) trees. The development of a new dendroclimatological study in Southeastern Brazil sheds light to local and large-scale climate influence on tree growth in recent decades, contributing in future climate change studies.
CO2 fertilization and enhanced drought resistance in Greek firs from Cephalonia Island, Greece.
Koutavas, Athanasios
2013-02-01
Growth-climate relationships were investigated in Greek firs from Ainos Mountain on the island of Cephalonia in western Greece, using dendrochronology. The goal was to test whether tree growth is sensitive to moisture stress, whether such sensitivity has been stable through time, and whether changes in growth-moisture relationships support an influence of atmospheric CO2 on growth. Regressions of tree-ring indices (ad 1820-2007) with instrumental temperature, precipitation, and Palmer Drought Severity Index (PDSI) indicate that growth is fundamentally limited by growing-season moisture in late spring/early summer, most critically during June. However, this simple picture obscures a pattern of sharply evolving growth-climate relationships during the 20th century. Correlations between growth and June temperature, precipitation, and PDSI were significantly greater in the early 20th century but later degraded and disappeared. By the late 20th-early 21st century, there remains no statistically significant relationship between moisture and growth implying markedly enhanced resistance to drought. Moreover, growth experienced a net increase over the last half-century culminating with a sharp spike in ad 1988-1990. This recent growth acceleration is evident in the raw ring-width data prior to standardization, ruling out artifacts from statistical detrending. The vanishing relationship with moisture and parallel enhancement of growth are all the more notable because they occurred against a climatic backdrop of increasing aridity. The results are most consistent with a significant CO2 fertilization effect operating through restricted stomatal conductance and improved water-use efficiency. If this interpretation is correct, atmospheric CO2 is now overcompensating for growth declines anticipated from drier climate, suggesting its effect is unusually strong and likely to be detectable in other up-to-date tree-ring chronologies from the Mediterranean. © 2012 Blackwell Publishing Ltd.
Who is the new sheriff in town regulating boreal forest growth?
NASA Astrophysics Data System (ADS)
Park Williams, A.; Xu, Chonggang; McDowell, Nate G.
2011-12-01
Climate change appears to be altering boreal forests. One recently observed symptom of these changes has been an apparent weakening of the positive relationship between high-latitude boreal tree growth and temperature at some sites (D'Arrigo et al 2008). This phenomenon is referred to as the 'divergence problem' or 'divergence effect' and is thought to reflect a non-linear relationship between temperature and tree growth, where recent warming has allowed other factors besides growing-season temperature to emerge as dominant regulators of annual growth rates. Figure 1 demonstrates this divergence phenomenon with records of tree-ring widths collected from 59 populations of white spruce in Alaska 1. Key tendencies among these populations include: (1) growth is most sensitive to temperature during relatively cold growing seasons (figure 1(a)), (2) populations at colder sites are more sensitive to temperature than those at warmer sites are (figure 1(a)), and (3) growth at warmer sites may respond negatively to increased temperature beyond some optimal growing-season temperature (figure 1(b)). Since temperature is rising rapidly at high latitudes, one interpretation of figures 1(a) and (b) is that warming has promoted increased growth at colder sites, but caused growth to plateau or slow at warmer sites. Corroborating this interpretation, satellite imagery and tree-ring data indicate increasing vegetation productivity near the forest-tundra boundary but declining productivity in warmer regions within forest interiors (e.g., Bunn and Goetz 2006, Beck and Goetz 2011, Beck et al 2011, Berner et al 2011). Will continued warming cause a northward migration of boreal forests, with mortality in the warmer, southern locations and expansion into the colder tundra? This question is difficult to answer because many factors besides temperature influence boreal forest dynamics. Widespread productivity declines within interior boreal forests appear to be related to warming-induced drought stress (Barber et al 2000). Notably, this response may be more complicated than simply a decline in soil moisture. Even when soil moisture is plentiful, warming can negatively impact plant growth and survival by causing increased respiratory consumption of stored carbohydrates (McDowell 2011) and decreased stomatal conductance due to hydraulic limitation (Flexas et al 2004). Some degree of acclimation may be occurring, as white spruce populations that experience moderate temperatures and precipitation have lower optimal growth temperatures than populations at warmer, drier sites do (figure 1(c)). Yet, populations at the warmest or driest sites show strong growth declines during warm periods, consistent with a decline in the viability of these populations in some regions (Goetz et al 2005, Beck and Goetz 2011, Beck et al 2011). Can interior boreal forests acclimate to the current era's rapid warming? Or will temperatures within interior boreal forests outpace or extend beyond the adaptive capabilities of boreal tree species? The answer remains a mystery, partly because important aspects of acclimation are still poorly understood, and partly because of other important processes such as wildfire and increases in CO2 concentration, nitrogen deposition, growing-season length, and tropospheric ozone concentration. Figure 1 Figure 1. Relationships between white spruce tree-ring widths and climate at 59 sites in Alaska. (a) Annual correlation between ring-width index and June-July average temperature during years when June--July temperature was colder (blue bars) and warmer (red bars) than average. Pairs of bars represent the coldest 20 sites (left), 19 sites with intermediate temperature (middle) and the warmest 20 sites (right). (b) Spline curves that represent the best-fit relationship between temperature (x-axis) and ring-width index variability (y-axis) at cold sites (blue line), intermediate sites (black line) and warm sites (orange line). (c) Same as (b) but for the wettest 20 sites (green line), 19 sites with intermediate annual precipitation (black line) and the driest 20 sites (brown line). Error bars in (a)-(c) are standard errors. Perhaps an even bigger mystery is what the future has in store at the cold ecotone where boreal forest gives way to arctic tundra. Just as for warmer sites, there tends to be a temperature threshold at cold and intermediate sites, above which further warming no longer positively influences growth rate (figures 1(a) and (b)). Rather than reverse sign once this threshold is surpassed, growth-temperature relationships at cold and intermediate sites tend to simply disappear or at least diminish. This is because metabolic rates are slow in the cold, but are optimal under moderately warmer conditions (Tjoelker et al 2009). As temperature increases into a range of variability that no longer limits metabolic rate, a host of other climatic and soil-related factors can limit or promote growth and seedling recruitment. At some cool treeline sites, rapidly rising temperatures may have already surpassed the level that supports optimal growth, as negative relationships have emerged between temperature and growth rate in most decades (McGuire et al 2010). In a recent contribution to this important body of research, Andreu-Hayles et al (2011) studied growth-temperature relations within a white spruce population growing at the northern treeline in Alaska. Consistent with observations elsewhere in boreal forests, Andreu-Hayles et al discovered that a positive and significant relationship between ring widths and June-July temperature during 1901-1950 disappeared during 1951-2000. Interestingly, ring widths and temperature both increased throughout the 20th century at this treeline site, in contrast to recent trends at many other sites in Alaska where warming is outpacing ring widths (e.g., D'Arrigo et al 2008). At the site studied by Andreu-Hayles et al, it seems recent warming has caused a release of white spruce growth from temperature limitation and there is now a new sheriff in town regulating annual growth rate. Who this new sheriff is, however, remains an open and important question. Another interesting result in the Andreu-Hayles et al study is that the relationship between temperature and density of tree-ring latewood (the dark band formed at the end of the growing season) was stable throughout the 20th century. This means that although temperature may no longer be the primary factor governing annual growth, it still has an important physiological impact at the end of the growing season. The stability of the latewood density-temperature relationship also offers a promising implication for dendroclimatic studies. While non-linear relationships between ring widths and temperature may make it difficult to use ring widths to infer information about historical temperature variability for some sites, Andreu-Hayles et al add to the evidence (e.g., Barber et al 2000, Davi et al 2003, D'Arrigo et al 2009) that latewood density may be particularly useful in reconstructing historical temperature at high latitudes. While the divergence problem and new contribution by Andreu-Hayles et al are interesting on their own, they are also important because they highlight the current limits to our understanding of the mechanisms driving boreal forest growth and survival. As Allen et al (2010) pointed out, understanding and predicting the consequences of climate changes on forests is emerging as a grand challenge for global change scientists. This is particularly true at high latitudes because boreal forests store ~32% of Earth's terrestrial forest carbon, more than twice that of temperate forests (Pan et al 2011). Will continued warming turn boreal forests into a sink or source of atmospheric CO2? And will boreal forest growth and distribution change enough to significantly impact the energy balance of high latitude landscapes and thereby influence large-scale atmospheric circulation? To answer these questions, it is critical to understand the factors influencing boreal forest growth under warmer conditions and how the relative contributions of these factors vary spatially. Our understanding of these factors can be improved through research campaigns that integrate field-measurements, remote sensing and ecological modeling (Goetz et al 2011). Field-studies that measure the physiological responses of trees to manipulations of environmental variables such as temperature, soil moisture, soil nutrients and insolation are critical for informing ecological models that predict forest responses to various scenarios of climate and environmental change. Remote sensing is critical in validating modeled projections of forest growth. At present, ecological models do poorly at characterizing observed trends in boreal-forest productivity in some regions (Beck et al 2011). It will be exciting in the coming years to see how field measurements, modeling and remote sensing can work together to resolve the mysteries of the divergence problem, how warming will influence the overall productivity and distribution of boreal forests, and how changes in boreal-forest characteristics may influence regional and global climates. References Allen C D et al 2010 A global overview of drought and head-induced tree mortality reveals emerging climate change risks for forests Forest Ecol. Manag. 259 660-84 Andreu-Hayles L, D'Arrigo R, Anchukaitis K J, Beck P S A, Frank D and Goetz S 2011 Varying boreal forest response to Arctic environmental change at the Firth River, Alaska Environ. Res. Lett. 6 045503 Barber V A, Juday G P and Finney B P 2000 Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress Nature 405 668-73 Beck P S A and Goetz S J 2011 Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences Environ. Res. Lett. 6 045501 Beck P S A, Juday G P, Alix C, Barber V A, Winslow S E, Sousa E E, Heiser P, Herriges J D and Goetz S J 2011 Changes in forest productivity across Alaska consistent with biome shift Ecol. Lett. 14 373-9 Berner L T, Beck P S A, Bunn A G, Lloyd A H and Goetz S J 2011 High-latitude tree growth and satellite vegetation indices: correlations and trends in Russia and Canada (1982-2008) J. Geophys. Res. 116 G01015 Bunn A G and Goetz S J 2006 Trends in satellite-observed circumpolar photosynthetic activity from 1982 to 2003: the influence of seasonality, cover type, and vegetation density Earth Interact. 10 1-19 D'Arrigo R, Jacoby G, Buckley B, Sakulich J, Frank D, Wilson R, Curtis A and Anchukaitis K 2009 Tree growth and inferred temperature variability at the North American Arctic treeline Glob. Planet. Change 65 71-82 D'Arrigo R, Wilson R, Liepert B, Cherubini P 2008 On the 'divergence problem' in northern forests: a review of the tree-ring evidence and possible causes Glob. Planet. Change 60 289-305 Davi N K, Jacoby G C and Wiles G C 2003 Boreal temperature variability inferred from maximum latewood density and tree-ring width data, Wrangell Mountain region, Alaska Quatern. Res. 60 252-62 Flexas J, Bota J, Loreto F, Cornic G and Sharkey T 2004 Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants Plant Biol. 6 269-79 Goetz S J, Bunn A G, Fiske G J and Houghton R 2005 Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance Proc. Natl Acad. Sci. USA 102 13521-5 Goetz S J, Kimball J S, Mack M C and Kasischke E S 2011 Scoping completed for an experiment to assess vulnerability of Arctic and boreal ecosystems EOS Trans. Am. Geophys. Union 92 150-1 McDowell N G 2011 Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality Plant Physiol. 155 1051-9 McGuire A D, Ruess R W, Lloyd A, Yarie J, Clein J S and Juday G P 2010 Vulnerability of white spruce tree growth in interior Alaska in response to climate variability: dendrochronological, demographic, and experimental perspectives Canadian J. Forest Res. 40 1197-209 Pan Y et al 2011 A large and persistent carbon sink in the world's forests Science 333 988-93 Tjoelker M G, Oleksyn J, Lorenc-Plucinska G and Reich P B 2009 Acclimation of respiratory temperature responses in northern and southern populations of Pinus banksiana New Phytologist 181 218-29 1 Tree-ring data: ftp.ncdc.noaa.gov/pub/data/paleo/treering. Climate data: snap.uaf.edu/downloads/alaska-climate-datasets.
Yan, Cai-Feng; Gessler, Arthur; Rigling, Andreas; Dobbertin, Matthias; Han, Xing-Guo; Li, Mai-He
2016-01-01
Most mistletoes are xylem-tapping hemiparasites, which derive their resources from the host’s xylem solution. Thus, they affect the host’s water relations and resource balance. To understand the physiological mechanisms underlying the mistletoe–host relationship, we experimentally removed Viscum album ssp. austriacum (Wiesb.) Vollmann from adult Pinus sylvestris L. host trees growing in a Swiss dry valley. We analyzed the effects of mistletoe removal over time on host tree growth and on concentrations of nonstructural carbohydrates (NSC) and nitrogen (N) in needles, fine roots and sapwood. In addition, we assessed the δ13C and δ18O in host tree rings. After mistletoe removal, δ13C did not change in newly produced tree rings compared with tree rings in control trees (still infected with mistletoe), but δ18O values increased. This pattern might be interpreted as a decrease in assimilation (A) and stomatal conductance (gs), but in our study, it most likely points to an inadequacy of the dual isotope approach. Instead, we interpret the unchanged δ13C in tree rings upon mistletoe removal as a balanced increase in A and gs that resulted in a constant intrinsic water use efficiency (defined as A/gs). Needle area-based concentrations of N, soluble sugars and NSC, as well as needle length, single needle area, tree ring width and shoot growth, were significantly higher in trees from which mistletoe was removed than in control trees. This finding suggests that mistletoe removal results in increased N availability and carbon gain, which in turn leads to increased growth rates of the hosts. Hence, in areas where mistletoe is common and the population is large, mistletoe management (e.g., removal) may be needed to improve the host vigor, growth rate and productivity, especially for relatively small trees and crop trees in xeric growth conditions. PMID:27083524
Yan, Cai-Feng; Gessler, Arthur; Rigling, Andreas; Dobbertin, Matthias; Han, Xing-Guo; Li, Mai-He
2016-05-01
Most mistletoes are xylem-tapping hemiparasites, which derive their resources from the host's xylem solution. Thus, they affect the host's water relations and resource balance. To understand the physiological mechanisms underlying the mistletoe-host relationship, we experimentally removed Viscum album ssp. austriacum (Wiesb.) Vollmann from adult Pinus sylvestris L. host trees growing in a Swiss dry valley. We analyzed the effects of mistletoe removal over time on host tree growth and on concentrations of nonstructural carbohydrates (NSC) and nitrogen (N) in needles, fine roots and sapwood. In addition, we assessed the δ(13)C and δ(18)O in host tree rings. After mistletoe removal, δ(13)C did not change in newly produced tree rings compared with tree rings in control trees (still infected with mistletoe), but δ(18)O values increased. This pattern might be interpreted as a decrease in assimilation (A) and stomatal conductance (gs), but in our study, it most likely points to an inadequacy of the dual isotope approach. Instead, we interpret the unchanged δ(13)C in tree rings upon mistletoe removal as a balanced increase in A and gs that resulted in a constant intrinsic water use efficiency (defined as A/gs). Needle area-based concentrations of N, soluble sugars and NSC, as well as needle length, single needle area, tree ring width and shoot growth, were significantly higher in trees from which mistletoe was removed than in control trees. This finding suggests that mistletoe removal results in increased N availability and carbon gain, which in turn leads to increased growth rates of the hosts. Hence, in areas where mistletoe is common and the population is large, mistletoe management (e.g., removal) may be needed to improve the host vigor, growth rate and productivity, especially for relatively small trees and crop trees in xeric growth conditions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Giguère, Claudie; Boucher, Étienne; Bergeron, Yves
2016-04-01
Tree ring series enabling long hydroclimatic reconstructions are scarce in Northeastern America, mostly because most boreal species are rather thermo-dependant. Here we propose a new multi-proxy analysis (tree-ring, δ13C and δ18O) from one of the oldest Thuja occidentalis population in NE America (lake Duparquet, Quebec). These rare precipitation-sensitive, long-living trees (> 800 years) grow on xeric rocky shores and their potential for paleo-hydroclimatic reconstructions (based on ring widths solely) was previously assessed. The objectives of this study are twofold i) to strengthen the hydroclimatic signal of this long tree-ring chronology by adding analysis of stable isotope ratios (δ13C and δ18O) and ii) to reconstruct summer precipitation back to 1300 AD, which will represent, by far, the longest high-resolution hydroclimatic reconstruction in this region. A tree-ring chronology was constructed from 61 trees sampled in standing position. Eleven trees were also sampled to produce pooled carbon and oxygen isotope chronologies (annually resolved) with a replication of five to six trees per year. Signal analysis (correlation between climatic data and proxy values) confirms that growth is positively influenced by spring precipitations (May-June), while δ13C is negatively correlated to summer precipitation (June to August) and positively to June temperature. Adding δ18O analysis will strengthen the signal even more, since wood cellulose should be enriched in δ18O when high evapotranspiration conditions prevail. Based on a multi-proxy approach, a summer precipitation reconstruction was developed and compared to other temperature reconstructions from this region as well as to southernmost hydroclimatic reconstructions (e.g. Cook et al). A preliminary analysis of external and internal forcing is proposed in conclusion.
Sea-ice induced growth decline in Arctic shrubs.
Forchhammer, Mads
2017-08-01
Measures of increased tundra plant productivity have been associated with the accelerating retreat of the Arctic sea-ice. Emerging studies document opposite effects, advocating for a more complex relationship between the shrinking sea-ice and terrestrial plant productivity. I introduce an autoregressive plant growth model integrating effects of biological and climatic conditions for analysing individual ring-width growth time series. Using 128 specimens of Salix arctica , S. glauca and Betula nana sampled across Greenland to Svalbard, an overall negative effect of the retreating June sea-ice extent was found on the annual growth. The negative effect of the retreating June sea-ice was observed for younger individuals with large annual growth allocations and with little or no trade-off between previous and current year's growth. © 2017 The Author(s).
Björklund, Jesper; Seftigen, Kristina; Schweingruber, Fritz; Fonti, Patrick; von Arx, Georg; Bryukhanova, Marina V; Cuny, Henri E; Carrer, Marco; Castagneri, Daniele; Frank, David C
2017-11-01
Interannual variability of wood density - an important plant functional trait and environmental proxy - in conifers is poorly understood. We therefore explored the anatomical basis of density. We hypothesized that earlywood density is determined by tracheid size and latewood density by wall dimensions, reflecting their different functional tasks. To determine general patterns of variability, density parameters from 27 species and 349 sites across the Northern Hemisphere were correlated to tree-ring width parameters and local climate. We performed the same analyses with density and width derived from anatomical data comprising two species and eight sites. The contributions of tracheid size and wall dimensions to density were disentangled with sensitivity analyses. Notably, correlations between density and width shifted from negative to positive moving from earlywood to latewood. Temperature responses of density varied intraseasonally in strength and sign. The sensitivity analyses revealed tracheid size as the main determinant of earlywood density, while wall dimensions become more influential for latewood density. Our novel approach of integrating detailed anatomical data with large-scale tree-ring data allowed us to contribute to an improved understanding of interannual variations of conifer growth and to illustrate how conifers balance investments in the competing xylem functions of hydraulics and mechanical support. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Gennaretti, Fabio; Huard, David; Naulier, Maud; Savard, Martine; Bégin, Christian; Arseneault, Dominique; Guiot, Joel
2017-12-01
Northeastern North America has very few millennium-long, high-resolution climate proxy records. However, very recently, a new tree-ring dataset suitable for temperature reconstructions over the last millennium was developed in the northern Quebec taiga. This dataset is composed of one δ18O and six ring width chronologies. Until now, these chronologies have only been used in independent temperature reconstructions (from δ18O or ring width) showing some differences. Here, we added to the dataset a δ13C chronology and developed a significantly improved millennium-long multiproxy reconstruction (997-2006 CE) accounting for uncertainties with a Bayesian approach that evaluates the likelihood of each proxy model. We also undertook a methodological sensitivity analysis to assess the different responses of each proxy to abrupt forcings such as strong volcanic eruptions. Ring width showed a larger response to single eruptions and a larger cumulative impact of multiple eruptions during active volcanic periods, δ18O showed intermediate responses, and δ13C was mostly insensitive to volcanic eruptions. We conclude that all reconstructions based on a single proxy can be misleading because of the possible reduced or amplified responses to specific forcing agents.
Nuclear Rings in Galaxies - A Kinematic Perspective
NASA Technical Reports Server (NTRS)
Mazzuca, Lisa M.; Swaters, Robert A.; Knapen, Johan H.; Veilleux, Sylvain
2011-01-01
We combine DensePak integral field unit and TAURUS Fabry-Perot observations of 13 nuclear rings to show an interconnection between the kinematic properties of the rings and their resonant origin. The nuclear rings have regular and symmetric kinematics, and lack strong non-circular motions. This symmetry, coupled with a direct relationship between the position angles and ellipticities of the rings and those of their host galaxies, indicate the rings are in the same plane as the disc and are circular. From the rotation curves derived, we have estimated the compactness (v(sup 2)/r) up to the turnover radius, which is where the nuclear rings reside. We find that there is evidence of a correlation between compactness and ring width and size. Radially wide rings are less compact, and thus have lower mass concentration. The compactness increases as the ring width decreases. We also find that the nuclear ring size is dependent on the bar strength, with weaker bars allowing rings of any size to form.
Annular wave packets at Dirac points in graphene and their probability-density oscillation.
Luo, Ji; Valencia, Daniel; Lu, Junqiang
2011-12-14
Wave packets in graphene whose central wave vector is at Dirac points are investigated by numerical calculations. Starting from an initial Gaussian function, these wave packets form into annular peaks that propagate to all directions like ripple-rings on water surface. At the beginning, electronic probability alternates between the central peak and the ripple-rings and transient oscillation occurs at the center. As time increases, the ripple-rings propagate at the fixed Fermi speed, and their widths remain unchanged. The axial symmetry of the energy dispersion leads to the circular symmetry of the wave packets. The fixed speed and widths, however, are attributed to the linearity of the energy dispersion. Interference between states that, respectively, belong to two branches of the energy dispersion leads to multiple ripple-rings and the probability-density oscillation. In a magnetic field, annular wave packets become confined and no longer propagate to infinity. If the initial Gaussian width differs greatly from the magnetic length, expanding and shrinking ripple-rings form and disappear alternatively in a limited spread, and the wave packet resumes the Gaussian form frequently. The probability thus oscillates persistently between the central peak and the ripple-rings. If the initial Gaussian width is close to the magnetic length, the wave packet retains the Gaussian form and its height and width oscillate with a period determined by the first Landau energy. The wave-packet evolution is determined jointly by the initial state and the magnetic field, through the electronic structure of graphene in a magnetic field. © 2011 American Institute of Physics
Climate Patterns and Trends of Tree-Mortality in the Southwestern United States
NASA Astrophysics Data System (ADS)
Yi, C.; Mu, G.; Hendrey, G. R.; Vicente-Serrano, S.
2016-12-01
Evidence suggests a world-wide increase in tree mortality associated with climate change in regions subjected to prolonged drought. This is particularly evident in the Southwestern USA (SWUSA) where trees are dying at an accelerating and alarming rate where we investigated climate patterns and trends over the past century in combination with abundant tree-ring data, and thresholds of tree-mortality. In this drought-prone region we found a strong correlation between annual tree-ring width and the corresponding annual average temperature and amount of precipitation. A standardized precipitation-evapotranspiration index (SPEI) was a robust predictor of annual tree growth. At a SPEI of -1.6, tree-ring width was found to be zero. We hypothesize that this is a tipping point for tree-ring mortality. This is confirmed in that approximately 225 million trees died in SWUSA in 2002 when SPEI fell below this tipping point. An analysis of future trends in SPEI based on four GHG concentration scenarios of the IPCC predicts that in coming decades, the conifer forest in SWUSA is expected to be lost entirely due to the prolonged drought there, as the SPEI is predicted to pass the tipping point. It can be anticipated that as the area impacted by prolonged drought increases with SPEI falling below -1.6 tree mortality will become a regional or semi-continental phenomenon. Acknowledgement:This research was supported by PSC-CUNY award (PSC-CUNY-ENHC-68849-0046) and the CUNY Collaborative Incentive Research Grant (CUNY-CIRG-80209-08 22).
Anadon-Rosell, Alba; Rixen, Christian; Cherubini, Paolo; Wipf, Sonja; Hagedorn, Frank; Dawes, Melissa A
2014-01-01
Global warming can have substantial impacts on the phenological and growth patterns of alpine and Arctic species, resulting in shifts in plant community composition and ecosystem dynamics. We evaluated the effects of a six-year experimental soil warming treatment (+4°C, 2007-2012) on the phenology and growth of three co-dominant dwarf shrub species growing in the understory of Larix decidua and Pinus uncinata at treeline in the Swiss Alps. We monitored vegetative and reproductive phenology of Vaccinium myrtillus, Vaccinium gaultherioides and Empetrum hermaphroditum throughout the early growing season of 2012 and, following a major harvest at peak season, we measured the biomass of above-ground ramet fractions. For all six years of soil warming we measured annual shoot growth of the three species and analyzed ramet age and xylem ring width of V. myrtillus. Our results show that phenology of the three species was more influenced by snowmelt timing, and also by plot tree species (Larix or Pinus) in the case of V. myrtillus, than by soil warming. However, the warming treatment led to increased V. myrtillus total above-ground ramet biomass (+36% in 2012), especially new shoot biomass (+63% in 2012), as well as increased new shoot increment length and xylem ring width (+22% and +41%, respectively; average for 2007-2012). These results indicate enhanced overall growth of V. myrtillus under soil warming that was sustained over six years and was not caused by an extended growing period in early summer. In contrast, E. hermaphroditum only showed a positive shoot growth response to warming in 2011 (+21%), and V. gaultherioides showed no significant growth response. Our results indicate that V. myrtillus might have a competitive advantage over the less responsive co-occurring dwarf shrub species under future global warming.
Bert, Didier; Lasnier, Jean-Baptiste; Capdevielle, Xavier; Dugravot, Aline; Desprez-Loustau, Marie-Laure
2016-01-01
Quercus robur and Q. petraea are major European forest tree species. They have been affected by powdery mildew caused by Erysiphe alphitoides for more than a century. This fungus is a biotrophic foliar pathogen that diverts photosynthetate from the plant for its own nutrition. We used a dendrochronological approach to investigate the effects of different levels of infection severity on the radial growth of young oak trees. Oak infection was monitored at individual tree level, at two sites in southwestern France, over a five-year period (2001–2005). Mean infection severity was almost 75% (infected leaf area) at the end of the 2001 growing season, at both sites, but only about 40% in 2002, and 8%, 5% and 2% in 2003, 2004 and 2005, respectively. Infection levels varied considerably between trees and were positively related between 2001 and 2002. Increment cores were taken from each tree to assess annual ring widths and increases in basal area. Annual radial growth was standardised to take the effect of tree size into account. Annual standardised radial growth was significantly and negatively correlated with infection severity in the same year, for both 2001 and 2002, and at both sites. The decrease in growth reached 70–90% for highly infected trees. The earlywood width was poorly correlated with infection severity, but the proportion of latewood in tree rings was lower in highly infected trees (60%) than in less heavily infected trees (85%). Infection in 2001 and 2002 was found to have a cumulative effect on radial growth in these years, together with a delayed effect detectable in 2003. Thus, even non-lethal pathogens like powdery mildew can have a significant impact on tree functioning. This impact should be taken into account in growth and yield models, to improve predictions of forest net primary production. PMID:27177029
Anadon-Rosell, Alba; Rixen, Christian; Cherubini, Paolo; Wipf, Sonja; Hagedorn, Frank; Dawes, Melissa A.
2014-01-01
Global warming can have substantial impacts on the phenological and growth patterns of alpine and Arctic species, resulting in shifts in plant community composition and ecosystem dynamics. We evaluated the effects of a six-year experimental soil warming treatment (+4°C, 2007–2012) on the phenology and growth of three co-dominant dwarf shrub species growing in the understory of Larix decidua and Pinus uncinata at treeline in the Swiss Alps. We monitored vegetative and reproductive phenology of Vaccinium myrtillus, Vaccinium gaultherioides and Empetrum hermaphroditum throughout the early growing season of 2012 and, following a major harvest at peak season, we measured the biomass of above-ground ramet fractions. For all six years of soil warming we measured annual shoot growth of the three species and analyzed ramet age and xylem ring width of V. myrtillus. Our results show that phenology of the three species was more influenced by snowmelt timing, and also by plot tree species (Larix or Pinus) in the case of V. myrtillus, than by soil warming. However, the warming treatment led to increased V. myrtillus total above-ground ramet biomass (+36% in 2012), especially new shoot biomass (+63% in 2012), as well as increased new shoot increment length and xylem ring width (+22% and +41%, respectively; average for 2007–2012). These results indicate enhanced overall growth of V. myrtillus under soil warming that was sustained over six years and was not caused by an extended growing period in early summer. In contrast, E. hermaphroditum only showed a positive shoot growth response to warming in 2011 (+21%), and V. gaultherioides showed no significant growth response. Our results indicate that V. myrtillus might have a competitive advantage over the less responsive co-occurring dwarf shrub species under future global warming. PMID:24956273
Pawelczyk, Slawomira; Pazdur, Anna; Halas, Stanislaw
2004-06-01
Tree rings can be used as archives of climatic and environmental data with annual resolution. Tree rings widths, maximum late wood density and other parameters as stable composition in tree rings can be used for the reconstruction of past climatic and environmental changes. Stable carbon isotope ratios in tree rings may provide valuable information on past climatic conditions. 13C/12C ratios of plant organic matter can reflect corresponding 13C/12C ratio of atmospheric CO2 during formation of the rings. Investigations of isotopic carbon composition in tree rings from in the ecologically clean the Augustów Wilderness region in the north-eastern part of Poland (22 degrees 58'E, 53 degrees 51'N) (nowadays a sanctuary) were undertaken. Series of delta13C in alpha-cellulose and in wholewood were acquired. Those measurements constituted a part of more complex investigations of carbon isotope composition in tree rings including the measurements of radiocarbon concentration and tree ring widths. This article presents preliminary results. It is argued that contrary to the tree ring widths and delta13C in wholewood that do not reveal significant correlation with temperature, the variation of delta13C in the latewood alpha-cellulose is correlated with combined July and August temperatures. Copyright 2004 Taylor and Francis Ltd.
Growth, fire history, and browsing recorded in wood rings of shrubs in a mild temperate climate.
Coale, Tyler H; Deveny, Adrian J; Fox, Laurel R
2011-05-01
Separate effects of abiotic and biotic factors on the structure and dynamics of ecological communities may be recorded in growth rings of woody plants. We used Ceanothus cuneatus rigidus and Arctostaphylos pumila to tease apart the roles of fire, rain, and herbivores on the histories and community structure of four areas in a coastal mediterranean-type climate in central California with mild winters and mild summers. Ring widths of both species were related to rainfall in two of the areas; heavy deer browsing on Ceanothus overwhelmed the climate signal in the others. Ceanothus germination was more closely related to heavy rainfall, especially during ENSO years, than to fire events. In a related greenhouse experiment that evaluated these observations, the same proportions of new Ceanothus seeds germinated after burning and after receiving regular water for several months, but germination of old seeds responded primarily to the fire treatment. In areas where heavy browsing by mammals reduces recruitment and growth of Ceanothus and increases mortality, the continuance of the Ceanothus population must rely heavily on germination from the persistent seed bank during unusually wet years or after occasional fires. Because Arctostaphylos can produce new stems from underground roots, individual plants may survive and produce seeds until another fire.
NASA Astrophysics Data System (ADS)
Kagawa, A.; Sugimoto, A.; Maximov, T. C.
2006-12-01
Tree-ring density and widths have been successfully used to reconstruct summer temperatures in high- northern latitudes, although a discrepancy between tree-growth and temperature has been found for recent decades. The so-called "reduced sensitivity" of tree rings to summer temperatures has been observed especially strongly in northern Siberia (Briffa et al., 1998) and drought stress (increased water use efficiency) arose from global warming and/or increasing CO2 are suggested as causes (Barber et al. 2000, Saurer et al. 2004). By using carbon isotope ratio as an indicator of drought stress and ring-width/density as indicators of growth, we can clarify how drought stress caused by recent global warming affects wood formation of Siberian trees. However, isotope dendroclimatology is still in its infancy and our understanding of basic physiological processes of isotope signal transfer from leaves to tree rings is insufficient. In order to understand translocation, storage, and allocation of photoassimilate to different organs of trees, we pulse- labeled ten L. gmelinii growing in a continuous permafrost zone with stable 13CO2. We studied seasonal course of carbon allocation patterns of photoassimilate among needles, branches, stem and roots and also how spring, summer, and autumn photoassimilate is later used for both earlywood and latewood formation. About half of the carbon in new needles was derived from stored material. The starch pool in non- needle parts, which can be used for xylem formation, drew about 43 percent of its carbon from previous year's photoassimilate, suggesting that carbon storage is the key mechanism behind autocorrelation in (isotope) dendroclimatology. Analysis of intra-annual 13C of the tree rings formed after the labeling revealed that earlywood contained photoassimilate from the previous summer and autumn as well as from the current spring. Latewood was mainly composed of photoassimilate from the current year's summer/autumn, although it also relied on stored material in some cases. Carbon isotope chronology of recent 100 years shows that the latewood 13C contains stronger climate signal than the earlywood and is significantly correlated to July temperature and July precipitation, corresponding to the timing of carbon incorporation that constitutes latewood. The results suggest the need for separating earlywood and latewood for isotope dendroclimatological study in Siberia. References: 1) Kagawa A., Sugimoto A., & Maximov, T.C. (2006) 13CO2 pulse-labelling of photoassimilates reveals carbon allocation within and between tree rings. Plant, Cell and Environment 29, 1571-1584. 2) Kagawa A., Sugimoto A., & Maximov, T. C. (2006) Seasonal course of translocation, storage, and remobilization of 13C pulse-labeled photoassimilate in naturally growing Larix gmelinii saplings. New Phytologist 171, 793-804. 3) Kagawa A., Naito D., Sugimoto A. & Maximov T. C. (2003) Effects of spatial and temporal variability in soil moisture on widths and 13C values of eastern Siberian tree rings. Journal of Geophysical Research 108 (D16), 4500, doi:10.1029/2002JD003019.
Imprint of the Atlantic Multidecadal Oscillation on Tree-Ring Widths in Northeastern Asia since 1568
Wang, Xiaochun; Brown, Peter M.; Zhang, Yanni; Song, Laiping
2011-01-01
We present a new tree-ring reconstruction of the Atlantic Multidecadal Oscillation (AMO) spanning 1568–2007 CE from northeast Asia. Comparison of the instrumental AMO index, an existing tree-ring based AMO reconstruction, and this new record show strongly similar annual to multidecadal patterns of variation over the last 440 years. Warm phases of the AMO are related to increases in growth of Scots pine trees and moisture availability in northeast China and central eastern Siberia. Multi-tape method (MTM) and cross-wavelet analyses indicate that robust multidecadal (∼64–128 years) variability is present throughout the new proxy record. Our results have important implications concerning the influence of North Atlantic sea surface temperatures on East Asian climate, and provide support for the possibility of an AMO signature on global multidecadal climate variability. PMID:21818380
Vaganov, Eugene A.; Skomarkova, Marina V.; Knohl, Alexander; Brand, Willi A.; Roscher, Christiane
2009-01-01
Tree-ring width, wood density, anatomical structure and 13C/12C ratios expressed as δ13C-values of whole wood of Picea abies were investigated for trees growing in closed canopy forest stands. Samples were collected from the alpine Renon site in North Italy, the lowland Hainich site in Central Germany and the boreal Flakaliden site in North Sweden. In addition, Pinus cembra was studied at the alpine site and Pinus sylvestris at the boreal site. The density profiles of tree rings were measured using the DENDRO-2003 densitometer, δ13C was measured using high-resolution laser-ablation-combustion-gas chromatography-infra-red mass spectrometry and anatomical characteristics of tree rings (tracheid diameter, cell-wall thickness, cell-wall area and cell-lumen area) were measured using an image analyzer. Based on long-term statistics, climatic variables, such as temperature, precipitation, solar radiation and vapor pressure deficit, explained <20% of the variation in tree-ring width and wood density over consecutive years, while 29–58% of the variation in tree-ring width were explained by autocorrelation between tree rings. An intensive study of tree rings between 1999 and 2003 revealed that tree ring width and δ13C-values of whole wood were significantly correlated with length of the growing season, net radiation and vapor pressure deficit. The δ13C-values were not correlated with precipitation or temperature. A highly significant correlation was also found between δ13C of the early wood of one year and the late wood of the previous year, indicating a carry-over effect of the growing conditions of the previous season on current wood production. This latter effect may explain the high autocorrelation of long-term tree-ring statistics. The pattern, however, was complex, showing stepwise decreases as well as stepwise increases in the δ13C between late wood and early wood. The results are interpreted in the context of the biochemistry of wood formation and its linkage to storage products. It is clear that the relations between δ13C and tree-ring width and climate are multi-factorial in seasonal climates. PMID:19653008
Water, gravity and trees: Relationship of tree-ring widths and total water storage dynamics
NASA Astrophysics Data System (ADS)
Creutzfeldt, B.; Heinrich, I.; Merz, B.; Blume, T.; Güntner, A.
2012-04-01
Water stored in the subsurface as groundwater or soil moisture is the main fresh water source not only for drinking water and food production but also for the natural vegetation. In a changing environment water availability becomes a critical issue in many different regions. Long-term observations of the past are needed to improve the understanding of the hydrological system and the prediction of future developments. Tree ring data have repeatedly proved to be valuable sources for reconstructing long-term climate dynamics, e.g. temperature, precipitation and different hydrological variables. In water-limited environments, tree growth is primarily influenced by total water stored in the subsurface and hence, tree-ring records usually contain information about subsurface water storage. The challenge is to retrieve the information on total water storage from tree rings, because a training dataset of water stored in the sub-surface is required for calibration against the tree-ring series. However, measuring water stored in the subsurface is notoriously difficult. We here present high-precision temporal gravimeter measurements which allow for the depth-integrated quantification of total water storage dynamics at the field scale. In this study, we evaluate the relationship of total water storage change and tree ring growth also in the context of the complex interactions of other meteorological forcing factors. A tree-ring chronology was derived from a Norway spruce stand in the Bavarian Forest, Germany. Total water storage dynamics were measured directly by the superconducting gravimeter of the Geodetic Observatory Wettzell for a 9-years period. Time series were extended to 63-years period by a hydrological model using gravity data as the only calibration constrain. Finally, water storage changes were reconstructed based on the relationship between the hydrological model and the tree-ring chronology. Measurement results indicate that tree-ring growth is primarily controlled by total water storage in the subsurface. But high uncertainties intervals of the correlation coefficient urges for the extension of the measurement period. This multi-disciplinary study, combining hydrology, dendrochronology and geodesy shows that temporal gravimeter measurements may give us the unique opportunity to retrieve the information of total water storage contained in tree-ring records to reconstruct total water storage dynamics. Knowing the relationship of water storage and tree-ring growth can also support the reconstruction of other climate records based on tree-ring series, help with hydrological model testing and can improve our knowledge of long-term variations of water storage in the past.
Catton, H.A.; St., George; Remphrey, W.R.
2007-01-01
Winnipeg, Manitoba, Canada, has a large, indigenous population of bur oak (Quercus macrocarpa Michx.). In the 1980s, many of these trees were showing signs of decline, a disease caused by a complex of abiotic and secondary biotic stressing agents. Potential causal factors were investigated by comparing various aspects of 120 bur oaks visually rated as healthy or declined based on crown dieback levels. The results indicated that many selected bur oak trees predated surrounding urban development and that declined trees were significantly older with more severe stem wounds and competition from surrounding trees than healthy specimens. Average annual growth ring widths of healthy and declined trees were similar in the early part of the 20th century. However, decline actually began decades before symptoms were noticed, coinciding with a period of in tense city-wide urban development, as growth of declined trees was slower than that of healthy trees beginning sporadically in the 1940s and consistently from 1974 to 2001. During the early years of decline, the year-by-year separation in ring width between the two categories was significantly positively related to precipitation levels. This suggested that in wet years, declined trees may have been surrounded by unfavorable water-logged soils, possibly as a result of natural drainage patterns being impeded by urban development. ?? 2007 International Society of Arboriculture.
Updated precipitation reconstruction (AD 1482-2012) for Huashan, north-central China
NASA Astrophysics Data System (ADS)
Chen, Feng; Zhang, Ruibo; Wang, Huiqin; Qin, Li; Yuan, Yujiang
2016-02-01
We developed a tree-ring width chronology from pine trees ( Pinus tabulaeformis and Pinus armandii) stand near the peaks of Huashan, Shaanxi, north-central China. Growth-climate response analyses showed that the radial growth of pine trees is mainly influenced by April-June precipitation. A model to reconstruct precipitation based on tree widths was constructed, accounting for 55 % of the instrumental variance during the period 1953-2012. Spatial correlation analyses between the reconstruction and observed gridded precipitation data shows that the seasonal precipitation reconstruction captures regional climatic variations over north China. Compared with the historical archives and other tree-ring records in north China, many large-scale drought events, linked to the El Niño-Southern Oscillation (ENSO), were found. Many of these events have had profound impacts on the people of north China over the past several centuries. Composite maps of sea surface temperatures and 500 hPa geopotential heights for selected extremely dry and wet years in Huashan show characteristics similar to those related to the ENSO patterns, particularly with regard to ocean and atmospheric conditions in the equatorial and north Pacific. Our 531-year precipitation reconstruction for Huashan provides a long-term perspective on current and 20th century wet and dry events in north China, and is useful to guide expectations of future variability, and helps us to address climate change.
Drought-induced adaptation of the xylem in Scots pine and pubescent oak.
Eilmann, Britta; Zweifel, Roman; Buchmann, Nina; Fonti, Patrick; Rigling, Andreas
2009-08-01
Drought impairs tree growth in the inner-Alpine valleys of Central Europe. We investigated species-specific responses to contrasting water supply, with Scots pine (Pinus sylvestris L.), threatened by drought-induced mortality, and pubescent oak (Quercus pubescens Willd.), showing no connection between drought events and mortality. The two co-occurring tree species were compared, growing either along an open water channel or at a site with naturally dry conditions. In addition, the growth response of Scots pine to a draining of a water channel was studied. We analysed the radial increment for the last 100 years and wood anatomical parameters for the last 45 years. Drought reduced the conduit area of pubescent oak, but increased the radial lumen diameter of the conduits in Scots pine. Both species decreased their radial increment under drought. In Scots pine, radial increment was generally more dependent on water availability than that in pubescent oak. Irrigated trees responded less negatively to high temperature as seen in the increase in the conduit area in pubescent oak and the removal of the limitation of cell division by high temperatures. After irrigation stopped, tree-ring width for Scots pine decreased within 1-year delay, whereas lumen diameter and cell-wall thickness responded with a 4-year delay. Scots pine seemed to optimize the carbon-per-conduit-costs under drought by increasing conduits diameter while decreasing cell numbers. This strategy might lead to a complete loss of tree rings under severe drought and thus to an impairment of water transport. In contrast, in pubescent oak tree-ring width is less affected by summer drought because parts of the earlywood are built in early spring. Thus, pubescent oak might have gradual advantages over pine in today's climate of the inner-Alpine valley.
McKenzie, D.; Hessl, Amy E.; Peterson, D.L.
2001-01-01
We explored spatial patterns of low-frequency variability in radial tree growth among western North American conifer species and identified predictors of the variability in these patterns. Using 185 sites from the International Tree-Ring Data Bank, each of which contained 10a??60 raw ring-width series, we rebuilt two chronologies for each site, using two conservative methods designed to retain any low-frequency variability associated with recent environmental change. We used factor analysis to identify regional low-frequency patterns in site chronologies and estimated the slope of the growth trend since 1850 at each site from a combination of linear regression and time-series techniques. This slope was the response variable in a regression-tree model to predict the effects of environmental gradients and species-level differences on growth trends. Growth patterns at 27 sites from the American Southwest were consistent with quasi-periodic patterns of drought. Either 12 or 32 of the 185 sites demonstrated patterns of increasing growth between 1850 and 1980 A.D., depending on the standardization technique used. Pronounced growth increases were associated with high-elevation sites (above 3000 m) and high-latitude sites in maritime climates. Future research focused on these high-elevation and high-latitude sites should address the precise mechanisms responsible for increased 20th century growth.
Meko, David M.; Friedman, Jonathan M.; Touchan, Ramzi; Edmondson, Jesse R.; Griffin, Eleanor R.; Scott, Julian A.
2015-01-01
Old, multi-aged populations of riparian trees provide an opportunity to improve reconstructions of streamflow. Here, ring widths of 394 plains cottonwood (Populus deltoids, ssp. monilifera) trees in the North Unit of Theodore Roosevelt National Park, North Dakota, are used to reconstruct streamflow along the Little Missouri River (LMR), North Dakota, US. Different versions of the cottonwood chronology are developed by (1) age-curve standardization (ACS), using age-stratified samples and a single estimated curve of ring width against estimated ring age, and (2) time-curve standardization (TCS), using a subset of longer ring-width series individually detrended with cubic smoothing splines of width against year. The cottonwood chronologies are combined with the first principal component of four upland conifer chronologies developed by conventional methods to investigate the possible value of riparian tree-ring chronologies for streamflow reconstruction of the LMR. Regression modeling indicates that the statistical signal for flow is stronger in the riparian cottonwood than in the upland chronologies. The flow signal from cottonwood complements rather than repeats the signal from upland conifers and is especially strong in young trees (e.g. 5–35 years). Reconstructions using a combination of cottonwoods and upland conifers are found to explain more than 50% of the variance of LMR flow over a 1935–1990 calibration period and to yield reconstruction of flow to 1658. The low-frequency component of reconstructed flow is sensitive to the choice of standardization method for the cottonwood. In contrast to the TCS version, the ACS reconstruction features persistent low flows in the 19th century. Results demonstrate the value to streamflow reconstruction of riparian cottonwood and suggest that more studies are needed to exploit the low-frequency streamflow signal in densely sampled age-stratified stands of riparian trees.
Radial Growth and Physiological Response of Coniferous Trees to Arctic Amplification
NASA Astrophysics Data System (ADS)
Tei, Shunsuke; Sugimoto, Atsuko; Liang, Maochang; Yonenobu, Hitoshi; Matsuura, Yojiro; Osawa, Akira; Sato, Hisashi; Fujinuma, Junichi; Maximov, Trofim
2017-11-01
We describe the physiological responses of boreal conifers to climate change for the past 112 years using ring-width and carbon isotope ratio (δ13C) chronologies at six forest sites in northern Eurasia and Canada. Responses differed among regions, depending on their climatic and/or geographic characteristics. Tree radial growth decreased over the past 52 years in central eastern Siberia with the higher rate of summer temperature increase than other regions, as indicated by the negative correlation between radial growth and summer temperature, but increased in northern Europe and Canada. Changes in tree-ring δ13C indicated that recent climatic conditions have induced stronger drought stress for trees from central eastern Siberia than for those from other regions. The observed tree growth trends were compared to those simulated using a dynamic global vegetation model. Although the modeled annual net primary production (NPP) for trees generally exhibited similar decadal variation to radial growth, simulations did not show a recent decrease in tree growth, even in central eastern Siberia. This was probably due to an overestimation of the sensitivity of modeled tree NPP to precipitation. Our results suggest that the tree NPP forecasted under the expected future increases in temperature and average precipitation might be overestimated, especially in severely dry regions such as central eastern Siberia.
NASA Astrophysics Data System (ADS)
Pieper, Hagen; Heinrich, Ingo; Heußner, Karl-Uwe; Helle, Gerd
2013-04-01
Large and mainly tropical volcanic eruptions can have significant effects on the Earth's climate system, likely resulting in decreased summer and increased winter temperature means, as well as enhanced fractions of diffuse light lasting for one to several years after the eruptive outbreak. It has been argued that due to scattering by volcanic sulfur aerosol the more diffuse light fraction can be particularly beneficial for tree growth and more generally for ecosystems biomass productivity. However, other observations suggest decreasing tree-ring width because of the cooler conditions following large eruptions, with overall stronger fingerprints expected towards higher altitudes and higher latitudes where tree growth is mainly temperature-limited. Since tree growth in lowland temperate climate zones is dominated by various climate quantities rather than temperature alone. Thus it has been hypothesized that tree growth within the temperate zones of the mid-latitudes may not suffer from lower temperatures per se, but rather profits from increased rates of diffuse light, in tandem with reduced evapotranspiration and subsequently enhanced soil moisture availability. Most studies so far have concentrated on the impact of volcanic eruptions on trees growing outside the temperate climate zones. This study aims at trees in temperate zones where tree growth is less temperature limited. Therefore, a comprehensive database with 1128 samples of millennium-long tree-ring chronologies of Quercus robur L. and Pinus sylvestris L. based on heterogenous archaeological material originating from three different lowland sites (Greifswald, Eberswalde and Saxony) in eastern Germany was used to test whether tree growth suffered or profited from the globally changed conditions after large volcanic eruptions. The growth relationships were tested against 49 individual large volcanic eruptions from the last Millennium. High-resolution ice core records of sulfate measurements calibrated against atmospheric observations after modern eruptions identified the timing and magnitude of the eruptions since 1000 CE. Dendrochronological methods revealed a predominantly negative relationship of our long tree-ring chronologies to large volcanic eruptions. In two tree-ring width chronologies of oak and pine (Quercus robur L. and Pinus sylvestris L.) originating from the different sites in eastern Germany a negative influence on tree growth for up to four years after large eruptions could be detected. In comparison, the chronologies of Q. robur reveal a stronger negative (71%) response after large eruptions than those of P. sylvestris (54%). Only at the Greifswald site both tree species show a common negative response in tree growth after volcanic eruptions. For both tree species and at all three sites just the eruption years of 1586 revealed significant positive growth responses whereas significant negative tree growths was detected after the eruptions of 1800. Volcanic aerosols originating from the northern hemisphere appear to cause a greater reduction in tree growth than aerosols from volcanoes from the southern hemisphere, which probably relates to the shorter distance to the investigated tree sites. Our study clearly indicates that effects of major volcanic eruptions are less obvious in central Europe than observed for trees growing at the altitudinal or latitudinal timberlines.
The varieties of symmetric stellar rings and radial caustics in galaxy disks
NASA Technical Reports Server (NTRS)
Struck-Marcell, Curtis; Lotan, Pnina
1990-01-01
Numerical, restricted three-body and analytic calculations are used to study the formation and propagation of cylindrically symmetric stellar ring waves in galaxy disks. It is shown that such waves can evolve in a variety of ways, depending on the amplitude of the perturbation and the potential of the target galaxy. Rings can thicken as they propagate outward, remain at a nearly constant width, or be pinched off at large radii. Multiple, closely spaced rings can result from a low-amplitude collision, while an outer ring can appear well-separated from overlapping inner rings or an apparent lens structure in halo-dominated potentials. All the single-encounter rings consist of paired fold caustics. The simple, impulsive, kinematic oscillation equations appear to provide a remarkably accurate model of the numerical simulations. Simple analytic approximations to these equations permit very good estimates of oscillation periods and amplitudes, the evolution of ring widths, and ring birth and propagation characteristics.
Climate Controls on Tree Growth in the Western Mediterranean
NASA Technical Reports Server (NTRS)
Touchan, Ramzi; Anchukaitis, Kevin J.; Meko, David M.; Kerchouche, Dalila; Slimani, Said; Ilmen, Rachid; Hasnaoui, Fouad; Guibal, Frederic; Canarerim Hesys Hykui; Sanchez-Salguero, Raul;
2017-01-01
The first large-scale network of tree-ring chronologies from the western Mediterranean (WM; 32 deg N-43 deg N, 10 deg W-17 deg E) is described and analyzed to identify the seasonal climatic signal in indices of annual ring width. Correlation and rotated empirical orthogonal function analyses are applied to 85 tree-ring series and corresponding gridded climate data to assess the climate signal embedded in the network. Chronologies range in length from 80 to 1129 years. Monthly correlations and partial correlations show overall positive associations for Pinus halepensis (PIHA) and Cedrus atlantica (CDAT) with winter (December-February) and spring (March-May) precipitation across this network. In both seasons, the precipitation correlation with PIHA is stronger, while CDAT chronologies tend to be longer. A combination of positive correlations between growth and winter-summer precipitation and negative partial correlations with growing season temperatures suggests that chronologies in at least part of the network reflect soil moisture and the integrated effects of precipitation and evapotranspiration signal. The range of climate response observed across this network reflects a combination of both species and geographic influences. Western Moroccan chronologies have the strongest association with the North Atlantic Oscillation.
Boreal forests and atmosphere - Biosphere exchange of carbon dioxide
NASA Technical Reports Server (NTRS)
D'Arrigo, Rosanne; Jacoby, Gordon C.; Fung, Inez Y.
1987-01-01
Two approaches to investigating the role of boreal forests in the global carbon cycle are presented. First, a tracer support model which incorporates the normalized-difference vegetation index obtained from advanced, very high resolution radiometer radiances was used to simulate the annual cycle of CO2 in the atmosphere. Results indicate that the seasonal growth of the combined boreal forests of North America and Eurasia accounts for about 50 percent of the mean seasonal CO2 amplitude recorded at Pt. Barrow, Alaska and about 30 percent of the more globally representative CO2 signal at Mauna Loa, Hawaii. Second, tree-ring width data from four boreal treeline sites in northern Canada were positively correlated with Pt. Barrow CO2 drawdown for the period 1971-1982. These results suggest that large-scale changes in the growth of boreal forests may be contributing to the observed increasing trend in CO2 amplitude. They further suggest that tree-ring data may be applicable as indices for CO2 uptake and remote sensing estimates of photosynthetic activity.
Casolo, Valentino; Beraldo, Paola; Braidot, Enrico; Zancani, Marco; Rixen, Christian
2018-01-01
Enhanced shrub growth and expansion are widespread responses to climate warming in many arctic and alpine ecosystems. Warmer temperatures and shrub expansion could cause major changes in plant community structure, affecting both species composition and diversity. To improve our understanding of the ongoing changes in plant communities in alpine tundra, we studied interrelations among climate, shrub growth, shrub cover and plant diversity, using an elevation gradient as a proxy for climate conditions. Specifically, we analyzed growth of bilberry (Vaccinium myrtillus L.) and its associated plant communities along an elevation gradient of ca. 600 vertical meters in the eastern European Alps. We assessed the ramet age, ring width and shoot length of V. myrtillus, and the shrub cover and plant diversity of the community. At higher elevation, ramets of V. myrtillus were younger, with shorter shoots and narrower growth rings. Shoot length was positively related to shrub cover, but shrub cover did not show a direct relationship with elevation. A greater shrub cover had a negative effect on species richness, also affecting species composition (beta-diversity), but these variables were not influenced by elevation. Our findings suggest that changes in plant diversity are driven directly by shrub cover and only indirectly by climate, here represented by changes in elevation. PMID:29698464
NASA Astrophysics Data System (ADS)
Gennaretti, Fabio; Naulier, Maud; Arseneault, Dominique; Savard, Martine; Bégin, Christian; Boucher, Etienne; Bégin, Yves; Guiot, Joël
2016-04-01
Northeastern North America was historically underrepresented in the network of climate proxies used for climate reconstructions over the last two millennia. Indeed, in North America most high-resolution climate proxies are long tree-ring chronologies but, in Northeastern North America, these chronologies are highly challenging due to short tree longevity, high frequency and severity of wildfires and remoteness of many areas. Here, we will present the efforts accomplished during the last decade by our team in developing millennial-long tree-ring chronologies in the northern Quebec taiga. We sampled black spruce [Picea mariana (Mill.) B.S.P] subfossil tree remains naturally fallen in the littoral zone of six lakes to build six site-specific ring-width chronologies as well as two chronologies of stable isotope ratios (δ18O and δ13C in tree-ring cellulose). These chronologies, which are now included in the PAGES 2K network, were independently used to reconstruct summer temperature variations showing a well-expressed Medieval Climate Anomaly and the impact of volcanic and solar forcings at regional scale. We will also discuss non-climatic influences on these chronologies (i.e. wildfires and sampling height inconsistency), as well as the ongoing effort to extend the reconstructions in time to cover the last 2500 years. Finally, a new European funded project called MAIDEN-SPRUCE will be introduced. Within MAIDEN-SPRUCE, we will use a data-model approach to improve our understanding of the links between forests and climate over the last millennium. More specifically, we will adapt the process-based ecophysiological model MAIDENiso to investigate factors influencing the growth and underlying biogeochemical processes of black spruce. One of our objectives is to provide the first multi-proxy (ring widths and δ18O and δ13C in tree-ring cellulose) regional climate reconstruction in Eastern North America over the last millennium taking into account mechanistic rules, including nonlinear or threshold relationships.
Plasma deposited rider rings for hot displacer
Kroebig, Helmut L.
1976-01-01
A hot cylinder for a cryogenic refrigerator having two plasma spray deposited rider rings of a corrosion and abrasion resistant material provided in the rider ring grooves, wherein the rider rings are machined to the desired diameter and width after deposition. The rider rings have gas flow flats machined on their outer surface.
Distinct temperature sensitivity among taiga and tundra shrubs in Alaska
NASA Astrophysics Data System (ADS)
Andreu-Hayles, L.; Anchukaitis, K. J.; D'Arrigo, R.
2014-12-01
Shrub expansion into Arctic and alpine tundra ecosystems is well documented, mostly over the last 50 years, based on remote sensing data, aerial photography, and in-situ observations. Warming temperatures are considered the main driver of the observed change in shrub vegetation patterns. Here, we assess the relationship between temperatures and shrub growth from five populations of Salix spp. (willow) and Alnus spp. (alder) in Alaska growing within the tundra and the boreal forest (~taiga) using dendrochronological techniques. The three tundra shrub sites are located on the Dalton Highway north from Toolik Lake (~69ºN 148ºW), whereas the two taiga shrub sites are located closer to Fairbanks at the Twelve Mile Summit site (~65ºN 146ºW). Because shrub ages vary among the studied populations lead to different time spans for the ring-width chronologies generated, a common period with available satellite data spanning from 1982 to 2010 was selected for this study. All tundra shrub chronologies shared a strong positive response to summer temperatures despite growing in heterogeneous site conditions and belonging to different species. In contrast, in the taiga, summer temperatures enhance willow growth, whereas alder growth appears almost insensitive to temperature over the interval studied. Extending the analyses back in time, a very strong positive relationship was found between alder ring-width and June temperatures prior to 1970. This phenomenon, a weakening of the previously existing relationship between growth and temperatures, was also detected in white spruce (Picea glauca) growing at the same site, and it is known in the literature as the 'divergence problem'. Thus, at this taiga location, alder shrubs and trees seem to have similar growth patterns. Summer temperatures no longer seem to enhance taiga alder growth. Shrubs of different species exposed to the same climatic conditions can exhibit varied growth responses. The distinct temperature sensitivities among the tundra and taiga shrubs highlight the complexity of shrub dynamics, and the fact that warming may not uniformly enhance shrub growth in Arctic and sub-Arctic ecosystems.
Plant response to climate change along the forest-tundra ecotone in northeastern Siberia.
Berner, Logan T; Beck, Pieter S A; Bunn, Andrew G; Goetz, Scott J
2013-11-01
Russia's boreal (taiga) biome will likely contract sharply and shift northward in response to 21st century climatic change, yet few studies have examined plant response to climatic variability along the northern margin. We quantified climate dynamics, trends in plant growth, and growth-climate relationships across the tundra shrublands and Cajander larch (Larix cajanderi Mayr.) woodlands of the Kolyma river basin (657 000 km(2) ) in northeastern Siberia using satellite-derived normalized difference vegetation indices (NDVI), tree ring-width measurements, and climate data. Mean summer temperatures (Ts ) increased 1.0 °C from 1938 to 2009, though there was no trend (P > 0.05) in growing year precipitation or climate moisture index (CMIgy ). Mean summer NDVI (NDVIs ) increased significantly from 1982 to 2010 across 20% of the watershed, primarily in cold, shrub-dominated areas. NDVIs positively correlated (P < 0.05) with Ts across 56% of the watershed (r = 0.52 ± 0.09, mean ± SD), principally in cold areas, and with CMIgy across 9% of the watershed (r = 0.45 ± 0.06), largely in warm areas. Larch ring-width measurements from nine sites revealed that year-to-year (i.e., high-frequency) variation in growth positively correlated (P < 0.05) with June temperature (r = 0.40) and prior summer CMI (r = 0.40) from 1938 to 2007. An unexplained multi-decadal (i.e., low-frequency) decline in annual basal area increment (BAI) occurred following the mid-20th century, but over the NDVI record there was no trend in mean BAI (P > 0.05), which significantly correlated with NDVIs (r = 0.44, P < 0.05, 1982-2007). Both satellite and tree-ring analyses indicated that plant growth was constrained by both low temperatures and limited moisture availability and, furthermore, that warming enhanced growth. Impacts of future climatic change on forests near treeline in Arctic Russia will likely be influenced by shifts in both temperature and moisture, which implies that projections of future forest distribution and productivity in this area should take into account the interactions of energy and moisture limitations. © 2013 John Wiley & Sons Ltd.
Vortex formation in magnetic narrow rings
NASA Astrophysics Data System (ADS)
Bland, J. A. C.
2002-03-01
Underlying the current interest in magnetic elements is the possibility such systems provide both for the study of fundamental phenomena in magnetism (such as domain wall trapping and spin switching) and for technological applications, such as high density magnetic storage or magnetic random access memories (MRAM). One key issue is to control the magnetic switching precisely. To achieve this one needs first to have a well defined and reproducible remanent state, and second the switching process itself must be simple and reproducible. Among the many studied geometries, rings are shown to exhibit several advantages over other geometries, in that they show relatively simple stable magnetic states at remanence, with fast and simple magnetisation switching mechanisms. This is borne out of our systematic investigation of the magnetic properties of epitaxial and polycrystalline Co rings, where both the static, dynamic and transport properties have been studied. Magnetic measurements and micromagnetic simulations show that for appropriate ring structures a two step switching process occurs at high fields, indicating the existence of two different stable states. In addition to the vortex state, which occurs at intermediate fields, we have identified a new bi-domain state, which we term the `onion state', corresponding to opposite circulation of the magnetisation in each half of the ring. The magnetic elements were fabricated using a new technique based on the pre-patterning of Si ring structures and subsequent epitaxial growth of Cu/Co/Cu sandwich films on top of the Si elements. This technique has allowed the growth of epitaxial fcc Co(001) structures and in contrast to conventional lithographic methods, no damage to the magnetic layer structure is introduced by the patterning process [1,2]. We have studied the magnetic switching properties of arrays of narrow Co(100) epitaxial ring magnets, with outer diameters between 1 μm and 2 μm, varying inner diameters and varying film thickness, using magneto-optic Kerr effect (MOKE) magnetometry. The data indicates that the outer diameter of the ring only plays a minor role in determining the value of the switching field. As a general trend, the switching field decreases with increasing ring width and with decreasing film thickness. In particular, the dependence of the switching field on ring width becomes more pronounced for smaller ring widths. This stems from the fact that the vortex state becomes more stable for the narrower rings due to the exchange energy contribution to the barrier for reversal to the onion state. Thicker films also favour the vortex state over the onion state, since the magnetostatic energy associated with the latter state increases with film thickness [3]. Using micromagnetic simulations we show also that the magnetisation reversal in narrow rings can take place via a nucleation-free domain wall motion process when a field pulse is applied in the plane of the film and perpendicular to the net magnetisation. Switching times of the order of 400 ps can be achieved with this approach. A lower bound for the depinning time of the domain walls and a weak dependence of the domain wall velocity with the applied field are described [4]. The magnetic nanostructure of epitaxial fcc Co/Cu(001) circular elements has been imaged with scanning electron microscopy with polarisation analysis (SEMPA) [5]. The elements vary from disks to rings according to the dimensions of the inner diameter of the ring structure and have a nominal composition 4 nm Au/2 nm Cu/34 nm Co/100 nm Cu. In this study the outer diameter was fixed at 1.7 μm while the smallest ring width varies in the range 0.3-0.5 μm. A closed flux quadrant configuration is observed for some of the disks, characteristic of systems with cubic anisotropy (i.e., near vortex structure), besides other more complex configurations at remanence. The width of the 90^o domain wall in the disks is around 0.20 ± 0.05 μm. This value is larger than what expected for continuous films and is a result of the constraints imposed by the geometry of the element. The value is in good agreement with micromagnetic calculations. For the rings we observe directly the `onion-state', the closest configuration to saturation that these structures allow [1]. The results prove that this state is stable in zero applied field. The internal structure of the two head-to-head domain walls in the onion state is analysed. Wider rings (ring width w=0.5 μm) present vortex walls, whereas thinner ones (ring width w=0.3 μm) exhibit transverse walls [6]. This is in good agreement with micromagnetic simulations. We have also investigated the magnetic states and the switching properties of magnetic rings using magneto-resistance (MR) measurements. We chose narrow rings, where particularly simple magnetic states are expected. Some of the rings have notches of different sizes that help to pin, and thereby define, the positions of domain walls. The rings were fabricated using a multi-stage lift-off process, where six non-magnetic contacts in different positions of the ring were made. The rings consist of polycrystalline Co or Ni_80Fe_20 3-30 nm thick capped with 6 nm Au, with outer ring diameter 1.4 μm, ring width 80 nm, and notches of different sizes. Conventional MR-H loop measurements with a fixed magnetic field direction, and measurements with rotating constant field magnitude were performed. In one example of the first type of MR measurements, the direction of the field and the contacts were chosen so that at saturation the magnetization is perpendicular to the current. As expected, at saturation the resistance is low whereas at remanence it is high. There is a clear two-step switching process between the `onion' state and the vortex state as expected from previous studies on rings [1]. During the first switching the resistance increases, corresponding to the transition into the vortex state. Since no domain wall is present between the contacts, the magnetization is everywhere parallel to the current, and the resistance is high. After the second switching into the reverse `onion' state a domain wall is now present between the contacts. This means some of the magnetization in the transverse domain wall is perpendicular to the current and hence the resistance decreases. This shows that one can clearly distinguish between the onion and vortex state using MR measurements. In addition, using the field dependent voltage drop between different contacts, the switching field at which each part of the ring reverses can be determined. >From the second type of measurements clear hysteretic behaviour is seen, indicating that there is some domain wall pinning. This demonstrates that the position of the domain walls can be identified by looking at the voltage drop between different contacts. By measuring at different magnitudes of the applied field the pinning strength of the domain walls is determined, and in particular the dependence of the domain wall pinning on the notch size. Furthermore the structure of the domain wall changes for different notch sizes, and hence the contribution of the wall to the resistance changes as well. Real-time measurements between different contacts might allow for domain wall speed measurements and other domain wall propagation studies. References: [1] J. Rothman, M. Kläui, L. Lopez-Diaz, C.A.F. Vaz, A. Bleloch, J.A.C. Bland, Z. Cui, R. Speaks, Phys. Rev. Lett. 86 (2001) 1098. [2] Z. Cui, J. Rothman, M. Kläui, L. Lopez-Diaz, C.A.F. Vaz, J.A.C. Bland, to be published. [3] M. Kläui, L. Lopez-Diaz, J. Rothman, C.A.F. Vaz, J.A.C. Bland, Z. Cui, J. Magn. Magn. Mat., to be published. [4] L. Lopez-Diaz, J. Rothman, M. Kläui, J.A.C. Bland, IEEE Trans. Mag. 36 (2000) 3155. [5] C.A.F. Vaz, L. Lopez-Diaz, M. Kläui, J.A.C. Bland, T.L. Monchesky, J. Unguris, Z. Cui, 46th MMM Conference, Seattle, 2001. [6] R. D. McMichael and M. J. Donahue, IEEE Trans. Mag. 33, 4167-4169 (1997).
A field-to-desktop toolchain for X-ray CT densitometry enables tree ring analysis
De Mil, Tom; Vannoppen, Astrid; Beeckman, Hans; Van Acker, Joris; Van den Bulcke, Jan
2016-01-01
Background and Aims Disentangling tree growth requires more than ring width data only. Densitometry is considered a valuable proxy, yet laborious wood sample preparation and lack of dedicated software limit the widespread use of density profiling for tree ring analysis. An X-ray computed tomography-based toolchain of tree increment cores is presented, which results in profile data sets suitable for visual exploration as well as density-based pattern matching. Methods Two temperate (Quercus petraea, Fagus sylvatica) and one tropical species (Terminalia superba) were used for density profiling using an X-ray computed tomography facility with custom-made sample holders and dedicated processing software. Key Results Density-based pattern matching is developed and able to detect anomalies in ring series that can be corrected via interactive software. Conclusions A digital workflow allows generation of structure-corrected profiles of large sets of cores in a short time span that provide sufficient intra-annual density information for tree ring analysis. Furthermore, visual exploration of such data sets is of high value. The dated profiles can be used for high-resolution chronologies and also offer opportunities for fast screening of lesser studied tropical tree species. PMID:27107414
NASA Astrophysics Data System (ADS)
Hufkens, Koen; Helle, Gerd; Beeckman, Hans; de Haulleville, Thales; Kearsley, Elizabeth; Boeckx, Pascal
2013-04-01
Little is known about the temporal dynamics of the carbon sequestering capacity and dynamics of African tropical humid forest ecosystems in response to various environmental drivers. This lack of knowledge is mainly due to the absence of ecosystem scale flux measurements of gas exchange. However, tree growth often displays itself as alternating pattern of visible rings due to the seasonally varying growth speed of the vascular cambium. Consequently, analysis of tree growth through tree-ring analysis provides us with insights into past responses of the carbon sequestering capacity of key species to abrupt ecosystem disturbances and, while slower, a changing climate. Not only does the width and density of growth rings reflect annual growth but their isotopic composition of 13C/12C and 18O/16O isotopes also reveal the environmental conditions in which the trees were growing. In particular, stable isotope ratios in tree-rings of carbon are influenced by fractionation through carboxylation during photosynthesis and changes in leaf stomatal conductance. Similarly, fractionation of oxygen isotopes of soil water occurs at the leaf level through evapo-transipiration. As a consequence, 18O/16O (δ18O) values in wood cores will reflect both the signal of the source water as well as that of for example summer humidity. Therefore, both C and O stable isotopes might not only be valuable as proxy data for past climatic conditions but they also serve as an important tool in understanding carbon and water relations within a tropical forest ecosystems. To this end we correlate long term climate records (1961 - present) with tree ring measurement of incremental growth and high resolution analysis of tree-core stable isotope composition(δ13C , δ18O) at a tropical humid forests in the DR Congo. The Yangambi Man And Biosphere (MAB) reserve is located in the north-eastern part of DR Congo, with a distinct tropical rainforest climate. In addition to the tree-core data records and extensive meteorological records collected at both sites, observations on green leaf phenology of key species will provide us with additional information on potential carbon sequestration dynamics. Because, phenology is a first order control on plant productivity. In this unique study, using detailed tree-ring analyses together with auxiliary data, we explore the temporal dynamics of carbon and water relations and the influence on carbon sequestration of key tree species in African tropical humid forests.
NASA Astrophysics Data System (ADS)
Mulyanti, B.; Ramza, H.; Pawinanto, R. E.; Rahman, J. A.; Ab-Rahman, M. S.; Putro, W. S.; Hasanah, L.; Pantjawati, A. B.
2017-05-01
The acid rain is an environmental disaster that it will be intimidates human life. The development micro-ring resonator sensor created from SOI (Silicon on insulator) and it used to detect acid rain index. In this study, the LUMERICAL software was used to simulate SOI material micro-ring resonator. The result shows the optimum values of fixed parameters from ring resonator have dependent variable in gap width. The layers under ring resonator with silicone (Si) and wafer layer of silicone material (Si) were added to seen three conditions of capability model. Model - 3 is an additional of bottom layer that gives the significant effect on the factor of quality. The optimum value is a peak value that given by the FSR calculation. FSR = 0, it means that is not shows the light propagation in the ring resonator and none of the light coming out on the bus - line.
Removing the tree-ring width biological trend using expected basal area increment
Franco Biondi; Fares Qeadan
2008-01-01
One of the main elements of dendrochronological standardization is the removal of the biological trend, i.e., the progressive decline of ring width along a cross-sectional radius that is mostly caused by the corresponding increase in stem diameter over time. A very common option for removing this biological trend is to fit a modified negative exponential curve to the...
NASA Astrophysics Data System (ADS)
Pieper, H.; Helle, G.; Brauer, A.; Kaiser, K. F.; Miramont, C.
2013-12-01
The Younger Dryas interval during the Last Glacial Termination was an abrupt return to glacial-like conditions punctuating the transition to a warmer, interglacial climate. Despite recent advances in the layer counting of ice-core records of the termination, the timing and length of the Younger Dryas remain controversial. Late Glacial and early Holocene tree-ring chronologies are rare, however, they contain valuable information about past environmental conditions at annual time resolution. Changes in tree-ring growth rates can be related to past climate anomalies and changes in the carbon and oxygen isotope composition of tree-ring cellulose reflect atmospheric and hydrospheric changes. We are investigating a 860-year (13200 - 12340 cal BP) dated dendrochronological record of Late Glacial and Early Holocene chronologies of scots pine (Pinus sylvestris L.) from subfossil tree remnants from Barbiers River (Moyenne Durance, Southern French Alps), as well as from Swiss (Dättnau, Landikon and Gänziloh) sites. Dendro-ecological parameters, such as ring width and stable isotope variations (δ 13C und δ 18O) are used to infer past environmental conditions. We will present our first carbon and oxygen isotope records from tree rings reflecting the environmental changes at the Alleröd/Younger Dryas -transition.
NASA Astrophysics Data System (ADS)
Boyd, M. A.; Walker, X. J.; Rogers, B. M.; Goetz, S. J.; Wagner, D.; Mack, M. C.
2017-12-01
Climate change has increased tree mortality and growth decline in forested ecosystems worldwide. In response to warming and drying of the boreal forest, trembling aspen (Populus tremuloides) has experienced recent large-scale productivity declines. Although declines in productivity are thought to be primarily a result of moistures stress, infestation is another major driver of aspen decline and may interact strongly with climate. Throughout interior Alaska widespread and consistent foliar damage by the aspen epidermal leaf miner Phyllocnistis populiella has been observed concurrent with some of the warmest and driest growing seasons on record. Here we use tree ring measurements and remote sensing indices of vegetation productivity (NDVI) to study the influence of leaf miner and climate on aspen productivity and physiology in the Alaskan boreal forest, and assess if NDVI reflects variations in these ground-based measurements. We assessed ring width and tree ring stable carbon isotope (d13C) response of aspen to infestation and a climate moisture index (CMI) from 2004 - 2014. We found that when growth was negatively correlated to infestation, then it was no longer positively influenced by moisture availability during the growing season. Regardless of the radial growth response to leaf mining, tree ring d13C decreased with increasing infestation. We also found that NDVI was influenced by leaf mining and showed a positive correlation with tree ring d13C, which suggests that NDVI is reflective of changes in tree characteristics under leaf mining that influence tree ring d13C. This finding also reveals the prospect of using satellite data to monitor fluctuations in tree physiology during leaf miner infestation. Our results indicate that aspen productivity will be severely hindered during leaf miner infestation, and that infestation will inhibit the ability of aspen to respond to favorable climate conditions by increasing growth and potentially photosynthesis. This suggests that the productivity, reproduction, and health of aspen in boreal forests, and in turn any related biophysical or carbon sequestration benefits, may become limited under future warming if infestation by leaf miner continues or accelerates.
NASA Astrophysics Data System (ADS)
Battipaglia, G.; Brand, W. A.; Linke, P.; Schaefer, I.; Noetzli, M.; Cherubini, P.
2009-04-01
Tree- ring growth and wood density have been used extensively as indicators of climate change, and tree-ring has been commonly applied as a proxy estimate for seasonal integration of temperatures and precipitation with annual resolution (Hughes 2002). While these relationships have been well established in temperate ecosystems (Fritts, 1976; Schweingruber, 1988, Briffa et al., 1998, 2004), in Mediterranean region dendrochronological studies are still scarce (Cherubini et al, 2003). In Mediterranean environment, trees may form intra-annual density fluctuations, also called "false rings" or "double rings" (Tingley 1937; Schulman 1938). They are usually induced by sudden drought events, occurring during the vegetative period, and, allowing intra-annual resolution, they may provide detailed information at a seasonal level, as well as species-specific sensitivity to drought. We investigated the variability of tree- ring width and carbon stable isotopes of a Mediterranean species, Arbutus unedo L., sampled on Elba island, (Tuscany, Italy). The samples were taken at two different sites, one characterized by wet and one by dry conditions. d13C was measured using Laser- Ablation- Combustion -GC-IRMS. Here, we present first results showing the impact of drought on tree growth and on false ring formation at the different sites and we underline the importance of using Laser Ablation to infer drought impact at the intra -annual level. Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Harris IC, Shiyatov SG, Vaganov EA, Grudd H (1998) Trees tell of past climates: but are they speaking less clearly today? Phil Transact Royal Soc London 353:65-73 Briffa KR, Osborn TJ, Schweingruber FH (2004) Large-scale temperature inferences from tree rings: a review. Glob Panet Change 40:11-26 Cherubini, P., B.L. Gartner, R. Tognetti, O.U. Bräker, W. Schoch & J.L. Innes. 2003. Identification, measurement and interpretation of tree rings in woody species from Mediterranean climates. Biol. Rev. 78: 119-14 Fritts, H.C. 1976. Tree rings and climate. Academic Press, London, UK. Hughes, M.K. 2002. Dendrochronology in climatology - the state of the art. Dendrochronologia 20: 95-116. Schulman, E. 1938. Classification of false annual rings in Monterey pine. Tree-Ring Bull. 4:4-7 Schweingruber FH (1988) Tree-ring: Basics and applications of dendrochronology. Reidel. Publ., Dordrecht, 276 p Tingley, M.A. 1937. Double growth rings in Red Astrachan. Proc. Am. Soc. Hort. Sci. 34: 61.
Climate-growth relationships of Abies spectabilis in a central Himalayan treeline ecotone
NASA Astrophysics Data System (ADS)
Schwab, Niels; Kaczka, Ryszard J.; Schickhoff, Udo
2017-04-01
Climate warming is expected to induce treelines to advance to higher elevations. Empirical studies in diverse mountain ranges, however, give evidence of both advancing alpine treelines as well as rather insignificant responses. The large spectrum of responses is not fully understood. In the framework of investigating the sensitivity and response of a near-natural treeline ecotone in Rolwaling Himal, Nepal, to climate warming we present results from dendroclimatological analyses of Abies spectabilis (Himalayan Fir) increment cores. Tree ring width was measured and cross-dated. After standardization, the chronology was correlated with temperature and precipitation variables. Preliminary results point to positive correlations with autumn temperature and precipitation. We will present improved climate-growth relationships. The resulting climate - tree growth relationships may be used as an indication of future growth patterns and treeline dynamics under climate change conditions.
NASA Astrophysics Data System (ADS)
Gao, Hezhe; Li, Yongjian; Wang, Shanming; Zhu, Jianguo; Yang, Qingxin; Zhang, Changgeng; Li, Jingsong
2018-05-01
Practical core losses in electrical machines differ significantly from those experimental results using the standardized measurement method, i.e. Epstein Frame method. In order to obtain a better approximation of the losses in an electrical machine, a simulation method considering sinusoidal pulse width modulation (SPWM) and space vector pulse width modulation (SVPWM) waveforms is proposed. The influence of the pulse width modulation (PWM) parameters on the harmonic components in SPWM and SVPWM is discussed by fast Fourier transform (FFT). Three-level SPWM and SVPWM are analyzed and compared both by simulation and experiment. The core losses of several ring samples magnetized by SPWM, SVPWM and sinusoidal alternating current (AC) are obtained. In addition, the temperature rise of the samples under SPWM, sinusoidal excitation are analyzed and compared.
Growth-climate relationships across topographic gradients in the northern Great Lakes
Dymond, S.F.; D'Amato, A.W.; Kolka, R.K.; Bolstad, P.V.; Sebestyen, S.D.; Bradford, John B.
2016-01-01
Climatic conditions exert important control over the growth, productivity, and distribution of forests, and characterizing these relationships is essential for understanding how forest ecosystems will respond to climate change. We used dendrochronological methods to develop climate–growth relationships for two dominant species, Populus tremuloides (quaking aspen) and Pinus resinosa (red pine), in the upper Great Lakes region to understand how climate and water availability influence annual forest productivity. Trees were sampled along a topographic gradient at the Marcell Experimental Forest (Minnesota, USA) to assess growth response to variations in temperature and different water availability metrics (precipitation, potential evapotranspiration (PET), cumulative moisture index (CMI), and soil water storage). Climatic variables were able to explain 33–58% of the variation in annual growth (as measured by ring-width increment) for quaking aspen and 37–74% of the variation for red pine. Climate–growth relationships were influenced by topography for quaking aspen but not for red pine. Annual ring growth for quaking aspen decreased with June CMI on ridges, decreased with temperature in the November prior to the growing season on sideslopes, and decreased with June PET on toeslopes. Red pine growth increased with increasing July PET across all topographic positions. These results indicate the sensitivity of both quaking aspen and red pine to local climate and show several vulnerabilities of these species to shifts in water supply and temperature because of climate change.
Augustaitis, Algirdas; Jasineviciene, Dalia; Girgzdiene, Rasele; Kliucius, Almantas; Marozas, Vitas
2012-01-01
The present study aimed to detect sensitivity of beech trees (Fagus sylvatica L.) to meteorological parameters and air pollution by acidifying species as well as to surface ozone outside their north-eastern distribution range. Data set since 1981 of Preila EMEP station enabled to establish that hot Summers, cold dormant, and dry and cold first-half of vegetation periods resulted in beech tree growth reduction. These meteorological parameters explained 57% variation in beech tree ring widths. Acidifying species had no significant effect on beech tree growth. Only ozone was among key factors contributing to beech stand productivity. Phytotoxic effect of this pollutant increased explanation rate of beech tree ring variation by 18%, that is, up to 75%. However, due to climate changes the warmer dormant periods alone are not the basis ensuring favourable conditions for beech tree growth. Increase in air temperature in June-August and decrease in precipitation amount in the first half of vegetation period should result in beech tree radial increment reduction. Despite the fact that phytotoxic effect of surface ozone should not increase due to stabilization in its concentration, it is rather problematic to expect better environmental conditions for beech tree growth at northern latitude of their pervasion. PMID:22649321
Tree-ring analysis of ancient baldcypress trees and subfossil wood
NASA Astrophysics Data System (ADS)
Stahle, David W.; Burnette, Dorian J.; Villanueva, Jose; Cerano, Julian; Fye, Falko K.; Griffin, R. Daniel; Cleaveland, Malcolm K.; Stahle, Daniel K.; Edmondson, Jesse R.; Wolff, Kathryn P.
2012-02-01
Ancient baldcypress trees found in wetland and riverine environments have been used to develop a network of exactly dated annual ring-width chronologies extending from the southeastern United States, across Mexico, and into western Guatemala. These chronologies are sensitive to growing season precipitation in spite of frequently flooded site conditions, and have been used to reconstruct moisture levels the southeastern United States and Mexico for over 1000 years. The El Nino/Southern Oscillation (ENSO) is a major influence on the climate reconstructions derived from these baldcypress chronologies, especially in Mexico where some of the most extreme reconstructed droughts occurred during El Nino events. In the Southeast, the ENSO influence on climate and tree growth changes sign from spring to summer, and this change in dynamical forcing is recorded by sub-seasonal chronologies of earlywood and latewood width. Most existing baldcypress chronologies have been extended with tree-ring data from "subfossil" wood recovered from surface and submerged deposits. Well-preserved subfossil logs have also been recovered in quantity from buried deposits of great age, and may permit development of long continuously dated Holocene chronologies and discontinuous "floating" Pleistocene chronologies. The extensive subfossil baldcypress swamp discovered 6 m below the streets of Washington D.C. was overrun by a transgression of the Potomac estuary, possibly during the previous super interglacial (marine OIS 5e), and provides direct evidence for one potential impact of unmitigated anthropogenic warming and sea level rise.
NASA Astrophysics Data System (ADS)
Allen, C. D.; Williams, P.
2012-12-01
Ongoing climate changes are increasingly affecting the world's forests, particularly including high latitude and high elevation coniferous forests. Although forest growth has improved in some regions due to greater growing season length and warmth (perhaps along with increased atmospheric CO2 or N), large growth declines or increased mortality from droughts or hotter temperatures also are being observed. We present and interpret information on regional variation in climate-tree growth relationships and trends, and on patterns and trends of climate-related forest disturbances, from western North America. From 235 tree-ring chronologies in the Southwest US we show that tree-ring growth records from warmer southwestern sites are more sensitive to temperature than tree-ring growth records from cooler southwestern sites. Assessment of 59 tree-ring records from 11 species in the Cascade Mountains of the Pacific Northwest shows that trees growing in cool places respond positively to increased temperature and trees in warm places respond negatively, implying that trees historically not sensitive to temperature may become sensitive as mean temperatures warm. An analysis of 59 white spruce populations in Alaska supports the hypothesis that warming has caused tree growth to lose sensitivity to cold temperatures. Comparing ring widths to temperature during just the coldest 50% of years during the 20th century, tree growth was sensitive to cold temperatures, and this effect was strongest at the coldest sites; whereas during the warmest 50% of years, trees were not at all sensitive to cold temperatures, even at the cold sites. Drought and vapor pressure deficit are among the variables that emerge as being increasingly important to these Alaska boreal forests as mean temperatures rise. Most recently, from 346 tree-ring chronologies in the Southwest US we establish a tree-ring-based Forest Drought Stress Index (FDSI) for the three most widespread conifer species (Pinus edulis, Pinus ponderosa, and Pseudotsuga menziesii) in this region. FDSI responds sensitively and nonlinearly to growing season daily maximum temperatures which increase vapor pressure deficit, resulting in greater tree physiological stress and reduced tree growth. Drought conditions and warming temperatures in the Southwest since ca. 1996 have caused FDSI values in particular years since 2000 to start to exceed the most extreme values reconstructed from tree-rings for the past 1000 years for this region. FDSI demonstrates strong correlations with the spatial extent of major forest disturbances in the Southwest, including high-severity wildfire and bark beetle infestations, which over the past 20 years also have affected historically unprecedented levels. Similar trends of increasing extent and severity of forest disturbances are apparent across large portions of western North America. For the Southwest US, given relatively robust projections of substantial further increases in warmer temperatures and drought stress in coming decades, by ~2050 projected levels of FDSI and associated disturbances would reach extreme values, suggesting that current forest ecosystems likely would be forced to reorganize through wholesale tree mortality and the establishment of new dominant species.
NASA Astrophysics Data System (ADS)
Stretch, V.; Gedalof, Z.; Berg, A. A.
2010-12-01
Increased atmospheric CO2 could increase photosynthetic rates and cause trees to use water more efficiently, thereby increasing overall growth rates relative to climatic limiting factors. CO2 fertilization has been found across a range of forest types; however results have been inconsistent and based on short-term studies. Long-term studies based on tree-rings have generally been restricted to a few sites and have produced conflicting results. An initial global analysis of tree-ring widths for evidence of increasing growth relative to drought suggested a small but highly significant proportion of trees exhibit increasing growth over the past 130 years. These growth increases could not be attributed to increasing water use efficiency, elevation effects, nitrogen deposition, or divergence. These results suggest that CO2 fertilization is occurring at some locations and may influence future forest dynamics but this does not appear to occur at all locations. The processes causing differential responses are the focus of this study. Here we illustrate response differences between Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa). Using multiple site chronologies from these species over western North America, we demonstrate several site-specific explanations for differential responses to CO2 fertilization, such as forest composition, density, slope, aspect, soil type, and position relative to range limits.
Dulamsuren, Choimaa; Khishigjargal, Mookhor; Leuschner, Hanns Hubert; Leuschner, Christoph
2010-01-01
Central and semiarid north-eastern Asia was subject to twentieth century warming far above the global average. Since forests of this region occur at their drought limit, they are particularly vulnerable to climate change. We studied the regional variations of temperature and precipitation trends and their effects on tree growth and forest regeneration in Mongolia. Tree-ring series from more than 2,300 trees of Siberian larch (Larix sibirica) collected in four regions of Mongolia’s forest zone were analyzed and related to available weather data. Climate trends underlie a remarkable regional variation leading to contrasting responses of tree growth in taiga forests even within the same mountain system. Within a distance of a few hundred kilometers (140–490 km), areas with recently reduced growth and regeneration of larch alternated with regions where these parameters remained constant or even increased. Reduced productivity could be correlated with increasing summer temperatures and decreasing precipitation; improved growth conditions were found at increasing precipitation, but constant summer temperatures. An effect of increasing winter temperatures on tree-ring width or forest regeneration was not detectable. Since declines of productivity and regeneration are more widespread in the Mongolian taiga than the opposite trend, a net loss of forests is likely to occur in the future, as strong increases in temperature and regionally differing changes in precipitation are predicted for the twenty-first century. PMID:20571829
Dulamsuren, Choimaa; Hauck, Markus; Khishigjargal, Mookhor; Leuschner, Hanns Hubert; Leuschner, Christoph
2010-08-01
Central and semiarid north-eastern Asia was subject to twentieth century warming far above the global average. Since forests of this region occur at their drought limit, they are particularly vulnerable to climate change. We studied the regional variations of temperature and precipitation trends and their effects on tree growth and forest regeneration in Mongolia. Tree-ring series from more than 2,300 trees of Siberian larch (Larix sibirica) collected in four regions of Mongolia's forest zone were analyzed and related to available weather data. Climate trends underlie a remarkable regional variation leading to contrasting responses of tree growth in taiga forests even within the same mountain system. Within a distance of a few hundred kilometers (140-490 km), areas with recently reduced growth and regeneration of larch alternated with regions where these parameters remained constant or even increased. Reduced productivity could be correlated with increasing summer temperatures and decreasing precipitation; improved growth conditions were found at increasing precipitation, but constant summer temperatures. An effect of increasing winter temperatures on tree-ring width or forest regeneration was not detectable. Since declines of productivity and regeneration are more widespread in the Mongolian taiga than the opposite trend, a net loss of forests is likely to occur in the future, as strong increases in temperature and regionally differing changes in precipitation are predicted for the twenty-first century.
Voelker, Steven L; Meinzer, Frederick C; Lachenbruch, Barbara; Brooks, J Renée; Guyette, Richard P
2014-03-01
Tree-ring characteristics are commonly used to reconstruct climate variables, but divergence from the assumption of a single biophysical control may reduce the accuracy of these reconstructions. Here, we present data from bur oaks (Quercus macrocarpa Michx.) sampled within and beyond the current species bioclimatic envelope to identify the primary environmental controls on ring-width indices (RWIs) and carbon stable isotope discrimination (Δ(13) C) in tree-ring cellulose. Variation in Δ(13) C and RWI was more strongly related to leaf-to-air vapour pressure deficit (VPD) at the centre and western edge of the range compared with the northern and wettest regions. Among regions, Δ(13) C of tree-ring cellulose was closely predicted by VPD and light responses of canopy-level Δ(13) C estimated using a model driven by eddy flux and meteorological measurements (R(2) = 0.96, P = 0.003). RWI and Δ(13) C were positively correlated in the drier regions, while they were negatively correlated in the wettest region. The strength and direction of the correlations scaled with regional VPD or the ratio of precipitation to evapotranspiration. Therefore, the correlation strength between RWI and Δ(13) C may be used to infer past wetness or aridity from paleo wood by determining the degree to which carbon gain and growth have been more limited by moisture or light. © 2013 John Wiley & Sons Ltd.
Water ring-bouncing on repellent singularities.
Chantelot, Pierre; Mazloomi Moqaddam, Ali; Gauthier, Anaïs; Chikatamarla, Shyam S; Clanet, Christophe; Karlin, Ilya V; Quéré, David
2018-03-28
Texturing a flat superhydrophobic substrate with point-like superhydrophobic macrotextures of the same repellency makes impacting water droplets take off as rings, which leads to shorter bouncing times than on a flat substrate. We investigate the contact time reduction on such elementary macrotextures through experiment and simulations. We understand the observations by decomposing the impacting drop reshaped by the defect into sub-units (or blobs) whose size is fixed by the liquid ring width. We test the blob picture by looking at the reduction of contact time for off-centered impacts and for impacts in grooves that produce liquid ribbons where the blob size is fixed by the width of the channel.
BOREAS TE-5 Tree Ring and Carbon Isotope Ratio Data
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry
2000-01-01
The BOREAS TE-5 team collected several data sets to investigate the vegetation-atmosphere CO2 and H2O exchange processes. These data include tree ring widths and cellulose carbon isotope data from coniferous trees collected at the BOREAS NSA and SSA in 1993 and 1994 by the BOREAS TE-5 team. Ring width data are provided for both Picea mariana and Pinus banksiana. The carbon isotope data are provided only for Pinus banksiana. The data are provided in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
49 CFR 179.400-9 - Stiffening rings.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Stiffening rings. 179.400-9 Section 179.400-9... on each side of the attachment of the stiffening ring is given by the following formula: W = 0.78(Rt)0.5 Where: W = width of jacket effective on each side of the stiffening ring, in inches; R = outside...
Building the Forest Inventory and Analysis Tree-Ring Data set
Robert J. DeRose; John D. Shaw; James N. Long
2017-01-01
The Interior West Forest Inventory and Analysis (IW-FIA) program measures forestland conditions at great extent with relatively high spatial resolution, including the collection of tree-ring data. We describe the development of an unprecedented spatial tree-ring data set for the IW-FIA that enhances the baseline plot data by incorporating ring-width increment measured...
A field-to-desktop toolchain for X-ray CT densitometry enables tree ring analysis.
De Mil, Tom; Vannoppen, Astrid; Beeckman, Hans; Van Acker, Joris; Van den Bulcke, Jan
2016-06-01
Disentangling tree growth requires more than ring width data only. Densitometry is considered a valuable proxy, yet laborious wood sample preparation and lack of dedicated software limit the widespread use of density profiling for tree ring analysis. An X-ray computed tomography-based toolchain of tree increment cores is presented, which results in profile data sets suitable for visual exploration as well as density-based pattern matching. Two temperate (Quercus petraea, Fagus sylvatica) and one tropical species (Terminalia superba) were used for density profiling using an X-ray computed tomography facility with custom-made sample holders and dedicated processing software. Density-based pattern matching is developed and able to detect anomalies in ring series that can be corrected via interactive software. A digital workflow allows generation of structure-corrected profiles of large sets of cores in a short time span that provide sufficient intra-annual density information for tree ring analysis. Furthermore, visual exploration of such data sets is of high value. The dated profiles can be used for high-resolution chronologies and also offer opportunities for fast screening of lesser studied tropical tree species. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Uranus and the shape of elliptical rings
NASA Technical Reports Server (NTRS)
Lucke, R. L.
1978-01-01
It is reported that when the star SAO158687 passed behind the Uranus system, its light was occulted twice by the epsilon (fifth) ring of the planet. The first part of the ring to occult was about 100 km wide and the second part was about 40 km wide. The variable width of the ring is accounted for by differences in the orbital eccentricities of the individual particles composing the ring.
NASA Astrophysics Data System (ADS)
Granda, Elena; Bazot, Stéphane; Fresneau, Chantal; Boura, Anaïs; Faccioni, Georgia; Damesin, Claire
2015-04-01
While many forests are experiencing strong tree declines due to climate change in temperate ecosystems, others nearby to those declining show no apparent signs of decline. This could be due to particular microsite conditions or, for instance, to a higher plasticity of given traits that allow a better performance under stressful conditions. We studied oak functional mechanisms (Quercus petraea) leading to the apparently healthy status of the forest and their relation to the observed climatic variability. This study was conducted in the Barbeau Forest (northern France), where cores from mature trees were collected. Three types of functional traits (secondary growth, physiological variables - δ13C and derived Δ13C and iWUE- and several anatomical ones -e.g. vessel area, density-) were recorded for each ring for the 1991-2011 period, distinguishing EW from LW in all measured traits. Among the three types of functional traits, those related to growth experienced the highest variability both between years and between individuals, followed by anatomical and physiological ones. Secondary growth maintained a constant trend during the study period. Instead, ring, EW and LW δ13C slightly declined from 1991 to 2011. Additional intra-ring δ13C analyses allowed for a more detailed understanding of the seasonal dynamics within each year. In particular, the year 2007 (an especially favorable climatic year during the growing season) showed the lowest δ13C values during the EW-LW transition for the whole study period. Inter-annual anatomical traits varied in their responses, but in general, no temporal trends were found. The results from structural equation modeling (SEM) showed direct relationships of seasonal climate and growth, as well as indirect relationships mediated by anatomical and physiological traits. We further discuss the implications of these results on future forest responses to ongoing climate changes.
On the formation of ring galaxies
NASA Astrophysics Data System (ADS)
Wu, Yu-Ting; Jiang, Ing-Guey
2011-08-01
The formation scenario of ring galaxies is addressed in this paper. We focus on the P-type ring galaxies presented in Madore, Nelson & Petrillo (2009), particularly on the axis-symmetric ones. Our simulations show that a ring can form through the collision of disc and dwarf galaxies, and the locations, widths, and density contrasts of the ring are well determined. We find that a ring galaxy such as AM 2302-322 can be produced by this collision scenario.
Barbeta, Adrià; Peñuelas, Josep
2017-12-01
Tree populations at the low-altitudinal or -latitudinal limits of species' distributional ranges are predicted to retreat toward higher altitudes and latitudes to track the ongoing changes in climate. Studies have focused on the climatic sensitivity of the retreating species, whereas little is known about the potential replacements. Competition between tree species in forest ecotones will likely be strongly influenced by the ecophysiological responses to heat and drought. We used tree-ring widths and δ 13 C and δ 18 O chronologies to compare the growth rates and long-term ecophysiological responses to climate in the temperate-Mediterranean ecotone formed by the deciduous Fagus sylvatica and the evergreen Quercus ilex at the low altitudinal and southern latitudinal limit of F. sylvatica (NE Iberian Peninsula). F. sylvatica growth rates were similar to those of other southern populations and were surprisingly not higher than those of Q. ilex, which were an order of magnitude higher than those in nearby drier sites. Higher Q. ilex growth rates were associated with high temperatures, which have increased carbon discrimination rates in the last 25 years. In contrast, stomatal regulation in F. sylvatica was proportional to the increase in atmospheric CO 2 . Tree-ring δ 18 O for both species were mostly correlated with δ 18 O in the source water. In contrast to many previous studies, relative humidity was not negatively correlated with tree-ring δ 18 O but had a positive effect on Q. ilex tree-ring δ 18 O. Furthermore, tree-ring δ 18 O decreased in Q. ilex over time. The sensitivity of Q. ilex to climate likely reflects the uptake of deep water that allowed it to benefit from the effect of CO 2 fertilization, in contrast to the water-limited F. sylvatica. Consequently, Q. ilex is a strong competitor at sites currently dominated by F. sylvatica and could be favored by increasingly warmer conditions. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Washington-Allen, R. A.; Landolt, K.; Emanuel, R. E.; Therrell, M. D.; Nagle, N.; Grissino-Mayer, H. D.; Poulter, B.
2016-12-01
Emergent scale properties of water-limited or Dryland ecosystem's carbon flux are unknown at spatial scales from local to global and time scales of 10 - 1000 years or greater. The width of a tree ring is a metric of production that has been correlated with the amount of precipitation. This relationship has been used to reconstruct rainfall and fire histories in the Drylands of the southwestern US. The normalized difference vegetation index (NDVI) is globally measured by selected satellite sensors and is highly correlated with the fraction of solar radiation which is absorbed for photosynthesis by plants (FPAR), as well as with vegetation biomass, net primary productivity (NPP), and tree ring width. Publicly available web-based archives of free NDVI and tree ring data exist and have allowed historical temporal reconstructions of carbon dynamics for the past 300 to 500 years. Climate and tree ring databases have been used to spatially reconstruct drought dynamics for the last 500 years in the western US. In 2007, we hypothesized that NDVI and tree ring width could be used to spatially reconstruct carbon dynamics in US Drylands. In 2015, we succeeded with a 300-year historical spatial reconstruction of NPP in California using a Blue Oak tree ring chronology. Online eddy covariance flux tower measures of NPP are well correlated with satellite measures of NPP. This suggests that net ecosystem exchange (NEE = NPP - soil Respiration) could be historically reconstructed across Drylands. Ongoing research includes 1) scaling historical spatial reconstruction to US Drylands, 2) comparing the use of single versus multiple tree ring species (r2 = 68) and 3) use of the eddy flux tower network, remote sensing, and tree ring data to historically spatially reconstruct Dryland NEE.
NASA Astrophysics Data System (ADS)
Kames, S.; Tardif, J. C.; Bergeron, Y.
2016-03-01
Plants respond to environmental stimuli through changes in growth and development. Characteristics of wood cells such as the cross-sectional area of vessel elements (hereafter referred to as vessels) may store information about environmental factors present at the time of vessel differentiation. The analysis of vessel characteristics therefore offers a different time resolution than annual ring width because vessels in tree rings differentiate within days to a few weeks. Little research has been conducted on the sensitivity of earlywood vessels in ring-porous species in response to flooding. The general objectives of this study were to determine the plasticity of earlywood vessel to high flows and spring flooding in floodplain black ash (Fraxinus nigra Marsh.) trees and to assess the utility of developing continuous earlywood vessel chronologies in dendrohydrological reconstruction. In contrast, most dendrohydrological studies until now have mainly used vessel anomalies (flood rings) as discrete variables to identify exceptional flood events. The study area is located in the boreal region of northwestern Québec. Vessel and ring-width chronologies were generated from F. nigra trees growing on the floodplain of Lake Duparquet. Spring discharge had among all hydro-climatic variables the strongest impact on vessel formation and this signal was coherent spatially and in the frequency domain. The mean vessel area chronology was significantly and negatively correlated to discharge and both the linearity and the strength of this association were unique. In floodplain F. nigra trees, spring flooding promoted the formation of more abundant but smaller earlywood vessels. Earlywood vessels chronologies were also significantly associated with other hydrological indicators like Lake Duparquet's ice break-up date and both ice-scar frequency and height chronologies. These significant relationships stress the utility of developing continuous vessels chronologies for hydrological reconstructions prior to instrumental data. Continuous earlywood vessel chronologies may also be useful in determining the impact of altered hydrological regime in floodplain habitat regulated by spring floods. Future research should involve quantifying the impact of high flows and flooding on other cell constituents and also determining the plasticity and utility of continuous anatomical series in floodplain diffuse-porous species.
Pacheco, Arturo; Camarero, J Julio; Carrer, Marco
2016-04-01
Forecasted warmer and drier conditions will probably lead to reduced growth rates and decreased carbon fixation in long-term woody pools in drought-prone areas. We therefore need a better understanding of how climate stressors such as drought constrain wood formation and drive changes in wood anatomy. Drying trends could lead to reduced growth if they are more intense in spring, when radial growth rates of conifers in continental Mediterranean climates peak. Since tree species from the aforementioned areas have to endure dry summers and also cold winters, we chose two coexisting species: Aleppo pine (Pinus halepensisMill., Pinaceae) and Spanish juniper (Juniperus thuriferaL., Cupressaceae) (10 randomly selected trees per species), to analyze how growth (tree-ring width) and wood-anatomical traits (lumen transversal area, cell-wall thickness, presence of intra-annual density fluctuations-IADFs-in the latewood) responded to climatic variables (minimum and maximum temperatures, precipitation, soil moisture deficit) calculated for different time intervals. Tree-ring width and mean lumen area showed similar year-to-year variability, which indicates that they encoded similar climatic signals. Wet and cool late-winter to early-spring conditions increased lumen area expansion, particularly in pine. In juniper, cell-wall thickness increased when early summer conditions became drier and the frequency of latewood IADFs increased in parallel with late-summer to early-autumn wet conditions. Thus, latewood IADFs of the juniper capture increased water availability during the late growing season, which is reflected in larger tracheid lumens. Soil water availability was one of the main drivers of wood formation and radial growth for the two species. These analyses allow long-term (several decades) growth and wood-anatomical responses to climate to be inferred at intra-annual scales, which agree with the growing patterns already described by xylogenesis approaches for the same species. A plastic bimodal growth behavior, driven by dry summer conditions, is coherent with the presented wood-anatomical data. The different wood-anatomical responses to drought stress are observed as IADFs with contrasting characteristics and responses to climate. These different responses suggest distinct capacities to access soil water between the two conifer species. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
How to Regenerate and Protect Desert Riparian Populus euphratica Forest in Arid Areas
Ling, Hongbo; Zhang, Pei; Xu, Hailiang; Zhao, Xinfeng
2015-01-01
We found that the most suitable flooding disturbance model for regenerating Populus euphratica forest was two to three times per year with a duration of 15–20 days and an intensity of 25–30 m3/s. The flooding should take place during the seed emergence to young tree growth stages, and should be based on flooding experiments and data from vegetation quadrats and ecological water conveyance. Furthermore, we found that tree-ring width index for P. euphratica declined as the groundwater depth increased, and ascertained that the minimum groundwater depths for young trees, near-mature trees, mature trees and over-mature trees were 4.0 m, 5.0–5.4 m, 6.9 m and 7.8 m, respectively. These were derived from a quantitative relationship model between groundwater depth and tree-ring width index. The range for ecological water conveyance volume was 311–320 million m3 in the lower reaches of the Tarim River. This study not only provides a technical basis for sustainable ecological water conveyance in the Tarim River Basin, but also offers a theoretical guide and scientific information that could be used in similar areas to regenerate and protect Populus euphratica around the world. PMID:26481290
Haralur, Satheesh B; Hamdi, Osama A; Al-Shahrani, Abdulaziz A; Alhasaniah, Sultan
2017-01-01
To evaluate the effect of varying cellulose casting ring liner length and its prewetting on the marginal adaptation and dimensional accuracy of full veneer metal castings. The master die was milled in stainless steel to fabricate the wax pattern. Sixty wax patterns were fabricated with a uniform thickness of 1.5 mm at an occlusal surface and 1 mm axial surface, cervical width at 13.5 mm, and 10 mm cuspal height. The samples were divided into six groups ( n = 10). Groups I and II samples had the full-length cellulose prewet and dry ring liner, respectively. The groups III and IV had 2 mm short prewet and dry cellulose ring liner, respectively, whereas groups V and VI were invested in 6 mm short ring liner. The wax patterns were immediately invested in phosphate bonded investment, and casting procedure was completed with nickel-chrome alloy. The castings were cleaned and mean score of measurements at four reference points for marginal adaption, casting height, and cervical width was calculated. The marginal adaption was calculated with Imaje J software, whereas the casting height and cervical width was determined using a digital scale. The data was subjected to one-way analysis of varaince and Tukey post hoc statistical analysis with Statistical Package for the Social Sciences version 20 software. The group II had the best marginal adaption with a gap of 63.786 μm followed by group I (65.185 μm), group IV (87.740 μm), and group III (101.455 μm). A large marginal gap was observed in group V at 188.871 μm. Cuspal height was more accurate with group V (10.428 mm), group VI (10.421 mm), and group II (10.488 mm). The cervical width was approximately similar in group I, group III, and group V. Statistically significant difference was observed in Tukey post hoc analysis between group V and group VI with all the other groups with regards to marginal adaptation. The dry cellulose ring liners provided better marginal adaptation in comparison to prewet cellulose ring liners. Accurate cuspal height was obtained with shorter ring liner in comparison to full-length cellulose ring liners.
Haralur, Satheesh B.; Hamdi, Osama A.; Al-Shahrani, Abdulaziz A.; Alhasaniah, Sultan
2017-01-01
Aim: To evaluate the effect of varying cellulose casting ring liner length and its prewetting on the marginal adaptation and dimensional accuracy of full veneer metal castings. Materials and Methods: The master die was milled in stainless steel to fabricate the wax pattern. Sixty wax patterns were fabricated with a uniform thickness of 1.5 mm at an occlusal surface and 1 mm axial surface, cervical width at 13.5 mm, and 10 mm cuspal height. The samples were divided into six groups (n = 10). Groups I and II samples had the full-length cellulose prewet and dry ring liner, respectively. The groups III and IV had 2 mm short prewet and dry cellulose ring liner, respectively, whereas groups V and VI were invested in 6 mm short ring liner. The wax patterns were immediately invested in phosphate bonded investment, and casting procedure was completed with nickel-chrome alloy. The castings were cleaned and mean score of measurements at four reference points for marginal adaption, casting height, and cervical width was calculated. The marginal adaption was calculated with Imaje J software, whereas the casting height and cervical width was determined using a digital scale. The data was subjected to one-way analysis of varaince and Tukey post hoc statistical analysis with Statistical Package for the Social Sciences version 20 software. Results: The group II had the best marginal adaption with a gap of 63.786 μm followed by group I (65.185 μm), group IV (87.740 μm), and group III (101.455 μm). A large marginal gap was observed in group V at 188.871 μm. Cuspal height was more accurate with group V (10.428 mm), group VI (10.421 mm), and group II (10.488 mm). The cervical width was approximately similar in group I, group III, and group V. Statistically significant difference was observed in Tukey post hoc analysis between group V and group VI with all the other groups with regards to marginal adaptation. Conclusion: The dry cellulose ring liners provided better marginal adaptation in comparison to prewet cellulose ring liners. Accurate cuspal height was obtained with shorter ring liner in comparison to full-length cellulose ring liners. PMID:28316950
Dendroclimatological spring rainfall reconstruction for an inner Alpine dry valley
NASA Astrophysics Data System (ADS)
Oberhuber, W.; Kofler, W.
Estimates of spring precipitation for the inner Alpine dry valley of the upper Inn (Tyrol, Austria) are made back to A.D. 1724 using a ring width chronology of Scots pine (Pinus sylvestris L.) as predictor. A highly significant agreement in year-to-year ring width changes exists between several chronologies along the dry valley. The dendroclimatic model used for climate reconstruction is a simple linear transfer function that estimates April-June precipitation from current tree-ring width. All verification statistics commonly used in dendroclimatological research are significant ( p<0.01) and indicate that the reconstructed time series provides valuable information on past spring precipitation variability. Reconstructed spring rainfall deficiencies and surpluses >=20% compared to the long-term mean in 1819, 1832, 1834, 1865, 1885, and in 1780, 1782, 1821, 1853, 1910, respectively, are also documented by local historical records. Furthermore, a comparison is made with an independent climate reconstruction based on historical weather indices valid for the northern side of the Swiss Alps. A fairly good agreement is found between both spring rainfall reconstructions at low frequency intervals during 1755-1862 and 1919-1981. This preliminary study shows that tree-rings can be used to reconstruct spring rainfall variability for inner Alpine dry valleys.
de Luis, Martin; Čufar, Katarina; Di Filippo, Alfredo; Novak, Klemen; Papadopoulos, Andreas; Piovesan, Gianluca; Rathgeber, Cyrille B. K.; Raventós, José; Saz, Miguel Angel; Smith, Kevin T.
2013-01-01
We investigated the variability of the climate-growth relationship of Aleppo pine across its distribution range in the Mediterranean Basin. We constructed a network of tree-ring index chronologies from 63 sites across the region. Correlation function analysis identified the relationships of tree-ring index to climate factors for each site. We also estimated the dominant climatic gradients of the region using principal component analysis of monthly, seasonal, and annual mean temperature and total precipitation from 1,068 climatic gridpoints. Variation in ring width index was primarily related to precipitation and secondarily to temperature. However, we found that the dendroclimatic relationship depended on the position of the site along the climatic gradient. In the southern part of the distribution range, where temperature was generally higher and precipitation lower than the regional average, reduced growth was also associated with warm and dry conditions. In the northern part, where the average temperature was lower and the precipitation more abundant than the regional average, reduced growth was associated with cool conditions. Thus, our study highlights the substantial plasticity of Aleppo pine in response to different climatic conditions. These results do not resolve the source of response variability as being due to either genetic variation in provenance, to phenotypic plasticity, or a combination of factors. However, as current growth responses to inter-annual climate variability vary spatially across existing climate gradients, future climate-growth relationships will also likely be determined by differential adaptation and/or acclimation responses to spatial climatic variation. The contribution of local adaptation and/or phenotypic plasticity across populations to the persistence of species under global warming could be decisive for prediction of climate change impacts across populations. In this sense, a more complex forest dynamics modeling approach that includes the contribution of genetic variation and phenotypic plasticity can improve the reliability of the ecological inferences derived from the climate-growth relationships. PMID:24391786
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ypsilantis, T.; Seguinot, J.; Zichichi, A.
1997-01-01
A 27 kt water volume is investigated as a target for a long baseline neutrino beam from CERN to Gran Sasso. Charged secondaries from the neutrino interactions produce Cherenkov photons in water which are imaged as rings by a spherical mirror. The photon detector elements are 14 400 photomultipliers (PM`s) of 127 mm diameter or 3600 HPD`s of 250 mm diameter with single photon sensitivity. A coincidence signal of about 300 pixel elements in time with the SPS beam starts readout in bins of 1 ns over a period of 128 ns. Momentum, direction, and velocity of hadrons and muconsmore » are determined from the width, center, and radius of the rings, respectively. Momentum is measured if multiple scattering dominates the ring width, as is the case for most of the particles of interest. Momentum, direction, and velocity of hadrons and muons are determined from the width, center, and radius of the rings, respectively. Momentum is measured if multiple scattering dominates the ring width, as is the case for most of the particles of interest. Momentum resolutions of 1-10%, mass resolutions of 5-50 MeV, and direction resolutions of < 1 mrad are achievable. Thresholds in water for muons, pions, kaons, and protons are 0.12, 0.16, 0.55, and 1.05 GeV/c, respectively. Electrons and gammas can be measured with energy resolution {sigma}{sub E}/E{approx}8.5%/{radical}E(GeV) and with direction resolution {approx} 1 mrad. The detector can be sited either inside a Gran Sasso tunnel or above ground because it is directional and the SPS beam is pulsed; thus the rejection of cosmic ray background is excellent.« less
Expanding the network of crossdated tree-ring chronologies for Sequoia sempervirens
Allyson L. Carroll; Stephen C. Sillett; Ethan J. Coonen; Benjamin G. Iberle
2017-01-01
Crossdated tree-ring chronologies for the Arcata Community Forest (ACF) and Muir Woods National Monument (Muir Woods) expand the spatial coverage of dated coast redwood (Sequoia sempervirens (D. Don) Endl.) series. Crossdating relies on the common pattern of ring-width variation among tree populations, and dated chronologies have many applications...
Arrays of ferromagnetic nanorings with variable thickness fabricated by capillary force lithography.
Lee, Su Yeon; Jeong, Jong-Ryul; Kim, Shin-Hyun; Kim, Sarah; Yang, Seung-Man
2009-11-03
A new promising strategy is reported for the fabrication of ferromagnetic nanoring arrays with novel geometrical features through the use of capillary force lithography and subsequent reactive ion etching. In particular, we fabricated two different types of elliptic rings with variable width and height: one with pinching zones near the major axes and the other with pinching zones near the minor axes. We used PDMS stamps with either elliptic hole or antihole arrays for creating these elliptic rings with variable thickness by virtue of the uneven capillary rise, which was induced by the distributed Laplace pressure around the walls of elliptic holes or antiholes with nonuniform local curvatures. We transferred the polymer ring patterns to array of elliptical NiFe rings by Ar ion milling and characterized magnetic properties in terms of nonuniform ring width using magnetic force microscopy measurements. Our results demonstrated that the magnetic domain wall can be positioned in a controlled manner by using these novel elliptical ferromagnetic rings with local pinching zones and that the proposed CFL method can be utilized as a simple and effective fabrication tool.
NASA Astrophysics Data System (ADS)
Chen, Feng; Yuan, Yujiang; Fan, Zexin; Yu, Shulong
2018-01-01
We established a tree-ring width series from one Yunnan Douglas fir (Pseudotsuga forrestii) stand near the Mingyong glacier terminus of Meili Snow Mountain, southeastern Tibetan Plateau. Correlation analyses indicated that radial growth of Yunnan Douglas firs is largely controlled by variations in winter (November-March) precipitation. The precipitation reconstruction model accounts for 37% of the actual precipitation variance during the common period 1954-2012. Spatial correlations with the gridded precipitation data reveal that the winter precipitation reconstruction represents regional precipitation changes over the southeastern Tibetan Plateau. By comparing our results with other regional tree-ring records, a distinctive amount of common dry and humid periods were found. Our winter precipitation reconstruction shows profound similarities with Salween river streamflow signals as well as regional glacial activity. Cross-wavelet analysis reveals solar and ENSO influences on precipitation and streamflow variations in the southeastern Tibetan Plateau.
NASA Astrophysics Data System (ADS)
Rouini, N.; Lepley, K. S.; Messaoudene, M.
2017-12-01
Remote sensing and dendrochronology are valuable tools in the face of climate change and land use change, yet the connection between these resources remains largely unexploited. Research on forest fragmentation is mainly focused on animal groups, while our work focuses on tree communities. We link tree-rings and remotely-sensed Normalized Difference Vegetation Index (NDVI) using seasonal correlation analysis to investigate forest primary productivity response to fragmentation. Tree core samples from Quercus afares have been taken from two sites within the Guerrouche Forest in northeastern Algeria. The first site is located within a very fragmented area while the second site is intact. Fragmentation is estimated to have occurred with the construction of a road in 1930. We find raw tree-ring width chronologies from each site reveal growth release in the disturbed site after 1930. The means of each chronology for the 1930 to 2016 period are statistically different (p < 0.01). Based on these preliminary results we hypothesize that reconstructed primary productivity (NDVI) will be higher in the fragmented site after fragmentation took place.
Eilmann, Britta; Buchmann, Nina; Siegwolf, Rolf; Saurer, Matthias; Cherubini, Paolo; Rigling, Andreas
2010-08-01
Drought-induced forest decline, like the Scots pine mortality in inner-Alpine valleys, will gain in importance as the frequency and severity of drought events are expected to increase. To understand how chronic drought affects tree growth and tree-ring delta(13)C values, we studied mature Scots pine in an irrigation experiment in an inner-Alpine valley. Tree growth and isotope analyses were carried out at the annual and seasonal scale. At the seasonal scale, maximum delta(13)C values were measured after the hottest and driest period of the year, and were associated with decreasing growth rates. Inter-annual delta(13)C values in early- and latewood showed a strong correlation with annual climatic conditions and an immediate decrease as a response to irrigation. This indicates a tight coupling between wood formation and the freshly produced assimilates for trees exposed to chronic drought. This rapid appearance of the isotopic signal is a strong indication for an immediate and direct transfer of newly synthesized assimilates for biomass production. The fast appearance and the distinct isotopic signal suggest a low availability of old stored carbohydrates. If this was a sign for C-storage depletion, an increasing mortality could be expected when stressors increase the need for carbohydrate for defence, repair or regeneration.
Carrer, Marco; von Arx, Georg; Castagneri, Daniele; Petit, Giai
2015-01-01
Trees are among the best natural archives of past environmental information. Xylem anatomy preserves information related to tree allometry and ecophysiological performance, which is not available from the more customary ring-width or wood-density proxy parameters. Recent technological advances make tree-ring anatomy very attractive because time frames of many centuries can now be covered. This calls for the proper treatment of time series of xylem anatomical attributes. In this article, we synthesize current knowledge on the biophysical and physiological mechanisms influencing the short- to long-term variation in the most widely used wood-anatomical feature, namely conduit size. We also clarify the strong mechanistic link between conduit-lumen size, tree hydraulic architecture and height growth. Among the key consequences of these biophysical constraints is the pervasive, increasing trend of conduit size during ontogeny. Such knowledge is required to process time series of anatomical parameters correctly in order to obtain the information of interest. An appropriate standardization procedure is fundamental when analysing long tree-ring-related chronologies. When dealing with wood-anatomical parameters, this is even more critical. Only an interdisciplinary approach involving ecophysiology, wood anatomy and dendrochronology will help to distill the valuable information about tree height growth and past environmental variability correctly. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Tree ring imprints of long-term changes in climate in western Himalaya, India.
Yadav, R R
2009-11-01
Tree-ring analyses from semi-arid to arid regions in western Himalaya show immense potential for developing millennia long climate records. Millennium and longer ring-width chronologies of Himalayan pencil juniper (Juniperus polycarpos), Himalayan pencil cedar (Cedrus deodara) and Chilgoza pine (Pinus gerardiana) have been developed from different sites in western Himalaya. Studies conducted so far on various conifer species indicate strong precipitation signatures in ring-width measurement series. The paucity of weather records from stations close to tree-ring sampling sites poses diffi culty in calibrating tree-ring data against climate data especially precipitation for its strong spatial variability in mountain regions. However, for the existence of strong coherence in temperature, even in data from distant stations, more robust temperature reconstructions representing regional and hemispheric signatures have been developed. Tree-ring records from the region indicate multi-century warm and cool anomalies consistent with the Medieval Warm Period and Little Ice Age anomalies. Signifi cant relationships noted between mean premonsoon temperature over the western Himalaya and ENSO features endorse utility of climate records from western Himalayan region in understanding long-term climate variability and attribution of anthropogenic impact.
Modeling tree growth and stable isotope ratios of white spruce in western Alaska.
NASA Astrophysics Data System (ADS)
Boucher, Etienne; Andreu-Hayles, Laia; Field, Robert; Oelkers, Rose; D'Arrigo, Rosanne
2017-04-01
Summer temperatures are assumed to exert a dominant control on physiological processes driving forest productivity in interior Alaska. However, despite the recent warming of the last few decades, numerous lines of evidence indicate that the enhancing effect of summer temperatures on high latitude forest populations has been weakening. First, satellite-derived indices of photosynthetic activity, such as the Normalized-Difference Vegetation Index (NDVI, 1982-2005), show overall declines in productivity in the interior boreal forests. Second, some white spruce tree ring series strongly diverge from summer temperatures during the second half of the 20th century, indicating a persistent loss of temperature sensitivity of tree ring proxies. Thus, the physiological response of treeline forests to ongoing climate change cannot be accurately predicted, especially from correlation analysis. Here, we make use of a process-based dendroecological model (MAIDENiso) to elucidate the complex linkages between global warming and increases in atmospheric CO2 concentration [CO2] with the response of treeline white spruce stands in interior Alaska (Seward). In order to fully capture the array of processes controlling tree growth in the area, multiple physiological indicators of white spruce productivity are used as target variables: NDVI images, ring widths (RW), maximum density (MXD) and newly measured carbon and oxygen stable isotope ratios from ring cellulose. Based on these data, we highlight the processes and mechanisms responsible for the apparent loss of sensitivity of white spruce trees to recent climate warming and [CO2] increase in order to elucidate the sensitivity and vulnerability of these trees to climate change.
Synoptic-scale circulation patterns during summer derived from tree rings in mid-latitude Asia
NASA Astrophysics Data System (ADS)
Seim, Andrea; Schultz, Johannes A.; Leland, Caroline; Davi, Nicole; Byambasuren, Oyunsanaa; Liang, Eryuan; Wang, Xiaochun; Beck, Christoph; Linderholm, Hans W.; Pederson, Neil
2017-09-01
Understanding past and recent climate and atmospheric circulation variability is vital for regions that are affected by climate extremes. In mid-latitude Asia, however, the synoptic climatology is complex and not yet fully understood. The aim of this study was to investigate dominant synoptic-scale circulation patterns during the summer season using a multi-species tree-ring width (TRW) network comprising 78 sites from mid-latitude Asia. For each TRW chronology, we calculated an atmospheric circulation tree-ring index (ACTI), based on 1000 hPa geopotential height data, to directly link tree growth to 13 summertime weather types and their associated local climate conditions for the period 1871-1993. Using the ACTI, three groups of similarly responding tree-ring sites can be associated with distinct large-scale atmospheric circulation patterns: 1. growth of drought sensitive trees is positively affected by a cyclone over northern Russia; 2. temperature sensitive trees show positive associations to a cyclone over northwestern Russia and an anticyclone over Mongolia; 3. trees at two high elevation sites show positive relations to a zonal cyclone extending from mid-latitude Eurasia to the West Pacific. The identified synoptic-scale circulation patterns showed spatiotemporal variability in their intensity and position, causing temporally varying climate conditions in mid-latitude Asia. Our results highlight that for regions with less pronounced atmospheric action centers during summer such as the occurrence of large-scale cyclones and anticyclones, synoptic-scale circulation patterns can be extracted and linked to the Northern Hemisphere circulation system. Thus, we provide a new and solid envelope for climate studies covering the past to the future.
NASA Astrophysics Data System (ADS)
Rebenack, C.; Anderson, W. T.; Cherubini, P.
2011-12-01
The South Florida coastal ecosystem is among the world's subtropical coastlines which are threatened by the potential effects of climate change. A well-developed localized paleohistory is essential in the understanding of the role climate variability/change has on both hydrological dynamics and disturbance event frequency and intensity; this understanding can then aid in the development of better predictive models. High resolution paleoclimate proxies, such as those developed from tree-ring archives, may be useful tools for extrapolating actual climate trends over time from the overlapping long-term and short-term climate cycles, such as the Atlantic Multidecadal Oscillation (AMO) and the El Niño-Southern Oscillation (ENSO). In South Florida, both the AMO and ENSO strongly influence seasonal precipitation, and a more complete grasp of how these cycles have affected the region in the past could be applied to future freshwater management practices. Dendrochronology records for the terrestrial subtropics, including South Florida, are sparse because seasonality for this region is precipitation driven; this is in contrast to the drastic temperature changes experienced in the temperate latitudes. Subtropical seasonality may lead to the complete lack of visible rings or to the formation of ring structures that may or may not represent annual growth. Fortunately, it has recently been demonstrated that Pinus elliottii trees in South Florida produce distinct annual growth rings; however ring width was not found to significantly correlate with either the AMO or ENSO. Dendrochronology studies may be taken a step beyond the physical tree-ring proxies by using the carbon isotope ratios to infer information about physiological controls and environmental factors that affect the distribution of isotopes within the plant. It has been well established that the stable isotope composition of cellulose can be related to precipitation, drought, large-scale ocean/atmospheric oscillations, and disturbance events. Because slash pine growth is dependent on water availability, a chronology developed using carbon isotopes may provide greater insight into plant stress over time and ultimately may lead to better correlations with climate oscillations. The work presented here is the preliminary result of a carbon-isotope study of four slash pine trees from Big Pine Key, Florida. Initial δ13C data show seasonal stomatal activity in the trees and indicate the timing of possible disturbance events.
Climate reconstructions from tree-ring widths for the last 850 years in Northern Poland
NASA Astrophysics Data System (ADS)
Heinrich, Ingo; Knorr, Antje; Heußner, Karl-Uwe; Wazny, Tomasz; Slowinski, Michal; Helle, Gerhard; Simard, Sonia; Scharnweber, Tobias; Buras, Allan; Beck, Wolfgang; Wilmking, Martin; Brauer, Achim
2015-04-01
Tree-ring based temperature reconstructions form the scientific backbone of the current debate over global change, and they are the major part of the palaeo data base used for the IPCC report. However, long temperature reconstructions derived from temperate lowland trees growing well within their distributional limits in central Europe are not part of the IPCC report, which is an essential gap in the international data base. It appears that dendroclimatological analysis at temperate lowland sites was so far difficult to perform mainly for three reasons: diffuse climate-growth relationships, the lack of long chronologies due to absence of sufficient numbers of long-living trees and the potential loss of low-frequency signals due to the short length of the sample segments. We present two robust multi-centennial reconstructions of winter temperatures and summer precipitation based on pine and oak tree-ring widths chronologies from northern Poland, where so far no long tree-ring based reconstructions were available. We compared the new records with global, hemispherical and regional reconstructions, and found good agreement with some of them. In comparison, the winter temperature of our reconstruction, however, did not indicate any modern warming nor did the summer precipitation reconstruction suggest any modern 20th century changes. In a second step, we measured cell structures and developed chronologies of parameters such as cell wall thickness and cell lumen area. We used our new method (Liang et al. 2013a,b) applying confocal laser scanning microscopy to increment core surfaces for efficient histometric analyses. We focused on samples covering the last century because meteorological data necessary for calibration studies were available for direct comparisons. It was demonstrated that the correlations with climate were strong and different from those found for tree-ring widths (e.g., N-Poland oak-vessel-lumen-area-chronology with previous September-to-December mean temperature r = 0,61 and N-Poland pine-tracheid-lumen-area-chronology with mean Feb-to-June temperature r = -0,66). By using only raw values, low-frequency signals could be sustained in the chronologies. Liang, W.; Heinrich, I.; Helle, G.; Dorado Liñán, I.; Heinken, T. (2013a): Applying CLSM to increment core surfaces for histometric analyses: A novel advance in quantitative wood anatomy. Dendrochronologia 31, 140-145. Liang, W.; Heinrich, I.; Simard, S.; Helle, G.; Dorado Liñán, I.; Heinken, T. (2013b): Climate signals derived from cell anatomy of Scots pine in NE Germany. Tree Physiology 33, 833-844.
NASA Astrophysics Data System (ADS)
Shi, Songlin; Li, Zongshan; Wang, Hao; von Arx, Georg; Lü, Yihe; Wu, Xing; Wang, Xiaochun; Liu, Guohua; Fu, Bojie
2016-06-01
Growth of herbaceous plants responds sensitively and rapidly to climate variability. Yet, little is known regarding how climate warming influences the growth of herbaceous plants, particularly in semi-arid sites. This contrasts with widely reported tree growth decline and even mortality in response to severe water deficits due to climate warming around the world. Here, we use the relatively novel approach of herb-chronology to analyze the correlation between climatic factors and annual ring width in the root xylem of two perennial forb species (Medicago sativa, Potentilla chinensis) in the Loess Plateau of China. We show that warming-induced water deficit has a significant negative effect on the growth of herbaceous plants in the Loess Plateau. Our results indicate that the growth of forbs responds rapidly and sensitively to drought variability, implying that water availability plays a dominant role in regulating the growth of herbaceous plants in semi-arid areas. If warming and drying in the Loess Plateau continue in the future, further affects the growth of herbaceous plants, potentially driving regional changes in the relationship between herbaceous vegetation and climate.
NASA Astrophysics Data System (ADS)
Shi, S.
2016-12-01
Growth of herbaceous plants responds sensitively and rapidly to climate variability. Yet, little is known regarding how climate warming influences the growth of herbaceous plants, particularly in semi-arid sites. This contrasts with widely reported tree growth decline and even mortality in response to severe water deficits due to climate warming around the world. Here, we use the relatively novel approach of herb-chronology to analyze the correlation between climatic factors and annual ring width in the root xylem of two perennial forb species (Medicago sativa, Potentilla chinensis) in the Loess Plateau of China. We show that warming-induced water deficit has a significant negative effect on the growth of herbaceous plants in the Loess Plateau. Our results indicate that the growth of forbs responds rapidly and sensitively to drought variability, implying that water availability plays a dominant role in regulating the growth of herbaceous plants in semi-arid areas. If warming and drying in the Loess Plateau continue in the future, further affects the growth of herbaceous plants, potentially driving regional changes in the relationship between herbaceous vegetation and climate.
Inferring biome-scale net primary productivity from tree-ring isotopes
NASA Astrophysics Data System (ADS)
Pederson, N.; Levesque, M.; Williams, A. P.; Hobi, M. L.; Smith, W. K.; Andreu-Hayles, L.
2017-12-01
Satellite estimates of vegetation growth (net primary productivity; NPP), tree-ring records, and forest inventories indicate that ongoing climate change and rising atmospheric CO2 concentration are altering productivity and carbon storage of forests worldwide. The impact of global change on the trends of NPP, however, remain unknown because of the lack of long-term high-resolution NPP data. For the first time, we tested if annually resolved carbon (δ13C) and oxygen (δ18O) stable isotopes from the cellulose of tree rings from trees in temperate regions could be used as a tool for inferring NPP across spatiotemporal scales. We compared satellite NPP estimates from the moderate-resolution imaging spectroradiometer sensor (MODIS, product MOD17A) and a newly developed global NPP dataset derived from the Global Inventory Modeling and Mapping Studies (GIMMS) dataset to annually resolved tree-ring width and δ13C and δ18O records from four sites along a hydroclimatic gradient in Eastern and Central United States. We found strong correlations across large geographical regions between satellite-derived NPP and tree-ring isotopes that ranged from -0.40 to -0.91. Notably, tree-ring derived δ18O had the strongest relation to climate. The results were consistent among the studied tree species (Quercus rubra and Liriodendron tulipifera) and along the hydroclimatic conditions of our network. Our study indicates that tree-ring isotopes can potentially be used to reconstruct NPP in time and space. As such, our findings represent an important breakthrough for estimating long-term changes in vegetation productivity at the biome scale.
Blanchet, Guillaume; Guillet, Sébastien; Calliari, Baptiste; Corona, Christophe; Edvardsson, Johannes; Stoffel, Markus; Bragazza, Luca
2017-01-01
Ring width (TRW) chronologies from Siberian (Pinus sibirica) and Scots (Pinus sylvestris) pine trees were sampled at Mukhrino - a large mire complex in central-western Siberia - to evaluate the impacts of hydroclimatic variability on tree growth over the last three centuries. For this purpose, we compared climate-growth correlation profiles from trees growing on peat soils with those growing on adjacent mineral soils. Tree growth at both peat and mineral soils was positively correlated to air temperature during the vegetation period. This finding can be explained by (i) the positive influence of temperature on plant physiological processes (i.e. growth control) during the growing season and (ii) the indirect impact of air temperatures on water table fluctuations. We observe also a strong link between TRW and the winter Palmer Drought Severity Index (PDSI), especially in Siberian pine, reflecting the isolating effect of snow and limited freezing damage in roots. Significant negative relations were, by contrast, observed between bog TRW chronologies and hydroclimatic indices during spring and summer; they are considered an expression of the negative impacts of high water levels and moist peat soils on root development. Some unusually old bog pines - exhibiting >500 growth rings - apparently colonized the site at the beginning of the Little Ice Age, and therefore seem to confirm that (i) peat conditions may have been drier in Siberia than in most other regions of western Europe during this period. At the same time, the bog trees also point to (ii) their strong dependence on surface conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, B.; Wang, Y.; Zhu, H.; Liang, E.; Camarero, J. J.
2016-10-01
The Tibetan Plateau holds some of the world's highest undisturbed natural treelines and timberlines. Such extreme environments constitute potentially valuable monitoring sites of the effects of climate warming on high-elevation forests. Here, we analyze a network of 21 Smith fir forests situated in the Sygera Mountains, southeastern Tibetan Plateau, using tree-ring width (TRW) and basal area increment (BAI) chronologies. Sampled sites encompassed a wide elevation gradient, from 3600 to 4400 m, including some treeline sites and diverse aspects and tree ages. In comparison with TRW series, BAI series better capture the long-term warming signal. Previous November and current April and summer temperatures are the dominant climatic factors controlling Smith fir radial growth. The mean inter-series correlations of TRW increased upwards, but the forest limit presented the highest potential to reconstruct past temperature variability. Moreover, the growth responses of young trees were less stable than those of trees older than 100 years. Climate warming is accelerating radial growth of Smith fir forest subjected to mesic conditions. Collectively, these findings confirm that the effects of site elevation and tree age should be considered when quantifying climate-growth relationships. The type of tree-ring data (BAI vs. TRW) is also relevant since BAI indices seem to be a better climatic proxy of low-frequency temperature signals than TRW indices. Therefore, site (e.g., elevation) and tree (e.g., age) features should be considered to properly evaluate the effects of climate warming on growth of high-elevation forests.
Dendroclimatic estimates of a drought index for northern Virginia
Puckett, Larry J.
1981-01-01
A 230-year record of the Palmer drought-severity index (PDSI) was estimated for northern Virginia from variations in widths of tree rings. Increment cores were extracted from eastern hemlock, Tsuga canadensis (L.) Carr., at three locations in northern Virginia. Measurements of annual growth increments were made and converted to standardized indices of growth. A response function was derived for hemlock to determine the growth-climate relationship. Growth was positively correlated with precipitation and negatively correlated with temperature during the May-July growing season. Combined standardized indices of growth were calibrated with the July PDSI. Growth accounted for 20-30 percent of the PDSI variance. Further regressions using factor scores of combined tree growth indices resulted in a small but significant improvement. Greatest improvement was made by using factor scores of growth indices of individual trees, thereby accounting for 64 percent of the July PDSI variance in the regression. Comparison of the results with a 241-year reconstruction from New York showed good agreement between low-frequency climatic trends. Analysis of the estimated Central Mountain climatic division of Virginia PDSI record indicated that, relative to the long-term record (1746-1975), dry years have occurred in disproportionally larger numbers during the last half of the 19th century and the mid-20th century. This trend appears reversed for the last half of the 18th century and the first half of the 19th century. Although these results are considered first-generation products, they are encouraging, suggesting that once additional tree-ring chronologies are constructed and techniques are refined, it will be possible to obtain more accurate estimates of prior climatic conditions in the mid-Atlantic region.
Yan Sun; Matthew F. Bekker; R. Justin DeRose; Roger Kjelgren; S. -Y. Simon Wang
2017-01-01
Dendroclimatic research has long assumed a linear relationship between tree-ring increment and climate variables. However, ring width frequently underestimates extremely wet years, a phenomenon we refer to as âwet biasâ. In this paper, we present statistical evidence for wet bias that is obscured by the assumption of linearity. To improve tree-ring-climate modeling, we...
Size of Self-Gravity Wakes from Cassini UVIS Tracking Occultations and Ring Transparency Statistics
NASA Astrophysics Data System (ADS)
Esposito, Larry W.; Rehnberg, Morgan; Colwell, Joshua E.; Sremcevic, Miodrag
2017-10-01
We compare two methods for determining the size of self-gravity wakes in Saturn’s rings. Analysis of gaps seen in UVIS occultations gives a power law distribution from 10-100m (Rehnberg etal 2017). Excess variance from UVIS occultations can be related to characteristic clump widths, a method which extends the work of Showalter and Nicholson (1990) to more arbitrary shadow distributions. In the middle A ring, we use results from Colwell etal (2017) for the variance and results from Jerousek etal (2016) for the relative size of gaps and wakes to estimate the wake width consistent with the excess variance observed there. Our method gives:W= sqrt (A) * E/T2 * (1+ S/W)Where A is the area observed by UVIS in an integration period, E is the measured excess variance above Poisson statistics, T is the mean transparency, and S and W are the separation and width of self-gravity wakes in the granola bar model of Colwell etal (2006). We find:W ~ 10m and infer the wavelength of the fastest growing instabilityLambda(TOOMRE) = S + W ~ 30m.This is consistent with the calculation of the Toomre wavelength from the surface mass density of the A ring, and with the highest resolution UVIS star occultations.
Size of Self-Gravity Wakes from Cassini UVIS Tracking Occultations and Ring Transparency Statistics
NASA Astrophysics Data System (ADS)
Esposito, L. W.; Rehnberg, M.; Colwell, J. E.; Sremcevic, M.
2017-12-01
We compare two methods for determining the size of self-gravity wakes in Saturn's rings. Analysis of gaps seen in UVIS occultations gives a power law distribution from 10-100m (Rehnberg etal 2017). Excess variance from UVIS occultations can be related to characteristic clump widths, a method which extends the work of Showalter and Nicholson (1990) to more arbitrary shadow distributions. In the middle A ring, we use results from Colwell etal (2017) for the variance and results from Jerousek etal (2016) for the relative size of gaps and wakes to estimate the wake width consistent with the excess variance observed there. Our method gives: W= sqrt (A) * E/T2 * (1+ S/W)Where A is the area observed by UVIS in an integration period, E is the measured excess variance above Poisson statistics, T is the mean transparency, and S and W are the separation and width of self-gravity wakes in the granola bar model of Colwell etal (2006). We find: W 10m and infer the wavelength of the fastest growing instability lamdaT = S + W 30m. This is consistent with the calculation of the Toomre wavelength from the surface mass density of the A ring, and with the highest resolution UVIS star occultations.
Urban climate modifies tree growth in Berlin
NASA Astrophysics Data System (ADS)
Dahlhausen, Jens; Rötzer, Thomas; Biber, Peter; Uhl, Enno; Pretzsch, Hans
2017-12-01
Climate, e.g., air temperature and precipitation, differs strongly between urban and peripheral areas, which causes diverse life conditions for trees. In order to compare tree growth, we sampled in total 252 small-leaved lime trees (Tilia cordata Mill) in the city of Berlin along a gradient from the city center to the surroundings. By means of increment cores, we are able to trace back their growth for the last 50 to 100 years. A general growth trend can be shown by comparing recent basal area growth with estimates from extrapolating a growth function that had been fitted with growth data from earlier years. Estimating a linear model, we show that air temperature and precipitation significantly influence tree growth within the last 20 years. Under consideration of housing density, the results reveal that higher air temperature and less precipitation led to higher growth rates in high-dense areas, but not in low-dense areas. In addition, our data reveal a significantly higher variance of the ring width index in areas with medium housing density compared to low housing density, but no temporal trend. Transferring the results to forest stands, climate change is expected to lead to higher tree growth rates.
Urban climate modifies tree growth in Berlin
NASA Astrophysics Data System (ADS)
Dahlhausen, Jens; Rötzer, Thomas; Biber, Peter; Uhl, Enno; Pretzsch, Hans
2018-05-01
Climate, e.g., air temperature and precipitation, differs strongly between urban and peripheral areas, which causes diverse life conditions for trees. In order to compare tree growth, we sampled in total 252 small-leaved lime trees ( Tilia cordata Mill) in the city of Berlin along a gradient from the city center to the surroundings. By means of increment cores, we are able to trace back their growth for the last 50 to 100 years. A general growth trend can be shown by comparing recent basal area growth with estimates from extrapolating a growth function that had been fitted with growth data from earlier years. Estimating a linear model, we show that air temperature and precipitation significantly influence tree growth within the last 20 years. Under consideration of housing density, the results reveal that higher air temperature and less precipitation led to higher growth rates in high-dense areas, but not in low-dense areas. In addition, our data reveal a significantly higher variance of the ring width index in areas with medium housing density compared to low housing density, but no temporal trend. Transferring the results to forest stands, climate change is expected to lead to higher tree growth rates.
Urban climate modifies tree growth in Berlin.
Dahlhausen, Jens; Rötzer, Thomas; Biber, Peter; Uhl, Enno; Pretzsch, Hans
2018-05-01
Climate, e.g., air temperature and precipitation, differs strongly between urban and peripheral areas, which causes diverse life conditions for trees. In order to compare tree growth, we sampled in total 252 small-leaved lime trees (Tilia cordata Mill) in the city of Berlin along a gradient from the city center to the surroundings. By means of increment cores, we are able to trace back their growth for the last 50 to 100 years. A general growth trend can be shown by comparing recent basal area growth with estimates from extrapolating a growth function that had been fitted with growth data from earlier years. Estimating a linear model, we show that air temperature and precipitation significantly influence tree growth within the last 20 years. Under consideration of housing density, the results reveal that higher air temperature and less precipitation led to higher growth rates in high-dense areas, but not in low-dense areas. In addition, our data reveal a significantly higher variance of the ring width index in areas with medium housing density compared to low housing density, but no temporal trend. Transferring the results to forest stands, climate change is expected to lead to higher tree growth rates.
Tree-Ring Widths and Snow Cover Depth in High Tauern
NASA Astrophysics Data System (ADS)
Falarz, Malgorzata
2017-12-01
The aim of the study is to examine the correlation of Norway spruce tree-ring widths and the snow cover depth in the High Tauern mountains. The average standardized tree-ring widths indices for Nowary spruce posted by Bednarz and Niedzwiedz (2006) were taken into account. Increment cores were collected from 39 Norway spruces growing in the High Tauern near the upper limit of the forest at altitude of 1700-1800 m, 3 km from the meteorological station at Sonnblick. Moreover, the maximum of snow cover depth in Sonnblick (3105 m a.s.l.) for each winter season in the period from 1938/39 to 1994/95 (57 winter seasons) was taken into account. The main results of the research are as follows: (1) tree-ring widths in a given year does not reveal statistically significant dependency on the maximum snow cover depth observed in the winter season, which ended this year; (2) however, the tested relationship is statistically significant in the case of correlating of the tree-ring widths in a given year with a maximum snow cover depth in a season of previous year. The correlation coefficient for the entire period of the study is not very high (r=0.27) but shows a statistical significance at the 0.05 level; (3) the described relationship is not stable over time. 30-year moving correlations showed no significant dependencies till 1942 and after 1982 (probably due to the so-called divergence phenomenon). However, during the period of 1943-1981 the values of correlation coefficient for moving 30-year periods are statistically significant and range from 0.37 to 0.45; (4) the correlation coefficient between real and calibrated (on the base of the regression equation) values of maximum snow cover depth is statistically significant for calibration period and not significant for verification one; (5) due to a quite short period of statistically significant correlations and not very strict dependencies, the reconstruction of snow cover on Sonnblick for the period before regular measurements seems to be not reasonable.
NASA Astrophysics Data System (ADS)
Liu, Na; Liu, Yu; Bao, Guang; Bao, Ming; Wang, Yanchao; Zhang, Lizhi; Ge, Yuxiang; Bao, Wurigen; Tian, Heng
2016-01-01
A tree-ring width chronology covering the period 1780-2013 AD was developed from Pinus sylvestris var. mongolica for the eastern Hulun Buir steppe, a region located on the edge of the eastern Mongolian Plateau, China. Climate-growth response analysis revealed drought stress to be the primary limiting factor for tree growth. Therefore, the mean February-July standardized precipitation evapotranspiration index (SPEI) was reconstructed over the period 1819-2013, where the reconstruction could account for 32.8% of the variance in the instrumental record over the calibration period 1953-2011. Comparison with other tree-ring-based moisture sequences from nearby areas confirmed a high degree of confidence in our reconstruction. Severe drought intervals since the late 1970s in our study area consisted with the weakening East Asian summer monsoon, which modulating regional moisture conditions in semi-arid zone over northern China. Drought variations in the study area significantly correlated with sea surface temperatures (SSTs) in North Pacific Ocean, suggesting a possible connection of regional hydroclimatic variations to the Pacific Decadal Oscillation (PDO). The potential influence associated with El Niño-Southern Oscillation (ENSO) was primarily analyzed.
Teets, Aaron; Fraver, Shawn; Weiskittel, Aaron R; Hollinger, David Y
2018-03-11
A range of environmental factors regulate tree growth; however, climate is generally thought to most strongly influence year-to-year variability in growth. Numerous dendrochronological (tree-ring) studies have identified climate factors that influence year-to-year variability in growth for given tree species and location. However, traditional dendrochronology methods have limitations that prevent them from adequately assessing stand-level (as opposed to species-level) growth. We argue that stand-level growth analyses provide a more meaningful assessment of forest response to climate fluctuations, as well as the management options that may be employed to sustain forest productivity. Working in a mature, mixed-species stand at the Howland Research Forest of central Maine, USA, we used two alternatives to traditional dendrochronological analyses by (1) selecting trees for coring using a stratified (by size and species), random sampling method that ensures a representative sample of the stand, and (2) converting ring widths to biomass increments, which once summed, produced a representation of stand-level growth, while maintaining species identities or canopy position if needed. We then tested the relative influence of seasonal climate variables on year-to-year variability in the biomass increment using generalized least squares regression, while accounting for temporal autocorrelation. Our results indicate that stand-level growth responded most strongly to previous summer and current spring climate variables, resulting from a combination of individualistic climate responses occurring at the species- and canopy-position level. Our climate models were better fit to stand-level biomass increment than to species-level or canopy-position summaries. The relative growth responses (i.e., percent change) predicted from the most influential climate variables indicate stand-level growth varies less from to year-to-year than species-level or canopy-position growth responses. By assessing stand-level growth response to climate, we provide an alternative perspective on climate-growth relationships of forests, improving our understanding of forest growth dynamics under a fluctuating climate. © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Sensuła, Barbara; Wilczyński, Slawomir; Opała, Magdalena; Pawełczyk, Sławomira; Piotrowska, Natalia
2015-04-01
The aim of research conducted within the project entitled "Trees as bioindicators of industrial air pollutants during the implementation of pro-environmental policies in the area of Silesia" (acronym BIOPOL) is the reconstruction of climate changes and anthropogenic effects and monitoring of the influence of human activities related to industrial development and the introduction of pro-environmental policy. The analysis will concern the climatic and anthropogenic signals recorded in annual tree rings width of Scots pine and in the isotopic composition of wood and its compenents (such as alpha-cellulose and glucose). Only a few studies made a complex multiproxies analysis of the influence of industrial air pollutants on changes in the tree rings width and their isotopic composition in any selected region. In addition, research is usually for a period of industrial development, is a lack of analysis for the period of implementation of EU law and standards on air quality to Polish law. The research area are the forests close to 3 different industrial plants (chemical- nitrogen plants, steel mills, power plants), in Silesia, where operating companies have strategic importance for the region and country. By analyzing the structure of land in Silesia noted a significant advantage of forest land and agricultural land. A large percentage of forest land providing protection for residents in case of failure in any of the plants. A cloud of noxious fumes is possible in large part retained in the trees. Waste generated by the chemical industry, metallurgy and energy represent the largest proportion of waste generated in the region. Already in the beginning of 21stcentury, the Waste Management Plans for various cities in Silesia are set out various strategic objectives to 2015, including in the economic sector: the implementation of non-waste technology and less and the best available techniques (BAT), the introduction of the principles of "cleaner production". The BIOPOL innovation is: a) multiproxy spatio-temporal analysis of the effects of climate changes and emission of air industrial pollution on trees during the development of industry and the implementation of pro-environmental policies in Silesia: - Analysis of the width of annual tree rings (since 1975) - Analysis of underestimation of the 14C concentration during the implementation of European standards (since 2000) - Analysis of the recorded signals of environmental changes in the composition of stable isotopes in annual tree rings - wood and its components b) modeling of the influence of pollutants emitted into the atmosphere on the width of annual growth of trees and C,O,N stable isotopes and radiocarbon - Spatio-temporal model of environmental change in the tree rings width and their isotopic composition close to each of the selected plants - comparison to the impact of climate change and industrial pollution for 3 different industries (steel mills, power plants, nitrogen plants) in the period from 1975 to present - Space model of environmental changes in the isotopic composition of trees near each of the selected plants (at varying distances from the chosen site) based on analysis of isotopic composition of annual shoots of pine trees in three consecutive years: from 2012 to 2014) - Estimation of emission components originating from industrial pollution for individual plants This project was funded by the National Science Centre allocated on the basis of the decision number DEC-2011/03/D/ST10/05251
Past Asian Monsoon circulation from multiple tree-ring proxies and models (Invited)
NASA Astrophysics Data System (ADS)
Anchukaitis, K. J.; Herzog, M.; Hernandez, M.; Martin-Benito, D.; Gagen, M.; LeGrande, A. N.; Ummenhofer, C.; Buckley, B.; Cook, E. R.
2013-12-01
The Asian monsoon can be characterized in terms of precipitation variability as well as features of regional atmospheric circulation across a range of spatial and temporal scales. While multicentury time series of tree-ring widths at hundreds of sites across Asia provide estimates of past rainfall, the oxygen isotope ratios of annual rings at some of these sites can reveal broader regional atmosphere-ocean dynamics. Here we present a replicated, multicentury stable isotope series from Vietnam that integrates the influence of monsoon circulation on water isotopes. Stronger (weaker) monsoon flow over Indochina is associated with lower (higher) oxygen isotope values in our long-lived tropical conifers. Ring width and isotopes show particular coherence at multidecadal time scales, and together allow past precipitation amount and circulation strength to be disentangled. Combining multiple tree-ring proxies with simulations from isotope-enabled and paleoclimate general circulation models allows us to independently assess the mechanisms responsible for proxy formation and to evaluate how monsoon rainfall is influenced by ocean-atmosphere interactions at timescales from interannual to multidecadal.
Quasi-one-dimensional density of states in a single quantum ring.
Kim, Heedae; Lee, Woojin; Park, Seongho; Kyhm, Kwangseuk; Je, Koochul; Taylor, Robert A; Nogues, Gilles; Dang, Le Si; Song, Jin Dong
2017-01-05
Generally confinement size is considered to determine the dimensionality of nanostructures. While the exciton Bohr radius is used as a criterion to define either weak or strong confinement in optical experiments, the binding energy of confined excitons is difficult to measure experimentally. One alternative is to use the temperature dependence of the radiative recombination time, which has been employed previously in quantum wells and quantum wires. A one-dimensional loop structure is often assumed to model quantum rings, but this approximation ceases to be valid when the rim width becomes comparable to the ring radius. We have evaluated the density of states in a single quantum ring by measuring the temperature dependence of the radiative recombination of excitons, where the photoluminescence decay time as a function of temperature was calibrated by using the low temperature integrated intensity and linewidth. We conclude that the quasi-continuous finely-spaced levels arising from the rotation energy give rise to a quasi-one-dimensional density of states, as long as the confined exciton is allowed to rotate around the opening of the anisotropic ring structure, which has a finite rim width.
Ultrasonographic evaluation of tracheal collapse in dogs
Eom, Kidong; Moon, Kumjung; Seong, Yunsang; Oh, Taeho; Yi, Sungjoon; Lee, Keunwoo
2008-01-01
Tracheal ultrasonography was performed to measure the width of the tracheal ring shadow and to assess the clinical relevance of these measurements for identifying tracheal collapse. The first tracheal ring width (FTRW) and thoracic inlet tracheal ring width (TITRW) were measured on both expiration and inspiration. The mean of the FTRW width (129 dogs) was greater in expiration (10.97 ± 1.02 mm, p = 0.001) than that in inspiration (9.86 ± 1.03 mm). For 51 normal dogs, the mean of the TITRW width was greater in expiration (9.05 ± 1.52 mm, p = 0.001) than in inspiration (8.02 ± 1.43 mm). For 78 tracheal collapse dogs, the mean of the TITRW width was greater in expiration (15.89 ± 1.01 mm, p = 0.001) than in inspiration (14.85 ± 1.17 mm). The TITRW/FTRW ratio of the normal dogs was higher (p = 0.001) in expiration (0.81 ± 0.09) than that in inspiration (0.79 ± 0.10). When compared between the normal and tracheal collapse dogs, the TITRW/FTRW ratio was also increased (p = 0.001) both in expiration (1.54 ± 0.09) and inspiration (1.47 ± 0.08), respectively. Based on these results, the cutoff level of the TITRW/FTRW ratio was statistically analyzed according to the receiver operating characteristic curve and it could be set at 1.16 in expiration and at 1.13 in inspiration. We have demonstrated that tracheal ultrasonography is a useful technique for the evaluation of tracheal collapse and it can be a supportive tool together with the radiographic findings for making the correct diagnosis. PMID:19043316
Integrating tree-ring and wine data from the Palatinate (Germany)
NASA Astrophysics Data System (ADS)
Konter, Oliver
2017-04-01
Tree-ring growth of conifer trees originating from central European low mountain ranges often reveal indistinct growth-climate relationships. Temperature variations can play a crucial role, whereas water availability can also control the annual growth and become the main dominating factor. The low mountain range Pfälzerwald in the Palatinate region represents the largest contiguous forested area in Germany and features at its most eastern limitation a unique ecological setting due to its sandy soils and reduced water availability. In addition, its north-south orientation and associated lee-effects due to predominating westerlies together with altitudinal differences of more than 300 m lead to higher temperatures, lower precipitation amounts, and, as a forest management consequence, to a proportion of up to 80 % of pine trees. Despite these exceptional ecological and climatological prerequisites, calibrating tree-ring width data from 487 Pinus sylvestris core samples against regional meteorological stations (1950-2011) and gridded data (1901-2011) confirm alternating climate control mechanisms. Comparison with drought-related indices (scPDSI), combining precipitation and temperature, unfolds highest correlations with May-July conditions (r=0.34, p<0.05), however, lacking temporal robustness in the early 20th century. The vegetation outside the forested areas in the plain can be characterized as agricultural croplands with vineyards, representing one of the largest wine-growing regions in Germany. We collected and analyzed a 24 datasets of 57 consecutive years (1959-2015) of must sugar content, acidity, alcohol content, and sugar-free extracts in Riesling, Pinot Gris, Pinot Blanc, and Silvaner wines, originating from 15 wineries adjoining the forested area into the plain. Correlation of Riesling must sugar content against regional April-August temperature data reveals a highly significant signal (r=0.73, p<0.01; high-pass filtered r=0.49, p<0.01). Sugar-free extract variations of Pinot Gris are significantly controlled by March-September precipitation (r=0.76, p<0.01; high-pass filtered r=0.77, p<0.01). In this low mountain range, tree-ring growth from conifers is not solely controlled by one climatic variable, though it is that combining tree-rings with must sugar content and sugar-free extract data from Riesling and Pinot Gris wine can further elucidate our understanding of longer-term climate variability in the Palatinate region.
George, Jan-Peter; Schueler, Silvio; Karanitsch-Ackerl, Sandra; Mayer, Konrad; Klumpp, Raphael T.; Grabner, Michael
2016-01-01
Understanding drought sensitivity of tree species and its intra-specific variation is required to estimate the effects of climate change on forest productivity, carbon sequestration and tree mortality as well as to develop adaptive forest management measures. Here, we studied the variation of drought reaction of six European Abies species and ten provenances of Abies alba planted in the drought prone eastern Austria. Tree-ring and X-ray densitometry data were used to generate early- and latewood measures for ring width and wood density. Moreover, the drought reaction of species and provenances within six distinct drought events between 1970 and 2011, as identified by the standardized precipitation index, was determined by four drought response measures. The mean reaction of species and provenances to drought events was strongly affected by the seasonal occurrence of the drought: a short, strong drought at the beginning of the growing season resulted in growth reductions up to 50%, while droughts at the end of the growing season did not affect annual increment. Wood properties and drought response measures showed significant variation among Abies species as well as among A. alba provenances. Whereas A. alba provenances explained significant parts in the variation of ring width measures, the Abies species explained significant parts in the variation of wood density parameters. A consistent pattern in drought response across the six drought events was observed only at the inter-specific level, where A. nordmanniana showed the highest resistance and A. cephalonica showed the best recovery after drought. In contrast, differences in drought reaction among provenances were only found for the milder drought events in 1986, 1990, 1993 and 2000 and the ranking of provenances varied at each drought event. This indicates that genetic variation in drought response within A. alba is more limited than among Abies species. Low correlations between wood density parameters and drought response measures suggest that wood density is a poor predictor of drought sensitivity in Abies spec. PMID:27713591
Progress in Australian dendroclimatology: Identifying growth limiting factors in four climate zones.
Haines, Heather A; Olley, Jon M; Kemp, Justine; English, Nathan B
2016-12-01
Dendroclimatology can be used to better understand past climate in regions such as Australia where instrumental and historical climate records are sparse and rarely extend beyond 100years. Here we review 36 Australian dendroclimatic studies which cover the four major climate zones of Australia; temperate, arid, subtropical and tropical. We show that all of these zones contain tree and shrub species which have the potential to provide high quality records of past climate. Despite this potential only four dendroclimatic reconstructions have been published for Australia, one from each of the climate zones: A 3592year temperature record for the SE-temperate zone, a 350year rainfall record for the Western arid zone, a 140year rainfall record for the northern tropics and a 146year rainfall record for SE-subtropics. We report on the spatial distribution of tree-ring studies, the environmental variables identified as limiting tree growth in each study, and identify the key challenges in using tree-ring records for climate reconstruction in Australia. We show that many Australian species have yet to be tested for dendroclimatological potential, and that the application of newer techniques including isotopic analysis, carbon dating, wood density measurements, and anatomical analysis, combined with traditional ring-width measurements should enable more species in each of the climate zones to be used, and long-term climate records to be developed across the entire continent. Copyright © 2016 Elsevier B.V. All rights reserved.
Gravitational Wakes Sizes from Multiple Cassini Radio Occultations of Saturn's Rings
NASA Astrophysics Data System (ADS)
Marouf, E. A.; Wong, K. K.; French, R. G.; Rappaport, N. J.; McGhee, C. A.; Anabtawi, A.
2016-12-01
Voyager and Cassini radio occultation extinction and forward scattering observations of Saturn's C-Ring and Cassini Division imply power law particle size distributions extending from few millimeters to several meters with power law index in the 2.8 to 3.2 range, depending on the specific ring feature. We extend size determination to the elongated and canted particle clusters (gravitational wakes) known to permeate Saturn's A- and B-Rings. We use multiple Cassini radio occultation observations over a range of ring opening angle B and wake viewing angle α to constrain the mean wake width W and thickness/height H, and average ring area coverage fraction. The rings are modeled as randomly blocked diffraction screen in the plane normal to the incidence direction. Collective particle shadows define the blocked area. The screen's transmittance is binary: blocked or unblocked. Wakes are modeled as thin layer of elliptical cylinders populated by random but uniformly distributed spherical particles. The cylinders can be immersed in a "classical" layer of spatially uniformly distributed particles. Numerical simulations of model diffraction patterns reveal two distinct components: cylindrical and spherical. The first dominates at small scattering angles and originates from specific locations within the footprint of the spacecraft antenna on the rings. The second dominates at large scattering angles and originates from the full footprint. We interpret Cassini extinction and scattering observations in the light of the simulation results. We compute and remove contribution of the spherical component to observed scattered signal spectra assuming known particle size distribution. A large residual spectral component is interpreted as contribution of cylindrical (wake) diffraction. Its angular width determines a cylindrical shadow width that depends on the wake parameters (W,H) and the viewing geometry (α,B). Its strength constrains the mean fractional area covered (optical depth), hence constrains the mean wakes spacing. Self-consistent (W,H) are estimated using least-square fit to results from multiple occultations. Example results for observed scattering by several inner A-Ring features suggest particle clusters (wakes) that are few tens of meters wide and several meters thick.
Keeping the Edges Sharp I: Honing the Theory of Narrow Rings
NASA Astrophysics Data System (ADS)
Hamilton, Douglas P.; Rimlinger, Thomas; Hahn, Joseph M.
2016-05-01
Most of the rings that encircle Saturn, Uranus, and Neptune are very narrow structures with typical radial widths of just a few kilometers. Such extreme sharpness is surprising, as even slightly different orbital periods should allow ring particles to continually jostle one another in collisions that preserve angular momentum whileinexorably draining energy. Sharp edges should blur as rings spread in response to collisions and yet they do not. The generally accepted solution to this dilemma is to bracket each narrow ring with a pair of shepherding satellites that can pump energy back into the ring to replace that lost by collisions. But only a disappointing two of roughly twenty narrow rings actually have known attendant satellites. We present a compelling alternative in which the slight eccentricities and inclinations of narrow ringlets act as internal energy sources that can be tapped to prevent ring spreading. When unattended circular rings dissipate energy they must spread radially in order to preserve angular momentum. By contrast, eccentric or inclined rings have an extra degree of freedom that can be exploited to prevent radial spreading; energy is dissipated while keeping z-component of angular momentum, sqrt(a(1-e^2))cos(i), constant by simply decreasing the overall eccentricity (e) and/or inclination (i) of the entire ring. A real narrow ring moves inward as a unit, circularizes, and drops into the equatorial plane in a process that deters radial spreading for millions or billions of years. Using secular theory with dissipation (Zhang et al. 2013), we show that narrow rings are secular eigenstates in which ellipses are nested with pericenters almost, but not exactly aligned. The misalignment of pericenters is crucial in allowing energy dissipation to be shared evenly across the ring. We predict ring surface densities that are roughly constant across the ring's width, in contrast to profiles expected for shepherded rings. Rimlinger et al. (this meeting) present numerical simulations that critically test these findings.
Growth of trees on permafrost: habitat driven response to climate
NASA Astrophysics Data System (ADS)
Bryukhanova, Marina; Fonti, Patrick; Kirdyanov, Alexander; Saurer, Matthias; Siegwolf, Rolf; Pochebit, Natalia; Sidorova, Olga; Prokushkin, Anatoly
2013-04-01
Global change is expected to alter boreal forest conditions with far reaching consequences for tree growth in these ecosystems. Within this study we aimed at determining which limiting factors control tree-growth on permafrost under different site conditions. A tree-ring multi-proxy characterisation of mature Larix gmelinii (Rupr.) Rupr. from a continuous permafrost zone of Siberia (Russia, 64°18' N, 100°11' E) was used to identify the physiological principle of responses related to the plant-soil system. Tree-ring width (1975-2009), carbon and oxygen stable isotopes, and xylem structural characteristics (2000-2009) indicated that an increased depth of the soil active layer favors a better exploitation of the available resources. Our study used a mechanistic description of expected soil thermo-hydrological changes associated with a detailed comparison of tree growth responses, and supplied possible scenarios of northern larch stands development under projected climate change and permafrost degradation. By using a "space for time" approach along a 100 m long transect characterized by distinct permafrost regimes combined with measurements of physiological and structural tree responses, it become possible to propose a mechanism responsible for the differing climatic-growth responses. The results obtained indicate global warming to promote large increases in tree productivity of permafrost larch stands with a shift from a cold to a water limited environment. This work was supported by the SNSF (VG IZ76Z0_141967/1, SCOPES IZ73Z0_128035) and grant form the President of the Russian Federation for young scientists 5498.2012.4.
Lee, E Henry; Wickham, Charlotte; Beedlow, Peter A; Waschmann, Ronald S; Tingey, David T
2017-10-01
A time series intervention analysis (TSIA) of dendrochronological data to infer the tree growth-climate-disturbance relations and forest disturbance history is described. Maximum likelihood is used to estimate the parameters of a structural time series model with components for climate and forest disturbances (i.e., pests, diseases, fire). The statistical method is illustrated with a tree-ring width time series for a mature closed-canopy Douglas-fir stand on the west slopes of the Cascade Mountains of Oregon, USA that is impacted by Swiss needle cast disease caused by the foliar fungus, Phaecryptopus gaeumannii (Rhode) Petrak. The likelihood-based TSIA method is proposed for the field of dendrochronology to understand the interaction of temperature, water, and forest disturbances that are important in forest ecology and climate change studies.
NASA Astrophysics Data System (ADS)
Bouldin, J.
2010-12-01
In the reconstruction of past climates from tree rings multi-decadal to multi-centennial periods, one longstanding problem is the confounding of the natural biological growth trend of the tree with any existing long term trends in the climate. No existing analytical method is capable of resolving these two change components, so it remains unclear how accurate existing ring series standardizations are, and by implication, climate reconstructions based upon them. For example, dendrochronological at the ITRDB are typically standardized by detrending, at each site, each individual tree core, using a relatively stiff deterministic function such as a negative exponential curve or smoothing spline. Another approach, referred to as RCS (Regional Curve Standardization) attempts to solve some problems of the individual series detrending, by constructing a single growth curve from the aggregated cambial ages of the rings of the cores at a site (or collection of sites). This curve is presumed to represent the “ideal” or expected growth of the trees from which it is derived. Although an improvement in some respects, this method will be degraded in direct proportion to the lack of a mixture of tree sizes or ages throughout the span of the chronology. I present a new method of removing the biological curve from tree ring series, such that temporal changes better represent the environmental variation captured by the tree rings. The method institutes several new approaches, such as the correction for the estimated number of missed rings near the pith, and the use of tree size and ring area relationships instead of the traditional tree ages and ring widths. The most important innovation is a careful extraction of the existing information on the relationship between tree size (basal area) and ring area that exists within each single year of the chronology. This information is, by definition, not contaminated by temporal climatic changes, and so when removed, leaves the climatically caused, and random error components of the chronology. A sophisticated algorithm, based on pair-wise ring comparisons in which tree size is standardized both within and between years, forms the basis of the method. Evaluations of the method are underway with both simulated and actual (ITRDB) data, to evaluate the potentials and drawbacks of the method relative to existing methods. The ITRDB test data consists of a set of about 50 primarily high elevation sites from across western North America. Most of these sites show a pronounced 20th Century warming relative to earlier centuries, in accordance with current understanding, albeit at a non-global scale. A relative minority show cooling, occasionally strongly. Current and future work emphasizes evaluation of the method with varying, simulated data, and more thorough empirical evaluations of the method in situations where the type, and intensity, of the primary environmentally limiting factor varies (e.g temperature versus soil moisture limited sites).
Shrubs tracing sea surface temperature--Calluna vulgaris on the Faroe Islands.
Beil, Ilka; Buras, Allan; Hallinger, Martin; Smiljanić, Marko; Wilmking, Martin
2015-11-01
The climate of Central and Northern Europe is highly influenced by the North Atlantic Ocean due to heat transfer from lower latitudes. Detailed knowledge about spatio-temporal variability of sea surface temperature (SST) in that region is thus of high interest for climate and environmental research. Because of the close relations between ocean and coastal climate and the climate sensitivity of plant growth, annual rings of woody plants in coastal regions might be used as a proxy for SST. We show here for the first time the proxy potential of the common and widespread evergreen dwarf shrub Calluna vulgaris (heather), using the Faroe Islands as our case study. Despite its small and irregular ring structure, the species seems suitable for dendroecological investigations. Ring width showed high and significant correlations with summer and winter air temperatures and SST. The C. vulgaris chronology from the Faroe Islands, placed directly within the North Atlantic Current, clearly reflects variations in summer SSTs over an area between Iceland and Scotland. Utilising shrubs like C. vulgaris as easy accessible and annually resolved proxies offers an interesting possibility for reconstruction of the coupled climate-ocean system at high latitudes.
Wavelength tunable InGaN/GaN nano-ring LEDs via nano-sphere lithography
Wang, Sheng-Wen; Hong, Kuo-Bin; Tsai, Yu-Lin; Teng, Chu-Hsiang; Tzou, An-Jye; Chu, You-Chen; Lee, Po-Tsung; Ku, Pei-Cheng; Lin, Chien-Chung; Kuo, Hao-Chung
2017-01-01
In this research, nano-ring light-emitting diodes (NRLEDs) with different wall width (120 nm, 80 nm and 40 nm) were fabricated by specialized nano-sphere lithography technology. Through the thinned wall, the effective bandgaps of nano-ring LEDs can be precisely tuned by reducing the strain inside the active region. Photoluminescence (PL) and time-resolved PL measurements indicated the lattice-mismatch induced strain inside the active region was relaxed when the wall width is reduced. Through the simulation, we can understand the strain distribution of active region inside NRLEDs. The simulation results not only revealed the exact distribution of strain but also predicted the trend of wavelength-shifted behavior of NRLEDs. Finally, the NRLEDs devices with four-color emission on the same wafer were demonstrated. PMID:28256529
A 2100-Year Reconstruction of July Rainfall Over Westcentral New Mexico
NASA Astrophysics Data System (ADS)
Stahle, D.; Cleaveland, M.; Therrell, M.; Grissino-Mayer, H.; Griffin, D.; Fye, F.
2007-05-01
We have developed a new 2,141-year long tree-ring chronology of latewood (LW) width from ancient Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosae) at El Malpais National Monument, New Mexico. This is one of the longest precipitation-sensitive tree-ring chronologies yet constructed for the American Southwest and has been used to develop the first continuous multi-millennial tree-ring reconstruction of July precipitation in the region of the North American Monsoon System (NAMS). Monthly average precipitation increases sharply in July over western New Mexico, marking the dramatic onset to the summer monsoon season. The LW chronology explains 44 percent of the interannual variability of July precipitation in the instrumental record for New Mexico climate divisions 1 and 4 (1960-2004), after removal of the linear dependence of LW width on earlywood width following Meko and Baisan (2001), and has passed statistical tests of verification on independent July precipitation data (1895-1959). The instrumental and tree-ring reconstructed July precipitation data are correlated with the concurrent 500 mb height field over western North America and with the sea surface temperature gradient from the central to eastern North Pacific. The reconstruction exhibits several severe sustained July droughts that exceed any witnessed during the instrumental era, and has significant spectral power at periods near 3-5, 20, and 70 years.
Oberhuber, Walter; Kofler, Werner; Pfeifer, Klaus; Seeber, Andrea; Gruber, Andreas; Wieser, Gerhard
2011-01-01
Although growth limitation of trees at Alpine and high-latitude timberlines by prevailing summer temperature is well established, loss of thermal response of radial tree growth during last decades has repeatedly been addressed. We examined long-term variability of climate-growth relationships in ring width chronologies of Stone pine (Pinus cembra L.) by means of moving response functions (MRF). The study area is situated in the timberline ecotone (c. 2000 – 2200 m a.s.l.) on Mt. Patscherkofel (Tyrol, Austria). Five site chronologies were developed within the ecotone with constant sample depth (≥ 19 trees) throughout most of the time period analysed. MRF calculated for the period 1866-1999 and 1901-1999 for c. 200 and c. 100 yr old stands, respectively, revealed that mean July temperature is the major and long-term stable driving force of Pinus cembra radial growth within the timberline ecotone. However, since the mid 1980s, radial growth in timberline and tree line chronologies strikingly diverges from the July temperature trend. This is probably a result of extreme climate events (e.g. low winter precipitation, late frost) and/or increasing drought stress on cambial activity. The latter assumption is supported by a < 10 % increase in annual increments of c. 50 yr old trees at the timberline and at the tree line in 2003 compared to 2002, when extraordinary hot and dry conditions prevailed during summer. Furthermore, especially during the second half of the 20th century, influence of climate variables on radial growth show abrupt fluctuations, which might also be a consequence of climate warming on tree physiology. PMID:21532976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond-Lamberty, Benjamin; Rocha, Adrian; Calvin, Katherine V.
2014-01-01
How will regional growth and mortality change with even relatively small climate shifts, even independent of catastrophic disturbances? This question is particularly acute for the North American boreal forest, which is carbon-dense and subject The goals of this study were to combine dendrochronological sampling, inventory records, and machine-learning algorithms to understand how tree growth and death have changed at one highly studied site (Northern Old Black Spruce, NOBS) in the central Canadian boreal forest. Over the 1999-2012 inventory period, mean DBH increased even as stand density and basal area declined significantly from 41.3 to 37.5 m2 ha-1. Tree mortality averagedmore » 1.4±0.6% yr-1, with most mortality occurring in medium-sized trees. A combined tree ring chronology constructed from 2001, 2004, and 2012 sampling showed several periods of extreme growth depression, with increased mortality lagging depressed growth by ~5 years. Minimum and maximum air temperatures exerted a negative influence on tree growth, while precipitation and climate moisture index had a positive effect; both current- and previous-year data exerted significant effects. Models based on these variables explained 23-44% of the ring-width variability. There have been at least one, and probably two, significant recruitment episodes since stand initiation, and we infer that past climate extremes led to significant NOBS mortality still visible in the current forest structure. These results imply that a combination of successional and demographic processes, along with mortality driven by abiotic factors, continue to affect the stand, with significant implications for our understanding of previous work at NOBS and the sustainable management of regional forests.« less
Lignin staining ...a limited success in identifying koa growth rings
Herbert L. Wick
1970-01-01
Among the lignin stains tested in trying to identify growth rings in koa (Acacia koa Gray), phloroglucinol was the most effective. The light colored sapwood of mature trees stained readily, with growth rings apparent. But staining failed to emphasize rings in the dark colored heartwood. Growth rings were not apparent on samples from young fast...
Dendrogeomorphological analysis of a slope near Lago, Calabria (Italy)
NASA Astrophysics Data System (ADS)
Fantucci, Rosanna; Sorriso-Valvo, Marino
1999-10-01
The dendrogeomorphological analysis has been used to investigate the periods of disturbance on a slope affected by deep-seated gravitational movements. The method proved to be of great help in determining the temporal sequence of diffused slope movement in the study area, and, though to a lesser extent, to find out the possible causes of triggering the mass-movement. In general, leaning trees indicate that the movement is active. The visual growth analysis indicates that anomalies consisted of sudden decreases of the growth (suppression of tree-rings) induced by stress consequent on ground disturbance, followed in some cases by sudden increases of tree-ring width induced by the higher moisture content in the landslide body. By anomaly analysis, an increase of the anomaly index (It) occurred between 1840 and 1860; subsequently, a period of strongly oscillating values of It occurred that levelled off around 1950. It also appears that mass-movements began to affect this zone soon after 1850s, thus, we can tentatively assume that they have been the cause of the growth anomalies, with a maximum influence in the period between 1860 and 1895. As regards the causes for mass-movement, we inquired about timing of extreme meteorological events and earthquakes. The meteorological data obtained from raingauging stations are not so well related to mass-movement reactivation as the seismic data are. However, only a minority of extreme meteorological events may produce such a disturbance that can be recorded in the tree-ring record. Indeed, only 30% of anomalies can be explained in terms of extreme events. On the other hand, the continuous creeping of the sackung might irregularly trigger the movement of shallower landslides in non extreme-events years. We obtained, instead, a higher degree of coincidence between disturbing causes and anomalous tree growth using archive reports on extreme rainfall periods.
The Centaur Chariklo and its rings system from stellar occultations in 2017
NASA Astrophysics Data System (ADS)
Leiva, Rodrigo; Sicardy, Bruno; Camargo, Julio; Ortiz, Jose Luis; Berard, Diane; Desmars, Josselin; Chariklo Occultations Team; Rio Group; Lucky Star Occultation Team; Granada Occultation Team
2017-10-01
A stellar occultation in June 3, 2013 revealed the presence of a dense ring system around the Centaur object (10199) Chariklo (Braga-Ribas et al., Nature 2014). Subsequent analysis of occultation data and long-term photometric variations indicate that Chariklo's body is elongated (Leiva et al. 2017, submitted) and that the main ring exhibits significant longitudinal variations of the radial width (Bérard et al. 2017, in press). We report three multi-chord high-quality stellar occultation by Chariklo on April 9, 2017 and June 22, 2017 from Namibia, and July 23 2017 from South America. The analysis of this new data set is underway, but preliminary results are consistent with triaxial ellipsoidal models. From this analysis we will:-present refined models for the size and shape of Chariklo's main body andevaluate the heights and slopes of its topographic features.-give constraints on the longitudinal width variations of Chariklo's rings andexplore the possibility to obtain the rings apsidal precession rate.Chariklo's shape and topography have strong consequences on the dynamics of the rings through Lindblad-type resonances between mean motion of the ring particles and the spin of the main body, while the rings precession rate gives constraints on the dynamical oblateness of the main body.**Part of the research leading to these results has received funding from the European Research Council under the European Community’s H2020 (2014-2020/ ERC Grant Agreement n 669416 ”LUCKY STAR”).
The inter-relationships among δ13C and δ18O in tree ring cellulose and ring width have the potential to illuminate long-term physiological and environmental information in forest stands that have not been monitored. We examine how within-stand competition and environmental gradie...
Characterizing exo-ring systems around fast-rotating stars using the Rossiter-McLaughlin effect
NASA Astrophysics Data System (ADS)
de Mooij, Ernst J. W.; Watson, Christopher A.; Kenworthy, Matthew A.
2017-12-01
Planetary rings produce a distinct shape distortion in transit light curves. However, to accurately model such light curves the observations need to cover the entire transit, especially ingress and egress, as well as an out-of-transit baseline. Such observations can be challenging for long period planets, where the transits may last for over a day. Planetary rings will also impact the shape of absorption lines in the stellar spectrum, as the planet and rings cover different parts of the rotating star (the Rossiter-McLaughlin effect). These line-profile distortions depend on the size, structure, opacity, obliquity and sky-projected angle of the ring system. For slow-rotating stars, this mainly impacts the amplitude of the induced velocity shift; however, for fast-rotating stars the large velocity gradient across the star allows the line distortion to be resolved, enabling direct determination of the ring parameters. We demonstrate that by modelling these distortions we can recover ring system parameters (sky-projected angle, obliquity and size) using only a small part of the transit. Substructure in the rings, e.g. gaps, can be recovered if the width of the features (δW) relative to the size of the star is similar to the intrinsic velocity resolution (set by the width of the local stellar profile, γ) relative to the stellar rotation velocity (v sini, i.e. δW/R* ≳ vsini/γ). This opens up a new way to study the ring systems around planets with long orbital periods, where observations of the full transit, covering the ingress and egress, are not always feasible.
Bayer, Jörg; Neubauer, Jakob; Saueressig, Ulrich; Südkamp, Norbert Paul; Reising, Kilian
2016-04-01
The prevalence of paediatric pelvic injury is low, yet they are often indicative of accompanying injuries, and an instable pelvis at presentation is related to long-term poor outcome. Judging diastasis of the sacroiliac joint in paediatric pelvic computed tomography is challenging, as information on their normal appearance is scarce. We therefore sought to generate age- and gender-related standard width measurements of the sacroiliac joint in children for comparison. A total of 427 pelvic computed tomography scans in paediatric patients (<18 years old) were retrospectively evaluated. After applying exclusion criteria, 350 scans remained for measurements. Taking a standard approach we measured the sacroiliac joint width bilaterally in axial and coronal planes. We illustrate age- and gender-related measurements of the sacroiliac joint width as a designated continuous 3rd, 15th, 50th, 85th and 97th centile graph, respectively. Means and standard deviations in the joint width are reported for four age groups. There are distinct changes in the sacroiliac joint's appearance during growth. In general, male children exhibit broader sacroiliac joints than females at the same age, although this difference is significant only in the 11 to 15-year-old age group. The sacroiliac joint width in children as measured in coronal and axial CT scans differs in association with age and gender. When the sacroiliac joint width is broader than the 97th centile published in our study, we strongly encourage considering a sacroiliac joint injury. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hong, Joon Ki; Kim, Jin A; Kim, Jung Sun; Lee, Soo In; Koo, Bon Sung; Lee, Yeon-Hee
2012-08-01
S HI-R ELATED SEQUENCE (SRS) genes are plant-specific transcription factors containing a zinc-binding RING finger motif, which play a critical role in plant growth and development. We have characterized six SRS genes in Brassica rapa. Overexpression of the SRSs BrSTY1, BrSRS7, and BrLRP1 induced dwarf and compact plants, and significantly decreased primary root elongation and lateral root formation. Additionally, the transgenic plants had upward-curled leaves of narrow widths and with short petioles, and had shorter siliques and low fertility. In stems, hypocotyls, and styles, epidermal cell lengths were also significantly reduced in transgenic plants. RT-PCR analysis of transgenic plants revealed that BrSTY1, BrSRS7, and BrLRP1 regulate expression of several gibberellin (GA)- and auxin-related genes involved in morphogenesis in shoot apical regions. We conclude that BrSTY1, BrSRS7, and BrLRP1 regulate plant growth and development by regulating expression of GA- and auxin-related genes.
Copini, Paul; den Ouden, Jan; Robert, Elisabeth M. R.; Tardif, Jacques C.; Loesberg, Walter A.; Goudzwaard, Leo; Sass-Klaassen, Ute
2016-01-01
Spring flooding in riparian forests can cause significant reductions in earlywood-vessel size in submerged stem parts of ring-porous tree species, leading to the presence of ‘flood rings’ that can be used as a proxy to reconstruct past flooding events, potentially over millennia. The mechanism of flood-ring formation and the relation with timing and duration of flooding are still to be elucidated. In this study, we experimentally flooded 4-year-old Quercus robur trees at three spring phenophases (late bud dormancy, budswell, and internode expansion) and over different flooding durations (2, 4, and 6 weeks) to a stem height of 50 cm. The effect of flooding on root and vessel development was assessed immediately after the flooding treatment and at the end of the growing season. Ring width and earlywood-vessel size and density were measured at 25- and 75-cm stem height and collapsed vessels were recorded. Stem flooding inhibited earlywood-vessel development in flooded stem parts. In addition, flooding upon budswell and internode expansion led to collapsed earlywood vessels below the water level. At the end of the growing season, mean earlywood-vessel size in the flooded stem parts (upon budswell and internode expansion) was always reduced by approximately 50% compared to non-flooded stem parts and 55% compared to control trees. This reduction was already present 2 weeks after flooding and occurred independent of flooding duration. Stem and root flooding were associated with significant root dieback after 4 and 6 weeks and mean radial growth was always reduced with increasing flooding duration. By comparing stem and root flooding, we conclude that flood rings only occur after stem flooding. As earlywood-vessel development was hampered during flooding, a considerable number of narrow earlywood vessels present later in the season, must have been formed after the actual flooding events. Our study indicates that root dieback, together with strongly reduced hydraulic conductivity due to anomalously narrow earlywood vessels in flooded stem parts, contribute to reduced radial growth after flooding events. Our findings support the value of flood rings to reconstruct spring flooding events that occurred prior to instrumental flood records. PMID:27379108
Ren, S L; Heremans, J J; Gaspe, C K; Vijeyaragunathan, S; Mishima, T D; Santos, M B
2013-10-30
Low-temperature Aharonov-Bohm oscillations in the magnetoresistance of mesoscopic interferometric rings patterned on an InGaAs/InAlAs heterostructure are investigated for their dependence on excitation current and temperature. The rings have an average radius of 650 nm, and a lithographic arm width of 300 nm, yielding pronounced interference oscillations over a wide range of magnetic fields. Apart from a current and temperature dependence, the oscillation amplitude also shows a quasi-periodic modulation with applied magnetic field. The phase coherence length is extracted by analysis of the fundamental and higher Fourier components of the oscillations, and by direct analysis of the amplitude and its dependence on parameters. It is concluded that the Thouless energy forms the measure of excitation energies for quantum decoherence. The amplitude modulation finds an explanation in the effect of the magnetic flux threading the finite width of the interferometer arms.
NASA Astrophysics Data System (ADS)
Du, Zhiyuan; Hu, Bin; Cyril, Planchon; Liu, Juan; Wang, Yongtian
2017-10-01
Local surface plasmonic resonance (LSPR) produced by metallic nano-structures is often sensitive to the refractive index of the surrounding media and can be applied for sensing. However, it often suffers from large line width caused by large plasmonic radiative damping, especially in the infrared (IR) frequencies, which reduces the sensitivity. Here we propose a hybrid structure consists of a graphene stripe and a gold gap-ring at short-IR frequencies (1-3 µm). Due to the low loss and high plasmonic confinement of graphene, LSPR line width of 6 nm is obtained. In addition, due to the strong coupling of the gold gap-ring with graphene stripe, the intensity of graphene LSPR is enhanced by 100 times. Simulation results show that the sensitivity of the sensor is ~1000 nm/RIU (refractive index unit) and the figure of merit (FoM) can reach up to 383.
NASA Astrophysics Data System (ADS)
Bi, Yingfeng; Xu, Jianchu; Yang, Jinchao; Li, Zongshan; Gebrekirstos, Aster; Liang, Eryuan; Zhang, Shibao; Yang, Yang; Yang, Yongping; Yang, Xuefei
2017-06-01
Changes in minimum winter temperature (MWT) and their potential effects on plant growth and development have been gaining increased scientific attention. To better understand these changes across long temporal scales, the present study used dendroclimatological techniques to assess variations in MWT in Southwestern China. Using data from Rhododendron species distributed in areas above the tree-line, a regional composite chronology was generated for a 341-year period. Based on the significant negative correlation between MWT values and ring-width, the most reliable parts of this chronological data were then used to reconstruct MWT values for the past 211 years. This reconstructed MWT series showed decadal to multi-decadal fluctuations. Three distinct cold periods prevailed during 1823-1858, 1882-1891 and 1922-1965, while four warm intervals occurred in 1800-1822, 1858-1881, 1892-1921 and 1966-2011. Our reconstructed MWT reveals a warming trend over the most recent eight decades, which is in agreement with instrumental observations. However, the MWT values and rate of warming over the past seven decades did not exceed those found in the reconstructed temperature data for the past 211 years. Spatial correlations reveal that the MWT in Southwest China is strongly associated with regional temperatures in the Eastern and Central Himalaya, Northern China, and the Indian Peninsula. Larger scale climate oscillations of the Western Pacific and Northern Indian Ocean as well as the North Atlantic Oscillation probably influenced the region's temperature in the past.
NASA Astrophysics Data System (ADS)
Gennaretti, Fabio; Gea-Izquierdo, Guillermo; Boucher, Etienne; Berninger, Frank; Arseneault, Dominique; Guiot, Joel
2017-11-01
A better understanding of the coupling between photosynthesis and carbon allocation in the boreal forest, together with its associated environmental factors and mechanistic rules, is crucial to accurately predict boreal forest carbon stocks and fluxes, which are significant components of the global carbon budget. Here, we adapted the MAIDEN ecophysiological forest model to consider important processes for boreal tree species, such as nonlinear acclimation of photosynthesis to temperature changes, canopy development as a function of previous-year climate variables influencing bud formation and the temperature dependence of carbon partition in summer. We tested these modifications in the eastern Canadian taiga using black spruce (Picea mariana (Mill.) B.S.P.) gross primary production and ring width data. MAIDEN explains 90 % of the observed daily gross primary production variability, 73 % of the annual ring width variability and 20-30 % of its high-frequency component (i.e., when decadal trends are removed). The positive effect on stem growth due to climate warming over the last several decades is well captured by the model. In addition, we illustrate how we improve the model with each introduced model adaptation and compare the model results with those of linear response functions. Our results demonstrate that MAIDEN simulates robust relationships with the most important climate variables (those detected by classical response-function analysis) and is a powerful tool for understanding how environmental factors interact with black spruce ecophysiology to influence present-day and future boreal forest carbon fluxes.
Forest resilience to drought varies across biomes.
Gazol, Antonio; Camarero, Jesus Julio; Vicente-Serrano, Sergio M; Sánchez-Salguero, Raúl; Gutiérrez, Emilia; de Luis, Martin; Sangüesa-Barreda, Gabriel; Novak, Klemen; Rozas, Vicente; Tíscar, Pedro A; Linares, Juan C; Martín-Hernández, Natalia; Martínez Del Castillo, Edurne; Ribas, Montse; García-González, Ignacio; Silla, Fernando; Camisón, Alvaro; Génova, Mar; Olano, José M; Longares, Luis A; Hevia, Andrea; Tomás-Burguera, Miquel; Galván, J Diego
2018-05-01
Forecasted increase drought frequency and severity may drive worldwide declines in forest productivity. Species-level responses to a drier world are likely to be influenced by their functional traits. Here, we analyse forest resilience to drought using an extensive network of tree-ring width data and satellite imagery. We compiled proxies of forest growth and productivity (TRWi, absolutely dated ring-width indices; NDVI, Normalized Difference Vegetation Index) for 11 tree species and 502 forests in Spain corresponding to Mediterranean, temperate, and continental biomes. Four different components of forest resilience to drought were calculated based on TRWi and NDVI data before, during, and after four major droughts (1986, 1994-1995, 1999, and 2005), and pointed out that TRWi data were more sensitive metrics of forest resilience to drought than NDVI data. Resilience was related to both drought severity and forest composition. Evergreen gymnosperms dominating semi-arid Mediterranean forests showed the lowest resistance to drought, but higher recovery than deciduous angiosperms dominating humid temperate forests. Moreover, semi-arid gymnosperm forests presented a negative temporal trend in the resistance to drought, but this pattern was absent in continental and temperate forests. Although gymnosperms in dry Mediterranean forests showed a faster recovery after drought, their recovery potential could be constrained if droughts become more frequent. Conversely, angiosperms and gymnosperms inhabiting temperate and continental sites might have problems to recover after more intense droughts since they resist drought but are less able to recover afterwards. © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Arthur, N. A.; Foster, J. E.; Barnat, E. V.
2018-05-01
Two-dimensional electron density measurements are made in a magnetic ring cusp discharge using laser collisional induced fluorescence. The magnet rings are isolated from the anode structure such that they can be biased independently in order to modulate electron flows through the magnetic cusps. Electron density images are captured as a function of bias voltage in order to assess the effects of current flow through the cusp on the spatial extent of the cusp. We anticipated that for a fixed current density being funneled through the magnetic cusp, the leak width would necessarily increase. Unexpectedly, the leak width, as measured by LCIF images, does not increase. This suggests that the current density is not constant, and that possibly either electrons are being heated or additional ionization events are occurring within the cusp. Spatially resolving electron temperature would be needed to determine if electrons are being heated within the cusp. We also observe breakdown of the anode magnetosheath and formation of anode spots at high bias voltage.
An experimental study of miscible viscous fingering of annular ring
NASA Astrophysics Data System (ADS)
Nagatsu, Yuichiro; Othman, Hamirul Bin; Mishra, Manoranjan
2017-11-01
Understanding the viscous fingering (VF) dynamics of finite width sample is important in the fields especially such as liquid chromatography and groundwater contamination and mixing in microfluidics. In this paper, we experimentally investigate such hydrodynamical morphology of VF using a Hele-Shaw flow system in which a miscible annular ring of fluid is displaced radially. Experiments are performed to investigate the effects of the sample volume, the effects of dispersion and log mobility ratio R on the dynamics of VF pattern and onset of such instability. Depending whether the finite width ring is more or less viscous than the carrier fluid, the log mobility ratio R becomes positive or negative respectively. The experiments are successfully conducted to obtain the VF patterns for R>0 and R<0, of the finite annular ring at the inner and outer radial interfaces, respectively. It is found that in the radial displacement, the inward finger moves slower than the outward finger. The experimental results are found to be qualitatively in good agreement with the corresponding linear stability analysis and non-linear simulations results available in the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Weihua, E-mail: linwh-whu@hotmail.com; Wang, Qian; Dong, Anhua
2014-11-15
In this paper, we systematically investigate the optical property and refractive index sensitivity (RIS) of metal elliptical nano-ring (MENR) arranged in rectangle lattice by finite-difference time-domain method. Eight kinds of considered MENRs are divided into three classes, namely fixed at the same outer size, at the same inner size, and at the same middle size. All MENR arrays show a bonding mode local surface plasmon resonance (LSPR) peak in the near-infrared region under longitudinal and transverse polarizations, and lattice diffraction enhanced LSPR peaks emerge, when the LSPR peak wavelength (LSPRPW) matches the effective lattice constant of the array. The LSPRPWmore » is determined by the charge moving path length, the parallel and cross interactions induced by the stable distributed charges, and the moving charges inter-attraction. High RIS can be achieved by small particle distance arrays composed of MENRs with big inner size and small ring-width. On the other hand, for a MENR array, the comprehensive RIS (including RIS and figure of merit) under transverse polarization is superior to that under longitudinal polarization. Furthermore, on condition that compared arrays are fixed at the same lattice constant, the phenomenon that the RIS of big ring-width MENR arrays may be higher than that of small ring-width MENR arrays only appears in the case of compared arrays with relatively small lattice constant and composed of MENRs fixed at the same inner size simultaneously. Meanwhile, the LSPRPW of the former MENR arrays is also larger than that of the latter MENR arrays. Our systematic results may help experimentalists work with this type of systems.« less
Ma, Yongyong; Liu, Yu; Song, Huiming; Sun, Junyan; Lei, Ying; Wang, Yanchao
2015-01-01
Tree-ring samples from Chinese Pine (Pinus tabulaeformis Carr.) that were collected in the Taihe Mountains on the western Loess Plateau, China, were used to analyze the effects of climate and drought on radial growth and to reconstruct the mean April-June Standardized Precipitation Evapotranspiration Index (SPEI) during the period 1730-2012 AD. Precipitation positively affected tree growth primarily during wet seasons, while temperature negatively affected tree growth during dry seasons. Tree growth responded positively to SPEI at long time scales most likely because the trees were able to withstand water deficits but lacked a rapid response to drought. The 10-month scale SPEI was chosen for further drought reconstruction. A calibration model for the period 1951-2011 explained 51% of the variance in the modeled SPEI data. Our SPEI reconstruction revealed long-term patterns of drought variability and captured some significant drought events, including the severe drought of 1928-1930 and the clear drying trend since the 1950s which were widespread across northern China. The reconstruction was also consistent with two other reconstructions on the western Loess Plateau at both interannual and decadal scales. The reconstructed SPEI series showed synchronous variations with the drought/wetness indices and spatial correlation analyses indicated that this reconstruction could be representative of large-scale SPEI variability in northern China. Period analysis discovered 128-year, 25-year, 2.62-year, 2.36-year, and 2.04-year cycles in this reconstruction. The time-dependency of the growth response to drought should be considered in further studies of the community dynamics. The SPEI reconstruction improves the sparse network of long-term climate records for an enhanced understanding of climatic variability on the western Loess Plateau, China.
Ma, Yongyong; Liu, Yu; Song, Huiming; Sun, Junyan; Lei, Ying; Wang, Yanchao
2015-01-01
Tree-ring samples from Chinese Pine (Pinus tabulaeformis Carr.) that were collected in the Taihe Mountains on the western Loess Plateau, China, were used to analyze the effects of climate and drought on radial growth and to reconstruct the mean April-June Standardized Precipitation Evapotranspiration Index (SPEI) during the period 1730–2012 AD. Precipitation positively affected tree growth primarily during wet seasons, while temperature negatively affected tree growth during dry seasons. Tree growth responded positively to SPEI at long time scales most likely because the trees were able to withstand water deficits but lacked a rapid response to drought. The 10-month scale SPEI was chosen for further drought reconstruction. A calibration model for the period 1951–2011 explained 51% of the variance in the modeled SPEI data. Our SPEI reconstruction revealed long-term patterns of drought variability and captured some significant drought events, including the severe drought of 1928–1930 and the clear drying trend since the 1950s which were widespread across northern China. The reconstruction was also consistent with two other reconstructions on the western Loess Plateau at both interannual and decadal scales. The reconstructed SPEI series showed synchronous variations with the drought/wetness indices and spatial correlation analyses indicated that this reconstruction could be representative of large-scale SPEI variability in northern China. Period analysis discovered 128-year, 25-year, 2.62-year, 2.36-year, and 2.04-year cycles in this reconstruction. The time-dependency of the growth response to drought should be considered in further studies of the community dynamics. The SPEI reconstruction improves the sparse network of long-term climate records for an enhanced understanding of climatic variability on the western Loess Plateau, China. PMID:26207621
Dendrochronology and lakes: using tree-rings of alder to reconstruct lake levels
NASA Astrophysics Data System (ADS)
van der Maaten, Ernst; Buras, Allan; Scharnweber, Tobias; Simard, Sonia; Kaiser, Knut; Lorenz, Sebastian; van der Maaten-Theunissen, Marieke; Wilmking, Martin
2014-05-01
Climate change is considered a major threat for ecosystems around the world. Assessing its effects is challenging, amongst others, as we are unsure how ecosystems may respond to climate conditions they were not exposed to before. However, increased insight may be obtained by analyzing responses of ecosystems to past climate variability. In this respect, lake ecosystems appear as valuable sentinels, because they provide direct and indirect indicators of change through effects of climate. Lake-level fluctuations of closed catchments, for example, reflect a dynamic water balance, provide detailed insight in past moisture variations, and thereby allow for assessments of effects of anticipated climate change. Up to now, lake-level data are mostly obtained from gauging records and reconstructions from sediments and landforms. However, these records are in many cases only available over relatively short time periods, and, since geoscientific work is highly demanding, lake-level reconstructions are lacking for many regions. Here, we present and discuss an alternative method to reconstruct lake levels, which is based on tree-ring data of black alder (Alnus glutinosa L.). This tree species tolerates permanently waterlogged and temporally flooded conditions (i.e. riparian vegetation), and is often found along lakeshores. As the yearly growth of trees varies depending upon the experienced environmental conditions, annual rings of black alder from lakeshore vegetation likely capture information on variations in water table, and may therefore be used to reconstruct lake levels. Although alder is a relatively short-lived tree species, the frequent use of its' decay-resistant wood in foundations of historical buildings offers the possibility of extending living tree-chronologies back in time for several centuries. In this study, the potential to reconstruct lake-level fluctuations from tree-ring chronologies of black alder is explored for three lake ecosystems in the Mecklenburg Lake District, northeastern Germany. Tree-ring data were collected from black alder forests surrounding the lakes 'Tiefer See', 'Drewitzer See' and 'Großer Fürstenseer See'. At all research sites, increment cores were extracted from at least 15 trees (2 cores per tree) using an increment borer. In the tree-ring lab DendroGreif, these cores were prepared and annual tree-ring widths were measured. Thereafter, site-specific tree-ring chronologies were built using established detrending and standardization procedures. Preliminary results show that the growth of alder reacts upon water level fluctuations. We visually and statistically compare the developed tree-ring chronologies with historical lake-level records, and retrospectively model lake levels. Findings will be presented while critically reflecting upon the quality of these reconstructions.
Jochner, Matthias; Bugmann, Harald; Nötzli, Magdalena; Bigler, Christof
2017-10-01
Upper treeline ecotones are important life form boundaries and particularly sensitive to a warming climate. Changes in growth conditions at these ecotones have wide-ranging implications for the provision of ecosystem services in densely populated mountain regions like the European Alps. We quantify climate effects on short- and long-term tree growth responses, focusing on among-tree variability and potential feedback effects. Although among-tree variability is thought to be substantial, it has not been considered systematically yet in studies on growth-climate relationships. We compiled tree-ring data including almost 600 trees of major treeline species ( Larix decidua , Picea abies , Pinus cembra , and Pinus mugo ) from three climate regions of the Swiss Alps. We further acquired tree size distribution data using unmanned aerial vehicles. To account for among-tree variability, we employed information-theoretic model selections based on linear mixed-effects models (LMMs) with flexible choice of monthly temperature effects on growth. We isolated long-term trends in ring-width indices (RWI) in interaction with elevation. The LMMs revealed substantial amounts of previously unquantified among-tree variability, indicating different strategies of single trees regarding when and to what extent to invest assimilates into growth. Furthermore, the LMMs indicated strongly positive temperature effects on growth during short summer periods across all species, and significant contributions of fall ( L. decidua ) and current year's spring ( L. decidua , P. abies ). In the longer term, all species showed consistently positive RWI trends at highest elevations, but different patterns with decreasing elevation. L. decidua exhibited even negative RWI trends compared to the highest treeline sites, whereas P. abies , P. cembra , and P. mugo showed steeper or flatter trends with decreasing elevation. This does not only reflect effects of ameliorated climate conditions on tree growth over time, but also reveals first signs of long-suspected negative and positive feedback of climate change on stand dynamics at treeline.
Ring formation in self-focusing of electromagnetic beams in plasmas
NASA Astrophysics Data System (ADS)
Faisal, M.; Mishra, S. K.; Verma, M. P.; Sodha, M. S.
2007-10-01
This article presents a paraxial theory of ring formation as an initially Gaussian beam propagates in a nonlinear plasma, characterized by significant collisional or ponderomotive nonlinearity. Regions in the axial irradiance-(beamwidth)-2 space, for which the ring formation occurs and the paraxial theory is valid, have been characterized; for typical points in these regions the dependence of the beam width parameter and the radial distribution of irradiance on the distance has been specifically investigated and discussed.
NASA Astrophysics Data System (ADS)
Jacob, Miro; De Ridder, Maaike; Frankl, Amaury; Guyassa, Etefa; Beeckman, Hans; Nyssen, Jan
2014-05-01
The increasing environmental and human pressure on the vulnerable environment of the North Ethiopian highlands requires sustainable management to avoid further land degradation. High altitude forests play a key role in this environmental balance and are very important for local livelihoods. They function as a hygric buffer by capturing and storing rainfall, which reduces soil erosion and protects against flooding, landslides and rock fall. The hygric buffer effect of mountain forests also provides water for downstream sources and for agriculture in the surrounding lowlands. Improved understanding of the growing patterns, ring formation and forest structure of this afro-alpine high altitude Erica arborea L. forests is essential to improve sustainable forest management practices. This paper studies two mountain forests in the North Ethiopian Highlands under contrasting management conditions; Lib Amba of the Abune Yosef Mt. range (12°04'N, 39°22'E, 3993 m a.s.l.) which is completely protected since five years and Mt. Ferrah Amba (12°52'N, 39°30'E, 3939 m a.s.l.) which is still strongly influenced by anthropo-zoogenic impacts. Dendrochronological results from cambial marked stem discs show complex but annual growth ring formations that reflect these differences in anthropo-zoogenic pressure; Tree-ring width is significantly wider in Mt. Lib Amba. Improved insight in the growing pattern of Erica arborea L. forests is also given by monitoring of tree growth and seedling recruitment in experimental plots since 2012 and by studying the relation between tree growth and the geomorphology and soil thickness. Seedling recruitment and vegetation indices indicate that tree growth is significantly better in the protected forest of Lib Amba. One of the key elements for sustainable land management is the creation of forests at critical locations. Insight in the response of tree growth to different types of land management and different morphological conditions can help to identify these critical locations. But most importantly, dendrochronological results have proven to be a valuable tool for objective validation of the success of land management strategies on a short term.
Mandre, Malle; Kask, Regino; Pikk, Jaak; Ots, Katri
2008-03-01
Long-term influence of alkaline dust (pH 12.3-12.7) pollution emitted over 40 years from a cement plant in Estonia was the reason of alkalisation (pH 6.7-7.9) and high concentrations of K, Ca and Mg in the soil of affected territories. Although dust emission has diminished during the last 10 years, the imbalances in nutrition substrate and their influence on the growth of trees are notable up to now. The study of morphological and physical properties of 70-80-year-old Scots pine (Pinus sylvestris L.) crown, stems and stemwood from three different air pollution zones showed serious deviations in comparison with a relatively healthy forest in an unpolluted area. The specimens from polluted trees, if compared to reference site, showed significantly smaller height growth, radial increment and width of annual rings of sapwood. In heartwood wider annual rings were found in polluted areas. In the period of heartwood formation the dust pollution level emitted from the plant was relatively modest and cement dust, which contains elements necessary for mineral nutrition of trees, may have acted as fertiliser. The moisture content in sapwood and heartwood, especially in the upper layers of stems, was lower in the polluted area than in reference site trees. Regression analysis revealed a strong dependence between latewood percentage and sapwood or heartwood in stems of Scots pine in all sample plots.
Gao, Chunqing; Lin, Zhifeng; Gao, Mingwei; Zhang, Yunshan; Zhu, Lingni; Wang, Ran; Zheng, Yan
2010-05-20
We present a diode-pumped, 2mum single-frequency Q-switched Tm:YAG laser. The Q-switched laser is injection seeded by a monolithic Tm:YAG nonplanar ring oscillator with the ramp-hold-fire technique. The output energy of the 2mum single-frequency Q-switched pulse is 2.23mJ, with a pulse width of 290ns and a repetition rate of 200Hz. From the heterodyne beating measurement, the frequency difference between the seed laser and the Q-switched laser is determined to be 37.66MHz, with a half-width of the symmetric spectrum of about 2 MHz.
NASA Astrophysics Data System (ADS)
Martínez-Sancho, Elisabet; Dorado-Liñán, Isabel; Gutiérrez-Merino, Emilia; Matiu, Michael; Heinrich, Ingo; Helle, Gerhard; Menzel, Annette
2017-04-01
Drought is one of the main drivers of species distribution in the Mediterranean Basin, which will be exacerbated by climate change. The increase of atmospheric CO2 concentrations (Ca) has been related to enhanced tree growth and intrinsic water use efficiency (iWUE). However, in the Mediterranean Basin this 'fertilizing' effect should compensate the potential drought-induced growth reduction to maintain forest productivity at a comparable level. This is particularly relevant for temperate species reaching their southern distribution limits and/or the limits of their climatic niche in this region. We investigated tree growth and physiological responses of Scots pine (Pinus sylvestris L.) and sessile oak (Quercus petraea (Matt.) Liebl.) stands located at their southern distribution limits using annually resolved tree-ring width and δ13C chronologies for the period 1960-2012. The selected stands were sampled in Spain, France, Italy, Slovenia, Bulgaria, and Romania. Wood cores were extracted at each site and tree-ring width and δ13C were measured. Basal area increment (BAI) was calculated as a surrogate of secondary growth and 13C discrimination (Δ), leaf intercellular CO2 concentration (Ci) and iWUE were estimated from δ13C values. The temporal trends of BAI, Δ, Ci and iWUE, as well as in climatic variables (i.e. temperature, precipitation and potential evapotranspiration derived from CRU TS3.23 dataset) were calculated per site for the study period. Our specific objectives were (i) to test if rising atmospheric CO2 concentrations and changes in climate may have induced shifts in tree growth and ecophysiological proxies; (ii) to determine whether and how changes in iWUE are related to radial growth rates; and (iii) to assess site-specific physiological adjustments to increased atmospheric CO2 concentrations over the studied period. Preliminary results showed a generalized increase in Ci, and consequently in iWUE, at all study sites. Scots pine stands displayed a significant decreased in BAI likely induced by summer droughts, leading to a negative relationship between iWUE and BAI. In addition, most of the pine stands kept a constant Ci/Ca over the study period. Sessile oak stands displayed positive growth trends over the study period and correlations of BAI with summer drought were lower and scarcer. Oak stands located in the eastern part of the Mediterranean Basin displayed a positive relationship between iWUE and BAI whereas this relationship was negative for the western stands. The Ci from most of the oak sites followed the Ca trends over time. However, oak sites with higher water availability displayed positive trends in the Ci/Ca ratio indicating a weak stomatal response.
Brownlee, Annalis H; Sullivan, Patrick F; Csank, Adam Z; Sveinbjörnsson, Bjartmar; Ellison, Sarah B Z
2016-01-01
Increment cores from the boreal forest have long been used to reconstruct past climates. However, in recent years, numerous studies have revealed a deterioration of the correlation between temperature and tree growth that is commonly referred to as divergence. In the Brooks Range of northern Alaska, USA, studies of white spruce (Picea glauca) revealed that trees in the west generally showed positive growth trends, while trees in the central and eastern Brooks Range showed mixed and negative trends during late 20th century warming. The growing season climate of the eastern Brooks Range is thought to be drier than the west. On this basis, divergent tree growth in the eastern Brooks Range has been attributed to drought stress. To investigate the hypothesis that drought-induced stomatal closure can explain divergence in the Brooks Range, we synthesized all of the Brooks Range white spruce data available in the International Tree Ring Data Bank (ITRDB) and collected increment cores from our primary sites in each of four watersheds along a west-to-east gradient near the Arctic treeline. For cores from our sites, we measured ring widths and calculated carbon isotope discrimination (δ13C), intrinsic water-use efficiency (iWUE), and needle intercellular CO2 concentration (C(i)) from δ13C in tree-ring alpha-cellulose. We hypothesized that trees exhibiting divergence would show a corresponding decline in δ13C, a decline in C(i), and a strong increase in iWUE. Consistent with the ITRDB data, trees at our western and central sites generally showed an increase in the strength of the temperature-growth correlation during late 20th century warming, while trees at our eastern site showed strong divergence. Divergent tree growth was not, however, associated with declining δ13C. Meanwhile, estimates of C(i) showed a strong increase at all of our study sites, indicating that more substrate was available for photosynthesis in the early 21st than in the early 20th century. Our results, which are corroborated by measurements of xylem sap flux density, needle gas exchange, and measurements of growth and δ13C along moisture gradients within each watershed, suggest that drought-induced stomatal closure is probably not the cause of 20th century divergence in the Brooks Range.
Growth ring formation in the starch granules of potato tubers.
Pilling, Emma; Smith, Alison M
2003-05-01
Starch granules from higher plants contain alternating zones of semicrystalline and amorphous material known as growth rings. The regulation of growth ring formation is not understood. We provide several independent lines of evidence that growth ring formation in the starch granules of potato (Solanum tuberosum) tubers is not under diurnal control. Ring formation is not abolished by growth in constant conditions, and ring periodicity and appearance are relatively unaffected by a change from a 24-h to a 40-h photoperiod, and by alterations in substrate supply to the tuber that are known to affect the diurnal pattern of tuber starch synthesis. Some, but not all, of the features of ring formation are consistent with the involvement of a circadian rhythm. Such a rhythm might operate by changing the relative activities of starch-synthesizing enzymes: Growth ring formation is disrupted in tubers with reduced activity of a major isoform of starch synthase. We suggest that physical as well as biological mechanisms may contribute to the control of ring formation, and that a complex interplay of several factors may by involved.
Growth Ring Formation in the Starch Granules of Potato Tubers1
Pilling, Emma; Smith, Alison M.
2003-01-01
Starch granules from higher plants contain alternating zones of semicrystalline and amorphous material known as growth rings. The regulation of growth ring formation is not understood. We provide several independent lines of evidence that growth ring formation in the starch granules of potato (Solanum tuberosum) tubers is not under diurnal control. Ring formation is not abolished by growth in constant conditions, and ring periodicity and appearance are relatively unaffected by a change from a 24-h to a 40-h photoperiod, and by alterations in substrate supply to the tuber that are known to affect the diurnal pattern of tuber starch synthesis. Some, but not all, of the features of ring formation are consistent with the involvement of a circadian rhythm. Such a rhythm might operate by changing the relative activities of starch-synthesizing enzymes: Growth ring formation is disrupted in tubers with reduced activity of a major isoform of starch synthase. We suggest that physical as well as biological mechanisms may contribute to the control of ring formation, and that a complex interplay of several factors may by involved. PMID:12746541
Michelot, Alice; Simard, Sonia; Rathgeber, Cyrille; Dufrêne, Eric; Damesin, Claire
2012-08-01
Monitoring cambial phenology and intra-annual growth dynamics is a useful approach for characterizing the tree growth response to climate change. However, there have been few reports concerning intra-annual wood formation in lowland temperate forests with high time resolution, especially for the comparison between deciduous and coniferous species. The main objective of this study was to determine how the timing, duration and rate of radial growth change between species as related to leaf phenology and the dynamics of non-structural carbohydrates (NSC) under the same climatic conditions. We studied two deciduous species, Fagus sylvatica L. and Quercus petraea (Matt.) Liebl., and an evergreen conifer, Pinus sylvestris L. During the 2009 growing season, we weekly monitored (i) the stem radial increment using dendrometers, (ii) the xylem growth using microcoring and (iii) the leaf phenology from direct observations of the tree crowns. The NSC content was also measured in the eight last rings of the stem cores in April, June and August 2009. The leaf phenology, NSC storage and intra-annual growth were clearly different between species, highlighting their contrasting carbon allocation. Beech growth began just after budburst, with a maximal growth rate when the leaves were mature and variations in the NSC content were low. Thus, beech radial growth seemed highly dependent on leaf photosynthesis. For oak, earlywood quickly developed before budburst, which probably led to the starch decrease quantified in the stem from April to June. For pine, growth began before the needles unfolding and the lack of NSC decrease during the growing season suggested that the substrates for radial growth were new assimilates of the needles from the previous year. Only for oak, the pattern determined from the intra-annual growth measured using microcoring differed from the pattern determined from dendrometer data. For all species, the ring width was significantly influenced by growth duration and not by growth rate, which differs from previous studies. The observed between-species difference at the intra-annual scale is key information for anticipating suitability of future species in temperate forests.
NASA Astrophysics Data System (ADS)
Rebenack, C.; Willoughby, H. E.; Anderson, W. T.; Cherubini, P.
2013-12-01
The South Florida coastal ecosystem is among the world's subtropical coastlines which are threatened by the potential effects of climate change. A well-developed localized paleohistory is essential in the understanding of the role climate variability/change has on both hydrological dynamics and disturbance event frequency and intensity; this understanding can then aid in the development of better predictive models. High resolution paleoclimate proxies, such as those developed from tree-ring archives, may be useful tools for extrapolating actual climate trends over time from the overlapping long-term and short-term climate cycles, such as the Atlantic Multidecadal Oscillation (AMO) and the El Niño-Southern Oscillation (ENSO). In South Florida, both the AMO and ENSO strongly influence seasonal precipitation, and a more complete grasp of how these cycles have affected the region in the past could be applied to future freshwater management practices. Dendrochronology records for the terrestrial subtropics, including South Florida, are sparse because seasonality for this region is precipitation driven; this is in contrast to the drastic temperature changes experienced in the temperate latitudes. Subtropical seasonality may lead to the complete lack of visible rings or to the formation of ring structures that may or may not represent annual growth. Fortunately, it has recently been demonstrated that Pinus elliottii trees in South Florida produce distinct annual growth rings; however ring width was not found to significantly correlate with either the AMO or ENSO. Dendrochronology studies may be taken a step beyond the physical tree-ring proxies by using the carbon isotope ratios to infer information about physiological controls and environmental factors that affect the distribution of isotopes within the plant. It has been well established that the stable isotope composition of cellulose can be related to precipitation, drought, large-scale ocean/atmospheric oscillations, and disturbance events. Because slash pine growth is dependent on water availability, a chronology developed using carbon isotopes may provide greater insight into plant stress over time and ultimately may lead to better correlations with climate oscillations. The work presented here is the result of a carbon-isotope study of four slash pine trees from Big Pine Key, Florida. The δ13C data show seasonal stomatal activity in the trees that can be linked to regional precipitation and, to a larger extent, to the ENSO cycles. In addition, there are several anomalies in the carbon isotope record that may indicate the timing of disturbance events.
Tunable plasmon-induced transparency in plasmonic metamaterial composed of three identical rings
NASA Astrophysics Data System (ADS)
Tian, Yuchen; Ding, Pei; Fan, Chunzhen
2017-10-01
We numerically investigated the plasmon-induced transparency (PIT) effect in a three-dimensional plasmonic metamaterial composed of three identical rings. It is illustrated that the PIT effect appears as a result of the destructive interference between the electric dipole and the quadrupole resonance mode. By tuning gap distance, radius or rotation angle of the metamaterial, the required transmission spectra with a narrow sharp transparency peak can be realized. In particular, it is found that an on-to-off amplitude modulation of the PIT transparency window can be achieved by moving or rotating the horizontal ring. Two dips move to high frequency and low frequency regions, respectively, in the transmission spectra by moving the horizontal ring, namely, the width of transmission peak becomes larger. With the rotation of horizontal ring, both width and position of transmission peak are kept invariant. Our designed structure achieved a maximum group index of 352 in the visible frequency range, which has a significant slow light effect. Moreover, the PIT effect is explained based on the classical two-oscillator theory, which is in well agreement with the numerical results. It indicates our proposed structure and theoretical analysis may open up avenues for the tunable control of light in highly integrated optical circuits.
Radio-frequency ring applicator: energy distributions measured in the CDRH phantom.
van Rhoon, G C; Raskmark, P; Hornsleth, S N; van den Berg, P M
1994-11-01
SAR distributions were measured in the CDRH phantom, a 1 cm fat-equivalent shell filled with an abdomen-equivalent liquid (sigma = 0.4-1.0 S m-1; dimensions 22 x 32 x 57 cm) to demonstrate the feasibility of the ring applicator to obtain deep heating. The ring electrodes were fixed in a PVC tube; diameter 48 cm, ring width 20 cm and gap width between both rings 31.6 cm. Radio-frequency energy was fed to the electrodes at eight points. The medium between the electrodes and the phantom was deionised water. The SAR distribution in the liquid tissue volume was obtained by a scanning E-field probe measuring the E-field in all three directions. With equal amplitude and phase applied to all feeding points, a uniform SAR distribution was measured in the central cross-section at 30 MHz. With RF energy supplied to only four adjacent feeding points (others were connected to a 50 omega load), the feasibility to perform amplitude steering was demonstrated; SAR values above 50% of the maximum SAR were measured in one quadrant only. SAR distributions obtained at 70 MHz showed an improved focusing ability; a maximum at the centre exists for an electric conductivity of the abdomen-equivalent tissue of 0.6 and 0.4 S m-1.
Mid-Continent Expressions of Oceanic Teleconnections Evidenced in Red Pine Tree Rings
NASA Astrophysics Data System (ADS)
Kaplan, S. W.; Wilkins, D. E.; Grissino-Mayer, H. D.; van de Gevel, S.; Weinert, M.
2005-12-01
Two stands of Red Pine ( Pinus resinosa) from Itasca State Park in northcentral Minnesota, U.S.A. were studied as part of the 2004 North American Dendroecological Fieldweek. The goal of the workshop was to evaluate the sensitivity of Pinus resinosa at its western limit to local and regional records of temperature and precipitation as well as fill a gap in the geographic network of tree-ring-climate reconstructions in the interior of North America. An unexpected finding of the research was a strong relationship between radial growth in the trees and the North Atlantic Oscillation and the Niño 3.4 indices, patterns not previously described in tree rings from the western Great Lakes region. Duplicate cores from over thirty trees were measured and crossdated to produce a stand chronology spanning 280 years (1724-2003) with an interseries correlation of 0.52 and a mean sensitivity of 0.23 based on COFECHA output. Raw measurements were standardized using a negative exponential curve to remove growth trends. Biological response functions developed with PRECON reveal that 40% of the variance in the residual chronology is explained by temperature and to a lesser degree precipitation, with warm springs (February-May) and cool summers (July) having the strongest influence on tree growth. Correlations with local station and divisional climate records support the analysis with Pinus resinosa responding most positively to warm February temperatures and cool July temperatures. Warm February-May temperatures reduce the snowpack and make moisture available to the trees in the early growing season while cool July conditions limit evaporation, again increasing moisture availability. Correlation of the Minnesota Pinus resinosa ring-width indices with values of oceanic teleconnections reveal a small but significant (r2 = ~16%, p < 0.05) influence of modes of the NAO and Niño 3.4 on tree ring growth in the upper Midwest. There is an inverse relationship between February NAO and ringwidth and a positive correlation between the Niño 3.4 index in July and August of the previous growing season and radial growth in the current year. The inverse relationship between February NAO and ringwidth is interesting as a positive NAO is generally associated with warmer and wetter winter conditions in the eastern U.S. The position of Itasca State Park may be just north and west of a hinge line between the dominance of cold dry arctic air that persists over central Canada during positive phases of the NAO and the front of warm wet air advecting off of the Atlantic High and into the eastern and central U.S.
Feitosa, Darlan Tavares; Da Silva, Nelson Jorge Jr; Pires, Matheus Godoy; Zaher, Hussam; Prudente, Ana Lúcia Da Costa
2015-06-24
We described a new species of monadal coral snake of the genus Micrurus from the region of Tabatinga and Leticia, along the boundaries of Brazil, Colombia, and Peru. The new species can be distinguished from the other congeners by the combination of the following characters: absence of a pale nuchal collar; black cephalic-cap extending from rostral to firstdorsal scale and enclosing white tipped prefrontal scales; upper half of first to four supralabials and postoculars black; tricolor body coloration, with 27-31 black rings bordered by narrower white rings and 27-31 red rings; tail coloration similar to body, with alternating black rings bordered by irregular narrow white rings, red rings of the same width as the black rings; ventral scales 205-225; subcaudal scales 39-47.
[Dynamic characters of sulphur and heavy metals concentrations in Pinus taiwanensis growth rings].
Wu, Zemin; Gao, Jian; Huang, Chenglin; Hong, Shuyuan
2005-05-01
Based on the concentration analyses of S, Mn, Fe, Zn, Cu and Pb in the growth ring set of Pinus taiwanensis at the summit (1,400-1,600 m alt.) of Huangshan Mountains during past 80 years, this paper studied the dynamic characters of element concentrations in the ring set, and their relationships with atmospheric environment. The results showed that there were three levels of S concentration in the growth ring set, i.e., low concentration (less than 2 mg.kg(-1)), accounted for 58.5% of the ring set; medium (3.65-6.0 mg.kg(-1)), accounted for 24.4%; and high ( > 11.0 mg.kg(-1)), accounted for 17.1%. The dynamic change of S accumulation in the ring set displayed an obvious fluctuation, which could be divided into 3 major types, i.e., fluctuation during 1917-1960, relatively stable during 1961-1980, and gradual increase after 1981. In the growth ring set of 1935-1938, 1959-1960, and recent 10 years, the S accumulation concentrations were all higher than 11 mg.kg(-1), suggesting the relatively high atmospheric S concentration in those periods. There was a significant correlation between the increase of tourist amount in Huangshan scenic spot and the S concentration in growth ring set. The fuel fume centralized in some places might result in the atmospheric pollution at local scale, which in turn, might influence the S accumulation in growth ring set. The Pb accumulation concentration in the ring set was less than the background value in soil. The accumulation concentrations of Mn, Fe, Zn and Cu showed fluctuation characteristics, with independence of each other. The accumulation of Zn and Cu in growth rings had no correlation with tree age, while that of Mn and Fe was in adverse. The Mn concentration in the growth ring set decreased with tree age but increased in recent growth rings, while the Fe concentration was on the contrary, which needed further study.
Bond-Lamberty, Ben; Rocha, Adrian V; Calvin, Katherine; Holmes, Bruce; Wang, Chuankuan; Goulden, Michael L
2014-01-01
Most North American forests are at some stage of post-disturbance regrowth, subject to a changing climate, and exhibit growth and mortality patterns that may not be closely coupled to annual environmental conditions. Distinguishing the possibly interacting effects of these processes is necessary to put short-term studies in a longer term context, and particularly important for the carbon-dense, fire-prone boreal forest. The goals of this study were to combine dendrochronological sampling, inventory records, and machine-learning algorithms to understand how tree growth and death have changed at one highly studied site (Northern Old Black Spruce, NOBS) in the central Canadian boreal forest. Over the 1999-2012 inventory period, mean tree diameter increased even as stand density and basal area declined significantly. Tree mortality averaged 1.4 ± 0.6% yr-(1), with most mortality occurring in medium-sized trees; new recruitment was minimal. There have been at least two, and probably three, significant influxes of new trees since stand initiation, but none in recent decades. A combined tree ring chronology constructed from sampling in 2001, 2004, and 2012 showed several periods of extreme growth depression, with increased mortality lagging depressed growth by ~5 years. Higher minimum and maximum air temperatures exerted a negative influence on tree growth, while precipitation and climate moisture index had a positive effect; both current- and previous-year data exerted significant effects. Models based on these variables explained 23-44% of the ring-width variability. We suggest that past climate extremes led to significant mortality still visible in the current forest structure, with decadal dynamics superimposed on slower patterns of fire and succession. These results have significant implications for our understanding of previous work at NOBS, the carbon sequestration capability of old-growth stands in a disturbance-prone landscape, and the sustainable management of regional forests in a changing climate.
NASA Astrophysics Data System (ADS)
Rebenack, C.; Anderson, W. T.; Cherubini, P.
2012-12-01
The South Florida coastal ecosystem is among the world's subtropical coastlines which are threatened by the potential effects of climate change. A well-developed localized paleohistory is essential in the understanding of the role climate variability/change has on both hydrological dynamics and disturbance event frequency and intensity; this understanding can then aid in the development of better predictive models. High resolution paleoclimate proxies, such as those developed from tree-ring archives, may be useful tools for extrapolating actual climate trends over time from the overlapping long-term and short-term climate cycles, such as the Atlantic Multidecadal Oscillation (AMO) and the El Niño-Southern Oscillation (ENSO). In South Florida, both the AMO and ENSO strongly influence seasonal precipitation, and a more complete grasp of how these cycles have affected the region in the past could be applied to future freshwater management practices. Dendrochronology records for the terrestrial subtropics, including South Florida, are sparse because seasonality for this region is precipitation-driven; this is in contrast to the drastic temperature changes experienced in the temperate latitudes. Subtropical seasonality may lead to the complete lack of visible rings or to the formation of ring structures that may or may not represent annual growth. Fortunately, it has recently been demonstrated that Pinus elliottii trees in South Florida produce distinct annual growth rings; however ring width was not found to significantly correlate with either the AMO or ENSO. Dendrochronology studies may be taken a step beyond the physical tree-ring proxies by using the carbon isotope ratios to infer information about physiological controls and environmental factors that affect the distribution of isotopes within the plant. It has been well established that the stable isotope composition of cellulose can be related to precipitation, drought, large-scale ocean/atmospheric oscillations, and disturbance events, such as tropical cyclone impacts. Because slash pine growth is dependent on water availability, a chronology developed using carbon isotopes may provide greater insight into plant stress over time and ultimately may lead to better correlations with climate oscillations. The work presented here is the result of a carbon-isotope study of four slash pine trees located across a freshwater gradient on Big Pine Key, Florida. A site chronology has been developed by cross-dating the δ13C records for each of the trees. The tree located on the distal edge of the freshwater gradient shows an overall enriched isotopic signature over time compared to the trees growing over a deeper part of the local freshwater lens, indicating that these trees are sensitive to water stress. In addition, the carbon isotope data show seasonal stomatal activity in the trees and indicate the timing of two disturbance events.
Microwave-assisted one-step patterning of aqueous colloidal silver.
Yang, G; Zhou, Y W; Guo, Z R; Wan, Y; Ding, Q; Bai, T T; Wang, C L; Gu, N
2012-07-05
A new approach of utilizing microwave to pattern gradient concentric silver nanoparticle ring structures has been presented. The width and height of a single ring and the space between adjacent rings can be adjusted by changing the silver colloidal concentration and the microwave output power. By simply enhancing the ambient vapour pressure to the saturated value during microwave-assisted evaporation, sub-100 nm rings can be deposited in between adjacent micro-rings over a distance of millimetres. Combined with microwave sintering, this approach can also create conductive silver tracks in a single step, showing huge potential in fabricating micro- and nano-electronic devices in an ultra-fast and cost-effective fashion.
[Research advances in dendrochronology].
Fang, Ke-Yan; Chen, Qiu-Yan; Liu, Chang-Zhi; Cao, Chun-Fu; Chen, Ya-Jun; Zhou, Fei-Fei
2014-07-01
Tree-ring studies in China have achieved great advances since the 1990s, particularly for the dendroclimatological studies which have made some influence around the world. However, because of the uneven development, limited attention has been currently paid on the other branches of dendrochronology. We herein briefly compared the advances of dendrochronology in China and of the world and presented suggestions on future dendrochronological studies. Large-scale tree-ring based climate reconstructions in China are highly needed by employing mathematical methods and a high quality tree-ring network of the ring-width, density, stable isotope and wood anatomy. Tree-ring based field climate reconstructions provide potentials on explorations of climate forcings during the reconstructed periods via climate diagnosis and process simulation.
Rita, Angelo; Borghetti, Marco; Todaro, Luigi; Saracino, Antonio
2016-01-01
In the Mediterranean region, the widely predicted rise in temperature, change in the precipitation pattern, and increase in the frequency of extreme climatic events are expected to alter the shape of ecological communities and to affect plant physiological processes that regulate ecosystem functioning. Although change in the mean values are important, there is increasing evidence that plant distribution, survival, and productivity respond to extremes rather than to the average climatic condition. The present study aims to assess the effects of both mean and extreme climatic conditions on radial growth and functional anatomical traits using long-term tree-ring time series of two co-existing Quercus spp. from a drought-prone site in Southern Italy. In particular, this is the first attempt to apply the Generalized Additive Model for Location, Scale, and Shape (GAMLSS) technique and Bayesian modeling procedures to xylem traits data set, with the aim of (i) detecting non-linear long-term responses to climate and (ii) exploring relationships between climate extreme and xylem traits variability in terms of probability of occurrence. This study demonstrates the usefulness of long-term xylem trait chronologies as records of environmental conditions at annual resolution. Statistical analyses revealed that most of the variability in tree-ring width and specific hydraulic conductivity might be explained by cambial age. Additionally, results highlighted appreciable relationships between xylem traits and climate variability more than tree-ring width, supporting also the evidence that the plant hydraulic traits are closely linked to local climate extremes rather than average climatic conditions. We reported that the probability of extreme departure in specific hydraulic conductivity (Ks) rises at extreme values of Standardized Precipitation Index (SPI). Therefore, changing frequency or intensity of extreme events might overcome the adaptive limits of vascular transport, resulting in substantial reduction of hydraulic functionality and, hence increased incidence of xylem dysfunctions.
Rita, Angelo; Borghetti, Marco; Todaro, Luigi; Saracino, Antonio
2016-01-01
In the Mediterranean region, the widely predicted rise in temperature, change in the precipitation pattern, and increase in the frequency of extreme climatic events are expected to alter the shape of ecological communities and to affect plant physiological processes that regulate ecosystem functioning. Although change in the mean values are important, there is increasing evidence that plant distribution, survival, and productivity respond to extremes rather than to the average climatic condition. The present study aims to assess the effects of both mean and extreme climatic conditions on radial growth and functional anatomical traits using long-term tree-ring time series of two co-existing Quercus spp. from a drought-prone site in Southern Italy. In particular, this is the first attempt to apply the Generalized Additive Model for Location, Scale, and Shape (GAMLSS) technique and Bayesian modeling procedures to xylem traits data set, with the aim of (i) detecting non-linear long-term responses to climate and (ii) exploring relationships between climate extreme and xylem traits variability in terms of probability of occurrence. This study demonstrates the usefulness of long-term xylem trait chronologies as records of environmental conditions at annual resolution. Statistical analyses revealed that most of the variability in tree-ring width and specific hydraulic conductivity might be explained by cambial age. Additionally, results highlighted appreciable relationships between xylem traits and climate variability more than tree-ring width, supporting also the evidence that the plant hydraulic traits are closely linked to local climate extremes rather than average climatic conditions. We reported that the probability of extreme departure in specific hydraulic conductivity (Ks) rises at extreme values of Standardized Precipitation Index (SPI). Therefore, changing frequency or intensity of extreme events might overcome the adaptive limits of vascular transport, resulting in substantial reduction of hydraulic functionality and, hence increased incidence of xylem dysfunctions. PMID:27532008
Peng, Jianfeng; Gou, Xiaohua; Chen, Fahu; Li, Jinbao; Liu, Puxing; Zhang, Yong; Fang, Keyan
2008-08-01
Three ring-width chronologies were developed from Qilian Juniper (Sabina przewalskii Kom.) at the upper treeline along a west-east gradient in the Anyemaqen Mountains. Most chronological statistics, except for mean sensitivity (MS), decreased from west to east. The first principal component (PC1) loadings indicated that stands in a similar climate condition were most important to the variability of radial growth. PC2 loadings decreased from west to east, suggesting the difference of tree-growth between eastern and western Anyemaqen Mountains. Correlations between standard chronologies and climatic factors revealed different climatic influences on radial growth along a west-east gradient in the study area. Temperature of warm season (July-August) was important to the radial growth at the upper treeline in the whole study area. Precipitation of current May was an important limiting factor of tree growth only in the western (drier) upper treeline, whereas precipitation of current September limited tree growth in the eastern (wetter) upper treeline. Response function analysis results showed that there were regional differences between tree growth and climatic factors in various sampling sites of the whole study area. Temperature and precipitation were the important factors influencing tree growth in western (drier) upper treeline. However, tree growth was greatly limited by temperature at the upper treeline in the middle area, and was more limited by precipitation than temperature in the eastern (wetter) upper treeline.
Hacket-Pain, Andrew J; Lageard, Jonathan G A; Thomas, Peter A
2017-06-01
Interannual variation in radial growth is influenced by a range of physiological processes, including variation in annual reproductive effort, although the importance of reproductive allocation has rarely been quantified. In this study, we use long stand-level records of annual seed production, radial growth (tree ring width) and meteorological conditions to analyse the relative importance of summer drought and reproductive effort in controlling the growth of Fagus sylvatica L., a typical masting species. We show that both summer drought and reproductive effort (masting) influenced growth. Importantly, the effects of summer drought and masting were interactive, with the greatest reductions in growth found in years when high reproductive effort (i.e., mast years) coincided with summer drought. Conversely, mast years that coincided with non-drought summers were associated with little reduction in radial growth, as were drought years that did not coincide with mast years. The results show that the strength of an inferred trade-off between growth and reproduction in this species (the cost of reproduction) is dependent on environmental stress, with a stronger trade-off in years with more stressful growing conditions. These results have widespread implications for understanding interannual variability in growth, and observed relationships between growth and climate. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
49 CFR 179.400-9 - Stiffening rings.
Code of Federal Regulations, 2011 CFR
2011-10-01
... stiffening ring is given by the following formula: W = 0.78(Rt)0.5 Where: W = width of jacket effective on... consists of a closed section having two webs attached to the outer jacket, the jacket plate between the webs may be included up to the limit of twice the value of “W”, as defined in paragraph (b) of this...
Plasmonic resonance in planer split ring trimer
NASA Astrophysics Data System (ADS)
Xu, Haiqing; Li, Hongjian; Xiao, Gang
2014-12-01
We have numerically investigated the plasmon properties supported by asymmetry planer split ring trimer structures. We investigate the modification of gap distance, thickness and gap width on the transmission properties of the weak coupling model (g is larger than or equal to 120 nm, d=48 nm, t is larger than 30 nm, w1=200 nm, and w2=40 nm), as the coupling becomes weaker, the first peak sharply attenuates, the second peak slightly decreases, the transmission dip in the near-infrared region becomes shallow, and they are very sensitive to the gap distance between two small split ring pairs and the thickness and gap width of the big split ring. We also study the change of gap distance on the strong coupling model (g is smaller than or equal to 40 nm, d=24 nm, t=10 nm, w1=80 nm, and w2=20 nm), there exists a new Fano resonance peak, the strongest peak in visible region becomes symmetry, while the peak in near-infrared region becomes asymmetry. The resonator design strategy opens up a rich pathway for the implementation of optimized optical properties for specific applications.
NASA Technical Reports Server (NTRS)
West, Jeff; Yang, H. Q.; Brodnick, Jacob; Sansone, Marco; Westra, Douglas
2016-01-01
The Miles equation has long been used to predict slosh damping in liquid propellant tanks due to ring baffles. The original work by Miles identifies defined limits to its range of application. Recent evaluations of the Space Launch System identified that the Core Stage baffle designs resulted in violating the limits of the application of the Miles equation. This paper describes the work conducted by NASA/MSFC to develop methods to predict slosh damping from ring baffles for conditions for which Miles equation is not applicable. For asymptotically small slosh amplitudes or conversely large baffle widths, an asymptotic expression for slosh damping was developed and calibrated using historical experimental sub-scale slosh damping data. For the parameter space that lies between region of applicability of the asymptotic expression and the Miles equation, Computational Fluid Dynamics simulations of slosh damping were used to develop an expression for slosh damping. The combined multi-regime slosh prediction methodology is shown to be smooth at regime boundaries and consistent with both sub-scale experimental slosh damping data and the results of validated Computational Fluid Dynamics predictions of slosh damping due to ring baffles.
High quality single shot ultrafast MeV electron diffraction from a photocathode radio-frequency gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Feichao; Liu, Shengguang; Zhu, Pengfei
2014-08-15
A compact ultrafast electron diffractometer, consisting of an s-band 1.6 cell photocathode radio-frequency gun, a multi-function changeable sample chamber, and a sensitive relativistic electron detector, was built at Shanghai Jiao Tong University. High-quality single-shot transmission electron diffraction patterns have been recorded by scattering 2.5 MeV electrons off single crystalline gold and polycrystalline aluminum samples. The high quality diffraction pattern indicates an excellent spatial resolution, with the ratio of the diffraction ring radius over the ring rms width beyond 10. The electron pulse width is estimated to be about 300 fs. The high temporal and spatial resolution may open new opportunities inmore » various areas of sciences.« less
High quality single shot ultrafast MeV electron diffraction from a photocathode radio-frequency gun.
Fu, Feichao; Liu, Shengguang; Zhu, Pengfei; Xiang, Dao; Zhang, Jie; Cao, Jianming
2014-08-01
A compact ultrafast electron diffractometer, consisting of an s-band 1.6 cell photocathode radio-frequency gun, a multi-function changeable sample chamber, and a sensitive relativistic electron detector, was built at Shanghai Jiao Tong University. High-quality single-shot transmission electron diffraction patterns have been recorded by scattering 2.5 MeV electrons off single crystalline gold and polycrystalline aluminum samples. The high quality diffraction pattern indicates an excellent spatial resolution, with the ratio of the diffraction ring radius over the ring rms width beyond 10. The electron pulse width is estimated to be about 300 fs. The high temporal and spatial resolution may open new opportunities in various areas of sciences.
Particles Co-orbital to Janus and to Epimetheus: A Firefly Planetary Ring
NASA Astrophysics Data System (ADS)
Winter, Othon C.; Souza, Alexandre P. S.; Sfair, Rafael; Giuliatti Winter, Silvia M.; Mourão, Daniela C.; Foryta, Dietmar W.
2018-01-01
The Cassini spacecraft found a new and unique ring that shares the trajectory of Janus and Epimetheus, co-orbital satellites of Saturn. Performing image analysis, we found this to be a continuous ring. Its width is between 30% and 50% larger than previously announced. We also verified that the ring behaves like a firefly. It can only be seen from time to time, when Cassini, the ring, and the Sun are arranged in a particular geometric configuration, in very high phase angles. Otherwise, it remains “in the dark,” invisible to Cassini’s cameras. Through numerical simulations, we found a very short lifetime for the ring particles, less than a couple of decades. Consequently, the ring needs to be constantly replenished. Using a model of particle production due to micrometeorites impacts on the surfaces of Janus and Epimetheus, we reproduce the ring, explaining its existence and the “firefly” behavior.
No evidence of rings around Neptune
NASA Technical Reports Server (NTRS)
Elliot, J. L.; Mink, D. J.; Baron, R. L.; Dunham, E.; Pingree, J. E.; French, R. G.; Elias, J. H.; Liller, W.; Nicholson, P. D.; Jones, T. J.
1981-01-01
The results of two observations of stellar occultations of Neptune to determine if the planet has a ring system are reported. The sightings were made from Mt. Stromlo, Mauna Kea, and Cerro Tololo, noting that an equatorial ring would subtend only two arcsec of view. An upper accretion limit was defined to set the region around Neptune where rings, rather than satellites, could form. The intensities of the starlight from the two selected stars were recorded by photometers on magnetic tape during the occultation period. One of the stars did not occult, but passed through the entire region where a ring system might be present. No definitive evidence for rings was found, although an optical depth for a Neptunian ring was calculated at 0.07, with a width of more than 5 km and a radius of 31,400 km.
Douglas-fir displays a range of growth responses to ...
Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) growth in the Pacific Northwest is affected by climatic, edaphic factors and Swiss needle cast (SNC) disease. We examine Douglas-fir growth responses to temperature, dewpoint deficit (DPD), soil moisture, and SNC using time series intervention analysis of intra-annual tree-ring width data collected at nine forest stands in western Oregon, USA. The effects of temperature and SNC were similar in importance on tree growth at all sites. Previous-year DPD during the annual drought period was a key factor limiting growth regionally. Winter temperature was more important at high elevation cool sites, whereas summer temperature was more important at warm and dry sites. Growth rate increased with summer temperature to an optimum (Topt) then decreased at higher temperatures. At drier sites, temperature and water affected growth interactively such that Topt decreased with decreasing summer soil moisture. With climate change, growth rates increased at high elevation sites and declined at mid-elevation inland sites since ~1990. Growth response to climate is masked by SNC regionally. We conclude that as temperature rises and precipitation patterns shift towards wetter winters and drier summers, Douglas-fir will experience greater temperature and water stress and an increase in severity of SNC. By the end of the 21st century, climate models predict hotter, drier summers and warmer, wetter winters in the Pac
Secondary Growth and Carbohydrate Storage Patterns Differ between Sexes in Juniperus thurifera
DeSoto, Lucía; Olano, José M.; Rozas, Vicente
2016-01-01
Differences in reproductive costs between male and female plants have been shown to foster sex-related variability in growth and C-storage patterns. The extent to which differential secondary growth in dioecious trees is associated with changes in stem carbohydrate storage patterns, however, has not been fully assessed. We explored the long-term radial growth and the seasonal variation of non-structural carbohydrate (NSC) content in sapwood of 40 males and 40 females Juniperus thurifera trees at two sites. NSC content was analyzed bimonthly for 1 year, and tree-ring width was measured for the 1931–2010 period. Sex-related differences in secondary growth and carbohydrate storage were site-dependent. Under less restrictive environmental conditions females grew more and stored more non-soluble sugars than males. Our results reinforce that sex-related differences in growth and resource storage may be a consequence of local adaptation to environmental conditions. Seasonal variation in soluble sugars concentration was opposite to cambial activity, with minima seen during periods of maximal secondary growth, and did not differ between the sexes or sites. Trees with higher stem NSC levels at critical periods showed higher radial growth, suggesting a common mechanism irrespective of site or sex. Sex-related patterns of secondary growth were linked to differences in non-soluble sugars content indicating sex-specific strategies of long-term performance. PMID:27303418
Nitrited-Steel Piston Rings for Engines of High Specific Power
NASA Technical Reports Server (NTRS)
Collins, John H; Bisson, Edmond E; Schmiedlin, Ralph F
1945-01-01
Stability and control characteristics determined from tests in the Langley 19-foot pressure tunnel of a 0.2375-scale model of the Douglas XA-26 airplane are compared with those measured in flight tests of a Douglas A-26b airplane. Several designs of nitrided-steel piston rings were performance-tested under variable conditions of output. The necessity of good surface finish and conformity of the ring to the bore was indicated in the preliminary tests. Nitrided-steel rings of the same dimensions as cast-iron rings operating on the original piston were unsatisfactory, and the final design was a lighter, rectangular, thin-face-width ring used on a piston having a maximum cross-head area and a revised skirt shape. Results were obtained from single-cylinder and multicylinder engine runs.
Forests synchronize their growth in contrasting Eurasian regions in response to climate warming.
Shestakova, Tatiana A; Gutiérrez, Emilia; Kirdyanov, Alexander V; Camarero, Jesús Julio; Génova, Mar; Knorre, Anastasia A; Linares, Juan Carlos; Resco de Dios, Víctor; Sánchez-Salguero, Raúl; Voltas, Jordi
2016-01-19
Forests play a key role in the carbon balance of terrestrial ecosystems. One of the main uncertainties in global change predictions lies in how the spatiotemporal dynamics of forest productivity will be affected by climate warming. Here we show an increasing influence of climate on the spatial variability of tree growth during the last 120 y, ultimately leading to unprecedented temporal coherence in ring-width records over wide geographical scales (spatial synchrony). Synchrony in growth patterns across cold-constrained (central Siberia) and drought-constrained (Spain) Eurasian conifer forests have peaked in the early 21st century at subcontinental scales (∼ 1,000 km). Such enhanced synchrony is similar to that observed in trees co-occurring within a stand. In boreal forests, the combined effects of recent warming and increasing intensity of climate extremes are enhancing synchrony through an earlier start of wood formation and a stronger impact of year-to-year fluctuations of growing-season temperatures on growth. In Mediterranean forests, the impact of warming on synchrony is related mainly to an advanced onset of growth and the strengthening of drought-induced growth limitations. Spatial patterns of enhanced synchrony represent early warning signals of climate change impacts on forest ecosystems at subcontinental scales.
Forests synchronize their growth in contrasting Eurasian regions in response to climate warming
Shestakova, Tatiana A.; Gutiérrez, Emilia; Kirdyanov, Alexander V.; Camarero, Jesús Julio; Génova, Mar; Knorre, Anastasia A.; Linares, Juan Carlos; Sánchez-Salguero, Raúl; Voltas, Jordi
2016-01-01
Forests play a key role in the carbon balance of terrestrial ecosystems. One of the main uncertainties in global change predictions lies in how the spatiotemporal dynamics of forest productivity will be affected by climate warming. Here we show an increasing influence of climate on the spatial variability of tree growth during the last 120 y, ultimately leading to unprecedented temporal coherence in ring-width records over wide geographical scales (spatial synchrony). Synchrony in growth patterns across cold-constrained (central Siberia) and drought-constrained (Spain) Eurasian conifer forests have peaked in the early 21st century at subcontinental scales (∼1,000 km). Such enhanced synchrony is similar to that observed in trees co-occurring within a stand. In boreal forests, the combined effects of recent warming and increasing intensity of climate extremes are enhancing synchrony through an earlier start of wood formation and a stronger impact of year-to-year fluctuations of growing-season temperatures on growth. In Mediterranean forests, the impact of warming on synchrony is related mainly to an advanced onset of growth and the strengthening of drought-induced growth limitations. Spatial patterns of enhanced synchrony represent early warning signals of climate change impacts on forest ecosystems at subcontinental scales. PMID:26729860
Stationary Temperature Distribution in a Rotating Ring-Shaped Target
NASA Astrophysics Data System (ADS)
Kazarinov, N. Yu.; Gulbekyan, G. G.; Kazacha, V. I.
2018-05-01
For a rotating ring-shaped target irradiated by a heavy-ion beam, a differential equation for computing the stationary distribution of the temperature averaged over the cross section is derived. The ion-beam diameter is assumed to be equal to the ring width. Solving this equation allows one to obtain the stationary temperature distribution along the ring-shaped target depending on the ion-beam, target, and cooling-gas parameters. Predictions are obtained for the rotating target to be installed at the DC-280 cyclotron. For an existing rotating target irradiated by an ion beam, our predictions are compared with the measured temperature distribution.
Ring Counts in Second-Growth Baldcypress
W. R. Beaufait; T. C. Nelson
1957-01-01
Many thrifty, second-growth baldcypress trees (Taxodium distichum) [L.] Rich. ) appear to lay down several rings each year. These false rings may cause foresters to underestimate the growth potential of a highly prized species by overestimating the age of sample trees.
NASA Astrophysics Data System (ADS)
Werner, J.; Tolwinski-ward, S. E.
2013-12-01
Reconstructions of Swiss climate based on documentary data suggest that the year 1540 was anomalously hot and dry (Wetter and Pfister 2013, Wetter et al in prep). They stand in stark contrast to reconstructions from tree ring data (Casty et al. 2005) in which 1540 climate is within the range of average conditions. In this contribution we combine documentary and dendrochronological sources of information and account for potential nonlinearities in the response of the tree ring signal to climate in order to resolve this apparent contradiction. Our reconstruction uses a Bayesian hierarchical model, with a nonlinear, mechanisms-based model for tree-ring data (Tolwinski-Ward et al. 2010) and a multinomial model for the documentary data. The results show that the extreme heat conditions documented in written crop records of 1540 cross a biological threshold above which the formation of latewood density is not limited by temperature. We thus demonstrate that the tree ring and documentary data for 1540 are in fact consistent within the ranges of uncertainty used to interpret each source of information, and together indicate anomalously hot and dry conditions in that year, although to a lesser extend as reconstructed by Wetter and Pfister (2013). Casty et al. "Temperature and precipitation variability in the European Alps since 1500", Int. J. Climatol. 25, 1855-1880 (2005) Tolwinski-Ward et al. "An efficient forward model of the climate controls on interannual variation in tree-ring width", Clim. Dyn. 36, 2419--2439 (2010) Werner and Tolwinski-Ward, in prep. Wetter and Pfister "An underestimated record breaking event: why summer 1540 was very likely warmer than 2003", Clim. Past 9, 41-56 (2013) Wetter et al. "The European Mega-drought of 1540 - an evidence-based Worst Case Scenario" (in prep.)
Elevated temperature and CO(2) concentration effects on xylem anatomy of Scots pine.
Kilpeläinen, Antti; Gerendiain, Ane Zubizarreta; Luostarinen, Katri; Peltola, Heli; Kellomäki, Seppo
2007-09-01
We studied the effects of elevated temperature and carbon dioxide concentration ([CO(2)]) alone and together on wood anatomy of 20-year-old Scots pine (Pinus sylvestris L.) trees. The study was conducted in 16 closed chambers, providing a factorial combination of two temperature regimes and two CO(2) concentrations (ambient and elevated), with four trees in each treatment. The climate scenario included a doubling of [CO(2)] and a corresponding increase of 2-6 degrees C in temperature at the site depending on the season. Anatomical characteristics analyzed were annual earlywood, latewood and ring widths, intra-ring wood densities (earlywood, latewood and mean wood density), tracheid width, length, wall thickness, lumen diameter, wall thickness:lumen diameter ratio and mass per unit length (coarseness), and numbers of rays, resin canals and tracheids per xylem cross-sectional area. Elevated [CO(2)] increased ring width in four of six treatment years; earlywood width increased in the first two years and latewood width in the third year. Tracheid walls in both the earlywood and latewood tended to become thicker over the 6-year treatment period when temperature or [CO(2)] was elevated alone, whereas in the combined treatment they tended to become thinner relative to the tracheids of trees grown under ambient conditions. Latewood tracheid lumen diameters were larger in all the treatments relative to ambient conditions over the 6-year period, whereas lumen diameters in earlywood increased only in response to elevated [CO(2)] and were 3-6% smaller in the treatments with elevated temperature than in ambient conditions. Tracheid width, length and coarseness were greater in trees grown in elevated than in ambient temperature. The number of resin canals per mm(2) decreased in the elevated [CO(2)] treatment and increased in the elevated temperature treatments relative to ambient conditions. The treatments decreased the number of rays and tracheids per mm(2) of cross-sectional area, the greatest decrease occurring in the elevated [CO(2)] treatment. It seemed that xylem anatomy was affected more by elevated temperature than by elevated [CO(2)] and that the effects of temperature were confined to the earlywood.
Growth divergence: a challenging opportunity for dendrochronology
NASA Astrophysics Data System (ADS)
Buras, Allan; Sass-Klaassen, Ute; Wilmking, Martin
2017-04-01
Dendrochronology is an essential cornerstone of paleoclimatology and the evaluation of climate change impacts on forest ecosystems. However, a growing body of literature indicates that the standard dendrochronological approach may too rigorously neglect individualistic tree-growth (e.g. Wilmking et al., 2004, Buras et al., 2016). Amongst others, these studies showed convincing evidence that individual trees of the same species sampled at one site expressed different long-term growth patterns and therefore differing climate-growth relationships. This phenomenon is commonly termed growth divergence (GD) and possibly weakens our ability to correctly estimate past climate variability as discussed in the context of the so-called divergence phenomenon (D'Arrigo et al., 2008). In this context, climate change may naturally select for trees on the stand-level which are better adapted to future conditions. Although GD has been reported for several sites, the standard dendrochronological approach yet does not consider the existence of GD. A possible reason for this methodological persistence is the lack of detailed information on the frequency, magnitude, and impact of GD occurrence. To assess GD occurrence and related tree-individual variations in climate-growth response we conducted a global GD study by using 134 ring-width data representing 52 tree species and 16 genera distributed over 115 sites across 22 countries. Our analyses clearly reveal GD to be a common phenomenon as occurring in 85 % of all sites. GD was clearly related to the degree of tree-individual differences in climate-growth response. Respective transfer functions which appropriately accounted for GD by selection of tree-cohorts with a high share of long-term variance on average increased the precision and stability of tree-ring based climate reconstructions. Concluding, incorporation of GD assessments into the dendrochronological approach has a strong potential to improve the precision of our predictions of past climates as well as the response of forest ecosystems to climate change. Buras, A. et al. Tuning the Voices of a Choir: Detecting Ecological Gradients in Time-Series Populations. PLOS ONE 11, e0158346 (2016). Wilmking, M., Juday, G. P., Barber, V. A. & Zald, H. S. J. Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Global Change Biology 10, 1724-1736 (2004). D'Arrigo, R., Wilson, R., Liepert, B. & Cherubini, P. On the 'Divergence Problem' in Northern Forests: A review of the tree-ring evidence and possible causes. Global and Planetary Change 60, 289-305 (2008).
Interface width effect on the classical Rayleigh-Taylor instability in the weakly nonlinear regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L. F.; State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083; Ye, W. H.
2010-05-15
In this paper, the interface width effects (i.e., the density gradient effects or the density transition layer effects) on the Rayleigh-Taylor instability (RTI) in the weakly nonlinear (WN) regime are investigated by numerical simulation (NS). It is found that the interface width effects dramatically influence the linear growth rate in the linear growth regime and the mode coupling process in the WN growth regime. First, the interface width effects decrease the linear growth rate of the RTI, particularly for the short perturbation wavelengths. Second, the interface width effects suppress (reduce) the third-order feedback to the fundamental mode, which induces themore » nonlinear saturation amplitude (NSA) to exceed the classical prediction, 0.1lambda. The wider the density transition layer is, the larger the NSA is. The NSA in our NS can reach a half of its perturbation wavelength. Finally, the interface width effects suppress the generation and the growth of the second and the third harmonics. The ability to suppress the harmonics' growth increases with the interface width but decreases with the perturbation wavelength. On the whole, in the WN regime, the interface width effects stabilize the RTI, except for an enhancement of the NSA, which is expected to improve the understanding of the formation mechanism for the astrophysical jets, and for the jetlike long spikes in the high energy density physics.« less
NASA Astrophysics Data System (ADS)
Surový, P.; Dorotovič, I.; Karlovský, V.; Rodrigues, J. C.; Rybanský, M.; Fleischer, P.
2010-12-01
In this work we have focused on the analysis of the data on the annual growth of cembra pine (Pinus cembra) grown in the Kôprová dolina Valley in the High Tatra Mountains. The database covers the period of 1406 - 1970, however, the sunspot data (minima and maxima) at the NGDC web site are only available since 1610. Moreover, reliable sunspot data are only available since 1749. The results of this analysis agree with the observation made in our previous work, i.e. there is a negative impact of high SA on the pine tree growth. However, it should be noted that statistical significance of the results is low. We also applied wavelet analysis to the data on the tree growth evolution, with the results indicating growth variations' period of about 20 years (duration of approximately two solar cycles or one magnetic cycle, respectively). A negative impact of the SA was also observed in growth of a 90 year-old maritime pine tree (Pinus pinaster) grown in northern Portugal. The width of the annual rings was smaller in the years of maximum SA; furthermore, it was found that it is the latewood growth that it is affected while the earlywood growth is not, and consequently the latewood additions also show a significative negative correlation with SA.
Reconstruction of Past Climatic Variability
1976-03-01
Research Projects Agency/IPT 1400 Wilson Boulevard 7$ 10 . PROGRAM ELEMENT, PROJECT, TASK AREA S WORK UNIT NUMBERS 62706E AO 2221-3 Mr WCPOWT...Conclusions " II. INTRODUCTION 8 III. COLLECTIONS 10 A. North American Temperate Sites 10 B. North American Arctic Sites 10 C. European...Work Time Required to Collect and Process a ^ ^ 200- to 400-Year Ring-Width Chronology Statistics for 10 Tree-Ring Chronologies
Trees tell of past climates: but are they speaking less clearly today?
Briffa, K. R.
1998-01-01
The annual growth of trees, as represented by a variety of ring-width, densitometric, or chemical parameters, represents a combined record of different environmental forcings, one of which is climate. Along with climate, relatively large-scale positive growth influences such as hypothesized 'fertilization' due to increased levels of atmospheric carbon dioxide or various nitrogenous compounds, or possibly deleterious effects of 'acid rain' or increased ultra-violet radiation, might all be expected to exert some influence on recent tree growth rates. Inferring the details of past climate variability from tree-ring data remains a largely empirical exercise, but one that goes hand-in-hand with the development of techniques that seek to identify and isolate the confounding influence of local and larger-scale non-climatic factors. By judicious sampling, and the use of rigorous statistical procedures, dendroclimatology has provided unique insight into the nature of past climate variability, but most significantly at interannual, decadal, and centennial timescales. Here, examples are shown that illustrate the reconstruction of annually resolved patterns of past summer temperature around the Northern Hemisphere, as well as some more localized reconstructions, but ones which span 1000 years or more. These data provide the means of exploring the possible role of different climate forcings; for example, they provide evidence of the large-scale effects of explosive volcanic eruptions on regional and hemispheric temperatures during the last 400 years. However, a dramatic change in the sensitivity of hemispheric tree-growth to temperature forcing has become apparent during recent decades, and there is additional evidence of major tree-growth (and hence, probably, ecosystem biomass) increases in the northern boreal forests, most clearly over the last century. These possibly anthropogenically related changes in the ecology of tree growth have important implications for modelling future atmospheric CO2 concentrations. Also, where dendroclimatology is concerned to reconstruct longer (increasingly above centennial) temperature histories, such alterations of 'normal' (pre-industrial) tree-growth rates and climate-growth relationships must be accounted for in our attempts to translate the evidence of past tree growth changes.
Pouch, Alison M; Vergnat, Mathieu; McGarvey, Jeremy R; Ferrari, Giovanni; Jackson, Benjamin M; Sehgal, Chandra M; Yushkevich, Paul A; Gorman, Robert C; Gorman, Joseph H
2014-01-01
The basis of mitral annuloplasty ring design has progressed from qualitative surgical intuition to experimental and theoretical analysis of annular geometry with quantitative imaging techniques. In this work, we present an automated three-dimensional (3D) echocardiographic image analysis method that can be used to statistically assess variability in normal mitral annular geometry to support advancement in annuloplasty ring design. Three-dimensional patient-specific models of the mitral annulus were automatically generated from 3D echocardiographic images acquired from subjects with normal mitral valve structure and function. Geometric annular measurements including annular circumference, annular height, septolateral diameter, intercommissural width, and the annular height to intercommissural width ratio were automatically calculated. A mean 3D annular contour was computed, and principal component analysis was used to evaluate variability in normal annular shape. The following mean ± standard deviations were obtained from 3D echocardiographic image analysis: annular circumference, 107.0 ± 14.6 mm; annular height, 7.6 ± 2.8 mm; septolateral diameter, 28.5 ± 3.7 mm; intercommissural width, 33.0 ± 5.3 mm; and annular height to intercommissural width ratio, 22.7% ± 6.9%. Principal component analysis indicated that shape variability was primarily related to overall annular size, with more subtle variation in the skewness and height of the anterior annular peak, independent of annular diameter. Patient-specific 3D echocardiographic-based modeling of the human mitral valve enables statistical analysis of physiologically normal mitral annular geometry. The tool can potentially lead to the development of a new generation of annuloplasty rings that restore the diseased mitral valve annulus back to a truly normal geometry. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gu, H.; Townsend, P. A.; Singh, A.
2014-12-01
Urban forests provide important ecosystem services related to climate, nutrients, runoff and aesthetics. Assessment of variations in urban forest growth is critical to urban management and planning, as well as to identify responses to climate and other environmental changes. We estimated annual relative basal area increment by tree rings from 37 plots in Madison, Wisconsin and neighboring municipalities. We related relative basal area growth to variables of vegetation traits derived from remote sensing, including structure (aboveground biomass, diameter, height, basal area, crown width and crown length) from discrete-return airborne lidar, and biochemical variables (foliar nitrogen, carbon, lignin, cellulose, fiber and LMA), spectral indices (NDVI, NDWI, PRI, NDII etc.) and species composition from AVIRIS hyperspectral imagery. Variations in tree growth was mainly correlated with tree species composition (R2 = 0.29, RMSE = 0.004) with coniferous stands having a faster growth rate than broadleaf plots. Inclusion of stand basal area improved model prediction from R2 = 0.29 to 0.35, with RMSE = 0.003. Then, we assessed the growth by functional type, we found that foliar lignin concentration and the proportion of live coniferous trees explained 57% variance in the growth of conifer stands. In contrast, broadleaf forest growth was more strongly correlated with species composition and foliar carbon (R2 = 0.59, RMSE = 0.003). Finally, we compared the relative basal area growth by species. In our study area, red pine and white pine exhibited higher growth rates than other species, while white oak plots grew slowest. There is a significant negative relationship between tree height and the relative growth in red pine stands (r = -0.95), as well as a strong negative relationship between crown width and the relative growth in white pine stands (r = -0.87). Growth declines as trees grow taller and wider may partly be the result of reduced photosynthesis and water availability. We also found that canopy cellulose content was negatively correlated with growth in white oak (r = -0.59), which could be caused by trade off of carbon allocation from shoot storage to leaves. These results demonstrate the potential of lidar and hyperspectral imagery to characterize important traits associated with biomass accumulation in urban forests.
Wood Cellular Dendroclimatology: A Pilot Study on Bristlecone Pine in the Southwest US
NASA Astrophysics Data System (ADS)
Ziaco, E.; Biondi, F.; Heinrich, I.
2015-12-01
Tree-rings provide paleoclimatic records at annual to seasonal resolution for regions or periods with no instrumental climatic data. Relationships between climatic variability and wood cellular features allow for a more complete understanding of the physiological mechanisms that control the climatic response of trees. Given the increasing importance of wood anatomy as a source of dendroecological information, such studies are now starting in the US. We analyzed 10 cores of bristlecone pine (Pinus longaeva D.K. Bailey) from a high-elevation site included in the Nevada Climate-ecohydrological Assessment Network (NevCAN). Century-long chronologies (1870-2013) of wood anatomical parameters (lumen area, cell diameter, cell wall thickness) can be developed by capturing strongly contrasted microscopic images using a Confocal Laser Scanning Microscope, and then measuring cellular parameters with task-specific software. Measures of empirical signal strength were used to test the strength of the environmental information embedded in wood anatomy. Correlation functions between ring-width, cellular features, and PRISM climatic variables were produced for the period 1926-2013. Time series of anatomical features present lower autocorrelation compared to ring widths, highlighting the role of environmental conditions occurring at the time of cell formation. Mean chronologies of radial lumen length and cell diameter carry a stronger climatic signal compared to cell wall thickness, and are significantly correlated with climatic variables (maximum temperature and total precipitation) in spring (Mar-Apr) and during the growing season (Jun-Sep), whereas ring widths show weaker or no correlation. Wood anatomy holds great potential to refine dendroclimatic reconstructions at higher temporal resolution, providing better estimates of hydroclimatic variability and plant physiological adaptations in the southwest US.
Fano resonances of a ring-shaped "hexamer" cluster at near-infrared wavelength
NASA Astrophysics Data System (ADS)
Liu, Tong-Tong; Xia, Feng; Sun, Peng; Liu, Li-Li; Du, Wei; Li, Meng-Xue; Kong, Wei-Jin; Wan, Yong; Dong, Li-Feng; Yun, Mao-Jin
2018-03-01
Fano resonances have been studied intensely in the last decade, since it is an important way to decrease the resonance line width and enhance local electric field. However, achieving a Fano line-shape with both narrow line width and high spectral contrast ratio is still a challenge. In this paper, we theoretically predict the Fano resonance induced by the extinction of normal plane wave in a ring-shaped hexamer cluster at near-infrared wavelength. In order to obtain the narrow Fano line width and high spectral contrast ratio, the relationships between the Fano line-shape and the parameters of the nanostructure are analyzed in detail. The nanostructure is simulated by using commercial software based on finite element method. The simulation results show that when the structural parameters are optimized, the Fano line width can be narrowed down 0.028 eV with a contrast ratio of 86%, and the local electric field enhancement factor at the Fano resonance wavelength can reach to 36. Furthermore, the effective mode volume of the structure is 3.9 ×10-23m3 which is lower than the available literature. These results indicate many potential applications of the Fano resonance in multiwavelength surface-enhanced Raman scattering and biosensing.
Basic tree-ring sample preparation techniques for aging aspen
Lance A. Asherin; Stephen A. Mata
2001-01-01
Aspen is notoriously difficult to age because of its light-colored wood and faint annual growth rings. Careful preparation and processing of aspen ring samples can overcome these problems, yield accurate age and growth estimates, and concisely date disturbance events present in the tree-ring record. Proper collection of aspen wood is essential in obtaining usable ring...
NASA Astrophysics Data System (ADS)
Weiss, S. B.; Bunn, A. G.; Tran, T. J.; Bruening, J. M.; Salzer, M. W.; Hughes, M. K.
2016-12-01
The interpretation of ring-width patterns in high elevation Great Basin bristlecone pine is hampered by the presence of sharp ecophysiological gradients that can lead to mixed growth signals depending on topographic setting of individual trees. We have identified a temperature threshold near the upper forest border above which trees are limited more strongly by temperature, and below which trees tend to be moisture limited. We combined temperature loggers and GIS modeling at a scale of tens of meters to examine trees with different limiting factors. We found that the dual-signal patterns in radial growth can be partially explained by the topoclimate setting of individual trees, with trees in locations where growing season mean temperatures below about 7.4°C to 8°C were more strongly associated with temperature variability than with moisture availability. Using this threshold we show that it is possible to build both temperature and drought reconstructions over the common era from bristlecone pine near the alpine treeline. While our findings might allow for a better physiological understanding of bristlecone pine growth, they also raise questions about the interpretation of temperature reconstructions given the threshold nature of the growth response and the dynamic nature of the treeline ecotone over past millennia.
Climate-Induced Larch Growth Response Within the Central Siberian Permafrost Zone
NASA Technical Reports Server (NTRS)
Kharuk, Viacheslav I.; Ranson, Kenneth J.; Im, Sergei T.; Petrov, Il'ya A.
2015-01-01
Aim: estimation of larch (Larix gmelinii) growth response to current climate changes. Location: permafrost area within the northern part of Central Siberia (approximately 65.8 deg N, 98.5 deg E). Method: analysis of dendrochronological data, climate variables, drought index SPEI, GPP (gross primary production) and EVI vegetation index (both Aqua/MODIS satellite derived), and soil water content anomalies (GRACE satellite measurements of equivalent water thickness anomalies, EWTA). Results: larch tree ring width (TRW) correlated with previous year August precipitation (r = 0.63), snow accumulation (r = 0.61), soil water anomalies (r = 0.79), early summer temperatures and water vapor pressure (r = 0.73 and r = 0.69, respectively), May and June drought index (r = 0.68-0.82). There are significant positive trends of TRW since late 1980s and GPP since the year 2000. Mean TRW increased by about 50%, which is similar to post-Little Ice Age warming. TRW correlated with GPP and EVI of larch stands (r = 0.68-0.69). Main conclusions: within the permafrost zone of central Siberia larch TRW growth is limited by early summer temperatures, available water from snowmelt, water accumulated within soil in the previous year, and permafrost thaw water. Water stress is one of the limiting factors of larch growth. Larch TRW growth and GPP increased during recent decades.
Detecting influences on California drought intervals using isotopes in tree-ring cellulose
NASA Astrophysics Data System (ADS)
Kanner, L. C.; Buenning, N. H.; Stott, L. D.; Stahle, D. W.
2012-12-01
Multi-decadal drought events have characterized climate variability in California over the last century. However, the causes of interannual precipitation variability and the origins of multi-decadal drought in California remain unclear. We utilize the oxygen isotopic composition (δ18O) of tree-ring cellulose in combination with previously developed ring-width measurements to trace the delivery of moisture to the region and investigate ocean-atmosphere patterns that might generate prolonged drought. Of the 36 Quercus douglasii (blue oak) sites in the California central valley, we have focused our work at two locations - one north of Los Angeles (34.74°N, 120°W, 1036 masl) and the other east of San Francisco (37.88°N 121.97°W, 182 masl). Using cores from at least five different trees at each location, tree-ring cellulose δ18O was measured for each year of growth from 1954 to 2004. The δ18O values of tree-ring cellulose range from 29‰ to 34‰ (VSMOW) at both sites and exhibit shared interannual variance (r = 0.43, p < 0.01). To trace changes in moisture delivery, we apply a biophysical model of cellulose δ18O and derive a proxy for rainfall δ18O. A reasonable approximation of rainfall δ18O is soil water δ18O, which, based on the biophysical model, can be estimated using cellulose δ18O, relative humidity, and temperature. High-resolution climate data from PRISM are combined with our cellulose measurements to compute soil water δ18O (and thus rainfall δ18O). Calculated rainfall δ18O is well correlated between the two locations (r = 0.55, p < 0.001) and the variance in δ18O at each site is 6‰. In terms of regional climate changes, our rainfall δ18O proxy exhibits a positive correlation with local precipitation amount, inferred from tree-ring width (r = 0.66, p < 0.001). This positive correlation suggests rainfall amount cannot be the main influence on the isotopic composition because changes in δ18O solely due to amount typically occur in the negative direction (the so-called amount effect usually observed in the tropics). Instead, we hypothesize that shifts in the moisture source region are of primary importance because moisture from high latitude sources has a lower isotopic composition compared to subtropical regions. Using NCAR reanalysis data, wind field anomalies suggest that moisture is derived from the north during dry years (low δ18O) and from the subtropics during wet years (high δ18O). Additional processes such as condensation height and post-condensation effects may also be important in controlling isotopic variability.
Manrique-Alba, Àngela; Ruiz-Yanetti, Samantha; Moutahir, Hassane; Novak, Klemen; De Luis, Martin; Bellot, Juan
2017-01-01
In Mediterranean areas with limited availability of water, an accurate knowledge of growth response to hydrological variables could contribute to improving management and stability of forest resources. The main goal of this study is to assess the temporal dynamic of soil moisture to better understand the water-growth relationship of Pinus halepensis forests in semiarid areas. The estimates of modelled soil moisture and measured tree growth were used at four sites dominated by afforested Pinus halepensis Mill. in south-eastern Spain with 300 to 609mm mean annual precipitation. Firstly, dendrochronological samples were extracted and the widths of annual tree rings were measured to compute basal area increments (BAI). Secondly, soil moisture was estimated over 20 hydrological years (1992-2012) by means of the HYDROBAL ecohydrological model. Finally, the tree growth was linked, to mean monthly and seasonal temperature, precipitation and soil moisture. Results depict the effect of soil moisture on growth (BAI) and explain 69-73% of the variance in semiarid forests, but only 51% in the subhumid forests. This highlights the fact that that soil moisture is a suitable and promising variable to explain growth variations of afforested Pinus halepensis in semiarid conditions and useful for guiding adaptation plans to respond pro-actively to water-related global challenges. Copyright © 2016 Elsevier B.V. All rights reserved.
Park, Sahnggi; Kim, Kap-Joong; Lee, Jong-Moo; Kim, In-Gyoo; Kim, Gyungock
2009-07-06
It is shown that the resonant frequencies and the transmission spectra of ring resonators can be adjusted by depositing or etching the cladding nitride layer on the ring waveguide without introducing an extra loss or extra variations of channel spacing. The cladding nitride layer increases the minimum width of the gap in the coupling region to larger than 150nm which makes it possible to consider photolithography instead of E-beam lithography for the typical design rule of ring filters. KOH silicon etching can also adjust not only the resonance frequencies but also coupling coefficients with a small sacrifice of guiding loss.
Can rising CO2 concentrations in the atmosphere mitigate the impact of drought years on tree growth?
NASA Astrophysics Data System (ADS)
Achim, Alexis; Plumpton, Heather; Auty, David; Ogee, Jerome; MacCarthy, Heather; Bert, Didier; Domec, Jean-Christophe; Oren, Ram; Wingate, Lisa
2015-04-01
Atmospheric CO2 concentrations and nitrogen deposition rates have increased substantially over the last century and are expected to continue unabated. As a result, terrestrial ecosystems will experience warmer temperatures and some may even experience droughts of a more intense and frequent nature that could lead to widespread forest mortality. Thus there is mounting pressure to understand and predict how forest growth will be affected by such environmental interactions in the future. In this study we used annual tree growth data from the Duke Free Air CO2 Enrichment (FACE) experiment to determine the effects of elevated atmospheric CO2 concentration (+200 ppm) and Nitrogen fertilisation (11.2 g of N m-2 yr-1) on the stem biomass increments of mature loblolly pine (Pinus taeda L.) trees from 1996 to 2010. A non-linear mixed-effects model was developed to provide estimates of annual ring specific gravity in all trees using cambial age and annual ring width as explanatory variables. Elevated CO2 did not have a significant effect on annual ring specific gravity, but N fertilisation caused a slight decrease of approximately 2% compared to the non-fertilised in both the ambient and CO2-elevated plots. When basal area increments were multiplied by wood specific gravity predictions to provide estimates of stem biomass, there was a 40% increase in the CO2-elevated plots compared to those in ambient conditions. This difference remained relatively stable until the application of the fertilisation treatment, which caused a further increase in biomass increments that peaked after three years. Unexpectedly the magnitude of this second response was similar in the CO2-elevated and ambient plots (about 25% in each after 3 years), suggesting that there was no interaction between the concentration of CO2 and the availability of soil N on biomass increments. Importantly, during drier years when annual precipitation was less than 1000 mm we observed a significant decrease in annual increments across all treatments. However, the relative difference in growth between CO2-elevated and ambient plots was greater during drought years, providing evidence that tree growth in the future might become less sensitive to water shortages under elevated CO2 conditions.
NASA Astrophysics Data System (ADS)
Sullivan, P.; Brownlee, A.; Ellison, S.; Sveinbjornsson, B.
2014-12-01
Tree cores collected from trees growing at high latitudes have long been used to reconstruct past climates, because of close positive correlations between temperature and tree growth. However, in recent decades and at many sites, these relationships have deteriorated and have even become negative in some instances. The observation of declining tree growth in response to rising temperature has prompted many investigators to suggest that high latitude trees may be increasingly exhibiting drought-induced stomatal closure. In the Brooks Range of northern Alaska, the observation of low and declining growth of white spruce is more prevalent in the central and eastern parts of the range, where precipitation is lower, providing superficial support for the drought stress hypothesis. In this study, we investigated the occurrence of white spruce drought-induced stomatal closure in four watersheds along a west to east gradient near the Arctic treeline in the Brooks Range. We obtained a historical perspective on tree growth and water relations by collecting increment cores for analysis of ring widths and carbon isotopes in tree-ring alpha-cellulose. Meanwhile, we made detailed assessments of contemporary water relations at the scales of the whole canopy and the needle. All of our data indicate that drought-induced stomatal closure is probably not responsible for low and declining growth in the central and eastern Brooks Range. Carbon isotope discrimination has generally increased over the past century and our calculations indicate that needle inter-cellular CO2 concentration is much greater now than it was in the early 1900's. Measurements of needle gas exchange are consistent with the tree core record, in the sense that instances of low photosynthesis at our sites are not coincident with similarly low stomatal conductance and low inter-cellular CO2 concentration. Finally, hourly measurements of xylem sap flow indicate that trees at our study sites are able to maintain near peak canopy transpiration under the highest atmospheric vapor pressure deficits observed (>3.0 kPa). Thus, our tree-ring data provide further evidence of what has become known as the "divergence problem" in northern forests, but our physiological measurements suggest that drought-induced stomatal closure may not be the cause.
Variable-Period Undulators For Synchrotron Radiation
Shenoy, Gopal; Lewellen, John; Shu, Deming; Vinokurov, Nikolai
2005-02-22
A new and improved undulator design is provided that enables a variable period length for the production of synchrotron radiation from both medium-energy and high-energy storage rings. The variable period length is achieved using a staggered array of pole pieces made up of high permeability material, permanent magnet material, or an electromagnetic structure. The pole pieces are separated by a variable width space. The sum of the variable width space and the pole width would therefore define the period of the undulator. Features and advantages of the invention include broad photon energy tunability, constant power operation and constant brilliance operation.
Old Black Hills ponderosa pines tell a story
Matthew J. Bunkers; L. Ronald Johnson; James R. Miller; Carolyn Hull Sieg
1999-01-01
A single ponderosa pine tree found in the central Black Hills of SouthDakota revealed its age of more than 700 years by its tree rings taken from coring in 1992. The purpose of this study was to examine historic climatic patterns from the 13th century through most of the 20th century as inferred from ring widths of this and other nearby trees. The steep, rocky site...
Analysis of radially cracked ring segments subject to forces and couples
NASA Technical Reports Server (NTRS)
Gross, B.; Srawley, J. E.
1977-01-01
Results of planar boundary collocation analysis are given for ring segment (C-shaped) specimens with radial cracks, subjected to combined forces and couples. Mode I stress intensity factors and crack mouth opening displacements were determined for ratios of outer to inner radius in the range 1.1 to 2.5 and ratios of crack length to segment width in the range 0.1 to 0.8.
Analysis of radially cracked ring segments subject to forces and couples
NASA Technical Reports Server (NTRS)
Gross, B.; Strawley, J. E.
1975-01-01
Results of planar boundary collocation analysis are given for ring segment (C shaped) specimens with radial cracks, subjected to combined forces and couples. Mode I stress intensity factors and crack mouth opening displacements were determined for ratios of outer to inner radius in the range 1.1 to 2.5, and ratios of crack length to segment width in the range 0.1 to 0.8.
NASA Astrophysics Data System (ADS)
Arnold, Thorsten; Siegmund, Marc; Pankratov, Oleg
2011-08-01
We apply exact-exchange spin-density functional theory in the Krieger-Li-Iafrate approximation to interacting electrons in quantum rings of different widths. The rings are threaded by a magnetic flux that induces a persistent current. A weak space and spin symmetry breaking potential is introduced to allow for localized solutions. As the electron-electron interaction strength described by the dimensionless parameter rS is increased, we observe—at a fixed spin magnetic moment—the subsequent transition of both spin sub-systems from the Fermi liquid to the Wigner crystal state. A dramatic signature of Wigner crystallization is that the persistent current drops sharply with increasing rS. We observe simultaneously the emergence of pronounced oscillations in the spin-resolved densities and in the electron localization functions indicating a spatial electron localization showing ferrimagnetic order after both spin sub-systems have undergone the Wigner crystallization. The critical rSc at the transition point is substantially smaller than in a fully spin-polarized system and decreases further with decreasing ring width. Relaxing the constraint of a fixed spin magnetic moment, we find that on increasing rS the stable phase changes from an unpolarized Fermi liquid to an antiferromagnetic Wigner crystal and finally to a fully polarized Fermi liquid.
Arnold, Thorsten; Siegmund, Marc; Pankratov, Oleg
2011-08-24
We apply exact-exchange spin-density functional theory in the Krieger-Li-Iafrate approximation to interacting electrons in quantum rings of different widths. The rings are threaded by a magnetic flux that induces a persistent current. A weak space and spin symmetry breaking potential is introduced to allow for localized solutions. As the electron-electron interaction strength described by the dimensionless parameter r(S) is increased, we observe-at a fixed spin magnetic moment-the subsequent transition of both spin sub-systems from the Fermi liquid to the Wigner crystal state. A dramatic signature of Wigner crystallization is that the persistent current drops sharply with increasing r(S). We observe simultaneously the emergence of pronounced oscillations in the spin-resolved densities and in the electron localization functions indicating a spatial electron localization showing ferrimagnetic order after both spin sub-systems have undergone the Wigner crystallization. The critical r(S)(c) at the transition point is substantially smaller than in a fully spin-polarized system and decreases further with decreasing ring width. Relaxing the constraint of a fixed spin magnetic moment, we find that on increasing r(S) the stable phase changes from an unpolarized Fermi liquid to an antiferromagnetic Wigner crystal and finally to a fully polarized Fermi liquid. © 2011 IOP Publishing Ltd
Ring-shaped active mode-locked tunable laser using quantum-dot semiconductor optical amplifier
NASA Astrophysics Data System (ADS)
Zhang, Mingxiao; Wang, Yongjun; Liu, Xinyu
2018-03-01
In this paper, a lot of simulations has been done for ring-shaped active mode-locked lasers with quantum-dot semiconductor optical amplifier (QD-SOA). Based on the simulation model of QD-SOA, we discussed about the influence towards mode-locked waveform frequency and pulse caused by QD-SOA maximum mode peak gain, active layer loss coefficient, bias current, incident light pulse, fiber nonlinear coefficient. In the meantime, we also take the tunable performance of the laser into consideration. Results showed QD-SOA a better performance than original semiconductor optical amplifier (SOA) in recovery time, line width, and nonlinear coefficients, which makes it possible to output a locked-mode impulse that has a higher impulse power, narrower impulse width as well as the phase is more easily controlled. After a lot of simulations, this laser can realize a 20GHz better locked-mode output pulse after 200 loops, where the power is above 17.5mW, impulse width is less than 2.7ps, moreover, the tunable wavelength range is between 1540nm-1580nm.
The scientific dating of standing buildings.
Alcock, Nathaniel W
2017-11-17
The techniques of dendrochronology (tree-ring dating) and radiocarbon (14C) dating are described, as they are applied to historic buildings. Both rely on determining the felling dates of the trees used in their construction. For dendrochronology, the construction of master chronologies and the matching of individual ring-width sequences to them is described and, for radiocarbon dating, the use of tree-ring results in calibration. Results of dating are discussed, ranging from the cathedrals of Peterborough and Beauvais and the development of crown-post roof structures, to the dating and identification of standing medieval peasant houses, particularly those built using cruck construction.
Tree growth-climate relationships in a forest-plot network on Mediterranean mountains.
Fyllas, Nikolaos M; Christopoulou, Anastasia; Galanidis, Alexandros; Michelaki, Chrysanthi Z; Dimitrakopoulos, Panayiotis G; Fulé, Peter Z; Arianoutsou, Margarita
2017-11-15
In this study we analysed a novel tree-growth dataset, inferred from annual ring-width measurements, of 7 forest tree species from 12 mountain regions in Greece, in order to identify tree growth - climate relationships. The tree species of interest were: Abies cephalonica, Abies borisii-regis, Picea abies, Pinus nigra, Pinus sylvestris, Fagus sylvatica and Quercus frainetto growing across a gradient of climate conditions with mean annual temperature ranging from 5.7 to 12.6°C and total annual precipitation from 500 to 950mm. In total, 344 tree cores (one per tree) were analysed across a network of 20 study sites. We found that water availability during the summer period (May-August) was a strong predictor of interannual variation in tree growth for all study species. Across species and sites, annual tree growth was positively related to summer season precipitation (P SP ). The responsiveness of annual growth to P SP was tightly related to species and site specific measurements of instantaneous photosynthetic water use efficiency (WUE), suggesting that the growth of species with efficient water use is more responsive to variations in precipitation during the dry months of the year. Our findings support the importance of water availability for the growth of mountainous Mediterranean tree species and highlight that future reductions in precipitation are likely to lead to reduced tree-growth under climate change conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
He, J; Gao, H; Xu, P; Yang, R
2015-12-01
Body weight, length, width and depth at two growth stages were observed for a total of 5015 individuals of GIFT strain, along with a pedigree including 5588 individuals from 104 sires and 162 dams was collected. Multivariate animal models and a random regression model were used to genetically analyse absolute and relative growth scales of these growth traits. In absolute growth scale, the observed growth traits had moderate heritabilities ranging from 0.321 to 0.576, while pairwise ratios between body length, width and depth were lowly inherited and maximum heritability was only 0.146 for length/depth. All genetic correlations were above 0.5 between pairwise growth traits and genetic correlation between length/width and length/depth varied between both growth stages. Based on those estimates, selection index of multiple traits of interest can be formulated in future breeding program to improve genetically body weight and morphology of the GIFT strain. In relative growth scale, heritabilities in relative growths of body length, width and depth to body weight were 0.257, 0.412 and 0.066, respectively, while genetic correlations among these allometry scalings were above 0.8. Genetic analysis for joint allometries of body weight to body length, width and depth will contribute to genetically regulate the growth rate between body shape and body weight. © 2015 Blackwell Verlag GmbH.
Innovative virtual reality measurements for embryonic growth and development.
Verwoerd-Dikkeboom, C M; Koning, A H J; Hop, W C; van der Spek, P J; Exalto, N; Steegers, E A P
2010-06-01
Innovative imaging techniques, using up-to-date ultrasonic equipment, necessitate specific biometry. The aim of our study was to test the possibility of detailed human embryonic biometry using a virtual reality (VR) technique. In a longitudinal study, three-dimensional (3D) measurements were performed from 6 to 14 weeks gestational age in 32 pregnancies (n = 16 spontaneous conception, n = 16 IVF/ICSI). A total of 125 3D volumes were analysed in the I-Space VR system, which allows binocular depth perception, providing a realistic 3D illusion. Crown-rump length (CRL), biparietal diameter (BPD), occipito-frontal diameter (OFD), head circumference (HC) and abdominal circumference (AC) were measured as well as arm length, shoulder width, elbow width, hip width and knee width. CRL, BPD, OFD and HC could be measured in more than 96% of patients, and AC in 78%. Shoulder width, elbow width, hip width and knee width could be measured in more than 95% of cases, and arm length in 82% of cases. Growth curves were constructed for all variables. Ear and foot measurements were only possible beyond 9 weeks gestation. This study provides a detailed, longitudinal description of normal human embryonic growth, facilitated by a VR system. Growth curves were created for embryonic biometry of the CRL, BPD, HC and AC early in pregnancy and also of several 'new' biometric measurements. Applying virtual embryoscopy will enable us to diagnose growth and/or developmental delay earlier and more accurately. This is especially important for pregnancies at risk of severe complications, such as recurrent late miscarriage and early growth restriction.
Influence of magnetic flutter on tearing growth in linear and nonlinear theory
NASA Astrophysics Data System (ADS)
Kreifels, L.; Hornsby, W. A.; Weikl, A.; Peeters, A. G.
2018-06-01
Recent simulations of tearing modes in turbulent regimes show an unexpected enhancement in the growth rate. In this paper the effect is investigated analytically. The enhancement is linked to the influence of turbulent magnetic flutter, which is modelled by diffusion terms in magnetohydrodynamics (MHD) momentum balance and Ohm’s law. Expressions for the linear growth rate as well as the island width in nonlinear theory for small amplitudes are derived. The results indicate an enhanced linear growth rate and a larger linear layer width compared with resistive MHD. Also the island width in the nonlinear regime grows faster in the diffusive model. These observations correspond well to simulations in which the effect of turbulence on the magnetic island width and tearing mode growth is analyzed.
NASA Astrophysics Data System (ADS)
Büntgen, Ulf; Brázdil, Rudolf; Heussner, Karl-Uwe; Hofmann, Jutta; Kontic, Raymond; Kyncl, Tomáš; Pfister, Christian; Chromá, Kateřina; Tegel, Willy
2011-12-01
A predicted rise in anthropogenic greenhouse gas emissions and associated effects on the Earth's climate system likely imply more frequent and severe weather extremes with alternations in hydroclimatic parameters expected to be most critical for ecosystem functioning, agricultural yield, and human health. Evaluating the return period and amplitude of modern climatic extremes in light of pre-industrial natural changes is, however, limited by generally too short instrumental meteorological observations. Here we introduce and analyze 11,873 annually resolved and absolutely dated ring width measurement series from living and historical fir ( Abies alba Mill.) trees sampled across France, Switzerland, Germany, and the Czech Republic, which continuously span the AD 962-2007 period. Even though a dominant climatic driver of European fir growth was not found, ring width extremes were evidently triggered by anomalous variations in Central European April-June precipitation. Wet conditions were associated with dynamic low-pressure cells, whereas continental-scale droughts coincided with persistent high-pressure between 35 and 55°N. Documentary evidence independently confirms many of the dendro signals over the past millennium, and further provides insight on causes and consequences of ambient weather conditions related to the reconstructed extremes. A fairly uniform distribution of hydroclimatic extremes throughout the Medieval Climate Anomaly, Little Ice Age and Recent Global Warming may question the common believe that frequency and severity of such events closely relates to climate mean stages. This joint dendro-documentary approach not only allows extreme climate conditions of the industrial era to be placed against the backdrop of natural variations, but also probably helps to constrain climate model simulations over exceptional long timescales.
Functional diversity, succession, and human-mediated disturbances in raised bog vegetation.
Dyderski, Marcin K; Czapiewska, Natalia; Zajdler, Mateusz; Tyborski, Jarosław; Jagodziński, Andrzej M
2016-08-15
Raised and transitional bogs are one of the most threatened types of ecosystem, due to high specialisation of biota, associated with adaptations to severe environmental conditions. The aim of the study was to characterize the relationships between functional diversity (reflecting ecosystem-shaping processes) of raised bog plant communities and successional gradients (expressed as tree dimensions) and to show how impacts of former clear cuts may alter these relationships in two raised bogs in 'Bory Tucholskie' National Park (N Poland). Herbaceous layers of the plant communities were examined by floristic relevés (25m(2)) on systematically established transects. We also assessed patterns of tree ring widths. There were no relationships between vegetation functional diversity components and successional progress: only functional dispersion was negatively, but weakly, correlated with median DBH. Lack of these relationships may be connected with lack of prevalence of habitat filtering and low level of competition over all the successional phases. Former clear cuts, indicated by peaks of tree ring width, influenced the growth of trees in the bogs studied. In the bog with more intensive clear cuts we found more species with higher trophic requirements, which may indicate nutrient influx. However, we did not observe differences in vegetation patterns, functional traits or functional diversity indices between the two bogs studied. We also did not find an influence of clear cut intensity on relationships between functional diversity indices and successional progress. Thus, we found that alteration of the ecosystems studied by neighbourhood clear cuts did not affect the bogs strongly, as the vegetation was resilient to these impacts. Knowledge of vegetation resilience after clear cuts may be crucial for conservation planning in raised bog ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.
Circumnuclear star formation in Mrk 42 mapped with Gemini Near-infrared Integral Field Spectrograph
NASA Astrophysics Data System (ADS)
Hennig, Moiré G.; Riffel, Rogemar A.; Dors, O. L.; Riffel, Rogerio; Storchi-Bergmann, Thaisa; Colina, Luis
2018-06-01
We present Gemini Near-infrared Integral Field Spectrograph (NIFS) observations of the inner 1.5 × 1.5 kpc2 of the narrow-line Seyfert 1 galaxy Mrk 42 at a spatial resolution of 60 pc and spectral resolution of 40 km s^{-1}. The emission-line flux and equivalent width maps clearly show a ring of circumnuclear star formation regions surrounding the nucleus with radius of ˜500 pc. The spectra of some of these regions show molecular absorption features which are probably of CN, TiO, or VO, indicating the presence of massive evolved stars in the thermally pulsing asymptotic giant branch phase. The gas kinematics of the ring is dominated by rotation in the plane of the galaxy, following the large-scale disc geometry, while at the nucleus an additional outflowing component is detected blueshifted by 300-500 km s^{-1}, relative to the systemic velocity of the galaxy. Based on the equivalent width of Br γ we find pieces of evidence of gradients in the age of H II regions along the ring of Mrk 42, favouring the pearls on a string scenario of star formation. The broad component of Pa β emission line presents a Full Width at Half Maximum of ˜1480 km s^{-1}, implying in a mass of ˜2.5 × 106 M⊙ for the central supermassive black hole. Based on emission-line ratios we conclude that besides the active galactic nucleus, Mrk 42 presents nuclear Starburst activity.
Maffei, Helen M; Filip, Gregory M; Gruelke, Nancy E; Oblinger, Brent W; Margolis, Ellis; Chadwick, Kristen L
2016-01-01
Mid- to very large-sized Douglas-fir (Pseudotsuga menzieseii var. menziesii) that were lightly- to moderately-infected by dwarf mistletoe (Arceuthobium douglasii) were analyzed over a 14-year period to evaluate whether mechanical pruning could eradicate mistletoe (or at least delay the onset of severe infection) without significantly affecting tree vitality and by inference, longevity. Immediate and longterm pruning effects on mistletoe infection severity were assessed by comparing pruned trees (n = 173) to unpruned trees (n = 55) with respect to: (1) percentage of trees with no visible infections 14 years post-pruning, (2) Broom Volume Rating (BVR), and (3) rate of BVR increase 14 years postpruning. Vitality/longevity (compared with unpruned trees) was assessed using six indicators: (1) tree survival, (2) the development of severe infections, (3) the development of dead tops, (4) tree-ring width indices, (5) Normalized Difference Vegetation Index (NDVI) from high-resolution multi-spectral imagery, and (6) live-crown ratio (LCR) and increment. Twenty-four percent of the pruned trees remained free of mistletoe 14 years post-pruning. Pruning is most likely to successfully eradicate mistletoe in lightly infected trees (BVR 1 or 2) without infected neighbors. Pruning significantly decreased mean BVR in the pruned versus the unpruned trees. However, the subsequent average rate of intensification (1.3–1.5 BVR per decade) was not affected, implying that a single pruning provides ~14 years respite in the progression of infection levels. Post-pruning infection intensification was slower on dominant and co-dominants than on intermediate or suppressed trees. The success of mistletoe eradication via pruning and need for follow-up pruning should be evaluated no sooner than 14 years after pruning to allow for the development of detectable brooms. Based on six indicators, foliage from witches brooms contribute little to long-term tree vitality since removal appears to have little effect on resources available for tree growth and maintenance. In the severely pruned trees, tree-ring width was reduced for several years post-pruning, but then compensated with larger ring width in later years. Both NDVI and LCR increment were significantly higher for the pruned trees than the control trees, while the development of severe infections and/or dead tops was significantly (5X and 3X) higher for the controls. If possible, multiple indicators of tree vitality should be evaluated. Pruning can be worthwhile even if all the mistletoe is not removed, because mistletoe intensification is delayed. The impact of removing the brooms seems to be minimal, and post-pruning crowns had greater NDVI values.
Predominant role of water in regulating the tree-growth response to diurnal asymmetric warmin
NASA Astrophysics Data System (ADS)
Chen, Z.; Xia, J.; Cui, E.
2017-12-01
Growth of the Northern Hemisphere trees is affected by diurnal asymmetric warming, which is generally considered to touch off carbon assimilation and increment of carbon storage. Asymmetric effects of diurnal warming on vegetation greenness were validated in previous researches, however, the effect of diurnal warming on wood tissue which stores most carbon of a whole plant is still unknown. Here, we combined ring-width index (RWI), remote sensing-based normalized difference vegetation index (NDVI) and climate datasets to detect the effects of daytime and night-time warming on vegetation growth, respectively. Our results indicate that daytime warming enhances NDVI but has neutral effect on tree woody growth over the Northern Hemisphere. Response of wood growth to daytime warming is linearly regulated by soil water availability. The underlying mechanism of different response of canopy and wood growth to daytime warming may attribute to the biomass change, that is, allocation to foliage tissues increased at the expense of wood tissue under warming and water-limited conditions. Night-time warming show neutral effects on NDVI and RWI over the Northern Hemisphere, and the neutral Tmin-NDVI correlations result from the non-linear mediation of soil water availability. Our results highlight the current greening trend under daytime warming does not mean higher carbon sink capacity, the warming-drying climate may impair the large carbon sink of global forests.
Cui, J; Lv, Y; Yang, X J; Fan, Y L; Zhong, Z; Jiang, Z M
2011-03-25
The size uniformity of self-assembled SiGe quantum rings, which are formed by capping SiGe quantum dots with a thin Si layer, is found to be greatly influenced by the growth temperature and the areal density of SiGe quantum dots. Higher growth temperature benefits the size uniformity of quantum dots, but results in low Ge concentration as well as asymmetric Ge distribution in the dots, which induces the subsequently formed quantum rings to be asymmetric in shape or even broken somewhere in the ridge of rings. Low growth temperature degrades the size uniformity of quantum dots, and thus that of quantum rings. A high areal density results in the expansion and coalescence of neighboring quantum dots to form a chain, rather than quantum rings. Uniform quantum rings with a size dispersion of 4.6% and an areal density of 7.8×10(8) cm(-2) are obtained at the optimized growth temperature of 640°C.
NASA Astrophysics Data System (ADS)
Westbrook, J. A.; Guilderson, T.; Colinvaux, P. A.; D'Arrigo, R.
2004-12-01
Instrumental records of environmental variables such as temperature and precipitation are necessary to understand climate patterns and variability. In general, such observations from the tropics do not exist prior to the late 19th century, and existing records contain large spatial and temporal gaps and are sparsely distributed. An important source of annual temperature and precipitation proxy-data comes from the regular annual growth rings of wood formed by trees. Tree growth rings occur in response to periodic seasonal changes in the environment. Although expansive and diverse in number and ecology, a vast majority of tropical trees do not produce distinct annual growth rings. Because of this, tropical dendrochronology and paleoclimate reconstructions have lagged behind their temperate and higher latitude cousins. Distinct secondary growth rings were investigated in a single individual of the tropical hardwood legume Hymenaea courbaril felled within the City of David, Republic of Panama. Rings that maintained circuitry were considered annual and were sampled for 14C. Radiocarbon values from the secondary growth rings from this specimen were compared with annual reference radiocarbon values from wood and air in North America, New Zealand and Germany. This comparison demonstrated that the secondary growth rings formed by H. courbaril were determined to be annual in nature in this one stem disk specimen. To confirm the consistency of the annual nature of the secondary growth rings in H. courbaril, nine (9) additional specimens were recovered from the small hamlet of San Carlos y Algarobbo in western Panama between the town of David and the cordillera approximately ~30km from the site of the first tree sample. Of the nine specimens, four were chosen for ring counts and isotope analyses. "Annual" rings were counted and samples corresponding to the equivalent time of the bomb-14C peak were sampled. In addition a small subset of years within one tree specimen were sub-annually sampled for d18O cellulose. Radiocarbon and 18Ocellulose are consistent with the secondary rings being annual. These results imply that H. courbaril may be suitable for extended paleoclimate reconstructions.
The vertical structure of the F ring of Saturn from ring-plane crossings
NASA Astrophysics Data System (ADS)
Scharringhausen, Britt R.; Nicholson, Philip D.
2013-11-01
We present a photometric model of the rings of Saturn which includes the main rings and an F ring, inclined to the main rings, with a Gaussian vertical profile of optical depth. This model reproduces the asymmetry in brightness between the east and west ansae of the rings of Saturn that was observed by the Hubble Space Telescope (HST) within a few hours after the Earth ring-plane crossing (RPX) of 10 August 1995. The model shows that during this observation the inclined F ring unevenly blocked the east and west ansae of the main rings. The brightness asymmetry produced by the model is highly sensitive to the vertical thickness and radial optical depth of the F ring. The F-ring model that best matches the observations has a vertical full width at half maximum of 13 ± 7 km and an equivalent depth of 10 ± 4 km. The model also reproduces the shape of the HST profiles of ring brightness vs. distance from Saturn, both before and after the time of ring-plane crossing. Smaller asymmetries observed before the RPX, when the Earth was on the dark side of the rings, cannot be explained by blocking of the main rings by the F ring or vice versa and are probably instead due to the intrinsic longitudinal variation exhibited by the F ring.
Krusic, Paul J.; Tognetti, Roberto; Houlié, Nicolas; Andronico, Daniele; Egli, Markus; D'Arrigo, Rosanne
2017-01-01
On Mt. Etna (Italy), an enhanced Normalized Difference in Vegetation Index (NDVI) signature was detected in the summers of 2001 and 2002 along a distinct line where, in November 2002, a flank eruption subsequently occurred. These observations suggest that pre-eruptive volcanic activity may have enhanced photosynthesis along the future eruptive fissure. If a direct relation between NDVI and future volcanic eruptions could be established, it would provide a straightforward and low-cost method for early detection of upcoming eruptions. However, it is unclear if, or to what extent, the observed enhancement of NDVI can be attributed to volcanic activity prior to the subsequent eruption. We consequently aimed at determining whether an increase in ambient temperature or additional water availability owing to the rise of magma and degassing of water vapour prior to the eruption could have increased photosynthesis of Mt. Etna's trees. Using dendro-climatic analyses we quantified the sensitivity of tree ring widths to temperature and precipitation at high elevation stands on Mt. Etna. Our findings suggest that tree growth at high elevation on Mt. Etna is weakly influenced by climate, and that neither an increase in water availability nor an increase in temperature induced by pre-eruptive activity is a plausible mechanism for enhanced photosynthesis before the 2002/2003 flank eruption. Our findings thus imply that other, yet unknown, factors must be sought as causes of the pre-eruption enhancement of NDVI on Mt. Etna. PMID:28099435
Carbon content variation in boles of mature sugar maple and giant sequoia.
Lamlom, Sabah H; Savidge, Rodney A
2006-04-01
At present, a carbon (C) content of 50% (w/w) in dry wood is widely accepted as a generic value; however, few wood C measurements have been reported. We used elemental analysis to investigate C content per unit of dry matter and observed that it varied both radially and vertically in boles of two old-growth tree species: sugar maple (Acer saccharum Marsh.) and giant sequoia (Sequoiadendron giganteum (Lindl.) Bucholz). In sugar maple there was considerable variation in tree ring widths among four radii for particular annual layers of xylem, revealing that the annual rate of C assimilation differs around the circumference and from the base of each tree to its top, but the observed variation in C content was unrelated to diameter growth rate and strongly related to the calendar year when the wood was formed. Carbon content in sugar maple wood increased in an approximately linear fashion, from < 50 to 51% from pith to cambium, at both the base and top of the boles. In giant sequoia, C was essentially constant at > 55% across many hundreds of years of heartwood, but it declined abruptly at the sapwood-heartwood boundary and remained lower in all sapwood samples, an indication that heartwood formation involves anabolic metabolism. Factors that may be responsible for the different C contents and trends with age between sugar maple and sequoia trees are considered. Tree-ring data from this study do not support some of the key assumptions made by dendrochronology.
Seiler, Ruedi; Kirchner, James W; Krusic, Paul J; Tognetti, Roberto; Houlié, Nicolas; Andronico, Daniele; Cullotta, Sebastiano; Egli, Markus; D'Arrigo, Rosanne; Cherubini, Paolo
2017-01-01
On Mt. Etna (Italy), an enhanced Normalized Difference in Vegetation Index (NDVI) signature was detected in the summers of 2001 and 2002 along a distinct line where, in November 2002, a flank eruption subsequently occurred. These observations suggest that pre-eruptive volcanic activity may have enhanced photosynthesis along the future eruptive fissure. If a direct relation between NDVI and future volcanic eruptions could be established, it would provide a straightforward and low-cost method for early detection of upcoming eruptions. However, it is unclear if, or to what extent, the observed enhancement of NDVI can be attributed to volcanic activity prior to the subsequent eruption. We consequently aimed at determining whether an increase in ambient temperature or additional water availability owing to the rise of magma and degassing of water vapour prior to the eruption could have increased photosynthesis of Mt. Etna's trees. Using dendro-climatic analyses we quantified the sensitivity of tree ring widths to temperature and precipitation at high elevation stands on Mt. Etna. Our findings suggest that tree growth at high elevation on Mt. Etna is weakly influenced by climate, and that neither an increase in water availability nor an increase in temperature induced by pre-eruptive activity is a plausible mechanism for enhanced photosynthesis before the 2002/2003 flank eruption. Our findings thus imply that other, yet unknown, factors must be sought as causes of the pre-eruption enhancement of NDVI on Mt. Etna.
Bacterial Colony from Two-Dimensional Division to Three-Dimensional Development
Su, Pin-Tzu; Liao, Chih-Tang; Roan, Jiunn-Ren; Wang, Shao-Hung; Chiou, Arthur; Syu, Wan-Jr
2012-01-01
On agar surface, bacterial daughter cells form a 4-cell array after the first two rounds of division, and this phenomenon has been previously attributed to a balancing of interactions among the daughter bacteria and the underneath agar. We studied further the organization and development of colony after additional generations. By confocal laser scanning microscopy and real-time imaging, we observed that bacterial cells were able to self-organize and resulted in a near circular micro-colony consisting of monolayer cells. After continuous dividing, bacteria transited from two-dimensional expansion into three-dimensional growth and formed two to multi-layers in the center but retained a monolayer in the outer ring of the circular colony. The transverse width of this outer ring appeared to be approximately constant once the micro-colony reached a certain age. This observation supports the notion that balanced interplays of the forces involved lead to a gross morphology as the bacteria divide into offspring on agar surface. In this case, the result is due to a balance between the expansion force of the dividing bacteria, the non-covalent force among bacterial offspring and that between bacteria and substratum. PMID:23155376
Rings of non-spherical, axisymmetric bodies
NASA Astrophysics Data System (ADS)
Gupta, Akash; Nadkarni-Ghosh, Sharvari; Sharma, Ishan
2018-01-01
We investigate the dynamical behavior of rings around bodies whose shapes depart considerably from that of a sphere. To this end, we have developed a new self-gravitating discrete element N-body code, and employed a local simulation method to simulate a patch of the ring. The central body is modeled as a symmetric (oblate or prolate) ellipsoid, or defined through the characteristic frequencies (circular, vertical, epicyclic) that represent its gravitational field. Through our simulations we explore how a ring's behavior - characterized by dynamical properties like impact frequency, granular temperature, number density, vertical thickness and radial width - varies with the changing gravitational potential of the central body. We also contrast properties of rings about large central bodies (e.g. Saturn) with those of smaller ones (e.g. Chariklo). Finally, we investigate how the characteristic frequencies of a central body, restricted to being a solid of revolution with an equatorial plane of symmetry, affect the ring dynamics. The latter process may be employed to qualitatively understand the dynamics of rings about any symmetric solid of revolution.
1986-01-14
Range : 2.52 million miles (1.56 million miles) P-29481B/W Voyager 2 returned this photograph with all nine known Uranus rings visible from a 15 sec. exposure through the narrow angle camera. The rings are quite dark and very narrow. The most prominent and outermost of the nine, Epsilon, is seen at top. The next three in toward Uranus, called Delta, Gamma, and Eta, are much fainter and more narrow than Epsilon ring. Then come Beta and Alpha rings, and finally, the innermost grouping, known simply as the 4,5, & 6 rings. The last three are very faint and are at the limit of detection for the Voyager camera. Uranus' rings range in width from about 100 km. (60 mi.) at the widest part of the Epsilon ring, to only a few kilometers for most of the others. this iamge was processed to enhance narrow features; the bright dots are imperfections on the camera detector. The resolution scale is about 50 km. (30 mi.)
Teng, Jie; Dumon, Pieter; Bogaerts, Wim; Zhang, Hongbo; Jian, Xigao; Han, Xiuyou; Zhao, Mingshan; Morthier, Geert; Baets, Roel
2009-08-17
Athermal silicon ring resonators are experimentally demonstrated by overlaying a polymer cladding on narrowed silicon wires. The ideal width to achieve athermal condition for the TE mode of 220 nm-height SOI waveguides is found to be around 350 nm. After overlaying a polymer layer, the wavelength temperature dependence of the silicon ring resonator is reduced to less than 5 pm/degrees C, almost eleven times less than that of normal silicon waveguides. The optical loss of a 350-nm bent waveguide (with a radius of 15 microm) is extracted from the ring transmission spectrum. The scattering loss is reduced to an acceptable level of about 50 dB/cm after overlaying a polymer cladding. (c) 2009 Optical Society of America
Bigler, Christof
2016-01-01
A within-species trade-off between growth rates and lifespan has been observed across different taxa of trees, however, there is some uncertainty whether this trade-off also applies to shade-intolerant tree species. The main objective of this study was to investigate the relationships between radial growth, tree size and lifespan of shade-intolerant mountain pines. For 200 dead standing mountain pines (Pinus montana) located along gradients of aspect, slope steepness and elevation in the Swiss National Park, radial annual growth rates and lifespan were reconstructed. While early growth (i.e. mean tree-ring width over the first 50 years) correlated positively with diameter at the time of tree death, a negative correlation resulted with lifespan, i.e. rapidly growing mountain pines face a trade-off between reaching a large diameter at the cost of early tree death. Slowly growing mountain pines may reach a large diameter and a long lifespan, but risk to die young at a small size. Early growth was not correlated with temperature or precipitation over the growing period. Variability in lifespan was further contingent on aspect, slope steepness and elevation. The shade-intolerant mountain pines follow diverging growth trajectories that are imposed by extrinsic environmental influences. The resulting trade-offs between growth rate, tree size and lifespan advance our understanding of tree population dynamics, which may ultimately improve projections of forest dynamics under changing environmental conditions. PMID:26930294
New reults of the t-system from DORIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, H.
1981-01-01
Further studies of e/sup +/e/sup -/ annihilations in the e region at the DESY storage ring DORIS have yielded improved results on the properties of the e mesons. For the e-meson the letponic width G/sub ee/ and branching ratios B/sub mm/ are found to be G/sub ee/ = 1.29 +- 0.07 keV and B/sub mm/ = 3.2 +- 0.8%. This gives a total width of the e-meson of G/sub tot/ = 40 +- 13/sub 8/ keV. ehe leptonic width the e'meson was determined to G/sub ee/(e') = 0.57 +- 0.06 keV.
Development of a rainfall sensitive tree-ring chronology in Zimbabwe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stahle, D.W.; Cleaveland, M.K.; Nicholson, S.E.
1997-11-01
This paper reports the discovery of annual tree ring formation in two species of trees in Zimbabwe and describes their paleoclimatic reconstruction potential. Due to the strong influence of El Nino-Southern Oscillation on the climate and crop yields of Zimbabwe and surrenting areas, and the rarity of annual tree ring chronologies in the tropics, the discovery of climatically sensitive growth rings is extremely significant. In particular, the Pterocarpus angolensis shows a strong correlation between the derived tree ring chronology and regional rainfall amounts. Based on sampling at the Sikumi Forest, it is speculated that P. angolensis may routinely achieve overmore » 200 years in age. Four lines of evidence are identified which indicate that the semi-ring porous growth bands in P. angolensis are exactly annual growth rings. 18 refs., 3 figs.« less
NASA Astrophysics Data System (ADS)
Szymczak, Sonja; Hetzer, Timo; Bräuning, Achim; Joachimski, Michael M.; Leuschner, Hanns-Hubert; Kuhlemann, Joachim
2014-10-01
We present a new multi-parameter dataset from Corsican black pine growing on the island of Corsica in the Western Mediterranean basin covering the period AD 1410-2008. Wood parameters measured include tree-ring width, latewood width, earlywood width, cell lumen area, cell width, cell wall thickness, modelled wood density, as well as stable carbon and oxygen isotopes. We evaluated the relationships between different parameters and determined the value of the dataset for climate reconstructions. Correlation analyses revealed that carbon isotope ratios are influenced by cell parameters determining cell size, whereas oxygen isotope ratios are influenced by cell parameters determining the amount of transportable water in the xylem. A summer (June to August) precipitation reconstruction dating back to AD 1185 was established based on tree-ring width. No long-term trends or pronounced periods with extreme high/low precipitation are recorded in our reconstruction, indicating relatively stable moisture conditions over the entire time period. By comparing the precipitation reconstruction with a summer temperature reconstruction derived from the carbon isotope chronologies, we identified summers with extreme climate conditions, i.e. warm-dry, warm-wet, cold-dry and cold-wet. Extreme climate conditions during summer months were found to influence cell parameter characteristics. Cold-wet summers promote the production of broad latewood composed of wide and thin-walled tracheids, while warm-wet summers promote the production of latewood with small thick-walled cells. The presented dataset emphasizes the potential of multi-parameter wood analysis from one tree species over long time scales.
Product suitability of wood...determined by density gradients across growth rings
Robert M. Echols
1972-01-01
The suitability of wood for various uses can be determined by synthesizing single growth-ring density curves from accumulated means of wood density classes. Wood density gradients across growth rings were measured in large increment cores from 46-year-old ponderosa pines (Pinus ponderosa Laws.) by using X-rays. Of the 48 trees analyzed, 36 had been...
Drought timing influences the legacy of tree growth recovery.
Huang, Mengtian; Wang, Xuhui; Keenan, Trevor F; Piao, Shilong
2018-05-04
Whether and how the timing of extreme events affects the direction and magnitude of legacy effects on tree growth is poorly understood. In this study, we use a global database of Ring-Width Index (RWI) from 2,500 sites to examine the impact and legacy effects (the departure of observed RWI from expected RWI) of extreme drought events during 1948-2008, with a particular focus on the influence of drought timing. We assessed the recovery of stem radial growth in the years following severe drought events with separate groupings designed to characterize the timing of the drought. We found that legacies from extreme droughts during the dry season (DS droughts) lasted longer and had larger impacts in each of the 3 years post drought than those from extreme droughts during the wet season (WS droughts). At the global scale, the average integrated legacy from DS droughts (0.18) was about nine times that from WS droughts (0.02). Site-level comparisons also suggest stronger negative impacts or weaker positive impacts of DS droughts on tree growth than WS droughts. Our results, therefore, highlight that the timing of drought is a crucial factor determining drought impacts on tree recovery. Further increases in baseline aridity could therefore exacerbate the impact of punctuated droughts on terrestrial ecosystems. © 2018 John Wiley & Sons Ltd.
Chen, Lei; Huang, Jian-Guo; Dawson, Andria; Zhai, Lihong; Stadt, Kenneth J; Comeau, Philip G; Whitehouse, Caroline
2018-02-01
Insects, diseases, fire and drought and other disturbances associated with global climate change contribute to forest decline and mortality in many parts of the world. Forest decline and mortality related to drought or insect outbreaks have been observed in North American aspen forests. However, little research has been done to partition and estimate their relative contributions to growth declines. In this study, we combined tree-ring width and basal area increment series from 40 trembling aspen (Populus tremuloides Michx.) sites along a latitudinal gradient (from 52° to 58°N) in western Canada and attempted to investigate the effect of drought and insect outbreaks on growth decline, and simultaneously partition and quantify their relative contributions. Results indicated that the influence of drought on forest decline was stronger than insect outbreaks, although both had significant effects. Furthermore, the influence of drought and insect outbreaks showed spatiotemporal variability. In addition, our data suggest that insect outbreaks could be triggered by warmer early spring temperature instead of drought, implicating that potentially increased insect outbreaks are expected with continued warming springs, which may further exacerbate growth decline and death in North America aspen mixed forests. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Chritz, K.; Buchert, M.; Walker, J. C.; Mendoza, D.; Pataki, D. E.; Xu, X.; Lin, J. C.
2017-12-01
Generating long term records of fossil fuel emissions of urban environments is complicated by the fact that direct observations of emissions and urban atmospheric CO2 concentrations were only collected in the recent past. Radiocarbon (14C) in tree rings from urban trees can provide archives of fossil fuel emissions that may track population growth over time, as higher population density is typically correlated with increased vehicular traffic and associated CO2 emissions, which are radiocarbon dead. We present radiocarbon measurements (n=125) from five roadside green ash trees (Fraxinus pennsylvanica) located in three cities of northern Utah - Salt Lake City (urban, 2016 population: 193,744), Logan City (agricultural, 2016 population: 49,110) and Heber (rural, 2016 population: 14,969). Urban trees were cored in four cardinal directions and ring widths were measured and counted to establish a chronology. One ring from every third year in a single core from each tree was removed and holocellulose was extracted from bulk wood of individual rings for 14C analysis. Fraction CO2 from fossil fuel burning (CO2-ff) was calculated using a simple mass-balance calculation from measured 14C values and remote background atmospheric 14CO2 values for NH Zone 2. The data from all three cities indicate a general trend of increasing CO2-ff uptake by the trees from 1980s to present, as expected with increased population growth and vehicular traffic. However, records in all three cities show unique elevated CO2-ff prior to the 1980s, assuming similar climate patterns through time, diverging from historic population size. We employed atmospheric simulations from the STILT (Stochastic Time-Inverted Lagrangian Transport) models for each of these trees to create footprints to determine source areas for CO2. These footprints reveal that atmospheric sampling areas can be large for certain trees, and other sources of 14C dead carbon, such as coal and natural gas from industrial emissions, should also be considered when building these records.
Large-area sheet task advanced dendritic web growth development
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Meier, D. L.; Schruben, J.
1982-01-01
Thermal models were developed that accurately predict the thermally generated stresses in the web crystal which, if too high, cause the crystal to degenerate. The application of the modeling results to the design of low-stress experimental growth configurations will allow the growth of wider web crystals at higher growth velocities. A new experimental web growth machine was constructed. This facility includes all the features necessary for carrying out growth experiments under steady thermal conditions. Programmed growth initiation was developed to give reproducible crystal starts. Width control permits the growth of long ribbons at constant width. Melt level is controlled to 0.1 mm or better. Thus, the capability exists to grow long web crystals of constant width and thickness with little operator intervention, and web growth experiments can now be performed with growth variables controlled to a degree not previously possible.
Quantifying Proxy Influence in the Last Millennium Reanalysis
NASA Astrophysics Data System (ADS)
Hakim, G. J.; Anderson, D. N.; Emile-Geay, J.; Noone, D.; Tardif, R.
2017-12-01
We examine the influence of proxies in the climate field reconstruction known as the Last Millennium Reanalysis (Hakim et al. 2016; JGR-A). This data assimilation framework uses the CCSM4 Last Millennium simulation as an agnostic prior, proxies from the PAGES 2k Consortium (2017; Sci. Data), and an offline ensemble square-root filter for assimilation. Proxies are forward modeled using an observation model ("proxy system model") that maps from the prior space to the proxy space. We assess proxy impact using the method of Cardinali et al. (2004; QJRMS), where influence is measured in observation space; that is, at the location of observations. Influence is determined by three components: the prior at the location, the proxy at the location, and remote proxies as mediated by the spatial covariance information in the prior. Consequently, on a per-proxy basis, influence is higher for spatially isolated proxies having small error, and influence is lower for spatially dense proxies having large error. Results show that proxy influence depends strongly on the observation model. Assuming the proxies depend linearly on annual mean temperature yields the largest per-proxy influence for coral d18O and coral Sr/Ca records, and smallest influence for tree-ring width. On a global basis (summing over all proxies of a given type), tree-ring width and coral d18O have the largest influence. A seasonal model for the proxies yields very different results. In this case we model the proxies linearly on objectively determined seasonal temperature, except for tree proxies, which are fit to a bivariate model on seasonal temperature and precipitation. In this experiment, on a per-proxy basis, tree-ring density has by far the greatest influence. Total proxy influence is dominated by tree-ring width followed by tree-ring density. Compared to the results for the annual-mean observation model, the experiment where proxies are measured seasonally has more than double the total influence (sum over all proxies); this experiment also has higher verification scores when measured against other 20th century temperature reconstructions. These results underscore the importance of improving proxy system models, since they increase the amount of information available for data-assimilation-based reconstructions.
NASA Astrophysics Data System (ADS)
Nagavciuc, Viorica; Popa, Ionel; Kern, Zoltán; Persoiu, Aurel
2016-04-01
For a better understanding of how the climate is changing and how the environment responds to these changes, it is necessary to understand how the climate has varied in the past. Romania's virgin forests have a great potential to obtain long tree-ring chronologies with annual resolution; but so far, only a few studies resulted in quantitative paleoclimatic reconstructions. In this context, the aim of this study is 1) to calibrate the relationship between the stable isotopes of oxygen and carbon in tree rings and the main climatic parameters and determine the potential of Pinus cembra (Cǎlimani Mts., N Romania, Eastern Europe) for paleoclimatic reconstructions; 2) to provide the first palaeoclimatic reconstitution in Romania based on the isotopic composition of oxygen and carbon in tree ring cellulose, and 3) to test the hypothesis that nearby sulphur mines have not altered the climatic signal recorded by the stable isotopic composition of tree rings, contrary to the similar signal recorded by TRW. For this study, we have analysed wood samples of Swiss stone pine (Pinus cembra L.) from living and dead trees from Cǎlimani Mts., NE Romania, aged between 1600 and 2012 AD. The isotopic composition of oxygen and carbon from the cellulose was analysed at the Institute for Geological and Geochemical Research, Budapest, Hungary, using a high-temperature pyrolysis system (Thermo Quest TC-EA) coupled to an isotope ratio mass spectrometer (Thermo Finningan Delta V) following a ring by ring (i.e., non-pooled) approach. The average level of δ18O and δ13C in cellulose for the period 1600-2012 was 28.83‰ and -22.63 ‰. The tree ring cellulose δ18O and δ13C values showed a strong positive correlation with maximum air temperature (r = 0.6 for δ18O and r = 0.5 for δ13C), mean temperature (r = 0.6 for δ18O and r = 0.45 for δ13C), and sunshine duration (r = 0.69 for δ18O) and negatively correlated with precipitation amount (r = -0.5 for δ18O and r = 0.3 for δ13C) and nebulosity (r = 0.6 for δ18O) during the summer months (June, July and August), while correlations with tree ring widths were always less than 0.3, thus showing the superior potential of the stable isotopes. Since temporal stability of the proxy-climate correlation is maintained also over the period of sulphur exploitation (1972 - 1992) when growth-climate relation was found to break down (based on TRW measurements) we conclude that this exploitation did not influenced the climate signal archived in the stable isotopic composition of cellulose. Based on these data, we suggest that δ18O and δ13C is a better indicator proxy for paleoclimatic reconstruction, and sulphur mining had less impact on this correlation than for tree ring widths. We have used these correlations to reconstruct past climatic variability during the 400 years. The coldest periods occurred between 1650-1690, 1710-1880 and 1950-1980, while the warmest between 1690-1710, 1850-1900, and since 1980 until present, with the maximum values in the 21st century. By Romania's position in East - Central Europe, where Atlantic, Mediterranean and Scandinavian climate influences converge, and strongly correlation between isotopic composition of tree-rings and climate, stable isotopes in tree ring could be an important tool for paleoclimatic reconstruction, what could shed light on our understanding of climate variability of the entire continent. Thanks to LP2012-27/2012 and CLIMFOR 18SEE.
NASA Astrophysics Data System (ADS)
Fernandes, Tarcísio José Gualberto; Damaso Del Campo, Antonio; Gonzáles-Sanchís, María
2014-05-01
Mediterranean forests need a proactive adaptive silviculture in the face of global change, being their water-use (WU) and water use efficiency (WUE) the key factors to forest managers. Thinning, as a silvicultural practice, has the potential to alter the water potential gradients that exist between soil and canopy. As a result, a change in the amount of water used by trees is produced. The aim of this study is to analyse the effects of the adaptive silviculture on the water-use and water-use efficiency. To that end, both WU and WUE, are measured in an Aleppo pine plantation, where different thinning intensities were applied. The experimental set-up consisted of four plots, three of them corresponding to thinning treatments in 2008 at different intensities High, Middle and Low plus an unthinned plot - control. Additionally, a plot next to the treatment, thinned with High intensity in 1998 was sampled to assess the longer-term effects of thinning. The plots are located at Southwest of Valencia-Spain. WU was measured in four trees per plot on the period April 2009 to May 2011 using HRM sapflow-sensors. WUE was described following the Carbon stable isotope theory by a dendrochronological approach. A stable isotope analysis was performed in the same trees used to measure sapflow. The analysed rings were those correspondent to the 3 previous years to the thinning, and the following after the treatment. The results from this study indicate that stand WU is significantly different (p<0.05) in each tested treatment, being higher in control plot, followed by Low, Medium and Heavy treatments. However, considering only the tree, the average WU was higher in the Heavy treatment. No significantly differences were found between low and control trees. The dendrochronological analyses showed a general variability in ring width during the initial growth (first 15 years). In the following years, the ring widths were very small, probably conditioned by climate conditions. However, immediately after thinning, all trees showed a significant increase when compared with control. The WUE show different patterns in dry and wet years, and between thinned and control plots. The correlation between WU and WUE was higher in the thinned plots than in control plot. Different patterns of the relationship between WUE and WU were found during years 2009 and 2010. A positive slope was found in thinned plots during 2008 (Low, Medium and Heavy), while negative slope was described in Heavy thinning 1998 and Control plots. In conclusion the reactions after thinning equally promote an increase in WU (tree transpiration), growth and WUE. However in the control plot the increase of WU produces a decrease of WUE. This probably responds to the lower rate of growth found in this plot. This study shows clearly the impacts of thinning in forest growth, water use and water use efficiency. Some of the effects of thinning have been pointed out in other studies. However, this study introduce a novel contribution relating WU to WUE in a Mediterranean Aleppo pine plantation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Y.; Fowlkes, J. D.; Roberts, N. A.
Nanoscale copper rings of different radii, thicknesses, and widths were synthesized on silicon dioxide thin films and were subsequently liquefied via a nanosecond pulse laser treatment. During the nanoscale liquid lifetimes, the rings experience competing retraction dynamics and thin film and/or Rayleigh-Plateau types of instabilities, which lead to arrays of ordered nanodroplets. Surprisingly, the results are significantly different from those of similar experiments carried out on a Si surface.(1) We use hydrodynamic simulations to elucidate how the different liquid/solid interactions control the different instability mechanisms in the present problem.
Multi-state lasing in self-assembled ring-shaped green fluorescent protein microcavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietrich, Christof P., E-mail: cpd3@st-andrews.ac.uk; Höfling, Sven; Gather, Malte C., E-mail: mcg6@st-andrews.ac.uk
2014-12-08
We demonstrate highly efficient lasing from multiple photonic states in microcavities filled with self-assembled rings of recombinant enhanced green fluorescent protein (eGFP) in its solid state form. The lasing regime is achieved at very low excitation energies of 13 nJ and occurs from cavity modes dispersed in both energy and momentum. We attribute the momentum distribution to very efficient scattering of incident light at the surface of the eGFP rings. The distribution of lasing states in energy is induced by the large spectral width of the gain spectrum of recombinant eGFP (FWHM ≅ 25 nm)
Interferometry of Klein tunnelling electrons in graphene quantum rings
NASA Astrophysics Data System (ADS)
de Sousa, D. J. P.; Chaves, Andrey; Pereira, J. M.; Farias, G. A.
2017-01-01
We theoretically study a current switch that exploits the phase acquired by a charge carrier as it tunnels through a potential barrier in graphene. The system acts as an interferometer based on an armchair graphene quantum ring, where the phase difference between interfering electronic wave functions for each path can be controlled by tuning either the height or the width of a potential barrier in the ring arms. By varying the parameters of the potential barriers, the interference can become completely destructive. We demonstrate how this interference effect can be used for developing a simple graphene-based logic gate with a high on/off ratio.
Numerical simulation of eigenmodes of ring and race-track optical microresonators
NASA Astrophysics Data System (ADS)
Raskhodchikov, A. V.; Raskhodchikov, D. V.; Scherbak, S. A.; Lipovskii, A. A.
2017-11-01
We have performed a numerical study of whispering gallery modes of ring and race-track optical microresonators. Mode excitation was considered and their spectra and electromagnetic field distributions were calculated via numerical solution of the Helmholtz equation. We pay additional attention to features of eigenmodes in race-tracks in contrast with ring resonators. Particularly, we demonstrate that modes in race-tracks are not “classic” WGM in terms of total internal reflection from a single boundary, and an inner boundary is essential for their formation. The dependence of effective refractive index of race-tracks modes on the resonator width is shown.
NASA Astrophysics Data System (ADS)
Heinrich, Ingo; Balanzategui, Daniel; Heußner, Karl-Uwe; Pritzkow, Carola; Giese, Laura; Graaf, Johannes; Lindemann, Josephine; Schirmer, Thomas; Dorado Liñán, Isabel; Wazny, Tomasz; Scharnweber, Tobias; Van der Maaten, Ernst; Helle, Gerd; Blume, Theresa; Pohlmann, Silvio
2016-04-01
Tree-ring based temperature reconstructions form a substantial part of the international proxy data base used to examine and model global climate variations of the last Millennium. However, most tree-ring based reconstructions are derived from study sites in the high latitudes or high altitudes paying little attention to the temperate lowlands worldwide. Thus, a large gap in the geographical coverage of climate reconstructions, in particular temperature reconstructions, from temperate low elevation sites in central Europe still exists. This motivated us to concentrate our efforts on the European oak (Quercus robur) in Northeastern Germany, combining core samples from living trees with archaeological wood. We developed a new wood anatomical chronology focusing on the earlywood vessels of Q. robur for the period 1100 to 2011. As far as we know it is by far the longest chronology based on wood anatomical parameters. First climate growth analyses demonstrated that earlywood vessel parameters, especially average vessel area, contained climate signals which were different and more significant than those found in tree-ring widths. The strongest correlation was found with winter temperatures. This relationship was then used for a reconstruction for the period 1100 to 2011. By using only raw values, low-frequency signals could be sustained. This new reconstruction was compared with already existing temperature reconstructions and spatial field correlations were calculated. Results will be presented and discussed at EGU for the first time.
NASA Astrophysics Data System (ADS)
Rinne, K. T.; Loader, N. J.; Switsur, V. R.; Treydte, K. S.; Waterhouse, J. S.
2010-04-01
This study reports the influence of a 20th century pollution signal recorded in the δ 13C and δ 18O of absolutely dated tree rings from Quercus robur and Pinus sylvestris from southern England. We identify a correspondence between the inter-relationship and climate sensitivity of stable isotope series that appears to be linked to recent trends in local SO 2 emissions. This effect is most clearly exhibited in the broadleaved trees studied but is also observed in the δ 13C values of the (less polluted) pine site at Windsor. The SO 2 induced stomatal closure leads to a maximum increase of 2.5‰ in the isotope values (δ 13C). The combined physiological response to high pollution levels is less in δ 18O than δ 13C. The SO 2 signal also seems to be present as a period of reduced growth in the two ring-width chronologies. Direct, quantitative correction for the SO 2 effect represents a significant challenge owing to the nature of the records and likely local plant response to environmental pollution. Whilst it appears that this signal is both limited to the late industrial period and demonstrates a recovery in line with improvements in air quality, the role of atmospheric pollution during the calibration period should not be underestimated and adequate consideration needs to be taken when calibrating biological environmental proxies in order to avoid development of biased reconstructions.
Dean S. DeBell; Ryan Singleton; Barbara L. Gartner; David D. Marshall
2004-01-01
Breast-high stem sections were sampled from 56 western hemlock (Tsuga heterophylla (Raf.) Sarg.) trees growing in 15 plots representing a wide range of tree and site conditions in northwestern Oregon. Growth and wood density traits of individual rings were measured via X-ray densitometry, and relationships of ring density and its components to age...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodigas, Timothy J.; Hinz, Philip M.; Malhotra, Renu, E-mail: rodigas@as.arizona.edu
Planets can affect debris disk structure by creating gaps, sharp edges, warps, and other potentially observable signatures. However, there is currently no simple way for observers to deduce a disk-shepherding planet's properties from the observed features of the disk. Here we present a single equation that relates a shepherding planet's maximum mass to the debris ring's observed width in scattered light, along with a procedure to estimate the planet's eccentricity and minimum semimajor axis. We accomplish this by performing dynamical N-body simulations of model systems containing a star, a single planet, and an exterior disk of parent bodies and dustmore » grains to determine the resulting debris disk properties over a wide range of input parameters. We find that the relationship between planet mass and debris disk width is linear, with increasing planet mass producing broader debris rings. We apply our methods to five imaged debris rings to constrain the putative planet masses and orbits in each system. Observers can use our empirically derived equation as a guide for future direct imaging searches for planets in debris disk systems. In the fortuitous case of an imaged planet orbiting interior to an imaged disk, the planet's maximum mass can be estimated independent of atmospheric models.« less
Climate signals derived from cell anatomy of Scots pine in NE Germany.
Liang, Wei; Heinrich, Ingo; Simard, Sonia; Helle, Gerhard; Liñán, Isabel Dorado; Heinken, Thilo
2013-08-01
Tree-ring chronologies of Pinus sylvestris L. from latitudinal and altitudinal limits of the species distribution have been widely used for climate reconstructions, but there are many sites within the temperate climate zone, as is the case in northeastern Germany, at which there is little evidence of a clear climate signal in the chronologies. In this study, we developed long chronologies of several cell structure variables (e.g., average lumen area and cell wall thickness) from P. sylvestris growing in northeastern Germany and investigated the influence of climate on ring widths and cell structure variables. We found significant correlations between cell structure variables and temperature, and between tree-ring width and relative humidity and vapor pressure, respectively, enabling the development of robust reconstructions from temperate sites that have not yet been realized. Moreover, it has been shown that it may not be necessary to detrend chronologies of cell structure variables and thus low-frequency climate signals may be retrieved from longer cell structure chronologies. The relatively extensive resource of archaeological material of P. sylvestris covering approximately the last millennium may now be useful for climate reconstructions in northeastern Germany and other sites in the temperate climate zone.
NASA Astrophysics Data System (ADS)
Heremans, J. J.; Ren, S. L.; Zhang, Yao; Gaspe, C. K.; Vijeyaragunathan, S.; Mishima, T. D.; Santos, M. B.
2014-03-01
Aharonov-Bohm oscillations in the low-temperature magnetoresistance of mesoscopic interferometric rings are investigated for their dependence on bias current and temperature, and to explore origins of the observed amplitude modulation in magnetic field. Single-ring interferometers of radius 650 nm and lithographic arm width 300 nm were fabricated on a high-mobility high-density InGaAs/InAlAs heterostructure. The rings show interference oscillations over a wide range of magnetic fields, with amplitudes subject to modulation with applied magnetic field. The quantum phase coherence length is extracted by analysis of the fundamental and higher Fourier components of the oscillations, and by comparative study of the amplitude. The variation of the amplitude with bias current and temperature shows the existence of a critical excitation energy consistent with the Thouless energy for quantum phase smearing. Autocorrelation and Fourier analysis are used to determine the quasi-period of the amplitude modulation, which is found to be consistent with an origin in the magnetic flux threading the finite width of the interferometer arms, changing the mesoscopic realization of the system. Supported by DOE DE-FG02-08ER46532 (VT) and NSF DMR-0520550 (UoO).
Growth Decline Linked to Warming-Induced Water Limitation in Hemi-Boreal Forests
Wu, Xiuchen; Liu, Hongyan; Guo, Dali; Anenkhonov, Oleg A.; Badmaeva, Natalya K.; Sandanov, Denis V.
2012-01-01
Hemi-boreal forests, which make up the transition from temperate deciduous forests to boreal forests in southern Siberia, have experienced significant warming without any accompanying increase in precipitation during the last 80 years. This climatic change could have a profound impact on tree growth and on the stability of forest ecosystems in this region, but at present evidence for these impacts is lacking. In this study, we report a recent dramatic decline in the growth of hemi-boreal forests, based on ring width measurements from three dominant tree-species (Pinus sylvestris, Larix sibirica and Larix gmelinii), sampled from eight sites in the region. We found that regional tree growth has become increasingly limited by low soil water content in the pre- and early-growing season (from October of the previous year to July of the current year) over the past 80 years. A warming-induced reduction in soil water content has also increased the climate sensitivity of these three tree species. Beginning in the mid-1980s, a clear decline in growth is evident for both the pine forests and the larch forests, although there are increasing trends in the proxy of soil water use efficiencies. Our findings are consistent with those from other parts of the world and provide valuable insights into the regional carbon cycle and vegetation dynamics, and should be useful for devising adaptive forest management strategies. PMID:22916142
Growth decline linked to warming-induced water limitation in hemi-boreal forests.
Wu, Xiuchen; Liu, Hongyan; Guo, Dali; Anenkhonov, Oleg A; Badmaeva, Natalya K; Sandanov, Denis V
2012-01-01
Hemi-boreal forests, which make up the transition from temperate deciduous forests to boreal forests in southern Siberia, have experienced significant warming without any accompanying increase in precipitation during the last 80 years. This climatic change could have a profound impact on tree growth and on the stability of forest ecosystems in this region, but at present evidence for these impacts is lacking. In this study, we report a recent dramatic decline in the growth of hemi-boreal forests, based on ring width measurements from three dominant tree-species (Pinus sylvestris, Larix sibirica and Larix gmelinii), sampled from eight sites in the region. We found that regional tree growth has become increasingly limited by low soil water content in the pre- and early-growing season (from October of the previous year to July of the current year) over the past 80 years. A warming-induced reduction in soil water content has also increased the climate sensitivity of these three tree species. Beginning in the mid-1980s, a clear decline in growth is evident for both the pine forests and the larch forests, although there are increasing trends in the proxy of soil water use efficiencies. Our findings are consistent with those from other parts of the world and provide valuable insights into the regional carbon cycle and vegetation dynamics, and should be useful for devising adaptive forest management strategies.
1986-01-25
P-29506BW Range: 1.12 million kilometers (690,000 miles) This high-resolution image of the epsilon ring of Uranus is a clear-filter picture from Voyager's narrow-angle camera and has a resolution of about 10 km (6 mi). The epsilon ring, approx. 100 km (60 mi) wide at this location, clearly shows a structural variation. Visible here are a broad, bright outer component about 40 km (25 mi) wide; a darker, middle region of comparable width; and a narrow, bright inner strip about 15 km (9 mi) wide. The epsilon-ring structure seen by Voyager is similiar to that observed from the ground with stellar-occultation techniques. This frame represents the first Voyager image that resolves these features within the epsilon ring. The occasional fuzzy splotches on the outer and innerparts of the ring are artifacts left by the removal of reseau marks (used for making measurements on the image).
Förster, Erik; Bohnert, Patrick; Kraus, Matthias; Kilper, Roland; Müller, Ute; Buchmann, Martin; Brunner, Robert
2016-11-20
This paper presents the conception and implementation of a variable diameter ring-cutting system for a CO2 laser with a working wavelength of 10.6 μm. The laser-cutting system is adapted to an observation zoom microscope for combined use and is applicable for the extraction of small circular areas from polymer films, such as forensic adhesive tapes in a single shot. As an important characteristic for our application, the variable diameter ring-cutting system provides telecentricity in the target area. Ring diameters are continuously tunable between 500 μm and 2 mm. A minimum width of less than 20 μm was found for the ring profile edge. The basic characteristics of the system, including telecentricity, were experimentally evaluated and demonstrated by cutting experiments on different polymer tapes and further exemplary samples.
NASA Astrophysics Data System (ADS)
Babst, Flurin; Wright, William; Szejner, Paul; Wells, Leon; Belmecheri, Soumaya; Monson, Russell
2016-04-01
Rapidly rising evaporative demand threatens forests in semi-arid areas around the world, but the timing of stem growth response to drought is often coarsely known. This is partly due to a shortage of sub-annual growth records, particularly outside the Mediterranean region where most intra-annual density fluctuation (IADF) chronologies are based. We anticipate that an automated, cost-effective, and easily implementable method to characterize IADFs could foster more widespread development of sub-annual chronologies. Here, we applied a peak detection algorithm to fine-spatial resolution blue intensity (BI) profiles of Ponderosa pine tree rings from two sites located in neighboring mountain ranges in southern Arizona (~300 m elevation difference). This automated procedure proved reliable to isolate and characterize IADFs, thus offering an efficient and objective alternative to visual identification. Out of seven investigated BI parameters, peak height, width, and area showed satisfactory chronology statistics. We assessed the response of these BI and radial growth parameters to six monthly-resolved climate variables and to the onset date of the North American summer monsoon (NAM). The NAM is an atmospheric mode that provides a clear time marker for the termination of a pre-summer drought period (May-June) causing regular IADFs in trees growing near the dry margin of their distribution range. We observed divergent water limitation at the two sites, despite comparable site characteristics. Radial growth at the lower-elevation site depended mainly on winter precipitation, whereas the higher site relied on spring and monsoon precipitation. The pre-summer drought period indeed promoted IADFs in early ring portions at both sites. Yet, IADFs at the higher site were only formed, if spring was sufficiently humid to assume enough radial growth. Late-position IADFs were caused by a weak monsoon and additionally promoted by favorable conditions towards the end of the growing season. The contrast between sites is likely attributable to a three-week difference in the growing season onset, emphasizing the importance of growth phenology for drought impacts on forests in the US Southwest.
Hogg, Edward H; Michaelian, Michael; Hook, Trisha I; Undershultz, Michael E
2017-12-01
Since 2001, climatic conditions have been notably drier than normal across large areas of the western Canadian interior, leading to widespread impacts on the forests of this region. This poses a major concern for the future, given climate change projections for continued warming and drying. We conducted tree-ring analysis in 75 pure stands of white spruce (Picea glauca) across Alberta and west-central Saskatchewan to examine the effects of recent climatic drying on the growth of this important boreal tree species. Allometric equations were used to calculate annual growth in aboveground tree biomass (G BM ) from ring width measurements. Results showed an increasing trend in G BM from the 1960s to the 1990s, followed by a sharp decline during the severe drought of 2001-2002. Of the 75 stands, only 18 recovered sufficiently to cause an increase in mean G BM from the predrought decade of 1991-2000 to the subsequent decade of 2001-2010. The remaining 57 stands exhibited a decline in mean G BM between these decades. Climatic drying was a major cause of the growth decline, as shown by the significant stand-level relationship between percentage change in decadal mean G BM and the change in decadal mean values of a climate moisture index from 1991-2000 to 2001-2010. Subsequent analyses of boreal stands sampled across Alberta during 2015 revealed that white spruce growth had declined even further as drought conditions intensified during 2014-2015. Overall, there was a 38% decrease in mean G BM between 1997 and 2015, but surprisingly, the percentage decrease was not significantly different for young, productive stands compared with older, less productive stands. Thus, stand ageing cannot explain the observed decline in white spruce growth during the past quarter century, suggesting that these forests are at risk if the trend towards more frequent, severe drought continues in the region. © 2017 Her Majesty the Queen in Right of Canada Global Change Biology ©2017 John Wiley & Sons Ltd. Reproduced with the permission of the Minister of Natural Resources Canada.
NASA Astrophysics Data System (ADS)
Meier, W. J. H.; Wernicke, J., Jr.; Braun, M.; Aravena, J. C.; Jaña, R.; Griessinger, J.
2016-12-01
Since the end of the Little Ice Age, the area of the Northern and Southern Patagonian ice sheet decreased by more than 14% and 11%, respectively. The melting increased since the last decade by 2.3%. The glaciers of Cordillera Darwin recorded a surface decrease of approximately 14% for the last 140 years. The reason for the excessive glacial change is often explained through the rise in temperature combined with a decrease in precipitation or a change in seasonality. Since a spatially coherent coverage of climatological measurement is lacking it is not possible to verify this assumption in a differentiated manner. Hence, the German- Chilean joint project "Responses of GlAciers, Biosphere and hYdrology to climate Variability and climate chAnge across the Southern Andes (GABY-VASA)" aims to determine the influence of long and short term climate variabilities (El Niño-Southern Oscillation (ENSO), Southern Hemisphere Annular Mode (SAM)) on the cryo- and biosphere. Trees growing at the glacier margins and at the natural treeline were sampled at four different locations ranging from the humid western part of the southern Andes (annual precipitation > 10.000mma-1) to the distinct dryer eastern part (annual precipitation < 500mma-1). Besides the tree-ring width based temperature reconstruction the precipitation variability reflected by δ18O in tree-rings is a promising approach to obtain detailed information of small-scaled hydro climatic conditions. Furthermore the use of δ18O as a proxy in combination with tree-ring width offers the opportunity of meteorological back trajectories and the derivation of air masses since the Little Ice Age. It thus interlinks past and present climate and allows to draw conclusions about the driving forces of glacial change.
Tree-ring-width-based PDSI reconstruction for central Inner Mongolia, China over the past 333 years
NASA Astrophysics Data System (ADS)
Liu, Yu; Zhang, Xinjia; Song, Huiming; Cai, Qiufang; Li, Qiang; Zhao, Boyang; Liu, Han; Mei, Ruochen
2017-02-01
A tree-ring-width chronology was developed from Pinus tabulaeformis aged up to 333 years from central Inner Mongolia, China. The chronology was significantly correlated with the local Palmer Drought Severity Index (PDSI). We therefore reconstructed the first PDSI reconstruction from March to June based on the local tree ring data from 1680 to 2012 AD. The reconstruction explained 40.7 % of the variance (39.7 % after adjusted the degrees of freedom) of the actual PDSI during the calibration period (1951-2012 AD). The reconstructed PDSI series captured the severe drought event of the late 1920s, which occurred extensively in northern China. Running variance analyses indicated that the variability of drought increased sharply after 1960, indicating more drought years, which may imply anthropogenic related global warming effects in the region. In the entire reconstruction, there were five dry periods: 1730-1814 AD, 1849-1869 AD, 1886-1942 AD (including severe drought in late 1920s), 1963-1978 AD and 2004-2007 AD; and five wet periods: 1685-1729 AD, 1815-1848 AD, 1870-1885 AD, 1943-1962 AD and 1979-2003 AD. Conditions turned dry after 2003 AD, and the PDSI from March to June (PDSI36) captured many interannual extreme drought events since then, such as 2005-2008 AD. The reconstruction is comparable to other tree-ring-width-based PDSI series from the neighboring regions, indicating that our reconstruction has good regional representativeness. Significant relationships were found between our PDSI reconstruction and the solar radiation cycle and the sun spot cycle, North Atlantic Oscillation, the El Niño-Southern Oscillation, as well as the Pacific Decadal Oscillation. Power spectral analyses detected 147.0-, 128.2-, 46.5-, 6.5-, 6.3-, 2.6-, 2.2- and 2.0-year quasi-cycles in the reconstructed series.
Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave
Chen, Gang; Wu, Zhi-xiang; Yu, An-ping; Zhang, Zhi-hai; Wen, Zhong-quan; Zhang, Kun; Dai, Lu-ru; Jiang, Sen-lin; Li, Yu-yan; Chen, Li; Wang, Chang-tao; Luo, Xian-gang
2016-01-01
The generation of a sub-diffraction optical hollow ring is of great interest in various applications, such as optical microscopy, optical tweezers, and nanolithography. Azimuthally polarized light is a good candidate for creating an optical hollow ring structure. Various of methods have been proposed theoretically for generation of sub-wavelength hollow ring by focusing azimuthally polarized light, but without experimental demonstrations, especially for sub-diffraction focusing. Super-oscillation is a promising approach for shaping sub-diffraction optical focusing. In this paper, a planar sub-diffraction diffractive lens is proposed, which has an ultra-long focal length of 600 λ and small numerical aperture of 0.64. A sub-diffraction hollow ring is experimentally created by shaping an azimuthally polarized wave. The full-width-at-half-maximum of the hollow ring is 0.61 λ, which is smaller than the lens diffraction limit 0.78 λ, and the observed largest sidelobe intensity is only 10% of the peak intensity. PMID:27876885
Comparing the locking threshold for rings and chains of oscillators.
Ottino-Löffler, Bertrand; Strogatz, Steven H
2016-12-01
We present a case study of how topology can affect synchronization. Specifically, we consider arrays of phase oscillators coupled in a ring or a chain topology. Each ring is perfectly matched to a chain with the same initial conditions and the same random natural frequencies. The only difference is their boundary conditions: periodic for a ring and open for a chain. For both topologies, stable phase-locked states exist if and only if the spread or "width" of the natural frequencies is smaller than a critical value called the locking threshold (which depends on the boundary conditions and the particular realization of the frequencies). The central question is whether a ring synchronizes more readily than a chain. We show that it usually does, but not always. Rigorous bounds are derived for the ratio between the locking thresholds of a ring and its matched chain, for a variant of the Kuramoto model that also includes a wider family of models.
NASA Technical Reports Server (NTRS)
Sosnowski, John B.
2010-01-01
This Brief describes a method of machining and assembly when the depth of corrugations far exceeds the width and conventional machining is not practical. The horn is divided into easily machined, individual rings with shoulders to control the depth. In this specific instance, each of the corrugations is identical in profile, and only differs in diameter and outer profile. The horn is segmented into rings that are cut with an interference fit (zero clearance with all machining errors biased toward contact). The interference faces can be cut with a reverse taper to increase the holding strength of the joint. The taper is a compromise between the interference fit and the clearance of the two faces during assembly. Each internal ring is dipped in liquid nitrogen, then nested in the previous, larger ring. The ring is rotated in the nest until the temperature of the two parts equalizes and the pieces lock together. The resulting assay is stable, strong, and has an internal finish that cannot be achieved through other methods.
Comparing the locking threshold for rings and chains of oscillators
NASA Astrophysics Data System (ADS)
Ottino-Löffler, Bertrand; Strogatz, Steven H.
2016-12-01
We present a case study of how topology can affect synchronization. Specifically, we consider arrays of phase oscillators coupled in a ring or a chain topology. Each ring is perfectly matched to a chain with the same initial conditions and the same random natural frequencies. The only difference is their boundary conditions: periodic for a ring and open for a chain. For both topologies, stable phase-locked states exist if and only if the spread or "width" of the natural frequencies is smaller than a critical value called the locking threshold (which depends on the boundary conditions and the particular realization of the frequencies). The central question is whether a ring synchronizes more readily than a chain. We show that it usually does, but not always. Rigorous bounds are derived for the ratio between the locking thresholds of a ring and its matched chain, for a variant of the Kuramoto model that also includes a wider family of models.
AXAF VETA-I mirror ring focus measurements
NASA Technical Reports Server (NTRS)
Tananbaum, H. D.; Zhao, P.
1994-01-01
The AXAF VETA-I mirror ring focus measurements were made with an HRI (microchannel plate) X-ray detector. The ring focus is a sharply focused ring formed by X-rays before they reach the VEAT-I focal plane. It is caused by spherical aberrations due to the finite source distance and the despace in the VETA-I test. The ring focus test reveals some aspects fo the test system distortions and the mirror surface figure which are difficult or impossible to detect at the focal plane. The test results show periodic modulations of the ring radius and width which could be caused by gravity, thermal, and/or epoxy shrinkage distortions. The strongest component of the modulation had a 12-fold symmetry, because these distortions were exerted on the mirror through 12 flexures of the VETA-I mount. Ring focus models were developed to simulate the ring image. The models were compared with the data to understand the test system distortions and the mirror glass imperfection. Further studies will be done to complete this work. The ring focus measurement is a very powerful test. We expect that a similar test for the finally assembled mirror of AXAD-I will be highly valuable.
Lunar and Venusian radar bright rings
NASA Technical Reports Server (NTRS)
Thompson, T. W.; Saunders, R. S.; Weissman, D. E.
1986-01-01
Twenty-one lunar craters have radar bright ring appearances which are analogous to eleven complete ring features in the earth-based 12.5 cm observations of Venus. Radar ring diameters and widths for the lunar and Venusian features overlap for sizes from 45 to 100 km. Radar bright areas for the lunar craters are associated with the slopes of the inner and outer rim walls, while level crater floors and level ejecta fields beyond the raised portion of the rim have average radar backscatter. It is proposed that the radar bright areas of the Venusian rings are also associated with the slopes on the rims of craters. The lunar craters have evolved to radar bright rings via mass wasting of crater rim walls and via post-impact flooding of crater floors. Aeolian deposits of fine-grained material on Venusian crater floors may produce radar scattering effects similar to lunar crater floor flooding. These Venusian aeolian deposits may preferentially cover blocky crater floors producing a radar bright ring appearance. It is proposed that the Venusian features with complete bright ring appearances and sizes less than 100 km are impact craters. They have the same sizes as lunar craters and could have evolved to radar bright rings via analogous surface processes.
Dielectron widths of the Gamma(1S,2S,3S) resonances.
Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Phillips, E A; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; White, E J; Wiss, J; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Smith, A; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Arms, K; Severini, H; Dytman, S A; Love, W; Mehrabyan, S; Savinov, V; Aquines, O; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Stroynowski, R; Artuso, M; Blusk, S; Butt, J; Li, J; Menaa, N; Mountain, R; Nisar, S; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Asner, D M; Edwards, K W; Briere, R A; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E
2006-03-10
We determine the dielectron widths of the Gamma(1S), Gamma(2S), and Gamma(3S) resonances with better than 2% precision by integrating the cross section of e+e- -->Gamma over the e+e- center-of-mass energy. Using e+e- energy scans of the Gamma resonances at the Cornell Electron Storage Ring and measuring Gamma production with the CLEO detector, we find dielectron widths of 1.252+/-0.004(sigma(stat))+/-0.019(sigma(syst)) keV, 0.581+/-0.004+/-0.009 keV, and 0.413+/-0.004+/-0.006 keV for the Gamma(1S), Gamma(2S), and Gamma(3S), respectively.
Uranium mobility across annual growth rings in three deciduous tree species
DOE Office of Scientific and Technical Information (OSTI.GOV)
McHugh, Kelly C.; Widom, Elisabeth; Spitz, Henry B.
Black walnut (Juglans nigra), slippery elm (Ulmus rubra), and white ash (Fraxinus americana) trees were evaluated as potential archives of past uranium (U) contamination. Like other metals, U mobility in annual growth rings of trees is potentially dependent on the tree species. Uranium concentrations and isotopic compositions (masses 234, 235, 236, and 238) were analyzed by thermal ionization mass spectrometry to test the efficacy of using tree rings to retroactively monitor U pollution from the FFMPC, a U purification facility operating from 1951 to 1989. This study found non-natural U (depleted U and detectable 236U) in growth rings of allmore » three tree species that pre-dated the start of operations at FFMPC and compositional trends that did not correspond with known contamination events. Therefore, the annual growth rings of these tree species cannot be used to reliably monitor the chronology of U contamination.« less
Uranium mobility across annual growth rings in three deciduous tree species.
McHugh, Kelly C; Widom, Elisabeth; Spitz, Henry B; Wiles, Gregory C; Glover, Sam E
2018-02-01
Black walnut (Juglans nigra), slippery elm (Ulmus rubra), and white ash (Fraxinus americana) trees were evaluated as potential archives of past uranium (U) contamination. Like other metals, U mobility in annual growth rings of trees is dependent on the tree species. Uranium concentrations and isotopic compositions (masses 234, 235, 236, and 238) were analyzed by thermal ionization mass spectrometry to test the efficacy of using tree rings to retroactively monitor U pollution from the FFMPC, a U purification facility operating from 1951 to 1989. This study found non-natural U (depleted U and detectable 236 U) in growth rings of all three tree species that pre-dated the start of operations at FFMPC and compositional trends that did not correspond with known contamination events. Therefore, the annual growth rings of these tree species cannot be used to reliably monitor the chronology of U contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Oberhuber, Walter; Gruber, Andreas
2010-05-01
Radial stem growth indices of trees are known to be valuable long-term measures of overall tree vigor and are frequently applied to identify the climatic factors limiting tree growth. Based on several tree-ring studies conducted within inner-Alpine dry valleys, it is well established that growth of Pinus sylvestris is primarily limited by spring precipitation (April through June) and severe drought results in abrupt growth reductions and increased tree mortality. However, the record breaking heat-wave in summer 2003 had only minor impact on growth of drought exposed coniferous trees within the dry inner-Alpine valley of the Inn river (750 m a.s.l., Tyrol, Austria), where mean annual precipitation and temperature amount to 716 mm and 7.3 °C, respectively. To examine short-term influences of drought stress on growth processes more closely, we determined the influence of meteorological factors (air temperature, precipitation) and soil moisture on intra-annual dynamics of tree ring development and stem radial growth in Pinus sylvestris at two sites differing in soil moisture characteristics (xeric and dry-mesic). Radial stem development was continuously followed during 2007 and 2008 by band dendrometers and repeated micro-sampling of the developing tree ring of mature trees. In 2007, when air temperature at the beginning of the growing season in April exceeded long-term mean by 6.4 °C, cambial cell division started in early April at both study plots. A delayed onset of cambial activity of c. 2 wk was found in 2008, when average climate conditions prevailed in spring, suggesting that resumption of cambial cell division after winter dormancy is temperature-controlled. Wood formation stopped c. 4 wk earlier at the xeric compared to dry-mesic site in both study years, which indicates a strong influence of drought stress on cell differentiation processes. This is supported by radial widths of earlywood cells, which were found to be significantly narrower at the xeric compared to the dry-mesic site (P < 0.05). Furthermore, early culmination of radial growth was found at both study plots around mid-May, prior to occurrence of more favourable climatic conditions, i.e. an increase in precipitation during summer. We suggest that early achievement of maximum growth rate in spring can be regarded as an adaptation to cope with extreme environmental conditions prevailing within the study area, which require an early switch of carbon allocation to belowground organs to ensure adequate resource acquisition on the drought prone substrate. Sustainably reduced tree vigor, higher tree mortality and strikingly reduced stem growth of shallowly rooted trees support our reasoning. In conclusion, our results suggest that in Pinus sylvestris exposed to dry inner-Alpine climate (i) a temperature threshold rather than water availability triggers onset of aboveground stem growth in spring, and (ii) recurring drought periods combined with nutrient deficiency of shallow, stony soils cause elevated carbohydrate requirements of the root system and associated symbiotic mycorrhizal hyphae to maintain the capability of absorbing scarce water und nutrient resources at the expense of aboveground stem growth.
Optimal design and fabrication of ring resonator composed of Ge02-doped silica waveguides for IOG
NASA Astrophysics Data System (ADS)
Guo, Lijun; Shi, Bangren; Chen, Chen; Lv, Hao; Zhao, Zhenming; Zhao, Meng
2009-07-01
The ring resonator is the core sensing element in the resonant integration optical gyroscope (IOG) . Its performances influence the minimum resolution and the error items of gyroscope directly and it is the key of the design and manufacturing. This paper presents optimal design of ring resonator composed of Ge02 -doped silica waveguides fabricated on silicon substrates using wide angle beam propagation method (WA-BPM). The characteristic of the light propagating across the ring resonator is analyzed. According to the design results, we succeed in fabricating the ring resonator by Plasma Enhanced Chemical Vapor Deposition (PECVD) method and Reactive Ion Etching (RIE) technology. In order to characterize the ring resonator, an optical measurement setup is built, fiber laser line-width is 50 kHz, detector responsibility is 0.95A/W and integral time is 10s. By testing, propagation loss and total loss of ring resonator are 0.02dB/cm and 0.1dB/circuit respectively. Observed from the resonance curve, a finesse of 12.5.
Gričar, Jožica; Prislan, Peter; de Luis, Martin; Gryc, Vladimír; Hacurová, Jana; Vavrčík, Hanuš; Čufar, Katarina
2015-01-01
There is limited information on intra-annual plasticity of secondary tissues of tree species growing under different environmental conditions. To increase the knowledge about the plasticity of secondary growth, which allows trees to adapt to specific local climatic regimes, we examined climate–radial growth relationships of Norway spruce [Picea abies (L.) H. Karst.] from three contrasting locations in the temperate climatic zone by analyzing tree-ring widths for the period 1932–2010, and cell characteristics in xylem and phloem increments formed in the years 2009–2011. Variation in the structure of xylem and phloem increments clearly shows that plasticity in seasonal dynamics of cambial cell production and cell differentiation exists on xylem and phloem sides. Anatomical characteristics of xylem and phloem cells are predominantly site-specific characteristics, because they varied among sites but were fairly uniform among years in trees from the same site. Xylem and phloem tissues formed in the first part of the growing season seemed to be more stable in structure, indicating their priority over latewood and late phloem for tree performance. Long-term climate and radial growth analyses revealed that growth was in general less dependent on precipitation than on temperature; however, growth sensitivity to local conditions differed among the sites. Only partial dependence of radial growth of spruce on climatic factors on the selected sites confirms its strategy to adapt the structure of wood and phloem increments to function optimally in local conditions. PMID:26442044
NASA Astrophysics Data System (ADS)
Bulushev, A. G.; Dianov, Evgenii M.; Kuznetsov, A. V.; Okhotnikov, O. G.; Paramonov, Vladimir M.; Tsarev, Vladimir A.
1990-05-01
A study was made of the use of single-mode fiber ring interferometers in narrowing the emission lines of semiconductor lasers and increasing the optical radiation power. Efficient coupling of radiation, emitted by a multifrequency injection laser with an external resonator, into a fiber ring interferometer was achieved both under cw and mode-locking conditions. Matching of the optical lengths of the external resonator and the fiber interferometer made it possible to determine the mode width for this laser. A method for generation of optical pulses in a fiber ring interferometer from cw frequency modulated radiation was developed.
NASA Technical Reports Server (NTRS)
Gross, B.; Srawley, J. E.
1983-01-01
The boudary collocation method was used to generate Mode 1 stress intensity and crack mouth displacement coefficients for internally and externally radially cracked ring segments (arc bend specimens) subjected to three point radial loading. Numerical results were obtained for ring segment outer to inner radius ratios (R sub o/ R sub i) ranging from 1.10 to 2.50 and crack length to width ratios (a/W) ranging from 0.1 to 0.8. Stress intensity and crack mouth displacement coefficients were found to depend on the ratios R sub o/R sub i and a/W as well as the included angle between the directions of the reaction forces.
Switching behavior and novel stable states of magnetic hexagonal nanorings
NASA Astrophysics Data System (ADS)
Yasir Rafique, M.; Pan, Liqing; Guo, Zhengang
2017-06-01
Micromagnetic simulations for Cobalt hexagonal shape nanorings show onion (O) and vortex state (V) along with new state named "tri-domain state". The tri-domain state is observed in sufficiently large width of ring. The magnetic reversible mechanism and transition of states are explained with help of vector field display. The transitions from one state to other occur by propagation of domain wall. The vertical parts of hexagonal rings play important role in developing the new "tri-domain" state. The behaviors of switching fields from onion to tri-domain (HO-Tr), tri-domain to vortex state (HTr-V) and vortex to onion state and "states size" are discussed in term of geometrical parameter of ring.
1981-01-21
Range : 4.1 million km. ( 2.5 million miles ) P-29466B/W Voyager 2 has discovered two 'shepard' satellites associated with the rings of Uranus. The two moons, designated 1986U7 and 1986U8, are seen here on either side of the bright Epsilon Ring. All nine of the known Uranian rings are visible here. The image was proccessed to enhance narrow features. The Epsilon Ring appears surrounded by a dark halo as a result of this proccessing. Occasional blips seen on the ring are also artifacts. Lying inward from the Epsilon Ring are the Delta, Gamma, and Eta Rings; then the Beta abd Alpha Rings; and finally, the barely visible 4, 5, and 6 Rings. The rings have been studied since their discovery in 1977, through observations of how they diminish the light of stars they pass in front of. This image is the first direct observationn of all nine rings in reflected sunlight. They range in width from about 100 km. (60 mi.) at the widest part of the Epsilon Ring to only a few kilometers for most of the others. The discovery of the two ring moons 1986U7 and 1986U8 is a major advance in our understanding of the structure of the Uranian rings and is in good agreement with theoretical predictions of how these narrow rings are kept from spreading out. Based on likely surface brightness properties, the moons are of roughly 20 and 30 km. diameter, respectively.
Transformation of self-assembled InAs/InP quantum dots into quantum rings without capping.
Sormunen, Jaakko; Riikonen, Juha; Mattila, Marco; Tiilikainen, Jouni; Sopanen, Markku; Lipsanen, Harri
2005-08-01
Transformation of self-assembled InAs quantum dots (QDs) on InP(100) into quantum rings (QRs) is studied. In contrast to the typical approach to III--V semiconductor QR growth, the QDs are not capped to form rings. Atomic force micrographs reveal a drastic change from InAs QDs into rings after a growth interruption in tertiarybutylphosphine ambient. Strain energy relief in the InAs QD is discussed and a mechanism for dot-to-ring transformation by As/P exchange reactions is proposed.
On the stability of pick-up ion ring distributions in the outer heliosheath
DOE Office of Scientific and Technical Information (OSTI.GOV)
Summerlin, Errol J.; Viñas, Adolfo F.; Moore, Thomas E.
The 'secondary energetic neutral atom (ENA)' hypothesis for the ribbon feature observed by the Interstellar Boundary Explorer (IBEX) posits that the neutral component of the solar wind continues beyond the heliopause and charge exchanges with interstellar ions in the Outer Heliosheath (OHS). This creates pick-up ions that gyrate about the draped interstellar magnetic field (ISMF) lines at pitch angles near 90° on the locus where the ISMF lies tangential to the heliopause and perpendicular to the heliocentric radial direction. This location closely coincides with the location of the ribbon feature according to the prevailing inferences of the ISMF orientation andmore » draping. The locally gyrating ions undergo additional charge exchange and escape as free-flying neutral atoms, many of which travel back toward the inner solar system and are imaged by IBEX as a ribbon tracing out the locus described above. For this mechanism to succeed, the pick-up ions must diffuse in pitch angle slowly enough to permit secondary charge exchange before their pitch angle distribution substantially broadens away from 90°. Previous work using linear Vlasov dispersion analysis of parallel propagating waves has suggested that the ring distribution in the OHS is highly unstable, which, if true, would make the secondary ENA hypothesis incapable of rendering the observed ribbon. In this paper, we extend this earlier work to more realistic ring distribution functions. We find that, at the low densities necessary to produce the observed IBEX ribbon via the secondary ENA hypothesis, growth rates are highly sensitive to the temperature of the beam and that even very modest temperatures of the ring beam corresponding to beam widths of <1° are sufficient to damp the self-generated waves associated with the ring beam. Thus, at least from the perspective of linear Vlasov dispersion analysis of parallel propagating waves, there is no reason to expect that the ring distributions necessary to produce the observed IBEX ENA flux via the secondary ENA hypothesis will be unstable to their own self-generated turbulence.« less
Novak, Klemen; de Luis, Martin; Saz, Miguel A.; Longares, Luis A.; Serrano-Notivoli, Roberto; Raventós, Josep; Čufar, Katarina; Gričar, Jožica; Di Filippo, Alfredo; Piovesan, Gianluca; Rathgeber, Cyrille B. K.; Papadopoulos, Andreas; Smith, Kevin T.
2016-01-01
Climate predictions for the Mediterranean Basin include increased temperatures, decreased precipitation, and increased frequency of extreme climatic events (ECE). These conditions are associated with decreased tree growth and increased vulnerability to pests and diseases. The anatomy of tree rings responds to these environmental conditions. Quantitatively, the width of a tree ring is largely determined by the rate and duration of cell division by the vascular cambium. In the Mediterranean climate, this division may occur throughout almost the entire year. Alternatively, cell division may cease during relatively cool and dry winters, only to resume in the same calendar year with milder temperatures and increased availability of water. Under particularly adverse conditions, no xylem may be produced in parts of the stem, resulting in a missing ring (MR). A dendrochronological network of Pinus halepensis was used to determine the relationship of MR to ECE. The network consisted of 113 sites, 1,509 trees, 2,593 cores, and 225,428 tree rings throughout the distribution range of the species. A total of 4,150 MR were identified. Binomial logistic regression analysis determined that MR frequency increased with increased cambial age. Spatial analysis indicated that the geographic areas of south-eastern Spain and northern Algeria contained the greatest frequency of MR. Dendroclimatic regression analysis indicated a non-linear relationship of MR to total monthly precipitation and mean temperature. MR are strongly associated with the combination of monthly mean temperature from previous October till current February and total precipitation from previous September till current May. They are likely to occur with total precipitation lower than 50 mm and temperatures higher than 5°C. This conclusion is global and can be applied to every site across the distribution area. Rather than simply being a complication for dendrochronology, MR formation is a fundamental response of trees to adverse environmental conditions. The demonstrated relationship of MR formation to ECE across this dendrochronological network in the Mediterranean basin shows the potential of MR analysis to reconstruct the history of past climatic extremes and to predict future forest dynamics in a changing climate. PMID:27303421
Novak, Klemen; de Luis, Martin; Saz, Miguel A; Longares, Luis A; Serrano-Notivoli, Roberto; Raventós, Josep; Čufar, Katarina; Gričar, Jožica; Di Filippo, Alfredo; Piovesan, Gianluca; Rathgeber, Cyrille B K; Papadopoulos, Andreas; Smith, Kevin T
2016-01-01
Climate predictions for the Mediterranean Basin include increased temperatures, decreased precipitation, and increased frequency of extreme climatic events (ECE). These conditions are associated with decreased tree growth and increased vulnerability to pests and diseases. The anatomy of tree rings responds to these environmental conditions. Quantitatively, the width of a tree ring is largely determined by the rate and duration of cell division by the vascular cambium. In the Mediterranean climate, this division may occur throughout almost the entire year. Alternatively, cell division may cease during relatively cool and dry winters, only to resume in the same calendar year with milder temperatures and increased availability of water. Under particularly adverse conditions, no xylem may be produced in parts of the stem, resulting in a missing ring (MR). A dendrochronological network of Pinus halepensis was used to determine the relationship of MR to ECE. The network consisted of 113 sites, 1,509 trees, 2,593 cores, and 225,428 tree rings throughout the distribution range of the species. A total of 4,150 MR were identified. Binomial logistic regression analysis determined that MR frequency increased with increased cambial age. Spatial analysis indicated that the geographic areas of south-eastern Spain and northern Algeria contained the greatest frequency of MR. Dendroclimatic regression analysis indicated a non-linear relationship of MR to total monthly precipitation and mean temperature. MR are strongly associated with the combination of monthly mean temperature from previous October till current February and total precipitation from previous September till current May. They are likely to occur with total precipitation lower than 50 mm and temperatures higher than 5°C. This conclusion is global and can be applied to every site across the distribution area. Rather than simply being a complication for dendrochronology, MR formation is a fundamental response of trees to adverse environmental conditions. The demonstrated relationship of MR formation to ECE across this dendrochronological network in the Mediterranean basin shows the potential of MR analysis to reconstruct the history of past climatic extremes and to predict future forest dynamics in a changing climate.
On the Stability of Pick-up Ion Ring Distributions in the Outer Heliosheath
NASA Astrophysics Data System (ADS)
Summerlin, Errol J.; Viñas, Adolfo F.; Moore, Thomas E.; Christian, Eric R.; Cooper, John F.
2014-10-01
The "secondary energetic neutral atom (ENA)" hypothesis for the ribbon feature observed by the Interstellar Boundary Explorer (IBEX) posits that the neutral component of the solar wind continues beyond the heliopause and charge exchanges with interstellar ions in the Outer Heliosheath (OHS). This creates pick-up ions that gyrate about the draped interstellar magnetic field (ISMF) lines at pitch angles near 90° on the locus where the ISMF lies tangential to the heliopause and perpendicular to the heliocentric radial direction. This location closely coincides with the location of the ribbon feature according to the prevailing inferences of the ISMF orientation and draping. The locally gyrating ions undergo additional charge exchange and escape as free-flying neutral atoms, many of which travel back toward the inner solar system and are imaged by IBEX as a ribbon tracing out the locus described above. For this mechanism to succeed, the pick-up ions must diffuse in pitch angle slowly enough to permit secondary charge exchange before their pitch angle distribution substantially broadens away from 90°. Previous work using linear Vlasov dispersion analysis of parallel propagating waves has suggested that the ring distribution in the OHS is highly unstable, which, if true, would make the secondary ENA hypothesis incapable of rendering the observed ribbon. In this paper, we extend this earlier work to more realistic ring distribution functions. We find that, at the low densities necessary to produce the observed IBEX ribbon via the secondary ENA hypothesis, growth rates are highly sensitive to the temperature of the beam and that even very modest temperatures of the ring beam corresponding to beam widths of <1° are sufficient to damp the self-generated waves associated with the ring beam. Thus, at least from the perspective of linear Vlasov dispersion analysis of parallel propagating waves, there is no reason to expect that the ring distributions necessary to produce the observed IBEX ENA flux via the secondary ENA hypothesis will be unstable to their own self-generated turbulence.
NASA Astrophysics Data System (ADS)
Verhaegen, Staf; Nackaerts, Axel; Dusa, Mircea; Carpaij, Rene; Vandenberghe, Geert; Finders, Jo
2006-03-01
The purpose of this paper is to use measurements on real working devices to derive more information than typically measured by the classic line-width measurement techniques. The first part of the paper will discuss the principle of the measurements with a ring oscillator, a circuit used to measure the speed of elementary logic gates. These measurements contribute to the understanding of the exact timing dependencies in circuits, which is of utmost importance for the design and simulation of these circuits. When connecting an odd number of digital inverting stages in a ring, the circuit has no stable digital state but acts as an analog oscillator with the oscillation frequency dependent on the analog propagation delay of the signals through the stages. By varying some conditions during a litho step, the delay change caused by the process condition change can be measured very accurately. The response of the ring oscillator delay to exposure dose is measured and presented in this paper together with a comparison of measured line-width values of the poly gate lines. The second part of the paper will focus on improving the intra-wafer variation of the stage delay. A number of ring oscillators are put in a design at different slit and scan locations. 200mm wafers are processed with 48 full dies present. From the intra-wafer delay fingerprint and the dose sensitivity of the delay an intra-wafer dose correction, also called a dose recipe, is calculated. This dose recipe is used on the scanner to compensate for effects that are the root cause for the delay profile; including reticle and processing such as track, etch and annealing.
Determination of ion mobility in EHD flow zone of plasma generator
NASA Astrophysics Data System (ADS)
Sumariyah, Kusminarto, Hermanto, Arief; Nuswantoro, Pekik
2015-12-01
Determination has been carried out for ion mobility in EHD flow zone generated using a pin-concentric multiple ring electrodes and a pin-single ring electrode used as a comparator. The pin needle was made from stainless steel with a tip diameter of 0.18 mm. The concentris multiple ring electrode in form three/two concentric ring electrodes which made of metal material connected to each other. Each ring of three concentric ring electrode has a diameter of 24 mm, 16 mm and 8 mm. And each ring of two concentric ring electrode has a diameter of 24 mm and 16 mm. Single ring electrode has a diameter24 mm. The all ring has same of width and thickness were 2 mm and 3 mm. EHD was generated by using a DC high voltage of 10 kV. Pin functional as an active electrode of corona discharge while the all ring electrodes acted as ions collector and passive electrodes. The experimental results show that the ion current is proportional to V2 according to calculations by Chouelo for hyperbolic-field approach. Ion mobility obtained from the quadratic polynomial fitting of experimental data were current and voltage as well as Choelo formulation. The results showed that the mobility of ions in the EHD flow zones utilizing pin-consentric multiple ring electrode larger than utilizing pin-single ring electrode. Pin-three Consentic ring electrode has the largest of ion mobility
The Effects of Forming Parameters on Conical Ring Rolling Process
Meng, Wen; Zhao, Guoqun; Guan, Yanjin
2014-01-01
The plastic penetration condition and biting-in condition of a radial conical ring rolling process with a closed die structure on the top and bottom of driven roll, simplified as RCRRCDS, were established. The reasonable value range of mandrel feed rate in rolling process was deduced. A coupled thermomechanical 3D FE model of RCRRCDS process was established. The changing laws of equivalent plastic strain (PEEQ) and temperature distributions with rolling time were investigated. The effects of ring's outer radius growth rate and rolls sizes on the uniformities of PEEQ and temperature distributions, average rolling force, and average rolling moment were studied. The results indicate that the PEEQ at the inner layer and outer layer of rolled ring are larger than that at the middle layer of ring; the temperatures at the “obtuse angle zone” of ring's cross-section are higher than those at “acute angle zone”; the temperature at the central part of ring is higher than that at the middle part of ring's outer surfaces. As the ring's outer radius growth rate increases at its reasonable value ranges, the uniformities of PEEQ and temperature distributions increase. Finally, the optimal values of the ring's outer radius growth rate and rolls sizes were obtained. PMID:25202716
Constraining recent Shiveluch volcano eruptions (Kamchatka, Russia) by means of dendrochronology
NASA Astrophysics Data System (ADS)
Solomina, O.; Pavlova, I.; Curtis, A.; Jacoby, G.; Ponomareva, V.; Pevzner, M.
2008-10-01
Shiveluch (N 56°38´, E 161°19´; elevation: active dome ~2500 m, summit of Old Shiveluch 3283 m) is one of the most active volcanoes in Kamchatka. The eruptions of Shiveluch commonly result in major environmental damage caused by debris avalanches, hot pyroclastic flows, tephra falls and lahars. Constraining these events in time and space is important for the understanding and prediction of these natural hazards. The last major eruption of Shiveluch occurred in 2005; earlier ones, dated by instrumental, historical, 14C and tephrochronological methods, occurred in the last millennium around AD 1030, 1430, 1650, 1739, 1790 1810, 1854, 1879 1883, 1897 1898, 1905, 1927 1929, 1944 1950, and 1964. A lava dome has been growing in the 1964 crater since 1980, occasionally producing tephra falls and pyroclastic flows. Several Shiveluch eruptions (~AD 1050, 1650, 1854, 1964) may have been climatically effective and are probably recorded in the Greenland ice cores. Previously, most dates for eruptions before AD 1854 were obtained by tephrochronology and constrained by radiocarbon dating with an accuracy of several decades or centuries. In this paper we report tree-ring dates for a recent pyroclastic flow in Baidarnaia valley. Though the wood buried in these deposits is carbonized, fragile and poorly preserved, we were able to measure ring-width using standard tree-ring equipment or photographs and to cross-date these samples against the regional Kamchatka larch ring-width chronology. The dates of the outer rings indicate the date of the eruptions. In the Baidarnaia valley the eruption occurred shortly after AD 1756, but not later than AD 1758. This date coincides with the decrease of ring-width in trees growing near Shiveluch volcano in 1758 1763 in comparison with the control "non-volcanic" chronology. The pyroclastic flow in Kamenskaia valley, although similar in appearance to the one in Baidarnaia valley, definitively yielded a different age. Due to the age limit of the reference chronology (AD 1632 2005) and its short overlap with the sample chronology in Kamenskaia valley the dates of these deposits are very preliminary. The deposits probably date back to approximately AD 1649 or a few years later. This date is in close agreement with the previously obtained radiocarbon date of these sediments to AD 1641(1652)1663. Our data agree well with the tephrochronological findings, and further constrain the chronology of volcanic events in this remote area.
Rollinson, Christine R; Liu, Yao; Raiho, Ann; Moore, David J P; McLachlan, Jason; Bishop, Daniel A; Dye, Alex; Matthes, Jaclyn H; Hessl, Amy; Hickler, Thomas; Pederson, Neil; Poulter, Benjamin; Quaife, Tristan; Schaefer, Kevin; Steinkamp, Jörg; Dietze, Michael C
2017-07-01
Ecosystem models show divergent responses of the terrestrial carbon cycle to global change over the next century. Individual model evaluation and multimodel comparisons with data have largely focused on individual processes at subannual to decadal scales. Thus far, data-based evaluations of emergent ecosystem responses to climate and CO 2 at multidecadal and centennial timescales have been rare. We compared the sensitivity of net primary productivity (NPP) to temperature, precipitation, and CO 2 in ten ecosystem models with the sensitivities found in tree-ring reconstructions of NPP and raw ring-width series at six temperate forest sites. These model-data comparisons were evaluated at three temporal extents to determine whether the rapid, directional changes in temperature and CO 2 in the recent past skew our observed responses to multiple drivers of change. All models tested here were more sensitive to low growing season precipitation than tree-ring NPP and ring widths in the past 30 years, although some model precipitation responses were more consistent with tree rings when evaluated over a full century. Similarly, all models had negative or no response to warm-growing season temperatures, while tree-ring data showed consistently positive effects of temperature. Although precipitation responses were least consistent among models, differences among models to CO 2 drive divergence and ensemble uncertainty in relative change in NPP over the past century. Changes in forest composition within models had no effect on climate or CO 2 sensitivity. Fire in model simulations reduced model sensitivity to climate and CO 2 , but only over the course of multiple centuries. Formal evaluation of emergent model behavior at multidecadal and multicentennial timescales is essential to reconciling model projections with observed ecosystem responses to past climate change. Future evaluation should focus on improved representation of disturbance and biomass change as well as the feedbacks with moisture balance and CO 2 in individual models. © 2017 John Wiley & Sons Ltd.
Density Wave Signatures In VIMS Spectral Data
NASA Astrophysics Data System (ADS)
Nicholson, Philip D.; Hedman, M. M.; Cassini VIMS Team
2012-10-01
Spectral scans of Saturn's rings by the Cassini VIMS instrument have revealed both regional and local variations in the depths of the water ice bands at 1.5 and 2.0 microns, which have been interpreted in terms of variations in regolith grain size and the amount of non-icy "contaminants" (Filacchione et al. 2012; Hedman et al. 2012). Noteworthy among the local variations are distinctive patterns associated with the four strong density waves in the A ring. Within each wavetrain there is a peak in band strength relative to the surrounding material, while extending on both sides of the wave is a "halo" of reduced band strength. The typical width of these haloes is 400-500 km, about 2-3 times the visible extent of the density waves. The origin of these features is unknown, but may involve enhanced collisional erosion in the wave zones and transport of the smaller debris into nearby regions. A similar pattern of band depth variations is also seen at several locations in the more opaque B ring in association with the strong 3:2 ILRs of Janus, Pandora and Prometheus. The former shows a pattern just like its siblings in the A ring, while the latter two resonances show haloes, but without central peaks. In each case, the radial widths of the halo approaches 1000 km, but stellar occultation profiles show no detectable density wavetrain. We suggest that this spectral signature may be a useful diagnostic for the presence of strong density waves in regions where the rings are too opaque for occultations to reveal a typical wave profile. More speculatively, the displacement of the haloes' central radii from the calculated ILR locations of 600-700 km could imply a surface density in the central B ring in excess of 500 g/cm^2. This research was supported by the Cassini/Huygens project.
Williner, Verónica; Torres, María Victoria; Carvalho, Débora Azevedo; König, Natalia
2014-01-01
Abstract The relative growth of a number of morphological dimensions of the South American freshwater crab Trichodactylus borellianus (Trichodactylidae) were compared and related to sexual dimorphism. Crabs were collected from ponds in the Middle Paraná River in Argentina. A regression model with segmented relationship was used to test for relative growth between these measurements where breakpoints infer the body size at which crabs reach sexual maturity. In both sexes the carapace width and the length, height, and thickness of the right and left chelae were measured, as well as the male pleopod length and the female abdomen width. All of these measurements were found to show positive allometry with the exception of the male pleopod length and the left chelae, which did not show a breakpoint. In females the breakpoint for the abdomen width inferred a morphological sexual maturity at carapace width 6.9 mm. In males the break point for the pleopod length was at carapace width 6.6 mm, with that for the chelae measurements was between carapace widths 6.4 and 6.9 mm. The relative growth pattern in Trichodactylus borellianus was found to be similar to that recorded for other species of the family Trichodactylidae. PMID:25561835
Ring rotational speed trend analysis by FEM approach in a Ring Rolling process
NASA Astrophysics Data System (ADS)
Allegri, G.; Giorleo, L.; Ceretti, E.
2018-05-01
Ring Rolling is an advanced local incremental forming technology to fabricate directly precise seamless ring-shape parts with various dimensions and materials. In this process two different deformations occur in order to reduce the width and the height of a preform hollow ring; as results a diameter expansion is obtained. In order to guarantee a uniform deformation, the preform is forced toward the Driver Roll whose aim is to transmit the rotation to the ring. The ring rotational speed selection is fundamental because the higher is the speed the higher will be the axial symmetry of the deformation process. However, it is important to underline that the rotational speed will affect not only the final ring geometry but also the loads and energy needed to produce it. Despite this importance in industrial environment, usually, a constant value for the Driver Roll angular velocity is set so to result in a decreasing trend law for the ring rotational speed. The main risk due to this approach is not fulfilling the axial symmetric constrain (due to the diameter expansion) and to generate a high localized ring section deformation. In order to improve the knowledge about this topic in the present paper three different ring rotational speed trends (constant, linearly increasing and linearly decreasing) were investigated by FEM approach. Results were compared in terms of geometrical and dimensional analysis, loads and energies required.
Cavity mode-width spectroscopy with widely tunable ultra narrow laser.
Cygan, Agata; Lisak, Daniel; Morzyński, Piotr; Bober, Marcin; Zawada, Michał; Pazderski, Eugeniusz; Ciuryło, Roman
2013-12-02
We explore a cavity-enhanced spectroscopic technique based on determination of the absorbtion coefficient from direct measurement of spectral width of the mode of the optical cavity filled with absorbing medium. This technique called here the cavity mode-width spectroscopy (CMWS) is complementary to the cavity ring-down spectroscopy (CRDS). While both these techniques use information on interaction time of the light with the cavity to determine absorption coefficient, the CMWS does not require to measure very fast signals at high absorption conditions. Instead the CMWS method require a very narrow line width laser with precise frequency control. As an example a spectral line shape of P7 Q6 O₂ line from the B-band was measured with use of an ultra narrow laser system based on two phase-locked external cavity diode lasers (ECDL) having tunability of ± 20 GHz at wavelength range of 687 to 693 nm.
Domain wall motion in sub-100 nm magnetic wire
NASA Astrophysics Data System (ADS)
Siddiqui, Saima; Dutta, Sumit; Currivan, Jean Anne; Ross, Caroline; Baldo, Marc
2015-03-01
Nonvolatile memory devices such as racetrack memory rely on the manipulation of domain wall (DW) in magnetic nanowires, and scaling of these devices requires an understanding of domain wall behavior as a function of the wire width. Due to the increased importance of edge roughness and magnetostatic interaction, DW pinning increases dramatically as the wire dimensions decrease and stochastic behavior is expected depending on the distribution of pinning sites. We report on the field driven DW statistics in sub-100 nm wide nanowires made from Co films with very small edge roughness. The nanowires were patterned in the form of a set of concentric rings of 10 μm diameter. Two different width nanowires with two different spacings have been studied. The rings were first saturated in plane to produce onion states and then the DWs were translated in the wires using an orthogonal in-plane field. The position of the DWs in the nanowires was determined with magnetic force microscopy. From the positions of the DWs in the nanowires, the strength of the extrinsic pinning sites was identified and they follow two different distributions in two different types of nanowire rings. For the closely spaced wires, magnetostatic interactions led to correlated movement of DWs in neighboring wires. The implications of DW pinning and interaction in nanoscale DW devices will be discussed.
Mechanical influences in bacterial morphogenesis and cell division
NASA Astrophysics Data System (ADS)
Sun, Sean
2010-03-01
Bacterial cells utilize a ring-like organelle (the Z-ring) to accomplish cell division. The Z-ring actively generates a contractile force and influences cell wall growth. We will discuss a general model of bacterial morphogenesis where mechanical forces are coupled to the growth dynamics of the cell wall. The model suggests a physical mechanism that determines the shapes of bacteria cells. The roles of several bacterial cytoskeletal proteins and the Z-ring are discussed. We will also explore molecular mechanisms of force generation by the Z-ring and how cells can generate mechanical forces without molecular motors.
NASA Astrophysics Data System (ADS)
DeSoto, Lucía; Varino, Filipa; Andrade, José P.; Gouveia, Celia M.; Campelo, Filipe; Trigo, Ricardo M.; Nabais, Cristina
2014-12-01
Mediterranean plants cope with cold wet winters and dry hot summers, with a drought gradient from northwest to southeast. Limiting climatic conditions have become more pronounced in the last decades due to the warming trend and rainfall decrease. Juniperus thurifera L., a long-lived conifer tree endemic to the western Mediterranean region, has a disjunct distribution in Europe and Africa, making it a suitable species to study sensitivity to climate in both sides of the Mediterranean Basin. Tree-ring width chronologies were built for three J. thurifera stands at Spain (Europe) and three in Morocco (Africa) and correlated with monthly temperature and precipitation. The temporal stability of climate-growth relationships was assessed using moving correlations; the drought effect on growth was calculated using the monthly standardized precipitation-evapotranspiration index (SPEI) at different temporal scales. In the wettest stands, increasing spring temperature and summer precipitation enhanced growth, while in the driest stands, growth was enhanced by higher spring precipitation and lower summer temperature. The climate-growth correlations shifted during the twentieth century, especially since the 1970s. Particularly noticeable is the recent negative correlation with previous autumn and winter precipitation in the wettest stands of J. thurifera, probably related with an effect of cloud cover or flooding on carbon storage depletion for next year growth. The driest stands were affected by drought at long time scales, while the wettest stands respond to drought at short time scales. This reveals a different strategy to cope with drought conditions, with populations from drier sites able to cope with short periods of water deficit.
Implications of Liebig’s law of the minimum for tree-ring reconstructions of climate
NASA Astrophysics Data System (ADS)
Stine, A. R.; Huybers, P.
2017-11-01
A basic principle of ecology, known as Liebig’s Law of the Minimum, is that plant growth reflects the strongest limiting environmental factor. This principle implies that a limiting environmental factor can be inferred from historical growth and, in dendrochronology, such reconstruction is generally achieved by averaging collections of standardized tree-ring records. Averaging is optimal if growth reflects a single limiting factor and noise but not if growth also reflects locally variable stresses that intermittently limit growth. In this study a collection of Arctic tree ring records is shown to follow scaling relationships that are inconsistent with the signal-plus-noise model of tree growth but consistent with Liebig’s Law acting at the local level. Also consistent with law-of-the-minimum behavior is that reconstructions based on the least-stressed trees in a given year better-follow variations in temperature than typical approaches where all tree-ring records are averaged. Improvements in reconstruction skill occur across all frequencies, with the greatest increase at the lowest frequencies. More comprehensive statistical-ecological models of tree growth may offer further improvement in reconstruction skill.
Self-assembly of vertically aligned quantum ring-dot structure by Multiple Droplet Epitaxy
NASA Astrophysics Data System (ADS)
Elborg, Martin; Noda, Takeshi; Mano, Takaaki; Kuroda, Takashi; Yao, Yuanzhao; Sakuma, Yoshiki; Sakoda, Kazuaki
2017-11-01
We successfully grow vertically aligned quantum ring-dot structures by Multiple Droplet Epitaxy technique. The growth is achieved by depositing GaAs quantum rings in a first droplet epitaxy process which are subsequently covered by a thin AlGaAs barrier. In a second droplet epitaxy process, Ga droplets preferentially position in the center indentation of the ring as well as attached to the edge of the ring in [ 1 1 bar 0 ] direction. By designing the ring geometry, full selectivity for the center position of the ring is achieved where we crystallize the droplets into quantum dots. The geometry of the ring and dot as well as barrier layer can be controlled in separate growth steps. This technique offers great potential for creating complex quantum molecules for novel quantum information technologies.
Guo, Yinghui; Yan, Lianshan; Pan, Wei; Luo, Bin; Wen, Kunhua; Guo, Zhen; Luo, Xiangang
2012-10-22
We investigate a plasmonic waveguide system based on side-coupled complementary split-ring resonators (CSRR), which exhibits electromagnetically induced transparency (EIT)-like transmission. LC resonance model is utilized to explain the electromagnetic responses of CSRR, which is verified by simulation results of finite difference time domain method. The electromagnetic responses of CSRR can be flexible handled by changing the asymmetry degree of the structure and the width of the metallic baffles. Cascaded CSRRs also have been studied to obtain EIT-like transmission at visible and near-infrared region, simultaneously.
NASA Astrophysics Data System (ADS)
Stella, John C.; Riddle, Jess; Piégay, Hervé; Gagnage, Matthieu; Trémélo, Marie-Laure
2013-11-01
Dynamic fluvial processes strongly influence ecological communities and ecosystem health in riverine and riparian ecosystems, particularly in drought-prone regions. In these systems, there is a need to develop tools to measure impacts from local and regional hydrogeomorphic changes on the key biological and physical processes that sustain riparian ecosystem health and potential recovery. We used dendrochronology of Populus nigra, a riparian tree that is vulnerable to changes in local hydrology, to analyze ecosystem response following channel incision due to gravel mining along the Drôme River, a Mediterranean Basin stream in southern France. We cored 55 trees at seven floodplain sites, measured ring widths, and calculated basal area growth to compare the severity and timing of local growth decline along the river. Current basal area increment (BAI) growth per tree ranged almost 10-fold among sites (7.7 ± 1.3 to 63.9 ± 15.2 cm2 year- 1, mean ± SE) and these differences were significant. Mean BAI was correlated positively with the proportion of healthy trees at a site, and negatively with proportion of dead canopy area. Regime shift analysis of the tree-ring series indicates that tree growth declined significantly at four sites since 1978, coincident with documented channel incision. In addition, patterns of low growth and crown dieback are consistent with stress due to reduced water supply. The most impaired sites were not directly adjacent to local mining pits visible on aerial photographs, nor did the sequence of growth regime shifts suggest a pattern of channel incision progressing from these areas. The initiation of site growth declines was most typically associated with drought years, and the most impaired sites were spatially distributed to suggest the influence of local bedrock controls on soil depth. Climate in the Drôme basin and in the Mediterranean region is trending significantly toward hotter growing seasons with a decrease in summer river discharge, and this will increase both chronic and acute water shortage for riparian trees. This study shows that drought-prone riparian forests are vulnerable to hydrogeomorphological changes, but the severity of impacts is conditioned by interactions between drivers at different scales, including regional climate variability, reach-based geomorphic alteration, and local lithological controls.
Paleo Data Assimilation of Pseudo-Tree-Ring-Width Chronologies in a Climate Model
NASA Astrophysics Data System (ADS)
Fallah Hassanabadi, B.; Acevedo, W.; Reich, S.; Cubasch, U.
2016-12-01
Using the Time-Averaged Ensemble Kalman Filter (EnKF) and a forward model, we assimilate the pseudo Tree-Ring-Width (TRW) chronologies into an Atmospheric Global Circulation model. This study investigates several aspects of Paleo-Data Assimilation (PDA) within a perfect-model set-up: (i) we test the performance of several forward operators in the framework of a PDA-based climate reconstruction, (ii) compare the PDA-based simulations' skill against the free ensemble runs and (iii) inverstigate the skill of the "online" (with cycling) DA and the "off-line" (no-cycling) DA. In our experiments, the "online" (with cycling) PDA approach did not outperform the "off-line" (no-cycling) one, despite its considerable additional implementation complexity. On the other hand, it was observed that the error reduction achieved by assimilating a particular pseudo-TRW chronology is modulated by the strength of the yearly internal variability of the model at the chronology site. This result might help the dendrochronology community to optimize their sampling efforts.
Solar-Terrestrial Signal Record in Tree Ring Width Time Series from Brazil
NASA Astrophysics Data System (ADS)
Rigozo, Nivaor Rodolfo; Lisi, Cláudio Sergio; Filho, Mário Tomazello; Prestes, Alan; Nordemann, Daniel Jean Roger; de Souza Echer, Mariza Pereira; Echer, Ezequiel; da Silva, Heitor Evangelista; Rigozo, Valderez F.
2012-12-01
This work investigates the behavior of the sunspot number and Southern Oscillation Index (SOI) signal recorded in the tree ring time series for three different locations in Brazil: Humaitá in Amazônia State, Porto Ferreira in São Paulo State, and Passo Fundo in Rio Grande do Sul State, using wavelet and cross-wavelet analysis techniques. The wavelet spectra of tree ring time series showed signs of 11 and 22 years, possibly related to the solar activity, and periods of 2-8 years, possibly related to El Niño events. The cross-wavelet spectra for all tree ring time series from Brazil present a significant response to the 11-year solar cycle in the time interval between 1921 to after 1981. These tree ring time series still have a response to the second harmonic of the solar cycle (5.5 years), but in different time intervals. The cross-wavelet maps also showed that the relationship between the SOI x tree ring time series is more intense, for oscillation in the range of 4-8 years.
Crystallographic structure of the turbine C-ring from spinach chloroplast F-ATP synthase
Balakrishna, Asha Manikkoth; Seelert, Holger; Marx, Sven-Hendric; Dencher, Norbert A.; Grüber, Gerhard
2014-01-01
In eukaryotic and prokaryotic cells, F-ATP synthases provide energy through the synthesis of ATP. The chloroplast F-ATP synthase (CF1FO-ATP synthase) of plants is integrated into the thylakoid membrane via its FO-domain subunits a, b, b’ and c. Subunit c with a stoichiometry of 14 and subunit a form the gate for H+-pumping, enabling the coupling of electrochemical energy with ATP synthesis in the F1 sector. Here we report the crystallization and structure determination of the c14-ring of subunit c of the CF1FO-ATP synthase from spinach chloroplasts. The crystals belonged to space group C2, with unit-cell parameters a=144.420, b=99.295, c=123.51 Å, and β=104.34° and diffracted to 4.5 Å resolution. Each c-ring contains 14 monomers in the asymmetric unit. The length of the c-ring is 60.32 Å, with an outer ring diameter 52.30 Å and an inner ring width of 40 Å. PMID:27919036
NASA Astrophysics Data System (ADS)
Pons, Diego
This dissertation makes use of a physical geography perspective to examine the relationship between agriculture and climate in Guatemala using dendrochronology. I examined the potential of high-resolution climate proxy data from dendrochronology to help fill in the gaps of past climate information to better understand the natural and anthropogenic variability of precipitation which, in turn, can inform Guatemala's agriculture sector. This research has demonstrated successful cross-dating and climate sensitivity of Abies guatemalensis in the Pacific slope of Guatemala. Based on this, I have produced a 124-year record of mean precipitation from June-July-August. The mean precipitation from June-July-August at this site seems to receive an important influence from the sea surface temperature (SST) in the Pacific Ocean in the form of El Nino-Southern Oscillation (ENSO) in the region 3.4. The analysis on the frequency of the precipitation records suggests that single year droughts dominate the record yet, periods of 9 years below-average rainfall can persist. Likewise, single year pluvial events also dominate the evaluated period. The long-term reconstruction of precipitation allowed to describe past relationships between coffee plantations and pests. For instance, the frequency analysis suggests that 4 or more consecutive periods of above-average precipitation are associated with several coffee pests and subsequently great economical losses due to crop failures, including the last coffee leaf rust crisis. This study also presents a streamflow reconstruction of the Upper Samala River watershed using a tree ring-width chronology derived from the Guatemalan fir (Abies guatemalensis) to reconstruct mean August-September-October streamflow volumes for the period 1889-2013. Our analysis shows that strong statistical correlations are present between tree-ring width measurements and monthly natural streamflow series. The mean August-September-October streamflow variability is dominated by single year events for both above and below the long-term mean. This reconstruction reveals important teleconnections with the ENSO 3.4 region and it is to our knowledge, the only streamflow reconstruction in Guatemala using tree-ring measurements. This new long-term record will be useful to recalculate historical discharge peaks and floods that affect agricultural areas in the mid and lower basin but also the hydroelectric production. Our analysis suggests that records from the GIMMS 3g v.0 Normalized Difference Vegetation Index (NDVI), are inversely correlated to precipitation in the Upper Samala River watershed at the location of the A. guatemalensis forest stand Kanchej. This suggest that the net solar radiation income during the cloud-free timing throughout the mid-summer drought could be partially responsible for promoting cloudiness by heating the SST and hence, promoting precipitation during the second peak of precipitation during September and October. The independent analyses of precipitation and NDVI sensitivity of A. guatemalensis and the correlation between precipitation and NDVI suggest that precipitation is a modulator of radial growth of A. guatemalensis in this location of Guatemala. These findings can be used to refine the knowledge on the climatic controls on A. guatemalensis radial growth.
Drought causes reduced growth of trembling aspen in western Canada.
Chen, Lei; Huang, Jian-Guo; Alam, Syed Ashraful; Zhai, Lihong; Dawson, Andria; Stadt, Kenneth J; Comeau, Philip G
2017-07-01
Adequate and advance knowledge of the response of forest ecosystems to temperature-induced drought is critical for a comprehensive understanding of the impacts of global climate change on forest ecosystem structure and function. Recent massive decline in aspen-dominated forests and an increased aspen mortality in boreal forests have been associated with global warming, but it is still uncertain whether the decline and mortality are driven by drought. We used a series of ring-width chronologies from 40 trembling aspen (Populus tremuloides Michx.) sites along a latitudinal gradient (from 52° to 58°N) in western Canada, in an attempt to clarify the impacts of drought on aspen growth by using Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI). Results indicated that prolonged and large-scale droughts had a strong negative impact on trembling aspen growth. Furthermore, the spatiotemporal variability of drought indices is useful for explaining the spatial heterogeneity in the radial growth of trembling aspen. Due to ongoing global warming and rising temperatures, it is likely that severer droughts with a higher frequency will occur in western Canada. As trembling aspen is sensitive to drought, we suggest that drought indices could be applied to monitor the potential effects of increased drought stress on aspen trees growth, achieve classification of eco-regions and develop effective mitigation strategies to maintain western Canadian boreal forests. © 2017 John Wiley & Sons Ltd.
Proton velocity ring-driven instabilities and their dependence on the ring speed: Linear theory
NASA Astrophysics Data System (ADS)
Min, Kyungguk; Liu, Kaijun; Gary, S. Peter
2017-08-01
Linear dispersion theory is used to study the Alfvén-cyclotron, mirror and ion Bernstein instabilities driven by a tenuous (1%) warm proton ring velocity distribution with a ring speed, vr, varying between 2vA and 10vA, where vA is the Alfvén speed. Relatively cool background protons and electrons are assumed. The modeled ring velocity distributions are unstable to both the Alfvén-cyclotron and ion Bernstein instabilities whose maximum growth rates are roughly a linear function of the ring speed. The mirror mode, which has real frequency ωr=0, becomes the fastest growing mode for sufficiently large vr/vA. The mirror and Bernstein instabilities have maximum growth at propagation oblique to the background magnetic field and become more field-aligned with an increasing ring speed. Considering its largest growth rate, the mirror mode, in addition to the Alfvén-cyclotron mode, can cause pitch angle diffusion of the ring protons when the ring speed becomes sufficiently large. Moreover, because the parallel phase speed, v∥ph, becomes sufficiently small relative to vr, the low-frequency Bernstein waves can also aid the pitch angle scattering of the ring protons for large vr. Potential implications of including these two instabilities at oblique propagation on heliospheric pickup ion dynamics are discussed.
Design and fabrication of engineering model fiber-optics detector
NASA Technical Reports Server (NTRS)
Mcsweeney, A.
1972-01-01
The design and fabrication of an annular ring detector consisting of optical fibers terminated with photodetectors is described. The maximum width of each concentric ring has to be small enough to permit the resolution of a Ronchi ruling transform with a dot spacing of 150 microns. A minimum of 100 concentric rings covering a circular area of 2.54 cm diameter also is necessary. A fiber-optic array consisting of approximately 89,000 fibers of 76 microns diameter was fabricated to meet the above requirements. The fibers within a circular area of 2.5 cm diameter were sorted into 168 adjacent rings concentric with the center fiber. The response characteristics of several photodetectors were measured, and the data used to compare their linearity of response and dynamic range. Also, coupling loss measurements were made for three different methods of terminating the optical fibers with a photodetector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodgson, P. D., E-mail: pdhodgson@hotmail.co.uk; Hayne, M.; Robson, A. J.
We report the results of continuous and time-resolved photoluminescence measurements on type-II GaSb quantum rings embedded within GaAs/Al{sub x}Ga{sub 1−x}As quantum wells. A range of samples were grown with different well widths, compensation-doping concentrations within the wells, and number of quantum-ring layers. We find that each of these variants have no discernible effect on the radiative recombination, except for the very narrowest (5 nm) quantum well. In contrast, single-particle numerical simulations of the sample predict changes in photoluminescence energy of up to 200 meV. This remarkable difference is explained by the strong Coulomb binding of electrons to rings that are multiply chargedmore » with holes. The resilience of the emission to compensation doping indicates that multiple hole occupancy of the quantum rings is required for efficient carrier recombination, regardless of whether these holes come from doping or excitation.« less
Defrenet, Elsa; Roupsard, Olivier; Van den Meersche, Karel; Charbonnier, Fabien; Pastor Pérez-Molina, Junior; Khac, Emmanuelle; Prieto, Iván; Stokes, Alexia; Roumet, Catherine; Rapidel, Bruno; de Melo Virginio Filho, Elias; Vargas, Victor J.; Robelo, Diego; Barquero, Alejandra; Jourdan, Christophe
2016-01-01
Background and Aims In Costa Rica, coffee (Coffea arabica) plants are often grown in agroforests. However, it is not known if shade-inducing trees reduce coffee plant biomass through root competition, and hence alter overall net primary productivity (NPP). We estimated biomass and NPP at the stand level, taking into account deep roots and the position of plants with regard to trees. Methods Stem growth and root biomass, turnover and decomposition were measured in mixed coffee/tree (Erythrina poeppigiana) plantations. Growth ring width and number at the stem base were estimated along with stem basal area on a range of plant sizes. Root biomass and fine root density were measured in trenches to a depth of 4 m. To take into account the below-ground heterogeneity of the agroforestry system, fine root turnover was measured by sequential soil coring (to a depth of 30 cm) over 1 year and at different locations (in full sun or under trees and in rows/inter-rows). Allometric relationships were used to calculate NPP of perennial components, which was then scaled up to the stand level. Key Results Annual ring width at the stem base increased up to 2·5 mm yr−1 with plant age (over a 44-year period). Nearly all (92 %) coffee root biomass was located in the top 1·5 m, and only 8 % from 1·5 m to a depth of 4 m. Perennial woody root biomass was 16 t ha−1 and NPP of perennial roots was 1·3 t ha−1 yr−1. Fine root biomass (0–30 cm) was two-fold higher in the row compared with between rows. Fine root biomass was 2·29 t ha−1 (12 % of total root biomass) and NPP of fine roots was 2·96 t ha−1 yr−1 (69 % of total root NPP). Fine root turnover was 1·3 yr−1 and lifespan was 0·8 years. Conclusions Coffee root systems comprised 49 % of the total plant biomass; such a high ratio is possibly a consequence of shoot pruning. There was no significant effect of trees on coffee fine root biomass, suggesting that coffee root systems are very competitive in the topsoil. PMID:27551026
The fission yeast cytokinetic contractile ring regulates septum shape and closure
Thiyagarajan, Sathish; Munteanu, Emilia Laura; Arasada, Rajesh; Pollard, Thomas D.; O'Shaughnessy, Ben
2015-01-01
ABSTRACT During cytokinesis, fission yeast and other fungi and bacteria grow a septum that divides the cell in two. In fission yeast closure of the circular septum hole by the β-glucan synthases (Bgs) and other glucan synthases in the plasma membrane is tightly coupled to constriction of an actomyosin contractile ring attached to the membrane. It is unknown how septum growth is coordinated over scales of several microns to maintain septum circularity. Here, we documented the shapes of ingrowing septum edges by measuring the roughness of the edges, a measure of the deviation from circularity. The roughness was small, with spatial correlations indicative of spatially coordinated growth. We hypothesized that Bgs-mediated septum growth is mechanosensitive and coupled to contractile ring tension. A mathematical model showed that ring tension then generates almost circular septum edges by adjusting growth rates in a curvature-dependent fashion. The model reproduced experimental roughness statistics and showed that septum synthesis sets the mean closure rate. Our results suggest that the fission yeast cytokinetic ring tension does not set the constriction rate but regulates septum closure by suppressing roughness produced by inherently stochastic molecular growth processes. PMID:26240178
The fission yeast cytokinetic contractile ring regulates septum shape and closure.
Thiyagarajan, Sathish; Munteanu, Emilia Laura; Arasada, Rajesh; Pollard, Thomas D; O'Shaughnessy, Ben
2015-10-01
During cytokinesis, fission yeast and other fungi and bacteria grow a septum that divides the cell in two. In fission yeast closure of the circular septum hole by the β-glucan synthases (Bgs) and other glucan synthases in the plasma membrane is tightly coupled to constriction of an actomyosin contractile ring attached to the membrane. It is unknown how septum growth is coordinated over scales of several microns to maintain septum circularity. Here, we documented the shapes of ingrowing septum edges by measuring the roughness of the edges, a measure of the deviation from circularity. The roughness was small, with spatial correlations indicative of spatially coordinated growth. We hypothesized that Bgs-mediated septum growth is mechanosensitive and coupled to contractile ring tension. A mathematical model showed that ring tension then generates almost circular septum edges by adjusting growth rates in a curvature-dependent fashion. The model reproduced experimental roughness statistics and showed that septum synthesis sets the mean closure rate. Our results suggest that the fission yeast cytokinetic ring tension does not set the constriction rate but regulates septum closure by suppressing roughness produced by inherently stochastic molecular growth processes. © 2015. Published by The Company of Biologists Ltd.
Sun, Changfeng; Liu, Yu; Song, Huiming; Cai, Qiufang; Li, Qiang; Wang, Lu; Mei, Ruochen; Fang, Congxi
2018-07-01
Sunshine is as essential as temperature and precipitation for tree growth, but sunshine duration reconstructions based on tree rings have not yet been conducted in China. In this study, we presented a 497-year sunshine duration reconstruction for the southeastern Tibetan Plateau using a width chronology of Abies forrestii from the central Hengduan Mountains. The reconstruction accounted for 53.5% of the variance in the observed sunshine during the period of 1961-2013 based on a stable and reliable linear regression. This reconstructed sunshine duration contained six sunny periods (1630-1656, 1665-1697, 1731-1781, 1793-1836, 1862-1895 and 1910-1992) and seven cloudy periods (1522-1629, 1657-1664, 1698-1730, 1782-1792, 1837-1861, 1896-1909 and 1993-2008) at a low-frequency scale. There was an increasing trend from the 16th century to the late 18th and early 19th centuries and a decreasing trend from the mid-19th to the early 21st centuries. Sunshine displayed inverse patterns to the local Palmer drought severity index on a multidecadal scale, indicating that this region likely experienced droughts under more sunshine conditions. The decrease in sunshine particularly in recent decades was mainly due to increasing atmospheric anthropogenic aerosols. In terms of the interannual variations in sunshine, weak sunshine years matched well with years of major volcanic eruptions. The significant cycles of the 2- to 7-year, 20.0-year and 35.2-year durations as well as the 60.2-year and 78.7-year durations related to the El-Niño Southern Oscillation, the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation suggested that the variation in sunshine duration in the southeastern Tibetan Plateau was possibly affected by large-scale ocean-atmosphere circulations. Copyright © 2018 Elsevier B.V. All rights reserved.
Magnetic forces and localized resonances in electron transfer through quantum rings.
Poniedziałek, M R; Szafran, B
2010-11-24
We study the current flow through semiconductor quantum rings. In high magnetic fields the current is usually injected into the arm of the ring preferred by classical magnetic forces. However, for narrow magnetic field intervals that appear periodically on the magnetic field scale the current is injected into the other arm of the ring. We indicate that the appearance of the anomalous-non-classical-current circulation results from Fano interference involving localized resonant states. The identification of the Fano interference is based on the comparison of the solution of the scattering problem with the results of the stabilization method. The latter employs the bound-state type calculations and allows us to extract both the energy of metastable states localized within the ring and the width of resonances by analysis of the energy spectrum of a finite size system as a function of its length. The Fano resonances involving states of anomalous current circulation become extremely narrow on both the magnetic field and energy scales. This is consistent with the orientation of the Lorentz force that tends to keep the electron within the ring and thus increases the lifetime of the electron localization within the ring. Absence of periodic Fano resonances in electron transfer probability through a quantum ring containing an elastic scatterer is also explained.
NASA Astrophysics Data System (ADS)
DArrigo, R.; Davi, N.; Jacoby, G.; Wiles, G.
2002-05-01
The Maunder Minimum interval (from the mid-1600s-early 1700s) is believed to have been one of the coldest periods of the past thousand years in the Northern Hemisphere. A maximum latewood density temperature reconstruction for the Wrangell Mountains, southern Alaska (1593-1992) provides information on regional temperature change during the Maunder Minimum and other periods of severe cold over the past four centuries. The Wrangell density record, which reflects warm season (July-September) temperatures, shows an overall cooling over the Maunder Minimum period with annual values reaching as low as -1.8oC below the long-term mean. Ring widths, which can integrate annual as well as summer conditions, also show pronounced cooling at the Wrangell site during this time, as do Arctic and hemispheric-scale temperature reconstructions based on tree rings and other proxy data. Maximum ages of glacial advance based on kill dates from overrun logs (which reflect cooler temperatures) coincide temporally with the cooling seen in the density and ring width records. In contrast, a recent modeling study indicates that during this period there was cold season (November-April) warming over much of Alaska, but cooling over other northern continental regions, as a result of decreased solar irradiance initiating low Arctic Oscillation index conditions. The influence of other forcings on Alaskan climate, the absence of ocean dynamical feedbacks in the model, and the different seasonality represented by the model and the trees may be some of the possible explanations for the different model and proxy results.
Tree demography dominates long-term growth trends inferred from tree rings.
Brienen, Roel J W; Gloor, Manuel; Ziv, Guy
2017-02-01
Understanding responses of forests to increasing CO 2 and temperature is an important challenge, but no easy task. Tree rings are increasingly used to study such responses. In a recent study, van der Sleen et al. (2014) Nature Geoscience, 8, 4 used tree rings from 12 tropical tree species and find that despite increases in intrinsic water use efficiency, no growth stimulation is observed. This challenges the idea that increasing CO 2 would stimulate growth. Unfortunately, tree ring analysis can be plagued by biases, resulting in spurious growth trends. While their study evaluated several biases, it does not account for all. In particular, one bias may have seriously affected their results. Several of the species have recruitment patterns, which are not uniform, but clustered around one specific year. This results in spurious negative growth trends if growth rates are calculated in fixed size classes, as 'fast-growing' trees reach the sampling diameter earlier compared to slow growers and thus fast growth rates tend to have earlier calendar dates. We assessed the effect of this 'nonuniform age bias' on observed growth trends and find that van der Sleen's conclusions of a lack of growth stimulation do not hold. Growth trends are - at least partially - driven by underlying recruitment or age distributions. Species with more clustered age distributions show more negative growth trends, and simulations to estimate the effect of species' age distributions show growth trends close to those observed. Re-evaluation of the growth data and correction for the bias result in significant positive growth trends of 1-2% per decade for the full period, and 3-7% since 1950. These observations, however, should be taken cautiously as multiple biases affect these trend estimates. In all, our results highlight that tree ring studies of long-term growth trends can be strongly influenced by biases if demographic processes are not carefully accounted for. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Saddle-shaped mitral valve annuloplasty rings experience lower forces compared with flat rings.
Jensen, Morten O; Jensen, Henrik; Smerup, Morten; Levine, Robert A; Yoganathan, Ajit P; Nygaard, Hans; Hasenkam, J Michael; Nielsen, Sten L
2008-09-30
New insight into the 3D dynamic behavior of the mitral valve has prompted a reevaluation of annuloplasty ring designs. Force balance analysis indicates correlation between annulus forces and stresses in leaflets and chords. Improving this stress distribution can intuitively enhance the durability of mitral valve repair. We tested the hypothesis that saddle-shaped annuloplasty rings have superior uniform systolic force distribution compared with a nonuniform force distribution in flat annuloplasty rings. Sixteen 80-kg pigs had a flat (n=8) or saddle-shaped (n=8) mitral annuloplasty ring implanted. Mitral annulus 3D dynamic geometry was obtained with sonomicrometry before ring insertion. Strain gauges mounted on dedicated D-shaped rigid flat and saddle-shaped annuloplasty rings provided the intraoperative force distribution perpendicular to the annular plane. Average systolic annular height to commissural width ratio before ring implantation was 14.0%+/-1.6%. After flat and saddle shaped ring implantation, the annulus was fixed in the diastolic (9.0%+/-1.0%) and systolic (14.3%+/-1.3%) configuration, respectively (P<0.01). Force accumulation was seen from the anterior (0.72N+/-0.14N) and commissural annular segments (average 1.38N+/-0.27N) of the flat rings. In these segments, the difference between the 2 types of rings was statistically significant (P<0.05). The saddle-shaped annuloplasty rings did not experience forces statistically significantly larger than zero in any annular segments. Saddle-shaped annuloplasty rings provide superior uniform annular force distribution compared to flat rings and appear to represent a configuration that minimizes out-of-plane forces that could potentially be transmitted to leaflets and chords. This may have important implications for annuloplasty ring selections.
NASA Technical Reports Server (NTRS)
1986-01-01
Voyager 2 has discovered two 'shepherd' satellites associated with the rings of Uranus. The two moons -- designated 1986U7 and 1986U8 -- are seen here on either side of the bright epsilon ring; all nine of the known Uranian rings are visible. The image was taken Jan. 21, 1986, at a distance of 4.1 million kilometers (2.5 million miles) and resolution of about 36 km (22 mi). The image was processed to enhance narrow features. The epsilon ring appears surrounded by a dark halo as a result of this processing; occasional blips seen on the ring are also artifacts. Lying inward from the epsilon ring are the delta, gamma and eta rings; then the beta and alpha rings; and finally the barely visible 4, 5 and 6 rings. The rings have been studied since their discovery in 1977, through observations of how they diminish the light of stars they pass in front of. This image is the first direct observation of all nine rings in reflected sunlight. They range in width from about 100 km (60 mi) at the widest part of the epsilon ring to only a few kilometers for most of the others. The discovery of the two ring moons 1986U7 and 1986U8 is a major advance in our understanding of the structure of the Uranian rings and is in good agreement with theoretical predictions of how these narrow rings are kept from spreading out. Based on likely surface brightness properties, the moons are of roughly 2O- and 3O-km diameter, respectively. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.
NASA Astrophysics Data System (ADS)
Chen, Xin; Xing, Pei; Luo, Yong; Zhao, Zongci; Nie, Suping; Huang, Jianbin; Wang, Shaowu; Tian, Qinhua
2015-04-01
A new dataset of annual mean surface temperature has been constructed over North America in recent 500 years by performing optimal interpolation (OI) algorithm. Totally, 149 series totally were screened out including 69 tree ring width (MXD) and 80 tree ring width (TRW) chronologies are screened from International Tree Ring Data Bank (ITRDB). The simulated annual mean surface temperature derives from the past1000 experiment results of Community Climate System Model version 4 (CCSM4). Different from existing research that applying data assimilation approach to (General Circulation Models) GCMs simulation, the errors of both the climate model simulation and tree ring reconstruction were considered, with a view to combining the two parts in an optimal way. Variance matching (VM) was employed to calibrate tree ring chronologies on CRUTEM4v, and corresponding errors were estimated through leave-one-out process. Background error covariance matrix was estimated from samples of simulation results in a running 30-year window in a statistical way. Actually, the background error covariance matrix was calculated locally within the scanning range (2000km in this research). Thus, the merging process continued with a time-varying local gain matrix. The merging method (MM) was tested by two kinds of experiments, and the results indicated standard deviation of errors can be reduced by about 0.3 degree centigrade lower than tree ring reconstructions and 0.5 degree centigrade lower than model simulation. During the recent Obvious decadal variability can be identified in MM results including the evident cooling (0.10 degree per decade) in 1940-60s, wherein the model simulation exhibit a weak increasing trend (0.05 degree per decade) instead. MM results revealed a compromised spatial pattern of the linear trend of surface temperature during a typical period (1601-1800 AD) in Little Ice Age, which basically accorded with the phase transitions of the Pacific decadal oscillation (PDO) and Atlantic multi-decadal oscillation (AMO). Through the empirical orthogonal functions and power spectrum analysis, it was demonstrated that, compared with the pure simulations of CCSM4, MM made significant improvement of decadal variability for the gridded temperature in North America by merging the temperature-sensitive tree ring records.
Drought-related tree mortality in drought-resistant semi-arid Aleppo pine forest
NASA Astrophysics Data System (ADS)
Preisler, Yakir; Grünzweig, José M.; Rotenberg, Eyal; Rohatyn, Shani; Yakir, Dan
2014-05-01
The frequency and intensity of drought events are expected to increase as part of global climate change. In fact, drought related tree mortality had become a widespread phenomenon in forests around the globe in the past decades. This study was conducted at the Yatir FLUXNET site, located in a 45 years old Pinus halepensis dominated forest that successfully sustained low mean annual precipitation (276mm) and extended seasonal droughts (up to 340 days between rain events). However, five recent non-consecutive drought years led to enhanced tree mortality in 2010 (5-10% of the forest population, which was not observed hitherto). The Tree mortality was characterized by patchiness, showing forest zones with either >80% mortality or no mortality at all. Areas of healthy trees were associated with deeper root distribution and increased stoniness (soil pockets & cracks). To help identify possible causes of the increased mortality and its patterns, four tree stress levels were identified based on visual appearance, and studied in more detail. This included examining from spring 2011 to summer 2013 the local trees density, root distribution, annual growth rings, needle length and chlorophyll content, rates of leaf gas exchange, and branch predawn water potential. Tree phenotypic stress level correlated with the leaf predawn water potential (-1.8 and -3.0 in healthy and stressed trees, respectively), which likely reflected tree-scale water availability. These below ground characteristics were also associated, in turn, with higher rate of assimilation (3.5 and 0.8 μmol CO2 m-2s1 in healthy and stress trees, respectively), longer needles (8.2cm and 3.4 cm in healthy and stressed trees, respectively). Annual ring widths showed differences between stress classes, with stressed trees showing 30% narrower rings on average than unstressed trees. Notably, decline in annual ring widths could be identified in currently dead or severely stressed trees 15-20 years prior to mortality or tree degradation. These results indicate, together with earlier results that showed a virtually close hydrological cycle (ET~P) for this forest, that mortality was dominated by conditions at the level of the single-tree or small group of trees. The dependency on belowground water availability of individual trees emphasizes the difficulties in drawing process-based conclusions from the mean response at the forest stand level and, alternatively, the need to investigate drought stress and survival processes at the patch scale. The capabilities of early identification, and of grading the stress level with simple tools, such as tree-rings and pre-dawn water potential, can facilitate partitioning forest stands into zones more relevant to the study and management of drought related mortality. Ultimately, an integrated approach considering both the stand and patch scales and which utilizes methodologies such as used in this study will be essential to reliably predict ecosystem response to changes in precipitation regimes and climate.
1645-nm single-frequency, injection-seeded Q-switched Er:YAG master oscillator and power amplifier
NASA Astrophysics Data System (ADS)
Wang, Shuo; Gao, Chunqing; Shi, Yang; Song, Rui; Na, Quanxin; Gao, Mingwei; Wang, Qing
2018-02-01
A 1645-nm injection-seeded Q-switched Er:YAG master oscillator and power amplifier system is reported. The master oscillator generates single-frequency pulse energy of 11.10 mJ with a pulse width of 188.8 ns at 200 Hz. An Er:YAG monolithic nonplanar ring oscillator is employed as a seed laser. The output pulse from the master oscillator is amplified to 14.33-mJ pulse energy through an Er:YAG amplifier, with a pulse width of 183.3 ns. The M2-factors behind the amplifier are 1.14 and 1.23 in x- and y-directions, respectively. The full width at half maximum of the fast Fourier transformation spectrum of the heterodyne beating signal is 2.84 MHz.
NASA Astrophysics Data System (ADS)
Park, M.; Moon, M.; Park, J.; Cho, S.; Kim, H. S.
2016-12-01
Individual tree growth rates can be affected by various factors such as species, soil fertility, stand development stage, disturbance, and climate etc. To estimate the effect of changes in tree growth rate on the structure and functionality of forest ecosystem in the future, we analyzed the change of species-specific growth trends using the fifth Korea national forest inventory data, which was collected from 2006 to 2010. The ring samples of average tree were collected from nationwide inventory plots and the total number of individual tree ring series was 69,128 covering 185 tree species. Among those, fifty one species with more than 100 tree ring series were used for our analysis. For growth-trend analysis, standardized regional curves of individual species growth were generated from three forest zone in South Korea; subarctic, cool temperate, warm temperate forest zone. Then individual tree ring series was indexed by dividing the growth of the tree by expected growth from standardized regional curves. Then the ratio of all tree ring series were aligned by year and the Spearman's correlation coefficient of each species was calculated. The results show that most of species had increasing growth rates as forests developed after Korean war. For the last thirty years, 67.3% of species including Quercus spp. and Zelkova serrata had positive growth trends, on the other hand, 11.5% of species including Pinus spp. showed negative growth trends probably due to the changes in successional stages in Korean forests and climate change. These trends also vary with climate zone and species. For examples, Pinus densiflora, which showed negative growth trend overall, had steep negative growth trends in boreal and temperate zone, whereas it showed no specific trend in sub-tropical climate zone. Our trend analysis on 51 temperate tree species growth will be essential to predict the temperate forests species change for the this century.
Anthropometric growth study of the ear in a Chinese population.
Zhao, Shichun; Li, Dianguo; Liu, Zhenzhong; Wang, Yibiao; Liu, Lei; Jiang, Duyin; Pan, Bo
2018-04-01
A large number of anthropometric studies of the auricle have been reported in different nations, but little data were available in the Chinese population. The aim of this study was to analyze growth changes in the ear by measuring the width and length of ears in a Chinese population. A total of 480 participants were enrolled and classified into 1-, 3-, 5-, 7-, 9-, 12-, 14-, and 18-year groups (half were boys and half were girls in each group). Ear length, ear width, body weight, and body length were measured and recorded; ear index was calculated according to ear length and ear width. The growth of auricle and differences between genders were analyzed. Growth of ear in relation to body height and weight and the degree of emphasis on the length and width of the auricle were also analyzed. Ear length and width increased with age. Ear length achieved its mature size in both 14-year-old males and females. Ear width reached its mature size in males at 7 years and in females at 5 years. Different trends of ear index were shown between males and females. People in this population paid more attention to the length than the width of the auricle. The data indicated that ear development followed increase in age. There were gender and ethnic difference in the development of ear. These results may have potential implications for the diagnosis of congenital malformations, syndromes, and planning of ear reconstruction surgery. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purohit, Gunjan, E-mail: gunjan75@gmail.com; Rawat, Priyanka; Chauhan, Prashant
This article presents higher-order paraxial theory (non-paraxial theory) for the ring ripple formation on an intense Gaussian laser beam and its propagation in plasma, taking into account the relativistic-ponderomotive nonlinearity. The intensity dependent dielectric constant of the plasma has been determined for the main laser beam and ring ripple superimposed on the main laser beam. The dielectric constant of the plasma is modified due to the contribution of the electric field vector of ring ripple. Nonlinear differential equations have been formulated to examine the growth of ring ripple in plasma, self focusing of main laser beam, and ring rippled lasermore » beam in plasma using higher-order paraxial theory. These equations have been solved numerically for different laser intensities and plasma frequencies. The well established experimental laser and plasma parameters are used in numerical calculation. It is observed that the focusing of the laser beams (main and ring rippled) becomes fast in the nonparaxial region by expanding the eikonal and other relevant quantities up to the fourth power of r. The splitted profile of laser beam in the plasma is observed due to uneven focusing/defocusing of the axial and off-axial rays. The growths of ring ripple increase when the laser beam intensity increases. Furthermore, the intensity profile of ring rippled laser beam gets modified due to the contribution of growth rate.« less
Cambial variations of Piper (Piperaceae) in Taiwan.
Yang, Sheng-Zehn; Chen, Po-Hao
2017-12-01
Cambial variations in lianas of Piperaceae in Taiwan have not been studied previously. The stem anatomy of seven Piper species from Taiwan was examined to document cambial variations and better distinguish the species when leaves are absent. A key for the seven species is provided, based on the internal stem anatomy. The seven Piper species climb via adventitious roots, and in cross section, the stems were generally eccentric and oblate, although a transversely elliptic stem was found in P. kadsura (Choisy) Ohwi and P. sintenense Hatus. A cambial variant with secondary growth of external primary vascular bundles and xylem in plates was observed in all species except Piper betle L., which developed another cambium variant with xylem furrowed deeply by parenchyma proliferation. The sclerenchymatous ring surrounding the medullary vascular bundles was always continuous except in P. betle, where it was discontinuous. Mucilage canals varied from absent to present in the center of the pith, or present in the pith and inner cortex. Different sizes of vessels dispersed throughout the stem were ring or diffuse porous. The numbers of medullary and peripheral vascular bundles were distinctive and the widths of rays were noticeably different in each species. Differences in the growth rate of the medullary vascular bundles produced two development types of vascular bundles, although in both types, the peripheral vascular bundles gradually lengthen and become separated from each other by wide rays. We documented the internal stem anatomy of six previously unstudied species of Piper, including three endemic species, P. kwashoense Hayata, P. sintenense, and P. taiwanense Lin and Lu, and found that P. betle had deeply furrowed xylem, which had not been reported for the species before. The descriptions and photographs of seven Piper species will also provide a basis for further morphological studies.
Murray, Ian W.; Wolf, Blair O.
2013-01-01
We studied the plant resource use between and within populations of desert tortoise (Gopherus agassizii) across a precipitation gradient in the Sonoran Desert of Arizona. The carbon and nitrogen stable isotope values in animal tissues are a reflection of the carbon and nitrogen isotope values in diet, and consequently represent a powerful tool to study animal feeding ecology. We measured the δ13C and δ15N values in the growth rings on the shells of tortoises in different populations to characterize dietary specialization and track tortoise use of isotopically distinct C4/CAM versus C3 plant resources. Plants using C3 photosynthesis are generally more nutritious than C4 plants and these trait differences can have important growth and fitness consequences for consumers. We found that dietary specialization decreases in successively drier and less vegetated sites, and that broader population niche widths are accompanied by an increase in the dietary variability between individuals. Our results highlight how individual consumer plant resource use is bounded under a varying regime of precipitation and plant productivity, lending insight into how intra-individual dietary specialization varies over a spatial scale of environmental variability. PMID:23840495
ERIC Educational Resources Information Center
Boyd, Amy E.; Cooper, Jim
2004-01-01
Tree rings can be used not only to look at plant growth, but also to make connections between plant growth and resource availability. In this lesson, students in 2nd-4th grades use role-play to become familiar with basic requirements of trees and how availability of those resources is related to tree ring sizes and tree growth. These concepts can…
Compact multi-bounce projection system for extreme ultraviolet projection lithography
Hudyma, Russell M.
2002-01-01
An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four optical elements providing five reflective surfaces for projecting a mask image onto a substrate. The five optical surfaces are characterized in order from object to image as concave, convex, concave, convex and concave mirrors. The second and fourth reflective surfaces are part of the same optical element. The optical system is particularly suited for ring field step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width, which effectively minimizes dynamic distortion.
Analysis of Microstrip Line Fed Patch Antenna for Wireless Communications
NASA Astrophysics Data System (ADS)
Singh, Ashish; Aneesh, Mohammad; Kamakshi; Ansari, J. A.
2017-11-01
In this paper, theoretical analysis of microstrip line fed rectangular patch antenna loaded with parasitic element and split-ring resonator is presented. The proposed antenna shows that the dualband operation depends on gap between parasitic element, split-ring resonator, length and width of microstrip line. It is found that antenna resonates at two distinct resonating modes i.e., 0.9 GHz and 1.8 GHz for lower and upper resonance frequencies respectively. The antenna shows dual frequency nature with frequency ratio 2.0. The characteristics of microstrip line fed rectangular patch antenna loaded with parasitic element and split-ring resonator antenna is compared with other prototype microstrip line fed antennas. Further, the theoretical results are compared with simulated and reported experimental results, they are in close agreement.
Dié, Agathe; Kitin, Peter; Kouamé, François N'Guessan; Van den Bulcke, Jan; Van Acker, Joris; Beeckman, Hans
2012-01-01
Background and Aims Teak forms xylem rings that potentially carry records of carbon sequestration and climate in the tropics. These records are only useful when the structural variations of tree rings and their periodicity of formation are known. Methods The seasonality of ring formation in mature teak trees was examined via correlative analysis of cambial activity, xylem and phloem formation, and climate throughout 1·5 years. Xylem and phloem differentiation were visualized by light microscopy and scanning electron microscopy. Key Results A 3 month dry season resulted in semi-deciduousness, cambial dormancy and formation of annual xylem growth rings (AXGRs). Intra-annual xylem and phloem growth was characterized by variable intensity. Morphometric features of cambium such as cambium thickness and differentiating xylem layers were positively correlated. Cambium thickness was strongly correlated with monthly rainfall (R2 = 0·7535). In all sampled trees, xylem growth zones (XGZs) were formed within the AXGRs during the seasonal development of new foliage. When trees achieved full leaf, the xylem in the new XGZs appeared completely differentiated and functional for water transport. Two phloem growth rings were formed in one growing season. Conclusions The seasonal formation pattern and microstructure of teak xylem suggest that AXGRs and XGZs can be used as proxies for analyses of the tree history and climate at annual and intra-annual resolution. PMID:22805529
NASA Astrophysics Data System (ADS)
Bagci, Fulya; Akaoglu, Baris
2018-05-01
In this study, a classical analogue of electromagnetically induced transparency (EIT) that is completely independent of the polarization direction of the incident waves is numerically and experimentally demonstrated. The unit cell of the employed planar symmetric metamaterial structure consists of one square ring resonator and four split ring resonators (SRRs). Two different designs are implemented in order to achieve a narrow-band and wide-band EIT-like response. In the unit cell design, a square ring resonator is shown to serve as a bright resonator, whereas the SRRs behave as a quasi-dark resonator, for the narrow-band (0.55 GHz full-width at half-maximum bandwidth around 5 GHz) and wide-band (1.35 GHz full-width at half-maximum bandwidth around 5.7 GHz) EIT-like metamaterials. The observed EIT-like transmission phenomenon is theoretically explained by a coupled-oscillator model. Within the transmission window, steep changes of the phase result in high group delays and the delay-bandwidth products reach 0.45 for the wide-band EIT-like metamaterial. Furthermore, it has been demonstrated that the bandwidth and group delay of the EIT-like band can be controlled by changing the incidence angle of electromagnetic waves. These features enable the proposed metamaterials to achieve potential applications in filtering, switching, data storing, and sensing.
Denton, R. E.; Jordanova, V. K.; Fraser, B. J.
2014-10-01
We simulate electromagnetic ion cyclotron (EMIC) wave growth and evolution within three regions, the plasmasphere (or plasmaspheric plume), the plasmapause, and the low-density plasmatrough outside the plasmapause. First, we use a ring current simulation with a plasmasphere model to model the particle populations that give rise to the instability for conditions observed on 9 June 2001. Then, using two different models for the cold ion composition, we do a full scale hybrid code simulation in dipole coordinates of the EMIC waves on a meridional plane at MLT = 18 and at 1900 UT within a range of L shell frommore » L = 4.9 to 6.7. EMIC waves were observed during June 9, 2001 by Geostationary Operational Environmental Satellite (GOES) spacecraft. While an exact comparison between observed and simulated spectra is not possible here, we do find significant similarities between the two, at least at one location within the region of largest wave growth. We find that the plasmapause is not a preferred region for EMIC wave growth, though waves can grow in that region. The density gradient within the plasmapause does, however, affect the orientation of wave fronts and wave vector both within the plasmapause and in adjacent regions. There is a preference for EMIC waves to be driven in the He+ band (frequencies between the O+ and He+ gyrofrequencies) within the plasmasphere, although they can also grow in the plasmatrough. If present, H+ band waves are more likely to grow in the plasmatrough. This fact, plus L dependence of the frequency and possible time evolution toward lower frequency waves, can be explained by a simple model. Large O+ concentration limits the frequency range of or even totally quenches EMIC waves. This is more likely to occur in the plasmatrough at solar maximum. Such large O+ concentration significantly affects the H+ cutoff frequency and hence the width in frequency of the stop band above the He+ gyrofrequency. EMIC wave surfaces predicted by cold plasma theory are altered by the finite temperature of the ring current H+.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denton, R. E.; Jordanova, V. K.; Fraser, B. J.
We simulate electromagnetic ion cyclotron (EMIC) wave growth and evolution within three regions, the plasmasphere (or plasmaspheric plume), the plasmapause, and the low-density plasmatrough outside the plasmapause. First, we use a ring current simulation with a plasmasphere model to model the particle populations that give rise to the instability for conditions observed on 9 June 2001. Then, using two different models for the cold ion composition, we do a full scale hybrid code simulation in dipole coordinates of the EMIC waves on a meridional plane at MLT = 18 and at 1900 UT within a range of L shell frommore » L = 4.9 to 6.7. EMIC waves were observed during June 9, 2001 by Geostationary Operational Environmental Satellite (GOES) spacecraft. While an exact comparison between observed and simulated spectra is not possible here, we do find significant similarities between the two, at least at one location within the region of largest wave growth. We find that the plasmapause is not a preferred region for EMIC wave growth, though waves can grow in that region. The density gradient within the plasmapause does, however, affect the orientation of wave fronts and wave vector both within the plasmapause and in adjacent regions. There is a preference for EMIC waves to be driven in the He+ band (frequencies between the O+ and He+ gyrofrequencies) within the plasmasphere, although they can also grow in the plasmatrough. If present, H+ band waves are more likely to grow in the plasmatrough. This fact, plus L dependence of the frequency and possible time evolution toward lower frequency waves, can be explained by a simple model. Large O+ concentration limits the frequency range of or even totally quenches EMIC waves. This is more likely to occur in the plasmatrough at solar maximum. Such large O+ concentration significantly affects the H+ cutoff frequency and hence the width in frequency of the stop band above the He+ gyrofrequency. EMIC wave surfaces predicted by cold plasma theory are altered by the finite temperature of the ring current H+.« less
Stability of an ion-ring distribution in a multi-ion component plasma
NASA Astrophysics Data System (ADS)
Mithaiwala, Manish; Rudakov, Leonid; Ganguli, Gurudas
2010-04-01
The stability of a cold ion-ring velocity distribution in a thermal plasma is analyzed. In particular, the effect of plasma temperature and density on the instability is considered. A high ring density (compared to the background plasma) neutralizes the stabilizing effect of the warm background plasma and the ring is unstable to the generation of waves below the lower-hybrid frequency even for a very high temperature plasma. For ring densities lower than the background plasma density, there is a slow instability where the growth rate is less than the background-ion cyclotron frequency and, consequently, the background-ion response is magnetized. This is in addition to the widely discussed fast instability where the wave growth rate exceeds the background-ion cyclotron frequency and hence the background ions are effectively unmagnetized. Thus, even a low density ring is unstable to waves around the lower-hybrid frequency range for any ring speed. This implies that effectively there is no velocity threshold for a sufficiently cold ring.
NASA Astrophysics Data System (ADS)
Singh, Mandeep; Datta, Arnab
2018-05-01
In this paper, silicon based dual ring resonator with hybrid plasmonic bus waveguides (Cu-SiO2-Si-SiO2-Cu) is investigated for achieving switching in the telecommunication C-band (λ = 1.54-1.553µm). The switch element uses vanadium oxide (VO2) as the switching medium when inserted between the rings in order to tailor transmission from one ring to the other through heating induced phase transition. In this manner, the proposed switch element uses one vanadium oxide medium instead of refractive index tailoring of the whole ring as in the prior reported works and achieves switching response. From two-dimensional finite element analysis we have found that, the proposed switch can achieve maximum extinction ratio of 2.72 dB at λ = 1.5434µm, exclusively by tailoring VO2 phase. Furthermore, impact of aperture width, and gap (separation between the bus waveguide and rings) are investigated to gain insight on the improvement of extinction ratio. From our numerical simulations, we find that free spectral range (FSR) and figure of merit (Q) for OFF and ON states are (173.36 nm, 92.63), and (173.58 nm, 65.39), respectively.
NASA Astrophysics Data System (ADS)
Wei, L.; Marshall, J. D.
2007-12-01
3PG (Physiological Principles in Predicting Growth), a process-based physiological model of forest productivity, has been widely used and well validated. Based on 3PG, a 3PG-δ13C model to simulate δ13C content in plant tissue is built in this research. 3PG calculates carbon assimilation from utilizable absorbed photosynthetically active radiation (PAR), and calculates stomatal conductance from maximum canopy conductance multiplied by physiological modifier which includes the effect of water vapor deficit and soil water. Then the equation of Farquhar and Sharkey (1982) was used to calculate δ13C content in plant. Five even-aged coniferous forest stands located near Clarkia, Idaho (47°15'N, 115°25'W) in Mica Creek Experimental Watershed, were chosen to test the model, (2 stands had been partial cut (50% canopy removal in 1990) and 3 were uncut). MCEW has been extensively investigated since 1990 and many necessary parameters needed for 3PG are readily available. Each of these sites is located near a UI Meteorological station, which recorded half-hourly climatic data since 2003. These site-specific climatic data were extend to 1991 by correlating with data from a nearby SNOTEL station (SNOwpack TELemetry, NRCS, 47°9' N, 116°16' W). Forest mensuration data were obtained form each stand using variable radius plots (VRP). Three tree species, which consist more than 95% of all trees, were parameterized for 3PG model, including: grand fir (Abies grandis Donn ex D. Don), western red cedar (Thuja plicat Donn ex D. Don a) and Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco). Because 4 out of 5 stands have mixed species, we also used parameters for mixed stands to run the model. To stabilize, the model was initially run under average climatic data for 20 years, and then run under the actual climatic data from 1991 to 2006. As 3PG runs in a monthly time step, monthly δ13C values were calculated first, and then yearly values were calculated by weighted averages. For testing the model, tree cores were collected from each stand and species. Ring-widths of tree cores were measured and cross-dated with a ring-width chronology obtained from MCEW. δ13C contents of tree- ring samples from known year were tested. Preliminary results indicate 3PG-δ13C simulated values are consistent with observed values in tree-rings. δ13C values of modeled species are different: western red cider has the highest delta13C values among the three species and western larch has the lowest.
Forest response to 1,000 years of drought variability in the Southwestern United States
NASA Astrophysics Data System (ADS)
Williams, A. P.; Meko, D. M.; Woodhouse, C. A.; Cook, E.; Swetnam, T. W.; Macalady, A. K.; Allen, C. D.; Rauscher, S. A.; Jiang, X.; Grissino-Mayer, H.; McDowell, N. G.; Cai, M.
2011-12-01
Droughts in the early 1950s and early 2000s significantly accelerated tree mortality rates in the Southwestern United States. During the early 2000s, forest inventory data indicate that the proportion of dead piñon pine, ponderosa pine, and Douglas-fir trees doubled in the Southwest. The 2000s drought peaked in 2002 and was the most severe drought in at least 100 years. In 2011, precipitation, dew-point, and wind data indicate the intensity of the 2002 drought has been surpassed in a number of ways. Measurements of water potential in piñon pine trees in northern New Mexico indicate that, at present, trees have less access to soil moisture than in 2002 when widespread mortality occurred. How do these recent droughts compare to those of the last 1000 years? We used records of annual tree-ring widths from 309 populations of piñon pine, ponderosa pine, and Douglas-fir throughout the Southwestern United States to reconstruct a single record of regional drought stress from 1000-2005 AD. This record indicates that the last Southwestern drought similar in intensity to one in the early 2000s occurred in the late 1600s. Both of these droughts, however, paled in comparison to a mega-drought that occurred from 1575-1595. The emergence from this mega-drought, around 1600 AD, appears to mark a transition period from a time when droughts similar the early 2000s drought were much more common. Tree-age studies indicate a scarcity of Southwestern trees with rings extending back beyond the mega-drought of the late 1500s. This suggests that (1) the late-1500s mega-drought triggered a massive die-off of forests and/or (2) the higher frequency of drought events prior to the mega-drought sustained a much more sparse forest population than the one that has thrived from the 1600s through present. Given this apparent plasticity of Southwestern forests, a change in the forest population should be underway if higher temperatures contribute to forest drought stress. The Southwestern tree-ring record indicates that this is the case. During the 20th century, tree-ring widths correlated very positively with total winter precipitation and very negatively with spring-summer maximum temperature. This indicates that Southwestern forest growth is significantly impacted by both the amount of water delivered before the growing season and temperature during the growing season. We conclude that in the absence of a significant increase in winter precipitation, continued warming should lead to a more sparsely populated Southwestern forest population, similar to the one that appears to have existed during 1000-1600 AD.
Liu, Cheng; Zhang, Yong-Fang; Li, Sha; Müller, Norbert
2017-01-01
The effects of surface texture on the lubrication performance of a compression ring-cylinder liner system are studied in this paper. By considering the surface roughness of the compression ring and cylinder liner, a mixed lubrication model is presented to investigate the tribological behaviors of a barrel-shaped compression ring-cylinder liner system with spherical dimples on the liner. In order to determine the rupture and reformulation positions of fluid film accurately, the Jacoboson-Floberg-Olsson (JFO) cavitation boundary condition is applied to the mixed lubrication model for ensuring the mass-conservative law. On this basis, the minimum oil film thickness and average friction forces in the compression ring-cylinder liner system are investigated under the engine-like conditions by changing the dimple area density, radius, and depth. The wear load, average friction forces, and power loss of the compression ring-cylinder liner system with and without dimples are also compared for different compression ring face profiles. The results show that the spherical dimples can produce a larger reduction of friction in mixed lubrication region, and reduce power loss significantly in the middle of the strokes. In addition, higher reduction percentages of average friction forces and wear are obtained for smaller crown height or larger axial width. PMID:28732042
A ring system detected around the Centaur (10199) Chariklo.
Braga-Ribas, F; Sicardy, B; Ortiz, J L; Snodgrass, C; Roques, F; Vieira-Martins, R; Camargo, J I B; Assafin, M; Duffard, R; Jehin, E; Pollock, J; Leiva, R; Emilio, M; Machado, D I; Colazo, C; Lellouch, E; Skottfelt, J; Gillon, M; Ligier, N; Maquet, L; Benedetti-Rossi, G; Ramos Gomes, A; Kervella, P; Monteiro, H; Sfair, R; El Moutamid, M; Tancredi, G; Spagnotto, J; Maury, A; Morales, N; Gil-Hutton, R; Roland, S; Ceretta, A; Gu, S-h; Wang, X-b; Harpsøe, K; Rabus, M; Manfroid, J; Opitom, C; Vanzi, L; Mehret, L; Lorenzini, L; Schneiter, E M; Melia, R; Lecacheux, J; Colas, F; Vachier, F; Widemann, T; Almenares, L; Sandness, R G; Char, F; Perez, V; Lemos, P; Martinez, N; Jørgensen, U G; Dominik, M; Roig, F; Reichart, D E; LaCluyze, A P; Haislip, J B; Ivarsen, K M; Moore, J P; Frank, N R; Lambas, D G
2014-04-03
Hitherto, rings have been found exclusively around the four giant planets in the Solar System. Rings are natural laboratories in which to study dynamical processes analogous to those that take place during the formation of planetary systems and galaxies. Their presence also tells us about the origin and evolution of the body they encircle. Here we report observations of a multichord stellar occultation that revealed the presence of a ring system around (10199) Chariklo, which is a Centaur--that is, one of a class of small objects orbiting primarily between Jupiter and Neptune--with an equivalent radius of 124 ± 9 kilometres (ref. 2). There are two dense rings, with respective widths of about 7 and 3 kilometres, optical depths of 0.4 and 0.06, and orbital radii of 391 and 405 kilometres. The present orientation of the ring is consistent with an edge-on geometry in 2008, which provides a simple explanation for the dimming of the Chariklo system between 1997 and 2008, and for the gradual disappearance of ice and other absorption features in its spectrum over the same period. This implies that the rings are partly composed of water ice. They may be the remnants of a debris disk, possibly confined by embedded, kilometre-sized satellites.
Chaparral growth-ring analysis as an indicator of stand biomass development
Kellie A. Uyeda; Douglas A. Stow; John F. O' Leary; Christina Tague; Philip J. Riggan
2016-01-01
Chaparral wildfires typically create even-aged stands of vegetation that grow quickly in the first 2 decades following a fire. Patterns of this growth are important for understanding ecosystem productivity and re-establishment success, but are logistically challenging to measure over long time periods. We tested the utility of a novel method of using shrub growth rings...
Is the 20th century warming unprecedented in the Siberian north?
NASA Astrophysics Data System (ADS)
Sidorova, Olga V.; Saurer, Matthias; Andreev, Andrei; Fritzsche, Diedrich; Opel, Thomas; Naurzbaev, Mukhtar M.; Siegwolf, Rolf
2013-08-01
To answer the question "Has the recent warming no analogues in the Siberian north?" we analyzed larch tree samples (Larix gmelinii Rupr.) from permafrost zone in the eastern Taimyr (TAY) (72°N, 102°E) using tree-ring and stable isotope analyses for the Climatic Optimum Period (COP) 4111-3806 BC and Medieval Warm Period (MWP) 917-1150 AD, in comparison to the recent period (RP) 1791-2008 AD. We developed a description of the climatic and environmental changes in the eastern Taimyr using tree-ring width and stable isotope (δ13C, δ18O) data based on statistical verification of the relationships to climatic parameters (temperature and precipitation). Additionally, we compared our new tree-ring and stable isotope data sets with earlier published July temperature and precipitation reconstructions inferred from pollen data of the Lama Lake, Taimyr Peninsula, δ18O ice core data from Akademii Nauk ice cap on Severnaya Zemlya (SZ) and δ18O ice core data from Greenland (GISP2), as well as tree-ring width and stable carbon and oxygen isotope data from northeastern Yakutia (YAK). We found that the COP in TAY was warmer and drier compared to the MWP but rather similar to the RP. Our results indicate that the MWP in TAY started earlier and was wetter than in YAK. July precipitation reconstructions obtained from pollen data of the Lama Lake, oxygen isotope data from SZ and our carbon isotopes in tree cellulose agree well and indicate wetter climate conditions during the MWP. Consistent large-scale patterns were reflected in significant links between oxygen isotope data in tree cellulose from TAY and YAK, and oxygen isotope data from SZ and GISP2 during the MWP and the RP. Finally, we showed that the recent warming is not unprecedented in the Siberian north. Similar climate conditions were recorded by tree-rings, stable isotopes, pollen, and ice core data 6000 years ago.
NASA Astrophysics Data System (ADS)
English, N. B.; Duffy, R.; Balanzategui, D.; Baker, P. J.; Evans, M. N.
2014-12-01
In far northern Queensland (FNQ) there are only sporadic coral and speleothem precipitation proxy records, and only one annually resolved, terrestrial record of rainfall that predates 1850 CE. Black kauri pine, Agathis atropurpurea, is a large conifer present in isolated stands near 1000 masl in the wet tropical dividing range of FNQ. Little is known about its phenology or responses to climate, although its presence near the elevational limit of the dividing range may hinder its ability to respond to increased temperature or decreased precipitation through elevational migration. We hypothesize that in this energy-limited forest, increased (decreased) solar radiation leads to increased (decreased) ring widths, and higher (lower) evapotranspiration rates produce increases (decreases) in the oxygen isotopic composition (δ18O) of the a-cellulose component of wood. To test this hypothesis, we collected over 60 cores from 21 large (dbh = 56 to 186 cm) A. atropurpurea trees from Spurgeon Peak National Park. The resulting tree-ring chronology extends from 2013 to 1438 CE and shows high average mean sensitivity (0.642) although expressed population signal drops off at 1650 CE as sample depth decreases. Comparison of the most recent 100 years of ring widths and direct climate observations show a significant positive relationship (r2 = 0.4, p < 0.01) to PDSI in December through March, coinciding with the austral rainy season associated with onset of the northern Australian Monsoon. Annualized δ18Oxygen (a-cellulose) maxima for 1983-2013 show strong and significant spatial positive relationships to Tmax and Pacific seasurface temperatures. Work to refine the interpretation of the data is onoing, but the resulting dataset may enable extension of the terrestrial climate record of north Queensland two centuries beyond current tree-ring proxies and historical observations.
Effect of enzymatic hydrolysis on native starch granule structure.
Blazek, Jaroslav; Gilbert, Elliot Paul
2010-12-13
Enzymatic digestion of six starches of different botanical origin was studied in real time by in situ time-resolved small-angle neutron scattering (SANS) and complemented by the analysis of native and digested material by X-ray diffraction, differential scanning calorimetry, small-angle X-ray scattering, and scanning electron microscopy with the aim of following changes in starch granule nanostructure during enzymatic digestion. This range of techniques enables coverage over five orders of length-scale, as is necessary for this hierarchically structured material. Starches studied varied in their digestibility and displayed structural differences in the course of enzymatic digestion. The use of time-resolved SANS showed that solvent-drying of digested residues does not induce any structural artifacts on the length scale followed by small-angle scattering. In the course of digestion, the lamellar peak intensity gradually decreased and low-q scattering increased. These trends were more substantial for A-type than for B-type starches. These observations were explained by preferential digestion of the amorphous growth rings. Hydrolysis of the semicrystalline growth rings was explained on the basis of a liquid-crystalline model for starch considering differences between A-type and B-type starches in the length and rigidity of amylopectin spacers and branches. As evidenced by differing morphologies of enzymatic attack among varieties, the existence of granular pores and channels and physical penetrability of the amorphous growth ring affect the accessibility of the enzyme to the substrate. The combined effects of the granule microstructure and the nanostructure of the growth rings influence the opportunity of the enzyme to access its substrate; as a consequence, these structures determine the enzymatic digestibility of granular starches more than the absolute physical densities of the amorphous growth rings and amorphous and crystalline regions of the semicrystalline growth rings.
NASA Astrophysics Data System (ADS)
Cai, Qiufang; Liu, Yu; Duan, Bingchuang; Sun, Changfeng
2018-03-01
Tree-ring studies from tropical to subtropical regions are rarer than that from extratropical regions, which greatly limit our understanding of some critical climate change issues. Based on the tree-ring-width chronology of samples collected from the Dabie Mountains, we reconstructed the April-June mean temperature for this region with an explained variance of 46.8%. Five cold (1861-1869, 1889-1899, 1913-1920, 1936-1942 and 1952-1990) and three warm (1870-1888, 1922-1934 and 2000-2005) periods were identified in the reconstruction. The reconstruction not only agreed well with the instrumental records in and around the study area, but also showed good resemblance to previous temperature reconstructions from nearby regions, indicating its spatial and temporal representativeness of the temperature variation in the central part of eastern China. Although no secular warming trend was found, the warming trend since 1970 was unambiguous in the Dabie Mountains (0.064 °C/year). Further temperature comparison indicated that the start time of the recent warming in eastern China was regional different. It delayed gradually from north to south, starting at least around 1940 AD in the north part, around 1970 AD in the central part and around 1980s in the south part. This work enriches the high-resolution temperature reconstructions in eastern China. We expect that climate warming in the future would promote the radial growth of alpine Pinus taiwanensis in the subtropical areas of China, therefore promote the carbon capture and carbon storage in the Pinus taiwanensis forest. It also helps to clarify the regional characteristic of recent warming in eastern China.
NASA Astrophysics Data System (ADS)
Edvardsson, Johannes; Corona, Christophe; Mažeika, Jonas; Pukienė, Rutile; Stoffel, Markus
2016-01-01
This study presents the first results from an ongoing initiative to develop a multi-millennial Baltic tree-ring width (TRW) chronology consisting of 12 floating records from subfossil Scots pines (Pinus sylvestris L.) extracted from three Lithuanian peat-mining areas. The floating series have been complemented with absolutely dated TRW chronologies which were obtained from living trees growing in unmanaged and unexploited peatland areas adjacent to each of the above study sites. The subfossil material has been dated by radiocarbon and shows a temporal spread over the last 6000 years, with assemblages of trees during the Holocene Thermal Maximum (HTM; 8000-4000 BP) and the onset of the Medieval Warm Period (MWP, AD 900-1350). Annual tree growth and sample replication of peatland pines reflect moisture variations and long-term climate variability. The importance of extending the TRW chronologies should not therefore be underestimated as (1) climate records of comparable length and resolution do not exist for the Baltic region, but also as (2) a result of a widespread lack of detailed moisture proxies spanning several millennia. Our data clearly show that a 6000-yr, continuous pine chronology from the Baltic region is a realistic objective, and would doubtlessly fill a major geographic gap in an ecologically sensitive region located at the interface between the temperate and boreal vegetation zones.
Simulation of emittance dilution in electron storage ring from Compton backscattering
NASA Astrophysics Data System (ADS)
Blumberg, L. N.; Blum, E.
A Monte-Carlo simulation of Compton backscattered kappa(sub L) = 3.2-micron photons from an IR-FEL on 75-MeV electrons in a storage ring yields an RMS electron energy spread of delta(sub E) = 11.9-keV for a sample of 10(exp 7) single scattering events. Electrons are sampled from a beam of natural energy spread sigma(sub E) = 5.6-keV and damped transverse angle spreads sigma(sub x)(prime) = .041-mrad and sigma(sub y)(prime) = .052-mrad (100%) coupling, scaled from the 200-MeV BNL XLS compact storage ring. The Compton-scattered x-rays are generated from an integral of the CM Klein-Nishina cross-section transformed to the lab. A tracking calculation has also been performed in 6-dimensional phase space. Initial electron coordinates are selected randomly from a Gaussian distribution of RMS spreads sigma(sub xo) = .102-mm, sigma(sub x(prime)o) = .041-mrad, sigma(sub yo) = .018-mm, sigma(sub y(prime)o) = .052-mrad, sigma(sub (phi)o) = 22-mrad and sigma(sub Eo) = 6-keV. A sample of 10000 electrons were each following for 40000 turns around the ring through an RF cavity of f(sub RF) = 211.54-MHz and peak voltage V(sub m)=300-keV. Preliminary results indicate that the resulting energy distribution is quite broad with an RMS width of delta(sub E) = 124-keV. The transverse widths are only slightly increased from their original values, i.e. delta(sub x) = .106-mm and delta(sub x)(prime) = .043 mrad. The scaled energy spread of delta(sub E) approximately = 360-keV for approximately 350,000 turns desired in a 10-msec x-ray angiography exposure is well within the RF bucket used here; even V(sub m) less than 50-kV is adequate. Further, the electron energy spread adds a negligible RMS x-ray energy spread of delta(sub Ex) = .32-keV. The electron energy damping time of tau(sub E) = 379-msec at 75-MeV in an XLS-type ring allows for damping this induced spread and top-off of the ring between heart cycles.
Distribution and growth of salps in a Kuroshio warm-core ring during summer 1987
NASA Astrophysics Data System (ADS)
Tsuda, Atsushi; Nemoto, Takahisa
1992-03-01
A salp bloom, accounting for 47% of the macrozooplankton wet weight in the upper 200 m, was observed in a Kuroshio warm-core ring and adjacent areas during September 1987. Although salps had wide distribution and high biomass in the ring and adjacent southern areas, they did not occur north of the northern ring front. Thalia democratica dominated in these areas and Salpa fusiformis was abundant at some stations. Salps were distributed only in the upper 200 m of the water column. The maximum abundance of T. democratica was in the surface mixed layer, 0-20 m. S. fusiformis was most abundant from 50 to 75 m. Diel vertical migration was observed only for solitary zooids of S. fusiformis. All other salps appeared only on the surface. The growth of aggregate zooids of T. democratica was investigated with the time-series sampling during a 28-h sampling period following a drifter. Several cohorts were identified in the length-frequency distributions. The average relative growth rate in length was 8.0% per hour. Carbon consumption by the T. democratica population, calculated from the derived growth rate, suggested that T. democratica was a major consumer of the primary production in the ring.
Preload Torque Limiting Shaft Coupling
NASA Technical Reports Server (NTRS)
Harmening, W. A. (Inventor)
1975-01-01
A torque limiting spring for a rotating shaft system which acts bidirectionally and is preloaded is examined. The spring is a split circular ring compressed into cavities on facing surfaces of matching shafts. The spring is preloaded by varying the width of a tang in the shaft cavity relative to the split in the spring.
Conformational dynamics in fluorophenylcarbamoyl-alpha-chymotrypsins.
Kairi, M; Gerig, J T
1990-06-19
A series of fluorine-substituted diphenylcarbamoyl chlorides have been synthesized and used to prepare corresponding diphenylcarbamoylated derivatives of alpha-chymotrypsin. The enzyme is rapidly inactivated by these compounds, as has been previously observed for the unsubstituted chloride, and the derivatives are stable enough to permit extensive studies by fluorine NMR spectroscopy. In combination with previously reported results, these NMR experiments suggest that the aromatic rings of a diphenylcarbamoyl group attached to chymotrypsin may be found in two magnetically and dynamically distinguishable sites, with exchange between these sites taking place by a process that involves rotation about the carbamoyl N-CO bond and localized unfolding of the enzyme. The extent to which a given fluoroaromatic ring is found in one of these sites is dependent on the position of the fluorine substituent and the nature of the partner aromatic ring. It is found that a 2-fluorophenyl ring, when present, dominantly determines site occupation, while a 3-fluorophenyl ring has no effects that are detectably different from those of an unsubstituted phenyl ring. There is evidence for slow aromatic ring rotation within at least one of the phenyl ring interaction sites. Saturation transfer and lineshape methods provide information about the rates of interconversion of the N-phenyl groups between these sites. Line-width, spin-lattice relaxation times and fluorine-proton nuclear Overhauser effects determined at 282 and 470 MHz are reported for each system examined.
Processing parameters for filament winding thick-section PEEK/carbon fiber composites
NASA Astrophysics Data System (ADS)
Colton, J.; Leach, D.
1992-12-01
The consolidation pressure and winding speed for thermoplastic filament winding were studied. Thermoplastic composite parts were manufactured from tape prepreg (APC-2); powder-coated, semi-consolidated towpreg; and commingled fiber towpreg. The material used was carbon fiber (AS-4) (60 vol pct) in a PEEK matrix. The parts made were open-ended cylinders of the three materials, 177.8-mm ID, 228.6 mm long, 17 plies thick with a 0 deg lay-up angle; and rings, 50 plies of APC-2 thick, 6.35 mm wide (one strip wide), 177.8-mm ID, and a lay-up of 0 deg. Their quality was determined by surface finish and void percentage. The tubes made from APC-2 appeared to have the best quality of the three prepregs. For the rings, the speed of lay-down had a significant effect on both the final width of the parts and on the percentage of voids. The pressure of the roller had a significant effect on the final widths at a 99 percent confidence level, but a significant effect on the percentage of voids at only a 95 percent confidence level.
Processing parameters for thermoplastic filament winding
NASA Astrophysics Data System (ADS)
Colton, J.; Leach, D.
The consolidation pressure and winding speed for thermoplastic filament winding were studied. Thermoplastic composite parts were manufactured from tape prepreg (APC-2); powder-coated, semiconsolidated towpreg; and commingled fiber towpeg. The material used was carbon fiber (AS-4) (60 vol pct) in a PEEK matrix. The parts made were open-ended cylinders of the three materials, 177.8 mmID, 228.6 mm long, 17 plies thick with a 0 deg lay-up angle; and rings, 50 plies of APC-2 thick, 6.35 mm wide (one strip wide), 177.8 mm ID, and a lay-up of 0 deg. Their quality was determined by surface finish and void percentage. The tubes made from APC-2 appeared to have the best quality of the three prepregs. For the rings, the speed of lay down had a significant effect on both the final width of the parts and on the percentage of voids. The pressure of the roller had a significant effect on the final widths at a 99 percent confidence level, but only a significant effect on the percentage of voids at a 95 percent confidence level.
Effects of flow restoration on mussel growth in a Wild and Scenic North American River
2013-01-01
Background Freshwater mussels remain among the most imperiled species in North America due primarily to habitat loss or degradation. Understanding how mussels respond to habitat changes can improve conservation efforts. Mussels deposit rings in their shell in which age and growth information can be read, and thus used to evaluate how mussels respond to changes in habitat. However, discrepancies between methodological approaches to obtain life history information from growth rings has led to considerable uncertainty regarding the life history characteristics of many mussel species. In this study we compared two processing methods, internal and external ring examination, to obtain age and growth information of two populations of mussels in the St. Croix River, MN, and evaluated how mussel growth responded to changes in the operation of a hydroelectric dam. Results External ring counts consistently underestimated internal ring counts by 4 years. Despite this difference, internal and external growth patterns were consistent. In 2000, the hydroelectric dam switched from operating on a peaking schedule to run-of-the-river/partial peaking. Growth patterns between an upstream and downstream site of the dam were similar both before and after the change in operation. At the downstream site, however, older mussels had higher growth rates after the change in operation than the same sized mussels collected before the change. Conclusions Because growth patterns between internal and external processing methods were consistent, we suggest that external processing is an effective method to obtain growth information despite providing inaccurate age information. External processing is advantageous over internal processing due to its non-destructive nature. Applying this information to analyze the influence of the operation change in the hydroelectric dam, we suggest that changing to run-of-the-river/partial peaking operation has benefited the growth of older mussels below the dam. PMID:23452382
Apparatus for controlling the scan width of a scanning laser beam
Johnson, Gary W.
1996-01-01
Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board.
Apparatus for controlling the scan width of a scanning laser beam
Johnson, G.W.
1996-10-22
Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board. 8 figs.
Phenotypic delineation of ring chromosome 15 and Russell-Silver syndromes.
Wilson, G N; Sauder, S E; Bush, M; Beitins, I Z
1985-01-01
A male child with features of the Russell-Silver syndrome, including pre- and postnatal growth delay, triangular facies, bilateral fifth finger clinodactyly, and disproportionate lower extremities, was found to have a ring chromosome 15 in all peripheral leucocytes examined. Review of the reported cases of ring chromosome 15 defines a malformation syndrome with a characteristic facies related to deletion of the 15q26.2----qter region. Russell-Silver and ring 15 syndromes share clinical features such as growth deficiency, triangular facies, digital anomalies, and café-au-lait spots. Microcephaly, mental retardation, facial dysmorphology, limb anomalies, and cardiac defects are more striking in ring chromosome 15 patients and are indications for karyotyping when found in conjunction with the Russell-Silver phenotype. Images PMID:4040173
Ring Shake in Eastern Hemlock: Frequency and Relationship to Tree Attributes
John E. Baumgras; Paul E. Sendak; David L. Sonderman; David L. Sonderman
2000-01-01
Ring shake is a barrier to improved utilization of eastern hemlock, an important component of the total softwood timber resource in the Eastern United States and Canada. Ring shake is the lengthwise separation of wood that occurs between and parallel to growth rings, diminishing lumber yields and values. Evaluating the potential for ring shake is essential to improving...
Ring shake in eastern hemlock: frequency and relationship to tree attributes
John E. Baumgras; Paul E. Sendak; David L. Sonderman
2000-01-01
Ring shake is a barrier to improved utilization of eastern hemlock, an important component of the total softwood timber resource in the Eastern United States and Canada. Ring shake is the lengthwise separation of wood that occurs between and parallel to growth rings, diminishing lumber yields and values. Evaluating the potential for ring shake is essential to improving...
Koch, Peter; Bartschke, Juergen; L'huillier, Johannes A
2015-11-30
In this paper we report on the realization of a single-mode Q-switched Nd:YVO4 ring laser at 1342 nm. Unidirectional and single-mode operation of the ring laser is achieved by injection-locking with a continuous wave Nd:YVO4 microchip laser, emitting a single-frequency power of up to 40 mW. The ring laser provides a single-mode power of 13.9 W at 10 kHz pulse repetition frequency with a pulse duration of 18.2 ns and an excellent beam quality (M2 < 1.05). By frequency doubling of the fundamental 1342 nm laser, a power of 8.7 W at 671 nm with a pulse duration of 14.8 ns and a beam propagation factor of M2 < 1.1 is obtained. The 671 nm radiation features a long-term spectral width of 75 MHz.
Iowa's oldest oaks. [Quercus alba
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duvick, D.N.; Blasing, T.J.
1983-01-01
Tree-ring analysis revealed 33 living white oaks (Quercus alba) in Iowa that began growing before 1700. Core of wood 4 mm in diameter, each extracted from a radius of a tree trunk were analyzed. The oldest white oak, found in northeastern Warren County, began growing about 1570 and is thus over 410 years old. A chinkapin oak (Quercus muehlenbergii) was also found which was more than 300 years old. Ring widths from the white oaks are well correlated with total precipitation for the twelve months preceding completion of ring formation in July. Reconstructions of annual (August-July) precipitation for 1680-1979, basedmore » on the tree rings, indicate that the driest annual period in Iowa was August 1799-July 1800, and that the driest decade began about 1816. Climatic information of this kind, pre-dating written weather records, can be used to augment those records and provide a longer baseline of information for use by climatologists and hydrologic planners.« less
Mondal, Samir K; Mitra, Anupam; Singh, Nahar; Sarkar, S N; Kapur, Pawan
2009-10-26
We propose a technique of chemical etching for fabrication of near perfect optical fiber nanoprobe (NNP). It uses photosensitive single mode optical fiber to etch in hydro fluoric (HF) acid solution. The difference in etching rate for cladding and photosensitive core in HF acid solution creates capillary ring along core-cladding boundary under a given condition. The capillary ring is filled with acid solution due to surface tension and capillary action. Finally it creates near perfect symmetric tip at the apex of the fiber as the height of the acid level in capillary ring decreases while width of the ring increases with continuous etching. Typical tip features are short taper length (approximately 4 microm), large cone angle (approximately 38 degrees ), and small probe tip dimension (<100 nm). A finite difference time domain (FDTD) analysis is also presented to compare near field optics of the NNP with conventional nanoprobe (CNP). The probe may be ideal for near field optical imaging and sensor applications.
The rebirth of Supernova 1987A : a study of the ejecta-ring collision
NASA Astrophysics Data System (ADS)
Gröningsson, Per
Supernovae are some of the most energetic phenomena in the Universe and they have throughout history fascinated people as they appeared as new stars in the sky. Supernova (SN) 1987A exploded in the nearby satellite galaxy, the Large Magellanic Cloud (LMC), at a distance of only 168,000 light years. The proximity of SN 1987A offers a unique opportunity to study the medium surrounding the supernova in great detail. Powered by the dynamical interaction of the ejecta with the inner circumstellar ring, SN 1987A is dramatically evolving at all wavelengths on time scales less than a year. This makes SN 1987A a great ``laboratory'' for studies of shock physics. Repeated observations of the ejecta-ring collision have been carried out using the UVES echelle spectrograph at VLT. This thesis covers seven epochs of high resolution spectra taken between October 1999 and November 2007. Three different emission line components are identified from the spectra. A narrow (~10 km/s) velocity component emerges from the unshocked ring. An intermediate (~250 km/s) component arises in the shocked ring, and a broad component extending to ~15,000 km/s comes from the reverse shock. Thanks to the high spectral resolution of UVES, it has been possible to separate the shocked from the unshocked ring emission. For the unshocked gas, ionization stages from neutral up to Ne V and Fe VII were found. The line fluxes of the low-ionization lines decline during the period of the observations. However, the fluxes of the [O III] and [Ne III] lines appear to increase and this is found to be consistent with the heating of the pre-shock gas by X-rays from the shock interactions. The line emission from the ejecta-ring collision increases rapidly as more gas is swept up by the shocks. This emission comes from ions with a range of ionization stages (e.g., Fe II-XIV). The low-ionization lines show an increase in their line widths which is consistent with that these lines originate from radiative shocks. The high-ionization line profiles (Fe X-XIV) initially show larger spectral widths, which indicates that at least a fraction of the emission comes from non-radiative shocks.
Bearing Restoration by Grinding
1976-05-21
lIng of bearings prior to installation, installing a contaminated bearing, manufacturing defects, ring growth in service, and corrosion. Nonmetallic...operation of rolling-elemsnt bearings is growth of the bearing race rings. As an example, the inner or outer races, can grow due to metallurgical...transformations or due to hoop stresses during operation This growth results in the bearing being not reusable after removal from its application. For aircraft