DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidtbauer, Jan; Bansen, Roman; Heimburger, Robert
Germanium nanowires (NWs) were grown onto Ge(111) substrates by the vapor-liquid-solid process using gold droplets. The growth was carried out in a molecular beam epitaxy chamber at substrate temperatures between 370 Degree-Sign C and 510 Degree-Sign C. The resulting nanowire growth rate turns out to be highly dependent on the substrate temperature exhibiting the maximum at T = 430 Degree-Sign C. The temperature dependence of growth rate can be attributed to surface diffusion both along the substrate and nanowire sidewalls. Analyzing the diffusive material transport yields a diffusion length of 126 nm at a substrate temperature of 430 Degree-Sign C.
NASA Astrophysics Data System (ADS)
Wang, Chong; Simoen, Eddy; Zhao, Ming; Li, Wei
2017-10-01
Deep levels formed under different growth conditions of a 200 nm AlN buffer layer on B-doped Czochralski Si(111) substrates with different resistivity were investigated by deep-level transient spectroscopy (DLTS) on metal-insulator-semiconductor capacitors. Growth-temperature-dependent Al diffusion in the Si substrate was derived from the free carrier density obtained by capacitance-voltage measurement on samples grown on p- substrates. The DLTS spectra revealed a high concentration of point and extended defects in the p- and p+ silicon substrates, respectively. This indicated a difference in the electrically active defects in the silicon substrate close to the AlN/Si interface, depending on the B doping concentration.
Uniform modeling of bacterial colony patterns with varying nutrient and substrate
NASA Astrophysics Data System (ADS)
Schwarcz, Deborah; Levine, Herbert; Ben-Jacob, Eshel; Ariel, Gil
2016-04-01
Bacteria develop complex patterns depending on growth condition. For example, Bacillus subtilis exhibit five different patterns depending on substrate hardness and nutrient concentration. We present a unified integro-differential model that reproduces the entire experimentally observed morphology diagram at varying nutrient concentrations and substrate hardness. The model allows a comprehensive and quantitative comparison between experimental and numerical variables and parameters, such as colony growth rate, nutrient concentration and diffusion constants. As a result, the role of the different physical mechanisms underlying and regulating the growth of the colony can be evaluated.
Modeling of the Bacillus subtilis Bacterial Biofilm Growing on an Agar Substrate
Wang, Xiaoling; Wang, Guoqing; Hao, Mudong
2015-01-01
Bacterial biofilms are organized communities composed of millions of microorganisms that accumulate on almost any kinds of surfaces. In this paper, a biofilm growth model on an agar substrate is developed based on mass conservation principles, Fick's first law, and Monod's kinetic reaction, by considering nutrient diffusion between biofilm and agar substrate. Our results show biofilm growth evolution characteristics such as biofilm thickness, active biomass, and nutrient concentration in the agar substrate. We quantitatively obtain biofilm growth dependence on different parameters. We provide an alternative mathematical method to describe other kinds of biofilm growth such as multiple bacterial species biofilm and also biofilm growth on various complex substrates. PMID:26355542
Modeling of the Bacillus subtilis Bacterial Biofilm Growing on an Agar Substrate.
Wang, Xiaoling; Wang, Guoqing; Hao, Mudong
2015-01-01
Bacterial biofilms are organized communities composed of millions of microorganisms that accumulate on almost any kinds of surfaces. In this paper, a biofilm growth model on an agar substrate is developed based on mass conservation principles, Fick's first law, and Monod's kinetic reaction, by considering nutrient diffusion between biofilm and agar substrate. Our results show biofilm growth evolution characteristics such as biofilm thickness, active biomass, and nutrient concentration in the agar substrate. We quantitatively obtain biofilm growth dependence on different parameters. We provide an alternative mathematical method to describe other kinds of biofilm growth such as multiple bacterial species biofilm and also biofilm growth on various complex substrates.
Graphitic carbon grown on fluorides by molecular beam epitaxy.
Jerng, Sahng-Kyoon; Lee, Jae Hong; Kim, Yong Seung; Chun, Seung-Hyun
2013-01-03
We study the growth mechanism of carbon molecules supplied by molecular beam epitaxy on fluoride substrates (MgF2, CaF2, and BaF2). All the carbon layers form graphitic carbon with different crystallinities depending on the cation. Especially, the growth on MgF2 results in the formation of nanocrystalline graphite (NCG). Such dependence on the cation is a new observation and calls for further systematic studies with other series of substrates. At the same growth temperature, the NCG on MgF2 has larger clusters than those on oxides. This is contrary to the general expectation because the bond strength of the carbon-fluorine bond is larger than that of the carbon-oxygen bond. Our results show that the growth of graphitic carbon does not simply depend on the chemical bonding between the carbon and the anion in the substrate.
Graphitic carbon grown on fluorides by molecular beam epitaxy
2013-01-01
We study the growth mechanism of carbon molecules supplied by molecular beam epitaxy on fluoride substrates (MgF2, CaF2, and BaF2). All the carbon layers form graphitic carbon with different crystallinities depending on the cation. Especially, the growth on MgF2 results in the formation of nanocrystalline graphite (NCG). Such dependence on the cation is a new observation and calls for further systematic studies with other series of substrates. At the same growth temperature, the NCG on MgF2 has larger clusters than those on oxides. This is contrary to the general expectation because the bond strength of the carbon-fluorine bond is larger than that of the carbon-oxygen bond. Our results show that the growth of graphitic carbon does not simply depend on the chemical bonding between the carbon and the anion in the substrate. PMID:23286607
Dissipative-particle-dynamics model of biofilm growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijie; Meakin, Paul; Tartakovsky, Alexandre M.
2011-06-13
A dissipative particle dynamics (DPD) model for the quantitative simulation of biofilm growth controlled by substrate (nutrient) consumption, advective and diffusive substrate transport, and hydrodynamic interactions with fluid flow (including fragmentation and reattachment) is described. The model was used to simulate biomass growth, decay, and spreading. It predicts how the biofilm morphology depends on flow conditions, biofilm growth kinetics, the rheomechanical properties of the biofilm and adhesion to solid surfaces. The morphology of the model biofilm depends strongly on its rigidity and the magnitude of the body force that drives the fluid over the biofilm.
Pint, Cary; Pheasant, Sean; Nicholas, Nolan; Horton, Charles; Hauge, Robert
2008-11-01
Growth of high quality, vertically aligned single-walled carbon nanotubes (carpets) is achieved using a rapid insertion hot filament chemical vapor deposition (HF-CVD) technique. The effect of the substrate morphology on growth is explored by comparing carpets grown on epitaxially polished MgO substrates to those grown on "as-cut", macroscopically rough MgO substrates. Depending on the substrate morphology, we observe differences in both the overall carpet morphology as well as the diameter distribution of nanotubes grown in the carpet based on optical measurements. In addition, we explore the role of water in the growth of carpets on MgO and the conventional Al2O3 coated Si substrates. We find that the addition of a small amount of water is beneficial to the growth rates of the SWNT carpets, enhancing the growth rates by up to eight times.
Outdiffusion of recombination centers from the substrate into LPE layers - GaAs
NASA Technical Reports Server (NTRS)
Jastrzebski, L.; Lagowski, J.; Gatos, H. C.
1979-01-01
Experimental results are presented showing that outdiffusion of recombination centers from the GaAs substrate into the epitaxial layer takes place during growth. Such outdiffusion decreases the carrier lifetime in the epitaxial layer to much lower values than the radiative recombination limit. Furthermore, it introduces a lifetime gradient across the epitaxial layer which depends critically on the growth velocity and thermal treatment. High rates of growth (such as those attainable in electroepitaxy) and high cooling rates can minimize the adverse effects of normally available substrates on the epitaxial layers; however, good quality substrates are essential for the consistent growth of device quality layers.
Müller, Roland H.; Rohwerder, Thore; Harms, Hauke
2007-01-01
The utilization of the fuel oxygenate methyl tert-butyl ether (MTBE) and related compounds by microorganisms was investigated in a mainly theoretical study based on the YATP concept. Experiments were conducted to derive realistic maintenance coefficients and Ks values needed to calculate substrate fluxes available for biomass production. Aerobic substrate conversion and biomass synthesis were calculated for different putative pathways. The results suggest that MTBE is an effective heterotrophic substrate that can sustain growth yields of up to 0.87 g g−1, which contradicts previous calculation results (N. Fortin et al., Environ. Microbiol. 3:407-416, 2001). Sufficient energy equivalents were generated in several of the potential assimilatory routes to incorporate carbon into biomass without the necessity to dissimilate additional substrate, efficient energy transduction provided. However, when a growth-related kinetic model was included, the limits of productive degradation became obvious. Depending on the maintenance coefficient ms and its associated biomass decay term b, growth-associated carbon conversion became strongly dependent on substrate fluxes. Due to slow degradation kinetics, the calculations predicted relatively high threshold concentrations, Smin, below which growth would not further be supported. Smin strongly depended on the maximum growth rate μmax, and b and was directly correlated with the half maximum rate-associated substrate concentration Ks, meaning that any effect impacting this parameter would also change Smin. The primary metabolic step, catalyzing the cleavage of the ether bond in MTBE, is likely to control the substrate flux in various strains. In addition, deficits in oxygen as an external factor and in reduction equivalents as a cellular variable in this reaction should further increase Ks and Smin for MTBE. PMID:17220260
Graphene as an atomically thin interface for growth of vertically aligned carbon nanotubes.
Rao, Rahul; Chen, Gugang; Arava, Leela Mohana Reddy; Kalaga, Kaushik; Ishigami, Masahiro; Heinz, Tony F; Ajayan, Pulickel M; Harutyunyan, Avetik R
2013-01-01
Growth of vertically aligned carbon nanotube (CNT) forests is highly sensitive to the nature of the substrate. This constraint narrows the range of available materials to just a few oxide-based dielectrics and presents a major obstacle for applications. Using a suspended monolayer, we show here that graphene is an excellent conductive substrate for CNT forest growth. Furthermore, graphene is shown to intermediate growth on key substrates, such as Cu, Pt, and diamond, which had not previously been compatible with nanotube forest growth. We find that growth depends on the degree of crystallinity of graphene and is best on mono- or few-layer graphene. The synergistic effects of graphene are revealed by its endurance after CNT growth and low contact resistances between the nanotubes and Cu. Our results establish graphene as a unique interface that extends the class of substrate materials for CNT growth and opens up important new prospects for applications.
Graphene as an atomically thin interface for growth of vertically aligned carbon nanotubes
Rao, Rahul; Chen, Gugang; Arava, Leela Mohana Reddy; Kalaga, Kaushik; Ishigami, Masahiro; Heinz, Tony F.; Ajayan, Pulickel M.; Harutyunyan, Avetik R.
2013-01-01
Growth of vertically aligned carbon nanotube (CNT) forests is highly sensitive to the nature of the substrate. This constraint narrows the range of available materials to just a few oxide-based dielectrics and presents a major obstacle for applications. Using a suspended monolayer, we show here that graphene is an excellent conductive substrate for CNT forest growth. Furthermore, graphene is shown to intermediate growth on key substrates, such as Cu, Pt, and diamond, which had not previously been compatible with nanotube forest growth. We find that growth depends on the degree of crystallinity of graphene and is best on mono- or few-layer graphene. The synergistic effects of graphene are revealed by its endurance after CNT growth and low contact resistances between the nanotubes and Cu. Our results establish graphene as a unique interface that extends the class of substrate materials for CNT growth and opens up important new prospects for applications. PMID:23712556
Morphology Controlled Fabrication of InN Nanowires on Brass Substrates
Li, Huijie; Zhao, Guijuan; Wang, Lianshan; Chen, Zhen; Yang, Shaoyan
2016-01-01
Growth of semiconductor nanowires on cheap metal substrates could pave the way to the large-scale manufacture of low-cost nanowire-based devices. In this work, we demonstrated that high density InN nanowires can be directly grown on brass substrates by metal-organic chemical vapor deposition. It was found that Zn from the brass substrates is the key factor in the formation of nanowires by restricting the lateral growth of InN. The nanowire morphology is highly dependent on the growth temperature. While at a lower growth temperature, the nanowires and the In droplets have large diameters. At the elevated growth temperature, the lateral sizes of the nanowires and the In droplets are much smaller. Moreover, the nanowire diameter can be controlled in situ by varying the temperature in the growth process. This method is very instructive to the diameter-controlled growth of nanowires of other materials. PMID:28335323
Substrate Dependence in the Growth of Three-Dimensional Gold Nanoparticle Superlattices
2001-11-01
the Hamaker constants between gold nanoparticle assemblies and substrates through the suspension. Van der Waals interactions estimated from this...finally dialyzed to remove inorganic (Na, Cl, and B) and organic impurities. The surfactant affects the dispersion of Au nanoparticles in aqueous...be taken into account for complete understanding of the observed substrate dependency. To consider volume interactions, we calculate the Hamaker
Size effects and electron microscopy of thin metal films. M.S. Thesis
NASA Technical Reports Server (NTRS)
Hernandez, J. D.
1978-01-01
All films were deposited by resistive heated evaporation in an oil diffusion pumped vacuum system (ultimate approx. equal to 0.0000001 torr). The growth from nuclei to a continuous film is highly dependent on the deposition parameters, evaporation rate as well as substrate material and substrate temperature. The growth stages of a film and the dependence of grain size on various deposition and annealing parameters are shown. Resistivity measurements were taken on thin films to observe size effects.
Growth cones are actively influenced by substrate-bound adhesion molecules.
Burden-Gulley, S M; Payne, H R; Lemmon, V
1995-06-01
As axons advance to appropriate target tissues during development, their growth cones encounter a variety of cell adhesion molecules (CAMs) and extracellular matrix molecules (ECM molecules). Purified CAMs and ECM molecules influence neurite outgrowth in vitro and are thought to have a similar function in vivo. For example, when retinal ganglion cell (RGC) neurons are grown on different CAM and ECM molecule substrates in vitro, their growth cones display distinctive morphologies (Payne et al., 1992). Similarly, RGC growth cones in vivo have distinctive shapes at different points in the pathway from the eye to the tectum, suggesting the presence of localized cues that determine growth cone behaviors such as pathway selection at choice points. In this report, time-lapse video microscopy was utilized to examine dynamic transformations of RGC growth cones as they progressed from L1/8D9, N-cadherin, or laminin onto a different substrate. Contact made by the leading edge of a growth cone with a new substrate resulted in a rapid and dramatic alteration in growth cone morphology. In some cases, the changes encompassed the entire growth cone including those regions not in direct contact with the new substrate. In addition, the growth cones displayed a variety of behavioral responses that were dependent upon the order of substrate contact. These studies demonstrate that growth cones are actively affected by the substrate, and suggest that abrupt changes in the molecular composition of the growth cone environment are influential during axonal pathfinding.
Growth Cone Biomechanics in Peripheral and Central Nervous System Neurons
NASA Astrophysics Data System (ADS)
Urbach, Jeffrey; Koch, Daniel; Rosoff, Will; Geller, Herbert
2012-02-01
The growth cone, a highly motile structure at the tip of an axon, integrates information about the local environment and modulates outgrowth and guidance, but little is known about effects of external mechanical cues and internal mechanical forces on growth-cone mediated guidance. We have investigated neurite outgrowth, traction forces and cytoskeletal substrate coupling on soft elastic substrates for dorsal root ganglion (DRG) neurons (from the peripheral nervous system) and hippocampal neurons (from the central) to see how the mechanics of the microenvironment affect different populations. We find that the biomechanics of DRG neurons are dramatically different from hippocampal, with DRG neurons displaying relatively large, steady traction forces and maximal outgrowth and forces on substrates of intermediate stiffness, while hippocampal neurons display weak, intermittent forces and limited dependence of outgrowth and forces on substrate stiffness. DRG growth cones have slower rates of retrograde actin flow and higher density of localized paxillin (a protein associated with substrate adhesion complexes) compared to hippocampal neurons, suggesting that the difference in force generation is due to stronger adhesions and therefore stronger substrate coupling in DRG growth cones.
NASA Astrophysics Data System (ADS)
Yen, M. Y.; Haas, T. W.
1990-06-01
We have observed intensity oscillations in reflection high-energy electron diffraction during molecular beam epitaxial growth of GaAs on (111)B GaAs substrates. These oscillations only exist over a narrow range of growth conditions and their behavior is strongly dependent on the migration kinetics of group III and the molecular dissociative reaction of group V elements.
NASA Astrophysics Data System (ADS)
Cai, Danyun; Mo, Yunjie; Feng, Xiaofang; He, Yingyou; Jiang, Shaoji
2017-06-01
In this study, a model based on the First Principles calculations and Kinetic Monte Carlo simulation were established to study the growth characteristic of Ag thin film at low substrate temperature. On the basis of the interaction between the adatom and nearest-neighbor atoms, some simplifications and assumptions were made to categorize the diffusion behaviors of Ag adatoms on Ag(001). Then the barriers of all possible diffusion behaviors were calculated using the Climbing Image Nudged Elastic Band method (CI-NEB). Based on the Arrhenius formula, the morphology variation, which is attributed to the surface diffusion behaviors during the growth, was simulated with a temperature-dependent KMC model. With this model, a non-monotonic relation between the surface roughness and the substrate temperature (decreasing from 300 K to 100 K) were discovered. The analysis of the temperature dependence on diffusion behaviors presents a theoretical explanation of diffusion mechanism for the non-monotonic variation of roughness at low substrate temperature.
Gibbs–Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth
Shen, Youde; Chen, Renjie; Yu, Xuechao; ...
2016-06-02
Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor–liquid–solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. In this paper, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs–Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed tomore » impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs–Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. Finally, these results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices.« less
Gibbs-Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth.
Shen, Youde; Chen, Renjie; Yu, Xuechao; Wang, Qijie; Jungjohann, Katherine L; Dayeh, Shadi A; Wu, Tom
2016-07-13
Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor-liquid-solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. Here, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs-Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed to impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs-Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. These results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices.
Schmidt, Thomas; Marchetto, Helder; Groh, Ullrich; Fink, Rainer H; Freund, Hans-Joachim; Umbach, Eberhard
2018-05-15
We investigated the dynamics of the initial growth of the first epitaxial layers of perylenetetracarboxylic dianhydride (PTCDA) on the Au(111) surface with high lateral resolution using the aberration-corrected spectro-microscope SMART. With this instrument, we could simultaneously study the different adsorption behaviors and layer growth on various surface areas consisting of either a distribution of flat (111) terraces, separated by single atomic steps ("ideal surface"), or on areas with a high density of step bunches and defects ("realistic surface"). The combined use of photoemission electron microscopy, low-energy electron microscopy, and μ-spot X-ray absorption provided a wealth of new information, showing that the growth of the archetype molecule PTCDA not only has similarities but also has significant differences when comparing Au(111) and Ag(111) substrate surfaces. For instance, under otherwise identical preparation conditions, we observed different growth mechanisms on different surface regions, depending on the density of step bunches. In addition, we studied the spatially resolved desorption behavior which also depends on the substrate morphology.
Molecular Beam Epitaxial Growth of GaAs on (631) Oriented Substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cruz Hernandez, Esteban; Rojas Ramirez, Juan-Salvador; Contreras Hernandez, Rocio
2007-02-09
In this work, we report the study of the homoepitaxial growth of GaAs on (631) oriented substrates by molecular beam epitaxy (MBE). We observed the spontaneous formation of a high density of large scale features on the surface. The hilly like features are elongated towards the [-5, 9, 3] direction. We show the dependence of these structures with the growth conditions and we present the possibility of to create quantum wires structures on this surface.
Growth of pure ZnO thin films prepared by chemical spray pyrolysis on silicon
NASA Astrophysics Data System (ADS)
Ayouchi, R.; Martin, F.; Leinen, D.; Ramos-Barrado, J. R.
2003-01-01
Structural, morphological, optical and electrical properties of ZnO thin films prepared by chemical spray pyrolysis from zinc acetate (Zn(CH 3COO) 2 2H 2O) aqueous solutions, on polished Si(1 0 0), and fused silica substrates for optical characterization, have been studied in terms of deposition time and substrate temperature. The growth of the films present three regimes depending on the substrate temperature, with increasing, constant and decreasing growth rates at lower, middle, and higher-temperature ranges, respectively. Growth rate higher than 15 nm min -1 can be achieved at Ts=543 K. ZnO film morphological and electrical properties have been related to these growth regimes. The films have been characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy.
Marín-Guirao, J I; Rodríguez-Romera, P; Lupión-Rodríguez, B; Camacho-Ferre, F; Tello-Marquina, J C
2016-10-01
The biostimulant effect of Trichoderma spp. on horticultural crops are highly variable. Thus, practical use of Trichoderma sp. requires feasible formulated products and suitable substrates. This study evaluates the survival and the growth-promotion effect of a Trichoderma saturnisporum rice formulation compared with a nonformulated conidia suspension (seven treatments in total), on tomato, pepper and cucumber seedlings grown in two substrates: (i) rich in organic matter (OM) and (ii) mineral substrate without OM. The results showed beneficial effects on seedling growth in the OM-rich substrate when T. saturnisporum rice formulation (mainly at maximum concentration) was applied, but the effects were opposite when the mineral substrate without OM was used. The effects were closely linked to the level of inoculum in the substrate, which was greater upon application of the formulated inoculum as opposed to the nonformulated one. The use of rice to prepare the inoculum of T. saturnisporum seems to be promising for seedling growth in the nursery when it is applied in a substrate that is rich in organic matter, but it must be considered that under certain conditions of food shortage, Trichoderma sp. could show pathogenicity to seedlings. This study provides evidence of the complexity inherent in the use of micro-organisms in agriculture, while also confirming that the activity of the biofertilizers based on Trichoderma depends on the type of inoculum and its concentration, as well as the properties of the medium in which the fungi develop. Further studies assessing the effectiveness or possible pathogenicity of Trichoderma in different soils under greenhouse conditions must be addressed. © 2016 The Society for Applied Microbiology.
Fabrication of SrGe2 thin films on Ge (100), (110), and (111) substrates
NASA Astrophysics Data System (ADS)
Imajo, T.; Toko, K.; Takabe, R.; Saitoh, N.; Yoshizawa, N.; Suemasu, T.
2018-01-01
Semiconductor strontium digermanide (SrGe2) has a large absorption coefficient in the near-infrared light region and is expected to be useful for multijunction solar cells. This study firstly demonstrates the formation of SrGe2 thin films via a reactive deposition epitaxy on Ge substrates. The growth morphology of SrGe2 dramatically changed depending on the growth temperature (300-700 °C) and the crystal orientation of the Ge substrate. We succeeded in obtaining single-oriented SrGe2 using a Ge (110) substrate at 500 °C. Development on Si or glass substrates will lead to the application of SrGe2 to high-efficiency thin-film solar cells.
NASA Astrophysics Data System (ADS)
Jeong, Jin-Tak; Choi, Mun-Ki; Sim, Yumin; Lim, Jung-Taek; Kim, Gil-Sung; Seong, Maeng-Je; Hyung, Jung-Hwan; Kim, Keun Soo; Umar, Ahmad; Lee, Sang-Kwon
2016-09-01
Control of living cells on biocompatible materials or on modified substrates is important for the development of bio-applications, including biosensors and implant biomaterials. The topography and hydrophobicity of substrates highly affect cell adhesion, growth, and cell growth kinetics, which is of great importance in bio-applications. Herein, we investigate the adhesion, growth, and morphology of cultured breast cancer cells on a silicon substrate, on which graphene oxides (GO) was partially formed. By minimizing the size and amount of the GO-containing solution and the further annealing process, GO-coated Si samples were prepared which partially covered the Si substrates. The coverage of GO on Si samples decreases upon annealing. The behaviors of cells cultured on two samples have been observed, i.e. partially GO-coated Si (P-GO) and annealed partially GO-coated Si (Annealed p-GO), with a different coverage of GO. Indeed, the spreading area covered by the cells and the number of cells for a given culture period in the incubator were highly dependent on the hydrophobicity and the presence of oxygenated groups on GO and Si substrates, suggesting hydrophobicity-driven cell growth. Thus, the presented method can be used to control the cell growth via an appropriate surface modification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alevli, Mustafa, E-mail: mustafaalevli@marmara.edu.tr; Gungor, Neşe; Haider, Ali
2016-01-15
Gallium nitride films were grown by hollow cathode plasma-assisted atomic layer deposition using triethylgallium and N{sub 2}/H{sub 2} plasma. An optimized recipe for GaN film was developed, and the effect of substrate temperature was studied in both self-limiting growth window and thermal decomposition-limited growth region. With increased substrate temperature, film crystallinity improved, and the optical band edge decreased from 3.60 to 3.52 eV. The refractive index and reflectivity in Reststrahlen band increased with the substrate temperature. Compressive strain is observed for both samples, and the surface roughness is observed to increase with the substrate temperature. Despite these temperature dependent material properties,more » the chemical composition, E{sub 1}(TO), phonon position, and crystalline phases present in the GaN film were relatively independent from growth temperature.« less
Stable carbon isotope fractionation by sulfate-reducing bacteria
NASA Technical Reports Server (NTRS)
Londry, Kathleen L.; Des Marais, David J.
2003-01-01
Biogeochemical transformations occurring in the anoxic zones of stratified sedimentary microbial communities can profoundly influence the isotopic and organic signatures preserved in the fossil record. Accordingly, we have determined carbon isotope discrimination that is associated with both heterotrophic and lithotrophic growth of pure cultures of sulfate-reducing bacteria (SRB). For heterotrophic-growth experiments, substrate consumption was monitored to completion. Sealed vessels containing SRB cultures were harvested at different time intervals, and delta(13)C values were determined for gaseous CO(2), organic substrates, and products such as biomass. For three of the four SRB, carbon isotope effects between the substrates, acetate or lactate and CO(2), and the cell biomass were small, ranging from 0 to 2 per thousand. However, for Desulfotomaculum acetoxidans, the carbon incorporated into biomass was isotopically heavier than the available substrates by 8 to 9 per thousand. SRB grown lithoautotrophically consumed less than 3% of the available CO(2) and exhibited substantial discrimination (calculated as isotope fractionation factors [alpha]), as follows: for Desulfobacterium autotrophicum, alpha values ranged from 1.0100 to 1.0123; for Desulfobacter hydrogenophilus, the alpha value was 0.0138, and for Desulfotomaculum acetoxidans, the alpha value was 1.0310. Mixotrophic growth of Desulfovibrio desulfuricans on acetate and CO(2) resulted in biomass with a delta(13)C composition intermediate to that of the substrates. The extent of fractionation depended on which enzymatic pathways were used, the direction in which the pathways operated, and the growth rate, but fractionation was not dependent on the growth phase. To the extent that environmental conditions affect the availability of organic substrates (e.g., acetate) and reducing power (e.g., H(2)), ecological forces can also influence carbon isotope discrimination by SRB.
Biostability analysis for drinking water distribution systems.
Srinivasan, Soumya; Harrington, Gregory W
2007-05-01
The ability to limit regrowth in drinking water is referred to as biological stability and depends on the concentration of disinfectant residual and on the concentration of substrate required for the growth of microorganisms. The biostability curve, based on this fundamental concept of biological stability, is a graphical approach to study the two competing effects that determine bacterial regrowth in a distribution system: inactivation due to the presence of a disinfectant, and growth due to the presence of a substrate. Biostability curves are a practical, system specific approach for addressing the problem of bacterial regrowth in distribution systems. This paper presents a standardized algorithm for generating biostability curves and this will enable water utilities to incorporate this approach for their site-specific needs. Using data from pilot scale studies, it was found that this algorithm was applicable to control regrowth of HPC in chlorinated systems where AOC is the growth limiting substrate, and growth of AOB in chloraminated systems, where ammonia is the growth limiting substrate.
Investment in secreted enzymes during nutrient-limited growth is utility dependent.
Cezairliyan, Brent; Ausubel, Frederick M
2017-09-12
Pathogenic bacteria secrete toxins and degradative enzymes that facilitate their growth by liberating nutrients from the environment. To understand bacterial growth under nutrient-limited conditions, we studied resource allocation between cellular and secreted components by the pathogenic bacterium Pseudomonas aeruginosa during growth on a protein substrate that requires extracellular digestion by secreted proteases. We identified a quantitative relationship between the rate of increase of cellular biomass under nutrient-limiting growth conditions and the rate of increase in investment in secreted proteases. Production of secreted proteases is stimulated by secreted signals that convey information about the utility of secreted proteins during nutrient-limited growth. Growth modeling using this relationship recapitulated the observed kinetics of bacterial growth on a protein substrate. The proposed regulatory strategy suggests a rationale for quorum-sensing-dependent stimulation of the production of secreted enzymes whereby investment in secreted enzymes occurs in proportion to the utility they confer. Our model provides a framework that can be applied toward understanding bacterial growth in many environments where growth rate is limited by the availability of nutrients.
Growth of single-layer graphene on Ge (1 0 0) by chemical vapor deposition
NASA Astrophysics Data System (ADS)
Mendoza, C. D.; Caldas, P. G.; Freire, F. L.; Maia da Costa, M. E. H.
2018-07-01
The integration of graphene into nanoelectronic devices is dependent on the availability of direct deposition processes, which can provide uniform, large-area and high-quality graphene on semiconductor substrates such as Ge or Si. In this work, we synthesised graphene directly on p-type Ge (1 0 0) substrates by chemical vapour deposition. The influence of the CH4:H2 flow ratio on the graphene growth was investigated. Raman Spectroscopy, Raman mapping, Scanning Electron Microscopy, Atomic Force Microscopy and Scanning Tunnelling Microscopy/Scanning Tunnelling Spectroscopy results showed that good quality and homogeneous monolayer graphene over a large area can be achieved on Ge substrates directly with optimal growth conditions.
Fabrication of SrGe2 thin films on Ge (100), (110), and (111) substrates.
Imajo, T; Toko, K; Takabe, R; Saitoh, N; Yoshizawa, N; Suemasu, T
2018-01-16
Semiconductor strontium digermanide (SrGe 2 ) has a large absorption coefficient in the near-infrared light region and is expected to be useful for multijunction solar cells. This study firstly demonstrates the formation of SrGe 2 thin films via a reactive deposition epitaxy on Ge substrates. The growth morphology of SrGe 2 dramatically changed depending on the growth temperature (300-700 °C) and the crystal orientation of the Ge substrate. We succeeded in obtaining single-oriented SrGe 2 using a Ge (110) substrate at 500 °C. Development on Si or glass substrates will lead to the application of SrGe 2 to high-efficiency thin-film solar cells.
Controlling Growth Orientation of Phthalocyanine Films by Electrical Fields
NASA Technical Reports Server (NTRS)
Zhu, S.; Banks, C. E.; Frazier, D. O.; Ila, D.; Muntele, I.; Penn, B. G.; Sharma, A.; Rose, M. Franklin (Technical Monitor)
2001-01-01
Organic Phthalocyanine films have many applications ranging from data storage to various non-linear optical devices whose quality is affected by the growth orientation of Phthalocyanine films. Due to the structural and electrical properties of Phthalocyanine molecules, the film growth orientation depends strongly on the substrate surface states. In this presentation, an electrical field up to 4000 V/cm is introduced during film growth. The Phthalocyanine films are synthesized on quartz substrates using thermal evaporation. An intermediate layer is deposited on some substrates for introducing the electrical field. Scanning electron microscopy, x-ray diffraction, and Fourier transform infrared spectroscopy are used for measuring surface morphology, film structure, and optical properties, respectively. The comparison of Phthalocyanine films grown with and without the electrical field reveals different morphology, film density, and growth orientation, which eventually change optical properties of these films. These results suggest that the growth method in the electrical field can be used to synthesized Phthalocyanine films with a preferred crystal orientation as well as propose an interaction mechanism between the substrate surface and the depositing molecules. The details of growth conditions and of the growth model of how the Phthalocyanine molecules grow in the electrical field will be discussed.
Compositional dependence of the band gap in Ga(NAsP) quantum well heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jandieri, K., E-mail: kakhaber.jandieri@physik.uni-marburg.de; Ludewig, P.; Wegele, T.
We present experimental and theoretical studies of the composition dependence of the direct band gap energy in Ga(NAsP)/GaP quantum well heterostructures grown on either (001) GaP- or Si-substrates. The theoretical description takes into account the band anti-crossing model for the conduction band as well as the modification of the valence subband structure due to the strain resulting from the pseudomorphic epitaxial growth on the respective substrate. The composition dependence of the direct band gap of Ga(NAsP) is obtained for a wide range of nitrogen and phosphorus contents relevant for laser applications on Si-substrate.
NASA Astrophysics Data System (ADS)
Reznik, R. R.; Shtrom, I. V.; Samsonenko, Yu B.; Khrebtov, A. I.; Soshnikov, I. P.; Cirlin, G. E.
2017-11-01
The data on the growth peculiarities and physical properties of GaAs insertions embedded in AlGaAs nanowires grown on Si (111) substrates by Au-assisted molecular beam epitaxy are presented. It is shown that by varying of the growth parameters it is possible to form structures like quantum dots emitting in a wide wavelengths range for both active and barrier parts. The technology proposed opens new possibilities for the integration of direct-band AIIIBV materials on silicon platform.
Zorba, S; Le, Q T; Watkins, N J; Yan, L; Gao, Y
2001-09-01
Atomic force microscopy was used to study the growth modes (on SiO2, MoS2, and Au substrates) and the current-voltage (I-V) characteristics of organic semiconductor pentacene. Pentacene films grow on SiO2 substrate in a layer-by-layer manner with full coverage at an average thickness of 20 A and have the highest degree of molecular ordering with large dendritic grains among the pentacene films deposited on the three different substrates. Films grown on MoS2 substrate reveal two different growth modes, snowflake-like growth and granular growth, both of which seem to compete with each other. On the other hand, films deposited on Au substrate show granular structure for thinner coverages (no crystal structure) and dendritic growth for higher coverages (crystal structure). I-V measurements were performed with a platinum tip on a pentacene film deposited on a Au substrate. The I-V curves on pentacene film reveal symmetric tunneling type character. The field dependence of the current indicates that the main transport mechanism at high field intensities is hopping (Poole-Frenkel effect). From these measurements, we have estimated a field lowering coefficient of 9.77 x 10(-6) V-1/2 m1/2 and an ideality factor of 18 for pentacene.
2007-02-21
dependent upon the carbon gross growth efficiency ( GGE ) and the C:N:P ratio of the organic substrate. This calculation and its structural...product of the temperature adjusted maximum gross carbon assimilation rate, the carbon gross growth efficiency ( GGE ), and the uptake kinetics for DOC...substrate: max T 4 [ ]( ) [ ]Cb b DOCg g GGE n DOC ⎛ ⎞ = ⎜ ⎟+⎝ ⎠ (21) and ( )( 30)max T m30 m30min[ , ]Kt Tb b bg g g e −= (22) To
NASA Astrophysics Data System (ADS)
Zhou, Tong; Zhong, Zhenyang
2014-02-01
A dramatically enhanced self-assembly of GeSi quantum dots (QDs) is disclosed on slightly miscut Si (001) substrates, leading to extremely dense QDs and even a growth mode transition. The inherent mechanism is addressed in combination of the thermodynamics and the growth kinetics both affected by steps on the vicinal surface. Moreover, temperature-dependent photoluminescence spectra from dense GeSi QDs on the miscut substrate demonstrate a rather strong peak persistent up to 300 K, which is attributed to the well confinement of excitons in the dense GeSi QDs due to the absence of the wetting layer on the miscut substrate.
Size and shape dependence of CO adsorption sites on sapphire supported Fe microcrystals
NASA Technical Reports Server (NTRS)
Papageorgopoulos, C.; Heinemann, K.
1985-01-01
The surface structure and stoichiometry of alumina substrates, as well as the size, growth characteristics, and shape of Fe deposits on sapphire substrates have been investigated by low energy electron diffraction (LEED), Auger electron spectroscopy, electron energy loss spectroscopy, and X-ray photoemission spectroscopy (XPS), as well as work function measurements, in conjunction with transition electron microscopy observations. The substrates used in this work were the following: (1) new, clean Al2O3; (2) same surface amorphized by Ar ion bombardment; (3) same surface regenerated by 650 C annealing; (4) amorphous alumina films on Ta slab; and (5) polycrystal alumina films, obtained by heating amorphous films to 600 C. Substrate cleaning was found to be most effective in producing a reproducible surface upon oxygen RF plasma treatment. The Fe nucleation and growth process was found to depend strongly on the type of substrate surface and deposition conditions. Ar ion bombardment under beam flooding, and subsequent annealing at 650 C was found an effective means to restore the original Al2O3 (1102) surface for renewed Fe deposition.
NASA Astrophysics Data System (ADS)
Salazar-Kuri, U.; Antúnez, E. E.; Estevez, J. O.; Olive-Méndez, Sion F.; Silva-González, N. R.; Agarwal, V.
2017-05-01
Square-shaped macropores produced by electrochemical anodization of n- and p-type Si wafers have been used as centers of nucleation to crystallize VO2 and ZnO. Substrate roughness dependent formation of different morphologies is revealed in the form of squared particles, spheres, bars and ribbons in the case of VO2 and hexagonal piles and spheres in the case of ZnO, have been observed.The presence of nano-/micro-metric crystals was studied through field emission scanning electron microscopy and energy dispersive X-ray spectroscopy mapping. Crystal structure of metal oxides was confirmed by micro-Raman spectroscopy. The growth of the different morphologies has been explained in terms of the surface free energy of a bare Si/SiO2 substrate and its modification originated from the roughness of the surface and of the walls of the porous substrates. This energy plays a crucial role on the minimization of the required energy to induce heterogeneous nucleation and crystal growth. Present work strengthens and provides an experimental evidence of roughness dependent metal oxide crystal growth with well-defined habits from pore corners and rough sides of the pore walls, similar to already reported protein crystals.
Growth of heterostructures on InAs for high mobility device applications
NASA Astrophysics Data System (ADS)
Contreras-Guerrero, R.; Wang, S.; Edirisooriya, M.; Priyantha, W.; Rojas-Ramirez, J. S.; Bhuwalka, K.; Doornbos, G.; Holland, M.; Oxland, R.; Vellianitis, G.; Van Dal, M.; Duriez, B.; Passlack, M.; Diaz, C. H.; Droopad, R.
2013-09-01
The growth of heterostructures lattice matched to InAs(100) substrates for high mobility electronic devices has been investigated. The oxide removal process and homoepitaxial nucleation depends on the deposition parameters to avoid the formation of surface defects that can propagate through the structure during growth which can result in degraded device performance. The growth parameters for InAs homoepitaxy were found to be within an extremely narrow range when using As4 with a slight increase using As2. High structural quality lattice matched AlAsxSb1-x buffer layer was grown on InAs(100) substrates using a digital growth technique with the AlAs mole fraction adjusted by varying the incident As flux. Using the AlAsxSb1-x buffer layer, the transport properties of thin InAs channel layers were determined on conducting native substrates.
Placental Adaptations in Growth Restriction
Zhang, Song; Regnault, Timothy R.H.; Barker, Paige L.; Botting, Kimberley J.; McMillen, Isabella C.; McMillan, Christine M.; Roberts, Claire T.; Morrison, Janna L.
2015-01-01
The placenta is the primary interface between the fetus and mother and plays an important role in maintaining fetal development and growth by facilitating the transfer of substrates and participating in modulating the maternal immune response to prevent immunological rejection of the conceptus. The major substrates required for fetal growth include oxygen, glucose, amino acids and fatty acids, and their transport processes depend on morphological characteristics of the placenta, such as placental size, morphology, blood flow and vascularity. Other factors including insulin-like growth factors, apoptosis, autophagy and glucocorticoid exposure also affect placental growth and substrate transport capacity. Intrauterine growth restriction (IUGR) is often a consequence of insufficiency, and is associated with a high incidence of perinatal morbidity and mortality, as well as increased risk of cardiovascular and metabolic diseases in later life. Several different experimental methods have been used to induce placental insufficiency and IUGR in animal models and a range of factors that regulate placental growth and substrate transport capacity have been demonstrated. While no model system completely recapitulates human IUGR, these animal models allow us to carefully dissect cellular and molecular mechanisms to improve our understanding and facilitate development of therapeutic interventions. PMID:25580812
Growth and characterization of α and β-phase tungsten films on various substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jeong-Seop; Cho, Jaehun; You, Chun-Yeol, E-mail: cyyou@inha.ac.kr
2016-03-15
The growth conditions of tungsten thin films were investigated using various substrates including Si, Si/SiO{sub 2}, GaAs, MgO, and Al{sub 2}O{sub 3}, and recipes were discovered for the optimal growth conditions of thick metastable β-phase tungsten films on Si, GaAs, and Al{sub 2}O{sub 3} substrates, which is an important material in spin orbit torque studies. For the Si/SiO{sub 2} substrate, the crystal phase of the tungsten films was different depending upon the tungsten film thickness, and the transport properties were found to dramatically change with the thickness owing to a change in phase from the α + β phase to the α-phase.more » It is shown that the crystal phase changes are associated with residual stress in the tungsten films and that the resistivity is closely related to the grain sizes.« less
Rayleigh-Taylor instability under curved substrates: An optimal transient growth analysis
NASA Astrophysics Data System (ADS)
Balestra, Gioele; Brun, P.-T.; Gallaire, François
2016-12-01
We investigate the stability of thin viscous films coated on the inside of a horizontal cylindrical substrate. In such a case, gravity acts both as a stabilizing force through the progressive drainage of the film and as a destabilizing force prone to form droplets via the Rayleigh-Taylor instability. The drainage solution, derived from lubrication equations, is found asymptotically stable with respect to infinitesimally small perturbations, although in reality, droplets often form. To resolve this paradox, we perform an optimal transient growth analysis for the first-order perturbations of the liquid's interface, generalizing the results of Trinh et al. [Phys. Fluids 26, 051704 (2014), 10.1063/1.4876476]. We find that the system displays a linear transient growth potential that gives rise to two different scenarios depending on the value of the Bond number (prescribing the relative importance of gravity and surface tension forces). At low Bond numbers, the optimal perturbation of the interface does not generate droplets. In contrast, for higher Bond numbers, perturbations on the upper hemicircle yield gains large enough to potentially form droplets. The gain increases exponentially with the Bond number. In particular, depending on the amplitude of the initial perturbation, we find a critical Bond number above which the short-time linear growth is sufficient to trigger the nonlinear effects required to form dripping droplets. We conclude that the transition to droplets detaching from the substrate is noise and perturbation dependent.
NASA Astrophysics Data System (ADS)
Srivastava, Himanshu; Khooha, Ajay; Singh, Ajit; Ganguli, Tapas
2018-04-01
The study of the growth of nanowires on α-brass (Cu 65%, Zn 35%) substrate was done by annealing the substrates at different temperatures in air and varying flow of moist nitrogen. It was found that the surface composition of oxidized brass depended on the synthesis condition. Angle Dependent X-ray Fluorescence (ADXRF) measurements of the oxidized brass samples were done to study the variation of composition with the synthesis conditions and depth. The results showed that the cause of the compositional dependence on synthesis parameters is due to a process, inherent to the oxidation of brass.
Matrix Rigidity Regulates Cancer Cell Growth by Modulating Cellular Metabolism and Protein Synthesis
Tilghman, Robert W.; Blais, Edik M.; Cowan, Catharine R.; Sherman, Nicholas E.; Grigera, Pablo R.; Jeffery, Erin D.; Fox, Jay W.; Blackman, Brett R.; Tschumperlin, Daniel J.; Papin, Jason A.; Parsons, J. Thomas
2012-01-01
Background Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy. Methodology/Principal Findings This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa), cells on soft substrates (150–300 Pa) exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC) and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins) and glycolysis (e.g., phosphofructokinase-1), whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway. Conclusions/Significance The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical environments encountered by cancer cells upon metastasis to distant sites. PMID:22623999
Regeneration patterns of northern white cedar, an old-growth forest dominant
Scott, Michael L.; Murphy, Peter G.
1987-01-01
Regeneration of Thuja occidentalis L. was examined in an old-growth dune forest on South Manitou Island, Michigan. To estimate the current status of cedar regeneration, we determined size structure of seedlings and stems and analyzed present patterns of establishment and persistence relative to substrate type. There has been a shift in the pattern of cedar establishment from soil to log substrates. While 97% of all stems ≥15 cm dbh are associated with a soil substrate, 81% of stems ≥2.5cm-25 cm tall. There was no significant relationship between the state of log decay and the density of seedlings >25 cm in height, indicating that long-term survival is not dependent on the degree of log decomposition. However, survival on logs is associated with canopy openings. Seedlings >25 cm tall were associated with gaps, and 78% of cedar stems (≥2.5 cm dbh) on logs were associated with a single windthrow gap. Thus, current cedar regeneration in this old-growth forest depends on logs and the canopy openings associated with them.
NASA Astrophysics Data System (ADS)
O'Steen, M. L.; Fedler, F.; Hauenstein, R. J.
1999-10-01
Reflection high-energy electron diffraction (RHEED) and laterally spatially resolved high resolution x-ray diffraction (HRXRD) have been used to identify and characterize rf plasma-assisted molecular-beam epitaxial growth factors which strongly affect the efficiency of In incorporation into InxGa1-xN epitaxial materials. HRXRD results for InxGa1-xN/GaN superlattices reveal a particularly strong dependence of average alloy composition x¯ upon both substrate growth temperature and incident V/III flux ratio. For fixed flux ratio, results reveal a strong thermally activated behavior, with over an order-of-magnitude decrease in x¯ with increasing growth temperature within the narrow range 590-670 °C. Within this same range, a further strong dependence upon V/III flux ratio is observed. The decreased In incorporation at elevated substrate temperatures is tentatively attributed to In surface-segregation and desorption processes. RHEED observations support this segregation/desorption interpretation to account for In loss.
Temperature dependent growth of GaN nanowires using CVD technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Mukesh, E-mail: mukeshjihrnp@gmail.com; Singh, R.; Kumar, Vikram
2016-05-23
Growth of GaN nanowires have been carried out on sapphire substrates with Au as a catalyst using chemical vapour deposition technique. GaN nanowires growth have been studied with the experimental parameter as growth temperature. Diameter of grown GaN nanowires are in the range of 50 nm to 100 nm while the nanowire length depends on growth temperature. Morphology of the GaN nanowires have been studied by scanning electron microscopy. Crystalline nature has been observed by XRD patterns. Optical properties of grown GaN nanowires have been investigated by photoluminescence spectra.
Extended Eden model reproduces growth of an acellular slime mold.
Wagner, G; Halvorsrud, R; Meakin, P
1999-11-01
A stochastic growth model was used to simulate the growth of the acellular slime mold Physarum polycephalum on substrates where the nutrients were confined in separate drops. Growth of Physarum on such substrates was previously studied experimentally and found to produce a range of different growth patterns [Phys. Rev. E 57, 941 (1998)]. The model represented the aging of cluster sites and differed from the original Eden model in that the occupation probability of perimeter sites depended on the time of occupation of adjacent cluster sites. This feature led to a bias in the selection of growth directions. A moderate degree of persistence was found to be crucial to reproduce the biological growth patterns under various conditions. Persistence in growth combined quick propagation in heterogeneous environments with a high probability of locating sources of nutrients.
Extended Eden model reproduces growth of an acellular slime mold
NASA Astrophysics Data System (ADS)
Wagner, Geri; Halvorsrud, Ragnhild; Meakin, Paul
1999-11-01
A stochastic growth model was used to simulate the growth of the acellular slime mold Physarum polycephalum on substrates where the nutrients were confined in separate drops. Growth of Physarum on such substrates was previously studied experimentally and found to produce a range of different growth patterns [Phys. Rev. E 57, 941 (1998)]. The model represented the aging of cluster sites and differed from the original Eden model in that the occupation probability of perimeter sites depended on the time of occupation of adjacent cluster sites. This feature led to a bias in the selection of growth directions. A moderate degree of persistence was found to be crucial to reproduce the biological growth patterns under various conditions. Persistence in growth combined quick propagation in heterogeneous environments with a high probability of locating sources of nutrients.
A diffusive ink transport model for lipid dip-pen nanolithography
NASA Astrophysics Data System (ADS)
Urtizberea, A.; Hirtz, M.
2015-09-01
Despite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus/substrate interface. Feature shape is controlled by the substrate surface energy. The results are analyzed within a modified model for the ink transport of diffusive inks. At any humidity the dependence of the area spread on the dwell time shows two diffusion regimes: at short dwell times growth is controlled by meniscus diffusion while at long dwell times surface diffusion governs the process. The critical point for the switch of regime depends on the humidity.Despite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus/substrate interface. Feature shape is controlled by the substrate surface energy. The results are analyzed within a modified model for the ink transport of diffusive inks. At any humidity the dependence of the area spread on the dwell time shows two diffusion regimes: at short dwell times growth is controlled by meniscus diffusion while at long dwell times surface diffusion governs the process. The critical point for the switch of regime depends on the humidity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04352b
Thermal singularity and contact line motion in pool boiling: Effects of substrate wettability.
Taylor, M T; Qian, Tiezheng
2016-03-01
The dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)] is employed to model the growth of a single vapor bubble in a superheated liquid on a flat homogeneous substrate. The bubble spreading dynamics in the pool boiling regime has been numerically investigated for one-component van der Waals fluids close to the critical point, with a focus on the effect of the substrate wettability on bubble growth and contact line motion. The substrate wettability is found to control the apparent contact angle and the rate of bubble growth (the rate of total evaporation), through which the contact line speed is determined. An approximate expression is derived for the contact line speed, showing good agreement with the simulation results. This demonstrates that the contact line speed is primarily governed by (1) the circular shape of interface (for slow bubble growth), (2) the constant apparent contact angle, and (3) the constant bubble growth rate. It follows that the contact line speed has a sensitive dependence on the substrate wettability via the apparent contact angle which also determines the bubble growth rate. Compared to hydrophilic surfaces, hydrophobic surfaces give rise to a thinner shape of bubble and a higher rate of total evaporation, which combine to result in a much faster contact line speed. This can be linked to the earlier formation of a vapor film and hence the onset of boiling crisis.
Way, B A; Mooney, R A
1994-10-26
pp60c-src kinase activity can be increased by phosphotyrosine dephosphorylation or growth factor-dependent phosphorylation reactions. Expression of the transmembrane phosphotyrosine phosphatase (PTPase) CD45 has been shown to inhibit growth factor receptor signal transduction (Mooney, RA, Freund, GG, Way, BA and Bordwell, KL (1992) J Biol Chem 267, 23443-23446). Here it is shown that PTPase expression decreased platelet-derived growth factor (PDGF)-dependent activation of pp60c-src but failed to increase hormone independent (basal) pp60c-src activity. PDGF-dependent tyrosine phosphorylation of its receptor was reduced by approximately 60% in cells expressing the PTPase. In contrast, a change in phosphotyrosine content of pp60c-src was not detected in response to PDGF or in PTPase+ cells. PDGF increased the intrinsic tyrosine kinase activity of pp60c-src in both control and PTPase+ cells, but the effect was smaller in PTPase+ cells. In an in vitro assay, hormone-stimulated pp60c-src autophosphorylation from PTPase+ cells was decreased 64 +/- 22%, and substrate phosphorylation by pp60c-src was reduced 54 +/- 16% compared to controls. Hormone-independent pp60c-src kinase activity was unchanged by expression of the PTPase. pp60c-src was, however, an in vitro substrate for CD45, being dephosphorylated at both the regulatory (Tyr527) and kinase domain (Tyr416) residues. In addition, in vitro dephosphorylation by CD45 increased pp60c-src activity. These findings suggest that the PDGF receptor was an in vivo substrate of CD45 but pp60c-src was not. The lack of activation of pp60c-src in the presence of expressed PTPase may demonstrate the importance of compartmentalization and/or accessory proteins to PTPase-substrate interactions.
Preparation and Characterization of RF Sputtered BARIUM(2) SILICON(2) Titanium OXYGEN(8) Thin Films
NASA Astrophysics Data System (ADS)
Li, Yi.
Thin films of barium titanium silicate ( Ba_2Si_2TiO_8) are grown on crystalline (100) Si at substrate temperatures raging from 750 to 955^circC by the radio-frequency triode sputtering technique. The chemical composition, microstructure, physical properties, and growth conditions of the deposited films are investigated by dc and high-frequency dielectric measurements, wavelength dispersive and energy dispersive x-ray spectrometries, x-ray diffraction spectrometry, and optical and scanning electron microscopies. The results of the x-ray diffraction analysis show that the Ba_2Si_2TiO _8 films deposited at the optimum condition of substrate temperature of 845^circ C, 4 cm source-substance distance, 50 W rf power, and 1.2 times 10^ {-3} torr pressure of Ar, are highly c -axis oriented. The as-deposited films are smooth, glossy, polycrystalline films, exhibiting a bulk resistivity range of 10^6 Omegacdotcm, and an isotropic surface resistivity of 1.5 times 10^3 Omegacdot cm. The relative dielectric constant is 0.05, and the dielectric loss is lower than 1.0, in the frequency band 9 ~ 1000 MHz. The high-frequency impedance of BST films, which is typical for piezoelectric materials, gives a minimum impedance frequency of 9.0 MHz and a series resonant frequency of 9.5 MHz. Optical and SEM observations show that the film texture is dependent on the substrate conditions. The non-liquid-like grain coalescence of the Ba_2Si_2TiO _8 grains is characteristic of a strong film -substrate interaction. The grain growth kinetics obtained from "short-time" sputtering gives an initial lateral grain growth rate of 770 nm/min at 845^circ C, which decreases with the grain size. The initial film growth rate in the direction of thickness, measured from SEM micrographs, is 1.95 nm/min, and decreases with sputtering time. The activation free energy for grain growth is 359 +/- 30 KJ/mol for the initial stage, decreasing to 148 +/- 20 KJ/mol for the final stage. The variation of the grain growth rate and the activation energy with grain size is the result of a combined nucleation and growth mechanism in the initial stage of the film growth, and a coalescence -dominated growth mechanism at longer sputtering time and at higher temperature. Film orientation is sensitive to the supersaturation adjacent to the film surface, which depends on the source-substrate distance and substrate temperature. The effect of the substrate temperature on the orientation of the film is investigated over a wide temperature range using (100) and (111) Si substrates. Several orientations for the BST films, including an amorphous state, are obtained with increasing substrate temperature. This is discussed in relation to the atomic plane density and the energetics for the deposition process.
Effect of differently pelletized digestate on the plant growth of spring wheat
NASA Astrophysics Data System (ADS)
Dietrich, Nils; Knoop, Christine; Raab, Thomas
2017-04-01
In Germany, biowaste is used in more than 100 biogas plants and has increasing potential as a fermentation substrate. To optimise waste cycle management organic digestates should be redistributed and innovative products for soil amendment of agricultural areas could be developed. The BMBF-funded VeNGA project seeks to find answers on how to improve the properties of soil amendments produced from fermentation residues. Here, we report findings from our study that focuses on plant growth and soil development. Within a three-month rhizotron experiment, the influence of differently prepared fermentation residues on the root development of summer wheat was investigated. The four variants of the prepared digestate (rolled pellet, pressed pellet, shredded, loose) were tested under constant conditions in the greenhouse on two soils with different textures (sandy and loamy-sand). All fermentation residues originated from the same batch and were composted before the preparation to ensure adequate hygienisation. Depending on preparation type and soil substrate significant differences in root growth and root development have been observed. Plant growth was most intense in the rhizotron experiment with the loose digestate, indicating high nutrient availability due to the large surface area of the organic matter. Plant growth in the substrate with the rolled and pressed pellets was less pronounced, indicating a more persistent stability of the pellets. In rhizotrons applied with rolled and pressed pellets root growth into the mineral fabric was significantly lower in sandy substrate than in the loamy-sand. However, in the sandy substrate root growth within the rolled pellets was more intense than in the substrate with the pressed pellets. Obviously, the different production techniques of the pellets seem to have an influence on the rooting of the pellets and facilitate the long term stability of soil organic carbon. Furthermore, the comparison of the two different textures indicate, that sandy substrates benefit more from the positive effects of soil amendments on increased water retention than loamy substrates.
Nanowire growth from the viewpoint of the thin film polylayer growth theory
NASA Astrophysics Data System (ADS)
Kashchiev, Dimo
2018-03-01
The theory of polylayer growth of thin solid films is employed for description of the growth kinetics of single-crystal nanowires. Expressions are derived for the dependences of the height h and radius r of a given nanowire on time t, as well as for the h(r) dependence. These dependences are applicable immediately after the nanowire nucleation on the substrate and thus include the period during which the nucleated nanowire changes its shape from that of cap to that of column. The analysis shows that the nanowire cap-to-column shape transition is continuous and makes it possible to kinetically define the nanowire shape-transition radius by means of the nanowire radial and axial growth rates. The obtained h(t), r(t) and h(r) dependences are found to provide a good description of available experimental data for growth of self-nucleated GaN nanowires by the vapor-solid mechanism.
Mechanosensitivity in axon growth and guidance
NASA Astrophysics Data System (ADS)
Urbach, Jeff
2013-03-01
In the developing nervous system, axons respond to a diverse array of cues to generate the intricate connection network required for proper function. The growth cone, a highly motile structure at the tip of a growing axon, integrates information about the local environment and modulates outgrowth and guidance, but little is known about effects of external mechanical cues and internal mechanical forces on growth cone behavior. We have investigated axon outgrowth and force generation on soft elastic substrates for dorsal root ganglion (DRG) neurons (from the peripheral nervous system) and hippocampal neurons (from the central) to see how the mechanics of the microenvironment affect different populations. We find that force generation and stiffness-dependent outgrowth are strongly dependent on cell type. We also observe very different internal dynamics and substrate coupling in the two populations, suggesting that the difference in force generation is due to stronger adhesions and therefore stronger substrate engagement in the peripheral nervous system neurons. We will discuss the biological origins of these differences, and recent analyses of the dynamic aspects of growth cone force generation and the implications for the role of mechanosensitivity in axon guidance. In collaboration with D. Koch, W. Rosoff, and H. M. Geller. Supported by NINDS grant 1R01NS064250-01 (J.S.U.) and the NHLBI Intramural Research Program (H.M.G.).
Plasma-electric field controlled growth of oriented graphene for energy storage applications
NASA Astrophysics Data System (ADS)
Ghosh, Subrata; Polaki, S. R.; Kamruddin, M.; Jeong, Sang Mun; (Ken Ostrikov, Kostya
2018-04-01
It is well known that graphene grows as flat sheets aligned with the growth substrate. Oriented graphene structures typically normal to the substrate have recently attracted major attention. Most often, the normal orientation is achieved in a plasma-assisted growth and is believed to be due to the plasma-induced in-built electric field, which is usually oriented normal to the substrate. This work focuses on the effect of an in-built electric field on the growth direction, morphology, interconnectedness, structural properties and also the supercapacitor performance of various configurations of graphene structures and reveals the unique dependence of these features on the electric field orientation. It is shown that tilting of growth substrates from parallel to the normal direction with respect to the direction of in-built plasma electric field leads to the morphological transitions from horizontal graphene layers, to oriented individual graphene sheets and then interconnected 3D networks of oriented graphene sheets. The revealed transition of the growth orientation leads to a change in structural properties, wetting nature, types of defect in graphitic structures and also affects their charge storage capacity when used as supercapacitor electrodes. This simple and versatile approach opens new opportunities for the production of potentially large batches of differently oriented and structured graphene sheets in one production run.
Vieira, Antonio Diogo Silva; Bedani, Raquel; Albuquerque, M A C; Biscola, Vanessa; Saad, Susana Marta Isay
2017-07-01
The ability of different fruit by-products, okara, and amaranth flour, to support the growth of probiotic and non-probiotic strains was evaluated. The tests were conducted with three commercial starter cultures (Streptococcus thermophilus), ten probiotic strains (seven Lactobacillus spp. and three Bifidobacterium spp. strains), and two harmful bacteria representative of the intestinal microbiota (Escherichia coli and Clostridium perfringens). In vitro fermentability assays were performed using a modified MRS broth supplemented with different fruits (acerola, orange, passion fruit, and mango), and soy (okara) by-products or amaranth flour. Orange and passion-fruit by-products were the substrates that most promoted the growth of bacterial populations, including pathogenic strains. On the other hand, the acerola by-product was the substrate that showed the highest selectivity for beneficial bacteria, since the E. coli and Cl. perfringens populations were lower in the presence of this fruit by-product. Although the passion fruit by-product, okara, and amaranth stimulated the probiotic strains, the growth of the pathogenic strains studied was higher compared to other substrates. Different growth profiles were verified for each substrate when the different strains were compared. Although pure culture models do not reflect bacterial interaction in the host, this study reinforces the fact that the ability to metabolize different substrates is strain-dependent, and acerola, mango, and orange by-products are the substrates with the greatest potential to be used as prebiotic ingredients. Copyright © 2017 Elsevier Ltd. All rights reserved.
On the growth mechanisms of polar (100) surfaces of ceria on copper (100)
NASA Astrophysics Data System (ADS)
Hackl, Johanna; Duchoň, Tomáš; Gottlob, Daniel M.; Cramm, Stefan; Veltruská, Kateřina; Matolín, Vladimír; Nemšák, Slavomír; Schneider, Claus M.
2018-05-01
We present a study of temperature dependent growth of nano-sized ceria islands on a Cu (100) substrate. Low-energy electron microscopy, micro-electron diffraction, X-ray absorption spectroscopy, and photoemission electron microscopy are used to determine the morphology, shape, chemical state, and crystal structure of the grown islands. Utilizing real-time observation capabilities, we reveal a three-way interaction between the ceria, substrate, and local oxygen chemical potential. The interaction manifests in the reorientation of terrace boundaries on the Cu (100) substrate, characteristic of the transition between oxidized and metallic surface. The reorientation is initiated at nucleation sites of ceria islands, whose growth direction is influenced by the proximity of the terrace boundaries. The grown ceria islands were identified as fully stoichiometric CeO2 (100) surfaces with a (2 × 2) reconstruction.
NASA Technical Reports Server (NTRS)
Anton, R.; Poppa, H.; Flanders, D. C.
1982-01-01
The graphoepitaxial alignment of vapor-deposited discrete metal crystallites is investigated in the nucleation and growth stages and during annealing by in situ UHV/TEM techniques. Various stages of nucleation, growth and coalescence of vapor deposits of Au, Ag, Pb, Sn, and Bi on amorphous, topographically structured C substrates are analyzed by advanced dark-field techniques to detect preferred local orientations. It is found that the topography-induced orientation of metal crystallites depends strongly on their mobility and their respective tendency to develop pronounced crystallographic shapes. Lowering of the average surface free energies and increasing the crystallographic surface energy anisotropies cause generally improved graphoepitaxial alignments.
NASA Technical Reports Server (NTRS)
Kaiser, Natalie; Croell, Arne; Szofran, F. R.; Cobb. S. D.; Dold, P.; Benz, K. W.
1999-01-01
During Bridgman growth of semiconductors detachment of the crystal and the melt meniscus has occasionally been observed, mainly under microgravity (microg) conditions. An important factor for detached growth is the wetting angle of the melt with the crucible material. High contact angles are more likely to result in detachment of the growing crystal from the ampoule wall. In order to achieve detached growth of germanium (Ge) and germanium-silicon (GeSi) crystals under 1g and microg conditions, sessile drop measurements were performed to determine the most suitable ampoule material as well as temperature dependence of the surface tension for GeSi. Sapphire, fused quartz, glassy carbon, graphite, SiC, pyrolytic Boron Nitride (pBN), AIN, and diamond were used as substrates. Furthermore, different cleaning procedures and surface treatments (etching, sandblasting, etc.) of the same substrate material and their effect on the wetting behavior were studied during these experiments. pBN and AIN substrates exhibited the highest contact angles with values around 170 deg.
Kim, Sueon; Han, Dong Yeol; Chen, Zhenzhong; Lee, Won Gu
2018-04-30
In this study, we report experimental results for characterization of the growth and formation of pore bridge materials that modified the adhesion structures of cells cultured on nanomembranes with opening and closing geometry. To perform the proof-of-concept experiments, we fabricated two types of anodized alumina oxide substrates with single-sided opening (i.e., one side open, but closed at the other side) and double-sided opening (i.e., both sides open). In our experiment, we compared the densities of pores formed and of bridge materials which differently act as connective proteins depending on the size of pores. The results show that the pore opening geometry can be used to promote the net contact force between pores, resulting in the growth and formation of pore bridge materials before and after cell culture. The results also imply that the bridge materials can be used to attract the structural protrusion of filopodia that can promote the adhesion of cell-to-cell and cell-to-pore bridge. It is observed that the shape and size of cellular structures of filopodia depend on the presence of pore bridge materials. Overall, this observation brought us a significant clue that cells cultured on nanopore substrates would change the adhesion property depending on not only the formation of nanopores formed on the surface of topological substrates, but also that of pore bridge materials by its morphological growth.
Controlled surface diffusion in plasma-enhanced chemical vapor deposition of GaN nanowires.
Hou, Wen Chi; Hong, Franklin Chau-Nan
2009-02-04
This study investigates the growth of GaN nanowires by controlling the surface diffusion of Ga species on sapphire in a plasma-enhanced chemical vapor deposition (CVD) system. Under nitrogen-rich growth conditions, Ga has a tendency to adsorb on the substrate surface diffusing to nanowires to contribute to their growth. The significance of surface diffusion on the growth of nanowires is dependent on the environment of the nanowire on the substrate surface as well as the gas phase species and compositions. Under nitrogen-rich growth conditions, the growth rate is strongly dependent on the surface diffusion of gallium, but the addition of 5% hydrogen in nitrogen plasma instantly diminishes the surface diffusion effect. Gallium desorbs easily from the surface by reaction with hydrogen. On the other hand, under gallium-rich growth conditions, nanowire growth is shown to be dominated by the gas phase deposition, with negligible contribution from surface diffusion. This is the first study reporting the inhibition of surface diffusion effects by hydrogen addition, which can be useful in tailoring the growth and characteristics of nanowires. Without any evidence of direct deposition on the nanowire surface, gallium and nitrogen are shown to dissolve into the catalyst for growing the nanowires at 900 degrees C.
Photovoltaic Properties of p-Doped GaAs Nanowire Arrays Grown on n-Type GaAs(111)B Substrate
2010-01-01
We report on the molecular beam epitaxy growth of Au-assisted GaAs p-type-doped NW arrays on the n-type GaAs(111)B substrate and their photovoltaic properties. The samples are grown at different substrate temperature within the range from 520 to 580 °C. It is shown that the dependence of conversion efficiency on the substrate temperature has a maximum at the substrate temperature of 550 °C. For the best sample, the conversion efficiency of 1.65% and the fill factor of 25% are obtained. PMID:20672038
NASA Astrophysics Data System (ADS)
Lakbita, Imane; El-Hami, Khalil
2018-02-01
Ultra-thin films of the polyvinylidene fluoride and trifluoroethylene (P(VDF/TrFE)) copolymer were elaborated on various different substrates by the spin coating method. The purpose of this paper is to study the P(VDF/TrFE) morphologies and crystalline lamellae orientation dependence on substrates. We chose the potassium chloride (KCl), Sodium Chloride (NaCl) and Potassium Bromide (KBr) with the [110] direction and the highly ordered pyrolytic graphite (HOPG) substrates because they present different crystallographic structures. The atomic force microscopy is used for imaging P(VDF/TrFE) morphologies with nanometer resolution and determining the surface roughness. The analysis of the AFM topography images revealed that the P(VDF/TrFE) film has, almost, the same texture on KCl, NaCl or on KBr substrates and their crystalline lamellae had grown in two preferred orientations. Unlike the HOPG substrate, their crystalline lamellae were entangled, randomly oriented and positioned adjacent to each other. The growth texture of the P(VDF/TrFE) copolymer showed experimentally a strong dependence on substrate types. Since the P(VDF/TrFE) is ferroelectric, piezoelectric and pyroelectric, this finding may lead to potential applications.
Wagner, Sean R.; Feng, Jiagui; Yoon, Mina; ...
2015-08-25
Using scanning tunneling microscopy and density functional theory, we show that the molecular ordering and orientation of metal phthalocyanine molecules on the deactivated Si surface display a strong dependency on the central transition-metal ion, driven by the degree of orbital hybridization at the heterointerface via selective p – d orbital coupling. As a result, this Letter identifies a selective mechanism for modifying the molecule-substrate interaction which impacts the growth behavior of transition-metal-incorporated organic molecules on a technologically relevant substrate for silicon-based devices.
Low-temperature plasma-deposited silicon epitaxial films: Growth and properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demaurex, Bénédicte, E-mail: benedicte.demaurex@epfl.ch; Bartlome, Richard; Seif, Johannes P.
2014-08-07
Low-temperature (≤200 °C) epitaxial growth yields precise thickness, doping, and thermal-budget control, which enables advanced-design semiconductor devices. In this paper, we use plasma-enhanced chemical vapor deposition to grow homo-epitaxial layers and study the different growth modes on crystalline silicon substrates. In particular, we determine the conditions leading to epitaxial growth in light of a model that depends only on the silane concentration in the plasma and the mean free path length of surface adatoms. For such growth, we show that the presence of a persistent defective interface layer between the crystalline silicon substrate and the epitaxial layer stems not only frommore » the growth conditions but also from unintentional contamination of the reactor. Based on our findings, we determine the plasma conditions to grow high-quality bulk epitaxial films and propose a two-step growth process to obtain device-grade material.« less
Low-temperature plasma-deposited silicon epitaxial films: Growth and properties
Demaurex, Bénédicte; Bartlome, Richard; Seif, Johannes P.; ...
2014-08-05
Low-temperature (≤ 180 °C) epitaxial growth yields precise thickness, doping, and thermal-budget control, which enables advanced-design semiconductor devices. In this paper, we use plasma-ehanced chemical vapor deposition to grow homo-epitaxial layers and study the different growth modes on crystalline silicon substrates. In particular, we determine the conditions leading to epitaxial growth in light of a model that depends only on the silane concentration in the plasma and the mean free path length of surface adatoms. For such growth, we show that the presence of a persistent defective interface layer between the crystalline silicon substrate and the epitaxial layer stems notmore » only from the growth conditions but also from unintentional contamination of the reactor. As a result of our findings, we determine the plasma conditions to grow high-quality bulk epitaxial films and propose a two-step growth process to obtain device-grade material.« less
Temperature-dependent respiration-growth relations in ancestral maize cultivars
Bruce N. Smith; Jillian L. Walker; Rebekka L. Stone; Angela R. Jones; Lee D. Hansen
2001-01-01
Shoots from 4- to 6-day old seedlings of seven ancestral or old cultivars of Zea mays L. were placed in a calorimeter. Dark metabolic heat rate (q) and CO2 production rate (RCO2) were measured at nine temperatures (5, 10, 15, 20, 25, 30, 35, 40, and 45 °C). Temperature dependencies of q and RCO2 were used to model response of both growth and substrate carbon conversion...
ABSORPTION OF NUTRIENTS AND PLANT GROWTH IN RELATION TO HYDROGEN ION CONCENTRATION
Arrhenius, Olof
1922-01-01
The absorption of nutrients depends to a large extent on the reaction of the substrate. At maximal growth the intake of salt is at minimum. Different ions are very differently affected. The intake of water is independent of the absorption of salts. PMID:19871980
Netrin-1 attracts axons through FAK-dependent mechanotransduction.
Moore, Simon W; Zhang, Xian; Lynch, Christopher D; Sheetz, Michael P
2012-08-22
The mechanism by which extracellular cues influence intracellular biochemical cascades that guide axons is important, yet poorly understood. Because of the mechanical nature of axon extension, we explored whether the physical interactions of growth cones with their guidance cues might be involved. In the context of mouse spinal commissural neuron axon attraction to netrin-1, we found that mechanical attachment of netrin-1 to the substrate was required for axon outgrowth, growth cone expansion, axon attraction and phosphorylation of focal adhesion kinase (FAK) and Crk-associated substrate (CAS). Myosin II activity was necessary for traction forces >30 pN on netrin-1. Interestingly, while these myosin II-dependent forces on netrin-1 substrates or beads were needed to increase the kinase activity and phosphorylation of FAK, they were not necessary for netrin-1 to increase CAS phosphorylation. When FAK kinase activity was inhibited, the growth cone's ability to recruit additional adhesions and to generate forces >60 pN on netrin-1 was disrupted. Together, these findings demonstrate an important role for mechanotransduction during chemoattraction to netrin-1 and that mechanical activation of FAK reinforces interactions with netrin-1 allowing greater forces to be exerted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaumeton, Florian, E-mail: florian.chaumeton@cemes.fr; Gauthier, Sébastien, E-mail: gauthier@cemes.fr; Martrou, David, E-mail: david.martrou@cemes.fr
Nitride wide-band-gap semiconductors are used to make high power electronic devices or efficient light sources. The performance of GaN-based devices is directly linked to the initial AlN buffer layer. During the last twenty years of research on nitride growth, only few information on the AlN surface quality have been obtained, mainly by ex-situ characterization techniques. Thanks to a Non Contact Atomic Force Microscope (NC-AFM) connected under ultra high vacuum (UHV) to a dedicated molecular beam epitaxy (MBE) chamber, the surface of AlN(0001) thin films grown on Si(111) and 4H-SiC(0001) substrates has been characterized. These experiments give access to a quantitativemore » determination of the density of screw and edge dislocations at the surface. The layers were also characterized by ex-situ SEM to observe the largest defects such as relaxation dislocations and hillocks. The influence of the growth parameters (substrate temperature, growth speed, III/V ratio) and of the initial substrate preparation on the dislocation density was also investigated. On Si(111), the large in-plane lattice mismatch with AlN(0001) (19%) induces a high dislocation density ranging from 6 to 12×10{sup 10}/cm{sup 2} depending on the growth conditions. On 4H-SiC(0001) (1% mismatch with AlN(0001)), the dislocation density decreases to less than 10{sup 10}/cm{sup 2}, but hillocks appear, depending on the initial SiC(0001) reconstruction. The use of a very low growth rate of 10 nm/h at the beginning of the growth process allows to decrease the dislocation density below 2 × 10{sup 9}/cm{sup 2}.« less
Wang, L M; Keegan, A D; Li, W; Lienhard, G E; Pacini, S; Gutkind, J S; Myers, M G; Sun, X J; White, M F; Aaronson, S A
1993-05-01
Interleukin 4 (IL-4), insulin, and insulin-like growth factor I (IGF-I) efficiently induced DNA synthesis in the IL-3-dependent murine myeloid cell lines FDC-P1 and FDC-P2. Although these factors could not individually sustain long-term growth of these lines, a combination of IL-4 with either insulin or IGF-I did support continuous growth. The principal tyrosine-phosphorylated substrate observed in FDC cells stimulated with IL-4, previously designated 4PS, was of the same size (170 kDa) as the major substrate phosphorylated in response to insulin or IGF-I. These substrates had phosphopeptides of the same size when analyzed by digestion with Staphylococcus aureus V8 protease, and each tightly associated with the 85-kDa component of phosphatidylinositol 3-kinase after factor stimulation. IRS-1, the principal substrate phosphorylated in response to insulin or IGF-I stimulation in nonhematopoietic cells, is similar in size to 4PS. However, anti-IRS-1 antibodies failed to efficiently precipitate 4PS, and some phosphopeptides generated by V8 protease digestion of IRS-1 were distinct in size from the phosphopeptides of 4PS. Nevertheless, IL-4, insulin, and IGF-I were capable of stimulating tyrosine phosphorylation of IRS-1 in FDC cells that expressed this substrate as a result of transfection. These findings indicate that (i) IL-4, insulin, and IGF-I use signal transduction pathways in FDC lines that have at least one major feature in common, the rapid tyrosine phosphorylation of 4PS, and (ii) insulin and IGF-I stimulation of hematopoietic cell lines leads to the phosphorylation of a substrate that may be related to but is not identical to IRS-1.
Wang, L M; Keegan, A D; Li, W; Lienhard, G E; Pacini, S; Gutkind, J S; Myers, M G; Sun, X J; White, M F; Aaronson, S A
1993-01-01
Interleukin 4 (IL-4), insulin, and insulin-like growth factor I (IGF-I) efficiently induced DNA synthesis in the IL-3-dependent murine myeloid cell lines FDC-P1 and FDC-P2. Although these factors could not individually sustain long-term growth of these lines, a combination of IL-4 with either insulin or IGF-I did support continuous growth. The principal tyrosine-phosphorylated substrate observed in FDC cells stimulated with IL-4, previously designated 4PS, was of the same size (170 kDa) as the major substrate phosphorylated in response to insulin or IGF-I. These substrates had phosphopeptides of the same size when analyzed by digestion with Staphylococcus aureus V8 protease, and each tightly associated with the 85-kDa component of phosphatidylinositol 3-kinase after factor stimulation. IRS-1, the principal substrate phosphorylated in response to insulin or IGF-I stimulation in nonhematopoietic cells, is similar in size to 4PS. However, anti-IRS-1 antibodies failed to efficiently precipitate 4PS, and some phosphopeptides generated by V8 protease digestion of IRS-1 were distinct in size from the phosphopeptides of 4PS. Nevertheless, IL-4, insulin, and IGF-I were capable of stimulating tyrosine phosphorylation of IRS-1 in FDC cells that expressed this substrate as a result of transfection. These findings indicate that (i) IL-4, insulin, and IGF-I use signal transduction pathways in FDC lines that have at least one major feature in common, the rapid tyrosine phosphorylation of 4PS, and (ii) insulin and IGF-I stimulation of hematopoietic cell lines leads to the phosphorylation of a substrate that may be related to but is not identical to IRS-1. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7683417
Graphene growth on Ge(100)/Si(100) substrates by CVD method.
Pasternak, Iwona; Wesolowski, Marek; Jozwik, Iwona; Lukosius, Mindaugas; Lupina, Grzegorz; Dabrowski, Pawel; Baranowski, Jacek M; Strupinski, Wlodek
2016-02-22
The successful integration of graphene into microelectronic devices is strongly dependent on the availability of direct deposition processes, which can provide uniform, large area and high quality graphene on nonmetallic substrates. As of today the dominant technology is based on Si and obtaining graphene with Si is treated as the most advantageous solution. However, the formation of carbide during the growth process makes manufacturing graphene on Si wafers extremely challenging. To overcome these difficulties and reach the set goals, we proposed growth of high quality graphene layers by the CVD method on Ge(100)/Si(100) wafers. In addition, a stochastic model was applied in order to describe the graphene growth process on the Ge(100)/Si(100) substrate and to determine the direction of further processes. As a result, high quality graphene was grown, which was proved by Raman spectroscopy results, showing uniform monolayer films with FWHM of the 2D band of 32 cm(-1).
Low Temperature Photoluminescence Characterization of Orbitally Grown CdZnTe
NASA Technical Reports Server (NTRS)
Ritter, Timothy M.; Larson, D. J.
1998-01-01
The II-VI ternary alloy CdZnTe is a technologically important material because of its use as a lattice matched substrate for HgCdTe based devices. The increasingly stringent requirements on performance that must be met by such large area infrared detectors also necessitates a higher quality substrate. Such substrate material is typically grown using the Bridgman technique. Due to the nature of bulk semiconductor growth, gravitationally dependent phenomena can adversely affect crystalline quality. The most direct way to alleviate this problem is by crystal growth in a reduced gravity environment. Since it requires hours, even days, to grow a high quality crystal, an orbiting space shuttle or space station provides a superb platform on which to conduct such research. For well over ten years NASA has been studying the effects of microgravity semiconductor crystal growth. This paper reports the results of photoluminescence characterization performed on an arbitrary grown CdZnTe bulk crystal.
Hydrogen-surfactant-assisted coherent growth of GaN on ZnO substrate
NASA Astrophysics Data System (ADS)
Zhang, Jingzhao; Zhang, Yiou; Tse, Kinfai; Zhu, Junyi
2018-01-01
Heterostructures of wurtzite based devices have attracted great research interest because of the tremendous success of GaN in light emitting diodes (LED) industry. High-quality GaN thin films on inexpensive and lattice matched ZnO substrates are both commercially and technologically desirable. Intrinsic wetting conditions, however, forbid such heterostructures as the energy of ZnO polar surfaces is much lower than that of GaN polar surfaces, resulting in 3D growth mode and poor crystal quality. Based on first-principles calculations, we propose the use of surfactant hydrogen to dramatically alter the growth mode of the heterostructures. Stable H-involved surface configurations and interfaces are investigated with the help of our newly developed modelling techniques. The temperature and chemical potential dependence of our proposed strategy, which is critical in experiments, is predicted by applying the experimental Gibbs free energy of H2. Our thermodynamic wetting condition analysis is a crucial step for the growth of GaN on ZnO, and we find that introducing H will not degrade the stability of ZnO substrate. This approach will allow the growth of high-quality GaN thin films on ZnO substrates. We believe that our new strategy may reduce the manufactory cost, improve the crystal quality, and improve the efficiency of GaN-based devices.
Auger electron diffraction study of the growth of Fe(001) films on ZnSe(001)
NASA Astrophysics Data System (ADS)
Jonker, B. T.; Prinz, G. A.
1991-03-01
The growth of Fe films on ZnSe(001) epilayers and bulk GaAs(001) substrates has been studied to determine the mode of film growth, the formation of the interface, and the structure of the overlayer at the 1-10 monolayer level. Auger electron diffraction (AED), x-ray photoelectron spectroscopy (XPS), and reflection high-energy electron diffraction data are obtained for incremental deposition of the Fe(001) overlayer. The coverage dependence of the AED forward scattering peaks reveals a predominantly layer-by-layer mode of film growth at 175 °C on ZnSe, while a more three-dimensional growth mode occurs on the oxide-desorbed GaAs(001) substrate. XPS studies of the semiconductor 3d levels indicate that the Fe/ZnSe interface is less reactive than the Fe/GaAs interface.
Substrate temperature dependence of ZnTe epilayers grown on GaAs(0 0 1) by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Zhao, Jie; Zeng, Yiping; Liu, Chao; Li, Yanbo
2010-04-01
ZnTe thin films have been grown on GaAs(0 0 1) substrates at different temperatures with constant Zn and Te beam equivalent pressures (BEPs) by molecular beam epitaxy (MBE). In situ reflection high-energy electron diffraction (RHEED) observation indicates that two-dimensional (2D) growth mode can be established after around one-minute three-dimensional (3D) nucleation by increasing the substrate temperature to 340 °C. We found that Zn desorption from the ZnTe surface is much greater than that of Te at higher temperatures, and estimated the Zn sticking coefficient by the evolution of growth rate. The Zn sticking coefficient decreases from 0.93 to 0.58 as the temperature is elevated from 320 to 400 °C. The ZnTe epilayer grown at 360 °C displays the narrowest full-width at half-maximum (FWHM) of 660 arcsec from (0 0 4) reflection in double-crystal X-ray rocking curve (DCXRC) measurements. The surface morphology of ZnTe epilayers is strongly dependent on the substrate temperature, and the root-mean-square (RMS) roughness diminishes drastically with the increase in temperature.
Photo-Assisted Epitaxial Growth for III-V Semiconductors
1993-02-01
interferometric technique with an accuracy of ±3 "C. The MOMBE growth of GaAs, InAs, and InGaAs was first studied, by monitoring intensity oscillations of...temperatures. In Section 2.1, we report the use of an infrared laser interferometric technique to calibrate the substrate temperature with a higher accuracy...of AO as a function of AT is not feasible. Therefore, we calibrated the dependence of AO on AT experimentally (the dependence of the interferometric
Influence of transport energization on the growth yield of Escherichia coli.
Muir, M; Williams, L; Ferenci, T
1985-09-01
The growth yields of Escherichia coli on glucose, lactose, galactose, maltose, maltotriose, and maltohexaose were estimated under anaerobic conditions in the absence of electron acceptors. The yields on these substrates exhibited significant differences when measured in carbon-limited chemostats at similar growth rates and compared in terms of grams (dry weight) of cells produced per mole of hexose utilized. Maltohexaose was the most efficiently utilized substrate, and galactose was the least efficiently utilized under these conditions. All these sugars were known to be metabolized to glucose 6-phosphate and produced the same pattern of fermentation products. The differences in growth yields were ascribed to differences in energy costs for transport and phosphorylation of these sugars. A formalized treatment of these factors in determining growth yields was established and used to obtain values for the cost of transport and hence the energy-coupling stoichiometries for the transport of substrates via proton symport and binding-protein-dependent mechanisms in vivo. By this approach, the proton-lactose stoichiometry was found to be 1.1 to 1.8 H+ per lactose, equivalent to approximately 0.5 ATP used per lactose transported. The cost of transporting maltose via a binding-protein-dependent mechanism was considerably higher, being over 1 to 1.2 ATP per maltose or maltodextrin transported. The formalized treatment also permitted estimation of the net ATP yield from the metabolism of these sugars; it was calculated that the growth yield data were consistent with the production of 2.8 to 3.2 ATP in the metabolism of glucose 6-phosphate to fermentation products.
Influence of transport energization on the growth yield of Escherichia coli.
Muir, M; Williams, L; Ferenci, T
1985-01-01
The growth yields of Escherichia coli on glucose, lactose, galactose, maltose, maltotriose, and maltohexaose were estimated under anaerobic conditions in the absence of electron acceptors. The yields on these substrates exhibited significant differences when measured in carbon-limited chemostats at similar growth rates and compared in terms of grams (dry weight) of cells produced per mole of hexose utilized. Maltohexaose was the most efficiently utilized substrate, and galactose was the least efficiently utilized under these conditions. All these sugars were known to be metabolized to glucose 6-phosphate and produced the same pattern of fermentation products. The differences in growth yields were ascribed to differences in energy costs for transport and phosphorylation of these sugars. A formalized treatment of these factors in determining growth yields was established and used to obtain values for the cost of transport and hence the energy-coupling stoichiometries for the transport of substrates via proton symport and binding-protein-dependent mechanisms in vivo. By this approach, the proton-lactose stoichiometry was found to be 1.1 to 1.8 H+ per lactose, equivalent to approximately 0.5 ATP used per lactose transported. The cost of transporting maltose via a binding-protein-dependent mechanism was considerably higher, being over 1 to 1.2 ATP per maltose or maltodextrin transported. The formalized treatment also permitted estimation of the net ATP yield from the metabolism of these sugars; it was calculated that the growth yield data were consistent with the production of 2.8 to 3.2 ATP in the metabolism of glucose 6-phosphate to fermentation products. PMID:3928598
Investigation of the silicon ion density during molecular beam epitaxy growth
NASA Astrophysics Data System (ADS)
Eifler, G.; Kasper, E.; Ashurov, Kh.; Morozov, S.
2002-05-01
Ions impinging on a surface during molecular beam epitaxy influence the growth and the properties of the growing layer, for example, suppression of dopant segregation and the generation of crystal defects. The silicon electron gun in the molecular beam epitaxy (MBE) equipment is used as a source for silicon ions. To use the effect of ion bombardment the mechanism of generation and distribution of ions was investigated. A monitoring system was developed and attached at the substrate position in the MBE growth chamber to measure the ion and electron densities towards the substrate. A negative voltage was applied to the substrate to modify the ion energy and density. Furthermore the current caused by charge carriers impinging on the substrate was measured and compared with the results of the monitoring system. The electron and ion densities were measured by varying the emission current of the e-gun achieving silicon growth rates between 0.07 and 0.45 nm/s and by changing the voltage applied to the substrate between 0 to -1000 V. The dependencies of ion and electron densities were shown and discussed within the framework of a simple model. The charged carrier densities measured with the monitoring system enable to separate the ion part of the substrate current and show its correlation to the generation rate. Comparing the ion density on the whole substrate and in the center gives a hint to the ion beam focusing effect. The maximum ion and electron current densities obtained were 0.40 and 0.61 μA/cm2, respectively.
Rapid epitaxy-free graphene synthesis on silicidated polycrystalline platinum
Babenko, Vitaliy; Murdock, Adrian T.; Koós, Antal A.; Britton, Jude; Crossley, Alison; Holdway, Philip; Moffat, Jonathan; Huang, Jian; Alexander-Webber, Jack A.; Nicholas, Robin J.; Grobert, Nicole
2015-01-01
Large-area synthesis of high-quality graphene by chemical vapour deposition on metallic substrates requires polishing or substrate grain enlargement followed by a lengthy growth period. Here we demonstrate a novel substrate processing method for facile synthesis of mm-sized, single-crystal graphene by coating polycrystalline platinum foils with a silicon-containing film. The film reacts with platinum on heating, resulting in the formation of a liquid platinum silicide layer that screens the platinum lattice and fills topographic defects. This reduces the dependence on the surface properties of the catalytic substrate, improving the crystallinity, uniformity and size of graphene domains. At elevated temperatures growth rates of more than an order of magnitude higher (120 μm min−1) than typically reported are achieved, allowing savings in costs for consumable materials, energy and time. This generic technique paves the way for using a whole new range of eutectic substrates for the large-area synthesis of 2D materials. PMID:26175062
NASA Astrophysics Data System (ADS)
Chiu, Ching-Hsueh; Lin, Chien-Chung; Deng, Dongmei; Kuo, Hao-Chung; Lau, Kei-May
2011-10-01
We investigate the optical and electrical characteristics of the GaN-based light emitting diodes (LEDs) grown on Micro and Nano-scale Patterned silicon substrate (MPLEDs and NPLEDs). The transmission electron microscopy (TEM) images reveal the suppression of threading dislocation density in InGaN/GaN structure on nano-pattern substrate due to nanoscale epitaxial lateral overgrowth (NELOG). The plan-view and cross-section cathodoluminescence (CL) mappings show less defective and more homogeneous active quantum well region growth on nano-porous substrates. From temperature dependent photoluminescence (PL) and low temperature time-resolved photoluminescence (TRPL) measurement, NPLEDs has better carrier confinement and higher radiative recombination rate than MPLEDs. In terms of device performance, NPLEDs exhibits smaller electroluminescence (EL) peak wavelength blue shift, lower reverse leakage current and decreases efficiency droop compared with the MPLEDs. These results suggest the feasibility of using NPSi for the growth of high quality and power LEDs on Si substrates.
NASA Astrophysics Data System (ADS)
Nishio, Mitsuhiro; Saito, Katsuhiko; Urata, Kensuke; Okamoto, Yasuhiro; Tanaka, Daichi; Araki, Yasuhiro; Abiru, Masakatsu; Mori, Eiichiro; Tanaka, Tooru; Guo, Qixin
2015-03-01
The growth of undoped and phosphorus (P)-doped Zn1-xMgxSeyTe1-y layers on (100) ZnTe substrates by metalorganic vapor phase epitaxy was carried out. The compositions of Mg and Se, surface morphology, roughness and Raman property were characterized as a function of substrate temperature. Not only the compositions of Mg and Se but also the crystal quality of undoped Zn1-xMgxSeyTe1-y layer strongly depended upon the substrate temperature. Furthermore, the growth of Zn1-xMgxSeyTe1-y layer nearly-lattice-matched to ZnTe substrate was achieved independent of the transport rate of trisdimethylaminophosphorus. Undoped Zn1-xMgxSeyTe1-y layer nearly-lattice-matched to ZnTe led to improvement of surface roughness. On the other hand, P doping brought about deterioration of crystalline quality.
NASA Technical Reports Server (NTRS)
Seidel-Salinas, L. K.; Jones, S. H.; Duva, J. M.
1992-01-01
A semi-empirical model has been developed to determine the complete crystallographic orientation dependence of the growth rate for vapor phase epitaxy (VPE). Previous researchers have been able to determine this dependence for a limited range of orientations; however, our model yields relative growth rate information for any orientation. This model for diamond and zincblende structure materials is based on experimental growth rate data, gas phase diffusion, and surface reactions. Data for GaAs chloride VPE is used to illustrate the model. The resulting growth rate polar diagrams are used in conjunction with Wulff constructions to simulate epitaxial layer shapes as grown on patterned substrates. In general, this model can be applied to a variety of materials and vapor phase epitaxy systems.
NASA Astrophysics Data System (ADS)
Toth, Kristof; Hu, Hanqiong; Choo, Youngwoo; Loewenberg, Michael; Osuji, Chinedum
The delivery of sub-micron droplets of dilute polymer solutions to a heated substrate by electrospray deposition (ESD) enables precisely controlled and continuous growth of block copolymer (BCP) thin films. Here we explore patterned deposition of BCP films by spatially varying the electric field at the substrate using an underlying charged grid, as well as film growth kinetics. Numerical analysis was performed to examine pattern fidelity by considering the trajectories of charged droplets during flight through imposed periodic field variations in the vicinity of the substrate. Our work uncovered an unexpected modality for improving the resolution of the patterning process via stronger field focusing through the use of a second oppositely charged grid beneath a primary focusing array, with an increase in highly localized droplet deposition on the intersecting nodes of the grid. Substrate coverage kinetics are considered for homopolymer deposition in the context of simple kinetic models incorporating temperature and molecular weight dependence of diffusivity. By contrast, film coverage kinetics for block copolymer depositions are additionally convoluted with preferential wetting and thickness-periodicity commensurability effects. NSF GRFP.
Kinetic Monte Carlo simulations of nucleation and growth in electrodeposition.
Guo, Lian; Radisic, Aleksandar; Searson, Peter C
2005-12-22
Nucleation and growth during bulk electrodeposition is studied using kinetic Monte Carlo (KMC) simulations. Ion transport in solution is modeled using Brownian dynamics, and the kinetics of nucleation and growth are dependent on the probabilities of metal-on-substrate and metal-on-metal deposition. Using this approach, we make no assumptions about the nucleation rate, island density, or island distribution. The influence of the attachment probabilities and concentration on the time-dependent island density and current transients is reported. Various models have been assessed by recovering the nucleation rate and island density from the current-time transients.
NASA Astrophysics Data System (ADS)
Sarkar, Subhendu Sinha; Katiyar, Ajit K.; Sarkar, Arijit; Dhar, Achintya; Rudra, Arun; Khatri, Ravinder K.; Ray, Samit Kumar
2018-04-01
It is important to investigate the growth dynamics of Ge adatoms under different surface stress regimes of the patterned dielectric to control the selective growth of self-assembled Ge nanostructures on silicon. In the present work, we have studied the growth of Ge by molecular beam epitaxy on nanometer scale patterned Si3N4/Si(001) substrates generated using electron beam lithography. The pitch of the patterns has been varied to investigate its effect on the growth of Ge in comparison to un-patterned Si3N4. For the patterned Si3N4 film, Ge did not desorbed completely from the Si3N4 film and hence no site selective growth pattern is observed. Instead, depending upon the pitch, Ge growth has occurred in different growth modes around the openings in the Si3N4. For the un-patterned substrate, the morphology exhibits the occurrence of uniform 3D clustering of Ge adatoms on Si3N4 film. This variation in the growth modes of Ge is attributed to the variation of residual stress in the Si3N4 film for different pitch of holes, which has been confirmed theoretically through Comsol Multiphysics simulation. The variation in stress for different pitches resulted in modulation of surface energy of the Si3N4 film leading to the different growth modes of Ge.
Influence of Growth Parameters and Annealing on Properties of MBE Grown GaAsSbN SQWs
NASA Technical Reports Server (NTRS)
Wu, Liangjin; Iyer, Shanthi; Nunna, Kalyan; Bharatan, Sudhakar; Li, Jia; Collis, Ward J.
2005-01-01
In this paper we report the growth of GaAsSbN/GaAs single quantum well (SQW) heterostructures by molecular beam epitaxy (MBE) and their properties. A systematic study has been carried out to determine the effect of growth conditions, such as the source shutter opening sequence and substrate temperature, on the structural and optical properties of the layers. The substrate temperatures in the range of 450-470 C were found to be optimal. Simultaneous opening of the source shutters (SS) resulted in N incorporation almost independent of substrate temperature and Sb incorporation higher at lower substrate temperatures. The effects of ex-situ annealing in nitrogen ambient and in-situ annealing under As ovepressure on the optical properties of the layers have also been investigated. A significant increase in photoluminescence (PL) intensity with reduced full width at half maxima (FWHM) in conjunction with a blue shift in the emission energy was observed on 10 annealing the samples. In in-situ annealed samples, the PL line shapes were more symmetric and the temperature dependence of the PL peak energy indicated significant decrease in the exciton localization energy as exhibited by a less pronounced S-shaped curve. The inverted S-shaped curve observed in the temperature dependence of PL FWHM is also discussed. 1.61 micrometer emission with FWHM of 25 meV at 20K has been obtained in in-situ annealed GaAsSbN/GaAs SQW grown at 470 C by SS.
A diffusive ink transport model for lipid dip-pen nanolithography.
Urtizberea, A; Hirtz, M
2015-10-14
Despite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus/substrate interface. Feature shape is controlled by the substrate surface energy. The results are analyzed within a modified model for the ink transport of diffusive inks. At any humidity the dependence of the area spread on the dwell time shows two diffusion regimes: at short dwell times growth is controlled by meniscus diffusion while at long dwell times surface diffusion governs the process. The critical point for the switch of regime depends on the humidity.
MOCVD of Bi2Te3 and Sb2Te3 on GaAs substrates for thin-film thermoelectric applications.
Kim, Jeong-Hun; Jung, Yong-Chul; Suh, Sang-Hee; Kim, Jin-Sang
2006-11-01
Metal organic chemical vapour deposition (MOCVD) has been investigated for growth of Bi2Te3 and Sb2Te3 films on (001) GaAs substrates using trimethylbismuth, triethylantimony and diisopropyltelluride as metal organic sources. The surface morphologies of Bi2Te3 and Sb2Te3 films were strongly dependent on the deposition temperatures as it varies from a step-flow growth mode to island coalescence structures depending on deposition temperature. In-plane carrier concentration and electrical Hall mobility were highly dependent on precursor ratio of VI/V and deposition temperature. By optimizing growth parameters, we could clearly observe an electrically intrinsic region of the carrier concentration over the 240 K in Bi2Te3 films. The high Seebeck coefficient (of -160 microVK(-1) for Bi2Te3 and +110 microVK(-1) for Sb2Te3 films, respectively) and good surface morphologies of these materials are promising for the fabrication of a few nm thick periodic Bi2Te3/Sb2Te3 super lattice structures for thin film thermoelectric device applications.
Substrate-Influenced Thermo-Mechanical Fatigue of Copper Metallizations: Limits of Stoney’s Equation
Bigl, Stephan; Wurster, Stefan; Cordill, Megan J.
2017-01-01
Rapid progress in the reduction of substrate thickness for silicon-based microelectronics leads to a significant reduction of the device bending stiffness and the need to address its implication for the thermo-mechanical fatigue behavior of metallization layers. Results on 5 µm thick Cu films reveal a strong substrate thickness-dependent microstructural evolution. Substrates with hs = 323 and 220 µm showed that the Cu microstructure exhibits accelerated grain growth and surface roughening. Moreover, curvature-strain data indicates that Stoney’s simplified curvature-stress relation is not valid for thin substrates with regard to the expected strains, but can be addressed using more sophisticated plate bending theories. PMID:29120407
NASA Astrophysics Data System (ADS)
Baek, Seung-Hye; Lee, Hyun-Jin; Lee, Sung-Nam
2018-06-01
We studied the thickness dependence of the crystallographic and optical properties of ZnO thin films grown on c-plane sapphire substrate using atomic layer deposition. High-resolution X-ray diffraction (HR-XRD) revealed two peaks at 34.5° and 36.2° in the initial growth stage of ZnO on the sapphire substrate, corresponding to the (002) and (101) ZnO planes, respectively. However, as the thickness of the ZnO film increased, the XRD intensity of the (002) ZnO peak increased drastically, compared with that of the (101) ZnO peak. This indicated that (002) and (101) ZnO were simultaneously grown on the c-plane sapphire substrate in the initial growth stage, and that (002) ZnO was predominantly grown with the increase in the thickness of ZnO film. The ZnO thin film presented an anisotropic surface structure at the initial stage, whereas the isotropic surface morphology was developed with an increase in the film thickness of ZnO. These observations were consistent with the HR-XRD results.
Misfit-guided self-organization of anti-correlated Ge quantum dot arrays on Si nanowires
Kwon, Soonshin; Chen, Zack C.Y.; Kim, Ji-Hun; Xiang, Jie
2012-01-01
Misfit-strain guided growth of periodic quantum dot (QD) arrays in planar thin film epitaxy has been a popular nanostructure fabrication method. Engineering misfit-guided QD growth on a nanoscale substrate such as the small curvature surface of a nanowire represents a new approach to self-organized nanostructure preparation. Perhaps more profoundly, the periodic stress underlying each QD and the resulting modulation of electro-optical properties inside the nanowire backbone promise to provide a new platform for novel mechano-electronic, thermoelectronic, and optoelectronic devices. Herein, we report a first experimental demonstration of self-organized and self-limited growth of coherent, periodic Ge QDs on a one dimensional Si nanowire substrate. Systematic characterizations reveal several distinctively different modes of Ge QD ordering on the Si nanowire substrate depending on the core diameter. In particular, Ge QD arrays on Si nanowires of around 20 nm diameter predominantly exhibit an anti-correlated pattern whose wavelength agrees with theoretical predictions. The correlated pattern can be attributed to propagation and correlation of misfit strain across the diameter of the thin nanowire substrate. The QD array growth is self-limited as the wavelength of the QDs remains unchanged even after prolonged Ge deposition. Furthermore, we demonstrate a direct kinetic transformation from a uniform Ge shell layer to discrete QD arrays by a post-growth annealing process. PMID:22889063
Selective-area catalyst-free MBE growth of GaN nanowires using a patterned oxide layer.
Schumann, T; Gotschke, T; Limbach, F; Stoica, T; Calarco, R
2011-03-04
GaN nanowires (NWs) were grown selectively in holes of a patterned silicon oxide mask, by rf-plasma-assisted molecular beam epitaxy (PAMBE), without any metal catalyst. The oxide was deposited on a thin AlN buffer layer previously grown on a Si(111) substrate. Regular arrays of holes in the oxide layer were obtained using standard e-beam lithography. The selectivity of growth has been studied varying the substrate temperature, gallium beam equivalent pressure and patterning layout. Adjusting the growth parameters, GaN NWs can be selectively grown in the holes of the patterned oxide with complete suppression of the parasitic growth in between the holes. The occupation probability of a hole with a single or multiple NWs depends strongly on its diameter. The selectively grown GaN NWs have one common crystallographic orientation with respect to the Si(111) substrate via the AlN buffer layer, as proven by x-ray diffraction (XRD) measurements. Based on the experimental data, we present a schematic model of the GaN NW formation in which a GaN pedestal is initially grown in the hole.
Zhang, Wanqin; Lang, Qianqian; Wu, Shubiao; Li, Wei; Bah, Hamidou; Dong, Renjie
2014-03-01
The characteristics of anaerobic digestion of pig manure from different growth stages were investigated. According to growth stage, batch experiments were performed using gestating sow manure (GSM), swine nursery with post-weaned piglet manure (SNM), growing fattening manure (GFM) and mixed manure (MM) as substrates at four substrate concentrations (40, 50, 65 and 80gVS/L) under mesophilic conditions. The maximum methane yields of MM, SNM, GSM and GFM were 354.7, 328.7, 282.4 and 263.5mLCH4/gVSadded, respectively. Volatile fatty acids/total inorganic carbon (VFA/TIC) ratio increased from 0.10 to 0.89 when loading increased from 40 to 80gVS/L for GFM. The modified Gompertz model shows a better fit to the experimental results than the first order model with a lower difference between measured and predicted methane yields. The kinetic parameters indicated that the methane production curve on the basis of differences in biodegradability of the pig manure at different growth stages. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Han; Li, Ji-Xue; Jin, Ai-Zi; Zhang, Ze
2001-11-01
A thermodynamic theory about the dependence of morphology of SiOx nanowires on the super-saturation of alloy liquid droplets has been proposed on the basis of the vapour-liquid-solid growth mechanism and has been supported experimentally. By changing the Si concentration in the Au-Si liquid droplets formed on the Au-coated Si substrate, firework-, tulip- and bud-shaped SiOx nanowires were synthesized by a thermal evaporation method and distributed concentrically around some void defects in the Si substrate. Voids were formed underneath the surface of the Si substrate during the thermal evaporation at 850°C and resulted in the Si-concentration deficient thus different saturation of Au-Si droplets. Electron microscopy analysis showed that the nanowires had an amorphous structure and were terminated by Au-Si particles.
Misfit-guided self-organization of anticorrelated Ge quantum dot arrays on Si nanowires.
Kwon, Soonshin; Chen, Zack C Y; Kim, Ji-Hun; Xiang, Jie
2012-09-12
Misfit-strain guided growth of periodic quantum dot (QD) arrays in planar thin film epitaxy has been a popular nanostructure fabrication method. Engineering misfit-guided QD growth on a nanoscale substrate such as the small curvature surface of a nanowire represents a new approach to self-organized nanostructure preparation. Perhaps more profoundly, the periodic stress underlying each QD and the resulting modulation of electro-optical properties inside the nanowire backbone promise to provide a new platform for novel mechano-electronic, thermoelectronic, and optoelectronic devices. Herein, we report a first experimental demonstration of self-organized and self-limited growth of coherent, periodic Ge QDs on a one-dimensional Si nanowire substrate. Systematic characterizations reveal several distinctively different modes of Ge QD ordering on the Si nanowire substrate depending on the core diameter. In particular, Ge QD arrays on Si nanowires of around 20 nm diameter predominantly exhibit an anticorrelated pattern whose wavelength agrees with theoretical predictions. The correlated pattern can be attributed to propagation and correlation of misfit strain across the diameter of the thin nanowire substrate. The QD array growth is self-limited as the wavelength of the QDs remains unchanged even after prolonged Ge deposition. Furthermore, we demonstrate a direct kinetic transformation from a uniform Ge shell layer to discrete QD arrays by a postgrowth annealing process.
Chinn, Mari S; Nokes, Sue E; Strobel, Herbert J
2006-01-01
Interest in solid substrate cultivation (SSC) techniques is gaining for biochemical production from renewable resources; however, heat and mass transfer problems may limit application of this technique. The use of anaerobic thermophiles in SSC offers a unique solution to overcoming these challenges. The production potential of nine thermophilic anaerobic bacteria was examined on corn stover, sugar cane bagasse, paper pulp sludge, and wheat bran in submerged liquid cultivation (SmC) and SSC. Production of acetate, ethanol, and lactate was measured over a 10 day period, and total product concentrations were used to compare the performance of different organism-substrate combinations using the two cultivation methods. Overall microbial activity in SmC and SSC was dependent on the organism and growth substrate. Clostridium thermocellum strains JW20, LQRI, and 27405 performed significantly better in SSC when grown on sugar cane bagasse and paper pulp sludge, producing at least 70 and 170 mM of total products, respectively. Growth of C. thermocellum strains in SSC on paper pulp sludge proved to be most favorable, generating at least twice the concentration of total products produced in SmC (p-value < 0.05). Clostridium thermolacticum TC21 demonstrated growth on all substrates producing 30-80 and 60-116 mM of total product in SmC and SSC, respectively. Bacterial species with optimal growth temperatures of 70 degrees C grew best on wheat bran in SmC, producing total product concentrations of 45-75 mM. For some of the organism-substrate combinations total end product concentrations in SSC exceeded those in SmC, indicating that SSC may be a promising alternative for microbial activity and value-added biochemical production.
NASA Astrophysics Data System (ADS)
Chen, Huawei; Hagiwara, Ichiro; Kiet Tieu, A.; Kishimoto, Kikuo; Liu, Qiang
2007-05-01
The thin-film growth has been confirmed to be assembled by an enormous number of clusters in experiments of CVD. Sequence of clusters' depositions proceeds to form the thin-film in short time as gas fluids through surface of substrate. Such growth mechanism has been mainly investigated on the basis of experiment. Due to immense cost of the experimental equipment and low level of current measurement technology, the comprehension about authentic effect of formation condition on properties of nanomaterial is limited in qualitative manner. Three quantitative items: flatness of primary deposition, adhesion between cluster and substrate, and degree of epitaxial growth were proposed to evaluate the property of thin-film. In this simulation, three different cluster sizes of 203, 653, and 1563 atoms with different velocities (0, 10, 100, 1000, and 3000 m/s) were deposited on a Cu(0 0 1) substrate whose temperatures were set between 300 and 1000 K. Four clusters and one cluster were used in primary deposition and secondary deposition, respectively. To increase initial velocity not only enhanced the speed of epitaxial growth, adhesion between clusters and substrate, but also increased the degree of epitaxy for primary deposition and secondary deposition. Exfoliation pattern of thin-film was profoundly dependent on initial velocity through comparison between adhesion of primary and secondary deposition. Moreover, the epitaxial growth became well as the temperature of substrate was raised, and the degree of epitaxy of small cluster was larger than that of larger cluster, no matter of primary and secondary deposition.
Heteroepitaxial growth of Ge films on (100) GaAs by pyrolysis of digermane
NASA Astrophysics Data System (ADS)
Eres, Djula; Lowndes, Douglas H.; Tischler, J. Z.; Sharp, J. W.; Geohegan, D. B.; Pennycook, S. J.
1989-08-01
Pyrolysis of high-purity digermane (Ge2 H6 ) has been used to grow epitaxial Ge films of high crystalline quality on (100) GaAs substrates in a low-pressure environment. X-ray double-crystal diffractometry shows that fully commensurate, coherently strained epitaxial Ge films can be grown on (100) GaAs at digermane partial pressures of 0.05-40 mTorr for substrate temperatures of 380-600 °C. Amorphous films also were deposited. Information about the crystalline films surface morphology, growth mode, and microstructure was obtained from scanning electron microscopy, cross-section transmission electron microscopy, and in situ reflectivity measurements. The amorphous-to-crystalline transition temperature and the morphology of the crystalline films were both found to depend on deposition conditions (primarily the incidence rate of Ge-bearing species and the substrate temperature). Epitaxial growth rates using digermane were found to be about two orders of magnitude higher than rates using germane (GeH4 ) under similar experimental conditions.
Way, B A; Mooney, R A
1993-12-15
Expression of the transmembrane phosphotyrosine phosphatase (PTPase) CD45 has been shown to inhibit hormone-dependent tyrosine phosphorylation and mitogenesis (Mooney, R. A., Freund, G. G., Way, B. A., and Bordwell, K. L. (1992) J. Biol. Chem. 267, 23443-23446). Here the impact of PTPase expression on insulin-like growth factor-1 (IGF-1) and platelet-derived growth factor- (PDGF) dependent activation of PI-3-K was investigated. In PTPase+ cells, IGF-1 and PDGF-dependent PI-3-K activity in antiphosphotyrosine immunoprecipitates was decreased by 62 +/- 13 and 46 +/- 17%, respectively, compared to control cells. Similar decreases in PI-3-K activity associated with anti-PDGF receptor and anti-insulin receptor substrate-1 (IRS-1) immunoprecipitates were also observed. Association of PI-3-K with the hormone-activated PDGF receptor decreased approximately 55%, paralleling its loss of activation in PTPase+ cells. Tyrosine phosphorylation of the 85-kDa subunit of PI-3-K was also inhibited. Similarly, IGF-1 dependent tyrosine phosphorylation of IRS-1 was decreased by 45%, and its association with PI-3-K was decreased by 65% in PTPase+ cells. Finally, PDGF-dependent tyrosine phosphorylation of phospholipase C-gamma 1 and GTPase-activating protein was reduced by 60-70% in the PTPase+ cells as was tyrosine phosphorylation of the PDGF receptor associated with these proteins. In summary, expression of a transmembrane PTPase decreased hormone-dependent PI-3-K activation, tyrosine phosphorylation of receptor substrates, and their association with signaling complexes. These data support a role for transmembrane PTPases in the regulation of receptor signal transduction pathways.
NASA Astrophysics Data System (ADS)
Barman, Sukanta; Menon, Krishnakumar S. R.
2018-04-01
We present here a detailed growth optimization of CoO thin film on Ag(001) involving the effects of different growth parameters on the electronic structure. A well-ordered stoichiometric growth of 5 ML CoO film has been observed at 473 K substrate temperature and 1 × 10-6 mbar oxygen partial pressure. The growth at lower substrate temperature and oxygen partial pressure show non-stoichiometric impurity phases which have been investigated further to correlate the growth parameters with surface electronic structure. The coverage dependent valence band electronic structure of the films grown at optimized condition reveals the presence of interfacial states near the Fermi edge (EF) for lower film coverages. Presence of interfacial states in the stoichiometric films rules out their defect-induced origin. We argue that this is an intrinsic feature of transition metal monoxides like NiO, CoO, MnO in the low coverage regime.
Selective LPCVD growth of graphene on patterned copper and its growth mechanism
NASA Astrophysics Data System (ADS)
Zhang, M.; Huang, B.-C.; Wang, Y.; Woo, J. C. S.
2016-12-01
Copper-catalyzed graphene low-pressure chemical-vapor deposition (LPCVD) growth has been regarded as a viable solution towards its integration to CMOS technology, and the wafer-bonding method provides a reliable alternative for transferring the selective graphene grown on a patterned metal film for IC manufacturing. In this paper, selective LPCVD graphene growth using patterned copper dots has been studied. The Raman spectra of grown films have demonstrated large dependence on the growth conditions. To explain the results, the growth mechanisms based on surface adsorption and copper-vapor-assisted growth are investigated by the comparison between the blanket copper films with/without the additional copper source. The copper vapor density is found to be critical for high-quality graphene growth. In addition, the copper-vapor-assisted growth is also evidenced by the carbon deposition on the SiO2 substrate of the patterned-copper-dot sample and chamber wall during graphene growth. This growth mechanism explains the correlation between the growth condition and Raman spectrum for films on copper dots. The study on the copper-catalyzed selective graphene growth on the hard substrate paves the way for the synthesis and integration of the 2D material in VLSI.
Epitaxial growth of Ag on W(110)
NASA Astrophysics Data System (ADS)
Deisl, C.; Bertel, E.; Bürgener, M.; Meister, G.; Goldmann, A.
2005-10-01
Epitaxial growth of Ag on W(110) at room temperature was studied by scanning tunneling microscopy (STM) and polarization-dependent photoemission. At coverages far below one monolayer Ag atoms populate bcc sites of the substrate and form close-packed islands of monolayer thickness. With increasing coverage geometrical misfit between Ag(111)-like layers and W(110) generates surface stress along W[11¯0] . This is released by formation of domain walls parallel W[001] which are observed with a distance between about 25Å and 30Å , depending on the details of the growth process. At one monolayer coverage most of the Ag atoms still reside in or very near to bcc substrate positions, but now the strain release pattern is changed: solitons aligned along W[1¯12] are formed at an average distance between 35Å and 50Å . The details of the soliton arrangement depend critically on the degree of equilibration and the presence of holes in the monolayer film which allow an additional stress release. This is evident from a comparison with results of STM studies performed at the closed and carefully annealed Ag monolayer [Kim , Phys. Rev. B 67, 223401 (2003)]. Further deposition of Ag starts growth of a second monolayer by formation of islands which increase in size with coverage. At a nominal coverage of 1.5 monolayers the strain relieve pattern changes again: some corrugation lines are oriented along W[001] as in the submonolayers, but other orientations related to Ag(111) directions appear as well. This indicates that several possibilities are available at similar energy costs and that the transition from the W substrate potential to a Ag potential seen by the second layer is very soft. Finally at a nominal coverage of several monolayers, Stranski-Krastanov growth is observed producing Ag(111)-like terraces with one of the dense-packed Ag rows oriented parallel to W[11¯1] .
1989-03-01
size only by Music 1979). molting (Hay 1905). Zoeal development depends on salinity and temperature, Growth and maturation proceed but development time...substrates. the effects depends on the toxicant, concentration, time exposed, salinity , tidal cycle, age and molt phase of Other Environmental Factors...Temperature .......................................................... 11 Salinity ............................................................. I11
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Liangxin; Zhao, Jiangtao; Hong, Bin
2016-04-14
Vanadium dioxide (VO{sub 2}) epitaxial films were grown on perovskite single-crystal strontium titanate (SrTiO{sub 3}) substrates by reactive radio-frequency magnetron sputtering. The growth temperature-dependent metal–insulator transition (MIT) behavior of the VO{sub 2} epitaxial films was then investigated. We found that the order of magnitude of resistance change across the MIT increased from 10{sup 2} to 10{sup 4} with increasing growth temperature. In contrast, the temperature of the MIT does not strongly depend on the growth temperature and is fairly stable at about 345 K. On one hand, the increasing magnitude of the MIT is attributed to the better crystallinity and thusmore » larger grain size in the (010)-VO{sub 2}/(111)-SrTiO{sub 3} epitaxial films at elevated temperature. On the other hand, the strain states do not change in the VO{sub 2} films deposited at various temperatures, resulting in stable V-V chains and V-O bonds in the VO{sub 2} epitaxial films. The accompanied orbital occupancy near the Fermi level is also constant and thus the MIT temperatures of VO{sub 2} films deposited at various temperatures are nearly the same. This work demonstrates that high-quality VO{sub 2} can be grown on perovskite substrates, showing potential for integration into oxide heterostructures and superlattices.« less
Chen, La; Li, Wenfang; Maybeck, Vanessa; Offenhäusser, Andreas; Krause, Hans-Joachim
2016-11-01
There is increasing evidence that mechanical issues play a vital role in neuron growth and brain development. The importance of this grows as novel devices, whose material properties differ from cells, are increasingly implanted in the body. In this work, we studied the mechanical properties of rat brain cells over time and on different materials by using a high throughput magnetic tweezers system. It was found that the elastic moduli of both neurite and soma in networked neurons increased with growth. However, neurites at DIV4 exhibited a relatively high stiffness, which could be ascribed to the high outgrowth tension. The power-law exponents (viscoelasticity) of both neurites and somas of neurons decreased with culture time. On the other hand, the stiffness of glial cells also increased with maturity. Furthermore, both neurites and glia become softer when cultured on compliant substrates. Especially, the glial cells cultured on a soft substrate obviously showed a less dense and more porous actin and GFAP mesh. In addition, the viscoelasticity of both neurites and glia did not show a significant dependence on the substrates' stiffness. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drevin-Bazin, A.; Barbot, J. F.; Alkazaz, M.
2012-07-09
The growth of Ti{sub 3}SiC{sub 2} thin films were studied onto {alpha}-SiC substrates differently oriented by thermal annealing of TiAl layers deposited by magnetron sputtering. For any substrate's orientation, transmission electron microscopy coupled with x-ray diffraction showed the coherent epitaxial growth of Ti{sub 3}SiC{sub 2} films along basal planes of SiC. Specifically for the (1120) 4H-SiC, Ti{sub 3}SiC{sub 2} basal planes are found to be orthogonal to the surface. The continuous or textured nature of Ti{sub 3}SiC{sub 2} films does not depend of the SiC stacking sequence and is explained by a step-flow mechanism of growth mode. The ohmic charactermore » of the contact was confirmed by current-voltage measurements.« less
NASA Astrophysics Data System (ADS)
A, Kamalianfar; S, A. Halim; Mahmoud Godarz, Naseri; M, Navasery; Fasih, Ud Din; J, A. M. Zahedi; Kasra, Behzad; K, P. Lim; A Lavari, Monghadam; S, K. Chen
2013-08-01
Three-dimensional ZnO multipods are successfully synthesized on functional substrates using the vapor transport method in a quartz tube. The functional surfaces, which include two different distributions of Ag nanoparticles and a layer of commercial Ag nanowires, are coated onto silicon substrates before the growth of ZnO nanostructures. The structures and morphologies of the ZnO/Ag heterostructures are investigated using X-ray diffraction and field emission scanning electron microscopy. The sizes and shapes of the Ag particles affect the growth rates and initial nucleations of the ZnO structures, resulting in different numbers and shapes of multipods. They also influence the orientation and growth quality of the rods. The optical properties are studied by photoluminescence, UV-vis, and Raman spectroscopy. The results indicate that the surface plasmon resonance strongly depends on the sizes and shapes of the Ag particles.
Plasma membrane transporters for arginine.
Closs, Ellen I; Simon, Alexandra; Vékony, Nicole; Rotmann, Alexander
2004-10-01
The supply of arginine may become rate limiting for enzymatic reactions that use this semiessential amino acid as a substrate (e.g., nitric oxide, agmatine, creatine, and urea synthesis), particularly under conditions of high demand such as growth, sepsis, or wound healing. In addition, arginine acts as a signaling molecule that regulates essential cellular functions such as protein synthesis, apoptosis, and growth. In the past decade, a number of carrier proteins for amino acids have been identified on the molecular level. They belong to different gene families, exhibit overlapping but distinctive substrate specificities, and can further be distinguished by their requirement for the cotransport or countertransport of inorganic ions. A number of these transporters function as exchangers rather than uniporters. Uptake of amino acids by these transporters therefore depends largely on the intracellular substrate composition. Hence, there is a complex crosstalk between transporters for cationic and neutral amino acids as well as for peptides. This article briefly reviews current knowledge regarding mammalian plasma membrane transporters that accept arginine as a substrate.
Callewaert, Raf; De Vuyst, Luc
2000-01-01
Amylovorin L471 is a small, heat-stable, and hydrophobic bacteriocin produced by Lactobacillus amylovorus DCE 471. The nutritional requirements for amylovorin L471 production were studied with fed-batch fermentations. A twofold increase in bacteriocin titer was obtained when substrate addition was controlled by the acidification rate of the culture, compared with the titers reached with constant substrate addition or pH-controlled batch cultures carried out under the same conditions. An interesting feature of fed-batch cultures observed under certain culture conditions (constant feed rate) is the apparent stabilization of bacteriocin activity after obtaining maximum production. Finally, a mathematical model was set up to simulate cell growth, glucose and complex nitrogen source consumption, and lactic acid and bacteriocin production kinetics. The model showed that bacterial growth was dependent on both the energy and the complex nitrogen source. Bacteriocin production was growth associated, with a simultaneous bacteriocin adsorption on the producer cells dependent on the lactic acid accumulated and hence the viability of the cells. Both bacteriocin production and adsorption were inhibited by high concentrations of the complex nitrogen source. PMID:10653724
NASA Astrophysics Data System (ADS)
Guillén-Santiago, A.; Olvera, M. De La L.; Maldonado, A.; Asomoza, R.; Acosta, D. R.
2004-04-01
Conductive and highly transparent fluorine-doped zinc oxide (ZnO:F) thin films were deposited onto glass substrates by the chemical spray technique, using zinc acetate and hydrofluoric acid as precursors. Electrical, structural, morphological and optical characteristics were analyzed as a function of the ageing-time of the starting solution, alcoholic solvent type (methanol or ethanol) and the substrate temperature. The results show that these variables play a crucial role on the physical properties measured. The growth rates obtained were of 3 nm/s, showing that the chemical species involved are adequate for the film growth. The effect of the solution ageing-time on the electrical properties was monitored along three weeks. A gradual resistivity decrease with the ageing-time was observed, until a minimum value is reached, at 7 or 9 days depending on the alcohol employed. Films deposited after this time have resistivity values slightly higher. All the films were polycrystalline, with a hexagonal wurtzite structure whose preferential growth is strongly dependent on the deposition variables. Under optimal deposition conditions, ZnO:F films with a high transmittance in the visible spectrum (>85%), resistivity as low as 7 × 10-3 cm and maximum electronic mobility around of 4 cm2/(V-s) were obtained.
Equilibrium, chemical kinetic, and transport limitations to diamond growth
NASA Astrophysics Data System (ADS)
Evans, Edward Anthony
Because of their extreme properties, diamond films have found some industrial applications, i.e., heat sinks and tool coatings. However, to increase their economic attractiveness, the growth rate must be increased, the deposition temperature must be lowered, and single crystal films must be achieved. We have studied two types of chemical vapor deposition systems, hot-filament and microwave assisted, in order to understand the factors limiting diamond growth rate. From simultaneous microbalance growth rate measurements and mass spectrometer measurements, changes in growth rate are correlated with changes in gas phase composition. Measured reaction orders support the proposal that diamond growth occurs through a single-carbon-atom species, e.g., CHsb3. When a two-carbon atom source gas is used, it is likely that the dissociation to two, single-carbon atom species occurs on the substrate surface (dissociative adsorption). Furthermore, a shift to zero-order suggests that the diamond growth is a surface-site limited process at higher hydrocarbon concentrations. The diamond growth rate maximum with pressure is explained by transport limitations of species within the reaction zone. The reported diamond growth rates in the hot-filament reactor are several times higher than those reported by other research groups. These higher growth rates result from surrounding the substrate with the filament. We have used the measured growth rates, filament temperatures, and thermocouple measurements to calculate activation energies for diamond growth. When the filament temperature is used for the calculation, an activation energy of 73 kcal per mole is obtained; however, based on estimated substrate temperatures, an activation energy of 18 kcal per mole is determined. A dimensional analysis approach was developed to select the most important gas phase reactions occurring during diamond CVD. Steady-state analysis of these reactions and the application of mass transport equations lead to the conclusion that diamond growth, in current hot-filament and microwave assisted CVD processes, is occurring in a partial equilibrium environment in which diffusion of atomic hydrogen controls the overall diamond growth rate. The initial stages of diamond growth on non-diamond substrates correspond to carburization, nucleation and growth. When polycrystalline or single crystal diamond is used as a substrate, the carburization and nucleation stages are not observed and growth begins immediately. The nucleation rate depends sensitively on the radiative heat transfer to the substrate. Adding ozone to the hot-filament CVD charge increases the production of carbon monoxide and carbon dioxide; this increase is observed with or without the filament being activated. A consistent effect on the diamond growth rate was not observed when ozone was added to the hot-filament reactor.
Cyclic stretching of soft substrates induces spreading and growth
Cui, Yidan; Hameed, Feroz M.; Yang, Bo; Lee, Kyunghee; Pan, Catherine Qiurong; Park, Sungsu; Sheetz, Michael
2015-01-01
In the body, soft tissues often undergo cycles of stretching and relaxation that may affect cell behaviour without changing matrix rigidity. To determine whether transient forces can substitute for a rigid matrix, we stretched soft pillar arrays. Surprisingly, 1–5% cyclic stretching over a frequency range of 0.01–10 Hz caused spreading and stress fibre formation (optimum 0.1 Hz) that persisted after 4 h of stretching. Similarly, stretching increased cell growth rates on soft pillars comparative to rigid substrates. Of possible factors linked to fibroblast growth, MRTF-A (myocardin-related transcription factor-A) moved to the nucleus in 2 h of cyclic stretching and reversed on cessation; but YAP (Yes-associated protein) moved much later. Knockdown of either MRTF-A or YAP blocked stretch-dependent growth. Thus, we suggest that the repeated pulling from a soft matrix can substitute for a stiff matrix in stimulating spreading, stress fibre formation and growth. PMID:25704457
Cell-Bound Lipase and Esterase of Brevibacterium linens
Sørhaug, Terje; Ordal, Z. John
1974-01-01
The activities of glycerol ester hydrolase, lipase (EC 3.1.1.3) and carboxylesterase, and esterase (EC 3.1.1.1) were determined for whole cell preparations of Brevibacterium linens by using the pH-stat assay. The culture growth liquors were inactive against the three substrates, tributyrin emulsion, triacetin, and methyl butyrate. Cells washed in water had less activity than cells washed in 5% NaCl; the ratio of activities was close to 1:2 for all strains using tributyrin emulsion as the substrate. For the esterase substrates, this relationship varied widely and was strain dependent. The ability to hydrolyze the two esterase substrates varied independently of the level of lipase activity. PMID:4824883
Control of Growth Rate by Initial Substrate Concentration at Values Below Maximum Rate
Gaudy, Anthony F.; Obayashi, Alan; Gaudy, Elizabeth T.
1971-01-01
The hyperbolic relationship between specific growth rate, μ, and substrate concentration, proposed by Monod and used since as the basis for the theory of steady-state growth in continuous-flow systems, was tested experimentally in batch cultures. Use of a Flavobacterium sp. exhibiting a high saturation constant for growth in glucose minimal medium allowed direct measurement of growth rate and substrate concentration throughout the growth cycle in medium containing a rate-limiting initial concentration of glucose. Specific growth rates were also measured for a wide range of initial glucose concentrations. A plot of specific growth rate versus initial substrate concentration was found to fit the hyperbolic equation. However, the instantaneous relationship between specific growth rate and substrate concentration during growth, which is stated by the equation, was not observed. Well defined exponential growth phases were developed at initial substrate concentrations below that required for support of the maximum exponential growth rate and a constant doubling time was maintained until 50% of the substrate had been used. It is suggested that the external substrate concentration initially present “sets” the specific growth rate by establishing a steady-state internal concentration of substrate, possibly through control of the number of permeation sites. PMID:5137579
Jung, Ae Ryang; Kim, Richard Y; Kim, Hyung Woo; Shrestha, Kshitiz Raj; Jeon, Seung Hwan; Cha, Kyoung Je; Park, Yong Hyun; Kim, Dong Sung; Lee, Ji Youl
2015-07-01
Human adipose-derived stem cells (hADSCs) can differentiate into various cell types depending on chemical and topographical cues. One topographical cue recently noted to be successful in inducing differentiation is the nanoengineered polystyrene surface containing nanopore array-patterned substrate (NP substrate), which is designed to mimic the nanoscale topographical features of the extracellular matrix. In this study, efficacies of NP and flat substrates in inducing neural differentiation of hADSCs were examined by comparing their substrate-cell adhesion rates, filopodia growth, nuclei elongation, and expression of neural-specific markers. The polystyrene nano Petri dishes containing NP substrates were fabricated by a nano injection molding process using a nickel electroformed nano-mold insert (Diameter: 200 nm. Depth of pore: 500 nm. Center-to-center distance: 500 nm). Cytoskeleton and filopodia structures were observed by scanning electron microscopy and F-actin staining, while cell adhesion was tested by vinculin staining after 24 and 48 h of seeding. Expression of neural specific markers was examined by real-time quantitative polymerase chain reaction and immunocytochemistry. Results showed that NP substrates lead to greater substrate-cell adhesion, filopodia growth, nuclei elongation, and expression of neural specific markers compared to flat substrates. These results not only show the advantages of NP substrates, but they also suggest that further study into cell-substrate interactions may yield great benefits for biomaterial engineering.
Growth and Properties of Lattice Matched GaAsSbN Epilayer on GaAs for Solar Cell Applications
NASA Technical Reports Server (NTRS)
Bharatan, Sudhakar; Iyer, Shanthi; Matney, Kevin; Collis, Ward J.; Nunna Kalyan; Li, Jia; Wu, Liangjin; McGuire, Kristopher; McNeil, Laurie E.
2006-01-01
The growth and properties of GaAsSbN single quantum wells (SQWs) are investigated in this work. The heterostructures were grown on GaAs substrates in an elemental solid source molecular beam epitaxy (MBE) system assisted with a RF plasma nitrogen source. A systematic study has been carried out to determine the influence of various growth conditions, such as the growth temperature and the source shutter-opening sequence, on the quality of the grown layers and the incorporation of N and Sb. The effects of ex situ and in situ annealing under As overpressure on the optical properties of the layers have also been investigated. Substrate temperature in the range of 450-470 C was found to be optimum. Simultaneous opening of the source shutters was found to yield sharper QW interfaces. N and Sb incorporations were found to depend strongly upon substrate temperatures and source shutter opening sequences. A significant increase in PL intensity with a narrowing of PL line shape and blue shift in emission energy were observed on annealing the GaAsSbN/GaAs SQW, with in situ annealing under As overpressure providing better results, compared to ex situ annealing.
In utero fuel homeostasis: Lessons for a clinician.
Rao, P N Suman; Shashidhar, A; Ashok, C
2013-01-01
Fetus exists in a complex, dynamic, and yet intriguing symbiosis with its mother as far as fuel metabolism is concerned. Though the dependence on maternal fuel is nearly complete to cater for its high requirement, the fetus is capable of some metabolism of its own. The first half of gestation is a period of maternal anabolism and storage whereas the second half results in exponential fetal growth where maternal stores are mobilized. Glucose is the primary substrate for energy production in the fetus though capable of utilizing alternate sources like lactate, ketoacids, amino acids, fatty acids, and glycogen as fuel under special circumstances. Key transporters like glucose transporters (GLUT) are responsible for preferential transfers, which are in turn regulated by complex interaction of maternal and fetal hormones. Amino acids are preferentially utilized for growth and essential fatty acids for development of brain and retina. Insulin, insulin like growth factors, glucagon, catecholamines, and letpin are the hormones implicated in this fascinating process. Hormonal regulation of metabolic substrate utilization and anabolism in the fetus is secondary to the supply of nutrient substrates. The knowledge of fuel homeostasis is crucial for a clinician caring for pregnant women and neonates to manage disorders of metabolism (diabetes), growth (intrauterine growth restriction), and transitional adaptation (hypoglycemia).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atanasov, Sarah E.; Kalanyan, Berç; Parsons, Gregory N., E-mail: gnp@ncsu.edu
2016-01-15
Titanium dioxide atomic layer deposition (ALD) is shown to proceed selectively on oxidized surfaces with minimal deposition on hydrogen-terminated silicon using titanium tetrachloride (TiCl{sub 4}) and titanium tetra-isopropoxide [Ti(OCH(CH{sub 3}){sub 2}){sub 4}, TTIP] precursors. Ex situ x-ray photoelectron spectroscopy shows a more rapid ALD nucleation rate on both Si–OH and Si–H surfaces when water is the oxygen source. Eliminating water delays the oxidation of the hydrogen-terminated silicon, thereby impeding TiO{sub 2} film growth. For deposition at 170 °C, the authors achieve ∼2 nm of TiO{sub 2} on SiO{sub 2} before substantial growth takes place on Si–H. On both Si–H and Si–OH, themore » surface reactions proceed during the first few TiCl{sub 4}/TTIP ALD exposure steps where the resulting products act to impede subsequent growth, especially on Si–H surfaces. Insight from this work helps expand understanding of “inherent” substrate selective ALD, where native differences in substrate surface reaction chemistry are used to promote desired selective-area growth.« less
Thornley, John H. M.
2011-01-01
Background and Aims Plant growth and respiration still has unresolved issues, examined here using a model. The aims of this work are to compare the model's predictions with McCree's observation-based respiration equation which led to the ‘growth respiration/maintenance respiration paradigm’ (GMRP) – this is required to give the model credibility; to clarify the nature of maintenance respiration (MR) using a model which does not represent MR explicitly; and to examine algebraic and numerical predictions for the respiration:photosynthesis ratio. Methods A two-state variable growth model is constructed, with structure and substrate, applicable on plant to ecosystem scales. Four processes are represented: photosynthesis, growth with growth respiration (GR), senescence giving a flux towards litter, and a recycling of some of this flux. There are four significant parameters: growth efficiency, rate constants for substrate utilization and structure senescence, and fraction of structure returned to the substrate pool. Key Results The model can simulate McCree's data on respiration, providing an alternative interpretation to the GMRP. The model's parameters are related to parameters used in this paradigm. MR is defined and calculated in terms of the model's parameters in two ways: first during exponential growth at zero growth rate; and secondly at equilibrium. The approaches concur. The equilibrium respiration:photosynthesis ratio has the value of 0·4, depending only on growth efficiency and recycling fraction. Conclusions McCree's equation is an approximation that the model can describe; it is mistaken to interpret his second coefficient as a maintenance requirement. An MR rate is defined and extracted algebraically from the model. MR as a specific process is not required and may be replaced with an approach from which an MR rate emerges. The model suggests that the respiration:photosynthesis ratio is conservative because it depends on two parameters only whose values are likely to be similar across ecosystems. PMID:21948663
NASA Astrophysics Data System (ADS)
Aikawa, Masaki; Onuki, Yuya; Hayasaka, Natsuki; Nishiyama, Tetsuo; Kamada, Naoki; Han, Xu; Kallarasan Periyanayagam, Gandhi; Uchida, Kazuki; Sugiyama, Hirokazu; Shimomura, Kazuhiko
2018-02-01
The bonding-temperature-dependent lasing characteristics of 1.5 a µm GaInAsP laser diode (LD) grown on a directly bonded InP/Si substrate were successfully obtained. We have fabricated the InP/Si substrate using a direct hydrophilic wafer bonding technique at bonding temperatures of 350, 400, and 450 °C, and deposited GaInAsP/InP double heterostructure layers on this InP/Si substrate. The surface conditions, X-ray diffraction (XRD) analysis, photoluminescence (PL) spectra, and electrical characteristics after the growth were compared at these bonding temperatures. No significant differences were confirmed in X-ray diffraction analysis and PL spectra at these bonding temperatures. We realized the room-temperature lasing of the GaInAsP LD on the InP/Si substrate bonded at 350 and 400 °C. The threshold current densities were 4.65 kA/cm2 at 350 °C and 4.38 kA/cm2 at 400 °C. The electrical resistance was found to increase with annealing temperature.
Modern trends in crystal growth and new applications of sapphire
NASA Astrophysics Data System (ADS)
Akselrod, Mark S.; Bruni, Frank J.
2012-12-01
We provide an overview of the latest market trends and modern competing methods of sapphire crystal growth and the application of sapphire wafers as LED substrates. Almost all methods of high temperature growth from the melt are suitable for sapphire production, but each of these methods has its advantages and disadvantages depending on the application and required finished product form factor. Special attention is paid to the review of defects and imperfections that allow the engineering of new active devices based on sapphire.
RHEED and EELS study of Pd/Al bimetallic thin film growth on different α-Al 2O 3 substrates
NASA Astrophysics Data System (ADS)
Moroz, V.; Rajs, K.; Mašek, K.
2002-06-01
Pd/Al bimetallic thin films were grown by molecular beam epitaxy on single-crystalline α-Al 2O 3(0 0 0 1) and (1 1 2¯ 0) surfaces. Substrate and deposit crystallographic structures and evolution of deposit lattice parameter during the growth were studied by reflection high-energy electron diffraction. The electron energy loss spectroscopy was used as an auxiliary method for chemical analysis. The bimetallic films were prepared by successive deposition of both Pd and Al metals. The structure of Pd and Al deposits in early stages of the growth and its dependence on the preparation conditions were studied. Two phases of Pd clusters covered by Al overlayer have been found. The formation of Al overlayer strongly influenced the lattice parameter of Pd clusters.
Müller, Jonas E N; Meyer, Fabian; Litsanov, Boris; Kiefer, Patrick; Vorholt, Julia A
2015-12-01
Bacillus methanolicus MGA3 is a model facultative methylotroph of interest for fundamental research and biotechnological applications. Previous research uncovered a number of pathways potentially involved in one-carbon substrate utilization. Here, we applied dynamic (13) C labeling to elucidate which of these pathways operate during growth on methanol and to uncover potentially new ones. B. methanolicus MGA3 uses the assimilatory and dissimilatory ribulose monophosphate (RuMP) cycles for conversion of the central but toxic intermediate formaldehyde. Additionally, the operation of two cofactor-dependent formaldehyde oxidation pathways with distinct roles was revealed. One is dependent on tri- and tetraglutamylated tetrahydrofolate (THF) and is involved in formaldehyde oxidation during growth on methanol. A second pathway was discovered that is dependent on bacillithiol, a thiol cofactor present also in other Bacilli where it is known to function in redox-homeostasis. We show that bacillithiol-dependent formaldehyde oxidation is activated upon an upshift in formaldehyde induced by a substrate switch from mannitol to methanol. The genes and the corresponding enzymes involved in the biosynthesis of bacillithiol were identified by heterologous production of bacillithiol in Escherichia coli. The presented results indicate metabolic plasticity of the methylotroph allowing acclimation to fluctuating intracellular formaldehyde concentrations. © 2015 John Wiley & Sons Ltd.
Optical emission diagnostics of plasmas in chemical vapor deposition of single-crystal diamond
Hemawan, Kadek W.; Hemley, Russell J.
2015-08-03
Here, a key aspect of single crystal diamond growth via microwave plasma chemical vapor deposition is in-process control of the local plasma-substrate environment, that is, plasma gas phase concentrations of activated species at the plasma boundary layer near the substrate surface. Emission spectra of the plasma relative to the diamond substrate inside the microwave plasma reactor chamber have been analyzed via optical emission spectroscopy. The spectra of radical species such as CH, C 2, and H (Balmer series) important for diamond growth were found to be more depndent on operating pressure than on microwave power. Plasma gas temperatures were calculatedmore » from measurements of the C 2 Swan band (d 3Π → a 3Π transition) system. The plasma gas temperature ranges from 2800 to 3400 K depending on the spatial location of the plasma ball, microwave power and operating pressure. Addition of Ar into CH 4 + H 2 plasma input gas mixture has little influence on the Hα, Hβ, and Hγ intensities and single-crystal diamond growth rates.« less
Monolayers of hard rods on planar substrates. II. Growth
NASA Astrophysics Data System (ADS)
Klopotek, M.; Hansen-Goos, H.; Dixit, M.; Schilling, T.; Schreiber, F.; Oettel, M.
2017-02-01
Growth of hard-rod monolayers via deposition is studied in a lattice model using rods with discrete orientations and in a continuum model with hard spherocylinders. The lattice model is treated with kinetic Monte Carlo simulations and dynamic density functional theory while the continuum model is studied by dynamic Monte Carlo simulations equivalent to diffusive dynamics. The evolution of nematic order (excess of upright particles, "standing-up" transition) is an entropic effect and is mainly governed by the equilibrium solution, rendering a continuous transition [Paper I, M. Oettel et al., J. Chem. Phys. 145, 074902 (2016)]. Strong non-equilibrium effects (e.g., a noticeable dependence on the ratio of rates for translational and rotational moves) are found for attractive substrate potentials favoring lying rods. Results from the lattice and the continuum models agree qualitatively if the relevant characteristic times for diffusion, relaxation of nematic order, and deposition are matched properly. Applicability of these monolayer results to multilayer growth is discussed for a continuum-model realization in three dimensions where spherocylinders are deposited continuously onto a substrate via diffusion.
Raudabaugh, Daniel B.; Miller, Andrew N.
2013-01-01
Pseudogymnoascus destructans, the causal agent of bat white-nose syndrome, has caused nearly six million deaths in North American bats since its introduction into the United States in 2006. Current research has shown that caves can harbor P. destructans even after the infected bats are removed and bats no longer visit or inhabit previously infected caves. Our research focuses on elucidating reservoir requirements by investigating the nutritional capabilities of and substrate suitability requirements for six different P. destructans isolates from various localities including Illinois, Indiana, New York (Type specimen), and Pennsylvania. Enzyme assays implicate that both urease and b-glucosidase appear to be constitutive, lipase and esterase activity were more rapid than proteinase activity on 6% gelatin, gelatin degradation was accompanied by medium alkalinization, the reduction of thiosulfate generated hydrogen sulfide gas, chitinase and manganese dependent peroxidase activity were not visually demonstrated within eight weeks, and keratinase activity was not evident at pH 8 within eight weeks. We demonstrate that all P. destructans isolates are capable of growth and sporulation on dead fish, insect, and mushroom tissues. Sole nitrogen source assays demonstrated that all P. destructans isolates exhibit Class 2 nitrogen utilization and that growth-dependent interactions occur among different pH and nitrogen sources. Substrate suitability assays demonstrated that all isolates could grow and sporulate on media ranging from pH 5–11 and tolerated media supplemented with 2000 mg/L of calcium and 700 mg/L of three separated sulfur compounds: thiosulfate L-cysteine, and sulfite. All isolates were intolerant to PEG-induced matric potential with delayed germination and growth at −2.5 MPa with no visible germination at −5 MPa. Interestingly, decreasing the surface tension with Tween 80 permitted germination and growth of P. destructans in −5 MPa PEG medium within 14 days suggesting a link between substrate suitability and aqueous surface tension altering substances. PMID:24205191
Raudabaugh, Daniel B; Miller, Andrew N
2013-01-01
Pseudogymnoascus destructans, the causal agent of bat white-nose syndrome, has caused nearly six million deaths in North American bats since its introduction into the United States in 2006. Current research has shown that caves can harbor P. destructans even after the infected bats are removed and bats no longer visit or inhabit previously infected caves. Our research focuses on elucidating reservoir requirements by investigating the nutritional capabilities of and substrate suitability requirements for six different P. destructans isolates from various localities including Illinois, Indiana, New York (Type specimen), and Pennsylvania. Enzyme assays implicate that both urease and b-glucosidase appear to be constitutive, lipase and esterase activity were more rapid than proteinase activity on 6% gelatin, gelatin degradation was accompanied by medium alkalinization, the reduction of thiosulfate generated hydrogen sulfide gas, chitinase and manganese dependent peroxidase activity were not visually demonstrated within eight weeks, and keratinase activity was not evident at pH 8 within eight weeks. We demonstrate that all P. destructans isolates are capable of growth and sporulation on dead fish, insect, and mushroom tissues. Sole nitrogen source assays demonstrated that all P. destructans isolates exhibit Class 2 nitrogen utilization and that growth-dependent interactions occur among different pH and nitrogen sources. Substrate suitability assays demonstrated that all isolates could grow and sporulate on media ranging from pH 5-11 and tolerated media supplemented with 2000 mg/L of calcium and 700 mg/L of three separated sulfur compounds: thiosulfate L-cysteine, and sulfite. All isolates were intolerant to PEG-induced matric potential with delayed germination and growth at -2.5 MPa with no visible germination at -5 MPa. Interestingly, decreasing the surface tension with Tween 80 permitted germination and growth of P. destructans in -5 MPa PEG medium within 14 days suggesting a link between substrate suitability and aqueous surface tension altering substances.
NASA Astrophysics Data System (ADS)
Noriega-Ortega, B. E.; Wienhausen, G.; Dittmar, T.; Simon, M.; Niggemann, J.
2016-02-01
Dissolved organic matter (DOM) in the ocean, the marine geometabolome, is an extremely complex mixture composed of a wide variety of compounds. The molecular chemodiversity affects the function and turnover rate of DOM in the ocean. We hypothesize that the active microbial community essentially contributes to the complexity of the DOM pool through uptake and excretion of compounds. We tested this hypothesis in culture experiments with fully-sequenced strains of the Roseobacter clade. Bacteria of the Roseobacter clade are among the most abundant microbial players in the ocean. We studied the exometabolome of two representatives of the Roseobacter clade, Phaeobacter inhibens DSM 17395 and Dinoroseobacter shibae. The organisms were grown separately in cultures on defined single model substrates (acetate, succinate, glutamate, glucose). We used a non-targeted analytical approach via Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to characterize the exometabolome at the molecular level, complemented by compound-specific analyses of free and combined amino acids and carbohydrates. The exometabolome composition varied between the tested strains, which released a different suite of compounds depending on the growth phase as well as on growth conditions (substrate). Both organisms exhibited a core exometabolome with compounds released when growing on either substrate and at all growth phases, and a variable exometabolome specific for different substrates and growth phases. However, only a small fraction of the exometabolites detected by FT-ICR-MS could be directly linked to the genome or transcriptome. We interpret these findings as evidence for the excretion of molecularly highly-diverse metabolic waste, whose composition is dependent on the metabolic state and genetic repertoire of the organisms. The molecular diversity of compounds excreted by a single strain is extraordinary and is likely the reason for the molecular diversity of natural DOM in the ocean.
PECVD Growth of Carbon Nanotubes
NASA Technical Reports Server (NTRS)
McAninch, Ian; Arnold, James O. (Technical Monitor)
2001-01-01
Plasma enhanced chemical vapor deposition (PECVD), using inductively coupled plasma, has been used to grow carbon nanotubes (CNTs) and graphitic carbon fibers (GCF) on substrates sputtered with aluminum and iron catalyst. The capacitive plasma's power has been shown to cause a transition from nanotubes to nanofibers, depending on the strength of the plasma. The temperature, placement, and other factors have been shown to affect the height and density of the tube and fiber growth.
The initial stages of ZnO atomic layer deposition on atomically flat In0.53Ga0.47As substrates.
Skopin, Evgeniy V; Rapenne, Laetitia; Roussel, Hervé; Deschanvres, Jean-Luc; Blanquet, Elisabeth; Ciatto, Gianluca; Fong, Dillon D; Richard, Marie-Ingrid; Renevier, Hubert
2018-06-21
InGaAs is one of the III-V active semiconductors used in modern high-electron-mobility transistors or high-speed electronics. ZnO is a good candidate material to be inserted as a tunneling insulator layer at the metal-semiconductor junction. A key consideration in many modern devices is the atomic structure of the hetero-interface, which often ultimately governs the electronic or chemical process of interest. Here, a complementary suite of in situ synchrotron X-ray techniques (fluorescence, reflectivity and absorption) as well as modeling is used to investigate both structural and chemical evolution during the initial growth of ZnO by atomic layer deposition (ALD) on In0.53Ga0.47As substrates. Prior to steady-state growth behavior, we discover a transient regime characterized by two stages. First, substrate-inhibited ZnO growth takes place on InGaAs terraces. This leads eventually to the formation of a 1 nm-thick, two-dimensional (2D) amorphous layer. Second, the growth behavior and its modeling suggest the occurrence of dense island formation, with an aspect ratio and surface roughness that depends sensitively on the growth condition. Finally, ZnO ALD on In0.53Ga0.47As is characterized by 2D steady-state growth with a linear growth rate of 0.21 nm cy-1, as expected for layer-by-layer ZnO ALD.
Sobanska, M; Fernández-Garrido, S; Zytkiewicz, Z R; Tchutchulashvili, G; Gieraltowska, S; Brandt, O; Geelhaar, L
2016-08-12
We present a comprehensive description of the self-assembled nucleation and growth of GaN nanowires (NWs) by plasma-assisted molecular beam epitaxy on amorphous Al x O y buffers (a-Al x O y ) prepared by atomic layer deposition. The results are compared with those obtained on nitridated Si(111). Using line-of-sight quadrupole mass spectrometry, we analyze in situ the incorporation of Ga starting from the incubation and nucleation stages till the formation of the final nanowire ensemble and observe qualitatively the same time dependence for the two types of substrates. However, on a-Al x O y the incubation time is shorter and the nucleation faster than on nitridated Si. Moreover, on a-Al x O y we observe a novel effect of decrease in incorporated Ga flux for long growth durations which we explain by coalescence of NWs leading to reduction of the GaN surface area where Ga may reside. Dedicated samples are used to analyze the evolution of surface morphology. In particular, no GaN nuclei are detected when growth is interrupted during the incubation stage. Moreover, for a-Al x O y , the same shape transition from spherical cap-shaped GaN crystallites to the NW-like geometry is found as it is known for nitridated Si. However, while the critical radius for this transition is only slightly larger for a-Al x O y than for nitridated Si, the critical height is more than six times larger for a-Al x O y . Finally, we observe that in fully developed NW ensembles, the substrate no longer influences growth kinetics and the same N-limited axial growth rate is measured on both substrates. We conclude that the same nucleation and growth processes take place on a-Al x O y as on nitridated Si and that these processes are of a general nature. Quantitatively, nucleation proceeds somewhat differently, which indicates the influence of the substrate, but once shadowing limits growth processes to the upper part of the NW ensemble, they are not affected anymore by the type of substrate.
NASA Astrophysics Data System (ADS)
Egorov, Konstantin V.; Lebedinskii, Yury Yu.; Soloviev, Anatoly A.; Chouprik, Anastasia A.; Azarov, Alexander Yu.; Markeev, Andrey M.
2017-10-01
The clear substrate-dependent growth and delayed film continuity are essential challenges of Ru atomic layer deposition (ALD) demanding adequate and versatile approaches for their study. Here, we report on the application of in situ Angle Resolved X-ray Phototelectron Spectroscopy (ARXPS) for investigation of initial and steady-state ALD growth of Ru using Ru(EtCp)2 and O2 as precursors. Using ARXPS surface analysis technique we determine such parameters of Ru ALD initial growth as incubation period, fractional coverage and the thickness of islands/film depending on the substrate chemical state, governed by the presence/absence of NH3/Ar plasma pretreatment. It was demonstrated that NH3/Ar plasma pretreatment allows to obtain the lowest incubation period (∼7 ALD cycles) resulting in a continuous ultrathin (∼20 Å) and smooth Ru films after 70 ALD cycles. In situ XPS at UHV was used at steady state Ru growth for analysis of half-cycle reactions that revealed formation of RuOx (x ≈ 2) layer with thickness of ∼8 Å after O2 pulse (first half-cycle). It was also shown that oxygen of RuOx layer combusts Ru(EtCp)2 ligands in the second half-cycle reaction and the observed Ru growth of ∼0.34 Å per cycle is in a good agreement with the amount of oxygen in the RuOx layer.
Worm, Petra; Stams, Alfons J M; Cheng, Xu; Plugge, Caroline M
2011-01-01
Transcription of genes coding for formate dehydrogenases (fdh genes) and hydrogenases (hyd genes) in Syntrophobacter fumaroxidans and Methanospirillum hungatei was studied following growth under different conditions. Under all conditions tested, all fdh and hyd genes were transcribed. However, transcription levels of the individual genes varied depending on the substrate and growth conditions. Our results strongly suggest that in syntrophically grown S. fumaroxidans cells, the [FeFe]-hydrogenase (encoded by Sfum_844-46), FDH1 (Sfum_2703-06) and Hox (Sfum_2713-16) may confurcate electrons from NADH and ferredoxin to protons and carbon dioxide to produce hydrogen and formate, respectively. Based on bioinformatic analysis, a membrane-integrated energy-converting [NiFe]-hydrogenase (Mhun_1741-46) of M. hungatei might be involved in the energy-dependent reduction of CO(2) to formylmethanofuran. The best candidates for F(420)-dependent N(5),N(10)-methyl-H(4) MPT and N(5),N(10),-methylene-H(4)MPT reduction are the cytoplasmic [NiFe]-hydrogenase and FDH1. 16S rRNA ratios indicate that in one of the triplicate co-cultures of S. fumaroxidans and M. hungatei, less energy was available for S. fumaroxidans. This led to enhanced transcription of genes coding for the Rnf-complex (Sfum_2694-99) and of several fdh and hyd genes. The Rnf-complex probably reoxidized NADH with ferredoxin reduction, followed by ferredoxin oxidation by the induced formate dehydrogenases and hydrogenases.
Substrate dependent hierarchical structures of RF sputtered ZnS films
NASA Astrophysics Data System (ADS)
Chalana, S. R.; Mahadevan Pillai, V. P.
2018-05-01
RF magnetron sputtering technique was employed to fabricate ZnS nanostructures with special emphasis given to study the effect of substrates (quartz, glass and quartz substrate pre-coated with Au, Ag, Cu and Pt) on the structure, surface evolution and optical properties. Type of substrate has a significant influence on the crystalline phase, film morphology, thickness and surface roughness. The present study elucidates the suitability of quartz substrate for the deposition of stable and highly crystalline ZnS films. We found that the role of metal layer on quartz substrate is substantial in the preparation of hierarchical ZnS structures and these structures are of great importance due to its high specific area and potential applications in various fields. A mechanism for morphological evolution of ZnS structures is also presented based on the roughness of substrates and primary nonlocal effects in sputtering. Furthermore, the findings suggest that a controlled growth of hierarchical ZnS structures may be achieved with an ordinary RF sputtering technique by changing the substrate type.
NASA Technical Reports Server (NTRS)
Warner, Joseph D.; Bhasin, Kul B.; Miranda, Felix A.
1991-01-01
Samples of LaAlO3 made by flame fusion and Czochralski method were subjected to the same temperature conditions that they have to undergo during the laser ablation deposition of YBa2Cu3O(7 - delta) thin films. After oxygen annealing at 750 C, the LaAlO3 substrate made by two methods experienced surface roughening. The degree of roughening on the substrate made by Czochralski method was three times greater than that on the substrate made by flame fusion. This excessive surface roughening may be the origin of the experimentally observed lowering of the critical temperature of a film deposited by laser ablation on a LaAlO3 substrate made by Czochralski method with respect to its counterpart deposited on LaAlO3 substrates made by flame fusion.
High density nonmagnetic cobalt in thin films
NASA Astrophysics Data System (ADS)
Banu, Nasrin; Singh, Surendra; Basu, Saibal; Roy, Anupam; Movva, Hema C. P.; Lauter, V.; Satpati, B.; Dev, B. N.
2018-05-01
Recently high density (HD) nonmagnetic cobalt has been discovered in a nanoscale cobalt thin film, grown on Si(111) single crystal. This form of cobalt is not only nonmagnetic but also superconducting. These promising results have encouraged further investigations of the growth of the nonmagnetic (NM) phase of cobalt. In the original investigation, the cobalt film had a natural cobalt oxide at the top. We have investigated whether the growth of HD NM cobalt layers in the thin film depends on (i) a capping layer on the cobalt film, (ii) the thickness of the cobalt film and (iii) the nature of the substrate on which the cobalt film is grown. The results of such investigations indicate that for cobalt films capped with a thin gold layer, and for various film thicknesses, HD NM cobalt layers are formed. However, instead of a Si substrate, when the cobalt films are grown on oxide substrates, such as silicon oxide or cobalt oxide, HD NM cobalt layers are not formed. The difference is attributed to the nature—crystalline or amorphous—of the substrate.
A Multiwell Platform for Studying Stiffness-Dependent Cell Biology
Mih, Justin D.; Sharif, Asma S.; Liu, Fei; Marinkovic, Aleksandar; Symer, Matthew M.; Tschumperlin, Daniel J.
2011-01-01
Adherent cells are typically cultured on rigid substrates that are orders of magnitude stiffer than their tissue of origin. Here, we describe a method to rapidly fabricate 96 and 384 well platforms for routine screening of cells in tissue-relevant stiffness contexts. Briefly, polyacrylamide (PA) hydrogels are cast in glass-bottom plates, functionalized with collagen, and sterilized for cell culture. The Young's modulus of each substrate can be specified from 0.3 to 55 kPa, with collagen surface density held constant over the stiffness range. Using automated fluorescence microscopy, we captured the morphological variations of 7 cell types cultured across a physiological range of stiffness within a 384 well plate. We performed assays of cell number, proliferation, and apoptosis in 96 wells and resolved distinct profiles of cell growth as a function of stiffness among primary and immortalized cell lines. We found that the stiffness-dependent growth of normal human lung fibroblasts is largely invariant with collagen density, and that differences in their accumulation are amplified by increasing serum concentration. Further, we performed a screen of 18 bioactive small molecules and identified compounds with enhanced or reduced effects on soft versus rigid substrates, including blebbistatin, which abolished the suppression of lung fibroblast growth at 1 kPa. The ability to deploy PA gels in multiwell plates for high throughput analysis of cells in tissue-relevant environments opens new opportunities for the discovery of cellular responses that operate in specific stiffness regimes. PMID:21637769
A multiwell platform for studying stiffness-dependent cell biology.
Mih, Justin D; Sharif, Asma S; Liu, Fei; Marinkovic, Aleksandar; Symer, Matthew M; Tschumperlin, Daniel J
2011-01-01
Adherent cells are typically cultured on rigid substrates that are orders of magnitude stiffer than their tissue of origin. Here, we describe a method to rapidly fabricate 96 and 384 well platforms for routine screening of cells in tissue-relevant stiffness contexts. Briefly, polyacrylamide (PA) hydrogels are cast in glass-bottom plates, functionalized with collagen, and sterilized for cell culture. The Young's modulus of each substrate can be specified from 0.3 to 55 kPa, with collagen surface density held constant over the stiffness range. Using automated fluorescence microscopy, we captured the morphological variations of 7 cell types cultured across a physiological range of stiffness within a 384 well plate. We performed assays of cell number, proliferation, and apoptosis in 96 wells and resolved distinct profiles of cell growth as a function of stiffness among primary and immortalized cell lines. We found that the stiffness-dependent growth of normal human lung fibroblasts is largely invariant with collagen density, and that differences in their accumulation are amplified by increasing serum concentration. Further, we performed a screen of 18 bioactive small molecules and identified compounds with enhanced or reduced effects on soft versus rigid substrates, including blebbistatin, which abolished the suppression of lung fibroblast growth at 1 kPa. The ability to deploy PA gels in multiwell plates for high throughput analysis of cells in tissue-relevant environments opens new opportunities for the discovery of cellular responses that operate in specific stiffness regimes.
NASA Technical Reports Server (NTRS)
Nesbitt, James A.
2001-01-01
A finite-difference computer program (COSIM) has been written which models the one-dimensional, diffusional transport associated with high-temperature oxidation and interdiffusion of overlay-coated substrates. The program predicts concentration profiles for up to three elements in the coating and substrate after various oxidation exposures. Surface recession due to solute loss is also predicted. Ternary cross terms and concentration-dependent diffusion coefficients are taken into account. The program also incorporates a previously-developed oxide growth and spalling model to simulate either isothermal or cyclic oxidation exposures. In addition to predicting concentration profiles after various oxidation exposures, the program can also be used to predict coating life based on a concentration dependent failure criterion (e.g., surface solute content drops to 2%). The computer code is written in FORTRAN and employs numerous subroutines to make the program flexible and easily modifiable to other coating oxidation problems.
A Theoretical Reassessment of Microbial Maintenance and Implications for Microbial Ecology Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Gangsheng; Post, Wilfred M
We attempted to reconcile three microbial maintenance models (Herbert, Pirt, and Compromise) through a critical reassessment. We provided a rigorous proof that the true growth yield coefficient (YG) is the ratio of the specific maintenance rate (a in Herbert) to the maintenance coefficient (m in Pirt). Other findings from this study include: (1) the Compromise model is identical to the Herbert for computing microbial growth and substrate consumption, but it expresses the dependence of maintenance on both microbial biomass and substrate; (2) the maximum specific growth rate in the Herbert ( max,H) is higher than those in the other twomore » models ( max,P and max,C), and the difference is the physiological maintenance factor (mq = a); and (3) the overall maintenance coefficient (mT) is more sensitive to mq than to the specific growth rate ( G) and YG. Our critical reassessment of microbial maintenance provides a new approach for quantifying some important components in soil microbial ecology models.« less
Lee, Hee Kwan; Yu, Jae Su
2012-04-01
We investigated the effect of growth parameters on the structural and optical properties of the ZnO nanostructures (NSs) grown on Au-coated Si substrate by a two-zone thermal chemical vapor deposition. The morphologies of ZnO NSs were controlled by various growth parameters, such as growth temperature, O2 flow rate, and working pressure, for different thicknesses of Au layer. The nanorod-like ZnO NSs were formed at 915 degrees C and the growth of two-dimensional structures, i.e., nanosheets, was enhanced with the increase of growth temperature up to 965 degrees C. It was found that the low working pressure contributed to improvement in vertical alignment and uniformity of ZnO NSs. The Zn/O atomic % ratio, which plays a key role in the growth mechanism of ZnO NSs, was changed by the growth parameters. The Zn/O atomic % ratio was increased with increasing the growth temperature, while it was decreased with increasing the working pressure. Under proper O2 flow rate, the ZnO nanorods with good crystallinity were fabricated with a Zn/O atomic % ratio of -0.9. For various growth parameters, the photoluminescence emission was slightly shifted with the ultraviolet emission related to the near band edge transition.
Yield and cold storage of Trichoderma conidia is influenced by substrate pH and storage temperature.
Steyaert, Johanna M; Chomic, Anastasia; Nieto-Jacobo, Maria; Mendoza-Mendoza, Artemio; Hay, Amanda J; Braithwaite, Mark; Stewart, Alison
2017-05-01
In this study we examined the influence of the ambient pH during morphogenesis on conidial yield of Trichoderma sp. "atroviride B" LU132 and T. hamatum LU593 and storage at low temperatures. The ambient pH of the growth media had a dramatic influence on the level of Trichoderma conidiation and this was dependent on the strain and growth media. On malt-extract agar, LU593 yield decreased with increasing pH (3-6), whereas yield increased with increasing pH for LU132. During solid substrate production the reverse was true for LU132 whereby yield decreased with increasing pH. The germination potential of the conidia decreased significantly over time in cold storage and the rate of decline was a factor of the strain, pH during morphogenesis, growth media, and storage temperature. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrooptical properties and structural features of amorphous ITO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amosova, L. P., E-mail: l-amosova@mail.ru
2015-03-15
Thin indium-tin oxide (ITO) films are deposited onto cold substrates by magnetron-assisted sputtering. The dependences of the structural, electrical, and optical properties of the films on the oxygen content in the atmosphere of sputtering and the growth rate are studied. It is shown that, if the substrate temperature is no higher than the ITO crystallization temperature and the conditions of growth deviate from the optimal relationship between the oxygen pressure and the growth rate, the resistance of the layers can be six or seven orders of magnitude higher than the resistance of conducting amorphous layers and reach hundreds of megaohms.more » At the same time, the optical properties of insulating layers in the visible spectral region are completely identical to the properties of the conducing amorphous modification. A conceptual model of defects responsible for the insulating properties of amorphous ITO is proposed.« less
Kulkarni, G B; Nayak, A S; Sajjan, S S; Oblesha, A; Karegoudar, T B
2013-05-01
This investigation deals with the production of IAA by a bacterial isolate Pantoea dispersa strain GPK (PDG) identified by 16S rRNA gene sequence analysis. HPLC and Mass spectral analysis of metabolites from bacterial spent medium revealed that, IAA production by PDG is Trp-dependent and follows indole-3-pyruvic acid (IPyA) pathway. Substrate specificity study of aromatic amino acid aminotransferase (AAT) showed high activities, only when tryptophan (Trp) and α-ketoglutarate (α-kg) were used as substrates. AAT is highly specific for Trp and α-kg as amino group donor and acceptor, respectively. The effect of exogenous IAA on bacterial growth was established. Low concentration of exogenous IAA induced the growth, whereas high concentration decreased the growth of bacterium. PDG treatment significantly increased the root length, shoot length and dry mass of the chickpea and pigeon pea plants. © 2013 The Society for Applied Microbiology.
Chen, Yongshuo; Li, Shizhong; Berezin, Vladimir; Bock, Elisabeth
2010-07-01
Activation of fibroblast growth factor (FGF) receptors (FGFRs) both by FGFs and by the neural cell adhesion molecule (NCAM) is crucial in the development and function of the nervous system. We found that FGFR substrate 2alpha (FRS2alpha), Src homologous and collagen A (ShcA), and phospholipase-Cgamma (PLCgamma) were all required for neurite outgrowth from cerebellar granule neurons (CGNs) induced by FGF1 and FGL (an NCAM-derived peptide agonist of FGFR1). Like FGF1, FGL induced tyrosine phosphorylation of FGFR1, FRS2alpha, ShcA, and PLCgamma in a time- and dose-dependent manner. However, the activation of FRS2alpha by FGL was significantly lower than the activation by FGF1, indicating a differential signaling profile induced by NCAM compared with the cognate growth factor.
Anteau, Michael J.; Wiltermuth, Mark T.; Sherfy, Mark H.; Shaffer, Terry L.; Pearse, Aaron T.
2014-01-01
For species with precocial young, survival from hatching to fledging is a key factor influencing recruitment. Furthermore, growth rates of precocial chicks are an indicator of forage quality and habitat suitability of brood-rearing areas. We examined how growth and fledging rates of Piping Plover (Charadrius melodus) chicks were influenced by landscape features, such as hatchling density (hatchlings per hectare of remotely sensed habitat [H ha-1]), island vs. mainland, and wind fetch (exposure to waves) at 2-km segments (n ¼ 15) of Lake Sakakawea, North Dakota, during 2007–2008. Hatchling growth was comparable with published estimates for other habitats. Models for fledging rate (fledged young per segment) assuming density dependence had more support (wi ¼ 96%) than those assuming density independence (wi ¼ 4%). Density-dependent processes appeared to influence fledging rate only at densities .5 H ha-1, which occurred in 19% of the segments we sampled. When areas with densities .5 H ha-1 were excluded, density-dependence and density-independence models were equally supported (wi ¼ 52% and 48%, respectively). Fledging rate declined as the wind fetch of a segment increased. Fledging rate on mainland shorelines was 4.3 times greater than that on islands. Previous work has indicated that plovers prefer islands for nesting, but our results suggest that this preference is not optimal and could lead to an ecological trap for chicks. While other researchers have found nesting-habitat requirements to be gravelly areas on exposed beaches without fine-grain substrates, our results suggest that chicks fledge at lower rates in these habitats. Thus, breeding plovers likely require complexes of these nesting habitats along with protected areas with fine, nutrient-rich substrate for foraging by hatchlings.
Liquid phase heteroepitaxial growth on convex substrate using binary phase field crystal model
NASA Astrophysics Data System (ADS)
Lu, Yanli; Zhang, Tinghui; Chen, Zheng
2018-06-01
The liquid phase heteroepitaxial growth on convex substrate is investigated with the binary phase field crystal (PFC) model. The paper aims to focus on the transformation of the morphology of epitaxial films on convex substrate with two different radiuses of curvature (Ω) as well as influences of substrate vicinal angles on films growth. It is found that films growth experience different stages on convex substrate with different radiuses of curvature (Ω). For Ω = 512 Δx , the process of epitaxial film growth includes four stages: island coupled with layer-by-layer growth, layer-by-layer growth, island coupled with layer-by-layer growth, layer-by-layer growth. For Ω = 1024 Δx , film growth only experience islands growth and layer-by-layer growth. Also, substrate vicinal angle (π) is an important parameter for epitaxial film growth. We find the film can grow well when π = 2° for Ω = 512 Δx , while the optimized film can be obtained when π = 4° for Ω = 512 Δx .
Lopez-Siles, Mireia; Khan, Tanweer M; Duncan, Sylvia H; Harmsen, Hermie J M; Garcia-Gil, L Jesús; Flint, Harry J
2012-01-01
Faecalibacterium prausnitzii is one of the most abundant commensal bacteria in the healthy human large intestine, but information on genetic diversity and substrate utilization is limited. Here, we examine the phylogeny, phenotypic characteristics, and influence of gut environmental factors on growth of F. prausnitzii strains isolated from healthy subjects. Phylogenetic analysis based on the 16S rRNA sequences indicated that the cultured strains were representative of F. prausnitzii sequences detected by direct analysis of fecal DNA and separated the available isolates into two phylogroups. Most F. prausnitzii strains tested grew well under anaerobic conditions on apple pectin. Furthermore, F. prausnitzii strains competed successfully in coculture with two other abundant pectin-utilizing species, Bacteroides thetaiotaomicron and Eubacterium eligens, with apple pectin as substrate, suggesting that this species makes a contribution to pectin fermentation in the colon. Many F. prausnitzii isolates were able to utilize uronic acids for growth, an ability previously thought to be confined to Bacteroides spp. among human colonic anaerobes. Most strains grew on N-acetylglucosamine, demonstrating an ability to utilize host-derived substrates. All strains tested were bile sensitive, showing at least 80% growth inhibition in the presence of 0.5 μg/ml bile salts, while inhibition at mildly acidic pH was strain dependent. These attributes help to explain the abundance of F. prausnitzii in the colonic community but also suggest factors in the gut environment that may limit its distribution.
Lopez-Siles, Mireia; Khan, Tanweer M.; Duncan, Sylvia H.; Harmsen, Hermie J. M.; Garcia-Gil, L. Jesús
2012-01-01
Faecalibacterium prausnitzii is one of the most abundant commensal bacteria in the healthy human large intestine, but information on genetic diversity and substrate utilization is limited. Here, we examine the phylogeny, phenotypic characteristics, and influence of gut environmental factors on growth of F. prausnitzii strains isolated from healthy subjects. Phylogenetic analysis based on the 16S rRNA sequences indicated that the cultured strains were representative of F. prausnitzii sequences detected by direct analysis of fecal DNA and separated the available isolates into two phylogroups. Most F. prausnitzii strains tested grew well under anaerobic conditions on apple pectin. Furthermore, F. prausnitzii strains competed successfully in coculture with two other abundant pectin-utilizing species, Bacteroides thetaiotaomicron and Eubacterium eligens, with apple pectin as substrate, suggesting that this species makes a contribution to pectin fermentation in the colon. Many F. prausnitzii isolates were able to utilize uronic acids for growth, an ability previously thought to be confined to Bacteroides spp. among human colonic anaerobes. Most strains grew on N-acetylglucosamine, demonstrating an ability to utilize host-derived substrates. All strains tested were bile sensitive, showing at least 80% growth inhibition in the presence of 0.5 μg/ml bile salts, while inhibition at mildly acidic pH was strain dependent. These attributes help to explain the abundance of F. prausnitzii in the colonic community but also suggest factors in the gut environment that may limit its distribution. PMID:22101049
Suk, Kyung-Suk; Jung, Ha-Na; Woo, Hee-Gweon; Park, Don-Hee; Kim, Do-Heyoung
2010-05-01
Ge-Sb-Te (GST) thin films were deposited on TiN, SiO2, and Si substrates by cyclic-pulsed plasma-enhanced chemical vapor deposition (PECVD) using Ge{N(CH3)(C2H5)}, Sb(C3H7)3, Te(C3H7)3 as precursors in a vertical flow reactor. Plasma activated H2 was used as the reducing agent. The growth behavior was strongly dependent on the type of substrate. GST grew as a continuous film on TiN regardless of the substrate temperature. However, GST formed only small crystalline aggregates on Si and SiO2 substrates, not a continuous film, at substrate temperatures > or = 200 degrees C. The effects of the deposition temperature on the surface morphology, roughness, resistivity, crystallinity, and composition of the GST films were examined.
Jansen, Mickel L. A.; Daran-Lapujade, Pascale; de Winde, Johannes H.; Piper, Matthew D. W.; Pronk, Jack T.
2004-01-01
Prolonged cultivation (>25 generations) of Saccharomyces cerevisiae in aerobic, maltose-limited chemostat cultures led to profound physiological changes. Maltose hypersensitivity was observed when cells from prolonged cultivations were suddenly exposed to excess maltose. This substrate hypersensitivity was evident from massive cell lysis and loss of viability. During prolonged cultivation at a fixed specific growth rate, the affinity for the growth-limiting nutrient (i.e., maltose) increased, as evident from a decreasing residual maltose concentration. Furthermore, the capacity of maltose-dependent proton uptake increased up to 2.5-fold during prolonged cultivation. Genome-wide transcriptome analysis showed that the increased maltose transport capacity was not primarily due to increased transcript levels of maltose-permease genes upon prolonged cultivation. We propose that selection for improved substrate affinity (ratio of maximum substrate consumption rate and substrate saturation constant) in maltose-limited cultures leads to selection for cells with an increased capacity for maltose uptake. At the same time, the accumulative nature of maltose-proton symport in S. cerevisiae leads to unrestricted uptake when maltose-adapted cells are exposed to a substrate excess. These changes were retained after isolation of individual cell lines from the chemostat cultures and nonselective cultivation, indicating that mutations were involved. The observed trade-off between substrate affinity and substrate tolerance may be relevant for metabolic engineering and strain selection for utilization of substrates that are taken up by proton symport. PMID:15066785
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyer, J.M.; Storey, B.D.; Hoke, J.L.
2000-07-01
An experimental investigation of the effect of the substrate on frost growth rate is presented. Measurements of frost height as a function of time are presented for a flat, bare, horizontally oriented aluminum substrate and four coated substrates, two hydrophilic and two hydrophobic. The average frost growth rate on the hydrophilic coated aluminum substrate is 13% higher than the control substrate, while the frost growth rate on the hydrophilic kapton substrate is 4% higher. Frost grows on the hydrophobic substrates at a rate 19% and 3% lower than the reference substrate for the polytetrafluoroethylene (PTFE) coated steel and PTFE tape,more » respectively. Differences in the receding and advancing contact angles for these substrates do not fully explain the difference in growth rates. Differences in initial water deposition, freezing, and frost growth on hydrophilic and hydrophobic substrates are examined using confocal microscopy. On the basis of the microscopic observations, the authors hypothesize that the water coverage on the substrate before and after freezing can affect the thermal resistance of the mature frost layer. Differences in thermal resistance, in turn, affect the growth rate.« less
NASA Astrophysics Data System (ADS)
Kalb, Julian; Dorman, James A.; Folger, Alena; Gerigk, Melanie; Knittel, Vanessa; Plüisch, Claudia S.; Trepka, Bastian; Lehr, Daniela; Chua, Emily; Goodge, Berit H.; Wittemann, Alexander; Scheu, Christina; Polarz, Sebastian; Schmidt-Mende, Lukas
2018-07-01
Rutile TiO2 nanorod arrays (NRAs) are applicable in various prospective technologies. Hydrothermal methods present a simple technique to fabricate such NRAs. In this report, we present the fabrication of seed layers for the hydrothermal growth of rutile TiO2 nanorods via sputter deposition, electron-beam evaporation, and sol-gel method and study the influence of each on the growth behavior. To satisfy the requirements of numerous applications, p-type silicon, platinum, levitating carbon membranes, a template made of polystyrene spheres, and commercial fluorine tin oxide (FTO) were employed as substrates. We document the structural properties of the TiO2 seed layers and describe the relationship between the characteristics of the seed crystals, the growth evolution, and the appearance of as-grown nanorods. Various growth stages of rutile TiO2 nanorods are compared depending on whether they are grown on polycrystalline TiO2 or FTO seed layers. In both cases, a homogenous TiO2 bottom layer is formed at the seed layer/substrate interface, which is essential for electronic applications such as hybrid solar cells. Detached NRAs illustrate the effect of rutile FTO and TiO2 on the porosity of this bottom layer. Further details about the formation process of this layer are obtained from the growth on confined seed layers fabricated by electron-beam lithography.
Bapat, Prashant M; Das, Debasish; Dave, Nishant N; Wangikar, Pramod P
2006-12-15
Antibiotic fermentation processes are raw material cost intensive and the profitability is greatly dependent on the product yield per unit substrate consumed. In order to reduce costs, industrial processes use organic nitrogen substrates (ONS) such as corn steep liquor and yeast extract. Thus, although the stoichiometric analysis is the first logical step in process development, it is often difficult to achieve due to the ill-defined nature of the medium. Here, we present a black-box stoichiometric model for rifamycin B production via Amycolatopsis mediterranei S699 fermentation in complex multi-substrate medium. The stoichiometric coefficients have been experimentally evaluated for nine different media compositions. The ONS was quantified in terms of the amino acid content that it provides. Note that the black box stoichiometric model is an overall result of the metabolic reactions that occur during growth. Hence, the observed stoichiometric coefficients are liable to change during the batch cycle. To capture the shifts in stoichiometry, we carried out the stoichiometric analysis over short intervals of 8-16 h in a batch cycle of 100-200 h. An error analysis shows that there are no systematic errors in the measurements and that there are no unaccounted products in the process. The growth stoichiometry shows a shift from one substrate combination to another during the batch cycle. The shifts were observed to correlate well with the shifts in the trends of pH and exit carbon dioxide profiles. To exemplify, the ammonia uptake and nitrate uptake phases were marked by a decreasing pH trend and an increasing pH trend, respectively. Further, we find the product yield per unit carbon substrate to be greatly dependent on the nature of the nitrogen substrate. The analysis presented here can be readily applied to other fermentation systems that employ multi-substrate complex media.
Allem, Laísa N; Gomes, Anabele S; Borghetti, Fabian
2014-10-21
Studies have identified the phytotoxicity of many native species of the Cerrado; however, most of them were conducted either in inert substrates, or using exaggerate proportions of plant material. We investigated the phytotoxicity of pequi leaves added to substrate soil in quantities compatible with the litter produced by this species. Pequi leaves were triturated and added to red latosol in concentrations of 0.75%, 1.5% and 3%; the control was constituted of leafless soil. These mixtures were added to pots and irrigated daily to keep them moist. Germinated seeds of the cultivated sorghum and sesame, of the invasive brachiaria and of the native purple ipê, were disposed in the pots to grow for five to seven days at 30°C within a photoperiod of 12 h. Seedlings of all the species presented a reduction in their initial growth in a dose-dependent way. In general, the root growth was more affected by the treatments than the shoot growth; moreover, signs of necrosis were observed in the roots of the sorghum, sesame and brachiaria. The phytotoxic effects generated by relatively small quantities of leaves, in a reasonable range of species within a soil substrate, suggest potential allelopathy of pequi leaves under natural conditions.
Allem, Laísa N; Gomes, Anabele S; Borghetti, Fabian
2014-12-01
Studies have identified the phytotoxicity of many native species of the Cerrado; however, most of them were conducted either in inert substrates, or using exaggerate proportions of plant material. We investigated the phytotoxicity of pequi leaves added to substrate soil in quantities compatible with the litter produced by this species. Pequi leaves were triturated and added to red latosol in concentrations of 0.75%, 1.5% and 3%; the control was constituted of leafless soil. These mixtures were added to pots and irrigated daily to keep them moist. Germinated seeds of the cultivated sorghum and sesame, of the invasive brachiaria and of the native purple ipê, were disposed in the pots to grow for five to seven days at 30°C within a photoperiod of 12 h. Seedlings of all the species presented a reduction in their initial growth in a dose-dependent way. In general, the root growth was more affected by the treatments than the shoot growth; moreover, signs of necrosis were observed in the roots of the sorghum, sesame and brachiaria. The phytotoxic effects generated by relatively small quantities of leaves, in a reasonable range of species within a soil substrate, suggest potential allelopathy of pequi leaves under natural conditions.
1980-08-15
wafers. The amount of overgrowth is dependent on the orientation of the silicon substrate and the thick- ness of the SiO 2 layer. V. ANALOG DEVICE...Moulton XI Intl. Quantum Electronics Metal-Doped Lasers A. Mooradian Conference, Boston, Z3-26 June 1980 5Z45 Temperature- Dependent Spectral D.J...High Tempera- C. 0. Bozler 24-27 June 1980 ture Anneal 5327 Growth-Temperature Dependence Z. L. Liau of LPE GaInAsP/lnP Lattice J. J. Hsieh Mismatch
High-fraction brookite films from amorphous precursors.
Haggerty, James E S; Schelhas, Laura T; Kitchaev, Daniil A; Mangum, John S; Garten, Lauren M; Sun, Wenhao; Stone, Kevin H; Perkins, John D; Toney, Michael F; Ceder, Gerbrand; Ginley, David S; Gorman, Brian P; Tate, Janet
2017-11-09
Structure-specific synthesis processes are of key importance to the growth of polymorphic functional compounds such as TiO 2 , where material properties strongly depend on structure as well as chemistry. The robust growth of the brookite polymorph of TiO 2 , a promising photocatalyst, has been difficult in both powder and thin-film forms due to the disparity of reported synthesis techniques, their highly specific nature, and lack of mechanistic understanding. In this work, we report the growth of high-fraction (~95%) brookite thin films prepared by annealing amorphous titania precursor films deposited by pulsed laser deposition. We characterize the crystallization process, eliminating the previously suggested roles of substrate templating and Na helper ions in driving brookite formation. Instead, we link phase selection directly to film thickness, offering a novel, generalizable route to brookite growth that does not rely on the presence of extraneous elements or particular lattice-matched substrates. In addition to providing a new synthesis route to brookite thin films, our results take a step towards resolving the problem of phase selection in TiO 2 growth, contributing to the further development of this promising functional material.
Ge growth on vicinal si(001) surfaces: island's shape and pair interaction versus miscut angle.
Persichetti, L; Sgarlata, A; Fanfoni, M; Balzarotti, A
2011-10-01
A complete description of Ge growth on vicinal Si(001) surfaces is provided. The distinctive mechanisms of the epitaxial growth process on vicinal surfaces are clarified from the very early stages of Ge deposition to the nucleation of 3D islands. By interpolating high-resolution scanning tunneling microscopy measurements with continuum elasticity modeling, we assess the dependence of island's shape and elastic interaction on the substrate misorientation. Our results confirm that vicinal surfaces offer an additional degree of control over the shape and symmetry of self-assembled nanostructures.
1990-01-01
It has recently become clear that both extracellular matrix (ECM) glycoproteins and various cell adhesion molecules (CAMs) can promote neurite outgrowth from primary neurons, though little is known of the intracellular mechanisms through which these signals are transduced. We have previously obtained evidence that protein kinase C function is an important part of the neuronal response to laminin (Bixby, J.L. 1989. Neuron. 3:287-297). Because such CAMs as L1 (Lagenauer, C., and V. Lemmon. 1987. Proc. Natl. Acad. Sci. USA. 84:7753-7757) and N-cadherin (Bixby, J.L. and R. Zhang. 1990. J. Cell Biol. 110:1253-1260) can be purified and used as substrates to promote neurite growth, we have now tested whether the response to CAMs is similarly dependent on protein kinase C. We find that inhibition of protein kinase C inhibits growth on fibronectin or collagen as well as on laminin. In contrast, C kinase inhibition actually potentiates the initial growth response to L1 or N- cadherin. The later "phase" of outgrowth on both of these CAMs is inhibited, however. Additionally, phorbol esters, which have no effect on neurite growth when optimal laminin concentrations are used, potentiate growth even on optimal concentrations of L1 or N-cadherin. The results indicate that different intracellular mechanisms operate during initial process outgrowth on ECM substrates as compared to CAM substrates, and suggest that protein kinase C function is required for continued neurite growth on each of these glycoproteins. PMID:2277083
From the Cover: Adipose tissue mass can be regulated through the vasculature
NASA Astrophysics Data System (ADS)
Rupnick, Maria A.; Panigrahy, Dipak; Zhang, Chen-Yu; Dallabrida, Susan M.; Lowell, Bradford B.; Langer, Robert; Judah Folkman, M.
2002-08-01
Tumor growth is angiogenesis dependent. We hypothesized that nonneoplastic tissue growth also depends on neovascularization. We chose adipose tissue as an experimental system because of its remodeling capacity. Mice from different obesity models received anti-angiogenic agents. Treatment resulted in dose-dependent, reversible weight reduction and adipose tissue loss. Marked vascular remodeling was evident in adipose tissue sections, which revealed decreased endothelial proliferation and increased apoptosis in treated mice compared with controls. Continuous treatment maintained mice near normal body weights for age without adverse effects. Metabolic adaptations in food intake, metabolic rate, and energy substrate utilization were associated with anti-angiogenic weight loss. We conclude that adipose tissue mass is sensitive to angiogenesis inhibitors and can be regulated by its vasculature.
NASA Astrophysics Data System (ADS)
Xie, Shuzheng; Islam, Rokibul; Hussein, Bashir; Englund, Karl; Pedrow, Patrick
2015-09-01
In this research we use a 40-needle array energized with 60 Hz AC voltage in the range 5 to 15 kV RMS. Plasma processing takes place downstream from a grounded planar screen (the opposing electrode). The needle-to-screen gap is in the range 4 to 10 cm and its E-field generates weakly ionized plasma via streamers and back corona. Deposited material is plasma-polymerized acetylene. Substrates are potassium bromide, mica, wood, paper, and gold-covered solids. Substrate chemical species influence the efficiency with which the disc amasses plasma-polymerized material, at least until the substrate is fully covered with film. Early plasma-polymerization is accompanied by nucleation-site-dominated nodules but longer term deposition results in a film that fully covers the substrate. We will report on time-dependent areal mass density associated with run times in the range 5-60 minutes. Film thickness will be measured using instruments that include visible light microscopy, TEM, and SEM. Others in our research group are studying areal mass density for early times (1-5 minutes) when nodule growth (at nucleation sites) dominates the deposition process.
Maeda, Hiroshi; Sakai, Daisuke; Kobayashi, Takuji; Morita, Hiroto; Okamoto, Ayako; Takeuchi, Michio; Kusumoto, Ken-Ichi; Amano, Hitoshi; Ishida, Hiroki; Yamagata, Youhei
2016-06-01
Three extracellular dipeptidyl peptidase genes, dppB, dppE, and dppF, were unveiled by sequence analysis of the Aspergillus oryzae genome. We investigated their differential enzymatic profiles, in order to gain an understanding of the diversity of these genes. The three dipeptidyl peptidases were expressed using Aspergillus nidulans as the host. Each recombinant enzyme was purified and subsequently characterized. The enzymes displayed similar optimum pH values, but optimum temperatures, pH stabilities, and substrate specificities varied. DppB was identified as a Xaa-Prolyl dipeptidyl peptidase, while DppE scissile substrates were similar to the substrates for Aspergillus fumigatus DPPV (AfDPPV). DppF was found to be a novel enzyme that could digest both substrates for A. fumigatus DPPIV and AfDPPV. Semi-quantitative PCR revealed that the transcription of dppB in A. oryzae was induced by protein substrates and repressed by the addition of an inorganic nitrogen source, despite the presence of protein substrates. The transcription of dppE depended on its growth time, while the transcription of dppF was not affected by the type of the nitrogen source in the medium, and it started during the early stage of the fungal growth. Based on these results, we conclude that these enzymes may represent the nutrition acquisition enzymes. Additionally, DppF may be one of the sensor peptidases responsible for the detection of the protein substrates in A. oryzae environment. DppB may be involved in nitrogen assimilation control, since the transcription of dppB was repressed by NaNO3, despite the presence of protein substrates.
Van Voorhies, Wayne A.
2012-01-01
Understanding factors that regulate the metabolism and growth of an organism is of fundamental biologic interest. This study compared the influence of two different carbon substrates, dextrose and galactose, on the metabolic and growth rates of the yeast Saccharomyces cerevisiae. Yeast metabolic and growth rates varied widely depending on the metabolic substrate supplied. The metabolic and growth rates of a yeast strain maintained under long-term laboratory conditions was compared to strain isolated from natural condition when grown on different substrates. Previous studies had determined that there are numerous genetic differences between these two strains. However, the overall metabolic and growth rates of a wild isolate of yeast was very similar to that of a strain that had been maintained under laboratory conditions for many decades. This indicates that, at in least this case, metabolism and growth appear to be well buffered against genetic differences. Metabolic rate and cell number did not co-vary in a simple linear manner. When grown in either dextrose or galactose, both strains showed a growth pattern in which the number of cells continued to increase well after the metabolic rate began a sharp decline. Previous studied have reported that O2 consumption in S. cerevisiae grown in reduced dextrose levels were elevated compared to higher levels. Low dextrose levels have been proposed to induce caloric restriction and increase life span in yeast. However, there was no evidence that reduced levels of dextrose increased metabolic rates, measured by either O2 consumption or CO2 production, in the strains used in this study. PMID:22253874
Arginase expression modulates nitric oxide production in Leishmania (Leishmania) amazonensis.
Acuña, Stephanie Maia; Aoki, Juliana Ide; Laranjeira-Silva, Maria Fernanda; Zampieri, Ricardo Andrade; Fernandes, Juliane Cristina Ribeiro; Muxel, Sandra Marcia; Floeter-Winter, Lucile Maria
2017-01-01
Arginase is an enzyme that converts L-arginine to urea and L-ornithine, an essential substrate for the polyamine pathway supporting Leishmania (Leishmania) amazonensis replication and its survival in the mammalian host. L-arginine is also the substrate of macrophage nitric oxide synthase 2 (NOS2) to produce nitric oxide (NO) that kills the parasite. This competition can define the fate of Leishmania infection. The transcriptomic profiling identified a family of oxidoreductases in L. (L.) amazonensis wild-type (La-WT) and L. (L.) amazonensis arginase knockout (La-arg-) promastigotes and axenic amastigotes. We highlighted the identification of an oxidoreductase that could act as nitric oxide synthase-like (NOS-like), due to the following evidences: conserved domain composition, the participation of NO production during the time course of promastigotes growth and during the axenic amastigotes differentiation, regulation dependence on arginase activity, as well as reduction of NO amount through the NOS activity inhibition. NO quantification was measured by DAF-FM labeling analysis in a flow cytometry. We described an arginase-dependent NOS-like activity in L. (L.) amazonensis and its role in the parasite growth. The increased detection of NO production in the mid-stationary and late-stationary growth phases of La-WT promastigotes could suggest that this production is an important factor to metacyclogenesis triggering. On the other hand, La-arg- showed an earlier increase in NO production compared to La-WT, suggesting that NO production can be arginase-dependent. Interestingly, La-WT and La-arg- axenic amastigotes produced higher levels of NO than those observed in promastigotes. As a conclusion, our work suggested that NOS-like is expressed in Leishmania in the stationary growth phase promastigotes and amastigotes, and could be correlated to metacyclogenesis and amastigotes growth in a dependent way to the internal pool of L-arginine and arginase activity.
Continuous high-yield production of vertically aligned carbon nanotubes on 2D and 3D substrates.
Guzmán de Villoria, Roberto; Hart, A John; Wardle, Brian L
2011-06-28
Vertically aligned carbon nanotubes (VACNTs) have certain advantages over bulk CNT powders and randomly oriented CNT mats for applications in flexible electronic devices, filtration membranes, biosensors and multifunctional aerospace materials. Here, a machine and a process to synthesize VACNTs in a continuous manner are presented showing uniform growth on 2D and 3D substrates, including alumina fibers, silicon wafer pieces, and stainless steel foils. Aligned multiwalled carbon nanotubes (MWNT) are synthesized at substrate feed rates of up to 6.8 cm/min, and the CNTs reach up to 60 μm in length depending on residence time in the reactor. In addition to the aligned morphology indicative of high yield growth, transmission electron microscopy and Raman spectroscopy reveal that the CNTs are of comparable quality to CNTs grown via a similar batch process. A significant reduction in time, reaction products, gases, and energy is demonstrated relative to batch processing, paving the way for industrial production of VACNTs.
Identification of She3 as an SCFGrr1 Substrate in Budding Yeast
Wang, Ruiwen; Solomon, Mark J.
2012-01-01
The highly orchestrated progression of the cell cycle depends on the degradation of many regulatory proteins at different cell cycle stages. One of the key cell cycle ubiquitin ligases is the Skp1-cullin-F-box (SCF) complex. Acting in concert with the substrate-binding F-box protein Grr1, SCFGrr1 promotes the degradation of cell cycle regulators as well as various metabolic enzymes. Using a yeast two-hybrid assay with a Grr1 derivative as the bait, we identified She3, which is an adaptor protein in the asymmetric mRNA transport system, as a novel Grr1 substrate. We generated stabilized She3 mutants, which no longer bound to Grr1, and found that the degradation of She3 is not required for regulating asymmetric mRNA transport. However, She3 stabilization leads to slower growth compared to wild-type cells in a co-culture assay, demonstrating that the degradation of She3 by Grr1 is required for optimal cell growth. PMID:23144720
Kinetic modeling of Candida shehatae ATCC 22984 on xylose and glucose for ethanol production.
Yuvadetkun, Prawphan; Leksawasdi, Noppol; Boonmee, Mallika
2017-03-16
Candida shehatae ATCC 22984, a xylose-fermenting yeast, showed an ability to produce ethanol in both glucose and xylose medium. Maximum ethanol produced by the yeast was 48.8 g/L in xylose and 52.6 g/L in glucose medium with ethanol yields that varied between 0.3 and 0.4 g/g depended on initial sugar concentrations. Xylitol was a coproduct of ethanol production using xylose as substrate, and glycerol was detected in both glucose and xylose media. Kinetic model equations indicated that growth, substrate consumption, and product formation of C. shehatae were governed by substrate limitation and inhibition by ethanol. The model suggested that cell growth was totally inhibited at 40 g/L of ethanol and ethanol production capacity of the yeast was 52 g/L, which were in good agreement with experimental results. The developed model could be used to explain C. shehatae fermentation in glucose and xylose media from 20 to 170 g/L sugar concentrations.
NASA Astrophysics Data System (ADS)
Zhao, Jianhong; Qiao, Zhenfang; Zhang, Yumin; Zou, Taoyu; Yu, Leiming; Luo, Li; Wang, Xiaoyan; Yang, Yiji; Wang, Hai; Tang, Libin
2016-09-01
The unsubstituted copper phthalocyanine (CuPc) single crystal nano columns were fabricated for the first time as chlorine (Cl2) gas sensors in this paper. The nano columns of CuPc have been prepared on different substrates via template-free physical vapor deposition (PVD) approach. The growth mechanism of CuPc nano column on quartz was explored and the same condition used on other substrates including glass, sapphire (C-plane<0001>, M-plane<10 1 ¯ 0 >, R-plane<1 1 ¯ 02 >), Si and SiO2/Si came to a same conclusion, which confirmed that the aligned growth of CuPc nano column is not substrate-dependent. And then the CuPc nano column with special morphology was integrated as in-situ sensor device which exhibits high sensitivity and selectivity towards Cl2 at room temperature with a minimum detection limit as low as 0.08 ppm. The response of sensor was found to increase linearly (26 ˜659 % ) with the increase for Cl2 within concentration range (0.08 ˜4.0 ppm ) . These results clearly demonstrate the great potential of the nano column growth and device integration approach for sensor device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amani, Matin; Chin, Matthew L.; Mazzoni, Alexander L.
2014-05-19
We report on the electronic transport properties of single-layer thick chemical vapor deposition (CVD) grown molybdenum disulfide (MoS{sub 2}) field-effect transistors (FETs) on Si/SiO{sub 2} substrates. MoS{sub 2} has been extensively investigated for the past two years as a potential semiconductor analogue to graphene. To date, MoS{sub 2} samples prepared via mechanical exfoliation have demonstrated field-effect mobility values which are significantly higher than that of CVD-grown MoS{sub 2}. In this study, we will show that the intrinsic electronic performance of CVD-grown MoS{sub 2} is equal or superior to that of exfoliated material and has been possibly masked by a combinationmore » of interfacial contamination on the growth substrate and residual tensile strain resulting from the high-temperature growth process. We are able to quantify this strain in the as-grown material using pre- and post-transfer metrology and microscopy of the same crystals. Moreover, temperature-dependent electrical measurements made on as-grown and transferred MoS{sub 2} devices following an identical fabrication process demonstrate the improvement in field-effect mobility.« less
NASA Astrophysics Data System (ADS)
Akazawa, Housei
2018-04-01
Morphological evolution of Ge layers on SiO2 substrates grown by photo-excited chemical vapor deposition from GeH4 was monitored in real time by recording (Ψ, Δ) angles of spectroscopic ellipsometry and ex-situ analyzed by atomic force microscopy (AFM). Distinct Ψ-Δ trajectory shapes were demonstrated to discriminate the two-dimensional (2D) and three-dimensional (3D) growth modes. While the trajectory of 2D growth is characterized by a one-turn spiral, that of 3D growth consisted of three sections corresponding to initial wetting of the SiO2 surface, creation of nucleation centers, and dot growth. The critical point where the system turns into 2D or 3D growth can be in situ identified in terms of the directions of the Ψ-Δ trajectories. AFM images revealed characteristic changes in the microstructure, including self-assembling dots and dots merging with one another. While the root-mean-square surface roughness increased linearly against film thickness, the maximum peak-to-valley height deviated once from linear dependence and later returned back to it, which reflected coarsening of dots and embedding of valleys between dots.
USDA-ARS?s Scientific Manuscript database
Gut apical amino acid (AA) transport activity is high at birth and during suckling, thus being essential to maintain luminal nutrient-dependent mucosal growth through providing AA as essential metabolic fuel, substrates and nutrient stimuli for cellular growth. Because system-B(0) Na(+)-neutral AA c...
Characterizing the structure of topological insulator thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardella, Anthony; Kandala, Abhinav; Lee, Joon Sue
2015-08-01
We describe the characterization of structural defects that occur during molecular beam epitaxy of topological insulator thin films on commonly used substrates. Twinned domains are ubiquitous but can be reduced by growth on smooth InP (111)A substrates, depending on details of the oxide desorption. Even with a low density of twins, the lattice mismatch between (Bi, Sb){sub 2}Te{sub 3} and InP can cause tilts in the film with respect to the substrate. We also briefly discuss transport in simultaneously top and back electrically gated devices using SrTiO{sub 3} and the use of capping layers to protect topological insulator films frommore » oxidation and exposure.« less
Microstructural studies by TEM of diamond films grown by combustion flame
NASA Astrophysics Data System (ADS)
Ma, G.-H. M.; Hirose, Y.; Amanuma, S.; McClure, M.; Prater, J. T.; Glass, J. T.
Microstructures of diamond films grown in an oxygen-acetylene combustion flame were studied by TEM. The O2/C2H2 gas ratio was fixed and the substrate materials and temperature were varied. High quality diamond films were grown by this method at high growth rates of about 30 micron/hr. A rough surface and high density of secondary nucleation sites and microtwins were observed in the diamond grains grown on molybdenum (Mo) at a substrate temperature of 500 C. When the substrate temperature wass raised to between 500 and 870 C, the defect density was greatly reduced, revealing a low density of stacking faults and dislocations. Diamond films grown on Si substrates did not show the same substrate temperature dependence on defect density, at least not over the same temperature range. However, the same correlation between defect density, secondary nucleation, and surface morphology was observed.
Catalyst–substrate interaction and growth delay in vapor–liquid–solid nanowire growth
NASA Astrophysics Data System (ADS)
Kolíbal, Miroslav; Pejchal, Tomáš; Musálek, Tomáš; Šikola, Tomáš
2018-05-01
Understanding of the initial stage of nanowire growth on a bulk substrate is crucial for the rational design of nanowire building blocks in future electronic and optoelectronic devices. Here, we provide in situ scanning electron microscopy and Auger microscopy analysis of the initial stage of Au-catalyzed Ge nanowire growth on different substrates. Real-time microscopy imaging and elementally resolved spectroscopy clearly show that the catalyst dissolves the underlying substrate if held above a certain temperature. If the substrate dissolution is blocked (or in the case of heteroepitaxy) the catalyst needs to be filled with nanowire material from the external supply, which significantly increases the initial growth delay. The experiments presented here reveal the important role of the substrate in metal-catalyzed nanowire growth and pave the way for different growth delay mitigation strategies.
Catalyst-substrate interaction and growth delay in vapor-liquid-solid nanowire growth.
Kolíbal, Miroslav; Pejchal, Tomáš; Musálek, Tomáš; Šikola, Tomáš
2018-05-18
Understanding of the initial stage of nanowire growth on a bulk substrate is crucial for the rational design of nanowire building blocks in future electronic and optoelectronic devices. Here, we provide in situ scanning electron microscopy and Auger microscopy analysis of the initial stage of Au-catalyzed Ge nanowire growth on different substrates. Real-time microscopy imaging and elementally resolved spectroscopy clearly show that the catalyst dissolves the underlying substrate if held above a certain temperature. If the substrate dissolution is blocked (or in the case of heteroepitaxy) the catalyst needs to be filled with nanowire material from the external supply, which significantly increases the initial growth delay. The experiments presented here reveal the important role of the substrate in metal-catalyzed nanowire growth and pave the way for different growth delay mitigation strategies.
Structural Studies of the Initial Stages of Fluoride Epitaxy on Silicon and GERMANIUM(111)
NASA Astrophysics Data System (ADS)
Denlinger, Jonathan David
The epitaxial growth of ionic insulators on semiconductor substrates is of interest due to fundamental issues of interface bonding and structure as well as to potential technological applications. The initial stages of Group IIa fluoride insulator growth on (111) Si and Ge substrates by molecular beam epitaxy are studied with the in situ combination of X-ray Photoelectron Spectroscopy (XPS) and Diffraction (XPD). While XPS probes the electronic structure, XPD reveals atomic structure. In addition, low energy electron diffraction (LEED) is used to probe surface order and a separate study using X-ray standing wave (XSW) fluorescence reveals interface cation bonding sites. Following the formation of a chemically-reacted interface layer in CaF_2 epitaxy on Si(111), the morphology of the subsequent bulk layers is found to be dependent on substrate temperature and incident flux rate. At temperatures >=600 ^circC a transition from three -dimensional island formation at low flux to laminar growth at higher flux is observed with bulk- and interface-resolved XPD. At lower substrate temperatures, laminar growth is observed at all fluxes, but with different bulk nucleation behavior due to changes in the stoichiometry of the interface layer. This new observation of kinetic effects on the initial nucleation in CaF_2 epitaxy has important ramifications for the formation of thicker heterostructures for scientific or device applications. XPS and XPD are also used to identify for the first time, surface core-level species of Ca and F, and a secondary interface-shifted F Auger component arising from a second-layer site directly above interface-layer Ca atoms. The effects of lattice mismatch (from -3% to 8%) are investigated with various growths of Ca_{rm x}Sr _{rm 1-x}F_2 on Si and Ge (111) substrates. Triangulation of (111) and (220) XSW indicates a predominance of 3-fold hollow Sr bonding sites coexisting with 4-fold top sites for monolayers of SrF_2 on Si. XSW and LEED reveal a lateral discommensuration of the overlayer for lattice mismatches of >5% relative to the substrate. XPD also reveals a transition from single - to mixed-domains of overlayer crystallographic orientation for mismatches >=3.5%.
Burton, George L.; Diercks, David R.; Perkins, Craig L.; ...
2017-07-01
Recent studies have demonstrated that growth of CdTe on CdTe (100) and (211)B substrates via molecular beam epitaxy (MBE) results in planar defect densities 2 and 3 orders of magnitude higher than growth on InSb (100) substrates, respectively. To understand this shortcoming, MBE growth on CdTe substrates with a variety of substrate preparation methods is studied by scanning electron microscopy, secondary ion mass spectrometry, x-ray photoelectron spectroscopy, cross sectional transmission electron microscopy, and atom probe tomography (APT). Prior to growth, carbon is shown to remain on substrate surfaces even after atomic hydrogen cleaning. APT revealed that following the growth ofmore » films, trace amounts of carbon remained at the substrate/film interface. This residual carbon may lead to structural degradation, which was determined as the main cause of higher defect density.« less
Ma, Thong C.; Barco, Angel; Ratan, Rajiv R.; Willis, Dianna E.
2014-01-01
To regenerate damaged axons, neurons must express a cassette of regeneration-associated genes (RAGs) that increases intrinsic growth capacity and confers resistance to extrinsic inhibitory cues. Here we show that dibutyrl-cAMP or forskolin combined with constitutive-active CREB are superior to either agent alone in driving neurite growth on permissive and inhibitory substrates. Of the RAGs examined, only arginase 1 (Arg1) expression correlated with the increased neurite growth induced by the cAMP/CREB combination, both of which were AP1-dependent. This suggests that cAMP-induced AP1 activity is necessary and interacts with CREB to drive expression of RAGs relevant for regeneration and demonstrates that combining a small molecule (cAMP) with an activated transcription factor (CREB) stimulates the gene expression necessary to enhance axonal regeneration. PMID:25296755
Eschenlauer, S C P; McKain, N; Walker, N D; McEwan, N R; Newbold, C J; Wallace, R J
2002-10-01
Excessive NH(3) production in the rumen is a major nutritional inefficiency in ruminant animals. Experiments were undertaken to compare the rates of NH(3) production from different substrates in ruminal fluid in vitro and to assess the role of asaccharolytic bacteria in NH(3) production. Ruminal fluid was taken from four rumen-fistulated sheep receiving a mixed hay-concentrate diet. The calculated rate of NH(3) production from Trypticase varied from 1.8 to 19.7 nmol mg of protein(-1) min(-1) depending on the substrate, its concentration, and the method used. Monensin (5 micro M) inhibited NH(3) production from proteins, peptides, and amino acids by an average of 28% with substrate at 2 mg/ml, compared to 48% with substrate at 20 mg/ml (P = 0.011). Of the total bacterial population, 1.4% grew on Trypticase alone, of which 93% was eliminated by 5 micro M monensin. Many fewer bacteria (0.002% of the total) grew on amino acids alone. Nineteen isolates capable of growth on Trypticase were obtained from four sheep. 16S ribosomal DNA and traditional identification methods indicated the bacteria fell into six groups. All were sensitive to monensin, and all except one group (group III, similar to Atopobium minutum), produced NH(3) at >250 nmol min(-1) mg of protein(-1), depending on the medium, as determined by a batch culture method. All isolates had exopeptidase activity, but only group III had an apparent dipeptidyl peptidase I activity. Groups I, II, and IV were most closely related to asaccharolytic ruminal and oral Clostridium and Eubacterium spp. Group V comprised one isolate, similar to Desulfomonas piger (formerly Desulfovibrio pigra). Group VI was 95% similar to Acidaminococcus fermentans. Growth of the Atopobium- and Desulfomonas-like isolates was enhanced by sugars, while growth of groups I, II, and V was significantly depressed by sugars. This study therefore demonstrates that different methodologies and different substrate concentrations provide an explanation for different apparent rates of ruminal NH(3) production reported in different studies and identifies a diverse range of hyper-ammonia-producing bacteria in the rumen of sheep.
Eschenlauer, S. C. P.; McKain, N.; Walker, N. D.; McEwan, N. R.; Newbold, C. J.; Wallace, R. J.
2002-01-01
Excessive NH3 production in the rumen is a major nutritional inefficiency in ruminant animals. Experiments were undertaken to compare the rates of NH3 production from different substrates in ruminal fluid in vitro and to assess the role of asaccharolytic bacteria in NH3 production. Ruminal fluid was taken from four rumen-fistulated sheep receiving a mixed hay-concentrate diet. The calculated rate of NH3 production from Trypticase varied from 1.8 to 19.7 nmol mg of protein−1 min−1 depending on the substrate, its concentration, and the method used. Monensin (5 μM) inhibited NH3 production from proteins, peptides, and amino acids by an average of 28% with substrate at 2 mg/ml, compared to 48% with substrate at 20 mg/ml (P = 0.011). Of the total bacterial population, 1.4% grew on Trypticase alone, of which 93% was eliminated by 5 μM monensin. Many fewer bacteria (0.002% of the total) grew on amino acids alone. Nineteen isolates capable of growth on Trypticase were obtained from four sheep. 16S ribosomal DNA and traditional identification methods indicated the bacteria fell into six groups. All were sensitive to monensin, and all except one group (group III, similar to Atopobium minutum), produced NH3 at >250 nmol min−1 mg of protein−1, depending on the medium, as determined by a batch culture method. All isolates had exopeptidase activity, but only group III had an apparent dipeptidyl peptidase I activity. Groups I, II, and IV were most closely related to asaccharolytic ruminal and oral Clostridium and Eubacterium spp. Group V comprised one isolate, similar to Desulfomonas piger (formerly Desulfovibrio pigra). Group VI was 95% similar to Acidaminococcus fermentans. Growth of the Atopobium- and Desulfomonas-like isolates was enhanced by sugars, while growth of groups I, II, and V was significantly depressed by sugars. This study therefore demonstrates that different methodologies and different substrate concentrations provide an explanation for different apparent rates of ruminal NH3 production reported in different studies and identifies a diverse range of hyper-ammonia-producing bacteria in the rumen of sheep. PMID:12324340
Substrate flexibility regulates growth and apoptosis of normal but not transformed cells
NASA Technical Reports Server (NTRS)
Wang, H. B.; Dembo, M.; Wang, Y. L.
2000-01-01
One of the hallmarks of oncogenic transformation is anchorage-independent growth (27). Here we demonstrate that responses to substrate rigidity play a major role in distinguishing the growth behavior of normal cells from that of transformed cells. We cultured normal or H-ras-transformed NIH 3T3 cells on flexible collagen-coated polyacrylamide substrates with similar chemical properties but different rigidity. Compared with cells cultured on stiff substrates, nontransformed cells on flexible substrates showed a decrease in the rate of DNA synthesis and an increase in the rate of apoptosis. These responses on flexible substrates are coupled to decreases in cell spreading area and traction forces. In contrast, transformed cells maintained their growth and apoptotic characteristics regardless of substrate flexibility. The responses in cell spreading area and traction forces to substrate flexibility were similarly diminished. Our results suggest that normal cells are capable of probing substrate rigidity and that proper mechanical feedback is required for regulating cell shape, cell growth, and survival. The loss of this response can explain the unregulated growth of transformed cells.
Hashemi, Seyed Mohammad Bagher; Mousavi Khaneghah, Amin; Saraiva, Jorge A; Jambrak, Anet Režek; Barba, Francisco J; Mota, Maria J
2018-03-01
Date syrup is rich in fermentable sugars and may be used as a substrate for different microbial fermentations, including lactic acid fermentation processes. The beneficial effects of ultrasounds (US) on bioprocesses have been reported for several microorganisms, due to the enhancement of cell growth, as well as improvements in yields and productivities. Therefore, US treatments (30 kHz, 100 W, 10-30 min) were applied to two lactobacilli (Lactobacillus helveticus PTCC 1332 and Lactobacillus acidophilus PTCC 1643), during fermentation using date syrup as substrate. The effects on lactic acid fermentation were evaluated by analyzing cell growth (dry cell weight and viable cell count), substrate consumption (quantification of glucose and fructose), and product formation (quantification of lactic acid) over time. The effects of US were also evaluated on cell membrane permeability. Both lactobacilli were able to grow well on date syrup without the need for addition of further ingredients. The US effects were highly dependent on treatment duration: treatments of 10- and 20-min stimulated lactobacilli growth, while the treatment extension to 30 min negatively affected cell growth. Similarly, the 10- and 20-min treatments increased sugar consumption and lactic acid production, contrarily to the 30-min treatment. All US treatments increased cell membrane permeability, with a more pronounced effect at more extended treatments. The results of this work showed that application of appropriate US treatments could be a useful tool for stimulation of lactic acid production from date syrup, as well as for other fermentative processes that use date syrup as substrate.
Tunable Wetting Property in Growth Mode-Controlled WS2 Thin Films
NASA Astrophysics Data System (ADS)
Choi, Byoung Ki; Lee, In Hak; Kim, Jiho; Chang, Young Jun
2017-04-01
We report on a thickness-dependent wetting property of WS2/Al2O3 and WS2/SiO2/Si structures. We prepared WS2 films with gradient thickness by annealing thickness-controlled WO3 films at 800 °C in sulfur atmosphere. Raman spectroscopy measurements showed step-like variation in the thickness of WS2 over substrates several centimeters in dimension. On fresh surfaces, we observed a significant change in the water contact angle depending on film thickness and substrate. Transmission electron microscopy analysis showed that differences in the surface roughness of WS2 films can account for the contrasting wetting properties between WS2/Al2O3 and WS2/SiO2/Si. The thickness dependence of water contact angle persisted for longer than 2 weeks, which demonstrates the stability of these wetting properties when exposed to air contamination.
Bonachela, Juan A; Pringle, Robert M; Sheffer, Efrat; Coverdale, Tyler C; Guyton, Jennifer A; Caylor, Kelly K; Levin, Simon A; Tarnita, Corina E
2015-02-06
Self-organized spatial vegetation patterning is widespread and has been described using models of scale-dependent feedback between plants and water on homogeneous substrates. As rainfall decreases, these models yield a characteristic sequence of patterns with increasingly sparse vegetation, followed by sudden collapse to desert. Thus, the final, spot-like pattern may provide early warning for such catastrophic shifts. In many arid ecosystems, however, termite nests impart substrate heterogeneity by altering soil properties, thereby enhancing plant growth. We show that termite-induced heterogeneity interacts with scale-dependent feedbacks to produce vegetation patterns at different spatial grains. Although the coarse-grained patterning resembles that created by scale-dependent feedback alone, it does not indicate imminent desertification. Rather, mound-field landscapes are more robust to aridity, suggesting that termites may help stabilize ecosystems under global change. Copyright © 2015, American Association for the Advancement of Science.
Molecular beam epitaxial growth of high-quality InSb on InP and GaAs substrates
NASA Technical Reports Server (NTRS)
Oh, J. E.; Bhattacharya, P. K.; Chen, Y. C.; Tsukamoto, S.
1989-01-01
Epitaxial layers of InSb were grown on InP and GaAs substrates by molecular beam epitaxy. The dependence of the epilayer quality on flux ratio, J sub Sb4/J sub In, was studied. Deviation from an optimum value of J sub Sb4/J sub In (approx. 2) during growth led to deterioration in the surface morphology and the electrical and crystalline qualities of the films. Room temperature electron mobilities as high as 70,000 and 53,000 sq cm /V-s were measured in InSb layers grown on InP and GaAs substrates, respectively. Unlike the previous results, the conductivity in these films is n-type even at T = 13 K, and no degradation of the electron mobility due to the high density of dislocations was observed. The measured electron mobilities (and carrier concentrations) at 77 K in InSb layers grown on InP and GaAs substrates are 110,000 sq cm/V-s (3 x 10(15) cm(-3)) and 55,000 sq cm/V-s (4.95 x 10(15) cm(-3)), respectively, suggesting their application to electronic devices at cryogenic temperatures.
Angle-dependent photodegradation over ZnO nanowire arrays on flexible paper substrates
2014-01-01
In this study, we grew zinc oxide (ZnO) nanowire arrays on paper substrates using a two-step growth strategy. In the first step, we formed single-crystalline ZnO nanoparticles of uniform size distribution (ca. 4 nm) as seeds for the hydrothermal growth of the ZnO nanowire arrays. After spin-coating of these seeds onto paper, we grew ZnO nanowire arrays conformally on these substrates. The crystal structure of a ZnO nanowire revealed that the nanowires were single-crystalline and had grown along the c axis. Further visualization through annular bright field scanning transmission electron microscopy revealed that the hydrothermally grown ZnO nanowires possessed Zn polarity. From photocatalytic activity measurements of the ZnO nanowire (NW) arrays on paper substrate, we extracted rate constants of 0.415, 0.244, 0.195, and 0.08 s-1 for the degradation of methylene blue at incident angles of 0°, 30°, 60°, and 75°, respectively; that is, the photocatalytic activity of these ZnO nanowire arrays was related to the cosine of the incident angle of the UV light. Accordingly, these materials have promising applications in the design of sterilization systems and light-harvesting devices. PMID:25593556
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Limiao, E-mail: chenlimiao@csu.edu.cn; Jing, Qifeng; Chen, Jun
Silver nanostructures with dendritic, flower-like and irregular morphologies were controllably deposited on a silicon substrate in an aqueous hydrogen fluoride solution at room temperature. The morphology of the Ag nanostructures changed from dendritic to urchin-like, flowerlike and pinecone-like with increasing the concentration of polyvinyl pyrrolidone (MW = 55,000) from 2 to 10 mM. The Ag nanostructures were characterized by transmission electron microscopy, high-resolution transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray, and X-ray diffraction. Through a series of time-dependent morphological evolution studies, the growth processes of Ag nanostructures have been systematically investigated and the corresponding growth mechanisms have been discussed.more » In addition, the morphology-dependent surface-enhanced Raman scattering of as-synthesized Ag nanostructures were investigated. The results indicated that flower-like Ag nanostructure had the highest activity than the other Ag nanostructures for Rhodamine 6G probe molecules. Highlights: • A simple method was developed to prepare dendritic and flower-like Ag nanostructures. • The flower-like Ag nanoparticles exhibit highest SERS activity. • The SERS substrate based on flower-like Ag particles can be used to detect melamine.« less
Catalyst shape engineering for anisotropic cross-sectioned nanowire growth
NASA Astrophysics Data System (ADS)
Calahorra, Yonatan; Kelrich, Alexander; Cohen, Shimon; Ritter, Dan
2017-01-01
The ability to engineer material properties at the nanoscale is a crucial prerequisite for nanotechnology. Hereunder, we suggest and demonstrate a novel approach to realize non-hemispherically shaped nanowire catalysts, subsequently used to grow InP nanowires with a cross section anisotropy ratio of up to 1:1.8. Gold was deposited inside high aspect ratio nanotrenches in a 5 nm thick SiNx selective area mask; inside the growth chamber, upon heating to 455 °C, the thin gold stripes agglomerated, resulting in an ellipsoidal dome (hemiellipsoid). The initial shape of the catalyst was preserved during growth to realize asymmetrically cross-sectioned nanowires. Moreover, the crystalline nature of the nanowire side facets was found to depend on the nano-trench orientation atop the substrate, resulting in hexagonal or octagonal cross-sections when the nano-trenches are aligned or misaligned with the [1¯10] orientation atop a [111]B substrate. These results establish the role of catalyst shape as a unique tool to engineer nanowire growth, potentially allowing further control over its physical properties.
A theoretical reassessment of microbial maintenance and implications for microbial ecology modeling.
Wang, Gangsheng; Post, Wilfred M
2012-09-01
We attempted to reconcile three microbial maintenance models (Herbert, Pirt, and Compromise) through a theoretical reassessment. We provided a rigorous proof that the true growth yield coefficient (Y(G)) is the ratio of the specific maintenance rate (a in Herbert) to the maintenance coefficient (m in Pirt). Other findings from this study include: (1) the Compromise model is identical to the Herbert for computing microbial growth and substrate consumption, but it expresses the dependence of maintenance on both microbial biomass and substrate; (2) the maximum specific growth rate in the Herbert (μ(max,H)) is higher than those in the other two models (μ(max,P) and μ(max,C)), and the difference is the physiological maintenance factor (m(q) = a); and (3) the overall maintenance coefficient (m(T)) is more sensitive to m(q) than to the specific growth rate (μ(G)) and Y(G). Our critical reassessment of microbial maintenance provides a new approach for quantifying some important components in soil microbial ecology models. © This article is a US government work and is in the public domain in the USA.
Growth of pentacene on α -Al2O3 (0001) studied by in situ optical spectroscopy
NASA Astrophysics Data System (ADS)
Zhang, Lei; Fu, X.; Hohage, M.; Zeppenfeld, P.; Sun, L. D.
2017-09-01
The growth of pentacene thin films on a sapphire α -Al2O3 (0001) surface was investigated in situ using differential reflectance spectroscopy (DRS). Two different film structures are observed depending on the substrate temperature. If pentacene is deposited at room temperature, a wetting layer consisting of flat-lying molecules is formed after which upright-standing molecular layers with a herringbone structure start to grow. At low substrate temperature of 100 K, the long molecular axis of the pentacene molecules remains parallel to the surface plane throughout the entire growth regime up to rather large thicknesses. Heating thin films deposited at 100 K to room temperature causes the pentacene molecules beyond the wetting layer to stand up and assemble into a herringbone structure. Another interesting observation is the dewetting of the first flat-lying monolayer upon exposure to air, leading to the condensation of islands consisting of upright-standing molecules. Our results emphasize the interplay between growth kinetics and thermodynamics and its influence on the molecular orientation in organic thin films.
NASA Technical Reports Server (NTRS)
Nesbitt, James A.
2000-01-01
A finite-difference computer program (COSIM) has been written which models the one-dimensional, diffusional transport associated with high-temperature oxidation and interdiffusion of overlay-coated substrates. The program predicts concentration profiles for up to three elements in the coating and substrate after various oxidation exposures. Surface recession due to solute loss is also predicted. Ternary cross terms and concentration-dependent diffusion coefficients are taken into account. The program also incorporates a previously-developed oxide growth and spalling model to simulate either isothermal or cyclic oxidation exposures. In addition to predicting concentration profiles after various oxidation exposures, the program can also be used to predict coating fife based on a concentration dependent failure criterion (e.g., surface solute content drops to two percent). The computer code, written in an extension of FORTRAN 77, employs numerous subroutines to make the program flexible and easily modifiable to other coating oxidation problems.
Combining graphene with silicon carbide: synthesis and properties - a review
NASA Astrophysics Data System (ADS)
Shtepliuk, Ivan; Khranovskyy, Volodymyr; Yakimova, Rositsa
2016-11-01
Being a true two-dimensional crystal, graphene possesses a lot of exotic properties that would enable unique applications. Integration of graphene with inorganic semiconductors, e.g. silicon carbide (SiC) promotes the birth of a class of hybrid materials which are highly promising for development of novel operations, since they combine the best properties of two counterparts in the frame of one hybrid platform. As a specific heterostructure, graphene on SiC performs strongly, dependent on the synthesis method and the growth modes. In this article, a comprehensive review of the most relevant studies of graphene growth methods and mechanisms on SiC substrates has been carried out. The aim is to elucidate the basic physical processes that are responsible for the formation of graphene on SiC. First, an introduction is made covering some intriguing and not so often discussed properties of graphene. Then, we focus on integration of graphene with SiC, which is facilitated by the nature of SiC to assume graphitization. Concerning the synthesis methods, we discuss thermal decomposition of SiC, chemical vapor deposition and molecular beam epitaxy, stressing that the first technique is the most common one when SiC substrates are used. In addition, we briefly appraise graphene synthesis via metal mediated carbon segregation. We address in detail the main aspects of the substrate effect, such as substrate face polarity, off-cut, kind of polytype and nonpolar surfaces on the growth of graphene layers. A comparison of graphene grown on the polar faces is made. In particular, growth of graphene on Si-face SiC is critically analyzed concerning growth kinetics and growth mechanisms taking into account the specific characteristics of SiC (0001) surfaces, such as the step-terrace structure and the unavoidable surface reconstruction upon heating. In all subtopics obstacles and solutions are featured. We complete the review with a short summary and concluding remarks.
High-fraction brookite films from amorphous precursors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haggerty, James E. S.; Schelhas, Laura T.; Kitchaev, Daniil A.
2017-11-09
Structure-specific synthesis processes are of key importance to the growth of polymorphic functional compounds such as TiO 2, where material properties strongly depend on structure as well as chemistry. The robust growth of the brookite polymorph of TiO 2, a promising photocatalyst, has been difficult in both powder and thin-film forms due to the disparity of reported synthesis techniques, their highly specific nature, and lack of mechanistic understanding. In this work, we report the growth of high-fraction (~95%) brookite thin films prepared by annealing amorphous titania precursor films deposited by pulsed laser deposition. We characterize the crystallization process, eliminating themore » previously suggested roles of substrate templating and Na helper ions in driving brookite formation. Instead, we link phase selection directly to film thickness, offering a novel, generalizable route to brookite growth that does not rely on the presence of extraneous elements or particular lattice-matched substrates. In addition to providing a new synthesis route to brookite thin films, our results take a step towards resolving the problem of phase selection in TiO 2 growth, contributing to the further development of this promising functional material.« less
NASA Technical Reports Server (NTRS)
Manasevit, H. M.; Hewitt, W. B.; Nelson, A. J.; Mason, A. R.
1989-01-01
The MOCVD growth of B-As and B-P films on Si, sapphire, and Si-on-sapphire substrates is described; in this process, trimethylborane (TMB) or triethylborane (TEB) is pyrolyzed in the presence of AsH3 or PH3 in an H2 atmosphere. The procedures employed are outlined, and the results are presented in graphs, tables, and micrographs. It is found that the growth rate of the primarily amorphous films is dependent on the TMB or TEB concentration but approximately constant for TEB and AsH3 at 550-900 C. The nominal compositions of films grown using TMB are given as B(12-16)As2 and B(1-1.3)P. Carbon impurities and significant stress, bowing, and crazing are observed in the films grown on Si substrates, with the highest carbon content in the films grown from TMB and PH3.
Crystallization and growth of Ni-Si alloy thin films on inert and on silicon substrates
NASA Astrophysics Data System (ADS)
Grimberg, I.; Weiss, B. Z.
1995-04-01
The crystallization kinetics and thermal stability of NiSi2±0.2 alloy thin films coevaporated on two different substrates were studied. The substrates were: silicon single crystal [Si(100)] and thermally oxidized silicon single crystal. In situ resistance measurements, transmission electron microscopy, x-ray diffraction, Auger electron spectroscopy, and Rutherford backscattering spectroscopy were used. The postdeposition microstructure consisted of a mixture of amorphous and crystalline phases. The amorphous phase, independent of the composition, crystallizes homogeneously to NiSi2 at temperatures lower than 200 °C. The activation energy, determined in the range of 1.4-2.54 eV, depends on the type of the substrate and on the composition of the alloyed films. The activation energy for the alloys deposited on the inert substrate was found to be lower than for the alloys deposited on silicon single crystal. The lowest activation energy was obtained for nonstoichiometric NiSi2.2, the highest for NiSi2—on both substrates. The crystallization mode depends on the structure of the as-deposited films, especially the density of the existing crystalline nuclei. Substantial differences were observed in the thermal stability of the NiSi2 compound on both substrates. With the alloy films deposited on the Si substrate, only the NiSi2 phase was identified after annealing to temperatures up to 800 °C. In the films deposited on the inert substrate, NiSi and NiSi2 phases were identified when the Ni content in the alloy exceeded 33 at. %. The effects of composition and the type of substrate on the crystallization kinetics and thermal stability are discussed.
NASA Technical Reports Server (NTRS)
Lee, Hsing-Chung; Kost, A.; Kawase, M.; Hariz, A.; Dapkus, P. Daniel
1988-01-01
The nonlinear absorption properties of the excitonic resonances associated with multiple quantum wells (MQWs) in AlGaAs/GaAs grown by metalorganic chemical vapor deposition are reported. The dependence of the saturation properties on growth parameters, especially growth temperature, and the well width are described. The minimum measured saturation intensity for these materials is 250 W/sq cm, the lowest reported value to date. The low saturation intensities are the result of excellent minority carrier properties. A systematic study of minority carrier lifetimes in quantum wells are reported. Lifetimes range from 50-350 ns depending on growth temperature and well width. When corrected for lateral diffusion effects and the measured minority carrier lifetime, the saturation data suggest that saturation intensities as low as 2.3 W/sq cm can be achieved in this system. The first measurements of the dependence of the exciton area and the magnitude of the excitonic absorption on well width are prsented. The growth of MQW structures on transparent GaP substrates is demonstrated and the electroabsorption properties of these structures are reviewed.
MOCVD growth and characterization of gallium nitride and gallium antimonide nanowires
NASA Astrophysics Data System (ADS)
Burke, Robert Alan
Group-III nitride and group-III antimonide thin films have been used for years in optoelectronic, high-speed applications, and high power/high temperature applications such as light emitting diodes (LEDs), microwave power devices, and thermovoltaics. In recent years, nanowires have gained interest due to the ability to take advantage of their geometry for increased light absorption and the synthesis of radial heterostructures. Several growth techniques have been explored for the growth of GaN and GaSb nanowires. Metal-organic chemical vapor deposition (MOCVD) is of particular interest due to its use in the commercial growth and fabrication of GaN-based and GaSb-based devices. The first part of this thesis focused on addressing several key issues related to the growth of GaN nanowires by MOCVD. Preliminary studies investigated the effect of growth conditions on GaN nanowire formation in a hot wall MOCVD reactor. A computational fluid dynamics-based model was developed to predict the gas phase velocity, temperature and concentration profiles in the reactor. The results demonstrate a strong dependence of GaN nanowire growth on substrate position within the reactor which is due to the rapid reaction and depletion of precursors near the gas inlet of the reactor. Ni-catalyzed GaN nanowire growth was observed to occur over the temperature range of 800-900°C, which is significantly lower than typical GaN thin film temperatures. The nanowires, however, exhibited a tapered diameter due to thin film deposition which occurred simultaneously with nanowire growth. Based on the low growth temperatures, TEM characterization was carried out to investigate the nature of the catalyst. Through these studies, the catalyst was found to consist of Ni3Ga, indicating the presence of a vapor-solid-solid growth mechanism. In an attempt to improve the nanowire growth selectivity, GeCl4 was added during growth resulting in a drastic increase in nanowire density and a reduction in the tapering of the nanowires. Upon further inspection with TEM, the nanowires were found to consist of two morphologies: smooth nanowires and serrated nanowires. The smooth nanowires were found to consist of the wurtzite crystal structure, while the serrated nanowires were determined to have a wurtzite core with zinc blende faceted islands protruding from the wurtzite core. The second half of this thesis focused on the growth and characterization of GaSb nanowires. An extensive amount of work has been carried out on GaSb thin films, however only a few reports exist on GaSb nanowire growth. As a result, it was necessarily to complete a systematic study to determine a growth window for GaSb nanowires. A narrow range of growth conditions were found for Au-catalyzed GaSb nanowire growth. Vertically oriented nanowires were observed over a pressure range of 150-300 Torr depending on the substrate. Based on these findings, additional characterization was carried out to investigate the structural properties of the nanowires along with chemical analysis of the catalyst to determine the nature of the catalyst as a function of the growth conditions. The catalyst was found to consist of Ga, Sb, and Au consistent with that expected for vapor-liquidsolid growth, however the concentrations varied depending on the growth conditions and nanowire sample. For one set of nanowires, the seed particle contained a Au-Sb solid solution (1-15 at.% Sb). For the other set of nanowires, the particle consisted of an AuSb2 grain and an AuGa or Au2Ga grain that resulted in the formation of a bicrystalline nanowire. Photoluminescence measurements were also obtained on these samples and compared to the thin film literature. Samples grown on Si (111) were found to possess good optical properties, while samples grown on sapphire substrates were dominated by native defect transitions. The optical quality of the nanowire sample was also found to have a significant dependence on the V/III ratio.
Study of the photovoltaic effect in thin film barium titanate
NASA Technical Reports Server (NTRS)
Grannemann, W. W.; Dharmadhikari, V. S.
1982-01-01
Ferroelectric films of barium titanate were synthesized on silicon and quartz substrates, and the photoelectric effect in the structure consisting of metal deposited ferroelectric barium titanate film silicon was studied. A photovoltage with polarity that depends on the direction of the remanent polarization was observed. The deposition of BaTiO3 on silicon and fused quartz substrates was accomplished by an rf sputtering technique. A series of experiments to study the growth of ferroelectric BaTiO3 films on single crystal silicon and fused quartz substrates were conducted. The ferroelectric character in these films was found on the basis of evidence from the polarization electric field hysteresis loops, capacitance voltage and capacitance temperature techniques and from X-ray diffraction studies.
NASA Astrophysics Data System (ADS)
Zou, Junyan; Song, Weijia; Xie, Weiguang; Huang, Bo; Yang, Huidong; Luo, Zhi
2018-03-01
Here, we report a simple strategy to prepare highly sensitive surface-enhanced Raman spectroscopy (SERS) substrates based on Ag decorated Cu2O nanoparticles by combining two common techniques, viz, thermal oxidation growth of Cu2O nanoparticles and magnetron sputtering fabrication of a Ag nanoparticle film. Methylene blue is used as the Raman analyte for the SERS study, and the substrates fabricated under optimized conditions have very good sensitivity (analytical enhancement factor ˜108), stability, and reproducibility. A linear dependence of the SERS intensities with the concentration was obtained with an R 2 value >0.9. These excellent properties indicate that the substrate has great potential in the detection of biological and chemical substances.
Schubert, Michael; Exner, Jörg; Moos, Ralf
2014-08-05
Al₂O₃ films were prepared by the aerosol deposition method at room temperature using different carrier gas compositions. The layers were deposited on alumina substrates and the film stress of the layer was calculated by measuring the deformation of the substrate. It was shown that the film stress can be halved by using oxygen instead of nitrogen or helium as the carrier gas. The substrates were annealed at different temperature steps to gain information about the temperature dependence of the reduction of the implemented stress. Total relaxation of the stress can already be achieved at 300 °C. The XRD pattern shows crystallite growth and reduction of microstrain while annealing.
Akt-RSK-S6-kinase Signaling Networks Activated by Oncogenic Receptor Tyrosine Kinases
Moritz, Albrecht; Li, Yu; Guo, Ailan; Villén, Judit; Wang, Yi; MacNeill, Joan; Kornhauser, Jon; Sprott, Kam; Zhou, Jing; Possemato, Anthony; Ren, Jian Min; Hornbeck, Peter; Cantley, Lewis C.; Gygi, Steven P.; Rush, John; Comb, Michael J.
2011-01-01
Receptor tyrosine kinases (RTKs) activate pathways mediated by serine/threonine (Ser/Thr) kinases such as the PI3K (phosphatidylinositol 3-kinase)-Akt pathway, the Ras-MAPK (mitogen-activated protein kinase)-RSK pathway, and the mTOR (mammalian target of rapamycin)-p70 S6 pathway that control important aspects of cell growth, proliferation, and survival. The Akt, RSK, and p70 S6 family of protein kinases transmit signals by phosphorylating substrates on a RxRxxS/T motif. Here, we developed a large-scale proteomic approach to identify over 200 substrates of this kinase family in cancer cell lines driven by the c-Met, epidermal growth factor receptor (EGFR), or platelet-derived growth factor receptor a (PDGFRα) RTKs. We identified a subset of proteins with RxRxxS/T sites for which phosphorylation was decreased by RTKIs as well as by inhibitors of the PI3K, mTOR, and MAPK pathways and determined the effects of siRNA directed against these substrates on cell viability. We found that phosphorylation of the protein chaperone SGTA (small glutamine-rich tetratricopeptide repeat-containing protein alpha) at Ser305 is essential for PDGFRα stabilization and cell survival in PDGFRα-dependent cancer cells. Our approach provides a new view of RTK and Akt-RSK-S6 kinase signaling, revealing many previously unidentified Akt-RSK-S6 kinase substrates that merit further consideration as targets for combination therapy with RTKIs. PMID:20736484
High-yield growth of vertically aligned carbon nanotubes on a continuously moving substrate.
Guzmán de Villoria, R; Figueredo, S L; Hart, A J; Steiner, S A; Slocum, A H; Wardle, B L
2009-10-07
Vertically aligned carbon nanotube (CNT) arrays are grown on a moving substrate, demonstrating continuous growth of nanoscale materials with long-range order. A cold-wall chamber with an oscillating moving platform is used to locally heat a silicon growth substrate coated with an Fe/Al2O3 catalyst film for CNT growth via chemical vapor deposition. The reactant gases are introduced over the substrate through a directed nozzle to attain high-yield CNT growth. Aligned multi-wall carbon nanotube arrays (or 'forests') with heights of approximately 1 mm are achieved at substrate speeds up to 2.4 mm s(-1). Arrays grown on moving substrates at different velocities are studied in order to identify potential physical limitations of repeatable and fast growth on a continuous basis. No significant differences are noted between static and moving growth as characterized by scanning electron microscopy and Raman spectroscopy, although overall growth height is marginally reduced at the highest substrate velocity. CNT arrays produced on moving substrates are also found to be comparable to those produced through well-characterized batch processes consistent with a base-growth mechanism. Growth parameters required for the moving furnace are found to differ only slightly from those used in a comparable batch process; thermal uniformity appears to be the critical parameter for achieving large-area uniform array growth. If the continuous-growth technology is combined with a reaction zone isolation scheme common in other types of processing (e.g., in the manufacture of carbon fibers), large-scale dense and aligned CNT arrays may be efficiently grown and harvested for numerous applications including providing interlayers for advanced composite reinforcement and improved electrical and thermal transport.
Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition
NASA Astrophysics Data System (ADS)
Cui, H.; Eres, G.; Howe, J. Y.; Puretkzy, A.; Varela, M.; Geohegan, D. B.; Lowndes, D. H.
2003-06-01
The temperature and time dependences of carbon nanotube (CNT) growth by chemical vapor deposition are studied using a multilayered Al/Fe/Mo catalyst on silicon substrates. Within the 600-1100 °C temperature range of these studies, narrower temperature ranges were determined for the growth of distinct types of aligned multi-walled CNTs and single-walled CNTs by using high-resolution transmission electron microscopy and Raman spectroscopy. At 900 °C, in contrast to earlier work, double-walled CNTs are found more abundant than single-walled CNTs. Defects also are found to accumulate faster than the ordered graphitic structure if the growth of CNTs is extended to long durations.
NASA Astrophysics Data System (ADS)
Dalberth, Mark J.; Stauber, Renaud E.; Anderson, Britt; Price, John C.; Rogers, Charles T.
1998-03-01
We will report on the frequency and temperature dependence of the complex dielectric function of free-standing strontium titanate (STO) films. STO is an incipient ferroelectric with electric-field tunable dielectric properties of utility in microwave electronics. The films are grown epitaxially via pulsed laser deposition on a variety of substrates, including lanthanum aluminate (LAO), neodymium gallate (NGO), and STO. An initial film of yttrium barium cuprate (YBCO) is grown on the substrate, followed by deposition of the STO layer. Following deposition, the sacrificial YBCO layer is chemically etched away in dilute nitric acid, leaving the substrate and a released, free-standing STO film. Coplanar capacitor structures fabricated on the released films allow us to measure the dielectric response. We observe a peak dielectric function in excess of 5000 at 35K, change in dielectric constant of over a factor of 8 for 10Volt/micron electric fields, and temperature dependence above 50K that is very similar to bulk material. The dielectric loss shows two peaks, each with a thermally activated behavior, apparently arising from two types of polar defects. We will discuss the correlation between dielectric properties, growth conditions, and strain in the free-standing STO films.
Kinetic and microstructural study of titanium nitride deposited by laser chemical vapor deposition
NASA Astrophysics Data System (ADS)
Egland, Keith Maynard
Titanium nitride (TiN) films were deposited onto Ti-6Al-4V substrates by laser chemical vapor deposition using a cw COsb2 laser and TiClsb4,\\ Nsb2, and Hsb2 reactant gases. In-situ laser induced fluorescence (LIF) and multi-wavelength pyrometry determined relative titanium gas phase atomic number density and deposition temperature, respectively. Deposited films were yellow to gold in color. Transmission electron microscopy on one sample revealed a face-centered cubic structure with a lattice parameter (0.4237 nm) expected for TiN. Auger electron spectroscopy found substoichiometric compositions with a N/Ti ratio between 0.7 and 0.9. Variables decreasing grain size (lower temperature, higher TiClsb4 input) decreased the N/Ti ratio. Higher Nsb2 input increased stoichiometry, while larger Hsb2 input decreased stoichiometry. The deposit substoichiometry is believed to be caused by diffusion of nitrogen through TiN grain boundaries to the titanium alloy substrate. The morphology starts as a dense polycrystalline structure evolving into a columnar structure having facets or nodules at the surface with crystallite sizes ranging from 10-1000 nm. TiClsb4 input had a inverse correlation with crystallite size, while Nsb2:Hsb2 ratio had minimal effect; the crystallite size (G) varied exponentially with temperature (T) for a given irradiation time, i.e., G = C exp (-28000/T), with constant C reflecting substrate roughness and gas composition. Microhardness tests revealed substrate contributions; nevertheless, films appeared to have a minimum hardness of 2000 Hsbv. The deposition apparent activation energy was calculated as 122 ± 9 kJ/mole using growth rates measured by film height and 117 ± 23 kJ/mole using growth rates measured by LIF signals. This puts the process in the surface kinetic growth regime over the temperature range 1370-1610 K. Above Nsb2 and Hsb2 levels of 1.25% and below TiClsb4 input of 4.5%, the growth rate has a half-order dependence on nitrogen and a linear dependence on hydrogen and is approximated by$r = {{kPsb{TiClsb4}Psb{Hsb2}Psbsp{Nsb2}{1/2}exp≤ft({{-}Esb{a}/ {RT}right)}/{1 + Psb{Ar}}}}.Since nitrogen positively affects growth rate (when added to a TiClsb4+Hsb2 mixture), stepwise reduction of TiClsb4 to Ti by hydrogen does not occur. NHsb{x} complexes are clearly involved in the growth mechanism; a likely combination of rate determining steps is the formation of NH and the initial reduction of TiClsb4$ by hydrogen.
NASA Astrophysics Data System (ADS)
Sarma, Bimal K.; Das, Apurba; Barman, Pintu; Pal, Arup R.
2016-04-01
This report presents findings on biomimetic growth of hydroxyapatite (HAp) nanocrystals on Ti and sputtered TiO2 substrates. The possibility of TiO2 nanostructure as candidate materials for future biomedical applications has been explored through the comparison of microstructural and mechanical properties of bone like apatite grown on Ti and nano-TiO2 surfaces. Raman spectroscopy and x-ray diffraction studies reveal formation of carbonate apatite with apparent domain size in the nanoscale range. A better interaction at the nano-TiO2/nano-HAp interface due to higher interfacial area could promote the growth of bone like apatite. The crystal phases, crystallinity, and surface morphology of nano-TiO2 are considered as parameters to understand the nucleation and growth of apatite with different mechanical properties at the nanoscale. The methodology of x-ray line profile analysis encompasses deconvolution of merged peaks by preserving broadening due to nanosized HAp aggregates. The Young’s modulus of bone like apatite exhibits crystallographic directional dependence which suggests the presence of elastic anisotropy in bone like apatite. The lattice contraction in the c-direction is associated with the degree of carbonate substitution in the apatite lattice. The role of residual stress is critical for the lattice distortion of HAp deposited at physiological conditions of temperature and pH of human blood plasma. The ion concentration is crucial for the uniformity, crystallinity, and mechanical behaviour of the apatite.
Song, Yuexian; Hu, Jiugang; Tang, Jia; Gu, Wanmiao; He, Lili; Ji, Xiaobo
2016-11-23
The dynamic interfacial growth, suppression, and dissolution of zinc dendrites have been studied with the imidazolium ionic liquids (ILs) as additives on the basis of in situ synchrotron radiation X-ray imaging. The phase contrast difference of real-time images indicates that zinc dendrites are preferentially developed on the substrate surface in the ammoniacal electrolytes. After adding imidazolium ILs, both nucleation overpotential and polarization extent increase in the order of additive-free < EMI-Cl < EMI-PF 6 < EMI-TFSA < EMI-DCA. The real-time X-ray images show that the EMI-Cl can suppress zinc dendrites, but result in the formation of the loose deposits. The EMI-PF 6 and EMI-TFSA additives can smooth the deposit morphology through suppressing the initiation and growth of dendritic zinc. The addition of EMI-DCA increases the number of dendrite initiation sites, whereas it decreases the growth rate of dendrites. Furthermore, the dissolution behaviors of zinc deposits are compared. The zinc dendrites show a slow dissolution process in the additive-free electrolyte, whereas zinc deposits are easily detached from the substrate in the presence of EMI-Cl, EMI-PF 6 , or EMI-TFSA due to the formation of the loose structure. Hence, the dependence of zinc dendrites on anions of imidazolium IL additives during both electrodeposition and dissolution processes has been elucidated. These results could provide the valuable information in perfecting the performance of zinc-based rechargeable batteries.
Carbon nanotubes on a substrate
Gao, Yufei [Kennewick, WA; Liu, Jun [West Richland, WA
2002-03-26
The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.
Method of making carbon nanotubes on a substrate
Gao, Yufei; Liu, Jun
2006-03-14
The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.
Energetics and Application of Heterotrophy in Acetogenic Bacteria.
Schuchmann, Kai; Müller, Volker
2016-07-15
Acetogenic bacteria are a diverse group of strictly anaerobic bacteria that utilize the Wood-Ljungdahl pathway for CO2 fixation and energy conservation. These microorganisms play an important part in the global carbon cycle and are a key component of the anaerobic food web. Their most prominent metabolic feature is autotrophic growth with molecular hydrogen and carbon dioxide as the substrates. However, most members also show an outstanding metabolic flexibility for utilizing a vast variety of different substrates. In contrast to autotrophic growth, which is hardly competitive, metabolic flexibility is seen as a key ability of acetogens to compete in ecosystems and might explain the almost-ubiquitous distribution of acetogenic bacteria in anoxic environments. This review covers the latest findings with respect to the heterotrophic metabolism of acetogenic bacteria, including utilization of carbohydrates, lactate, and different alcohols, especially in the model acetogen Acetobacterium woodii Modularity of metabolism, a key concept of pathway design in synthetic biology, together with electron bifurcation, to overcome energetic barriers, appears to be the basis for the amazing substrate spectrum. At the same time, acetogens depend on only a relatively small number of enzymes to expand the substrate spectrum. We will discuss the energetic advantages of coupling CO2 reduction to fermentations that exploit otherwise-inaccessible substrates and the ecological advantages, as well as the biotechnological applications of the heterotrophic metabolism of acetogens. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Energetics and Application of Heterotrophy in Acetogenic Bacteria
Schuchmann, Kai
2016-01-01
Acetogenic bacteria are a diverse group of strictly anaerobic bacteria that utilize the Wood-Ljungdahl pathway for CO2 fixation and energy conservation. These microorganisms play an important part in the global carbon cycle and are a key component of the anaerobic food web. Their most prominent metabolic feature is autotrophic growth with molecular hydrogen and carbon dioxide as the substrates. However, most members also show an outstanding metabolic flexibility for utilizing a vast variety of different substrates. In contrast to autotrophic growth, which is hardly competitive, metabolic flexibility is seen as a key ability of acetogens to compete in ecosystems and might explain the almost-ubiquitous distribution of acetogenic bacteria in anoxic environments. This review covers the latest findings with respect to the heterotrophic metabolism of acetogenic bacteria, including utilization of carbohydrates, lactate, and different alcohols, especially in the model acetogen Acetobacterium woodii. Modularity of metabolism, a key concept of pathway design in synthetic biology, together with electron bifurcation, to overcome energetic barriers, appears to be the basis for the amazing substrate spectrum. At the same time, acetogens depend on only a relatively small number of enzymes to expand the substrate spectrum. We will discuss the energetic advantages of coupling CO2 reduction to fermentations that exploit otherwise-inaccessible substrates and the ecological advantages, as well as the biotechnological applications of the heterotrophic metabolism of acetogens. PMID:27208103
NASA Astrophysics Data System (ADS)
Qiao, Q.; Gulec, A.; Paulauskas, T.; Kolesnik, S.; Dabrowski, B.; Ozdemir, M.; Boyraz, C.; Mazumdar, D.; Gupta, A.; Klie, R. F.
2011-08-01
The incommensurately layered cobalt oxide Ca3Co4O9 exhibits an unusually high Seebeck coefficient as a polycrystalline bulk material, making it ideally suited for many high temperature thermoelectric applications. In this paper, we investigate properties of Ca3Co4O9 thin films grown on cubic perovskite SrTiO3, LaAlO3, and (La0.3Sr0.7)(Al0.65Ta0.35)O3 substrates and on hexagonal Al2O3 (sapphire) substrates using the pulsed laser deposition technique. X-ray diffraction and transmission electron microscopy analysis indicate strain-free growth of films, irrespective of the substrate. However, depending on the lattice and symmetry mismatch, defect-free growth of the hexagonal CoO2 layer is stabilized only after a critical thickness and, in general, we observe the formation of a stable Ca2CoO3 buffer layer near the substrate-film interface. Beyond this critical thickness, a large concentration of CoO2 stacking faults is observed, possibly due to weak interlayer interaction in this layered material. We propose that these stacking faults have a significant impact on the Seebeck coefficient and we report higher values in thinner Ca3Co4O9 films due to additional phonon scattering sites, necessary for improved thermoelectric properties.
Qiao, Q; Gulec, A; Paulauskas, T; Kolesnik, S; Dabrowski, B; Ozdemir, M; Boyraz, C; Mazumdar, D; Gupta, A; Klie, R F
2011-08-03
The incommensurately layered cobalt oxide Ca(3)Co(4)O(9) exhibits an unusually high Seebeck coefficient as a polycrystalline bulk material, making it ideally suited for many high temperature thermoelectric applications. In this paper, we investigate properties of Ca(3)Co(4)O(9) thin films grown on cubic perovskite SrTiO(3), LaAlO(3), and (La(0.3)Sr(0.7))(Al(0.65)Ta(0.35))O(3) substrates and on hexagonal Al(2)O(3) (sapphire) substrates using the pulsed laser deposition technique. X-ray diffraction and transmission electron microscopy analysis indicate strain-free growth of films, irrespective of the substrate. However, depending on the lattice and symmetry mismatch, defect-free growth of the hexagonal CoO(2) layer is stabilized only after a critical thickness and, in general, we observe the formation of a stable Ca(2)CoO(3) buffer layer near the substrate-film interface. Beyond this critical thickness, a large concentration of CoO(2) stacking faults is observed, possibly due to weak interlayer interaction in this layered material. We propose that these stacking faults have a significant impact on the Seebeck coefficient and we report higher values in thinner Ca(3)Co(4)O(9) films due to additional phonon scattering sites, necessary for improved thermoelectric properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adikimenakis, A.; Aretouli, K. E.; Tsagaraki, K.
2015-06-28
The spontaneous growth of GaN nanopillars (NPs) by direct plasma-assisted molecular beam epitaxy on nitridated r-plane sapphire substrates has been studied. The emanation of metal-polarity NPs from inside an a-plane nonpolar GaN film was found to depend on both the substrate nitridation and the growth conditions. The density of NPs increased with increasing the duration of the nitridation process and the power applied on the radio-frequency plasma source, as well as the III/V flux ratio, while variation of the first two parameters enhanced the roughness of the substrate's surface. Transmission electron microscopy (TEM) techniques were employed to reveal the structuralmore » characteristics of the NPs and their nucleation mechanism from steps on the sapphire surface and/or interfacial semipolar GaN nanocrystals. Lattice strain measurements showed a possible Al enrichment of the first 5–6 monolayers of the NPs. By combining cross-sectional and plan-view TEM observations, the three-dimensional model of the NPs was constructed. The orientation relationship and interfacial accommodation between the NPs and the nonpolar a-plane GaN film were also elucidated. The NPs exhibited strong and narrow excitonic emission, suggesting an excellent structural quality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niessen, Markus; Jaschinski, Frank; Item, Flurin
2007-02-15
Ligand-activated insulin receptor (IR) attracts and phosphorylates various substrates such as insulin receptor substrates 1-4 (IRS) and Shc. To investigate how binding affinity for substrate affects signalling we generated chimeric receptors with the {beta}-chain of the insulin receptor containing NPXY motives with different affinities for receptor substrates. We found that the extent of receptor tyrosine phosphorylation positively correlates with binding affinity towards IRS1/2 but not towards Shc. Moreover, overexpression of IRS1 or IRS2 but not of Shc increased IR tyrosine phosphorylation in a dose-dependent manner, also independent of insulin. Molecular truncations of IRS1 revealed that neither the isolated PH andmore » PTB domains nor the C-terminus with the tyrosine phosphorylation sites alone are sufficient for substrate-dependent receptor activation. Overexpression of IRS1 and IRS2 impaired insulin-induced internalization of the IR in a dose-dependent manner suggesting that IRS proteins prevent endosome-associated receptor dephosphorylation/inactivation. IRS1 and IRS2 could therefore target the activated IR to different cellular compartments. Overexpression of IRS1 and IRS2 inhibited insulin-stimulated activation of the MAP kinases Erk1/2 while it increased/induced activation of Akt/PKB. Finally, overexpression of IRS1 and IRS2 but not of Shc induced DNA synthesis in starved CHO-IR cells independent of exogenous growth factors. Our results demonstrate that variations in cellular IRS1 and IRS2 concentration affect insulin signalling both upstream and downstream and that IRS proteins could play instructive rather than just permissive roles in signal transmission.« less
NASA Technical Reports Server (NTRS)
Xing, G. C.; Bachmann, Klaus J.
1993-01-01
The growth of ZnGeP2/GaP double and multiple heterostructures on GaP substrates by organometallic chemical vapor deposition is reported. These epitaxial films were deposited at a temperature of 580 C using dimethylzinc, trimethylgallium, germane, and phosphine as source gases. With appropriate deposition conditions, mirror smooth epitaxial GaP/ZnGeP2 multiple heterostructures were obtained on (001) GaP substrates. Transmission electron microscopy (TEM) and secondary ion mass spectroscopy (SIMS) studies of the films showed that the interfaces are sharp and smooth. Etching study of the films showed dislocation density on the order of 5x10(exp 4)cm(sup -2). The growth rates of the GaP layers depend linearly on the flow rates of trimethylgallium. While the GaP layers crystallize in zinc-blende structure, the ZnGeP2 layers crystallize in the chalcopyrite structure as determined by (010) electron diffraction pattern. This is the first time that multiple heterostructures combining these two crystal structures were made.
LPCVD homoepitaxy of Si doped β-Ga2O3 thin films on (010) and (001) substrates
NASA Astrophysics Data System (ADS)
Rafique, Subrina; Karim, Md Rezaul; Johnson, Jared M.; Hwang, Jinwoo; Zhao, Hongping
2018-01-01
This paper presents the homoepitaxy of Si-doped β-Ga2O3 thin films on semi-insulating (010) and (001) Ga2O3 substrates via low pressure chemical vapor deposition with a growth rate of ≥1 μm/h. Both high resolution scanning transmission electron microscopy and X-ray diffraction measurements demonstrated high crystalline quality homoepitaxial growth of these thin films. Atomic resolution STEM images of the as-grown β-Ga2O3 thin films on (010) and (001) substrates show high quality material without extended defects or dislocations. The charge carrier transport properties of the as-grown Si-doped β-Ga2O3 thin films were characterized by the temperature dependent Hall measurement using van der Pauw patterns. The room temperature carrier concentrations achieved for the (010) and (001) homoepitaxial thin films were ˜1.2 × 1018 cm-3 and ˜9.5 × 1017 cm-3 with mobilities of ˜72 cm2/V s and ˜42 cm2/V s, respectively.
Phase-field model of vapor-liquid-solid nanowire growth
NASA Astrophysics Data System (ADS)
Wang, Nan; Upmanyu, Moneesh; Karma, Alain
2018-03-01
We present a multiphase-field model to describe quantitatively nanowire growth by the vapor-liquid-solid (VLS) process. The free-energy functional of this model depends on three nonconserved order parameters that distinguish the vapor, liquid, and solid phases and describe the energetic properties of various interfaces, including arbitrary forms of anisotropic γ plots for the solid-vapor and solid-liquid interfaces. The evolution equations for those order parameters describe basic kinetic processes including the rapid (quasi-instantaneous) equilibration of the liquid catalyst to a droplet shape with constant mean curvature, the slow incorporation of growth atoms at the droplet surface, and crystallization within the droplet. The standard constraint that the sum of the phase fields equals unity and the conservation of the number of catalyst atoms, which relates the catalyst volume to the concentration of growth atoms inside the droplet, are handled via separate Lagrange multipliers. An analysis of the model is presented that rigorously maps the phase-field equations to a desired set of sharp-interface equations for the evolution of the phase boundaries under the constraint of force balance at three-phase junctions (triple points) given by the Young-Herring relation that includes torque term related to the anisotropy of the solid-liquid and solid-vapor interface excess free energies. Numerical examples of growth in two dimensions are presented for the simplest case of vanishing crystalline anisotropy and the more realistic case of a solid-liquid γ plot with cusped minima corresponding to two sets of (10 ) and (11 ) facets. The simulations reproduce many of the salient features of nanowire growth observed experimentally, including growth normal to the substrate with tapering of the side walls, transitions between different growth orientations, and crawling growth along the substrate. They also reproduce different observed relationships between the nanowire growth velocity and radius depending on the growth condition. For the basic normal growth mode, the steady-state solid-liquid interface tip shape consists of a main facet intersected by two truncated side facets ending at triple points. The ratio of truncated and main facet lengths are in quantitative agreement with the prediction of sharp-interface theory that is developed here for faceted nanowire growth in two dimensions.
Formation of graphene on BN substrate by vapor deposition method and size effects on its structure
NASA Astrophysics Data System (ADS)
Giang, Nguyen Hoang; Hanh, Tran Thi Thu; Ngoc, Le Nhu; Nga, Nguyen To; Van Hoang, Vo
2018-04-01
We report MD simulation of the growth of graphene by the vapor deposition on a two-dimensional hBN substrate. The systems (containing carbon vapor and hBN substrate) are relaxed at high temperature (1500 K), and then it is cooled down to room one (300 K). Carbon atoms interact with the substrate via the Lennard-Jones potential while the interaction between carbon atoms is computed via the Tersoff potential. Depending on the size of the model, different crystalline honeycomb structures have been found. Structural properties of the graphene obtained at 300 K are studied by analyzing radial distribution functions (RDFs), coordination numbers, ring statistics, interatomic distances, bond-angle distributions and 2D visualization of atomic configurations. We find that the models containing various numbers of atoms have a honeycomb structure. Besides, differences in structural properties of graphene formed by the vapor deposition on the substrate and free standing one are found. Moreover, the size effect on the structure is significant.
Shape transition of endotaxial islands growth from kinetically constrained to equilibrium regimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhi-Peng, E-mail: LI.Zhipeng@nims.go.jp; Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044; Tok, Engsoon
2013-09-01
Graphical abstract: - Highlights: • All Fe{sub 13}Ge{sub 8} islands will grow into Ge(0 0 1) substrate at temperatures from 350 to 675 °C. • Shape transition occurred from kinetically constrained to equilibrium regime. • All endotaxial islands can be clarified into two types. • The mechanisms of endotaxial growth and shape transition have been rationalized. - Abstract: A comprehensive study of Fe grown on Ge(0 0 1) substrates has been conducted at elevated temperatures, ranging from 350 to 675 °C. All iron germinide islands, with the same Fe{sub 13}Ge{sub 8} phase, grow into the Ge substrate with the samemore » epitaxial relationship. Shape transition occurs from small square islands (low temperatures), to elongated orthogonal islands or orthogonal nanowires (intermediate temperatures), and then finally to large square orthogonal islands (high temperatures). According to both transmission electron microscopy (TEM) and atomic force microscopy (AFM) investigations, all islands can be defined as either type-I or type-II. Type-I islands usually form at kinetically constrained growth regimes, like truncated pyramids. Type-II islands usually appear at equilibrium growth regimes forming a dome-like shape. Based on a simple semi-quantitative model, type-II islands have a lower total energy per volume than type-I, which is considered as the dominant mechanism for this type of shape transition. Moreover, this study not only elucidates details of endotaxial growth in the Fe–Ge system, but also suggests the possibility of controlled fabrication of temperature-dependent nanostructures, especially in materials with dissimilar crystal structures.« less
Transfer of monolayer TMD WS2 and Raman study of substrate effects
Mlack, Jerome T.; Masih Das, Paul; Danda, Gopinath; Chou, Yung-Chien; Naylor, Carl H.; Lin, Zhong; López, Néstor Perea; Zhang, Tianyi; Terrones, Mauricio; Johnson, A. T. Charlie; Drndić, Marija
2017-01-01
A facile transfer process for transition metal dichalcogenide WS2 flakes is reported and the effect of the underlying substrate on the flake properties is investigated using Raman spectroscopy. The flakes are transferred from their growth substrate using polymethyl methacrylate (PMMA) and a wet etch to allow the user to transfer the flakes to a final substrate using a microscope and micromanipulator combined with semi-transparent Kapton tape. The substrates used range from insulators such as industry standard high-k dielectric HfO2 and “green polymer” parylene-C, to conducting chemical vapor deposition (CVD) grown graphene. Raman spectroscopy is used first to confirm the material quality of the transferred flakes to the substrates and subsequently to analyze and separate the effects arising from material transfer from those arising from interactions with the substrate. We observe changes in the Raman spectra associated with the interactions between the substrates in the flakes. These interactions affect both in-plane and out-of-plane modes in different ways depending on their sources, for example strain or surface charge. These changes vary with final substrate, with the strongest effects being observed for WS2 transferred onto graphene and HfO2, demonstrating the importance of understanding substrate interaction for fabrication of future devices. PMID:28220852
Substrate-mediated diffusion-induced growth of single-crystal nanowires.
Mohammad, S Noor
2009-11-28
Theoretical investigations of the growth and growth rates of single-crystal nanowires (NWs) by vapor phase mechanisms have been carried out. Substrate-induced processes are assumed to dominate this growth. The modeling for growth takes adsorption, desorption, surface scattering, and diffusion into account. It takes into consideration also the retarding electric field arising from the scattering of the NW vapor species by both the substrate and the NW sidewalls. Growth characteristics under the influence of the retarding electric field have been studied. Competitive roles of adatom diffusivity and the electric field in the NW growth are elucidated. Influence of the growing NW length and the adatom impingement rate on the NW growth rate has been described. The effect of adatom collection area around each NW has been examined. The NW tapering and kinking have been explained. The fundamentals of the substrate induction and details of the growth parameters have been analyzed. The influence of foreign element catalytic agents in the vapor-liquid-solid mechanism has been presented. All these have led to the understanding and resolution of problems, controversies, and contradictions involving substrate-induced NW growths.
Evolution of crystal structure during the initial stages of ZnO atomic layer deposition
Boichot, R.; Tian, L.; Richard, M. -I.; ...
2016-01-05
In this study, a complementary suite of in situ synchrotron X-ray techniques is used to investigate both structural and chemical evolution during ZnO growth by atomic layer deposition. Focusing on the first 10 cycles of growth, we observe that the structure formed during the coalescence stage largely determines the overall microstructure of the film. Furthermore, by comparing ZnO growth on silicon with a native oxide with that on Al 2O 3(001), we find that even with lattice-mismatched substrates and low deposition temperatures, the crystalline texture of the films depend strongly on the nature of the interfacial bonds.
NASA Astrophysics Data System (ADS)
Zhang, Shu; Tian, Xueli; Yin, Jun; Liu, Yu; Dong, Zhanmin; Sun, Jia-Lin; Ma, Wanyun
2016-04-01
Silver nanostructured films suitable for use as surface-enhanced Raman scattering (SERS) substrates are prepared in just 2 hours by the solid-state ionics method. By changing the intensity of the external direct current, we can readily control the surface morphology and growth rate of the silver nanostructured films. A detailed investigation of the surface enhancement of the silver nanostructured films using Rhodamine 6G (R6G) as a molecular probe revealed that the enhancement factor of the films was up to 1011. We used the silver nanostructured films as substrates in SERS detection of human red blood cells (RBCs). The SERS spectra of RBCs on the silver nanostructured film could be clearly detected at a laser power of just 0.05 mW. Comparison of the SERS spectra of RBCs obtained from younger and older donors showed that the SERS spectra depended on donor age. A greater proportion of the haemoglobin in the RBCs of older donors was in the deoxygenated state than that of the younger donors. This implies that haemoglobin of older people has lower oxygen-carrying capacity than that of younger people. Overall, the fabricated silver substrates show promise in biomedical SERS spectral detection.
In vitro biofilm model for studying tongue flora and malodour.
Spencer, P; Greenman, J; McKenzie, C; Gafan, G; Spratt, D; Flanagan, A
2007-10-01
To develop a perfusion biofilm system to model tongue biofilm microflora and their physiological response to sulfur-containing substrates (S-substrates) in terms of volatile sulfide compound (VSC) production. Tongue-scrape inocula were used to establish in vitro perfusion biofilms which were examined in terms of ecological composition using culture-dependent and independent (PCR-DGGE) approaches. VSC-specific activity of cells was measured by a cell suspension assay, using a portable industrial sulfide monitor which was also used to monitor VSC production from biofilms in situ. Quasi steady states were achieved by 48 h and continued to 96 h. The mean (+/-SEM) growth rate for 72-h biofilms (n=4) was micro=0.014 h(-1) (+/-0.005 h(-1)). Comparison of biofilms, perfusate and original inoculum showed their ecological composition to be similar (Pearson coefficient>0.64). Perfusate and biofilm cells derived from the same condition (co-sampled) were equivalent with regard to VSC-specific activities which were up-regulated in the presence of S-substrates. The model maintained a stable tongue microcosm suitable for studying VSC production; biofilm growth in the presence of S-substrates up-regulated VSC activity. The method is apt for studying ecological and physiological aspects of oral biofilms and could be useful for screening inhibitory agents.
NASA Astrophysics Data System (ADS)
Truman, James Kelly
1992-01-01
The commercial application of superconducting rm YBa_2Cu_3O_{7 -x} thin films requires the development of deposition methods which can be used to reproducibly deposit films with good superconducting properties on insulating and semiconducting substrates. Sputter deposition is the most popular method to fabricate Y-Ba-Cu-O superconductor thin films, but when used in the standard configuration suffers from a deviation between the compositions of the Y-Ba-Cu-O sputter target and deposited films, which is thought to be primarily due to resputtering of the film by negative ions sputtered from the target. In this study, the negative ions were explicitly identified and were found to consist predominantly O^-. The sputter yield of O^- was found to depend on the Ba compound used in the fabrication of Y -Ba-Cu-O targets and was related to the electronegativity difference between the components. An unreacted mixture of rm Y_2O_3, CuO, and BaF_2 was found to have the lowest O^- yield among targets with Y:Ba:Cu = 1:2:3. The high yield of O^- from rm YBa_2Cu_3O _{7-x} was found to depend on the target temperature and be due to the excess oxygen present. The SIMS negative ion data supported the composition data for sputter-deposited Y-Ba-Cu-O films. Targets using BaF _2 were found to improve the Ba deficiency, the run-to-run irreproducibility and the nonuniformity of the film composition typically found in sputtered Y -Ba-Cu-O films. Superconducting Y-Ba-Cu-O films were formed on SrTiO_3 substrates by post-deposition heat treatment of Y-Ba-Cu-O-F films in humid oxygen. The growth of superconducting rm YBa_2Cu_3O_{7-x}, thin films on common substrates such as sapphire or silicon requires the use of a barrier layer to prevent the deleterious interaction which occurs between Y-Ba-Cu-O films and these substrates. Barrier layers of SrTiO_3 were studied and found to exhibit textured growth with a preferred (111) orientation on (100) Si substrates. However, SrTiO_3 was found to be unsuitable as a barrier layer for the growth of rm YBa _2Cu_3O_{7-x}, on Si since Ba reacted with the si after migrating through the SrTiO_3 layer. For sapphire, no textured growth of SrTiO_3 was observed but it was found to be a suitable barrier layer since it prevented any interaction between Y-Ba-Cu-O films and sapphire substrates.
Numerical Simulation of Nanostructure Growth
NASA Technical Reports Server (NTRS)
Hwang, Helen H.; Bose, Deepak; Govindan, T. R.; Meyyappan, M.
2004-01-01
Nanoscale structures, such as nanowires and carbon nanotubes (CNTs), are often grown in gaseous or plasma environments. Successful growth of these structures is defined by achieving a specified crystallinity or chirality, size or diameter, alignment, etc., which in turn depend on gas mixture ratios. pressure, flow rate, substrate temperature, and other operating conditions. To date, there has not been a rigorous growth model that addresses the specific concerns of crystalline nanowire growth, while demonstrating the correct trends of the processing conditions on growth rates. Most crystal growth models are based on the Burton, Cabrera, and Frank (BCF) method, where adatoms are incorporated into a growing crystal at surface steps or spirals. When the supersaturation of the vapor is high, islands nucleate to form steps, and these steps subsequently spread (grow). The overall bulk growth rate is determined by solving for the evolving motion of the steps. Our approach is to use a phase field model to simulate the growth of finite sized nanowire crystals, linking the free energy equation with the diffusion equation of the adatoms. The phase field method solves for an order parameter that defines the evolving steps in a concentration field. This eliminates the need for explicit front tracking/location, or complicated shadowing routines, both of which can be computationally expensive, particularly in higher dimensions. We will present results demonstrating the effect of process conditions, such as substrate temperature, vapor supersaturation, etc. on the evolving morphologies and overall growth rates of the nanostructures.
NASA Astrophysics Data System (ADS)
Hansda, Chaitali; Maiti, Pradip; Singha, Tanmoy; Pal, Manisha; Hussain, Syed Arshad; Paul, Sharmistha; Paul, Pabitra Kumar
2018-10-01
In this study, we investigated the spectroscopic properties of the water-soluble globular protein bovine serum albumin (BSA) while interacting with zinc oxide (ZnO) semiconductor nanoparticles (NPs) in aqueous medium and in a ZnO/BSA layer-by-layer (LbL) self-assembled film fabricated on poly (acrylic acid) (PAA)-coated quartz or a Si substrate via electrostatic interactions. BSA formed a ground state complex due to its interaction with ZnO NPs, which was confirmed by ultraviolet-visible absorption, and steady state and time-resolved fluorescence emission spectroscopic techniques. However, due to its interaction with ZnO, the photophysical properties of BSA depend significantly on the concentration of ZnO NPs in the mixed solution. The quenching of the fluorescence intensity of BSA in the presence of ZnO NPs was due to the interaction between ZnO and BSA, and the formation of their stable ground state complex, as well as energy transfer from the excited BSA to ZnO NPs in the complex nano-bioconjugated species. Multilayer growth of the ZnO/BSA LbL self-assembled film on the quartz substrate was confirmed by monitoring the characteristic absorption band of BSA (280 nm), where the nature of the film growth depends on the number of bilayers deposited on the quartz substrate. BSA formed a well-ordered molecular network-type morphology due to its adsorption onto the surface of the ZnO nanostructure in the backbone of the PAA-coated Si substrate in the LbL film according to atomic force microscopic study. The as-synthesized ZnO NPs were characterized by field emission scanning electron microscopy, X-ray powder diffraction, and dynamic light scattering techniques.
Nucleation, growth, and strain relaxation of lattice-mismatched 3-5 semiconductor epitaxial layers
NASA Technical Reports Server (NTRS)
Welser, R. E.; Guido, L. J.
1994-01-01
We have investigated the early stages of evolution of highly strained 2-D InAs layers and 3-D InAs islands grown by metal-organic chemical vapor deposition (MOCVD) on (100) and (111)B GaAs substrates. The InAs epilayer/GaAs substrate combination has been chosen because the lattice-mismatch is severe (approximately 7.2 percent), yet these materials are otherwise very similar. By examining InAs-on-GaAs composites instead of the more common In(x)Ga(1-x)As alloy we remove an additional degree of freedom (x) and thereby simplify data interpretation. A matrix of experiments is described in which the MOCVD growth parameters - susceptor temperature, Thin flux, and AsH3 flux - have been varied over a wide range. Scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and electron microprobe analysis have been employed to observe the thin film surface morphology. In the case of 3-D growth, we have extracted activation energies and power-dependent exponents that characterize the nucleation process. As a consequence, optimized growth conditions have been identified for depositing approximately 250 A thick (100) and (111)B oriented InAs layers with relatively smooth surfaces. Together with preliminary data on the strain relaxation of these layers, the above results on the evolution of thin InAs films indicate that the (111)B orientation is particularly promising for yielding lattice-mismatched films that are fully relaxed with only misfit dislocations at the epilayer/substrate interface.
Chiu, Rex Shun; Pan, Shiyue; Zhao, Rongmin; Gazzarrini, Sonia
2016-12-01
During germination, endogenous and environmental factors trigger changes in the transcriptome, translatome and proteome to break dormancy. In Arabidopsis thaliana, the ubiquitin proteasome system (UPS) degrades proteins that promote dormancy to allow germination. While research on the UPS has focused on the identification of proteasomal substrates, little information is known about the regulation of its activity. Here we characterized the activity of the UPS during dormancy release and maintenance by monitoring protein ubiquitination and degradation of two proteasomal substrates: Suc-LLVY-AMC, a well characterized synthetic substrate, and FUSCA3 (FUS3), a dormancy-promoting transcription factor degraded by the 26S proteasome. Our data indicate that proteasome activity and protein ubiquitination increase during imbibition at optimal temperature (21°C), and are required for seed germination. However, abscisic acid (ABA) and supraoptimal temperature (32°C) inhibit germination by dampening both protein ubiquitination and proteasome activity. Inhibition of UPS function by high temperature is reduced by the ABA biosynthesis inhibitor, fluridone, and in ABA biosynthetic mutants, suggesting that it is ABA dependent. Accordingly, inhibition of FUS3 degradation at 32°C is also dependent on ABA. Native gels show that inhibition of proteasome activity is caused by interference with the 26S/30S ratio as well as free 19S and 20S levels, impacting the proteasome degradation cycle. Transfer experiments show that ABA-mediated inhibition of proteasome activity at 21°C is restricted to the first 2 days of germination, a time window corresponding to seed sensitivity to environmental and ABA-mediated growth inhibition. Our data show that ABA and high temperature inhibit germination under unfavourable growth conditions by repressing the UPS. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Optimization of plant mineral nutrition under growth-limiting conditions in a lunar greenhouse
NASA Astrophysics Data System (ADS)
Zaets, I.; Voznyuk, T.; Kovalchuk, M.; Rogutskyy, I.; Lukashov, D.; Mytrokhyn, O.; Mashkovska, S.; Foing, B.; Kozyrovska, N.
It may be assumed that the first plants in a lunar base will play a main role in forming a protosoil of acceptable fertility needed for purposively growing second generation plants like wheat, rice, tulips, etc. The residues of the first-generation plants could be composted and transformed by microorganisms into a soil-like substrate within a loop of regenerative life support system. The lunar regolith may be used as a substrate for plant growth at the very beginning of a mission to reduce its cost. The use of microbial communities for priming plants will allow one to facilitate adaption to stressful conditions and to support the plant development under growth limiting conditions. Well-defined plant-associated bacteria were used for growing three cultivars to colonize French marigold (Tagetes patula L.) in anorthosite, a substrate of low bioavailability, analogous to a lunar rock. The consortium was composed of plant growth promoting rhizobacteria and the bacterium Paenibacillus sp. IMBG156 which stimulated seed germination, better plant development, and finally, the flowering of inoculated tagetes. In contrast, control plants grew poorly in the anorthosite and practically did not survive until flowering. Analysis of bacterial community composition showed that all species colonized plant roots, however, the rate of colonization depended on the allelopatic characteristics of marigold varieties. Bacteria of consortium were able to liberate some elements (Ca, Fe, Mn, Si, Ni, Cu, Zn) from substrate anorthosite. Plant colonization by mixed culture of bacterial strains resulted in the increase of accumulation of K, Mg, Mn by the plant and in the lowering of the level of toxic metal accumulation. It was assumed that a rationally assembled consortium of bacterial strains promoted germination of marygold seeds and supported the plant development under growth limiting conditions by means of bioleaching plant essential nutritional elements and by protecting the plant against hyperaccumulation of some toxic metals.
Characteristics of growth of complex ferroelectric oxide films by plasma-ion sputtering
NASA Astrophysics Data System (ADS)
Mukhortov, V. M.; Golovko, Yu. I.; Mukhortov, Vl. M.; Dudkevich, V. P.
1981-02-01
An experimental investigation was made of the process of growth of a complex oxide film, such as BaTiO3 or (Ba, Sr)TiO3, by plasma-ion sputtering. It was found that ion bombardment of a ceramic target knocked out neutral excited atoms. These atoms lost energy away from the target by collisions and at a certain critical distance hcr they were capable of oxidation to produce BaO, TiO, TiO2, and SrO. Therefore, depending on the distance between the cathode and the substrate, the “construction” material arrived in the form of atoms or molecules of simple oxides. These two (atomic and molecular) deposition mechanisms corresponded to two mechanisms of synthesis and crystallization differing in respect of the dependences of the growth rate, unit cell parameters, and other structural properties on the deposition temperature. The role of re-evaporation and of oxidation-reduction processes was analyzed.
Optoelectric biosensor using indium-tin-oxide electrodes.
Choi, Chang Kyoung; Kihm, Kenneth D; English, Anthony E
2007-06-01
The use of an optically thin indium-tin-oxide (ITO) electrode is presented for an optoelectric biosensor simultaneously recording optical images and microimpedance to examine time-dependent cellular growth. The transmittance of a 100 nm thick ITO electrode layer is approximately the same as the transmittance of a clean glass substrate, whereas the industry-standard Au(47.5 nm)/Ti(2.5 nm) electrode layer drops the transmittance to less than 10% of that of the glass substrate. The simultaneous optoelectric measurements permit determining the correlation of the cell-covered area increase with the microimpedance increase, and the example results obtained for live porcine pulmonary artery endothelial cells delineate the quantitative and comprehensive nature of cellular attachment and spreading to the substrate, which has not been clearly perceived before.
Droplet heteroepitaxy of zinc-blende vs. wurtzite GaN quantum dots
NASA Astrophysics Data System (ADS)
Reese, C.; Jeon, S.; Hill, T.; Jones, C.; Shusterman, S.; Yacoby, Y.; Clarke, R.; Deng, H.; Goldman, Rs
We have developed a GaN droplet heteroepitaxy process based upon plasma-assisted molecular-beam epitaxy. Using various surface treatments and Ga deposition parameters, we have demonstrated polycrystalline, zinc-blende (ZB), and wurtzite (WZ) GaN quantum dots (QDs) on Si(001), r-Al2O3, Si(111), and c-GaN substrates. For the polar substrates (i.e. Si(111) and c-GaN), high-resolution transmission electron microscopy and coherent Bragg rod analysis reveals the formation of coherent WZ GaN QDs with nitridation-temperature-dependent sizes and densities. For the non-polar substrates (i.e. Si(001) and r-Al2O3) , QDs with strong near-band photoluminescence emission are observed and ZB GaN QD growth on Si(001) is demonstrated for the first time.
Gallium nitride heterostructures on 3D structured silicon.
Fündling, Sönke; Sökmen, Unsal; Peiner, Erwin; Weimann, Thomas; Hinze, Peter; Jahn, Uwe; Trampert, Achim; Riechert, Henning; Bakin, Andrey; Wehmann, Hergo-Heinrich; Waag, Andreas
2008-10-08
We investigated GaN-based heterostructures grown on three-dimensionally patterned Si(111) substrates by metal organic vapour phase epitaxy, with the goal of fabricating well controlled high quality, defect reduced GaN-based nanoLEDs. The high aspect ratios of such pillars minimize the influence of the lattice mismatched substrate and improve the material quality. In contrast to other approaches, we employed deep etched silicon substrates to achieve a controlled pillar growth. For that a special low temperature inductively coupled plasma etching process has been developed. InGaN/GaN multi-quantum-well structures have been incorporated into the pillars. We found a pronounced dependence of the morphology of the GaN structures on the size and pitch of the pillars. Spatially resolved optical properties of the structures are analysed by cathodoluminescence.
Epitaxial growth of γ-InSe and α, β, and γ-In2Se3 on ε-GaSe
NASA Astrophysics Data System (ADS)
Balakrishnan, Nilanthy; Steer, Elisabeth D.; Smith, Emily F.; Kudrynskyi, Zakhar R.; Kovalyuk, Zakhar D.; Eaves, Laurence; Patanè, Amalia; Beton, Peter H.
2018-07-01
We demonstrate that γ-InSe and the α, β and γ phases of In2Se3 can be grown epitaxially on ε-GaSe substrates using a physical vapour transport method. By exploiting the temperature gradient within the tube furnace, we can grow selectively different phases of InxSey depending on the position of the substrate within the furnace. The uniform cleaved surface of ε-GaSe enables the epitaxial growth of the InxSey layers, which are aligned over large areas. The InxSey epilayers are characterised using Raman, photoluminescence, x-ray photoelectron and electron dispersive x-ray spectroscopies. Each InxSey phase and stoichiometry exhibits distinct optical and vibrational properties, providing a tuneable photoluminescence emission range from 1.3 eV to ~2 eV suitable for exploitation in electronics and optoelectronics.
Sub-5 nm, globally aligned graphene nanoribbons on Ge(001)
Kiraly, Brian; Mannix, Andrew J.; Jacobberger, Robert M.; ...
2016-05-23
Graphene nanoribbons (GNRs) hold great promise for future electronics because of their edge and width dependent electronic bandgaps and exceptional transport properties. While significant progress toward such devices has been made, the field has been limited by difficulties achieving narrow widths, global alignment, and atomically pristine GNR edges on technologically relevant substrates. A recent advance has challenged these limits by using Ge(001) substrates to direct the bottom-up growth of GNRs with nearly pristine armchair edges and widths near ~10 nm via atmospheric pressure chemical vapor deposition. In this work, we extend the growth of GNRs on Ge(001) to ultra-high vacuummore » conditions and realize GNRs narrower than 5 nm. Armchair graphene nanoribbons directed along the Ge <110> surface directions are achieved with excellent width control and relatively large bandgaps. As a result, the bandgap magnitude and electronic uniformity make these new materials excellent candidates for future developments in nanoelectronics.« less
Falcaro, Paolo; Okada, Kenji; Hara, Takaaki; Ikigaki, Ken; Tokudome, Yasuaki; Thornton, Aaron W; Hill, Anita J; Williams, Timothy; Doonan, Christian; Takahashi, Masahide
2017-03-01
The fabrication of oriented, crystalline films of metal-organic frameworks (MOFs) is a critical step toward their application to advanced technologies such as optics, microelectronics, microfluidics and sensing. However, the direct synthesis of MOF films with controlled crystalline orientation remains a significant challenge. Here we report a one-step approach, carried out under mild conditions, that exploits heteroepitaxial growth for the rapid fabrication of oriented polycrystalline MOF films on the centimetre scale. Our methodology employs crystalline copper hydroxide as a substrate and yields MOF films with oriented pore channels on scales that primarily depend on the dimensions of the substrate. To demonstrate that an anisotropic crystalline morphology can translate to a functional property, we assembled a centimetre-scale MOF film in the presence of a dye and showed that the optical response could be switched 'ON' or 'OFF' by simply rotating the film.
NASA Astrophysics Data System (ADS)
Hirakawa, K.; Hashimoto, Y.; Ikoma, T.
1990-12-01
We systematically studied the orientation and the growth sequence dependence of the valence-band offset ΔEv at the lattice-matched common anion GaAs-AlAs interfaces. High quality GaAs-AlAs heterojunctions were carefully grown on GaAs substrates with three major orientations, namely, (100), (110), and (111)B. The core level energy distance ΔECL between Ga 3d and Al 2p levels was measured by in situ x-ray photoemission spectroscopy. ΔECL is found to be independent of the substrate orientation and the growth sequence, which clearly indicates the face independence of ΔEv. This result suggests that the band lineup at lattice-matched isovalent semiconductor heterojunctions is determined by the bulk properties of the constituent materials. ΔEv is determined to be 0.44 ± 0.05 eV.
Descriptions of crack growth behaviors in glass-ZrO2 bilayers under thermal residual stresses.
Belli, Renan; Wendler, Michael; Zorzin, José I; Petschelt, Anselm; Tanaka, Carina B; Meira, Josete; Lohbauer, Ulrich
2016-09-01
This study was intended to separate residual stresses arising from the mismatch in coefficients of thermal expansion between glass and zirconia (ZrO2) from those stresses arising solely from the cooling process. Slow crack growth experimentes were undertaken to demonstrate how cracks grow in different residual stress fields. Aluminosilicate glass discs were sintered onto ZrO2 to form glass-ZrO2 bilayers. Glass discs were allowed to bond to the ZrO2 substrate during sintering or prevented from bonding by means of coating the ZrO2 with a thin boron nitrade coating. Residual stress gradients on "bonded" and "unbonded" bilayers were assessed using birefringence measurements. Unbonded glass discs were further tested under biaxial flexure in dynamic fatigue conditions in order to evaluate the effect of residual stress on the slow crack growth behavior. When fast-ccoling was induced, residual tensile stresses on the glass increased significantly on the side toward the ZrO2 substrate. By allowing the bond between glass and ZrO2, those tensile stresses observed in unbonded specimens are overwhelmed by the contraction mismatch stresses between the ZrO2 substrate and the glassy overlayer. Specimens containing residual tensile stresses on the bending surface showed a time-dependent strength increase in relation to stress-free annealed samples in the dynamic biaxial bending test, with this effect being dependent on the magnitude of the residual tensile stress. The phenomenon observed is explained here on the basis of the water toughening effect, in which water diffuses into the glass promoting local swelling. An additional residual tensile stress at the crack tip adds an applied-stress-independent (Kres) term to the total tip stress intensity factor (Ktip), increasing the stress-enhanced diffusion and the shielding of the crack tip through swelling of the crack faces. Residual stresses in the glass influence the crack growth behavior of veneered-ZrO2 bilayered dental prostheses. The role of water in crack growth might be of higher complexity when residual stresses are present in the glass layer. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Contact Angles and Surface Tension of Germanium-Silicon Melts
NASA Technical Reports Server (NTRS)
Croell, A.; Kaiser, N.; Cobb, S.; Szofran, F. R.; Volz, M.; Rose, M. Franklin (Technical Monitor)
2001-01-01
Precise knowledge of material parameters is more and more important for improving crystal growth processes. Two important parameters are the contact (wetting) angle and the surface tension, determining meniscus shapes and surface-tension driven flows in a variety of methods (Czochralski, EFG, floating-zone, detached Bridgman growth). The sessile drop technique allows the measurement of both parameters simultaneously and has been used to measure the contact angles and the surface tension of Ge(1-x)Si(x) (0 less than or equal to x less than or equal to 1.3) alloys on various substrate materials. Fused quartz, Sapphire, glassy carbon, graphite, SiC, carbon-based aerogel, pyrolytic boron nitride (pBN), AIN, Si3N4, and polycrystalline CVD diamond were used as substrate materials. In addition, the effect of different cleaning procedures and surface treatments on the wetting behavior were investigated. Measurements were performed both under dynamic vacuum and gas atmospheres (argon or forming gas), with temperatures up to 1100 C. In some experiments, the sample was processed for longer times, up to a week, to investigate any changes of the contact angle and/or surface tension due to slow reactions with the substrate. For pure Ge, stable contact angles were found for carbon-based substrates and for pBN, for Ge(1-x)Si(x) only for pBN. The highest wetting angles were found for pBN substrates with angles around 170deg. For the surface tension of Ge, the most reliable values resulted in gamma(T) = (591- 0.077 (T-T(sub m)) 10(exp -3)N/m. The temperature dependence of the surface tension showed similar values for Ge(1-x)Si(x), around -0.08 x 10(exp -3)N/m K, and a compositional dependence of 2.2 x 10(exp -3)N/m at%Si.
Elevated atmospheric CO2 increases microbial growth rates and enzymes activity in soil
NASA Astrophysics Data System (ADS)
Blagodatskaya, Evgenia; Blagodatsky, Sergey; Dorodnikov, Maxim; Kuzyakov, Yakov
2010-05-01
Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long-term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root-free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate-induced respiration response after glucose and/or yeast extract addition to the soil. We evaluated the effect of elevated CO2 on b-glucosidase, chitinase, phosphatase, and sulfatase to estimate the potential enzyme activity after soil amendment with glucose and nutrients. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ-values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivum
Growth of Carbon Nanostructure Materials Using Laser Vaporization
NASA Technical Reports Server (NTRS)
Zhu, Shen; Su, Ching-Hua; Lehozeky, S.
2000-01-01
Since the potential applications of carbon nanotubes (CNT) was discovered in many fields, such as non-structure electronics, lightweight composite structure, and drug delivery, CNT has been grown by many techniques in which high yield single wall CNT has been produced by physical processes including arc vaporization and laser vaporization. In this presentation, the growth mechanism of the carbon nanostructure materials by laser vaporization is to be discussed. Carbon nanoparticles and nanotubes have been synthesized using pulsed laser vaporization on Si substrates in various temperatures and pressures. Two kinds of targets were used to grow the nanostructure materials. One was a pure graphite target and the other one contained Ni and Co catalysts. The growth temperatures were 600-1000 C and the pressures varied from several torr to 500 torr. Carbon nanoparticles were observed when a graphite target was used, although catalysts were deposited on substrates before growing carbon films. When the target contains catalysts, carbon nanotubes (CNT) are obtained. The CNT were characterized by scanning electron microscopy, x-ray diffraction, optical absorption and transmission, and Raman spectroscopy. The temperature-and pressure-dependencies of carbon nanotubes' growth rate and size were investigated.
MULCHES AND OTHER COVER MATERIALS TO REDUCE WEED GROWTH IN CONTAINER-GROWN NURSERY STOCK.
Rys, F; Van Wesemael, D; Van Haecke, D; Mechant, E; Gobin, B
2014-01-01
Due to the recent EU-wide implementation of Integrated Pest Management (IPM), alternative methods to reduce weed growth in container-grown nursery stock are needed to cut back the use of herbicides. Covering the upper layer of the substrate is known as a potential method to prevent or reduce weed growth in plant containers. As a high variety of mulches and other cover materials are on the market, however, it is no longer clear for growers which cover material is most efficient for use in containers. Therefore, we examined the effect on weed growth of different mulches and other cover materials, including Pinus maritima, P. sylvestris, Bio-Top Basic, Bio-Top Excellent, coco chips fine, hemp fibres, straw pellets, coco disk 180LD and jute disk. Cover materials were applied immediately after repotting of Ligustrum ovalifolium or planting of Fagus sylvatica. At regular times, both weed growth and side effects (e.g., plant growth, water status of the substrate, occurrence of mushrooms, foraging of birds, complete cover of the substrate and fixation) were assessed. All examined mulches or other cover materials were able to reduce weed growth on the containers during the whole growing season. Weed suppression was even better than that of a chemical treated control. Although all materials showed some side effects, the impact on plant growth is most important to the grower and depends not only on material characteristics (e.g., biodegradation, nutrient leaching and N-immobilisation) but also on container size and climatic conditions. In conclusion, mulches and other cover materials can be a valuable tool within IPM to lower herbicide use. To enable a deliberate choice of which cover material is best used in a specific situation more research is needed on lifespan and stability as well as on economic characteristics of the materials.
Fraiberg, Milana; Borovok, Ilya; Bayer, Edward A.; Weiner, Ronald M.; Lamed, Raphael
2011-01-01
The complex polysaccharide-degrading marine bacterium Saccharophagus degradans strain 2-40 produces putative proteins that contain numerous cadherin and cadherin-like domains involved in intercellular contact interactions. The current study reveals that both domain types exhibit reversible calcium-dependent binding to different complex polysaccharides which serve as growth substrates for the bacterium. PMID:21036994
Ammer, Amanda Gatesman; Kelley, Laura C.; Hayes, Karen E.; Evans, Jason V.; Lopez-Skinner, Lesly Ann; Martin, Karen H.; Frederick, Barbara; Rothschild, Brian L.; Raben, David; Elvin, Paul; Green, Tim P.; Weed, Scott A.
2010-01-01
Elevated Src kinase activity is linked to the progression of solid tumors, including head and neck squamous cell carcinoma (HNSCC). Src regulates HNSCC proliferation and tumor invasion, with the Src-targeted small molecule inhibitor saracatinib displaying potent anti-invasive effects in preclinical studies. However, the pro-invasive cellular mechanism(s) perturbed by saracatinib are unclear. The anti-proliferative and anti-invasive effects of saracatinib on HNSCC cell lines were therefore investigated in pre-clinical cell and mouse model systems. Saracatinib treatment inhibited growth, cell cycle progression and transwell Matrigel invasion in HNSCC cell lines. Dose-dependent decreases in Src activation and phosphorylation of the invasion-associated substrates focal adhesion kinase, p130 CAS and cortactin were also observed. While saracatinib did not significantly impact HNSCC tumor growth in a mouse orthotopic model of tongue squamous cell carcinoma, impaired perineural invasion and cervical lymph node metastasis was observed. Accordingly, saracatinib treatment displayed a dose-dependent inhibitory effect on invadopodia formation, extracellular matrix degradation and matrix metalloprotease 9 activation. These results suggest that inhibition of Src kinase by saracatinib impairs the pro-invasive activity of HNSCC by inhibiting Src substrate phosphorylation important for invadopodia formation and associated matrix metalloprotease activity. PMID:20505783
Forrest, Stephen R; Zimmerman, Jeramy; Lee, Kyusang; Shiu, Kuen-Ting
2015-01-06
There is disclosed methods of making photosensitive devices, such as flexible photovoltaic (PV) devices, through the use of epitaxial liftoff. Also described herein are methods of preparing flexible PV devices comprising a structure having a growth substrate, wherein the selective etching of protective layers yields a smooth growth substrate that us suitable for reuse.
Forrest, Stephen R; Zimmerman, Jeramy; Lee, Kyusang; Shiu, Kuen-Ting
2013-02-19
There is disclosed methods of making photosensitive devices, such as flexible photovoltaic (PV) devices, through the use of epitaxial liftoff. Also described herein are methods of preparing flexible PV devices comprising a structure having a growth substrate, wherein the selective etching of protective layers yields a smooth growth substrate that us suitable for reuse.
Insulin receptor substrate signaling controls cardiac energy metabolism and heart failure.
Guo, Cathy A; Guo, Shaodong
2017-06-01
The heart is an insulin-dependent and energy-consuming organ in which insulin and nutritional signaling integrates to the regulation of cardiac metabolism, growth and survival. Heart failure is highly associated with insulin resistance, and heart failure patients suffer from the cardiac energy deficiency and structural and functional dysfunction. Chronic pathological conditions, such as obesity and type 2 diabetes mellitus, involve various mechanisms in promoting heart failure by remodeling metabolic pathways, modulating cardiac energetics and impairing cardiac contractility. Recent studies demonstrated that insulin receptor substrates 1 and 2 (IRS-1,-2) are major mediators of both insulin and insulin-like growth factor-1 (IGF-1) signaling responsible for myocardial energetics, structure, function and organismal survival. Importantly, the insulin receptor substrates (IRS) play an important role in the activation of the phosphatidylinositide-3-dependent kinase (PI-3K) that controls Akt and Foxo1 signaling cascade, regulating the mitochondrial function, cardiac energy metabolism and the renin-angiotensin system. Dysregulation of this branch in signaling cascades by insulin resistance in the heart through the endocrine system promotes heart failure, providing a novel mechanism for diabetic cardiomyopathy. Therefore, targeting this branch of IRS→PI-3K→Foxo1 signaling cascade and associated pathways may provide a fundamental strategy for the therapeutic and nutritional development in control of metabolic and cardiovascular diseases. In this review, we focus on insulin signaling and resistance in the heart and the role energetics play in cardiac metabolism, structure and function. © 2017 Society for Endocrinology.
SILAC-based phosphoproteomics reveals new PP2A-Cdc55-regulated processes in budding yeast.
Baro, Barbara; Játiva, Soraya; Calabria, Inés; Vinaixa, Judith; Bech-Serra, Joan-Josep; de LaTorre, Carolina; Rodrigues, João; Hernáez, María Luisa; Gil, Concha; Barceló-Batllori, Silvia; Larsen, Martin R; Queralt, Ethel
2018-05-01
Protein phosphatase 2A (PP2A) is a family of conserved serine/threonine phosphatases involved in several essential aspects of cell growth and proliferation. PP2ACdc55 phosphatase has been extensively related to cell cycle events in budding yeast; however, few PP2ACdc55 substrates have been identified. Here, we performed a quantitative mass spectrometry approach to reveal new substrates of PP2ACdc55 phosphatase and new PP2A-related processes in mitotic arrested cells. We identified 62 statistically significant PP2ACdc55 substrates involved mainly in actin-cytoskeleton organization. In addition, we validated new PP2ACdc55 substrates such as Slk19 and Lte1, involved in early and late anaphase pathways, and Zeo1, a component of the cell wall integrity pathway. Finally, we constructed docking models of Cdc55 and its substrate Mob1. We found that the predominant interface on Cdc55 is mediated by a protruding loop consisting of residues 84-90, thus highlighting the relevance of these aminoacids for substrate interaction. We used phosphoproteomics of Cdc55-deficient cells to uncover new PP2ACdc55 substrates and functions in mitosis. As expected, several hyperphosphorylated proteins corresponded to Cdk1-dependent substrates, although other kinases' consensus motifs were also enriched in our dataset, suggesting that PP2ACdc55 counteracts and regulates other kinases distinct from Cdk1. Indeed, Pkc1 emerged as a novel node of PP2ACdc55 regulation, highlighting a major role of PP2ACdc55 in actin cytoskeleton and cytokinesis, gene ontology terms significantly enriched in the PP2ACdc55-dependent phosphoproteome.
Dekkera and Brettanomyces growth and utilisation of hydroxycinnamic acids in synthetic media.
Harris, Victoria; Ford, Christopher M; Jiranek, Vladimir; Grbin, Paul R
2008-04-01
Dekkera and Brettanomyces yeast are important spoilage organisms in a number of food and beverage products. Isolates of both genera were cultured in a defined medium and supplemented with hydroxycinnamic acids and vinylphenols to investigate their influence on growth and the formation of ethyl phenol derivatives. The growth rate of Brettanomyces species in the presence of acids was reduced, and no significant conversion to vinyl or ethyl derivatives was observed. The growth rate and substrate utilisation rates of Dekkera anomala and Dekkera bruxellensis yeast differed depending on strain and the acid precursor present. Growth of D. bruxellensis was slowed by the presence of ferulic acid with the addition of 1 mM ferulic acid completely inhibiting growth. This study provides an insight into the spoilage potential of these organisms and possible control strategies involving hydroxycinnamic acids.
Gil-Serna, Jessica; Patiño, Belén; Cortes, Laura; Gonzalez-Jaen, Maria Teresa; Vazquez, Covadonga
2015-04-01
Aspergillus steynii and Aspergillus westerdijkiae are the main ochratoxin A (OTA) producing species of Aspergillus section Circumdati. Due to its recent description, few data are available about the influence of ecophysiological factors on their growth and OTA production profiles. In this work, the effect of temperature (20, 24 and 28 °C) and water activity (aw) (0.928, 0.964 and 0.995) on growth, sporulation and OTA production by these fungi was examined in CYA and media prepared from paprika, green coffee, anise, grapes, maize and barley. Growth was positively affected by the highest temperature and aw values indicating that both species might be expected in warm climates or storage conditions. However, optimal growth conditions showed differences depending on the medium. OTA production was markedly affected by substrate and showed qualitative and quantitative differences. Both species, especially A. steynii, represent a great potential risk of OTA contamination due to their high production in a variety of conditions and substrates, in particular in barley and paprika-based media. Additionally, neither growth nor sporulation did result good indicators of OTA production by A. steynii or A. westerdijkiae; therefore, specific and highly-sensitive detection methods become essential tools for control strategies to reduce OTA risk by these species. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ga flux dependence of Er-doped GaN luminescent thin films
NASA Astrophysics Data System (ADS)
Lee, D. S.; Steckl, A. J.
2002-02-01
Er-doped GaN thin films have been grown on (111) Si substrates with various Ga fluxes in a radio frequency plasma molecular beam epitaxy system. Visible photoluminescence (PL) and electroluminescence (EL) emission at 537/558 nm and infrared (IR) PL emission at 1.5 μm from GaN:Er films exhibited strong dependence on the Ga flux. Both visible and IR PL and visible EL increase with the Ga flux up to the stoichiometric growth condition, as determined by growth rate saturation. Beyond this condition, all luminescence levels abruptly dropped to the detection limit with increasing Ga flux. The Er concentration, measured by secondary ion mass spectroscopy and Rutherford backscattering, decreases with increasing Ga flux under N-rich growth conditions and remains constant above the stoichiometric growth condition. X-ray diffraction indicated that the crystalline quality of the GaN:Er film was improved with increasing Ga flux up to stoichiometric growth condition and then saturated. Er ions in the films grown under N-rich conditions appear much more optically active than those in the films grown under Ga-rich conditions.
Effects of Combinations of Substrates on Maximum Growth Rates of Several Rumen Bacteria
Russell, James B.; Delfino, Frank J.; Baldwin, R. L.
1979-01-01
Five rumen bacteria, Selenomonas ruminantium, Bacteroides ruminicola, Megasphaera elsdenii, Butyrivibrio fibrisolvens, and Streptococcus bovis were grown in media containing nonlimiting concentrations of glucose, sucrose, maltose, cellobiose, xylose and/or lactate. Each bacterium was grown with every substrate that it could ferment in every possible two-way combination. Only once did a combination of substrates result in a higher maximum growth rate than that observed with either substrate alone. Such stimulations of growth rate would be expected if specific factors unique to individual substrates (transport proteins and/or enzymes) were limiting. Since such synergisms were rare, it was concluded that more general factors limit maximum growth rates in these five bacteria. PMID:16345360
Asefa, Benyam; Dermott, Jonathan M; Kaldis, Philipp; Stefanisko, Karen; Garfinkel, David J; Keller, Jonathan R
2006-02-20
p205 is a member of the interferon-inducible p200 family of proteins that regulate cell proliferation. Over-expression of p205 inhibits cell growth, although its mechanism of action is currently unknown. Therefore, we evaluated the effect of p205 on the p53 and Rb-dependent pathways of cell cycle regulation. p205 expression results in elevated levels of p21, and activates the p21 promoter in vitro in a p53-dependent manner. In addition, p205 induces increased expression of Rb, and binds directly to Rb and p53. Interestingly, p205 also induces growth inhibition independent of p53 and Rb by delaying G2/M progression in proliferating cells, and is a substrate for Cdk2 kinase activity. Finally, we have identified other binding partners of p205 by a yeast two-hybrid screen, including the paired homeodomain protein HoxB2. Taken together, our results indicate that p205 induces growth arrest by interaction with multiple transcription factors that regulate the cell cycle, including but not entirely dependent on the Rb- and p53-mediated pathways of growth inhibition.
Carbon nanotube growth density control
NASA Technical Reports Server (NTRS)
Delzeit, Lance D. (Inventor); Schipper, John F. (Inventor)
2010-01-01
Method and system for combined coarse scale control and fine scale control of growth density of a carbon nanotube (CNT) array on a substrate, using a selected electrical field adjacent to a substrate surface for coarse scale density control (by one or more orders of magnitude) and a selected CNT growth temperature range for fine scale density control (by multiplicative factors of less than an order of magnitude) of CNT growth density. Two spaced apart regions on a substrate may have different CNT growth densities and/or may use different feed gases for CNT growth.
Nanostructured carbon films with oriented graphitic planes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teo, E. H. T.; Kalish, R.; Kulik, J.
2011-03-21
Nanostructured carbon films with oriented graphitic planes can be deposited by applying energetic carbon bombardment. The present work shows the possibility of structuring graphitic planes perpendicular to the substrate in following two distinct ways: (i) applying sufficiently large carbon energies for deposition at room temperature (E>10 keV), (ii) utilizing much lower energies for deposition at elevated substrate temperatures (T>200 deg. C). High resolution transmission electron microscopy is used to probe the graphitic planes. The alignment achieved at elevated temperatures does not depend on the deposition angle. The data provides insight into the mechanisms leading to the growth of oriented graphiticmore » planes under different conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azzez, Shrook A., E-mail: shurouq44@yahoo.com; Hassan, Z.; Alimanesh, M.
Highly oriented zinc oxide nanorod were successfully grown on seeded p-type silicon substrate by hydrothermal methode. The morphology and the crystallinty of ZnO c-axis (002) arrays were systematically studied using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) methods. The effect of seed layer pre-annealing on nanorods properties was explained according to the nucleation site of ZnO nanoparticles on silicon substrate. In addition, the variation of the equal molarity of zinc nitrate hexahydrate and hexamine concentrations in the reaction vessel play a crucial role related to the ZnO nanorods.
Accretion Dynamics on Wet Granular Materials
NASA Astrophysics Data System (ADS)
Saingier, Guillaume; Sauret, Alban; Jop, Pierre
2017-05-01
Wet granular aggregates are common precursors of construction materials, food, and health care products. The physical mechanisms involved in the mixing of dry grains with a wet substrate are not well understood and difficult to control. Here, we study experimentally the accretion of dry grains on a wet granular substrate by measuring the growth dynamics of the wet aggregate. We show that this aggregate is fully saturated and its cohesion is ensured by the capillary depression at the air-liquid interface. The growth dynamics is controlled by the liquid fraction at the surface of the aggregate and exhibits two regimes. In the viscous regime, the growth dynamics is limited by the capillary-driven flow of liquid through the granular packing to the surface of the aggregate. In the capture regime, the capture probability depends on the availability of the liquid at the saturated interface, which is controlled by the hydrostatic depression in the material. We propose a model that rationalizes our observations and captures both dynamics based on the evolution of the capture probability with the hydrostatic depression.
Electrical and Raman spectroscopic studies of vertically aligned multi-walled carbon nanotubes.
Mathur, Ashish; Tweedie, Mark; Roy, Susanta Sinha; Maguire, P D; McLaughlin, James A
2009-07-01
Microwave plasma enhanced chemical vapour deposition (MPECVD) was used for the production of carbon nanotubes. Vertically aligned multi-walled carbon nanotubes (MWCNTs) were grown on silicon substrates coated with cobalt thin films of thickness ranging from 0.5 nm to 3 nm. Prior to the nanotube growth the catalyst were treated with N2 plasma for 5-10 minutes that break the films into small nanoparticles which favour the growth of nanotubes. The CNTs were grown at a substrate temperature of 700 degrees C for 5, 10 and 15 minutes. The height of the CNT films ranging from 10 microm-30 microm indicating that the initial growth rate of the CNTs are very high at a rate of approximately 100 nm/sec. Electrical resistivity of the above samples was evaluated from I-V measurements. The activation energy (E(a)) was also calculated from the temperature dependent studies and it was found that the E(a) lies in the range of 15-35 meV. Raman spectroscopy was used to identify the quality of the nanotubes.
Synthesis of metal-organic framework films by pore diffusion method
NASA Astrophysics Data System (ADS)
Murayama, Naohiro; Nishimura, Yuki; Kajiro, Hiroshi; Kishida, Satoru; Kinoshita, Kentaro; Tottori Univ Team; Nippon Steel; Sumitomo Metal Co. Collaboration; Tottori Integrated Frontier Resaerch Center (Tifrec) Collaboration; Tottori University Electronic Display Resaerch Center (Tedrec) Collaboration
Metal-organic frameworks (MOFs) presents high controllability in designing the nano-scale pore, and this enable molecular storages, catalysts, gas sensors, gas separation membranes, and electronic devices for next-generation. Therefore, a simple method for film synthesis of MOFs compared with conventional methods [1] is strongly required. In this paper, we provide pore diffusion method, in which a substrate containing constituent metals of MOF is inserted in solution that includes only linker molecules of MOF. As a result, 2D growth of MOF was effectively enhanced, and the formation of flat and dense MOF films was attained. The growth time, t, dependence of film thickness, d, can be expressed by the relation of d = Aln(t + 1) + B, where A and B are constants. It means that ionized coppers diffuse through the pores of MOFs and the synthesis reaction proceeds at the MOF/solvent interface. We demonstrated the fabrication of a HKUST-1/Cu-TPA hetero structure by synthesizing a Cu-TPA film continuously after the growth of a HKUST-1 film on the CuOx substrate.
Sabra, Wael; Bommareddy, Rajesh Reddy; Maheshwari, Garima; Papanikolaou, Seraphim; Zeng, An-Ping
2017-05-08
Unlike the well-studied backer yeast where catabolite repression represents a burden for mixed substrate fermentation, Yarrowia lipolytica, an oleaginous yeast, is recognized for its potential to produce single cell oils and citric acid from different feedstocks. These versatilities of Y. lipolytica with regards to substrate utilization make it an attractive host for biorefinery application. However, to develop a commercial process for the production of citric acid by Y. lipolytica, it is necessary to better understand the primary metabolism and its regulation, especially for growth on mixed substrate. Controlling the dissolved oxygen concentration (pO 2 ) in Y. lipolytica cultures enhanced citric acid production significantly in cultures grown on glucose in mono- or dual substrate fermentations, whereas with glycerol as mono-substrate no significant effect of pO 2 was found on citrate production. Growth on mixed substrate with glucose and glycerol revealed a relative preference of glycerol utilization by Y. lipolytica. Under optimized conditions with pO 2 control, the citric acid titer on glucose in mono- or in dual substrate cultures was 55 and 50 g/L (with productivity of 0.6 g/L*h in both cultures), respectively, compared to a maximum of 18 g/L (0.2 g/L*h) with glycerol in monosubstrate culture. Additionally, in dual substrate fermentation, glycerol limitation was found to trigger citrate consumption despite the presence of enough glucose in pO 2 -limited culture. The metabolic behavior of this yeast on different substrates was investigated at transcriptomic and 13 C-based fluxomics levels. Upregulation of most of the genes of the pentose phosphate pathway was found in cultures with highest citrate production with glucose in mono- or in dual substrate fermentation with pO 2 control. The activation of the glyoxylate cycle in the oxygen limited cultures and the imbalance caused by glycerol limitation might be the reason for the re-consumption of citrate in dual substrate fermentations. This study provides interesting targets for metabolic engineering of this industrial yeast.
NASA Astrophysics Data System (ADS)
Piquette, Eric Charles
The thesis consists of two parts. Part I describes work on the molecular beam epitaxial (MBE) growth of GaN, AlN, and AlxGa 1-xN alloys, as well as efforts in the initial technical development and demonstration of nitride-based high power electronic devices. The major issues pertaining to MBE growth are discussed, including special requirements of the growth system, substrates, film nucleation, n - and p-type doping, and the dependence of film quality on growth parameters. The GaN films were characterized by a variety of methods, including high resolution x-ray diffraction, photoluminescence, and Hall effect measurement. It is found that the film polarity and extended defect density as well as quality of photoluminescence and electrical transport properties depend crucially on how the nitride layer is nucleated on the substrate and how the subsequent film surface morphology evolves, which can be controlled by the growth conditions. A technique is proposed and demonstrated that utilizes the control of morphology evolution to reduce defect density and improve the structural quality of MBE GaN films. In addition to growth, the design and processing of high voltage GaN Schottky diodes is presented, as well as an experimental study of sputter-deposited ohmic and rectifying metal contacts to GaN. Simple models for high power devices, based on materials properties such as minority carrier diffusion length and critical electric breakdown field, are used to estimate the voltage standoff capability, current carrying capacity, and maximum operating frequency of unipolar and bipolar GaN power devices. The materials and transport properties of GaN pertinent to high power device design were measured experimentally. High voltage Schottky rectifiers were fabricated which verify the impressive electric breakdown field of GaN (2--5 MV/cm). Electron beam induced current (EBIC) experiments were also conducted to measure the minority carrier diffusion length for both electrons and holes in GaN. Part II of the thesis describes studies of the MBE growth of ZnS and investigations of ZnS/GaN fight emitting heterojunctions which show promise for application as blue and green light emitters. Zinc sulfide layers doped with Ag and Al were grown by MBE on sapphire, GaAs, and GaN substrates and characterized by x-ray diffraction and photoluminescence. Preliminary current-voltage and electroluminescence results are presented for a processed ZnS:Al,Ag/GaN:Mg prototype blue light emitting device.
Role of substrate quality on IC performance and yields
NASA Technical Reports Server (NTRS)
Thomas, R. N.
1981-01-01
The development of silicon and gallium arsenide crystal growth for the production of large diameter substrates are discussed. Large area substrates of significantly improved compositional purity, dopant distribution and structural perfection on a microscopic as well as macroscopic scale are important requirements. The exploratory use of magnetic fields to suppress convection effects in Czochralski crystal growth is addressed. The growth of large crystals in space appears impractical at present however the efforts to improve substrate quality could benefit from the experiences gained in smaller scale growth experiments conducted in the zero gravity environment of space.
Chemical bath deposition of semiconductor thin films & nanostructures in novel microreactors
NASA Astrophysics Data System (ADS)
McPeak, Kevin M.
Chemical bath deposition (CBD) offers a simple and inexpensive route to deposit semiconductor nanostructures and thin films, but lack of fundamental understanding and control of the underlying chemistry has limited its versatility. CBD is traditionally performed in a batch reactor, requiring only a substrate to be immersed in a supersaturated solution of aqueous precursors such as metal salts, complexing agents, and pH buffers. Highlights of CBD include low cost, operation at low temperature and atmospheric pressure, and scalability to large area substrates. In this dissertation, I explore CBD of semiconductor thin films and nanowire arrays in batch and continuous flow microreactors. Microreactors offer many advantages over traditional reactor designs including a reduction in mass transport limitations, precise temperature control and ease of production scale-up by "numbering up". Continuous flow micoreactors offer the unique advantage of providing reaction conditions that are time-invariant but change smoothly as a function of distance down the reaction channel. Growth from a bath whose composition changes along the reactor length results in deposited materials whose properties vary as a function of position on the substrate, essentially creating a combinatorial library. These substrates can be rapidly characterized to identify relationships between growth conditions and material properties or growth mechanisms. I have used CBD in a continuous flow microreactor to deposit ZnO nanowire arrays and CdZnS films whose optoelectronic properties vary as a function of position. The spatially-dependent optoelectronic properties of these materials have been correlated to changes in the composition, structure or growth mechanisms of the materials and ultimately their growth conditions by rigorous spatial characterization. CBD in a continuous flow microreactor, coupled with spatial characterization, provides a new route to understanding the connection between CBD growth conditions and the resulting optoelectronic properties of the film. The high surface-to-volume ratio of a microreactor also lends itself to in situ characterization studies. I demonstrated the first in situ x-ray absorption fine-structure spectroscopy (XAFS) study of CBD. The high sensitivity and ability to characterize liquid, amorphous and crystalline materials simultaneously make in situ XAFS spectroscopy an ideal tool to study the CBD of inorganic nanomaterials.
NASA Astrophysics Data System (ADS)
Zhang, Wei
In this research project I have investigated AlGaN alloys and their quantum structures for applications in deep UV and terahertz optoelectronic devices. For the deep UV emitter applications the materials and devices were grown by rf plasma-assisted molecular beam epitaxy on 4H-SiC, 6H-SiC and c-plane sapphire substrates. In the growth of AlGaN/AlN multiple quantum wells on SiC substrates, the AlGaN wells were grown under excess Ga, far beyond than what is required for the growth of stoichiometric AlGaN films, which resulted in liquid phase epitaxy growth mode. Due to the statistical variations of the excess Ga on the growth front we found that this growth mode leads to films with lateral variations in the composition and thus, band structure potential fluctuations. Transmission electron microscopy shows that the wells in such structures are not homogeneous but have the appearance of quantum dots. We find by temperature dependent photoluminescence measurements that the multiple quantum wells with band structure potential fluctuations emit at 240 nm and have room temperature internal quantum efficiency as high as 68%. Furthermore, they were found to have a maximum net modal optical gain of 118 cm-1 at a transparency threshold corresponding to 1.4 x 1017 cm-3 excited carriers. We attribute this low transparency threshold to population inversion of only the regions of the potential fluctuations rather than of the entire matrix. Some prototype deep UV emitting LED structures were also grown by the same method on sapphire substrates. Optoelectronic devices for terahertz light emission and detection, based on intersubband transitions in III-nitride semiconductor quantum wells, were grown on single crystal c-plane GaN substrates. Growth conditions such the ratio of group III to active nitrogen fluxes, which determines the appropriate Ga-coverage for atomically smooth growth without requiring growth interruptions were employed. Emitters designed in the quantum cascade structure were fabricated into mesa-structure devices and the I-V characterization at 20 K indicates sequential tunneling with electroluminescence emission at about 10 THz. Similarly, Far-infrared photoconductive detectors were grown by the same method. Photocurrent spectra centered at 23 mum (13 THz) are resolved up to 50 K, with responsivity of approximately 7 mA/W.
Ring formation on an inclined surface
NASA Astrophysics Data System (ADS)
Deegan, Robert; Du, Xiyu
2015-11-01
A drop dried on a solid surface will typically leave a narrow band of solute deposited along the contact line. We examined variations of this deposit due to the inclination of the substrate using numerical simulations of a two-dimensional drop, equivalent to a strip-like drop. An asymptotic analysis of the contact line region predicts that the upslope deposit will grow faster at early times, but the growth of this deposit ends sooner because the upper contact line depins first. From our simulations we find that the deposit can be larger at either the upper or lower contact line depending on the initial drop volume and substrate inclination. For larger drops and steeper inclinations, the early lead in deposited mass at the upper contact line is wiped out by the earlier depinning of the upper contact line and subsequent continued growth at the lower contact line. Conversely, for smaller drops and shallower inclinations, the early lead of the upper contact line is insurmountable despite its earlier termination in growth. Our results show that it is difficult to reconstruct a postiorithe inclination of the substrate based solely on the shape of the deposit. The authors thank the James S. McDonnell Foundation for support through a 21st Century Science Initiative in Studying Complex Systems Research Award, and the National Science Foundation for support under Grant No. 0932600.
Antonelou, Aspasia; Syrrokostas, George; Sygellou, Lamprini; Leftheriotis, George; Dracopoulos, Vassileios; Yannopoulos, Spyros N
2016-01-29
The growth of MoS2 films by sulfurization of Mo foils at atmospheric pressure is reported. The growth procedure provides, in a controlled way, mono- and few-layer thick MoS2 films with substrate-scale uniformity across square-centimeter area on commercial foils without any pre- or post-treatment. The prepared few-layer MoS2 films are investigated as counter electrodes for dye-sensitized solar cells (DSSCs) by assessing their ability to catalyse the reduction of I3(-) to I(-) in triiodide redox shuttles. The dependence of the MoS2 catalytic activity on the number of monolayers is explored down to the bilayer thickness, showing performance similar to that of, and stability against corrosion better than, Pt-based nanostructured film. The DSSC with the MoS2-Mo counter electrode yields a photovoltaic energy conversion efficiency of 8.4%, very close to that of the Pt-FTO-based DSSC, i.e. 8.7%. The current results disclose a facile, cost-effective and green method for the fabrication of mechanically robust and chemically stable, few-layer MoS2 on flexible Mo substrates and further demonstrate that efficient counter electrodes for DSSCs can be prepared at thicknesses down to the 1-2 nm scale.
Seredyński, Rafał; Wolna, Dorota; Kędzior, Mateusz; Gutowicz, Jan
2017-01-01
Protease secretion in Saccharomyces cerevisiae cultures is a complex process, important for the application of this organism in the food industry and biotechnology. Previous studies provide rather quantitative data, yielding no information about the number of enzymes involved in proteolysis and their individual biochemical properties. Here we demonstrate that W303a and BY4742 S. cerevisiae strains reveal different patterns of spontaneous and gelatin-induced extracellular proteolytic activity. We applied the gelatin zymography assay to track changes of the proteolytic profile in time, finding the protease secretion dependent on the growth phase and the presence of the protein inducer. Detected enzymes were characterized regarding their substrate specificity, pH tolerance, and susceptibility to inhibitors. In case of the W303a strain, only one type of gelatin-degrading secretory protease (presumably metalloproteinase) was observed. However, the BY4742 strain secreted different proteases of the various catalytic types, depending on the substrate availability. Our study brings the evidence that S. cerevisiae strains secrete several kinds of proteases depending on the presence and type of the substrate. Protein induction may cause not only quantitative but also qualitative changes in the extracellular proteolytic patterns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Initial reactions involved in the dissimilation of mandelate by Rhodotorula graminis.
Durham, D R
1984-01-01
Rhodotorula graminis utilized DL-mandelate, L(+)-mandelate, and D(-)-mandelate as sole sources of carbon and energy. Growth on these aromatic substrates resulted in the induction of an NAD-dependent D(-)-mandelate dehydrogenase and a dye-linked L(+)-mandelate dehydrogenase, each catalyzing the stereospecific conversion of its respective enantiomer of mandelate to benzoylformate. Benzoylformate was oxidized to benzaldehyde, which was dehydrogenated to benzoate by an NAD-dependent benzaldehyde dehydrogenase. Benzoate was further metabolized through p-hydroxybenzoate and the protocatechuate branch of the beta-ketoadipate pathway. PMID:6389497
Emission control of InGaN nanocolumns grown by molecular-beam epitaxy on Si(111) substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, S.; Bengoechea-Encabo, A.; Sanchez-Garcia, M. A.
This work studies the effect of the growth temperature on the morphology and emission characteristics of self-assembled InGaN nanocolumns grown by plasma assisted molecular beam epitaxy. Morphology changes are assessed by scanning electron microscopy, while emission is measured by photoluminescence. Within the growth temperature range of 750 to 650 deg. C, an increase in In incorporation for decreasing temperature is observed. This effect allows tailoring the InGaN nanocolumns emission line shape by using temperature gradients during growth. Depending on the gradient rate, span, and sign, broad emission line shapes are obtained, covering the yellow to green range, even yielding whitemore » emission.« less
Intrinsic stress evolution during amorphous oxide film growth on Al surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flötotto, D., E-mail: d.floetotto@is.mpg.de; Wang, Z. M.; Jeurgens, L. P. H.
2014-03-03
The intrinsic stress evolution during formation of ultrathin amorphous oxide films on Al(111) and Al(100) surfaces by thermal oxidation at room temperature was investigated in real-time by in-situ substrate curvature measurements and detailed atomic-scale microstructural analyses. During thickening of the oxide a considerable amount of growth stresses is generated in, remarkably even amorphous, ultrathin Al{sub 2}O{sub 3} films. The surface orientation-dependent stress evolutions during O adsorption on the bare Al surfaces and during subsequent oxide-film growth can be interpreted as a result of (i) adsorption-induced surface stress changes and (ii) competing processes of free volume generation and structural relaxation, respectively.
NASA Astrophysics Data System (ADS)
Jilani, Asim; Abdel-wahab, M. Sh; Al-ghamdi, Attieh A.; Dahlan, Ammar sadik; Yahia, I. S.
2016-01-01
The 2.2 wt% of aluminum (Al)-doped zinc oxide (AZO) transparent and preferential c-axis oriented thin films were prepared by using radio frequency (DC/RF) magnetron sputtering at different substrate temperature ranging from room temperature to 200 °C. For structural analysis, X-ray Diffraction (XRD) and Atomic Force Electron Microscope (AFM) was used for morphological studies. The optical parameters such as, optical energy gap, refractive index, extinction coefficient, dielectric loss, tangent loss, first and third order nonlinear optical properties of transparent films were investigated. High transmittance above 90% and highly homogeneous surface were observed in all samples. The substrate temperature plays an important role to get the best transparent conductive oxide thin films. The substrate temperature at 150 °C showed the growth of highly transparent AZO thin film. Energy gap increased with the increased in substrate temperature of Al doped thin films. Dielectric constant and loss were found to be photon energy dependent with substrate temperature. The change in substrate temperature of Al doped thin films also affect the non-liner optical properties of thin films. The value of χ(3) was found to be changed with the grain size of the thin films that directly affected by the substrate temperature of the pure and Al doped ZnO thin films.
MBE Growth of HgCdTe on Large-Area Si and CdZnTe Wafers for SWIR, MWIR and LWIR Detection
NASA Astrophysics Data System (ADS)
Reddy, M.; Peterson, J. M.; Lofgreen, D. D.; Franklin, J. A.; Vang, T.; Smith, E. P. G.; Wehner, J. G. A.; Kasai, I.; Bangs, J. W.; Johnson, S. M.
2008-09-01
Molecular beam epitaxy (MBE) growth of HgCdTe on large-size Si (211) and CdZnTe (211)B substrates is critical to meet the demands of extremely uniform and highly functional third-generation infrared (IR) focal-panel arrays (FPAs). We have described here the importance of wafer maps of HgCdTe thickness, composition, and the macrodefects across the wafer not only to qualify material properties against design specifications but also to diagnose and classify the MBE-growth-related issues on large-area wafers. The paper presents HgCdTe growth with exceptionally uniform composition and thickness and record low macrodefect density on large Si wafers up to 6-in in diameter for the detection of short-wave (SW), mid-wave (MW), and long-wave (LW) IR radiation. We have also proposed a cost-effective approach to use the growth of HgCdTe on low-cost Si substrates to isolate the growth- and substrate-related problems that one occasionally comes across with the CdZnTe substrates and tune the growth parameters such as growth rate, cutoff wavelength ( λ cutoff) and doping parameters before proceeding with the growth on costly large-area CdZnTe substrates. In this way, we demonstrated HgCdTe growth on large CdZnTe substrates of size 7 cm × 7 cm with excellent uniformity and low macrodefect density.
Real-time optical diagnostics of graphene growth induced by pulsed chemical vapor deposition
NASA Astrophysics Data System (ADS)
Puretzky, Alexander A.; Geohegan, David B.; Pannala, Sreekanth; Rouleau, Christopher M.; Regmi, Murari; Thonnard, Norbert; Eres, Gyula
2013-06-01
The kinetics and mechanisms of graphene growth on Ni films at 720-880 °C have been measured using fast pulses of acetylene and real-time optical diagnostics. In situ UV-Raman spectroscopy was used to unambiguously detect isothermal graphene growth at high temperatures, measure the growth kinetics with ~1 s temporal resolution, and estimate the fractional precipitation upon cooldown. Optical reflectivity and videography provided much faster temporal resolution. Both the growth kinetics and the fractional isothermal precipitation were found to be governed by the C2H2 partial pressure in the CVD pulse for a given film thickness and temperature, with up to ~94% of graphene growth occurring isothermally within 1 second at 800 °C at high partial pressures. At lower partial pressures, isothermal graphene growth is shown to continue 10 seconds after the gas pulse. These flux-dependent growth kinetics are described in the context of a dissolution/precipitation model, where carbon rapidly dissolves into the Ni film and later precipitates driven by gradients in the chemical potential. The combination of pulsed-CVD and real-time optical diagnostics opens new opportunities to understand and control the fast, sub-second growth of graphene on various substrates at high temperatures.The kinetics and mechanisms of graphene growth on Ni films at 720-880 °C have been measured using fast pulses of acetylene and real-time optical diagnostics. In situ UV-Raman spectroscopy was used to unambiguously detect isothermal graphene growth at high temperatures, measure the growth kinetics with ~1 s temporal resolution, and estimate the fractional precipitation upon cooldown. Optical reflectivity and videography provided much faster temporal resolution. Both the growth kinetics and the fractional isothermal precipitation were found to be governed by the C2H2 partial pressure in the CVD pulse for a given film thickness and temperature, with up to ~94% of graphene growth occurring isothermally within 1 second at 800 °C at high partial pressures. At lower partial pressures, isothermal graphene growth is shown to continue 10 seconds after the gas pulse. These flux-dependent growth kinetics are described in the context of a dissolution/precipitation model, where carbon rapidly dissolves into the Ni film and later precipitates driven by gradients in the chemical potential. The combination of pulsed-CVD and real-time optical diagnostics opens new opportunities to understand and control the fast, sub-second growth of graphene on various substrates at high temperatures. Electronic supplementary information (ESI) available: A movie of graphene growth after exposure to a single C2H2 pulse, modeling of gas dynamics, Raman map and spectra of graphene transferred to a SiO2/Si substrate, time-resolved reflectivity upon exposure to a pure Ar pulse, Raman map of I(2D)/I(G) ratios for 800 °C and 20% C2H2 concentration, comparison of Raman spectra of a single layer suspended graphene at 532 nm and 404.5 nm, processing of reflectivity curves for comparison with growth kinetics based on Raman measurements. See DOI: 10.1039/c3nr01436c
NASA Astrophysics Data System (ADS)
Gao, Mao
The formation of a one micron thick layer of an intermetallic compound between a solder alloy and a metallic substrate generally constitutes a good solder joint in an electronic device. However, if the compound grows too thick, and/or if multiple intermetallic compounds form, poor solder joint reliability may result. Thus significant interest has been focused on intermetallic compound phase selection and growth kinetics at such solder/metal interfaces. The present study focuses on one such specific problem, the formation and growth of intermetallic compounds at near eutectic Sn-Ag-Cu solder alloy/Ni interfaces. Sn-3.0Ag-0.5Cu solder was reflowed on Au/Ni substrates, resulting in the initial formation and growth of (CuNi)6Sn 5 at Sn-3.0Ag-0.5Cu /Ni interfaces. (NiCu)3Sn4 formed between the (CuNi)6Sn5 and the Ni substrate when the concentration of Cu in the liquid SnAgCu solder decreased to a critical value which depended upon temperature: 0.37, 0.31 and 0.3(wt.%) at reflow temperatures of 260°C, 245°C and 230°C respectively. The growth rate of (CuNi)6Sn5 was found to be consistent with extrapolations of a diffusion limited growth model formulated for lower temperature, solid state diffusion couples. The long range diffusion of Cu did not limit growth rates. The spalling of (CuNiAu)6Sn5 from (NiCu)3 Sn4 surfaces during reflow was also examined. When the Cu concentration in the solder decreased to approximately 0.28wt.%, the (Cu,Ni,Au) 6Sn5 was observed to spall. Compressive stress in (CuNiAu) 6Sn5 and weak adhesion between (CuNiAu)6Sn 5 and (NiCu)3Sn4 was found to cause this effect.
Rapid transporter regulation prevents substrate flow traffic jams in boron transport
Sotta, Naoyuki; Duncan, Susan; Tanaka, Mayuki; Sato, Takafumi
2017-01-01
Nutrient uptake by roots often involves substrate-dependent regulated nutrient transporters. For robust uptake, the system requires a regulatory circuit within cells and a collective, coordinated behaviour across the tissue. A paradigm for such systems is boron uptake, known for its directional transport and homeostasis, as boron is essential for plant growth but toxic at high concentrations. In Arabidopsis thaliana, boron uptake occurs via diffusion facilitators (NIPs) and exporters (BORs), each presenting distinct polarity. Intriguingly, although boron soil concentrations are homogenous and stable, both transporters manifest strikingly swift boron-dependent regulation. Through mathematical modelling, we demonstrate that slower regulation of these transporters leads to physiologically detrimental oscillatory behaviour. Cells become periodically exposed to potentially cytotoxic boron levels, and nutrient throughput to the xylem becomes hampered. We conclude that, while maintaining homeostasis, swift transporter regulation within a polarised tissue context is critical to prevent intrinsic traffic-jam like behaviour of nutrient flow. PMID:28870285
Rapid transporter regulation prevents substrate flow traffic jams in boron transport.
Sotta, Naoyuki; Duncan, Susan; Tanaka, Mayuki; Sato, Takafumi; Marée, Athanasius Fm; Fujiwara, Toru; Grieneisen, Verônica A
2017-09-05
Nutrient uptake by roots often involves substrate-dependent regulated nutrient transporters. For robust uptake, the system requires a regulatory circuit within cells and a collective, coordinated behaviour across the tissue. A paradigm for such systems is boron uptake, known for its directional transport and homeostasis, as boron is essential for plant growth but toxic at high concentrations. In Arabidopsis thaliana , boron uptake occurs via diffusion facilitators (NIPs) and exporters (BORs), each presenting distinct polarity. Intriguingly, although boron soil concentrations are homogenous and stable, both transporters manifest strikingly swift boron-dependent regulation. Through mathematical modelling, we demonstrate that slower regulation of these transporters leads to physiologically detrimental oscillatory behaviour. Cells become periodically exposed to potentially cytotoxic boron levels, and nutrient throughput to the xylem becomes hampered. We conclude that, while maintaining homeostasis, swift transporter regulation within a polarised tissue context is critical to prevent intrinsic traffic-jam like behaviour of nutrient flow.
Substrate solder barriers for semiconductor epilayer growth
Drummond, Timothy J.; Ginley, David S.; Zipperian, Thomas E.
1989-01-01
During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In modular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substrate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating.
Substrate solder barriers for semiconductor epilayer growth
Drummond, T.J.; Ginley, D.S.; Zipperian, T.E.
1989-05-09
During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In modular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substrate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating.
Helbling, Damian E; Hammes, Frederik; Egli, Thomas; Kohler, Hans-Peter E
2014-02-01
The fundamentals of growth-linked biodegradation occurring at low substrate concentrations are poorly understood. Substrate utilization kinetics and microbial growth yields are two critically important process parameters that can be influenced by low substrate concentrations. Standard biodegradation tests aimed at measuring these parameters generally ignore the ubiquitous occurrence of assimilable organic carbon (AOC) in experimental systems which can be present at concentrations exceeding the concentration of the target substrate. The occurrence of AOC effectively makes biodegradation assays conducted at low substrate concentrations mixed-substrate assays, which can have profound effects on observed substrate utilization kinetics and microbial growth yields. In this work, we introduce a novel methodology for investigating biodegradation at low concentrations by restricting AOC in our experiments. We modified an existing method designed to measure trace concentrations of AOC in water samples and applied it to systems in which pure bacterial strains were growing on pesticide substrates between 0.01 and 50 mg liter(-1). We simultaneously measured substrate concentrations by means of high-performance liquid chromatography with UV detection (HPLC-UV) or mass spectrometry (MS) and cell densities by means of flow cytometry. Our data demonstrate that substrate utilization kinetic parameters estimated from high-concentration experiments can be used to predict substrate utilization at low concentrations under AOC-restricted conditions. Further, restricting AOC in our experiments enabled accurate and direct measurement of microbial growth yields at environmentally relevant concentrations for the first time. These are critical measurements for evaluating the degradation potential of natural or engineered remediation systems. Our work provides novel insights into the kinetics of biodegradation processes and growth yields at low substrate concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okumura, Hironori, E-mail: okumura@engineering.ucsb.edu; McSkimming, Brian M.; Speck, James S.
2014-01-06
N-face GaN was grown on free-standing GaN (0001{sup ¯}) substrates at a growth rate of 1.5 μm/h using plasma-assisted molecular beam epitaxy. Difference in growth rate between (0001{sup ¯}) and (0001) oriented GaN depends on nitrogen plasma power, and the (0001{sup ¯}) oriented GaN had only 70% of the growth rate of the (0001) oriented GaN at 300 W. Unintentional impurity concentrations of silicon, carbon, and oxygen were 2 × 10{sup 15}, 2 × 10{sup 16}, and 7 × 10{sup 16} cm{sup −3}, respectively. A growth diagram was constructed that shows the dependence of the growth modes on the difference in the Ga and active nitrogen flux, Φ{sub Ga} − Φ{submore » N*}, and the growth temperature. At high Φ{sub Ga} − Φ{sub N*} (Φ{sub Ga} ≫ Φ{sub N*}), two-dimensional (step-flow and layer-by-layer) growth modes were realized. High growth temperature (780 °C) expanded the growth window of the two-dimensional growth modes, achieving a surface with rms roughness of 0.48 nm without Ga droplets.« less
Guided growth of horizontal GaN nanowires on quartz and their transfer to other substrates.
Goren-Ruck, Lior; Tsivion, David; Schvartzman, Mark; Popovitz-Biro, Ronit; Joselevich, Ernesto
2014-03-25
The guided growth of horizontal nanowires has so far been demonstrated on a limited number of substrates. In most cases, the nanowires are covalently bonded to the substrate where they grow and cannot be transferred to other substrates. Here we demonstrate the guided growth of well-aligned horizontal GaN nanowires on quartz and their subsequent transfer to silicon wafers by selective etching of the quartz while maintaining their alignment. The guided growth was observed on different planes of quartz with varying degrees of alignment. We characterized the crystallographic orientations of the nanowires and proposed a new mechanism of "dynamic graphoepitaxy" for their guided growth on quartz. The transfer of the guided nanowires enabled the fabrication of back-gated field-effect transistors from aligned nanowire arrays on oxidized silicon wafers and the production of crossbar arrays. The guided growth of transferrable nanowires opens up the possibility of massively parallel integration of nanowires into functional systems on virtually any desired substrate.
Direct growth of single-crystalline III–V semiconductors on amorphous substrates
Chen, Kevin; Kapadia, Rehan; Harker, Audrey; ...
2016-01-27
The III–V compound semiconductors exhibit superb electronic and optoelectronic properties. Traditionally, closely lattice-matched epitaxial substrates have been required for the growth of high-quality single-crystal III–V thin films and patterned microstructures. To remove this materials constraint, here we introduce a growth mode that enables direct writing of single-crystalline III–V’s on amorphous substrates, thus further expanding their utility for various applications. The process utilizes templated liquid-phase crystal growth that results in user-tunable, patterned micro and nanostructures of single-crystalline III–V’s of up to tens of micrometres in lateral dimensions. InP is chosen as a model material system owing to its technological importance. Themore » patterned InP single crystals are configured as high-performance transistors and photodetectors directly on amorphous SiO 2 growth substrates, with performance matching state-of-the-art epitaxially grown devices. In conclusion, the work presents an important advance towards universal integration of III–V’s on application-specific substrates by direct growth.« less
Direct growth of single-crystalline III–V semiconductors on amorphous substrates
Chen, Kevin; Kapadia, Rehan; Harker, Audrey; Desai, Sujay; Seuk Kang, Jeong; Chuang, Steven; Tosun, Mahmut; Sutter-Fella, Carolin M.; Tsang, Michael; Zeng, Yuping; Kiriya, Daisuke; Hazra, Jubin; Madhvapathy, Surabhi Rao; Hettick, Mark; Chen, Yu-Ze; Mastandrea, James; Amani, Matin; Cabrini, Stefano; Chueh, Yu-Lun; Ager III, Joel W.; Chrzan, Daryl C.; Javey, Ali
2016-01-01
The III–V compound semiconductors exhibit superb electronic and optoelectronic properties. Traditionally, closely lattice-matched epitaxial substrates have been required for the growth of high-quality single-crystal III–V thin films and patterned microstructures. To remove this materials constraint, here we introduce a growth mode that enables direct writing of single-crystalline III–V's on amorphous substrates, thus further expanding their utility for various applications. The process utilizes templated liquid-phase crystal growth that results in user-tunable, patterned micro and nanostructures of single-crystalline III–V's of up to tens of micrometres in lateral dimensions. InP is chosen as a model material system owing to its technological importance. The patterned InP single crystals are configured as high-performance transistors and photodetectors directly on amorphous SiO2 growth substrates, with performance matching state-of-the-art epitaxially grown devices. The work presents an important advance towards universal integration of III–V's on application-specific substrates by direct growth. PMID:26813257
Deposition of silicon nitride from SiCl4 and NH3 in a low pressure RF plasma
NASA Technical Reports Server (NTRS)
Ron, Y.; Raveh, A.; Carmi, U.; Inspektor, A.; Avni, R.
1983-01-01
Silicon nitride coatings were deposited in a low-pressure (1-10 Torr) RF plasma from SiCl4 and NH3 in the presence of argon onto stainless martensitic steel grounded and floating substrates at 300 C and 440 C respectively. The heating of the substrates depends mainly on the position and the induced RF power. The coatings were identified as silicon nitride by X-ray investigation and were found to contain chlorine by energy-dispersive analysis of X-rays. The growth rate, the microhardness and the chlorine concentration of the coatings were determined as a function of the total gas pressure, the RF power input and the NH3-to-SiCl4 ratio. It was observed that the coatings on the floating substrates have higher deposition rates and are of superior quality.
NASA Astrophysics Data System (ADS)
Ye, Ziran; Wang, Ke; Lu, Chenxi; Jin, Ying; Sui, Chenghua; Yan, Bo; Gao, Fan; Cai, Pinggen; Lv, Bin; Li, Yun; Chen, Naibo; Sun, Guofang; Xu, Fengyun; Ye, Gaoxiang
2018-03-01
We develop a theoretical model that interprets the growth mechanism of zinc (Zn) crystal nanorods on a liquid substrate by thermal evaporation. During deposition, Zn atoms diffuse randomly on an isotropic and quasi-free sustained substrate, the nucleation of the atoms results in the primary nanorod (or seed crystal) growth. Subsequently, a characteristic one-dimensional atomic aggregation is proposed, which leads to the accelerating growth of the crystal nanorod along its preferential growth direction until the growth terminates. The theoretical results are in good agreement with the experimental findings.
Growth of ultra-thin TiO 2 films by spray pyrolysis on different substrates
NASA Astrophysics Data System (ADS)
Oja Acik, I.; Junolainen, A.; Mikli, V.; Danilson, M.; Krunks, M.
2009-12-01
In the present study TiO 2 films were deposited by spray pyrolysis method onto ITO covered glass and Si (1 0 0) substrates. The spray solution containing titanium(IV) isopropoxide, acetylacetone and ethanol was sprayed at a substrate temperature of 450 °C employing 1-125 spray pulses (1 s spray and 30 s pause). According to AFM, continuous coverage of ITO and Si substrates with TiO 2 layer is formed by 5-10 and below 5 spray pulses, respectively. XPS studies revealed that TiO 2 film growth on Si substrate using up to 4 spray pulses follows 2D or layer-by-layer-growth. Above 4 spray pulses, 3D or island growth becomes dominant irrespective of the substrate. Only 50 spray pulses result in TiO 2 layer with the thickness more than XPS measurement escape depth as any signal from the substrate could not be detected. TiO 2 grain size remains 30 nm on ITO and increases from 10-20 nm to 50-100 nm on Si substrate with the number of spray pulses from 1 to 125.
Effect of the substrate on the insulator-metal transition of vanadium dioxide films
NASA Astrophysics Data System (ADS)
Kovács, György J.; Bürger, Danilo; Skorupa, Ilona; Reuther, Helfried; Heller, René; Schmidt, Heidemarie
2011-03-01
Single-phase vanadium dioxide films grown on (0001) sapphire and (001) silicon substrates show a very different insulator-metal electronic transition. A detailed description of the growth mechanisms and the substrate-film interaction is given, and the characteristics of the electronic transition are described by the morphology and grain boundary structure. (Tri-)epitaxy-stabilized columnar growth of VO2 takes place on the sapphire substrate, whereas on silicon the expected Zone II growth is identified. We have found that in the case of the Si substrate the reasons for the broader hysteresis and the lower switching amplitude are the formation of an amorphous insulating VOx (x > 2.6) phase coexisting with VO2 and the high vanadium vacancy concentration of the VO2. These phenomena are the result of the excess oxygen during the growth and the interaction between the silicon substrate and the growing film.
Thickness-controlled direct growth of nanographene and nanographite film on non-catalytic substrates
NASA Astrophysics Data System (ADS)
Du, Lei; Yang, Liu; Hu, Zhiting; Zhang, Jiazhen; Huang, Chunlai; Sun, Liaoxin; Wang, Lin; Wei, Dacheng; Chen, Gang; Lu, Wei
2018-05-01
Metal-catalyzed chemical vapor deposition (CVD) has been broadly employed for large-scale production of high-quality graphene. However, a following transfer process to targeted substrates is needed, which is incompatible with current silicon technology. We here report a new CVD approach to form nanographene and nanographite films with accurate thickness control directly on non-catalytic substrates such as silicon dioxide and quartz at 800 °C. The growth time is as short as a few seconds. The approach includes using 9-bis(diethylamino)silylanthracene as the carbon source and an atomic layer deposition (ALD) controlling system. The structure of the formed nanographene and nanographite films were characterized using atomic force microscopy, high resolution transmission electron microscopy, Raman scattering, and x-ray photoemission spectroscopy. The nanographite film exhibits a transmittance higher than 80% at 550 nm and a sheet electrical resistance of 2000 ohms per square at room temperature. A negative temperature-dependence of the resistance of the nanographite film is also observed. Moreover, the thickness of the films can be precisely controlled via the deposition cycles using an ALD system, which promotes great application potential for optoelectronic and thermoelectronic-devices.
Du, Lei; Yang, Liu; Hu, Zhiting; Zhang, Jiazhen; Huang, Chunlai; Sun, Liaoxin; Wang, Lin; Wei, Dacheng; Chen, Gang; Lu, Wei
2018-05-25
Metal-catalyzed chemical vapor deposition (CVD) has been broadly employed for large-scale production of high-quality graphene. However, a following transfer process to targeted substrates is needed, which is incompatible with current silicon technology. We here report a new CVD approach to form nanographene and nanographite films with accurate thickness control directly on non-catalytic substrates such as silicon dioxide and quartz at 800 °C. The growth time is as short as a few seconds. The approach includes using 9-bis(diethylamino)silylanthracene as the carbon source and an atomic layer deposition (ALD) controlling system. The structure of the formed nanographene and nanographite films were characterized using atomic force microscopy, high resolution transmission electron microscopy, Raman scattering, and x-ray photoemission spectroscopy. The nanographite film exhibits a transmittance higher than 80% at 550 nm and a sheet electrical resistance of 2000 ohms per square at room temperature. A negative temperature-dependence of the resistance of the nanographite film is also observed. Moreover, the thickness of the films can be precisely controlled via the deposition cycles using an ALD system, which promotes great application potential for optoelectronic and thermoelectronic-devices.
Laser tailored nanoparticle arrays to detect molecules at dilute concentration
NASA Astrophysics Data System (ADS)
Zanchi, Chiara; Lucotti, Andrea; Tommasini, Matteo; Trusso, Sebastiano; de Grazia, Ugo; Ciusani, Emilio; Ossi, Paolo M.
2017-02-01
By nanosecond pulsed laser ablation in an ambient gas gold nanoparticles (NPs) were produced that self-assemble on a substrate resulting in increasingly elaborated architectures of growing thickness, from isolated NP arrays up to percolated films. NPs nucleate and grow in the plasma plume propagating through the gas. Process parameters including laser wavelength, laser energy density, target to substrate distance, nature and pressure of the gas affect plasma expansion, thus asymptotic NP size and kinetic energy. NP size, energy and mobility at landing determine film growth and morphology that affect the physico-chemical properties of the film. Keeping fixed the other process parameters, we discuss the sensitive dependence of film surface nanostructure on Ar pressure and on laser pulse number. The initial plume velocity and average ablated mass per pulse allow predicting the asymptotic NP size. The control of growth parameters favors fine-tuning of NP aggregation, relevant to plasmonics to get optimized substrates for surface enhanced Raman spectroscopy (SERS). Their behavior is discussed for testing conditions of interest for clinical application. Both in aqueous and in biological solutions we obtained good sensitivity and reproducibility of the SERS signals for the anti-Parkinson drug apomorphine, and for the anti-epilepsy drug carbamazepine.
Yao, Guang; Gao, Min; Ji, Yanda; Liang, Weizheng; Gao, Lei; Zheng, Shengliang; Wang, You; Pang, Bin; Chen, Y. B.; Zeng, Huizhong; Li, Handong; Wang, Zhiming; Liu, Jingsong; Chen, Chonglin; Lin, Yuan
2016-01-01
Controllable interfacial strain can manipulate the physical properties of epitaxial films and help understand the physical nature of the correlation between the properties and the atomic microstructures. By using a proper design of vicinal single-crystal substrate, the interface strain in epitaxial thin films can be well controlled by adjusting the miscut angle via a surface-step-terrace matching growth mode. Here, we demonstrate that LaAlO3 (LAO) substrates with various miscut angles of 1.0°, 2.75°, and 5.0° were used to tune the dielectric properties of epitaxial CaCu3Ti4O12 (CCTO) thin films. A model of coexistent compressive and tensile strained domains is proposed to understand the epitaxial nature. Our findings on the self-tuning of the compressive and tensile strained domain ratio along the interface depending on the miscut angle and the stress relaxation mechanism under this growth mode will open a new avenue to achieve CCTO films with high dielectric constant and low dielectric loss, which is critical for the design and integration of advanced heterostructures for high performance capacitance device applications. PMID:27703253
NASA Astrophysics Data System (ADS)
Yao, Guang; Gao, Min; Ji, Yanda; Liang, Weizheng; Gao, Lei; Zheng, Shengliang; Wang, You; Pang, Bin; Chen, Y. B.; Zeng, Huizhong; Li, Handong; Wang, Zhiming; Liu, Jingsong; Chen, Chonglin; Lin, Yuan
2016-10-01
Controllable interfacial strain can manipulate the physical properties of epitaxial films and help understand the physical nature of the correlation between the properties and the atomic microstructures. By using a proper design of vicinal single-crystal substrate, the interface strain in epitaxial thin films can be well controlled by adjusting the miscut angle via a surface-step-terrace matching growth mode. Here, we demonstrate that LaAlO3 (LAO) substrates with various miscut angles of 1.0°, 2.75°, and 5.0° were used to tune the dielectric properties of epitaxial CaCu3Ti4O12 (CCTO) thin films. A model of coexistent compressive and tensile strained domains is proposed to understand the epitaxial nature. Our findings on the self-tuning of the compressive and tensile strained domain ratio along the interface depending on the miscut angle and the stress relaxation mechanism under this growth mode will open a new avenue to achieve CCTO films with high dielectric constant and low dielectric loss, which is critical for the design and integration of advanced heterostructures for high performance capacitance device applications.
Yao, Guang; Gao, Min; Ji, Yanda; Liang, Weizheng; Gao, Lei; Zheng, Shengliang; Wang, You; Pang, Bin; Chen, Y B; Zeng, Huizhong; Li, Handong; Wang, Zhiming; Liu, Jingsong; Chen, Chonglin; Lin, Yuan
2016-10-05
Controllable interfacial strain can manipulate the physical properties of epitaxial films and help understand the physical nature of the correlation between the properties and the atomic microstructures. By using a proper design of vicinal single-crystal substrate, the interface strain in epitaxial thin films can be well controlled by adjusting the miscut angle via a surface-step-terrace matching growth mode. Here, we demonstrate that LaAlO 3 (LAO) substrates with various miscut angles of 1.0°, 2.75°, and 5.0° were used to tune the dielectric properties of epitaxial CaCu 3 Ti 4 O 12 (CCTO) thin films. A model of coexistent compressive and tensile strained domains is proposed to understand the epitaxial nature. Our findings on the self-tuning of the compressive and tensile strained domain ratio along the interface depending on the miscut angle and the stress relaxation mechanism under this growth mode will open a new avenue to achieve CCTO films with high dielectric constant and low dielectric loss, which is critical for the design and integration of advanced heterostructures for high performance capacitance device applications.
Lignocellulolytic enzyme production of Pleurotus ostreatus growth in agroindustrial wastes
da Luz, José Maria Rodrigues; Nunes, Mateus Dias; Paes, Sirlaine Albino; Torres, Denise Pereira; de Cássia Soares da Silva, Marliane; Kasuya, Maria Catarina Megumi
2012-01-01
The mushroom Pleurotus ostreatus has nutritional and medicinal characteristics that depend on the growth substrate. In nature, this fungus grows on dead wood, but it can be artificially cultivated on agricultural wastes (coffee husks, eucalyptus sawdust, corncobs and sugar cane bagasse). The degradation of agricultural wastes involves some enzyme complexes made up of oxidative (laccase, manganese peroxidase and lignin peroxidase) and hydrolytic enzymes (cellulases, xylanases and tanases). Understanding how these enzymes work will help to improve the productivity of mushroom cultures and decrease the potential pollution that can be caused by inadequate discharge of the agroindustrial residues. The objective of this work was to assess the activity of the lignocellulolytic enzymes produced by two P. ostreatus strains (PLO 2 and PLO 6). These strains were used to inoculate samples of coffee husks, eucalyptus sawdust or eucalyptus bark add with or without 20 % rice bran. Every five days after substrate inoculation, the enzyme activity and soluble protein concentration were evaluated. The maximum activity of oxidative enzymes was observed at day 10 after inoculation, and the activity of the hydrolytic enzymes increased during the entire period of the experiment. The results show that substrate composition and colonization time influenced the activity of the lignocellulolytic enzymes. PMID:24031982
Rishinaramangalam, Ashwin K.; Mishkat Ul Masabih, Saadat; Fairchild, Michael N.; ...
2014-10-21
In our paper, we demonstrate the growth of ordered arrays of nonpolar {101 ¯ 0} core–shell nanowalls and semipolar {101 ¯ 1} core–shell pyramidal nanostripes on c-plane (0001) sapphire substrates using selective-area epitaxy and metal organic chemical vapor deposition. The nanostructure arrays are controllably patterned into LED mesa regions, demonstrating a technique to impart secondary lithography features into the arrays. Moreover, we study the dependence of the nanostructure cores on the epitaxial growth conditions and show that the geometry and morphology are strongly influenced by growth temperature, V/III ratio, and pulse interruption time. We also demonstrate the growth of InGaNmore » quantum well shells on the nanostructures and characterize the structures by using micro-photoluminescence and cross-section scanning tunneling electron microscopy.« less
Plant Growth Experiments in Zeoponic Substrates: Applications for Advanced Life Support Systems
NASA Technical Reports Server (NTRS)
Ming, Douglas W.; Gruener, J. E.; Henderson, K. E.; Steinberg, S. L.; Barta, D. J.; Galindo, C.; Henninger, D. L.
2001-01-01
A zeoponic plant-growth system is defined as the cultivation of plants in artificial soils, which have zeolites as a major component (Allen and Ming, 1995). Zeolites are crystalline, hydrated aluminosilicate minerals that have the ability to exchange constituent cations without major change of the mineral structure. Recently, zeoponic systems developed at the National Aeronautics and Space Administration (NASA) slowly release some (Allen et at., 1995) or all of the essential plant-growth nutrients (Ming et at., 1995). These systems have NH4- and K-exchanged clinoptilolite (a natural zeolite) and either natural or synthetic apatite (a calcium phosphate mineral). For the natural apatite system, Ca and P were made available to the plant by the dissolution of apatite. Potassium and NH4-N were made available by ion-exchange reactions involving Ca(2+) from apatite dissolution and K(+) and NH4(+) on zeolitic exchange sites. In addition to NH4-N, K, Ca, and P, the synthetic apatite system also supplied Mg, S, and other micronutrients during dissolution (Figure 1). The overall objective of this research task is to develop zeoponic substrates wherein all plant growth nutrients are supplied by the plant growth medium for several growth seasons with only the addition of water. The substrate is being developed for plant growth in Advanced Life Support (ALS) testbeds (i.e., BioPLEX) and microgravity plant growth experiments. Zeoponic substrates have been used for plant growth experiments on two Space Shuttle flight experiments (STS-60; STS-63; Morrow et aI., 1995). These substrates may be ideally suited for plant growth experiments on the International Space Station and applications in ALS testbeds. However, there are several issues that need to be resolved before zeoponics will be the choice substrate for plant growth experiments in space. The objective of this paper is to provide an overview on recent research directed toward the refinement of zeoponic plant growth substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obaidulla, Sk. Md.; Giri, P. K., E-mail: giri@iitg.ernet.in; Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039
2015-11-30
The evolution of surface morphology and scaling behavior of tin (IV) phthalocyanine dichloride (SnCl{sub 2}Pc) thin films grown on Si(100) and glass substrates have been studied using atomic force microscopy (AFM) and height-height correlation function analysis. X-ray diffraction measurement confirms the crystalline nature of the SnCl{sub 2}Pc thin film on glass substrate, while no crystallographic ordering is present for the film grown on Si substrate. The growth exponent β is found to be much larger for the film on glass substrate (0.48 ± 0.07) as compared to that on Si substrate (0.21 ± 0.08), which may be due to the high step-edge barrier, so-calledmore » Ehrlich-Schwöbel barrier, resulting in the upward dominant growth on glass substrate. From the 2D fast Fourier transform of AFM images and derived scaling exponents, we conclude that the surface evolution follows a mound like growth. These results imply the superiority of glass substrate over the Si substrate for the growth of device quality SnCl{sub 2}Pc thin film.« less
NASA Astrophysics Data System (ADS)
Cui, H.; Eres, G.; Howe, J. Y.; Puretzky, A.; Varela, M.; Geohegan, D. B.; Lowndes, D. H.
2003-03-01
The temperature- and time- dependences of carbon nanotube (CNT) growth by chemical vapor deposition are studied using a multilayered Al/Fe/Mo catalyst on silicon substrates. Within the 600 - 1100 ^oC temperature range in these studies, narrower temperature ranges were determined for the growth of aligned multi-walled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs). Aligned MWCNT growth is favored at lower temperatures ( ˜700 ^oC). At 900 ^oC, in contrast to earlier work, double-walled carbon nanotubes (DWCNTs) are found more abundant than SWCNTs. At further elevated temperature, highly defective carbon structures are produced. Defects also are found to accumulate faster than the ordered graphitic structure if the growth of CNTs is extended to long growth durations. Atomic force microscopy, field emission scanning electron microscopy, high resolution transmission electron microscopy, and Raman spectroscopy are used to characterize the catalyst and various types of CNTs.
Madhyastha, M S; Bhat, R V
1984-01-01
Aspergillus parasiticus Speare NRRL 2999 growth and aflatoxin production in black and white pepper and the penetration of the fungus in black pepper corn over various incubation periods were studied. Also, the effects of piperine and pepper oil on growth and aflatoxin production were studied. Under laboratory conditions, black and white pepper supported aflatoxin production (62.5 and 44 ppb (ng/g), respectively) over 30 days of incubation. Fungal growth measured in terms of chitin was considerably less in white pepper than in black pepper. A histological study of black pepper corn showed the fungus penetrating up to the inner mesocarp and establishing itself in the middle mesocarp. Piperine and pepper oil were found to inhibit fungal growth and toxin production in a dose-dependent manner. Thus, both black and white pepper could be considered as poor substrates for fungal growth and aflatoxin production. Images PMID:6435523
Soilless plant growth media influence the efficacy of phytohormones and phytohormone inhibitors.
Best, Norman B; Hartwig, Thomas; Budka, Joshua S; Bishop, Brandon J; Brown, Elliot; Potluri, Devi P V; Cooper, Bruce R; Premachandra, Gnanasiri S; Johnston, Cliff T; Schulz, Burkhard
2014-01-01
Plant growth regulators, such as hormones and their respective biosynthesis inhibitors, are effective tools to elucidate the physiological function of phytohormones in plants. A problem of chemical treatments, however, is the potential for interaction of the active compound with the growth media substrate. We studied the interaction and efficacy of propiconazole, a potent and specific inhibitor of brassinosteroid biosynthesis, with common soilless greenhouse growth media for rice, sorghum, and maize. Many of the tested growth media interacted with propiconazole reducing its efficacy up to a hundred fold. To determine the molecular interaction of inhibitors with media substrates, Fourier Transform Infrared Spectroscopy and sorption isotherm analysis was applied. While mica clay substrates absorbed up to 1.3 mg of propiconazole per g substrate, calcined clays bound up to 12 mg of propiconazole per g substrate. The efficacy of the gibberellic acid biosynthesis inhibitor, uniconazole, and the most active brassinosteroid, brassinolide, was impacted similarly by the respective substrates. Conversely, gibberellic acid showed no distinct growth response in different media. Our results suggest that the reduction in efficacy of propiconazole, uniconazole, and brassinolide in bioassays when grown in calcined clay is caused by hydrophobic interactions between the plant growth regulators and the growth media. This was further confirmed by experiments using methanol-water solvent mixes with higher hydrophobicity values, which reduce the interaction of propiconazole and calcined clay.
Estimation of the Maximum Theoretical Productivity of Fed-Batch Bioreactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bomble, Yannick J; St. John, Peter C; Crowley, Michael F
2017-10-18
A key step towards the development of an integrated biorefinery is the screening of economically viable processes, which depends sharply on the yields and productivities that can be achieved by an engineered microorganism. In this study, we extend an earlier method which used dynamic optimization to find the maximum theoretical productivity of batch cultures to explicitly include fed-batch bioreactors. In addition to optimizing the intracellular distribution of metabolites between cell growth and product formation, we calculate the optimal control trajectory of feed rate versus time. We further analyze how sensitive the productivity is to substrate uptake and growth parameters.
Growth and characterization of single crystal rocksalt LaAs using LuAs barrier layers
NASA Astrophysics Data System (ADS)
Krivoy, E. M.; Rahimi, S.; Nair, H. P.; Salas, R.; Maddox, S. J.; Ironside, D. J.; Jiang, Y.; Dasika, V. D.; Ferrer, D. A.; Kelp, G.; Shvets, G.; Akinwande, D.; Bank, S. R.
2012-11-01
We demonstrate the growth of high-quality, single crystal, rocksalt LaAs on III-V substrates; employing thin well-behaved LuAs barriers layers at the III-V/LaAs interfaces to suppress nucleation of other LaAs phases, interfacial reactions between GaAs and LaAs, and polycrystalline LaAs growth. This method enables growth of single crystal epitaxial rocksalt LaAs with enhanced structural and electrical properties. Temperature-dependent resistivity and optical reflectivity measurements suggest that epitaxial LaAs is semimetallic, consistent with bandstructure calculations in literature. LaAs exhibits distinct electrical and optical properties, as compared with previously reported rare-earth arsenide materials, with a room-temperature resistivity of ˜459 μΩ-cm and an optical transmission window >50% between ˜3-5 μm.
Shkidchenko, A N; Shul'ga, A V; Gurina, L V
1988-01-01
The effect of flow rates and a specific ethanol load on the growth of Candida utilis and Candida krusei was studied in the process of one-step and three-step cultivation. The productive capacity of fermenters and the economic coefficient of yeast biomass production were shown to depend on the ability of microbial populations to assimilate a certain quantity of a carbon substrate per unit time. When a specific ethanol load exceeds the optimal one, the respiratory activity of a population and the economic coefficient of growth fall down whereas the accumulation of metabolites in the cultural broth increases. The steady state of biomass can be maintained in the process of continuous cultivation by inhibiting the yeast growth with an excess of ethanol.
Effects of substrate orientation on the growth of InSb nanostructures by molecular beam epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, C. Y.; Torfi, A.; Pei, C.
2016-05-09
In this work, the effects of substrate orientation on InSb quantum structure growth by molecular beam epitaxy (MBE) are presented. Motivated by the observation that (411) evolves naturally as a stable facet during MBE crystal growth, comparison studies have been carried out to investigate the effects of the crystal orientation of the underlying GaSb substrate on the growth of InSb by MBE. By depositing InSb on a number of different substrate orientations, namely: (100), (311), (411), and (511), a higher nanostructure density was observed on the (411) surface compared with the other orientations. This result suggests that the (411) orientationmore » presents a superior surface in MBE growth to develop a super-flat GaSb buffer surface, naturally favorable for nanostructure growth.« less
Millet, Larry J; Stewart, Matthew E; Nuzzo, Ralph G; Gillette, Martha U
2010-06-21
Wiring the nervous system relies on the interplay of intrinsic and extrinsic signaling molecules that control neurite extension, neuronal polarity, process maturation and experience-dependent refinement. Extrinsic signals establish and enrich neuron-neuron interactions during development. Understanding how such extrinsic cues direct neurons to establish neural connections in vitro will facilitate the development of organized neural networks for investigating the development and function of nervous system networks. Producing ordered networks of neurons with defined connectivity in vitro presents special technical challenges because the results must be compliant with the biological requirements of rewiring neural networks. Here we demonstrate the ability to form stable, instructive surface-bound gradients of laminin that guide postnatal hippocampal neuron development in vitro. Our work uses a three-channel, interconnected microfluidic device that permits the production of adlayers of planar substrates through the combination of laminar flow, diffusion and physisorption. Through simple flow modifications, a variety of patterns and gradients of laminin (LN) and fluorescein isothiocyanate-conjugated poly-l-lysine (FITC-PLL) were deposited to present neurons with an instructive substratum to guide neuronal development. We present three variations in substrate design that produce distinct growth regimens for postnatal neurons in dispersed cell cultures. In the first approach, diffusion-mediated gradients of LN were formed on cover slips to guide neurons toward increasing LN concentrations. In the second approach, a combined gradient of LN and FITC-PLL was produced using aspiration-driven laminar flow to restrict neuronal growth to a 15 microm wide growth zone at the center of the two superimposed gradients. The last approach demonstrates the capacity to combine binary lines of FITC-PLL in conjunction with surface gradients of LN and bovine serum albumin (BSA) to produce substrate adlayers that provide additional levels of control over growth. This work demonstrates the advantages of spatio-temporal fluid control for patterning surface-bound gradients using a simple microfluidics-based substrate deposition procedure. We anticipate that this microfluidics-based patterning approach will provide instructive patterns and surface-bound gradients to enable a new level of control in guiding neuron development and network formation.
Low Temperature, Selective Atomic Layer Deposition of Nickel Metal Thin Films.
Kerrigan, Marissa M; Klesko, Joseph P; Blakeney, Kyle J; Winter, Charles H
2018-04-25
We report the growth of nickel metal films by atomic layer deposition (ALD) employing bis(1,4-di- tert-butyl-1,3-diazadienyl)nickel and tert-butylamine as the precursors. A range of metal and insulating substrates were explored. An initial deposition study was carried out on platinum substrates. Deposition temperatures ranged from 160 to 220 °C. Saturation plots demonstrated self-limited growth for both precursors, with a growth rate of 0.60 Å/cycle. A plot of growth rate versus substrate temperature showed an ALD window from 180 to 195 °C. Crystalline nickel metal was observed by X-ray diffraction for a 60 nm thick film deposited at 180 °C. Films with thicknesses of 18 and 60 nm grown at 180 °C showed low root mean square roughnesses (<2.5% of thicknesses) by atomic force microscopy. X-ray photoelectron spectroscopies of 18 and 60 nm thick films deposited on platinum at 180 °C revealed ionizations consistent with nickel metal after sputtering with argon ions. The nickel content in the films was >97%, with low levels of carbon, nitrogen, and oxygen. Films deposited on ruthenium substrates displayed lower growth rates than those observed on platinum substrates. On copper substrates, discontinuous island growth was observed at ≤1000 cycles. Film growth was not observed on insulating substrates under any conditions. The new nickel metal ALD procedure gives inherently selective deposition on ruthenium and platinum from 160 to 220 °C.
Influence of substrate surface loading on the kinetic behaviour of aerobic granules.
Liu, Yu; Liu, Yong-Qiang; Wang, Zhi-Wu; Yang, Shu-Fang; Tay, Joo-Hwa
2005-06-01
In the aerobic granular sludge reactor, the substrate loading is related to the size of the aerobic granules cultivated. This study investigated the influence of substrate surface loading on the growth and substrate-utilization kinetics of aerobic granules. Results showed that microbial surface growth rate and surface biodegradation rate are fairly related to the substrate surface loading by the Monod-type equation. In this study, both the theoretical maximum growth yield and the Pirt maintenance coefficient were determined. It was found that the estimated theoretical maximum growth yield of aerobic granules was as low as 0.2 g biomass g(-1) chemical oxygen demand (COD) and 10-40% of input substrate-COD was consumed through the maintenance metabolism, while experimental results further showed that the unit oxygen uptake by aerobic granules was 0.68 g oxygen g(-1) COD, which was much higher than that reported in activated sludge processes. Based on the growth yield and unit oxygen uptake determined, an oxidative assimilation equation of acetate-fed aerobic granules was derived; and this was confirmed by respirometric tests. In aerobic granular culture, about 74% of the input substrate-carbon was converted to carbon dioxide. The growth yield of aerobic granules was three times lower than that of activated sludge. It is likely that high carbon dioxide production is the main cause of the low growth yield of aerobic granules, indicating a possible energy uncoupling in aerobic granular culture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atwater, Harry A.; Leite, Marina S.; Warmann, Emily C.
A virtual substrate includes a handle support and a strain-relieved single crystalline layer on the handle support. A method of making the virtual substrate includes growing a coherently-strained single crystalline layer on an initial growth substrate, removing the initial growth substrate to relieve the strain on the single crystalline layer, and applying the strain-relieved single crystalline layer on a handle support.
Designing PolyHEMA Substrates that Mimic the Viscoelastic Response of Soft Tissue
Holt, Brian; Tripathi, Anubhav; Morgan, Jeffrey R.
2011-01-01
Matching the mechanical properties of a biomaterial to soft tissue is often overlooked despite the fact that it’s well known that cells respond to and are capable of changing their mechanical environment. In this paper, we used NaCl and alginate beads as porogens to make a series of micro- and macro-porous pHEMA substrates [poly(2-hydroxyethly methacrylate)] and quantified their mechanical behavior under low-magnitude shear loads over physiologically relevant frequencies. Using a stress-controlled rheometer, we performed isothermal (37°C) frequency response experiments between 0.628 and 75.4 rad/s [0.01–12Hz] at 0.1% strain. Both micro- and macro-porous pHEMA substrates were predominately elastic in nature with a narrow range of G′ and G″ values that mimicked the response of human skin. The magnitude of the G′ and G″ values of the macro-porous substrates were designed to closely match human skin. To determine how cell growth might alter their mechanical properties, pHEMA substrates were functionalized and human skin fibroblasts grown on them for fourteen days. As a result of cell growth, the magnitude of G′ and G″ increased at low frequencies while also altering the degree of high frequency dependence, indicating that cellular interactions with the micro-pore infrastructure has a profound effect on the viscoelastic behavior of the substrates. These data could be fit to a mathematical model describing a soft solid. A quantitative understanding of the mechanical behavior of biomaterials in regimes that are physiologically relevant and how these mechanics may change after implantation may aid in the design of new materials. PMID:21496821
Komati Reddy, Gajendar; Lindner, Steffen N; Wendisch, Volker F
2015-03-01
Corynebacterium glutamicum uses the Embden-Meyerhof-Parnas pathway of glycolysis and gains 2 mol of ATP per mol of glucose by substrate-level phosphorylation (SLP). To engineer glycolysis without net ATP formation by SLP, endogenous phosphorylating NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was replaced by nonphosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (GapN) from Clostridium acetobutylicum, which irreversibly converts glyceraldehyde-3-phosphate (GAP) to 3-phosphoglycerate (3-PG) without generating ATP. As shown recently (S. Takeno, R. Murata, R. Kobayashi, S. Mitsuhashi, and M. Ikeda, Appl Environ Microbiol 76:7154-7160, 2010, http://dx.doi.org/10.1128/AEM.01464-10), this ATP-neutral, NADPH-generating glycolytic pathway did not allow for the growth of Corynebacterium glutamicum with glucose as the sole carbon source unless hitherto unknown suppressor mutations occurred; however, these mutations were not disclosed. In the present study, a suppressor mutation was identified, and it was shown that heterologous expression of udhA encoding soluble transhydrogenase from Escherichia coli partly restored growth, suggesting that growth was inhibited by NADPH accumulation. Moreover, genome sequence analysis of second-site suppressor mutants that were able to grow faster with glucose revealed a single point mutation in the gene of non-proton-pumping NADH:ubiquinone oxidoreductase (NDH-II) leading to the amino acid change D213G, which was shared by these suppressor mutants. Since related NDH-II enzymes accepting NADPH as the substrate possess asparagine or glutamine residues at this position, D213G, D213N, and D213Q variants of C. glutamicum NDH-II were constructed and were shown to oxidize NADPH in addition to NADH. Taking these findings together, ATP-neutral glycolysis by the replacement of endogenous NAD-dependent GAPDH with NADP-dependent GapN became possible via oxidation of NADPH formed in this pathway by mutant NADPH-accepting NDH-II(D213G) and thus by coupling to electron transport phosphorylation (ETP). Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Cole, John A.; Luthey-Schulten, Zaida
2017-01-01
Characterizing the complex spatial and temporal interactions among cells in a biological system (i.e. bacterial colony, microbiome, tissue, etc.) remains a challenge. Metabolic cooperativity in these systems can arise due to the subtle interplay between microenvironmental conditions and the cells’ regulatory machinery, often involving cascades of intra- and extracellular signalling molecules. In the simplest of cases, as demonstrated in a recent study of the model organism Escherichia coli, metabolic cross-feeding can arise in monoclonal colonies of bacteria driven merely by spatial heterogeneity in the availability of growth substrates; namely, acetate, glucose and oxygen. Another recent study demonstrated that even closely related E. coli strains evolved different glucose utilization and acetate production capabilities, hinting at the possibility of subtle differences in metabolic cooperativity and the resulting growth behavior of these organisms. Taking a first step towards understanding the complex spatio-temporal interactions within microbial populations, we performed a parametric study of E. coli growth on an agar substrate and probed the dependence of colony behavior on: 1) strain-specific metabolic characteristics, and 2) the geometry of the underlying substrate. To do so, we employed a recently developed multiscale technique named 3D dynamic flux balance analysis which couples reaction-diffusion simulations with iterative steady-state metabolic modeling. Key measures examined include colony growth rate and shape (height vs. width), metabolite production/consumption and concentration profiles, and the emergence of metabolic cooperativity and the fractions of cell phenotypes. Five closely related strains of E. coli, which exhibit large variation in glucose consumption and organic acid production potential, were studied. The onset of metabolic cooperativity was found to vary substantially between these five strains by up to 10 hours and the relative fraction of acetate utilizing cells within the colonies varied by a factor of two. Additionally, growth with six different geometries designed to mimic those that might be found in a laboratory, a microfluidic device, and inside a living organism were considered. Geometries were found to have complex, often nonlinear effects on colony growth and cross-feeding with “hard” features resulting in larger effect than “soft” features. These results demonstrate that strain-specific features and spatial constraints imposed by the growth substrate can have significant effects even for microbial populations as simple as isogenic E. coli colonies. PMID:28820904
Peterson, Joseph R; Cole, John A; Luthey-Schulten, Zaida
2017-01-01
Characterizing the complex spatial and temporal interactions among cells in a biological system (i.e. bacterial colony, microbiome, tissue, etc.) remains a challenge. Metabolic cooperativity in these systems can arise due to the subtle interplay between microenvironmental conditions and the cells' regulatory machinery, often involving cascades of intra- and extracellular signalling molecules. In the simplest of cases, as demonstrated in a recent study of the model organism Escherichia coli, metabolic cross-feeding can arise in monoclonal colonies of bacteria driven merely by spatial heterogeneity in the availability of growth substrates; namely, acetate, glucose and oxygen. Another recent study demonstrated that even closely related E. coli strains evolved different glucose utilization and acetate production capabilities, hinting at the possibility of subtle differences in metabolic cooperativity and the resulting growth behavior of these organisms. Taking a first step towards understanding the complex spatio-temporal interactions within microbial populations, we performed a parametric study of E. coli growth on an agar substrate and probed the dependence of colony behavior on: 1) strain-specific metabolic characteristics, and 2) the geometry of the underlying substrate. To do so, we employed a recently developed multiscale technique named 3D dynamic flux balance analysis which couples reaction-diffusion simulations with iterative steady-state metabolic modeling. Key measures examined include colony growth rate and shape (height vs. width), metabolite production/consumption and concentration profiles, and the emergence of metabolic cooperativity and the fractions of cell phenotypes. Five closely related strains of E. coli, which exhibit large variation in glucose consumption and organic acid production potential, were studied. The onset of metabolic cooperativity was found to vary substantially between these five strains by up to 10 hours and the relative fraction of acetate utilizing cells within the colonies varied by a factor of two. Additionally, growth with six different geometries designed to mimic those that might be found in a laboratory, a microfluidic device, and inside a living organism were considered. Geometries were found to have complex, often nonlinear effects on colony growth and cross-feeding with "hard" features resulting in larger effect than "soft" features. These results demonstrate that strain-specific features and spatial constraints imposed by the growth substrate can have significant effects even for microbial populations as simple as isogenic E. coli colonies.
Method and apparatus for rapidly growing films on substrates using pulsed supersonic jets
Eres, Diula; Lowndes, Douglas H.
1992-01-01
A method and apparatus for the rapid and economical deposition of uniform and high quality films upon a substrate for subsequent use in producing electronic devices, for example. The resultant films are either epitaxial (crystalline) or amorphous depending upon the incidence rate and the temperature and structure of the substrate. The deposition is carried out in a chamber maintained at about 10.sup.-6 Torr. A gaseous source of the material for forming the deposit is injected into the deposition chamber in the form of a pulsed supersonic jet so as to obtain a high incidence rate. The supersonic jet is produced by a pulsed valve between a relatively high presure reservoir, containing the source gaseous molecules, and the deposition chamber; the valve has a small nozzle orifice (e.g., 0.1-1.0 mm diameter). The type of deposit (crystalline amorphous) is then dependent upon the temperature and structure of the substrate. Very high deposition rates are achieved, and the deposit is very smooth and of uniform thickness. Typically the deposition rate is about 100 times that of much more expensive conventional molecular beam methods for deposition, and comparable to certain expensive plasma-assisted CVD methods of the art. The high growth rate of this method results in a reduced contamination of the deposit from other elements in the environment. The method is illustrated by the deposition of epitaxial and amorphour germanium films upon GaAs substrates.
Vanengelen, Michael R; Field, Erin K; Gerlach, Robin; Lee, Brady D; Apel, William A; Peyton, Brent M
2010-04-01
In the present study, experiments were performed to investigate how representative cellulosic breakdown products, when serving as growth substrates under aerobic conditions, affect hexavalent uranyl cation (UO(2) (2+)) toxicity and bioaccumulation within a Pseudomonas sp. isolate (designated isolate A). Isolate A taken from the Cold Test Pit South (CTPS) region of the Idaho National Laboratory (INL), Idaho Falls, ID, USA. The INL houses low-level uranium-contaminated cellulosic material and understanding how this material, and specifically its breakdown products, affect U-bacterial interactions is important for understanding UO(2) (2+) fate and mobility. Toxicity was modeled using a generalized Monod expression. Butyrate, dextrose, ethanol, and lactate served as growth substrates. The potential contribution of bicarbonate species present in high concentrations was also investigated and compared with toxicity and bioaccumulation patterns seen in low-bicarbonate conditions. Isolate A was significantly more sensitive to UO(2) (2+) and accumulated significantly more UO(2) (2+) in low-bicarbonate concentrations. In addition, UO(2) (2+) growth inhibition and bioaccumulation varied depending on the growth substrate. In the presence of high bicarbonate concentrations, sensitivity to UO(2) (2+) inhibition was greatly mitigated, and did not vary between the four substrates tested. The extent of UO(2) (2+) accumulation was also diminished. The observed patterns were related to UO(2) (2+) aqueous complexation, as predicted by MINTEQ (ver. 2.52) (Easton, PA, USA). In the low- bicarbonate medium, the presence of positively charged and unstable UO(2) (2+)-hydroxide complexes explained both the greater sensitivity of isolate A to UO(2) (2+), and the ability of isolate A to accumulate significant amounts of UO(2) (2+). The exclusive presence of negatively charged and stable UO(2) (2+)-carbonate complexes in the high bi-carbonate medium explained the diminished sensitivity of isolate A to UO(2) (2+) toxicity, and limited ability of isolate A to accumulate UO(2) (2+). (c) 2010 SETAC.
Structure of the metallic films deposited on small spheres trapped in the rf magnetron plasma
NASA Astrophysics Data System (ADS)
Filippov, A. V.; Pal, A. F.; Ryabinkin, A. N.; Serov, A. O.
2016-11-01
Metallic coatings were deposited onto glass spheres having diameters from several to one hundred micrometers by the magnetron sputtering. Two different experimental schemes were exploited. One of them had the traditional configuration where a magnetron sputter was placed at one hundred millimeters from particles. In this scheme, continuous mechanical agitation in a fluidized bed was used to achieve uniformity of coatings. In the second scheme the treated particles (substrates) levitated in a magnetron rf plasma over a sputtered rf electrode (target) at the distance d of few mm from it and at gas pressure p values of 30-100 mTorr. These parameters are essentially different from those in the traditional sputtering. Agitation due to the features of a particle confinement in dusty plasma was used here to obtain uniform coatings. Thickness and morphology of the obtained coatings were studied. As it is known, film growth rate and structure are determined by the substrate temperature, the densities of ion and neutral atom fluxes to the substrate surface, the radiation flux density, and the heat energy produced due to the surface condensation of atoms and recombination of electrons and ions. These parameters particularly depend on the product of p and d. In the case of magnetron rf dusty plasma, it is possible to achieve the pd value several times lower than the lowest value proper to the first traditional case. Completely different dependencies of the film growth rate and structure on the pd value in these sputtering processes were observed and qualitatively explained.
Self-organization in complex oxide thin films: from 2D to 0D nanostructures of SrRuO3 and CoCr2O4
NASA Astrophysics Data System (ADS)
Sánchez, F.; Lüders, U.; Herranz, G.; Infante, I. C.; Fontcuberta, J.; García-Cuenca, M. V.; Ferrater, C.; Varela, M.
2005-05-01
We report here on the controlled fabrication of nanostructures of varied dimensionality by self-organization processes in the heteroepitaxial growth of SrRuO3 (SRO) and CoCr2O4 (CCO) films. The surface of SRO films on SrTiO3(001) substrates can show extremely smooth terraces (2D objects) separated by atomic steps, a structure of faceted islands (0D objects), a cross-hatch morphology (1D objects), an array of finger-like units (1D objects), or an array of giant bunched steps (1D objects). The surface can be tailored to a particular structure by controlling the vicinality of the substrate and the growth rate and nominal thickness of the film. In the case of CCO films, grown on (001)-oriented MgAl2O4 or MgO substrates, high aspect ratio {111}-faceted pyramids and hut clusters (0D objects), highly oriented and having a similar size, appear above a critical thickness. The size and spatial density can be tuned by varying deposition temperature, nominal thickness, and substrate. This dependence allows the fabrication of surfaces being fully faceted (2D objects), or having arrays of dislocated pyramids of up to micrometric size, or small coherently lattice strained pyramids having a nanometric size. We discuss the driving forces that originate the peculiar SRO and CCO nanostructures. The findings illustrate that the growth of complex oxides can promote a variety of novel self-organized morphologies, and suggest original strategies to fabricate templates or hybrid structures of oxides combining varied functionalities.
Leroy, C; Petitclerc, F; Orivel, J; Corbara, B; Carrias, J-F; Dejean, A; Céréghino, R
2017-01-01
Plant germination and development depend upon a seed's successful dispersal into a suitable habitat and its ability to grow and survive within the surrounding biotic and abiotic environment. The seeds of Aechmea mertensii, a tank-bromeliad species, are dispersed by either Camponotus femoratus or Neoponera goeldii, two ant species that initiate ant gardens (AGs). These two mutualistic ant species influence the vegetative and reproductive traits of the bromeliad through their divergent ecological preferences (i.e. light and substrate). We hypothesised that the seeds dispersed by these two ant species have underlying genetic differences affecting germination, growth and survival of A. mertensii seedlings in different ways. To test this, we used an experimental approach consisting of sowing seeds of A. mertensii: (i) taken from the two AG-ant associations (i.e. seed origin), (ii) in two contrasting light conditions, and (iii) on three different substrates. Light and substrate had significant effects on germination, survival and on eight key leaf traits reflecting plant performance. Seed origin had a significant effect only on germination and on two leaf traits (total dry mass and relative growth rate). Overall, this bromeliad performs better (i.e. high growth and survival rates) when growing both in the shade and in the carton nest developed by C. femoratus ants. These results suggest that the plasticity of the tank bromeliad A. mertensii is mainly due to environment but also to genetic differences related to seed origin, as some traits are heritable. Thus, these two ant species may play contrasting roles in shaping plant evolution and speciation. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
The Growth of Expitaxial GaAs and GaAlAs on Silicon Substrates by OMVPE
1988-08-01
structures have been grown on semi-insulating gallium arsenide substrates, and on high-resistivity silicon substrates using a two stage growth technique...fully in Quarter 9. 2. MATERIALS GROWTH 2.1 DOPING OF GALLIUM ARSENIDE FOR FETs As reported in quarter 7, doping levels for GaAs/SI 4ere found to be a...FET structures on both GaAs and Si substrates. A number of FET layers have been grown to the GAT4 specification on semi-insulating gallium arsenide
Reeves, Gregory T; Narang, Atul; Pilyugin, Sergei S
2004-01-21
The growth of mixed microbial cultures on mixtures of substrates is a problem of fundamental biological interest. In the last two decades, several unstructured models of mixed-substrate growth have been studied. It is well known, however, that the growth patterns in mixed-substrate environments are dictated by the enzymes that catalyse the transport of substrates into the cell. We have shown previously that a model taking due account of transport enzymes captures and explains all the observed patterns of growth of a single species on two substitutable substrates (J. Theor. Biol. 190 (1998) 241). Here, we extend the model to study the steady states of growth of two species on two substitutable substrates. The model is analysed to determine the conditions for existence and stability of the various steady states. Simulations are performed to determine the flow rates and feed concentrations at which both species coexist. We show that if the interaction between the two species is purely competitive, then at any given flow rate, coexistence is possible only if the ratio of the two feed concentrations lies within a certain interval; excessive supply of either one of the two substrates leads to annihilation of one of the species. This result simplifies the construction of the operating diagram for purely competing species. This is because the two-dimensional surface that bounds the flow rates and feed concentrations at which both species coexist has a particularly simple geometry: It is completely determined by only two coordinates, the flow rate and the ratio of the two feed concentrations. We also study commensalistic interactions between the two species by assuming that one of the species excretes a product that can support the growth of the other species. We show that such interactions enhance the coexistence region.
The effect of copper pre-cleaning on graphene synthesis.
Kim, Soo Min; Hsu, Allen; Lee, Yi-Hsien; Dresselhaus, Mildred; Palacios, Tomás; Kim, Ki Kang; Kong, Jing
2013-09-13
Copper foil is the most common substrate to synthesize monolayer graphene by chemical vapor deposition (CVD). The surface morphology and conditions of the copper foil can be very different depending on the various suppliers or different batches. These surface properties of copper strongly affect the growth behavior of graphene, thus rendering the growth conditions irreproducible when different batches of Cu foil are used. Furthermore, the quality of the graphene is severely affected as well. In this work, we report a facile method of copper pre-cleaning to improve the graphene quality and the reproducibility of the growth process. We found that the commercial Ni etchant (based on nitric acid) or nitric acid is the most effective cleaning agent among various acidic or basic solutions. The graphene grown on thus-treated copper surfaces is very clean and mostly monolayer when observed under scanning electron microscopy (SEM) and optical imaging, as compared to the graphene grown on untreated copper foil. Different batches (but with the same catalog number) of copper foil from Alfa Aesar Company were examined to explore the effect of copper pre-cleaning; consistent growth results were obtained when pre-cleaning was used. This method overcomes a commonly encountered problem in graphene growth and could become one of the standard protocols for preparing the copper foil substrate for growing graphene or other 2D materials.
NASA Technical Reports Server (NTRS)
Jahnke, Linda L.; Summons, Roger E.; Chang, Sherwood (Technical Monitor)
1996-01-01
Growth experiments with the RuMP-type methanotroph, Methylococcus capsulatus (Bath), have demonstrated that biomass and lipid biomarkers are significantly depleted in C-13 compared to the substrate methane and that the extent of fractionation is dependent on whether cells express the soluble (s) or particulate (p) methane monooxygenase (MMO). The presence or absence of the characteristic sMMO subunits was monitored using SDS-polyacrylamide gels. In M. capsulatus grown with no Cu supplementation, the characteristic sMMO subunits were observed in the soluble fraction throughout the entire growth period and biomass was depleted in C-13 by approximately 14,700 relative to substrate methane. In cells grown with 5uM Cu, no sMMO bands were observed and a greater fractionation of approximately 27,700 in resultant biomass was obtained. Methanol growth experiments with M. capsulatus and with a RuMP methylotroph, Methylophilus methylotrophus, in which biomass measurements yielded depletions in C-13 of 9 and 5%(sub o), respectively, suggest that oxidation of methane is the major fractionation step. Growth of M. capsulatus at a low level of oxygen, approximately 0.5%, had no significant effect on carbon isotope fractionation by either sMMO or pMMO. These observations are significant for identification of molecular biomarkers; and methanotrophic contributions to carbon isotope composition in natural environments.
Current opinion in Microbiology Roles of adaptor proteins in regulation of bacterial proteolysis
Battesti, Aurelia; Gottesman, Susan
2013-01-01
Elimination of non-functional or unwanted proteins is critical for cell growth and regulation. In bacteria, ATP-dependent proteases target cytoplasmic proteins for degradation, contributing to both protein quality control and regulation of specific proteins, thus playing roles parallel to that of the proteasome in eukaryotic cells. Adaptor proteins provide a way to modulate the substrate specificity of the proteases and allow regulated proteolysis. Advances over the past few years have provided new insight into how adaptor proteins interact with both substrates and proteases and how adaptor functions are regulated. An important advance has come with the recognition of the critical roles of anti-adaptor proteins in regulating adaptor availability. PMID:23375660
3D highly oriented nanoparticulate and microparticulate array ofmetal oxide materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vayssieres, Lionel; Guo, Jinghua; Nordgren, Joseph
2006-09-15
Advanced nano and micro particulate thin films of 3d transition and post-transition metal oxides consisting of nanorods and microrods with parallel and perpendicular orientation with respect to the substrate normal, have been successfully grown onto various substrates by heteronucleation, without template and/or surfactant, from the aqueous condensation of solution of metal salts or metal complexes (aqueous chemical growth). Three-dimensional arrays of iron oxide nanorods and zinc oxide nanorods with parallel and perpendicular orientation are presented as well as the oxygen K-edge polarization dependent x-ray absorption spectroscopy (XAS) study of anisotropic perpendicularly oriented microrod array of ZnO performed at synchrotron radiationmore » source facility.« less
Neuert, Helen; Yuva-Aydemir, Yeliz; Silies, Marion; Klämbt, Christian
2017-12-15
The development of the nervous system requires tight control of cell division, fate specification and migration. The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that affects different steps of cell cycle progression, as well as having postmitotic functions in nervous system development. It can therefore link different developmental stages in one tissue. The two adaptor proteins, Fizzy/Cdc20 and Fizzy-related/Cdh1, confer APC/C substrate specificity. Here, we show that two distinct modes of APC/C function act during Drosophila eye development. Fizzy/Cdc20 controls the early growth of the eye disc anlage and the concomitant entry of glial cells onto the disc. In contrast, fzr/cdh1 acts during neuronal patterning and photoreceptor axon growth, and subsequently affects neuron-glia interaction. To further address the postmitotic role of Fzr/Cdh1 in controlling neuron-glia interaction, we identified a series of novel APC/C candidate substrates. Four of our candidate genes are required for fzr/cdh1 -dependent neuron-glia interaction, including the dynein light chain Dlc90F Taken together, our data show how different modes of APC/C activation can couple early growth and neuron-glia interaction during eye disc development. © 2017. Published by The Company of Biologists Ltd.
Deposition and properties of Fe(Se,Te) thin films on vicinal CaF2 substrates
NASA Astrophysics Data System (ADS)
Bryja, Hagen; Hühne, Ruben; Iida, Kazumasa; Molatta, Sebastian; Sala, Alberto; Putti, Marina; Schultz, Ludwig; Nielsch, Kornelius; Hänisch, Jens
2017-11-01
We report on the growth of epitaxial Fe1+δ Se0.5Te0.5 thin films on 0°, 5°, 10°, 15° and 20° vicinal cut CaF2 single crystals by pulsed laser deposition. In situ electron and ex situ x-ray diffraction studies reveal a tilted growth of the Fe1+δ Se0.5Te0.5 films, whereby under optimized deposition conditions the c-axis alignment coincides with the substrate [001] tilted axis up to a vicinal angle of 10°. Atomic force microscopy shows a flat island growth for all films. From resistivity measurements in longitudinal and transversal directions, the ab- and c-axis components of resistivity are derived and the mass anisotropy parameter is determined. Analysis of the critical current density indicates that no effective c-axis correlated defects are generated by vicinal growth, and pinning by normal point core defects dominates. However, for H∣∣ab the effective pinning centers change from surface defects to point core defects near the superconducting transition due to the vicinal cut. Furthermore, we show in angular-dependent critical current density data a shift of the ab-planes maxima position with the magnetic field strength.
Flexible Microsensor Array for the Monitoring and Control of Plant Growth System
NASA Technical Reports Server (NTRS)
Kim, Chang-Soo; Porterfield, D. Marshall; Nagle, H. Troy; Brown, Christopher S.
2004-01-01
Testing for plant experiments in space has begun to explore active nutrient delivery concepts in which water and nutrients are replenished on a continuous basis for long-term growth. The goal of this study is to develop a novel microsensor array to provide information on the dissolved oxygen environment in the plant root zone for the optimum control of hydroponics and solid substrate plant cultivation systems in the space environment. Miniaturized polarographic dissolved oxygen sensors have been designed and fabricated on a flexible Kapton (trademark) (polyimide) substrate. Two capabilities of the new microsensor array were explored. First, measurements of dissolved oxygen in the plant root zone in hydroponics and solid substrate culture systems were made. The microsensor array was fabricated on a flexible substrate, and then cut out into a mesh type to make a suspended array that could be placed either in a hydroponics system or in a solid substrate cultivation system to measure the oxygen environments. Second, the in situ self-diagnostic and self-calibration capability (two-point for oxygen) was adopted by dynamically controlling the microenvironment in close proximity to the microsensors. With a built-in generating electrode that surrounds the microsensor, two kinds of microenvironments (oxygen-saturated and oxygen-depleted phases) could be established by water electrolysis depending on the polarity of the generating electrode. The unique features of the new microsensor array (small size, multiple sensors, flexibility and self-diagnosis) can have exceptional benefits for the study and optimization of plant cultivation systems in both terrestrial and microgravity environments. The in situ self-diagnostic and self-calibration features of the microsensor array will also enable continuous verification of the operability during entire plant growth cycles. This concept of automated control of a novel chemical monitoring system will minimize crew time required for maintenance, as well as reduce volume, mass, and power consumption by eliminating bulky diagnosis systems including calibrant (fluid and gas) reservoir and flow system hardware.
Metabolic enzyme cost explains variable trade-offs between microbial growth rate and yield
Ferris, Michael; Bruggeman, Frank J.
2018-01-01
Microbes may maximize the number of daughter cells per time or per amount of nutrients consumed. These two strategies correspond, respectively, to the use of enzyme-efficient or substrate-efficient metabolic pathways. In reality, fast growth is often associated with wasteful, yield-inefficient metabolism, and a general thermodynamic trade-off between growth rate and biomass yield has been proposed to explain this. We studied growth rate/yield trade-offs by using a novel modeling framework, Enzyme-Flux Cost Minimization (EFCM) and by assuming that the growth rate depends directly on the enzyme investment per rate of biomass production. In a comprehensive mathematical model of core metabolism in E. coli, we screened all elementary flux modes leading to cell synthesis, characterized them by the growth rates and yields they provide, and studied the shape of the resulting rate/yield Pareto front. By varying the model parameters, we found that the rate/yield trade-off is not universal, but depends on metabolic kinetics and environmental conditions. A prominent trade-off emerges under oxygen-limited growth, where yield-inefficient pathways support a 2-to-3 times higher growth rate than yield-efficient pathways. EFCM can be widely used to predict optimal metabolic states and growth rates under varying nutrient levels, perturbations of enzyme parameters, and single or multiple gene knockouts. PMID:29451895
Substrates coated with silver nanoparticles as a neuronal regenerative material
Alon, Noa; Miroshnikov, Yana; Perkas, Nina; Nissan, Ifat; Gedanken, Aharon; Shefi, Orit
2014-01-01
Much effort has been devoted to the design of effective biomaterials for nerve regeneration. Here, we report the novel use of silver nanoparticles (AgNPs) as regenerative agents to promote neuronal growth. We grew neuroblastoma cells on surfaces coated with AgNPs and studied the effect on the development of the neurites during the initiation and the elongation growth phases. We find that the AgNPs function as favorable anchoring sites, and the growth on the AgNP-coated substrates leads to a significantly enhanced neurite outgrowth. Cells grown on substrates coated with AgNPs have initiated three times more neurites than cells grown on uncoated substrates, and two times more than cells grown on substrates sputtered with a plain homogenous layer of silver. The growth of neurites on AgNPs in the elongation phase was enhanced as well. A comparison with substrates coated with gold nanoparticles (AuNPs) and zinc oxide nanoparticles (ZnONPs) demonstrated a clear silver material-driven promoting effect, in addition to the nanotopography. The growth on substrates coated with AgNPs has led to a significantly higher number of initiating neurites when compared to substrates coated with AuNPs or ZnONPs. All nanoparticle-coated substrates affected and promoted the elongation of neurites, with a significant positive maximal effect for the AgNPs. Our results, combined with the well-known antibacterial effect of AgNPs, suggest the use of AgNPs as an attractive nanomaterial – with dual activity – for neuronal repair studies. PMID:24872701
Mitra, Ruchira; Chaudhuri, Surabhi; Dutta, Debjani
2017-01-01
In the present investigation, growth kinetics of Kocuria marina DAGII during batch production of β-Cryptoxanthin (β-CRX) was studied by considering the effect of glucose and maltose as a single and binary substrate. The importance of mixed substrate over single substrate has been emphasised in the present study. Different mathematical models namely, the Logistic model for cell growth, the Logistic mass balance equation for substrate consumption and the Luedeking-Piret model for β-CRX production were successfully implemented. Model-based analyses for the single substrate experiments suggested that the concentrations of glucose and maltose higher than 7.5 and 10.0 g/L, respectively, inhibited the growth and β-CRX production by K. marina DAGII. The Han and Levenspiel model and the Luong product inhibition model accurately described the cell growth in glucose and maltose substrate systems with a R 2 value of 0.9989 and 0.9998, respectively. The effect of glucose and maltose as binary substrate was further investigated. The binary substrate kinetics was well described using the sum-kinetics with interaction parameters model. The results of production kinetics revealed that the presence of binary substrate in the cultivation medium increased the biomass and β-CRX yield significantly. This study is a first time detailed investigation on kinetic behaviours of K. marina DAGII during β-CRX production. The parameters obtained in the study might be helpful for developing strategies for commercial production of β-CRX by K. marina DAGII.
Grip and slip of L1-CAM on adhesive substrates direct growth cone haptotaxis
Abe, Kouki; Katsuno, Hiroko; Toriyama, Michinori; Baba, Kentarou; Mori, Tomoyuki; Hakoshima, Toshio; Kanemura, Yonehiro; Watanabe, Rikiya; Inagaki, Naoyuki
2018-01-01
Chemical cues presented on the adhesive substrate direct cell migration, a process termed haptotaxis. To migrate, cells must generate traction forces upon the substrate. However, how cells probe substrate-bound cues and generate directional forces for migration remains unclear. Here, we show that the cell adhesion molecule (CAM) L1-CAM is involved in laminin-induced haptotaxis of axonal growth cones. L1-CAM underwent grip and slip on the substrate. The ratio of the grip state was higher on laminin than on the control substrate polylysine; this was accompanied by an increase in the traction force upon laminin. Our data suggest that the directional force for laminin-induced growth cone haptotaxis is generated by the grip and slip of L1-CAM on the substrates, which occur asymmetrically under the growth cone. This mechanism is distinct from the conventional cell signaling models for directional cell migration. We further show that this mechanism is disrupted in a human patient with L1-CAM syndrome, suffering corpus callosum agenesis and corticospinal tract hypoplasia. PMID:29483251
Substrate morphology induced self-organization into carbon nanotube arrays, ropes, and agglomerates.
Huang, Jia-Qi; Zhang, Qiang; Xu, Guang-Hui; Qian, Wei-Zhong; Wei, Fei
2008-10-29
In this paper, hydrophobic carbon nanotube (CNT) arrays, ropes, and agglomerates were synthesized through self-organization on quartz substrates with different micro-structures under the same growth condition. On a flat substrate, a uniform woven structure was formed which resulted in a synchronous growth into an array. When the substrate with 10 µm round concaves distributed on the surface was adopted, the woven structure was sporadic and a CNT cluster was grown in the concave. With further growth, CNT ropes were self-organized. Subsequently, when the substrate consisting of irregular ∼100 nm gaps was used, the initial woven structure was high density, thus resulting in the formation of CNT agglomerates. Study results showed that CNT arrays grown on the flat substrate were of the highest purity and had a contact angle of 153.8 ± 0.9°. Thus, the self-organization behavior among CNTs was in situ modulated by different substrate morphology without further treatments. This provides us with an additional understanding of the self-organization of CNTs during growth, as well as strategies for the controllable synthesis of CNTs with fixed properties.
Construction of 3D Metallic Nanostructures on an Arbitrarily Shaped Substrate.
Chen, Fei; Li, Jingning; Yu, Fangfang; Zhao, Di; Wang, Fan; Chen, Yanbin; Peng, Ru-Wen; Wang, Mu
2016-09-01
Constructing conductive/magnetic nanowire arrays with 3D features by electrodeposition remains challenging. An unprecedented fabrication approach that allows to construct metallic (cobalt) nanowires on an arbitrarily shaped surface is reported. The spatial separation of nanowires varies from 70 to 3000 nm and the line width changes from 50 to 250 nm depending on growth conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Junda, Maxwell M.; Karki Gautam, Laxmi; Collins, Robert W.; Podraza, Nikolas J.
2018-04-01
Virtual interface analysis (VIA) is applied to real time spectroscopic ellipsometry measurements taken during the growth of hydrogenated amorphous silicon (a-Si:H) thin films using various hydrogen dilutions of precursor gases and on different substrates during plasma enhanced chemical vapor deposition. A procedure is developed for optimizing VIA model configurations by adjusting sampling depth into the film and the analyzed spectral range such that model fits with the lowest possible error function are achieved. The optimal VIA configurations are found to be different depending on hydrogen dilution, substrate composition, and instantaneous film thickness. A depth profile in the optical properties of the films is then extracted that results from a variation in an optical absorption broadening parameter in a parametric a-Si:H model as a function of film thickness during deposition. Previously identified relationships are used linking this broadening parameter to the overall shape of the optical properties. This parameter is observed to converge after about 2000-3000 Å of accumulated thickness in all layers, implying that similar order in the a-Si:H network can be reached after sufficient thicknesses. In the early stages of growth, however, significant variations in broadening resulting from substrate- and processing-induced order are detected and tracked as a function of bulk layer thickness yielding an optical property depth profile in the final film. The best results are achieved with the simplest film-on-substrate structures while limitations are identified in cases where films have been deposited on more complex substrate structures.
Sinha, Indrajit; Boon, Calvin; Dick, Thomas
2003-10-10
Probing protein extracts from exponentially growing and stationary phase cultures of Mycobacterium bovis BCG with anti-phospho amino acid antibodies revealed a 31-kDa anti-phospho threonine antibody-reactive protein specific to growing culture. The corresponding protein was purified via two-dimensional gel electrophoresis and identified via mass spectrometry to be malonyl coenzyme A:acyl carrier protein transacylase (MCAT), a component of the fatty acid biosynthetic pathway. MCAT tagged with histidine reacted with anti-phospho threonine antibody and was positive in an in-gel chemical assay for phospho proteins. Analysis of the growth phase dependence of MCAT-His phosphorylation and protein levels showed that phosphorylated MCAT-His can be detected only in growing culture. In contrast, MCAT-His protein level was growth phase-independent. These results suggest that MCAT may be a substrate of a protein kinase and phosphatase, and that aspects of fatty acid synthesis in tubercle bacilli are regulated by protein phosphorylation.
Respiration-dependent utilization of sugars in yeasts: a determinant role for sugar transporters.
Goffrini, Paola; Ferrero, Iliana; Donnini, Claudia
2002-01-01
In many yeast species, including Kluyveromyces lactis, growth on certain sugars (such as galactose, raffinose, and maltose) occurs only under respiratory conditions. If respiration is blocked by inhibitors, mutation, or anaerobiosis, growth does not take place. This apparent dependence on respiration for the utilization of certain sugars has often been suspected to be associated with the mechanism of the sugar uptake step. We hypothesized that in many yeast species, the permease activities for these sugars are not sufficient to ensure the high substrate flow that is necessary for fermentative growth. By introducing additional sugar permease genes, we have obtained K. lactis strains that were capable of growing on galactose and raffinose in the absence of respiration. High dosages of both the permease and maltase genes were indeed necessary for K. lactis cells to grow on maltose in the absence of respiration. These results strongly suggest that the sugar uptake step is the major bottleneck in the fermentative assimilation of certain sugars in K. lactis and probably in many other yeasts.
2012-01-01
Background Thermobacillus xylanilyticus is a thermophilic and highly xylanolytic bacterium. It produces robust and stable enzymes, including glycoside hydrolases and esterases, which are of special interest for the development of integrated biorefineries. To investigate the strategies used by T. xylanilyticus to fractionate plant cell walls, two agricultural by-products, wheat bran and straw (which differ in their chemical composition and tissue organization), were used in this study and compared with glucose and xylans. The ability of T. xylanilyticus to grow on these substrates was studied. When the bacteria used lignocellulosic biomass, the production of enzymes was evaluated and correlated with the initial composition of the biomass, as well as with the evolution of any residues during growth. Results Our results showed that T. xylanilyticus is not only able to use glucose and xylans as primary carbon sources but can also use wheat bran and straw. The chemical compositions of both lignocellulosic substrates were modified by T. xylanilyticus after growth. The bacteria were able to consume 49% and 20% of the total carbohydrates in bran and straw, respectively, after 24 h of growth. The phenolic and acetyl ester contents of these substrates were also altered. Bacterial growth on both lignocellulosic biomasses induced hemicellulolytic enzyme production, and xylanase was the primary enzyme secreted. Debranching activities were differentially produced, as esterase activities were more important to bacterial cultures grown on wheat straw; arabinofuranosidase production was significantly higher in bacterial cultures grown on wheat bran. Conclusion This study provides insight into the ability of T. xylanilyticus to grow on abundant agricultural by-products, which are inexpensive carbon sources for enzyme production. The composition of the biomass upon which the bacteria grew influenced their growth, and differences in the biomass provided resulted in dissimilar enzyme production profiles. These results indicate the importance of using different biomass sources to encourage the production of specific enzymes. PMID:23241174
The Aspergillus niger growth on the treated concrete substrate using variable antifungals
NASA Astrophysics Data System (ADS)
Parjo, U. K.; Sunar, N. M.; Leman, A. M.; Gani, P.; Embong, Z.; Tajudin, S. A. A.
2016-11-01
The aim of this study was to evaluate the Aspergillus niger (A. niger) growth on substrates after incorporates with different compounds of antifungals which is normally used in food industry. The antifungals named as potassium sorbate (PS), calcium benzoate (CB) and zinc salicylate (ZS) were applied on concrete substrate covered with different wall finishing such as acrylic paint (AP), glycerol based paint (GBP), thin wallpaper (THIN) and thick wallpaper (THICK). The concrete substrate were inoculated with spore suspension, incubated at selected temperature (30oC) and relative humidity (90%)in plant growth chamber. The observations were done from the Day 3 until Day 27. The results showed that the growth of the A. niger for concrete treated by PS for AP, GBP, THIN, and THICK were 64%, 32%, 11% and 100%, respectively. Meanwhile for CB, the growth of A. niger on AP, GBP, THIN, and THICK were 100%, 12%, 41%, and 13%, respectively. Similarly, treated concrete by ZS revealed that the growth of A. niger on the same substrate cover were 33%, 47%, 40%, and 39%, respectively. The results obtained in this study provide a valuable knowledge on the abilities of antifungals to remediate A. niger that inoculated on the concrete substrate. Consequently, this study proved that the PS covering with THIN more efficiency compares CB and ZS to prevent A. niger growth.
Yoshida, Naoko; Miyata, Yasushi; Doi, Kasumi; Goto, Yuko; Nagao, Yuji; Tero, Ryugo; Hiraishi, Akira
2016-01-01
Graphene oxide (GO) is reduced by certain exoelectrogenic bacteria, but its effects on bacterial growth and metabolism are a controversial issue. This study aimed to determine whether GO functions as the terminal electron acceptor to allow specific growth of and electricity production by exoelectrogenic bacteria. Cultivation of environmental samples with GO and acetate as the sole substrate could specifically enrich exoelectrogenic bacteria with Geobacter species predominating (51–68% of the total populations). Interestingly, bacteria in these cultures self-aggregated into a conductive hydrogel complex together with biologically reduced GO (rGO). A novel GO-respiring bacterium designated Geobacter sp. strain R4 was isolated from this hydrogel complex. This organism exhibited stable electricity production at >1000 μA/cm3 (at 200 mV vs Ag/AgCl) for more than 60 d via rGO while temporary electricity production using graphite felt. The better electricity production depends upon the characteristics of rGO such as a large surface area for biofilm growth, greater capacitance, and smaller internal resistance. This is the first report to demonstrate GO-dependent growth of exoelectrogenic bacteria while forming a conductive hydrogel complex with rGO. The simple put-and-wait process leading to the formation of hydrogel complexes of rGO and exoelectrogens will enable wider applications of GO to bioelectrochemical systems. PMID:26899353
NASA Astrophysics Data System (ADS)
Asai, K.; Feng, J. M.; Vaccaro, P. O.; Fujita, K.; Ohachi, T.
2000-06-01
The As vapor pressure dependence of the Ga desorption rate during molecular beam epitaxy (MBE) growth on GaAs( n11)A ( n=1-4 hereafter) substrates was studied by photoluminescence (PL) measurements at 12 K for undoped AlGaAs/GaAs asymmetric double quantum wells (ADQWs). Reflection high energy electron diffraction (RHEED) oscillation measurements on a GaAs(100) surface were also used. Two K-cells of As solid sources (corresponding to beam equivalent pressures (BEPs) of 9.0×10 -6 and 4.5×10 -5 Torr) were used to change the As pressure rapidly. The Ga flux and substrate temperature were kept constant at 0.76 ML/s and 12 K, respectively, while the As flux changed from 7.6 (BEP 9.0×10 -6 Torr) to 32 ML/s (4.5×10 -5 Torr). With increasing As pressure, two separated PL peaks for the wide well (WW) of high index substrates were observed. This peak separation is attributed to a reduced well depth from an increasing Ga desorption rate. The energy differences of the PL peak depending on the off-angle from (111)A to (100) plane indicates an orientation-dependent Ga desorption rate. Moreover, amongst all ( n11)A and (100) planes, the Ga desorption rate was smallest from the (111)A surface. The increase of Ga desorption from the surface at high As pressures probably arose from an increasing coverage with a quasi-liquid layer (QLL).
Selective-area growth and controlled substrate coupling of transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Bersch, Brian M.; Eichfeld, Sarah M.; Lin, Yu-Chuan; Zhang, Kehao; Bhimanapati, Ganesh R.; Piasecki, Aleksander F.; Labella, Michael, III; Robinson, Joshua A.
2017-06-01
Developing a means for true bottom-up, selective-area growth of two-dimensional (2D) materials on device-ready substrates will enable synthesis in regions only where they are needed. Here, we demonstrate seed-free, site-specific nucleation of transition metal dichalcogenides (TMDs) with precise control over lateral growth by utilizing an ultra-thin polymeric surface functionalization capable of precluding nucleation and growth. This polymer functional layer (PFL) is derived from conventional photoresists and lithographic processing, and is compatible with multiple growth techniques, precursors (metal organics, solid-source) and TMDs. Additionally, we demonstrate that the substrate can play a major role in TMD transport properties. With proper TMD/substrate decoupling, top-gated field-effect transistors (FETs) fabricated with selectively-grown monolayer MoS2 channels are competitive with current reported MoS2 FETs. The work presented here demonstrates that substrate surface engineering is key to realizing precisely located and geometrically-defined 2D layers via unseeded chemical vapor deposition techniques.
NASA Astrophysics Data System (ADS)
van der Torren, A. J. H.; Liao, Z.; Xu, C.; Gauquelin, N.; Yin, C.; Aarts, J.; van der Molen, S. J.
2017-12-01
The two-dimensional electron gas occurring between the band insulators SrTiO3 and LaAlO3 continues to attract considerable interest, due to the possibility of dynamic control over the carrier density and due to ensuing phenomena such as magnetism and superconductivity. The formation of this conducting interface is sensitive to the growth conditions, but despite numerous investigations there are still questions about the details of the physics involved. In particular, not much is known about the electronic structure of the growing LaAlO3 layer at the growth temperature (around 800°C) in oxygen (pressure around 5 ×10-5 mbar), since analysis techniques at these conditions are not readily available. We developed a pulsed laser deposition system inside a low-energy electron microscope in order to study this issue. The setup allows for layer-by-layer growth control and in situ measurements of the angle-dependent electron reflection intensity, which can be used as a fingerprint of the electronic structure of the surface layers during growth. By using different substrate terminations and growth conditions we observe two families of reflectivity maps, which we can connect either to samples with an AlO2-rich surface and a conducting interface or to samples with a LaO-rich surface and an insulating interface. Our observations emphasize that substrate termination and stoichiometry determine the electronic structure of the growing layer, and thereby the conductance of the interface.
NASA Astrophysics Data System (ADS)
Sultana, Jenifar; Paul, Somdatta; Karmakar, Anupam; Yi, Ren; Dalapati, Goutam Kumar; Chattopadhyay, Sanatan
2017-10-01
Thin film of p-type cupric oxide (p-CuO) is grown on silicon (n-Si) substrate by using chemical bath deposition (CBD) technique and a precise control of thickness from 60 nm to 178 nm has been achieved. The structural properties and stoichiometric composition of the grown films are observed to depend significantly on the growth time. The chemical composition, optical properties, and structural quality are investigated in detail by employing XRD, ellipsometric measurements and SEM images. Also, the elemental composition and the oxidation states of Cu and O in the grown samples have been studied in detail by XPS measurements. Thin film of 110 nm thicknesses exhibited the best performance in terms of crystal quality, refractive index, dielectric constant, band-gap, and optical properties. The study suggests synthesis route for developing high quality CuO thin film using CBD method for electronic and optical applications.
NASA Astrophysics Data System (ADS)
Enriquez, Erik; Zhang, Yingying; Chen, Aiping; Bi, Zhenxing; Wang, Yongqiang; Fu, Engang; Harrell, Zachary; Lü, Xujie; Dowden, Paul; Wang, Haiyan; Chen, Chonglin; Jia, Quanxi
2016-08-01
Epitaxial layered ternary metal-nitride FeMoN2, (Fe0.33Mo0.67)MoN2, CoMoN2, and FeWN2 thin films have been grown on c-plane sapphire substrates by polymer-assisted deposition. The ABN2 layer sits on top of the oxygen sublattices of the substrate with three possible matching configurations due to the significantly reduced lattice mismatch. The doping composition and elements affect not only the out-of-plane lattice parameters but also the temperature-dependent electrical properties. These films have resistivity in the range of 0.1-1 mΩ.cm, showing tunable metallic or semiconducting behaviors by adjusting the composition. A modified parallel connection channel model has been used to analyze the grain boundary and Coulomb blockade effect on the electrical properties. The growth of the high crystallinity layered epitaxial thin films provides an avenue to study the composition-structure-property relationship in ABN2 materials through A and B-site substitution.
NASA Astrophysics Data System (ADS)
Mwankemwa, Benard S.; Akinkuade, Shadrach; Maabong, Kelebogile; Nel, Jackie M.; Diale, Mmantsae
2018-04-01
We report on effect of surface morphology on the optical and electrical properties of chemical bath deposited Zinc oxide (ZnO) nanostructures. ZnO nanostructures were deposited on the seeded conducting indium doped tin oxide substrate positioned in three different directions in the growth solution. Field emission scanning electron microscopy was used to evaluate the morphological properties of the synthesized nanostructures and revealed that the positioning of the substrate in the growth solution affects the surface morphology of the nanostructures. The optical absorbance, photoluminescence and Raman spectroscopy of the resulting nanostructures are discussed. The electrical characterization of the Schottky diode such as barrier height, ideality factor, rectification ratios, reverse saturation current and series resistance were found to depend on the nanostructures morphology. In addition, current transport mechanism in the higher forward bias of the Schottky diode was studied and space charge limited current was found to be the dominant transport mechanism in all samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, F.Y.; Bi, Y.L.; Wong, M.H.
2009-07-01
A pot experiment was conducted to investigate the effects of Glomus mosseae and Rhizobium on Medicago sativa grown on three types of coal mine substrates, namely a mixture of coal wastes and sands (CS), coal wastes and fly ash (CF), and fly ash (FA). Inoculation with Rhizobium alone did not result in any growth response but G. mosseae alone displayed a significant effect on plant growth. G. mosseae markedly increased the survival rate of M. sativa in CS substrate. In CF and FA substrates the respective oven dry weights of M. sativa inoculated with G. mosseae were 1.8 and 5.1more » times higher than those without inoculation. Based on nitrogen (N), phosphorus (P) and potassium (K) uptake and legume growth, the results also show that dual inoculation in CS and CF substrates elicited a synergistic effect. This indicates that inoculation with arbuscular mycorrhizal (AM) fungi may be a promising approach for revegetation of coal mine substrates.« less
Advances in silicon carbide Chemical Vapor Deposition (CVD) for semiconductor device fabrication
NASA Technical Reports Server (NTRS)
Powell, J. Anthony; Petit, Jeremy B.; Matus, Lawrence G.
1991-01-01
Improved SiC chemical vapor deposition films of both 3C and 6H polytypes were grown on vicinal (0001) 6H-SiC wafers cut from single-crystal boules. These films were produced from silane and propane in hydrogen at one atmosphere at a temperature of 1725 K. Among the more important factors which affected the structure and morphology of the grown films were the tilt angle of the substrate, the polarity of the growth surface, and the pregrowth surface treatment of the substrate. With proper pregrowth surface treatment, 6H films were grown on 6H substrates with tilt angles as small as 0.1 degrees. In addition, 3C could be induced to grow within selected regions on a 6H substrate. The polarity of the substrate was a large factor in the incorporation of dopants during epitaxial growth. A new growth model is discussed which explains the control of SiC polytype in epitaxial growth on vicinal (0001) SiC substrates.
Substrate effect on the growth of Sn thin films
NASA Astrophysics Data System (ADS)
Chakraborty, Suvankar; Menon, Krishnakumar S. R.
2018-05-01
Growth of tin (Sn) on Ag(001), Ag(111) and W(110) substrate has been studied at elevated temperatures (473 K) using x-ray photoemission spectroscopy (XPS) and low energy electron diffraction (LEED). For Sn growth on silver substrates, it is noticed that both Sn 3d and Ag 3d core-level spectra shift in the higher binding energy direction due to the formation of surface alloy with the substrate. In both cases, surface alloy finally transforms into bulk alloy finally reaching bulk Sn value. For Sn growth on W(110) only Sn 3d core-level spectra shift in the higher binding energy direction due to surface core-level effect whereas no shift for tungsten core-level was noticed confirming no alloy formation. Sn is incorporated into the surface of substrate silver layer by removing every alternate or every third silver atoms to relieve the surface tensile stress as confirmed by LEED. On the other hand, tungsten being hard, Sn forms an overlayer structure by sitting in different energetically available positions rather than forming an alloy as energetically also it is not possible. Sn forms alloy with soft substrate silver and form overlayer films with tungsten. These studies are important in understanding the growth mechanism of Sn films on metal substrates.
Growth evolution of AlN films on silicon (111) substrates by pulsed laser deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Haiyan; Wang, Wenliang; Yang, Weijia
2015-05-14
AlN films with various thicknesses have been grown on Si(111) substrates by pulsed laser deposition (PLD). The surface morphology and structural property of the as-grown AlN films have been investigated carefully to comprehensively explore the epitaxial behavior. The ∼2 nm-thick AlN film initially grown on Si substrate exhibits an atomically flat surface with a root-mean-square surface roughness of 0.23 nm. As the thickness increases, AlN grains gradually grow larger, causing a relatively rough surface. The surface morphology of ∼120 nm-thick AlN film indicates that AlN islands coalesce together and eventually form AlN layers. The decreasing growth rate from 240 to 180 nm/h is amore » direct evidence that the growth mode of AlN films grown on Si substrates by PLD changes from the islands growth to the layer growth. The evolution of AlN films throughout the growth is studied deeply, and its corresponding growth mechanism is hence proposed. These results are instructional for the growth of high-quality nitride films on Si substrates by PLD, and of great interest for the fabrication of AlN-based devices.« less
NASA Astrophysics Data System (ADS)
Corti, Giancarlo; Brown, Justin; Rajabi, Negar; McIlroy, D. N.
2018-03-01
The growth efficiency of one-dimension (1D) nanostructures via the vapor-liquid-solid process is commonly attributed to parameters such as precursor vapor pressure, substrate temperature, and the choice of the catalyst. The work presented herein is an investigation of the use of silica nanosprings (SNs) as a 3D substrate for improving the growth efficiency of SN themselves. SNs are a 1D nanomaterial that form a nonwoven structure with optimal geometric characteristics and surface properties that mitigate collisions between growing nanosprings and ripening of the gold catalyst, which should improve SN yield. Nanospring growth, for an eight hour period, on an SN coated surface relative to an equivalent flat substrate increased from ≈25 mgh-1 to ≈80 mgh-1, respectively. All things being equal, by splitting the typical amount of catalyst, in this case gold, between the first and second growth, the double growth procedure produced more than three times more nanosprings than the equivalent single growth of a SN. In addition, using an SN as a substrate increased the sustained growth condition from four to eight hours, and thus increased by a factor of ten the gravimetric yield of SNs relative to the mass of gold used.
Substrate solder barriers for semiconductor epilayer growth
Drummond, T.J.; Ginley, D.S.; Zipperian, T.E.
1987-10-23
During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In molecular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating. 1 tab.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Eung-Yoon; Choi, Young-Jin; Innopharmascreen, Inc., Asan 336-795
2009-11-20
Receptor tyrosine kinases (PTKs) play key roles in the pathogenesis of numerous human diseases, including cancer. Therefore PTK inhibitors are currently under intensive investigation as potential drug candidates. Herein, we report on a ProteoChip-based screening of an epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitor, Erkitinibs, from phytochemical libraries. PLC-{gamma}-1 was used as a substrate immobilized on a ProteoChip and incubated with an EGFR kinase to phosphorylate tyrosine residues of the substrate, followed by a fluorescence detection of the substrate recognized by a phospho-specific monoclonal antibody. Erkitinibs inhibited HeLa cell proliferation in a dose-dependent manner. In conclusion, these datamore » suggest that Erkitinibs can be a specific inhibitor of an EGFR kinase and can be further developed as a potent anti-tumor agent.« less
Ultraviolet photodetectors based on ZnO sheets: The effect of sheet size on photoresponse properties
NASA Astrophysics Data System (ADS)
Ghasempour Ardakani, Abbas; Pazoki, Meysam; Mahdavi, Seyed Mohammad; Bahrampour, Ali Reza; Taghavinia, Nima
2012-05-01
In this work, ultraviolet photodetectors based on electrodeposited ZnO sheet thin films were fabricated on a glass substrate. Before electrodeposition, a thin buffer layer of ZnO was deposited on the glass by pulsed laser deposition method. This layer not only acted as a nucleation site for ZnO sheet growth, but also made it possible to use cheap glass substrate instead of conventional fluorine-doped tin oxide (FTO) substrate. Our results showed that photoresponse properties of the photodetectors strongly depend on the sheet sizes. The smaller sheets exhibited enhanced photosensitivity, shortened fall times and decreased gain compared to larger ones. We showed that photodetectors based on ZnO sheets have a faster response than ones based on polycrystalline films. It was also shown that even less response time could be obtained by using comb-like electrodes instead of two-electrode.
Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition
NASA Astrophysics Data System (ADS)
Tolosa, Maria D. Reyes; Damonte, Laura C.; Brine, Hicham; Bolink, Henk J.; Hernández-Fenollosa, María A.
2013-03-01
Different ZnO nanostructured films were electrochemically grown, using an aqueous solution based on ZnCl2, on three types of transparent conductive oxides grow on commercial ITO (In2O3:Sn)-covered glass substrates: (1) ZnO prepared by spin coating, (2) ZnO prepared by direct current magnetron sputtering, and (3) commercial ITO-covered glass substrates. Although thin, these primary oxide layers play an important role on the properties of the nanostructured films grown on top of them. Additionally, these primary oxide layers prevent direct hole combination when used in optoelectronic devices. Structural and optical characterizations were carried out by scanning electron microscopy, atomic force microscopy, and optical transmission spectroscopy. We show that the properties of the ZnO nanostructured films depend strongly on the type of primary oxide-covered substrate used. Previous studies on different electrodeposition methods for nucleation and growth are considered in the final discussion.
Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition.
Tolosa, Maria D Reyes; Damonte, Laura C; Brine, Hicham; Bolink, Henk J; Hernández-Fenollosa, María A
2013-03-23
Different ZnO nanostructured films were electrochemically grown, using an aqueous solution based on ZnCl2, on three types of transparent conductive oxides grow on commercial ITO (In2O3:Sn)-covered glass substrates: (1) ZnO prepared by spin coating, (2) ZnO prepared by direct current magnetron sputtering, and (3) commercial ITO-covered glass substrates. Although thin, these primary oxide layers play an important role on the properties of the nanostructured films grown on top of them. Additionally, these primary oxide layers prevent direct hole combination when used in optoelectronic devices. Structural and optical characterizations were carried out by scanning electron microscopy, atomic force microscopy, and optical transmission spectroscopy. We show that the properties of the ZnO nanostructured films depend strongly on the type of primary oxide-covered substrate used. Previous studies on different electrodeposition methods for nucleation and growth are considered in the final discussion.
Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition
2013-01-01
Different ZnO nanostructured films were electrochemically grown, using an aqueous solution based on ZnCl2, on three types of transparent conductive oxides grow on commercial ITO (In2O3:Sn)-covered glass substrates: (1) ZnO prepared by spin coating, (2) ZnO prepared by direct current magnetron sputtering, and (3) commercial ITO-covered glass substrates. Although thin, these primary oxide layers play an important role on the properties of the nanostructured films grown on top of them. Additionally, these primary oxide layers prevent direct hole combination when used in optoelectronic devices. Structural and optical characterizations were carried out by scanning electron microscopy, atomic force microscopy, and optical transmission spectroscopy. We show that the properties of the ZnO nanostructured films depend strongly on the type of primary oxide-covered substrate used. Previous studies on different electrodeposition methods for nucleation and growth are considered in the final discussion. PMID:23522332
Estimation of critical thickness of Stranski-Krastanow transition in GeSi/Sn/Si system
NASA Astrophysics Data System (ADS)
Lozovoy, K. A.; Pishchagin, A. A.; Kokhanenko, A. P.; Voitsekhovskii, A. V.
2017-11-01
In this paper Stranski-Krastanow growth of Ge x Si1-x epitaxial layers on the Si(001) surface with pre-deposited tin layer with the thickness less than 1 ML is considered. For the calculations of critical thickness of transition from 2D to 3D growth in this paper a theoretical model based on general nucleation theory is used. This model is specified by taking into account dependencies of elastic modulus, lattices mismatch and surface energy of side facet on the composition x, as well as change in the adatoms diffusion coefficient and surface energy of the substrate in the presence of tin. As a result, dependencies of critical thickness of Stranski-Krastanow transition on compositon x and temperature are obtained. The simulated results are in a good agreement with experimentally observed results.
Epitaxial growth mechanisms of graphene and effects of substrates
NASA Astrophysics Data System (ADS)
Özçelik, V. Ongun; Cahangirov, S.; Ciraci, S.
2012-06-01
The growth process of single layer graphene with and without substrate is investigated using ab initio, finite temperature molecular dynamic calculations within density functional theory. An understanding of the epitaxial graphene growth mechanisms in the atomic level is provided by exploring the transient stages which occur at the growing edges of graphene. These stages are formation and collapse of large carbon rings together with the formation and healing of Stone-Wales like pentagon-heptagon defects. The activation barriers for the healing of these growth induced defects on various substrates are calculated using the climbing image nudge elastic band method and compared with that of the Stone-Wales defect. It is found that the healing of pentagon-heptagon defects occurring near the edge in the course of growth is much easier than that of Stone-Wales defect. The role of the substrate in the epitaxial growth and in the healing of defects are also investigated in detail, along with the effects of using carbon dimers as the building blocks of graphene growth.
Kim, Do Yun; Hänni, Simon; Schüttauf, Jan-Willem; van Swaaij, René A C M M; Zeman, Miro
2016-08-17
Optical and electrical properties of hydrogenated nanocrystalline silicon (nc-Si:H) solar cells are strongly influenced by the morphology of underlying substrates. By texturing the substrates, the photogenerated current of nc-Si:H solar cells can increase due to enhanced light scattering. These textured substrates are, however, often incompatible with defect-less nc-Si:H growth resulting in lower Voc and FF. In this study we investigate the correlation between the substrate morphology, the nc-Si:H solar-cell performance, and the defect density in the intrinsic layer of the solar cells (i-nc-Si:H). Statistical surface parameters representing the substrate morphology do not show a strong correlation with the solar-cell parameters. Thus, we first quantify the line density of potentially defective valleys of randomly textured ZnO substrates where the opening angle is smaller than 130° (ρ<130). This ρ<130 is subsequently compared with the solar-cell performance and the defect density of i-nc-Si:H (ρdefect), which is obtained by fitting external photovoltaic parameters from experimental results and simulations. We confirm that when ρ<130 increases the Voc and FF significantly drops. It is also observed that ρdefect increases following a power law dependence of ρ<130. This result is attributed to more frequently formed defective regions for substrates having higher ρ<130.
Kalmokoff, Martin; Franklin, Jeff; Petronella, Nicholas; Green, Judy; Brooks, Stephen P.J.
2015-01-01
Fermentation differs between the proximal and distal gut but little is known regarding how the bacterial communities differ or how they are influenced by diet. In order to investigate this, we compared community diversity in the cecum and feces of rats by 16S rRNA gene content and DNA shot gun metagenomics after feeding purified diets containing different fermentable substrates. Gut community composition was dependent on the source of fermentable substrate included in the diet. Cecal communities were dominated by Firmicutes, and contained a higher abundance of Lachnospiraceae compared to feces. In feces, community structure was shifted by varying degrees depending on diet towards the Bacteroidetes, although this change was not always evident from 16S rRNA gene data. Multi-dimensional scaling analysis (PCoA) comparing cecal and fecal metagenomes grouped by location within the gut rather than by diet, suggesting that factors in addition to substrate were important for community change in the distal gut. Differentially abundant genes in each environment supported this shift away from the Firmicutes in the cecum (e.g., motility) towards the Bacteroidetes in feces (e.g., Bacteroidales transposons). We suggest that this phylum level change reflects a shift to ammonia as the primary source of nitrogen used to support continued microbial growth in the distal gut. PMID:25954902
Kalmokoff, Martin; Franklin, Jeff; Petronella, Nicholas; Green, Judy; Brooks, Stephen P J
2015-05-06
Fermentation differs between the proximal and distal gut but little is known regarding how the bacterial communities differ or how they are influenced by diet. In order to investigate this, we compared community diversity in the cecum and feces of rats by 16S rRNA gene content and DNA shot gun metagenomics after feeding purified diets containing different fermentable substrates. Gut community composition was dependent on the source of fermentable substrate included in the diet. Cecal communities were dominated by Firmicutes, and contained a higher abundance of Lachnospiraceae compared to feces. In feces, community structure was shifted by varying degrees depending on diet towards the Bacteroidetes, although this change was not always evident from 16S rRNA gene data. Multi-dimensional scaling analysis (PCoA) comparing cecal and fecal metagenomes grouped by location within the gut rather than by diet, suggesting that factors in addition to substrate were important for community change in the distal gut. Differentially abundant genes in each environment supported this shift away from the Firmicutes in the cecum (e.g., motility) towards the Bacteroidetes in feces (e.g., Bacteroidales transposons). We suggest that this phylum level change reflects a shift to ammonia as the primary source of nitrogen used to support continued microbial growth in the distal gut.
The Programming Power of the Placenta
Sferruzzi-Perri, Amanda N.; Camm, Emily J.
2016-01-01
Size at birth is a critical determinant of life expectancy, and is dependent primarily on the placental supply of nutrients. However, the placenta is not just a passive organ for the materno-fetal transfer of nutrients and oxygen. Studies show that the placenta can adapt morphologically and functionally to optimize substrate supply, and thus fetal growth, under adverse intrauterine conditions. These adaptations help meet the fetal drive for growth, and their effectiveness will determine the amount and relative proportions of specific metabolic substrates supplied to the fetus at different stages of development. This flow of nutrients will ultimately program physiological systems at the gene, cell, tissue, organ, and system levels, and inadequacies can cause permanent structural and functional changes that lead to overt disease, particularly with increasing age. This review examines the environmental regulation of the placental phenotype with particular emphasis on the impact of maternal nutritional challenges and oxygen scarcity in mice, rats and guinea pigs. It also focuses on the effects of such conditions on fetal growth and the developmental programming of disease postnatally. A challenge for future research is to link placental structure and function with clinical phenotypes in the offspring. PMID:27014074
Aranda, Carlos; Godoy, Félix; Becerra, José; Barra, Ricardo; Martínez, Miguel
2003-08-01
This paper reports 2,4,6-trichlorophenol (246TCP) degradation by Sphingopyxis chilensis S37 and Sphingopyxis chilensis-like strain S32, which were unable to use 246TCP as the sole carbon and energy source. In R2A broth, the strains degraded 246TCP up to 0.5 mM. Results with mixtures of different 246TCP and glucose concentrations in mineral salt media demonstrated dependence on glucose to allow bacterial growth and degradation of 246TCP. Strain S32 degraded halophenol up to 0.2 mM when 5.33 mM glucose was simultaneously added, while strain S37 degraded the compound up to 0.1 mM when 1.33 mM glucose was added. These 246TCP concentrations were lethal for inocula in absence of glucose. Stoichiometric releases of chloride and analysis by HPLC, GC-ECD and GC-MS indicated 246TCP mineralisation by both strains. To our knowledge, this is the first report of bacteria able to mineralize a chlorophenol as a non-growth and inhibitory substrate. The concept of secondary utilization instead of cometabolism is proposed for this activity.
The impact of substrate selection for the controlled growth of graphene by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Schumann, T.; Lopes, J. M. J.; Wofford, J. M.; Oliveira, M. H.; Dubslaff, M.; Hanke, M.; Jahn, U.; Geelhaar, L.; Riechert, H.
2015-09-01
We examine how substrate selection impacts the resulting film properties in graphene growth by molecular beam epitaxy (MBE). Graphene growth on metallic as well as dielectric templates was investigated. We find that MBE offers control over the number of atomic graphene layers regardless of the substrate used. High structural quality could be achieved for graphene prepared on Ni (111) films which were epitaxially grown on MgO (111). For growth either on Al2O3 (0001) or on (6√3×6√3)R30°-reconstructed SiC (0001) surfaces, graphene with a higher density of defects is obtained. Interestingly, despite their defective nature, the layers possess a well defined epitaxial relation to the underlying substrate. These results demonstrate the feasibility of MBE as a technique for realizing the scalable synthesis of this two-dimensional crystal on a variety of substrates.
Gryndler, Milan; Sudová, Radka; Püschel, David; Rydlová, Jana; Janousková, Martina; Vosátka, Miroslav
2008-09-01
Two greenhouse experiments were focused on the application of arbuscular mycorrhizal fungi (AMF) and plant growth promoting rhizobacteria (PGPR) in planting of high-biomass crops on reclaimed spoil banks. In the first experiment, we tested the effects of different organic amendments on growth of alfalfa and on the introduced microorganisms. While growth of plants was supported in substrate with compost amendment, mycorrhizal colonization was suppressed. Lignocellulose papermill waste had no negative effects on AMF, but did not positively affect growth of plants. The mixture of these two amendments was found to be optimal in both respects, plant growth and mycorrhizal development. Decreasing doses of this mixture amendment were used in the second experiment, where the effects of microbial inoculation (assumed to compensate for reduced doses of organic matter) on growth of two high-biomass crops, hemp and reed canarygrass, were studied. Plant growth response to microbial inoculation was either positive or negative, depending on the dose of the applied amendment and plant species.
Thin films structural properties: results of the full-atomistic supercomputer simulation
NASA Astrophysics Data System (ADS)
Grigoriev, F. V.; Sulimov, V. B.; Tikhonravov, A. V.
2017-12-01
The previously developed full-atomistic approach to the thin film growth simulation is applied for the investigation of the dependence of silicon dioxide films properties on deposition conditions. It is shown that the surface roughness and porosity are essentially reduced with the growth of energy of deposited silicon atoms. The growth of energy from 0.1 eV to 10 eV results in the increase of the film density for 0.2 - 0.4 g/cm3 and of the refractive index for 0.04-0.08. The compressive stress in films structures is observed for all deposition conditions. Absolute values of the stress tensor components increase with the growth of e energy of deposited atoms. The increase of the substrate temperature results in smoothing of the density profiles of the deposited films.
Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Burger, Arnold; Dudley, Michael; Matyi, Richard J.; Ramachandran, Narayanan; Sha, Yi-Gao; Volz, Martin; Shih, Hung-Dah
1998-01-01
Interest in optical devices which can operate in the visible spectrum has motivated research interest in the II-VI wide band gap semiconductor materials. The recent challenge for semiconductor opto-electronics is the development of a laser which can operate at short visible wavelengths, In the past several years, major advances in thin film technology such as molecular beam epitaxy and metal organic chemical vapor deposition have demonstrated the applicability of II-VI materials to important devices such as light-emitting diodes, lasers, and ultraviolet detectors.The demonstration of its optical bistable properties in bulk and thin film forms also make ZnSe a possible candidate material for the building blocks of a digital optical computer. Despite this, developments in the crystal growth of bulk II-VI semiconductor materials has not advanced far enough to provide the low price, high quality substrates needed for the thin film growth technology. The electrical and optical properties of semiconductor materials depend on the native point defects, (the deviation from stoichiometry), and the impurity or dopant distribution. To date, the bulk growth of ZnSe substrates has been plagued with problems related to defects such as non-uniform distributions of native defects, impurities and dopants, lattice strain, dislocations, grain boundaries, and second phase inclusions which greatly effect the device performance. In the bulk crystal growth of some technologically important semiconductors, such as ZnTe, CdS, ZnSe and ZnS, vapor growth techniques have significant advantages over melt growth techniques due to the high melting points of these materials.
NASA Astrophysics Data System (ADS)
Haladu, Zangoma Maryam; Ibrahim, Izyanti; Hamid, Aidil Abdul
2018-04-01
The manner of the onset of lipid synthesis in Aurantiochytrium sp. SW1 as well as the possible role of NAD+ dependent isocitrate dehydrogenase (NAD+: ICDH) in the initiation of lipid biosynthesis were studied. The initiation of lipid synthesis in the microalgae was not associated with the cessation of growth, but commence at the early phase of growth. Substantial amount of lipid (30 %, g/g biomass) was accumulated during the active growth phase at 48 h with growth rate decreasing from 0.11 g/L/h during active growth to 0.02 g/L/h in the limited growth phase. At that period the activity of NAD+: ICDH was still detectable although it slightly decreased to 20 nmol/min/mg in 48 h from 25 nmol/min/mg at 24 h. Analysis of ammonium sulfate fractionated of NAD+: ICDH activity showed that NAD+: ICDH was not completely dependent on adenosine monophosphate (AMP) for its activity, although the presence of AMP increased the enzyme's affinity towards its substrate (isocitrate) indicated by the low Km value of the enzyme for isocitrate. While citrate acts as inhibitor of the enzyme only at high concentration. The probable implications of these properties to the regulation of lipid are discussed.
Ye, Han; Zhou, Jiadong; Er, Dequan; Price, Christopher C; Yu, Zhongyuan; Liu, Yumin; Lowengrub, John; Lou, Jun; Liu, Zheng; Shenoy, Vivek B
2017-12-26
Vertical stacking of monolayers via van der Waals (vdW) interaction opens promising routes toward engineering physical properties of two-dimensional (2D) materials and designing atomically thin devices. However, due to the lack of mechanistic understanding, challenges remain in the controlled fabrication of these structures via scalable methods such as chemical vapor deposition (CVD) onto substrates. In this paper, we develop a general multiscale model to describe the size evolution of 2D layers and predict the necessary growth conditions for vertical (initial + subsequent layers) versus in-plane lateral (monolayer) growth. An analytic thermodynamic criterion is established for subsequent layer growth that depends on the sizes of both layers, the vdW interaction energies, and the edge energy of 2D layers. Considering the time-dependent growth process, we find that temperature and adatom flux from vapor are the primary criteria affecting the self-assembled growth. The proposed model clearly demonstrates the distinct roles of thermodynamic and kinetic mechanisms governing the final structure. Our model agrees with experimental observations of various monolayer and bilayer transition metal dichalcogenides grown by CVD and provides a predictive framework to guide the fabrication of vertically stacked 2D materials.
Growth kinetics of disk-shaped copper islands in electrochemical deposition.
Guo, Lian; Zhang, Shouliang; Searson, Peter
2009-05-01
The ability to independently dictate the shape and crystal orientation of islands in electrocrystallization remains a significant challenge. The main reason for this is that the complex interplay between the substrate, nucleation, and surface chemistry is not fully understood. Here we report on the kinetics of island growth for copper on ruthenium oxide. The small nucleation overpotential leads to enhanced lateral growth and the formation of hexagonal disk-shaped islands. The amorphous substrate allows the nuclei to achieve the thermodynamically favorable orientation, i.e., a 111 surface normal. Island growth follows power law kinetics in both lateral and vertical directions. At shorter times, the two growth exponents are equal to 1/2 whereas at longer times lateral growth slows down while vertical growth speeds up. We propose a growth mechanism, wherein the lateral growth of disk-shaped islands is initiated by attachment of Cu adatoms on the ruthenium oxide surface onto the island periphery while vertical growth is initiated by two-dimensional nucleation on the top terrace and followed by lateral step propagation. These results indicate three criteria for enhanced lateral growth in electrodeposition: (i) a substrate that leads to a small nucleation overpotential, (ii) fast adatom surface diffusion on substrate to promote lateral growth, and (iii) preferential anion adsorption to stabilize the basal plane.
Vertical epitaxial wire-on-wire growth of Ge/Si on Si(100) substrate.
Shimizu, Tomohiro; Zhang, Zhang; Shingubara, Shoso; Senz, Stephan; Gösele, Ulrich
2009-04-01
Vertically aligned epitaxial Ge/Si heterostructure nanowire arrays on Si(100) substrates were prepared by a two-step chemical vapor deposition method in anodic aluminum oxide templates. n-Butylgermane vapor was employed as new safer precursor for Ge nanowire growth instead of germane. First a Si nanowire was grown by the vapor liquid solid growth mechanism using Au as catalyst and silane. The second step was the growth of Ge nanowires on top of the Si nanowires. The method presented will allow preparing epitaxially grown vertical heterostructure nanowires consisting of multiple materials on an arbitrary substrate avoiding undesired lateral growth.
NASA Astrophysics Data System (ADS)
Dirghangi, S. S.; Pagani, M.
2010-12-01
Lipids form an important class of proxies for paleoclimatological research, and hydrogen isotope ratios of lipids are being increasingly used for understanding changes in the hydrological system. Proper understanding of hydrogen isotope fractionation during lipid biosynthesis is therefore important and attention has been directed toward understanding the magnitude of hydrogen isotope fractionation that occurs during lipid biosynthesis in various organisms. Hydrogen isotope ratios of lipids depend on the hydrogen isotopic composition of the ambient water, hydrogen isotopic composition of NADPH used during biosynthesis, growth conditions, pathways of lipid biosynthesis, and substrates in the case of heterotrophic organisms. Recently it has been observed that NADPH contributes a significant part of the hydrogen in fatty acids synthesized by bacteria during heterotrophic growth (Zhang et al, 2009). As NADPH is formed by reduction of NADP+ during metabolism of substrates, different metabolic pathways form NADPH with different D/H ratios, which in turn results in variation in D/H ratios of lipids (Zhang et al, 2009). Therefore, substrates play a significant role in hydrogen isotopic compositions of lipids. For this study, we are investigating the effects of substrates on hydrogen isotope fractionation during biosynthesis of isoprenoidal lipids by heterotrophically growing halophilic archaea. Haloarcula marismortui is a halophilic archaea which synthesizes Archaeol (a diether lipid) and other isoprenoidal lipids. We have grown Haloarcula marismortui in pure cultures on three different substrates and are in the process of evaluating isotopic variability of Archaeol and other lipids associated with substrate and the D/H composition of ambient water. Our results will be helpful for a better understanding of hydrogen isotope fractionations during lipid synthesis by archaea. Also, halophilic archaea are the only source of archaeol in hypersaline environments. Therefore, our results will also indicate whether archaeol can be used as a proxy of ambient water hydrogen isotopic compositions in hypersaline environments.
Sharma, Ved P.; Beaty, Brian T.; Patsialou, Antonia; Liu, Huiping; Clarke, Michael; Cox, Dianne; Condeelis, John S.; Eddy, Robert J.
2014-01-01
In mammary tumors, intravital imaging techniques have uncovered an essential role for macrophages during tumor cell invasion and metastasis mediated by an epidermal growth factor (EGF)/colony stimulating factor-1 (CSF-1) paracrine loop. It was previously demonstrated that mammary tumors in mice derived from rat carcinoma cells (MTLn3) exhibited high velocity migration on extracellular matrix (ECM) fibers. These cells form paracrine loop-dependent linear assemblies of alternating host macrophages and tumor cells known as “streams.” Here, we confirm by intravital imaging that similar streams form in close association with ECM fibers in a highly metastatic patient-derived orthotopic mammary tumor (TN1). To understand the in vivo cell motility behaviors observed in streams, an in vitro model of fibrillar tumor ECM utilizing adhesive 1D micropatterned substrates was developed. MTLn3 cells on 1D fibronectin or type I collagen substrates migrated with higher velocity than on 2D substrates and displayed enhanced lamellipodial protrusion and increased motility upon local interaction and pairing with bone marrow-derived macrophages (BMMs). Inhibitors of EGF or CSF-1 signaling disrupted this interaction and reduced tumor cell velocity and protrusion, validating the requirement for an intact paracrine loop. Both TN1 and MTLn3 cells in the presence of BMMs were capable of co-assembling into linear arrays of alternating tumor cells and BMMs that resembled streams in vivo, suggesting the stream assembly is cell autonomous and can be reconstituted on 1D substrates. Our results validate the use of 1D micropatterned substrates as a simple and defined approach to study fibrillar ECM-dependent cell pairing, migration and relay chemotaxis as a complementary tool to intravital imaging. PMID:24634804
Gisi, Daniel; Willi, Laurent; Traber, Hubert; Leisinger, Thomas; Vuilleumier, Stéphane
1998-01-01
Methylobacterium sp. strain DM4 and Methylophilus sp. strain DM11 can grow with dichloromethane (DCM) as the sole source of carbon and energy by virtue of homologous glutathione-dependent DCM dehalogenases with markedly different kinetic properties (the kcat values of the enzymes of these strains are 0.6 and 3.3 s−1, respectively, and the Km values are 9 and 59 μM, respectively). These strains, as well as transconjugant bacteria expressing the DCM dehalogenase gene (dcmA) from DM11 or DM4 on a broad-host-range plasmid in the background of dcmA mutant DM4-2cr, were investigated by growing them under growth-limiting conditions and in the presence of an excess of DCM. The maximal growth rates and maximal levels of dehalogenase for chemostat-adapted bacteria were higher than the maximal growth rates and maximal levels of dehalogenase for batch-grown bacteria. The substrate saturation constant of strain DM4 was much lower than the Km of its associated dehalogenase, suggesting that this strain is adapted to scavenge low concentrations of DCM. Strains and transconjugants expressing the DCM dehalogenase from strain DM11, on the other hand, had higher growth rates than bacteria expressing the homologous dehalogenase from strain DM4. Competition experiments performed with pairs of DCM-degrading strains revealed that a strain expressing the dehalogenase from DM4 had a selective advantage in continuous culture under substrate-limiting conditions, while strains expressing the DM11 dehalogenase were superior in batch culture when there was an excess of substrate. Only DCM-degrading bacteria with a dcmA gene similar to that from strain DM4, however, were obtained in batch enrichment cultures prepared with activated sludge from sewage treatment plants. PMID:9546153
Microbial lipolysis at low temperatures.
Andersson, R E
1980-01-01
It was found that lipase production during the growth of Pseudomonas fluorescens was not a function of the total number of bacteria. The optimal temperatures for bacterial growth and lipase production were determined as 20 and 8 degrees C, respectively. The lipolytic activity was studied in emulsions of olive oil at temperatures ranging from +8 to -30 degrees C. After an initially rapid lipolysis, the reactions retarded at different levels depending on storage temperature. Transference to a higher temperature resulted in a resumed lipolysis. Also, at low temperatures, lipolysis was studied as a function of water activity and was found to occur in dehydrated substrates. PMID:6766702
Kramer, Gunnar R.; Chalfoun, Anna D.
2012-01-01
Relocation by dependent young is a survival strategy that occurs among a wide range of taxa. The Common Nighthawk (Chordeiles minor) lays its eggs on bare substrate and, once hatched, nestlings may relocate to new sites daily. We located and monitored eight Common Nighthawk nests in Grand Teton National Park, Wyoming, quantified inter-use-site distances in relation to nestling age, and calculated a nestling growth rate curve. Common Nighthawk nestlings grow in a nearly linear fashion. Nestlings moved up to 48 m in a single day and larger, older nestlings tended to move greater distances between daily use-sites.
Growth of nitrogen-doped graphene on copper: Multiscale simulations
NASA Astrophysics Data System (ADS)
Gaillard, P.; Schoenhalz, A. L.; Moskovkin, P.; Lucas, S.; Henrard, L.
2016-02-01
We used multiscale simulations to model the growth of nitrogen-doped graphene on a copper substrate by chemical vapour deposition (CVD). Our simulations are based on ab-initio calculations of energy barriers for surface diffusion, which are complemented by larger scale Kinetic Monte Carlo (KMC) simulations. Our results indicate that the shape of grown doped graphene flakes depends on the temperature and deposition flux they are submitted during the process, but we found no significant effect of nitrogen doping on this shape. However, we show that nitrogen atoms have a preference for pyridine-like sites compared to graphite-like sites, as observed experimentally.
Gómez-Gutiérrez, Claudia M; Luque, P A; Castro-Beltran, A; Vilchis-Nestor, A R; Lugo-Medina, Eder; Carrillo-Castillo, A; Quevedo-Lopez, M A; Olivas, A
2015-01-01
In this work, the influence of substrate on the morphology of ZnS thin films by chemical bath deposition is studied. The materials used were zinc acetate, tri-sodium citrate, thiourea, and ammonium hydroxide/ammonium chloride solution. The growth of ZnS thin films on different substrates showed a large variation on the surface, presenting a poor growth on SiO2 and HfO2 substrates. The thin films on ITO substrate presented a uniform and compact growth without pinholes. The optical properties showed a transmittance of about 85% in the visible range of 300-800 nm with band gap of 3.7 eV. © Wiley Periodicals, Inc.
Rodriguez-Navarro, Carlos; Jroundi, Fadwa; Schiro, Mara; Ruiz-Agudo, Encarnación; González-Muñoz, María Teresa
2012-06-01
The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria (Myxococcus xanthus, Brevundimonas diminuta, and a carbonatogenic bacterial community isolated from porous calcarenite stone in a historical building) and direct application of sterile M-3P medium to limestone and sandstone with their own bacterial communities. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), and 2-dimensional XRD (2D-XRD) analyses revealed that abundant highly oriented calcite crystals formed homoepitaxially on the calcitic substrates, irrespective of the bacterial type. Conversely, scattered spheroidal vaterite entombing bacterial cells formed on the silicate substrates. These results show that carbonate phase selection is not strain specific and that under equal culture conditions, the substrate type is the overruling factor for calcium carbonate polymorph selection. Furthermore, carbonate productivity is strongly dependent on the mineralogy of the substrate. Calcitic substrates offer a higher affinity for bacterial attachment than silicate substrates, thereby fostering bacterial growth and metabolic activity, resulting in higher production of calcium carbonate cement. Bacterial calcite grows coherently over the calcitic substrate and is therefore more chemically and mechanically stable than metastable vaterite, which formed incoherently on the silicate substrates. The implications of these results for technological applications of bacterial carbonatogenesis, including building stone conservation, are discussed.
Jroundi, Fadwa; Schiro, Mara; Ruiz-Agudo, Encarnación; González-Muñoz, María Teresa
2012-01-01
The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria (Myxococcus xanthus, Brevundimonas diminuta, and a carbonatogenic bacterial community isolated from porous calcarenite stone in a historical building) and direct application of sterile M-3P medium to limestone and sandstone with their own bacterial communities. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), and 2-dimensional XRD (2D-XRD) analyses revealed that abundant highly oriented calcite crystals formed homoepitaxially on the calcitic substrates, irrespective of the bacterial type. Conversely, scattered spheroidal vaterite entombing bacterial cells formed on the silicate substrates. These results show that carbonate phase selection is not strain specific and that under equal culture conditions, the substrate type is the overruling factor for calcium carbonate polymorph selection. Furthermore, carbonate productivity is strongly dependent on the mineralogy of the substrate. Calcitic substrates offer a higher affinity for bacterial attachment than silicate substrates, thereby fostering bacterial growth and metabolic activity, resulting in higher production of calcium carbonate cement. Bacterial calcite grows coherently over the calcitic substrate and is therefore more chemically and mechanically stable than metastable vaterite, which formed incoherently on the silicate substrates. The implications of these results for technological applications of bacterial carbonatogenesis, including building stone conservation, are discussed. PMID:22447589
Comparison of the quality of single-crystal diamonds grown on two types of seed substrates by MPCVD
NASA Astrophysics Data System (ADS)
Zhao, Yun; Guo, Yanzhao; Lin, Liangzhen; Zheng, Yuting; Hei, Lifu; Liu, Jinlong; Wei, Junjun; Chen, Liangxian; Li, Chengming
2018-06-01
Microwave plasma chemical vapor deposition (MPCVD) was used to grow single-crystal diamonds on two types of single-crystal diamond seed substrates prepared by high-pressure, high-temperature (HPHT) and chemical vapor deposition (CVD) methods. The quality of diamonds grown on the different seed substrates was compared. Fluorescence characteristics showed that the sectors of the HPHT seed substrates were obviously partitioned. Raman and absorption spectra showed that the CVD seed substrate produced higher-quality crystals with fewer nitrogen impurities. X-ray topography showed that the HPHT seed substrate had obvious growth sector boundaries, inclusions, dislocations, and stacking faults. The polarization characteristics of HPHT seed substrate were obvious, and the stress distribution was not uniform. When etching HPHT and CVD seed substrates using the same parameters, the etching morphology and extent of different growth sectors of the two substrates differed. Although extended defects were inevitably formed at the interface and propagated in the CVD layer, the dislocation density of a 1 mm-thick CVD layer grown on a CVD seed substrate was only half that of a 1 mm-thick CVD layer grown on an HPHT seed substrate. Therefore, the use of CVD seed substrate enabled the growth of a relatively higher-quality CVD single-crystal diamond.
Fabrication of novel plasmonics-active substrates
NASA Astrophysics Data System (ADS)
Dhawan, Anuj; Gerhold, Michael; Du, Yan; Misra, Veena; Vo-Dinh, Tuan
2009-02-01
This paper describes methodologies for fabricating of highly efficient plasmonics-active SERS substrates - having metallic nanowire structures with pointed geometries and sub-5 nm gap between the metallic nanowires enabling concentration of high EM fields in these regions - on a wafer-scale by a reproducible process that is compatible with large-scale development of these substrates. Excitation of surface plasmons in these nanowire structures leads to substantial enhancement in the Raman scattering signal obtained from molecules lying in the vicinity of the nanostructure surface. The methodologies employed included metallic coating of silicon nanowires fabricated by employing deep UV lithography as well as controlled growth of silicon germanium on silicon nanostructures to form diamond-shaped nanowire structures followed by metallic coating. These SERS substrates were employed for detecting chemical and biological molecules of interest. In order to characterize the SERS substrates developed in this work, we obtained SERS signals from molecules such as p-mercaptobenzoic acid (pMBA) and cresyl fast violet (CFV) attached to or adsorbed on the metal-coated SERS substrates. It was observed that both gold-coated triangular shaped nanowire substrates as well as gold-coated diamond shaped nanowire substrates provided very high SERS signals for the nanowires having sub-15 nm gaps and that the SERS signal depends on the closest spacing between the metal-coated silicon and silicon germanium nanowires. SERS substrates developed by the different processes were also employed for detection of biological molecules such as DPA (Dipicolinic Acid), an excellent marker for spores of bacteria such as Anthrax.
Leßmeier, Lennart; Pfeifenschneider, Johannes; Carnicer, Marc; Heux, Stephanie; Portais, Jean-Charles; Wendisch, Volker F
2015-12-01
Methanol, a one-carbon compound, can be utilized by a variety of bacteria and other organisms as carbon and energy source and is regarded as a promising substrate for biotechnological production. In this study, a strain of non-methylotrophic Corynebacterium glutamicum, which was able to produce the polyamide building block cadaverine as non-native product, was engineered for co-utilization of methanol. Expression of the gene encoding NAD+-dependent methanol dehydrogenase (Mdh) from the natural methylotroph Bacillus methanolicus increased methanol oxidation. Deletion of the endogenous aldehyde dehydrogenase genes ald and fadH prevented methanol oxidation to carbon dioxide and formaldehyde detoxification via the linear formaldehyde dissimilation pathway. Heterologous expression of genes for the key enzymes hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase of the ribulose monophosphate (RuMP) pathway in this strain restored growth in the presence of methanol or formaldehyde, which suggested efficient formaldehyde detoxification involving RuMP key enzymes. While growth with methanol as sole carbon source was not observed, the fate of 13C-methanol added as co-substrate to sugars was followed and the isotopologue distribution indicated incorporation into central metabolites and in vivo activity of the RuMP pathway. In addition, 13C-label from methanol was traced to the secreted product cadaverine. Thus, this synthetic biology approach led to a C. glutamicum strain that converted the non-natural carbon substrate methanol at least partially to the non-native product cadaverine.
Kortei, N. K.; Dzogbefia, V. P.; Obodai, M.
2014-01-01
Cassava peel based substrate formulations as an alternative substrate were used to grow mushrooms. The effect of two compost heights, three composting periods on the mycelia growth, physical characteristics, yield, and nutritional qualities of Pleurotus ostreatus (Jacq. ex Fr.) Kummer was studied. Mean mycelia growth of 16.2 cm after a period of seven (7) weeks was the best for 1.5 m compost height. Cap diameter and stipe length differed significantly (P < 0.05) with the compost heights (0.8 m and 1.5 m). The yield on compost height of 1.5 m, composted for 5 days, differed significantly (P < 0.05) from that of 0.8 m and gave increasing yields as follows: cassava peels and manure, cassava peels only, cassava peels and corn cobs (1 : 1 ratio), and cassava peels and corn cobs (1 : 1 ratio) with chicken manure. Composting periods (3 and 7 days) gave varying yields depending on the compost height. Based on the findings an interaction of 1.5 m compost height and 5 days composting period on cassava peels and corncobs (1 : 1 ratio) with chicken manure produced the best results. The nutritional quality of the mushrooms also differed significantly (P < 0.05), indicating that cassava peels could be used as a possible substrate in cultivation of mushroom. PMID:25580299
NASA Astrophysics Data System (ADS)
Liu, Xingyu
Despite its great potential applications to stem cell technology and tissue engineering, matrix presentation of biochemical cues such as growth factors and extracellular matrix (ECM) components remains undefined. This is largely due to the difficulty in preserving the bioactivities of signaling molecules and in controlling the spatial distribution, cellular accessibility, molecular orientation and intermolecular assembly of the biochemical cues. This dissertation comprises of two parts that focuses on understanding surface presentation of a growth factor and ECM components, respectively. This dissertation addresses two fundamental questions in stem cell biology using two biomaterials platforms. How does nanoscale distribution of growth factor impact signaling activation and cellular behaviors of adult neural stem cells? How does ECM self-assembly impact human embryonic stem cell survival and proliferation? The first question was addressed by the design of a novel quantitative platform that allows the control of FGF-2 molecular presentation locally as either monomers or clusters when tethered to a polymeric substrate. This substrate-tethered FGF-2 enables a switch-like signaling activation in response to dose titration of FGF-2. This is in contrast to a continuous MAPK activation pattern elicited by soluble FGF-2. Consequently, cell proliferation, and spreading were also consistent with this FGF-2 does-response pattern. We demonstrated that the combination of FGF-2 concentration and its cluster size, rather than concentration alone, serves as the determinants to govern its biological effect on neural stem cells. The second part of this dissertation was inspired by the challenge that hESCs have extremely low clonal efficiency and hESC survival is critically dependent on cell substrate adhesion. We postulated that ECM integrity is a critical factor in preventing hESC anchorage-dependent apoptosis, and that the matrix for feeder-free culture need to be properly assembled in order to mimic the stem cell niche in vivo. First, we established assays that allow high-throughput quantification of hESC proliferation and ECM deposition. Human ESC survival was found to be highly sensitive to ECM assembly, and was improved by at least 20 times on substrates with well-assembled ECM. ECM polymerization alone improves clonal efficiency by at least 20 fold, from less than 0.1% to be 3-5%. This ratio is further improved to greater than 35% when combined with ROCK inhibitor, suggesting ECM polymerization underlines another critical factor in dictating hESC survival and growth. Given that many important signaling molecules including growth factors and extracellular matrix are highly enriched and restricted at the stem cell niche, we anticipate that our investigation into these questions provides better insight into the physiological roles of the stem cell niche components, and helps us to rationally direct stem cell fates in future stem cell-based therapeutic interventions.
2009-10-01
pyrrolidine (LAF-237, vildagliptin ). Both boroPro compounds are effective against FAP at nanomolar concentrations; however, micromolar LAF-237 is...dependent insulinotropic polypeptide (GIP) that are substrates for DPPIV. NVP LAF-237 or vildagliptin is one of the DPPIV inhibitors approved for type 2...peptide truncation by Tumor growth is promoted by catalytically-inactive FAP 24 Vildagliptin ((2S)-{[(3-hydroxyadamantan-1-yl)amino]acetyl
Thermally evaporated hybrid perovskite for hetero-structured green light-emitting diodes
NASA Astrophysics Data System (ADS)
Mariano, Fabrizio; Listorti, Andrea; Rizzo, Aurora; Colella, Silvia; Gigli, Giuseppe; Mazzeo, Marco
2017-10-01
Thermal evaporation of green-light emitting perovskite (MaPbBr3) films is reported. Morphological studies show that a soft thermal treatment is needed to induce an outstanding crystal growth and film organization. Hetero-structured light-emitting diodes, embedding as-deposited and annealed MAPbBr3 films as active layers, are fabricated and their performances are compared, highlighting that the perovskite evolution is strongly dependent on the growing substrate, too.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, R. Rakesh, E-mail: rakesh.rajaboina@gmail.com; Department of Physics, Indian Institute of Science Education and Research, Bhopal 462066; Rao, K. Narasimha
2014-04-01
Highlights: • ITO nanowires were grown by e-beam evaporation method. • ITO nanowires growth done at low substrate temperature of 350 °C. • Nanowires growth was carried out without use of catalyst and reactive oxygen gas. • Nanowires growth proceeds via self catalytic VLS growth. • Grown nanowires have diameter 10–20 nm and length 1–4 μm long. • ITO nanowire films have shown good antireflection property. - Abstract: We report the self catalytic growth of Sn-doped indium oxide (ITO) nanowires (NWs) over a large area glass and silicon substrates by electron beam evaporation method at low substrate temperatures of 250–400more » °C. The ITO NWs growth was carried out without using an additional reactive oxygen gas and a metal catalyst particle. Ultrafine diameter (∼10–15 nm) and micron long ITO NWs growth was observed in a temperature window of 300–400 °C. Transmission electron microscope studies confirmed single crystalline nature of the NWs and energy dispersive spectroscopy studies on the NWs confirmed that the NWs growth proceeds via self catalytic vapor-liquid-solid (VLS) growth mechanism. ITO nanowire films grown on glass substrates at a substrate temperature of 300–400 °C have shown ∼2–6% reflection and ∼70–85% transmission in the visible region. Effect of deposition parameters was systematically investigated. The large area growth of ITO nanowire films would find potential applications in the optoelectronic devices.« less
NASA Astrophysics Data System (ADS)
Satpute, Surekha K.; Płaza, Grażyna A.; Banpurkar, Arun G.
2017-03-01
A strong developed bio-based industrial sector will significantly reduce dependency on fossil resources, help the countries meet climate change targets, and lead to greener and more environmental friendly growth. The key is to develop new technologies to sustainably transform renewable natural resources into bio-based products and biofuels. Biomass is a valuable resource and many parameters need to be taken in to account when assessing its use and the products made from its. The bioeconomy encompass the production of renewable biological resources and their conversion into food, feed and bio-based products (chemicals, materials and fuels) via innovative and efficient technologies provided by industrial biotechnology. The paper presents the smart and efficient way to use the agro-industrial, dairy and food processing wastes for biosurfactant's production. Clarification processes are mandatory to use the raw substrates for microbial growth as well as biosurfactant production for commercial purposes. At the same time it is very essential to retain the nutritional values of those cheap substrates. Broad industrial perspectives can be achieved when quality as well as the quantity of the biosurfactant is considered in great depth. Since substrates resulting from food processing, dairy, animal fat industries are not explored in great details; and hence are potential areas which can be explored thoroughly.
Kinetic study on anaerobic oxidation of methane coupled to denitrification.
Yu, Hou; Kashima, Hiroyuki; Regan, John M; Hussain, Abid; Elbeshbishy, Elsayed; Lee, Hyung-Sool
2017-09-01
Monod kinetic parameters provide information required for kinetic analysis of anaerobic oxidation of methane coupled to denitrification (AOM-D). This information is critical for engineering AOM-D processes in wastewater treatment facilities. We first experimentally determined Monod kinetic parameters for an AOM-D enriched culture and obtained the following values: maximum specific growth rate (μ max ) 0.121/d, maximum substrate-utilization rate (q max ) 28.8mmol CH 4 /g cells-d, half maximum-rate substrate concentration (K s ) 83μΜ CH 4 , growth yield (Y) 4.76gcells/mol CH 4 , decay coefficient (b) 0.031/d, and threshold substrate concentration (S min ) 28.8μM CH 4 . Clone library analysis of 16S rRNA and mcrA gene fragments suggested that AOM-D reactions might have occurred via the syntrophic interaction between denitrifying bacteria (e.g., Ignavibacterium, Acidovorax, and Pseudomonas spp.) and hydrogenotrophic methanogens (Methanobacterium spp.), supporting reverse methanogenesis-dependent AOM-D in our culture. High μ max and q max , and low K s for the AOM-D enrichment imply that AOM-D could play a significant role in mitigating atmospheric methane efflux. In addition, these high kinetic features suggest that engineered AOM-D systems may provide a sustainable alternative to nitrogen removal in wastewater treatment. Copyright © 2017 Elsevier Inc. All rights reserved.
Monte Carlo study of the hetero-polytypical growth of cubic on hexagonal silicon carbide polytypes
NASA Astrophysics Data System (ADS)
Camarda, Massimo
2012-08-01
In this article we use three dimensional kinetic Monte Carlo simulations on super-lattices to study the hetero-polytypical growth of cubic silicon carbide polytype (3C-SiC) on misoriented hexagonal (4H and 6H) substrates. We analyze the quality of the 3C-SiC film varying the polytype, the miscut angle and the initial surface morphology of the substrate. We find that the use of 6H misoriented (4°-10° off) substrates, with step bunched surfaces, can strongly improve the quality of the cubic epitaxial film whereas the 3C/4H growth is affected by the generation of dislocations, due to the incommensurable periodicity of the 3C (3) and the 4H (4) polytypes. For these reasons, a proper pre-growth treatment of 6H misoriented substrates can be the key for the growth of high quality, twin free, 3C-SiC films.
High-quality GaN epitaxially grown on Si substrate with serpentine channels
NASA Astrophysics Data System (ADS)
Wei, Tiantian; Zong, Hua; Jiang, Shengxiang; Yang, Yue; Liao, Hui; Xie, Yahong; Wang, Wenjie; Li, Junze; Tang, Jun; Hu, Xiaodong
2018-06-01
A novel serpentine-channeled mask was introduced to Si substrate for low-dislocation GaN epitaxial growth and the fully coalesced GaN film on the masked Si substrate was achieved for the first time. Compared with the epitaxial lateral overgrowth (ELOG) growth method, this innovative mask only requires one-step epitaxial growth of GaN which has only one high-dislocation region per mask opening. This new growth method can effectively reduce dislocation density, thus improving the quality of GaN significantly. High-quality GaN with low dislocation density ∼2.4 × 107 cm-2 was obtained, which accounted for about eighty percent of the GaN film in area. This innovative technique is promising for the growth of high-quality GaN templates and the subsequent fabrication of high-performance GaN-based devices like transistors, laser diodes (LDs), and light-emitting diodes (LEDs) on Si substrate.
Growth of Graphene by Catalytic Dissociation of Ethylene on CuNi(111)
NASA Astrophysics Data System (ADS)
Tyagi, Parul; Mowll, Tyler; Robinson, Zachary; Ventrice, Carl
2013-03-01
Copper foil is one of the most common substrates for growing large area graphene films. The main reason for this is that Cu has a very low carbon solubility, which results in the self-termination of a single layer of graphene when grown using hydrocarbon precursors at low pressure. Our previous results on Cu(111) substrates has found that temperatures of at least 900 °C are needed to form single domain epitaxial films. By using a CuNi alloy, the catalytic activity of the substrate is expected to increase, which will allow the catalytic decomposition of the hydrocarbon precursor at lower temperatures. In this study, the growth of graphene by the catalytic decomposition of ethylene on a 90:10 CuNi(111) substrate was attempted. The growths were done in an ultra-high vacuum system by either heating the substrate to the growth temperature followed by introducing the ethylene precursor or by introducing the ethylene precursor and subsequently heating it to the growth temperature. The growth using the former method results in a two-domain epitaxial graphene overlayer. However, introducing the ethylene before heating the substrate resulted in considerable rotational disorder within the graphene film. This has been attributed to the deposition of carbon atoms on the surface at temperatures too low for the carbon to crystallize into graphene. This research was supported by the NSF (DMR-1006411).
NASA Astrophysics Data System (ADS)
Sivanathan, P. C.; Shuhaimi, Ahmad; Hamza, Hebal; Kowsz, Stacy J.; Abdul Khudus, Muhammad I. M.; Li, Hongjian; Allif, Kamarul
2018-07-01
The InGaN/GaN multi-quantum wells, growth on bulk GaN substrate were studied for blue light emission. Growth temperature plays a key role determining the peak wavelength of a quantum well. The study was carried out by growing quantum wells, MQWs on the whole sapphire at 716 °C and observed peak wavelength at 463 nm. While the bulk GaN substrate with sapphire corral grown at 703 °C and observed a blueshift at 433 nm peak wavelength. These results contradict that of typical observation of wavelength emission inversely proportional to the growth temperature. On the other hand, the growth of GaN-sapphire and GaN-silicon at similar conditions emits 435 nm and 450 nm respectively. The heat interaction of bulk GaN substrates surrounded by the sapphire corral exhibits different growth conditions in multi-quantum wells when compared to that of a whole sapphire substrate (absence of bulk GaN). The predicated surface temperature of bulk GaN substrate is 10 °C-15 °C of more than the corral sapphire. This observation may link to the difference in the thermal distribution of the growth surface corresponding to the different thermal conductivity ratio. The photoluminescence and computational techniques were used to understand in-depth of the heat interaction.
Growth of Graphene by Catalytic Dissociation of Ethylene on CuNi(111)
NASA Astrophysics Data System (ADS)
Ventrice, Carl A., Jr.; Tyagi, Parul; Golden, Max; Mowll, Tyler
2015-03-01
The growth of graphene by the catalytic decomposition of ethylene on a 90:10 CuNi(111) substrate was performed. The growths were done in a UHV system by either heating the substrate to the growth temperature followed by introducing the ethylene precursor or by introducing the ethylene precursor and subsequently heating it to the growth temperature. The growth using the former method results in a two-domain epitaxial graphene overlayer at temperatues as low as 550 °C. However, introducing the ethylene before heating the substrate resulted in considerable rotational disorder within the graphene film. This has been attributed to the formation of a carbide phase below 550 °C. This research was supported by the NSF (DMR-1006411).
NASA Astrophysics Data System (ADS)
Wang, Xu; Zeng, Wei; Hong, Liang; Xu, Wenwen; Yang, Haokai; Wang, Fan; Duan, Huigao; Tang, Ming; Jiang, Hanqing
2018-03-01
Problems related to dendrite growth on lithium-metal anodes such as capacity loss and short circuit present major barriers to next-generation high-energy-density batteries. The development of successful lithium dendrite mitigation strategies is impeded by an incomplete understanding of the Li dendrite growth mechanisms, and in particular, Li-plating-induced internal stress in Li metal and its effect on Li growth morphology are not well addressed. Here, we reveal the enabling role of plating residual stress in dendrite formation through depositing Li on soft substrates and a stress-driven dendrite growth model. We show that dendrite growth is mitigated on such soft substrates through surface-wrinkling-induced stress relaxation in the deposited Li film. We demonstrate that this dendrite mitigation mechanism can be utilized synergistically with other existing approaches in the form of three-dimensional soft scaffolds for Li plating, which achieves higher coulombic efficiency and better capacity retention than that for conventional copper substrates.
Growth and Crystal Orientation of ZnTe on m-Plane Sapphire with Nanofaceted Structure
NASA Astrophysics Data System (ADS)
Nakasu, Taizo; Sun, Wei-Che; Kobayashi, Masakazu; Asahi, Toshiaki
2017-04-01
ZnTe thin films on sapphire substrate with nanofaceted structure have been studied. The nanofaceted structure of the m-plane (10-10) sapphire was obtained by heating the substrate at above 1100°C in air, and the r-plane (10-12) and S-plane (1-101) were confirmed. ZnTe layers were prepared on the nanofaceted m-plane sapphire substrates by molecular beam epitaxy (MBE). The effect of the nanofaceted structure on the orientation of the thin films was examined based on x-ray diffraction (XRD) pole figures. Transmission electron microscopy (TEM) was also employed to characterize the interface structures. The ZnTe layer on the nanofaceted m-plane sapphire substrate exhibited (331)-plane orientation, compared with (211)-plane without the nanofaceted structure. After thermal treatment, the m-plane surface vanished and (211) layer could not be formed because of the lack of surface lattice matching. On the other hand, (331)-plane thin film was formed on the nanofaceted m-plane sapphire substrate, since the (111) ZnTe domains were oriented on the S-facet. The orientation of the ZnTe epilayer depended on the atomic ordering on the surface and the influence of the S-plane.
Atomically Defined Templates for Epitaxial Growth of Complex Oxide Thin Films
Dral, A. Petra; Dubbink, David; Nijland, Maarten; ten Elshof, Johan E.; Rijnders, Guus; Koster, Gertjan
2014-01-01
Atomically defined substrate surfaces are prerequisite for the epitaxial growth of complex oxide thin films. In this protocol, two approaches to obtain such surfaces are described. The first approach is the preparation of single terminated perovskite SrTiO3 (001) and DyScO3 (110) substrates. Wet etching was used to selectively remove one of the two possible surface terminations, while an annealing step was used to increase the smoothness of the surface. The resulting single terminated surfaces allow for the heteroepitaxial growth of perovskite oxide thin films with high crystalline quality and well-defined interfaces between substrate and film. In the second approach, seed layers for epitaxial film growth on arbitrary substrates were created by Langmuir-Blodgett (LB) deposition of nanosheets. As model system Ca2Nb3O10- nanosheets were used, prepared by delamination of their layered parent compound HCa2Nb3O10. A key advantage of creating seed layers with nanosheets is that relatively expensive and size-limited single crystalline substrates can be replaced by virtually any substrate material. PMID:25549000
Short- and long-term effects of LRRK2 on axon and dendrite growth.
Sepulveda, Bryan; Mesias, Roxana; Li, Xianting; Yue, Zhenyu; Benson, Deanna L
2013-01-01
Mutations in leucine-rich repeat kinase 2 (LRRK2) underlie an autosomal-dominant form of Parkinson's disease (PD) that is clinically indistinguishable from idiopathic PD. The function of LRRK2 is not well understood, but it has become widely accepted that LRRK2 levels or its kinase activity, which is increased by the most commonly observed mutation (G2019S), regulate neurite growth. However, growth has not been measured; it is not known whether mean differences in length correspond to altered rates of growth or retraction, whether axons or dendrites are impacted differentially or whether effects observed are transient or sustained. To address these questions, we compared several developmental milestones in neurons cultured from mice expressing bacterial artificial chromosome transgenes encoding mouse wildtype-LRRK2 or mutant LRRK2-G2019S, Lrrk2 knockout mice and non-transgenic mice. Over the course of three weeks of development on laminin, the data show a sustained, negative effect of LRRK2-G2019S on dendritic growth and arborization, but counter to expectation, dendrites from Lrrk2 knockout mice do not elaborate more rapidly. In contrast, young neurons cultured on a slower growth substrate, poly-L-lysine, show significantly reduced axonal and dendritic motility in Lrrk2 transgenic neurons and significantly increased motility in Lrrk2 knockout neurons with no significant changes in length. Our findings support that LRRK2 can regulate patterns of axonal and dendritic growth, but they also show that effects vary depending on growth substrate and stage of development. Such predictable changes in motility can be exploited in LRRK2 bioassays and guide exploration of LRRK2 function in vivo.
Primary human osteoblasts grow into porous tantalum and maintain an osteoblastic phenotype.
Welldon, Katie J; Atkins, Gerald J; Howie, Donald W; Findlay, David M
2008-03-01
Porous tantalum (Ta) has found application in orthopedics, although the interaction of human osteoblasts (HOB) with this material has not been reported. The aim of this study was to investigate the interaction of primary HOB with porous tantalum, using 5-mm thick discs of porous tantalum. Comparison was made with discs of solid tantalum and tissue culture plastic. Confocal microscopy was used to investigate the attachment and growth of cells on porous Ta, and showed that HOB attached successfully to the metal "trabeculae," underwent extensive cell division, and penetrated into the Ta pores. The maturation of HOB on porous Ta was determined in terms of cell expression of the osteoblast phenotypic markers, STRO-1, and alkaline phosphatase. Despite some donor-dependent variation in STRO-1/AlkPhos expression, growth of cells grown on porous Ta either promoted, or did not impede, the maturation of HOB. In addition, the expression of key osteoblastic genes was investigated after 14 days of culture. The relative levels of mRNA encoding osteocalcin, osteopontin and receptor activator of NFkappaB ligand (RANKL) was not different between porous or solid Ta or plastic, although these genes were expressed differently by cells of different donors. However, bone sialoprotein and type I collagen mRNA species showed a decreased expression on porous Ta compared with expression on plastic. No substrate-dependent differences were seen in the extent of in vitro mineralization by HOB. These results indicate that porous Ta is a good substrate for the attachment, growth, and differentiated function of HOB. (c) 2007 Wiley Periodicals, Inc.
Influence of substrate micropatterning on biofilm growth
NASA Astrophysics Data System (ADS)
Koehler, Stephan; Li, Yiwei; Liu, Bi-Feng Liu; Weitz, David
2015-11-01
We culture triple reporter Bacillus Subtilis biofilm on micropatterned agar substrates. We track the biofilm development in terms of size, thickness, shape, and phenotype expression. For a tiling composed of elevated rectangles, we observe the biofilm develops an oval shape or triangular shape depending on the rectangle's aspect ratio and orientation. The motile cells are primarily located in the valleys between the rectangles and the matrix producing cells are mostly located on the rectangles. Wrinkles form at the edges of the elevated surfaces, and upon merging form channels centered on the elevated surface. After a few days, the spore-forming cells appear at the periphery. Since biofilms in nature grow on irregular surfaces, our work may provide insight into the complex patterns observed.
NASA Astrophysics Data System (ADS)
Kovalchuk, M. V.; Prosekov, P. A.; Marchenkova, M. A.; Blagov, A. E.; D'yakova, Yu. A.; Tereshchenko, E. Yu.; Pisarevskii, Yu. V.; Kondratev, O. A.
2014-09-01
The results of an in situ study of the growth of tetragonal lysozyme crystals by high-resolution X-ray diffractometry are considered. The crystals are grown by the sitting-drop method on crystalline silicon substrates of different types: both on smooth substrates and substrates with artificial surface-relief structures using graphoepitaxy. The crystals are grown in a special hermetically closed crystallization cell, which enables one to obtain images with an optical microscope and perform in situ X-ray diffraction studies in the course of crystal growth. Measurements for lysozyme crystals were carried out in different stages of the crystallization process, including crystal nucleation and growth, developed crystals, the degradation of the crystal structure, and complete destruction.
NASA Astrophysics Data System (ADS)
Vojtkova, L.; Diko, P.; Kovac, J.; Vojtko, M.
2018-06-01
Single grain YBa2Cu3O7‑x (YBCO or Y123) bulk superconductors were produced by an infiltration growth process. The solid phase precursor was prepared by solid state synthesis from Y2O3 + BaCuO2 powders. The influence of the addition of Sm2O3 and YB contamination from the substrate on the microstructure and superconducting properties was analyzed. The dependences of Yb concentration on the distance from the bottom of the samples measured by energy dispersive spectroscopy microanalysis used in conjunction with scanning electron microscopy confirmed the contamination of the samples during the melting stage of the sample preparation. It is shown that the addition of Sm in low concentration and its combination with Yb from the substrate modify the coarsening of the Y211 particles as well as lead to the appearance of a secondary peak effect in the field dependences of the critical current density.
Controlled growth of vertically aligned carbon nanotubes on metal substrates
NASA Astrophysics Data System (ADS)
Gao, Zhaoli
Carbon nanotube (CNT) is a fascinating material with extraordinary electrical thermal and mechanical properties. Growing vertically aligned CNT (VACNT) arrays on metal substrates is an important step in bringing CNT into practical applications such as thermal interface materials (TIMs) and microelectrodes. However, the growth process is challenging due to the difficulties in preventing catalyst diffusion and controlling catalyst dewetting on metal substrates with physical surface heterogeneity. In this work, the catalyst diffusion mechanism and catalyst dewetting theory were studied for the controlled growth of VACNTs on metal substrates. The diffusion time of the catalyst, the diffusion coefficients for the catalyst in the substrate materials and the number density of catalyst nanoparticles after dewetting are identified as the key parameters, based on which three strategies are developed. Firstly, a fast-heating catalyst pretreatment strategy was used, aiming at preserving the amount of catalyst prior to CNT growth by reducing the catalyst diffusion time. The catalyst lifetime is extended from half an hour to one hour on a patterned Al thin film and a VACNT height of 106 mum, about twenty fold of that reported in the literature, was attained. Secondly, a diffusion barrier layer strategy is employed for a reduction of catalyst diffusion into the substrate materials. Enhancement of VACNT growth on Cu substrates was achieved by adopting a conformal Al2O 3 diffusion barrier layer fabricated by a specially designed atomic layer deposition (ALD) system. Lastly, a novel catalyst glancing angle deposition (GLAD) strategy is performed to manipulate the morphology of a relatively thick catalyst on metal substrates with physical surface heterogeneity, aiming to obtain uniform and dense catalyst nanoparticles after dewetting in the pretreatment process for enhanced VACNT growth. We are able to control the VACNT growth conditions on metal substrates in terms of their distribution, heights and alignments. Catalyst loss is controlled by the catalyst diffusion time and catalyst diffusion coefficients. A shorter catalyst diffusion time and smaller diffusion coefficient enhance VACNT growth on metals due to reduced catalyst loss during the pretreatment process. The dewetting behaviors of the thin film catalysts are influenced by the physical surface heterogeneity of the substrates which leads to non-uniform growth of VACNTs. The GLAD process facilitates the deposition of a relatively thick catalyst layer for the creation of dense and uniform catalyst nanoparticles. Applications of VACNT-metal structures in TIMs and microelectrodes are demonstrated. The VACNT-TIMs fabricated on Al alloy substrates have a typical thermal contact resistivity of 17.1 mm2˙K/W and their effective application in high-brightness LED thermal management was demonstrated. Electrochemical characterization was carried out on VACNT microelectrodes for the development of high resolution retinal prostheses and a satisfactory electrochemical property was again demonstrated.
Resource Supply Overrides Temperature as a Controlling Factor of Marine Phytoplankton Growth
Marañón, Emilio; Cermeño, Pedro; Huete-Ortega, María; López-Sandoval, Daffne C.; Mouriño-Carballido, Beatriz; Rodríguez-Ramos, Tamara
2014-01-01
The universal temperature dependence of metabolic rates has been used to predict how ocean biology will respond to ocean warming. Determining the temperature sensitivity of phytoplankton metabolism and growth is of special importance because this group of organisms is responsible for nearly half of global primary production, sustains most marine food webs, and contributes to regulate the exchange of CO2 between the ocean and the atmosphere. Phytoplankton growth rates increase with temperature under optimal growth conditions in the laboratory, but it is unclear whether the same degree of temperature dependence exists in nature, where resources are often limiting. Here we use concurrent measurements of phytoplankton biomass and carbon fixation rates in polar, temperate and tropical regions to determine the role of temperature and resource supply in controlling the large-scale variability of in situ metabolic rates. We identify a biogeographic pattern in phytoplankton metabolic rates, which increase from the oligotrophic subtropical gyres to temperate regions and then coastal waters. Variability in phytoplankton growth is driven by changes in resource supply and appears to be independent of seawater temperature. The lack of temperature sensitivity of realized phytoplankton growth is consistent with the limited applicability of Arrhenius enzymatic kinetics when substrate concentrations are low. Our results suggest that, due to widespread resource limitation in the ocean, the direct effect of sea surface warming upon phytoplankton growth and productivity may be smaller than anticipated. PMID:24921945
Li, Qiang; Zou, Jie; Tan, Hao; Tan, Wei; Peng, Weihong
2018-01-01
Background Ganoderma lucidum, a valuable medicinal fungus, is widely distributed in China. It grows alongside with a complex microbial ecosystem in the substrate. As sequencing technology advances, it is possible to reveal the composition and functions of substrate-associated bacterial communities. Methods We analyzed the bacterial community dynamics in the substrate during the four typical growth stages of G. lucidum using next-generation sequencing. Results The physicochemical properties of the substrate (e.g. acidity, moisture, total nitrogen, total phosphorus and total potassium) changed between different growth stages. A total of 598,771 sequences from 12 samples were obtained and assigned to 22 bacterial phyla. Proteobacteria and Firmicutes were the dominant phyla. Bacterial community composition and diversity significantly differed between the elongation stage and the other three growth stages. LEfSe analysis revealed a large number of bacterial taxa (e.g. Bacteroidetes, Acidobacteria and Nitrospirae) with significantly higher abundance at the elongation stage. Functional pathway prediction uncovered significant abundance changes of a number of bacterial functional pathways between the elongation stage and other growth stages. At the elongation stage, the abundance of the environmental information processing pathway (mainly membrane transport) decreased, whereas that of the metabolism-related pathways increased. Discussion The changes in bacterial community composition, diversity and predicted functions were most likely related to the changes in the moisture and nutrient conditions in the substrate with the growth of G. lucidum, particularly at the elongation stage. Our findings shed light on the G. lucidum-bacteria-substrate relationships, which should facilitate the industrial cultivation of G. lucidum. PMID:29915697
Environmentally-assisted technique for transferring devices onto non-conventional substrates
Lee, Chi-Hwan; Kim, Dong Rip; Zheng, Xiaolin
2016-05-10
A device fabrication method includes: (1) providing a growth substrate including an oxide layer; (2) forming a metal layer over the oxide layer; (3) forming a stack of device layers over the metal layer; (4) performing fluid-assisted interfacial debonding of the metal layer to separate the stack of device layers and the metal layer from the growth substrate; and (5) affixing the stack of device layers to a target substrate.
NASA Astrophysics Data System (ADS)
Kuo, Tien-Chuan
For many applications, such as infrared detector and high speed devices, we need high quality cadmium telluride (CdTe) films. To fabricate CdTe films we are using a home -built Closed Hot Wall Epitaxy system (CHWE). This system consists of two growth chambers, preheat chamber, substrate exchange load lock and ultra-high vacuum system. It can exchange the substrates without disturbing the vacuum environment and prevents the source materials from contamination. Two different substrate materials, Si and InSb, are used in this work. Deposition parameters were varied in order to determine the growth condition for obtaining good quality CdTe films. The characteristics of the films were investigated by Scanning Electron Microscope, X-ray diffractormeter and Auger Electron Spectroscope. The electrical properties of Al/CdTe/InSb MIS diodes are also examined. Experimental results show that the quality of the CdTe films on these two substrates are functions of the source and substrate temperatures. The surface of CdTe films grown on Si substrate are rougher than CdTe films grown on InSb substrate. X -ray patterns show that the crystal orientations of the CdTe films are, (100) and (111), similar to those of the substrates under optimum growth conditions. The CdTe film are stoichiometric based on the results of Auger survey. Electrical measurement also indicates that CdTe films grown on InSb substrates have very high purity and are insulator. The induced stresses due to the differences of lattice constant and thermal expansion coefficient between CdTe films and substrates were observed in CdTe films. The critical thickness of CdTe films on InSb substrates are measured by X-ray diffraction to be 2.63 um.
NASA Technical Reports Server (NTRS)
Xing, G. C.; Bachmann, K. J.; Posthill, J. B.; Timmons, M. L.
1991-01-01
Epitaxial ZnGeP2-Ge films have been grown on (111)GaP substrates using MOCVD. The films grown with dimethylzinc to germane flow rate ratio R greater than 10 show mirror-smooth surface morphology. Films grown with R less than 10 show a high density of twinning, including both double position and growth twins. Compared to films grown on (001) GaP substrates, the layers on (111) GaP generally show a higher density of microstructural defects. TEM electron diffraction patterns show that the films grown on (111) GaP substrates are more disordered than films grown on (001) GaP under comparable conditions. The growth rate on (111) GaP substrates is about 2.5 times slower than that on (001) GaP, and films grown on Si substrates show extensive twinning formation. Both TEM and SEM examinations indicate that smooth epitaxial overgrowth may be easier on (111) Si substrates than on (001) Si.
Increased Alignment in Carbon Nanotube Growth
NASA Technical Reports Server (NTRS)
Delzeit, Lance D. (Inventor)
2007-01-01
Method and system for fabricating an array of two or more carbon nanotube (CNT) structures on a coated substrate surface, the structures having substantially the same orientation with respect to a substrate surface. A single electrode, having an associated voltage source with a selected voltage, is connected to a substrate surface after the substrate is coated and before growth of the CNT structures, for a selected voltage application time interval. The CNT structures are then grown on a coated substrate surface with the desired orientation. Optionally, the electrode can be disconnected before the CNT structures are grown.
NASA Astrophysics Data System (ADS)
Nordmark, H.; Nagayoshi, H.; Matsumoto, N.; Nishimura, S.; Terashima, K.; Marioara, C. D.; Walmsley, J. C.; Holmestad, R.; Ulyashin, A.
2009-02-01
Scanning and transmission electron microscopies have been used to study silicon substrate texturing and whisker growth on Si substrates using pure hydrogen source gas in a tungsten hot filament reactor. Substrate texturing, in the nanometer to micrometer range of mono- and as-cut multicrystalline silicon, was observed after deposition of WSi2 particles that acted as a mask for subsequent hydrogen radical etching. Simultaneous Si whisker growth was observed for long residence time of the source gas and low H2 flow rate with high pressure. The whiskers formed via vapor-solid-solid growth, in which the deposited WSi2 particles acted as catalysts for a subsequent metal-induced layer exchange process well below the eutectic temperature. In this process, SiHx species, formed by substrate etching by the H radicals, diffuse through the metal particles. This leads to growth of crystalline Si whiskers via metal-induced solid-phase crystallization. Transmission electron microscopy, electron diffraction, and x-ray energy dispersive spectroscopy were used to study the WSi2 particles and the structure of the Si substrates in detail. It has been established that the whiskers are partly crystalline and partly amorphous, consisting of pure Si with WSi2 particles on their tips as well as sometimes being incorporated into their structure.
Materials Study of NbN and Ta x N Thin Films for SNS Josephson Junctions
Missert, Nancy; Brunke, Lyle; Henry, Michael D.; ...
2017-02-15
We investigated properties of NbN and Ta xN thin films grown at ambient temperatures on SiO 2/Si substrates by reactive-pulsed laser deposition and reactive magnetron sputtering (MS) as a function of N 2 gas flow. Both techniques produced films with smooth surfaces, where the surface roughness did not depend on the N 2 gas flow during growth. High crystalline quality, (111) oriented NbN films with T c up to 11 K were produced by both techniques for N contents near 50%. The low temperature transport properties of the Ta xN films depended upon both the N 2 partial pressure usedmore » during growth and the film thickness. Furthermore, the root mean square surface roughness of Ta xN films grown by MS increased as the film thickness decreased down to 10 nm.« less
NASA Astrophysics Data System (ADS)
Choi, Seon Bin; Song, Man Suk; Kim, Yong
2018-04-01
The growth of CdTe nanowires, catalyzed by Sn, was achieved on fluorine-doped tin oxide glass by physical vapor transport. CdTe nanowires grew along the 〈0001〉 direction, with a very rare and phase-pure wurtzite structure, at 290 °C. CdTe nanowires grew under Te-limited conditions by forming SnTe nanostructures in the catalysts and the wurtzite structure was energetically favored. By polarization-dependent and power-dependent micro-photoluminescence measurements of individual nanowires, heavy and light hole-related transitions could be differentiated, and the fundamental bandgap of wurtzite CdTe at room temperature was determined to be 1.562 eV, which was 52 meV higher than that of zinc-blende CdTe. From the analysis of doublet photoluminescence spectra, the valence band splitting energy between heavy hole and light hole bands was estimated to be 43 meV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonov, A. V.; Drozdov, M. N.; Novikov, A. V., E-mail: anov@ipmras.ru
2015-11-15
The segregation of Sb in Ge epitaxial layers grown by the method of molecular beam epitaxy on Ge (001) substrates is investigated. For a growth temperature range of 180–325°C, the temperature dependence is determined for the segregation ratio of Sb in Ge, which shows a sharp increase (by more than three orders of magnitude) with increasing temperature. The strong dependence of the segregation properties of Sb on the growth temperature makes it possible to adapt a method based on the controlled use of segregation developed previously for the doping of Si structures for the selective doping of Ge structures withmore » a donor impurity. Using this method selectively doped Ge:Sb structures, in which the bulk impurity concentration varies by an order of magnitude at distances of 3–5 nm, are obtained.« less
Island growth as a growth mode in atomic layer deposition: A phenomenological model
NASA Astrophysics Data System (ADS)
Puurunen, Riikka L.; Vandervorst, Wilfried
2004-12-01
Atomic layer deposition (ALD) has recently gained world-wide attention because of its suitability for the fabrication of conformal material layers with thickness in the nanometer range. Although the principles of ALD were realized about 40 years ago, the description of many physicochemical processes that occur during ALD growth is still under development. A constant amount of material deposited in an ALD reaction cycle, that is, growth-per-cycle (GPC), has been a paradigm in ALD through decades. The GPC may vary, however, especially in the beginning of the ALD growth. In this work, a division of ALD processes to four classes is proposed, on the basis of how the GPC varies with the number of ALD reaction cycles: linear growth, substrate-enhanced growth, and substrate-inhibited growth of type 1 and type 2. Island growth is identified as a likely origin for type 2 substrate-inhibited growth, where the GPC increases and goes through a maximum before it settles to a constant value characteristic of a steady growth. A simple phenomenological model is developed to describe island growth in ALD. The model assumes that the substrate is unreactive with the ALD reactants, except for reactive defects. ALD growth is assumed to proceed symmetrically from the defects, resulting islands of a conical shape. Random deposition is the growth mode on the islands. The model allows the simulation of GPC curves, surface fraction curves, and surface roughness, with physically significant parameters. When the model is applied to the zirconium tetrachloride/water and the trimethylaluminum/water ALD processes on hydrogen-terminated silicon, the calculated GPC curves and surface fractions agree with the experiments. The island growth model can be used to assess the occurrence of island growth, the size of islands formed, and point of formation of a continuous ALD-grown film. The benefits and limitations of the model and the general characteristics of type 2 substrate-inhibited ALD are discussed.
Tea waste: an effective and economic substrate for oyster mushroom cultivation.
Yang, Doudou; Liang, Jin; Wang, Yunsheng; Sun, Feng; Tao, Hong; Xu, Qiang; Zhang, Liang; Zhang, Zhengzhu; Ho, Chi-Tang; Wan, Xiaochun
2016-01-30
Tea waste is the residue that remains after tea leaves have been extracted by hot water to obtain water-soluble components. The waste contains a re-usable energy substrate and nutrients which may pollute the environment if they are not dealt with appropriately. Other agricultural wastes have been widely studied as substrates for cultivating mushrooms. In the present study, we cultivated oyster mushroom using tea waste as substrate. To study the feasibility of re-using it, tea waste was added to the substrate at different ratios in different experimental groups. Three mushroom strains (39, 71 and YOU) were compared and evaluated. Mycelia growth rate, yield, biological efficiency and growth duration were measured. Substrates with different tea waste ratios showed different growth and yield performance. The substrate containing 40-60% of tea waste resulted in the highest yield. Tea waste could be used as an effective and economic substrate for oyster mushroom cultivation. This study also provided a useful way of dealing with massive amounts of tea waste. © 2015 Society of Chemical Industry.
Yang, Wenjie; Guo, Fengling; Wan, Zhengjie
2013-10-01
Oyster mushroom (Pleurotus ostreatus) was cultivated on rice straw basal substrate, wheat straw basal substrate, cotton seed hull basal substrate, and wheat straw or rice straw supplemented with different proportions (15%, 30%, and 45% in rice straw substrate, 20%, 30%, and 40% in wheat straw substrate) of cotton seed hull to find a cost effective substrate. The effect of autoclaved sterilized and non-sterilized substrate on growth and yield of oyster mushroom was also examined. Results indicated that for both sterilized substrate and non-sterilized substrate, oyster mushroom on rice straw and wheat basal substrate have faster mycelial growth rate, comparatively poor surface mycelial density, shorter total colonization period and days from bag opening to primordia formation, lower yield and biological efficiency, lower mushroom weight, longer stipe length and smaller cap diameter than that on cotton seed hull basal substrate. The addition of cotton seed hull to rice straw and wheat straw substrate slowed spawn running, primordial development and fruit body formation. However, increasing the amount of cotton seed hull can increase the uniformity and white of mycelium, yield and biological efficiency, and increase mushroom weight, enlarge cap diameter and shorten stipe length. Compared to the sterilized substrate, the non-sterilized substrate had comparatively higher mycelial growth rate, shorter total colonization period and days from bag opening to primordia formation. However, the non-sterilized substrate did not gave significantly higher mushroom yield and biological efficiency than the sterilized substrate, but some undesirable characteristics, i.e. smaller mushroom cap diameter and relatively long stipe length.
Diameter Tuning of β-Ga2O3 Nanowires Using Chemical Vapor Deposition Technique.
Kumar, Mukesh; Kumar, Vikram; Singh, R
2017-12-01
Diameter tuning of [Formula: see text]-Ga 2 O 3 nanowires using chemical vapor deposition technique have been investigated under various experimental conditions. Diameter of root grown [Formula: see text]-Ga 2 O 3 nanowires having monoclinic crystal structure is tuned by varying separation distance between metal source and substrate. Effect of gas flow rate and mixer ratio on the morphology and diameter of nanowires has been studied. Nanowire diameter depends on growth temperature, and it is independent of catalyst nanoparticle size at higher growth temperature (850-900 °C) as compared to lower growth temperature (800 °C). These nanowires show changes in structural strain value with change in diameter. Band-gap of nanowires increases with decrease in the diameter.
Shepherd, M G; Sullivan, P A
1976-04-01
The growth characteristics of Candida albicans CM145,348 have been examined under aerobic conditions in continuous culture. At different steady states the environment was controlled with respect to the concentrations of dissolved oxygen, carbon and nitrogen, the pH, and the temperature. Dry matter, substrate concentration, yield, specific oxygen uptake, specific carbon dioxide release and respiration quotient were examined as a function of the dilution rate. The morphology depended on the carbon source. Maltose produced a mycelial morphology, whereas with lactate a yeast culture was obtained. With fructose or glucose as a carbon source a mixed morphology of yeast, pseudo-mycelial and mycelial forms was produced. A larger number of different growth conditions were examined in batch culture but a mixed morphology was always obtained.
Self-Limited Growth in Pentacene Thin Films
2017-01-01
Pentacene is one of the most studied organic semiconducting materials. While many aspects of the film formation have already been identified in very thin films, this study provides new insight into the transition from the metastable thin-film phase to bulk phase polymorphs. This study focuses on the growth behavior of pentacene within thin films as a function of film thickness ranging from 20 to 300 nm. By employing various X-ray diffraction methods, combined with supporting atomic force microscopy investigations, one crystalline orientation for the thin-film phase is observed, while three differently tilted bulk phase orientations are found. First, bulk phase crystallites grow with their 00L planes parallel to the substrate surface; second, however, crystallites tilted by 0.75° with respect to the substrate are found, which clearly dominate the former in ratio; third, a different bulk phase polymorph with crystallites tilted by 21° is found. The transition from the thin-film phase to the bulk phase is rationalized by the nucleation of the latter at crystal facets of the thin-film-phase crystallites. This leads to a self-limiting growth of the thin-film phase and explains the thickness-dependent phase behavior observed in pentacene thin films, showing that a large amount of material is present in the bulk phase much earlier during the film growth than previously thought. PMID:28287698
Self-Limited Growth in Pentacene Thin Films.
Pachmajer, Stefan; Jones, Andrew O F; Truger, Magdalena; Röthel, Christian; Salzmann, Ingo; Werzer, Oliver; Resel, Roland
2017-04-05
Pentacene is one of the most studied organic semiconducting materials. While many aspects of the film formation have already been identified in very thin films, this study provides new insight into the transition from the metastable thin-film phase to bulk phase polymorphs. This study focuses on the growth behavior of pentacene within thin films as a function of film thickness ranging from 20 to 300 nm. By employing various X-ray diffraction methods, combined with supporting atomic force microscopy investigations, one crystalline orientation for the thin-film phase is observed, while three differently tilted bulk phase orientations are found. First, bulk phase crystallites grow with their 00L planes parallel to the substrate surface; second, however, crystallites tilted by 0.75° with respect to the substrate are found, which clearly dominate the former in ratio; third, a different bulk phase polymorph with crystallites tilted by 21° is found. The transition from the thin-film phase to the bulk phase is rationalized by the nucleation of the latter at crystal facets of the thin-film-phase crystallites. This leads to a self-limiting growth of the thin-film phase and explains the thickness-dependent phase behavior observed in pentacene thin films, showing that a large amount of material is present in the bulk phase much earlier during the film growth than previously thought.
Rios-Iribe, Erika Y; Hernández-Calderón, Oscar M; Reyes-Moreno, C; Contreras-Andrade, I; Flores-Cotera, Luis B; Escamilla-Silva, Eleazar M
2013-01-01
A nonstructured model was used to study the dynamics of gibberellic acid production in a stirred tank bioreactor. Experimental data were obtained from submerged batch cultures of Gibberella fujikuroi (CDBB H-984) grown in varying ratios of glucose-corn oil as the carbon source. The nitrogen depletion effect was included in mathematical model by considering the specific kinetic constants as a linear function of the normalized nitrogen consumption rate. The kinetics of biomass growth and consumption of phosphate and nitrogen were based on the logistic model. The traditional first-order kinetic model was used to describe the specific consumption of glucose and corn oil. The nitrogen effect was solely included in the phosphate and corn oil consumption and biomass growth. The model fit was satisfactory, revealing the dependence of the kinetics with respect to the nitrogen assimilation rate. Through simulations, it was possible to make diagrams of specific growth rate and specific rate of substrate consumptions, which was a powerful tool for understanding the metabolic interactions that occurred during the various stages of fermentation process. This kinetic analysis provided the proposal of a possible mechanism of regulation on growth, substrate consumptions, and production of gibberellic acid (GA3 ) in G. fujikuroi. © 2013 American Institute of Chemical Engineers.
In situ electric properties of Ag films deposited on rough substrates
NASA Astrophysics Data System (ADS)
Zhou, Hong; Yu, Sen-Jiang; Zhang, Yong-Ju; Chen, Miao-Gen; Jiao, Zhi-Wei; Si, Ping-Zhan
2013-01-01
Silver (Ag) films have been deposited on rough substrates (including frosted glass and silicone grease), and for comparison on flat glass, by DC-magnetron sputtering, and their sheet resistances measured in situ during deposition. It is found that the growth of Ag films proceeds through three distinct stages: discontinuous, semi-continuous, and continuous regimes. The sheet resistance on rough substrates jumps in the vicinity of the percolation threshold, whereas the resistance on flat substrates decreases monotonically during deposition. The abnormal in situ electric properties on rough substrates are well explained based on the differences of the growth mechanism and microstructure of Ag films on different substrates.
Bettenbrock, Katja; Siebers, Ulrike; Ehrenreich, Petra; Alpert, Carl-Alfred
1999-01-01
Galactose metabolism in Lactobacillus casei 64H was analyzed by genetic and biochemical methods. Mutants with defects in ptsH, galK, or the tagatose 6-phosphate pathway were isolated either by positive selection using 2-deoxyglucose or 2-deoxygalactose or by an enrichment procedure with streptozotocin. ptsH mutations abolish growth on lactose, cellobiose, N-acetylglucosamine, mannose, fructose, mannitol, glucitol, and ribitol, while growth on galactose continues at a reduced rate. Growth on galactose is also reduced, but not abolished, in galK mutants. A mutation in galK in combination with a mutation in the tagatose 6-phosphate pathway results in sensitivity to galactose and lactose, while a galK mutation in combination with a mutation in ptsH completely abolishes galactose metabolism. Transport assays, in vitro phosphorylation assays, and thin-layer chromatography of intermediates of galactose metabolism also indicate the functioning of a permease/Leloir pathway and a phosphoenolpyruvate-dependent phosphotransferase system (PTS)/tagatose 6-phosphate pathway. The galactose-PTS is induced by growth on either galactose or lactose, but the induction kinetics for the two substrates are different. PMID:9864334
Environmentally-assisted technique for transferring devices onto non-conventional substrates
Lee, Chi-Hwan; Kim, Dong Rip; Zheng, Xiaolin
2014-08-26
A device fabrication method includes: (1) providing a growth substrate including a base and an oxide layer disposed over the base; (2) forming a metal layer over the oxide layer; (3) forming a stack of device layers over the metal layer; (4) performing interfacial debonding of the metal layer to separate the stack of device layers and the metal layer from the growth substrate; and (5) affixing the stack of device layers to a target substrate.
Growth and stability of Langmuir-Blodgett films on OH-, H-, or Br-terminated Si(001)
NASA Astrophysics Data System (ADS)
Bal, J. K.; Kundu, S.; Hazra, S.
2010-01-01
Growth of Langmuir-Blodgett (LB) films of nickel arachidate (NiA) on differently terminated (OH-, H-, or Br-terminated) Si(001) substrates and their structural evolution with time have been investigated by x-ray reflectivity technique and complemented by atomic force microscopy. Stable and strongly attached asymmetric monolayer (AML) of NiA is found to grow on freshly prepared oxide-covered Si substrate while unstable and weakly attached symmetric monolayer (SML) of NiA grows on H-terminated Si substrate, corresponding to stable hydrophilic and unstable hydrophobic natures of the substrates, respectively. The structure of LB film on Br-terminated Si substrate, however, shows intermediate behavior, namely, both AML and SML are present on the substrate, indicative of coexisting (hydrophilic and hydrophobic) nature of this terminated surface. Such coexisting nature of the substrate shows unusual growth behavior of LB films: (i) hydrophilic and hydrophobic attachments of NiA molecules in single up stroke of deposition and (ii) growth of few ring-shaped large-heights islands in subsequent deposition. These probably occur due to the presence of substrate-induced perturbation in the Langmuir monolayer and release of initially accumulated strain in the film structures near hydrophilic/hydrophobic interface, respectively, and provide the possibility to grow desired structures (AML or SML) of LB films by passivation-selective surface engineering.
Epitaxial growth and chemical vapor transport of ZnTe by closed-tube method
NASA Astrophysics Data System (ADS)
Ogawa, H.; Nishio, M.; Arizumi, T.
1981-04-01
The epitaxial growth of ZnTe in a ZnTe- I2 system by a closed tube method is investigated by varying the charged iodine concentration ( MI2) or the temperature difference ( ΔT) between the high and low temperature zones. The transport rate is a function of MI2 and ΔT and has a minimum value increasing monotonically at higher and lower iodine concentration, and it increases with increasing ΔT. This experimental result can be explained well by thermodynamical calculations. The growth rate of ZnTe has the same tendency as the transport rate. The surface morphology of epitaxial layer on (110)ZnTe is not sinificantly affected by MI2 but becomes smoother with increasing temperature. The surface morphology and the growth rate of ZnTe layers also depend upon the orientation of substrate. The epitaxial layer can be obtained at temperature as low as 623°C.
Nucleation and Early Stages of Layer-by-Layer Growth of Metal Organic Frameworks on Surfaces
2015-01-01
High resolution atomic force microscopy (AFM) is used to resolve the evolution of crystallites of a metal organic framework (HKUST-1) grown on Au(111) using a liquid-phase layer-by-layer methodology. The nucleation and faceting of individual crystallites is followed by repeatedly imaging the same submicron region after each cycle of growth and we find that the growing surface is terminated by {111} facets leading to the formation of pyramidal nanostructures for [100] oriented crystallites, and triangular [111] islands with typical lateral dimensions of tens of nanometres. AFM images reveal that crystallites can grow by 5–10 layers in each cycle. The growth rate depends on crystallographic orientation and the morphology of the gold substrate, and we demonstrate that under these conditions the growth is nanocrystalline with a morphology determined by the minimum energy surface. PMID:26709359
High nitrogen pressure solution growth of GaN
NASA Astrophysics Data System (ADS)
Bockowski, Michal
2014-10-01
Results of GaN growth from gallium solution under high nitrogen pressure are presented. Basic of the high nitrogen pressure solution (HNPS) growth method is described. A new approach of seeded growth, multi-feed seed (MFS) configuration, is demonstrated. The use of two kinds of seeds: free-standing hydride vapor phase epitaxy GaN (HVPE-GaN) obtained from metal organic chemical vapor deposition (MOCVD)-GaN/sapphire templates and free-standing HVPE-GaN obtained from the ammonothermally grown GaN crystals, is shown. Depending on the seeds’ structural quality, the differences in the structural properties of pressure grown material are demonstrated and analyzed. The role and influence of impurities, like oxygen and magnesium, on GaN crystals grown from gallium solution in the MFS configuration is presented. The properties of differently doped GaN crystals are discussed. An application of the pressure grown GaN crystals as substrates for electronic and optoelectronic devices is reported.
NASA Astrophysics Data System (ADS)
Mizutani, Mitsuhiro; Teramae, Fumiharu; Takeuchi, Kazutaka; Murase, Tatsunori; Naritsuka, Shigeya; Maruyama, Takahiro
2006-04-01
A vertical-cavity surface-emitting laser (VCSEL) was fabricated using a in situ reflectance monitor by molecular beam epitaxy (MBE). Both the center wavelength of the stop band of the distributed Bragg reflector (DBR) and the resonant wavelength of the optical cavity were successfully controlled using the monitor. However, these wavelengths shifted with decreasing substrate temperature after the growth, which could be reasonably explained by the temperature dependence of refractive index. Therefore, it is necessary to set a target wavelength at a growth temperature, considering the change. The desirable laser performance of the VCSEL fabricated from the wafer indicates marked increases in the controllability and reproducibility of growth with the aid of the in situ reflectance monitor. Since it can directly measure the optical properties of the grown layers, the reflectance monitor greatly helps in the fabrication of a structure with the designed optical performance.
MOMBE selective infill growth of InP:Si and InGaAs:Si and large area MOMBE regrowth
NASA Astrophysics Data System (ADS)
Schelhase, S.; Böttcher, J.; Gibis, R.; Künzel, H.; Paraskevopoulos, A.
1996-07-01
MOMBE selective infill growth (SIG) of silicon-doped InP and InGaAs was investigated by variation of the principal growth parameters, i.e. temperature, {V}/{III}- ratio and rate. Excellent surface morphology in conjunction with perfect selectivity and defect-free vertical interfaces between the grown layer and the etched substrate sidewall was achieved by an appropriate optimization of the selective growth conditions for InP as well as, for the first time, InGaAs. In the case of SIG of InP, smooth growth boundaries were obtained in the [01¯1] direction, whereas in the [01¯1¯] direction minor growth perturbations occur, which are related to a strong orientation dependent diffusion behavior of the growth species on the growth front. In the case of SIG of InGaAs, slight perturbations accompanied by facet formation at the edges of the selectively grown windows were observed. In the perspective of device application, homogeneous large area MOMBE InGaAs regrowth of the embedded structures was successfully achieved.
Kayombo, S; Mbwette, T S A; Katima, J H Y; Jorgensen, S E
2003-07-01
This paper presents the effect of substrate concentration on the growth of a mixed culture of algae and heterotrophic bacteria in secondary facultative ponds (SFPs) utilizing settled domestic sewage as a sole source of organic carbon. The growth of the mixed culture was studied at the concentrations ranging between 200 and 800 mg COD/l in a series of batch chemostat reactors. From the laboratory data, the specific growth rate (micro) was determined using the modified Gompertz model. The maximum specific growth rate ( micro(max)) and half saturation coefficients (K(s)) were calculated using the Monod kinetic equation. The maximum observed growth rate ( micro(max)) for heterotrophic bacteria was 3.8 day(-1) with K(s) of 200 mg COD/l. The micro(max) for algal biomass based on suspended volatile solids was 2.7 day(-1) with K(s) of 110 mg COD/l. The micro(max) of algae based on the chlorophyll-a was 3.5 day(-1) at K(s) of 50mg COD/l. The observed specific substrate removal by heterotrophic bacteria varied between the concentrations of substrate used and the average value was 0.82 (mg COD/mg biomass). The specific substrate utilization rate in the bioreactors was direct proportional to the specific growth rate. Hence, the determined Monod kinetic parameters are useful for the definition of the operation of SFPs.
Mathematical model of organic substrate degradation in solid waste windrow composting.
Seng, Bunrith; Kristanti, Risky Ayu; Hadibarata, Tony; Hirayama, Kimiaki; Katayama-Hirayama, Keiko; Kaneko, Hidehiro
2016-01-01
Organic solid waste composting is a complex process that involves many coupled physical, chemical and biological mechanisms. To understand this complexity and to ease in planning, design and management of the composting plant, mathematical model for simulation is usually applied. The aim of this paper is to develop a mathematical model of organic substrate degradation and its performance evaluation in solid waste windrow composting system. The present model is a biomass-dependent model, considering biological growth processes under the limitation of moisture, oxygen and substrate contents, and temperature. The main output of this model is substrate content which was divided into two categories: slowly and rapidly degradable substrates. To validate the model, it was applied to a laboratory scale windrow composting of a mixture of wood chips and dog food. The wastes were filled into a cylindrical reactor of 6 cm diameter and 1 m height. The simulation program was run for 3 weeks with 1 s stepwise. The simulated results were in reasonably good agreement with the experimental results. The MC and temperature of model simulation were found to be matched with those of experiment, but limited for rapidly degradable substrates. Under anaerobic zone, the degradation of rapidly degradable substrate needs to be incorporated into the model to achieve full simulation of a long period static pile composting. This model is a useful tool to estimate the changes of substrate content during composting period, and acts as a basic model for further development of a sophisticated model.
Baeumer, Christoph; Xu, Chencheng; Gunkel, Felix; Raab, Nicolas; Heinen, Ronja Anika; Koehl, Annemarie; Dittmann, Regina
2015-01-01
Emerging electrical and magnetic properties of oxide interfaces are often dominated by the termination and stoichiometry of substrates and thin films, which depend critically on the growth conditions. Currently, these quantities have to be measured separately with different sophisticated techniques. This report will demonstrate that the analysis of angle dependent X-ray photoelectron intensity ratios provides a unique tool to determine both termination and stoichiometry simultaneously in a straightforward experiment. Fitting the experimental angle dependence with a simple analytical model directly yields both values. The model is calibrated through the determination of the termination of SrTiO3 single crystals after systematic pulsed laser deposition of sub-monolayer thin films of SrO. We then use the model to demonstrate that during homoepitaxial SrTiO3 growth, excess Sr cations are consumed in a self-organized surface termination conversion before cation defects are incorporated into the film. We show that this termination conversion results in insulating properties of interfaces between polar perovskites and SrTiO3 thin films. These insights about oxide thin film growth can be utilized for interface engineering of oxide heterostructures. In particular, they suggest a recipe for obtaining two-dimensional electron gases at thin film interfaces: SrTiO3 should be deposited slightly Ti-rich to conserve the TiO2-termination. PMID:26189436
Effect of Substrate Composition on Whisker Growth in Sn Coatings
NASA Astrophysics Data System (ADS)
Jagtap, Piyush; Ramesh Narayan, P.; Kumar, Praveen
2018-07-01
Whisker growth was studied in Sn coatings deposited on three different substrates, namely pure Cu, brass (Cu-35 wt.% Zn) and pure Ni. Additionally, the effect of a Ni under-layer (electro- or sputter-deposited and placed between the Sn coating and the substrate) on whisker growth was also studied. It was observed that the substrate composition and placement of under-layers significantly affected the whisker growth in Sn coating by altering the growth rate and the morphology of the interfacial intermetallic compounds (IMC). Whisker propensity was the highest when Sn coatings were deposited directly on the brass substrate, while it was completely inhibited for at least a year when the coatings were deposited on either pure Ni or brass with a Ni under-layer. Bulk and surface stress measurements revealed that the surface of the Sn coatings on Ni, irrespective of whether it was in bulk or under-layer form, remained more compressive as compared to the bulk, throughout the observation period. Therefore, a negative out-of-plane stress gradient, which is crucial for whisker growth, could never be established in these samples. Interestingly, a phenomenon of through-thickness columnar voiding (reverse of whiskering) was observed in the Sn coatings deposited on Ni. The origin of this phenomenon is discussed.
Polarity Control of Heteroepitaxial GaN Nanowires on Diamond.
Hetzl, Martin; Kraut, Max; Hoffmann, Theresa; Stutzmann, Martin
2017-06-14
Group III-nitride materials such as GaN nanowires are characterized by a spontaneous polarization within the crystal. The sign of the resulting sheet charge at the top and bottom facet of a GaN nanowire is determined by the orientation of the wurtzite bilayer of the different atomic species, called N and Ga polarity. We investigate the polarity distribution of heteroepitaxial GaN nanowires on different substrates and demonstrate polarity control of GaN nanowires on diamond. Kelvin Probe Force Microscopy is used to determine the polarity of individual selective area-grown and self-assembled nanowires over a large scale. At standard growth conditions, mixed polarity occurs for selective GaN nanowires on various substrates, namely on silicon, on sapphire and on diamond. To obtain control over the growth orientation on diamond, the substrate surface is modified by nitrogen and oxygen plasma exposure prior to growth, and the growth parameters are adjusted simultaneously. We find that the surface chemistry and the substrate temperature are the decisive factors for obtaining control of up to 93% for both polarity types, whereas the growth mode, namely selective area or self-assembled growth, does not influence the polarity distribution significantly. The experimental results are discussed by a model based on the interfacial bonds between the GaN nanowires, the termination layer, and the substrate.
Effect of Substrate Composition on Whisker Growth in Sn Coatings
NASA Astrophysics Data System (ADS)
Jagtap, Piyush; Ramesh Narayan, P.; Kumar, Praveen
2018-04-01
Whisker growth was studied in Sn coatings deposited on three different substrates, namely pure Cu, brass (Cu-35 wt.% Zn) and pure Ni. Additionally, the effect of a Ni under-layer (electro- or sputter-deposited and placed between the Sn coating and the substrate) on whisker growth was also studied. It was observed that the substrate composition and placement of under-layers significantly affected the whisker growth in Sn coating by altering the growth rate and the morphology of the interfacial intermetallic compounds (IMC). Whisker propensity was the highest when Sn coatings were deposited directly on the brass substrate, while it was completely inhibited for at least a year when the coatings were deposited on either pure Ni or brass with a Ni under-layer. Bulk and surface stress measurements revealed that the surface of the Sn coatings on Ni, irrespective of whether it was in bulk or under-layer form, remained more compressive as compared to the bulk, throughout the observation period. Therefore, a negative out-of-plane stress gradient, which is crucial for whisker growth, could never be established in these samples. Interestingly, a phenomenon of through-thickness columnar voiding (reverse of whiskering) was observed in the Sn coatings deposited on Ni. The origin of this phenomenon is discussed.
Optical and electro-optic anisotropy of epitaxial PZT thin films
NASA Astrophysics Data System (ADS)
Zhu, Minmin; Du, Zehui; Jing, Lin; Yoong Tok, Alfred Iing; Tong Teo, Edwin Hang
2015-07-01
Strong optical and electro-optic (EO) anisotropy has been investigated in ferroelectric Pb(Zr0.48Ti0.52)O3 thin films epitaxially grown on Nb-SrTiO3 (001), (011), and (111) substrates using magnetron sputtering. The refractive index, electro-optic, and ferroelectric properties of the samples demonstrate the significant dependence on the growth orientation. The linear electro-optic coefficients of the (001), (011), and (111)-oriented PZT thin films were 270.8, 198.8, and 125.7 pm/V, respectively. Such remarkable anisotropic EO behaviors have been explained according to the structure correlation between the orientation dependent distribution, spontaneous polarization, epitaxial strain, and domain pattern.
Control of magnetization reversal in oriented strontium ferrite thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Debangsu, E-mail: debangsu@physics.iisc.ernet.in; Anil Kumar, P. S.
2014-02-21
Oriented Strontium Ferrite films with the c axis orientation were deposited with varying oxygen partial pressure on Al{sub 2}O{sub 3}(0001) substrate using Pulsed Laser Deposition technique. The angle dependent magnetic hysteresis, remanent coercivity, and temperature dependent coercivity had been employed to understand the magnetization reversal of these films. It was found that the Strontium Ferrite thin film grown at lower (higher) oxygen partial pressure shows Stoner-Wohlfarth type (Kondorsky like) reversal. The relative importance of pinning and nucleation processes during magnetization reversal is used to explain the type of the magnetization reversal with different oxygen partial pressure during growth.
Structural phase transitions in SrTiO 3 nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Han; Liu, Sizhan; Scofield, Megan E.
2017-07-31
Pressure dependent structural measurements on monodispersed nanoscale SrTiO3 samples with average diameters of 10 to ~80 nm were conducted to enhance the understanding of the structural phase diagram of nanoscale SrTiO3. A robust pressure independent polar structure was found in the 10 nm sample for pressures up to 13 GPa, while a size dependent cubic to tetragonal transition occurs (at P = Pc) for larger particle sizes. The results suggest that the growth of ~10 nm STO particles on substrates with significant lattice mismatch may maintain a polar state for a large range of strain values, possibly enabling device use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Cassandra E.; Beri, Nina R.; Gardner, Jeffrey G.
Physiological studies of recalcitrant polysaccharide degradation are challenging for several reasons, one of which is the difficulty in obtaining a reproducibly accurate real-time measurement of bacterial growth using insoluble substrates. Current methods suffer from several problems including (i) high background noise due to the insoluble material interspersed with cells, (ii) high consumable and reagent cost and (iii) significant time delay between sampling and data acquisition. A customizable substrate and cell separation device would provide an option to study bacterial growth using optical density measurements. To test this hypothesis we used 3-D printing to create biomass containment devices that allow interactionmore » between insoluble substrates and microbial cells but do not interfere with spectrophotometer measurements. Evaluation of materials available for 3-D printing indicated that UV-cured acrylic plastic was the best material, being superior to nylon or stainless steel when examined for heat tolerance, reactivity, and ability to be sterilized. Cost analysis of the 3-D printed devices indicated they are a competitive way to quantitate bacterial growth compared to viable cell counting or protein measurements, and experimental conditions were scalable over a 100-fold range. The presence of the devices did not alter growth phenotypes when using either soluble substrates or insoluble substrates. Furthermore, we applied biomass containment to characterize growth of Cellvibrio japonicus on authentic lignocellulose (non-pretreated corn stover), and found physiological evidence that xylan is a significant nutritional source despite an abundance of cellulose present.« less
Nelson, Cassandra E.; Beri, Nina R.; Gardner, Jeffrey G.
2016-09-21
Physiological studies of recalcitrant polysaccharide degradation are challenging for several reasons, one of which is the difficulty in obtaining a reproducibly accurate real-time measurement of bacterial growth using insoluble substrates. Current methods suffer from several problems including (i) high background noise due to the insoluble material interspersed with cells, (ii) high consumable and reagent cost and (iii) significant time delay between sampling and data acquisition. A customizable substrate and cell separation device would provide an option to study bacterial growth using optical density measurements. To test this hypothesis we used 3-D printing to create biomass containment devices that allow interactionmore » between insoluble substrates and microbial cells but do not interfere with spectrophotometer measurements. Evaluation of materials available for 3-D printing indicated that UV-cured acrylic plastic was the best material, being superior to nylon or stainless steel when examined for heat tolerance, reactivity, and ability to be sterilized. Cost analysis of the 3-D printed devices indicated they are a competitive way to quantitate bacterial growth compared to viable cell counting or protein measurements, and experimental conditions were scalable over a 100-fold range. The presence of the devices did not alter growth phenotypes when using either soluble substrates or insoluble substrates. Furthermore, we applied biomass containment to characterize growth of Cellvibrio japonicus on authentic lignocellulose (non-pretreated corn stover), and found physiological evidence that xylan is a significant nutritional source despite an abundance of cellulose present.« less
Selheim, F; Fukami, M H; Holmsen, H; Vassbotn, F S
2000-01-01
Human platelets release platelet-derived growth factor (PDGF) from alpha-granules during platelet activation. We have previously shown that platelets have PDGF alpha-receptors, a transmembrane tyrosine kinase that takes part in negative feedback regulation during platelet activation. Here we have described a study of PDGF-induced tyrosine phosphorylation of platelet substrates and phosphoinositide 3-kinase (PI-3K) activity in collagen-stimulated platelets. By immunoblotting with phosphotyrosine antibodies of collagen-activated platelets we found that PDGF increased the phosphorylation of several platelet substrates, e.g. pp140, pp120 and pp85. PDGF inhibited collagen-induced platelet activation in the presence of inhibitors of autocrine stimulation, thus blocking the pure collagen-induced signal transduction. PDGF enhanced the collagen-induced formation of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) as measured by HPLC. Wortmannin and LY294002, two unrelated inhibitors of PI-3K, were used to investigate the role of PI-3K in PDGF-induced platelet signalling. Incubation of platelets with wortmannin and LY294002 blocked the formation of three phosphorylated inositides as well as the inhibitory effect of PDGF on collagen-induced platelet activation. We conclude that the inhibitory effect of PDGF on platelet activation is PI-3K dependent. This is the first demonstration of a negative regulatory function of 3-phosphorylated inositides in platelets. PMID:10947961
Selheim, F; Fukami, M H; Holmsen, H; Vassbotn, F S
2000-09-01
Human platelets release platelet-derived growth factor (PDGF) from alpha-granules during platelet activation. We have previously shown that platelets have PDGF alpha-receptors, a transmembrane tyrosine kinase that takes part in negative feedback regulation during platelet activation. Here we have described a study of PDGF-induced tyrosine phosphorylation of platelet substrates and phosphoinositide 3-kinase (PI-3K) activity in collagen-stimulated platelets. By immunoblotting with phosphotyrosine antibodies of collagen-activated platelets we found that PDGF increased the phosphorylation of several platelet substrates, e.g. pp140, pp120 and pp85. PDGF inhibited collagen-induced platelet activation in the presence of inhibitors of autocrine stimulation, thus blocking the pure collagen-induced signal transduction. PDGF enhanced the collagen-induced formation of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) as measured by HPLC. Wortmannin and LY294002, two unrelated inhibitors of PI-3K, were used to investigate the role of PI-3K in PDGF-induced platelet signalling. Incubation of platelets with wortmannin and LY294002 blocked the formation of three phosphorylated inositides as well as the inhibitory effect of PDGF on collagen-induced platelet activation. We conclude that the inhibitory effect of PDGF on platelet activation is PI-3K dependent. This is the first demonstration of a negative regulatory function of 3-phosphorylated inositides in platelets.
Mountfort, D O; Asher, R A
1983-01-01
Neocallimastix frontalis PN-1 utilized the soluble sugars D-glucose, D-cellobiose, D-fructose, maltose, sucrose, and D-xylose for growth. L-Arabinose, D-galactose, D-mannose, and D-xylitol did not support growth of the fungus. Paired substrate test systems were used to determine whether any two sugars were utilized simultaneously or sequentially. Of the paired monosaccharides tested, glucose was found to be preferentially utilized compared with fructose and xylose. The disaccharides cellobiose and sucrose were preferentially utilized compared with fructose and glucose, respectively, an cellobiose was also the preferred substrate compared with xylose. Xylose was the preferred substrate compared with maltose. In further incubations, the fungus was grown on the substrate utilized last in the two-substrate tests. After moderate growth was attained, the preferred substrate was added to the culture medium. Inhibition of nonpreferred substrate utilization by the addition of the preferred substrate was taken as evidence of catabolite regulation. For the various combinations of substrates tested, fructose and xylose utilization was found to be inhibited in the presence of glucose, indicating that catabolite regulation was involved. No clear-cut inhibition was observed with any of the other substrate combinations tested. The significance of these findings in relation to rumen microbial interactions and competitions is discussed. PMID:6660873
Elisashvili, Vladimir; Kachlishvili, Eva; Penninckx, Michel
2008-11-01
The exploration of seven physiologically different white rot fungi potential to produce cellulase, xylanase, laccase, and manganese peroxidase (MnP) showed that the enzyme yield and their ratio in enzyme preparations significantly depends on the fungus species, lignocellulosic growth substrate, and cultivation method. The fruit residues were appropriate growth substrates for the production of hydrolytic enzymes and laccase. The highest endoglucanase (111 U ml(-1)) and xylanase (135 U ml(-1)) activities were revealed in submerged fermentation (SF) of banana peels by Pycnoporus coccineus. In the same cultivation conditions Cerrena maxima accumulated the highest level of laccase activity (7,620 U l(-1)). The lignified materials (wheat straw and tree leaves) appeared to be appropriate for the MnP secretion by majority basidiomycetes. With few exceptions, SF favored to hydrolases and laccase production by fungi tested whereas SSF was appropriate for the MnP accumulation. Thus, the Coriolopsis polyzona hydrolases activity increased more than threefold, while laccase yield increased 15-fold when tree leaves were undergone to SF instead SSF. The supplementation of nitrogen to the control medium seemed to have a negative effect on all enzyme production in SSF of wheat straw and tree leaves by Pleurotus ostreatus. In SF peptone and ammonium containing salts significantly increased C. polyzona and Trametes versicolor hydrolases and laccase yields. However, in most cases the supplementation of media with additional nitrogen lowered the fungi specific enzyme activities. Especially strong repression of T. versicolor MnP production was revealed.
Time and substrate dependent exudation of carboxylates by Lupinus albus L. and Brassica napus L.
Mimmo, Tanja; Hann, Stephan; Jaitz, Leonhard; Cesco, Stefano; Gessa, Carlo Emanuele; Puschenreiter, Markus
2011-11-01
Root exudates influence significantly physical, chemical and biological characteristics of rhizosphere soil. Their qualitative and quantitative composition is affected by environmental factors such as pH, soil type, oxygen status, light intensity, soil temperature, plant growth, nutrient availability and microorganisms. The aim of the present study was to assess the influence of growth substrate and plant age on the release of carboxylates from Lupinus albus L. and Brassica napus L. Both plant species were studied in continuously percolated microcosms filled with either sand, soil or sand + soil (1:1) mixture. Soil solution was collected every week at 7, 14, 21, 28 and 35 days after planting (DAP). Carboxylate concentrations were determined by reversed-phase liquid chromatography - electrospray ionization - time of flight mass spectrometry (LC-ESI-TOFMS). Oxalate, citrate, succinate, malate and maleate were detected in soil solutions of both plant species. Their concentrations were correlated with the physiological status of the plant and the growth substrate. Oxalate was the predominant carboxylate detected within the soil solution of B. napus plants while oxalate and citrate were the predominant ones found in the soil solutions of L. albus plants. The sampling determination of carboxylates released by plant roots with continuous percolation systems seems to be promising as it is a non-destructive method and allows sampling and determination of soluble low molecular weight organic compounds derived from root exudation as well as the concentration of soluble nutrients, which both might reflect the nutritional status of plants. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Epitaxial growth of silicon for layer transfer
Teplin, Charles; Branz, Howard M
2015-03-24
Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.
Amino acid transport system - A substrate predicts the therapeutic effects of particle radiotherapy
Watanabe, Mariko; Suzuki, Hiroyuki; Furusawa, Yoshiya; Arano, Yasushi
2017-01-01
L-[methyl-11C]Methionine (11C-Met) is useful for estimating the therapeutic efficacy of particle radiotherapy at early stages of the treatment. Given the short half-life of 11C, the development of longer-lived 18F- and 123I-labeled probes that afford diagnostic information similar to 11C-Met, are being sought. Tumor uptake of 11C-Met is involved in many cellular functions such as amino acid transport System-L, protein synthesis, and transmethylation. Among these processes, since the energy-dependent intracellular functions involved with 11C-Met are more reflective of the radiotherapeutic effects, we evaluated the activity of the amino acid transport System-A as an another energy-dependent cellular function in order to estimate radiotherapeutic effects. In this study, using a carbon-ion beam as the radiation source, the activity of System-A was evaluated by a specific System-A substrate, alpha-[1-14C]-methyl-aminoisobutyric acid (14C-MeAIB). Cellular growth and the accumulation of 14C-MeAIB or 14C-Met were evaluated over time in vitro in cultured human salivary gland (HSG) tumor cells (3-Gy) or in vivo in murine xenografts of HSG tumors (6- or 25-Gy) before and after irradiation with the carbon-ion beam. Post 3-Gy irradiation, in vitro accumulation of 14C-Met and 14C-MeAIB decreased over a 5-day period. In xenografts of HSG tumors in mice, tumor re-growth was observed in vivo on day-10 after a 6-Gy irradiation dose, but no re-growth was detected after the 25-Gy irradiation dose. Consistent with the growth results, the in vivo tumor accumulation of 14C-MeAIB did not decrease after the 6-Gy irradiation dose, whereas a significant decrease was observed after the 25-Gy irradiation dose. These results indicate that the activity of energy dependent System-A transporter may reflect the therapeutic efficacy of carbon-ion radiotherapy and suggests that longer half-life radionuclide-labeled probes for System-A may also provide widely available probes to evaluate the effects of particle radiotherapy on tumors at early stage of the treatment. PMID:28245294
GaN growth via HVPE on SiC/Si substrates: growth mechanisms
NASA Astrophysics Data System (ADS)
Sharofidinov, Sh Sh; Redkov, A. V.; Osipov, A. V.; Kukushkin, S. A.
2017-11-01
The article focuses on the study of GaN thin film growth via chloride epitaxy on SiC/Si hybrid substrate. SiC buffer layer was grown by a method of substitution of atoms, which allows one to reduce impact of mechanical stress therein on subsequent growth of III-nitride films. It is shown, that change in GaN growth conditions leads to change in its growth mechanism. Three mechanisms: epitaxial, spiral and stepwise growth are considered and mechanical stresses are estimated via Raman spectroscopy.
Li, Hui; Yang, Duxiao; Ning, Shanglei; Xu, Yinghui; Yang, Fan; Yin, Rusha; Feng, Taihu; Han, Shouqing; Guo, Lu; Zhang, Pengju; Qu, Wenjie; Guo, Renbo; Song, Chen; Xiao, Peng; Zhou, Chengjun; Xu, Zhigang; Sun, Jin-Peng; Yu, Xiao
2018-01-01
The protein tyrosine phosphatase nonreceptor type 12 (PTPN12) is a multifunctional protein and has elicited much research attention because its decreased protein level has been associated with poor prognosis of several types of cancers. Recently, we have solved the crystal structure of the phosphatase domain of PTPN12, which disclosed a specific PTPN12-insert-loop harboring a cyclin-dependent kinase 2 (CDK2) phosphorylation site. However, the functional significance of this phosphorylation is undefined. In the present study, we found that S19 site phosphorylation of PTPN12 by CDK2 discharged its antitumor activity by down-regulation of its inhibitory role in cell migration, but not affecting its other regulatory functions. Phosphorylation of PTPN12 at the S19 site changed its substrate interface, and by doing so, selectively decreased its activity toward the human epidermal growth factor receptor 2 (HER2)- pY 1196 site, but not other HER2 phosphorylation sites or other known PTPN12 substrates. A further in-depth mechanism study revealed that the phosphorylation of PTPN12 by CDK2 impaired recruitment of the serine/threonine-protein kinase 1 (PAK1) to HER2, resulted in the blockade of the HER2-pY 1196 -PAK1-T 423 signaling pathway, thus increased tumor cell motility. Taken together, our results identified a new phosphorylation-based substrate recognition mechanism of PTPN12 by CDK2, which orchestrated signaling crosstalk between the oncogenic CDK2 and HER2 pathways. The newly identified governing mechanism of the substrate selectivity of a particular phosphatase was previously unappreciated and exemplifies how a phospho-network is precisely controlled in different cellular contexts.-Li, H., Yang, D., Ning, S., Xu, Y., Yang, F., Yin, R., Feng, T., Han, S., Guo, L., Zhang, P., Qu, W., Guo, R., Song, C., Xiao, P., Zhou, C., Xu, Z., Sun, J.-P., Yu, X. Switching of the substrate specificity of protein tyrosine phosphatase N12 by cyclin-dependent kinase 2 phosphorylation orchestrating 2 oncogenic pathways. © FASEB.
Sun, Hongyu; Mou, Yongchao; Li, Yi; Li, Xia; Chen, Zi; Duval, Kayla; Huang, Zhu; Dai, Ruiwu; Tang, Lijun; Tian, Fuzhou
2016-01-01
Stem cell-based therapy remains one of the promising approaches for cardiac repair and regeneration. However, its applications are restricted by the limited efficacy of cardiac differentiation. To address this issue, we examined whether carbon nanotubes (CNTs) would provide an instructive extracellular microenvironment to facilitate cardiogenesis in brown adipose-derived stem cells (BASCs) and to elucidate the underlying signaling pathways. In this study, we systematically investigated a series of cellular responses of BASCs due to the incorporation of CNTs into collagen (CNT-Col) substrates that promoted cell adhesion, spreading, and growth. Moreover, we found that CNT-Col substrates remarkably improved the efficiency of BASCs cardiogenesis by using fluorescence staining and quantitative real-time reverse transcription-polymerase chain reaction. Critically, CNTs in the substrates accelerated the maturation of BASCs-derived cardiomyocytes. Furthermore, the underlying mechanism for promotion of BASCs cardiac differentiation by CNTs was determined by immunostaining, quantitative real-time reverse transcription-polymerase chain reaction, and Western blotting assay. It is notable that β1-integrin-dependent TGF-β1 signaling pathway modulates the facilitative effect of CNTs in cardiac differentiation of BASCs. Therefore, it is an efficient approach to regulate cardiac differentiation of BASCs by the incorporation of CNTs into the native matrix. Importantly, our findings can not only facilitate the mechanistic understanding of molecular events initiating cardiac differentiation in stem cells, but also offer a potentially safer source for cardiac regenerative medicine. PMID:27660434
Tolerance of GaAs as an original substrate for HVPE growth of free standing GaN
NASA Astrophysics Data System (ADS)
Suzuki, Mio; Sato, T.; Suemasu, T.; Hasegawa, F.
2004-09-01
In order to investigate possibility of thick GaN growth on a GaAs substrate by halide vapar phase epitaxy (HVPE), GaN was grown on GaAs(111)/Ti wafer with Ti deposited by E-gun. It was found that surface treatment of the GaAs substrate by HF solution deteriorated greatly the tolerence of GaAs and that Ti can protected GaAs from erosion by NH3. By depositing Ti on GaAs(111)A surface, a millor-like GaN layer could be grown at 1000 °C for 1 hour without serious deterioration of the original GaAs substrate. By increasing the growth rate, a thick free standing GaN will be obtained with GaAs as an original substrate in near future.
NASA Technical Reports Server (NTRS)
Gruener, John E.; Ming, Douglas W.
2000-01-01
The National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) is developing a substrate, termed zeoponics, that will slowly release all of the essential nutrients into solution for plant growth experiments in advanced life support system testbeds. This substrate is also potentially useful in the near future on the Space Shuttle and International Space Station and could eventually be used at an outpost on Mars. Chemical analyses of the Martian soil by the Viking and Mars Pathfinder missions have indicated that several of the elements required for plant growth are available in the soil. It may be possible to use the martian soil as the bulk substrate for growing food crops, while using smaller amounts of zeoponic substrate as an amendment to rectify any nutrient deficiencies.
Glycine uptake by microvillous and basal plasma membrane vesicles from term human placentae.
Dicke, J M; Verges, D; Kelley, L K; Smith, C H
1993-01-01
Like most amino acids, glycine is present in higher concentrations in the fetus than in the mother. Unlike most amino acids, animal studies suggest fetal concentrations of glycine are minimally in excess of those required for protein synthesis. Abnormal glycine utilization has also been demonstrated in small-for-gestational age human fetuses. The mechanism(s) of glycine uptake in the human placenta are unknown. In other mammalian cells glycine is a substrate for the A, ASC and Gly amino acid transport systems. In this study human placental glycine uptake was characterized using microvillous and basal plasma membrane vesicles each prepared from the same placenta. In both membranes glycine uptake was mediated predominantly by the sodium-dependent A system. Competitive inhibition studies suggest that in microvillous vesicles the small percentage of sodium-dependent glycine uptake not inhibited by methylaminoisobutyric acid (MeAIB) shares a transport system with glycine methyl ester and sarcosine, substrates of the Gly system in other tissues. In addition there are mediated sodium-independent and non-selective transport mechanisms in both plasma membranes. If fetal glycine availability is primarily contingent upon the common and highly regulated A system, glycine must compete with many other substrates potentially resulting in marginal fetal reserves, abnormal utilization and impaired growth.
A Two-Layer Gene Circuit for Decoupling Cell Growth from Metabolite Production.
Lo, Tat-Ming; Chng, Si Hui; Teo, Wei Suong; Cho, Han-Saem; Chang, Matthew Wook
2016-08-01
We present a synthetic gene circuit for decoupling cell growth from metabolite production through autonomous regulation of enzymatic pathways by integrated modules that sense nutrient and substrate. The two-layer circuit allows Escherichia coli to selectively utilize target substrates in a mixed pool; channel metabolic resources to growth by delaying enzymatic conversion until nutrient depletion; and activate, terminate, and re-activate conversion upon substrate availability. We developed two versions of controller, both of which have glucose nutrient sensors but differ in their substrate-sensing modules. One controller is specific for hydroxycinnamic acid and the other for oleic acid. Our hydroxycinnamic acid controller lowered metabolic stress 2-fold and increased the growth rate 2-fold and productivity 5-fold, whereas our oleic acid controller lowered metabolic stress 2-fold and increased the growth rate 1.3-fold and productivity 2.4-fold. These results demonstrate the potential for engineering strategies that decouple growth and production to make bio-based production more economical and sustainable. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Calestani, Davide; Alabi, Aderemi Babatunde; Coppedè, Nicola; Villani, Marco; Lazzarini, Laura; Fabbri, Filippo; Salviati, Giancarlo; Zappettini, Andrea
2017-01-01
In recent years, a large interest has been reported on low-dimensional β-Ga2O3 structures, like nanowires, nanobelts, nanorods or nanosheets, because of their peculiar and sometimes superior properties. These properties, however, can be strongly affected by the growth procedure, especially if metal growth catalysts are used. In this work we report the successful synthesis of β-Ga2O3 nanowires/nanobelts using a simple combination of thermal evaporation of a metallic Ga source and controlled oxidation. The same growth procedure has been used to grow nanostructures on different kind of substrates (silicon and alumina), without catalyst as well as with Au or Pt deposited on the substrates, in order to promote the nucleation of nanowires. The morphological, structural and optical properties of the obtained nanostructures have been characterized and compared. Different growth distributions on the substrates and possible growth mechanisms have been highlighted, while a strong increase in luminescence intensity has been observed on samples grown with Au and Pt catalysts.
Catalyst free growth of CNTs by CVD on nanoscale rough surfaces of silicon substrates
NASA Astrophysics Data System (ADS)
Damodar, D.; Sahoo, R. K.; Jacob, C.
2013-06-01
Catalyst free growth of carbon nanotubes (CNT) has been achieved using atmospheric pressure chemical vapor deposition (APCVD) on surface modified Si(111) substrates. The effect of the substrate surface has been observed by partially etching with KOH (potassium hydroxide) solution which is an anisotropic etchant. Scanning electron microscopy (SEM) confirmed the formation of CNTs over most of the area of the substrate where substrates were anisotropically etched. Transmission electron microscopy (TEM) was used to observe the internal structure of the CNTs. Raman spectroscopy further confirmed the formation of the carbon nanostructures and also their graphitic crystallinity.
Study of recombination characteristics in MOCVD grown GaN epi-layers on Si
NASA Astrophysics Data System (ADS)
Gaubas, E.; Ceponis, T.; Dobrovolskas, D.; Malinauskas, T.; Meskauskaite, D.; Miasojedovas, S.; Mickevicius, J.; Pavlov, J.; Rumbauskas, V.; Simoen, E.; Zhao, M.
2017-12-01
The radiative and non-radiative recombination carrier decay lifetimes in GaN epi-layers grown by metal-organic chemical vapour deposition technology on Si substrates were measured by contactless techniques of time-resolved photoluminescence and microwave-probed transients of photoconductivity. The lifetime variations were obtained to be dependent on growth regimes. These variations have been related to varied densities of edge dislocations associated with growth temperature. It has been also revealed that the lateral carrier lifetime and photoluminescence intensity distribution is determined by the formation of dislocation clusters dependent on the growth conditions. For low excitation level, the asymptotic component within the excess carrier decay transients is attributed to carrier trapping and anomalous diffusion through random-walk processes within dislocation cluster regions and barriers at dislocation cores. The two-componential decay process at high excitation conditions, where excess carriers may suppress barriers, proceeds through a nonlinear recombination, where band-to-band transitions determine the nonlinearity of the process, while the asymptotic component is ascribed to the impact of D-A pair PL within the long-wavelength wing of the UV-PL band.
Akatov, V S; Lavrovskaia, V P
1991-01-01
Chinese hamster fibroblasts (CHF) and NIH 3T3 cells were cultured on a glass substrate at different distances from the porous membrane separating the cells from the perfusing medium. It is shown that with perfusion of medium above the membrane there is no movement of the medium near the cells. In both the types of culture, the cells grow in multilayers, however the multilayer character of growth in CHF is more pronounced than in NIH 3T3 cells. The saturation density of the cultures depends on the cell-membrane separation, and at separations of no more than 0.2 mm exceeds the saturation density in the monolayer by 8-10 fold. The dependences of the saturation density on separation are different for CHE and NIH 3T3 cells, indicating qualitative differences in the inhibition of cell growth in monolayers between these cultures. The results obtained indicate that the inhibition of cell growth in monolayer is due to mass exchange limitations, rather than to intercellular contact interactions.
Respiration-Dependent Utilization of Sugars in Yeasts: a Determinant Role for Sugar Transporters
Goffrini, Paola; Ferrero, Iliana; Donnini, Claudia
2002-01-01
In many yeast species, including Kluyveromyces lactis, growth on certain sugars (such as galactose, raffinose, and maltose) occurs only under respiratory conditions. If respiration is blocked by inhibitors, mutation, or anaerobiosis, growth does not take place. This apparent dependence on respiration for the utilization of certain sugars has often been suspected to be associated with the mechanism of the sugar uptake step. We hypothesized that in many yeast species, the permease activities for these sugars are not sufficient to ensure the high substrate flow that is necessary for fermentative growth. By introducing additional sugar permease genes, we have obtained K. lactis strains that were capable of growing on galactose and raffinose in the absence of respiration. High dosages of both the permease and maltase genes were indeed necessary for K. lactis cells to grow on maltose in the absence of respiration. These results strongly suggest that the sugar uptake step is the major bottleneck in the fermentative assimilation of certain sugars in K. lactis and probably in many other yeasts. PMID:11751819
X-Ray Computed Tomography Reveals the Response of Root System Architecture to Soil Texture1[OPEN
Rogers, Eric D.; Monaenkova, Daria; Mijar, Medhavinee; Goldman, Daniel I.
2016-01-01
Root system architecture (RSA) impacts plant fitness and crop yield by facilitating efficient nutrient and water uptake from the soil. A better understanding of the effects of soil on RSA could improve crop productivity by matching roots to their soil environment. We used x-ray computed tomography to perform a detailed three-dimensional quantification of changes in rice (Oryza sativa) RSA in response to the physical properties of a granular substrate. We characterized the RSA of eight rice cultivars in five different growth substrates and determined that RSA is the result of interactions between genotype and growth environment. We identified cultivar-specific changes in RSA in response to changing growth substrate texture. The cultivar Azucena exhibited low RSA plasticity in all growth substrates, whereas cultivar Bala root depth was a function of soil hardness. Our imaging techniques provide a framework to study RSA in different growth environments, the results of which can be used to improve root traits with agronomic potential. PMID:27208237
Tajparast, Mohammad; Frigon, Dominic
2013-01-01
Studying storage metabolism during feast-famine cycles of activated sludge treatment systems provides profound insight in terms of both operational issues (e.g., foaming and bulking) and process optimization for the production of value added by-products (e.g., bioplastics). We examined the storage metabolism (including poly-β-hydroxybutyrate [PHB], glycogen, and triacylglycerols [TAGs]) during feast-famine cycles using two genome-scale metabolic models: Rhodococcus jostii RHA1 (iMT1174) and Escherichia coli K-12 (iAF1260) for growth on glucose, acetate, and succinate. The goal was to develop the proper objective function (OF) for the prediction of the main storage compound produced in activated sludge for given feast-famine cycle conditions. For the flux balance analysis, combinations of three OFs were tested. For all of them, the main OF was to maximize growth rates. Two additional sub-OFs were used: (1) minimization of biochemical fluxes, and (2) minimization of metabolic adjustments (MoMA) between the feast and famine periods. All (sub-)OFs predicted identical substrate-storage associations for the feast-famine growth of the above-mentioned metabolic models on a given substrate when glucose and acetate were set as sole carbon sources (i.e., glucose-glycogen and acetate-PHB), in agreement with experimental observations. However, in the case of succinate as substrate, the predictions depended on the network structure of the metabolic models such that the E. coli model predicted glycogen accumulation and the R. jostii model predicted PHB accumulation. While the accumulation of both PHB and glycogen was observed experimentally, PHB showed higher dynamics during an activated sludge feast-famine growth cycle with succinate as substrate. These results suggest that new modeling insights between metabolic predictions and population ecology will be necessary to properly predict metabolisms likely to emerge within the niches of activated sludge communities. Nonetheless, we believe that the development of this approach will help guide the optimization of the production of storage compounds as valuable by-products of wastewater treatment.
Ultra-High Aggregate Bandwidth Two-Dimensional Multiple-Wavelength Diode Laser Arrays
1993-12-09
during the growth of the cavity spacer region using the fact that the molecular beam epitaxy growth of GaAs is highly sensitive to the substrate... molecular beam epitaxy (MBE) crystal growth, the GaAs growth rate is highly sensitive to the substrate temperature above 650"C (2], a GaAs/AIGaAs... epitaxial growth technique to make reproducible and repeatable multi-wavelength VCSEL arrays. Our approach to fabricate the spatially graded layer
Xie, Chunliang; Yan, Li; Gong, Wenbing; Zhu, Zuohua; Tan, Senwei; Chen, Du; Hu, Zhenxiu; Peng, Yuande
2016-01-01
Pleurotus eryngii is one of the most valued and delicious mushrooms which are commercially cultivated on various agro-wastes. How different substrates affect lignocellulosic biomass degradation, lignocellulosic enzyme production and biological efficiency in Pleurotus eryngii was unclear. In this report, Pleurotus eryngii was cultivated in substrates including ramie stalks, kenaf stalks, cottonseed hulls and bulrush stalks. The results showed that ramie stalks and kenaf stalks were found to best suitable to cultivate Pleurotus eryngii with the biological efficiency achieved at 55% and 57%, respectively. In order to establish correlations between different substrates and lignocellulosic enzymes expression, the extracellular proteins from four substrates were profiled with high throughput TMT-based quantitative proteomic approach. 241 non-redundant proteins were identified and 74 high confidence lignocellulosic enzymes were quantified. Most of the cellulases, hemicellulases and lignin depolymerization enzymes were highly up-regulated when ramie stalks and kenaf stalks were used as carbon sources. The enzyme activities results suggested cellulases, hemicellulases and lignin depolymerization enzymes were significantly induced by ramie stalks and kenaf stalks. The lignocelluloses degradation, most of the lignocellulosic enzymes expressions and activities of Pleurotus eryngii had positive correlation with the biological efficiency, which depend on the nature of lignocellulosic substrates. In addition, the lignocellulosic enzymes expression profiles during Pleurotus eryngii growth in different substrates were obtained. The present study suggested that most of the lignocellulosic enzymes expressions and activities can be used as tools for selecting better performing substrates for commercial mushroom cultivation. © 2016 The Author(s) Published by S. Karger AG, Basel.
Farsinezhad, Samira; Mohammadpour, Arash; Dalrymple, Ashley N; Geisinger, Jared; Kar, Piyush; Brett, Michael J; Shankar, Karthik
2013-04-01
Exploitation of anodically formed self-organized TiO2 nanotube arrays in mass-manufactured, disposable biosensors, rollable electrochromic displays and flexible large-area solar cells would greatly benefit from integration with transparent and flexible polymeric substrates. Such integration requires the vacuum deposition of a thin film of titanium on the desired substrate, which is then anodized in suitable media to generate TiO2 nanotube arrays. However the challenges associated with control of Ti film morphology, nanotube array synthesis conditions, and film adhesion and transparency, have necessitated the use of substrate heating during deposition to temperatures of at least 300 degrees C and as high as 500 degrees C to generate highly ordered open-pore nanotube arrays, thus preventing the use of polymeric substrates. We report on a film growth technique that exploits atomic peening to achieve high quality transparent TiO2 nanotube arrays with lengths up to 5.1 microm at room temperature on polyimide substrates without the need for substrate heating or substrate biasing or a Kauffman ion source. The superior optical quality and uniformity of the nanotube arrays was evidenced by the high specular reflectivity and the smooth pattern of periodic interferometric fringes in the transmission spectra of the nanotube arrays, from which the wavelength-dependent effective refractive index was extracted for the air-TiO2 composite medium. A fluorescent immunoassay biosensor constructed using 5.1 microm-long transparent titania nanotube arrays (TTNAs) grown on Kapton substrates detected human cardiac troponin I at a concentration of 0.1 microg ml(-1).
V/III ratio effects on high quality InAlAs for quantum cascade laser structures
NASA Astrophysics Data System (ADS)
Demir, Ilkay; Elagoz, Sezai
2017-04-01
In this study we report the V/III ratio effects on growth, structural, optical and doping characteristics of low growth rate (∼1 Å/s) heteroepitaxial Metal Organic Chemical Vapor Deposition (MOCVD) grown InxAl1-xAs layers, a part of Quantum Cascade Laser (QCL) structures, on InP substrate. Especially photoluminescence (PL) properties of InAlAs-InP interface show strong dependence on AsH3 overpressure. We have shown that the V/III ratio with fixed metalorganic precursor flow is a crucial parameter on InxAl1-xAs layers to have a good material quality in terms of crystallinity, optical and electrical characteristics with and without doping.
Thermoplastic Ribbon-Ply Bonding Model
NASA Technical Reports Server (NTRS)
Hinkley, Jeffrey A.; Marchello, Joseph M.; Messier, Bernadette C.
1996-01-01
The aim of the present work was to identify key variables in rapid weldbonding of thermoplastic tow (ribbon) and their relationship to matrix polymer properties and to ribbon microstructure. Theoretical models for viscosity, establishment of ply-ply contact, instantaneous (Velcro) bonding, molecular interdiffusion (healing), void growth suppression, and gap filling were reviewed and synthesized. Consideration of the theoretical bonding mechanisms and length scales and of the experimental weld/peel data allow the prediction of such quantities as the time and pressure required to achieve good contact between a ribbon and a flat substrate, the time dependence of bond strength, pressures needed to prevent void growth from dissolved moisture and conditions for filling gaps and smoothing overlaps.
Stomeo, Francesca; Portillo, Maria C; Gonzalez, Juan M
2009-09-01
The most representative bacterium (Pseudonocardia sp.) and fungus (Fusarium sp.) from the microbial communities of a cave containing paleolithic paintings were isolated and their growth on natural substrates assessed. Growth was tested at the in situ and optimal, laboratory growth temperature. Development was analyzed with and without supplemented nutrients (glucose, ammonium, phosphate, peptone). Results showed that the assayed bacterium on natural substrate was able to develop best at in situ temperature and the addition of organic nutrients and/or phosphate enhanced its growth. The growth of the assayed fungus, however, was limited by low temperature and the availability of ammonium. These results confirm a differential behavior of microorganisms between the laboratory and the natural environments and could explain previous invasion of fungi reported for some caves with prehistoric paintings.
NASA Astrophysics Data System (ADS)
Bhaumik, Anagh; Narayan, Jagdish
2018-04-01
We report the synthesis and characterization of quenched (Q-carbon and Q-BN) and crystalline (diamond and c-BN) phases using a non-equilibrium technique. These phases are formed as a result of the melting and subsequent quenching of amorphous carbon and nanocrystalline h-BN in a super undercooled state by using high-power nanosecond laser pulses. Pulsed laser annealing also leads to the formation of nanoneedles, microneedles and single-crystal thin films of diamond and c-BN. This formation is dependent on the nucleation and growth times, which are controlled by laser energy density and thermal conductivities of substrate and as-deposited thin film. The diamond nuclei present in the Q-carbon structure ( 80% sp 3) can also be grown to larger sizes using the equilibrium hot filament chemical vapor deposition process. The texture of diamond and c-BN crystals is <111> under epitaxial growth and <110> under rapid unseeded crystallization. Our nanosecond laser processing opens up a roadmap to the fabrication of novel phases on heat-sensitive substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enriquez, Erik M.; Zhang, Yingying; Chen, Aiping
2016-08-26
Epitaxial layered ternary metal-nitride FeMoN 2, (Fe 0.33 Mo 0.67)MoN 2, CoMoN 2, and FeWN 2 thin films have been grown on c-plane sapphire substrates by polymer-assisted deposition. The ABN 2 layer sits on top of the oxygen sublattices of the substrate with three possible matching configurations due to the significantly reduced lattice mismatch. The doping composition and elements affect not only the out-of-plane lattice parameters but also the temperature-dependent electrical properties. These films have resistivity in the range of 0.1–1 mΩ·cm, showing tunable metallic or semiconducting behaviors by adjusting the composition. A modified parallel connection channel model has beenmore » used to analyze the grain boundary and Coulomb blockade effect on the electrical properties. Furthermore, the growth of the high crystallinity layered epitaxial thin films provides an avenue to study the composition-structure-property relationship in ABN 2 materials through A and B-site substitution.« less
NASA Astrophysics Data System (ADS)
Bénédic, Fabien; Baudrillart, Benoit; Achard, Jocelyn
2018-02-01
In this paper we investigate a distributed antenna array Plasma Enhanced Chemical Vapor Deposition system, composed of 16 microwave plasma sources arranged in a 2D matrix, which enables the growth of 4-in. diamond films at low pressure and low substrate temperature by using H2/CH4/CO2 gas chemistry. A self-consistent two-dimensional plasma model developed for hydrogen discharges is used to study the discharge behavior. Especially, the gas temperature is estimated close to 350 K at a position corresponding to the substrate location during the growth, which is suitable for low temperature deposition. Multi-source discharge modeling evidences that the uniformity of the plasma sheet formed by the individual plasmas ignited around each elementary microwave source strongly depends on the distance to the antennas. The radial profile of the film thickness homogeneity may be thus linked to the local variations of species density. Contribution to the topical issue "Plasma Sources and Plasma Processes (PSPP)", edited by Luis Lemos Alves, Thierry Belmonte and Tibeinea Minea.
Rettew, Robert E; Allam, Nageh K; Alamgir, Faisal M
2011-02-01
The surface atomic structure and chemical state of Pt is consequential in a variety of surface-intensive devices. Herein we present the direct interrelationship between the growth scheme of Pt films, the resulting atomic and electronic structure of Pt species, and the consequent activity for methanol electro-oxidation in Pt/TiO(2) nanotube hybrid electrodes. X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) measurements were performed to relate the observed electrocatalytic activity to the oxidation state and the atomic structure of the deposited Pt species. The atomic structure as well as the oxidation state of the deposited Pt was found to depend on the pretreatment of the TiO(2) nanotube surfaces with electrodeposited Cu. Pt growth through Cu replacement increases Pt dispersion, and a separation of surface Pt atoms beyond a threshold distance from the TiO(2) substrate renders them metallic, rather than cationic. The increased dispersion and the metallic character of Pt results in strongly enhanced electrocatalytic activity toward methanol oxidation. This study points to a general phenomenon whereby the growth scheme and the substrate-to-surface-Pt distance dictates the chemical state of the surface Pt atoms, and thereby, the performance of Pt-based surface-intensive devices.
(Mn,Co)(3)O-4 Spinel Coatings on Ferritic Stainless Steels for SOFC Interconnect Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Z Gary; Xia, Gordon; Li, Xiaohong S.
(Mn,Co)3O4 spinel with a nominal composition of Mn1.5Co1.5O4 demonstrates excellent electrical conductivity, satisfactory thermal and structural stability, as well as good thermal expansion match to ferritic stainless steel interconnects. A slurry-coating technique was developed for fabricating the spinel coatings onto the steel interconnects. Thermally grown layers of Mn1.5Co1.5O4 not only significantly decreased the contact resistance between a LSF cathode and stainless steel interconnect, but also acted as a mass barrier to inhibit scale growth on the stainless steel and to prevent Cr outward migration through the coating. The level of improvement in electrical performance and oxidation resistance (i.e. the scalemore » growth rate) was dependent on the ferritic substrate composition. For E-brite and Crofer22 APU, with a relatively high Cr concentration (27wt% and 23%, respectively) and negligible Si, the reduction of contact ASR and scale growth on the ferritic substrates was significant. In comparison, limited improvement was achieved by application of the Mn1.5Co1.5O4 spinel coating on AISI430, which contains only 17% Cr and a higher amount of residual Si.« less
Alarcón, Julio; Ponce, Silvia; Paraguay-Delgado, Francisco; Rodríguez, Juan
2011-12-01
The growth of ZnO nanorods on a flat substrate containing γ-irradiated seeds and their ability to photocatalytically eliminate bacteria in water were studied. The seed layer was obtained, by the spray pyrolysis technique, from zinc acetate solutions γ-irradiated within the range from 0 to 100 kGy. Subsequently, to grow the rods, the seeds were immersed in a basic solution of zinc nitrate maintained at 90 °C. The rate of crystal growth on the seed layer during the thermal bath treatment was kept constant. The resulting materials were characterized morphologically by scanning electron and atomic force microscopies; X-ray diffraction was used to study their morphology and structure and ultraviolet-visible spectroscopy to determine their absorbance. The obtained seed films were morphologically dependent on the radiation dose and this was correlated with the ZnO nanorod films which presented a texture in the (002) direction perpendicular to the substrate. The rods have a hexagonal mean cross section between 20 and 140 nm. Using these rods, the photocatalytic degradation of Escherichia coli bacteria in water was studied; a positive influence of the crystalline texture on the degradation rate was observed. Copyright © 2011 Elsevier Inc. All rights reserved.
Controlled Patterning and Growth of Single Wall and Multi-wall Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Delzeit, Lance D. (Inventor)
2005-01-01
Method and system for producing a selected pattern or array of at least one of a single wall nanotube and/or a multi-wall nanotube containing primarily carbon. A substrate is coated with a first layer (optional) of a first selected metal (e.g., Al and/or Ir) and with a second layer of a catalyst (e.g., Fe, Co, Ni and/or Mo), having selected first and second layer thicknesses provided by ion sputtering, arc discharge, laser ablation, evaporation or CVD. The first layer and/or the second layer may be formed in a desired non-uniform pattern, using a mask with suitable aperture(s), to promote growth of carbon nanotubes in a corresponding pattern. A selected heated feed gas (primarily CH4 or C2Hn with n=2 and/or 4) is passed over the coated substrate and forms primarily single wall nanotubes or multiple wall nanotubes, depending upon the selected feed gas and its temperature. Nanofibers, as well as single wall and multi-wall nanotubes, are produced using plasma-aided growth from the second (catalyst) layer. An overcoating of a selected metal or alloy can be deposited, over the second layer, to provide a coating for the carbon nanotubes grown in this manner.
Dynamic interface rearrangement in LaFeO3/n -SrTiO3 heterojunctions
NASA Astrophysics Data System (ADS)
Spurgeon, Steven R.; Sushko, Peter V.; Chambers, Scott A.; Comes, Ryan B.
2017-11-01
Thin-film synthesis methods that have developed over the past decades have unlocked emergent interface properties ranging from conductivity to ferroelectricity. However, our attempts to exercise precise control over interfaces are constrained by a limited understanding of growth pathways and kinetics. Here we demonstrate that shuttered molecular beam epitaxy induces rearrangements of atomic planes at a polar/nonpolar junction of LaFeO3 (LFO)/n -SrTiO3 (STO) depending on the substrate termination. Surface characterization confirms that substrates with two different (TiO2 and SrO) terminations were prepared prior to LFO deposition; however, local electron-energy-loss spectroscopy measurements of the final heterojunctions show a predominantly LaO/TiO2 interfacial junction in both cases. Ab initio simulations suggest that the interfaces can be stabilized by trapping extra oxygen (in LaO/TiO2) and forming oxygen vacancies (in FeO2/SrO), which points to different growth kinetics in each case and may explain the apparent disappearance of the FeO2/SrO interface. We conclude that judicious control of deposition time scales can be used to modify growth pathways, opening new avenues to control the structure and properties of interfacial systems.
NASA Astrophysics Data System (ADS)
Murukesan, Gayathri; Leino, Hannu; Mäenpää, Pirkko; Ståhle, Kurt; Raksajit, Wuttinun; Lehto, Harry J.; Allahverdiyeva-Rinne, Yagut; Lehto, Kirsi
2016-03-01
Surviving of crews during future missions to Mars will depend on reliable and adequate supplies of essential life support materials, i.e. oxygen, food, clean water, and fuel. The most economical and sustainable (and in long term, the only viable) way to provide these supplies on Martian bases is via bio-regenerative systems, by using local resources to drive oxygenic photosynthesis. Selected cyanobacteria, grown in adequately protective containment could serve as pioneer species to produce life sustaining substrates for higher organisms. The very high (95.3 %) CO2 content in Martian atmosphere would provide an abundant carbon source for photo-assimilation, but nitrogen would be a strongly limiting substrate for bio-assimilation in this environment, and would need to be supplemented by nitrogen fertilizing. The very high supply of carbon, with rate-limiting supply of nitrogen strongly affects the growth and the metabolic pathways of the photosynthetic organisms. Here we show that modified, Martian-like atmospheric composition (nearly 100 % CO2) under various low pressure conditions (starting from 50 mbar to maintain liquid water, up to 200 mbars) supports strong cellular growth. Under high CO2 / low N2 ratio the filamentous cyanobacteria produce significant amount of H2 during light due to differentiation of high amount of heterocysts.
Dynamic interface rearrangement in LaFeO 3 / n - SrTiO 3 heterojunctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spurgeon, Steven R.; Sushko, Peter V.; Chambers, Scott A.
2017-11-06
Thin-film synthesis methods that have developed over the past decades have unlocked emergent interface properties ranging from conductivity to ferroelectricity. However, our attempts to exercise precise control over interfaces are constrained by a limited understanding of growth pathways and kinetics. In this paper, we demonstrate that shuttered molecular beam epitaxy induces rearrangements of atomic planes at a polar/nonpolar junction of LaFeO 3 (LFO)/n-SrTiO 3 (STO) depending on the substrate termination. Surface characterization confirms that substrates with two different (TiO 2 and SrO) terminations were prepared prior to LFO deposition; however, local electron-energy-loss spectroscopy measurements of the final heterojunctions show amore » predominantly LaO/TiO 2 interfacial junction in both cases. Ab initio simulations suggest that the interfaces can be stabilized by trapping extra oxygen (in LaO/TiO 2) and forming oxygen vacancies (in FeO 2/SrO), which points to different growth kinetics in each case and may explain the apparent disappearance of the FeO 2/SrO interface. Finally, we conclude that judicious control of deposition time scales can be used to modify growth pathways, opening new avenues to control the structure and properties of interfacial systems.« less
Dynamic interface rearrangement in LaFeO 3 / n − SrTiO 3 heterojunctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spurgeon, Steven R.; Sushko, Peter V.; Chambers, Scott A.
2017-11-01
Thin film synthesis methods developed over the past decades have unlocked emergent interface properties ranging from conductivity to ferroelectricity. However, our attempts to exercise precise control over interfaces are constrained by a limited understanding of growth pathways and kinetics. Here we demonstrate that shuttered molecular beam epitaxy induces rearrangements of atomic planes at a polar / non- polar junction of LaFeO3 (LFO) / n-SrTiO3 (STO) depending on the substrate termination. Surface characterization confirms that substrates with two different (TiO2 and SrO) terminations were prepared prior to LFO deposition; however, local electron energy loss spectroscopy measurements of the final heterojunctions showmore » a predominantly LaO / TiO2 interfacial junction in both cases. Ab initio simulations suggest that the interfaces can be stabilized by trapping extra oxygen (in LaO / TiO2) and forming oxygen vacancies (in FeO2 / SrO), which points to different growth kinetics at these interfaces and may explain the apparent disappearance of the FeO2 / SrO interface. We conclude that judicious control of deposition timescales can be used to modify growth pathways, opening new avenues to control the structure and properties of interfacial systems.« less
Liang, Zeng-Chin; Wu, Kuan-Jzen; Wang, Jinn-Chyi; Lin, Chorng-Horng; Wu, Chiu-Yeh
2011-01-01
Cultivation of the culinary-medicinal Lung Oyster mushroom, Pleurotus pulmonarius, on the stalks of three grass plants, i.e., Panicum repens, Pennisetum purpureum, and Zea mays were investigated. The effects of various combinatorial substrates on mushroom mycelial growth and yield calculated as biological efficiency (BE) were determined. Among 9 experimental substrates, the most suitable substrate for mycelial growth was 45ZMS:45S, followed by 45PRS:45S; their mycelial growth rates were obviously quicker than that of the control substrate. The BEs of all the experimental substrates respectively containing P. repens stalk, P. purpureum stalk and Z. mays stalk were higher than that of the control (39.55%) during the 2.5 months of cultivation period. The best substrate in terms of BE was 60ZMS:30S (58.33%), followed by 45PRS:45S (57.16%), 45ZMS:45S (49.86%), and 30ZMS:60S (47.20%). Based on the BE of the tested substrates, Z mays stalk appeared to be the best alternative material for the production of P. pulmonarius.
GSK3 controls axon growth via CLASP-mediated regulation of growth cone microtubules
Hur, Eun-Mi; Saijilafu; Lee, Byoung Dae; Kim, Seong-Jin; Xu, Wen-Lin; Zhou, Feng-Quan
2011-01-01
Suppression of glycogen synthase kinase 3 (GSK3) activity in neurons yields pleiotropic outcomes, causing both axon growth promotion and inhibition. Previous studies have suggested that specific GSK3 substrates, such as adenomatous polyposis coli (APC) and collapsin response mediator protein 2 (CRMP2), support axon growth by regulating the stability of axonal microtubules (MTs), but the substrate(s) and mechanisms conveying axon growth inhibition remain elusive. Here we show that CLIP (cytoplasmic linker protein)-associated protein (CLASP), originally identified as a MT plus end-binding protein, displays both plus end-binding and lattice-binding activities in nerve growth cones, and reveal that the two MT-binding activities regulate axon growth in an opposing manner: The lattice-binding activity mediates axon growth inhibition induced by suppression of GSK3 activity via preventing MT protrusion into the growth cone periphery, whereas the plus end-binding property supports axon extension via stabilizing the growing ends of axonal MTs. We propose a model in which CLASP transduces GSK3 activity levels to differentially control axon growth by coordinating the stability and configuration of growth cone MTs. PMID:21937714
Filopodial adhesion does not predict growth cone steering events in vivo.
Isbister, C M; O'Connor, T P
1999-04-01
Migration of growth cones is in part mediated by adhesive interactions between filopodia and the extracellular environment, transmitting forces and signals necessary for pathfinding. To elucidate the role of substrate adhesivity in growth cone pathfinding, we developed an in vivo assay for measuring filopodial-substrate adhesivity using the well-characterized Ti pioneer neuron pathway of the embryonic grasshopper limb. Using time-lapse imaging and a combination of rhodamine-phalloidin injections and DiI labeling, we demonstrate that the filopodial retraction rate after treatment with cytochalasin D or elastase reflects the degree of filopodial-substrate adhesivity. Measurements of filopodial retraction rates along regions of known differing substrate adhesivities confirmed the use of this assay to examine filopodial-substrate adhesion during in vivo pathfinding events. We analyzed 359 filopodia from 22 Ti growth cones and found that there is no difference between the retraction rates of filopodia extending toward the correct target (on-axis) and filopodia extending away from the correct target (off-axis). These results indicate on-axis and off-axis filopodia have similar substrate adherence. Interestingly, we observed a 300% increase in the extension rates of on-axis filopodia during Ti growth cone turning events. Therefore, in addition to providing filopodia with important guidance information, regional cues are capable of modulating the filopodial extension rate. The homogeneity in filopodial retraction rates, even among these turning growth cones in which differential adhesivity might be expected to be greatest, strongly establishes that differential adhesion does not govern Ti pioneer neuron migration rate or pathfinding. We propose that the presence of local differences in receptor-mediated second messenger cascades and the resulting assembly of force-generating machinery may underlie the ability of filopodial contacts to regulate growth cone steering in vivo.
Substrate growth dynamics and biomineralization of an Ediacaran encrusting poriferan.
Wood, Rachel; Penny, Amelia
2018-01-10
The ability to encrust in order to secure and maintain growth on a substrate is a key competitive innovation in benthic metazoans. Here we describe the substrate growth dynamics, mode of biomineralization and possible affinity of Namapoikia rietoogensis , a large (up to 1 m), robustly skeletal, and modular Ediacaran metazoan which encrusted the walls of synsedimentary fissures within microbial-metazoan reefs. Namapoikia formed laminar or domal morphologies with an internal structure of open tubules and transverse elements, and had a very plastic, non-deterministic growth form which could encrust both fully lithified surfaces as well as living microbial substrates, the latter via modified skeletal holdfasts. Namapoikia shows complex growth interactions and substrate competition with contemporary living microbialites and thrombolites, including the production of plate-like dissepiments in response to microbial overgrowth which served to elevate soft tissue above the microbial surface. Namapoikia could also recover from partial mortality due to microbial fouling. We infer initial skeletal growth to have propagated via the rapid formation of an organic scaffold via a basal pinacoderm prior to calcification. This is likely an ancient mode of biomineralization with similarities to the living calcified demosponge Vaceletia. Namapoikia also shows inferred skeletal growth banding which, combined with its large size, implies notable individual longevity. In sum, Namapoikia was a large, relatively long-lived Ediacaran clonal skeletal metazoan that propagated via an organic scaffold prior to calcification, enabling rapid, effective and dynamic substrate occupation and competition in cryptic reef settings. The open tubular internal structure, highly flexible, non-deterministic skeletal organization, and inferred style of biomineralization of Namapoikia places probable affinity within total-group poriferans. © 2018 The Author(s).
Effect of Root-Zone Moisture Variations on Growth of Lettuce and Pea Plants
NASA Astrophysics Data System (ADS)
Ilieva, Iliana; Ivanova, Tania
2008-06-01
Variations in substrate moisture lead to changes in water and oxygen availability to plant roots. Ground experiments were carried out in the laboratory prototype of SVET-2 Space Greenhouse to study the effect of variation of root-zone moisture conditions on growth of lettuce and pea plants. The effect of transient increase (for 1 day) and drastic increase (waterlogging for 10 days) of substrate moisture was studied with 16-day old pea and 21-day old lettuce plants respectively. Pea height and fresh biomass accumulation were not affected by transient substrate moisture increase. Net photosynthetic rate (Pn) of pea plants showed fast response to substrate moisture variation, while chlorophyll content did not change. Drastic change of substrate moisture suppressed lettuce Pn, chlorophyll biosynthesis and plant growth. These parameters slowly recovered after termination of waterlogging treatment but lettuce yield was greatly affected. The results showed that the most sensitive physiological parameter to substrate moisture variations is photosynthesis.
Magnetic anisotropies and magnetic switching in Co films
NASA Astrophysics Data System (ADS)
Bland, J. A. C.; Baird, M. J.; Leung, H. T.; Ives, A. J. R.; Mackay, K. D.; Hughes, H. P.
1992-07-01
We have used the magneto-optical Kerr effect to investigate the role of the substrate and growth conditions in determining the magnetic switching behaviour of Co films in the thickness range 100-200 Å supported by GaAs(001) and Si(111) substrates. We discuss the anisotropic magnetic hysteresis behaviour observed for Co/GaAs and Co/Si films in terms of coherent rotation of the magnetisation vector during magnetic switching. Equivalent films supported by glass substrates are found to be almost isotropic in-plane. The in-plane coercive and saturation fields are observed to lie in the range 20-80 Oe but perpendicular saturation fields of 25 and 19 kOe are found for the Co/Si and Co/GaAs systems respectively which substantially exceed the demagnetising field in each case. The measured perpendicular anisotropy fields differ strongly from the values for hcp and bcc Co and are attributed to the details of the interface and film structure. We also report strongly frequency dependent magnetic switching behaviour in these Co films.
Tin-gallium-oxide-based UV-C detectors
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Partha; Toporkov, Mykyta; Schoenfeld, Winston V.
2018-02-01
The emergence of conductive gallium oxide single crystal substrates offers the potential for vertical Schottky detectors operating in the UV-C spectral region. We report here on our recent work in the development of Tin Gallium oxide (TGO) thin film metal-semiconductor-metal (MSM) and Schottky detectors using plasma-assisted molecular beam epitaxy on c plane sapphire and bulk Ga2O3 substrates. Tin alloying of gallium oxide thin films was found to systematically reduce the optical band gap of the compound, providing tunability in the UV-C spectral region. Tin concentration in the TGO epilayers was found to be highly dependent on growth conditions, and Ga flux in particular. First attempts to demonstrate vertical Schottky photodetectors using TGO epilayers on bulk n-type Ga2O3 substrates were successful. Resultant devices showed strong photoresponse to UV-C light with peak responsivities clearly red shifted in comparison to Ga2O3 homoepitaxial Schottky detectors due to TGO alloying.
Yang, Yi; Ling, Yichuan; Wang, Gongming; Lu, Xihong; Tong, Yexiang; Li, Yat
2013-03-07
We report a general strategy for synthesis of gallium nitride (GaN) and indium nitride (InN) nanowires on conductive and flexible carbon cloth substrates. GaN and InN nanowires were prepared via a nanocluster-mediated growth method using a home built chemical vapor deposition (CVD) system with Ga and In metals as group III precursors and ammonia as a group V precursor. Electron microscopy studies reveal that the group III-nitride nanowires are single crystalline wurtzite structures. The morphology, density and growth mechanism of these nanowires are determined by the growth temperature. Importantly, a photoelectrode fabricated by contacting the GaN nanowires through a carbon cloth substrate shows pronounced photoactivity for photoelectrochemical water oxidation. The ability to synthesize group III-nitride nanowires on conductive and flexible substrates should open up new opportunities for nanoscale photonic, electronic and electrochemical devices.
NASA Astrophysics Data System (ADS)
Marsden, A. J.; Phillips, M.; Wilson, N. R.
2013-06-01
At a single atom thick, it is challenging to distinguish graphene from its substrate using conventional techniques. In this paper we show that friction force microscopy (FFM) is a simple and quick technique for identifying graphene on a range of samples, from growth substrates to rough insulators. We show that FFM is particularly effective for characterizing graphene grown on copper where it can correlate the graphene growth to the three-dimensional surface topography. Atomic lattice stick-slip friction is readily resolved and enables the crystallographic orientation of the graphene to be mapped nondestructively, reproducibly and at high resolution. We expect FFM to be similarly effective for studying graphene growth on other metal/locally crystalline substrates, including SiC, and for studying growth of other two-dimensional materials such as molybdenum disulfide and hexagonal boron nitride.