Sample records for growth

  1. Linking marine and freshwater growth in western Alaska Chinook salmon Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Ruggerone, G.T.; Nielsen, J.L.; Agler, B.A.

    2009-01-01

    The hypothesis that growth in Pacific salmon Oncorhynchus spp. is dependent on previous growth was tested using annual scale growth measurements of wild Chinook salmon Oncorhynchus tshawytscha returning to the Yukon and Kuskokwim Rivers, Alaska, from 1964 to 2004. First-year marine growth in individual O. tshawytscha was significantly correlated with growth in fresh water. Furthermore, growth during each of 3 or 4 years at sea was related to growth during the previous year. The magnitude of the growth response to the previous year's growth was greater when mean year-class growth during the previous year was relatively low. Length (eye to tail fork, LETF) of adult O. tshawytscha was correlated with cumulative scale growth after the first year at sea. Adult LETF was also weakly correlated with scale growth that occurred during freshwater residence 4 to 5 years earlier, indicating the importance of growth in fresh water. Positive growth response to previous growth in O. tshawytscha was probably related to piscivorous diet and foraging benefits of large body size. Faster growth among O. tshawytscha year classes that initially grew slowly may reflect high mortality in slow growing fish and subsequent compensatory growth in survivors. Oncorhynchus tshawytscha in this study exhibited complex growth patterns showing a positive relationship with previous growth and a possible compensatory response to environmental factors affecting growth of the age class.

  2. Fetal growth: a review of terms, concepts and issues relevant to obstetrics.

    PubMed

    Mayer, C; Joseph, K S

    2013-02-01

    The perinatal literature includes several potentially confusing and controversial terms and concepts related to fetal size and growth. This article discusses fetal growth from an obstetric perspective and addresses various issues including the physiologic mechanisms that determine fetal growth trajectories, known risk factors for abnormal fetal growth, diagnostic and prognostic issues related to restricted and excessive growth and temporal trends in fetal growth. Also addressed are distinctions between fetal growth 'standards' and fetal growth 'references', and between fetal growth charts based on estimated fetal weight vs those based on birth weight. Other concepts discussed include the incidence of fetal growth restriction in pregnancy (does the frequency of fetal growth restriction increase or decrease with increasing gestation?), the obstetric implications of studies showing associations between fetal growth and adult chronic illnesses (such as coronary heart disease) and the need for customizing fetal growth standards. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.

  3. Growth assessment in diagnosis of Fetal Growth Restriction. Review.

    PubMed

    Albu, A R; Horhoianu, I A; Dumitrascu, M C; Horhoianu, V

    2014-06-15

    The assessment of fetal growth represents a fundamental step towards the identification of the true growth restricted fetus that is associated to important perinatal morbidity and mortality. The possible ways of detecting abnormal fetal growth are taken into consideration in this review and their strong and weak points are discussed. An important debate still remains about how to discriminate between the physiologically small fetus that does not require special surveillance and the truly growth restricted fetus who is predisposed to perinatal complications, even if its parameters are above the cut-off limits established. In this article, we present the clinical tools of fetal growth assessment: Symphyseal-Fundal Height (SFH) measurement, the fetal ultrasound parameters widely taken into consideration when discussing fetal growth: Abdominal Circumference (AC) and Estimated Fetal Weight (EFW); several types of growth charts and their characteristics: populational growth charts, standard growth charts, individualized growth charts, customized growth charts and growth trajectories.

  4. Method of Promoting Single Crystal Growth During Melt Growth of Semiconductors

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua (Inventor)

    2013-01-01

    The method of the invention promotes single crystal growth during fabrication of melt growth semiconductors. A growth ampoule and its tip have a semiconductor source material placed therein. The growth ampoule is placed in a first thermal environment that raises the temperature of the semiconductor source material to its liquidus temperature. The growth ampoule is then transitioned to a second thermal environment that causes the semiconductor source material in the growth ampoule's tip to attain a temperature that is below the semiconductor source material's solidus temperature. The growth ampoule so-transitioned is then mechanically perturbed to induce single crystal growth at the growth ampoule's tip.

  5. Growth hormone response to growth hormone-releasing peptide-2 in growth hormone-deficient Little mice

    PubMed Central

    Peroni, Cibele N.; Hayashida, Cesar Y.; Nascimento, Nancy; Longuini, Viviane C.; Toledo, Rodrigo A.; Bartolini, Paolo; Bowers, Cyril Y.; Toledo, Sergio P.A.

    2012-01-01

    OBJECTIVE: To investigate a possible direct, growth hormone-releasing, hormone-independent action of a growth hormone secretagogue, GHRP-2, in pituitary somatotroph cells in the presence of inactive growth hormone-releasing hormone receptors. MATERIALS AND METHODS: The responses of serum growth hormone to acutely injected growth hormone-releasing P-2 in lit/lit mice, which represent a model of GH deficiency arising from mutated growth hormone-releasing hormone-receptors, were compared to those observed in the heterozygous (lit/+) littermates and wild-type (+/+) C57BL/6J mice. RESULTS: After the administration of 10 mcg of growth hormone-releasing P-2 to lit/lit mice, a growth hormone release of 9.3±1.5 ng/ml was observed compared with 1.04±1.15 ng/ml in controls (p<0.001). In comparison, an intermediate growth hormone release of 34.5±9.7 ng/ml and a higher growth hormone release of 163±46 ng/ml were induced in the lit/+ mice and wild-type mice, respectively. Thus, GHRP-2 stimulated growth hormone in the lit/lit mice, and the release of growth hormone in vivo may be only partially dependent on growth hormone-releasing hormone. Additionally, the plasma leptin and ghrelin levels were evaluated in the lit/lit mice under basal and stimulated conditions. CONCLUSIONS: Here, we have demonstrated that lit/lit mice, which harbor a germline mutation in the Growth hormone-releasing hormone gene, maintain a limited but statistically significant growth hormone elevation after exogenous stimulation with GHRP-2. The present data probably reflect a direct, growth hormone-independent effect on Growth hormone S (ghrelin) stimulation in the remaining pituitary somatotrophs of little mice that is mediated by growth hormone S-R 1a. PMID:22473409

  6. Divergence in Patterns of Leaf Growth Polarity Is Associated with the Expression Divergence of miR396

    PubMed Central

    2015-01-01

    Lateral appendages often show allometric growth with a specific growth polarity along the proximo-distal axis. Studies on leaf growth in model plants have identified a basipetal growth direction with the highest growth rate at the proximal end and progressively lower rates toward the distal end. Although the molecular mechanisms governing such a growth pattern have been studied recently, variation in leaf growth polarity and, therefore, its evolutionary origin remain unknown. By surveying 75 eudicot species, here we report that leaf growth polarity is divergent. Leaf growth in the proximo-distal axis is polar, with more growth arising from either the proximal or the distal end; dispersed with no apparent polarity; or bidirectional, with more growth contributed by the central region and less growth at either end. We further demonstrate that the expression gradient of the miR396-GROWTH-REGULATING FACTOR module strongly correlates with the polarity of leaf growth. Altering the endogenous pattern of miR396 expression in transgenic Arabidopsis thaliana leaves only partially modified the spatial pattern of cell expansion, suggesting that the diverse growth polarities might have evolved via concerted changes in multiple gene regulatory networks. PMID:26410303

  7. Growth hormone secretion in Turner's syndrome and influence of oxandrolone and ethinyl oestradiol.

    PubMed

    Massarano, A A; Brook, C G; Hindmarsh, P C; Pringle, P J; Teale, J D; Stanhope, R; Preece, M A

    1989-04-01

    We investigated 24 hour growth hormone secretion by intermittent 20 minute blood sampling in 34 prepubertal patients with Turner's syndrome, aged 4.3-12.4 years. Growth hormone profiles were analysed by the PULSAR programme and results expressed as the sum of growth hormone pulse amplitudes. Six patients had abnormal growth hormone pulse frequencies. In the remaining 28, growth hormone pulse amplitudes declined significantly with increasing age, but there was no correlation between growth hormone pulse amplitudes and growth rates. Concentrations of insulin like growth factor-1 (IGF-1) rose with age but did not correlate with either growth rates or growth hormone secretion. Fifteen patients were given oxandrolone and 11 low dose ethinyl oestradiol. Both agents increased height velocity without increasing growth hormone secretion. We conclude that the relation between growth hormone secretion and growth in Turner's syndrome is less certain than in normal children. End organ resistance is probably due to a skeletal dysplasia. Both oxandrolone and low dose ethinyl oestradiol improve the growth of girls with Turner's syndrome, but their mechanism of action remains uncertain.

  8. Effect of Growth Hormone Deficiency on Brain Structure, Motor Function and Cognition

    ERIC Educational Resources Information Center

    Webb, Emma A.; O'Reilly, Michelle A.; Clayden, Jonathan D.; Seunarine, Kiran K.; Chong, Wui K.; Dale, Naomi; Salt, Alison; Clark, Chris A.; Dattani, Mehul T.

    2012-01-01

    The growth hormone-insulin-like growth factor-1 axis plays a role in normal brain growth but little is known of the effect of growth hormone deficiency on brain structure. Children with isolated growth hormone deficiency (peak growth hormone less than 6.7 [micro]g/l) and idiopathic short stature (peak growth hormone greater than 10 [micro]g/l)…

  9. Evaluating growth assumptions using diameter or radial increments in natural even-aged longleaf pine

    Treesearch

    John C. Gilbert; Ralph S. Meldahl; Jyoti N. Rayamajhi; John S. Kush

    2010-01-01

    When using increment cores to predict future growth, one often assumes future growth is identical to past growth for individual trees. Once this assumption is accepted, a decision has to be made between which growth estimate should be used, constant diameter growth or constant basal area growth. Often, the assumption of constant diameter growth is used due to the ease...

  10. Growth assessment in diagnosis of Fetal Growth Restriction. Review

    PubMed Central

    Albu, AR; Horhoianu, IA; Dumitrascu, MC; Horhoianu, V

    2014-01-01

    Abstract The assessment of fetal growth represents a fundamental step towards the identification of the true growth restricted fetus that is associated to important perinatal morbidity and mortality. The possible ways of detecting abnormal fetal growth are taken into consideration in this review and their strong and weak points are discussed. An important debate still remains about how to discriminate between the physiologically small fetus that does not require special surveillance and the truly growth restricted fetus who is predisposed to perinatal complications, even if its parameters are above the cut-off limits established. In this article, we present the clinical tools of fetal growth assessment: Symphyseal-Fundal Height (SFH) measurement, the fetal ultrasound parameters widely taken into consideration when discussing fetal growth: Abdominal Circumference (AC) and Estimated Fetal Weight (EFW); several types of growth charts and their characteristics: populational growth charts, standard growth charts, individualized growth charts, customized growth charts and growth trajectories. Abbreviations: FGR = Fetal growth restriction; IUGR = Intrauterine Growth Restriction; SGA = small for gestational age fetus; EFW = estimated fetal weight; AC = abdominal circumference; SD = Standard Deviation; SFH = Symphyseal-fundal height; US = ultrasound; 2D = bidimensional; 3D = tridimensional; RCOG = Royal College of Obstetricians and Gynecologists; FL = femur length; BPD = biparietal diameter; BW = birth weight; IGA = Individualized Growth Assessment; PIH = Pregnancy Induced hypertension; PE = Preeclampsia; NICU = Neonatal Intensive Care Unit. PMID:25408718

  11. The transport phenomena during the growth of ZnTe crystal by the temperature gradient solution growth technique

    NASA Astrophysics Data System (ADS)

    Yin, Liying; Jie, Wanqi; Wang, Tao; Zhou, Boru; Yang, Fan

    2017-03-01

    A numerical model is developed to simulate the temperature field, the thermosolutal convection, the solute segregation and the growth interface morphology during the growth of ZnTe crystal from Te rich solution by the temperature gradient solution growth (TGSG) technique. Effects of the temperature gradient on the transport phenomena, the growth interface morphology and the growth rate are examined. The influences of the latent heat and the thermal conductivity of ZnTe crystal on the transport phenomena and the growth interface are also discussed. We find that the mass transfer of ZnTe in the solution is very slow because of the low diffusion coefficient and the lack of mixing in the lower part of the solution. During the growth, dilute solution with high density and low growth temperature accumulates in the central region of the growth interface, making the growth interface change into two distinct parts. The inner part is very concave, while the outer part is relatively flat. Growth conditions in front of the two parts of the growth interface are different. The crystalline quality of the inner part of the ingot is predicted to be worse than that of the outer part. High temperature gradient can significantly increase the growth rate, and avoid the diffusion controlled growth to some extent.

  12. Divergence in Patterns of Leaf Growth Polarity Is Associated with the Expression Divergence of miR396.

    PubMed

    Das Gupta, Mainak; Nath, Utpal

    2015-10-01

    Lateral appendages often show allometric growth with a specific growth polarity along the proximo-distal axis. Studies on leaf growth in model plants have identified a basipetal growth direction with the highest growth rate at the proximal end and progressively lower rates toward the distal end. Although the molecular mechanisms governing such a growth pattern have been studied recently, variation in leaf growth polarity and, therefore, its evolutionary origin remain unknown. By surveying 75 eudicot species, here we report that leaf growth polarity is divergent. Leaf growth in the proximo-distal axis is polar, with more growth arising from either the proximal or the distal end; dispersed with no apparent polarity; or bidirectional, with more growth contributed by the central region and less growth at either end. We further demonstrate that the expression gradient of the miR396-GROWTH-REGULATING FACTOR module strongly correlates with the polarity of leaf growth. Altering the endogenous pattern of miR396 expression in transgenic Arabidopsis thaliana leaves only partially modified the spatial pattern of cell expansion, suggesting that the diverse growth polarities might have evolved via concerted changes in multiple gene regulatory networks. © 2015 American Society of Plant Biologists. All rights reserved.

  13. Growth hormone deficiency - children

    MedlinePlus

    ... be done include: Insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 3 ( ... C, et al. Guidelines for growth hormone and insulin-like growth factor-I treatment in children and adolescents: growth hormone deficiency, ...

  14. Urban growth management and ecological sustainability: confronting the "smart growth" fallacy

    Treesearch

    Gabor Zovanyi

    2005-01-01

    Growth management and Smart Growth initiatives in the United States represent an ongoing process of growth accommodation. Because growth by definition constitutes unsustainable behavior in that it is incapable of being continued or maintained indefinitely, ongoing growth accommodation must be recognized as activity incongruous with advancing the goal of ecological...

  15. Endocrinological control of growth.

    PubMed

    Sizonenko, P C

    1978-01-01

    Many endocrinological factors control cellular growth of different tissues (cell multiplication and cell volume) and skeletal growth. The role of neuro-transmitters and of hypothalamic releasing and inhibiting factors of growth hormone secretion will be reviewed. The importance of the somatomedins on cartilage growth will be stressed. Thyroid hormones, androgens, and oestrogens have important stimulating actions on skeletal growth and maturation. Conversely, glucocorticoids have an important inhibitory effect on growth. The precise roles of these hormone factors in the regulation of growth hormone secretion, somatomedin production and tissue growth, particularly the cartilage, remain to be completely elucidated.

  16. Liquid phase heteroepitaxial growth on convex substrate using binary phase field crystal model

    NASA Astrophysics Data System (ADS)

    Lu, Yanli; Zhang, Tinghui; Chen, Zheng

    2018-06-01

    The liquid phase heteroepitaxial growth on convex substrate is investigated with the binary phase field crystal (PFC) model. The paper aims to focus on the transformation of the morphology of epitaxial films on convex substrate with two different radiuses of curvature (Ω) as well as influences of substrate vicinal angles on films growth. It is found that films growth experience different stages on convex substrate with different radiuses of curvature (Ω). For Ω = 512 Δx , the process of epitaxial film growth includes four stages: island coupled with layer-by-layer growth, layer-by-layer growth, island coupled with layer-by-layer growth, layer-by-layer growth. For Ω = 1024 Δx , film growth only experience islands growth and layer-by-layer growth. Also, substrate vicinal angle (π) is an important parameter for epitaxial film growth. We find the film can grow well when π = 2° for Ω = 512 Δx , while the optimized film can be obtained when π = 4° for Ω = 512 Δx .

  17. Growth Charts for Prader-Willi Syndrome During Growth Hormone Treatment

    PubMed Central

    Butler, Merlin G.; Lee, Jaehoon; Cox, Devin M.; Manzardo, Ann M.; Gold, June-Anne; Miller, Jennifer L.; Roof, Elizabeth; Dykens, Elisabeth; Kimonis, Virginia; Driscoll, Daniel J.

    2018-01-01

    The purpose of the current study was to develop syndrome-specific standardized growth curves for growth hormone–treated Prader-Willi syndrome (PWS) individuals aged 0 to 18 years. Anthropometric growth-related measures were obtained on 171 subjects with PWS who were treated with growth hormone for at least 40% of their lifespan. They had no history of scoliosis. PWS standardized growth curves were developed for 7 percentile ranges using the LMS method for weight, height, head circumference, weight/length, and BMI along with normative 3rd, 50th, and 97th percentiles plotted using control data from the literature and growth databases. Percentiles were plotted on growth charts for comparison purposes. Growth hormone treatment appears to normalize stature and markedly improves weight in PWS compared with standardized curves for non–growth hormone–treated PWS individuals. Growth chart implications and recommended usage are discussed. PMID:26842920

  18. Seasonal variations in ectotherm growth rates: Quantifying growth as an intermittent non steady state compensatory process

    USGS Publications Warehouse

    Guarini, J.-M.; Chauvaud, Laurent; Cloern, J.E.; Clavier, J.; Coston-Guarini, J.; Patry, Y.

    2011-01-01

    Generally, growth rates of living organisms are considered to be at steady state, varying only under environmental forcing factors. For example, these rates may be described as a function of light for plants or organic food resources for animals and these could be regulated (or not) by temperature or other conditions. But, what are the consequences for an individual's growth (and also for the population growth) if growth rate variations are themselves dynamic and not steady state? For organisms presenting phases of dormancy or long periods of stress, this is a crucial question. A dynamic perspective for quantifying short-term growth was explored using the daily growth record of the scallop Pecten maximus (L.). This species is a good biological model for ectotherm growth because the shell records growth striae daily. Independently, a generic mathematical function representing the dynamics of mean daily growth rate (MDGR) was implemented to simulate a diverse set of growth patterns. Once the function was calibrated with the striae patterns, the growth rate dynamics appeared as a forced damped oscillation during the growth period having a basic periodicity during two transitory phases (mean duration 43. days) and appearing at both growth start and growth end. This phase is most likely due to the internal dynamics of energy transfer within the organism rather than to external forcing factors. After growth restart, the transitory regime represents successive phases of over-growth and regulation. This pattern corresponds to a typical representation of compensatory growth, which from an evolutionary perspective can be interpreted as an adaptive strategy to coping with a fluctuating environment. ?? 2011 Elsevier B.V.

  19. Direct observation of morphological evolution of a catalyst during carbon nanotube forest growth: new insights into growth and growth termination

    NASA Astrophysics Data System (ADS)

    Jeong, Seojeong; Lee, Jaegeun; Kim, Hwan-Chul; Hwang, Jun Yeon; Ku, Bon-Cheol; Zakharov, Dmitri N.; Maruyama, Benji; Stach, Eric A.; Kim, Seung Min

    2016-01-01

    In this study, we develop a new methodology for transmission electron microscopy (TEM) analysis that enables us to directly investigate the interface between carbon nanotube (CNT) arrays and the catalyst and support layers for CNT forest growth without any damage induced by a post-growth TEM sample preparation. Using this methodology, we perform in situ and ex situ TEM investigations on the evolution of the morphology of the catalyst particles and observe the catalyst particles to climb up through CNT arrays during CNT forest growth. We speculate that the lifted catalysts significantly affect the growth and growth termination of CNT forests along with Ostwald ripening and sub-surface diffusion. Thus, we propose a modified growth termination model which better explains various phenomena related to the growth and growth termination of CNT forests.In this study, we develop a new methodology for transmission electron microscopy (TEM) analysis that enables us to directly investigate the interface between carbon nanotube (CNT) arrays and the catalyst and support layers for CNT forest growth without any damage induced by a post-growth TEM sample preparation. Using this methodology, we perform in situ and ex situ TEM investigations on the evolution of the morphology of the catalyst particles and observe the catalyst particles to climb up through CNT arrays during CNT forest growth. We speculate that the lifted catalysts significantly affect the growth and growth termination of CNT forests along with Ostwald ripening and sub-surface diffusion. Thus, we propose a modified growth termination model which better explains various phenomena related to the growth and growth termination of CNT forests. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05547d

  20. Catch-up Growth: Cellular and Molecular Mechanisms

    PubMed Central

    Finkielstain, GP; Lui, JC; Baron, J

    2012-01-01

    In mammals, after a period of growth inhibition, body growth often does not just return to a normal rate but actually exceeds the normal rate, resulting in catch-up growth. Recent evidence suggests that catch-up growth occurs because growth-inhibiting conditions delay progression of the physiological mechanisms that normally cause body growth to slow and cease with age. As a result, following the period of growth inhibition, tissues retain a greater proliferative capacity than normal, and therefore grow more rapidly than normal for age. There is evidence that this mechanism contributes both to catch-up growth in terms of body length, which involves proliferation in the growth plate, and to catch-up growth in terms of organ mass, which involves proliferation in multiple non-skeletal tissues. PMID:23428687

  1. Growth factors and chronic wound healing: past, present, and future.

    PubMed

    Goldman, Robert

    2004-01-01

    Growth substances (cytokines and growth factors) are soluble signaling proteins affecting the process of normal wound healing. Cytokines govern the inflammatory phase that clears cellular and extracellular matrix debris. Wound repair is controlled by growth factors (platelet-derived growth factor [PDGF], keratinocyte growth factor, and transforming growth factor beta). Endogenous growth factors communicate across the dermal-epidermal interface. PDGF is important for most phases of wound healing. Becaplermin (PDGF-BB), the only growth factor approved by the Food and Drug Administration, requires daily application for neuropathic wound healing. Gene therapy is under development for more efficient growth factor delivery; a single application will induce constitutive growth factor expression for weeks. Based on dramatic preclinical animal studies, a phase 1 clinical trial planned on a PDGF genetic construct appears promising.

  2. Placental weight and birth weight to placental weight ratio in monochorionic and dichorionic growth-restricted and non-growth-restricted twins

    PubMed Central

    Souza, Mariângela Alves; de Lourdes Brizot, Maria; Biancolin, Sckarlet Ernandes; Schultz, Regina; de Carvalho, Mário Henrique Burlacchini; Francisco, Rossana Pulcineli Vieira; Zugaib, Marcelo

    2017-01-01

    OBJECTIVE: The aim of the present study was to compare the placental weight and birth weight/placental weight ratio for intrauterine growth-restricted and non-intrauterine growth-restricted monochorionic and dichorionic twins. METHODS: This was a retrospective analysis of placentas from twin pregnancies. Placental weight and the birth weight/placental weight ratio were compared in intrauterine growth-restricted and non-intrauterine growth-restricted monochorionic and dichorionic twins. The association between cord insertion type and placental lesions in intrauterine growth-restricted and non-intrauterine growth-restricted monochorionic and dichorionic twins was also investigated. RESULTS: A total of 105 monochorionic (intrauterine growth restriction=40; non-intrauterine growth restriction=65) and 219 dichorionic (intrauterine growth restriction=57; non-intrauterine growth restriction=162) placentas were analyzed. A significantly lower placental weight was observed in intrauterine growth-restricted monochorionic (p=0.022) and dichorionic (p<0.001) twins compared to non-intrauterine growth-restricted twins. There was no difference in the birth weight/placental weight ratio between the intrauterine growth restriction and non-intrauterine growth restriction groups for either monochorionic (p=0.36) or dichorionic (p=0.68) twins. Placental weight and the birth weight/placental weight ratio were not associated with cord insertion type or with placental lesions. CONCLUSION: Low placental weight, and consequently reduced functional mass, appears to be involved in fetal growth restriction in monochorionic and dichorionic twins. The mechanism by which low placental weight influences the birth weight/placental weight ratio in intrauterine growth-restricted monochorionic and dichorionic twins needs to be determined in larger prospective studies. PMID:28591337

  3. Step-Growth Polymerization.

    ERIC Educational Resources Information Center

    Stille, J. K.

    1981-01-01

    Following a comparison of chain-growth and step-growth polymerization, focuses on the latter process by describing requirements for high molecular weight, step-growth polymerization kinetics, synthesis and molecular weight distribution of some linear step-growth polymers, and three-dimensional network step-growth polymers. (JN)

  4. In search of average growth: describing within-year oral reading fluency growth across Grades 1-8.

    PubMed

    Nese, Joseph F T; Biancarosa, Gina; Cummings, Kelli; Kennedy, Patrick; Alonzo, Julie; Tindal, Gerald

    2013-10-01

    Measures of oral reading fluency (ORF) are perhaps the most often used assessment to monitor student progress as part of a response to intervention (RTI) model. Rates of growth in research and aim lines in practice are used to characterize student growth; in either case, growth is generally defined as linear, increasing at a constant rate. Recent research suggests ORF growth follows a nonlinear trajectory, but limitations related to the datasets used in such studies, composed of only three testing occasions, curtails their ability to examine the true functional form of ORF growth. The purpose of this study was to model within-year ORF growth using up to eight testing occasions for 1448 students in Grades 1 to 8 to assess (a) the average growth trajectory for within-year ORF growth, (b) whether students vary significantly in within-year ORF growth, and (c) the extent to which findings are consistent across grades. Results demonstrated that for Grades 1 to 7, a quadratic growth model fit better than either linear or cubic growth models, and for Grade 8, there was no substantial, stable growth. Findings suggest that the expectation for linear growth currently used in practice may be unrealistic. Copyright © 2013 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  5. CASSIA--a dynamic model for predicting intra-annual sink demand and interannual growth variation in Scots pine.

    PubMed

    Schiestl-Aalto, Pauliina; Kulmala, Liisa; Mäkinen, Harri; Nikinmaa, Eero; Mäkelä, Annikki

    2015-04-01

    The control of tree growth vs environment by carbon sources or sinks remains unresolved although it is widely studied. This study investigates growth of tree components and carbon sink-source dynamics at different temporal scales. We constructed a dynamic growth model 'carbon allocation sink source interaction' (CASSIA) that calculates tree-level carbon balance from photosynthesis, respiration, phenology and temperature-driven potential structural growth of tree organs and dynamics of stored nonstructural carbon (NSC) and their modifying influence on growth. With the model, we tested hypotheses that sink demand explains the intra-annual growth dynamics of the meristems, and that the source supply is further needed to explain year-to-year growth variation. The predicted intra-annual dimensional growth of shoots and needles and the number of cells in xylogenesis phases corresponded with measurements, whereas NSC hardly limited the growth, supporting the first hypothesis. Delayed GPP influence on potential growth was necessary for simulating the yearly growth variation, indicating also at least an indirect source limitation. CASSIA combines seasonal growth and carbon balance dynamics with long-term source dynamics affecting growth and thus provides a first step to understanding the complex processes regulating intra- and interannual growth and sink-source dynamics. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  6. The Uniform Pattern of Growth and Skeletal Maturation during the Human Adolescent Growth Spurt.

    PubMed

    Sanders, James O; Qiu, Xing; Lu, Xiang; Duren, Dana L; Liu, Raymond W; Dang, Debbie; Menendez, Mariano E; Hans, Sarah D; Weber, David R; Cooperman, Daniel R

    2017-12-01

    Humans are one of the few species undergoing an adolescent growth spurt. Because children enter the spurt at different ages making age a poor maturity measure, longitudinal studies are necessary to identify the growth patterns and identify commonalities in adolescent growth. The standard maturity determinant, peak height velocity (PHV) timing, is difficult to estimate in individuals due to diurnal, postural, and measurement variation. Using prospective longitudinal populations of healthy children from two North American populations, we compared the timing of the adolescent growth spurt's peak height velocity to normalized heights and hand skeletal maturity radiographs. We found that in healthy children, the adolescent growth spurt is standardized at 90% of final height with similar patterns for children of both sexes beginning at the initiation of the growth spurt. Once children enter the growth spurt, their growth pattern is consistent between children with peak growth at 90% of final height and skeletal maturity closely reflecting growth remaining. This ability to use 90% of final height as easily identified important maturity standard with its close relationship to skeletal maturity represents a significant advance allowing accurate prediction of future growth for individual children and accurate maturity comparisons for future studies of children's growth.

  7. Contribution of Schedule Delays to Cost Growth: How to Make Peace with a Marching Army

    NASA Technical Reports Server (NTRS)

    Majerowicz, Walt; Bitten, Robert; Emmons, Debra; Shinn, Stephen A.

    2016-01-01

    Numerous research papers have shown that cost and schedule growth are interrelated for NASA space science missions. Although there has shown to be a strong correlation of cost growth with schedule growth, it is unclear what percentage of cost growth is caused by schedule growth and how schedule growth can be controlled. This paper attempts to quantify this percentage by looking at historical data and show detailed examples of how schedule growth influences cost growth. The paper also addresses a methodology to show an alternate approach for assessing and setting a robust baseline schedule and use schedule performance metrics to help assess if the project is performing to plan. Finally, recommendations are presented to help control schedule growth in order to minimize cost growth for NASA space science missions.

  8. Axon growth regulation by a bistable molecular switch.

    PubMed

    Padmanabhan, Pranesh; Goodhill, Geoffrey J

    2018-04-25

    For the brain to function properly, its neurons must make the right connections during neural development. A key aspect of this process is the tight regulation of axon growth as axons navigate towards their targets. Neuronal growth cones at the tips of developing axons switch between growth and paused states during axonal pathfinding, and this switching behaviour determines the heterogeneous axon growth rates observed during brain development. The mechanisms controlling this switching behaviour, however, remain largely unknown. Here, using mathematical modelling, we predict that the molecular interaction network involved in axon growth can exhibit bistability, with one state representing a fast-growing growth cone state and the other a paused growth cone state. Owing to stochastic effects, even in an unchanging environment, model growth cones reversibly switch between growth and paused states. Our model further predicts that environmental signals could regulate axon growth rate by controlling the rates of switching between the two states. Our study presents a new conceptual understanding of growth cone switching behaviour, and suggests that axon guidance may be controlled by both cell-extrinsic factors and cell-intrinsic growth regulatory mechanisms. © 2018 The Author(s).

  9. A Finite Element Model for Mixed Porohyperelasticity with Transport, Swelling, and Growth.

    PubMed

    Armstrong, Michelle Hine; Buganza Tepole, Adrián; Kuhl, Ellen; Simon, Bruce R; Vande Geest, Jonathan P

    2016-01-01

    The purpose of this manuscript is to establish a unified theory of porohyperelasticity with transport and growth and to demonstrate the capability of this theory using a finite element model developed in MATLAB. We combine the theories of volumetric growth and mixed porohyperelasticity with transport and swelling (MPHETS) to derive a new method that models growth of biological soft tissues. The conservation equations and constitutive equations are developed for both solid-only growth and solid/fluid growth. An axisymmetric finite element framework is introduced for the new theory of growing MPHETS (GMPHETS). To illustrate the capabilities of this model, several example finite element test problems are considered using model geometry and material parameters based on experimental data from a porcine coronary artery. Multiple growth laws are considered, including time-driven, concentration-driven, and stress-driven growth. Time-driven growth is compared against an exact analytical solution to validate the model. For concentration-dependent growth, changing the diffusivity (representing a change in drug) fundamentally changes growth behavior. We further demonstrate that for stress-dependent, solid-only growth of an artery, growth of an MPHETS model results in a more uniform hoop stress than growth in a hyperelastic model for the same amount of growth time using the same growth law. This may have implications in the context of developing residual stresses in soft tissues under intraluminal pressure. To our knowledge, this manuscript provides the first full description of an MPHETS model with growth. The developed computational framework can be used in concert with novel in-vitro and in-vivo experimental approaches to identify the governing growth laws for various soft tissues.

  10. A Finite Element Model for Mixed Porohyperelasticity with Transport, Swelling, and Growth

    PubMed Central

    Armstrong, Michelle Hine; Buganza Tepole, Adrián; Kuhl, Ellen; Simon, Bruce R.; Vande Geest, Jonathan P.

    2016-01-01

    The purpose of this manuscript is to establish a unified theory of porohyperelasticity with transport and growth and to demonstrate the capability of this theory using a finite element model developed in MATLAB. We combine the theories of volumetric growth and mixed porohyperelasticity with transport and swelling (MPHETS) to derive a new method that models growth of biological soft tissues. The conservation equations and constitutive equations are developed for both solid-only growth and solid/fluid growth. An axisymmetric finite element framework is introduced for the new theory of growing MPHETS (GMPHETS). To illustrate the capabilities of this model, several example finite element test problems are considered using model geometry and material parameters based on experimental data from a porcine coronary artery. Multiple growth laws are considered, including time-driven, concentration-driven, and stress-driven growth. Time-driven growth is compared against an exact analytical solution to validate the model. For concentration-dependent growth, changing the diffusivity (representing a change in drug) fundamentally changes growth behavior. We further demonstrate that for stress-dependent, solid-only growth of an artery, growth of an MPHETS model results in a more uniform hoop stress than growth in a hyperelastic model for the same amount of growth time using the same growth law. This may have implications in the context of developing residual stresses in soft tissues under intraluminal pressure. To our knowledge, this manuscript provides the first full description of an MPHETS model with growth. The developed computational framework can be used in concert with novel in-vitro and in-vivo experimental approaches to identify the governing growth laws for various soft tissues. PMID:27078495

  11. Growth velocity in constitutional delay of growth and development.

    PubMed

    Butenandt, Otfrid; Kunze, Detlef

    2010-01-01

    Growth velocity was determined in 121 boys and 58 girls with constitutional delay of growth and development (CDGD) of familial origin. No data were included from patients suffering from growth hormone insufficiency (i.e. neurosecretory dysfunction for growth hormone) or any disease. From 479 values obtained in boys and 230 values obtained in girls the 25th, 50th and 75th percentiles were calculated. The mean growth velocity in children and adolescents with CDGD before the beginning of puberty was lower than the mean growth velocity of other European (British, German or Swiss) standards. Specific data of growth velocity should be used in patients with CDGD since population-based data may underestimate the normal growth velocity of these patients.

  12. Changing Relationship Growth Belief: Intrapersonal and Interpersonal Consequences of Compassionate Goals

    PubMed Central

    Canevello, Amy; Crocker, Jennifer

    2010-01-01

    The belief that difficulties can lead to growth in relationships, or growth belief, has consequences for relationships (e.g., Knee, 1998). But what predicts change in this belief? We hypothesized that compassionate goals to support others (Crocker & Canevello, 2008) predict increased growth belief through increased need satisfaction. In Study 1, 199 college freshmen reported their friendship growth belief and goals. In Study 2, 65 roommate pairs reported their roommate growth belief, goals, and need satisfaction. Across studies, compassionate goals predicted increased growth belief. In Study 2, goals predicted increased perceived mutual need satisfaction, which predicted increased growth belief. Additionally, partners’ compassionate goals predicted actors’ increased growth belief. Results suggest that growth beliefs are shaped by goals – own and others’. PMID:21949478

  13. A generalized theory of thin film growth

    NASA Astrophysics Data System (ADS)

    Du, Feng; Huang, Hanchen

    2018-03-01

    This paper reports a theory of thin film growth that is generalized for arbitrary incidence angle during physical vapor deposition in two dimensions. The accompanying kinetic Monte Carlo simulations serve as verification. A special theory already exists for thin film growth with zero incidence angle, and another theory also exists for nanorod growth with a glancing angle. The theory in this report serves as a bridge to describe the transition from thin film growth to nanorod growth. In particular, this theory gives two critical conditions in analytical form of critical coverage, ΘI and ΘII. The first critical condition defines the onset when crystal growth or step dynamics stops following the wedding cake model for thin film growth. The second critical condition defines the onset when multiple-layer surface steps form to enable nanorod growth. Further, this theory also reveals a critical incidence angle, below which nanorod growth is impossible. The critical coverages, together with the critical incidence angle, defines a phase diagram of thin growth versus nanorod growth.

  14. Fibroblast Growth Factors Stimulate Hair Growth through β-Catenin and Shh Expression in C57BL/6 Mice

    PubMed Central

    Lin, Wei-hong; Xiang, Li-Jun; Shi, Hong-Xue; Zhang, Jian; Jiang, Li-ping; Cai, Ping-tao; Lin, Zhen-Lang; Lin, Bei-Bei; Huang, Yan; Zhang, Hai-Lin; Fu, Xiao-Bing; Guo, Ding-Jiong; Li, Xiao-Kun; Wang, Xiao-Jie; Xiao, Jian

    2015-01-01

    Growth factors are involved in the regulation of hair morphogenesis and cycle hair growth. The present study sought to investigate the hair growth promoting activities of three approved growth factor drugs, fibroblast growth factor 10 (FGF-10), acidic fibroblast growth factor (FGF-1), and basic fibroblast growth factor (FGF-2), and the mechanism of action. We observed that FGFs promoted hair growth by inducing the anagen phase in telogenic C57BL/6 mice. Specifically, the histomorphometric analysis data indicates that topical application of FGFs induced an earlier anagen phase and prolonged the mature anagen phase, in contrast to the control group. Moreover, the immunohistochemical analysis reveals earlier induction of β-catenin and Sonic hedgehog (Shh) in hair follicles of the FGFs-treated group. These results suggest that FGFs promote hair growth by inducing the anagen phase in resting hair follicles and might be a potential hair growth-promoting agent. PMID:25685806

  15. Regulation of body growth by microRNAs.

    PubMed

    Lui, Julian C

    2017-11-15

    Regulation of body growth remains a fascinating and unresolved biological mystery. One key component of body growth is skeletal and longitudinal bone growth. Children grow taller because their bones grew longer, and the predominant driver of longitudinal bone growth is a cartilaginous structure found near the ends of long bone named the growth plate. Numerous recent studies have started to unveil the importance of microRNAs in regulation of growth plate functions, therefore contributing to regulation of linear growth. In addition to longitudinal growth, other organs in our body need to increase in size and cell number as we grow, and the regulation of organ growth involves both systemic factors like hormones; and other intrinsic mechanisms, which we are just beginning to understand. This review aims to summarize some recent important findings on how microRNAs are involved in both of these processes: the regulation of longitudinal bone growth, and the regulation of organs and overall body growth. Published by Elsevier B.V.

  16. Long-term growth trends of red spruce and fraser fir at Mt. Rogers, Virginia and Mt. Mitchell, North Carolina

    Treesearch

    J.C.G. Goelz; Thomas E. Burk; Shepard M. Zedaker

    1999-01-01

    Cross-sectional area growth and height growth of Fraser fir and red spruce trees growing in Virginia and North Carolina were analyzed to identify possible long-term growth trends. Cross-sectional area growth provided no evidence of growth decline. The individual discs were classified according to parameter estimates of the growth trend equation. The predominant pattern...

  17. Growth Hormone Studies in Growth Retardation—Therapeutic Response to Administration of Androgen

    PubMed Central

    Deller, John J.; Plunket, Daniel C.; Forsham, Peter H.

    1966-01-01

    Growth hormone assays were performed before and after androgen administration in a 12-year-old boy with unexplained growth retardation. A subnormal growth hormone secretion in response to a standard hypoglycemic stimulus was demonstrated, and it was corrected by androgen pretreatment. After that, a normal serum growth hormone level and a temporary growth spurt were demonstrated. ImagesFigure 1. PMID:5942009

  18. Silicon dendritic web growth

    NASA Technical Reports Server (NTRS)

    Duncan, S.

    1984-01-01

    Technological goals for a silicon dendritic web growth program effort are presented. Principle objectives for this program include: (1) grow long web crystals front continuously replenished melt; (2) develop temperature distribution in web and melt; (3) improve reproductibility of growth; (4) develop configurations for increased growth rates (width and speed); (5) develop new growth system components as required for improved growth; and (6) evaluate quality of web growth.

  19. Modeling Math Growth Trajectory--An Application of Conventional Growth Curve Model and Growth Mixture Model to ECLS K-5 Data

    ERIC Educational Resources Information Center

    Lu, Yi

    2016-01-01

    To model students' math growth trajectory, three conventional growth curve models and three growth mixture models are applied to the Early Childhood Longitudinal Study Kindergarten-Fifth grade (ECLS K-5) dataset in this study. The results of conventional growth curve model show gender differences on math IRT scores. When holding socio-economic…

  20. Fibroblast Growth Factor 2: An Epithelial Ductal Cell Growth Inhibitor That Drops Out in Breast Cancer

    DTIC Science & Technology

    2009-10-01

    AD_________________ Award Number: W81XWH-08-1-0708 TITLE: Fibroblast Growth Factor 2: an...September 2008 – 14 September 2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fibroblast Growth Factor 2: an Epithelial Ductal Cell Growth Inhibitor...9 Fibroblast Growth Factor -2: an Epithelial Ductal Cell Growth Inhibitor that Drops Out in Breast Cancer

  1. Intercellular signaling pathways active during and after growth and differentiation of the lumbar vertebral growth plate.

    PubMed

    Dahia, Chitra Lekha; Mahoney, Eric J; Durrani, Atiq A; Wylie, Christopher

    2011-06-15

    Vertebral growth plates at different postnatal ages were assessed for active intercellular signaling pathways. To generate a spatial and temporal map of the major signaling pathways active in the postnatal mouse lumbar vertebral growth plate. The growth of all long bones is known to occur by cartilaginous growth plates. The growth plate is composed of layers of chondrocyets that actively proliferate, differentiate, die and, are replaced by bone. The role of major cell signaling pathways has been suggested for regulation of the fetal long bones. But not much is known about the molecular or cellular signals that control the postnatal vertebral growth plate and hence postnatal vertebral bone growth. Understanding such molecular mechanisms will help design therapeutic treatments for vertebral growth disorders such as scoliosis. Antibodies against activated downstream intermediates were used to identify cells in the growth plate responding to BMP, TGFβ, and FGF in cryosections of lumbar vertebrae from different postnatal age mice to identify the zones that were responding to these signals. Reporter mice were used to identify the chondrocytes responding to hedgehog (Ihh), and Wnt signaling. We present a spatial/temporal map of these signaling pathways during growth, and differentiation of the mouse lumbar vertebral growth plate. During growth and differentiation of the vertebral growth plate, its different components respond at different times to different intercellular signaling ligands. Response to most of these signals is dramatically downregulated at the end of vertebral growth.

  2. Self-reflection, growth goals, and academic outcomes: A qualitative study.

    PubMed

    Travers, Cheryl J; Morisano, Dominique; Locke, Edwin A

    2015-06-01

    Goal-setting theory continues to be among the most popular and influential theories of motivation and performance, although there have been limited academic applications relative to applications in other domains, such as organizational psychology. This paper summarizes existing quantitative research and then employs a qualitative approach to exploring academic growth via an in-depth reflective growth goal-setting methodology. The study focuses on 92 UK final-year students enrolled in an elective advanced interpersonal skills and personal development module, with self-reflection and growth goal setting at its core. Qualitative data in the form of regular reflective written diary entries and qualitative questionnaires were collected from students during, on completion of, and 6 months following the personal growth goal-setting programme. About 20% of students' self-set growth goals directly related to academic growth and performance; students reported that these had a strong impact on their achievement both during and following the reflective programme. Growth goals that were indirectly related to achievement (e.g., stress management) appeared to positively impact academic growth and other outcomes (e.g., well-being). A follow-up survey revealed that growth goal setting continued to impact academic growth factors (e.g., self-efficacy, academic performance) beyond the reflective programme itself. Academic growth can result from both academically direct and indirect growth goals, and growth goal setting appears to be aided by the process of simultaneous growth reflection. The implications for promoting academic growth via this unique learning and development approach are discussed. © 2014 The British Psychological Society.

  3. Protein crystal growth; Proceedings of the First International Conference, Stanford University, CA, August 14-16, 1985

    NASA Technical Reports Server (NTRS)

    Feigelson, R. S. (Editor)

    1986-01-01

    Papers are presented on mechanisms of nucleation and growth of protein crystals, the role of purification in the crystallization of proteins and nucleic acids, and the effect of chemical impurities in polyethylene glycol on macromolecular crystallization. Also considered are growth kinetics of tetragonal lysozyme crystals, thermodynamic and kinetic considerations for crystal growth of complex molecules from solution, protein single-crystal growth under microgravity, and growth of organic crystals in a microgravity environment. Papers are also presented on preliminary investigations of protein crystal growth using the Space Shuttle, convective diffusion in protein crystal growth, and the growth and characterization of membrane protein crystals.

  4. Correlates of posttraumatic growth in survivors of intimate partner violence.

    PubMed

    Cobb, Amanda R; Tedeschi, Richard G; Calhoun, Lawrence G; Cann, Arnie

    2006-12-01

    The negative consequences of intimate partner violence are well documented. This study investigated the possibility that some survivors of intimate partner violence may also experience posttraumatic growth because of their struggle with this highly stressful circumstance. In addition, the relationships between posttraumatic growth and relationship status, type of abuse, depression, and availability of models of posttraumatic growth were examined. Most women reported posttraumatic growth. Overall abuse experienced and depression were unrelated to posttraumatic growth, but abuse was related to one domain of growth. Contact with a model of posttraumatic growth and having left an abusive relationship were both positively related to posttraumatic growth.

  5. Fibroblast growth factor receptors in breast cancer.

    PubMed

    Wang, Shuwei; Ding, Zhongyang

    2017-05-01

    Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.

  6. Is Decoupling GDP Growth from Environmental Impact Possible?

    PubMed

    Ward, James D; Sutton, Paul C; Werner, Adrian D; Costanza, Robert; Mohr, Steve H; Simmons, Craig T

    2016-01-01

    The argument that human society can decouple economic growth-defined as growth in Gross Domestic Product (GDP)-from growth in environmental impacts is appealing. If such decoupling is possible, it means that GDP growth is a sustainable societal goal. Here we show that the decoupling concept can be interpreted using an easily understood model of economic growth and environmental impact. The simple model is compared to historical data and modelled projections to demonstrate that growth in GDP ultimately cannot be decoupled from growth in material and energy use. It is therefore misleading to develop growth-oriented policy around the expectation that decoupling is possible. We also note that GDP is increasingly seen as a poor proxy for societal wellbeing. GDP growth is therefore a questionable societal goal. Society can sustainably improve wellbeing, including the wellbeing of its natural assets, but only by discarding GDP growth as the goal in favor of more comprehensive measures of societal wellbeing.

  7. Growth factors and myometrium: biological effects in uterine fibroid and possible clinical implications

    PubMed Central

    Ciarmela, Pasquapina; Islam, Md. Soriful; Reis, Fernando M.; Gray, Peter C.; Bloise, Enrrico; Petraglia, Felice; Vale, Wylie; Castellucci, Mario

    2011-01-01

    BACKGROUND Growth factors are proteins secreted by a number of cell types that are capable of modulating cellular growth, proliferation and cellular differentiation. It is well accepted that uterine cellular events such as proliferation and differentiation are regulated by sex steroids and their actions in target tissues are mediated by local production of growth factors acting through paracrine and/or autocrine mechanisms. Myometrial mass is ultimately modified in pregnancy as well as in tumour conditions such as leiomyoma and leiomyosarcoma. Leiomyomas, also known as fibroids, are benign tumours of the uterus, considered to be one of the most frequent causes of infertility in reproductive years in women. METHODS For this review, we searched the database MEDLINE and Google Scholar for articles with content related to growth factors acting on myometrium; the findings are hereby reviewed and discussed. RESULTS Different growth factors such as epidermal growth factor (EGF), transforming growth factor-α (TGF-α), heparin-binding EGF (HB-EGF), acidic fibroblast growth factor (aFGF), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet-derived growth factor (PDGF) and TGF-β perform actions in myometrium and in leiomyomas. In addition to these growth factors, activin and myostatin have been recently identified in myometrium and leiomyoma. CONCLUSIONS Growth factors play an important role in the mechanisms involved in myometrial patho-physiology. PMID:21788281

  8. Effects of silvicultultural modifications of temperate rainforest on breeding and wintering bird communities, Prince of Wales Island, southeast Alaska

    USGS Publications Warehouse

    Dellasala, Dominick A.; Hagar, Joan C.; Engel, Kathleen A.; McComb, W.C.; Fairbanks, Randal L.; Campbell, Ellen G.

    1996-01-01

    We inventoried breeding and wintering bird communities in four treatments of temperate rainforest on Prince of Wales Island, southeast Alaska during 1991-1992 and 1992-1993. The four forest treatments sampled included: (1) young growth (20 years) originating from clearcut logging with no silvicultural modification (non-modified), (2) young growth (20 years) precommercially thinned along uniformly-spaced thinning grids (thinned), (3) young growth (20 years) with gaps in the overstory canopy created by felling trees in 0.05-ha openings (gapped), and (4) virgin old growth (2 150 years). Of 16 common breeding bird species observed, six showed significant responses to young-growth modifications. One species was more abundant and two species were less abundant in thinned sites, while one species was more abundant and two species were less abundant in gapped sites than at least one of the other treatments. None of the three common wintering species of birds observed was influenced by young-growth modification. Breeding bird communities, in general, were less similar between young- and old-growth treatments than among young-growth treatments. Three of the 16 common breeding bird species were more abundant in old growth than each of the young-growth treatments and one uncommon species was detected almost exclusivelyi n old growth duringb oth the breedinga nd wintering seasonsF. our other breeding bird species were more abundant in young-growth treatments than in old growth. Higher use of old growth by wintering birds was related to winter severity. To enhance habitat for wintering and breeding birds we recommend: (1) thinning young growth along variablespaced grids to create additional canopy layers and improve snow-intercept properties of young growth for canopy-foraging birds, (2) retention of old-growth clumps in clearcuts for bird species associated with old-growth structure, and (3) long-term conservation of oldgrowth temperate rainforest for breeding and wintering birds positively associated with old growth.

  9. Growth and yield of Giant Sequoia

    Treesearch

    David J. Dulitz

    1986-01-01

    Very little information exists concerning growth and yield of giant sequoia (Sequoiadendron giganteum [Lindl.] Buchholz). For old-growth trees, diameter growth is the single factor adding increment since maximum height has been obtained. Diameter growth averages 0.04 inches per year in normal old-growth trees but will fluctuate with changes in the...

  10. Inclusion free cadmium zinc tellurium and cadmium tellurium crystals and associated growth method

    DOEpatents

    Bolotnikov, Aleskey E [South Setauket, NY; James, Ralph B [Ridge, NY

    2010-07-20

    The present disclosure provides systems and methods for crystal growth of cadmium zinc tellurium (CZT) and cadmium tellurium (CdTe) crystals with an inverted growth reactor chamber. The inverted growth reactor chamber enables growth of single, large, high purity CZT and CdTe crystals that can be used, for example, in X-ray and gamma detection, substrates for infrared detectors, or the like. The inverted growth reactor chamber enables reductions in the presence of Te inclusions, which are recognized as an important limiting factor in using CZT or CdTe as radiation detectors. The inverted growth reactor chamber can be utilized with existing crystal growth techniques such as the Bridgman crystal growth mechanism and the like. In an exemplary embodiment, the inverted growth reactor chamber is a U-shaped ampoule.

  11. The Impact of Accelerating Faster than Exponential Population Growth on Genetic Variation

    PubMed Central

    Reppell, Mark; Boehnke, Michael; Zöllner, Sebastian

    2014-01-01

    Current human sequencing projects observe an abundance of extremely rare genetic variation, suggesting recent acceleration of population growth. To better understand the impact of such accelerating growth on the quantity and nature of genetic variation, we present a new class of models capable of incorporating faster than exponential growth in a coalescent framework. Our work shows that such accelerated growth affects only the population size in the recent past and thus large samples are required to detect the models’ effects on patterns of variation. When we compare models with fixed initial growth rate, models with accelerating growth achieve very large current population sizes and large samples from these populations contain more variation than samples from populations with constant growth. This increase is driven almost entirely by an increase in singleton variation. Moreover, linkage disequilibrium decays faster in populations with accelerating growth. When we instead condition on current population size, models with accelerating growth result in less overall variation and slower linkage disequilibrium decay compared to models with exponential growth. We also find that pairwise linkage disequilibrium of very rare variants contains information about growth rates in the recent past. Finally, we demonstrate that models of accelerating growth may substantially change estimates of present-day effective population sizes and growth times. PMID:24381333

  12. The impact of accelerating faster than exponential population growth on genetic variation.

    PubMed

    Reppell, Mark; Boehnke, Michael; Zöllner, Sebastian

    2014-03-01

    Current human sequencing projects observe an abundance of extremely rare genetic variation, suggesting recent acceleration of population growth. To better understand the impact of such accelerating growth on the quantity and nature of genetic variation, we present a new class of models capable of incorporating faster than exponential growth in a coalescent framework. Our work shows that such accelerated growth affects only the population size in the recent past and thus large samples are required to detect the models' effects on patterns of variation. When we compare models with fixed initial growth rate, models with accelerating growth achieve very large current population sizes and large samples from these populations contain more variation than samples from populations with constant growth. This increase is driven almost entirely by an increase in singleton variation. Moreover, linkage disequilibrium decays faster in populations with accelerating growth. When we instead condition on current population size, models with accelerating growth result in less overall variation and slower linkage disequilibrium decay compared to models with exponential growth. We also find that pairwise linkage disequilibrium of very rare variants contains information about growth rates in the recent past. Finally, we demonstrate that models of accelerating growth may substantially change estimates of present-day effective population sizes and growth times.

  13. Analysing growth and development of plants jointly using developmental growth stages

    PubMed Central

    Dambreville, Anaëlle; Lauri, Pierre-Éric; Normand, Frédéric; Guédon, Yann

    2015-01-01

    Background and Aims Plant growth, the increase of organ dimensions over time, and development, the change in plant structure, are often studied as two separate processes. However, there is structural and functional evidence that these two processes are strongly related. The aim of this study was to investigate the co-ordination between growth and development using mango trees, which have well-defined developmental stages. Methods Developmental stages, determined in an expert way, and organ sizes, determined from objective measurements, were collected during the vegetative growth and flowering phases of two cultivars of mango, Mangifera indica. For a given cultivar and growth unit type (either vegetative or flowering), a multistage model based on absolute growth rate sequences deduced from the measurements was first built, and then growth stages deduced from the model were compared with developmental stages. Key Results Strong matches were obtained between growth stages and developmental stages, leading to a consistent definition of integrative developmental growth stages. The growth stages highlighted growth asynchronisms between two topologically connected organs, namely the vegetative axis and its leaves. Conclusions Integrative developmental growth stages emphasize that developmental stages are closely related to organ growth rates. The results are discussed in terms of the possible physiological processes underlying these stages, including plant hydraulics, biomechanics and carbohydrate partitioning. PMID:25452250

  14. Effects of heparin-binding epidermal growth factor-like growth factor on cell repopulation and signal transduction in periodontal ligament cells after scratch wounding in vitro.

    PubMed

    Lee, J S; Kim, J M; Hong, E K; Kim, S-O; Yoo, Y-J; Cha, J-H

    2009-02-01

    A growing amount of attention has been placed on periodontal regeneration and wound healing for periodontal therapy. This study was conducted in an effort to determine the effects of heparin-binding epidermal growth factor-like growth factor on cell repopulation and signal transduction in periodontal ligament cells after scratch wounding in vitro. Human periodontal ligament cells were acquired from explant tissue of human healthy periodontal ligament. After the wounding of periodontal ligament cells, the change in expression of heparin-binding epidermal growth factor-like growth factor and epidermal growth factor receptors 1-4 mRNA was assessed. The effects of heparin-binding epidermal growth factor-like growth factor on periodontal ligament cell proliferation and repopulation were assessed in vitro via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and by photographing the injuries, respectively. Extracellular signal-regulated kinase (Erk)1/2, p38 and Akt phosphorylation was characterized via western blotting. Scratch wounding resulted in a significant up-regulation of heparin-binding epidermal growth factor-like growth factor mRNA expression, whereas wounding had no effect on the expression levels of epidermal growth factor receptors 1-4. Interestingly, no expression of epidermal growth factor receptors 2 and 4 was detectable prior to or after wounding. Heparin-binding epidermal growth factor-like growth factor treatment promoted the proliferation and repopulation of periodontal ligament cells. The scratch wounding also stimulated the phosphorylation of Erk1/2 and p38, but not of Akt, in periodontal ligament cells, and heparin-binding epidermal growth factor-like growth factor treatment applied after wounding amplified and extended the activations of Erk1/2 and p38, but not of Akt. Furthermore, Erk1/2 inhibition blocked the process of cell repopulation induced by heparin-binding epidermal growth factor-like growth factor, whereas the inhibition of p38 delayed the process. These results indicate that heparin-binding epidermal growth factor-like growth factor may constitute a critical factor in the wound healing of human periodontal ligament cells by a mechanism that requires the activation of Erk1/2 via specific interaction with epidermal growth factor receptor 1.

  15. A preliminary analysis of the effects of bisphenol A on the plant root growth via changes in endogenous plant hormones.

    PubMed

    Li, Xingyi; Wang, Lihong; Wang, Shengman; Yang, Qing; Zhou, Qing; Huang, Xiaohua

    2018-04-15

    Bisphenol A (BPA) is ubiquitous in the environment worldwide, affecting plant growth and development. Endogenous plant hormones serve as switches that regulate plant growth and development. However, plants have different physiological requirements and environmental adaptive capacities during the different growth stages. Here, we investigated the effects of BPA on soybean (Glycine max L.) root growth at the three growth stages and analyzed the mechanisms underlying the effects of BPA on the root growth by assessing changes in endogenous hormone. The results showed that low concentration of BPA (1.5mgL -1 ) improved root growth (except at the seed-filling stage), increased indole-3-acetic acid (IAA) content at the first two growth stages, and increased zeatin (ZT) content and decreased gibberellic acid (GA 3 ) content at the seedling stage. But low concentration of BPA caused decreased ethylene (ETH) contents and constant abscisic acid (ABA) content at all three stages. However, BPA at moderate and high concentrations (6.0 and 12.0mgL -1 ) inhibited root growth, causing the decreased IAA, GA 3 and ETH contents and increased ABA content at all three growth stages. The change degrees of above indices were weakened with prolonging the growth stages. After BPA withdrawal, both the root growth and the hormone contents recovered (with the exception of ZT and ETH), and the recovery degrees had negative correlation with the BPA exposure concentration and had positive correlation with the growth stage. Changes in residual BPA content in the roots were also observed at different BPA concentrations and different growth stages. Our results demonstrated the effects of BPA on root growth were related to BPA-induced changes in hormone, which performed differently at various growth stages. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Response of old-growth conifers to reduction in stand density in western Oregon forests

    USGS Publications Warehouse

    Latham, P.; Tappeiner, J. C.

    2002-01-01

    The positive growth response of healthy young trees to density reduction is well known. In contrast, large old trees are usually thought to be intrinsically limited in their ability to respond to increased growing space; therefore, density reduction is seldom used in stands of old-growth trees. We tested the null hypothesis that old-growth trees are incapable of responding with increased growth following density reduction. The diameter growth response of 271 Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), ponderosa pine (Pinus ponderosa Dougl. ex Laws) and sugar pine (Pinus lambertiana Dougl.) trees ranging in age from 158 to 650 years was examined 20 to 50 years after density reduction. Density reduction involved either light thinning with removal of less vigorous trees, or shelterwood treatments in which overstory trees were not removed. Ratios of basal area growth after treatment to basal area growth before treatment, and several other measures of growth, all indicated that the old trees sometimes benefited and were not harmed by density reduction. Growth increased by 10% or more for 68% of the trees in treated stands, and nearly 30% of trees increased growth by over 50%. This growth response persisted for at least 20 years. During this 20-year period, only three trees in treated stands (1.5%) exhibited a rapid decrease in growth, whereas growth decreased in 64% of trees in untreated stands. The length of time before a growth response to density reduction occurred varied from 5 to 25 years, with the greatest growth response often occurring 20 to 25 years after treatment. These results have important implications both for the basic biology of aging in woody plants as well as for silvicultural practices in forests with old-growth trees.

  17. Contribution of population growth to per capita income and sectoral output growth in Japan, 1880-1970.

    PubMed

    Yamaguchi, M; Kennedy, G

    1984-09-01

    The authors measured the positive and negative contributions of population and labor force growth to the growth of per capita income and sectoral output in Japan in the 1880-1970 period. A 2-sector growth accounting model that treats population and labor growth as separate variables was used. 3 alternative methods were used: the Residual method, the Verdoorn method, and the factor augmenting rate method. The total contribution of population cum labor growth to per capita income growth tended to be negative in the 1880-1930 period and positive in the 1930-40 and 1950-70. Over the 1880-1970 period as a whole, population cum labor growth made a positive contribution to per capita income growth under the Residual method (0.35%/year), the factor augmenting rate method (0.29%/year), and the Verdoorn method (0.01%/year). In addition, population cum labor growth contributed positively to sectoral output growth. The average contribution to agricultural output growth ranged from 1.03% (Verdoorn) - 1.46%/year (factor augmenting rate), while the average contribution to nonagricultural output growth ranged from 1.22% (Verdoorn) - 1.60%/year (Residual). Although these results are dependent on the model used, the fact that all 3 methods yielded consistent results suggests that population cum labor growth did make a positive contribution to per capita income and sectoral output growth in Japan. These findings imply that in economies where the rate of technical change in agricultural and nonagricultural sectors exceeds population growth, policies that reduce agricultural elasticities may be preferable; on the other hand, policies that reduce agricultural elasticities are to be avoided in economies with low rates of technical change. Moreover, in the early stages of economic development, policies that increase agricultural income and price elasticities should be considered.

  18. Selective LPCVD growth of graphene on patterned copper and its growth mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Huang, B.-C.; Wang, Y.; Woo, J. C. S.

    2016-12-01

    Copper-catalyzed graphene low-pressure chemical-vapor deposition (LPCVD) growth has been regarded as a viable solution towards its integration to CMOS technology, and the wafer-bonding method provides a reliable alternative for transferring the selective graphene grown on a patterned metal film for IC manufacturing. In this paper, selective LPCVD graphene growth using patterned copper dots has been studied. The Raman spectra of grown films have demonstrated large dependence on the growth conditions. To explain the results, the growth mechanisms based on surface adsorption and copper-vapor-assisted growth are investigated by the comparison between the blanket copper films with/without the additional copper source. The copper vapor density is found to be critical for high-quality graphene growth. In addition, the copper-vapor-assisted growth is also evidenced by the carbon deposition on the SiO2 substrate of the patterned-copper-dot sample and chamber wall during graphene growth. This growth mechanism explains the correlation between the growth condition and Raman spectrum for films on copper dots. The study on the copper-catalyzed selective graphene growth on the hard substrate paves the way for the synthesis and integration of the 2D material in VLSI.

  19. Control of Growth Rate by Initial Substrate Concentration at Values Below Maximum Rate

    PubMed Central

    Gaudy, Anthony F.; Obayashi, Alan; Gaudy, Elizabeth T.

    1971-01-01

    The hyperbolic relationship between specific growth rate, μ, and substrate concentration, proposed by Monod and used since as the basis for the theory of steady-state growth in continuous-flow systems, was tested experimentally in batch cultures. Use of a Flavobacterium sp. exhibiting a high saturation constant for growth in glucose minimal medium allowed direct measurement of growth rate and substrate concentration throughout the growth cycle in medium containing a rate-limiting initial concentration of glucose. Specific growth rates were also measured for a wide range of initial glucose concentrations. A plot of specific growth rate versus initial substrate concentration was found to fit the hyperbolic equation. However, the instantaneous relationship between specific growth rate and substrate concentration during growth, which is stated by the equation, was not observed. Well defined exponential growth phases were developed at initial substrate concentrations below that required for support of the maximum exponential growth rate and a constant doubling time was maintained until 50% of the substrate had been used. It is suggested that the external substrate concentration initially present “sets” the specific growth rate by establishing a steady-state internal concentration of substrate, possibly through control of the number of permeation sites. PMID:5137579

  20. Insulin-like growth factor I (IGF-1) Ec/Mechano Growth factor--a splice variant of IGF-1 within the growth plate.

    PubMed

    Schlegel, Werner; Raimann, Adalbert; Halbauer, Daniel; Scharmer, Daniela; Sagmeister, Susanne; Wessner, Barbara; Helmreich, Magdalena; Haeusler, Gabriele; Egerbacher, Monika

    2013-01-01

    Human insulin-like growth factor 1 Ec (IGF-1Ec), also called mechano growth factor (MGF), is a splice variant of insulin-like growth factor 1 (IGF-1), which has been shown in vitro as well as in vivo to induce growth and hypertrophy in mechanically stimulated or damaged muscle. Growth, hypertrophy and responses to mechanical stimulation are important reactions of cartilaginous tissues, especially those in growth plates. Therefore, we wanted to ascertain if MGF is expressed in growth plate cartilage and if it influences proliferation of chondrocytes, as it does in musculoskeletal tissues. MGF expression was analyzed in growth plate and control tissue samples from piglets aged 3 to 6 weeks. Furthermore, growth plate chondrocyte cell culture was used to evaluate the effects of the MGF peptide on proliferation. We showed that MGF is expressed in considerable amounts in the tissues evaluated. We found the MGF peptide to be primarily located in the cytoplasm, and in some instances, it was also found in the nucleus of the cells. Addition of MGF peptides was not associated with growth plate chondrocyte proliferation.

  1. Insulin-Like Growth Factor I (IGF-1) Ec/Mechano Growth Factor – A Splice Variant of IGF-1 within the Growth Plate

    PubMed Central

    Schlegel, Werner; Raimann, Adalbert; Halbauer, Daniel; Scharmer, Daniela; Sagmeister, Susanne; Wessner, Barbara; Helmreich, Magdalena; Haeusler, Gabriele; Egerbacher, Monika

    2013-01-01

    Human insulin-like growth factor 1 Ec (IGF-1Ec), also called mechano growth factor (MGF), is a splice variant of insulin-like growth factor 1 (IGF-1), which has been shown in vitro as well as in vivo to induce growth and hypertrophy in mechanically stimulated or damaged muscle. Growth, hypertrophy and responses to mechanical stimulation are important reactions of cartilaginous tissues, especially those in growth plates. Therefore, we wanted to ascertain if MGF is expressed in growth plate cartilage and if it influences proliferation of chondrocytes, as it does in musculoskeletal tissues. MGF expression was analyzed in growth plate and control tissue samples from piglets aged 3 to 6 weeks. Furthermore, growth plate chondrocyte cell culture was used to evaluate the effects of the MGF peptide on proliferation. We showed that MGF is expressed in considerable amounts in the tissues evaluated. We found the MGF peptide to be primarily located in the cytoplasm, and in some instances, it was also found in the nucleus of the cells. Addition of MGF peptides was not associated with growth plate chondrocyte proliferation. PMID:24146828

  2. Growth and Nutrition Disorders in Children with Cerebral Palsy

    PubMed Central

    Kuperminc, Michelle N.; Stevenson, Richard D.

    2010-01-01

    Growth and nutrition disorders are common secondary health conditions in children with cerebral palsy (CP). Poor growth and malnutrition in CP merit study because of their impact on health, including psychological and physiological function, healthcare utilization, societal participation, motor function, and survival. Understanding the etiology of poor growth has led to a variety of interventions to improve growth. One of the major causes of poor growth, malnutrition, is the best-studied contributor to poor growth; scientific evidence regarding malnutrition has contributed to improvements in clinical management and, in turn, survival over the last 20 years. Increased recognition and understanding of neurological, endocrinological, and environmental factors have begun to shape care for children with CP, as well. The investigation of these factors relies on advances made in the assessment methods available to address the challenges inherent in measuring growth in children with CP. Descriptive growth charts and norms of body composition provide information that may help clinicians to interpret growth and intervene to improve growth and nutrition in children with CP. Linking growth to measures of health will be necessary to develop growth standards for children with CP in order to optimize health and well-being. PMID:18646022

  3. Genome-wide association and longitudinal analyses reveal genetic loci linking pubertal height growth, pubertal timing and childhood adiposity.

    PubMed

    Cousminer, Diana L; Berry, Diane J; Timpson, Nicholas J; Ang, Wei; Thiering, Elisabeth; Byrne, Enda M; Taal, H Rob; Huikari, Ville; Bradfield, Jonathan P; Kerkhof, Marjan; Groen-Blokhuis, Maria M; Kreiner-Møller, Eskil; Marinelli, Marcella; Holst, Claus; Leinonen, Jaakko T; Perry, John R B; Surakka, Ida; Pietiläinen, Olli; Kettunen, Johannes; Anttila, Verneri; Kaakinen, Marika; Sovio, Ulla; Pouta, Anneli; Das, Shikta; Lagou, Vasiliki; Power, Chris; Prokopenko, Inga; Evans, David M; Kemp, John P; St Pourcain, Beate; Ring, Susan; Palotie, Aarno; Kajantie, Eero; Osmond, Clive; Lehtimäki, Terho; Viikari, Jorma S; Kähönen, Mika; Warrington, Nicole M; Lye, Stephen J; Palmer, Lyle J; Tiesler, Carla M T; Flexeder, Claudia; Montgomery, Grant W; Medland, Sarah E; Hofman, Albert; Hakonarson, Hakon; Guxens, Mònica; Bartels, Meike; Salomaa, Veikko; Murabito, Joanne M; Kaprio, Jaakko; Sørensen, Thorkild I A; Ballester, Ferran; Bisgaard, Hans; Boomsma, Dorret I; Koppelman, Gerard H; Grant, Struan F A; Jaddoe, Vincent W V; Martin, Nicholas G; Heinrich, Joachim; Pennell, Craig E; Raitakari, Olli T; Eriksson, Johan G; Smith, George Davey; Hyppönen, Elina; Järvelin, Marjo-Riitta; McCarthy, Mark I; Ripatti, Samuli; Widén, Elisabeth

    2013-07-01

    The pubertal height growth spurt is a distinctive feature of childhood growth reflecting both the central onset of puberty and local growth factors. Although little is known about the underlying genetics, growth variability during puberty correlates with adult risks for hormone-dependent cancer and adverse cardiometabolic health. The only gene so far associated with pubertal height growth, LIN28B, pleiotropically influences childhood growth, puberty and cancer progression, pointing to shared underlying mechanisms. To discover genetic loci influencing pubertal height and growth and to place them in context of overall growth and maturation, we performed genome-wide association meta-analyses in 18 737 European samples utilizing longitudinally collected height measurements. We found significant associations (P < 1.67 × 10(-8)) at 10 loci, including LIN28B. Five loci associated with pubertal timing, all impacting multiple aspects of growth. In particular, a novel variant correlated with expression of MAPK3, and associated both with increased prepubertal growth and earlier menarche. Another variant near ADCY3-POMC associated with increased body mass index, reduced pubertal growth and earlier puberty. Whereas epidemiological correlations suggest that early puberty marks a pathway from rapid prepubertal growth to reduced final height and adult obesity, our study shows that individual loci associating with pubertal growth have variable longitudinal growth patterns that may differ from epidemiological observations. Overall, this study uncovers part of the complex genetic architecture linking pubertal height growth, the timing of puberty and childhood obesity and provides new information to pinpoint processes linking these traits.

  4. Fundamental mechanisms of growth failure in inflammatory bowel disease.

    PubMed

    Ballinger, Anne

    2002-01-01

    Growth failure is common in children with inflammatory bowel disease (IBD) and has been attributed chiefly to undernutrition. Liquid enteral feeding can reverse the calorie deficit and increase growth velocity. The inflammatory process per se may also directly inhibit linear growth. After institution of enteral nutrition, significant changes in serum growth factors and inflammatory indices have been observed before any changes in nutritional parameters [Bannerjee et al., Gastroenterology 2000;118:A526]. In rats with trinitrobenzenesulphonic acid (TNBS)-induced colitis, about 60% of the final growth impairment can be attributed to undernutrition, inflammation accounting for the remaining growth deficit. Young patients with Crohn's disease and growth failure have normal stimulated and spontaneous growth hormone (GH) secretion and reduced plasma concentrations of insulin-like growth factor-1 (IGF-I), suggesting a degree of GH resistance. Rats with TNBS colitis also have normal plasma GH and reduced IGF-I concentrations, mediated by a combination of undernutrition and active inflammation. Immunoneutralization of interleukin-6 (IL-6) increases hepatic IGF-I mRNA expression, plasma concentrations of IGF-I and linear growth. In contrast, administration of anti-tumour necrosis factor-alpha antibodies (TNF-ab) had no effect on IGF-I in this model. TNFab did, however, increase linear growth, suggesting inhibitory effects of TNF-alpha on the growth axis by mechanisms other than reduction in IGF-I. Preliminary data suggests that TNF-alpha inhibits maturation of growth plate chondrocytes. We have identified IL-6 receptors on growth plate chondrocytes but to date have not identified the effect, if any, of IL-6 directly at the growth plate. Copyright 2002 S. Karger AG, Basel

  5. Posttraumatic Growth and Dyadic Adjustment among War Veterans and their Wives

    PubMed Central

    Lahav, Yael; Kanat-Maymon, Yaniv; Solomon, Zahava

    2017-01-01

    The controversy regarding the nature of posttraumatic growth includes two main competing claims: one which argues that posttraumatic growth reflects authentic positive changes and the other which argues that posttraumatic growth reflects illusory defenses. While the former might suggest that posttraumatic growth enhances intimacy and close relationships, the latter might imply that posttraumatic growth hinders interpersonal relations. The present study aimed to test these claims by investigating the association between posttraumatic growth and dyadic adjustment over time at both the individual and dyadic levels, and the potential role of posttraumatic stress symptoms. Former prisoners of war and comparable war veterans and their wives (n = 229) were assessed twice, 30–31 (T1) and 35–38 (T2) years after the 1973 Yom Kippur War in Israel, with regard to posttraumatic growth, posttraumatic stress symptoms and dyadic adjustment. Results indicated that posttraumatic growth was associated with both elevated posttraumatic stress symptoms and low dyadic adjustment among both husbands and wives. Posttraumatic stress symptoms at T1 and T2 mediated the association between posttraumatic growth and dyadic adjustment. Wives' posttraumatic growth at T1 predicted posttraumatic growth and dyadic adjustment of the husbands at T2. The higher the wives' posttraumatic growth, the higher the posttraumatic growth and the lower the dyadic adjustment of the husbands in the subsequent measure. The findings suggest that posttraumatic growth reflects defensive beliefs which undermine marital relationships and that posttraumatic growth might be transmitted between spouses and implicated in the deterioration of the marital relationship over time. PMID:28713307

  6. Holistic morphometric analysis of growth of the sand dollar Echinarachnius parma (Echinodermata:Echinoidea:Clypeasteroida).

    PubMed

    Zachos, Louis G

    2015-12-02

    Holistic morphometrics is a term implying complete shape characterization of all of the structural parts of an organism. The skeleton of an echinoid is comprised of hundreds of individual plates arranged in a closed 3-dimensional mosaic forming the test. GIS software and techniques were used to generate topologically correct digital models of an ontogenetic series of specimens of the sand dollar echinoid Echinarachnius parma. Plate growth can be considered in proportion to overall skeleton growth, resulting in a linear model of relative growth. Alternatively, separate logistic equations can be fit to the ontogenetic series of homologous plate areas using nonlinear least squares regression to result in a model for instantaneous growth. The linear and logistic parameters of the models describe the allometric growth of plates from different viewpoints. Growth is shown to fall into characteristic patterns defining distinct plate growth domains associated with development of the imago (larval) skeleton just prior to metamorphosis, early growth associated with expansion of the corona and fold-over (forming the flattened body form), juvenile growth and formation of petals, and adult growth. Functions of growth, plate translocation, plate juxtaposition between aboral and oral surfaces, and relationships with internal buttressing are quantified. Results offer explanations for general skeletal symmetry, distinction between ambulacral and interambulacral growth, the relationship of growth to internal buttressing, existence of a distinct petalodium, and anterior-posterior asymmetry during development. The parametric values of growth functions derived from the results are a basis for computational modeling of growth and development in sand dollars.

  7. On the origin of size-dependent and size-independent crystal growth: Influence of advection and diffusion

    USGS Publications Warehouse

    Kile, D.E.; Eberl, D.D.

    2003-01-01

    Crystal growth experiments were conducted using potassium alum and calcite crystals in aqueous solution under both non-stirred and stirred conditions to elucidate the mechanism for size-dependent (proportionate) and size-independent (constant) crystal growth. Growth by these two laws can be distinguished from each other because the relative size difference among crystals is maintained during proportionate growth, leading to a constant crystal size variance (??2) for a crystal size distribution (CSD) as the mean size increases. The absolute size difference among crystals is maintained during constant growth, resulting in a decrease in size variance. Results of these experiments show that for centimeter-sized alum crystals, proportionate growth occurs in stirred systems, whereas constant growth occurs in non-stirred systems. Accordingly, the mechanism for proportionate growth is hypothesized to be related to the supply of reactants to the crystal surface by advection, whereas constant growth is related to supply by diffusion. Paradoxically, micrometer-sized calcite crystals showed proportionate growth both in stirred and in non-stirred systems. Such growth presumably results from the effects of convection and Brownian motion, which promote an advective environment and hence proportionate growth for minute crystals in non-stirred systems, thereby indicating the importance of solution velocity relative to crystal size. Calcite crystals grown in gels, where fluid motion was minimized, showed evidence for constant, diffusion-controlled growth. Additional investigations of CSDs of naturally occurring crystals indicate that proportionate growth is by far the most common growth law, thereby suggesting that advection, rather than diffusion, is the dominant process for supplying reactants to crystal surfaces.

  8. Genome-wide association and longitudinal analyses reveal genetic loci linking pubertal height growth, pubertal timing and childhood adiposity

    PubMed Central

    Cousminer, Diana L.; Berry, Diane J.; Timpson, Nicholas J.; Ang, Wei; Thiering, Elisabeth; Byrne, Enda M.; Taal, H. Rob; Huikari, Ville; Bradfield, Jonathan P.; Kerkhof, Marjan; Groen-Blokhuis, Maria M.; Kreiner-Møller, Eskil; Marinelli, Marcella; Holst, Claus; Leinonen, Jaakko T.; Perry, John R.B.; Surakka, Ida; Pietiläinen, Olli; Kettunen, Johannes; Anttila, Verneri; Kaakinen, Marika; Sovio, Ulla; Pouta, Anneli; Das, Shikta; Lagou, Vasiliki; Power, Chris; Prokopenko, Inga; Evans, David M.; Kemp, John P.; St Pourcain, Beate; Ring, Susan; Palotie, Aarno; Kajantie, Eero; Osmond, Clive; Lehtimäki, Terho; Viikari, Jorma S.; Kähönen, Mika; Warrington, Nicole M.; Lye, Stephen J.; Palmer, Lyle J.; Tiesler, Carla M.T.; Flexeder, Claudia; Montgomery, Grant W.; Medland, Sarah E.; Hofman, Albert; Hakonarson, Hakon; Guxens, Mònica; Bartels, Meike; Salomaa, Veikko; Murabito, Joanne M.; Kaprio, Jaakko; Sørensen, Thorkild I.A.; Ballester, Ferran; Bisgaard, Hans; Boomsma, Dorret I.; Koppelman, Gerard H.; Grant, Struan F.A.; Jaddoe, Vincent W.V.; Martin, Nicholas G.; Heinrich, Joachim; Pennell, Craig E.; Raitakari, Olli T.; Eriksson, Johan G.; Smith, George Davey; Hyppönen, Elina; Järvelin, Marjo-Riitta; McCarthy, Mark I.; Ripatti, Samuli; Widén, Elisabeth

    2013-01-01

    The pubertal height growth spurt is a distinctive feature of childhood growth reflecting both the central onset of puberty and local growth factors. Although little is known about the underlying genetics, growth variability during puberty correlates with adult risks for hormone-dependent cancer and adverse cardiometabolic health. The only gene so far associated with pubertal height growth, LIN28B, pleiotropically influences childhood growth, puberty and cancer progression, pointing to shared underlying mechanisms. To discover genetic loci influencing pubertal height and growth and to place them in context of overall growth and maturation, we performed genome-wide association meta-analyses in 18 737 European samples utilizing longitudinally collected height measurements. We found significant associations (P < 1.67 × 10−8) at 10 loci, including LIN28B. Five loci associated with pubertal timing, all impacting multiple aspects of growth. In particular, a novel variant correlated with expression of MAPK3, and associated both with increased prepubertal growth and earlier menarche. Another variant near ADCY3-POMC associated with increased body mass index, reduced pubertal growth and earlier puberty. Whereas epidemiological correlations suggest that early puberty marks a pathway from rapid prepubertal growth to reduced final height and adult obesity, our study shows that individual loci associating with pubertal growth have variable longitudinal growth patterns that may differ from epidemiological observations. Overall, this study uncovers part of the complex genetic architecture linking pubertal height growth, the timing of puberty and childhood obesity and provides new information to pinpoint processes linking these traits. PMID:23449627

  9. USE OF MOLECULAR BIOLOGICAL TECHNIQUES TO EVALUATE EFFECT OF ENDOGENOUS HORMONES AND A XENOBIOTIC PESTICIDE ON GROWTH OF SHEEPSHEAD MINNOW

    EPA Science Inventory

    We have developed a teleost model to screen physiological effects of endocrine disrupting chemicals (EDCs) on somatic growth. Growth is largely controlled by the endocrine system via the growth-hormone releasing hormone (GRF) - growth hormone (GH) - insulin-like growth factor (IG...

  10. 21 CFR 862.1370 - Human growth hormone test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Human growth hormone test system. 862.1370 Section... Systems § 862.1370 Human growth hormone test system. (a) Identification. A human growth hormone test system is a device intended to measure the levels of human growth hormone in plasma. Human growth hormone...

  11. 21 CFR 862.1370 - Human growth hormone test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Human growth hormone test system. 862.1370 Section... Systems § 862.1370 Human growth hormone test system. (a) Identification. A human growth hormone test system is a device intended to measure the levels of human growth hormone in plasma. Human growth hormone...

  12. An Analysis of energy consumption and economic growth of Cobb-Douglas production function based on ECM

    NASA Astrophysics Data System (ADS)

    Guo, Wei-wei

    2018-02-01

    Energy is one of the important factors affecting economic growth, the motive force of the economic development of countries in the world, essential for the world economic development and people’s living material resources, an important resource of the relationship between the national economies. The paper sums up the evaluation and literatures on energy consumption and economic growth at home and abroad, thinks “southern talk” as the energy consumption and economic growth in the time division, makes a series of empirical tests on the relationship between total energy consumption and economic growth in China from 1978 to 1991 and from 1992 to 2016.The results show that total energy consumption is a one-way causal relationship between economic growths in china, Economic growth has a strong dependence on energy, there is a co-integration relationship between energy consumption and economic growth. However, economic growth depends on the energy consumption decreased year by year in China, The way of economic growth is changing from the extensive economic growth mode to intensive mode of economic growth.

  13. Akt1-Inhibitor of DNA binding2 is essential for growth cone formation and axon growth and promotes central nervous system axon regeneration

    PubMed Central

    Ko, Hyo Rim; Kwon, Il-Sun; Hwang, Inwoo; Jin, Eun-Ju; Shin, Joo-Ho; Brennan-Minnella, Angela M; Swanson, Raymond; Cho, Sung-Woo; Lee, Kyung-Hoon; Ahn, Jee-Yin

    2016-01-01

    Mechanistic studies of axon growth during development are beneficial to the search for neuron-intrinsic regulators of axon regeneration. Here, we discovered that, in the developing neuron from rat, Akt signaling regulates axon growth and growth cone formation through phosphorylation of serine 14 (S14) on Inhibitor of DNA binding 2 (Id2). This enhances Id2 protein stability by means of escape from proteasomal degradation, and steers its localization to the growth cone, where Id2 interacts with radixin that is critical for growth cone formation. Knockdown of Id2, or abrogation of Id2 phosphorylation at S14, greatly impairs axon growth and the architecture of growth cone. Intriguingly, reinstatement of Akt/Id2 signaling after injury in mouse hippocampal slices redeemed growth promoting ability, leading to obvious axon regeneration. Our results suggest that Akt/Id2 signaling is a key module for growth cone formation and axon growth, and its augmentation plays a potential role in CNS axonal regeneration. DOI: http://dx.doi.org/10.7554/eLife.20799.001 PMID:27938661

  14. Novel insight into the origin of the growth dynamics of sauropod dinosaurs.

    PubMed

    Cerda, Ignacio Alejandro; Chinsamy, Anusuya; Pol, Diego; Apaldetti, Cecilia; Otero, Alejandro; Powell, Jaime Eduardo; Martínez, Ricardo Nestor

    2017-01-01

    Sauropod dinosaurs include the largest terrestrial animals and are considered to have uninterrupted rapid rates of growth, which differs from their more basal relatives, which have a slower cyclical growth. Here we examine the bone microstructure of several sauropodomorph dinosaurs, including basal taxa, as well as the more derived sauropods. Although our results agree that the plesiomorphic condition for Sauropodomorpha is cyclical growth dynamics, we found that the hypothesized dichotomy between the growth patterns of basal and more derived sauropodomorphs is not supported. Here, we show that sauropod-like growth dynamics of uninterrupted rapid growth also occurred in some basal sauropodomorphs, and that some basal sauropods retained the plesiomorphic cyclical growth patterns. Among the sauropodomorpha it appears that the basal taxa exploited different growth strategies, but the more derived Eusauropoda successfully utilized rapid, uninterrupted growth strategies.

  15. Novel insight into the origin of the growth dynamics of sauropod dinosaurs

    PubMed Central

    Cerda, Ignacio Alejandro; Chinsamy, Anusuya; Pol, Diego; Apaldetti, Cecilia; Otero, Alejandro; Martínez, Ricardo Nestor

    2017-01-01

    Sauropod dinosaurs include the largest terrestrial animals and are considered to have uninterrupted rapid rates of growth, which differs from their more basal relatives, which have a slower cyclical growth. Here we examine the bone microstructure of several sauropodomorph dinosaurs, including basal taxa, as well as the more derived sauropods. Although our results agree that the plesiomorphic condition for Sauropodomorpha is cyclical growth dynamics, we found that the hypothesized dichotomy between the growth patterns of basal and more derived sauropodomorphs is not supported. Here, we show that sauropod-like growth dynamics of uninterrupted rapid growth also occurred in some basal sauropodomorphs, and that some basal sauropods retained the plesiomorphic cyclical growth patterns. Among the sauropodomorpha it appears that the basal taxa exploited different growth strategies, but the more derived Eusauropoda successfully utilized rapid, uninterrupted growth strategies. PMID:28654696

  16. Large-area sheet task advanced dendritic web growth development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Meier, D. L.; Schruben, J.

    1982-01-01

    Thermal models were developed that accurately predict the thermally generated stresses in the web crystal which, if too high, cause the crystal to degenerate. The application of the modeling results to the design of low-stress experimental growth configurations will allow the growth of wider web crystals at higher growth velocities. A new experimental web growth machine was constructed. This facility includes all the features necessary for carrying out growth experiments under steady thermal conditions. Programmed growth initiation was developed to give reproducible crystal starts. Width control permits the growth of long ribbons at constant width. Melt level is controlled to 0.1 mm or better. Thus, the capability exists to grow long web crystals of constant width and thickness with little operator intervention, and web growth experiments can now be performed with growth variables controlled to a degree not previously possible.

  17. Nocturnal growth hormone and gonadotrophin secretion in growth retarded children with Crohn's disease.

    PubMed Central

    Farthing, M J; Campbell, C A; Walker-Smith, J; Edwards, C R; Rees, L H; Dawson, A M

    1981-01-01

    Although impaired growth hormone secretion in response to pharmacological stimuli occurs in some growth retarded children with Crohn's disease, its relationship to past and future th is uncertain. We have therefore determined the growth hormone and gonadotrophin response to the physiological stimulus of sleep by continuous venous sampling in five severely gonadotrophin profiles, the mean plasma hormone concentrations during the first five hours of sleep were determined. In three of the five patients, five hour mean growth hormone levels were reduced (3.8, 5.0, and 8.5 mU/l) compared with levels reported previously in normal short children (10-43 mU/l), although the pulsatile pattern of growth hormone secretion was preserved in all. Nocturnal growth hormone secretion was unrelated to the growth velocities of these children during both pre- and post-treatment assessment periods but a significant correlation was found between growth hormone concentration and a disease activity score (r = 0.79, P less than 0.05), suggesting that growth hormone release by the pituitary was influenced by the severity of the disease. Nocturnal growth hormone secretion was also correlated with gonadotrophin secretion (luteinising hormones, r = 0.99, and follicle stimulating hormone, r = 0.96; p less than 0.01) indicating more extensive hypothalamic-pituitary disturbance. These findings suggest that hypothalamic-pituitary function is depressed in growth retarded children with Crohn's disease, but that abnormalities of growth hormone secretion are unlikely to be directly involved in the growth retardation seen in this condition. PMID:7308847

  18. Infant head circumference growth is saltatory and coupled to length growth.

    PubMed

    Lampl, Michelle; Johnson, Michael L

    2011-05-01

    Rapid growth rates of head circumference and body size during infancy have been reported to predict developmental pathologies that emerge during childhood. This study investigated whether growth in head circumference was concordant with growth in body length. Forty infants (16 males) were followed between the ages of 2 days and 21 months for durations ranging from 4 to 21 months (2616 measurements). Longitudinal anthropometric measurements were assessed weekly (n=12), semi-weekly (n=24) and daily (n=4) during home visits. Individual head circumference growth was investigated for the presence of saltatory patterns. Coincident analysis tested the null hypothesis that head growth was randomly coupled to length growth. Head circumference growth during infancy is saltatory (p<0.05), characterized by median increments of 0.20 cm (95% confidence interval, 0.10-0.30 cm) in 24-h, separated by intervals of no growth ranging from 1 to 21 days. Daily assessments identified that head growth saltations were coupled to length growth saltations within a median time frame of 2 days (interquartile 0-4, range 1-8 days). Assessed at semi-weekly and weekly intervals, an average 82% (SD 0.13) of head growth saltations was non-randomly concordant with length growth (p≤0.006). Normal infant head circumference grows by intermittent, episodic saltations that are temporally coupled to growth in total body length by a process of integrated physiology that remains to be described. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Development of disease-specific growth charts in Turner syndrome and Noonan syndrome.

    PubMed

    Isojima, Tsuyoshi; Yokoya, Susumu

    2017-12-01

    Many congenital diseases are associated with growth failure, and patients with these diseases have specific growth patterns. As the growth patterns of affected individuals differ from those of normal populations, it is challenging to detect additional conditions that can influence growth using standard growth charts. Disease-specific growth charts are thus very useful tools and can be helpful for understanding the growth pattern and pathogenesis of congenital diseases. In addition, disease-specific growth charts allow doctors to detect deviations from the usual growth patterns for early diagnosis of an additional condition and can be used to evaluate the effects of growth-promoting treatment for patients. When developing these charts, factors that can affect the reliability of the charts should be considered. These factors include the definition of the disease with growth failure, selection bias in the measurements used to develop the charts, secular trends of the subjects, the numbers of subjects of varying ages and ethnicities, and the statistical method used to develop the charts. In this review, we summarize the development of disease-specific growth charts for Japanese individuals with Turner syndrome and Noonan syndrome and evaluate the efforts to collect unbiased measurements of subjects with these diseases. These charts were the only available disease-specific growth charts of Turner syndrome and Noonan syndrome for Asian populations and were developed using a Japanese population. Therefore, when these charts are adopted for Asian populations other than Japanese, different growth patterns should be considered.

  20. Growth factors in the anterior segment: role in tissue maintenance, wound healing and ocular pathology.

    PubMed

    Klenkler, Bettina; Sheardown, Heather

    2004-11-01

    A number of growth factors and their associated receptors, including epidermal growth factor, transforming growth factor-beta, keratinocyte growth factor, hepatocyte growth factor, fibroblast growth factor and platelet-derived growth factor have been detected in the anterior segment of the eye. On binding to cellular receptors, these factors activate signalling cascades, which regulate functions including mitosis, differentiation, motility and apoptosis. Production of growth factors by corneal cells and their presence in the tear fluid and aqueous humour is essential for maintenance and renewal of normal tissue in the anterior eye and the prevention of undesirable immune or angiogenic reactions. Growth factors also play a vital role in corneal wound healing, mediating the proliferation of epithelial and stromal tissue and affecting the remodelling of the extracellular matrix (ECM). These functions depend on a complex interplay between growth factors of different types, the ECM, and regulatory mechanisms of the affected cells. Imbalances may lead to deficient wound healing and various ocular pathologies, including edema, neovascularization and glaucoma. Growth factors may be targeted in therapeutic ophthalmic applications, through exogenous application or selective inhibition, and may be used to elicit specific cellular responses to ophthalmic materials. A thorough understanding of the mechanism and function of growth factors and their actions in the complex environment of the anterior eye is required for these purposes. Growth factors, their function and mechanisms of action as well as the interplay between different growth factors based on recent in vitro and in vivo studies are presented.

  1. Differential growth of pavement cells of Arabidopsis thaliana leaf epidermis as revealed by microbead labeling.

    PubMed

    Elsner, Joanna; Lipowczan, Marcin; Kwiatkowska, Dorota

    2018-02-01

    In numerous vascular plants, pavement cells of the leaf epidermis are shaped like a jigsaw-puzzle piece. Knowledge about the subcellular pattern of growth that accompanies morphogenesis of such a complex shape is crucial for studies of the role of the cytoskeleton, cell wall and phytohormones in plant cell development. Because the detailed growth pattern of the anticlinal and periclinal cell walls remains unknown, our aim was to measure pavement cell growth at a subcellular resolution. Using fluorescent microbeads applied to the surface of the adaxial leaf epidermis of Arabidopsis thaliana as landmarks for growth computation, we directly assessed the growth rates for the outer periclinal and anticlinal cell walls at a subcellular scale. We observed complementary tendencies in the growth pattern of the outer periclinal and anticlinal cell walls. Central portions of periclinal walls were characterized by relatively slow growth, while growth of the other wall portions was heterogeneous. Local growth of the periclinal walls accompanying lobe development after initiation was relatively fast and anisotropic, with maximal extension usually in the direction along the lobe axis. This growth pattern of the periclinal walls was complemented by the extension of the anticlinal walls, which was faster on the lobe sides than at the tips. Growth of the anticlinal and outer periclinal walls of leaf pavement cells is heterogeneous. The growth of the lobes resembles cell elongation via diffuse growth rather than tip growth. © 2018 Botanical Society of America.

  2. Allometries of maximum growth rate versus body mass at maximum growth indicate that non-avian dinosaurs had growth rates typical of fast growing ectothermic sauropsids.

    PubMed

    Werner, Jan; Griebeler, Eva Maria

    2014-01-01

    We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case's study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either of the two thermoregulation strategies for studied dinosaurs.

  3. Allometries of Maximum Growth Rate versus Body Mass at Maximum Growth Indicate That Non-Avian Dinosaurs Had Growth Rates Typical of Fast Growing Ectothermic Sauropsids

    PubMed Central

    Werner, Jan; Griebeler, Eva Maria

    2014-01-01

    We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case’s study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either of the two thermoregulation strategies for studied dinosaurs. PMID:24586409

  4. Climatic Stress during Stand Development Alters the Sign and Magnitude of Age-Related Growth Responses in a Subtropical Mountain Pine.

    PubMed

    Ruiz-Benito, Paloma; Madrigal-González, Jaime; Young, Sarah; Mercatoris, Pierre; Cavin, Liam; Huang, Tsurng-Juhn; Chen, Jan-Chang; Jump, Alistair S

    2015-01-01

    The modification of typical age-related growth by environmental changes is poorly understood, In part because there is a lack of consensus at individual tree level regarding age-dependent growth responses to climate warming as stands develop. To increase our current understanding about how multiple drivers of environmental change can modify growth responses as trees age we used tree ring data of a mountain subtropical pine species along an altitudinal gradient covering more than 2,200 m of altitude. We applied mixed-linear models to determine how absolute and relative age-dependent growth varies depending on stand development; and to quantify the relative importance of tree age and climate on individual tree growth responses. Tree age was the most important factor for tree growth in models parameterised using data from all forest developmental stages. Contrastingly, the relationship found between tree age and growth became non-significant in models parameterised using data corresponding to mature stages. These results suggest that although absolute tree growth can continuously increase along tree size when trees reach maturity age had no effect on growth. Tree growth was strongly reduced under increased annual temperature, leading to more constant age-related growth responses. Furthermore, young trees were the most sensitive to reductions in relative growth rates, but absolute growth was strongly reduced under increased temperature in old trees. Our results help to reconcile previous contrasting findings of age-related growth responses at the individual tree level, suggesting that the sign and magnitude of age-related growth responses vary with stand development. The different responses found to climate for absolute and relative growth rates suggest that young trees are particularly vulnerable under warming climate, but reduced absolute growth in old trees could alter the species' potential as a carbon sink in the future.

  5. Apple dwarfing rootstocks and interstocks affect the type of growth units produced during the annual growth cycle: precocious transition to flowering affects the composition and vigour of annual shoots.

    PubMed

    Seleznyova, Alla N; Tustin, D Stuart; Thorp, T Grant

    2008-04-01

    Precocious flowering in apple trees is often associated with a smaller tree size. The hypothesis was tested that floral evocation in axillary buds, induced by dwarfing rootstocks, reduces the vigour of annual shoots developing from these buds compared with shoots developing from vegetative buds. The experimental system provided a wide range of possible tree vigour using 'Royal Gala' scions and M.9 (dwarfing) and MM.106 (non-dwarfing) as rootstocks and interstocks. Second-year annual shoots were divided into growth units corresponding to periods (flushes) of growth namely, vegetative spur, extension growth unit, uninterrupted growth unit, floral growth unit (bourse) and extended bourse. The differences between the floral and vegetative shoots were quantified by the constituent growth units produced. The dwarfing influence was expressed, firstly, in reduced proportions of shoots that contained at least one extension growth unit and secondly, in reduced proportions of bicyclic shoots (containing two extension growth units) and shoots with an uninterrupted growth unit. In treatments where floral shoots were present, they were markedly less vigorous than vegetative shoots with respect to both measures. In treatments with M.9 rootstock, vegetative and floral shoots produced on average 0.52 and 0.17 extension growth units, compared with 0.77 extension growth units per shoot in the MM.106 rootstock treatment. Remarkably, the number of nodes per extension growth unit was not affected by the rootstock/interstock treatments. These results showed that rootstocks/interstocks affect the type of growth units produced during the annual growth cycle, reducing the number of extension growth units, thus affecting the composition and vigour of annual shoots. This effect is particularly amplified by the transition to flowering induced by dwarfing rootstocks. The division of annual shoot into growth units will also be useful for measuring and modelling effects of age on apple tree architecture.

  6. Effect of growth hormone deficiency on brain structure, motor function and cognition.

    PubMed

    Webb, Emma A; O'Reilly, Michelle A; Clayden, Jonathan D; Seunarine, Kiran K; Chong, Wui K; Dale, Naomi; Salt, Alison; Clark, Chris A; Dattani, Mehul T

    2012-01-01

    The growth hormone-insulin-like growth factor-1 axis plays a role in normal brain growth but little is known of the effect of growth hormone deficiency on brain structure. Children with isolated growth hormone deficiency (peak growth hormone <6.7 µg/l) and idiopathic short stature (peak growth hormone >10 µg/l) underwent cognitive assessment, diffusion tensor imaging and volumetric magnetic resonance imaging prior to commencing growth hormone treatment. Total brain, corpus callosal, hippocampal, thalamic and basal ganglia volumes were determined using Freesurfer. Fractional anisotropy (a marker of white matter structural integrity) images were aligned and tract-based spatial statistics performed. Fifteen children (mean 8.8 years of age) with isolated growth hormone deficiency [peak growth hormone <6.7 µg/l (mean 3.5 µg/l)] and 14 controls (mean 8.4 years of age) with idiopathic short stature [peak growth hormone >10 µg/l (mean 15 µg/l) and normal growth rate] were recruited. Compared with controls, children with isolated growth hormone deficiency had lower Full-Scale IQ (P < 0.01), Verbal Comprehension Index (P < 0.01), Processing Speed Index (P < 0.05) and Movement-Assessment Battery for Children (P < 0.008) scores. Verbal Comprehension Index scores correlated significantly with insulin-like growth factor-1 (P < 0.03) and insulin-like growth factor binding protein-3 (P < 0.02) standard deviation scores in isolated growth hormone deficiency. The splenium of the corpus callosum, left globus pallidum, thalamus and hippocampus (P < 0.01) were significantly smaller; and corticospinal tract (bilaterally; P < 0.045, P < 0.05) and corpus callosum (P < 0.05) fractional anisotropy were significantly lower in the isolated growth hormone deficiency group. Basal ganglia volumes and bilateral corticospinal tract fractional anisotropy correlated significantly with Movement-Assessment Battery for Children scores, and corpus callosum fractional anisotropy with Full-Scale IQ and Processing Speed Index. In patients with isolated growth hormone deficiency, white matter abnormalities in the corpus callosum and corticospinal tract, and reduced thalamic and globus pallidum volumes relate to deficits in cognitive function and motor performance. Follow-up studies that investigate the course of the structural and cognitive deficits on growth hormone treatment are now required to confirm that growth hormone deficiency impacts significantly on brain structure, cognitive function and motor performance.

  7. Development of a program to fit data to a new logistic model for microbial growth.

    PubMed

    Fujikawa, Hiroshi; Kano, Yoshihiro

    2009-06-01

    Recently we developed a mathematical model for microbial growth in food. The model successfully predicted microbial growth at various patterns of temperature. In this study, we developed a program to fit data to the model with a spread sheet program, Microsoft Excel. Users can instantly get curves fitted to the model by inputting growth data and choosing the slope portion of a curve. The program also could estimate growth parameters including the rate constant of growth and the lag period. This program would be a useful tool for analyzing growth data and further predicting microbial growth.

  8. Connection between the growth rate distribution and the size dependent crystal growth

    NASA Astrophysics Data System (ADS)

    Mitrović, M. M.; Žekić, A. A.; IIić, Z. Z.

    2002-07-01

    The results of investigations of the connection between the growth rate dispersions and the size dependent crystal growth of potassium dihydrogen phosphate (KDP), Rochelle salt (RS) and sodium chlorate (SC) are presented. A possible way out of the existing confusion in the size dependent crystal growth investigations is suggested. It is shown that the size independent growth exists if the crystals belonging to one growth rate distribution maximum are considered separately. The investigations suggest possible reason for the observed distribution maxima widths, and the high data scattering on the growth rate versus the crystal size dependence.

  9. Interactive effects of and light on growth rates and RUBISCO content of small and large centric diatoms

    NASA Astrophysics Data System (ADS)

    Li, G.; Campbell, D. A.

    2015-10-01

    Among marine phytoplankton groups, diatoms span the widest range of cell size, with resulting effects upon their nitrogen uptake, photosynthesis and growth responses to light. We grew two strains of marine centric diatoms, the small Thalassiosira pseudonana and the larger T. punctigera in high and low nitrogen media, across a range of growth light levels. Nitrogen and total proteins per cell decreased with increasing growth light in both species when grown under low nitrogen media. Surprisingly, low nitrogen increased the cellular allocation to RUBISCO and the rate of electron transport away from Photosystem II for the smaller diatom under low growth light, and for the larger diatom across the range of growth lights. Low nitrogen decreased the growth rate of the smaller diatom, particularly under higher light, but stimulated the growth rate of the larger diatom. Our results show that the high nitrogen in common growth media favours the growth rate of a small diatom but inhibits growth of a larger species.

  10. Interface shape and crystallinity in LEC GaAs

    NASA Astrophysics Data System (ADS)

    Tower, J. P.; Tobin, R.; Pearah, P. J.; Ware, R. M.

    1991-12-01

    Growth striation mapping was used to relate the growth interface shape to crystallinity failure modes in LEC growth of undoped <100> GaAs. The onset of twinning and polycrystallinity were both found to depend on the interface shape near the crystal periphery. The origins of polycrystalline growth were investigated in 8 kg, 3-inch and 4-inch diameter crystals. Interface maps of these crystals show that polycrystalline growth begins when the growth interface periphery turns down, independent of the shape of the central portions. The cause of initial grain boundary formation was found to be included gallium droplets which originate on the surface and migrate through the crystal toward the growth interface. Twinning occurs on {111} facets, usually during shoulder growth. Growth striations show that the sequence of events leading to twin formation consists of deep facet growth, followed by meltback and rapid regrowth. We found it possible to avoid twinning by reducing melt instabilities or by reducing the extent of facet growth.

  11. Too much of a good thing? Economic growth and human rights, 1960 to 2010.

    PubMed

    Cole, Wade M

    2017-09-01

    Despite widespread belief in the benefits of economic growth, some scholars emphasize the potentially negative consequences of growth-and especially rapid growth-for social and political outcomes. Using data for 149 countries between 1960 and 2010, I analyze the effect of economic growth on fundamental human rights conditions. Dynamic random-effects and two-way fixed-effects estimators, both with and without instrumental variables, yield several conclusions. First, economic growth is causally prior to rights conditions. Second, economic growth has a modest positive effect on human rights, albeit with diminishing returns at high growth rates. Third, low-income countries account for much of this relationship: growth improves rights conditions for most low-income countries, but extremely rapid growth is inimical. Growth has little effect among middle-income countries, while for high-income countries the relationship is positive but not robust. I bring these findings to bear on long-standing debates between proponents and critics of modernization theory. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Quantifying condition-dependent intracellular protein levels enables high-precision fitness estimates.

    PubMed

    Geiler-Samerotte, Kerry A; Hashimoto, Tatsunori; Dion, Michael F; Budnik, Bogdan A; Airoldi, Edoardo M; Drummond, D Allan

    2013-01-01

    Countless studies monitor the growth rate of microbial populations as a measure of fitness. However, an enormous gap separates growth-rate differences measurable in the laboratory from those that natural selection can distinguish efficiently. Taking advantage of the recent discovery that transcript and protein levels in budding yeast closely track growth rate, we explore the possibility that growth rate can be more sensitively inferred by monitoring the proteomic response to growth, rather than growth itself. We find a set of proteins whose levels, in aggregate, enable prediction of growth rate to a higher precision than direct measurements. However, we find little overlap between these proteins and those that closely track growth rate in other studies. These results suggest that, in yeast, the pathways that set the pace of cell division can differ depending on the growth-altering stimulus. Still, with proper validation, protein measurements can provide high-precision growth estimates that allow extension of phenotypic growth-based assays closer to the limits of evolutionary selection.

  13. Temperature effect on the growth of Au-free InAs and InAs/GaSb heterostructure nanowires on Si substrate by MOCVD

    NASA Astrophysics Data System (ADS)

    Kakkerla, Ramesh Kumar; Anandan, Deepak; Hsiao, Chih-Jen; Yu, Hung Wei; Singh, Sankalp Kumar; Chang, Edward Yi

    2018-05-01

    We demonstrate the growth of vertically aligned Au-free InAs and InAs/GaSb heterostructure nanowires on Si (1 1 1) substrate by Metal Organic Chemical Vapor Deposition (MOCVD). The effect of growth temperature on the morphology and growth rate of the InAs and InAs/GaSb heterostructure nanowires (NWs) is investigated. Control over diameter and length of the InAs NWs and the GaSb shell thickness was achieved by using growth temperature. As the GaSb growth temperature increase, GaSb radial growth rate increases due to the increase in alkyl decomposition at the substrate surface. Diffusivity of the adatoms increases as the GaSb growth temperature increase which results in tapered GaSb shell growth. Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) measurements revealed that the morphology and shell thickness can be tuned by the growth temperature. Electron microscopy also shows the formation of GaSb both in radial and axial directions outside the InAs NW core can be controlled by the growth temperature. This study demonstrates the control over InAs NWs growth and the GaSb shell thickness can be achieved through proper growth temperature control, such technique is essential for the growth of nanowire for future nano electronic devices, such as Tunnel FET.

  14. Transforming growth factor alpha, Shope fibroma growth factor, and vaccinia growth factor can replace myxoma growth factor in the induction of myxomatosis in rabbits.

    PubMed

    Opgenorth, A; Nation, N; Graham, K; McFadden, G

    1993-02-01

    The epidermal growth factor (EGF) homologues encoded by vaccinia virus, myxoma virus, and malignant rabbit fibroma virus have been shown to contribute to the pathogenicity of virus infection upon inoculation of susceptible hosts. However, since the primary structures of these growth factors and the disease profiles induced by different poxvirus genera vary substantially, the degree to which the various EGF homologues perform similar roles in viral pathogenesis remains unclear. In order to determine whether different EGF-like growth factors can perform qualitatively similar functions in the induction of myxomatosis in rabbits, we created recombinant myxoma virus variants in which the native growth factor, myxoma growth factor (MGF), was disrupted and replaced with either vaccinia virus growth factor, Shope fibroma growth factor, or rat transforming growth factor alpha. Unlike the control virus containing an inactivated MGF gene, which caused marked attenuation of the disease syndrome and substantially less proliferation of the epithelial cell layers in the conjunctiva and respiratory tract, the recombinant myxoma virus strains expressing heterologous growth factors produced infections which were both clinically and histopathologically indistinguishable from wild-type myxomatosis. We conclude that these poxviral and cellular EGF-like growth factors, which are diverse with respect to primary structure and origin, have similar biological functions in the context of myxoma virus pathogenesis and are mitogenic for the same target cells.

  15. Analysing growth and development of plants jointly using developmental growth stages.

    PubMed

    Dambreville, Anaëlle; Lauri, Pierre-Éric; Normand, Frédéric; Guédon, Yann

    2015-01-01

    Plant growth, the increase of organ dimensions over time, and development, the change in plant structure, are often studied as two separate processes. However, there is structural and functional evidence that these two processes are strongly related. The aim of this study was to investigate the co-ordination between growth and development using mango trees, which have well-defined developmental stages. Developmental stages, determined in an expert way, and organ sizes, determined from objective measurements, were collected during the vegetative growth and flowering phases of two cultivars of mango, Mangifera indica. For a given cultivar and growth unit type (either vegetative or flowering), a multistage model based on absolute growth rate sequences deduced from the measurements was first built, and then growth stages deduced from the model were compared with developmental stages. Strong matches were obtained between growth stages and developmental stages, leading to a consistent definition of integrative developmental growth stages. The growth stages highlighted growth asynchronisms between two topologically connected organs, namely the vegetative axis and its leaves. Integrative developmental growth stages emphasize that developmental stages are closely related to organ growth rates. The results are discussed in terms of the possible physiological processes underlying these stages, including plant hydraulics, biomechanics and carbohydrate partitioning. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Modeling Heterogeneity of Latent Growth Depending on Initial Status

    ERIC Educational Resources Information Center

    Klein, Andreas G.; Muthen, Bengt O.

    2006-01-01

    In this article, a heterogeneous latent growth curve model for modeling heterogeneity of growth rates is proposed. The suggested model is an extension of a conventional growth curve model and a complementary tool to mixed growth modeling. It allows the modeling of heterogeneity of growth rates as a continuous function of latent initial status and…

  17. Estimating past diameters of Douglas-fir trees.

    Treesearch

    Floyd A. Johnson

    1955-01-01

    Estimates of breast-height diameter outside bark for trees as of some previous date are required in certain kinds of forest growth studies. These past diameters may be found by subtracting total diameter growth from known present diameters, where total diameter growth is the sum of wood growth and bark growth. Wood growth is readily obtained by...

  18. Fibroblast Growth Factor 2: An Epithelial Ductal Cell Growth Inhibitor That Drops Out in Breast Cancer

    DTIC Science & Technology

    2011-10-01

    fibroblast   growth   factor   receptors  and  their  prognostic...AD_________________ Award Number: W81XWH-08-1-0708 TITLE: Fibroblast Growth Factor 2: an...September 2008 – 14 September 2011 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fibroblast Growth Factor 2: an Epithelial Ductal Cell Growth

  19. Nonlinear Growth Curves in Developmental Research

    PubMed Central

    Grimm, Kevin J.; Ram, Nilam; Hamagami, Fumiaki

    2011-01-01

    Developmentalists are often interested in understanding change processes and growth models are the most common analytic tool for examining such processes. Nonlinear growth curves are especially valuable to developmentalists because the defining characteristics of the growth process such as initial levels, rates of change during growth spurts, and asymptotic levels can be estimated. A variety of growth models are described beginning with the linear growth model and moving to nonlinear models of varying complexity. A detailed discussion of nonlinear models is provided, highlighting the added insights into complex developmental processes associated with their use. A collection of growth models are fit to repeated measures of height from participants of the Berkeley Growth and Guidance Studies from early childhood through adulthood. PMID:21824131

  20. Influence of indium supply on Au-catalyzed InGaAs nanowire growth studied by in situ X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Sasaki, Takuo; Takahasi, Masamitu

    2017-06-01

    In this study, we analyzed the influence of indium supply on the growth dynamics of gold-catalyzed InGaAs nanowires by in situ synchrotron X-ray diffraction. A high In/Ga supply ratio results in strong size inhomogeneity of Au particles and interrupts the nanowire growth at a certain point of time. Based on the experimental results, we discussed the state of Au catalysts with high indium content during the nanowire growth. We found that a growth temperature below the eutectic temperature is essential to avoid the growth interruption and maintain the nanowire growth. The high In/Ga ratio necessitates accurate size control of Au particles before growth for further improvement of the nanowire growth.

  1. Primary growth hormone insensitivity (Laron syndrome) and acquired hypothyroidism: a case report

    PubMed Central

    2011-01-01

    Introduction Primary growth hormone resistance or growth hormone insensitivity syndrome, also known as Laron syndrome, is a hereditary disease caused by deletions or different types of mutations in the growth hormone receptor gene or by post-receptor defects. This disorder is characterized by a clinical appearance of severe growth hormone deficiency with high levels of circulating growth hormone in contrast to low serum insulin-like growth factor 1 values. Case presentation We report the case of a 15-year-old Caucasian girl who was diagnosed with Silver-Russell syndrome at the age of four and a half years. Recombinant growth hormone was administered for 18 months without an appropriate increase in growth velocity. At the age of seven years, her serum growth hormone levels were high, and an insulin-like growth factor 1 generation test did not increase insulin-like growth factor 1 levels (baseline insulin-like growth factor 1 levels, 52 μg/L; reference range, 75 μg/L to 365 μg/L; and peak, 76 μg/L and 50 μg/L after 12 and 84 hours, respectively, from baseline). The genetic analysis showed that the patient was homozygous for the R217X mutation in the growth hormone receptor gene, which is characteristic of Laron syndrome. On the basis of these results, the diagnosis of primary growth hormone insensitivity syndrome was made, and recombinant insulin-like growth factor 1 therapy was initiated. The patient's treatment was well tolerated, but unexplained central hypothyroidism occurred at the age of 12.9 years. At the age of 15 years, when the patient's sexual development was almost completed and her menstrual cycle occurred irregularly, her height was 129.8 cm, which is 4.71 standard deviations below the median for normal girls her age. Conclusion The most important functional tests for the diagnosis of growth hormone insensitivity are the insulin-like growth factor 1 generation test and genetic analysis. Currently, the only effective treatment is daily administration of recombinant insulin-like growth factor 1 starting from early childhood. However, these patients show a dramatically impaired final height. In our case, unexplained central hypothyroidism occurred during treatment. PMID:21745362

  2. Primary growth hormone insensitivity (Laron syndrome) and acquired hypothyroidism: a case report.

    PubMed

    Cotta, Oana R; Santarpia, Libero; Curtò, Lorenzo; Aimaretti, Gianluca; Corneli, Ginevra; Trimarchi, Francesco; Cannavò, Salvatore

    2011-07-11

    Primary growth hormone resistance or growth hormone insensitivity syndrome, also known as Laron syndrome, is a hereditary disease caused by deletions or different types of mutations in the growth hormone receptor gene or by post-receptor defects. This disorder is characterized by a clinical appearance of severe growth hormone deficiency with high levels of circulating growth hormone in contrast to low serum insulin-like growth factor 1 values. We report the case of a 15-year-old Caucasian girl who was diagnosed with Silver-Russell syndrome at the age of four and a half years. Recombinant growth hormone was administered for 18 months without an appropriate increase in growth velocity. At the age of seven years, her serum growth hormone levels were high, and an insulin-like growth factor 1 generation test did not increase insulin-like growth factor 1 levels (baseline insulin-like growth factor 1 levels, 52 μg/L; reference range, 75 μg/L to 365 μg/L; and peak, 76 μg/L and 50 μg/L after 12 and 84 hours, respectively, from baseline). The genetic analysis showed that the patient was homozygous for the R217X mutation in the growth hormone receptor gene, which is characteristic of Laron syndrome. On the basis of these results, the diagnosis of primary growth hormone insensitivity syndrome was made, and recombinant insulin-like growth factor 1 therapy was initiated. The patient's treatment was well tolerated, but unexplained central hypothyroidism occurred at the age of 12.9 years. At the age of 15 years, when the patient's sexual development was almost completed and her menstrual cycle occurred irregularly, her height was 129.8 cm, which is 4.71 standard deviations below the median for normal girls her age. The most important functional tests for the diagnosis of growth hormone insensitivity are the insulin-like growth factor 1 generation test and genetic analysis. Currently, the only effective treatment is daily administration of recombinant insulin-like growth factor 1 starting from early childhood. However, these patients show a dramatically impaired final height. In our case, unexplained central hypothyroidism occurred during treatment.

  3. A uniform bacterial growth potential assay for different water types.

    PubMed

    Farhat, Nadia; Hammes, Frederik; Prest, Emmanuelle; Vrouwenvelder, Johannes

    2018-06-06

    The bacterial growth potential is important to understand and manage bacterial regrowth-related water quality concerns. Bacterial growth potential depends on growth promoting/limiting compounds, therefore, nutrient availability is the key factor governing bacterial growth potential. Selecting proper tools for bacterial growth measurement is essential for routine implementation of the growth potential measurement. This study proposes a growth potential assay that is universal and can be used for different water types and soil extract without restrictions of pure culture or cultivability of the bacterial strain. The proposed assay measures the sample bacterial growth potential by using the indigenous community as inocula. Flow cytometry (FCM) and adenosine tri-phosphate (ATP) were used to evaluate the growth potential of six different microbial communities indigenous to the sample being analyzed, with increasing carbon concentrations. Bottled mineral water, non-chlorinated tap water, seawater, river water, wastewater effluent and a soil organic carbon extract were analyzed. Results showed that indigenous bacterial communities followed normal batch growth kinetics when grown on naturally present organic carbon. Indigenous bacterial growth could detect spiked organic carbon concentrations as low as 10 μg/L. The indigenous community in all samples responded proportionally to the increase in acetate-carbon and proportional growth could be measured with both FCM and ATP. Bacterial growth was proportional to the carbon concentration but not the same proportion factor for the different water samples tested. The effect of inoculating the same water with different indigenous microbial communities on the growth potential was also examined. The FCM results showed that the highest increase in total bacterial cell concentration was obtained with bacteria indigenous to the water sample. The growth potential assay using indigenous bacterial community revealed consistent results of bacterial growth in all the different samples tested and therefore providing a fast, more stable, and accurate approach for monitoring the biological stability of waters compared to the previously developed assays. The growth potential assay can be used to aid in detecting growth limitations by compounds other than organic carbon. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Growth hormone deficiency after chemotherapy for acute lymphoblastic leukemia in children who have not received cranial radiation.

    PubMed

    Haddy, Theresa B; Mosher, Revonda B; Nunez, Susan B; Reaman, Gregory H

    2006-02-01

    Chemotherapy-related growth failure is a significant problem in children with acute lymphoblastic leukemia (ALL) and other childhood cancers. Growth impairment after cranial radiation (CR) can result in diminished adult height, but growth failure following chemotherapy without CR is usually followed by catch-up growth and normal adult height.1 A retrospective review of 347 ALL survivors registered in our Long Term Follow Up (LTFU) Clinic, since 1997 revealed that 109 had received CR; 3, total body irradiation (TBI); and 235, neither CR nor TBI. For patients whose growth velocity slowed, growth hormone (GH) levels and pediatric endocrinology referrals were obtained. Among the 112 ALL survivors who had received some form of CR, 5 had significant growth failure with growth hormone deficiency (GHD). Among the 235 ALL survivors treated with chemotherapy without CR, 2 were diagnosed with growth failure and GHD. We report the two survivors of childhood ALL treated with chemotherapy without CR who required GH replacement due to absence of catch-up growth. A 15-year-old boy and a 12-year-old girl, off therapy for 9 and 6 years, respectively, were evaluated for decreased growth velocity and failure of catch-up growth. Peak GH responses to stimulation using arginine and clonidine were 3.4 and 3.0 ng/ml, respectively (normal >10 ng/ml). Other causes of growth failure were ruled out, and GH replacement therapy was instituted. Their chemotherapy had included methotrexate, 6 mercaptopurine, vincristine, adriamycin, cyclophosphamide, L-asparaginase, dexamethasone, cytarabine, 6 thioguanine, and intrathecal methotrexate. The growth of all children treated with intensive chemotherapy, regardless of whether CR was administered, should be closely monitored with measurement of standing height at 6 months intervals until growth is complete.

  5. Reduced growth factor requirement of keloid-derived fibroblasts may account for tumor growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, S.B.; Trupin, K.M.; Rodriguez-Eaton, S.

    Keloids are benign dermal tumors that form during an abnormal wound-healing process is genetically susceptible individuals. Although growth of normal and keloid cells did not differ in medium containing 10% (vol/vol) fetal bovine serum, keloid culture grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) fetal bovine serum, keloid cultures grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) plasma or 1% fetal bovine serum. Conditioned medium from keloid cultures did not stimulate growth of normal cells in plasma nor did it contain detectable platelet-derived growth factor or epidermal growth factor. Keloidmore » fibroblasts responded differently than normal adult fibroblasts to transforming growth factor ..beta... Whereas transforming growth factor ..beta.. reduced growth stimulation by epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from keloids. Normal and keloid fibroblasts also responded differently to hydrocortisone: growth was stimulated in normal adult cells and unaffected or inhibited in keloid cells. Fetal fibroblasts resembled keloid cells in their ability to grow in plasma and in their response to hydrocortisone. The ability of keloid fibroblasts to grow to higher cell densities in low-serum medium than cells from normal adult skin or from normal early or mature scars suggests that a reduced dependence on serum growth factors may account for their prolonged growth in vivo. Similarities between keloid and fetal cells suggest that keloids may result from the untimely expression of growth-control mechanism that is developmentally regulated.« less

  6. Kinetic aspects of chain growth in Fischer-Tropsch synthesis.

    PubMed

    Filot, Ivo A W; Zijlstra, Bart; Broos, Robin J P; Chen, Wei; Pestman, Robert; Hensen, Emiel J M

    2017-04-28

    Microkinetics simulations are used to investigate the elementary reaction steps that control chain growth in the Fischer-Tropsch reaction. Chain growth in the FT reaction on stepped Ru surfaces proceeds via coupling of CH and CR surface intermediates. Essential to the growth mechanism are C-H dehydrogenation and C hydrogenation steps, whose kinetic consequences have been examined by formulating two novel kinetic concepts, the degree of chain-growth probability control and the thermodynamic degree of chain-growth probability control. For Ru the CO conversion rate is controlled by the removal of O atoms from the catalytic surface. The temperature of maximum CO conversion rate is higher than the temperature to obtain maximum chain-growth probability. Both maxima are determined by Sabatier behavior, but the steps that control chain-growth probability are different from those that control the overall rate. Below the optimum for obtaining long hydrocarbon chains, the reaction is limited by the high total surface coverage: in the absence of sufficient vacancies the CHCHR → CCHR + H reaction is slowed down. Beyond the optimum in chain-growth probability, CHCR + H → CHCHR and OH + H → H 2 O limit the chain-growth process. The thermodynamic degree of chain-growth probability control emphasizes the critical role of the H and free-site coverage and shows that at high temperature, chain depolymerization contributes to the decreased chain-growth probability. That is to say, during the FT reaction chain growth is much faster than chain depolymerization, which ensures high chain-growth probability. The chain-growth rate is also fast compared to chain-growth termination and the steps that control the overall CO conversion rate, which are O removal steps for Ru.

  7. Study on the Changes in Enzyme and Insulin-like Growth Factor-1 Concentrations in Blood Serum and Growth Characteristics of Velvet Antler during the Antler Growth Period in Sika Deer (Cervus nippon).

    PubMed

    Park, Jaehyun; Jeon, Byongtae; Kang, Sungki; Oh, Mirae; Kim, Myonghwa; Jang, Seyoung; Park, Pyojam; Kim, Sangwoo; Moon, Sangho

    2015-09-01

    This study was conducted to investigate changes in blood enzyme parameters and to evaluate the relationship between insulin-like growth factor-1 (IGF-1), antler growth and body weight during the antler growth of sika deer (Cervus nippon). Serum enzyme activity and IGF-1 concentrations were measured in blood samples collected from the jugular and femoral veins at regular intervals during the antler growth period. Blood samples were taken in the morning from fasted stags (n = 12) which were healthy and showed no clinical signs of disease. Alfalfa was available ad libitum and concentrates were given at 1% of body weight to all stags. The experimental diet was provided at 9 am with water available at all times. There were no significant differences in alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase during antler growth, but alkaline phosphatase concentrations increased with antler growth progression, and the highest alkaline phosphatase concentration was obtained 55 days after antler casting. Serum IGF-1 concentrations measured from blood samples taken from the jugular vein during antler growth, determined that levels of IGF-1 was associated with body weight and antler growth patterns. Serum IGF-1 concentrations were higher at the antler cutting date than other sampling dates. Antler length increased significantly during antler growth (p<0.001), and there was a similar trend to between right and left beams. Body weight increased with antler growth but was not significant. Consequently it appeared that serum alkaline phosphatase concentration was related to antler growth and both antler growth and body weight were associated positively with IGF-1 concentrations during antler growth.

  8. Temperature dependence of needle and shoot elongation before bud break in Scots pine.

    PubMed

    Schiestl-Aalto, Pauliina; Mäkelä, Annikki

    2017-03-01

    Knowledge about the early part of needle growth is deficient compared with what is known about shoot growth. It is however important to understand growth of different organs to be able to estimate the changes in whole tree growth in a changing environment. The onset of growth in spring has been observed to occur over some certain threshold value of momentary temperature or temperature accumulation. We measured the length growth of Scots pine (Pinus sylvestris L.) needles and shoots from March until bud break over 3 years. We first compared needle growth with concurrent shoot growth. Then, we quantified threshold temperature of growth (i) with a logistic regression based on momentary temperatures and (ii) with the temperature sum accumulation method. Temperature sum was calculated with combinations of various time steps, starting dates and threshold temperature values. Needle elongation began almost concurrently with shoot elongation and proceeded linearly in relation to shoot growth until bud break. When studying the threshold temperature for growth, the method with momentary temperature effect on growth onset yielded ambiguous results in our conditions. The best fit of an exponential regression between needle growth or length and temperature sum was obtained with threshold temperatures -1 to +2 °C, with several combinations of starting date and time step. We conclude that although growth onset is a momentary event the process leading to it is a long-term continuum where past time temperatures have to be accounted for, rather than a sudden switch from quiescence to active growth. Further, our results indicate that lower temperatures than the commonly used +5 °C are sufficient for actuating the growth process. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants.

    PubMed

    Fenton, Tanis R; Kim, Jae H

    2013-04-20

    The aim of this study was to revise the 2003 Fenton Preterm Growth Chart, specifically to: a) harmonize the preterm growth chart with the new World Health Organization (WHO) Growth Standard, b) smooth the data between the preterm and WHO estimates, informed by the Preterm Multicentre Growth (PreM Growth) study while maintaining data integrity from 22 to 36 and at 50 weeks, and to c) re-scale the chart x-axis to actual age (rather than completed weeks) to support growth monitoring. Systematic review, meta-analysis, and growth chart development. We systematically searched published and unpublished literature to find population-based preterm size at birth measurement (weight, length, and/or head circumference) references, from developed countries with: Corrected gestational ages through infant assessment and/or statistical correction; Data percentiles as low as 24 weeks gestational age or lower; Sample with greater than 500 infants less than 30 weeks. Growth curves for males and females were produced using cubic splines to 50 weeks post menstrual age. LMS parameters (skew, median, and standard deviation) were calculated. Six large population-based surveys of size at preterm birth representing 3,986,456 births (34,639 births < 30 weeks) from countries Germany, United States, Italy, Australia, Scotland, and Canada were combined in meta-analyses. Smooth growth chart curves were developed, while ensuring close agreement with the data between 24 and 36 weeks and at 50 weeks. The revised sex-specific actual-age growth charts are based on the recommended growth goal for preterm infants, the fetus, followed by the term infant. These preterm growth charts, with the disjunction between these datasets smoothing informed by the international PreM Growth study, may support an improved transition of preterm infant growth monitoring to the WHO growth charts.

  10. Density, ages, and growth rates in old-growth and young-growth forests in coastal Oregon

    USGS Publications Warehouse

    Tappeiner, J. C.; Huffman, D.; Spies, T.; Bailey, John D.

    1997-01-01

    We studied the ages and diameter growth rates of trees in former Douglas-fir (Pseudotsuga menziesii (Mirb.)Franco) old-growth stands on 10 sites and compared them with young-growth stands (50-70 years old, regenerated after timber harvest) in the Coast Range of western Oregon. The diameters and diameter growth rates for the first 100 years of trees in the old-growth stands were significantly greater than those in the young-growth stands. Growth rates in the old stands were comparable with those from long-term studies of young stands in which density is about 100-120 trees/ha; often young-growth stand density is well over 500 trees/ha. Ages of large trees in the old stands ranged from 100 to 420 years; ages in young stands varied by only about 5 to 10 years. Apparently, regeneration of old-growth stands on these sites occurred over a prolonged period, and trees grew at low density with little self-thinning; in contrast, after timber harvest, young stands may develop with high density of trees with similar ages and considerable self-thinning. The results suggest that thinning may be needed in dense young stands where the management objective is to speed development of old-growth characteristics.

  11. Implicit theories about intelligence and growth (personal best) goals: Exploring reciprocal relationships.

    PubMed

    Martin, Andrew J

    2015-06-01

    There has been increasing interest in growth approaches to students' academic development, including value-added models, modelling of academic trajectories, growth motivation orientations, growth mindsets, and growth goals. This study sought to investigate the relationships between implicit theories about intelligence (incremental and entity theories) and growth (personal best, PB) goals - with particular interest in the ordering of factors across time. The study focused on longitudinal data of 969 Australian high school students. The classic cross-lagged panel design (using structural equation modelling) was employed to shed light on the ordering of Time 1 growth goals, incremental theories, and entity theories relative to Time 2 (1 year later) growth goals, incremental theories, and entity theories. Findings showed that Time 1 growth goals predicted Time 2 incremental theories (positively) and entity theories (negatively); Time 1 entity and incremental theories negatively predicted Time 2 incremental and entity theories respectively; but, Time 1 incremental theories and entity theories did not predict growth goals at Time 2. This suggests that entity and incremental theories are negatively reciprocally related across time, but growth goals seem to be directionally salient over incremental and entity theories. Implications for promoting growth goals and growth mindsets are discussed. © 2014 The British Psychological Society.

  12. Growth as a mirror: Is endocrine disruption challenging Tanner's concept?

    PubMed Central

    Schell, Lawrence M.; Burnitz, Kristopher K.; Gallo, Mia V.

    2012-01-01

    Background James Tanner coined the expression `Growth as a Mirror' and summarized in four words the results of more than a century of research on growth. Nineteenth century social reformers saw poor child growth as a reflection of terrible environmental conditions of the working class. Later investigators in anthropology and other fields clarified the connections between poor nutrition, disease, psychosocial stress and poor growth. Aim To evaluate the growth as a mirror concept in light of recent studies of endocrine disruption. Papers and Implications Pollution is recognized as a prominent component of the modern environment. From studies of many pollutants it is clear that some pollutants depress growth while others speed sexual maturation and increase growth, primarily in weight and fatness. While such unwelcome environmental features do not always suppress growth, growth still mirrors the environment in all its complexity and this relationship is key to understanding growth patterns today. For example, Akwesasne Mohawk adolescents are characterized by high rates of obesity and overweight. Their growth reflects the multiple intersecting influences of psychosocial stress, several pollutant exposures and limited dietary chokes. Conclusion Although Tanner did not anticipate the myriad influences of pollutants, the growth as a mirror concept continues to have great validity and utility. PMID:22780455

  13. Differential effects of catecholamines on in vitro growth of pathogenic bacteria

    NASA Technical Reports Server (NTRS)

    Belay, Tesfaye; Sonnenfeld, Gerald

    2002-01-01

    Supplementation of minimal medium inoculated with bacterial cultures with norepinephrine, epinephrine, dopamine, or isoproterenol resulted in marked increases in growth compared to controls. Norepinephrine and dopamine had the greatest enhancing effects on growth of cultures of Pseudomonas aeruginosa and Klebsiella pneumoniae, while epinephrine and isoproterenol also enhanced growth to a lesser extent. The growth of Escherichia coli in the presence of norepinephrine was greater than growth in the presence of the three other neurochemicals used in the study. Growth of Staphylococcus aureus was also enhanced in the presence of norepinephrine, but not to the same degree as was the growth of gram negative bacteria. Addition of culture supernatants from E. coli cultures that had been grown in the presence of norepinephrine was able to enhance the growth of K. pneumoniae. Addition of the culture supernatant fluid culture from E. coli cultures that had been grown in the presence of norepinephrine did not enhance growth of P. aeruginosa or S. aureus. Culture supernatant fluids from bacteria other than E. coli grown in the presence of norepinephrine were not able to enhance the growth of any bacteria tested. The results suggest that catecholamines can enhance growth of pathogenic bacteria, which may contribute to development of pathogenesis; however, there is no uniform effect of catecholamines on bacterial growth.

  14. Patterns of tree growth in relation to environmental variability in the tropical dry deciduous forest at Mudumalai, southern India.

    PubMed

    Nath, Cheryl D; Dattaraja, H S; Suresh, H S; Joshi, N V; Sukumar, R

    2006-12-01

    Tree diameter growth is sensitive to environmental fluctuations and tropical dry forests experience high seasonal and inter-annual environmental variation. Tree growth rates in a large permanent plot at Mudumalai, southern India, were examined for the influences of rainfall and three intrinsic factors (size, species and growth form) during three 4-year intervals over the period 1988-2000. Most trees had lowest growth during the second interval when rainfall was lowest, and skewness and kurtosis of growth distributions were reduced during this interval. Tree diameter generally explained less than 10% of growth variation and had less influence on growth than species identity or time interval. Intraspecific variation was high, yet species identity accounted for up to 16% of growth variation in the community. There were no consistent differences between canopy and understory tree growth rates; however, a few subgroups of species may potentially represent canopy and understory growth guilds. Environmentally-induced temporal variations in growth generally did not reduce the odds of subsequent survival. Growth rates appear to be strongly influenced by species identity and environmental variability in the Mudumalai dry forest. Understanding and predicting vegetation dynamics in the dry tropics thus also requires information on temporal variability in local climate.

  15. Posttraumatic growth after breast cancer: patient, partner, and couple perspectives.

    PubMed

    Manne, Sharon; Ostroff, Jamie; Winkel, Gary; Goldstein, Lori; Fox, Kevin; Grana, Generosa

    2004-01-01

    The purpose of this study was to evaluate posttraumatic growth among breast cancer patients and their significant others over a 1(1/2)-year time span after diagnosis and to examine cognitive and emotional processes in posttraumatic growth. One hundred sixty-two women with breast cancer and their partners completed surveys assessing posttraumatic growth, cognitive and emotional processing, and marital satisfaction at 3 time points spaced 9 months apart. Posttraumatic growth increased for both partners during this period. Patient posttraumatic growth was predicted by younger age, contemplating reasons for cancer, and more emotional expression at time 1. Partner posttraumatic growth was predicted by younger age, more intrusive thoughts, and greater use of positive reappraisal and emotional processing at time 1. Posttraumatic growth is reported by patients and by significant others. Cognitive and emotional processes predict growth. Patient growth is associated with the significant other's cognitive and emotional processing of breast cancer.

  16. Indeterminate Growth: Could It Represent the Ancestral Condition?

    PubMed Central

    Hariharan, Iswar K.; Wake, David B.; Wake, Marvalee H.

    2016-01-01

    Although we are used to the idea that many organisms stop growing when they reach a predictable size, in many taxa, growth occurs throughout the life of an organism, a phenomenon referred to as indeterminate growth. Our comparative analysis suggests that indeterminate growth may indeed represent the ancestral condition, whereas the permanent arrest of growth may be a more derived state. Consistent with this idea, in diverse taxa, the basal branches show indeterminate growth, whereas more derived branches arrest their growth. Importantly, in some closely related taxa, the termination of growth has evolved in mechanistically distinct ways. Also, even within a single organism, different organs can differ with respect to whether they terminate their growth or not. Finally, the study of tooth development indicates that, even at the level of a single tissue, multiple determinate patterns of growth can evolve from an ancestral one that is indeterminate. PMID:26216720

  17. Parent perception of healthy infant and toddler growth.

    PubMed

    Laraway, Kelly A; Birch, Leann L; Shaffer, Michele L; Paul, Ian M

    2010-04-01

    We hypothesized that parents of infants prefer growth at higher percentiles and are averse to growth at lower percentiles. Of 279 participating parents, only 10% desired their child's weight to be in the lowest quartile. For children weighing in the lowest quartile, 57% of parents thought their child's weight was "too low." In contrast, 66% of parents whose child's weight was in the top quartile preferred their child weigh that much. When viewing hypothetical infant growth trajectories, 47% ranked a growth chart demonstrating growth along the 10th percentile for weight as "least healthy" of 6 growth patterns, and 29% chose charts showing an infant at the 90th percentile for weight at age 1 as "healthiest." In conclusion, parents are averse to growth at the bottom of the weight growth chart but are much less likely to feel negatively about growth at higher percentiles. This is troubling given the childhood obesity epidemic.

  18. Controlling bottom-up rapid growth of single crystalline gallium nitride nanowires on silicon.

    PubMed

    Wu, Ko-Li; Chou, Yi; Su, Chang-Chou; Yang, Chih-Chaing; Lee, Wei-I; Chou, Yi-Chia

    2017-12-20

    We report single crystalline gallium nitride nanowire growth from Ni and Ni-Au catalysts on silicon using hydride vapor phase epitaxy. The growth takes place rapidly; efficiency in time is higher than the conventional nanowire growth in metal-organic chemical vapor deposition and thin film growth in molecular beam epitaxy. The effects of V/III ratio and carrier gas flow on growth are discussed regarding surface polarity and sticking coefficient of molecules. The nanowires of gallium nitride exhibit excellent crystallinity with smooth and straight morphology and uniform orientation. The growth mechanism follows self-assembly from both catalysts, where Au acts as a protection from etching during growth enabling the growth of ultra-long nanowires. The photoluminescence of such nanowires are adjustable by tuning the growth parameters to achieve blue emission. The practical range of parameters for mass production of such high crystal quality and uniformity of nanowires is suggested.

  19. Effect of summer daylight exposure and genetic background on growth in growth hormone-deficient children.

    PubMed

    De Leonibus, C; Chatelain, P; Knight, C; Clayton, P; Stevens, A

    2016-11-01

    The response to growth hormone in humans is dependent on phenotypic, genetic and environmental factors. The present study in children with growth hormone deficiency (GHD) collected worldwide characterised gene-environment interactions on growth response to recombinant human growth hormone (r-hGH). Growth responses in children are linked to latitude, and we found that a correlate of latitude, summer daylight exposure (SDE), was a key environmental factor related to growth response to r-hGH. In turn growth response was determined by an interaction between both SDE and genes known to affect growth response to r-hGH. In addition, analysis of associated networks of gene expression implicated a role for circadian clock pathways and specifically the developmental transcription factor NANOG. This work provides the first observation of gene-environment interactions in children treated with r-hGH.

  20. Effect of summer daylight exposure and genetic background on growth in growth hormone-deficient children

    PubMed Central

    De Leonibus, C; Chatelain, P; Knight, C; Clayton, P; Stevens, A

    2016-01-01

    The response to growth hormone in humans is dependent on phenotypic, genetic and environmental factors. The present study in children with growth hormone deficiency (GHD) collected worldwide characterised gene–environment interactions on growth response to recombinant human growth hormone (r-hGH). Growth responses in children are linked to latitude, and we found that a correlate of latitude, summer daylight exposure (SDE), was a key environmental factor related to growth response to r-hGH. In turn growth response was determined by an interaction between both SDE and genes known to affect growth response to r-hGH. In addition, analysis of associated networks of gene expression implicated a role for circadian clock pathways and specifically the developmental transcription factor NANOG. This work provides the first observation of gene–environment interactions in children treated with r-hGH. PMID:26503811

  1. Study on Growth Rhythm of Juveniles Cistolemmys Flavomarginata for One and Two Years Old

    NASA Astrophysics Data System (ADS)

    Huang, Bin

    Growth of one and two year old Cistolemmys flavomarginata is studied. In natural temperature and under artificial feeding condition, juvenile turtles grow for 180 days in Xinyang, one year old turtle average body weight increased from 18.1 g to 54.5 g, the relative growth rate is 204.1%, the absolute growth rate is 0.21. two year old turtle average body weight increased from 46.8 g to 101.1 g, the relative growth rate is 115.98%, the absolute growth rate is 0.30. But two year old turtle growth rate is slower than that of one year old turtle. The body weight, carapace length, carapace width, plastron length, plastron width and carapace high are correlated positively to daily age. The body weight growth equations of one and two year old turtles are deduced. Compared with other reptiles, whole growth cycle is grasped systemically by the growth patterns.

  2. Vegetative Growth of Four Strains of Hericium erinaceus Collected from Different Habitats

    PubMed Central

    Imtiaj, Ahmed; Jayasinghe, Chandana; Lee, Geon Woo; Shim, Mi Ja; Rho, Hyun-Su; Lee, Hyun Sook; Hur, Hyun; Lee, Min Woong; Lee, U-Youn

    2008-01-01

    Vegetative growth of four different strains of Hericium erinaceus was observed. The temperature suitable for optimal mycelial growth was determined to be 25℃, with growth observed in the extend temperature range of 20~30℃. The different strains of this mushroom showed distinct pH requirements for their optimum vegetative growth, with the most favorable growth observed at pH 6. Considering vegetative mycelial growth, PDA, YM, Hennerberg, Hamada, and Glucose peptone were the most favorable media, and Czapek Dox, Hoppkins, Glucose tryptone, and Lilly were the most unfavorable media for these mushroom strains. With the exception of lactose, most of the carbon sources assayed demonstrated favorable vegetative growth of H. erinaceus. For mycelial growth, the most suitable nitrogen source was alanine and the most unsuitable was histidine. Oak sawdust medium supplemented with 10~20% rice bran was the best for mycelial growth of the mushroom. PMID:23990739

  3. Growth factors, nutrient signaling, and cardiovascular aging.

    PubMed

    Fontana, Luigi; Vinciguerra, Manlio; Longo, Valter D

    2012-04-13

    Growth factors regulated by specific macronutrients have been shown to promote aging and accelerate mortality in the majority of the organisms studied. In particular, the enzymes activated by growth hormone, insulin, and insulin-like growth factor-1 in mammals and their orthologs in simple model organisms represent perhaps the best-understood proteins involved in the aging process. Dietary restriction, which reduces the level of insulin-like growth factor-1 and of other growth factors, has been associated with protection from diabetes, cancer, and cardiovascular diseases, and deficiencies in growth hormone signaling and insulin-like growth factor-1 are strongly associated with protection from cancer and diabetes in both mice and humans; however, their role in cardiac function and cardiovascular diseases is controversial. Here, we review the link between growth factors, cardiac function, and heart disease with focus on the cardioprotective and sensitizing effect of growth factors in both model organisms and humans.

  4. Influence of Containment on the Growth of Germanium-Silicon in Microgravity

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.; Croll, A.; Sorgenfrei, T.

    2017-01-01

    This investigation involves the comparison of results achieved from three types of crystal growth of germanium and germanium-silicon alloys: Float zone growth, Bridgman growth, and Detached Bridgman growth. The fundamental goal of the proposed research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon (GeSi) crystals (silicon concentration in the solid up to 5%) for three different growth configurations in order to quantitatively assess the improvements of crystal quality possible by detached growth.

  5. Modeling the Growth Rates of Tetragonal Lysozyme Crystal Faces

    NASA Technical Reports Server (NTRS)

    Li, Meirong; Nadarajah, Arunan; Pusey, Marc L.

    1998-01-01

    The measured macroscopic growth rates of the (110) and (101) faces of tetragonal lysozyme show an unexpectedly complex dependence on the supersaturation. The growth rates decay asymptotically to zero when the supersaturation is lowered to zero and increase rapidly when the supersaturation is increased. When supersaturations are increased still further the growth rates attain a maximum before starting to decrease. However, growth of these crystals is known to proceed by the classical dislocation and 2D nucleation growth mechanisms. This anomaly can be explained if growth is assumed to occur not by monomer units but by lysozyme aggregates. Analysis of the molecular packing of these crystals revealed that they were constructed of strongly bonded 4(sub 3) helices, while weaker bonds were responsible for binding the helices to each other. It follows that during crystal growth the stronger bonds are formed before the weaker ones. Thus, the growth of these crystals could be viewed as a two step process: aggregate growth units corresponding to the 4(sub 3) helix are first formed in the bulk solution by stronger intermolecular bonds and then attached to the crystal face by weaker bonds on dislocation hillocks or 2D islands. This will lead to a distribution of aggregates in the solution with monomers and lower order aggregates being predominant at low supersaturations and higher order aggregates being predominant at high supersaturations. If the crystal grows mostly by higher order aggregates, such as tetramers and octamers, it would explain the anomalous dependence of the growth rates on the supersaturation. Besides the analysis of molecular packing, a comprehensive analysis of the measured (110) and (101) growth rates was also undertaken in this study. The distribution of aggregates in lysozyme nutrient solutions at various solution conditions were determined from reversible aggregation reactions at equilibrium. The supersaturation was defined for each aggregate species with respect to its concentration at saturation in order to apply growth rate models to this process. The measured growth rates were then compared with the predicted ones from several dislocation and 2D nucleation growth models, employing tetramer and octamer growth units in polydisperse solutions and monomer units in monodisperse solutions. For the (110) face, the calculations consistently showed that the measured growth rates followed the expected model relations with octamer growth units. For the (101) face, it is not possible to obtain a clear agreement between the predicted and measured growth rates for a single growth unit as done for the (110) face. However, the calculations do indicate that the average size of the growth unit is between a tetramer and an octamer. This suggests that tetramers, octamers and other intermediate size growth units all participate in the growth process for this face. These calculations show that it is possible to model the macroscopic protein crystal growth rates if the molecular level processes can be account for, particularly protein aggregation processes in the bulk solution. Our recent investigations of tetragonal lysozyme crystals employing high resolution atomic force microscopy scans have further confirmed the growth of these crystals by aggregate growth units corresponding to 4(sub 3) helices.

  6. Flux growth in a horizontal configuration: An analog to vapor transport growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, J. -Q.; Sales, B. C.; Susner, M. A.

    Flux growth of single crystals is normally performed in a vertical configuration with an upright refractory container holding the flux melt. At high temperatures, flux dissolves the charge, forming a homogeneous solution before nucleation and growth of crystals takes place under proper supersaturation generated by cooling or evaporating the flux. In this paper, we report flux growth in a horizontal configuration with a temperature gradient along the horizontal axis: a liquid transport growth analogous to the vapor transport technique. In a typical liquid transport growth, the charge is kept at the hot end of the refractory container and the fluxmore » melt dissolves the charge and transfers it to the cold end. Once the concentration of charge is above the solubility limit at the cold end, the thermodynamically stable phase nucleates and grows. Compared to the vertical flux growth, the liquid transport growth can provide a large quantity of crystals in a single growth since the charge/flux ratio is not limited by the solubility limit at the growth temperature. This technique is complementary to the vertical flux growth and can be considered when a large amount of crystals is needed but the yield from the conventional vertical flux growth is limited. Finally, we applied this technique to the growth of IrSb 3, Mo 3Sb 7, and MnBi from self-flux, and the growth of FeSe, CrTe 3, NiPSe 3, FePSe 3, CuInP 2S 6, RuCl 3, and OsCl 4 from a halide flux.« less

  7. Flux growth in a horizontal configuration: An analog to vapor transport growth

    DOE PAGES

    Yan, J. -Q.; Sales, B. C.; Susner, M. A.; ...

    2017-07-05

    Flux growth of single crystals is normally performed in a vertical configuration with an upright refractory container holding the flux melt. At high temperatures, flux dissolves the charge, forming a homogeneous solution before nucleation and growth of crystals takes place under proper supersaturation generated by cooling or evaporating the flux. In this paper, we report flux growth in a horizontal configuration with a temperature gradient along the horizontal axis: a liquid transport growth analogous to the vapor transport technique. In a typical liquid transport growth, the charge is kept at the hot end of the refractory container and the fluxmore » melt dissolves the charge and transfers it to the cold end. Once the concentration of charge is above the solubility limit at the cold end, the thermodynamically stable phase nucleates and grows. Compared to the vertical flux growth, the liquid transport growth can provide a large quantity of crystals in a single growth since the charge/flux ratio is not limited by the solubility limit at the growth temperature. This technique is complementary to the vertical flux growth and can be considered when a large amount of crystals is needed but the yield from the conventional vertical flux growth is limited. Finally, we applied this technique to the growth of IrSb 3, Mo 3Sb 7, and MnBi from self-flux, and the growth of FeSe, CrTe 3, NiPSe 3, FePSe 3, CuInP 2S 6, RuCl 3, and OsCl 4 from a halide flux.« less

  8. Latino Adolescents' Ethnic Identity: Is There a Developmental Progression and Does Growth in Ethnic Identity Predict Growth in Self-Esteem?

    ERIC Educational Resources Information Center

    Umana-Taylor, Adriana J.; Gonzales-Backen, Melinda A.; Guimond, Amy B.

    2009-01-01

    The current longitudinal study of 323 Latino adolescents (50.5% male; M age = 15.31 years) examined whether ethnic identity exploration, resolution, and affirmation demonstrated significant growth over a 4-year period and whether growth in ethnic identity predicted growth in self-esteem. Findings from multiple-group latent growth curve models…

  9. Targeted delivery of growth factors in ischemic stroke animal models.

    PubMed

    Rhim, Taiyoun; Lee, Minhyung

    2016-01-01

    Ischemic stroke is caused by reduced blood supply and leads to loss of brain function. The reduced oxygen and nutrient supply stimulates various physiological responses, including induction of growth factors. Growth factors prevent neuronal cell death, promote neovascularization, and induce cell growth. However, the concentration of growth factors is not sufficient to recover brain function after the ischemic damage, suggesting that delivery of growth factors into the ischemic brain may be a useful treatment for ischemic stroke. In this review, various approaches for the delivery of growth factors to ischemic brain tissue are discussed, including local and targeting delivery systems. To develop growth factor therapy for ischemic stroke, important considerations should be taken into account. First, growth factors may have possible side effects. Thus, concentration of growth factors should be restricted to the ischemic tissues by local administration or targeted delivery. Second, the duration of growth factor therapy should be optimized. Growth factor proteins may be degraded too fast to have a high enough therapeutic effect. Therefore, delivery systems for controlled release or gene delivery may be useful. Third, the delivery systems to the brain should be optimized according to the delivery route.

  10. Comparison of Primary Models to Predict Microbial Growth by the Plate Count and Absorbance Methods.

    PubMed

    Pla, María-Leonor; Oltra, Sandra; Esteban, María-Dolores; Andreu, Santiago; Palop, Alfredo

    2015-01-01

    The selection of a primary model to describe microbial growth in predictive food microbiology often appears to be subjective. The objective of this research was to check the performance of different mathematical models in predicting growth parameters, both by absorbance and plate count methods. For this purpose, growth curves of three different microorganisms (Bacillus cereus, Listeria monocytogenes, and Escherichia coli) grown under the same conditions, but with different initial concentrations each, were analysed. When measuring the microbial growth of each microorganism by optical density, almost all models provided quite high goodness of fit (r(2) > 0.93) for all growth curves. The growth rate remained approximately constant for all growth curves of each microorganism, when considering one growth model, but differences were found among models. Three-phase linear model provided the lowest variation for growth rate values for all three microorganisms. Baranyi model gave a variation marginally higher, despite a much better overall fitting. When measuring the microbial growth by plate count, similar results were obtained. These results provide insight into predictive microbiology and will help food microbiologists and researchers to choose the proper primary growth predictive model.

  11. Direct in situ observation of ZnO nucleation and growth via transmission X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Tay, S. E. R.; Goode, A. E.; Nelson Weker, J.; Cruickshank, A. A.; Heutz, S.; Porter, A. E.; Ryan, M. P.; Toney, M. F.

    2016-01-01

    The nucleation and growth of a nanostructure controls its size and morphology, and ultimately its functional properties. Hence it is crucial to investigate growth mechanisms under relevant growth conditions at the nanometer length scale. Here we image the nucleation and growth of electrodeposited ZnO nanostructures in situ, using a transmission X-ray microscope and specially designed electrochemical cell. We show that this imaging technique leads to new insights into the nucleation and growth mechanisms in electrodeposited ZnO including direct, in situ observations of instantaneous versus delayed nucleation.The nucleation and growth of a nanostructure controls its size and morphology, and ultimately its functional properties. Hence it is crucial to investigate growth mechanisms under relevant growth conditions at the nanometer length scale. Here we image the nucleation and growth of electrodeposited ZnO nanostructures in situ, using a transmission X-ray microscope and specially designed electrochemical cell. We show that this imaging technique leads to new insights into the nucleation and growth mechanisms in electrodeposited ZnO including direct, in situ observations of instantaneous versus delayed nucleation. Electronic supplementary information (ESI) available: Methods and videos of nanoparticle growth. See DOI: 10.1039/c5nr07019h

  12. A computed microtomography method for understanding epiphyseal growth plate fusion

    NASA Astrophysics Data System (ADS)

    Staines, Katherine A.; Madi, Kamel; Javaheri, Behzad; Lee, Peter D.; Pitsillides, Andrew A.

    2017-12-01

    The epiphyseal growth plate is a developmental region responsible for linear bone growth, in which chondrocytes undertake a tightly regulated series of biological processes. Concomitant with the cessation of growth and sexual maturation, the human growth plate undergoes progressive narrowing, and ultimately disappears. Despite the crucial role of this growth plate fusion ‘bridging’ event, the precise mechanisms by which it is governed are complex and yet to be established. Progress is likely hindered by the current methods for growth plate visualisation; these are invasive and largely rely on histological procedures. Here we describe our non-invasive method utilising synchrotron x-ray computed microtomography for the examination of growth plate bridging, which ultimately leads to its closure coincident with termination of further longitudinal bone growth. We then apply this method to a dataset obtained from a benchtop microcomputed tomography scanner to highlight its potential for wide usage. Furthermore, we conduct finite element modelling at the micron-scale to reveal the effects of growth plate bridging on local tissue mechanics. Employment of these 3D analyses of growth plate bone bridging is likely to advance our understanding of the physiological mechanisms that control growth plate fusion.

  13. Growth-Mortality Relationships in Piñon Pine (Pinus edulis) during Severe Droughts of the Past Century: Shifting Processes in Space and Time

    PubMed Central

    Macalady, Alison K.; Bugmann, Harald

    2014-01-01

    The processes leading to drought-associated tree mortality are poorly understood, particularly long-term predisposing factors, memory effects, and variability in mortality processes and thresholds in space and time. We use tree rings from four sites to investigate Pinus edulis mortality during two drought periods in the southwestern USA. We draw on recent sampling and archived collections to (1) analyze P. edulis growth patterns and mortality during the 1950s and 2000s droughts; (2) determine the influence of climate and competition on growth in trees that died and survived; and (3) derive regression models of growth-mortality risk and evaluate their performance across space and time. Recent growth was 53% higher in surviving vs. dying trees, with some sites exhibiting decades-long growth divergences associated with previous drought. Differential growth response to climate partly explained growth differences between live and dead trees, with responses wet/cool conditions most influencing eventual tree status. Competition constrained tree growth, and reduced trees’ ability to respond to favorable climate. The best predictors in growth-mortality models included long-term (15–30 year) average growth rate combined with a metric of growth variability and the number of abrupt growth increases over 15 and 10 years, respectively. The most parsimonious models had high discriminatory power (ROC>0.84) and correctly classified ∼70% of trees, suggesting that aspects of tree growth, especially over decades, can be powerful predictors of widespread drought-associated die-off. However, model discrimination varied across sites and drought events. Weaker growth-mortality relationships and higher growth at lower survival probabilities for some sites during the 2000s event suggest a shift in mortality processes from longer-term growth-related constraints to shorter-term processes, such as rapid metabolic decline even in vigorous trees due to acute drought stress, and/or increases in the attack rate of both chronically stressed and more vigorous trees by bark beetles. PMID:24786646

  14. Twenty-Two Years of Warming, Fertilisation and Shading of Subarctic Heath Shrubs Promote Secondary Growth and Plasticity but Not Primary Growth

    PubMed Central

    Campioli, Matteo; Leblans, Niki; Michelsen, Anders

    2012-01-01

    Most manipulation experiments simulating global change in tundra were short-term or did not measure plant growth directly. Here, we assessed the growth of three shrubs (Cassiope tetragona, Empetrum hermaphroditum and Betula nana) at a subarctic heath in Abisko (Northern Sweden) after 22 years of warming (passive greenhouses), fertilisation (nutrients addition) and shading (hessian fabric), and compare this to observations from the first decade of treatment. We assessed the growth rate of current-year leaves and apical stem (primary growth) and cambial growth (secondary growth), and integrated growth rates with morphological measurements and species coverage. Primary- and total growth of Cassiope and Empetrum were unaffected by manipulations, whereas growth was substantially reduced under fertilisation and shading (but not warming) for Betula. Overall, shrub height and length tended to increase under fertilisation and warming, whereas branching increased mostly in shaded Cassiope. Morphological changes were coupled to increased secondary growth under fertilisation. The species coverage showed a remarkable increase in graminoids in fertilised plots. Shrub response to fertilisation was positive in the short-term but changed over time, likely because of an increased competition with graminoids. More erected postures and large, canopies (requiring enhanced secondary growth for stem reinforcement) likely compensated for the increased light competition in Empetrum and Cassiope but did not avoid growth reduction in the shade intolerant Betula. The impact of warming and shading on shrub growth was more conservative. The lack of growth enhancement under warming suggests the absence of long-term acclimation for processes limiting biomass production. The lack of negative effects of shading on Cassiope was linked to morphological changes increasing the photosynthetic surface. Overall, tundra shrubs showed developmental plasticity over the longer term. However, such plasticity was associated clearly with growth rate trends only in fertilised plots. PMID:22511968

  15. A comparison of additional treatment processes to limit particle accumulation and microbial growth during drinking water distribution.

    PubMed

    Liu, G; Lut, M C; Verberk, J Q J C; Van Dijk, J C

    2013-05-15

    Water quality changes, particle accumulation and microbial growth occurring in pilot-scale water distribution systems fed with normally treated and additional treated groundwater were monitored over a period of almost one year. The treatment processes were ranked in the following order: nanofiltration (NF) > (better than) ultrafiltration (UF) > ion exchange (IEX) for limiting particle accumulation. A different order was found for limiting overall microbial growth: NF > IEX > UF. There were strong correlations between particle load and particle accumulation, and between nutrient load and microbial growth. It was concluded that particle accumulation can be controlled by reducing the particle load in water treatment plants; and the microbial growth can be better controlled by limiting organic nutrients rather than removing biomass in water treatment plants. The major focus of this study was on microbial growth. The results demonstrated that growth occurred in all types of treated water, including the phases of bulk water, biofilm and loose deposits. Considering the growth in different phases, similar growth in bulk water was observed for all treatments; NF strongly reduced growth both in loose deposits and in biofilm; UF promoted growth in biofilm, while strongly limiting growth in loose deposits. IEX had good efficiency in between UF and NF, limiting both growths in loose deposits and in biofilm. Significant growth was found in loose deposits, suggesting that loose deposit biomass should be taken into account for growth evaluation and/or prediction. Strong correlations were found between microbial growth and pressure drop in a membrane fouling simulator which proved that a membrane fouling simulator can be a fast growth predictor (within a week). Different results obtained by adenosine triphosphate and flow cytometry cell counts revealed that ATP can accurately describe both suspended and particle-associated biomass, and flow cytometry files of TCC measurements needs to be further processed for particle loaded samples and/or a pretreatment protocol should be developed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Behaviour and physiology shape the growth accelerations associated with predation risk, high temperatures and southern latitudes in Ischnura damselfly larvae.

    PubMed

    Stoks, Robby; Swillen, Ine; De Block, Marjan

    2012-09-01

    1. To better predict effects of climate change and predation risk on prey animals and ecosystems, we need studies documenting not only latitudinal patterns in growth rate but also growth plasticity to temperature and predation risk and the underlying proximate mechanisms: behaviour (food intake) and digestive physiology (growth efficiency). The mechanistic underpinnings of predator-induced growth increases remain especially poorly understood. 2. We reared larvae from replicated northern and southern populations of the damselfly Ischnura elegans in a common garden experiment manipulating temperature and predation risk and quantified growth rate, food intake and growth efficiency. 3. The predator-induced and temperature-induced growth accelerations were the same at both latitudes, despite considerably faster growth rates in the southern populations. While the higher growth rates in the southern populations and the high rearing temperature were driven by both an increased food intake and a higher growth efficiency, the higher growth rates under predation risk were completely driven by a higher growth efficiency, despite a lowered food intake. 4. The emerging pattern that higher growth rates associated with latitude, temperature and predation risk were all (partly or completely) mediated by a higher growth efficiency has two major implications. First, it indicates that energy allocation trade-offs and the associated physiological costs play a major role both in shaping large-scale geographic variation in growth rates and in shaping the extent and direction of growth rate plasticity. Secondly, it suggests that the efficiency of energy transfer in aquatic food chains, where damselfly larvae are important intermediate predators, will be higher in southern populations, at higher temperatures and under predation risk. This may eventually contribute to the lengthening of food chains under these conditions and highlights that the prey identity may determine the influence of predation risk on food chain length. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  17. Comparison of in Situ and in Vitro Regulation of Soybean Seed Growth and Development

    PubMed Central

    Dyer, Daniel J.; Cotterman, C. Daniel; Cotterman, Josephine C.

    1987-01-01

    The growth characteristics of soybean (Glycine max [L.] Merr.) embryos in culture and seeds in situ were found to be similar, but developmental differences were observed. Embryos placed in culture when very small (<2 milligrams dry weight) failed to attain the maximal growth rates attained by embryos which were more mature when placed in culture. When nutrient levels were maintained in the culture medium, embryos continued to grow indefinitely, reaching dry weights far in excess of seeds matured in situ. Apparently, maternal factors were important in early and late development during the determination of maximum growth rate and the cessation of growth. Embryo growth rate was not affected by substituting glucose plus fructose for sucrose in the medium, nor by hormone treatments, including abscisic acid. Glutamine was found to give substantially better growth than glutamate, however. Contrary to prior reports, the response of soybean embryo growth rate to irradiance was found to be primarily an artifact of the effect of irradiance on media temperature. Across seven genotypes the correlation coefficient between seed growth rate in situ and embryo growth rate in vitro was 0.94, indicating essentially all of the variability of in situ seed growth rate between cultivars could be attributed to inherent growth rate differences associated with the embryos. The response to temperature was very similar for both embryos in culture and seeds in situ at temperatures below 30°C. Beyond that temperature, embryo growth rate continued to increase, while seed growth rate did not. The implication is that in situ seed growth rate is determined by the inherent growth potential of the embryo at low to moderate temperatures; however, at higher temperatures, the maternal plant is unable to support the rapid growth rates that the embryo is capable of attaining under conditions of unlimited assimilate supply. PMID:16665434

  18. Growth-mortality relationships in piñon pine (Pinus edulis) during severe droughts of the past century: shifting processes in space and time.

    PubMed

    Macalady, Alison K; Bugmann, Harald

    2014-01-01

    The processes leading to drought-associated tree mortality are poorly understood, particularly long-term predisposing factors, memory effects, and variability in mortality processes and thresholds in space and time. We use tree rings from four sites to investigate Pinus edulis mortality during two drought periods in the southwestern USA. We draw on recent sampling and archived collections to (1) analyze P. edulis growth patterns and mortality during the 1950s and 2000s droughts; (2) determine the influence of climate and competition on growth in trees that died and survived; and (3) derive regression models of growth-mortality risk and evaluate their performance across space and time. Recent growth was 53% higher in surviving vs. dying trees, with some sites exhibiting decades-long growth divergences associated with previous drought. Differential growth response to climate partly explained growth differences between live and dead trees, with responses wet/cool conditions most influencing eventual tree status. Competition constrained tree growth, and reduced trees' ability to respond to favorable climate. The best predictors in growth-mortality models included long-term (15-30 year) average growth rate combined with a metric of growth variability and the number of abrupt growth increases over 15 and 10 years, respectively. The most parsimonious models had high discriminatory power (ROC>0.84) and correctly classified ∼ 70% of trees, suggesting that aspects of tree growth, especially over decades, can be powerful predictors of widespread drought-associated die-off. However, model discrimination varied across sites and drought events. Weaker growth-mortality relationships and higher growth at lower survival probabilities for some sites during the 2000s event suggest a shift in mortality processes from longer-term growth-related constraints to shorter-term processes, such as rapid metabolic decline even in vigorous trees due to acute drought stress, and/or increases in the attack rate of both chronically stressed and more vigorous trees by bark beetles.

  19. Calcite crystal growth rate inhibition by polycarboxylic acids

    USGS Publications Warehouse

    Reddy, M.M.; Hoch, A.R.

    2001-01-01

    Calcite crystal growth rates measured in the presence of several polycarboxyclic acids show that tetrahydrofurantetracarboxylic acid (THFTCA) and cyclopentanetetracarboxylic acid (CPTCA) are effective growth rate inhibitors at low solution concentrations (0.01 to 1 mg/L). In contrast, linear polycarbocylic acids (citric acid and tricarballylic acid) had no inhibiting effect on calcite growth rates at concentrations up to 10 mg/L. Calcite crystal growth rate inhibition by cyclic polycarboxyclic acids appears to involve blockage of crystal growth sites on the mineral surface by several carboxylate groups. Growth morphology varied for growth in the absence and in the presence of both THFTCA and CPTCA. More effective growth rate reduction by CPTCA relative to THFTCA suggests that inhibitor carboxylate stereochemical orientation controls calcite surface interaction with carboxylate inhibitors. ?? 20O1 Academic Press.

  20. 8-Nitro-cGMP promotes bone growth through expansion of growth plate cartilage.

    PubMed

    Hoshino, Marie; Kaneko, Kotaro; Miyamoto, Yoichi; Yoshimura, Kentaro; Suzuki, Dai; Akaike, Takaaki; Sawa, Tomohiro; Ida, Tomoaki; Fujii, Shigemoto; Ihara, Hideshi; Tanaka, Junichi; Tsukuura, Risa; Chikazu, Daichi; Mishima, Kenji; Baba, Kazuyoshi; Kamijo, Ryutaro

    2017-09-01

    In endochondral ossification, growth of bones occurs at their growth plate cartilage. While it is known that nitric oxide (NO) synthases are required for proliferation of chondrocytes in growth plate cartilage and growth of bones, the precise mechanism by which NO facilitates these process has not been clarified yet. C-type natriuretic peptide (CNP) also positively regulate elongation of bones through expansion of the growth plate cartilage. Both NO and CNP are known to use cGMP as the second messenger. Recently, 8-nitro-cGMP was identified as a signaling molecule produced in the presence of NO in various types of cells. Here, we found that 8-nitro-cGMP is produced in proliferating chondrocytes in the growth plates, which was enhanced by CNP, in bones cultured ex vivo. In addition, 8-nitro-cGMP promoted bone growth with expansion of the proliferating zone as well as increase in the number of proliferating cells in the growth plates. 8-Nitro-cGMP also promoted the proliferation of chondrocytes in vitro. On the other hand, 8-bromo-cGMP enhanced the growth of bones with expansion of hypertrophic zone of the growth plates without affecting either the width of proliferating zone or proliferation of chondrocytes. These results indicate that 8-nitro-cGMP formed in growth plate cartilage accelerates chondrocyte proliferation and bone growth as a downstream molecule of NO. Copyright © 2017. Published by Elsevier Inc.

  1. Media composition: growth factors.

    PubMed

    Hegde, Aparna; Behr, Barry

    2012-01-01

    Despite the fact that the fundamental principle underlying the most common method of culture media constitution is that of mimicking the natural environment of the preimplantation embryo, one major difference that remains between current embryo culture media and in vivo conditions is the absence of growth factors in vitro. Numerous growth factors are known to be present in the in vivo environment of human and nonhuman preimplantation embryos, often with peak concentrations corresponding to when fertilization and preimplantation embryo growth would occur. Although these growth factors are found in very small concentrations, they have a profound effect on tissue growth and differentiation through attachment to factor-specific receptors on cell surfaces. Receptors for many different growth factors have also been detected in human preimplantation embryos. Preimplantation embryos themselves express many growth factors. The growth factors and receptors are metabolically costly to produce, and thus their presence in the environment of the preimplantation embryo and in the embryo respectively strongly implies that embryos are designed to encounter and respond to the corresponding factors. Studies of embryo coculture also indirectly suggest that growth factors can improve in vitro development. Several animal and human studies attest to a probable beneficial effect of addition of growth factors to culture media. However, there is still ambiguity regarding the exact role of growth factors in embryonic development, the optimal dose of growth factors to be added to culture media, the combinatorial effect and endocrine of growth factors in embryonic development.

  2. Loss of PodJ in Agrobacterium tumefaciens Leads to Ectopic Polar Growth, Branching, and Reduced Cell Division

    PubMed Central

    Anderson-Furgeson, James C.; Zupan, John R.; Grangeon, Romain

    2016-01-01

    ABSTRACT Agrobacterium tumefaciens is a rod-shaped Gram-negative bacterium that elongates by unipolar addition of new cell envelope material. Approaching cell division, the growth pole transitions to a nongrowing old pole, and the division site creates new growth poles in sibling cells. The A. tumefaciens homolog of the Caulobacter crescentus polar organizing protein PopZ localizes specifically to growth poles. In contrast, the A. tumefaciens homolog of the C. crescentus polar organelle development protein PodJ localizes to the old pole early in the cell cycle and accumulates at the growth pole as the cell cycle proceeds. FtsA and FtsZ also localize to the growth pole for most of the cell cycle prior to Z-ring formation. To further characterize the function of polar localizing proteins, we created a deletion of A. tumefaciens podJ (podJAt). ΔpodJAt cells display ectopic growth poles (branching), growth poles that fail to transition to an old pole, and elongated cells that fail to divide. In ΔpodJAt cells, A. tumefaciens PopZ-green fluorescent protein (PopZAt-GFP) persists at nontransitioning growth poles postdivision and also localizes to ectopic growth poles, as expected for a growth-pole-specific factor. Even though GFP-PodJAt does not localize to the midcell in the wild type, deletion of podJAt impacts localization, stability, and function of Z-rings as assayed by localization of FtsA-GFP and FtsZ-GFP. Z-ring defects are further evidenced by minicell production. Together, these data indicate that PodJAt is a critical factor for polar growth and that ΔpodJAt cells display a cell division phenotype, likely because the growth pole cannot transition to an old pole. IMPORTANCE How rod-shaped prokaryotes develop and maintain shape is complicated by the fact that at least two distinct species-specific growth modes exist: uniform sidewall insertion of cell envelope material, characterized in model organisms such as Escherichia coli, and unipolar growth, which occurs in several alphaproteobacteria, including Agrobacterium tumefaciens. Essential components for unipolar growth are largely uncharacterized, and the mechanism constraining growth to one pole of a wild-type cell is unknown. Here, we report that the deletion of a polar development gene, podJAt, results in cells exhibiting ectopic polar growth, including multiple growth poles and aberrant localization of cell division and polar growth-associated proteins. These data suggest that PodJAt is a critical factor in normal polar growth and impacts cell division in A. tumefaciens. PMID:27137498

  3. Effect of Time-Dependent Pinning Pressure on Abnormal Grain Growth: Phase Field Simulation

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Min; Min, Guensik; Shim, Jae-Hyeok; Lee, Kyung Jong

    2018-05-01

    The effect of the time-dependent pinning pressure of precipitates on abnormal grain growth has been investigated by multiphase field simulation with a simple precipitation model. The application of constant pinning pressure is problematic because it always induces abnormal grain growth or no grain growth, which is not reasonable considering the real situation. To produce time-dependent pinning pressure, both precipitation kinetics and precipitate coarsening kinetics have been considered with two rates: slow and fast. The results show that abnormal grain growth is suppressed at the slow precipitation rate. At the slow precipitation rate, the overall grain growth caused by the low pinning pressure in the early stage indeed plays a role in preventing abnormal grain growth by reducing the mobility advantage of abnormal grains. In addition, the fast precipitate coarsening rate tends to more quickly transform abnormal grain growth into normal grain growth by inducing the active growth of grains adjacent to the abnormal grains in the early stage. Therefore, the present study demonstrates that the time dependence of the pinning pressure of precipitates is a critical factor that determines the grain growth mode.

  4. Effect of Time-Dependent Pinning Pressure on Abnormal Grain Growth: Phase Field Simulation

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Min; Min, Guensik; Shim, Jae-Hyeok; Lee, Kyung Jong

    2018-03-01

    The effect of the time-dependent pinning pressure of precipitates on abnormal grain growth has been investigated by multiphase field simulation with a simple precipitation model. The application of constant pinning pressure is problematic because it always induces abnormal grain growth or no grain growth, which is not reasonable considering the real situation. To produce time-dependent pinning pressure, both precipitation kinetics and precipitate coarsening kinetics have been considered with two rates: slow and fast. The results show that abnormal grain growth is suppressed at the slow precipitation rate. At the slow precipitation rate, the overall grain growth caused by the low pinning pressure in the early stage indeed plays a role in preventing abnormal grain growth by reducing the mobility advantage of abnormal grains. In addition, the fast precipitate coarsening rate tends to more quickly transform abnormal grain growth into normal grain growth by inducing the active growth of grains adjacent to the abnormal grains in the early stage. Therefore, the present study demonstrates that the time dependence of the pinning pressure of precipitates is a critical factor that determines the grain growth mode.

  5. Investigation of growth dynamics of carbon nanotubes

    PubMed Central

    2017-01-01

    The synthesis of single-walled carbon nanotubes (SWCNTs) with defined properties is required for both fundamental investigations and practical applications. The revealing and thorough understanding of the growth mechanism of SWCNTs is the key to the synthesis of nanotubes with required properties. This paper reviews the current status of the research on the investigation of growth dynamics of carbon nanotubes. The review starts with the consideration of the peculiarities of the growth mechanism of carbon nanotubes. The physical and chemical states of the catalyst during the nanotube growth are discussed. The chirality selective growth of nanotubes is described. The main part of the review is dedicated to the analysis and systematization of the reported results on the investigation of growth dynamics of nanotubes. The studies on the revealing of the dependence of the growth rate of nanotubes on the synthesis parameters are reviewed. The correlation between the lifetime of catalyst and growth rate of nanotubes is discussed. The reports on the calculation of the activation energy of the nanotube growth are summarized. Finally, the growth properties of inner tubes inside SWCNTs are considered. PMID:28503394

  6. Helical Growth of Aluminum Nitride: New Insights into Its Growth Habit from Nanostructures to Single Crystals

    PubMed Central

    Zhang, Xing-Hong; Shao, Rui-Wen; Jin, Lei; Wang, Jian-Yu; Zheng, Kun; Zhao, Chao-Liang; Han, Jie-Cai; Chen, Bin; Sekiguchi, Takashi; Zhang, Zhi; Zou, Jin; Song, Bo

    2015-01-01

    By understanding the growth mechanism of nanomaterials, the morphological features of nanostructures can be rationally controlled, thereby achieving the desired physical properties for specific applications. Herein, the growth habits of aluminum nitride (AlN) nanostructures and single crystals synthesized by an ultrahigh-temperature, catalyst-free, physical vapor transport process were investigated by transmission electron microscopy. The detailed structural characterizations strongly suggested that the growth of AlN nanostructures including AlN nanowires and nanohelixes follow a sequential and periodic rotation in the growth direction, which is independent of the size and shape of the material. Based on these experimental observations, an helical growth mechanism that may originate from the coeffect of the polar-surface and dislocation-driven growth is proposed, which offers a new insight into the related growth kinetics of low-dimensional AlN structures and will enable the rational design and synthesis of novel AlN nanostructures. Further, with the increase of temperature, the growth process of AlN grains followed the helical growth model. PMID:25976071

  7. GSK3 controls axon growth via CLASP-mediated regulation of growth cone microtubules

    PubMed Central

    Hur, Eun-Mi; Saijilafu; Lee, Byoung Dae; Kim, Seong-Jin; Xu, Wen-Lin; Zhou, Feng-Quan

    2011-01-01

    Suppression of glycogen synthase kinase 3 (GSK3) activity in neurons yields pleiotropic outcomes, causing both axon growth promotion and inhibition. Previous studies have suggested that specific GSK3 substrates, such as adenomatous polyposis coli (APC) and collapsin response mediator protein 2 (CRMP2), support axon growth by regulating the stability of axonal microtubules (MTs), but the substrate(s) and mechanisms conveying axon growth inhibition remain elusive. Here we show that CLIP (cytoplasmic linker protein)-associated protein (CLASP), originally identified as a MT plus end-binding protein, displays both plus end-binding and lattice-binding activities in nerve growth cones, and reveal that the two MT-binding activities regulate axon growth in an opposing manner: The lattice-binding activity mediates axon growth inhibition induced by suppression of GSK3 activity via preventing MT protrusion into the growth cone periphery, whereas the plus end-binding property supports axon extension via stabilizing the growing ends of axonal MTs. We propose a model in which CLASP transduces GSK3 activity levels to differentially control axon growth by coordinating the stability and configuration of growth cone MTs. PMID:21937714

  8. Posttraumatic growth, posttraumatic stress and psychological adjustment in the aftermath of the 2011 Oslo bombing attack.

    PubMed

    Blix, Ines; Hansen, Marianne Bang; Birkeland, Marianne Skogbrott; Nissen, Alexander; Heir, Trond

    2013-10-02

    Experiencing potentially traumatic events is associated with psychological distress. However, some survivors also experience positive personal and psychological changes in the aftermath of trauma. The present study investigated perceived posttraumatic growth in 197 ministerial employees who were present at work during the 2011 Oslo bombing attack. The relationships between trauma-exposure, peritraumatic reactions and posttraumatic growth were studied. Moreover, the adaptive significance of posttraumatic growth was addressed. The results showed that higher levels of trauma-exposure and immediate reactions were significantly related to perceived posttraumatic growth. No support for an adaptive significance of posttraumatic growth was found. On the contrary, posttraumatic growth was associated with higher symptom levels of posttraumatic stress. After adjusting for posttraumatic stress symptoms no association was found between perceived growth and work and social adjustment. However, perceived growth was associated with higher levels of life satisfaction. The present results are in line with previous findings indicating that perceived growth may be unrelated to psychological adjustment, and suggest that the concept and significance of posttraumatic growth should be interpreted with caution.

  9. Estimation of the growth curve and heritability of the growth rate for giant panda (Ailuropoda melanoleuca) cubs.

    PubMed

    Che, T D; Wang, C D; Jin, L; Wei, M; Wu, K; Zhang, Y H; Zhang, H M; Li, D S

    2015-03-27

    Giant panda cubs have a low survival rate during the newborn and early growth stages. However, the growth and developmental parameters of giant panda cubs during the early lactation stage (from birth to 6 months) are not well known. We examined the growth and development of giant panda cubs by the Chapman growth curve model and estimated the heritability of the maximum growth rate at the early lactation stage. We found that 83 giant panda cubs reached their maximum growth rate at approximately 75-120 days after birth. The body weight of cubs at 75 days was 4285.99 g. Furthermore, we estimated that the heritability of the maximum growth rate was moderate (h(2) = 0.38). Our study describes the growth and development of giant panda cubs at the early lactation stage and provides valuable growth benchmarks. We anticipate that our results will be a starting point for more detailed research on increasing the survival rate of giant panda cubs. Feeding programs for giant panda cubs need further improvement.

  10. Diameter growth and phenology of trees on sites with high water tables

    Treesearch

    D.C. McClurkin

    1965-01-01

    On a site where the water table always was within the root zone, thinning had little effect on diameter growth of white ash or sweetgum but increased the growth of baldcypress. Thinning did not extend durating of growth into the fall, nor was growth related to seasonal fluctuations in the water table. In ash and sweetgum, growth initiation seemed related to soil...

  11. Mental and Motor Growth Patterns and Growth Velocity of Indian Babies. (Longitudinal Growth of Indian Children). Research Report No. 4.

    ERIC Educational Resources Information Center

    Phatak, Pramila; And Others

    This study reports various aspects of the analyses carried out on the longitudinal data reported in a previous study (PS 007 345) for determining the general growth patterns and growth velocity of mental and motor development. Preliminary analyses focused on the selection of the growth curve, its evaluation in the 208 individual cases, and the…

  12. A new mechanistic growth model for simultaneous determination of lag phase duration and exponential growth rate and a new Belehdradek-type model for evaluating the effect of temperature on growth rate

    USDA-ARS?s Scientific Manuscript database

    A new mechanistic growth model was developed to describe microbial growth under isothermal conditions. The new mathematical model was derived from the basic observation of bacterial growth that may include lag, exponential, and stationary phases. With this model, the lag phase duration and exponen...

  13. Growth and dissolution kinetics of tetragonal lysozyme

    NASA Technical Reports Server (NTRS)

    Monaco, L. A.; Rosenberger, F.

    1993-01-01

    The growth and dissolution kinetics of lysozyme in a 25 ml solution bridge inside a closed growth cell was investigated. It was found that, under all growth conditions, the growth habit forming (110) and (101) faces grew through layer spreading with different growth rate dependence on supersaturation/temperature. On the other hand, (100) faces which formed only at low temperatures underwent a thermal roughening transition around 12 C.

  14. Morphological stability and kinetics in crystal growth from vapors

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1990-01-01

    The following topics are discussed: (1) microscopy image storage and processing system; (2) growth kinetics and morphology study with carbon tetrabromide; (3) photothermal deflection vapor growth setup; (4) bridgman growth of iodine single crystals; (5) vapor concentration distribution measurement during growth; and (6) Monte Carlo modeling of anisotropic growth kinetics and morphology. A collection of presentations and publications of these results are presented.

  15. Patterns of growth dominance in forests of the Rocky Mountains, USA

    Treesearch

    Dan Binkley; Daniel M. Kashian; Suzanne Boyden; Margot W. Kaye; John B. Bradford; Mary A. Arthur; Paula J. Fornwalt; Michael G. Ryan

    2006-01-01

    We used data from 142 stands in Colorado andWyoming, USA, to test the expectations of a model of growth dominance and stand development. Growth dominance relates the distribution of growth rates of individual trees within a stand to tree sizes. Stands with large trees that account for a greater share of stand growth than of stand mass exhibit strong growth dominance....

  16. Rate limits in silicon sheet growth - The connections between vertical and horizontal methods

    NASA Technical Reports Server (NTRS)

    Thomas, Paul D.; Brown, Robert A.

    1987-01-01

    Meniscus-defined techniques for the growth of thin silicon sheets fall into two categories: vertical and horizontal growth. The interactions of the temperature field and the crystal shape are analyzed for both methods using two-dimensional finite-element models which include heat transfer and capillarity. Heat transfer in vertical growth systems is dominated by conduction in the melt and the crystal, with almost flat melt/crystal interfaces that are perpendicular to the direction of growth. The high axial temperature gradients characteristic of vertical growth lead to high thermal stresses. The maximum growth rate is also limited by capillarity which can restrict the conduction of heat from the melt into the crystal. In horizontal growth the melt/crystal interface stretches across the surface of the melt pool many times the crystal thickness, and low growth rates are achievable with careful temperature control. With a moderate axial temperature gradient in the sheet a substantial portion of the latent heat conducts along the sheet and the surface of the melt pool becomes supercooled, leading to dendritic growth. The thermal supercooling is surpressed by lowering the axial gradient in the crystal; this configuration is the most desirable for the growth of high quality crystals. An expression derived from scaling analysis relating the growth rate and the crucible temperature is shown to be reliable for horizontal growth.

  17. Are trait-growth models transferable? Predicting multi-species growth trajectories between ecosystems using plant functional traits

    PubMed Central

    Vesk, Peter A.

    2017-01-01

    Plant functional traits are increasingly used to generalize across species, however few examples exist of predictions from trait-based models being evaluated in new species or new places. Can we use functional traits to predict growth of unknown species in different areas? We used three independently collected datasets, each containing data on heights of individuals from non-resprouting species over a chronosquence of time-since-fire sites from three ecosystems in south-eastern Australia. We examined the influence of specific leaf area, woody density, seed size and leaf nitrogen content on three aspects of plant growth; maximum relative growth rate, age at maximum growth and asymptotic height. We tested our capacity to perform out-of-sample prediction of growth trajectories between ecosystems using species functional traits. We found strong trait-growth relationships in one of the datasets; whereby species with low SLA achieved the greatest asymptotic heights, species with high leaf-nitrogen content achieved relatively fast growth rates, and species with low seed mass reached their time of maximum growth early. However these same growth-trait relationships did not hold across the two other datasets, making accurate prediction from one dataset to another unachievable. We believe there is evidence to suggest that growth trajectories themselves may be fundamentally different between ecosystems and that trait-height-growth relationships may change over environmental gradients. PMID:28486535

  18. Growth Kinetics and Morphology of Barite Crystals Derived from Face-Specific Growth Rates

    DOE PAGES

    Godinho, Jose R. A.; Stack, Andrew G.

    2015-03-30

    Here we investigate the growth kinetics and morphology of barite (BaSO 4) crystals by measuring the growth rates of the (001), (210), (010), and (100) surfaces using vertical scanning interferometry. Solutions with saturation indices 1.1, 2.1, and 3.0 without additional electrolyte, in 0.7 M NaCl, or in 1.3 mM SrCl2 are investigated. Face-specific growth rates are inhibited in the SrCl 2 solution relative to a solution without electrolyte, except for (100). Contrarily, growth of all faces is promoted in the NaCl solution. The variation of face-specific rates is solution-specific, which leads to a. change of the crystal morphology and overallmore » growth rate of crystals. The measured face-specific growth rates are used to model the growth of single crystals. Modeled crystals have a morphology and size similar to those grown from solution. Based on the model the time dependence of surface area and growth rates is analyzed. Growth rates change with time due to surface area normalization for small crystals and large growth intervals. By extrapolating rates to crystals with large surfaces areas, time-independent growth rates are 0.783, 2.96, and 0.513 mmol∙m -2∙h -1, for saturation index 2.1 solutions without additional electrolyte, NaCl, and SrCl 2, respectively.« less

  19. Growth Kinetics and Morphology of Barite Crystals Derived from Face-Specific Growth Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godinho, Jose R. A.; Stack, Andrew G.

    Here we investigate the growth kinetics and morphology of barite (BaSO 4) crystals by measuring the growth rates of the (001), (210), (010), and (100) surfaces using vertical scanning interferometry. Solutions with saturation indices 1.1, 2.1, and 3.0 without additional electrolyte, in 0.7 M NaCl, or in 1.3 mM SrCl2 are investigated. Face-specific growth rates are inhibited in the SrCl 2 solution relative to a solution without electrolyte, except for (100). Contrarily, growth of all faces is promoted in the NaCl solution. The variation of face-specific rates is solution-specific, which leads to a. change of the crystal morphology and overallmore » growth rate of crystals. The measured face-specific growth rates are used to model the growth of single crystals. Modeled crystals have a morphology and size similar to those grown from solution. Based on the model the time dependence of surface area and growth rates is analyzed. Growth rates change with time due to surface area normalization for small crystals and large growth intervals. By extrapolating rates to crystals with large surfaces areas, time-independent growth rates are 0.783, 2.96, and 0.513 mmol∙m -2∙h -1, for saturation index 2.1 solutions without additional electrolyte, NaCl, and SrCl 2, respectively.« less

  20. Phenotypic indications of FtsZ inhibition in hok/sok-induced bacterial growth changes and stress response.

    PubMed

    Chukwudi, Chinwe Uzoma; Good, Liam

    2018-01-01

    The hok/sok locus has been shown to enhance the growth of bacteria in adverse growth conditions such as high temperature, low starting-culture densities and antibiotic treatment. This is in addition to their well-established plasmid-stabilization effect via post-segregational killing of plasmid-free daughter cells. It delays the onset of growth by prolonging the lag phase of bacterial culture, and increases the rate of exponential growth when growth eventually begins. This enables the cells adapt to the prevailing growth conditions and enhance their survival in stressful conditions. These effects functionally complement defective SOS response mechanism, and appear analogous to the growth effects of FtsZ in the SOS pathway. In this study, the role of FtsZ in the hok/sok-induced changes in bacterial growth and cell division was investigated. Morphologic studies of early growth-phase cultures and cells growing under temperature stress showed elongated cells typical of FtsZ inhibition/deficiency. Both ftsZ silencing and over-expression produced comparable growth effects in control cells, and altered the growth changes observed otherwise in the hok/sok + cells. These changes were diminished in SOS-deficient strain containing mutant FtsZ. The involvement of FtsZ in the hok/sok-induced growth changes may be exploited as drug target in host bacteria, which often propagate antibiotic resistance elements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Adapting Growth Pole Theory to Community College Development.

    ERIC Educational Resources Information Center

    Brumbach, Mary A.

    2002-01-01

    Explains growth pole theory, which is the theory that growth manifests itself at poles of growth, rather than everywhere at once. Applies this theory to community college development, and offers advice for implementing growth poles by taking an entrepreneurial approach to education. (NB)

  2. GaN growth via HVPE on SiC/Si substrates: growth mechanisms

    NASA Astrophysics Data System (ADS)

    Sharofidinov, Sh Sh; Redkov, A. V.; Osipov, A. V.; Kukushkin, S. A.

    2017-11-01

    The article focuses on the study of GaN thin film growth via chloride epitaxy on SiC/Si hybrid substrate. SiC buffer layer was grown by a method of substitution of atoms, which allows one to reduce impact of mechanical stress therein on subsequent growth of III-nitride films. It is shown, that change in GaN growth conditions leads to change in its growth mechanism. Three mechanisms: epitaxial, spiral and stepwise growth are considered and mechanical stresses are estimated via Raman spectroscopy.

  3. Growth and profitability in small privately held biotech firms: preliminary findings.

    PubMed

    Brännback, Malin; Carsrud, Alan; Renko, Maija; Ostermark, Ralf; Aaltonen, Jaana; Kiviluoto, Niklas

    2009-06-01

    This paper reports on preliminary findings on a study of the relationship of growth and profitability among small privately held Finnish Life Science firms. Previous research results concerning growth and profitability are mixed, ranging from strongly positive to a negative relationship. The conventional wisdom states that growth is a prerequisite for profitability. Our results suggest that the reverse is the case. A high profitability-low growth biotech firm is more probably to make the transition to high profitability-high growth than a firm that starts off with low profitability and high growth.

  4. Influence of Containment on the Growth of Silicon-Germanium: A Materials Science Flight Project

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.; Croell, A.

    2012-01-01

    This investigation involves the comparison of results achieved from three types of crystal growth of germanium and germanium-silicon alloys: (1) Float zone growth (2) Bridgman growth (3) Detached Bridgman growth crystal The fundamental goal of the proposed research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon (GeSi) crystals (silicon concentration in the solid up to 5 at%) for three different growth configurations in order to quantitatively assess the improvements of crystal quality possible by detached growth.

  5. Growth curves and the international standard: How children's growth reflects challenging conditions in rural Timor-Leste.

    PubMed

    Spencer, Phoebe R; Sanders, Katherine A; Judge, Debra S

    2018-02-01

    Population-specific growth references are important in understanding local growth variation, especially in developing countries where child growth is poor and the need for effective health interventions is high. In this article, we use mixed longitudinal data to calculate the first growth curves for rural East Timorese children to identify where, during development, deviation from the international standards occurs. Over an eight-year period, 1,245 children from two ecologically distinct rural areas of Timor-Leste were measured a total of 4,904 times. We compared growth to the World Health Organization (WHO) standards using z-scores, and modeled height and weight velocity using the SuperImposition by Translation And Rotation (SITAR) method. Using the Generalized Additive Model for Location, Scale and Shape (GAMLSS) method, we created the first growth curves for rural Timorese children for height, weight and body mass index (BMI). Relative to the WHO standards, children show early-life growth faltering, and stunting throughout childhood and adolescence. The median height and weight for this population tracks below the WHO fifth centile. Males have poorer growth than females in both z-BMI (p = .001) and z-height-for-age (p = .018) and, unlike females, continue to grow into adulthood. This is the most comprehensive investigation to date of rural Timorese children's growth, and the growth curves created may potentially be used to identify future secular trends in growth as the country develops. We show significant deviation from the international standard that becomes most pronounced at adolescence, similar to the growth of other Asian populations. Males and females show different growth responses to challenging conditions in this population. © 2017 Wiley Periodicals, Inc.

  6. Some growth factors stimulate cultured adult rabbit ventricular myocyte hypertrophy in the absence of mechanical loading

    NASA Technical Reports Server (NTRS)

    Decker, R. S.; Cook, M. G.; Behnke-Barclay, M.; Decker, M. L.

    1995-01-01

    Cultured adult rabbit cardiac myocytes treated with recombinant growth factors display enhanced rates of protein accumulation (ie, growth) in response to insulin and insulin-like growth factors (IGFs), but epidermal growth factor, acidic or basic fibroblast growth factor, and platelet-derived growth factor failed to increase contractile protein synthesis or growth of the heart cells. Insulin and IGF-1 increased growth rates by stimulating anabolic while simultaneously inhibiting catabolic pathways, whereas IGF-2 elevated growth modestly by apparently inhibiting lysosomal proteolysis. Neutralizing antibodies directed against either IGF-1 or IGF-2 or IGF binding protein 3 blocked protein accumulation. A monoclonal antibody directed against the IGF-1 receptor also inhibited changes in protein turnover provoked by recombinant human IGF-1 but not IGF-2. Of the other growth factors tested, only transforming growth factor-beta 1 increased the fractional rate of myosin heavy chain (MHC) synthesis, with beta-MHC synthesis being elevated and alpha-MHC synthesis being suppressed. However, the other growth factors were able to modestly stimulate the rate of DNA synthesis in this preparation. Bromodeoxyuridine labeling revealed that these growth factors increased DNA synthesis in myocytes and nonmyocytes alike, but the heart cells displayed neither karyokinesis or cytokinesis. In contrast, cocultures of cardiac myocytes and nonmyocytes and nonmyocyte-conditioned culture medium failed to enhance the rate of cardiac MHC synthesis or its accumulation, implying that quiescent heart cells do not respond to "conditioning" by cardiac nonmyocytes. These findings demonstrated that insulin and the IGFs promote passively loaded cultured adult rabbit heart cells to hypertrophy but suggest that other growth factors tested may be limited in this regard.

  7. Modeling to predict growth/no growth boundaries and kinetic behavior of Salmonella on cutting board surfaces.

    PubMed

    Yoon, Hyunjoo; Lee, Joo-Yeon; Suk, Hee-Jin; Lee, Sunah; Lee, Heeyoung; Lee, Soomin; Yoon, Yohan

    2012-12-01

    This study developed models to predict the growth probabilities and kinetic behavior of Salmonella enterica strains on cutting boards. Polyethylene coupons (3 by 5 cm) were rubbed with pork belly, and pork purge was then sprayed on the coupon surface, followed by inoculation of a five-strain Salmonella mixture onto the surface of the coupons. These coupons were stored at 13 to 35°C for 12 h, and total bacterial and Salmonella cell counts were enumerated on tryptic soy agar and xylose lysine deoxycholate (XLD) agar, respectively, every 2 h, which produced 56 combinations. The combinations that had growth of ≥0.5 log CFU/cm(2) of Salmonella bacteria recovered on XLD agar were given the value 1 (growth), and the combinations that had growth of <0.5 log CFU/cm(2) were assigned the value 0 (no growth). These growth response data from XLD agar were analyzed by logistic regression for producing growth/no growth interfaces of Salmonella bacteria. In addition, a linear model was fitted to the Salmonella cell counts to calculate the growth rate (log CFU per square centimeter per hour) and initial cell count (log CFU per square centimeter), following secondary modeling with the square root model. All of the models developed were validated with observed data, which were not used for model development. Growth of total bacteria and Salmonella cells was observed at 28, 30, 33, and 35°C, but there was no growth detected below 20°C within the time frame investigated. Moreover, various indices indicated that the performance of the developed models was acceptable. The results suggest that the models developed in this study may be useful in predicting the growth/no growth interface and kinetic behavior of Salmonella bacteria on polyethylene cutting boards.

  8. Impact of childhood asthma on growth trajectories in early adolescence: Findings from the Childhood Asthma Prevention Study (CAPS).

    PubMed

    Movin, Maria; Garden, Frances L; Protudjer, Jennifer L P; Ullemar, Vilhelmina; Svensdotter, Frida; Andersson, David; Kruse, Andreas; Cowell, Chris T; Toelle, Brett G; Marks, Guy B; Almqvist, Catarina

    2017-04-01

    Understanding the associations between childhood asthma and growth in early adolescence by accounting for the heterogeneity of growth during puberty has been largely unexplored. The objective was to identify sex-specific classes of growth trajectories during early adolescence, using a method which takes the heterogeneity of growth into account and to evaluate the association between childhood asthma and different classes of growth trajectories in adolescence. Our longitudinal study included participants with a family history of asthma born during 1997-1999 in Sydney, Australia. Hence, all participants were at high risk for asthma. Asthma status was ascertained at 8 years of age using data from questionnaires and lung function tests. Growth trajectories between 11 and 14 years of age were classified using a latent basis growth mixture model. Multinomial regression analyses were used to evaluate the association between asthma and the categorized classes of growth trajectories. In total, 316 participants (51.6% boys), representing 51.3% of the entire cohort, were included. Sex-specific classes of growth trajectories were defined. Among boys, asthma was not associated with the classes of growth trajectories. Girls with asthma were more likely than girls without asthma to belong to a class with later growth (OR: 3.79, 95% CI: 1.33, 10.84). Excluding participants using inhaled corticosteroids or adjusting for confounders did not significantly change the results for either sex. We identified sex-specific heterogeneous classes of growth using growth mixture modelling. Associations between childhood asthma and different classes of growth trajectories were found for girls only. © 2016 Asian Pacific Society of Respirology.

  9. Abnormal growth kinetics of h-BN epitaxial monolayer on Ru(0001) enhanced by subsurface Ar species

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Meng, Jie; Meng, Caixia; Ning, Yanxiao; Li, Qunxiang; Fu, Qiang; Bao, Xinhe

    2018-04-01

    Growth kinetics of epitaxial films often follows the diffusion-limited aggregation mechanism, which shows a "fractal-to-compact" morphological transition with increasing growth temperature or decreasing deposition flux. Here, we observe an abnormal "compact-to-fractal" morphological transition with increasing growth temperature for hexagonal boron nitride growth on the Ru(0001) surface. The unusual growth process can be explained by a reaction-limited aggregation (RLA) mechanism. Moreover, introduction of the subsurface Ar atoms has enhanced this RLA growth behavior by decreasing both reaction and diffusion barriers. Our work may shed light on the epitaxial growth of two-dimensional atomic crystals and help to control their morphology.

  10. Development and melt growth of novel scintillating halide crystals

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Akira; Yokota, Yuui; Shoji, Yasuhiro; Kral, Robert; Kamada, Kei; Kurosawa, Shunsuke; Ohashi, Yuji; Arakawa, Mototaka; Chani, Valery I.; Kochurikhin, Vladimir V.; Yamaji, Akihiro; Andrey, Medvedev; Nikl, Martin

    2017-12-01

    Melt growth of scintillating halide crystals is reviewed. The vertical Bridgman growth technique is still considered as very popular method that enables production of relatively large and commercially attractive crystals. On the other hand, the micro-pulling-down method is preferable when fabrication of small samples, sufficient for preliminary characterization of their optical and/or scintillation performance, is required. Moreover, bulk crystal growth is also available using the micro-pulling-down furnace. The examples of growths of various halide crystals by industrially friendly melt growth techniques including Czochralski and edge-defined film-fed growth methods are also discussed. Finally, traveling molten zone growth that in some degree corresponds to horizontal zone melting is briefly overviewed.

  11. Reappraisal of Regional Growth Charts in the Era of WHO Growth Standards

    PubMed Central

    2013-01-01

    After the WHO Growth Standards (WHOGS) was published in 2006, many countries in the world endorsed and adopted the new growth references as a standard measure for the growth of infants and young children. Certainly, the WHOGS has an impact on the global policy about obesity and underweight in children. Such WHOGS innovation has influenced many regional health authorities and academies, which have managed their own growth charts for a long time, in changing their strategies to develop and use regional growth charts. In Korea, along with the tradition to create a national growth chart every decade, we now face a new era of advancing with the WHOGS. PMID:24224146

  12. Growth of benzil crystals by vertical dynamic gradient freeze technique in a transparent furnace

    NASA Astrophysics Data System (ADS)

    Lan, C. W.; Song, C. R.

    1997-09-01

    The vertical dynamic gradient freeze technique using a transparent furnace was applied to the growth of benzil single crystals. A flat-bottom ampoule with a <0001> seed was used for growth. During crystal growth, dynamic heating profiles were controlled through a computer, and the growth interface was recorded by a CCD camera. Computer simulation was also conducted, and the calculated convex interface and dynamic growth rate were consistent with the observed ones for various growth conditions. Conditions for growing single crystals were also determined, and they were mainly limited by constitutional supercooling. As the grown crystals were clear in appearance, their optical absorption spectra were insensitive to growth conditions and post-annealing.

  13. Process for producing vegetative and tuber growth regulator

    NASA Technical Reports Server (NTRS)

    Yorio, Neil C. (Inventor); Stutte, Gary W. (Inventor)

    1999-01-01

    A process of making a vegetative and tuber growth regulator. The vegetative and tuber growth regulator is made by growing potato plants in a recirculating hydroponic system for a sufficient time to produce the growth regulator. Also, the use of the vegetative and growth regulator on solanaceous plants, tuber forming plants and ornamental seedlings by contacting the roots or shoots of the plant with a sufficient amount of the growth regulator to regulate the growth of the plant and one more of canopy size, plant height, stem length, internode number and presence of tubers in fresh mass. Finally, a method for regulating the growth of potato plants using a recirculating hydroponic system is described.

  14. Phenotypic Signatures Arising from Unbalanced Bacterial Growth

    PubMed Central

    Tan, Cheemeng; Smith, Robert Phillip; Tsai, Ming-Chi; Schwartz, Russell; You, Lingchong

    2014-01-01

    Fluctuations in the growth rate of a bacterial culture during unbalanced growth are generally considered undesirable in quantitative studies of bacterial physiology. Under well-controlled experimental conditions, however, these fluctuations are not random but instead reflect the interplay between intra-cellular networks underlying bacterial growth and the growth environment. Therefore, these fluctuations could be considered quantitative phenotypes of the bacteria under a specific growth condition. Here, we present a method to identify “phenotypic signatures” by time-frequency analysis of unbalanced growth curves measured with high temporal resolution. The signatures are then applied to differentiate amongst different bacterial strains or the same strain under different growth conditions, and to identify the essential architecture of the gene network underlying the observed growth dynamics. Our method has implications for both basic understanding of bacterial physiology and for the classification of bacterial strains. PMID:25101949

  15. Phenotypic signatures arising from unbalanced bacterial growth.

    PubMed

    Tan, Cheemeng; Smith, Robert Phillip; Tsai, Ming-Chi; Schwartz, Russell; You, Lingchong

    2014-08-01

    Fluctuations in the growth rate of a bacterial culture during unbalanced growth are generally considered undesirable in quantitative studies of bacterial physiology. Under well-controlled experimental conditions, however, these fluctuations are not random but instead reflect the interplay between intra-cellular networks underlying bacterial growth and the growth environment. Therefore, these fluctuations could be considered quantitative phenotypes of the bacteria under a specific growth condition. Here, we present a method to identify "phenotypic signatures" by time-frequency analysis of unbalanced growth curves measured with high temporal resolution. The signatures are then applied to differentiate amongst different bacterial strains or the same strain under different growth conditions, and to identify the essential architecture of the gene network underlying the observed growth dynamics. Our method has implications for both basic understanding of bacterial physiology and for the classification of bacterial strains.

  16. Challenges in nourishing the intrauterine growth-restricted foetus - Lessons learned from studies in the intrauterine growth-restricted foetal sheep.

    PubMed

    Hay, William W; Brown, Laura D; Rozance, Paul J; Wesolowski, Stephanie R; Limesand, Sean W

    2016-08-01

    Previous attempts to improve growth and development of the intrauterine growth-restricted (IUGR) foetus during pregnancy have not worked or caused harm. Our research identifies tissue-specific mechanisms underlying foetal growth restriction and then tests strategies to improve growth and ameliorate many of the metabolic problems before the infant is born. The goal of our studies is to reduce the impact of foetal growth restriction at critical stages of development on the lifelong complications of IUGR offspring. Defining specific mechanisms that cause growth restriction in the foetus might identify specific nutrients and hormones that could be given to the mother to improve foetal growth and reduce metabolic complications, using strategies first tested in our IUGR animal model. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  17. A model of urban rational growth based on grey prediction

    NASA Astrophysics Data System (ADS)

    Xiao, Wenjing

    2017-04-01

    Smart growth focuses on building sustainable cities, using compact development to prevent urban sprawl. This paper establishes a series of models to implement smart growth theories into city design. Besides two specific city design cases are shown. Firstly, We establishes Smart Growth Measure Model to measure the success of smart growth of a city. And we use Full Permutation Polygon Synthetic Indicator Method to calculate the Comprehensive Indicator (CI) which is used to measure the success of smart growth. Secondly, this paper uses the principle of smart growth to develop a new growth plan for two cities. We establish an optimization model to maximum CI value. The Particle Swarm Optimization (PSO) algorithm is used to solve the model. Combined with the calculation results and the specific circumstances of cities, we make their the smart growth plan respectively.

  18. Retrospective analyses of archive phytotoxicity test data can help in assessing internal dynamics and stability of growth in laboratory duckweed cultures.

    PubMed

    Oláh, Viktor; Hepp, Anna; Gaibor Vaca, Norma Yolanda; Tamás, Marianna; Mészáros, Ilona

    2018-05-28

    High growth potential of duckweed species (Lemnaceae family) has been utilized in wide range of research and practical applications. Based on literature data, however, it can be assumed that duckweed populations maintain constant growth rates only when short periods are considered but can vary over longer time scales. This intrinsic instability in growth can affect the interpretation of growth data. Duckweed phytotoxicity tests are usually performed according to highly standardized protocols. Therefore the archive data provide an opportunity for retrospective comparisons. In the present study we collected growth (frond number- and frond area-based relative growth rates) and morphology (average frond and colony sizes) data from control treatments of phytotoxicity tests. All the analyzed tests were carried out with the same Spirodela polyrhiza (L.) Schleid. (giant duckweed) clone (RDSC ID No. 5501) under the same experimental conditions over more than four years. We aimed to assess the overall variability of the above parameters and to test if intrinsic growth patterns affect growth data in short-term. In general, the results reflected high stability of the measured parameters in long term but also indicated that some temporal variability is inevitable which can bias the comparability of growth tests. The frond area-based relative growth rate resulted in smaller coefficient of variation than the usually preferred frond number-based one. The results also revealed a negative correlation between mean growth rates and their coefficients of variation. Therefore, it would be advisable to introduce higher minimal growth rates and/or maximized tolerable coefficients of variation for control cultures into the standard duckweed growth inhibition tests. Analyses of growth data aggregated on seasonal basis indicated faster growth and larger mean frond size in laboratory duckweed cultures from mid-autumn till mid-spring than during summer and early autumn. But, in shorter term (∼50 days) we did not observe distinct trends in growth suggesting that the successive frond generations have no effect on growth traits within this time-scale. Our results point to the importance of assessing intrinsic growth dynamics in duckweed cultures and also to the re-usability of the already collected phytotoxicity data in addressing new research questions. Copyright © 2018. Published by Elsevier B.V.

  19. Growth arrest despite growth hormone replacement, post-craniopharyngioma surgery.

    PubMed Central

    DeVile, C J; Hayward, R D; Neville, B G; Grant, D B; Stanhope, R

    1995-01-01

    Children with growth failure, whether secondary to an endocrinopathy such as growth hormone deficiency or secondary to neurological handicap with poor nutrient intake, grow at a subnormal rate but it is most unusual for a child to have complete growth arrest. PMID:7745571

  20. Growth Disorders

    MedlinePlus

    ... too little of it may be very short. Treatment with growth hormone can stimulate growth. People can also have too much growth hormone. Usually the cause is a pituitary gland tumor, which is not cancer. Too much growth hormone can cause gigantism in children, where their bones and their body ...

  1. Is Decoupling GDP Growth from Environmental Impact Possible?

    PubMed Central

    Sutton, Paul C.; Werner, Adrian D.; Costanza, Robert; Mohr, Steve H.; Simmons, Craig T.

    2016-01-01

    The argument that human society can decouple economic growth—defined as growth in Gross Domestic Product (GDP)—from growth in environmental impacts is appealing. If such decoupling is possible, it means that GDP growth is a sustainable societal goal. Here we show that the decoupling concept can be interpreted using an easily understood model of economic growth and environmental impact. The simple model is compared to historical data and modelled projections to demonstrate that growth in GDP ultimately cannot be decoupled from growth in material and energy use. It is therefore misleading to develop growth-oriented policy around the expectation that decoupling is possible. We also note that GDP is increasingly seen as a poor proxy for societal wellbeing. GDP growth is therefore a questionable societal goal. Society can sustainably improve wellbeing, including the wellbeing of its natural assets, but only by discarding GDP growth as the goal in favor of more comprehensive measures of societal wellbeing. PMID:27741300

  2. Correlation between genome reduction and bacterial growth.

    PubMed

    Kurokawa, Masaomi; Seno, Shigeto; Matsuda, Hideo; Ying, Bei-Wen

    2016-12-01

    Genome reduction by removing dispensable genomic sequences in bacteria is commonly used in both fundamental and applied studies to determine the minimal genetic requirements for a living system or to develop highly efficient bioreactors. Nevertheless, whether and how the accumulative loss of dispensable genomic sequences disturbs bacterial growth remains unclear. To investigate the relationship between genome reduction and growth, a series of Escherichia coli strains carrying genomes reduced in a stepwise manner were used. Intensive growth analyses revealed that the accumulation of multiple genomic deletions caused decreases in the exponential growth rate and the saturated cell density in a deletion-length-dependent manner as well as gradual changes in the patterns of growth dynamics, regardless of the growth media. Accordingly, a perspective growth model linking genome evolution to genome engineering was proposed. This study provides the first demonstration of a quantitative connection between genomic sequence and bacterial growth, indicating that growth rate is potentially associated with dispensable genomic sequences. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  3. A common polymorphism of the growth hormone receptor is associated with increased responsiveness to growth hormone.

    PubMed

    Dos Santos, Christine; Essioux, Laurent; Teinturier, Cécile; Tauber, Maïté; Goffin, Vincent; Bougnères, Pierre

    2004-07-01

    Growth hormone is used to increase height in short children who are not deficient in growth hormone, but its efficacy varies largely across individuals. The genetic factors responsible for this variation are entirely unknown. In two cohorts of short children treated with growth hormone, we found that an isoform of the growth hormone receptor gene that lacks exon 3 (d3-GHR) was associated with 1.7 to 2 times more growth acceleration induced by growth hormone than the full-length isoform (P < 0.0001). In transfection experiments, the transduction of growth hormone signaling through d3-GHR homo- or heterodimers was approximately 30% higher than through full-length GHR homodimers (P < 0.0001). One-half of Europeans are hetero- or homozygous with respect to the allele encoding the d3-GHR isoform, which is dominant over the full-length isoform. These observations suggest that the polymorphism in exon 3 of GHR is important in growth hormone pharmacogenetics.

  4. Understanding Self-Catalyzed Epitaxial Growth of III-V Nanowires toward Controlled Synthesis.

    PubMed

    Zi, Yunlong; Suslov, Sergey; Yang, Chen

    2017-02-08

    The self-catalyzed growth of III-V nanowires has drawn plenty of attention due to the potential of integration in current Si-based technologies. The homoparticle-assisted vapor-liquid-solid growth mechanism has been demonstrated for self-catalyzed III-V nanowire growth. However, the understandings of the preferred growth sites of these nanowires are still limited, which obstructs the controlled synthesis and the applications of self-catalyzed nanowire arrays. Here, we experimentally demonstrated that thermally created pits could serve as the preferred sites for self-catalyzed InAs nanowire growth. On that basis, we performed a pregrowth annealing strategy to promote the nanowire density by enhancing the pits formation on the substrate surface and enable the nanowire growth on the substrate that was not capable to facilitate the growth. The discovery of the preferred self-catalyzed nanowire growth sites and the pregrowth annealing strategy have shown great potentials for controlled self-catalyzed III-V nanowire array growth with preferred locations and density.

  5. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium.

    PubMed

    Mohammad Mirzaie, M A; Kalbasi, M; Mousavi, S M; Ghobadian, B

    2016-01-01

    Growth of Chlorella vulgaris and its lipid production were investigated under autotrophic, heterotrophic, and mixotrophic conditions. Cheap agricultural waste molasses and corn steep liquor from industries were used as carbon and nitrogen sources, respectively. Chlorella vulgaris grew remarkably under this agricultural waste medium, which resulted in a reduction in the final cost of the biodiesel production. Maximum dry weight of 2.62 g L(-1) was obtained in mixotrophic growth with the highest lipid concentration of 0.86 g L(-1). These biomass and lipid concentrations were, respectively, 140% and 170% higher than autotrophic growth and 300% and 1200% higher than heterotrophic growth. In mixotrophic growth, independent or simultaneous occurrence of autotrophic and heterotrophic metabolisms was investigated. The growth of the microalgae was observed to take place first heterotrophically to a minimum substrate concentration with a little fraction in growth under autotrophic metabolism, and then the cells grew more autotrophically. It was found that mixotrophic growth was not a simple combination of heterotrophic and autotrophic growth.

  6. Filopodial dynamics and growth cone stabilization in Drosophila visual circuit development

    PubMed Central

    Özel, Mehmet Neset; Langen, Marion; Hassan, Bassem A; Hiesinger, P Robin

    2015-01-01

    Filopodial dynamics are thought to control growth cone guidance, but the types and roles of growth cone dynamics underlying neural circuit assembly in a living brain are largely unknown. To address this issue, we have developed long-term, continuous, fast and high-resolution imaging of growth cone dynamics from axon growth to synapse formation in cultured Drosophila brains. Using R7 photoreceptor neurons as a model we show that >90% of the growth cone filopodia exhibit fast, stochastic dynamics that persist despite ongoing stepwise layer formation. Correspondingly, R7 growth cones stabilize early and change their final position by passive dislocation. N-Cadherin controls both fast filopodial dynamics and growth cone stabilization. Surprisingly, loss of N-Cadherin causes no primary targeting defects, but destabilizes R7 growth cones to jump between correct and incorrect layers. Hence, growth cone dynamics can influence wiring specificity without a direct role in target recognition and implement simple rules during circuit assembly. DOI: http://dx.doi.org/10.7554/eLife.10721.001 PMID:26512889

  7. Determinate growth and modularity in a gorgonian octocoral.

    PubMed

    Lasker, Howard R; Boller, Michael L; Castanaro, John; Sánchez, Juan Armando

    2003-12-01

    Growth rates of branches of colonies of the gorgonian Pseudopterogorgia elisabethae were monitored for 2 years on a reef at San Salvador Island, Bahamas. Images of 261 colonies were made at 6-month intervals and colony and branch growth analyzed. Branch growth rates differed between colonies and between the time intervals in which the measurements were made. Colonies developed a plumelike morphology through a pattern of branch origination and determinate growth in which branch growth rates were greatest at the time the branch originated and branches seldom grew beyond a length of 8 cm. A small number of branches had greater growth rates, did not stop growing, and were sites for the origination of subsequent "generations" of branches. The rate of branch origination decreased with each generation of branching, and branch growth rates were lower on larger colonies, leading to determinate colony growth. Although colonial invertebrates like P. elisabethae grow through the addition of polyps, branches behave as modules with determinate growth. Colony form and size is generated by the iterative addition of branches.

  8. In situ monitoring of laser-assisted hydrothermal growth of ZnO nanowires: thermally deactivating growth kinetics.

    PubMed

    In, Jung Bin; Kwon, Hyuk-Jun; Lee, Daeho; Ko, Seung Hwan; Grigoropoulos, Costas P

    2014-02-26

    The laser-assisted hydrothermal growth kinetics of a cluster of ZnO nanowires are studied based on optical in situ growth monitoring. The growth yields are orders of magnitude higher than those of conventional hydrothermal methods that use bulk heating. This remarkable improvement is attributed to suppression of precursor depletion occurring by homogeneous growth reactions, as well as to enhanced mass transport. The obtained in situ data show gradually decaying growth kinetics even with negligible precursor consumption. It is revealed that the growth deceleration is caused by thermal deactivation resulting from heat dissipation through the growing nanowires. Finally, it is demonstrated that the tailored temporal modulation of the input power enables sustained growth to extended dimensions. These results provide a key to highly efficient use of growth precursors that has been pursued for industrial use of this functional metal oxide semiconductor. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A Comparison of Breeding Bird Communities and Habitat Features Between Old-Growth and Second-Growth Bottomland Hardwood Forest

    Treesearch

    Winston P. Smith; Howard E. Hunt; W. Kent Townley

    2001-01-01

    To characterize bird species composition,relative abundance,and habitat affinities,spot-mapping and strip-count censuses were conducted in an old-growth stand and adjacent second-growth tracts in Moro Bottoms Natural Area, Arkansas, during 1991 and 1992. More species were recorded on the old-growth site (S =35) as compared to the second-growth grid (S =32). Similarly...

  10. Tree growth and climate in the Pacific Northwest, North America: a broad-scale analysis of changing growth environments

    Treesearch

    Whitney L. Albright; David L. Peterson

    2013-01-01

    Climate change in the 21st century will affect tree growth in the Pacific Northwest region of North America, although complex climate–growth relationships make it difficult to identify how radial growth will respond across different species distributions. We used a novel method to examine potential growth responses to climate change at a broad geographical scale with a...

  11. Climate-tree growth models in relation to long-term growth trends of white oak in Pennsylvania

    Treesearch

    D. D. Davis; R. P. Long

    2003-01-01

    We examined long-term growth trends of white oak by comparing tree-ring chronologies developed from an old-growth stand, where the average tree age was 222 years, with a second-growth stand where average tree age was 78 years. Evaluation of basal area growth trends suggested that an anomalous decrease in basal area increment trend occurred in both stands during the...

  12. The Growth Illusion: How Economic Growth Has Enriched the Few, Impoverished the Many, and Endangered the Planet.

    ERIC Educational Resources Information Center

    Douthwaite, Richard

    The premise of this book is that economic growth has made life considerably worse for people in Britain since 1955 and that, even if growth were beneficial at one stage in human history, it is now damaging. The book presents evidence of social and environmental damage caused by growth and several reasons for a persistence of growth in the face of…

  13. Growth factors and growth factor receptors in the hippocampus. Role in plasticity and response to injury.

    PubMed

    Nieto-Sampedro, M; Bovolenta, P

    1990-01-01

    Various growth factors are present in the hippocampal formation and appear responsible for the prominent plasticity of this brain area. Although hormone-like growth-promoting polypeptides are the best known, recent studies emphasize the importance in the growth response of molecules such as laminin proteoglycans, neurotransmitters and growth inhibitors. The progress and problems in the study of these substances are reviewed.

  14. A Kinetic Model for GaAs Growth by Hydride Vapor Phase Epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulte, Kevin L.; Simon, John; Jain, Nikhil

    2016-11-21

    Precise control of the growth of III-V materials by hydride vapor phase epitaxy (HVPE) is complicated by the fact that the growth rate depends on the concentrations of nearly all inputs to the reactor and also the reaction temperature. This behavior is in contrast to metalorganic vapor phase epitaxy (MOVPE), which in common practice operates in a mass transport limited regime where growth rate and alloy composition are controlled almost exclusively by flow of the Group III precursor. In HVPE, the growth rate and alloy compositions are very sensitive to temperature and reactant concentrations, which are strong functions of themore » reactor geometry. HVPE growth, particularly the growth of large area materials and devices, will benefit from the development of a growth model that can eventually be coupled with a computational fluid dynamics (CFD) model of a specific reactor geometry. In this work, we develop a growth rate law using a Langmuir-Hinshelwood (L-H) analysis, fitting unknown parameters to growth rate data from the literature that captures the relevant kinetic and thermodynamic phenomena of the HVPE process. We compare the L-H rate law to growth rate data from our custom HVPE reactor, and develop quantitative insight into reactor performance, demonstrating the utility of the growth model.« less

  15. Grain boundary, triple junction and quadruple point mobility controlled normal grain growth

    NASA Astrophysics Data System (ADS)

    Rios, P. R.; Glicksman, M. E.

    2015-07-01

    Reduction in stored free energy provides the thermodynamic driving force for grain and bubble growth in polycrystals and foams. Evolution of polycrystalline networks exhibit the additional complication that grain growth may be controlled by several kinetic mechanisms through which the decrease in network energy occurs. Polyhedral boundaries, triple junctions (TJs), and quadruple points (QPs) are the geometrically distinct elements of three dimensional networks that follow Plateau's rules, provided that grain growth is limited by diffusion through, and motion of, cell boundaries. Shvindlerman and co-workers have long recognized the kinetic influences on polycrystalline grain growth of network TJs and QPs. Moreover, the emergence of interesting polycrystalline nanomaterials underscored that TJs can indeed influence grain growth kinetics. Currently there exist few detailed studies concerned either with network distributions of grain size, number of faces per grain, or with 'grain trajectories', when grain growth is limited by the motion of its TJs or QPs. By contrast there exist abundant studies of classical grain growth limited by boundary mobility. This study is focused on a topological/geometrical representation of polycrystals to obtain statistical predictions of the grain size and face number distributions, as well as growth 'trajectories' during steady-state grain growth. Three limits to grain growth are considered, with grain growth kinetics controlled by boundary, TJ, and QP mobilities.

  16. Comparison of the Effects of Environmental Parameters on the Growth Variability of Vibrio parahaemolyticus Coupled with Strain Sources and Genotypes Analyses.

    PubMed

    Liu, Bingxuan; Liu, Haiquan; Pan, Yingjie; Xie, Jing; Zhao, Yong

    2016-01-01

    Microbial growth variability plays an important role on food safety risk assessment. In this study, the growth kinetic characteristics corresponding to maximum specific growth rate (μmax) of 50 V. parahaemolyticus isolates from different sources and genotypes were evaluated at different temperatures (10, 20, 30, and 37°C) and salinity (0.5, 3, 5, 7, and 9%) using the automated turbidimetric system Bioscreen C. The results demonstrated that strain growth variability increased as the growth conditions became more stressful both in terms of temperature and salinity. The coefficient of variation (CV) of μmax for temperature was larger than that for salinity, indicating that the impact of temperature on strain growth variability was greater than that of salinity. The strains isolated from freshwater aquatic products had more conspicuous growth variations than those from seawater. Moreover, the strains with tlh (+) /tdh (+) /trh (-) exhibited higher growth variability than tlh (+) /tdh (-) /trh (-) or tlh (+) /tdh (-) /trh (+), revealing that gene heterogeneity might have possible relations with the growth variability. This research illustrates that the growth environments, strain sources as well as genotypes have impacts on strain growth variability of V. parahaemolyticus, which can be helpful for incorporating strain variability in predictive microbiology and microbial risk assessment.

  17. Comparison of the Effects of Environmental Parameters on the Growth Variability of Vibrio parahaemolyticus Coupled with Strain Sources and Genotypes Analyses

    PubMed Central

    Liu, Bingxuan; Liu, Haiquan; Pan, Yingjie; Xie, Jing; Zhao, Yong

    2016-01-01

    Microbial growth variability plays an important role on food safety risk assessment. In this study, the growth kinetic characteristics corresponding to maximum specific growth rate (μmax) of 50 V. parahaemolyticus isolates from different sources and genotypes were evaluated at different temperatures (10, 20, 30, and 37°C) and salinity (0.5, 3, 5, 7, and 9%) using the automated turbidimetric system Bioscreen C. The results demonstrated that strain growth variability increased as the growth conditions became more stressful both in terms of temperature and salinity. The coefficient of variation (CV) of μmax for temperature was larger than that for salinity, indicating that the impact of temperature on strain growth variability was greater than that of salinity. The strains isolated from freshwater aquatic products had more conspicuous growth variations than those from seawater. Moreover, the strains with tlh+/tdh+/trh− exhibited higher growth variability than tlh+/tdh−/trh− or tlh+/tdh−/trh+, revealing that gene heterogeneity might have possible relations with the growth variability. This research illustrates that the growth environments, strain sources as well as genotypes have impacts on strain growth variability of V. parahaemolyticus, which can be helpful for incorporating strain variability in predictive microbiology and microbial risk assessment. PMID:27446034

  18. Hierarchical nuclear and cytoplasmic genetic architectures for plant growth and defense within Arabidopsis.

    PubMed

    Joseph, Bindu; Corwin, Jason A; Züst, Tobias; Li, Baohua; Iravani, Majid; Schaepman-Strub, Gabriela; Turnbull, Lindsay A; Kliebenstein, Daniel J

    2013-06-01

    To understand how genetic architecture translates between phenotypic levels, we mapped the genetic architecture of growth and defense within the Arabidopsis thaliana Kas × Tsu recombinant inbred line population. We measured plant growth using traditional size measurements and size-corrected growth rates. This population contains genetic variation in both the nuclear and cytoplasmic genomes, allowing us to separate their contributions. The cytoplasmic genome regulated a significant variance in growth but not defense, which was due to cytonuclear epistasis. Furthermore, growth adhered to an infinitesimal model of genetic architecture, while defense metabolism was more of a moderate-effect model. We found a lack of concordance between quantitative trait loci (QTL) regulating defense and those regulating growth. Given the published evidence proving the link between glucosinolates and growth, this is likely a false negative result caused by the limited population size. This size limitation creates an inability to test the entire potential genetic landscape possible between these two parents. We uncovered a significant effect of glucosinolates on growth once we accounted for allelic differences in growth QTLs. Therefore, other growth QTLs can mask the effects of defense upon growth. Investigating direct links across phenotypic hierarchies is fraught with difficulty; we identify issues complicating this analysis.

  19. Hierarchical Nuclear and Cytoplasmic Genetic Architectures for Plant Growth and Defense within Arabidopsis[C][W

    PubMed Central

    Joseph, Bindu; Corwin, Jason A.; Züst, Tobias; Li, Baohua; Iravani, Majid; Schaepman-Strub, Gabriela; Turnbull, Lindsay A.; Kliebenstein, Daniel J.

    2013-01-01

    To understand how genetic architecture translates between phenotypic levels, we mapped the genetic architecture of growth and defense within the Arabidopsis thaliana Kas × Tsu recombinant inbred line population. We measured plant growth using traditional size measurements and size-corrected growth rates. This population contains genetic variation in both the nuclear and cytoplasmic genomes, allowing us to separate their contributions. The cytoplasmic genome regulated a significant variance in growth but not defense, which was due to cytonuclear epistasis. Furthermore, growth adhered to an infinitesimal model of genetic architecture, while defense metabolism was more of a moderate-effect model. We found a lack of concordance between quantitative trait loci (QTL) regulating defense and those regulating growth. Given the published evidence proving the link between glucosinolates and growth, this is likely a false negative result caused by the limited population size. This size limitation creates an inability to test the entire potential genetic landscape possible between these two parents. We uncovered a significant effect of glucosinolates on growth once we accounted for allelic differences in growth QTLs. Therefore, other growth QTLs can mask the effects of defense upon growth. Investigating direct links across phenotypic hierarchies is fraught with difficulty; we identify issues complicating this analysis. PMID:23749847

  20. Exponential growth for self-reproduction in a catalytic reaction network: relevance of a minority molecular species and crowdedness

    NASA Astrophysics Data System (ADS)

    Kamimura, Atsushi; Kaneko, Kunihiko

    2018-03-01

    Explanation of exponential growth in self-reproduction is an important step toward elucidation of the origins of life because optimization of the growth potential across rounds of selection is necessary for Darwinian evolution. To produce another copy with approximately the same composition, the exponential growth rates for all components have to be equal. How such balanced growth is achieved, however, is not a trivial question, because this kind of growth requires orchestrated replication of the components in stochastic and nonlinear catalytic reactions. By considering a mutually catalyzing reaction in two- and three-dimensional lattices, as represented by a cellular automaton model, we show that self-reproduction with exponential growth is possible only when the replication and degradation of one molecular species is much slower than those of the others, i.e., when there is a minority molecule. Here, the synergetic effect of molecular discreteness and crowding is necessary to produce the exponential growth. Otherwise, the growth curves show superexponential growth because of nonlinearity of the catalytic reactions or subexponential growth due to replication inhibition by overcrowding of molecules. Our study emphasizes that the minority molecular species in a catalytic reaction network is necessary for exponential growth at the primitive stage of life.

  1. Differentially phased leaf growth and movements in Arabidopsis depend on coordinated circadian and light regulation.

    PubMed

    Dornbusch, Tino; Michaud, Olivier; Xenarios, Ioannis; Fankhauser, Christian

    2014-10-01

    In contrast to vastly studied hypocotyl growth, little is known about diel regulation of leaf growth and its coordination with movements such as changes in leaf elevation angle (hyponasty). We developed a 3D live-leaf growth analysis system enabling simultaneous monitoring of growth and movements. Leaf growth is maximal several hours after dawn, requires light, and is regulated by daylength, suggesting coupling between growth and metabolism. We identify both blade and petiole positioning as important components of leaf movements in Arabidopsis thaliana and reveal a temporal delay between growth and movements. In hypocotyls, the combination of circadian expression of PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 and their light-regulated protein stability drives rhythmic hypocotyl elongation with peak growth at dawn. We find that PIF4 and PIF5 are not essential to sustain rhythmic leaf growth but influence their amplitude. Furthermore, EARLY FLOWERING3, a member of the evening complex (EC), is required to maintain the correct phase between growth and movement. Our study shows that the mechanisms underlying rhythmic hypocotyl and leaf growth differ. Moreover, we reveal the temporal relationship between leaf elongation and movements and demonstrate the importance of the EC for the coordination of these phenotypic traits. © 2014 American Society of Plant Biologists. All rights reserved.

  2. Quantifying different types of urban growth and the change dynamic in Guangzhou using multi-temporal remote sensing data

    NASA Astrophysics Data System (ADS)

    Sun, Cheng; Wu, Zhi-feng; Lv, Zhi-qiang; Yao, Na; Wei, Jian-bing

    2013-04-01

    There is a widespread concern about urban sprawl. It has negative impacts on natural resources, economic health, and community character. Without a universal definition of urban sprawl, its quantification and modeling is difficult. Traditionally, urban sprawl was described using qualitative terms, and landscape patterns. Quantitative methods are required to help local, regional and state land use planners to better identify, understand and address it. In this study, an integrated approach of remote sensing and GIS was used to identify three urban growth types of infilling growth, outlying growth and edge-expansion growth at the city of Guangzhou, China. Spatial metrics were used to characterize long-term trends and patterns of urban growth. Result shows that the proposed method can identify and visualize different urban growth types. Infilling growth is the dominant expansion type. Edge-expansion is concentrated at suburban areas. Outlying growth mainly occurs relatively far from the urban core. The analysis shows that initially the urban area expands mainly as outlying growth, causing increased fragmentation and dispersion of urban areas. Next, growth filled in vacant non-urban area inwards, resulting into a more compact and aggregated urban pattern. The study shows an improved understanding of urban growth, and helps to provide an effective way for urban planning.

  3. Growth kinetics of disk-shaped copper islands in electrochemical deposition.

    PubMed

    Guo, Lian; Zhang, Shouliang; Searson, Peter

    2009-05-01

    The ability to independently dictate the shape and crystal orientation of islands in electrocrystallization remains a significant challenge. The main reason for this is that the complex interplay between the substrate, nucleation, and surface chemistry is not fully understood. Here we report on the kinetics of island growth for copper on ruthenium oxide. The small nucleation overpotential leads to enhanced lateral growth and the formation of hexagonal disk-shaped islands. The amorphous substrate allows the nuclei to achieve the thermodynamically favorable orientation, i.e., a 111 surface normal. Island growth follows power law kinetics in both lateral and vertical directions. At shorter times, the two growth exponents are equal to 1/2 whereas at longer times lateral growth slows down while vertical growth speeds up. We propose a growth mechanism, wherein the lateral growth of disk-shaped islands is initiated by attachment of Cu adatoms on the ruthenium oxide surface onto the island periphery while vertical growth is initiated by two-dimensional nucleation on the top terrace and followed by lateral step propagation. These results indicate three criteria for enhanced lateral growth in electrodeposition: (i) a substrate that leads to a small nucleation overpotential, (ii) fast adatom surface diffusion on substrate to promote lateral growth, and (iii) preferential anion adsorption to stabilize the basal plane.

  4. Effect of tree-ring detrending method on apparent growth trends of black and white spruce in interior Alaska

    NASA Astrophysics Data System (ADS)

    Sullivan, Patrick F.; Pattison, Robert R.; Brownlee, Annalis H.; Cahoon, Sean M. P.; Hollingsworth, Teresa N.

    2016-11-01

    Boreal forests are critical sinks in the global carbon cycle. However, recent studies have revealed increasing frequency and extent of wildfires, decreasing landscape greenness, increasing tree mortality and declining growth of black and white spruce in boreal North America. We measured ring widths from a large set of increment cores collected across a vast area of interior Alaska and examined implications of data processing decisions for apparent trends in black and white spruce growth. We found that choice of detrending method had important implications for apparent long-term growth trends and the strength of climate-growth correlations. Trends varied from strong increases in growth since the Industrial Revolution, when ring widths were detrended using single-curve regional curve standardization (RCS), to strong decreases in growth, when ring widths were normalized by fitting a horizontal line to each ring width series. All methods revealed a pronounced growth peak for black and white spruce centered near 1940. Most detrending methods showed a decline from the peak, leaving recent growth of both species near the long-term mean. Climate-growth analyses revealed negative correlations with growing season temperature and positive correlations with August precipitation for both species. Multiple-curve RCS detrending produced the strongest and/or greatest number of significant climate-growth correlations. Results provide important historical context for recent growth of black and white spruce. Growth of both species might decline with future warming, if not mitigated by increasing precipitation. However, widespread drought-induced mortality is probably not imminent, given that recent growth was near the long-term mean.

  5. Modeling Surface Growth of Escherichia coli on Agar Plates

    PubMed Central

    Fujikawa, Hiroshi; Morozumi, Satoshi

    2005-01-01

    Surface growth of Escherichia coli cells on a membrane filter placed on a nutrient agar plate under various conditions was studied with a mathematical model. The surface growth of bacterial cells showed a sigmoidal curve with time on a semilogarithmic plot. To describe it, a new logistic model that we presented earlier (H. Fujikawa et al., Food Microbiol. 21:501-509, 2004) was modified. Growth curves at various constant temperatures (10 to 34°C) were successfully described with the modified model (model III). Model III gave better predictions of the rate constant of growth and the lag period than a modified Gompertz model and the Baranyi model. Using the parameter values of model III at the constant temperatures, surface growth at various temperatures was successfully predicted. Surface growth curves at various initial cell numbers were also sigmoidal and converged to the same maximum cell numbers at the stationary phase. Surface growth curves at various nutrient levels were also sigmoidal. The maximum cell number and the rate of growth were lower as the nutrient level decreased. The surface growth curve was the same as that in a liquid, except for the large curvature at the deceleration period. These curves were also well described with model III. The pattern of increase in the ATP content of cells grown on a surface was sigmoidal, similar to that for cell growth. We discovered several characteristics of the surface growth of bacterial cells under various growth conditions and examined the applicability of our model to describe these growth curves. PMID:16332768

  6. Prenatal stress accelerates offspring growth to compensate for reduced maternal investment across mammals

    PubMed Central

    Berghänel, Andreas; Heistermann, Michael; Schülke, Oliver; Ostner, Julia

    2017-01-01

    Across mammals, prenatal maternal stress (PREMS) affects many aspects of offspring development, including offspring growth. However, how PREMS translates to offspring growth is inconsistent, even within species. To explain the full range of reported effects of prenatal adversity on offspring growth, we propose an integrative hypothesis: developmental constraints and a counteracting adaptive growth plasticity work in opposition to drive PREMS effects on growth. Mothers experiencing adversity reduce maternal investment leading to stunted growth (developmental constraints). Concomitantly, the pace of offspring life history is recalibrated to partly compensate for these developmental constraints (adaptive growth plasticity). Moreover, the relative importance of each process changes across ontogeny with increasing offspring independence. Thus, offspring exposed to PREMS may grow at the same rate as controls during gestation and lactation, but faster after weaning when direct maternal investment has ceased. We tested these predictions with a comparative analysis on the outcomes of 719 studies across 21 mammal species. First, the observed growth changes in response to PREMS varied across offspring developmental periods as predicted. We argue that the observed growth acceleration after weaning is not “catch-up growth,” because offspring that were small for age grew slower. Second, only PREMS exposure early during gestation produced adaptive growth plasticity. Our results suggest that PREMS effects benefit the mother’s future reproduction and at the same time accelerate offspring growth and possibly maturation and reproductive rate. In this sense, PREMS effects on offspring growth allow mother and offspring to make the best of a bad start. PMID:29180423

  7. Characterizing mandibular growth using three-dimensional imaging techniques and anatomic landmarks

    PubMed Central

    Kelly, Michael P.; Vorperian, Houri K.; Wang, Yuan; Tillman, Katelyn K.; Werner, Helen M.; Chung, Moo K.; Gentry, Lindell R.

    2017-01-01

    Objective To provide quantitative data on the multi-planar growth of the mandible, this study derived accurate linear and angular mandible measurements using landmarks on three dimensional (3D) mandible models. This novel method was used to quantify 3D mandibular growth and characterize the emergence of sexual dimorphism. Design Cross-sectional and longitudinal imaging data were obtained from a retrospective computed tomography (CT) database for 51 typically developing individuals between the ages of one and nineteen years. The software Analyze was used to generate 104 3DCT mandible models. Eleven landmarks placed on the models defined six linear measurements (lateral condyle, gonion, and endomolare width, ramus and mental depth, and mandible length) and three angular measurements (gonion, gnathion, and lingual). A fourth degree polynomial fit quantified growth trends, its derivative quantified growth rates, and a composite growth model determined growth types (neural/cranial and somatic/skeletal). Sex differences were assessed in four age cohorts, each spanning five years, to determine the ontogenetic pattern producing sexual dimorphism of the adult mandible. Results Mandibular growth trends and growth rates were non-uniform. In general, structures in the horizontal plane displayed predominantly neural/cranial growth types, whereas structures in the vertical plane had somatic/skeletal growth types. Significant prepubertal sex differences in the inferior aspect of the mandible dissipated when growth in males began to outpace that of females at eight to ten years of age, but sexual dimorphism re-emerged during and after puberty. Conclusions This 3D analysis of mandibular growth provides preliminary normative developmental data for clinical assessment and craniofacial growth studies. PMID:28161602

  8. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayyagari, R.R.; Khan-Dawood, F.S.

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2more » hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol /sup 125/I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function.« less

  9. Physical Growth of the Shuar: Height, Weight, and BMI References for an Indigenous Amazonian Population

    PubMed Central

    URLACHER, SAMUEL S.; BLACKWELL, AARON D.; LIEBERT, MELISSA A.; MADIMENOS, FELICIA C.; CEPON-ROBINS, TARA J.; GILDNER, THERESA E.; SNODGRASS, J. JOSH; SUGIYAMA, LAWRENCE S.

    2015-01-01

    Objectives Information concerning physical growth among small-scale populations remains limited, yet such data are critical to local health efforts and to foster basic understandings of human life history and variation in childhood development. Using a large dataset and robust modeling methods, this study aims to describe growth from birth to adulthood among the indigenous Shuar of Amazonian Ecuador. Methods Mixed-longitudinal measures of height, weight, and BMI were collected from Shuar participants (n = 2,463; age 0–29 years). Centile growth curves and tables were created for each anthropometric variable of interest using GAMLSS. Pseudo-velocity and LMS curves were generated to further investigate Shuar patterns of growth and to facilitate comparison with U.S. CDC and multinational WHO growth references. Results The Shuar are small throughout life and exhibit complex patterns of growth that differ substantially from those of international references. Similar to other Amazonians, Shuar growth in weight compares more favorably to references than growth in height, resulting in BMI curves that approximate international medians. Several additional characteristics of Shuar development are noteworthy, including large observed variation in body size early in life, significant infant growth faltering, extended male growth into adulthood, and a markedly early female pubertal growth spurt in height. Phenotypic plasticity and genetic selection in response to local environmental factors may explain many of these patterns. Conclusions Providing a detailed reference of growth for the Shuar and other Amazonian populations, this study possesses direct clinical application and affords valuable insight into childhood health and the ecology of human growth. PMID:26126793

  10. Increased linear bone growth by GH in the absence of SOCS2 is independent of IGF-1.

    PubMed

    Dobie, Ross; Ahmed, Syed F; Staines, Katherine A; Pass, Chloe; Jasim, Seema; MacRae, Vicky E; Farquharson, Colin

    2015-11-01

    Growth hormone (GH) signaling is essential for postnatal linear bone growth, but the relative importance of GHs actions on the liver and/or growth plate cartilage remains unclear. The importance of liver derived insulin like-growth factor-1 (IGF-1) for endochondral growth has recently been challenged. Here, we investigate linear growth in Suppressor of Cytokine Signaling-2 (SOCS2) knockout mice, which have enhanced growth despite normal systemic GH/IGF-1 levels. Wild-type embryonic ex vivo metatarsals failed to exhibit increased linear growth in response to GH, but displayed increased Socs2 transcript levels (P < 0.01). In the absence of SOCS2, GH treatment enhanced metatarsal linear growth over a 12 day period. Despite this increase, IGF-1 transcript and protein levels were not increased in response to GH. In accordance with these data, IGF-1 levels were unchanged in GH-challenged postnatal Socs2(-/-) conditioned medium despite metatarsals showing enhanced linear growth. Growth-plate Igf1 mRNA levels were not elevated in juvenile Socs2(-/-) mice. GH did however elevate IGF-binding protein 3 levels in conditioned medium from GH challenged metatarsals and this was more apparent in Socs2(-/-) metatarsals. GH did not enhance the growth of Socs2(-/-) metatarsals when the IGF receptor was inhibited, suggesting that IGF receptor mediated mechanisms are required. IGF-2 may be responsible as IGF-2 promoted metatarsal growth and Igf2 expression was elevated in Socs2(-/-) (but not WT) metatarsals in response to GH. These studies emphasise the critical importance of SOCS2 in regulating GHs ability to promote bone growth. Also, GH appears to act directly on the metatarsals of Socs2(-/-) mice, promoting growth via a mechanism that is independent of IGF-1. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  11. [Pubertal growth of 1,453 healthy children according to age at pubertal growth spurt onset. The Barcelona longitudinal growth study].

    PubMed

    Carrascosa, Antonio; Yeste, Diego; Moreno-Galdó, Antonio; Gussinyé, Miquel; Ferrández, Ángel; Clemente, María; Fernández-Cancio, Mónica

    2018-02-20

    Pubertal growth pattern differs according to age at pubertal growth spurt onset which occurs over a five years period (girls: 8-13 years, boys: 10-15 years). The need for more than one pubertal reference pattern has been proposed. We aimed to obtain five 1-year-age-interval pubertal patterns. Longitudinal (6 years of age-adult height) growth study of 1,453 healthy children to evaluate height-for-age, growth velocity-for-age and weight-for-age values. According to age at pubertal growth spurt onset girls were considered: very-early matures (8-9 years, n=119), early matures (9-10 years, n=157), intermediate matures (10-11 years, n=238), late matures (11-12 years, n=127) and very-late matures (12-13 years, n=102), and boys: very-early matures (10-11 years, n=110), early matures (11-12 years, n=139), intermediate matures (12-13 years, n=225), late matures (13-14 years, n=133) and very-late matures (14-15 years, n=103). Age at menarche and growth up to adult height were recorded. In both sexes, statistically-significant (P<.0001) and clinically-pertinent differences in pubertal growth pattern (mean height-for-age, mean growth velocity-for-age and mean pubertal height gain, values) were found among the five pubertal maturity groups and between each group and the whole population, despite similar adult height values. The same occurred for age at menarche and growth from menarche to adult height (P<.05). In both sexes, pubertal growth spurt onset is a critical milestone determining pubertal growth and sexual development. The contribution of our data to better clinical evaluation of growth according to the pubertal maturity tempo of each child will obviate the mistakes made when only one pubertal growth reference is used. Copyright © 2018. Publicado por Elsevier España, S.L.U.

  12. Growth/no growth boundary of Clostridium perfringens from spores in cooked meat: A logistic analysis.

    PubMed

    Huang, Lihan; Li, Changcheng; Hwang, Cheng-An

    2018-02-02

    Clostridium perfringens is a major foodborne health hazard that can cause acute gastroenteritis in consumers, and is often associated with cooked meat and poultry products. Improper cooling after cooking may allow this pathogen to grow in a product, producing an enterotoxin that causes food poisoning. This study was conducted to evaluate the effect of common ingredients, including sodium tripolyphosphate (STPP), sodium lactate (NaL), and sodium chloride (NaCl), on the germination and outgrowth of C. perfringens spores in meat products. The growth/no growth test was conducted in Shahidi Ferguson Perfringens agar mixed with STPP (0-2500ppm), NaL (0-4%), and NaCl (0-4%) in microplates. Turbidity measurements at 600nm were compared before and after anaerobic incubation at 46°C to evaluate growth and no growth conditions. The dichotomous responses were analyzed by logistic regression to develop a model for estimating the growth probability of C. perfringens. The probability model was used to define the threshold of growth (probability >0.1 or 0.2) of C. perfringens and validated using inoculated ground beef under optimum temperature. Inoculated ground beef was mixed with different combinations of STPP, NaL, and NaCl to observe growth or no growth of C. perfringens, and the probability was calculated from the formulation. If the threshold of growth was set to 0.2, the accuracy of the growth and no growth predictions was 95.7%, with 4.3% over-prediction of growth events (fail-safe). The results from this study suggested that proper combinations of STPP, NaL, and NaCl could be used to control the growth of C. perfringens in cooked beef under the optimum temperature. The results may also suggest that proper combinations of STPP, NaL, and NaCl in cooked meat and poultry products could be used to prevent the growth of C. perfringens during cooling. Published by Elsevier B.V.

  13. Island growth as a growth mode in atomic layer deposition: A phenomenological model

    NASA Astrophysics Data System (ADS)

    Puurunen, Riikka L.; Vandervorst, Wilfried

    2004-12-01

    Atomic layer deposition (ALD) has recently gained world-wide attention because of its suitability for the fabrication of conformal material layers with thickness in the nanometer range. Although the principles of ALD were realized about 40 years ago, the description of many physicochemical processes that occur during ALD growth is still under development. A constant amount of material deposited in an ALD reaction cycle, that is, growth-per-cycle (GPC), has been a paradigm in ALD through decades. The GPC may vary, however, especially in the beginning of the ALD growth. In this work, a division of ALD processes to four classes is proposed, on the basis of how the GPC varies with the number of ALD reaction cycles: linear growth, substrate-enhanced growth, and substrate-inhibited growth of type 1 and type 2. Island growth is identified as a likely origin for type 2 substrate-inhibited growth, where the GPC increases and goes through a maximum before it settles to a constant value characteristic of a steady growth. A simple phenomenological model is developed to describe island growth in ALD. The model assumes that the substrate is unreactive with the ALD reactants, except for reactive defects. ALD growth is assumed to proceed symmetrically from the defects, resulting islands of a conical shape. Random deposition is the growth mode on the islands. The model allows the simulation of GPC curves, surface fraction curves, and surface roughness, with physically significant parameters. When the model is applied to the zirconium tetrachloride/water and the trimethylaluminum/water ALD processes on hydrogen-terminated silicon, the calculated GPC curves and surface fractions agree with the experiments. The island growth model can be used to assess the occurrence of island growth, the size of islands formed, and point of formation of a continuous ALD-grown film. The benefits and limitations of the model and the general characteristics of type 2 substrate-inhibited ALD are discussed.

  14. Project Of Investigation About Growth Of Afforestation Mangrove In Thailand

    NASA Astrophysics Data System (ADS)

    Ibuki, R.

    2007-12-01

    At the mangrove which was played back artificially by intended afforestation it designates that related characteristic of growth circumstance and growth environment of the mangrove plant which is grown is evaluated as purpose of this study. Revival of the mangrove in Thailand with afforestation makes the ecosystem revive which consists simultaneously with the mangrove, makes the fishing industry profit at neighborhood possible, makes the life of the people of the locale rich. In addition, the mangrove carries out the role of the anti wave forest, the case of the Sumatra open sea earthquake makes the damage decrease by the tidal wave. The people of the locale re-have recognized concerning the inevitability of the mangrove. Difference has occurred in the amount of mangrove growth depending upon the growth place, the fact that these causes are investigated is something which urges the growth of the efficient mangrove at the time of future afforestation being active. In addition, also comparison of growth circumstance of the mangrove due to natural growth and the mangrove due to afforestation becomes the important research resource. Concretely, it measures growth circumstance (height of tree and diameter etc.) and also, growth environment (the amount of solar radiation, salinity density in substrate and tidal change etc.) and evaluate both correlations. As for evaluation of growth environment of the afforestation mangrove we should evaluate with central value. Because of that, there is a necessity which executes amount of growth measurement with statistical technique. Therefore, with the amount of growth measurement with lumbering, it is unsuitable to the measurement on this study. Regarding this subject of study, growth investigation of the group of trees is executed making use of non destructive physical amount (height of tree and diameter etc.) measurement. It measures at several dozen threes in plural afforestation area, evaluates the growth environment of each afforestation mangrove and the related characteristic of growth circumstance.

  15. A Patchy Growth via Successive and Simultaneous Cambia: Key to Success of the Most Widespread Mangrove Species Avicennia marina?

    PubMed Central

    Schmitz, Nele; Robert, Elisabeth M. R.; Verheyden, Anouk; Kairo, James Gitundu; Beeckman, Hans; Koedam, Nico

    2008-01-01

    Background and Aims Secondary growth via successive cambia has been intriguing researchers for decades. Insight into the mechanism of growth layer formation is, however, limited to the cellular level. The present study aims to clarify secondary growth via successive cambia in the mangrove species Avicennia marina on a macroscopic level, addressing the formation of the growth layer network as a whole. In addition, previously suggested effects of salinity on growth layer formation were reconsidered. Methods A 1-year cambial marking experiment was performed on 80 trees from eight sites in two mangrove forests in Kenya. Environmental (soil water salinity and nutrients, soil texture, inundation frequency) and tree characteristics (diameter, height, leaf area index) were recorded for each site. Both groups of variables were analysed in relation to annual number of growth layers, annual radial increment and average growth layer width of stem discs. Key Results Between trees of the same site, the number of growth layers formed during the 1-year study period varied from only part of a growth layer up to four growth layers, and was highly correlated to the corresponding radial increment (0–5 mm year–1), even along the different sides of asymmetric stem discs. The radial increment was unrelated to salinity, but the growth layer width decreased with increasing salinity and decreasing tree height. Conclusions A patchy growth mechanism was proposed, with an optimal growth at distinct moments in time at different positions around the stem circumference. This strategy creates the opportunity to form several growth layers simultaneously, as observed in 14 % of the studied trees, which may optimize tree growth under favourable conditions. Strong evidence was provided for a mainly endogenous trigger controlling cambium differentiation, with an additional influence of current environmental conditions in a trade-off between hydraulic efficiency and mechanical stability. PMID:18006508

  16. Effect of growth hormone treatment on the adult height of children with chronic renal failure. German Study Group for Growth Hormone Treatment in Chronic Renal Failure.

    PubMed

    Haffner, D; Schaefer, F; Nissel, R; Wühl, E; Tönshoff, B; Mehls, O

    2000-09-28

    Growth hormone treatment stimulates growth in short children with chronic renal failure. However, the extent to which this therapy increases final adult height is not known. We followed 38 initially prepubertal children with chronic renal failure treated with growth hormone for a mean of 5.3 years until they reached their final adult height. The mean (+/-SD) age at the start of treatment was 10.4+/-2.2 years, the mean bone age was 7.1+/-2.3 years, and the mean height was 3.1+/-1.2 SD below normal. Fifty matched children with chronic renal failure who were not treated with growth hormone served as controls. The children treated with growth hormone had sustained catch-up growth, whereas the control children had progressive growth failure. The mean final height of the growth hormone-treated children was 165 cm for boys and 156 cm for girls. The mean final adult height of the growth hormone-treated children was 1.6+/-1.2 SD below normal, which was 1.4 SD above their standardized height at base line (P< 0.001). In contrast, the final height of the untreated children (2.1+/-1.2 SD below normal) was 0.6 SD below their standardized height at base line (P<0.001). Although prepubertal bone maturation was accelerated in growth hormone-treated children, treatment was not associated with a shortening of the pubertal growth spurt. The total height gain was positively associated with the initial target-height deficit and the duration of growth hormone therapy and was negatively associated with the percentage of the observation period spent receiving dialysis treatment. Long-term growth hormone treatment of children with chronic renal failure induces persistent catch-up growth, and the majority of patients achieve normal adult height.

  17. Temperature dependence of protein solubility-determination, application to crystallization, and growth kinetics studies

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1993-01-01

    A scintillation method was developed for determinations of the temperature dependence of the solubility, and of nucleation induction times of proteins, in 50-100 mu(l) volumes of solution. Solubility data for lysozyme and horse serum albumin were obtained for various combinations of pH and precipitant concentrations. These data and the nucleation induction information were used for dynamic crystallization control, that is, for the controlled separation of nucleation and growth stages. Individual lysozyme and horse serum albumin crystals were grown in 15-20 mu(l) solution volumes contained in x-ray capillaries. The morphology and kinetics of the growth and dissolution of lysozyme in aqueous solutions with 2.5 percent NaCl and at pH = 4.5 was studied in situ with a depth resolution of 300 A (4 unit cells) by high resolution optical microscopy and digital image processing. The bulk super- or under saturation, sigma, of the solution inside a closed growth cell was controlled by temperature. The growth habit was bound by (110) and (101) faces that grew through layer spreading, although with different growth rate dependencies on supersaturation/temperature. At sigma less than 10 (obtained at higher temperatures) growth was purely kinetic ally controlled, with impurity effects (macrostep formation and kinetic hindrance) becoming significant for sigma less than 2. At sigma greater than 10 (lower temperatures), anisotropies in the interfacial kinetics were more pronounced, with interfacial kinetics and bulk transport becoming equally important to the growth morphology. Growth rates were growth history dependent. The formation of striations (layers of irregularly incorporated solution) was unambiguously correlated with growth temperature variations. Etching exposed dislocations and various high-index faces whose growth morphologies were studied during return to the steady state growth form. Growth steps were observed to originate from two-dimensional nuclei or from outcrops of growth striations, and from dislocations that preferentially formed in growth sector boundaries.

  18. Recent climate hiatus revealed dual control by temperature and drought on the stem growth of Mediterranean Quercus ilex.

    PubMed

    Lempereur, Morine; Limousin, Jean-Marc; Guibal, Frédéric; Ourcival, Jean-Marc; Rambal, Serge; Ruffault, Julien; Mouillot, Florent

    2017-01-01

    A better understanding of stem growth phenology and its climate drivers would improve projections of the impact of climate change on forest productivity. Under a Mediterranean climate, tree growth is primarily limited by soil water availability during summer, but cold temperatures in winter also prevent tree growth in evergreen forests. In the widespread Mediterranean evergreen tree species Quercus ilex, the duration of stem growth has been shown to predict annual stem increment, and to be limited by winter temperatures on the one hand, and by the summer drought onset on the other hand. We tested how these climatic controls of Q. ilex growth varied with recent climate change by correlating a 40-year tree ring record and a 30-year annual diameter inventory against winter temperature, spring precipitation, and simulated growth duration. Our results showed that growth duration was the best predictor of annual tree growth. We predicted that recent climate changes have resulted in earlier growth onset (-10 days) due to winter warming and earlier growth cessation (-26 days) due to earlier drought onset. These climatic trends partly offset one another, as we observed no significant trend of change in tree growth between 1968 and 2008. A moving-window correlation analysis revealed that in the past, Q. ilex growth was only correlated with water availability, but that since the 2000s, growth suddenly became correlated with winter temperature in addition to spring drought. This change in the climate-growth correlations matches the start of the recent atmospheric warming pause also known as the 'climate hiatus'. The duration of growth of Q. ilex is thus shortened because winter warming has stopped compensating for increasing drought in the last decade. Decoupled trends in precipitation and temperature, a neglected aspect of climate change, might reduce forest productivity through phenological constraints and have more consequences than climate warming alone. © 2016 John Wiley & Sons Ltd.

  19. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants

    PubMed Central

    2013-01-01

    Background The aim of this study was to revise the 2003 Fenton Preterm Growth Chart, specifically to: a) harmonize the preterm growth chart with the new World Health Organization (WHO) Growth Standard, b) smooth the data between the preterm and WHO estimates, informed by the Preterm Multicentre Growth (PreM Growth) study while maintaining data integrity from 22 to 36 and at 50 weeks, and to c) re-scale the chart x-axis to actual age (rather than completed weeks) to support growth monitoring. Methods Systematic review, meta-analysis, and growth chart development. We systematically searched published and unpublished literature to find population-based preterm size at birth measurement (weight, length, and/or head circumference) references, from developed countries with: Corrected gestational ages through infant assessment and/or statistical correction; Data percentiles as low as 24 weeks gestational age or lower; Sample with greater than 500 infants less than 30 weeks. Growth curves for males and females were produced using cubic splines to 50 weeks post menstrual age. LMS parameters (skew, median, and standard deviation) were calculated. Results Six large population-based surveys of size at preterm birth representing 3,986,456 births (34,639 births < 30 weeks) from countries Germany, United States, Italy, Australia, Scotland, and Canada were combined in meta-analyses. Smooth growth chart curves were developed, while ensuring close agreement with the data between 24 and 36 weeks and at 50 weeks. Conclusions The revised sex-specific actual-age growth charts are based on the recommended growth goal for preterm infants, the fetus, followed by the term infant. These preterm growth charts, with the disjunction between these datasets smoothing informed by the international PreM Growth study, may support an improved transition of preterm infant growth monitoring to the WHO growth charts. PMID:23601190

  20. Implicit Theories about Intelligence and Growth (Personal Best) Goals: Exploring Reciprocal Relationships

    ERIC Educational Resources Information Center

    Martin, Andrew J.

    2015-01-01

    Background: There has been increasing interest in growth approaches to students' academic development, including value-added models, modelling of academic trajectories, growth motivation orientations, growth mindsets, and growth goals. Aims: This study sought to investigate the relationships between implicit theories about intelligence…

  1. Nonlinear Growth Curves in Developmental Research

    ERIC Educational Resources Information Center

    Grimm, Kevin J.; Ram, Nilam; Hamagami, Fumiaki

    2011-01-01

    Developmentalists are often interested in understanding change processes, and growth models are the most common analytic tool for examining such processes. Nonlinear growth curves are especially valuable to developmentalists because the defining characteristics of the growth process such as initial levels, rates of change during growth spurts, and…

  2. Hyperphagia in male melanocortin 4 receptor deficient mice promotes growth independently of growth hormone.

    PubMed

    Tan, H Y; Steyn, F J; Huang, L; Cowley, M; Veldhuis, J D; Chen, C

    2016-12-15

    Loss of function of the melanocortin 4 receptor (MC4R) results in hyperphagia, obesity and increased growth. Despite knowing that MC4Rs control food intake, we are yet to understand why defects in the function of the MC4R receptor contribute to rapid linear growth. We show that hyperphagia following germline loss of MC4R in male mice promotes growth while suppressing the growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis. We propose that hyperinsulinaemia promotes growth while suppressing the GH-IGF-1 axis. It is argued that physiological responses essential to maintain energy flux override conventional mechanisms of pubertal growth to promote the storage of excess energy while ensuring growth. Defects in melanocortin-4-receptor (MC4R) signalling result in hyperphagia, obesity and increased growth. Clinical observations suggest that loss of MC4R function may enhance growth hormone (GH)-mediated growth, although this remains untested. Using male mice with germline loss of the MC4R, we assessed pulsatile GH release and insulin-like growth factor-1 (IGF-1) production and/or release relative to pubertal growth. We demonstrate early-onset suppression of GH release in rapidly growing MC4R deficient (MC4RKO) mice, confirming that increased linear growth in MC4RKO mice does not occur in response to enhanced activation of the GH-IGF-1 axis. The progressive suppression of GH release in MC4RKO mice occurred alongside increased adiposity and the progressive worsening of hyperphagia-associated hyperinsulinaemia. We next prevented hyperphagia in MC4RKO mice through restricting calorie intake in these mice to match that of wild-type (WT) littermates. Pair feeding of MC4RKO mice did not prevent increased adiposity, but attenuated hyperinsulinaemia, recovered GH release, and normalized linear growth rate to that seen in pair-fed WT littermate controls. We conclude that the suppression of GH release in MC4RKO mice occurs independently of increased adipose mass, and is a consequence of hyperphagia-associated hyperinsulinaemia. It is proposed that physiological responses essential to maintain energy flux (hyperinsulinaemia and the suppression of GH release) override conventional mechanisms of pubertal growth to promote the storage of excess energy while ensuring growth. Implications of these findings are likely to extend beyond individuals with defects in MC4R signalling, encompassing physiological changes central to mechanisms of growth and energy homeostasis universal to hyperphagia-associated childhood-onset obesity. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  3. Hyperphagia in male melanocortin 4 receptor deficient mice promotes growth independently of growth hormone

    PubMed Central

    Tan, H. Y.; Huang, L.; Cowley, M.; Veldhuis, J. D.; Chen, C.

    2016-01-01

    Key points Loss of function of the melanocortin 4 receptor (MC4R) results in hyperphagia, obesity and increased growth.Despite knowing that MC4Rs control food intake, we are yet to understand why defects in the function of the MC4R receptor contribute to rapid linear growth.We show that hyperphagia following germline loss of MC4R in male mice promotes growth while suppressing the growth hormone–insulin‐like growth factor‐1 (GH–IGF‐1) axis.We propose that hyperinsulinaemia promotes growth while suppressing the GH–IGF‐1 axis.It is argued that physiological responses essential to maintain energy flux override conventional mechanisms of pubertal growth to promote the storage of excess energy while ensuring growth. Abstract Defects in melanocortin‐4‐receptor (MC4R) signalling result in hyperphagia, obesity and increased growth. Clinical observations suggest that loss of MC4R function may enhance growth hormone (GH)‐mediated growth, although this remains untested. Using male mice with germline loss of the MC4R, we assessed pulsatile GH release and insulin‐like growth factor‐1 (IGF‐1) production and/or release relative to pubertal growth. We demonstrate early‐onset suppression of GH release in rapidly growing MC4R deficient (MC4RKO) mice, confirming that increased linear growth in MC4RKO mice does not occur in response to enhanced activation of the GH–IGF‐1 axis. The progressive suppression of GH release in MC4RKO mice occurred alongside increased adiposity and the progressive worsening of hyperphagia‐associated hyperinsulinaemia. We next prevented hyperphagia in MC4RKO mice through restricting calorie intake in these mice to match that of wild‐type (WT) littermates. Pair feeding of MC4RKO mice did not prevent increased adiposity, but attenuated hyperinsulinaemia, recovered GH release, and normalized linear growth rate to that seen in pair‐fed WT littermate controls. We conclude that the suppression of GH release in MC4RKO mice occurs independently of increased adipose mass, and is a consequence of hyperphagia‐associated hyperinsulinaemia. It is proposed that physiological responses essential to maintain energy flux (hyperinsulinaemia and the suppression of GH release) override conventional mechanisms of pubertal growth to promote the storage of excess energy while ensuring growth. Implications of these findings are likely to extend beyond individuals with defects in MC4R signalling, encompassing physiological changes central to mechanisms of growth and energy homeostasis universal to hyperphagia‐associated childhood‐onset obesity. PMID:27558671

  4. The Language Growth of Spanish-Speaking English Language Learners

    ERIC Educational Resources Information Center

    Rojas, Raul; Iglesias, Aquiles

    2013-01-01

    Although the research literature regarding language growth trajectories is burgeoning, the shape and direction of English Language Learners' (ELLs) language growth trajectories are largely not known. This study used growth curve modeling to determine the shape of ELLs' language growth trajectories across 12,248 oral narrative language samples…

  5. 78 FR 69885 - AIM Growth Series (Invesco Growth Series), et al.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-21

    ... designed to ensure that Sub-Advisors comply with a Subadvised Series' investment objective, policies and...] AIM Growth Series (Invesco Growth Series), et al.; Notice of Application November 15, 2013. AGENCY... approval and would grant relief from certain disclosure requirements. APPLICANTS: AIM Growth Series...

  6. Crystal growth in fused solvent systems

    NASA Technical Reports Server (NTRS)

    Ulrich, D. R.; Noone, M. J.; Spear, K. E.; White, W. B.; Henry, E. C.

    1973-01-01

    Research is reported on the growth of electronic ceramic single crystals from solution for the future growth of crystals in a microgravity environment. Work included growth from fused or glass solvents and aqueous solutions. Topics discussed include: crystal identification and selection; aqueous solution growth of triglycine sulphate (TGS); and characterization of TGS.

  7. Fifteen-year results from six cutting methods in second-growth northern hardwoods.

    Treesearch

    Gayne G. Erdmann; Robert R. Oberg

    1973-01-01

    Presents and compares stand growth and yield information from three single-tree selection cuts, a crop-tree release treatment, an 8-inch diameter limit cut, and an uncut control. Discusses the influence of stand density on basal area growth, cubic volume growth, and board-foot volume growth.

  8. The Analysis of the Relation between Education and Economic Growth

    ERIC Educational Resources Information Center

    Monteils, Marielle

    2004-01-01

    The debate concerning the various determinants of economic growth has attracted considerable attention. The argument according to which endogenous growth models explain long-term economic growth is often put forward. Particularly, it is held that the production of knowledge by education induces self-sustained growth. In spite of numerous…

  9. Growth Index: A Powerful Tool for School Improvement

    ERIC Educational Resources Information Center

    Wiseman, Perry; Thomas, Kimberly

    2011-01-01

    This article outlines a formula called Growth Index (GI), which is designed to measure student growth within all proficiency levels year after year, and track classroom or schoolwide growth. This growth should be considered as one of several dimensions that constitute principal and teacher effectiveness. Unlike Academic Performance Index (API) and…

  10. NUMERICAL TECHNIQUES TO SOLVE CONDENSATIONAL AND DISSOLUTIONAL GROWTH EQUATIONS WHEN GROWTH IS COUPLED TO REVERSIBLE REACTIONS (R823186)

    EPA Science Inventory

    Noniterative, unconditionally stable numerical techniques for solving condensational and
    dissolutional growth equations are given. Growth solutions are compared to Gear-code solutions for
    three cases when growth is coupled to reversible equilibrium chemistry. In all cases, ...

  11. Protein crystal growth tray assembly

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Miller, Teresa Y. (Inventor)

    1992-01-01

    A protein crystal growth tray assembly includes a tray that has a plurality of individual crystal growth chambers. Each chamber has a movable pedestal which carries a protein crystal growth compartment at an upper end. The several pedestals for each tray assembly are ganged together for concurrent movement so that the solutions in the various pedestal growth compartments can be separated from the solutions in the tray's growth chambers until the experiment is to be activated.

  12. [Excessive growth and growth hormone deficiency after treatment for craniopharyngioma].

    PubMed

    López Siguero, J P; García García, E; Martínez-Aedo, M J; Martínez Valverde, A

    2000-07-01

    Some children grow normally or excessively after extirpation of a craniopharyngioma, despite growth hormone deficiency. We report a 4-year-old girl with suprasellar craniopharyngioma. Removal of the tumor resulted in panhypopituitarism. For the next 5 years growth continued at a rate of 8.4-10.6 cm/year and then decreased progressively to 1.2 cm/year. Administration of growth hormone increased growth rate to 9.3 cm/year.

  13. Crystal Growth Furnace - An overview of the system configuration and planned experiments on the First United States Microgravity Laboratory mission

    NASA Technical Reports Server (NTRS)

    Srinivas, R.; Schaefer, D. A.

    1992-01-01

    The Crystal Growth Furnace (CGF) system configuration for the First United States Microgravity Laboratory (USML-1) mission is reviewed, and the planned on-orbit experiments are briefly described. The CGF is configured to accommodate four scientific experiments involving crystal growth which are based on the classical Bridgman method and CVT method, including vapor transport crystal growth of mercury cadmium telluride; crystal growth of mercury zinc telluride by directional solidification; seeded Bridgman growth of zinc-doped cadmium telluride; and Bridgman growth of selenium-doped gallium arsenide.

  14. A method of variable spacing for controlled plant growth systems in spaceflight and terrestrial agriculture applications

    NASA Technical Reports Server (NTRS)

    Knox, J.

    1986-01-01

    A higher plant growth system for Controlled Ecological Life Support System (CELSS) applications is described. The system permits independent movement of individual plants during growth. Enclosed within variable geometry growth chambers, the system allocates only the volume required by the growing plants. This variable spacing system maintains isolation between root and shoot environments, providing individual control for optimal growth. The advantages of the system for hydroponic and aeroponic growth chambers are discussed. Two applications are presented: (1) the growth of soybeans in a space station common module, and (2) in a terrestrial city greenhouse.

  15. Psychomotor retardation in a girl with complete growth hormone deficiency.

    PubMed

    Dayal, Devi; Malhi, Prabhjot; Kumar Bhalla, Anil; Sachdeva, Naresh; Kumar, Rakesh

    2013-01-01

    Infants with complete growth hormone deficiency may suffer from psychomotor retardation in addition to severe growth failure. Without replacement therapy, they may have a compromised intellectual potential manifesting as learning disabilities and attention-deficit disorders in later life. In this communication, we discuss an infant who showed improvement in physical growth after growth hormone therapy but her psychomotor skills did not improve probably due to late start of treatment. There is a need to start growth hormone therapy as early as possible in infants with complete growth hormone deficiency to avoid adverse effects on psychomotor and brain development.

  16. [THE NATIONAL NUTRIENT MEDIUM FOR DIAGNOSTIC OF PURULENT BACTERIAL MENINGITIS].

    PubMed

    Podkopaev, Ya V; Domotenko, L V; Morozova, T P; Khramov, M K; Shepelin, A P

    2015-05-01

    The national growth mediums were developed for isolating and cultivating of main agents of purulent bacterial meningitis--haemophilus agar, chocolate agar, PBM-agar. The growing and selective characteristics of developed growth mediums are examined. The haemophilus agar ensures growth of Haemophilus influenzae. The chocolate agar, PBM-agar ensure growth of Neisseria meningitidis, Streptococcus pneumoniae and Haemophilus influenzae. By growing characteristics, the national growth mediums match foreign analogues. Under application of growth mediums with selective additions it is possible to achieve selective isolation of main agents of purulent bacterial meningitis with inhibition of growth of microbes-associates.

  17. Geometrical approach to tumor growth.

    PubMed

    Escudero, Carlos

    2006-08-01

    Tumor growth has a number of features in common with a physical process known as molecular beam epitaxy. Both growth processes are characterized by the constraint of growth development to the body border, and surface diffusion of cells and particles at the growing edge. However, tumor growth implies an approximate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic model was introduced in a former paper [C. Escudero, Phys. Rev. E 73, 020902(R) (2006)], and in the present work we extend our analysis and try to shed light on the possible geometrical principles that drive tumor growth. We present two-dimensional models that reproduce the experimental observations, and analyze the unexplored three-dimensional case, for which interesting conclusions on tumor growth are derived.

  18. The language growth of spanish-speaking English language learners.

    PubMed

    Rojas, Raúl; Iglesias, Aquiles

    2013-01-01

    Although the research literature regarding language growth trajectories is burgeoning, the shape and direction of English Language Learners' (ELLs) language growth trajectories are largely not known. This study used growth curve modeling to determine the shape of ELLs' language growth trajectories across 12,248 oral narrative language samples (6,516 Spanish; 5,732 English) produced by 1,723 ELLs during the first 3 years of formal schooling (M age at first observation = 5 years 7 months). Results indicated distinct trajectories of language growth over time for each language differentially impacted by summer vacation and gender, significant intra- and interindividual differences in initial status and growth rates across both languages, and language-specific relations between language growth and initial status. Implications of ELLs' language growth are discussed. © 2012 The Authors. Child Development © 2012 Society for Research in Child Development, Inc.

  19. Growth-rate dependent global effects on gene expression in bacteria

    PubMed Central

    Klumpp, Stefan; Zhang, Zhongge; Hwa, Terence

    2010-01-01

    Summary Bacterial gene expression depends not only on specific regulations but also directly on bacterial growth, because important global parameters such as the abundance of RNA polymerases and ribosomes are all growth-rate dependent. Understanding these global effects is necessary for a quantitative understanding of gene regulation and for the robust design of synthetic genetic circuits. The observed growth-rate dependence of constitutive gene expression can be explained by a simple model using the measured growth-rate dependence of the relevant cellular parameters. More complex growth dependences for genetic circuits involving activators, repressors and feedback control were analyzed, and salient features were verified experimentally using synthetic circuits. The results suggest a novel feedback mechanism mediated by general growth-dependent effects and not requiring explicit gene regulation, if the expressed protein affects cell growth. This mechanism can lead to growth bistability and promote the acquisition of important physiological functions such as antibiotic resistance and tolerance (persistence). PMID:20064380

  20. Posttraumatic growth in post-surgical coronary artery bypass graft patients

    PubMed Central

    Waight, Catherine A; Sheridan, Judith; Tesar, Peter

    2015-01-01

    Recent research in posttraumatic growth has been applied to people with life-threatening illnesses to optimise recovery. There is a lack of research exploring posttraumatic growth in coronary artery bypass graft patients. This article describes the recovery experience of 14 coronary artery bypass graft patients (13 males and 1 female) at their first outpatient review post-surgery. Grounded theory analysis was used to develop a model of distinct and shared pathways to growth depending on whether patients were symptomatic or asymptomatic pre-coronary artery bypass graft. Outcomes of posttraumatic growth in this sample included action-based healthy lifestyle growth and two forms of cognitive growth: appreciation of life and new possibilities. The model of posttraumatic growth developed in this study may be helpful in guiding future research into promoting posttraumatic growth and behaviour change in coronary artery bypass graft patients. PMID:28070351

  1. Vapor-solid-solid grown Ge nanowires at integrated circuit compatible temperature by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhu, Zhongyunshen; Song, Yuxin; Zhang, Zhenpu; Sun, Hao; Han, Yi; Li, Yaoyao; Zhang, Liyao; Xue, Zhongying; Di, Zengfeng; Wang, Shumin

    2017-09-01

    We demonstrate Au-assisted vapor-solid-solid (VSS) growth of Ge nanowires (NWs) by molecular beam epitaxy at the substrate temperature of ˜180 °C, which is compatible with the temperature window for Si-based integrated circuit. Low temperature grown Ge NWs hold a smaller size, similar uniformity, and better fit with Au tips in diameter, in contrast to Ge NWs grown at around or above the eutectic temperature of Au-Ge alloy in the vapor-liquid-solid (VLS) growth. Six ⟨110⟩ growth orientations were observed on Ge (110) by the VSS growth at ˜180 °C, differing from only one vertical growth direction of Ge NWs by the VLS growth at a high temperature. The evolution of NWs dimension and morphology from the VLS growth to the VSS growth is qualitatively explained by analyzing the mechanism of the two growth modes.

  2. Plant growth-promoting bacterial endophytes.

    PubMed

    Santoyo, Gustavo; Moreno-Hagelsieb, Gabriel; Orozco-Mosqueda, Ma del Carmen; Glick, Bernard R

    2016-02-01

    Bacterial endophytes ubiquitously colonize the internal tissues of plants, being found in nearly every plant worldwide. Some endophytes are able to promote the growth of plants. For those strains the mechanisms of plant growth-promotion known to be employed by bacterial endophytes are similar to the mechanisms used by rhizospheric bacteria, e.g., the acquisition of resources needed for plant growth and modulation of plant growth and development. Similar to rhizospheric plant growth-promoting bacteria, endophytic plant growth-promoting bacteria can act to facilitate plant growth in agriculture, horticulture and silviculture as well as in strategies for environmental cleanup (i.e., phytoremediation). Genome comparisons between bacterial endophytes and the genomes of rhizospheric plant growth-promoting bacteria are starting to unveil potential genetic factors involved in an endophytic lifestyle, which should facilitate a better understanding of the functioning of bacterial endophytes. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Growth hormone in intra-uterine growth retarded newborns.

    PubMed

    Setia, Sajita; Sridhar, M G; Bhat, Vishnu; Chaturvedula, Latha

    2007-11-01

    To study growth hormone levels in IUGR and healthy controls and its association with birth weight and ponderal index. We studied 50 Intra uterine growth retarded (IUGR) and 50 healthy newborns born at term by vaginal delivery in JIPMER, Pondicherry, India. Cord blood was collected at the time of delivery for measurement of growth hormone. When compared with healthy newborns, IUGR newborns had higher growth hormone levels (mean +/- SD, 23.5 +/- 15.6 vs 16.2 +/- 7.61 ngm/ml, P = 0.019). A negative correlation was identified between growth hormone levels and birth weight (r2 = - 0.22, P = 0.03) and ponderal index (r2 = - 0.36, P = 0.008). Correlation of growth hormone levels was much more confident with ponderal index than with birth weight. At birth IUGR infants display increased growth hormone levels which correlate with ponderal index much more confidently than with birth weight.

  4. Neuroendocrine regulation of somatic growth in fishes.

    PubMed

    Dai, XiangYan; Zhang, Wei; Zhuo, ZiJian; He, JiangYan; Yin, Zhan

    2015-02-01

    Growth is a polygenic trait that is under the influence of multiple physiological pathways regulating energy metabolism and muscle growth. Among the possible growth-regulating pathways in vertebrates, components of the somatotropic axis are thought to have the greatest influence. There is growing body of literature focusing on the somatotropic axis and its role regulating growth in fish. This includes research into growth hormone, upstream hypothalamic hormones, insulin-like growth factors, and downstream signaling molecules. Many of these signals have both somatic effects stimulating the growth of tissues and metabolic effects that play a role in nutrient metabolism. Signals of other endocrine axes exhibit profound effects on the function of the somatotropic axis in vivo. In this review we highlight recent advances in our understanding of the teleost fish endocrine somatotropic axis, including emerging research using genetic modified models. These studies have revealed new aspects and challenges associated with regulation of the important steps of somatic growth.

  5. The emerging connections between IGF1, the intestinal microbiome, Lactobacillus strains and bone growth.

    PubMed

    Poinsot, Pierre; Schwarzer, Martin; Peretti, Noël; Leulier, François

    2018-07-01

    In most animal species, postnatal growth is controlled by conserved insulin/insulin-like growth factor (IGF) signaling. In mammals, juvenile growth is characterized by a longitudinal bone growth resulting from the ossification of the growth plate. This ossification is under IGF1 influence through endocrine and paracrine mechanisms. Moreover, the nutritional status has been largely described as an important factor influencing the insulin/insulin-like growth factor signaling. It is now well established that the gut microbiota modulates the nutrient availability of its host. Hence, studies of the interaction between nutritional status, gut microbiota and bone growth have recently emerged. Here, we review recent findings using experimental models about the impact of gut bacteria on the somatotropic axis and its consequence on the bone growth. We also discuss the perspectives of these studies in opening an entire field for clinical interventions. © 2018 Society for Endocrinology.

  6. Enhancement of wave growth for warm plasmas with a high-energy tail distribution

    NASA Technical Reports Server (NTRS)

    Thorne, Richard M.; Summers, Danny

    1991-01-01

    The classical linear theory of electromagnetic wave growth in a warm plasma is considered for waves propagating parallel to a uniform ambient magnetic field. Wave-growth rates are calculated for ion-driven right-hand mode waves for Kappa and Maxwellian particle distribution functions and for various values of the spectral index, the temperature anisotropy, and the ratio of plasma pressure to magnetic pressure appropriate to the solar wind. When the anisotropy is low the wave growth is limited to frequencies below the proton gyrofrequency and the growth rate increases dramatically as the spectral index is reduced. The growth rate for any Kappa distribution greatly exceeds that for a Maxwellian with the same bulk properties. For large thermal anisotropy the growth rate from either distribution is greatly enhanced. The growth rates from a Kappa distribution are generally larger than for a Maxwellian distribution, and significant wave growth occurs over a broader range of frequencies.

  7. Control of interface shape during high melting sesquioxide crystal growth by HEM technique

    NASA Astrophysics Data System (ADS)

    Hu, Kaiwei; Zheng, Lili; Zhang, Hui

    2018-02-01

    During crystal growth in heat exchanger method (HEM) system, the shape of the growth interface changes with the proceeding of the growth process, which limits the crystal size and reduces the quality of the crystal. In this paper, a modified HEM system is proposed to control the interface shape for growth of sesquioxide crystals. Numerical simulation is performed to predict heat transfer, melt flow and interface shape during growth of high melting sesquioxide crystals by the heat exchanger method. The results show that a flat or slightly convex interface shape is beneficial to reduce the solute pileup in front of the melt/crystal interface and decrease the radial temperature gradient inside the crystal during growth of sesquioxide crystals. The interface shape can be controlled by adjusting the gap size d and lower resistance heater power during growth. The growth rate and the melt/crystal interface position can be obtained by two measured temperatures.

  8. A structure-based extracellular matrix expansion mechanism of fibrous tissue growth.

    PubMed

    Kalson, Nicholas S; Lu, Yinhui; Taylor, Susan H; Starborg, Tobias; Holmes, David F; Kadler, Karl E

    2015-05-20

    Embryonic growth occurs predominately by an increase in cell number; little is known about growth mechanisms later in development when fibrous tissues account for the bulk of adult vertebrate mass. We present a model for fibrous tissue growth based on 3D-electron microscopy of mouse tendon. We show that the number of collagen fibrils increases during embryonic development and then remains constant during postnatal growth. Embryonic growth was explained predominately by increases in fibril number and length. Postnatal growth arose predominately from increases in fibril length and diameter. A helical crimp structure was established in embryogenesis, and persisted postnatally. The data support a model where the shape and size of tendon is determined by the number and position of embryonic fibroblasts. The collagen fibrils that these cells synthesise provide a template for postnatal growth by structure-based matrix expansion. The model has important implications for growth of other fibrous tissues and fibrosis.

  9. Testicular growth and development in puberty.

    PubMed

    Koskenniemi, Jaakko J; Virtanen, Helena E; Toppari, Jorma

    2017-06-01

    To describe pubertal testicular growth in humans, changes in testicular cell populations that result in testicular growth, and the role of testosterone and gonadotrophins follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in testicular growth. When human data were not available, studies in nonhuman primates and/or rodents were used as surrogates. Testicular growth in puberty follows a sigmoidal growth curve, with a large variation in timing of testicular growth and adult testicular volume. Testicular growth early in puberty is due to increase in Sertoli cell number and length of seminiferous tubules, whereas the largest and fastest growth results from the increase in the diameter of the seminiferous tubules first due to spermatogonial proliferation and then due to the expansion of meiotic and haploid germ cells. FSH stimulates Sertoli cell and spermatogonial proliferation, whereas LH/testosterone is mandatory to complete spermatogenesis. However, FSH and LH/testosterone work in synergy and are both needed for normal spermatogenesis. Testicular growth during puberty is rapid, and mostly due to germ cell expansion and growth in seminiferous tubule diameter triggered by androgens. Pre-treatment with FSH before the induction of puberty may improve the treatment of hypogonadotropic hypogonadism, but remains to be proven.

  10. TRAJECTORY AND CORRELATES OF GROWTH OF EXTREMELY LOW BIRTH WEIGHT ADOLESCENTS

    PubMed Central

    Hack, Maureen; Schluchter, Mark; Margevicius, Seunghee; Andreias, Laura; Taylor, Gerry; Cuttler, Leona

    2014-01-01

    Background Catch-up growth may predispose to obesity and metabolic sequelae. We sought to examine the trajectory and correlates of growth and catch-up among extremely low birth weight (ELBW, <1 kg) adolescents. Methods Cohort study of 148 neurologically normal ELBW children and 115 normal birth weight (NBW) controls born 1992 through 1995. Longitudinal measures of gender-specific growth of ELBW children from birth, and growth and measures of obesity of ELBW and NBW children at 14 years. Results Following neonatal growth failure, ELBW children had accelerated growth, but at 8 years they still had lower weight and height z scores than NBW children. By 14 years ELBW boys had caught up in growth to their NBW controls but ELBW girls remained significantly smaller. ELBW children however did not differ from their controls in measures of obesity. In hierarchical multiple regression analyses only maternal BMI and weight gain during infancy and childhood predicted the ELBW children’s 14-year weight z scores, BMI z scores and abdominal circumference. Perinatal risk factors including intrauterine growth only predicted growth up to 20 months. Conclusion Maternal BMI and rate of growth, rather than perinatal factors, predict 14-year obesity among neurologically normal ELBW adolescents. PMID:24216539

  11. Testing mechanistic models of growth in insects.

    PubMed

    Maino, James L; Kearney, Michael R

    2015-11-22

    Insects are typified by their small size, large numbers, impressive reproductive output and rapid growth. However, insect growth is not simply rapid; rather, insects follow a qualitatively distinct trajectory to many other animals. Here we present a mechanistic growth model for insects and show that increasing specific assimilation during the growth phase can explain the near-exponential growth trajectory of insects. The presented model is tested against growth data on 50 insects, and compared against other mechanistic growth models. Unlike the other mechanistic models, our growth model predicts energy reserves per biomass to increase with age, which implies a higher production efficiency and energy density of biomass in later instars. These predictions are tested against data compiled from the literature whereby it is confirmed that insects increase their production efficiency (by 24 percentage points) and energy density (by 4 J mg(-1)) between hatching and the attainment of full size. The model suggests that insects achieve greater production efficiencies and enhanced growth rates by increasing specific assimilation and increasing energy reserves per biomass, which are less costly to maintain than structural biomass. Our findings illustrate how the explanatory and predictive power of mechanistic growth models comes from their grounding in underlying biological processes. © 2015 The Author(s).

  12. Lattice Gas Model Based Optimization of Plasma-Surface Processes for GaN-Based Compound Growth

    NASA Astrophysics Data System (ADS)

    Nonokawa, Kiyohide; Suzuki, Takuma; Kitamori, Kazutaka; Sawada, Takayuki

    2001-10-01

    Progress of the epitaxial growth technique for GaN-based compounds makes these materials attractive for applications in high temperature/high-power electronic devices as well as in short-wavelength optoelectronic devices. For MBE growth of GaN epilayer, atomic nitrogen is usually supplied from ECR-plasma while atomic Ga is supplied from conventional K-cell. To grow high-quality epilayer, fundamental knowledge of the detailed atomic process, such as adsorption, surface migration, incorporation, desorption and so forth, is required. We have studied the influence of growth conditions on the flatness of the growth front surface and the growth rate using Monte Carlo simulation based on the lattice gas model. Under the fixed Ga flux condition, the lower the nitrogen flux and/or the higher the growth temperature, the better the flatness of the front surface at the sacrifice of the growth rate of the epilayer. When the nitrogen flux is increased, the growth rate reaches saturation value determined from the Ga flux. At a fixed growth temperature, increasing of nitrogen to Ga flux ratio results in rough surface owing to 3-dimensional island formation. Other characteristics of MBE-GaN growth using ECR-plasma can be well reproduced.

  13. Titanium-Catalyzed Silicon Nanostructures Grown by APCVD

    NASA Astrophysics Data System (ADS)

    Usman, Mohammad A. U.; Smith, Brady J.; Jackson, Justin B.; De Long, Matthew C.; Miller, Mark S.

    2015-01-01

    We report on growth of Ti-catalyzed silicon nanostructures (SNCs) through atmospheric-pressure chemical vapor deposition. An extensive growth study relating the growth condition parameters, including the partial pressure of SiCl4 gas, reaction temperature, and reaction time, was carried out to obtain insight into the growth regimes for the observed SNCs. Based on phase diagram analysis of Ti-Si alloy and growth rate analysis of the silicon nanowires (SNWs) and silicon nanoplatelets, we believe the growth mechanism to be strongly dependent on the thermodynamics of the system, exhibiting a delicate balance that can easily tip between the growth and etching regimes of the system. Three types of SNCs were observed frequently throughout the study: nanowires, nanoplatelets, and balls. Regimes for highly etched growth were also noted through growth conditions plots. Ti-catalyzed SNWs grown using SiCl4 gas strongly suggest growth occurring through a type of vapor-solid-solid (VSS) mechanism that is limited by diffusion through the solid-catalyst interface. On the other hand, the two-dimensional SNP morphologies suggest growth occurring through the twin-plane mechanism at the edges, at 10 nm to 100 nm scales, also through a similar, VSS mechanism.

  14. Effect of growth factors on hyaluronan production by canine vocal fold fibroblasts.

    PubMed

    Hirano, Shigeru; Bless, Diane M; Heisey, Dennis; Ford, Charles N

    2003-07-01

    Hyaluronan (HYA) is considered to be a crucial factor in scarless wound healing and in maintaining tissue viscosity of the vocal fold lamina propria. In this study focusing on the effects of growth factors, we examined how HYA is produced and controlled in canine cultured vocal fold fibroblasts. Fibroblasts were taken from the lamina propria of the vocal folds of 8 dogs and cultured with and without growth factors. The production of HYA in the supernatant culture was quantitatively examined by enzyme-linked immunosorbent assay. Hepatocyte growth factor, epidermal growth factor, basic fibroblast growth factor, and transforming growth factor beta1 all stimulated HYA synthesis from vocal fold fibroblasts. These effects differed with the concentration of growth factors and the incubation period. We also examined how frequently the growth factors had to be administered in order to maintain appropriate levels of HYA. A single administration was sufficient to maintain appropriate HYA levels for at least 7 days. The present studies have demonstrated positive effects of growth factors in stimulating HYA production. Further in vivo study is needed to clarify the usefulness of these growth factors in the management of vocal fold scarring.

  15. Calcium pectate chemistry causes growth to be stored in Chara corallina: a test of the pectate cycle.

    PubMed

    Proseus, Timothy E; Boyer, John S

    2008-08-01

    Calcium pectate chemistry was reported to control the growth rate of cells of Chara corallina, and required turgor pressure (P) to do so. Accordingly, this chemistry should account for other aspects of growth, particularly the ability of plants to compensate for brief exposure to low P, that is, to 'store' growth. Live Chara cells or isolated walls were attached to a pressure probe, and P was varied. Low P caused growth to be inhibited in live cells, but when P returned to normal (0.5 MPa), a flush of growth completely compensated for that lost at low P for as long as 23-53 min. This growth storage was absent in isolated walls, mature cells and live cells exposed to cold, indicating that the cytoplasm delivered a metabolically derived growth factor needing P for its action. Because the cytoplasm delivered pectate needing P for its action, pectate was supplied to isolated walls at low P as though the cytoplasm had done so. Growth was stored while otherwise none occurred. It was concluded that a P-dependent cycle of calcium pectate chemistry not only controlled growth rate and new wall deposition, but also accounted for stored growth.

  16. Actin growth profile in clathrin-mediated endocytosis

    NASA Astrophysics Data System (ADS)

    Tweten, D. J.; Bayly, P. V.; Carlsson, A. E.

    2017-05-01

    Clathrin-mediated endocytosis in yeast is driven by a protein patch containing close to 100 different types of proteins. Among the proteins are 5000 -10 000 copies of polymerized actin, and successful endocytosis requires growth of the actin network. Since it is not known exactly how actin network growth drives endocytosis, we calculate the spatial distribution of actin growth required to generate the force that drives the process. First, we establish the force distribution that must be supplied by actin growth, by combining membrane-bending profiles obtained via electron microscopy with established theories of membrane mechanics. Next, we determine the profile of actin growth, using a continuum mechanics approach and an iterative procedure starting with an actin growth profile obtained from a linear analysis. The profile has fairly constant growth outside a central hole of radius 45-50 nm, but very little growth in this hole. This growth profile can reproduce the required forces if the actin shear modulus exceeds 80 kPa, and the growing filaments can exert very large polymerization forces. The growth profile prediction could be tested via electron-microscopy or super-resolution experiments in which the turgor pressure is suddenly turned off.

  17. Effect of Xylitol on Growth of Streptococcus pneumoniae in the Presence of Fructose and Sorbitol

    PubMed Central

    Tapiainen, Terhi; Kontiokari, Tero; Sammalkivi, Laura; Ikäheimo, Irma; Koskela, Markku; Uhari, Matti

    2001-01-01

    Xylitol is effective in preventing acute otitis media by inhibiting the growth of Streptococcus pneumoniae. To clarify this inhibition we used fructose, which is known to block similar growth inhibition observed in Streptococcus mutans. In addition, we evaluated the efficacy of sorbitol in inhibiting the growth of pneumococci, as sorbitol is widely used for indications similar to those for which xylitol is used. The addition of 5% xylitol to the growth medium resulted in marked growth inhibition, an effect which was totally eliminated in the presence of 1, 2.5, or 5% fructose but not in the presence of 1 or 5% glucose, 1% galactose, or 1% sucrose. This finding implies that xylitol-induced inhibition of pneumococcal growth is mediated via the fructose phosphotransferase system in a way similar to that in which mutans group streptococcal growth is inhibited. The addition of sorbitol at concentrations of 1, 2.5, or 5% to the growth medium did not affect the growth of pneumococci and neither inhibited nor enhanced the xylitol-induced growth impairment. Thus, it seems that xylitol is the only commercially used sugar substitute proven to have an antimicrobial effect on pneumococci. PMID:11120960

  18. Phosphate limitation induces sporulation in the chytridiomycete Blastocladiella emersonii.

    PubMed

    Bongiorno, Vagner Alexandre; Ferreira da Cruz, Angela; Nunis da Silva, Antonio; Corrêa, Luiz Carlos

    2012-09-01

    The cell cycle is controlled by numerous mechanisms that ensure correct cell division. If growth is not possible, cells may eventually promote autophagy, differentiation, or apoptosis. Microorganisms interrupt their growth and differentiate under general nutrient limitation. We analyzed the effects of phosphate limitation on growth and sporulation in the chytridiomycete Blastocladiella emersonii using kinetic data, phase-contrast, and laser confocal microscopy. Under phosphate limitation, zoospores germinated and subsequently formed 2-4 spores, regardless of the nutritional content of the medium. The removal of phosphate at any time during growth induced sporulation of vegetative cells. If phosphate was later added to the same cultures, growth was restored if the cells were not yet committed to sporulation. The cycles of addition and withdrawal of phosphate from growth medium resulted in cycles of germination-growth, germination-sporulation, or germination-growth-sporulation. These results show that phosphate limitation is sufficient to interrupt cell growth and to induce complete sporulation in B. emersonii. We concluded that the determination of growth or sporulation in this microorganism is linked to phosphate availability when other nutrients are not limiting. This result provides a new tool for the dissection of nutrient-energy and signal pathways in cell growth and differentiation.

  19. Diagnosis of growth hormone deficiency in the paediatric and transitional age.

    PubMed

    Chinoy, A; Murray, P G

    2016-12-01

    Growth hormone deficiency is a rare cause of childhood short stature, but one for which treatment exists in the form of recombinant human growth hormone. A diagnosis of growth hormone deficiency is made based on auxology, biochemistry and imaging. Although no diagnostic gold standard exists, growth hormone provocation tests are considered the mainstay of diagnostic investigations. However, these must be interpreted with caution in view of issues with variability and reproducibility, as well as the limited evidence-base for cut-off values used to distinguish growth hormone deficient and non-growth hormone deficient subjects. In addition, nutritional and pubertal status can affect results, with no consensus on the role of priming with sex steroid hormones. Difficulties with assays exist both for growth hormone as well as insulin-like growth factor-1. Pituitary magnetic resonance imaging is a useful diagnostic, and possibly prognostic, aid. Although genetic testing is not routine, the discovery of more relevant mutations makes it an increasingly important investigation. Children with growth hormone deficiency are retested biochemically on completion of growth, to assess whether they remain so into adulthood. Copyright © 2016. Published by Elsevier Ltd.

  20. Pseudohyphal growth of Cryptococcus neoformans is a reversible dimorphic transition in response to ammonium that requires Amt1 and Amt2 ammonium permeases.

    PubMed

    Lee, Soo Chan; Phadke, Sujal; Sun, Sheng; Heitman, Joseph

    2012-11-01

    Cryptococcus neoformans is a human-pathogenic basidiomycete that commonly infects HIV/AIDS patients to cause meningoencephalitis (7, 19). C. neoformans grows as a budding yeast during vegetative growth or as hyphae during sexual reproduction. Pseudohyphal growth of C. neoformans has been observed rarely during murine and human infections but frequently during coculture with amoeba; however, the genetics underlying pseudohyphal growth are largely unknown. Our studies found that C. neoformans displays pseudohyphal growth under nitrogen-limiting conditions, especially when a small amount of ammonium is available as a sole nitrogen source. Pseudohyphal growth was observed with Cryptococcus neoformans serotypes A and D and Cryptococcus gattii. C. neoformans pseudohyphae bud to produce yeast cells and normal smooth hemispherical colonies when transferred to complete media, indicating that pseudohyphal growth is a conditional developmental stage. Subsequent analysis revealed that two ammonium permeases encoded by the AMT1 and AMT2 genes are required for pseudohyphal growth. Both amt1 and amt2 mutants are capable of forming pseudohyphae; however, amt1 amt2 double mutants do not form pseudohyphae. Interestingly, C. gattii pseudohypha formation is irreversible and involves a RAM pathway mutation that drives pseudohyphal development. We also found that pseudohyphal growth is related to the invasive growth into the medium. These results demonstrate that pseudohyphal growth is a common reversible growth pattern in C. neoformans but a mutational genetic event in C. gattii and provide new insights into understanding pseudohyphal growth of Cryptococcus.

  1. Fetal, neonatal, infant, and child international growth standards: an unprecedented opportunity for an integrated approach to assess growth and development.

    PubMed

    Garza, Cutberto

    2015-07-01

    The recent publication of fetal growth and gestational age-specific growth standards by the International Fetal and Newborn Growth Consortium for the 21st Century Project and the previous publication by the WHO of infant and young child growth standards based on the WHO Multicentre Growth Reference Study enable evaluations of growth from ∼9 wk gestation to 5 y. The most important features of these projects are the prescriptive approach used for subject selection and the rigorous testing of the assertion that growth is very similar among geographically and ethnically diverse nonisolated populations when health, nutrition, and other care needs are met and the environment imposes minimal constraints on growth. Both studies documented that with adequate controls, the principal source of variability in growth during gestation and early childhood resides among individuals. Study sites contributed much less to observed variability. The agreement between anthropometric measurements common to both studies also is noteworthy. Jointly, these studies provide for the first time, to my knowledge, a conceptually consistent basis for worldwide and localized assessments and comparisons of growth performance in early life. This is an important contribution to improving the health care of children across key periods of growth and development, especially given the appropriate interest in pursuing "optimal" health in the "first 1000 d," i.e., the period covering fertilization/implantation, gestation, and postnatal life to 2 y of age. © 2015 American Society for Nutrition.

  2. Hair-growth-promoting effect of conditioned medium of high integrin α6 and low CD 71 (α6bri/CD71dim) positive keratinocyte cells.

    PubMed

    Won, Chong Hyun; Jeong, Yun-Mi; Kang, Sangjin; Koo, Tae-Sung; Park, So-Hyun; Park, Ki-Young; Sung, Young-Kwan; Sung, Jong-Hyuk

    2015-02-19

    Keratinocyte stem/progenitor cells (KSCs) reside in the bulge region of the hair follicles and may be involved in hair growth. Hair follicle dermal papilla cells (HFDPCs) and outer root sheath (ORS) cells were treated with conditioned medium (CM) of KSCs. Moreover, the effects of KSC-CM on hair growth were examined ex vivo and in vivo. A human growth factor chip array and RT-PCR were employed to identify enriched proteins in KSC-CM as compared with CM from keratinocytes. KSC-CM significantly increased the proliferation of HFDPCs and ORS cells, and increased the S-phase of the cell cycle in HFDPCs. KSC-CM led to the phosphorylation of ATK and ERK1/2 in both cell types. After subcutaneous injection of KSC-CM in C3H/HeN mice, a significant increase in hair growth and increased proliferation of hair matrix keratinocytes ex vivo was observed. We identified six proteins enriched in KSC-CM (amphiregulin, insulin-like growth factor binding protein-2, insulin-like growth factor binding protein-5, granulocyte macrophage-colony stimulating factor, Platelet-derived growth factor-AA, and vascular endothelial growth factor). A growth-factor cocktail that contains these six recombinant growth factors significantly increased the proliferation of HFDPCs and ORS cells and enhanced the hair growth of mouse models. These results collectively indicate that KSC-CM has the potential to increase hair growth via the proliferative capacity of HFDPCs and ORS cells.

  3. Growth phenology of coast Douglas-fir seed sources planted in diverse environments.

    PubMed

    Gould, Peter J; Harrington, Constance A; St Clair, J Bradley

    2012-12-01

    The timing of periodic life cycle events in plants (phenology) is an important factor determining how species and populations will react to climate change. We evaluated annual patterns of basal-area and height growth of coast Douglas-fir (Pseudotusga menziesii var. menziesii (Mirb.) Franco) seedlings from four seed sources that were planted in four diverse environments as part of the Douglas-fir Seed-Source Movement Trial. Stem diameters and heights were measured periodically during the 2010 growing season on 16 open-pollinated families at each study installation. Stem diameters were measured on a subset of trees with electronic dendrometers during the 2010 and 2011 growing seasons. Trees from the four seed sources differed in phenology metrics that described the timing of basal-area and height-growth initiation, growth cessation and growth rates. Differences in the height-growth metrics were generally larger than differences in the basal-area growth metrics and differences among installations were larger than differences among seed sources, highlighting the importance of environmental signals on growth phenology. Variations in the height- and basal-area growth metrics were correlated with different aspects of the seed-source environments: precipitation in the case of height growth and minimum temperature in the case of basal-area growth. The detailed dendrometer measurements revealed differences in growth patterns between seed sources during distinct periods in the growing season. Our results indicate that multiple aspects of growth phenology should be considered along with other traits when evaluating adaptation of populations to future climates.

  4. Feeding Practices and Infant Growth: Quantifying the Effects of Breastfeeding Termination and Complementary Food Introduction on BMI z-Score Growth Velocity through Growth Curve Models.

    PubMed

    Horodynski, Mildred A; Pierce, Steven J; Reyes-Gastelum, David; Olson, Beth; Shattuck, Mackenzie

    2017-12-01

    Infant feeding practices are a focus of early obesity prevention. We tested whether infant growth velocity increased after breastfeeding termination and complementary food introduction. Our secondary analysis included a sample of 547 mother-infant dyads from a longitudinal randomized controlled trial conducted in Michigan and Colorado. Infant anthropometrics at birth, baseline, and 6- and 12-month follow-up were standardized to BMI-for-age z-score (ZBMI) according to World Health Organization (WHO) growth charts. We used growth curve models with time-varying predictors to quantify effects of breastfeeding termination and timing of complementary food introduction on growth velocity. Median breastfeeding duration was 2.0 months [confidence interval (CI) = 2.0-2.5]; median introduction of complementary foods occurred at 3.0 months (CI = 2.8-3.2). Breastfed infants not yet introduced to complementary foods had an average ZBMI growth velocity of 0.050 (CI = -0.013 to 0.113) z-score units per month [zpm], not significantly faster than WHO growth trajectory (p = 0.118) defined as 0 zpm. Breastfeeding termination had negligible effect on ZBMI growth velocity (γ 11  = 0.001, CI = -0.027 to 0.030, p = 0.927). Introduction of complementary foods increased ZBMI growth velocity relative to an average child in the sample, but not significantly (γ 12  = 0.033, CI = -0.034 to 0.100, p = 0.334). Growth velocities for infants receiving complementary foods both before and after breastfeeding termination were significantly faster than the WHO growth trajectory (0.083 zpm, CI = 0.052-0.114, and 0.084 zpm, CI = 0.064-0.105, respectively, p's < 0.001). Average postcomplementary food introduction growth velocity was significantly higher than WHO growth trajectory, but did not differ from the sample's initial average trajectory. Growth curve models can accurately estimate effects of feeding practices on infant growth to direct obesity prevention efforts.

  5. Conceptual basis for prescriptive growth standards from conception to early childhood: present and future.

    PubMed

    Uauy, R; Casanello, P; Krause, B; Kuzanovic, J P; Corvalan, C

    2013-09-01

    Healthy growth in utero and after birth is fundamental for lifelong health and wellbeing. The World Health Organization (WHO) recently published standards for healthy growth from birth to 6 years of age; analogous standards for healthy fetal growth are not currently available. Current fetal growth charts in use are not true standards, since they are based on cross-sectional measurements of attained size under conditions that do not accurately reflect normal growth. In most cases, the pregnant populations and environments studied are far from ideal; thus the data are unlikely to reflect optimal fetal growth. A true standard should reflect how fetuses and newborns 'should' grow under ideal environmental conditions. The development of prescriptive intrauterine and newborn growth standards derived from the INTERGROWTH-21(st) Project provides the data that will allow us for the first time to establish what is 'normal' fetal growth. The INTERGROWTH-21(st) study centres provide the data set obtained under pre-established standardised criteria, and details of the methods used are also published. Multicentre study with sites in all major geographical regions of the world using a standard evaluation protocol. These standards will assess risk of abnormal size at birth and serve to evaluate potentially effective interventions to promote optimal growth beyond securing survival. The new normative standards have the potential to impact perinatal and neonatal survival and beyond, particularly in developing countries where fetal growth restriction is most prevalent. They will help us identify intrauterine growth restriction at earlier stages of development, when preventive or corrective strategies might be more effective than at present. These growth standards will take us one step closer to effective action in preventing and potentially reversing abnormal intrauterine growth. Achieving 'optimal' fetal growth requires that we act not only during pregnancy but that we optimize the maternal uterine environment from the time before conception, through embryonic development until fetal growth is complete. The remaining challenge is how 'early' will we be able to act, now that we can better monitor fetal growth. © 2013 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2013 RCOG.

  6. Weight, Length, and Body Mass Index Growth of Children Under 2 Years of Age With Cleft Lip and Palate.

    PubMed

    Miranda, Gabriela Serrano; Marques, Ilza Lazarini; de Barros, Suely Prietto; Arena, Eliane Petean; de Souza, Luiz

    2016-05-01

    To study the growth of length-for-age (L/A), weight-for-age (W/A), and body mass index (BMI) of children with cleft lip and palate receiving a normal diet; to establish specific growth curves for children with cleft palate with or without cleft lip (CLP/ICP) who had not undergone palatoplasty and for children with isolated cleft lip (ICL); and to assess if CLP/ICP growth differed from ICL growth and if CLP/ICP and ICL growth differed from growth for typical children. Prospective and cross-sectional study. Hospital for Rehabilitation of Craniofacial Anomalies, Bauru, São Paulo, Brazil. Weight and length of 381 children with cleft lip and palate and who were younger than 2 years were recorded and used to calculate W/A, L/A, and BMI growth curves. The 2006 World Health Organization growth charts were used as a reference for typical children. All children received a normal diet for age. Children with CLP/ICP had median W/A and BMI growth curves below growth curves for typical children but showed spontaneous recovery starting at approximately 5 months of age, even with nonoperated cleft palate. Children with ICL had growth similar to that of typical children. Children with CLP/ICP, who initially had W/A and BMI values less than those of the ICL group, had W/A and BMI equal to or higher than the ICL group after 9 months of age. Children with CLP/ICP had impaired W/A and BMI growth with spontaneous recovery starting early in childhood. This study established specific W/A, BMI, and L/A growth curves for children with cleft lip and palate.

  7. Growth patterns and life-history strategies in Placodontia (Diapsida: Sauropterygia)

    PubMed Central

    Klein, Nicole; Neenan, James M.; Scheyer, Torsten M.; Griebeler, Eva Maria

    2015-01-01

    Placodontia is a clade of durophagous, near shore marine reptiles from Triassic sediments of modern-day Europe, Middle East and China. Although much is known about their primary anatomy and palaeoecology, relatively little has been published regarding their life history, i.e. ageing, maturation and growth. Here, growth records derived from long bone histological data of placodont individuals are described and modelled to assess placodont growth and life-history strategies. Growth modelling methods are used to confirm traits documented in the growth record (age at onset of sexual maturity, age when asymptotic length was achieved, age at death, maximum longevity) and also to estimate undocumented traits. Based on these growth models, generalized estimates of these traits are established for each taxon. Overall differences in bone tissue types and resulting growth curves indicate different growth patterns and life-history strategies between different taxa of Placodontia. Psephoderma and Paraplacodus grew with lamellar-zonal bone tissue type and show growth patterns as seen in modern reptiles. Placodontia indet. aff. Cyamodus and some Placodontia indet. show a unique combination of fibrolamellar bone tissue regularly stratified by growth marks, a pattern absent in modern sauropsids. The bone tissue type of Placodontia indet. aff. Cyamodus and Placodontia indet. indicates a significantly increased basal metabolic rate when compared with modern reptiles. Double lines of arrested growth, non-annual rest lines in annuli, and subcycles that stratify zones suggest high dependence of placodont growth on endogenous and exogenous factors. Histological and modelled differences within taxa point to high individual developmental plasticity but sexual dimorphism in growth patterns and the presence of different taxa in the sample cannot be ruled out. PMID:26587259

  8. Precise, High-throughput Analysis of Bacterial Growth.

    PubMed

    Kurokawa, Masaomi; Ying, Bei-Wen

    2017-09-19

    Bacterial growth is a central concept in the development of modern microbial physiology, as well as in the investigation of cellular dynamics at the systems level. Recent studies have reported correlations between bacterial growth and genome-wide events, such as genome reduction and transcriptome reorganization. Correctly analyzing bacterial growth is crucial for understanding the growth-dependent coordination of gene functions and cellular components. Accordingly, the precise quantitative evaluation of bacterial growth in a high-throughput manner is required. Emerging technological developments offer new experimental tools that allow updates of the methods used for studying bacterial growth. The protocol introduced here employs a microplate reader with a highly optimized experimental procedure for the reproducible and precise evaluation of bacterial growth. This protocol was used to evaluate the growth of several previously described Escherichia coli strains. The main steps of the protocol are as follows: the preparation of a large number of cell stocks in small vials for repeated tests with reproducible results, the use of 96-well plates for high-throughput growth evaluation, and the manual calculation of two major parameters (i.e., maximal growth rate and population density) representing the growth dynamics. In comparison to the traditional colony-forming unit (CFU) assay, which counts the cells that are cultured in glass tubes over time on agar plates, the present method is more efficient and provides more detailed temporal records of growth changes, but has a stricter detection limit at low population densities. In summary, the described method is advantageous for the precise and reproducible high-throughput analysis of bacterial growth, which can be used to draw conceptual conclusions or to make theoretical observations.

  9. ACR Appropriateness Criteria® growth disturbances - risk of intrauterine growth restriction.

    PubMed

    Zelop, Carolyn M; Javitt, Marcia C; Glanc, Phyllis; Dubinsky, Theodore; Harisinghani, Mukesh G; Harris, Robert D; Khati, Nadia J; Mitchell, Donald G; Pandharipande, Pari V; Pannu, Harpreet K; Podrasky, Ann E; Shipp, Thomas D; Siegel, Cary Lynn; Simpson, Lynn; Wall, Darci J; Wong-You-Cheong, Jade J

    2013-09-01

    Fetal growth disturbances include fetuses at risk for intrauterine growth restriction. These fetuses may have an estimated fetal weight at less than the 10% or demonstrate a plateau of fetal growth with an estimated fetal growth greater than the 10%. Uteroplacental insufficiency may play a major role in the etiology of intrauterine growth restriction. Fetuses at risk for intrauterine fetal growth restriction are susceptible to the potential hostility of the intrauterine environment leading to fetal hypoxia and fetal acidosis. Fetal well-being can be assessed using biophysical profile, Doppler velocimetry, fetal heart rate monitoring, and fetal movement counting.Fetal growth disturbances include fetuses at risk for intrauterine growth restriction. These fetuses may have an estimated fetal weight at less than the 10% or demonstrate a plateau of fetal growth with an estimated fetal growth greater than the 10%. Uteroplacental insufficiency may play a major role in the etiology of intrauterine growth restriction. Fetuses at risk for intrauterine fetal growth restriction are susceptible to the potential hostility of the intrauterine environment leading to fetal hypoxia and fetal acidosis. Fetal well-being can be assessed using biophysical profile, Doppler velocimetry, fetal heart rate monitoring, and fetal movement counting.The ACR Appropriateness Criteria® are evidence-based guidelines for specific clinical conditions that are reviewed every two years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer reviewed journals and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances where evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment.

  10. IV. Growth Failure in Institutionalized Children

    PubMed Central

    Johnson, Dana E.; Gunnar, Megan R.

    2013-01-01

    Children within institutional care settings experience significant global growth suppression, which is more profound in children with a higher baseline risk of growth impairment (e.g., low birth weight [LBW] infants and children exposed to alcohol in utero). Nutritional insufficiencies as well as suppression of the growth hormone–insulin-like growth factor axis (GH-IGF-1) caused by social deprivation likely both contribute to the etiology of psychosocial growth failure within these settings. Their relative importance and the consequent clinical presentations probably relate to the age of the child. While catch-up growth in height and weight are rapid when children are placed in a more nurturing environment, many factors, particularly early progression through puberty, compromise final height. Potential for growth recovery is greatest in younger children and within more nurturing environments where catch-up in height and weight is positively correlated with caregiver sensitivity and positive regard. Growth recovery has wider implications for child well-being than size alone, because catch-up in height is a positive predictor of cognitive recovery as well. Even with growth recovery, persistent abnormalities of the hypothalamic-pituitary-adrenal system or the exacerbation of micronutrient deficiencies associated with robust catch-up growth during critical periods of development could potentially influence or be responsible for the cognitive, behavioral, and emotional sequelae of early childhood deprivation. Findings in growth-restricted infants and those children with psychosocial growth are similar, suggesting that children experiencing growth restriction within institutional settings may also share the risk of developing the metabolic syndrome in adulthood (obesity, Type 2 diabetes mellitus, hypertension, heart disease). Psychosocial deprivation within any care-giving environment during early life must be viewed with as much concern as any severely debilitating childhood disease. PMID:25364058

  11. Rearing Mozambique tilapia in tidally-changing salinities: Effects on growth and the growth hormone/insulin-like growth factor I axis.

    PubMed

    Moorman, Benjamin P; Yamaguchi, Yoko; Lerner, Darren T; Grau, E Gordon; Seale, Andre P

    2016-08-01

    The growth hormone (GH)/insulin-like growth factor (IGF) axis plays a central role in the regulation of growth in teleosts and has been shown to be affected by acclimation salinity. This study was aimed at characterizing the effects of rearing tilapia, Oreochromis mossambicus, in a tidally-changing salinity on the GH/IGF axis and growth. Tilapia were raised in fresh water (FW), seawater (SW), or in a tidally-changing environment, in which salinity is switched between FW (TF) and SW (TS) every 6h, for 4months. Growth was measured over all time points recorded and fish reared in a tidally-changing environment grew significantly faster than other groups. The levels of circulating growth hormone (GH), insulin-like growth factor I (IGF-I), pituitary GH mRNA, gene expression of IGF-I, IGF-II, and growth hormone receptor 2 (GHR) in the muscle and liver were also determined. Plasma IGF-I was higher in FW and TS than in SW and TF tilapia. Pituitary GH mRNA was higher in TF and TS than in FW and SW tilapia. Gene expression of IGF-I in the liver and of GHR in both the muscle and liver changed between TF and TS fish. Fish growth was positively correlated with GH mRNA expression in the pituitary, and GHR mRNA expression in muscle and liver tissues. Our study indicates that rearing fish under tidally-changing salinities elicits a distinct pattern of endocrine regulation from that observed in fish reared in steady-state conditions, and may provide a new approach to increase tilapia growth rate and study the regulation of growth in euryhaline fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Implications of evolutionary engineering for growth and recombinant protein production in methanol-based growth media in the yeast Pichia pastoris.

    PubMed

    Moser, Josef W; Prielhofer, Roland; Gerner, Samuel M; Graf, Alexandra B; Wilson, Iain B H; Mattanovich, Diethard; Dragosits, Martin

    2017-03-17

    Pichia pastoris is a widely used eukaryotic expression host for recombinant protein production. Adaptive laboratory evolution (ALE) has been applied in a wide range of studies in order to improve strains for biotechnological purposes. In this context, the impact of long-term carbon source adaptation in P. pastoris has not been addressed so far. Thus, we performed a pilot experiment in order to analyze the applicability and potential benefits of ALE towards improved growth and recombinant protein production in P. pastoris. Adaptation towards growth on methanol was performed in replicate cultures in rich and minimal growth medium for 250 generations. Increased growth rates on these growth media were observed at the population and single clone level. Evolved populations showed various degrees of growth advantages and trade-offs in non-evolutionary growth conditions. Genome resequencing revealed a wide variety of potential genetic targets associated with improved growth performance on methanol-based growth media. Alcohol oxidase represented a mutational hotspot since four out of seven evolved P. pastoris clones harbored mutations in this gene, resulting in decreased Aox activity, despite increased growth rates. Selected clones displayed strain-dependent variations for AOX-promoter based recombinant protein expression yield. One particularly interesting clone showed increased product titers ranging from a 2.5-fold increase in shake flask batch culture to a 1.8-fold increase during fed batch cultivation. Our data indicate a complex correlation of carbon source, growth context and recombinant protein production. While similar experiments have already shown their potential in other biotechnological areas where microbes were evolutionary engineered for improved stress resistance and growth, the current dataset encourages the analysis of the potential of ALE for improved protein production in P. pastoris on a broader scale.

  13. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN-depleted head and neck cancer tumor cells.

    PubMed

    Liu, Zhiyong; Hartman, Yolanda E; Warram, Jason M; Knowles, Joseph A; Sweeny, Larissa; Zhou, Tong; Rosenthal, Eben L

    2011-08-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma-mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer, there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here, we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were cocultured with fibroblasts or inoculated with fibroblasts into severe combined immunodeficient mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Coculture experiments showed fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN-silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN-silenced cells compared with control vector-transfected cells, whereas inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast coculture, suggesting the importance of FGFR2 signaling in fibroblast-mediated tumor growth. Analysis of xenografted tumors revealed that EMMPRIN-silenced tumors had a larger stromal compartment compared with control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast-independent tumor growth.

  14. Physical growth of the shuar: Height, Weight, and BMI references for an indigenous amazonian population.

    PubMed

    Urlacher, Samuel S; Blackwell, Aaron D; Liebert, Melissa A; Madimenos, Felicia C; Cepon-Robins, Tara J; Gildner, Theresa E; Snodgrass, J Josh; Sugiyama, Lawrence S

    2016-01-01

    Information concerning physical growth among small-scale populations remains limited, yet such data are critical to local health efforts and to foster basic understandings of human life history and variation in childhood development. Using a large dataset and robust modeling methods, this study aims to describe growth from birth to adulthood among the indigenous Shuar of Amazonian Ecuador. Mixed-longitudinal measures of height, weight, and body mass index (BMI) were collected from Shuar participants (n = 2,463; age: 0-29 years). Centile growth curves and tables were created for each anthropometric variable of interest using Generalized Additive Models for Location, Scale, and Shape (GAMLSS). Pseudo-velocity and Lambda-Mu-Sigma curves were generated to further investigate Shuar patterns of growth and to facilitate comparison with United States Center for Disease Control and Prevention and multinational World Health Organization growth references. The Shuar are small throughout life and exhibit complex patterns of growth that differ substantially from those of international references. Similar to other Amazonians, Shuar growth in weight compares more favorably to references than growth in height, resulting in BMI curves that approximate international medians. Several additional characteristics of Shuar development are noteworthy, including large observed variation in body size early in life, significant infant growth faltering, extended male growth into adulthood, and a markedly early female pubertal growth spurt in height. Phenotypic plasticity and genetic selection in response to local environmental factors may explain many of these patterns. Providing a detailed reference of growth for the Shuar and other Amazonian populations, this study possesses direct clinical application and affords valuable insight into childhood health and the ecology of human growth. © 2015 Wiley Periodicals, Inc.

  15. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN depleted head and neck cancer tumor cells

    PubMed Central

    Liu, Zhiyong; Hartman, Yolanda E.; Warram, Jason M.; Knowles, Joseph A.; Sweeny, Larrisa; Zhou, Tong; Rosenthal, Eben L.

    2011-01-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were co-cultured with fibroblasts or inoculated with fibroblasts into SCID mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Co-culture experiments demonstrated fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN silenced cells compared to control vector transfected cells, while inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast co-culture, suggesting the importance of FGFR2 signaling in fibroblast mediated tumor growth. Analysis of xenografted tumors revealed EMMPRIN silenced tumors had a larger stromal compartment compared to control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast independent tumor growth. PMID:21665938

  16. Low-Temperature and Rapid Growth of Large Single-Crystalline Graphene with Ethane.

    PubMed

    Sun, Xiao; Lin, Li; Sun, Luzhao; Zhang, Jincan; Rui, Dingran; Li, Jiayu; Wang, Mingzhan; Tan, Congwei; Kang, Ning; Wei, Di; Xu, H Q; Peng, Hailin; Liu, Zhongfan

    2018-01-01

    Future applications of graphene rely highly on the production of large-area high-quality graphene, especially large single-crystalline graphene, due to the reduction of defects caused by grain boundaries. However, current large single-crystalline graphene growing methodologies are suffering from low growth rate and as a result, industrial graphene production is always confronted by high energy consumption, which is primarily caused by high growth temperature and long growth time. Herein, a new growth condition achieved via ethane being the carbon feedstock to achieve low-temperature yet rapid growth of large single-crystalline graphene is reported. Ethane condition gives a growth rate about four times faster than methane, achieving about 420 µm min -1 for the growth of sub-centimeter graphene single crystals at temperature about 1000 °C. In addition, the temperature threshold to obtain graphene using ethane can be reduced to 750 °C, lower than the general growth temperature threshold (about 1000 °C) with methane on copper foil. Meanwhile ethane always keeps higher graphene growth rate than methane under the same growth temperature. This study demonstrates that ethane is indeed a potential carbon source for efficient growth of large single-crystalline graphene, thus paves the way for graphene in high-end electronical and optoelectronical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Calcite growth-rate inhibition by fulvic acid and magnesium ion—Possible influence on biogenic calcite formation

    NASA Astrophysics Data System (ADS)

    Reddy, Michael M.

    2012-08-01

    Increases in ocean surface water dissolved carbon dioxide (CO2) concentrations retard biocalcification by reducing calcite supersaturation (Ωc). Reduced calcification rates may influence growth-rate dependent magnesium ion (Mg) incorporation into biogenic calcite modifying the use of calcifying organisms as paleoclimate proxies. Fulvic acid (FA) at biocalcification sites may further reduce calcification rates. Calcite growth-rate inhibition by FA and Mg, two common constituents of seawater and soil water involved in the formation of biogenic calcite, was measured separately and in combination under identical, highly reproducible experimental conditions. Calcite growth rates (pH=8.5 and Ωc=4.5) are reduced by FA (0.5 mg/L) to 47% and by Mg (10-4 M) to 38%, compared to control experiments containing no added growth-rate inhibitor. Humic acid (HA) is twice as effective a calcite growth-rate inhibitor as FA. Calcite growth rate in the presence of both FA (0.5 mg/L) and Mg (10-4 M) is reduced to 5% of the control rate. Mg inhibits calcite growth rates by substitution for calcium ion at the growth site. In contrast, FA inhibits calcite growth rates by binding multiple carboxylate groups on the calcite surface. FA and Mg together have an increased affinity for the calcite growth sites reducing calcite growth rates.

  18. The neurite growth inhibitory effects of soluble TNFα on developing sympathetic neurons are dependent on developmental age.

    PubMed

    Nolan, Aoife M; Collins, Louise M; Wyatt, Sean L; Gutierrez, Humberto; O'Keeffe, Gerard W

    2014-01-01

    During development, the growth of neural processes is regulated by an array of cellular and molecular mechanisms which influence growth rate, direction and branching. Recently, many members of the TNF superfamily have been shown to be key regulators of neurite growth during development. The founder member of this family, TNFα can both promote and inhibit neurite growth depending on the cellular context. Specifically, transmembrane TNFα promotes neurite growth, while soluble TNFα inhibits it. While the growth promoting effects of TNFα are restricted to a defined developmental window of early postnatal development, whether the growth inhibitory effects of soluble TNFα occur throughout development is unknown. In this study we used the extensively studied, well characterised neurons of the superior cervical ganglion to show that the growth inhibitory effects of soluble TNFα are restricted to a specific period of late embryonic and early postnatal development. Furthermore, we show that this growth inhibitory effect of soluble TNFα requires NF-κB signalling at all developmental stages at which soluble TNFα inhibits neurite growth. These findings raise the possibility that increases in the amount of soluble TNFα in vivo, for example as a result of maternal inflammation, could negatively affect neurite growth in developing neurons at specific stages of development. Copyright © 2015 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  19. Calcite growth-rate inhibition by fulvic acid and magnesium ion—Possible influence on biogenic calcite formation

    USGS Publications Warehouse

    Reddy, Michael M.

    2012-01-01

    Increases in ocean surface water dissolved carbon dioxide (CO2) concentrations retard biocalcification by reducing calcite supersaturation (Ωc). Reduced calcification rates may influence growth-rate dependent magnesium ion (Mg) incorporation into biogenic calcite modifying the use of calcifying organisms as paleoclimate proxies. Fulvic acid (FA) at biocalcification sites may further reduce calcification rates. Calcite growth-rate inhibition by FA and Mg, two common constituents of seawater and soil water involved in the formation of biogenic calcite, was measured separately and in combination under identical, highly reproducible experimental conditions. Calcite growth rates (pH=8.5 and Ωc=4.5) are reduced by FA (0.5 mg/L) to 47% and by Mg (10−4 M) to 38%, compared to control experiments containing no added growth-rate inhibitor. Humic acid (HA) is twice as effective a calcite growth-rate inhibitor as FA. Calcite growth rate in the presence of both FA (0.5 mg/L) and Mg (10−4 M) is reduced to 5% of the control rate. Mg inhibits calcite growth rates by substitution for calcium ion at the growth site. In contrast, FA inhibits calcite growth rates by binding multiple carboxylate groups on the calcite surface. FA and Mg together have an increased affinity for the calcite growth sites reducing calcite growth rates.

  20. Insulin-like growth factor 1: common mediator of multiple enterotrophic hormones and growth factors.

    PubMed

    Bortvedt, Sarah F; Lund, P Kay

    2012-03-01

    To summarize the recent evidence that insulin-like growth factor 1 (IGF1) mediates growth effects of multiple trophic factors and discuss clinical relevance. Recent reviews and original reports indicate benefits of growth hormone (GH) and long-acting glucagon-like peptide 2 (GLP2) analogs in short bowel syndrome and Crohn's disease. This review highlights the evidence that biomarkers of sustained small intestinal growth or mucosal healing and evaluation of intestinal epithelial stem cell biomarkers may improve clinical measures of intestinal growth or response to trophic hormones. Compelling evidence that IGF1 mediates growth effects of GH and GLP2 on intestine or linear growth in preclinical models of resection or Crohn's disease is presented, along with a concept that these hormones or IGF1 may enhance sustained growth if given early after bowel resection. Evidence that suppressor of cytokine signaling protein induction by GH or GLP2 in normal or inflamed intestine may limit IGF1-induced growth, but protect against risk of dysplasia or fibrosis, is reviewed. Whether IGF1 receptor mediates IGF1 action and potential roles of insulin receptors are addressed. IGF1 has a central role in mediating trophic hormone action in small intestine. Better understanding of benefits and risks of IGF1, receptors that mediate IGF1 action, and factors that limit undesirable growth are needed.

  1. Do parents understand growth charts? A national, Internet-based survey.

    PubMed

    Ben-Joseph, Elana Pearl; Dowshen, Steven A; Izenberg, Neil

    2009-10-01

    The objective of this study was to assess parental knowledge and understanding of growth charts. An online survey was conducted with 1000 parents selected to be demographically representative of the US population. Questions explored awareness of, knowledge of, and attitudes toward growth monitoring, as well as the ability to interpret growth chart data. Seventy-nine percent of parents surveyed claimed to have seen a growth chart before, with the majority thinking that they understood it well. Sixty-four percent of parents thought it was important to be shown growth charts to see how their child was growing, and 40% expressed the need to see their child's growth chart as confirmation of their health care provider's verbal interpretation. However, when provided with multiple-choice questions and answers, only 64% could identify a child's weight when shown a plotted point on a growth chart. Ninety-six percent had heard of the term "percentile," but only 68% identified the percentile of the plotted point, and only 56% could identify the definition of percentile. Up to 77% interpreted incorrectly charts containing height/weight measurements in tandem. Although growth charts are used frequently as visual aids to educate parents about their children's growth, many parents cannot comprehend the data. This finding is significant because many parents prefer to be shown growth charts by their health care provider, and many parents report recording their children's measurements on growth charts at home.

  2. Flower Power: Sunflowers as a Model for Logistic Growth

    ERIC Educational Resources Information Center

    Fernandez, Eileen; Geist, Kristi A.

    2011-01-01

    Logistic growth displays an interesting pattern: It starts fast, exhibiting the rapid growth characteristic of exponential models. As time passes, it slows in response to constraints such as limited resources or reallocation of energy. The growth continues to slow until it reaches a limit, called capacity. When the growth describes a population,…

  3. Dynamic model for predicting growth of salmonella spp. in ground sterile pork

    USDA-ARS?s Scientific Manuscript database

    Predictive model for Salmonella spp. growth in ground pork was developed and validated using kinetic growth data. Salmonella spp. kinetic growth data in ground pork was collected at several isothermal conditions (between 10 and 45C) and Baranyi model was fitted to describe the growth at each temper...

  4. Compound equation developed for postnatal growth of birds and mammals

    NASA Technical Reports Server (NTRS)

    Laird, A. K.

    1968-01-01

    Compound growth equation was developed in which the rate of this linear growth process is regarded as proportional to the mass already attained at any instant by an underlying Gompertz process. This compound growth model was fitted to the growth data of a variety of birds and mammals of both sexes.

  5. Growth

    Treesearch

    John R. Jones; George A. Schier

    1985-01-01

    This chapter considers aspen growth as a process, and discusses some characteristics of the growth and development of trees and stands. For the most part, factors affecting growth are discussed elsewhere, particularly in the GENETICS AND VARIATION chapter and in chapters in PART 11. ECOLOGY. Aspen growth as it relates to wood production is examined in the WOOD RESOURCE...

  6. The big tent of growth management: smart growth as a movement

    Treesearch

    Edward G. Goetz

    2005-01-01

    Growth management policies in the U.S. have failed to gain significant political support in many regions, limiting efforts to manage development patterns and protect natural resources. The Smart Growth movement has brought new voices into the debate over growth management and has provided a "big tent" under which transportation groups, environmentalists,...

  7. Fuzzy Set Classification of Old-Growth Southern Pine

    Treesearch

    Don C. Bragg

    2002-01-01

    I propose the development of a fuzzy set ordination (FSO) approach to old-growth classification of southern pines. A fuzzy systems approach differs from traditional old-growth classification in that it does not require a "crisp" classification where a stand is either "old-growth" or "not old-growth", but allows for fractional membership...

  8. Bayesian Inference and Application of Robust Growth Curve Models Using Student's "t" Distribution

    ERIC Educational Resources Information Center

    Zhang, Zhiyong; Lai, Keke; Lu, Zhenqiu; Tong, Xin

    2013-01-01

    Despite the widespread popularity of growth curve analysis, few studies have investigated robust growth curve models. In this article, the "t" distribution is applied to model heavy-tailed data and contaminated normal data with outliers for growth curve analysis. The derived robust growth curve models are estimated through Bayesian…

  9. A Gestalt Point of View on Facilitating Growth in Counseling

    ERIC Educational Resources Information Center

    Harman, Robert L.

    1975-01-01

    If counselors are to be facilitators of client growth, it would seem essentail that they become familiar with the concept of growth and ways to facilitate it. The author defines growth from a gestalt therapy point of view and provides techniques and examples of ways to facilitate client growth. (Author)

  10. Slow Growth and Urban Sprawl: Support for a New Regional Agenda?

    ERIC Educational Resources Information Center

    Gainsborough, Juliet F.

    2002-01-01

    Assessed the possibilities for coalition building around growth related concerns, exploring support for slowing growth in New York City and Los Angeles. Analyzed data from surveys of urban and suburban dwellers regarding support for growth control measures. Suburbanites were much more receptive to slow growth policies than were urbanites, though…

  11. Influence of competition and age on tree growth in structurally complex old-growth forests in northern Minnesota, USA

    Treesearch

    Tuomas Aakala; Shawn Fraver; Anthony W. D' Amato; Brian J. Palik

    2013-01-01

    Factors influencing tree growth in structurally complex forests remain poorly understood. Here we assessed the influence of competition on Pinus resinosa (n = 224) and Pinus strobus (n = 90) growth in four old-growth stands in Minnesota, using mixed effects models. A subset of trees, with...

  12. Roles of STEF/Tiam1, guanine nucleotide exchange factors for Rac1, in regulation of growth cone morphology.

    PubMed

    Matsuo, Naoki; Terao, Mami; Nabeshima, Yo-ichi; Hoshino, Mikio

    2003-09-01

    Rho family GTPases are suggested to be pivotal for growth cone behavior, but regulation of their activities in response to environmental cues remains elusive. Here, we describe roles of STEF and Tiam1, guanine nucleotide exchange factors for Rac1, in neurite growth and growth cone remodeling. We reveal that, in primary hippocampal neurons, STEF/Tiam1 are localized within growth cones and essential for formation of growth cone lamellipodia, eventually contributing to neurite growth. Furthermore, experiments using a dominant-negative form demonstrate that STEF/Tiam1 mediate extracellular laminin signals to activate Rac1, promoting neurite growth in N1E-115 neuroblastoma cells. STEF/Tiam1 are revealed to mediate Cdc42 signal to activate Rac1 during lamellipodial formation. We also show that RhoA inhibits the STEF/Tiam1-Rac1 pathway. These data are used to propose a model that extracellular and intracellular information is integrated by STEF/Tiam1 to modulate the balance of Rho GTPase activities in the growth cone and, consequently, to control growth cone behavior.

  13. Substrate-mediated diffusion-induced growth of single-crystal nanowires.

    PubMed

    Mohammad, S Noor

    2009-11-28

    Theoretical investigations of the growth and growth rates of single-crystal nanowires (NWs) by vapor phase mechanisms have been carried out. Substrate-induced processes are assumed to dominate this growth. The modeling for growth takes adsorption, desorption, surface scattering, and diffusion into account. It takes into consideration also the retarding electric field arising from the scattering of the NW vapor species by both the substrate and the NW sidewalls. Growth characteristics under the influence of the retarding electric field have been studied. Competitive roles of adatom diffusivity and the electric field in the NW growth are elucidated. Influence of the growing NW length and the adatom impingement rate on the NW growth rate has been described. The effect of adatom collection area around each NW has been examined. The NW tapering and kinking have been explained. The fundamentals of the substrate induction and details of the growth parameters have been analyzed. The influence of foreign element catalytic agents in the vapor-liquid-solid mechanism has been presented. All these have led to the understanding and resolution of problems, controversies, and contradictions involving substrate-induced NW growths.

  14. Temporal expression of growth factors triggered by epiregulin regulates inflammation development.

    PubMed

    Harada, Masaya; Kamimura, Daisuke; Arima, Yasunobu; Kohsaka, Hitoshi; Nakatsuji, Yuji; Nishida, Makoto; Atsumi, Toru; Meng, Jie; Bando, Hidenori; Singh, Rajeev; Sabharwal, Lavannya; Jiang, Jing-Jing; Kumai, Noriko; Miyasaka, Nobuyuki; Sakoda, Saburo; Yamauchi-Takihara, Keiko; Ogura, Hideki; Hirano, Toshio; Murakami, Masaaki

    2015-02-01

    In this study, we investigated the relationship between several growth factors and inflammation development. Serum concentrations of epiregulin, amphiregulin, betacellulin, TGF-α, fibroblast growth factor 2, placental growth factor (PLGF), and tenascin C were increased in rheumatoid arthritis patients. Furthermore, local blockades of these growth factors suppressed the development of cytokine-induced arthritis in mice by inhibiting chemokine and IL-6 expressions. We found that epiregulin expression was early and followed by the induction of other growth factors at different sites of the joints. The same growth factors then regulated the expression of epiregulin at later time points of the arthritis. These growth factors were increased in patients suffering from multiple sclerosis (MS) and also played a role in the development of an MS model, experimental autoimmune encephalomyelitis. The results suggest that the temporal expression of growth factors is involved in the inflammation development seen in several diseases, including rheumatoid arthritis and MS. Therefore, various growth factor pathways might be good therapeutic targets for various inflammatory diseases. Copyright © 2015 by The American Association of Immunologists, Inc.

  15. Applying the Growth Failure in CKD Consensus Conference: evaluation and treatment algorithm in children with chronic kidney disease.

    PubMed

    Mahan, John D

    2006-07-01

    Growth failure is a common and significant clinical problem for children with chronic kidney disease (CKD), particularly those with chronic renal insufficiency (CRI). Children with CRI (typically defined by a glomerular filtration rate [GFR] <75 mL/min/1.73 m2) who have growth impairment exhibit a variety of medical and psychological problems in addition to increased mortality. Growth failure in children with CKD is usually multifactorial in etiology, including abnormalities in the growth hormone (GH)-insulin-like growth factor (IGF)-I axis and a variety of nutritional and metabolic concerns characteristic of CKD. Proper management of these factors contributes to better growth in affected children. Although the safety and efficacy of recombinant human GH (rhGH) therapy in promoting growth in children with CKD are well established, recent data indicate that the use of rhGH administration in children with CKD and growth failure remains low. Recently, guidelines were developed by the Consensus Conference for Evaluation and Treatment of Growth Failure in Children with CKD. This paper focuses on the application of these guidelines to children with CKD.

  16. Growth rates of fine aerosol particles at a site near Beijing in June 2013

    NASA Astrophysics Data System (ADS)

    Zhao, Chuanfeng; Li, Yanan; Zhang, Fang; Sun, Yele; Wang, Pucai

    2018-02-01

    Growth of fine aerosol particles is investigated during the Aerosol-CCN-Cloud Closure Experiment campaign in June 2013 at an urban site near Beijing. Analyses show a high frequency (˜ 50%) of fine aerosol particle growth events, and show that the growth rates range from 2.1 to 6.5 nm h-1 with a mean value of ˜ 5.1 nm h-1. A review of previous studies indicates that at least four mechanisms can affect the growth of fine aerosol particles: vapor condensation, intramodal coagulation, extramodal coagulation, and multi-phase chemical reaction. At the initial stage of fine aerosol particle growth, condensational growth usually plays a major role and coagulation efficiency generally increases with particle sizes. An overview of previous studies shows higher growth rates over megacity, urban and boreal forest regions than over rural and oceanic regions. This is most likely due to the higher condensational vapor, which can cause strong condensational growth of fine aerosol particles. Associated with these multiple factors of influence, there are large uncertainties for the aerosol particle growth rates, even at the same location.

  17. Neonatal hyperthyroidism impairs epinephrine-provoked secretion of nerve growth factor and epidermal growth factor in mouse saliva.

    PubMed

    Lakshmanan, J; Landel, C P

    1986-07-01

    We examined long-term effects of neonatal hyperthyroidism on salivary secretions of nerve growth factor and epidermal growth factor in male and female mice at the age of 31 days. Hyperthyroidism was induced by thyroxine (T4) injections (0.4 microgram/g body weight/day) during days 0-6. Littermate control mice were treated with vehicle. T4 treatment did not alter the amounts of protein secreted into saliva but hormone administration induced alteration in the types of protein secreted. T4 treatment decreased the contents of both nerve growth factor and epidermal growth factor secreted into the saliva. A Sephadex G-200 column chromatographic profile revealed the presence of two distinct nerve growth factor immunoreactive peaks, while epidermal growth factor immunoreactivity predominantly eluted as a single low molecular weight form. T4 treatment did not alter the molecular nature of their secretion, but the treatment decreased their contents. These results indicate an impairment in salivary secretion of nerve growth factor and epidermal growth factor long after T4 treatment has been discontinued.

  18. Interactive effects of nitrogen and light on growth rates and RUBISCO content of small and large centric diatoms.

    PubMed

    Li, Gang; Campbell, Douglas A

    2017-01-01

    Among marine phytoplankton groups, diatoms span the widest range of cell size, with resulting effects upon their nitrogen uptake, photosynthesis and growth responses to light. We grew two strains of marine centric diatoms differing by ~4 orders of magnitude in cell biovolume in high (enriched artificial seawater with ~500 µmol L -1  µmol L -1  NO 3 - ) and lower-nitrogen (enriched artificial seawater with <10 µmol L -1  NO 3 - ) media, across a range of growth light levels. Nitrogen and total protein per cell decreased with increasing growth light in both species when grown under the lower-nitrogen media. Cells growing under lower-nitrogen media increased their cellular allocation to RUBISCO and their rate of electron transport away from PSII, for the smaller diatom under low growth light and for the larger diatom across the range of growth lights. The smaller coastal diatom Thalassiosira pseudonana is able to exploit high nitrogen in growth media by up-regulating growth rate, but the same high-nitrogen growth media inhibits growth of the larger diatom species.

  19. A nanoparticulate injectable hydrogel as a tissue engineering scaffold for multiple growth factor delivery for bone regeneration.

    PubMed

    Dyondi, Deepti; Webster, Thomas J; Banerjee, Rinti

    2013-01-01

    Gellan xanthan gels have been shown to be excellent carriers for growth factors and as matrices for several tissue engineering applications. Gellan xanthan gels along with chitosan nanoparticles of 297 ± 61 nm diameter, basic fibroblast growth factor (bFGF), and bone morphogenetic protein 7 (BMP7) were employed in a dual growth factor delivery system to promote the differentiation of human fetal osteoblasts. An injectable system with ionic and temperature gelation was optimized and characterized. The nanoparticle loaded gels showed significantly improved cell proliferation and differentiation due to the sustained release of growth factors. A differentiation marker study was conducted, analyzed, and compared to understand the effect of single vs dual growth factors and free vs encapsulated growth factors. Dual growth factor loaded gels showed a higher alkaline phosphatase and calcium deposition compared to single growth factor loaded gels. The results suggest that encapsulation and stabilization of growth factors within nanoparticles and gels are promising for bone regeneration. Gellan xanthan gels also showed antibacterial effects against Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis, the common pathogens in implant failure.

  20. Stimulants and growth in children with attention-deficit/hyperactivity disorder.

    PubMed

    Negrao, Bianca Lee; Viljoen, Margaretha

    2011-07-01

    Initial suggestions that suppression of growth may be an intrinsic characteristic of attention-deficit/hyperactivity disorder (ADHD) have now largely been disproven. Although controversy persists regarding the possible negative effect of adrenergic stimulants on growth in children with ADHD, the consensus that appears to be reached in the scientific literature is that stimulant usage may cause a manageable attenuation of growth in these children. Since it is known that stimulants increase the amount of dopamine and noradrenaline in the synapse, this writing suggests that these increases in dopamine and noradrenaline are responsible for the growth attenuation in these children. It appears that increased amounts of dopamine and noradrenaline have the ability to inhibit the secretion of growth hormone and growth-related hormones such as prolactin, thyroid hormones, sex hormones and insulin. Therefore, it would be reasonable to suggest that the increases in dopamine and noradrenaline caused by stimulant usage can disrupt the homeostasis of both growth hormone and growth-related hormones, generating the potential for the suppression of growth. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Growth rate differences between resident native brook trout and non-native brown trout

    USGS Publications Warehouse

    Carlson, S.M.; Hendry, A.P.; Letcher, B.H.

    2007-01-01

    Between species and across season variation in growth was examined by tagging and recapturing individual brook trout Salvelinus fontinalis and brown trout Salmo trutta across seasons in a small stream (West Brook, Massachusetts, U.S.A.). Detailed information on body size and growth are presented to (1) test whether the two species differed in growth within seasons and (2) characterize the seasonal growth patterns for two age classes of each species. Growth differed between species in nearly half of the season- and age-specific comparisons. When growth differed, non-native brown trout grew faster than native brook trout in all but one comparison. Moreover, species differences were most pronounced when overall growth was high during the spring and early summer. These growth differences resulted in size asymmetries that were sustained over the duration of the study. A literature survey also indicated that non-native salmonids typically grow faster than native salmonids when the two occur in sympatry. Taken together, these results suggest that differences in growth are not uncommon for coexisting native and non-native salmonids. ?? 2007 The Authors.

  2. CVD growth of graphene at low temperature

    NASA Astrophysics Data System (ADS)

    Zeng, Changgan

    2012-02-01

    Graphene has attracted a lot of research interest owing to its exotic properties and a wide spectrum of potential applications. Chemical vapor deposition (CVD) from gaseous hydrocarbon sources has shown great promises for large-scale graphene growth. However, high growth temperature, typically 1000^oC, is required for such growth. In this talk, I will show a revised CVD route to grow graphene on Cu foils at low temperature, adopting solid and liquid hydrocarbon feedstocks. For solid PMMA and polystyrene precursors, centimeter-scale monolayer graphene films are synthesized at a growth temperature down to 400^oC. When benzene is used as the hydrocarbon source, monolayer graphene flakes with excellent quality are achieved at a growth temperature as low as 300^oC. I will also talk about our recent progress on low-temperature graphene growth using paraterphenyl as precursor. The successful low-temperature growth can be qualitatively understood from the first principles calculations. Our work might pave a way to economical and convenient growth route of graphene, as well as better control of the growth pattern of graphene at low temperature.

  3. Investment in secreted enzymes during nutrient-limited growth is utility dependent.

    PubMed

    Cezairliyan, Brent; Ausubel, Frederick M

    2017-09-12

    Pathogenic bacteria secrete toxins and degradative enzymes that facilitate their growth by liberating nutrients from the environment. To understand bacterial growth under nutrient-limited conditions, we studied resource allocation between cellular and secreted components by the pathogenic bacterium Pseudomonas aeruginosa during growth on a protein substrate that requires extracellular digestion by secreted proteases. We identified a quantitative relationship between the rate of increase of cellular biomass under nutrient-limiting growth conditions and the rate of increase in investment in secreted proteases. Production of secreted proteases is stimulated by secreted signals that convey information about the utility of secreted proteins during nutrient-limited growth. Growth modeling using this relationship recapitulated the observed kinetics of bacterial growth on a protein substrate. The proposed regulatory strategy suggests a rationale for quorum-sensing-dependent stimulation of the production of secreted enzymes whereby investment in secreted enzymes occurs in proportion to the utility they confer. Our model provides a framework that can be applied toward understanding bacterial growth in many environments where growth rate is limited by the availability of nutrients.

  4. Effect of Growth Parameters on SnO2 Nanowires Growth by Electron Beam Evaporation Method

    NASA Astrophysics Data System (ADS)

    Rakesh Kumar, R.; Manjula, Y.; Narasimha Rao, K.

    2018-02-01

    Tin oxide (SnO2) nanowires were synthesized via catalyst assisted VLS growth mechanism by the electron beam evaporation method at a growth temperature of 450 °C. The effects of growth parameters such as evaporation rate of Tin, catalyst film thickness, and different types of substrates on the growth of SnO2 nanowires were studied. Nanowires (NWs) growth was completely seized at higher tin evaporation rates due to the inability of the catalyst particle to initiate the NWs growth. Nanowires diameters were able to tune with catalyst film thickness. Nanowires growth was completely absent at higher catalyst film thickness due to agglomeration of the catalyst film. Optimum growth parameters for SnO2 NWs were presented. Nanocomposites such as Zinc oxide - SnO2, Graphene oxide sheets- SnO2 and Graphene nanosheets-SnO2 were able to synthesize at a lower substrate temperature of 450 °C. These nanocompsoites will be useful in enhancing the capacity of Li-ion batteries, the gas sensing response and also useful in increasing the photo catalytic activity.

  5. Growth trajectories of mathematics achievement: Longitudinal tracking of student academic progress.

    PubMed

    Mok, Magdalena M C; McInerney, Dennis M; Zhu, Jinxin; Or, Anthony

    2015-06-01

    A number of methods to investigate growth have been reported in the literature, including hierarchical linear modelling (HLM), latent growth modelling (LGM), and multidimensional scaling applied to longitudinal profile analysis (LPAMS). This study aimed at modelling the mathematics growth of students over a span of 6 years from Grade 3 to Grade 9. The sample comprised secondary longitudinal data collected in three waves from n = 866 Hong Kong students when they were in Grade 3, Grade 6, and Grade 9. Mathematics achievement was measured thrice on a vertical scale linked with anchor items. Linear and nonlinear latent growth models were used to assess students' growth. Gender differences were also examined. A nonlinear latent growth curve with a decelerated rate had a good fit to the data. Initial achievement and growth rate were negatively correlated. No gender difference was found. Mathematics growth from Grade 6 to Grade 9 was slower than that from Grade 3 to Grade 6. Students with lower initial achievement improved at a faster rate than those who started at a higher level. Gender did not affect growth rate. © 2014 The British Psychological Society.

  6. Growth status of children in well-baby outpatient clinics and related factors.

    PubMed

    Çelik, Sercan Bulut; Şahin, Figen; Beyazova, Ufuk; Can, Hüseyin

    2014-06-01

    The aim of this study was to determine the state of growth during follow-up of healthy children and the factors affecting growth. The patient cards of the infants who were born in 2002 and followed up in the well-baby outpatient clinic in Gazi University, Medical Faculty regularly for at least 18 months were examined retrospectively. Their sociodemographic properties including age, education level, occupation of the parents, if the mother was working, caretakers and gender, gestational week, birth weight, birth height and mode of nutrition (breastmilk, formula, cow's milk, period of feeding, etc.) and growth of the babies (month, percentile) were recorded. Number of siblings and ages of the siblings were also recorded and the children with and without growth problems were compared in terms of these properties. It was found that 290 (39.3%) of 739 children who were followed up continued to grow up in the percentile in which they started (normal growth), 188 (25.4%) lost 2 or more percentiles in any month (growth retardation) and 261 (35.3%) lost less than 2 percentiles (decelerated growth). Deceleration/retardation in growth was observed most commonly in the 9(th) month. Deceleration in growth was found in the 6(th) month in 23.6% of the group with deceleration in growth, in the 9(th) month in 50.2%, in the 12(th) month in 15.8% and in the 18(th) month in 3.9%. Growth retardation was found in the 6(th) month in 35.8% of the group with growth retardation, in the 9(th) month in 38.0% and in the 18(th) month in 4.3%. It was found that receiving formula and presence of infection were the main risk factors in terms of deceleration of growth and unemployed mother, the lenght of the total time of breastfeeding and presence of infection were the main risk factors in terms of growth retardation. This study shows the importance of follow-up of growth of children in outpatient clinics for healthy children. It was found that detailed examination and recording of non-organic causes is necessary in addition to investigation of pathological causes of growth retardation. Since it was observed that elimination of the defects determined and educating the family about nutrition and supporting growth had a positive impact on growth retardation, it was concluded that all children should be followed up regularly especially in the first years of life.

  7. GROWTH AND CHARACTERIZATION OF SINGLE CRYSTALS OF RARE EARTH COMPOUNDS.

    DTIC Science & Technology

    SINGLE CRYSTALS, CRYSTAL GROWTH), (*CRYSTAL GROWTH, SINGLE CRYSTALS), (*RARE EARTH COMPOUNDS, SINGLE CRYSTALS), EPITAXIAL GROWTH, SODIUM COMPOUNDS, CHLORIDES, VAPOR PLATING, ELECTROSTATIC FIELDS, ENERGY, ATOMIC PROPERTIES , BONDING

  8. Recent Insights into the Regulation of the Growth Plate

    PubMed Central

    Lui, Julian C.; Nilsson, Ola; Baron, Jeffrey

    2014-01-01

    For most bones, elongation is driven primarily by chondrogenesis at the growth plates. This process results from chondrocyte proliferation, hypertrophy, and extracellular matrix secretion and is carefully orchestrated by complex networks of local paracrine factors and modulated by endocrine factors. We review here recent advances in the understanding of growth plate physiology. These advances include new approaches to study expression patterns of large numbers of genes in the growth plate, using microdissection followed by microarray. This approach has been combined with genome-wide association studies to provide insights into the regulation of the human growth plate. We also review recent studies elucidating the roles of bone morphogenetic proteins, fibroblast growth factors, C-type natriuretic peptide, and suppressor of cytokine signaling in the local regulation of growth plate chondrogenesis and longitudinal bone growth. PMID:24740736

  9. Identification of growth phases and influencing factors in cultivations with AGE1.HN cells using set-based methods.

    PubMed

    Borchers, Steffen; Freund, Susann; Rath, Alexander; Streif, Stefan; Reichl, Udo; Findeisen, Rolf

    2013-01-01

    Production of bio-pharmaceuticals in cell culture, such as mammalian cells, is challenging. Mathematical models can provide support to the analysis, optimization, and the operation of production processes. In particular, unstructured models are suited for these purposes, since they can be tailored to particular process conditions. To this end, growth phases and the most relevant factors influencing cell growth and product formation have to be identified. Due to noisy and erroneous experimental data, unknown kinetic parameters, and the large number of combinations of influencing factors, currently there are only limited structured approaches to tackle these issues. We outline a structured set-based approach to identify different growth phases and the factors influencing cell growth and metabolism. To this end, measurement uncertainties are taken explicitly into account to bound the time-dependent specific growth rate based on the observed increase of the cell concentration. Based on the bounds on the specific growth rate, we can identify qualitatively different growth phases and (in-)validate hypotheses on the factors influencing cell growth and metabolism. We apply the approach to a mammalian suspension cell line (AGE1.HN). We show that growth in batch culture can be divided into two main growth phases. The initial phase is characterized by exponential growth dynamics, which can be described consistently by a relatively simple unstructured and segregated model. The subsequent phase is characterized by a decrease in the specific growth rate, which, as shown, results from substrate limitation and the pH of the medium. An extended model is provided which describes the observed dynamics of cell growth and main metabolites, and the corresponding kinetic parameters as well as their confidence intervals are estimated. The study is complemented by an uncertainty and outlier analysis. Overall, we demonstrate utility of set-based methods for analyzing cell growth and metabolism under conditions of uncertainty.

  10. Identification of Growth Phases and Influencing Factors in Cultivations with AGE1.HN Cells Using Set-Based Methods

    PubMed Central

    Borchers, Steffen; Freund, Susann; Rath, Alexander; Streif, Stefan; Reichl, Udo; Findeisen, Rolf

    2013-01-01

    Production of bio-pharmaceuticals in cell culture, such as mammalian cells, is challenging. Mathematical models can provide support to the analysis, optimization, and the operation of production processes. In particular, unstructured models are suited for these purposes, since they can be tailored to particular process conditions. To this end, growth phases and the most relevant factors influencing cell growth and product formation have to be identified. Due to noisy and erroneous experimental data, unknown kinetic parameters, and the large number of combinations of influencing factors, currently there are only limited structured approaches to tackle these issues. We outline a structured set-based approach to identify different growth phases and the factors influencing cell growth and metabolism. To this end, measurement uncertainties are taken explicitly into account to bound the time-dependent specific growth rate based on the observed increase of the cell concentration. Based on the bounds on the specific growth rate, we can identify qualitatively different growth phases and (in-)validate hypotheses on the factors influencing cell growth and metabolism. We apply the approach to a mammalian suspension cell line (AGE1.HN). We show that growth in batch culture can be divided into two main growth phases. The initial phase is characterized by exponential growth dynamics, which can be described consistently by a relatively simple unstructured and segregated model. The subsequent phase is characterized by a decrease in the specific growth rate, which, as shown, results from substrate limitation and the pH of the medium. An extended model is provided which describes the observed dynamics of cell growth and main metabolites, and the corresponding kinetic parameters as well as their confidence intervals are estimated. The study is complemented by an uncertainty and outlier analysis. Overall, we demonstrate utility of set-based methods for analyzing cell growth and metabolism under conditions of uncertainty. PMID:23936299

  11. Seasonal variations in modern speleothem calcite growth in Central Texas, U.S.A

    USGS Publications Warehouse

    Banner, J.L.; Guilfoyle, A.; James, E.W.; Stern, L.A.; Musgrove, M.

    2007-01-01

    Variations in growth rates of speleothem calcite have been hypothesized to reflect changes in a range of paleoenvironmental variables, including atmospheric temperature and precipitation, drip-water composition, and the rate of soil CO2 delivery to the subsurface. To test these hypotheses, we quantified growth rates of modern speleothem calcite on artificial substrates and monitored concurrent environmental conditions in three caves across the Edwards Plateau in central Texas. Within each of two caves, different drip sites exhibit similar annual cycles in calcite growth rates, even though there are large differences between the mean growth rates at the sites. The growth-rate cycles inversely correlate to seasonal changes in regional air temperature outside the caves, with near-zero growth rates during the warmest summer months, and peak growth rates in fall through spring. Drip sites from caves 130 km apart exhibit similar temporal patterns in calcite growth rate, indicating a controlling mechanism on at least this distance. The seasonal variations in calcite growth rate can be accounted for by a primary control by regional temperature effects on ventilation of cave-air CO2 concentrations and/or drip-water CO2 contents. In contrast, site-to-site differences in the magnitude of calcite growth rates within an individual cave appear to be controlled principally by differences in drip rate. A secondary control by drip rate on the growth rate temporal variations is suggested by interannual variations. No calcite growth was observed in the third cave, which has relatively high values of and small seasonal changes in cave-air CO2. These results indicate that growth-rate variations in ancient speleothems may serve as a paleoenvironmental proxy with seasonal resolution. By applying this approach of monitoring the modern system, speleothem growth rate and geochemical proxies for paleoenviromnental change may be evaluated and calibrated. Copyright ?? 2007, SEPM (Society for Sedimentary Geology).

  12. Tree demography dominates long-term growth trends inferred from tree rings.

    PubMed

    Brienen, Roel J W; Gloor, Manuel; Ziv, Guy

    2017-02-01

    Understanding responses of forests to increasing CO 2 and temperature is an important challenge, but no easy task. Tree rings are increasingly used to study such responses. In a recent study, van der Sleen et al. (2014) Nature Geoscience, 8, 4 used tree rings from 12 tropical tree species and find that despite increases in intrinsic water use efficiency, no growth stimulation is observed. This challenges the idea that increasing CO 2 would stimulate growth. Unfortunately, tree ring analysis can be plagued by biases, resulting in spurious growth trends. While their study evaluated several biases, it does not account for all. In particular, one bias may have seriously affected their results. Several of the species have recruitment patterns, which are not uniform, but clustered around one specific year. This results in spurious negative growth trends if growth rates are calculated in fixed size classes, as 'fast-growing' trees reach the sampling diameter earlier compared to slow growers and thus fast growth rates tend to have earlier calendar dates. We assessed the effect of this 'nonuniform age bias' on observed growth trends and find that van der Sleen's conclusions of a lack of growth stimulation do not hold. Growth trends are - at least partially - driven by underlying recruitment or age distributions. Species with more clustered age distributions show more negative growth trends, and simulations to estimate the effect of species' age distributions show growth trends close to those observed. Re-evaluation of the growth data and correction for the bias result in significant positive growth trends of 1-2% per decade for the full period, and 3-7% since 1950. These observations, however, should be taken cautiously as multiple biases affect these trend estimates. In all, our results highlight that tree ring studies of long-term growth trends can be strongly influenced by biases if demographic processes are not carefully accounted for. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  13. No evidence for consistent long-term growth stimulation of 13 tropical tree species: results from tree-ring analysis.

    PubMed

    Groenendijk, Peter; van der Sleen, Peter; Vlam, Mart; Bunyavejchewin, Sarayudh; Bongers, Frans; Zuidema, Pieter A

    2015-10-01

    The important role of tropical forests in the global carbon cycle makes it imperative to assess changes in their carbon dynamics for accurate projections of future climate-vegetation feedbacks. Forest monitoring studies conducted over the past decades have found evidence for both increasing and decreasing growth rates of tropical forest trees. The limited duration of these studies restrained analyses to decadal scales, and it is still unclear whether growth changes occurred over longer time scales, as would be expected if CO2 -fertilization stimulated tree growth. Furthermore, studies have so far dealt with changes in biomass gain at forest-stand level, but insights into species-specific growth changes - that ultimately determine community-level responses - are lacking. Here, we analyse species-specific growth changes on a centennial scale, using growth data from tree-ring analysis for 13 tree species (~1300 trees), from three sites distributed across the tropics. We used an established (regional curve standardization) and a new (size-class isolation) growth-trend detection method and explicitly assessed the influence of biases on the trend detection. In addition, we assessed whether aggregated trends were present within and across study sites. We found evidence for decreasing growth rates over time for 8-10 species, whereas increases were noted for two species and one showed no trend. Additionally, we found evidence for weak aggregated growth decreases at the site in Thailand and when analysing all sites simultaneously. The observed growth reductions suggest deteriorating growth conditions, perhaps due to warming. However, other causes cannot be excluded, such as recovery from large-scale disturbances or changing forest dynamics. Our findings contrast growth patterns that would be expected if elevated CO2 would stimulate tree growth. These results suggest that commonly assumed growth increases of tropical forests may not occur, which could lead to erroneous predictions of carbon dynamics of tropical forest under climate change. © 2015 John Wiley & Sons Ltd.

  14. Spatial variability and macro‐scale drivers of growth for native and introduced Flathead Catfish populations

    USGS Publications Warehouse

    Massie, Danielle L.; Smith, Geoffrey; Bonvechio, Timothy F.; Bunch, Aaron J.; Lucchesi, David O.; Wagner, Tyler

    2018-01-01

    Quantifying spatial variability in fish growth and identifying large‐scale drivers of growth are fundamental to many conservation and management decisions. Although fish growth studies often focus on a single population, it is becoming increasingly clear that large‐scale studies are likely needed for addressing transboundary management needs. This is particularly true for species with high recreational value and for those with negative ecological consequences when introduced outside of their native range, such as the Flathead Catfish Pylodictis olivaris. This study quantified growth variability of the Flathead Catfish across a large portion of its contemporary range to determine whether growth differences existed between habitat types (i.e., reservoirs and rivers) and between native and introduced populations. Additionally, we investigated whether growth parameters varied as a function of latitude and time since introduction (for introduced populations). Length‐at‐age data from 26 populations across 11 states in the USA were modeled using a Bayesian hierarchical von Bertalanffy growth model. Population‐specific growth trajectories revealed large variation in Flathead Catfish growth and relatively high uncertainty in growth parameters for some populations. Relatively high uncertainty was also evident when comparing populations and when quantifying large‐scale patterns. Growth parameters (Brody growth coefficient [K] and theoretical maximum average length [L∞]) were not different (based on overlapping 90% credible intervals) between habitat types or between native and introduced populations. For populations within the introduced range of Flathead Catfish, latitude was negatively correlated with K. For native populations, we estimated an 85% probability that L∞ estimates were negatively correlated with latitude. Contrary to predictions, time since introduction was not correlated with growth parameters in introduced populations of Flathead Catfish. Results of this study suggest that Flathead Catfish growth patterns are likely shaped more strongly by finer‐scale processes (e.g., exploitation or prey abundances) as opposed to macro‐scale drivers.

  15. Cyp26b1 within the growth plate regulates bone growth in juvenile mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minegishi, Yoshiki; Department of Plastic and Reconstructive Surgery, University of Fukui Hospital, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193; Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871

    Highlights: • Retinoic acid and Cyp26b1 were oppositely localized in growth plate cartilage. • Cyp26b1 deletion in chondrocytes decreased bone growth in juvenile mice. • Cyp26b1 deletion reduced chondrocyte proliferation and growth plate height. • Vitamin A-depletion partially reversed growth plate abnormalities caused by Cyp26b1 deficiency. • Cyp26b1 regulates bone growth by controlling chondrocyte proliferation. - Abstract: Retinoic acid (RA) is an active metabolite of vitamin A and plays important roles in embryonic development. CYP26 enzymes degrade RA and have specific expression patterns that produce a RA gradient, which regulates the patterning of various structures in the embryo. However, itmore » has not been addressed whether a RA gradient also exists and functions in organs after birth. We found localized RA activities in the diaphyseal portion of the growth plate cartilage were associated with the specific expression of Cyp26b1 in the epiphyseal portion in juvenile mice. To disturb the distribution of RA, we generated mice lacking Cyp26b1 specifically in chondrocytes (Cyp26b1{sup Δchon} cKO). These mice showed reduced skeletal growth in the juvenile stage. Additionally, their growth plate cartilage showed decreased proliferation rates of proliferative chondrocytes, which was associated with a reduced height in the zone of proliferative chondrocytes, and closed focally by four weeks of age, while wild-type mouse growth plates never closed. Feeding the Cyp26b1 cKO mice a vitamin A-deficient diet partially reversed these abnormalities of the growth plate cartilage. These results collectively suggest that Cyp26b1 in the growth plate regulates the proliferation rates of chondrocytes and is responsible for the normal function of the growth plate and growing bones in juvenile mice, probably by limiting the RA distribution in the growth plate proliferating zone.« less

  16. Hippocampal and cortical neuronal growth mediated by the small molecule natural product clovanemagnolol.

    PubMed

    Khaing, Zin; Kang, Danby; Camelio, Andrew M; Schmidt, Christine E; Siegel, Dionicio

    2011-08-15

    The use of small molecule surrogates of growth factors that directly or indirectly promote growth represents an attractive approach to regenerative medicine. With synthetic access to clovanemagnolol, a small molecule initially isolated from the bark of the Bigleaf Magnolia tree, we have examined the small molecule's ability to promote growth of embryonic hippocampal and cortical neurons in serum-free medium. Comparisons with magnolol, a known promoter of growth, reveals that clovanmagnolol is a potent neurotrophic agent, promoting neuronal growth at concentrations of 10 nM. In addition, both clovanemagnolol and magnolol promote growth through a biphasic dose response. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Influences Energy Consumption has on Green GDP Growth in China

    NASA Astrophysics Data System (ADS)

    Hongxian, Xie

    2018-02-01

    This paper examines the relationship between China’s total energy consumption growth and GGDP growth based on the data of 1997-2016. With path analysis employed, the direct and indirect influence on GGDP growth rate exerted by several energy consumption ratios as well as the relationship among them is explored. Furtherly, the author determines how much each of these ratios contributes to GGDP. This research suggests that proportion of natural gas consumption and that of other energy consumption are the two major drivers of GGDP growth, while coal and oil consumption proportion inhibits GGDP Growth. Specifically, increasing the proportion of natural gas consumption contributes the most to GGDP growth.

  18. The Si ribbon crystal for the solar battery using the horizontal pull method

    NASA Technical Reports Server (NTRS)

    Norifuji, H.; Matsuo, M.; Maki, T.

    1979-01-01

    A method utilizing a device to spray noble gases to cool the site of silicon crystal growth is described. The salient points are: (1) soft and uniform cooling was possible, (2) the length of the boundary surface of growth along the growth direction was made long over a wide width compared to the thickness, and (3) this made it possible to effectively remove the heat produced from solification. By using forced gas spraying on the solution surface in contact with the points of crystal growth, growth at the points of growth is enhanced and the rate of growth is speeded up.

  19. Postnatal effects of intrauterine treatment of the growth-restricted ovine fetus with intra-amniotic insulin-like growth factor-1.

    PubMed

    Spiroski, A M; Oliver, M H; Jaquiery, A L; Prickett, T C R; Espiner, E A; Harding, J E; Bloomfield, F H

    2017-12-12

    Fetal growth restriction increases the risk of fetal and neonatal mortality and morbidity, and contributes to increased risk of chronic disease later in life. Intra-amniotic insulin-like growth factor-1 (IGF1) treatment of the growth-restricted ovine fetus improves fetal growth, but postnatal effects are unknown. Here we report that intra-amniotic IGF1 treatment of the growth-restricted ovine fetus alters size at birth and mechanisms of early postnatal growth in a sex-specific manner. We also show that maternal plasma C-type natriuretic peptide (CNP) products are related to fetal oxygenation and size at birth, and hence may be useful for non-invasive monitoring of fetal growth restriction. Intrauterine IGF1 treatment in late gestation is a potentially clinically relevant intervention that may ameliorate the postnatal complications of fetal growth restriction. Placental insufficiency-mediated fetal growth restriction (FGR) is associated with altered postnatal growth and metabolism, which are, in turn, associated with increased risk of adult disease. Intra-amniotic insulin-like growth factor-1 (IGF1) treatment of ovine FGR increases growth rate in late gestation, but the effects on postnatal growth and metabolism are unknown. We investigated the effects of intra-amniotic IGF1 administration to ovine fetuses with uteroplacental embolisation-induced FGR on phenotypical and physiological characteristics in the 2  weeks after birth. We measured early postnatal growth velocity, amino-terminal propeptide of C-type natriuretic peptide (NTproCNP), body composition, tissue-specific mRNA expression, and milk intake in singleton lambs treated weekly with 360 μg intra-amniotic IGF1 (FGRI; n = 13 females, 19 males) or saline (FGRS; n = 18 females, 12 males) during gestation, and in controls (CON; n = 15 females, 22 males). There was a strong positive correlation between maternal NTproCNP and fetal oxygenation, and size at birth in FGR lambs. FGR lambs were ∼20% lighter at birth and demonstrated accelerated postnatal growth velocity. IGF1 treatment did not alter perinatal mortality, partially abrogated the reduction in newborn size in females, but not males, and reduced accelerated growth in both sexes. IGF1-mediated upregulation of somatotrophic genes in males during the early postnatal period could suggest that treatment effects are associated with delayed axis maturation, whilst treatment outcomes in females may rely on the reprogramming of nutrient-dependent mechanisms of growth. These data suggest that the growth-restricted fetus is responsive to intra-amniotic intervention with IGF1, and that sex-specific somatotrophic effects persist in the early postnatal period. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  20. Prediction of Land use changes using CA in GIS Environment

    NASA Astrophysics Data System (ADS)

    Kiavarz Moghaddam, H.; Samadzadegan, F.

    2009-04-01

    Urban growth is a typical self-organized system that results from the interaction between three defined systems; developed urban system, natural non-urban system and planned urban system. Urban growth simulation for an artificial city is carried out first. It evaluates a number of urban sprawl parameters including the size and shape of neighborhood besides testing different types of constraints on urban growth simulation. The results indicate that circular-type neighborhood shows smoother but faster urban growth as compared to nine-cell Moore neighborhood. Cellular Automata is proved to be very efficient in simulating the urban growth simulation over time. The strength of this technology comes from the ability of urban modeler to implement the growth simulation model, evaluating the results and presenting the output simulation results in visual interpretable environment. Artificial city simulation model provides an excellent environment to test a number of simulation parameters such as neighborhood influence on growth results and constraints role in driving the urban growth .Also, CA rules definition is critical stage in simulating the urban growth pattern in a close manner to reality. CA urban growth simulation and prediction of Tehran over the last four decades succeeds to simulate specified tested growth years at a high accuracy level. Some real data layer have been used in the CA simulation training phase such as 1995 while others used for testing the prediction results such as 2002. Tuning the CA growth rules is important through comparing the simulated images with the real data to obtain feedback. An important notice is that CA rules need also to be modified over time to adapt to the urban growth pattern. The evaluation method used on region basis has its advantage in covering the spatial distribution component of the urban growth process. Next step includes running the developed CA simulation over classified raster data for three years in a developed ArcGIS extention. A set of crisp rules are defined and calibrated based on real urban growth pattern. Uncertainty analysis is performed to evaluate the accuracy of the simulated results as compared to the historical real data. Evaluation shows promising results represented by the high average accuracies achieved. The average accuracy for the predicted growth images 1964 and 2002 is over 80 %. Modifying CA growth rules over time to match the growth pattern changes is important to obtain accurate simulation. This modification is based on the urban growth relationship for Tehran over time as can be seen in the historical raster data. The feedback obtained from comparing the simulated and real data is crucial in identifying the optimal set of CA rules for reliable simulation and calibrating growth steps.

  1. How long bones grow children: Mechanistic paths to variation in human height growth.

    PubMed

    Lampl, Michelle; Schoen, Meriah

    2017-03-01

    Eveleth and Tanner's descriptive documentation of worldwide variability in human growth provided evidence of the interaction between genetics and environment during development that has been foundational to the science of human growth. There remains a need, however, to describe the mechanistic foundations of variability in human height growth patterns. A review of research documenting cellular activities at the endochondral growth plate aims to show how the unique microenvironment and cell functions during the sequential phases of the chondrocyte lifecycle affect long bone elongation, a fundamental source of height growth. There are critical junctures within the chondrocytic differentiation cascade at which environmental influences are integrated and have the ability to influence progression to the hypertrophic chondrocyte phase, the primary driver of long bone elongation. Phenotypic differences in height growth patterns reflect variability in amplitude and frequency of discretely timed hypertrophic cellular expansion events, the cellular basis of saltation and stasis growth biology. Final height is a summary of the dynamic processes carried out by the growth plate cellular machinery. As these cell-level mechanisms unfold in an individual, time-specific manner, there are many critical points at which a genetic growth program can be enhanced or perturbed. Recognizing both the complexity and fluidity of this adaptive system questions the likelihood of a single, optimal growth pattern and instead identifies a larger bandwidth of saltatory frequencies for "normal" growth. Further inquiry into mechanistic sources of variability acting at critical organizational points of chondrogenesis can provide new opportunities for growth interventions. © 2017 Wiley Periodicals, Inc.

  2. Assessment of the interactions between economic growth and industrial wastewater discharges using co-integration analysis: a case study for China's Hunan Province.

    PubMed

    Xiao, Qiang; Gao, Yang; Hu, Dan; Tan, Hong; Wang, Tianxiang

    2011-07-01

    We have investigated the interactions between economic growth and industrial wastewater discharge from 1978 to 2007 in China's Hunan Province using co-integration theory and an error-correction model. Two main economic growth indicators and four representative industrial wastewater pollutants were selected to demonstrate the interaction mechanism. We found a long-term equilibrium relationship between economic growth and the discharge of industrial pollutants in wastewater between 1978 and 2007 in Hunan Province. The error-correction mechanism prevented the variable expansion for long-term relationship at quantity and scale, and the size of the error-correction parameters reflected short-term adjustments that deviate from the long-term equilibrium. When economic growth changes within a short term, the discharge of pollutants will constrain growth because the values of the parameters in the short-term equation are smaller than those in the long-term co-integrated regression equation, indicating that a remarkable long-term influence of economic growth on the discharge of industrial wastewater pollutants and that increasing pollutant discharge constrained economic growth. Economic growth is the main driving factor that affects the discharge of industrial wastewater pollutants in Hunan Province. On the other hand, the discharge constrains economic growth by producing external pressure on growth, although this feedback mechanism has a lag effect. Economic growth plays an important role in explaining the predicted decomposition of the variance in the discharge of industrial wastewater pollutants, but this discharge contributes less to predictions of the variations in economic growth.

  3. Intrauterine growth restriction programs an accelerated age-related increase in cardiovascular risk in male offspring

    PubMed Central

    Dasinger, John Henry; Intapad, Suttira; Backstrom, Miles A.; Carter, Anthony J.

    2016-01-01

    Placental insufficiency programs an increase in blood pressure associated with a twofold increase in serum testosterone in male growth-restricted offspring at 4 mo of age. Population studies indicate that the inverse relationship between birth weight and blood pressure is amplified with age. Thus, we tested the hypothesis that intrauterine growth restriction programs an age-related increase in blood pressure in male offspring. Growth-restricted offspring retained a significantly higher blood pressure at 12 but not at 18 mo of age compared with age-matched controls. Blood pressure was significantly increased in control offspring at 18 mo of age relative to control counterparts at 12 mo; however, blood pressure was not increased in growth-restricted at 18 mo relative to growth-restricted counterparts at 12 mo. Serum testosterone levels were not elevated in growth-restricted offspring relative to control at 12 mo of age. Thus, male growth-restricted offspring no longer exhibited a positive association between blood pressure and testosterone at 12 mo of age. Unlike hypertension in male growth-restricted offspring at 4 mo of age, inhibition of the renin-angiotensin system with enalapril (250 mg/l for 2 wk) did not abolish the difference in blood pressure in growth-restricted offspring relative to control counterparts at 12 mo of age. Therefore, these data suggest that intrauterine growth restriction programs an accelerated age-related increase in blood pressure in growth-restricted offspring. Furthermore, this study suggests that the etiology of increased blood pressure in male growth-restricted offspring at 12 mo of age differs from that at 4 mo of age. PMID:27147668

  4. Child Weight Growth Trajectory and its Determinants in a Sample of Iranian Children from Birth until 2 Years of Age

    PubMed Central

    Hosseini, Sayed-Mohsen; Maracy, Mohamad-Reza; Sarrafzade, Sheida; Kelishadi, Roya

    2014-01-01

    Background: Growth is one of the most important indices in child health. The best and most effective way to investigate child health is measuring the physical growth indices such as weight, height and head circumference. Among these measures, weight growth is the simplest and the most effective way to determine child growth status. Weight trend at a given age is the result of cumulative growth experience, whereas growth velocity represents what is happening at the time. Methods: This longitudinal study was conducted among 606 children repeatedly measured from birth until 2 years of age. We used linear mixed model to analyze repeated measures and to determine factors affecting the growth trajectory. LOWESS smooth curve was used to draw velocity curves. Results: Gender, child rank, birth status and feeding mode had a significant effect on weight trajectory. Boys had higher weight during the study. Infants with exclusive breast feeding had higher weight than other infants. Boys had higher growth velocity up to age 6 month. Breast fed infants had higher growth velocity up to 6 month, but thereafter the velocity was higher in other infants. Conclusions: Many of the studies have investigated child growth, but most of them used cross-sectional design. In this study, we used longitudinal method to determine effective factors on weight trend in children from birth until 2-year-old. The effects of perinatal factors on further growth should be considered for prevention of growth disorders and their late complications. PMID:24829720

  5. Hair growth-promoting effect of Geranium sibiricum extract in human dermal papilla cells and C57BL/6 mice.

    PubMed

    Boisvert, William A; Yu, Miri; Choi, Youngbin; Jeong, Gi Hee; Zhang, Yi-Lin; Cho, Sunghun; Choi, Changsun; Lee, Sanghyun; Lee, Bog-Hieu

    2017-02-13

    Geranium sibiricum L. has been used as a medicinal plant to treat diarrhea, bacterial infection, and cancer in Bulgaria, Peru, and Korea. However, its hair growth-promoting effect was not investigated so far. This study examined the effects of Geranium sibiricum L. extract (GSE) on hair growth, using in vitro and in vivo models. Antioxidant, proliferation and migration assay of GSE was performed with human dermal papilla cells (hDPCs). Hair-growth promoting effect was measured in animal model. Relative expression of interleukin-1, vascular endothelial growth factor, hepatocyte growth factor, and transforming growth factor beta 1 was determined by real time RT-PCR. Expression of Ki-67 and stem cell factor were analyzed by immunohistochemistry. GSE treatment proliferated and migrated human dermal papilla cells (hDPCs) more than treatment of 10 μM minoxidil. GSE significantly stimulated the expression of Ki-67 protein and the mRNA levels of hepatocyte growth factor and vascular endothelial growth factor in hDPCs. Topical application of 1,000 ppm GSE for 3 weeks promoted more significant hair growth on shaved C57BL/6 mice than did 5% minoxidil. The histological morphology of hair follicles demonstrated an active anagen phase with the induction of stem cell factor. GSE treatment significantly reduced the number of mast cells and the expression of transforming growth factor beta 1 in mouse skin tissues. These results demonstrated that GSE promotes hair growth in vitro and in vivo by regulating growth factors and the cellular response.

  6. Hair-Growth-Promoting Effect of Conditioned Medium of High Integrin α6 and Low CD 71 (α6bri/CD71dim) Positive Keratinocyte Cells

    PubMed Central

    Won, Chong Hyun; Jeong, Yun-Mi; Kang, Sangjin; Koo, Tae-Sung; Park, So-Hyun; Park, Ki-Young; Sung, Young-Kwan; Sung, Jong-Hyuk

    2015-01-01

    Keratinocyte stem/progenitor cells (KSCs) reside in the bulge region of the hair follicles and may be involved in hair growth. Hair follicle dermal papilla cells (HFDPCs) and outer root sheath (ORS) cells were treated with conditioned medium (CM) of KSCs. Moreover, the effects of KSC-CM on hair growth were examined ex vivo and in vivo. A human growth factor chip array and RT-PCR were employed to identify enriched proteins in KSC-CM as compared with CM from keratinocytes. KSC-CM significantly increased the proliferation of HFDPCs and ORS cells, and increased the S-phase of the cell cycle in HFDPCs. KSC-CM led to the phosphorylation of ATK and ERK1/2 in both cell types. After subcutaneous injection of KSC-CM in C3H/HeN mice, a significant increase in hair growth and increased proliferation of hair matrix keratinocytes ex vivo was observed. We identified six proteins enriched in KSC-CM (amphiregulin, insulin-like growth factor binding protein-2, insulin-like growth factor binding protein-5, granulocyte macrophage-colony stimulating factor, Platelet-derived growth factor-AA, and vascular endothelial growth factor). A growth-factor cocktail that contains these six recombinant growth factors significantly increased the proliferation of HFDPCs and ORS cells and enhanced the hair growth of mouse models. These results collectively indicate that KSC-CM has the potential to increase hair growth via the proliferative capacity of HFDPCs and ORS cells. PMID:25706512

  7. Epidermal growth factor- and hepatocyte growth factor-receptor activity in serum-free cultures of human hepatocytes.

    PubMed

    Runge, D M; Runge, D; Dorko, K; Pisarov, L A; Leckel, K; Kostrubsky, V E; Thomas, D; Strom, S C; Michalopoulos, G K

    1999-02-01

    Serum-free primary cultures of hepatocytes are a useful tool to study factors triggering hepatocyte proliferation and regeneration. We have developed a chemically defined serum-free system that allows human hepatocyte proliferation in the presence of epidermal growth factor and hepatocyte growth factor. DNA synthesis and accumulation were determined by [3H]thymidine incorporation and fluorometry, respectively. Western blot analyses and co-immunoprecipitations were used to investigate the association of proteins involved in epidermal growth factor and hepatocyte growth factor activation and signaling: epidermal growth factor receptor, hepatocyte growth factor receptor (MET), urokinase-type plasminogen activator and its receptor, and a member of the signal transducer and activator of transcription family, STAT-3. Primary human hepatocytes proliferated under serum-free conditions in a chemically defined medium for up to 12 days. Epidermal growth factor-receptor and MET were present and functional, decreasing over time. MET, urokinase-type plasminogen activator and urokinase-type plasminogen activator receptor co-precipitated to varying degrees during the culture period. STAT-3 co-precipitated with epidermal growth factor-receptor and MET to varying degrees. Proliferation of human hepatocytes can improve by modification of a chemically defined medium originally used for rat hepatocyte cultures. In these long-term cultures of human hepatocytes, hepatocyte growth factor and epidermal growth factor can stimulate growth and differentiation by interacting with their receptors and initiating downstream signaling. This involves complex formation of the receptors with other plasma membrane components for MET (urokinase-type plasminogen activator in context of its receptor) and activation of STAT-3 for both receptors.

  8. United States geological survey's reserve-growth models and their implementation

    USGS Publications Warehouse

    Klett, T.R.

    2005-01-01

    The USGS has developed several mathematical models to forecast reserve growth of fields both in the United States (U.S.) and the world. The models are based on historical reserve growth patterns of fields in the U.S. The patterns of past reserve growth are extrapolated to forecast future reserve growth. Changes of individual field sizes through time are extremely variable, therefore, the reserve growth models take on a statistical approach whereby volumetric changes for populations of fields are used in the models. Field age serves as a measure of the field-development effort that is applied to promote reserve growth. At the time of the USGS World Petroleum Assessment 2000, a reserve growth model for discovered fields of the world was not available. Reserve growth forecasts, therefore, were made based on a model of historical reserve growth of fields of the U.S. To test the feasibility of such an application, reserve growth forecasts were made of 186 giant oil fields of the world (excluding the U.S. and Canada). In addition, forecasts were made for these giant oil fields subdivided into those located in and outside of Organization of Petroleum Exporting Countries (OPEC). The model provided a reserve-growth forecast that closely matched the actual reserve growth that occurred from 1981 through 1996 for the 186 fields as a whole, as well as for both OPEC and non-OPEC subdivisions, despite the differences in reserves definition among the fields of the U.S. and the rest of the world. ?? 2005 International Association for Mathematical Geology.

  9. Assessment of the Interactions between Economic Growth and Industrial Wastewater Discharges Using Co-integration Analysis: A Case Study for China’s Hunan Province

    PubMed Central

    Xiao, Qiang; Gao, Yang; Hu, Dan; Tan, Hong; Wang, Tianxiang

    2011-01-01

    We have investigated the interactions between economic growth and industrial wastewater discharge from 1978 to 2007 in China’s Hunan Province using co-integration theory and an error-correction model. Two main economic growth indicators and four representative industrial wastewater pollutants were selected to demonstrate the interaction mechanism. We found a long-term equilibrium relationship between economic growth and the discharge of industrial pollutants in wastewater between 1978 and 2007 in Hunan Province. The error-correction mechanism prevented the variable expansion for long-term relationship at quantity and scale, and the size of the error-correction parameters reflected short-term adjustments that deviate from the long-term equilibrium. When economic growth changes within a short term, the discharge of pollutants will constrain growth because the values of the parameters in the short-term equation are smaller than those in the long-term co-integrated regression equation, indicating that a remarkable long-term influence of economic growth on the discharge of industrial wastewater pollutants and that increasing pollutant discharge constrained economic growth. Economic growth is the main driving factor that affects the discharge of industrial wastewater pollutants in Hunan Province. On the other hand, the discharge constrains economic growth by producing external pressure on growth, although this feedback mechanism has a lag effect. Economic growth plays an important role in explaining the predicted decomposition of the variance in the discharge of industrial wastewater pollutants, but this discharge contributes less to predictions of the variations in economic growth. PMID:21845167

  10. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.

    1987-01-01

    Muscle tissue culture techniques were developed to grow skeletal myofibers which differentiate into more adult-like myofibers. Mechanical simulation studies of these muscle cells in a newly developed mechanical cell simulator can now be performed to study growth processes in skeletal muscle. Conditions in the mechanical cell simulator were defined where mechanical activity can either prevent muscle wasting or stimulate muscle growth. The role of endogenous and exogenous growth factors in tension-induced muscle growth is being investigated under the defined conditions of tissue culture.

  11. Sea growth of anadromous brown trout ( Salmo trutta)

    NASA Astrophysics Data System (ADS)

    de Leeuw, J. J.; ter Hofstede, R.; Winter, H. V.

    2007-08-01

    Sea growth rates were studied in anadromous brown trout caught in Lake IJsselmeer, The Netherlands. Growth in the first year at sea was estimated at 26 cm from length-frequency distributions, and at 21 cm from back-calculated growth rates from scale readings. These estimates are considerably higher than sea growth rates observed in populations at higher latitudes (Norway, Sweden), but compare well with the limited information on sea growth rates estimated for anadromous trout in the River Rhine and rivers in Normandy (France).

  12. MOVPE Growth of LWIR AlInAs/GaInAs/InP Quantum Cascade Lasers: Impact of Growth and Material Quality on Laser Performance

    DTIC Science & Technology

    2017-02-01

    MOVPE Growth of LWIR AlInAs/GaInAs/InP Quantum Cascade Lasers: Impact of Growth and Material Quality on Laser Performance (Invited paper) Christine A...epitaxial layers in quantum cascade lasers (QCLs) has a primary impact on QCL operation, and establishing correlations between epitaxial growth and materials...QCLs emitting in this range. Index terms – Quantum cascade lasers, semiconductor growth, semiconductor epitaxial layers, infrared emitters. I

  13. Shoot-derived abscisic acid promotes root growth.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J; Ross, John J

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root-sourced ABA on root growth during water stress. Here, we tested whether foliage-derived ABA could be transported to the roots, and whether this foliage-derived ABA had an influence on root growth under well-watered conditions. Using both application studies of deuterium-labelled ABA and reciprocal grafting between wild-type and ABA-biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage-derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA-deficient scions suggest that foliage-derived ABA inhibits root growth through the root growth-inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage-derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture. © 2015 John Wiley & Sons Ltd.

  14. Anti-idiotypic antibody: A new strategy for the development of a growth hormone receptor antagonist.

    PubMed

    Lan, Hainan; Zheng, Xin; Khan, Muhammad Akram; Li, Steven

    2015-11-01

    In general, traditional growth hormone receptor antagonist can be divided into two major classes: growth hormone (GH) analogues and anti-growth hormone receptor (GHR) antibodies. Herein, we tried to explore a new class of growth hormone receptor (GHR) antagonist that may have potential advantages over the traditional antagonists. For this, we developed a monoclonal anti-idiotypic antibody growth hormone, termed CG-86. A series of experiments were conducted to characterize and evaluate this antibody, and the results from a competitive receptor-binding assay, Enzyme Linked Immunosorbent Assays (ELISA) and epitope mapping demonstrate that CG-86 behaved as a typical Ab2β. Next, we examined its antagonistic activity using in vitro cell models, and the results showed that CG-86 could effectively inhibit growth hormone receptor-mediated signalling and effectively inhibit growth hormone-induced Ba/F3-GHR638 proliferation. In summary, these studies show that an anti-idiotypic antibody (CG-86) has promise as a novel growth hormone receptor antagonist. Furthermore, the current findings also suggest that anti-idiotypic antibody may represent a novel strategy to produce a new class of growth hormone receptor antagonist, and this strategy may be applied with other cytokines or growth factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The effect of size and competition on tree growth rate in old-growth coniferous forests

    USGS Publications Warehouse

    Das, Adrian

    2012-01-01

    Tree growth and competition play central roles in forest dynamics. Yet models of competition often neglect important variation in species-specific responses. Furthermore, functions used to model changes in growth rate with size do not always allow for potential complexity. Using a large data set from old-growth forests in California, models were parameterized relating growth rate to tree size and competition for four common species. Several functions relating growth rate to size were tested. Competition models included parameters for tree size, competitor size, and competitor distance. Competitive strength was allowed to vary by species. The best ranked models (using Akaike’s information criterion) explained between 18% and 40% of the variance in growth rate, with each species showing a strong response to competition. Models indicated that relationships between competition and growth varied substantially among species. The results also suggested that the relationship between growth rate and tree size can be complex and that how we model it can affect not only our ability to detect that complexity but also whether we obtain misleading results. In this case, for three of four species, the best model captured an apparent and unexpected decline in potential growth rate for the smallest trees in the data set.

  16. Diel time-courses of leaf growth in monocot and dicot species: endogenous rhythms and temperature effects.

    PubMed

    Poiré, Richard; Wiese-Klinkenberg, Anika; Parent, Boris; Mielewczik, Michael; Schurr, Ulrich; Tardieu, François; Walter, Achim

    2010-06-01

    Diel (24 h) leaf growth patterns were differently affected by temperature variations and the circadian clock in several plant species. In the monocotyledon Zea mays, leaf elongation rate closely followed changes in temperature. In the dicotyledons Nicotiana tabacum, Ricinus communis, and Flaveria bidentis, the effect of temperature regimes was less obvious and leaf growth exhibited a clear circadian oscillation. These differences were related neither to primary metabolism nor to altered carbohydrate availability for growth. The effect of endogenous rhythms on leaf growth was analysed under continuous light in Arabidopsis thaliana, Ricinus communis, Zea mays, and Oryza sativa. No rhythmic growth was observed under continuous light in the two monocotyledons, while growth rhythmicity persisted in the two dicotyledons. Based on model simulations it is concluded that diel leaf growth patterns in mono- and dicotyledons result from the additive effects of both circadian-clock-controlled processes and responses to environmental changes such as temperature and evaporative demand. Apparently very distinct diel leaf growth behaviour of monocotyledons and dicotyledons can thus be explained by the different degrees to which diel temperature variations affect leaf growth in the two groups of species which, in turn, depends on the extent of the leaf growth control by internal clocks.

  17. Trajectory and correlates of growth of extremely-low-birth-weight adolescents.

    PubMed

    Hack, Maureen; Schluchter, Mark; Margevicius, Seunghee; Andreias, Laura; Taylor, H Gerry; Cuttler, Leona

    2014-02-01

    Catch-up growth may predispose to obesity and metabolic sequelae. We sought to examine the trajectory and correlates of growth and catch up among extremely-low-birth-weight (ELBW) (<1 kg) adolescents. A cohort study of 148 neurologically normal ELBW children and 115 normal-birth-weight (NBW) controls born during the period 1992-1995 was conducted. Longitudinal measures of gender-specific growth of ELBW children from birth, in addition to growth and measures of obesity of ELBW and NBW children at 14 y, were evaluated. Following neonatal growth failure, ELBW children had accelerated growth, but at 8 y, they still had lower weight and height z scores than NBW children. By 14 y, ELBW boys had caught up in growth to their NBW controls, but ELBW girls remained significantly smaller. ELBW children, however, did not differ from their controls in measures of obesity. In hierarchical multiple regression analyses, only maternal BMI and weight gain during infancy and childhood predicted the ELBW children's 14-y weight z scores, BMI z scores, and abdominal circumference. Perinatal risk factors, including intrauterine growth, only predicted growth up to 20 mo. Maternal BMI and rate of growth, rather than perinatal factors, predict 14-y obesity among neurologically normal ELBW adolescents.

  18. Colostrum and Mature Human Milk of Women from London, Moscow, and Verona: Determinants of Immune Composition.

    PubMed

    Munblit, Daniel; Treneva, Marina; Peroni, Diego G; Colicino, Silvia; Chow, LiYan; Dissanayeke, Shobana; Abrol, Priya; Sheth, Shreya; Pampura, Alexander; Boner, Attilio L; Geddes, Donna T; Boyle, Robert J; Warner, John O

    2016-11-03

    Cytokines and growth factors in colostrum and mature milk may play an important role in infant immune maturation, and may vary significantly between populations. We aimed to examine associations between environmental and maternal factors, and human milk (HM) cytokine and growth factor levels. We recruited 398 pregnant/lactating women in the United Kingdom, Russia, and Italy. Participants underwent skin prick testing, questionnaire interview, and colostrum and mature milk sampling. HM cytokine and growth factor levels were quantified by electro-chemiluminescence. We found significant geographical variation in growth factor levels, but no evidence of variation between sites in cytokine detectability. There was an inverse correlation between time of milk sampling and growth factor levels in colostrum for Hepatocyte Growth Factor (HGF) and TGFβ1 and TGFβ3, but not TGFβ2, and levels were significantly higher in colostrum than mature milk for all growth factors. The kinetics of decline were different for each growth factor. Cytokines were present at much lower levels than growth factors, and the decline over time was less consistent. HM growth factors and cytokine levels vary between populations for unknown reasons. Levels of HM mediators decline at different rates postpartum, and these findings suggest specific biological roles for HM growth factors and cytokines in early postnatal development.

  19. Gene co-expression analysis identifies gene clusters associated with isotropic and polarized growth in Aspergillus fumigatus conidia.

    PubMed

    Baltussen, Tim J H; Coolen, Jordy P M; Zoll, Jan; Verweij, Paul E; Melchers, Willem J G

    2018-04-26

    Aspergillus fumigatus is a saprophytic fungus that extensively produces conidia. These microscopic asexually reproductive structures are small enough to reach the lungs. Germination of conidia followed by hyphal growth inside human lungs is a key step in the establishment of infection in immunocompromised patients. RNA-Seq was used to analyze the transcriptome of dormant and germinating A. fumigatus conidia. Construction of a gene co-expression network revealed four gene clusters (modules) correlated with a growth phase (dormant, isotropic growth, polarized growth). Transcripts levels of genes encoding for secondary metabolites were high in dormant conidia. During isotropic growth, transcript levels of genes involved in cell wall modifications increased. Two modules encoding for growth and cell cycle/DNA processing were associated with polarized growth. In addition, the co-expression network was used to identify highly connected intermodular hub genes. These genes may have a pivotal role in the respective module and could therefore be compelling therapeutic targets. Generally, cell wall remodeling is an important process during isotropic and polarized growth, characterized by an increase of transcripts coding for hyphal growth and cell cycle/DNA processing when polarized growth is initiated. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  20. The relation between growth of four microbes on six different plasterboards and biological activity of spores.

    PubMed

    Murtoniemi, T; Hirvonen, M-R; Nevalainen, A; Suutari, M

    2003-03-01

    Microbial growth on water-damaged building materials is commonly associated with adverse health effects in the occupants. We examined the growth of Stachybotrys chartarum, Aspergillus versicolor, Penicillium spinulosum, and Streptomyces californicus, isolated from water-damaged buildings, on six different brands of plasterboards. The microbial growth was compared with the biological activity of the spores, that is the potential to induce cytotoxicity and proinflammatory mediators in RAW264.7 macrophages. These results showed that the microbial growth on plasterboard depended on both the microbial strain and the brand of plasterboard used. The biological activity of spores appeared to be regulated by different growth conditions on plasterboards so that good microbial growth was associated with a low bioactivity of the spores, whereas the spores collected from plasterboard supporting only weak growth usually were biologically active. Cytotoxicity of either S. chartarum or A. versicolor did not correlate with any particular growth conditions or induced inflammatory responses. Instead, there were positive correlations between cytotoxicity and levels of induced proinflammatory cytokines for P. spinulosum and S. californicus. These data suggest that both the microbial growth on plasterboard and the resulting bioactivity of spores vary and might be affected by changing the growth conditions provided by the plasterboards.

  1. Advances in pubertal growth and factors influencing it: Can we increase pubertal growth?

    PubMed Central

    Soliman, Ashraf; De Sanctis, Vincenzo; Elalaily, Rania; Bedair, Said

    2014-01-01

    Puberty is a period of development characterized by partially concurrent changes which includes growth acceleration, alteration in body composition and appearance of secondary sex characteristics. Puberty is characterized by an acceleration and then deceleration in skeletal growth. The initiation, duration and amount of growth vary considerably during the growth spurt. Pubertal growth and biological maturation are dynamic processes regulated by a variety of genetic and environmental factors. Changes in skeletal maturation and bone mineral accretion concomitant with the stage of pubertal development constitute essential components in the evaluation of growth during this pubertal period. Genetic, endocrine and nutritional factors and ethnicity contribute variably to the amount of growth gained during this important period of rapid changes. Many studies investigated the possibility of increasing pubertal growth to gain taller final adult height in adolescents with idiopathic short stature (ISS). The pattern of pubertal growth, its relation to sex maturity rating and factors affecting them has been addressed in this review. The results of different trials to increase final adult height of adolescents using different hormones have been summarized. These data enables Endocrinologists to give in-depth explanations to patients and families about the efficacy and clinical significance as well as the safety of using these therapies in the treatment of adolescents with ISS. PMID:25538878

  2. Growth kinetics and island evolution during double-pulsed molecular beam epitaxy of InN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, A.; Hein, C.; Bremers, H.

    The kinetic processes of InN growth using alternating source fluxes with sub-monolayer In pulses in plasma-assisted molecular beam epitaxy have been investigated. Growth at various temperatures reveals the existence of two growth regimes. While growth at low temperatures is solely governed by surface diffusion, a combination of decomposition, desorption, and diffusion becomes decisive at growth temperatures of 470 °C and above. At this critical temperature, the surface morphology changes from a grainy structure to a structure made of huge islands. The formation of those islands is attributed to the development of an indium adlayer, which can be observed via reflection highmore » energy electron diffraction monitoring. Based on the growth experiments conducted at temperatures below T{sub Growth} = 470 °C, an activation energy for diffusion of 0.54 ± 0.02 eV has been determined from the decreasing InN island density. A comparison between growth on metalorganic vapor phase epitaxy GaN templates and pseudo bulk GaN indicates that step edges and dislocations are favorable nucleation sites. Based on the results, we developed a growth model, which describes the main mechanisms of the growth.« less

  3. Conditioned media from a renal cell carcinoma cell line demonstrates the presence of basic fibroblast growth factor.

    PubMed

    Mydlo, J H; Zajac, J; Macchia, R J

    1993-09-01

    In a previous report, we demonstrated the isolation and purification of a heparin binding growth factor from human renal carcinoma, and suggested that this growth factor may play a role in the neovascularity and growth of the tumor. In this report, we demonstrate that the growth of the renal cell carcinoma cell line RC29 is stimulated by the addition of exogenous fibroblast growth factor (FGF), epidermal growth factor (EGF) and transforming growth factor alpha (TGF alpha). Also, media conditioned by this cell line was able to stimulate growth of the A431 vulvar tumor cell line, known for its high concentration of EGF receptors, 3T3 fibroblasts, human umbilical vein (HUV) cells and RC29 cells. Using heparin-sepharose chromatography and then SDS polyacrylamide gel electrophoresis (PAGE), we were able to demonstrate several proteins in the conditioned media of the RC29 cell line. Using Western blot analysis, we detected that at least one of the proteins expressed in this conditioned media was FGF and that it belongs to the basic, not acidic, family of fibroblast growth factors. These findings suggest that renal tumors may express growth factors that may play a direct role in maintaining their unrestricted proliferation.

  4. Colostrum and Mature Human Milk of Women from London, Moscow, and Verona: Determinants of Immune Composition

    PubMed Central

    Munblit, Daniel; Treneva, Marina; Peroni, Diego G.; Colicino, Silvia; Chow, LiYan; Dissanayeke, Shobana; Abrol, Priya; Sheth, Shreya; Pampura, Alexander; Boner, Attilio L.; Geddes, Donna T.; Boyle, Robert J.; Warner, John O.

    2016-01-01

    Cytokines and growth factors in colostrum and mature milk may play an important role in infant immune maturation, and may vary significantly between populations. We aimed to examine associations between environmental and maternal factors, and human milk (HM) cytokine and growth factor levels. We recruited 398 pregnant/lactating women in the United Kingdom, Russia, and Italy. Participants underwent skin prick testing, questionnaire interview, and colostrum and mature milk sampling. HM cytokine and growth factor levels were quantified by electro-chemiluminescence. We found significant geographical variation in growth factor levels, but no evidence of variation between sites in cytokine detectability. There was an inverse correlation between time of milk sampling and growth factor levels in colostrum for Hepatocyte Growth Factor (HGF) and TGFβ1 and TGFβ3, but not TGFβ2, and levels were significantly higher in colostrum than mature milk for all growth factors. The kinetics of decline were different for each growth factor. Cytokines were present at much lower levels than growth factors, and the decline over time was less consistent. HM growth factors and cytokine levels vary between populations for unknown reasons. Levels of HM mediators decline at different rates postpartum, and these findings suggest specific biological roles for HM growth factors and cytokines in early postnatal development. PMID:27827874

  5. Interannual variability of growth and reproduction in Bursera simaruba: the role of allometry and resource variability.

    PubMed

    Hulshof, Catherine M; Stegen, James C; Swenson, Nathan G; Enquist, Carolyn A F; Enquist, Brian J

    2012-01-01

    Plants are expected to differentially allocate resources to reproduction, growth, and survival in order to maximize overall fitness. Life history theory predicts that the allocation of resources to reproduction should occur at the expense of vegetative growth. Although it is known that both organism size and resource availability can influence life history traits, few studies have addressed how size dependencies of growth and reproduction and variation in resource supply jointly affect the coupling between growth and reproduction. In order to understand the relationship between growth and reproduction in the context of resource variability, we utilize a long-term observational data set consisting of 670 individual trees over a 10-year period within a local population of Bursera simaruba (L.) Sarg. We (1) quantify the functional form and variability in the growth-reproduction relationship at the population and individual-tree level and (2) develop a theoretical framework to understand the allometric dependence of growth and reproduction. Our findings suggest that the differential responses of allometric growth and reproduction to resource availability, both between years and between microsites, underlie the apparent relationship between growth and reproduction. Finally, we offer an alternative approach for quantifying the relationship between growth and reproduction that accounts for variation in allometries.

  6. An Approach of Estimating Individual Growth Curves for Young Thoroughbred Horses Based on Their Birthdays

    PubMed Central

    ONODA, Tomoaki; YAMAMOTO, Ryuta; SAWAMURA, Kyohei; MURASE, Harutaka; NAMBO, Yasuo; INOUE, Yoshinobu; MATSUI, Akira; MIYAKE, Takeshi; HIRAI, Nobuhiro

    2014-01-01

    ABSTRACT We propose an approach of estimating individual growth curves based on the birthday information of Japanese Thoroughbred horses, with considerations of the seasonal compensatory growth that is a typical characteristic of seasonal breeding animals. The compensatory growth patterns appear during only the winter and spring seasons in the life of growing horses, and the meeting point between winter and spring depends on the birthday of each horse. We previously developed new growth curve equations for Japanese Thoroughbreds adjusting for compensatory growth. Based on the equations, a parameter denoting the birthday information was added for the modeling of the individual growth curves for each horse by shifting the meeting points in the compensatory growth periods. A total of 5,594 and 5,680 body weight and age measurements of Thoroughbred colts and fillies, respectively, and 3,770 withers height and age measurements of both sexes were used in the analyses. The results of predicted error difference and Akaike Information Criterion showed that the individual growth curves using birthday information better fit to the body weight and withers height data than not using them. The individual growth curve for each horse would be a useful tool for the feeding managements of young Japanese Thoroughbreds in compensatory growth periods. PMID:25013356

  7. Effect of growth pressure on the morphology evolution and doping characteristics in nonpolar a-plane GaN

    NASA Astrophysics Data System (ADS)

    Song, Keun Man; Kim, Jong Min; Kang, Bong Kyun; Shin, Chan Soo; Ko, Chul Gi; Kong, Bo Hyun; Cho, Hyung Koun; Yoon, Dae Ho; Kim, Hogyoung; Hwang, Sung Min

    2012-02-01

    Nonpolar a-plane GaN layers grown on r-plane sapphire substrates were examined by using a two-step growth process. The higher initial growth pressure for the nucleation layer resulted in the improved crystalline quality with lower density of both threading dislocations and basal stacking faults. This was attributed to the higher degree of initial roughening and recovery time via a growth mode transition from three-dimensional (3D) to quasi two-dimensional (2D) lateral growth. Using Hall-effect measurements, the overgrown Si doped GaN layers grown with higher initial growth pressure were found to have higher mobility. The scattering mechanism due to the dislocations was dominant especially at low temperature (<200 K) for the lower initial growth pressure, which was insignificant for the higher initial growth pressure. The temperature-dependent Hall-effect measurements for the Mg doped GaN with a higher initial growth pressure yielded the activation energy and the acceptor concentration to be 128 meV and 1.2 × 1019 cm-3, respectively, corresponding to about 3.6% of activation at room temperature. Two-step growth scheme with a higher initial growth pressure is suggested as a potential method to improve the performance of nonpolar a-plane GaN based devices.

  8. Constrained growth flips the direction of optimal phenological responses among annual plants.

    PubMed

    Lindh, Magnus; Johansson, Jacob; Bolmgren, Kjell; Lundström, Niklas L P; Brännström, Åke; Jonzén, Niclas

    2016-03-01

    Phenological changes among plants due to climate change are well documented, but often hard to interpret. In order to assess the adaptive value of observed changes, we study how annual plants with and without growth constraints should optimize their flowering time when productivity and season length changes. We consider growth constraints that depend on the plant's vegetative mass: self-shading, costs for nonphotosynthetic structural tissue and sibling competition. We derive the optimal flowering time from a dynamic energy allocation model using optimal control theory. We prove that an immediate switch (bang-bang control) from vegetative to reproductive growth is optimal with constrained growth and constant mortality. Increasing mean productivity, while keeping season length constant and growth unconstrained, delayed the optimal flowering time. When growth was constrained and productivity was relatively high, the optimal flowering time advanced instead. When the growth season was extended equally at both ends, the optimal flowering time was advanced under constrained growth and delayed under unconstrained growth. Our results suggests that growth constraints are key factors to consider when interpreting phenological flowering responses. It can help to explain phenological patterns along productivity gradients, and links empirical observations made on calendar scales with life-history theory. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  9. A Novel Method for Characterizing Fatigue Delamination Growth Under Mode I Using the Double Cantilever Beam Specimen

    NASA Technical Reports Server (NTRS)

    Carvalho, Nelson; Murri, G.

    2014-01-01

    A novel method is proposed to obtain Mode I delamination growth rate from a Double Cantilever Beam (DCB) specimen. In the proposed method, Unidirectional (UD) DCB specimens are tested in fatigue at different initial maximum energy release rates levels. The growth rate data obtained in the first increments of crack growth at each maximum energy release rate level are used to generate a Paris Law equation, which characterizes delamination growth rate without fiber-bridging, and can also be used to determine a delamination onset curve. The remaining delamination growth rate data from each test are used to determine a modified Paris law, which characterizes the delamination growth rate in a DCB specimen, explicitly accounting for fiber-bridging. The proposed expression captures well the scatter in experimental data obtained using the DCB specimens, suggesting its adequacy. The Paris Law characterizing delamination growth rate without fiber-bridging predicts higher delamination growth rates for the same maximum energy release rate applied, leading to a conservative estimate for delamination growth. This is particularly relevant, since in generic ply interfaces, fiber-bridging is less predominant than in UD DCB specimens. Failing to account for fiber-bridging in UD DCB specimens may underestimate the delamination growth rate, yielding non-conservative predictions.

  10. 6-Gingerol inhibits hair shaft growth in cultured human hair follicles and modulates hair growth in mice.

    PubMed

    Miao, Yong; Sun, Yabin; Wang, Wenjun; Du, Benjun; Xiao, Shun-e; Hu, Yijue; Hu, Zhiqi

    2013-01-01

    Ginger (Zingiber officinale) has been traditionally used to check hair loss and stimulate hair growth in East Asia. Several companies produce shampoo containing an extract of ginger claimed to have anti-hair loss and hair growth promotion properties. However, there is no scientific evidence to back up these claims. This study was undertaken to measure 6-gingerol, the main active component of ginger, on hair shaft elongation in vitro and hair growth in vivo, and to investigate its effect on human dermal papilla cells (DPCs) in vivo and in vitro. 6-Gingerol suppressed hair growth in hair follicles in culture and the proliferation of cultured DPCs. The growth inhibition of DPCs by 6-gingerol in vitro may reflect a decrease in the Bcl-2/Bax ratio. Similar results were obtained in vivo. The results of this study showed that 6-gingerol does not have the ability to promote hair growth, on the contrary, can suppress human hair growth via its inhibitory and pro-apoptotic effects on DPCs in vitro, and can cause prolongation of telogen phase in vivo. Thus, 6-gingerol rather than being a hair growth stimulating drug, it is a potential hair growth suppressive drug; i.e. for hair removal.

  11. 6-Gingerol Inhibits Hair Shaft Growth in Cultured Human Hair Follicles and Modulates Hair Growth in Mice

    PubMed Central

    Miao, Yong; Sun, Yabin; Wang, Wenjun; Du, Benjun; Xiao, Shun-e; Hu, Yijue; Hu, Zhiqi

    2013-01-01

    Ginger (Zingiber officinale) has been traditionally used to check hair loss and stimulate hair growth in East Asia. Several companies produce shampoo containing an extract of ginger claimed to have anti-hair loss and hair growth promotion properties. However, there is no scientific evidence to back up these claims. This study was undertaken to measure 6-gingerol, the main active component of ginger, on hair shaft elongation in vitro and hair growth in vivo, and to investigate its effect on human dermal papilla cells (DPCs) in vivo and in vitro. 6-Gingerol suppressed hair growth in hair follicles in culture and the proliferation of cultured DPCs. The growth inhibition of DPCs by 6-gingerol in vitro may reflect a decrease in the Bcl-2/Bax ratio. Similar results were obtained in vivo. The results of this study showed that 6-gingerol does not have the ability to promote hair growth, on the contrary, can suppress human hair growth via its inhibitory and pro-apoptotic effects on DPCs in vitro, and can cause prolongation of telogen phase in vivo. Thus, 6-gingerol rather than being a hair growth stimulating drug, it is a potential hair growth suppressive drug; i.e. for hair removal. PMID:23437345

  12. Fibroblast growth factor 8 is expressed at higher levels in lactating human breast and in breast cancer.

    PubMed

    Zammit, C; Coope, R; Gomm, J J; Shousha, S; Johnston, C L; Coombes, R C

    2002-04-08

    Fibroblast growth factor 8 can transform NIH3T3 cells and its expression has been found to be associated with breast and prostate cancer. Following our finding that fibroblast growth factor 8 mRNA expression is increased in breast cancer, we have undertaken an immunohistochemistry study of fibroblast growth factor 8 expression in a series of human breast tissues and other normal tissues. Our findings confirm increased expression of fibroblast growth factor 8 in malignant breast tissue but also show significant fibroblast growth factor 8 expression in non-malignant breast epithelial cells. No significant difference in fibroblast growth factor 8 expression was found between different grades of ductal carcinoma, lobular carcinoma and ductal carcinoma in-situ or cancer of different oestrogen receptor, progesterone receptor or nodal status. The highest levels of fibroblast growth factor 8 expression were found in lactating breast tissues and fibroblast growth factor 8 was also detected in human milk. A survey of other normal tissues showed that fibroblast growth factor 8 is expressed in the proliferative cells of the dermis and epithelial cells in colon, ovary fallopian tube and uterus. Fibroblast growth factor 8 appears to be expressed in several organs in man and appears to have an importance in lactation.

  13. Old growth in northwestern California national forests.

    Treesearch

    Debby Beardsley; Ralph. Warbington

    1996-01-01

    This report estimates old-growth forest area and summarizes stand characteristics of old growth in northwestern California National Forests by forest type. Old-growth definitions for each forest type are used.

  14. Contrasting drivers and trends of coniferous and deciduous tree growth in interior Alaska.

    PubMed

    Cahoon, Sean M P; Sullivan, Patrick F; Brownlee, Annalis H; Pattison, Robert R; Andersen, Hans-Erik; Legner, Kate; Hollingsworth, Teresa N

    2018-03-22

    The boreal biome represents approximately one third of the world's forested area and plays an important role in global biogeochemical and energy cycles. Numerous studies in boreal Alaska have concluded that growth of black and white spruce is declining as a result of temperature-induced drought stress. The combined evidence of declining spruce growth and changes in the fire regime that favor establishment of deciduous tree species has led some investigators to suggest the region may be transitioning from dominance by spruce to dominance by deciduous forests and/or grasslands. Although spruce growth trends have been extensively investigated, few studies have evaluated long-term radial growth trends of the dominant deciduous species (Alaska paper birch and trembling aspen) and their sensitivity to moisture availability. We used a large and spatially extensive sample of tree cores from interior Alaska to compare long-term growth trends among contrasting tree species (white and black spruce vs. birch and aspen). All species showed a growth peak in the mid-1940s, although growth following the peak varied strongly across species. Following an initial decline from the peak, growth of white spruce showed little evidence of a trend, while black spruce and birch growth showed slight growth declines from ~1970 to present. Aspen growth was much more variable than the other species and showed a steep decline from ~1970 to present. Growth of birch, black and white spruce was sensitive to moisture availability throughout most of the tree-ring chronologies, as evidenced by negative correlations with air temperature and positive correlations with precipitation. However, a positive correlation between previous July precipitation and aspen growth disappeared in recent decades, corresponding with a rise in the population of the aspen leaf miner (Phyllocnistis populiella), an herbivorous moth, which may have driven growth to a level not seen since the early 20th century. Our results provide important historical context for recent growth and raise questions regarding competitive interactions among the dominant tree species and exchanges of carbon and energy in the warming climate of interior Alaska. © 2018 by the Ecological Society of America.

  15. Otolith reading and multi-model inference for improved estimation of age and growth in the gilthead seabream Sparus aurata (L.)

    NASA Astrophysics Data System (ADS)

    Mercier, Lény; Panfili, Jacques; Paillon, Christelle; N'diaye, Awa; Mouillot, David; Darnaude, Audrey M.

    2011-05-01

    Accurate knowledge of fish age and growth is crucial for species conservation and management of exploited marine stocks. In exploited species, age estimation based on otolith reading is routinely used for building growth curves that are used to implement fishery management models. However, the universal fit of the von Bertalanffy growth function (VBGF) on data from commercial landings can lead to uncertainty in growth parameter inference, preventing accurate comparison of growth-based history traits between fish populations. In the present paper, we used a comprehensive annual sample of wild gilthead seabream ( Sparus aurata L.) in the Gulf of Lions (France, NW Mediterranean) to test a methodology improving growth modelling for exploited fish populations. After validating the timing for otolith annual increment formation for all life stages, a comprehensive set of growth models (including VBGF) were fitted to the obtained age-length data, used as a whole or sub-divided between group 0 individuals and those coming from commercial landings (ages 1-6). Comparisons in growth model accuracy based on Akaike Information Criterion allowed assessment of the best model for each dataset and, when no model correctly fitted the data, a multi-model inference (MMI) based on model averaging was carried out. The results provided evidence that growth parameters inferred with VBGF must be used with high caution. Hence, VBGF turned to be among the less accurate for growth prediction irrespective of the dataset and its fit to the whole population, the juvenile or the adult datasets provided different growth parameters. The best models for growth prediction were the Tanaka model, for group 0 juveniles, and the MMI, for the older fish, confirming that growth differs substantially between juveniles and adults. All asymptotic models failed to correctly describe the growth of adult S. aurata, probably because of the poor representation of old individuals in the dataset. Multi-model inference associated with separate analysis of juveniles and adult fish is then advised to obtain objective estimations of growth parameters when sampling cannot be corrected towards older fish.

  16. Restoring complexity: second-growth forests and habitat diversity.

    Treesearch

    Valerie Rapp

    2002-01-01

    Old-growth forests supply many important values, including critical habitat for some wildlife species. These forests are most useful for some wildlife species when they exist in large blocks. But many areas dedicated to old-growth values on federal lands are fragmented by patches of second-growth forests planted after timber harvest. These second-growth forests are...

  17. Growth of black walnut seedlings during the first season after transplanting

    Treesearch

    Calvin F. Bey

    1974-01-01

    Black walnut trees planted as 1-0 seedlings generally show little, if any, net height growth during the first year. Possible reasons for slow first-year growth include transplanting shock, lack of root regeneration, unfavorable environments, and unsuitable genotypes. To help understand reasons for the slow growth, we studied the first-year growth of black walnut...

  18. Estimating annual growth losses from drought in loblolly pine plantations

    Treesearch

    Ralph L. Amateis; Harold E. Burkhart; Daniel Waiswa

    2013-01-01

    Growth data over the past 10 years from loblolly pine (Pinus taeda L.) plantations established across the natural range of the species were linked with annual rainfall data over the same period to evaluate the impact of drought on stand growth. Regression procedures were used to determine (1) whether dominant height growth or basal area growth or...

  19. A new method for evaluating forest thinning: growth dominance in managed Pinus resinosa stands

    Treesearch

    John B. Bradford; Anthony W. D' Amato; Brian J. Palik; Shawn Fraver

    2010-01-01

    Growth dominance is a relatively new, simple, quantitative metric of within-stand individual tree growth patterns, and is defined as positive when larger trees in the stand display proportionally greater growth than smaller trees, and negative when smaller trees display proportionally greater growth than larger trees. We examined long-term silvicultural experiments in...

  20. Analysis of high-speed growth of silicon sheet in inclined-meniscus configuration

    NASA Technical Reports Server (NTRS)

    Thomas, P. D.; Brown, R. A.

    1985-01-01

    The study of high speed growth of silicon sheet in inclined-meniscus configurations is discussed. It was concluded that the maximum growth rates in vertical and inclined growth are set by thermal-capillary limits. Also, the melt/crystal interface was determined to be flat. And, vertical growth is qualitatively modelled by one dimensional heat transfer.

  1. Status of growth and yield information for northern forest types

    Treesearch

    Dale S. Solomon

    1977-01-01

    Existing regional growth-and-yield information for most of the northern forest types is summarized by species. Present research is concentrated on growth-simulation models, constructed by either aggregating available information or through individual tree growth studies. A uniformity of more refined measurements is needed so that future growth models can be tried for...

  2. Ninety-two years of tree growth and death in a second-growth redwood forest

    Treesearch

    Benjamin G. Iberle; Stephen C. Sillett; Robert Van Pelt; Mark Andre

    2017-01-01

    Mature second-growth redwood (Sequoia sempervirens (D. Don) Endl.) forests are an important and uncommon resource in the redwood region. Development of second-growth redwood forests beyond rotation age is not well understood. Continuous long-term data are especially lacking, considering that the maximum possible age of second-growth stands is now...

  3. Patterns of growth dominance in thinned yellow-poplar stands in the southern Appalachian Mountains, USA

    Treesearch

    Tara L. Keyser

    2012-01-01

    Growth dominance provides a quantitative description of the relative contribution of individual trees to stand growth. Positive dominance occurs when the largest individuals account for a greater proportion of growth period increment than total biomass. Conversely, negative dominance occurs when the smallest trees account for a greater proportion of the growth period...

  4. Evaluating growth performance of young stands

    Treesearch

    A. L. Roe; R. E. Benson

    1966-01-01

    A simple procedure for evaluating the diameter growth of young stands in relation to potential growth is described. A comparison technique is developed which contrasts relative diameter of crop trees to the relative diameter growth of the last decade to show the condition and trend of growth in the stand. The method is objective, easy to use, and has several...

  5. The role of old-growth forests in frequent-fire landscapes

    Treesearch

    Daniel Binkley; Tom Sisk; Carol Chambers; Judy Springer; William Block

    2007-01-01

    Classic ecological concepts and forestry language regarding old growth are not well suited to frequent-fire landscapes. In frequent-fire, old-growth landscapes, there is a symbiotic relationship between the trees, the understory graminoids, and fire that results in a healthy ecosystem. Patches of old growth interspersed with younger growth and open, grassy areas...

  6. Detecting Appropriate Trajectories of Growth in Latent Growth Models: The Performance of Information-Based Criteria

    ERIC Educational Resources Information Center

    Whittaker, Tiffany A.; Khojasteh, Jam

    2017-01-01

    Latent growth modeling (LGM) is a popular and flexible technique that may be used when data are collected across several different measurement occasions. Modeling the appropriate growth trajectory has important implications with respect to the accurate interpretation of parameter estimates of interest in a latent growth model that may impact…

  7. Population Growth Types in India, 1961-71

    ERIC Educational Resources Information Center

    Chakravarti, A. K.

    1976-01-01

    An effective means of cartographic representation of India's population growth and its spatial characteristics is the focus of this paper. A population growth index and population growth types are discussed. (Author/ND)

  8. On the evolution of developmental mechanisms: Divergent polarities in leaf growth as a case study.

    PubMed

    Gupta, Mainak Das; Nath, Utpal

    2016-01-01

    Most model plants used to study leaf growth share a common developmental mechanism, namely basipetal growth polarity, wherein the distal end differentiates first with progressively more proliferative cells toward the base. Therefore, this base-to-tip growth pattern has served as a paradigm to explain leaf growth and also formed the basis for several computational models. However, our recent report in The Plant Cell on the investigation of leaf growth in 75 eudicot species covering a wide range of eudicot families showed that leaves grow with divergent polarities in the proximo-distal axis or without any obvious polarity. This divergence in growth polarity is linked to the expression divergence of a conserved microRNA-transcription factor module. This study raises several questions on the evolutionary origin of leaf growth pattern, such as 'when and why in evolution did the divergent growth polarities arise?' and 'what were the molecular changes that led to this divergence?'. Here, we discuss a few of these questions in some detail.

  9. Hydrogen enhanced crack growth in 18 Ni maraging steels

    NASA Technical Reports Server (NTRS)

    Hudak, S. J., Jr.; Wei, R. P.

    1976-01-01

    The kinetics of sustained-load subcritical crack growth for 18 Ni maraging steels in high-purity hydrogen are examined using the crack-tip stress intensity factor K as a measure of crack driving force. Crack growth rate as a function of stress intensity exhibited a clearly defined K-independent stage (Stage II). Crack growth rates in an 18 Ni (grade 250) maraging steel are examined for temperatures from -6 to +100 C. A critical temperature was observed above which crack growth rates became diminishingly small. At lower temperatures the activation energy for Stage II crack growth was found to be 16.7 plus or minus 3.3 kJ/mole. Temperature and hydrogen partial pressure are shown to interact in a complex manner to determine the apparent Kth (stress intensity level below which no observable crack growth occurs) and the crack growth behavior. Comparison of results on '250' and '300' grades of 18 Ni maraging steel indicate a significant influence of alloy composition and/or strength level on the crack growth behavior.

  10. An essential role for IGF2 in cartilage development and glucose metabolism during postnatal long bone growth.

    PubMed

    Uchimura, Tomoya; Hollander, Judith M; Nakamura, Daisy S; Liu, Zhiyi; Rosen, Clifford J; Georgakoudi, Irene; Zeng, Li

    2017-10-01

    Postnatal bone growth involves a dramatic increase in length and girth. Intriguingly, this period of growth is independent of growth hormone and the underlying mechanism is poorly understood. Recently, an IGF2 mutation was identified in humans with early postnatal growth restriction. Here, we show that IGF2 is essential for longitudinal and appositional murine postnatal bone development, which involves proper timing of chondrocyte maturation and perichondrial cell differentiation and survival. Importantly, the Igf2 null mouse model does not represent a simple delay of growth but instead uncoordinated growth plate development. Furthermore, biochemical and two-photon imaging analyses identified elevated and imbalanced glucose metabolism in the Igf2 null mouse. Attenuation of glycolysis rescued the mutant phenotype of premature cartilage maturation, thereby indicating that IGF2 controls bone growth by regulating glucose metabolism in chondrocytes. This work links glucose metabolism with cartilage development and provides insight into the fundamental understanding of human growth abnormalities. © 2017. Published by The Company of Biologists Ltd.

  11. Biochemomechanical poroelastic theory of avascular tumor growth

    NASA Astrophysics Data System (ADS)

    Xue, Shi-Lei; Li, Bo; Feng, Xi-Qiao; Gao, Huajian

    2016-09-01

    Tumor growth is a complex process involving genetic mutations, biochemical regulations, and mechanical deformations. In this paper, a thermodynamics-based nonlinear poroelastic theory is established to model the coupling among the mechanical, chemical, and biological mechanisms governing avascular tumor growth. A volumetric growth law accounting for mechano-chemo-biological coupled effects is proposed to describe the development of solid tumors. The regulating roles of stresses and nutrient transport in the tumor growth are revealed under different environmental constraints. We show that the mechano-chemo-biological coupling triggers anisotropic and heterogeneous growth, leading to the formation of layered structures in a growing tumor. There exists a steady state in which tumor growth is balanced by resorption. The influence of external confinements on tumor growth is also examined. A phase diagram is constructed to illustrate how the elastic modulus and thickness of the confinements jointly dictate the steady state of tumor volume. Qualitative and quantitative agreements with experimental observations indicate the developed model is capable of capturing the essential features of avascular tumor growth in various environments.

  12. Inhomogeneous growth of fluctuations of concentration of inertial particles in channel turbulence

    NASA Astrophysics Data System (ADS)

    Fouxon, Itzhak; Schmidt, Lukas; Ditlevsen, Peter; van Reeuwijk, Maarten; Holzner, Markus

    2018-06-01

    We study the growth of concentration fluctuations of weakly inertial particles in the turbulent channel flow starting with a smooth initial distribution. The steady-state concentration is singular and multifractal so the growth describes the increasingly rugged structure of the distribution. We demonstrate that inhomogeneity influences the growth of concentration fluctuations profoundly. For homogeneous turbulence the growth is exponential and is fully determined by Kolmogorov scale eddies.We derive lognormality of the statistics in this case. The growth exponents of the moments are proportional to the sum of Lyapunov exponents, which is quadratic in the small inertia of the particles. In contrast, for inhomogeneous turbulence the growth is linear in inertia. It involves correlations of inertial range and viscous scale eddies that turn the growth into a stretched exponential law with exponent three halves. We demonstrate using direct numerical simulations that the resulting growth rate can differ by orders of magnitude over channel height. This strong variation might have relevance in the planetary boundary layer.

  13. Heterogeneous nucleation of pits via step pinning during Si(100) homoepitaxy

    NASA Astrophysics Data System (ADS)

    Yitamben, E. N.; Butera, R. E.; Swartzentruber, B. S.; Simonson, R. J.; Misra, S.; Carroll, M. S.; Bussmann, E.

    2017-11-01

    Using scanning tunneling microscopy (STM), we investigate oxide-induced growth pits in Si thin films deposited by molecular beam epitaxy. In the transition temperature range from 2D adatom islanding to step-flow growth, systematic controlled air leaks into the growth chamber induce pits in the growth surface. We show that pits are also correlated with oxygen-contaminated flux from Si sublimation sources. From a thermodynamic standpoint, multilayer growth pits are unexpected in relaxed homoepitaxial growth, whereas oxidation is a known cause for step pinning, roughening, and faceting on elemental surfaces, both with and without growth flux. Not surprisingly, pits are thermodynamically metastable and heal by annealing to recover a smooth periodic step arrangement. STM reveals new details about the pits’ atomistic origins and growth dynamics. We give a model for heterogeneous nucleation of pits by preferential adsorption of Å-sized oxide nuclei at intrinsic growth antiphase boundaries, and subsequent step pinning and bunching around the nuclei.

  14. Salinity effect on the maximal growth temperature of some bacteria isolated from marine enviroments.

    PubMed

    Stanley, S O; Morita, R Y

    1968-01-01

    Salinity of the growth medium was found to have a marked effect on the maximal growth temperature of four bacteria isolated from marine sources. Vibrio marinus MP-1 had a maximal growth temperature of 21.2 C at a salinity of 35% and a maximal growth temperature of 10.5 C at a salinity of 7%, the lowest salinity at which it would grow. This effect was shown to be due to the presence of various cations in the medium. The order of effectiveness of cations in restoring the normal maximal growth temperature, when added to dilute seawater, was Na(+) > Li(+) > Mg(++) > K(+) > Rb(+) > NH(4) (+). The anions tested, with the exception of SO(4)=, had no marked effect on the maximal growth temperature response. In a completely defined medium, the highest maximal growth temperature was 20.0 C at 0.40 m NaCl. A decrease in the maximal growth temperature was observed at both low and high concentrations of NaCl.

  15. Segregation control in vertical Bridgman crystal growth

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Kou, S.

    1996-11-01

    To help the crystal grow at a constant dopant concentration in vertical Bridgman crystal growth, the dopant concentration of the growth melt, i.e. the melt from which the crystal grows, was kept constant. To achieve this, three different methods were used to replenish the growth melt at a controlled rate and suppress dopant diffusion between the growth melt and the replenishing melt. In method one, a replenishing crucible having a long melt passageway was immersed in the growth melt. In method two, a replenishing crucible having an independent feed-rate control mechanism was held above the growth melt. In method three, a submerged diffusion baffle was used to form a long melt passageway between the growth melt and the replenishing melt. NaNO 3 was used as a model material for crystal growth. Single crystals were grown by these three methods with effective segregation control. Method two was applied to InSb and single crystals were also grown with effective segregation control.

  16. Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs

    PubMed Central

    Campos, Marcelo L.; Yoshida, Yuki; Major, Ian T.; de Oliveira Ferreira, Dalton; Weraduwage, Sarathi M.; Froehlich, John E.; Johnson, Brendan F.; Kramer, David M.; Jander, Georg; Sharkey, Thomas D.; Howe, Gregg A.

    2016-01-01

    Plants resist infection and herbivory with innate immune responses that are often associated with reduced growth. Despite the importance of growth-defense tradeoffs in shaping plant productivity in natural and agricultural ecosystems, the molecular mechanisms that link growth and immunity are poorly understood. Here, we demonstrate that growth-defense tradeoffs mediated by the hormone jasmonate are uncoupled in an Arabidopsis mutant (jazQ phyB) lacking a quintet of Jasmonate ZIM-domain transcriptional repressors and the photoreceptor phyB. Analysis of epistatic interactions between jazQ and phyB reveal that growth inhibition associated with enhanced anti-insect resistance is likely not caused by diversion of photoassimilates from growth to defense but rather by a conserved transcriptional network that is hardwired to attenuate growth upon activation of jasmonate signalling. The ability to unlock growth-defense tradeoffs through relief of transcription repression provides an approach to assemble functional plant traits in new and potentially useful ways. PMID:27573094

  17. Needle and stem wood production in Scots pine (Pinus sylvestris) trees of different age, size and competitive status.

    PubMed

    Vanninen, Petteri; Mäkelä, Annikki

    2000-04-01

    We studied effects of tree age, size and competitive status on foliage and stem production of 43 Scots pine (Pinus sylvestris L.) trees in southern Finland. The tree attributes related to competition included foliage density, crown ratio and height/diameter ratio. Needle mass was considered to be the primary cause of growth through photosynthesis. Both stem growth and foliage growth were strongly correlated with foliage mass. Consequently, differences in growth allocation between needles and stem wood in trees of different age, size, or position were small. However, increasing relative height increased the sum of stem growth and foliage growth per unit foliage mass, indicating an effect of available light. Suppressed trees seemed to allocate more growth to stem wood than dominant trees, and their stem growth per unit foliage mass was larger. Similarly, trees in dense stands allocated more growth to stem wood than trees in sparse stands. The results conformed to the pipe model theory but seemed to contradict the priority principle of allocation.

  18. Structure, growth kinetics, and ledge flow during vapor-solid-solid growth of copper-catalyzed silicon nanowires.

    PubMed

    Wen, C-Y; Reuter, M C; Tersoff, J; Stach, E A; Ross, F M

    2010-02-10

    We use real-time observations of the growth of copper-catalyzed silicon nanowires to determine the nanowire growth mechanism directly and to quantify the growth kinetics of individual wires. Nanowires were grown in a transmission electron microscope using chemical vapor deposition on a copper-coated Si substrate. We show that the initial reaction is the formation of a silicide, eta'-Cu(3)Si, and that this solid silicide remains on the wire tips during growth so that growth is by the vapor-solid-solid mechanism. Individual wire directions and growth rates are related to the details of orientation relation and catalyst shape, leading to a rich morphology compared to vapor-liquid-solid grown nanowires. Furthermore, growth occurs by ledge propagation at the silicide/silicon interface, and the ledge propagation kinetics suggest that the solubility of precursor atoms in the catalyst is small, which is relevant to the fabrication of abrupt heterojunctions in nanowires.

  19. Emergence of robust growth laws from optimal regulation of ribosome synthesis.

    PubMed

    Scott, Matthew; Klumpp, Stefan; Mateescu, Eduard M; Hwa, Terence

    2014-08-22

    Bacteria must constantly adapt their growth to changes in nutrient availability; yet despite large-scale changes in protein expression associated with sensing, adaptation, and processing different environmental nutrients, simple growth laws connect the ribosome abundance and the growth rate. Here, we investigate the origin of these growth laws by analyzing the features of ribosomal regulation that coordinate proteome-wide expression changes with cell growth in a variety of nutrient conditions in the model organism Escherichia coli. We identify supply-driven feedforward activation of ribosomal protein synthesis as the key regulatory motif maximizing amino acid flux, and autonomously guiding a cell to achieve optimal growth in different environments. The growth laws emerge naturally from the robust regulatory strategy underlying growth rate control, irrespective of the details of the molecular implementation. The study highlights the interplay between phenomenological modeling and molecular mechanisms in uncovering fundamental operating constraints, with implications for endogenous and synthetic design of microorganisms. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  20. Near-Death Experiences and Posttraumatic Growth.

    PubMed

    Khanna, Surbhi; Greyson, Bruce

    2015-10-01

    Posttraumatic growth denotes positive psychological change after a traumatic experience that is an improvement over the state before the trauma. Inasmuch as it involves existential reevaluation, posttraumatic growth overlaps with spiritual change, although it also encompasses other domains of positive outcome. This study investigated posttraumatic growth and presence and depth of near-death experience at the time of the close brush with death among 251 survivors of a close brush with death, using the Posttraumatic Growth Inventory and the Near-Death Experience (NDE) Scale. Near-death experiences were associated with greater posttraumatic growth than were close brushes with death in the absence of such an experience, and scores on the NDE Scale were significantly correlated with scores on the Posttraumatic Growth Inventory. To the extent that NDEs are interpreted as spiritual events, these findings support prior research suggesting that spiritual factors make a significant contribution to posttraumatic growth and are consistent with the model that posits challenges to the assumptive worldview as a major stimulus to posttraumatic growth.

  1. Selection of strains of Lentinula edodes and Lentinula boryana adapted for efficient mycelial growth on wheat straw.

    PubMed

    Mata, G; Delpech, P; Savoie, J M

    2001-09-01

    Mycelial growth rates are presented for 11 strains of Lentinula edodes and six strains of Lentinula boryana cultivated on solid media: derived from malt extract (MEA); malt yeast extract (YMEA); and, YMEA plus soluble lignin derivatives (YMEA+WSLD). The results were compared with data for mycelial growth rates, of the same strains cultivated on substrates derived from wheat straw treated at different temperatures (50, 65, 75 and autoclaving at 121 degrees C). In general, the addition of WSLD significantly reduced mycelial growth rates in both species. The greatest mycelial growth rate was obtained on sterilized straw at 121 degrees C for the majority of strains. However, this growth was not significantly different from that obtained at 75 degrees C. L. edodes showed greater growth rates than L. boryana. The feasibility of using estimates of mycelial growth rate on YMEA and YMEA+WSLD are discussed as possible indicators of a strain's potential for mycelial growth on substrates derived from wheat straw.

  2. New observations and insights into the morphology and growth kinetics of hydrate films.

    PubMed

    Li, Sheng-Li; Sun, Chang-Yu; Liu, Bei; Li, Zhi-Yun; Chen, Guang-Jin; Sum, Amadeu K

    2014-02-19

    The kinetics of film growth of hydrates of methane, ethane, and methane-ethane mixtures were studied by exposing a single gas bubble to water. The morphologies, lateral growth rates, and thicknesses of the hydrate films were measured for various gas compositions and degrees of subcooling. A variety of hydrate film textures was revealed. The kinetics of two-dimensional film growth was inferred from the lateral growth rate and initial thickness of the hydrate film. A clear relationship between the morphology and film growth kinetics was observed. The shape of the hydrate crystals was found to favour heat or mass transfer and favour further growth of the hydrate film. The quantitative results on the kinetics of film growth showed that for a given degree of subcooling, the initial film thicknesses of the double hydrates were larger than that of pure methane or ethane hydrate, whereas the thickest hydrate film and the lowest lateral growth rate occurred when the methane mole fraction was approximately 0.6.

  3. New Observations and Insights into the Morphology and Growth Kinetics of Hydrate Films

    PubMed Central

    Li, Sheng-Li; Sun, Chang-Yu; Liu, Bei; Li, Zhi-Yun; Chen, Guang-Jin; Sum, Amadeu K.

    2014-01-01

    The kinetics of film growth of hydrates of methane, ethane, and methane-ethane mixtures were studied by exposing a single gas bubble to water. The morphologies, lateral growth rates, and thicknesses of the hydrate films were measured for various gas compositions and degrees of subcooling. A variety of hydrate film textures was revealed. The kinetics of two-dimensional film growth was inferred from the lateral growth rate and initial thickness of the hydrate film. A clear relationship between the morphology and film growth kinetics was observed. The shape of the hydrate crystals was found to favour heat or mass transfer and favour further growth of the hydrate film. The quantitative results on the kinetics of film growth showed that for a given degree of subcooling, the initial film thicknesses of the double hydrates were larger than that of pure methane or ethane hydrate, whereas the thickest hydrate film and the lowest lateral growth rate occurred when the methane mole fraction was approximately 0.6. PMID:24549241

  4. The wing and the eye: a parsimonious theory for scaling and growth control?

    PubMed

    Romanova-Michaelides, Maria; Aguilar-Hidalgo, Daniel; Jülicher, Frank; Gonzalez-Gaitan, Marcos

    2015-01-01

    How a developing organ grows and patterns to its final shape is an important question in developmental biology. Studies of growth and patterning in the Drosophila wing imaginal disc have identified a key player, the morphogen Decapentaplegic (Dpp). These studies provided insights into our understanding of growth control and scaling: expansion of the Dpp gradient correlated with the growth of the tissue. A recent report on growth of a Drosophila organ other than the wing, the eye imaginal disc, prompts a reconsideration of our models of growth control. Despite striking differences between the two, the Dpp gradient scales with the target tissues of both organs and the growth of both the wing and the eye is controlled by Dpp. The goal of this review is to discuss whether a parsimonious model of scaling and growth control can explain the relationship between the Dpp gradient and growth in these two different developmental systems. © 2015 Wiley Periodicals, Inc.

  5. Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs

    DOE PAGES

    Campos, Marcelo L.; Yoshida, Yuki; Major, Ian T.; ...

    2016-08-30

    Plants resist infection and herbivory with innate immune responses that are often associated with reduced growth. Despite the importance of growth-defense tradeoffs in shaping plant productivity in natural and agricultural ecosystems, the molecular mechanisms that link growth and immunity are poorly understood. Here, we demonstrate that growth-defense tradeoffs mediated by the hormone jasmonate are uncoupled in an Arabidopsis mutant ( jazQ phyB) lacking a quintet of Jasmonate ZIM-domain transcriptional repressors and the photoreceptor phyB. Analysis of epistatic interactions between jazQ and phyB reveal that growth inhibition associated with enhanced anti-insect resistance is likely not caused by diversion of photoassimilates frommore » growth to defense but rather by a conserved transcriptional network that is hardwired to attenuate growth upon activation of jasmonate signalling. Furthermore, the ability to unlock growth-defense tradeoffs through relief of transcription repression provides an approach to assemble functional plant traits in new and potentially useful ways.« less

  6. A structure-based extracellular matrix expansion mechanism of fibrous tissue growth

    PubMed Central

    Kalson, Nicholas S; Lu, Yinhui; Taylor, Susan H; Starborg, Tobias; Holmes, David F; Kadler, Karl E

    2015-01-01

    Embryonic growth occurs predominately by an increase in cell number; little is known about growth mechanisms later in development when fibrous tissues account for the bulk of adult vertebrate mass. We present a model for fibrous tissue growth based on 3D-electron microscopy of mouse tendon. We show that the number of collagen fibrils increases during embryonic development and then remains constant during postnatal growth. Embryonic growth was explained predominately by increases in fibril number and length. Postnatal growth arose predominately from increases in fibril length and diameter. A helical crimp structure was established in embryogenesis, and persisted postnatally. The data support a model where the shape and size of tendon is determined by the number and position of embryonic fibroblasts. The collagen fibrils that these cells synthesise provide a template for postnatal growth by structure-based matrix expansion. The model has important implications for growth of other fibrous tissues and fibrosis. DOI: http://dx.doi.org/10.7554/eLife.05958.001 PMID:25992598

  7. Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campos, Marcelo L.; Yoshida, Yuki; Major, Ian T.

    Plants resist infection and herbivory with innate immune responses that are often associated with reduced growth. Despite the importance of growth-defense tradeoffs in shaping plant productivity in natural and agricultural ecosystems, the molecular mechanisms that link growth and immunity are poorly understood. Here, we demonstrate that growth-defense tradeoffs mediated by the hormone jasmonate are uncoupled in an Arabidopsis mutant ( jazQ phyB) lacking a quintet of Jasmonate ZIM-domain transcriptional repressors and the photoreceptor phyB. Analysis of epistatic interactions between jazQ and phyB reveal that growth inhibition associated with enhanced anti-insect resistance is likely not caused by diversion of photoassimilates frommore » growth to defense but rather by a conserved transcriptional network that is hardwired to attenuate growth upon activation of jasmonate signalling. Furthermore, the ability to unlock growth-defense tradeoffs through relief of transcription repression provides an approach to assemble functional plant traits in new and potentially useful ways.« less

  8. Delivery of growth factors for tissue regeneration and wound healing.

    PubMed

    Koria, Piyush

    2012-06-01

    Growth factors are soluble secreted proteins capable of affecting a variety of cellular processes important for tissue regeneration. Consequently, the self-healing capacity of patients can be augmented by artificially enhancing one or more processes important for healing through the application of growth factors. However, their application in clinics remains limited due to lack of robust delivery systems and biomaterial carriers. Interestingly, all clinically approved therapies involving growth factors utilize some sort of a biomaterial carrier for growth factor delivery. This suggests that biomaterial delivery systems are extremely important for successful usage of growth factors in regenerative medicine. This review outlines the role of growth factors in tissue regeneration, and their application in both pre-clinical animal models of regeneration and clinical trials is discussed. Additionally, current status of biomaterial substrates and sophisticated delivery systems such as nanoparticles for delivery of exogenous growth factors and peptides in humans are reviewed. Finally, issues and possible future research directions for growth factor therapy in regenerative medicine are discussed.

  9. Continuous Czochralski growth. Development of advanced Czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The improvement of growth rates using radiation shielding and investigation of the crucible melt interaction for improved yields were emphasized. Growth runs were performed from both 15 and 16 inch diameter crucibles, producing 30 and 37 kg ingots respectively. Efforts to increase the growth rate of 150 mm diameter ingots were limited by temperature instabilities believed to be caused by undesirable thermal convections in the larger melts. The radiation shield improved the growth rate somewhat, but the thermal instability was still evident, leading to nonround ingots and loss of dislocation-free structure. A 38 kg crystal was grown to demonstrate the feasibility of producing 150 kg with four growth cycles. After the grower construction phase, the Hamco microprocessor control system was interfaced to the growth facility, including the sensor for automatic control of seeding temperature, and the sensor for automatic shouldering. Efforts focused upon optimization of the seeding, necking, and shoulder growth automation programs.

  10. Heterogeneous nucleation of pits via step pinning during Si(100) homoepitaxy

    DOE PAGES

    Yitamben, Esmeralda; Butera, Robert E.; Swartzentruber, Brian S.; ...

    2017-10-16

    Using scanning tunneling microscopy (STM), we investigate oxide-induced growth pits in Si thin films deposited by molecular beam epitaxy. In the transition temperature range from 2D adatom islanding to step-flow growth, systematic controlled air leaks into the growth chamber induce pits in the growth surface. We show that pits are also correlated with oxygen-contaminated flux from Si sublimation sources. From a thermodynamic standpoint, multilayer growth pits are unexpected in relaxed homoepitaxial growth, whereas oxidation is a known cause for step-pinning, roughening, and faceting on elemental surfaces, both with and without growth flux. Not surprisingly, pits are thermodynamically metastable and healmore » by annealing to recover a smooth periodic step arrangement. STM reveals new details about the pits' atomistic origins and growth dynamics. Here, we give a model for heterogeneous nucleation of pits by preferential adsorption of Å-sized oxide nuclei at intrinsic growth antiphase boundaries, and subsequent step pinning and bunching around the nuclei.« less

  11. Time indices of multiphasic development in genotypes of sweet cherry are similar from dormancy to cessation of pit growth.

    PubMed

    Gibeaut, David M; Whiting, Matthew D; Einhorn, Todd

    2017-02-01

    The archetypical double sigmoid-shaped growth curve of the sweet cherry drupe (Prunus avium) does not address critical development from eco-dormancy to anthesis and has not been correlated to reproductive bud development. Accurate representation of the growth and development of post-anthesis ovaries is confounded by anthesis timing, fruiting-density and the presence of unfertilized and defective ovaries whose growth differs from those that persist to maturation. These factors were addressed to assess pre-anthesis and full-season growth and development of three sweet cherry cultivars, 'Chelan', 'Bing' and 'Sweetheart', differing primarily in seasonal duration and fruit size. Volume was calculated from photographic measurements of reproductive buds, ovaries and pits at all phases of development. A population of unfertilized ovaries was produced using bee-exclusion netting to enable a statistical comparison with an open pollinated population to detect differences in size and shape between successful and failing fruit growth. Anthesis timing and fruiting-density were manipulated by floral extinction at the spur and whole-tree scales. Developmental time indices were analysed using polynomial curve fitting of log-transformed data supported by Richards and logistic functions of asymptotic growth of the pit and maturing fruit, respectively. Pre-anthesis growth began at the completion of eco-dormancy. A slight decline in relative growth rate (RGR) was observed during bud scale separation approx. -16 d from anthesis (DFA) before resumption of exponential growth to a maximum about 14 DFA. After anthesis, reduced growth of unfertilized or defective ovaries was partly discriminated from successful fruit at 5 DFA and completely at 25 DFA. Time indices of RGR inflections were similar among cultivars when adjusted for anthesis date alone, until the end of pit growth. Asymptotic growth of the pit underpinned the declining growth rate of fruit at the end of the first exponential growth phase. Duration of the subsequent expansive growth phase accounted for genotypic differences in seasonal duration and final size. Pit size and final fruit size were inversely related to fruiting-density. Developmental differences among early, mid and late maturing cultivars were not detected until the final growth period. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Time indices of multiphasic development in genotypes of sweet cherry are similar from dormancy to cessation of pit growth

    PubMed Central

    Gibeaut, David M.; Whiting, Matthew D.; Einhorn, Todd

    2017-01-01

    Background and Aims The archetypical double sigmoid-shaped growth curve of the sweet cherry drupe (Prunus avium) does not address critical development from eco-dormancy to anthesis and has not been correlated to reproductive bud development. Accurate representation of the growth and development of post-anthesis ovaries is confounded by anthesis timing, fruiting-density and the presence of unfertilized and defective ovaries whose growth differs from those that persist to maturation. These factors were addressed to assess pre-anthesis and full-season growth and development of three sweet cherry cultivars, ‘Chelan’, ‘Bing’ and ‘Sweetheart’, differing primarily in seasonal duration and fruit size. Methods Volume was calculated from photographic measurements of reproductive buds, ovaries and pits at all phases of development. A population of unfertilized ovaries was produced using bee-exclusion netting to enable a statistical comparison with an open pollinated population to detect differences in size and shape between successful and failing fruit growth. Anthesis timing and fruiting-density were manipulated by floral extinction at the spur and whole-tree scales. Developmental time indices were analysed using polynomial curve fitting of log-transformed data supported by Richards and logistic functions of asymptotic growth of the pit and maturing fruit, respectively. Key Results Pre-anthesis growth began at the completion of eco-dormancy. A slight decline in relative growth rate (RGR) was observed during bud scale separation approx. −16 d from anthesis (DFA) before resumption of exponential growth to a maximum about 14 DFA. After anthesis, reduced growth of unfertilized or defective ovaries was partly discriminated from successful fruit at 5 DFA and completely at 25 DFA. Time indices of RGR inflections were similar among cultivars when adjusted for anthesis date alone, until the end of pit growth. Asymptotic growth of the pit underpinned the declining growth rate of fruit at the end of the first exponential growth phase. Duration of the subsequent expansive growth phase accounted for genotypic differences in seasonal duration and final size. Pit size and final fruit size were inversely related to fruiting-density. Conclusions Developmental differences among early, mid and late maturing cultivars were not detected until the final growth period. PMID:28064193

  13. Bistability of the lac operon during growth of Escherichia coli on lactose and lactose+glucose.

    PubMed

    Narang, Atul; Pilyugin, Sergei S

    2008-05-01

    The lac operon of Escherichia coli can exhibit bistability. Early studies showed that bistability occurs during growth on TMG/succinate and lactose+glucose, but not during growth on lactose. More recently, studies with lacGFP-transfected cells show bistability during growth on TMG/succinate, but not during growth on lactose and lactose+glucose. In the literature, these results are invariably attributed to variations in the destabilizing effect of the positive feedback generated by induction. Specifically, during growth on TMG/succinate, lac induction generates strong positive feedback because the permease stimulates the accumulation of intracellular TMG, which in turn, promotes the synthesis of even more permease. This positive feedback is attenuated during growth on lactose because hydrolysis of intracellular lactose by beta-galactosidase suppresses the stimulatory effect of the permease. It is attenuated even more during growth on lactose + glucose because glucose inhibits the uptake of lactose. But it is clear that the stabilizing effect of dilution also changes dramatically as a function of the medium composition. For instance, during growth on TMG/succinate, the dilution rate of lac permease is proportional to its activity, e, because the specific growth rate is independent of e (it is completely determined by the concentration of succinate). However, during growth on lactose, the dilution rate of the permease is proportional to e2 because the specific growth rate is proportional to the specific lactose uptake rate, which in turn, proportional to e. We show that: (a) This dependence on e2 creates such a strong stabilizing effect that bistability is virtually impossible during growth on lactose, even in the face of the intense positive feedback generated by induction. (b) This stabilizing effect is weakened during growth on lactose+glucose because the specific growth rate on glucose is independent of e, so that the dilution rate once again contains a term that is proportional to e. These results imply that the lac operon is much more prone to bistability if the medium contains carbon sources that cannot be metabolized by the lac enzymes, e.g., succinate during growth on TMG/succinate and glucose during growth on lactose+glucose. We discuss the experimental data in the light of these results.

  14. Growing Pains (For Parents)

    MedlinePlus

    ... 5-year-olds and, later, in 8- to 12-year-olds. Signs and Symptoms Growing pains always concentrate ... a Growth Disorder? Growth and Your 6- to 12-Year-Old Understanding Puberty Your Child's Growth Growth and ...

  15. Observational Prospective Study on Patients Treated With Norditropin®

    ClinicalTrials.gov

    2017-10-11

    Growth Hormone Disorder; Growth Hormone Deficiency in Children; Adult Growth Hormone Deficiency; Genetic Disorder; Turner Syndrome; Foetal Growth Problem; Small for Gestational Age; Chronic Kidney Disease; Chronic Renal Insufficiency; Noonan Syndrome

  16. Extended Eden model reproduces growth of an acellular slime mold.

    PubMed

    Wagner, G; Halvorsrud, R; Meakin, P

    1999-11-01

    A stochastic growth model was used to simulate the growth of the acellular slime mold Physarum polycephalum on substrates where the nutrients were confined in separate drops. Growth of Physarum on such substrates was previously studied experimentally and found to produce a range of different growth patterns [Phys. Rev. E 57, 941 (1998)]. The model represented the aging of cluster sites and differed from the original Eden model in that the occupation probability of perimeter sites depended on the time of occupation of adjacent cluster sites. This feature led to a bias in the selection of growth directions. A moderate degree of persistence was found to be crucial to reproduce the biological growth patterns under various conditions. Persistence in growth combined quick propagation in heterogeneous environments with a high probability of locating sources of nutrients.

  17. Extended Eden model reproduces growth of an acellular slime mold

    NASA Astrophysics Data System (ADS)

    Wagner, Geri; Halvorsrud, Ragnhild; Meakin, Paul

    1999-11-01

    A stochastic growth model was used to simulate the growth of the acellular slime mold Physarum polycephalum on substrates where the nutrients were confined in separate drops. Growth of Physarum on such substrates was previously studied experimentally and found to produce a range of different growth patterns [Phys. Rev. E 57, 941 (1998)]. The model represented the aging of cluster sites and differed from the original Eden model in that the occupation probability of perimeter sites depended on the time of occupation of adjacent cluster sites. This feature led to a bias in the selection of growth directions. A moderate degree of persistence was found to be crucial to reproduce the biological growth patterns under various conditions. Persistence in growth combined quick propagation in heterogeneous environments with a high probability of locating sources of nutrients.

  18. Fast growth of n-type 4H-SiC bulk crystal by gas-source method

    NASA Astrophysics Data System (ADS)

    Hoshino, Norihiro; Kamata, Isaho; Tokuda, Yuichiro; Makino, Emi; Kanda, Takahiro; Sugiyama, Naohiro; Kuno, Hironari; Kojima, Jun; Tsuchida, Hidekazu

    2017-11-01

    Fast growth of n-type 4H-SiC crystals was attempted using a high-temperature gas-source method. High growth rates exceeding 9 mm/h were archived at a seed temperature of 2550 °C, although the formation of macro-step bunching caused doping fluctuation and voids in the grown crystal. We investigated a trade-off between growth-rate enhancement and macro-step formation and how to improve the trade-off. By controlling the growth conditions, the growth of highly nitrogen-doped 4H-SiC crystals without the doping fluctuation and void formation were accomplished under a high growth rate exceeding 3 mm/h, maintaining the density of threading screw dislocations in the same level with the seed crystal. The influence of growth parameters on nitrogen incorporations into grown crystals was also surveyed.

  19. Clinical growth charts for pre-school children.

    PubMed

    Al-Amoud, Maysoon M; Al-Mazrou, Yagob Y; El-Gizouli, Sirrag E; Khoja, Tawfik A; Al-Turki, Khalid A

    2004-11-01

    Growth standards are indicators for normal growth of the children and growth charts are important tools for their growth monitoring. Children from different populations are different in their growth pattern, it is important to create national standards for the growth of children in each population to develop local growth charts, and since these were not available in the Kingdom of Saudi Arabia (KSA), the aim of this study was to construct national growth standards and to develop growth charts for 0-5-years Saudi children. A cross-sectional study following World Health Organization (WHO) criteria in determining sample size was adopted, where by 24000 children from 5 regions in the KSA were selected during the period 1992 to 1995 to be the desired sample. One hundred and two Primary Health Care centers (PHCCs) were selected randomly from the 5 regions, from where the sample was drawn, and a special questionnaire was designed. Weight, height and head circumference were measured by standard procedures. The total number of children examined was 23821 (11913 boys and 11908 girls). Saudi (0-5-years) boys weight and height for age measurements were significantly different from girls. The same difference was found between urban and rural boys and girls and between boys and girls from the different regions of the country (p<0.05). These national standards derived from this study were used to develop national growth charts that are currently utilized to monitor growth in all Saudi health institutes.

  20. Long-term growth decline in Toona ciliata in a moist tropical forest in Bangladesh: Impact of global warming

    NASA Astrophysics Data System (ADS)

    Rahman, Mizanur; Islam, Rofiqul; Islam, Mahmuda

    2017-04-01

    Tropical forests are carbon rich ecosystems and small changes in tropical forest tree growth substantially influence the global carbon cycle. Forest monitoring studies report inconsistent growth changes in tropical forest trees over the past decades. Most of the studies highlighted changes in the forest level carbon gain, neglecting the species-specific growth changes which ultimately determine community-level responses. Tree-ring analysis can provide historical data on species-specific tree growth with annual resolution. Such studies are inadequate in Bangladesh, which is one of the most climate sensitive regions in the tropics. In this study, we investigated long-term growth rates of Toona ciliata in a moist tropical forest of Bangladesh by using tree-ring analysis. We sampled 50 trees of varying size, obtained increment cores from these trees and measured tree-ring width. Analyses of growth patterns revealed size-dependent growth increments. After correcting for the effect of tree size on tree growth (ontogenetic changes) by two different methods we found declining growth rates in T. ciliata from 1960 to 2013. Standardized ring-width index (RWI) was strongly negatively correlated with annual mean and maximum temperatures suggesting that rising temperature might cause the observed growth decline in T. ciliata. Assuming that global temperatures will rise at the current rate, the observed growth decline is assumed to continue. The analysis of stable carbon and oxygen isotopes may reveal more insight on the physiological response of this species to future climatic changes.

  1. Insights into secondary growth in perennial plants: its unequal spatial and temporal dynamics in the apple (Malus domestica) is driven by architectural position and fruit load

    PubMed Central

    Lauri, P. É.; Kelner, J. J.; Trottier, C.; Costes, E.

    2010-01-01

    Background and Aims Secondary growth is a main physiological sink. However, the hierarchy between the processes which compete with secondary growth is still a matter of debate, especially on fruit trees where fruit weight dramatically increases with time. It was hypothesized that tree architecture, here mediated by branch age, is likely to have a major effect on the dynamics of secondary growth within a growing season. Methods Three variables were monitored on 6-year-old ‘Golden Delicious’ apple trees from flowering time to harvest: primary shoot growth, fruit volume, and cross-section area of branch portions of consecutive ages. Analyses were done through an ANOVA-type analysis in a linear mixed model framework. Key Results Secondary growth exhibited three consecutive phases characterized by unequal relative area increment over the season. The age of the branch had the strongest effect, with the highest and lowest relative area increment for the current-year shoots and the trunk, respectively. The growth phase had a lower effect, with a shift of secondary growth through the season from leafy shoots towards older branch portions. Eventually, fruit load had an effect on secondary growth mainly after primary growth had ceased. Conclusions The results support the idea that relationships between production of photosynthates and allocation depend on both primary growth and branch architectural position. Fruit load mainly interacted with secondary growth later in the season, especially on old branch portions. PMID:20228088

  2. Nutrient Needs for Catch-Up Growth in Low-Birthweight Infants.

    PubMed

    Ziegler, Ekhard E

    2015-01-01

    Growth restriction among low-birthweight (LBW) infants occurs prenatally as well as postnatally. Regardless of when and how the growth restriction occurs, growth-restricted infants have the potential for catch-up growth. Catch-up growth has decidedly beneficial effects on later cognition. It also may have adverse effects on cardiovascular and metabolic health. Although the benefits for later cognition are well documented in a number of studies, growth-restricted LBW infants often do not experience catch-up growth and therefore do not enjoy its benefits. One reason is that for catch-up growth to occur, extraordinarily high protein intakes are required. Nutrient intakes have been estimated with the use of the factorial method based on the assumption that catch-up growth comprises essentially a restoration of lean body mass, with restoration of fat mass optional. The basic (no catch-up) nutritional needs of growth-restricted LBW infants are altered to a modest degree, with energy needs increased and protein needs decreased. With catch-up, however, protein needs are increased sharply. Since energy needs are only modestly increased, the protein/energy ratio of requirements is appreciably increased. The high protein needs are difficult to meet with the usual feedings for LBW infants unless special measures are taken to increase protein intakes and to increase the protein/energy ratio. Without the necessary protein intake, catch-up growth is not possible or will be delayed, which may compromise the realization of the long-term benefits on cognition. © 2015 Nestec Ltd., Vevey/S. Karger AG, Basel.

  3. Congenital heart disease affects cerebral size but not brain growth.

    PubMed

    Ortinau, Cynthia; Inder, Terrie; Lambeth, Jennifer; Wallendorf, Michael; Finucane, Kirsten; Beca, John

    2012-10-01

    Infants with congenital heart disease (CHD) have delayed brain maturation and alterations in brain volume. Brain metrics is a simple measurement technique that can be used to evaluate brain growth. This study used brain metrics to test the hypothesis that alterations in brain size persist at 3 months of age and that infants with CHD have slower rates of brain growth than control infants. Fifty-seven infants with CHD underwent serial brain magnetic resonance imaging (MRI). To evaluate brain growth across the first 3 months of life, brain metrics were undertaken using 19 tissue and fluid spaces shown on MRIs performed before surgery and again at 3 months of age. Before surgery, infants with CHD have smaller frontal, parietal, cerebellar, and brain stem measures (p < 0.001). At 3 months of age, alterations persisted in all measures except the cerebellum. There was no difference between control and CHD infants in brain growth. However, the cerebellum trended toward greater growth in infants with CHD. Somatic growth was the primary factor that related to brain growth. Presence of focal white matter lesions before and after surgery did not relate to alterations in brain size or growth. Although infants with CHD have persistent alterations in brain size at 3 months of age, rates of brain growth are similar to that of healthy term infants. Somatic growth was the primary predictor of brain growth, emphasizing the importance of optimal weight gain in this population.

  4. Brain size growth in wild and captive chimpanzees (Pan troglodytes).

    PubMed

    Cofran, Zachary

    2018-05-24

    Despite many studies of chimpanzee brain size growth, intraspecific variation is under-explored. Brain size data from chimpanzees of the Taï Forest and the Yerkes Primate Research Center enable a unique glimpse into brain growth variation as age at death is known for individuals, allowing cross-sectional growth curves to be estimated. Because Taï chimpanzees are from the wild but Yerkes apes are captive, potential environmental effects on neural development can also be explored. Previous research has revealed differences in growth and health between wild and captive primates, but such habitat effects have yet to be investigated for brain growth. Here, I use an iterative curve fitting procedure to estimate brain growth and regression parameters for each population, statistically comparing growth models using bootstrapped confidence intervals. Yerkes and Taï brain sizes overlap at all ages, although the sole Taï newborn is at the low end of captive neonatal variation. Growth rate and duration are statistically indistinguishable between the two populations. Resampling the Yerkes sample to match the Taï sample size and age group composition shows that ontogenetic variation in the two groups are remarkably similar despite the latter's limited size. Best fit growth curves for each sample indicate cessation of brain size growth at around 2 years, earlier than has previously been reported. The overall similarity between wild and captive chimpanzees points to the canalization of brain growth in this species. © 2018 Wiley Periodicals, Inc.

  5. Insights into secondary growth in perennial plants: its unequal spatial and temporal dynamics in the apple (Malus domestica) is driven by architectural position and fruit load.

    PubMed

    Lauri, P E; Kelner, J J; Trottier, C; Costes, E

    2010-04-01

    Secondary growth is a main physiological sink. However, the hierarchy between the processes which compete with secondary growth is still a matter of debate, especially on fruit trees where fruit weight dramatically increases with time. It was hypothesized that tree architecture, here mediated by branch age, is likely to have a major effect on the dynamics of secondary growth within a growing season. Three variables were monitored on 6-year-old 'Golden Delicious' apple trees from flowering time to harvest: primary shoot growth, fruit volume, and cross-section area of branch portions of consecutive ages. Analyses were done through an ANOVA-type analysis in a linear mixed model framework. Secondary growth exhibited three consecutive phases characterized by unequal relative area increment over the season. The age of the branch had the strongest effect, with the highest and lowest relative area increment for the current-year shoots and the trunk, respectively. The growth phase had a lower effect, with a shift of secondary growth through the season from leafy shoots towards older branch portions. Eventually, fruit load had an effect on secondary growth mainly after primary growth had ceased. The results support the idea that relationships between production of photosynthates and allocation depend on both primary growth and branch architectural position. Fruit load mainly interacted with secondary growth later in the season, especially on old branch portions.

  6. Growth cones are actively influenced by substrate-bound adhesion molecules.

    PubMed

    Burden-Gulley, S M; Payne, H R; Lemmon, V

    1995-06-01

    As axons advance to appropriate target tissues during development, their growth cones encounter a variety of cell adhesion molecules (CAMs) and extracellular matrix molecules (ECM molecules). Purified CAMs and ECM molecules influence neurite outgrowth in vitro and are thought to have a similar function in vivo. For example, when retinal ganglion cell (RGC) neurons are grown on different CAM and ECM molecule substrates in vitro, their growth cones display distinctive morphologies (Payne et al., 1992). Similarly, RGC growth cones in vivo have distinctive shapes at different points in the pathway from the eye to the tectum, suggesting the presence of localized cues that determine growth cone behaviors such as pathway selection at choice points. In this report, time-lapse video microscopy was utilized to examine dynamic transformations of RGC growth cones as they progressed from L1/8D9, N-cadherin, or laminin onto a different substrate. Contact made by the leading edge of a growth cone with a new substrate resulted in a rapid and dramatic alteration in growth cone morphology. In some cases, the changes encompassed the entire growth cone including those regions not in direct contact with the new substrate. In addition, the growth cones displayed a variety of behavioral responses that were dependent upon the order of substrate contact. These studies demonstrate that growth cones are actively affected by the substrate, and suggest that abrupt changes in the molecular composition of the growth cone environment are influential during axonal pathfinding.

  7. Liposomal gene transfer of keratinocyte growth factor improves wound healing by altering growth factor and collagen expression.

    PubMed

    Pereira, Clifford T; Herndon, David N; Rocker, Roland; Jeschke, Marc G

    2007-05-15

    Growth factors affect the complex cascade of wound healing; however, interaction between different growth factors during dermal and epidermal regeneration are still not entirely defined. In the present study, we thought to determine the interaction between keratinocyte growth factor (KGF) administered as liposomal cDNA with other dermal and epidermal growth factors and collagen synthesis in an acute wound. Rats received an acute wound and were divided into two groups to receive weekly subcutaneous injections of liposomes plus the Lac-Z gene (0.22 microg, vehicle), or liposomes plus the KGF cDNA (2.2 microg) and Lac-Z gene (0.22 microg). Histological and immunohistochemical techniques were used to determine growth factor, collagen expression, and dermal and epidermal structure. KGF cDNA increased insulin-like growth factor-I (IGF-I), insulin-like growth factor binding protein-3 (IGFBP-3), and fibroblast growth factor (FGF), decreased transforming growth factor-beta (TGF-beta), while it had no effect on platelet-derived growth factor (PDGF) levels in the wound. KGF cDNA significantly increased collagen Type IV at both the wound edge as well as the wound bed, while it had no effect on collagen Type I and III. KGF cDNA increased re-epithelialization, improved dermal regeneration, and increased neovascularization. Exogenous administered KGF cDNA causes increases in IGF-I, IGF-BP3, FGF, and collagen IV and decreases TGF-beta concentration. KGF gene transfer accelerates wound healing without causing an increase in collagen I or III.

  8. Using a laboratory-based growth model to estimate mass- and temperature-dependent growth parameters across populations of juvenile Chinook Salmon

    USGS Publications Warehouse

    Perry, Russell W.; Plumb, John M.; Huntington, Charles

    2015-01-01

    To estimate the parameters that govern mass- and temperature-dependent growth, we conducted a meta-analysis of existing growth data from juvenile Chinook Salmon Oncorhynchus tshawytscha that were fed an ad libitum ration of a pelleted diet. Although the growth of juvenile Chinook Salmon has been well studied, research has focused on a single population, a narrow range of fish sizes, or a narrow range of temperatures. Therefore, we incorporated the Ratkowsky model for temperature-dependent growth into an allometric growth model; this model was then fitted to growth data from 11 data sources representing nine populations of juvenile Chinook Salmon. The model fit the growth data well, explaining 98% of the variation in final mass. The estimated allometric mass exponent (b) was 0.338 (SE = 0.025), similar to estimates reported for other salmonids. This estimate of b will be particularly useful for estimating mass-standardized growth rates of juvenile Chinook Salmon. In addition, the lower thermal limit, optimal temperature, and upper thermal limit for growth were estimated to be 1.8°C (SE = 0.63°C), 19.0°C (SE = 0.27°C), and 24.9°C (SE = 0.02°C), respectively. By taking a meta-analytical approach, we were able to provide a growth model that is applicable across populations of juvenile Chinook Salmon receiving an ad libitum ration of a pelleted diet.

  9. Intrauterine growth restriction in infants of less than thirty-two weeks' gestation: associated placental pathologic features.

    PubMed

    Salafia, C M; Minior, V K; Pezzullo, J C; Popek, E J; Rosenkrantz, T S; Vintzileos, A M

    1995-10-01

    Our purpose was to describe placental lesions associated with normal and abnormal fetal growth in infants delivered for obstetric indications at < 32 weeks' gestation. Maternal and neonatal charts and placental tissues from 420 consecutive nonanomalous live-born singleton infants delivered at < 32 weeks' gestation with accurate gestational dates were retrospectively studied. Excluded were cases with maternal diabetes, chronic hypertension, hydrops fetalis, diagnosed congenital viral infection, and placenta previa, leaving four primary indications for delivery: preeclampsia, preterm labor, premature rupture of membranes, and nonhypertensive abruptio placentae. The presence and severity of placental lesions was scored by a pathologist blinded to clinical data. Birth weight and length percentiles were calculated from published nomograms. Asymmetric intrauterine growth retardation (n = 32) was defined as birth weight < 10th percentile with length > 10th percentile and symmetric intrauterine growth retardation (n = 48) as both weight and length < 10th percentile for gestational age. A "growth restriction index" was developed to express a continuum of growth in both length and weight. Contingency tables, analyses of variance, and multiple regression analysis defined significance as p < 0.05 (with corrections for multiple comparisons). A greater proportion of cases with intrauterine growth retardation had lesions of uteroplacental insufficiency (p < 0.001) or chronic villitis (p < 0.02) than did appropriately grown preterm infants. Cases with asymmetric intrauterine growth retardation tended to have more lesions than did cases with appropriate-for-gestational-age infants. Four multiple regression analyses used the growth restriction index as outcome and the histologic lesion that had significant relationships to fetal growth as independent predictors in univariate analyses. Overall, uteroplacental fibrinoid necrosis, circulating nucleated erythrocytes, avascular terminal villi, and villous infarct were significant independent predictors of fetal growth (adjusted R2 = 0.312). With addition of preeclampsia as a variable, villous fibrosis, avascular villi, infarct, and preeclampsia were independent predictors of fetal growth (adjusted R2 = 0.341). In the 65 preeclampsia cases no histologic lesion was an independent predictor of fetal growth, whereas in the nonpreeclampsia cases, villous fibrosis and avascular villi were independent predictors of fetal growth (adjusted R2 = 0.075). In nonanomalous preterm infants intrauterine growth retardation is most commonly symmetric and is primarily related to the cumulative number and severity of lesions reflecting abnormal uteroplacental or fetoplacental blood flow. The growth restriction index may contribute to the study of the biologic range of fetal growth. The statistical relationship of most placental lesions to intrauterine growth retardation depends on the presence or absence of preeclampsia.

  10. An assessment of calcite crystal growth mechanisms based on crystal size distributions

    USGS Publications Warehouse

    Kile, D.E.; Eberl, D.D.; Hoch, A.R.; Reddy, M.M.

    2000-01-01

    Calcite crystal growth experiments were undertaken to test a recently proposed model that relates crystal growth mechanisms to the shapes of crystal size distributions (CSDs). According to this approach, CSDs for minerals have three basic shapes: (1) asymptotic, which is related to a crystal growth mechanism having constant-rate nucleation accompanied by surface-controlled growth; (2) lognormal, which results from decaying-rate nucleation accompanied by surface-controlled growth; and (3) a theoretical, universal, steady-state curve attributed to Ostwald ripening. In addition, there is a fourth crystal growth mechanism that does not have a specific CSD shape, but which preserves the relative shapes of previously formed CSDs. This mechanism is attributed to supply-controlled growth. All three shapes were produced experimentally in the calcite growth experiments by modifying nucleation conditions and solution concentrations. The asymptotic CSD formed when additional reactants were added stepwise to the surface of solutions that were supersaturated with respect to calcite (initial Ω = 20, where Ω = 1 represents saturation), thereby leading to the continuous nucleation and growth of calcite crystals. Lognormal CSDs resulted when reactants were added continuously below the solution surface, via a submerged tube, to similarly supersaturated solutions (initial Ω = 22 to 41), thereby leading to a single nucleation event followed by surface-controlled growth. The Ostwald CSD resulted when concentrated reactants were rapidly mixed, leading initially to high levels of supersaturation (Ω >100), and to the formation and subsequent dissolution of very small nuclei, thereby yielding CSDs having small crystal size variances. The three CSD shapes likely were produced early in the crystallization process, in the nanometer crystal size range, and preserved during subsequent growth. Preservation of the relative shapes of the CSDs indicates that a supply-controlled growth mechanism was established and maintained during the constant-composition experiments. CSDs having shapes intermediate between lognormal and Ostwald also were generated by varying the initial levels of supersaturation (initial Ω = 28.2 to 69.2) in rapidly mixed solutions. Lognormal CSDs were observed for natural calcite crystals that are found in septarian concretions occurring in southeastern Colorado. Based on the model described above, these CSDs indicate initial growth by surface control, followed by supply-controlled growth. Thus, CSDs may be used to deduce crystal growth mechanisms from which geologic conditions early in the growth history of a mineral can be inferred. Conversely, CSD shape can be predicted during industrial crystallization by applying the appropriate conditions for a particular growth mechanism.

  11. Oral administration of arginine enhances the growth hormone response to growth hormone releasing hormone in short children.

    PubMed

    Loche, S; Carta, D; Muntoni, A C; Corda, R; Pintor, C

    1993-10-01

    We have evaluated the effect of oral administration of arginine chlorhydrate on the growth hormone response to growth hormone releasing hormone in a group of nine short prepubertal children (six boys and four girls). Arginine chlorhydrate 10 g, administered orally 60 min before an i.v. bolus injection of growth hormone releasing hormone 1-29, 1 microgram/kg, significantly enhanced the growth hormone response to the neuropeptide, confirming the results of previous studies which used the i.v. route. Furthermore, our data strengthen the view that the effects of arginine chlorhydrate on growth hormone secretion are mediated by inhibition of endogenous somatostatin release.

  12. Sociology of the growth/no-growth debate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphrey, C.R.; Buttel, F.H.

    The properties of conservative, liberal, and radical patterns in social science are analyzed and applied to the growth/no-growth debate in environmental policy literature. The fact that conservatives work with an evolutionary model of society suggests that environmental problems are imperfections to be remedied by science, technology, and the free market. Liberals recognize the benefits and costs of growth, and they articulate ways to minimize the costs through state regulation and planning. Radicals argue for state ownership of the means of production and new cultural values about growth as the only effective environmental policies. This analysis closes with a discussion ofmore » the future of the growth debate in terms of these paradigms. 40 references.« less

  13. Hormonal regulation of wheat growth during hydroponic culture

    NASA Technical Reports Server (NTRS)

    Wetherell, Donald

    1988-01-01

    Hormonal control of root growth has been explored as one means to alleviate the crowding of plant root systems experienced in prototype hydroponic biomass production chambers being developed by the CELSS Breadboard Project. Four plant hormones, or their chemical analogs, which have been reported to selectively inhibit root growth, were tested by adding them to the nutrient solutions on day 10 of a 25 day growth test using spring wheat in hydroponic cultures. Growth and morphological changes is both shoot and root systems were evaluated. In no case was it possible to inhibit root growth without a comparable inhibition of shoot growth. It was concluded that this approach is unlikely to prove useful for wheat.

  14. The importance of fetal gender in intrauterine growth restriction

    PubMed Central

    Radulescu, L; Ferechide, D; Popa, F

    2013-01-01

    One of the most important causes of perinatal mortality and morbidity complicating significant percentage pregnancies is intrauterine growth restriction (IUGR). Fetal growth restriction is the main cause of intrauterine fetal death and the second leading cause of death in the neonatal period. Numerous studies in different populations reveal an association between intrauterine growth restriction and perinatal and postnatal developments, which differ according to the sex of newborns with intrauterine growth restriction. However, the mechanisms of intrauterine programming, the critical time necessary to cause injury and involvement of other factors are unclear and although several authors’ opinions differ, it seems that females are more likely to develop intrauterine growth restriction. Abbreviations: IUGR=intrauterine growth restriction PMID:23599816

  15. Direct growth of ZnO tetrapod on glass substrate by Chemical Vapor Deposition Technique

    NASA Astrophysics Data System (ADS)

    Fadzil, M. F. M.; Rahman, R. A.; Azhar, N. E. A.; Aziz, T. N. T. A.; Zulkifli, Z.

    2018-03-01

    This research demonstrates the growth of ZnO tetrapod structure on glass substrate for different types of flow gas and at different growth temperatures. The study on the morphological structure and electrical properties of ZnO thin film growth by Chemical Vapour Deposition (CVD) technique showed that the optimum growth temperature was obtained at 750°C with ZnO nanotetrapod morphological structure. Introducing Nitrogen gas flow during the growth process exhibited leg-to-leg linking ZnO tetrapods morphology. The electrical properties of ZnO tetrapods film were measured by using two point probes and it shows that, the sample growth in Ar and O2 atmosphere have better I-V characteristic.

  16. Inhibition of growth and aflatoxin production in Aspergillus parasiticus by essential oils of selected plant materials.

    PubMed

    Tantaoui-Elaraki, A; Beraoud, L

    1994-01-01

    We studied the effect of 13 chemically different essential oils (EO) on the mycelial growth of and aflatoxin synthesis by Aspergillus parasiticus. Cinnamon, thyme, oregano, and cumin EO were able to stop mycelial growth at only 0.1% in the medium, while curcumin, ginger, lemon, and orange EO were unable to inhibit totally the growth even at 1% concentration. Coriander, black pepper, mugwort, bay, and rosemary EO caused the growth to stop at concentrations between 0.2 and 1%. The EO most active upon mycelial growth were also the most active against aflatoxinogenesis. However, aflatoxin synthesis was inhibited by all the EO at higher extent than the mycelial growth.

  17. Does Growth in Working Memory Span or Executive Processes Predict Growth in Reading and Math in Children with Reading Disabilities?

    ERIC Educational Resources Information Center

    Jerman, Olga; Reynolds, Chandra; Swanson, H. Lee

    2012-01-01

    The present study investigated whether (a) growth patterns related to cognitive processing (working memory, updating, inhibition) differed in subgroups of children with reading disabilities (RD) and (b) growth in working memory (executive processing) predicted growth in other cognitive areas, such as reading and math. Seventy-three children (ages…

  18. Growth Hormone Response after Administration of L-dopa, Clonidine, and Growth Hormone Releasing Hormone in Children with Down Syndrome.

    ERIC Educational Resources Information Center

    Pueschel, Seigfried M.

    1993-01-01

    This study of eight growth-retarded children with Down's syndrome (aged 1 to 6.5 years) found that administration of growth hormone was more effective than either L-dopa or clonidine. Results suggest that children with Down's syndrome have both anatomical and biochemical hypothalamic derangements resulting in decreased growth hormone secretion and…

  19. Understory tree characteristics and disturbance history of a central Appalachian forest prior to old-growth harvesting

    Treesearch

    Thomas M. Schuler; Mary Ann Fajvan

    1999-01-01

    To better understand the dynamics of red oak regeneration, we evaluated the composition of understory woody species and recruitment characteristics of a mixed mesophytic forest in the central Appalachian region at the time of old-growth logging. We also evaluated canopy disturbance history during both the old-growth and second-growth periods. Stemwood radial growth...

  20. State Growth Models for School Accountability: Progress on Development and Reporting Measures of Student Growth

    ERIC Educational Resources Information Center

    Blank, Rolf K.

    2010-01-01

    The Council of Chief State School Officers (CCSSO) is working to respond to increased interest in the use of growth models for school accountability. Growth models are based on tracking change in individual student achievement scores over multiple years. While growth models have been used for decades in academic research and program evaluation, a…

  1. Dirt or Diabetes

    DTIC Science & Technology

    2018-02-15

    possible mutation in the fibroblast growth factor receptor 3 gene, and type 3, the most common, associated with insulin resistant states and...like growth factor receptor 1 (IGFR1), fibroblast growth factor receptors (FGFR), and epidermal growth factor receptor (EGFR), have all been proposed...as contributing factors. EGFR is a pivotal receptor because it interacts with several other growth factors (PDGF, TF-B, protein kinase C). They

  2. Growth of Planted Slash Pine Under Several Thinning Regimes

    Treesearch

    W.F. Mann; Hans G. Enghardt

    1972-01-01

    Three intensities of thinning, each started at 10, 13, and 16 years, were applied to slash pine planted on a highly productive, cutover site in central Louisiana. Over a 9-year period, early and heavy thinnings increased diameter growth but reduced volume growth. The longer initial thinnings were deferred, the slower was the response in diameter growth. Growth on...

  3. Comparison of an empirical forest growth and yield simulator and a forest gap simulator using actual 30-year growth from two even-aged forests in Kentucky

    Treesearch

    Daniel A. Yaussy

    2000-01-01

    Two individual-tree growth simulators are used to predict the growth and mortality on a 30-year-old forest site and an 80-year-old forest site in eastern Kentucky. The empirical growth and yield model (NE-TWIGS) was developed to simulate short-term (

  4. Predicting Tree Mortality From Diameter Growth: A Comparison of Maximum Likelihood and Bayesian Approaches

    Treesearch

    Peter H. Wychoff; James S. Clark

    2000-01-01

    Ecologists and foresters have long noted a link between tree growth rate and mortality, and recent work suggests that i&erspecific differences in low growth tolerauce is a key force shaping forest structure. Little information is available, however, on the growth-mortality relationship for most species. We present three methods for estimating growth-mortality...

  5. Growth Management and Agriculture: An Examination of Local Efforts to Manage Growth and Preserve Farmland in Wisconsin Cities, Villages, and Towns

    ERIC Educational Resources Information Center

    Diaz, Daniel; Green, Gary Paul

    2001-01-01

    In this paper we examine the effectiveness of growth management policies in Wisconsin cities, villages, and towns. Unlike most other studies, we consider the impact of growth management policies on agriculture, specifically the preservation of farmland, in addition to population growth. Our analysis examines these relationships separately in towns…

  6. Stand basal-area and tree-diameter growth in red spruce-fir forests in Maine, 1960-80

    Treesearch

    S.J. Zarnoch; D.A. Gansner; D.S. Powell; T.A. Birch; T.A. Birch

    1990-01-01

    Stand basal-area change and individual surviving red spruce d.b.h. growth from 1960 to 1980 were analyzed for red spruce-fir stands in Maine. Regression modeling was used to relate these measures of growth to stand and tree conditions and to compare growth throughout the period. Results indicate a decline in growth.

  7. The Application of Various Nonlinear Models to Describe Academic Growth Trajectories: An Empirical Analysis Using Four-Wave Longitudinal Achievement Data from a Large Urban School District

    ERIC Educational Resources Information Center

    Shin, Tacksoo

    2012-01-01

    This study introduced various nonlinear growth models, including the quadratic conventional polynomial model, the fractional polynomial model, the Sigmoid model, the growth model with negative exponential functions, the multidimensional scaling technique, and the unstructured growth curve model. It investigated which growth models effectively…

  8. Using specific volume increment (SVI) for quantifying growth responses in trees - theoretical and practical considerations

    Treesearch

    Eddie Bevilacqua

    2002-01-01

    Comparative analysis of growth responses among trees following natural or anthropogenic disturbances is often confounded when comparing trees of different size because of the high correlation between growth and initial tree size: large trees tend to have higher absolute grow rates. Relative growth rate (RGR) may not be the most suitable size-dependent measure of growth...

  9. A More Practical Pedagogical Ideal: Searching for a Criterion of Deweyan Growth

    ERIC Educational Resources Information Center

    Ralston, Shane Jesse

    2011-01-01

    When Dewey scholars and educational theorists appeal to the value of educative growth, what exactly do they mean? Is an individual's growth contingent on receiving a formal education? Is growth too abstract a goal for educators to pursue? Richard Rorty contended that the request for a "criterion of growth" is a mistake made by John Dewey's…

  10. A Comparison of Three Conditional Growth Percentile Methods: Student Growth Percentiles, Percentile Rank Residuals, and a Matching Method

    ERIC Educational Resources Information Center

    Wyse, Adam E.; Seo, Dong Gi

    2014-01-01

    This article provides a brief overview and comparison of three conditional growth percentile methods; student growth percentiles, percentile rank residuals, and a nonparametric matching method. These approaches seek to describe student growth in terms of the relative percentile ranking of a student in relationship to students that had the same…

  11. Higher Education, Causality and Growth: A Comparison of France and Germany before the Second World War

    ERIC Educational Resources Information Center

    Jaoul, Magali

    2004-01-01

    Economists were long unaware of the influence of knowledge upon the growth process. With theories of human capital and theories of endogenous growth, knowledge gained a central position in the growth process. However, this has not been proved in many industrialized countries. The nature of the relations between education and growth is hence far…

  12. Microtubule behavior in the growth cones of living neurons during axon elongation

    PubMed Central

    1991-01-01

    To understand how microtubules are generated in the growth cone, we have imaged fluorescently tagged microtubules in living frog embryonic neurons. The neurons were labeled by injecting rhodamine-labeled tubulin into the fertilized egg and explanting the neurons from the neural tube. Microtubules extend deep into the growth cone periphery and adopt three characteristic distributions: (a) dispersed and splayed throughout much of the growth cone; (b) looped and apparently contorted by compression; and (c) bundled into tight arrays. These distributions interconvert on a time scale of several minutes and these interconversions are correlated with the behavior of the growth cone. We observed microtubule growth and shrinkage in growth cones, but are unable to determine their contribution to net assembly. However, translocation of polymer form the axon appears to be a major mechanism of generating new polymer in the growth cone, while bundling of microtubules in the growth cone appears to be the critical step in generating new axon. Neurons that were about to turn spontaneously generated microtubules in the future direction of growth, suggesting that orientation of microtubules might be an important early step in neuronal pathfinding. PMID:1918145

  13. Modeling the Hydraulics of Root Growth in Three Dimensions with Phloem Water Sources1[C][OA

    PubMed Central

    Wiegers, Brandy S.; Cheer, Angela Y.; Silk, Wendy K.

    2009-01-01

    Primary growth is characterized by cell expansion facilitated by water uptake generating hydrostatic (turgor) pressure to inflate the cell, stretching the rigid cell walls. The multiple source theory of root growth hypothesizes that root growth involves transport of water both from the soil surrounding the growth zone and from the mature tissue higher in the root via phloem and protophloem. Here, protophloem water sources are used as boundary conditions in a classical, three-dimensional model of growth-sustaining water potentials in primary roots. The model predicts small radial gradients in water potential, with a significant longitudinal gradient. The results improve the agreement of theory with empirical studies for water potential in the primary growth zone of roots of maize (Zea mays). A sensitivity analysis quantifies the functional importance of apical phloem differentiation in permitting growth and reveals that the presence of phloem water sources makes the growth-sustaining water relations of the root relatively insensitive to changes in root radius and hydraulic conductivity. Adaptation to drought and other environmental stresses is predicted to involve more apical differentiation of phloem and/or higher phloem delivery rates to the growth zone. PMID:19542299

  14. Hormones and Human and Nonhuman Primate Growth.

    PubMed

    Bernstein, Robin Miriam

    2017-01-01

    The aim of this paper was to review information pertaining to the hormonal regulation of nonhuman primate growth, with specific focus on the growth hormone (GH)-insulin-like growth factor (IGF) axis and adrenal androgens. Hormones of the GH-IGF axis are consistently associated with measures of growth - linear, weight, or both - during the growth period; in adulthood, concentrations of IGF-I, IGF-binding protein-3, and GH-binding protein are not associated with any measures of size. Comparing patterns of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS) may be especially relevant for understanding whether the childhood stage of growth and development is unique to humans and perhaps other apes. Genetic, hormonal, and morphological data on adrenarche in other nonhuman primate species suggest that this endocrine transition is delayed in humans, chimpanzees, and possibly gorillas, while present very early in postnatal life in macaques. This suggests that although perhaps permitted by an extension of the pre-adolescent growth period, childhood builds upon existing developmental substrates rather than having been inserted de novo into an ancestral growth trajectory. Hormones can provide insight regarding the evolution of the human growth trajectory. © 2017 S. Karger AG, Basel.

  15. On geological interpretations of crystal size distributions: Constant vs. proportionate growth

    USGS Publications Warehouse

    Eberl, D.D.; Kile, D.E.; Drits, V.A.

    2002-01-01

    Geological interpretations of crystal size distributions (CSDs) depend on understanding the crystal growth laws that generated the distributions. Most descriptions of crystal growth, including a population-balance modeling equation that is widely used in petrology, assume that crystal growth rates at any particular time are identical for all crystals, and, therefore, independent of crystal size. This type of growth under constant conditions can be modeled by adding a constant length to the diameter of each crystal for each time step. This growth equation is unlikely to be correct for most mineral systems because it neither generates nor maintains the shapes of lognormal CSDs, which are among the most common types of CSDs observed in rocks. In an alternative approach, size-dependent (proportionate) growth is modeled approximately by multiplying the size of each crystal by a factor, an operation that maintains CSD shape and variance, and which is in accord with calcite growth experiments. The latter growth law can be obtained during supply controlled growth using a modified version of the Law of Proportionate Effect (LPE), an equation that simulates the reaction path followed by a CSD shape as mean size increases.

  16. Theoretical analysis of the axial growth of nanowires starting with a binary eutectic droplet via vapor-liquid-solid mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Qing; Li, Hejun; Zhang, Yulei; Zhao, Zhigang

    2018-06-01

    A series of theoretical analysis is carried out for the axial vapor-liquid-solid (VLS) growth of nanowires starting with a binary eutectic droplet. The growth model considering the entire process of axial VLS growth is a development of the approaches already developed by previous studies. In this model, the steady and unsteady state growth are considered both. The amount of solute species in a variable liquid droplet, the nanowire length, radius, growth rate and all other parameters during the entire axial growth process are treated as functions of growth time. The model provides theoretical predictions for the formation of nanowire shape, the length-radius and growth rate-radius dependences. It is also suggested by the model that the initial growth of single nanowire is significantly affected by Gibbs-Thompson effect due to the shape change. The model was applied on predictions of available experimental data of Si and Ge nanowires grown from Au-Si and Au-Ge systems respectively reported by other works. The calculations with the proposed model are in satisfactory agreement with the experimental results of the previous works.

  17. Immediate metabolic consequences of intrauterine growth restriction and low birthweight.

    PubMed

    Bhatia, Jatinder; Gates, Amy

    2013-01-01

    Optimal fetal growth resulting in a 'normally grown' term infant is of paramount importance for assuring a healthy start for postnatal growth and development. Fetal, infant and childhood growth restriction is an important clinical problem for obstetricians, neonatologists, pediatricians and globally, for public health. Worldwide, an estimated 20 million infants are born with low birthweight and a substantial proportion are small for gestational age. Many advances have been made in defining growth restriction by prenatal techniques, thus allowing the recognition of intrauterine growth restriction. Distinguishing infants who are small but have appropriate growth potential from those with growth restriction is important in order to apply obstetric surveillance, anticipate neonatal problems and plan for postneonatal guidance. It is clear that the fetus in growth-restricted pregnancies has limited supply of nutrients and oxygen. The resultant changes, if involving the placenta as well, can lead to circulatory and metabolic changes affecting both short- and long-term survival and development. In this paper, the causes and immediate consequence of being born with low birthweight, intrauterine growth restriction or small for gestational age will be discussed. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.

  18. Urban climate modifies tree growth in Berlin

    NASA Astrophysics Data System (ADS)

    Dahlhausen, Jens; Rötzer, Thomas; Biber, Peter; Uhl, Enno; Pretzsch, Hans

    2017-12-01

    Climate, e.g., air temperature and precipitation, differs strongly between urban and peripheral areas, which causes diverse life conditions for trees. In order to compare tree growth, we sampled in total 252 small-leaved lime trees (Tilia cordata Mill) in the city of Berlin along a gradient from the city center to the surroundings. By means of increment cores, we are able to trace back their growth for the last 50 to 100 years. A general growth trend can be shown by comparing recent basal area growth with estimates from extrapolating a growth function that had been fitted with growth data from earlier years. Estimating a linear model, we show that air temperature and precipitation significantly influence tree growth within the last 20 years. Under consideration of housing density, the results reveal that higher air temperature and less precipitation led to higher growth rates in high-dense areas, but not in low-dense areas. In addition, our data reveal a significantly higher variance of the ring width index in areas with medium housing density compared to low housing density, but no temporal trend. Transferring the results to forest stands, climate change is expected to lead to higher tree growth rates.

  19. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    DOE PAGES

    Herklotz, A.; Dörr, Kathrin; Ward, T. Z.; ...

    2015-04-03

    In this paper, to have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can bemore » utilized to determine the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Sr n +1Ti n O 3 n +1 Ruddlesden-Popper phases are grown with good long-range order. Finally, this method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.« less

  20. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    DOE PAGES

    Herklotz, Andreas; Dorr, Kathrin; Ward, Thomas Zac; ...

    2015-04-03

    To have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can be utilized to determinemore » the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Sr n+1Ti nO 3 n+1 Ruddlesden-Popper phases are grown with good long-range order. Furthermore, this method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.« less

  1. Anomalous Growth Rate of Ag Nanocrystals Revealed by in situ STEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Mingyuan; Lu, Ming; Chu, Yong

    In situ microscopy of colloidal nanocrystal growth offers a unique opportunity to acquire direct and straightforward data for assessing classical growth models. For this study, we observe the growth trajectories of individual Ag nanoparticles in solution using in situ scanning transmission electron microscopy. For the first time, we provide experimental evidence of growth rates of Ag nanoparticles in the presence of Pt in solution that are significantly faster than predicted by Lifshitz-Slyozov-Wagner theory. We attribute these observed anomalous growth rates to the synergistic effects of the catalytic properties of Pt and the electron beam itself. Transiently reduced Pt atoms servemore » as active sites for Ag ions to grow, thereby playing a key role in controlling the growth kinetics. Electron beam illumination greatly increases the local concentration of free radicals, thereby strongly influencing particle growth rate and the resulting particle morphology. Through a systematic investigation, we demonstrate the feasibility of utilizing these synergistic effects for controlling the growth rates and particle morphologies at the nanoscale. Our findings not only expand the current scope of crystal growth theory, but may also lead to a broader scientific application of nanocrystal synthesis.« less

  2. In vivo hair growth-promoting effect of rice bran extract prepared by supercritical carbon dioxide fluid.

    PubMed

    Choi, Jae-Suk; Jeon, Min-Hee; Moon, Woi-Sook; Moon, Jin-Nam; Cheon, Eun Jin; Kim, Joo-Wan; Jung, Sung Kyu; Ji, Yi-Hwa; Son, Sang Wook; Kim, Mi-Ryung

    2014-01-01

    The potential hair growth-promoting activity of rice bran supercritical CO2 extract (RB-SCE) and major components of RB-SCE, linoleic acid, policosanol, γ-oryzanol, and γ-tocotrienol, were evaluated with the histological morphology and mRNA expression levels of cell growth factors using real-time reverse transcriptase-polymerase chain reaction (PCR) in C57BL/6 mice. RB-SCE showed hair growth-promoting potential to a similar extent as 3% minoxidil, showing that the hair follicles were induced to be in the anagen stage. The numbers of the hair follicles were significantly increased. In addition, mRNA expression levels of vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), and keratinocyte growth factor (KGF) were also significantly increased and that of transforming growth factor-β (TGF-β) decreased in RB-SCE-treated groups. Among the major components of RB-SCE, linoleic acid and γ-oryzanol induced the formation of hair follicles according to examination of histological morphology and mRNA expression levels of cell growth factors. In conclusion, our results demonstrate that RB-SCE, particularly linoleic acid and γ-oryzanol, promotes hair growth and suggests RB-SCE can be applied as hair loss treatment.

  3. Halide-oxide carbon vapor transport of ZnO: Novel approach for unseeded growth of single crystals with controllable growth direction

    NASA Astrophysics Data System (ADS)

    Colibaba, G. V.

    2018-05-01

    The thermodynamic analysis of using HCl + CO gas mixture as a chemical vapor transport agent (TA) for ZnO single crystal growth in closed ampoules, including 11 chemical species, is carried out for wide temperature and loaded TA pressure ranges. The advantages of HCl + CO TA for faster and more stable growth are shown theoretically in comparison with HCl, HCl + H2 and CO. The influence of the growth temperature, of the TA density, of the HCl/CO ratio, and of the undercooling on the ZnO mass transport rate was investigated theoretically and experimentally. The HCl/CO ratios favorable for the growth of m planes and (0001)Zn surface were found. It was shown that HCl + CO TA provides: (i) a rather high growth rate (up to 1.5 mm per day); (ii) a decrease of wall adhesion effect and an etch pit density down to 103 cm-2; (iii) a minimization of growth nucleus quantity down to 1; (iv) stable unseeded growth of the high crystalline quality large single crystals with a controllable preferred growth direction. The characterization by the photoluminescence spectra, the transmission spectra and the electrical properties are analyzed.

  4. Graphene growth process modeling: a physical-statistical approach

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Huang, Qiang

    2014-09-01

    As a zero-band semiconductor, graphene is an attractive material for a wide variety of applications such as optoelectronics. Among various techniques developed for graphene synthesis, chemical vapor deposition on copper foils shows high potential for producing few-layer and large-area graphene. Since fabrication of high-quality graphene sheets requires the understanding of growth mechanisms, and methods of characterization and control of grain size of graphene flakes, analytical modeling of graphene growth process is therefore essential for controlled fabrication. The graphene growth process starts with randomly nucleated islands that gradually develop into complex shapes, grow in size, and eventually connect together to cover the copper foil. To model this complex process, we develop a physical-statistical approach under the assumption of self-similarity during graphene growth. The growth kinetics is uncovered by separating island shapes from area growth rate. We propose to characterize the area growth velocity using a confined exponential model, which not only has clear physical explanation, but also fits the real data well. For the shape modeling, we develop a parametric shape model which can be well explained by the angular-dependent growth rate. This work can provide useful information for the control and optimization of graphene growth process on Cu foil.

  5. Growth plate stress distribution implications during bone development: a simple framework computational approach.

    PubMed

    Guevara, J M; Moncayo, M A; Vaca-González, J J; Gutiérrez, M L; Barrera, L A; Garzón-Alvarado, D A

    2015-01-01

    Mechanical stimuli play a significant role in the process of long bone development as evidenced by clinical observations and in vivo studies. Up to now approaches to understand stimuli characteristics have been limited to the first stages of epiphyseal development. Furthermore, growth plate mechanical behavior has not been widely studied. In order to better understand mechanical influences on bone growth, we used Carter and Wong biomechanical approximation to analyze growth plate mechanical behavior, and explore stress patterns for different morphological stages of the growth plate. To the best of our knowledge this work is the first attempt to study stress distribution on growth plate during different possible stages of bone development, from gestation to adolescence. Stress distribution analysis on the epiphysis and growth plate was performed using axisymmetric (3D) finite element analysis in a simplified generic epiphyseal geometry using a linear elastic model as the first approximation. We took into account different growth plate locations, morphologies and widths, as well as different epiphyseal developmental stages. We found stress distribution during bone development established osteogenic index patterns that seem to influence locally epiphyseal structures growth and coincide with growth plate histological arrangement. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. In vivo growth of 60 non-screening detected lung cancers: a computed tomography study.

    PubMed

    Mets, Onno M; Chung, Kaman; Zanen, Pieter; Scholten, Ernst T; Veldhuis, Wouter B; van Ginneken, Bram; Prokop, Mathias; Schaefer-Prokop, Cornelia M; de Jong, Pim A

    2018-04-01

    Current pulmonary nodule management guidelines are based on nodule volume doubling time, which assumes exponential growth behaviour. However, this is a theory that has never been validated in vivo in the routine-care target population. This study evaluates growth patterns of untreated solid and subsolid lung cancers of various histologies in a non-screening setting.Growth behaviour of pathology-proven lung cancers from two academic centres that were imaged at least three times before diagnosis (n=60) was analysed using dedicated software. Random-intercept random-slope mixed-models analysis was applied to test which growth pattern most accurately described lung cancer growth. Individual growth curves were plotted per pathology subgroup and nodule type.We confirmed that growth in both subsolid and solid lung cancers is best explained by an exponential model. However, subsolid lesions generally progress slower than solid ones. Baseline lesion volume was not related to growth, indicating that smaller lesions do not grow slower compared to larger ones.By showing that lung cancer conforms to exponential growth we provide the first experimental basis in the routine-care setting for the assumption made in volume doubling time analysis. Copyright ©ERS 2018.

  7. Anomalous Growth Rate of Ag Nanocrystals Revealed by in situ STEM

    DOE PAGES

    Ge, Mingyuan; Lu, Ming; Chu, Yong; ...

    2017-11-27

    In situ microscopy of colloidal nanocrystal growth offers a unique opportunity to acquire direct and straightforward data for assessing classical growth models. For this study, we observe the growth trajectories of individual Ag nanoparticles in solution using in situ scanning transmission electron microscopy. For the first time, we provide experimental evidence of growth rates of Ag nanoparticles in the presence of Pt in solution that are significantly faster than predicted by Lifshitz-Slyozov-Wagner theory. We attribute these observed anomalous growth rates to the synergistic effects of the catalytic properties of Pt and the electron beam itself. Transiently reduced Pt atoms servemore » as active sites for Ag ions to grow, thereby playing a key role in controlling the growth kinetics. Electron beam illumination greatly increases the local concentration of free radicals, thereby strongly influencing particle growth rate and the resulting particle morphology. Through a systematic investigation, we demonstrate the feasibility of utilizing these synergistic effects for controlling the growth rates and particle morphologies at the nanoscale. Our findings not only expand the current scope of crystal growth theory, but may also lead to a broader scientific application of nanocrystal synthesis.« less

  8. Chitosan conduits combined with nerve growth factor microspheres repair facial nerve defects

    PubMed Central

    Liu, Huawei; Wen, Weisheng; Hu, Min; Bi, Wenting; Chen, Lijie; Liu, Sanxia; Chen, Peng; Tan, Xinying

    2013-01-01

    Microspheres containing nerve growth factor for sustained release were prepared by a compound method, and implanted into chitosan conduits to repair 10-mm defects on the right buccal branches of the facial nerve in rabbits. In addition, chitosan conduits combined with nerve growth factor or normal saline, as well as autologous nerve, were used as controls. At 90 days post-surgery, the muscular atrophy on the right upper lip was more evident in the nerve growth factor and normal sa-line groups than in the nerve growth factor-microspheres and autologous nerve groups. physiological analysis revealed that the nerve conduction velocity and amplitude were significantly higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. Moreover, histological observation illustrated that the di-ameter, number, alignment and myelin sheath thickness of myelinated nerves derived from rabbits were higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. These findings indicate that chitosan nerve conduits bined with microspheres for sustained release of nerve growth factor can significantly improve facial nerve defect repair in rabbits. PMID:25206635

  9. Growth and Growth hormone - Insulin Like Growth Factor -I (GH-IGF-I) Axis in Chronic Anemias.

    PubMed

    Soliman, Ashraf T; De Sanctis, Vincenzo; Yassin, Mohamed; Adel, Ashraf

    2017-04-28

    Anaemia is a global public health problem affecting both developing and developed countries with major consequences for human health as well as social and economic development. It occurs at all stages of the life cycle, but is more prevalent in pregnant women and young children. Iron deficiency anaemia (IDA) was considered to be among the most important contributing factors to the global burden of disease. Prolonged and/or chronic anemia has a negative effect on linear growth especially during the rapid phases (infancy and puberty). Additionally infants with chronic IDA have delayed cognitive, motor, and affective development that may be long-lasting. In view of the significant impact of chronic anemias on growth, pediatricians endocrinologists and hematologists should advocate primary prevention and screening for growth disturbance in these forms of anemias. The extent of the negative effect of different forms of chronic anemias on linear growth and its possible reversibilty is addressed in this review. The possible mechanisms that may impair growth in the different forms of anemias are addressed with special attention to their effect on the growth hormone (GH) - insulin like growth factor -I (IGF-I).

  10. Computer simulation studies of the growth of strained layers by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Faux, D. A.; Gaynor, G.; Carson, C. L.; Hall, C. K.; Bernholc, J.

    1990-08-01

    Two new types of discrete-space Monte Carlo computer simulation are presented for the modeling of the early stages of strained-layer growth by molecular-beam epitaxy. The simulations are more economical on computer resources than continuous-space Monte Carlo or molecular dynamics. Each model is applied to the study of growth onto a substrate in two dimensions with use of Lennard-Jones interatomic potentials. Up to seven layers are deposited for a variety of lattice mismatches, temperatures, and growth rates. Both simulations give similar results. At small lattice mismatches (<~4%) the growth is in registry with the substrate, while at high mismatches (>~6%) the growth is incommensurate with the substrate. At intermediate mismatches, a transition from registered to incommensurate growth is observed which commences at the top of the crystal and propagates down to the first layer. Faster growth rates are seen to inhibit this transition. The growth mode is van der Merwe (layer-by-layer) at 2% lattice mismatch, but at larger mismatches Volmer-Weber (island) growth is preferred. The Monte Carlo simulations are assessed in the light of these results and the ease at which they can be extended to three dimensions and to more sophisticated potentials is discussed.

  11. Variation in growth form and precocity at birth in eutherian mammals.

    PubMed Central

    Gaillard, J M; Pontier, D; Allaine, D; Loison, A; Herve, J C; Heizmann, A

    1997-01-01

    Using the flexible Chapman-Richards model for describing the growth curves from birth to adulthood of 69 species of eutherian mammals, we demonstrate that growth form differs among eutherian mammals. Thereby the commonly used Gompertz model can no longer be considered as the general model for describing mammalian growth. Precocial mammals have their peak growth rate earlier in the growth process than altricial mammals. However, the position on the altricial-precocial continuum accounts for most growth-form differences only between mammalian lineages. Within mammalian genera differences in growth form are not related to precocity at birth. This indicates that growth form may have been associated with precocity at birth early in mammalian evolution, when broad patterns of body development radiated. We discuss four non-exclusive interpretations to account for the role of precocity at birth on the observed variation in growth form among mammals. Precocial and altricial mammals could differ according to (i) the distribution of energy output by the mother, (ii) the ability of the young to assimilate the milk yield, (iii) the allocation of energy by the young between competing functions and (iv) the position of birth between conception and attainment of physical maturity. PMID:9225478

  12. Urban climate modifies tree growth in Berlin

    NASA Astrophysics Data System (ADS)

    Dahlhausen, Jens; Rötzer, Thomas; Biber, Peter; Uhl, Enno; Pretzsch, Hans

    2018-05-01

    Climate, e.g., air temperature and precipitation, differs strongly between urban and peripheral areas, which causes diverse life conditions for trees. In order to compare tree growth, we sampled in total 252 small-leaved lime trees ( Tilia cordata Mill) in the city of Berlin along a gradient from the city center to the surroundings. By means of increment cores, we are able to trace back their growth for the last 50 to 100 years. A general growth trend can be shown by comparing recent basal area growth with estimates from extrapolating a growth function that had been fitted with growth data from earlier years. Estimating a linear model, we show that air temperature and precipitation significantly influence tree growth within the last 20 years. Under consideration of housing density, the results reveal that higher air temperature and less precipitation led to higher growth rates in high-dense areas, but not in low-dense areas. In addition, our data reveal a significantly higher variance of the ring width index in areas with medium housing density compared to low housing density, but no temporal trend. Transferring the results to forest stands, climate change is expected to lead to higher tree growth rates.

  13. Personal Growth During Internship: A Qualitative Analysis of Interns' Responses to Key Questions

    PubMed Central

    Levine, Rachel B; Haidet, Paul; Kern, David E; Beasley, Brent W; Bensinger, Lisa; Brady, Donald W; Gress, Todd; Hughes, Jennifer; Marwaha, Ajay; Nelson, Jennifer; Wright, Scott M

    2006-01-01

    BACKGROUND During clinical training, house officers frequently encounter intense experiences that may affect their personal growth. The purpose of this study was to explore processes related to personal growth during internship. DESIGN Prospective qualitative study conducted over the course of internship. PARTICIPANTS Thirty-two postgraduate year (PGY)-1 residents from 9 U.S. internal medicine training programs. APPROACH Every 8 weeks, interns responded by e-mail to an open-ended question related to personal growth. Content analysis methods were used to analyze the interns' writings to identify triggers, facilitators, and barriers related to personal growth. RESULTS Triggers for personal growth included caring for critically ill or dying patients, receiving feedback, witnessing unprofessional behavior, experiencing personal problems, and dealing with the increased responsibility of internship. Facilitators of personal growth included supportive relationships, reflection, and commitment to core values. Fatigue, lack of personal time, and overwhelming work were barriers to personal growth. The balance between facilitators and barriers may dictate the extent to which personal growth occurs. CONCLUSIONS Efforts to support personal growth during residency training include fostering supportive relationships, encouraging reflection, and recognizing interns' core values especially in association with powerful triggers. PMID:16808737

  14. Urban climate modifies tree growth in Berlin.

    PubMed

    Dahlhausen, Jens; Rötzer, Thomas; Biber, Peter; Uhl, Enno; Pretzsch, Hans

    2018-05-01

    Climate, e.g., air temperature and precipitation, differs strongly between urban and peripheral areas, which causes diverse life conditions for trees. In order to compare tree growth, we sampled in total 252 small-leaved lime trees (Tilia cordata Mill) in the city of Berlin along a gradient from the city center to the surroundings. By means of increment cores, we are able to trace back their growth for the last 50 to 100 years. A general growth trend can be shown by comparing recent basal area growth with estimates from extrapolating a growth function that had been fitted with growth data from earlier years. Estimating a linear model, we show that air temperature and precipitation significantly influence tree growth within the last 20 years. Under consideration of housing density, the results reveal that higher air temperature and less precipitation led to higher growth rates in high-dense areas, but not in low-dense areas. In addition, our data reveal a significantly higher variance of the ring width index in areas with medium housing density compared to low housing density, but no temporal trend. Transferring the results to forest stands, climate change is expected to lead to higher tree growth rates.

  15. A new reserve growth model for United States oil and gas fields

    USGS Publications Warehouse

    Verma, M.K.

    2005-01-01

    Reserve (or field) growth, which is an appreciation of total ultimate reserves through time, is a well-recognized phenomenon, particularly in mature petroleum provinces. The importance of forecasting reserve growth accurately in a mature petroleum province made it necessary to develop improved growth functions, and a critical review of the original Arrington method was undertaken. During a five-year (1992-1996), the original Arrington method gave 1.03% higher than the actual oil reserve growth, whereas the proposed modified method gave a value within 0.3% of the actual growth, and therefore it was accepted for the development for reserve growth models. During a five-year (1992-1996), the USGS 1995 National Assessment gave 39.3% higher oil and 33.6% lower gas than the actual growths, whereas the new model based on Modified Arrington method gave 11.9% higher oil and 29.8% lower gas than the actual growths. The new models forecast predict reserve growths of 4.2 billion barrels of oil (2.7%) and 30.2 trillion cubic feet of gas (5.4%) for the conterminous U.S. for the next five years (1997-2001). ?? 2005 International Association for Mathematical Geology.

  16. Modeling the hydraulics of root growth in three dimensions with phloem water sources.

    PubMed

    Wiegers, Brandy S; Cheer, Angela Y; Silk, Wendy K

    2009-08-01

    Primary growth is characterized by cell expansion facilitated by water uptake generating hydrostatic (turgor) pressure to inflate the cell, stretching the rigid cell walls. The multiple source theory of root growth hypothesizes that root growth involves transport of water both from the soil surrounding the growth zone and from the mature tissue higher in the root via phloem and protophloem. Here, protophloem water sources are used as boundary conditions in a classical, three-dimensional model of growth-sustaining water potentials in primary roots. The model predicts small radial gradients in water potential, with a significant longitudinal gradient. The results improve the agreement of theory with empirical studies for water potential in the primary growth zone of roots of maize (Zea mays). A sensitivity analysis quantifies the functional importance of apical phloem differentiation in permitting growth and reveals that the presence of phloem water sources makes the growth-sustaining water relations of the root relatively insensitive to changes in root radius and hydraulic conductivity. Adaptation to drought and other environmental stresses is predicted to involve more apical differentiation of phloem and/or higher phloem delivery rates to the growth zone.

  17. Modelling foetal growth in a bi-ethnic sample: results from the Born in Bradford (BiB) birth cohort.

    PubMed

    Norris, Tom; Tuffnell, Derek; Wright, John; Cameron, Noël

    2014-01-01

    Attempts to explain the increased risk for metabolic disorders observed in South Asians have focused on the "South Asian" phenotype at birth and subsequent post-natal growth, with little research on pre-natal growth. To identify whether divergent growth patterns exist for foetal weight, head (HC) and abdominal circumferences (AC) in a sample of Pakistani and White British foetuses. Models were based on 5553 (weight), 5154 (HC) and 5099 (AC) foetuses from the Born in Bradford birth cohort. Fractional polynomials and mixed effects models were employed to determine growth patterns from ~15 weeks of gestation-birth. Pakistani foetuses were significantly smaller and lighter as early as 20 weeks. However, there was no ethnic difference in the growth patterns of weight and HC. For AC, Pakistani foetuses displayed a trend for reduced growth in the final trimester. As the pattern of weight and HC growth was not significantly different during the period under investigation, the mechanism culminating in the reduced Pakistani size at birth may act earlier in gestation. Reduced AC growth in Pakistanis may represent reduced growth of the visceral organs, with consequences for post-natal liver metabolism and renal function.

  18. Amino-terminal propeptide of C-type natriuretic peptide and linear growth in children: effects of puberty, testosterone, and growth hormone.

    PubMed

    Olney, Robert C; Prickett, Timothy C R; Yandle, Timothy G; Espiner, Eric A; Han, Joan C; Mauras, Nelly

    2007-11-01

    C-type natriuretic peptide (CNP), a paracrine factor of the growth plate, plays a key role in stimulating bone growth. The amino-terminal propeptide of CNP (NTproCNP) is produced in equimolar amounts with CNP and is measurable in plasma, providing a potential biomarker for growth plate activity and, hence, linear growth. We explored the effects of puberty, testosterone, and GH treatment on NTproCNP levels in normal and short-statured children. This was a retrospective analysis of samples obtained during previous studies. The study was conducted at a pediatric clinical research center. Children with short stature due to GH deficiency, idiopathic short stature (ISS), or constitutional delay of growth and maturation (CDGM) were studied (n = 37). A cohort of normal-statured adolescent boys was also studied (n = 23). Children with GH deficiency and ISS were studied before and during testosterone and/or GH treatment. Boys with CDGM and healthy controls were studied once. The main outcomes were NTproCNP levels before and during growth-promoting therapy and during pubertal growth. Children with short stature due to GH deficiency, ISS, or CDGM had comparable baseline levels of NTproCNP, and levels increased markedly in response to GH or testosterone treatment. In boys with CDGM, levels were comparable with height-matched controls but were less than those from age-matched controls. In healthy boys, NTproCNP appears to peak with the pubertal growth spurt. NTproCNP levels increase during growth-promoting therapy and are increased during puberty in boys. This novel biomarker of growth may have clinical utility in the evaluation of children with short stature and for monitoring growth-promoting therapy.

  19. Insulin-like growth factor 1 (IGF-1): a growth hormone

    PubMed Central

    Laron, Z

    2001-01-01

    Aim—To contribute to the debate about whether growth hormone (GH) and insulin-like growth factor 1 (IGF-1) act independently on the growth process. Methods—To describe growth in human and animal models of isolated IGF-1 deficiency (IGHD), such as in Laron syndrome (LS; primary IGF-1 deficiency and GH resistance) and IGF-1 gene or GH receptor gene knockout (KO) mice. Results—Since the description of LS in 1966, 51 patients were followed, many since infancy. Newborns with LS are shorter (42–47 cm) than healthy babies (49–52 cm), suggesting that IGF-1 has some influence on intrauterine growth. Newborn mice with IGF-1 gene KO are 30% smaller. The postnatal growth rate of patients with LS is very slow, the distance from the lowest normal centile increasing progressively. If untreated, the final height is 100–136 cm for female and 109–138 cm for male patients. They have acromicia, organomicria including the brain, heart, gonads, genitalia, and retardation of skeletal maturation. The availability of biosynthetic IGF-1 since 1988 has enabled it to be administered to children with LS. It accelerated linear growth rates to 8–9 cm in the first year of treatment, compared with 10–12 cm/year during GH treatment of IGHD. The growth rate in following years was 5–6.5 cm/year. Conclusion—IGF-1 is an important growth hormone, mediating the protein anabolic and linear growth promoting effect of pituitary GH. It has a GH independent growth stimulating effect, which with respect to cartilage cells is possibly optimised by the synergistic action with GH. PMID:11577173

  20. The role of angiogenic factors in fibroid pathogenesis: potential implications for future therapy

    PubMed Central

    Tal, Reshef; Segars, James H.

    2014-01-01

    Background It is well established that tumors are dependent on angiogenesis for their growth and survival. Although uterine fibroids are known to be benign tumors with reduced vascularization, recent work demonstrates that the vasculature of fibroids is grossly and microscopically abnormal. Accumulating evidence suggests that angiogenic growth factor dysregulation may be implicated in these vascular and other features of fibroid pathophysiology. Methods Literature searches were performed in PubMed and Google Scholar for articles with content related to angiogenic growth factors and myometrium/leiomyoma. The findings are hereby reviewed and discussed. Results Multiple growth factors involved in angiogenesis are differentially expressed in leiomyoma compared with myometrium. These include epidermal growth factor (EGF), heparin-binding-EGF, vascular endothelial growth factor, basic fibroblast growth factor, platelet-derived growth factor, transforming growth factor-β and adrenomedullin. An important paradox is that although leiomyoma tissues are hypoxic, leiomyoma feature down-regulation of key molecular regulators of the hypoxia response. Furthermore, the hypoxic milieu of leiomyoma may contribute to fibroid development and growth. Notably, common treatments for fibroids such as GnRH agonists and uterine artery embolization (UAE) are shown to work at least partly via anti-angiogenic mechanisms. Conclusions Angiogenic growth factors play an important role in mechanisms of fibroid pathophysiology, including abnormal vasculature and fibroid growth and survival. Moreover, the fibroid's abnormal vasculature together with its aberrant hypoxic and angiogenic response may make it especially vulnerable to disruption of its vascular supply, a feature which could be exploited for treatment. Further experimental studies are required in order to gain a better understanding of the growth factors that are involved in normal and pathological myometrial angiogenesis, and to assess the potential of anti-angiogenic treatment strategies for uterine fibroids. PMID:24077979

  1. Investigating calcite growth rates using a quartz crystal microbalance with dissipation (QCM-D)

    NASA Astrophysics Data System (ADS)

    Cao, Bo; Stack, Andrew G.; Steefel, Carl I.; DePaolo, Donald J.; Lammers, Laura N.; Hu, Yandi

    2018-02-01

    Calcite precipitation plays a significant role in processes such as geological carbon sequestration and toxic metal sequestration and, yet, the rates and mechanisms of calcite growth under close to equilibrium conditions are far from well understood. In this study, a quartz crystal microbalance with dissipation (QCM-D) was used for the first time to measure macroscopic calcite growth rates. Calcite seed crystals were first nucleated and grown on sensors, then growth rates of calcite seed crystals were measured in real-time under close to equilibrium conditions (saturation index, SI = log ({Ca2+}/{CO32-}/Ksp) = 0.01-0.7, where {i} represent ion activities and Ksp = 10-8.48 is the calcite thermodynamic solubility constant). At the end of the experiments, total masses of calcite crystals on sensors measured by QCM-D and inductively coupled plasma mass spectrometry (ICP-MS) were consistent, validating the QCM-D measurements. Calcite growth rates measured by QCM-D were compared with reported macroscopic growth rates measured with auto-titration, ICP-MS, and microbalance. Calcite growth rates measured by QCM-D were also compared with microscopic growth rates measured by atomic force microscopy (AFM) and with rates predicted by two process-based crystal growth models. The discrepancies in growth rates among AFM measurements and model predictions appear to mainly arise from differences in step densities, and the step velocities were consistent among the AFM measurements as well as with both model predictions. Using the predicted steady-state step velocity and the measured step densities, both models predict well the growth rates measured using QCM-D and AFM. This study provides valuable insights into the effects of reactive site densities on calcite growth rate, which may help design future growth models to predict transient-state step densities.

  2. Effects of polychlorinated biphenyl (PCB) on regulation of thyroid-, growth-, and neurochemically related developmental processes in young rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juarez de Ku, L.M.

    1992-01-01

    Neonatal exposure to the toxic chemical polychlorinated biphenyl (PCB) induces hypothyroidism and retarded growth. Neonatal rats made hypothyroid by chemical or surgical means experience retarded growth and subnormal activity of choline acetyltransferase (ChAT) This study compared thyroid-, growth-, and neurochemically-related processes altered by hypothyroidism induced by other means, with PCB-induced hypothyroidism: (1) titers of thyroid stimulating hormone (TSH); (2) titers of hormones that regulate growth [growth hormone (GH), insulin-growth like factor-I (IGF-1), growth hormone releasing hormone (GHRH) and somatostatin (SS)]; or (3) brain ChAT activity. Whether PCB-induced growth retardation and other alterations are secondary to accompanying hypothyroidism rather than ormore » in addition to a direct effect of PCB was also examined. Pregnant rats were fed chow containing 0 (controls), 62.5, 125, or 250 ppm PCB (entering offspring through placenta and milk) throughout pregnancy and lactation. Neonates exposed to PCB displayed many alterations similar to those made hypothyroid by other means: depression of overall and skeletal growth, circulating by other means: depression of overall and skeletal growth, circulating T[sub 4] levels and ChAT activity, and no change in hypothalamic GHRH and SS concentrations. Differences included a paradoxical increase in circulating GH levels, and no significant alteration of circulation IGF-1 and TSH levels and pituitary GH and TSH levels (although trends were in the expected direction). Thus, PCB-induced hypothyroidism may partially cause altered skeletal growth, circulating GH and TSH concentrations, and ChAT activity. Both T[sub 4] and T[sub 3] injections returned circulating TSH and GH levels and pituitary TSH content toward control levels; T[sub 3] restored skeletal, but not overall growth; and T[sub 4] elevated ChAT activity.« less

  3. Response of the insulin-like growth factor-1 (Igf1) system to nutritional status and growth rate variation in olive rockfish (Sebastes serranoides).

    PubMed

    Hack, Nicole L; Strobel, Jackson S; Journey, Meredith L; Beckman, Brian R; Lema, Sean C

    2018-06-05

    Growth performance in vertebrates is regulated by environmental factors including the quality and quantity of food, which influence growth via endocrine pathways such as the growth hormone (GH)/insulin-like growth factor somatotropic axis. In several teleost fishes, circulating concentrations of insulin-like growth factor-1 (Igf1) correlate positively with growth rate, and it has been proposed that plasma Igf1 levels may serve as an indicator of growth variation for fisheries and aquaculture applications. This study tested whether plasma Igf1 concentrations might serve as an indicator of somatic growth in olive rockfish (Sebastes serranoides), one species among dozens of rockfishes important to commercial and recreational fisheries in the Northern Pacific Ocean. Juvenile olive rockfish were reared under food ration treatments of 1% or 4% wet mass per d for 98 d to experimentally generate variation in growth. Juvenile rockfish in the 4% ration grew 60% more quickly in mass and 22% faster in length than fish in the 1% ration. Plasma Igf1 levels were elevated in rockfish under the 4% ration, and individual Igf1 levels correlated positively with growth rate, as well as with individual variation in hepatic igf1 mRNA levels. Transcripts encoding the Igf binding proteins (Igfbps) igfbp1a and igfbp1b were also at higher abundance in the liver of rockfish in the 1% ration treatment, while mRNAs for igfbp5a and igfbp5b were elevated in the skeletal muscle of 4% ration fish. These findings support the use of plasma Igf1 as a physiological index of growth rate variation in rockfish. Copyright © 2018. Published by Elsevier Inc.

  4. Environmental versus genetic influences on growth rates of the corals Pocillopora eydouxi and Porites lobata (Anthozoa: Scleractinia)

    USGS Publications Warehouse

    Smith, L.W.; Wirshing, H.H.; Baker, A.C.; Birkeland, C.

    2008-01-01

    Reciprocal transplant experiments of the corals Pocillopora eydouxi Milne Edwards & Haime and Porites lobata Dana were carried out for an 18-month period from September 2004 to March 2006 between two back reef pools on Ofu Island, American Samoa, to test environmental versus genetic effects on skeletal growth rates. Skeletal growth of P. eydouxi showed environmental but not genetic effects, resulting in doubling of growth in Pool 300 compared with Pool 400. There were no environmental or genetic effects on skeletal growth of P. lobata. Pool 300 had more frequent and longer durations of elevated seawater temperatures than Pool 400, characteristics likely to decrease rather than increase skeletal growth. Pool 300 also had higher nutrient levels and flow velocities than Pool 400, characteristics that may increase skeletal growth. However, higher nutrient levels would be expected to increase skeletal growth in both species, but there was no difference between the pools in P. lobata growth. P. eydouxi is much more common in high-energy environments than P. lobata; thus the higher flow velocities in Pool 300 than in Pool 400 may have positively affected skeletal growth of P. eydouxi while not having a detectable effect on P. lobata. The greater skeletal growth of P. eydouxi in Pool 300 occurred despite the presence of clade D zooxanthellae in several source colonies in Pool 300, a genotype known to result in greater heat resistance but slower skeletal growth. Increased skeletal growth rates in higher water motion may provide P. eydouxi a competitive advantage in shallow, high-energy enviromnents where competition for space is intense. ?? 2008 by University of Hawai'i Press. All rights reserved.

  5. WHO multicentre study for the development of growth standards from fetal life to childhood: the fetal component.

    PubMed

    Merialdi, Mario; Widmer, Mariana; Gülmezoglu, Ahmet Metin; Abdel-Aleem, Hany; Bega, George; Benachi, Alexandra; Carroli, Guillermo; Cecatti, Jose Guilherme; Diemert, Anke; Gonzalez, Rogelio; Hecher, Kurt; Jensen, Lisa N; Johnsen, Synnøve L; Kiserud, Torvid; Kriplani, Alka; Lumbiganon, Pisake; Tabor, Ann; Talegawkar, Sameera A; Tshefu, Antoinette; Wojdyla, Daniel; Platt, Lawrence

    2014-05-02

    In 2006 WHO presented the infant and child growth charts suggested for universal application. However, major determinants for perinatal outcomes and postnatal growth are laid down during antenatal development. Accordingly, monitoring fetal growth in utero by ultrasonography is important both for clinical and scientific reasons. The currently used fetal growth references are derived mainly from North American and European population and may be inappropriate for international use, given possible variances in the growth rates of fetuses from different ethnic population groups. WHO has, therefore, made it a high priority to establish charts of optimal fetal growth that can be recommended worldwide. This is a multi-national study for the development of fetal growth standards for international application by assessing fetal growth in populations of different ethnic and geographic backgrounds. The study will select pregnant women of high-middle socioeconomic status with no obvious environmental constraints on growth (adequate nutritional status, non-smoking), and normal pregnancy history with no complications likely to affect fetal growth. The study will be conducted in centres from ten developing and industrialized countries: Argentina, Brazil, Democratic Republic of Congo, Denmark, Egypt, France, Germany, India, Norway, and Thailand. At each centre, 140 pregnant women will be recruited between 8 + 0 and 12 + 6 weeks of gestation. Subsequently, visits for fetal biometry will be scheduled at 14, 18, 24, 28, 32, 36, and 40 weeks (+/- 1 week) to be performed by trained ultrasonographers.The main outcome of the proposed study will be the development of fetal growth standards (either global or population specific) for international applications. The data from this study will be incorporated into obstetric practice and national health policies at country level in coordination with the activities presently conducted by WHO to implement the use of the Child Growth Standards.

  6. Calcite growth-rate inhibition by fulvic acids isolated from Big Soda Lake, Nevada, USA, The Suwannee River, Georgia, USA and by polycarboxylic acids

    USGS Publications Warehouse

    Reddy, Michael M.; Leenheer, Jerry

    2011-01-01

    Calcite crystallization rates are characterized using a constant solution composition at 25°C, pH=8.5, and calcite supersaturation (Ω) of 4.5 in the absence and presence of fulvic acids isolated from Big Soda Lake, Nevada (BSLFA), and a fulvic acid from the Suwannee River, Georgia (SRFA). Rates are also measured in the presence and absence of low-molar mass, aliphatic-alicyclic polycarboxylic acids (PCA). BSLFA inhibits calcite crystal-growth rates with increasing BSLFA concentration, suggesting that BSLFA adsorbs at growth sites on the calcite crystal surface. Calcite growth morphology in the presence of BSLFA differed from growth in its absence, supporting an adsorption mechanism of calcite-growth inhibition by BSLFA. Calcite growth-rate inhibition by BSLFA is consistent with a model indicating that polycarboxylic acid molecules present in BSLFA adsorb at growth sites on the calcite crystal surface. In contrast to published results for an unfractionated SRFA, there is dramatic calcite growth inhibition (at a concentration of 1 mg/L) by a SRFA fraction eluted by pH 5 solution from XAD-8 resin, indicating that calcite growth-rate inhibition is related to specific SRFA component fractions. A cyclic PCA, 1, 2, 3, 4, 5, 6-cyclohexane hexacarboxylic acid (CHXHCA) is a strong calcite growth-rate inhibitor at concentrations less than 0.1 mg/L. Two other cyclic PCAs, 1, 1 cyclopentanedicarboxylic acid (CPDCA) and 1, 1 cyclobutanedicarboxylic acid (CBDCA) with the carboxylic acid groups attached to the same ring carbon atom, have no effect on calcite growth rates up to concentrations of 10 mg/L. Organic matter ad-sorbed from the air onto the seed crystals has no effect on the measured calcite crystal-growth rates.

  7. Growth hormone transgenesis in coho salmon disrupts muscle immune function impacting cross-talk with growth systems.

    PubMed

    Alzaid, Abdullah; Kim, Jin-Hyoung; Devlin, Robert H; Martin, Samuel A M; Macqueen, Daniel J

    2018-04-26

    Suppression of growth during infection may aid resource allocation towards effective immune function. Past work supporting this hypothesis in salmonid fish revealed an immune-responsive regulation of the insulin-like growth factor (IGF) system, an endocrine pathway downstream of growth hormone (GH). Skeletal muscle is the main target for growth and energetic storage in fish, yet little is known about how its growth is regulated during an immune response. We addressed this knowledge gap by characterizing muscle immune responses in size-matched coho salmon ( Oncorhynchus kisutch ) achieving different growth rates. We compared a wild-type strain with two GH transgenic groups from the same genetic background achieving either maximal or suppressed growth, a design separating GH's direct effects from its influence on growth rate and nutritional state. Fish were sampled 30h post-injection with PBS (control) or mimics of bacterial or viral infection. We quantified mRNA expression levels for genes from the GH, GH receptor, IGF hormone, IGF1 receptor and IGF-binding protein families, along with immune genes involved in inflammatory or antiviral responses and muscle growth status marker genes. We demonstrate dampened immune function in GH transgenics compared to wild-type. The muscle of GH transgenics achieving rapid growth showed no detectable antiviral response, coupled with evidence of a constitutive inflammatory state. GH and IGF system gene expression was strongly altered by GH transgenesis and fast growth, both for baseline expression and responses to immune stimulation. Thus, GH transgenesis strongly disrupts muscle immune status and normal GH and IGF system expression responses to immune stimulation. © 2018. Published by The Company of Biologists Ltd.

  8. Transcriptome assembly and identification of genes and SNPs associated with growth traits in largemouth bass (Micropterus salmoides).

    PubMed

    Li, Shengjie; Liu, Hao; Bai, Junjie; Zhu, Xinping

    2017-04-01

    Growth is one of the most crucial economic traits of all aquaculture species, but the molecular mechanisms involved in growth of largemouth bass (Micropterus salmoides) are poorly understood. The objective of this study was to screen growth-related genes of M. salmoides by RNA sequencing and identify growth-related single-nucleotide polymorphism (SNP) markers through a growth association study. The muscle transcriptomes of fast- and slow-growing largemouth bass were obtained using the RNA-Seq technique. A total of 54,058,178 and 54,742,444 qualified Illumina read pairs were obtained for the fast-growing and slow-growing groups, respectively, giving rise to 4,865,236,020 and 4,926,819,960 total clean bases, respectively. Gene expression profiling showed that 3,530 unigenes were differentially expressed between the fast-growing and slow-growing phenotypes (false discovery rate ≤0.001, the absolute value of log 2 (fold change) ≥1), including 1,441 up-regulated and 2,889 down-regulated unigenes in the fast-growing largemouth bass. Analysis of these genes revealed that several signalling pathways, including the growth hormone-insulin-like growth factor 1 axis and signalling pathway, the glycolysis pathway, and the myostatin/transforming growth factor beta signalling pathway, as well as heat shock protein, cytoskeleton, and myofibril component genes might be associated with muscle growth. From these genes, 10 genes with putative SNPs were selected, and 17 SNPs were genotyped successfully. Marker-trait analysis in 340 individuals of Youlu No. 1 largemouth bass revealed three SNPs associated with growth in key genes (phosphoenolpyruvate carboxykinase 1, FOXO3b, and heat shock protein beta-1). This research provides information about key genes and SNPs related to growth, providing new clues to understanding the molecular basis of largemouth bass growth.

  9. Transcriptomic profile of leg muscle during early growth in chicken

    PubMed Central

    Zhang, Genxi; Li, Tingting; Ling, Jiaojiao; Zhang, Xiangqian; Wang, Jinyu

    2017-01-01

    The early growth pattern, especially the age of peak growth, of broilers affects the time to market and slaughter weight, which in turn affect the profitability of the poultry industry. However, the underlying mechanisms regulating chicken growth and development have rarely been studied. This study aimed to identify candidate genes involved in chicken growth and investigated the potential regulatory mechanisms of early growth in chicken. RNA sequencing was applied to compare the transcriptomes of chicken muscle tissues at three developmental stages during early growth. In total, 978 differentially expressed genes (DEGs) (fold change ≥ 2; false discovery rate < 0.05) were detected by pairwise comparison. Functional analysis showed that the DEGs are mainly involved in the processes of cell growth, muscle development, and cellular activities (such as junction, migration, assembly, differentiation, and proliferation). Many of the DEGs are well known to be related to chicken growth, such as MYOD1, GH, IGF2BP2, IGFBP3, SMYD1, CEBPB, FGF2, and IGFBP5. KEGG pathway analysis identified that the DEGs were significantly enriched in five pathways (P < 0.1) related to growth and development: extracellular matrix–receptor interaction, focal adhesion, tight junction, insulin signaling pathway, and regulation of the actin cytoskeleton. A total of 42 DEGs assigned to these pathways are potential candidate genes inducing the difference in growth among the three developmental stages, such as MYH10, FGF2, FGF16, FN1, CFL2, MAPK9, IRS1, PHKA1, PHKB, and PHKG1. Thus, our study identified a series of genes and several pathways that may participate in the regulation of early growth in chicken. These results should serve as an important resource revealing the molecular basis of chicken growth and development. PMID:28291821

  10. Growth control of the eukaryote cell: a systems biology study in yeast.

    PubMed

    Castrillo, Juan I; Zeef, Leo A; Hoyle, David C; Zhang, Nianshu; Hayes, Andrew; Gardner, David Cj; Cornell, Michael J; Petty, June; Hakes, Luke; Wardleworth, Leanne; Rash, Bharat; Brown, Marie; Dunn, Warwick B; Broadhurst, David; O'Donoghue, Kerry; Hester, Svenja S; Dunkley, Tom Pj; Hart, Sarah R; Swainston, Neil; Li, Peter; Gaskell, Simon J; Paton, Norman W; Lilley, Kathryn S; Kell, Douglas B; Oliver, Stephen G

    2007-01-01

    Cell growth underlies many key cellular and developmental processes, yet a limited number of studies have been carried out on cell-growth regulation. Comprehensive studies at the transcriptional, proteomic and metabolic levels under defined controlled conditions are currently lacking. Metabolic control analysis is being exploited in a systems biology study of the eukaryotic cell. Using chemostat culture, we have measured the impact of changes in flux (growth rate) on the transcriptome, proteome, endometabolome and exometabolome of the yeast Saccharomyces cerevisiae. Each functional genomic level shows clear growth-rate-associated trends and discriminates between carbon-sufficient and carbon-limited conditions. Genes consistently and significantly upregulated with increasing growth rate are frequently essential and encode evolutionarily conserved proteins of known function that participate in many protein-protein interactions. In contrast, more unknown, and fewer essential, genes are downregulated with increasing growth rate; their protein products rarely interact with one another. A large proportion of yeast genes under positive growth-rate control share orthologs with other eukaryotes, including humans. Significantly, transcription of genes encoding components of the TOR complex (a major controller of eukaryotic cell growth) is not subject to growth-rate regulation. Moreover, integrative studies reveal the extent and importance of post-transcriptional control, patterns of control of metabolic fluxes at the level of enzyme synthesis, and the relevance of specific enzymatic reactions in the control of metabolic fluxes during cell growth. This work constitutes a first comprehensive systems biology study on growth-rate control in the eukaryotic cell. The results have direct implications for advanced studies on cell growth, in vivo regulation of metabolic fluxes for comprehensive metabolic engineering, and for the design of genome-scale systems biology models of the eukaryotic cell.

  11. Mechano-growth factor protects against mechanical overload induced damage and promotes migration of growth plate chondrocytes through RhoA/YAP pathway.

    PubMed

    Jing, Xingzhi; Ye, Yaping; Bao, Yuan; Zhang, Jinming; Huang, Junming; Wang, Rui; Guo, Jiachao; Guo, Fengjing

    2018-05-15

    Epiphyseal growth plate is highly dynamic tissue which is controlled by a variety of endocrine, paracrine hormones, and by complex local signaling loops and mechanical loading. Mechano growth factor (MGF), the splice variant of the IGF-I gene, has been discovered to play important roles in tissue growth and repair. However, the effect of MGF on the growth plate remains unclear. In the present study, we found that MGF mRNA expression of growth plate chondrocytes was upregulated in response to mechanical stimuli. Treatment of MGF had no effect on growth plate chondrocytes proliferation and differentiation. But it could inhibit growth plate chondrocytes apoptosis and inflammation under mechanical overload. Moreover, both wound healing and transwell assay indicated that MGF could significantly enhance growth plate chondrocytes migration which was accompanied with YAP activation and nucleus translocation. Knockdown of YAP with YAP siRNA suppressed migration induced by MGF, indicating the essential role of YAP in MGF promoting growth plate chondrocytes migration. Furthermore, MGF promoted YAP activation through RhoA GTPase mediated cytoskeleton reorganization, RhoA inhibition using C3 toxin abrogated MGF induced YAP activation. Importantly, we found that MGF promoted focal adhesion(FA) formation and knockdown of YAP with YAP siRNA partially suppressed the activation of FA kinase, implying that YAP is associated with FA formation. In conclusion, MGF is an autocrine growth factor which is regulated by mechanical stimuli. MGF could not only protect growth plate chondrocytes against damage by mechanical overload, but also promote migration through activation of RhoA/YAP signaling axis. Most importantly, our findings indicate that MGF promote cell migration through YAP mediated FA formation to determine the FA-cytoskeleton remodeling. Copyright © 2018. Published by Elsevier Inc.

  12. Assessing a relationship between bone microstructure and growth rate: a fluorescent labelling study in the king penguin chick (Aptenodytes patagonicus).

    PubMed

    de Margerie, E; Robin, J-P; Verrier, D; Cubo, J; Groscolas, R; Castanet, J

    2004-02-01

    Microstructure-function relationships remain poorly understood in primary bone tissues. The relationship between bone growth rate and bone tissue type, although documented in some species by previous works, remains somewhat unclear and controversial. We assessed this relationship in a species with extreme adaptations, the king penguin (Aptenodytes patagonicus). These birds have a peculiar growth, interrupted 3 months after hatching by the austral winter. Before this interruption, chicks undergo extremely rapid statural and ponderal growth. We recorded experimentally (by means of fluorescent labelling) the growth rate of bone tissue in four long bones (humerus, radius, femur and tibiotarsus) of four king penguin chicks during their fastest phase of growth (3-5 weeks after hatching) and identified the associated bone tissue types ('laminar', 'longitudinal', 'reticular' or 'radial' fibro-lamellar bone tissue). We found the highest bone tissue growth rate known to date, up to 171 microm day(-1) (mean 55 microm day(-1)). There was a highly significant relationship between bone tissue type and growth rate (P<10(-6)). Highest rates were obtained with the radial microarchitecture of fibro-lamellar bone, where cavities in the woven network are aligned radially. This result supports the heuristic value of a relationship between growth rate and bone primary microstructure. However, we also found that growth rates of bone tissue types vary according to the long bone considered (P<10(-5)) (e.g. growth rates were 38% lower in the radius than in the other long bones), a result that puts some restriction on the applicability of absolute growth rate values (e.g. to fossil species). The biomechanical disadvantages of accelerated bone growth are discussed in relation to the locomotor behaviour of the chicks during their first month of life.

  13. Physical growth and development of the malnourished child: contributions from 50 years of research at INCAP.

    PubMed

    Martorell, Reynaldo

    2010-03-01

    This paper reviews the main findings and policy implications of 50 years (1949-1999) of research conducted by INCAP on growth and development. Topical areas reviewed include a) maternal size and birthweight and the causes of intrauterine growth retardation (IUGR), b) patterns and causes of postnatal growth retardation, c) the relative importance of genetics and the environment in explaining differences in growth among populations, d) the implications of being small, for both children and adults, e) bone growth and maturation and dental development, f) menarche, and g) methodological contributions such as anthropometric reference data, quality control of data collection, development of risk indicators and use of anthropometry in nutrition surveillance systems. Key contributions to knowledge by INCAP include a) characterization of growth failure and maturational delays as mainly occurring during the intrauterine period and the first 3 years of life b) clarification of the role of small maternal size and of inadequate dietary intakes during pregnancy as major causes of intrauterine growth failure, c) evidence that diarrheal diseases and poor dietary intakes are the principal causes of growth failure in early childhood, d) demonstration that environmental factors related to poverty, and not genetic or racial ancestry, account for most of the differences in growth between populations, e) evidence that growth failure predicts functional impairment in the child as well as in the adult andf) demonstration that nutrition interventions are effective in preventing growth failure and its consequences, if targeted to needy women and young children. INCAP's work has contributed knowledge that has informed and improved policies and programs aimed at overcoming maternal and child undernutrition and promoting optimal growth and development.

  14. Evasion of anti-growth signaling: a key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds

    PubMed Central

    Amin, A.R.M. Ruhul; Karpowicz, Phillip A.; Carey, Thomas E.; Arbiser, Jack; Nahta, Rita; Chen, Zhuo G.; Dong, Jin-Tang; Kucuk, Omer; Khan, Gazala N.; Huang, Gloria S.; Mi, Shijun; Lee, Ho-Young; Reichrath, Joerg; Honoki, Kanya; Georgakilas, Alexandros G.; Amedei, Amedeo; Amin, Amr; Helferich, Bill; Boosani, Chandra S.; Ciriolo, Maria Rosa; Chen, Sophie; Mohammed, Sulma I.; Azmi, Asfar S.; Keith, W Nicol; Bhakta, Dipita; Halicka, Dorota; Niccolai, Elena; Fujii, Hiromasa; Aquilano, Katia; Ashraf, S. Salman; Nowsheen, Somaira; Yang, Xujuan; Bilsland, Alan; Shin, Dong M.

    2015-01-01

    The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally-occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally-occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting. PMID:25749195

  15. Pan-Tropical Analysis of Climate Effects on Seasonal Tree Growth

    PubMed Central

    Wagner, Fabien; Rossi, Vivien; Aubry-Kientz, Mélaine; Bonal, Damien; Dalitz, Helmut; Gliniars, Robert; Stahl, Clément; Trabucco, Antonio; Hérault, Bruno

    2014-01-01

    Climate models predict a range of changes in tropical forest regions, including increased average temperatures, decreased total precipitation, reduced soil moisture and alterations in seasonal climate variations. These changes are directly related to the increase in anthropogenic greenhouse gas concentrations, primarily CO2. Assessing seasonal forest growth responses to climate is of utmost importance because woody tissues, produced by photosynthesis from atmospheric CO2, water and light, constitute the main component of carbon sequestration in the forest ecosystem. In this paper, we combine intra-annual tree growth measurements from published tree growth data and the corresponding monthly climate data for 25 pan-tropical forest sites. This meta-analysis is designed to find the shared climate drivers of tree growth and their relative importance across pan-tropical forests in order to improve carbon uptake models in a global change context. Tree growth reveals significant intra-annual seasonality at seasonally dry sites or in wet tropical forests. Of the overall variation in tree growth, 28.7% was explained by the site effect, i.e. the tree growth average per site. The best predictive model included four climate variables: precipitation, solar radiation (estimated with extrasolar radiation reaching the atmosphere), temperature amplitude and relative soil water content. This model explained more than 50% of the tree growth variations across tropical forests. Precipitation and solar radiation are the main seasonal drivers of tree growth, causing 19.8% and 16.3% of the tree growth variations. Both have a significant positive association with tree growth. These findings suggest that forest productivity due to tropical tree growth will be reduced in the future if climate extremes, such as droughts, become more frequent. PMID:24670981

  16. Growth control of the eukaryote cell: a systems biology study in yeast

    PubMed Central

    Castrillo, Juan I; Zeef, Leo A; Hoyle, David C; Zhang, Nianshu; Hayes, Andrew; Gardner, David CJ; Cornell, Michael J; Petty, June; Hakes, Luke; Wardleworth, Leanne; Rash, Bharat; Brown, Marie; Dunn, Warwick B; Broadhurst, David; O'Donoghue, Kerry; Hester, Svenja S; Dunkley, Tom PJ; Hart, Sarah R; Swainston, Neil; Li, Peter; Gaskell, Simon J; Paton, Norman W; Lilley, Kathryn S; Kell, Douglas B; Oliver, Stephen G

    2007-01-01

    Background Cell growth underlies many key cellular and developmental processes, yet a limited number of studies have been carried out on cell-growth regulation. Comprehensive studies at the transcriptional, proteomic and metabolic levels under defined controlled conditions are currently lacking. Results Metabolic control analysis is being exploited in a systems biology study of the eukaryotic cell. Using chemostat culture, we have measured the impact of changes in flux (growth rate) on the transcriptome, proteome, endometabolome and exometabolome of the yeast Saccharomyces cerevisiae. Each functional genomic level shows clear growth-rate-associated trends and discriminates between carbon-sufficient and carbon-limited conditions. Genes consistently and significantly upregulated with increasing growth rate are frequently essential and encode evolutionarily conserved proteins of known function that participate in many protein-protein interactions. In contrast, more unknown, and fewer essential, genes are downregulated with increasing growth rate; their protein products rarely interact with one another. A large proportion of yeast genes under positive growth-rate control share orthologs with other eukaryotes, including humans. Significantly, transcription of genes encoding components of the TOR complex (a major controller of eukaryotic cell growth) is not subject to growth-rate regulation. Moreover, integrative studies reveal the extent and importance of post-transcriptional control, patterns of control of metabolic fluxes at the level of enzyme synthesis, and the relevance of specific enzymatic reactions in the control of metabolic fluxes during cell growth. Conclusion This work constitutes a first comprehensive systems biology study on growth-rate control in the eukaryotic cell. The results have direct implications for advanced studies on cell growth, in vivo regulation of metabolic fluxes for comprehensive metabolic engineering, and for the design of genome-scale systems biology models of the eukaryotic cell. PMID:17439666

  17. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  18. Fluorapatite crystal growth from modified seawater solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Cappellen, P.; Berner, R.A.

    Seeded precipitation experiments were conducted in a pH/fluoride-stat system to study the crystal growth of fluorapatite (FAP) in carbonate-free NaCl-CaCl{sub 2}-NaF-Na{sub 2}HPO{sub 4} solutions, at seawater calcium concentration, chlorinity, and pH. With increasing supersaturation, the dependence of the growth rate on the relative supersaturation changes from parabolic to exponential. This is interpreted as reflecting a transition in the crystal growth mechanism from growth at dislocation-induced surface steps to surface nucleation-controlled growth. The analysis of the kinetic data leads to a mineral-aqueous solution interfacial tension for FAP of 289 mJ/M{sup 2}. The Arrhenius activation energy of the growth reaction in themore » temperature range 12 to 35C is 47 kJ/mol. The effect of pH on FAP growth was tested for pH values from 7 to 8.5. In this range, growth of FAP is catalyzed by hydrogen ions. The apparent growth rate constant is proportional to (a{sub H{sup +}}){sup m} where m, the rate order with respect to H{sup +}, is a non-integral number which depends on pH. At identical degrees of supersaturation, the growth rate of FAP at pH = 7 is nearly twice that at pH = 8. When corrected for bottom water temperatures, pore water pH, and the retardation of Mg{sup 2+}, the experimental growth rates predict that during burial in modern phosphatic sediments, apatite particles grow to sizes on the order of 0.1-10{mu}m. The relatively slow growth kinetics of FAP are consistent with the observed small particle sizes of marine sedimentary apatite.« less

  19. Simple growth patterns can create complex trajectories for the ontogeny of constitutive chemical defences in seaweeds.

    PubMed

    Paul, Nicholas A; Svensson, Carl Johan; de Nys, Rocky; Steinberg, Peter D

    2014-01-01

    All of the theory and most of the data on the ecology and evolution of chemical defences derive from terrestrial plants, which have considerable capacity for internal movement of resources. In contrast, most macroalgae--seaweeds--have no or very limited capacity for resource translocation, meaning that trade-offs between growth and defence, for example, should be localised rather than systemic. This may change the predictions of chemical defence theories for seaweeds. We developed a model that mimicked the simple growth pattern of the red seaweed Asparagopsis armata which is composed of repeating clusters of somatic cells and cells which contain deterrent secondary chemicals (gland cells). To do this we created a distinct growth curve for the somatic cells and another for the gland cells using empirical data. The somatic growth function was linked to the growth function for defence via differential equations modelling, which effectively generated a trade-off between growth and defence as these neighbouring cells develop. By treating growth and defence as separate functions we were also able to model a trade-off in growth of 2-3% under most circumstances. However, we found contrasting evidence for this trade-off in the empirical relationships between growth and defence, depending on the light level under which the alga was cultured. After developing a model that incorporated both branching and cell division rates, we formally demonstrated that positive correlations between growth and defence are predicted in many circumstances and also that allocation costs, if they exist, will be constrained by the intrinsic growth patterns of the seaweed. Growth patterns could therefore explain contrasting evidence for cost of constitutive chemical defence in many studies, highlighting the need to consider the fundamental biology and ontogeny of organisms when assessing the allocation theories for defence.

  20. Pan-tropical analysis of climate effects on seasonal tree growth.

    PubMed

    Wagner, Fabien; Rossi, Vivien; Aubry-Kientz, Mélaine; Bonal, Damien; Dalitz, Helmut; Gliniars, Robert; Stahl, Clément; Trabucco, Antonio; Hérault, Bruno

    2014-01-01

    Climate models predict a range of changes in tropical forest regions, including increased average temperatures, decreased total precipitation, reduced soil moisture and alterations in seasonal climate variations. These changes are directly related to the increase in anthropogenic greenhouse gas concentrations, primarily CO2. Assessing seasonal forest growth responses to climate is of utmost importance because woody tissues, produced by photosynthesis from atmospheric CO2, water and light, constitute the main component of carbon sequestration in the forest ecosystem. In this paper, we combine intra-annual tree growth measurements from published tree growth data and the corresponding monthly climate data for 25 pan-tropical forest sites. This meta-analysis is designed to find the shared climate drivers of tree growth and their relative importance across pan-tropical forests in order to improve carbon uptake models in a global change context. Tree growth reveals significant intra-annual seasonality at seasonally dry sites or in wet tropical forests. Of the overall variation in tree growth, 28.7% was explained by the site effect, i.e. the tree growth average per site. The best predictive model included four climate variables: precipitation, solar radiation (estimated with extrasolar radiation reaching the atmosphere), temperature amplitude and relative soil water content. This model explained more than 50% of the tree growth variations across tropical forests. Precipitation and solar radiation are the main seasonal drivers of tree growth, causing 19.8% and 16.3% of the tree growth variations. Both have a significant positive association with tree growth. These findings suggest that forest productivity due to tropical tree growth will be reduced in the future if climate extremes, such as droughts, become more frequent.

  1. Best practices for rural smart growth.

    DOT National Transportation Integrated Search

    2010-07-01

    Smart growth is a development strategy that encompasses economic, environmental and social objectives to manage : the growth of a community. The basic principles of smart growth are to: : Mix land uses. : Take advantage of compact building de...

  2. This Is Smart Growth - Publication

    EPA Pesticide Factsheets

    This Is Smart Growth illustrates how communities can turn their visions into reality, using smart growth techniques to improve development. The report features 40 places around the country that have found success by implementing smart growth principles.

  3. Delayed growth

    MedlinePlus

    Growth - slow (child 0 - 5 years); Weight gain - slow (child 0 - 5 years); Slow rate of growth; Retarded growth and development; ... A child should have regular, well-baby check-ups with a health care provider. These checkups are usually scheduled ...

  4. Simulating Population Growth.

    ERIC Educational Resources Information Center

    Byington, Scott

    1997-01-01

    Presents a strategy to help students grasp the important implications of population growth. Involves an interactive demonstration that allows students to experience exponential and logistic population growth followed by a discussion of the implications of population-growth principles. (JRH)

  5. Carbon nanotube growth density control

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D. (Inventor); Schipper, John F. (Inventor)

    2010-01-01

    Method and system for combined coarse scale control and fine scale control of growth density of a carbon nanotube (CNT) array on a substrate, using a selected electrical field adjacent to a substrate surface for coarse scale density control (by one or more orders of magnitude) and a selected CNT growth temperature range for fine scale density control (by multiplicative factors of less than an order of magnitude) of CNT growth density. Two spaced apart regions on a substrate may have different CNT growth densities and/or may use different feed gases for CNT growth.

  6. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOEpatents

    Chalmers, Scott A.; Killeen, Kevin P.; Lear, Kevin L.

    1995-01-01

    We report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, we can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%.

  7. Atomistic Simulations of Graphene Growth: From Kinetics to Mechanism.

    PubMed

    Qiu, Zongyang; Li, Pai; Li, Zhenyu; Yang, Jinlong

    2018-03-20

    Epitaxial growth is a promising strategy to produce high-quality graphene samples. At the same time, this method has great flexibility for industrial scale-up. To optimize growth protocols, it is essential to understand the underlying growth mechanisms. This is, however, very challenging, as the growth process is complicated and involves many elementary steps. Experimentally, atomic-scale in situ characterization methods are generally not feasible at the high temperature of graphene growth. Therefore, kinetics is the main experimental information to study growth mechanisms. Theoretically, first-principles calculations routinely provide atomic structures and energetics but have a stringent limit on the accessible spatial and time scales. Such gap between experiment and theory can be bridged by atomistic simulations using first-principles atomic details as input and providing the overall growth kinetics, which can be directly compared with experiment, as output. Typically, system-specific approximations should be applied to make such simulations computationally feasible. By feeding kinetic Monte Carlo (kMC) simulations with first-principles parameters, we can directly simulate the graphene growth process and thus understand the growth mechanisms. Our simulations suggest that the carbon dimer is the dominant feeding species in the epitaxial growth of graphene on both Cu(111) and Cu(100) surfaces, which enables us to understand why the reaction is diffusion limited on Cu(111) but attachment limited on Cu(100). When hydrogen is explicitly considered in the simulation, the central role hydrogen plays in graphene growth is revealed, which solves the long-standing puzzle into why H 2 should be fed in the chemical vapor deposition of graphene. The simulation results can be directly compared with the experimental kinetic data, if available. Our kMC simulations reproduce the experimentally observed quintic-like behavior of graphene growth on Ir(111). By checking the simulation results, we find that such nonlinearity is caused by lattice mismatch, and the induced growth front inhomogeneity can be universally used to predict growth behaviors in other heteroepitaxial systems. Notably, although experimental kinetics usually gives useful insight into atomic mechanisms, it can sometimes be misleading. Such pitfalls can be avoided via atomistic simulations, as demonstrated in our study of the graphene etching process. Growth protocols can be designed theoretically with computational kinetic and mechanistic information. By contrasting the different activation energies involved in an atom-exchange-based carbon penetration process for monolayer and bilayer graphene, we propose a three-step strategy to grow high-quality bilayer graphene. Based on first-principles parameters, a kinetic pathway toward the high-density, ordered N doping of epitaxial graphene on Cu(111) using a C 5 NCl 5 precursor is also identified. These studies demonstrate that atomistic simulations can unambiguously produce or reproduce the kinetic information on graphene growth, which is pivotal to understanding the growth mechanism and designing better growth protocols. A similar strategy can be used in growth mechanism studies of other two-dimensional atomic crystals.

  8. Interspecific variation in growth responses to tree size, competition and climate of western Canadian boreal mixed forests.

    PubMed

    Jiang, Xinyu; Huang, Jian-Guo; Cheng, Jiong; Dawson, Andria; Stadt, Kenneth J; Comeau, Philip G; Chen, Han Y H

    2018-08-01

    Tree growth of boreal forest plays an important role on global carbon (C) cycle, while tree growth in the western Canadian boreal mixed forests has been predicted to be negatively affected by regional drought. Individual tree growth can be controlled by many factors, such as competition, climate, tree size and age. However, information about contributions of different factors to tree growth is still limited in this region. In order to address this uncertainty, tree rings of two dominant tree species, trembling aspen (Populus tremuloides Michx.) and white spruce (Picea glauca (Moench.) Voss), were sampled from boreal mixed forest stands distributed across Alberta, Canada. Tree growth rates over different time intervals (10years interval, 1998-2007; 20years interval, 1988-2007; 30years interval, 1978-2007) were calculated to study the effects of different factors (tree size, competition, climate, and age) on tree growth. Results indicated that tree growth of two species were both primarily affected by competition or tree size, while climatic indices showed less effects on tree growth. Growth of trembling aspen was significantly affected by inter- and intraspecific competition, while growth of white spruce was primarily influenced by tree size, followed by competition. Positive relationship was found between growth of white spruce and competition index of coniferous group, suggesting an intraspecific mutualism mechanism within coniferous group. Our results further suggested that competition driven succession was the primary process of forest composition shift in the western Canadian boreal mixed forest. Although drought stress increased tree mortality, decline of stem density under climate change released competition stress of surviving trees, which in turn sustained growth of surviving trees. Therefore, climatic indices showed fewer effects on growth of dominant tree species compared to other factors in our study. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Seedling growth responses to soil resources in the understory of a wet tropical forest.

    PubMed

    Holste, Ellen K; Kobe, Richard K; Vriesendorp, Corine F

    2011-09-01

    Plant growth responses to resources may be an important mechanism that influences species' distributions, coexistence, and community structure. Irradiance is considered the most important resource for seedling growth in the understory of wet tropical forests, but multiple soil nutrients and species have yet to be examined simultaneously with irradiance under field conditions. To identify potentially limiting resources, we modeled tree seedling growth as a function of irradiance and soil nutrients across five sites, spanning a soil fertility gradient in old-growth, wet tropical forests at La Selva Biological Station, Costa Rica. We measured an array of soil nutrients including total nitrogen (total N), inorganic N (nitrate [NO3-] and ammonium [NH4+]), phosphate (PO4-), and sum of base cations (SBC; potassium, magnesium, and calcium). Shade in the forest understory did not preclude seedling growth correlations with soil nutrients. Irradiance was a significant predictor of growth in 52% of the species, inorganic N in 54% (NO3- in 32%; NH4+ in 34%), total N in 47%, SBC in 39%, and PO4- in 29%. Overall, growth was correlated with both irradiance and soil nutrients in 45% of species and with soil nutrients only in an additional 48%; rarely was irradiance alone correlated with growth. Contrary to expectations, the magnitudes of growth effects, assessed as the maximum growth response to significant resources for each species, were similar for irradiance and most soil nutrients. Among species whose growth correlated with soil nutrients, the rank importance of nutrient effects was SBC, followed by N (total N, NO3-, and/or NH4+) and PO4-. Species' growth responsiveness (i.e., magnitudes of effect) to irradiance and soil nutrients was negatively correlated with species' shade tolerance (survival under 1% full sun). In this broad survey of species and resources, the nearly ubiquitous effects of soil nutrients on seedling growth challenge the idea that soil nutrients are less important than irradiance in the light-limited understory of wet tropical forests.

  10. An Attempt to Standardize the Calculation of Growth Velocity of Preterm Infants-Evaluation of Practical Bedside Methods.

    PubMed

    Fenton, Tanis R; Anderson, Diane; Groh-Wargo, Sharon; Hoyos, Angela; Ehrenkranz, Richard A; Senterre, Thibault

    2018-05-01

    To examine how well growth velocity recommendations for preterm infants fit with current growth references: Fenton 2013, Olsen 2010, INTERGROWTH 2015, and the World Health Organization Growth Standard 2006. The Average (2-point), Exponential (2-point), Early (1-point) method weight-gains were calculated for 1,4,8,12, and 16-week time-periods. Growth references' weekly velocities (g/kg/d, gram/day and cm/week) were illustrated graphically with frequently-quoted 15 g/kg/d, 10-30 grams/day and 1 cm/week rates superimposed. The 15 g/kg/d and 1 cm/week growth velocity rates were calculated from 24-50 weeks, superimposed on the Fenton and Olsen preterm growth charts. The Average and Exponential g/kg/d estimates showed close agreement for all ages (range 5.0-18.9 g/kg/d), while the Early method yielded values as high as 41 g/kg/d. All 3 preterm growth references were similar to 15 g/kg/d rate at 34 weeks, but rates were higher prior and lower at older ages. For gram/day, the growth references changed from 10 to 30 grams/day for 24-33 weeks. Head growth rates generally fit the 1 cm/week velocity for 23-30 weeks, and length growth rates fit for 37-40 weeks. The calculated g/kg/d curves deviated from the growth charts, first downward, then steeply crossed the median curves near term. Human growth is not constant through gestation and early infancy. The frequently-quoted 15 g/kg/d, 10-30 gram/day and 1 cm/week only fit current growth references for limited time periods. Rates of 15-20 g/kg/d (calculated using average or exponential methods) are a reasonable goal for infants 23-36 weeks, but not beyond. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Analysis of growth trend changes for 51 temperate tree species using Korea national forest inventory data

    NASA Astrophysics Data System (ADS)

    Park, M.; Moon, M.; Park, J.; Cho, S.; Kim, H. S.

    2016-12-01

    Individual tree growth rates can be affected by various factors such as species, soil fertility, stand development stage, disturbance, and climate etc. To estimate the effect of changes in tree growth rate on the structure and functionality of forest ecosystem in the future, we analyzed the change of species-specific growth trends using the fifth Korea national forest inventory data, which was collected from 2006 to 2010. The ring samples of average tree were collected from nationwide inventory plots and the total number of individual tree ring series was 69,128 covering 185 tree species. Among those, fifty one species with more than 100 tree ring series were used for our analysis. For growth-trend analysis, standardized regional curves of individual species growth were generated from three forest zone in South Korea; subarctic, cool temperate, warm temperate forest zone. Then individual tree ring series was indexed by dividing the growth of the tree by expected growth from standardized regional curves. Then the ratio of all tree ring series were aligned by year and the Spearman's correlation coefficient of each species was calculated. The results show that most of species had increasing growth rates as forests developed after Korean war. For the last thirty years, 67.3% of species including Quercus spp. and Zelkova serrata had positive growth trends, on the other hand, 11.5% of species including Pinus spp. showed negative growth trends probably due to the changes in successional stages in Korean forests and climate change. These trends also vary with climate zone and species. For examples, Pinus densiflora, which showed negative growth trend overall, had steep negative growth trends in boreal and temperate zone, whereas it showed no specific trend in sub-tropical climate zone. Our trend analysis on 51 temperate tree species growth will be essential to predict the temperate forests species change for the this century.

  12. Latitudinal comparisons of walleye growth in North America and factors influencing growth of walleyes in Kansas reservoirs

    USGS Publications Warehouse

    Quist, M.C.; Guy, C.S.; Schultz, R.D.; Stephen, J.L.

    2003-01-01

    We compared the growth of walleyes Stizostedion vitreum in Kansas to that of other populations throughout North America and determined the effects of the abundance of gizzard shad Dorosoma cepedianum and temperature on the growth of walleyes in Kansas reservoirs. Age was estimated from scales and otoliths collected from walleyes (N = 2,072) sampled with gill nets from eight Kansas reservoirs during fall in 1991-1999. Age-0 gizzard shad abundance was indexed based on summer seining information, and temperature data were obtained from the National Oceanic and Atmospheric Administration. Parameter estimates of von Bertalanffy growth models indicated that the growth of walleyes in Kansas was more similar to that of southern latitude populations (e.g., Mississippi and Texas) than to that of northern (e.g., Manitoba, Minnesota and South Dakota) or middle latitude (e.g., Colorado and Iowa) populations. Northern and middle latitude populations had lower mean back-calculated lengths at age 1, lower growth coefficients, and greater longevity than southern and Kansas populations. A relative growth index (RGI; [Lt/Ls ] ?? 100, where Lt is the observed length at age and Ls is the age-specific standard length derived from a pooled von Bertalanffy growth model) and standardized percentile values (percentile values of mean back-calculated lengths at age) indicated that the growth of walleyes in Kansas was above average compared with that of other populations in North America. The annual growth increments of Kansas walleyes were more variable among years than among reservoirs. The growth increments of age-0 and age-1 walleyes were positively related to the catch rates of gizzard shad smaller than 80 mm, whereas the growth of age-2 and age-3 walleyes was inversely related to mean summer air temperature. Our results provide a framework for comparing North American walleye populations, and our proposed RGI provides a simple, easily interpreted index of growth.

  13. Impact of Future Climate on Radial Growth of Four Major Boreal Tree Species in the Eastern Canadian Boreal Forest

    PubMed Central

    Huang, Jian-Guo; Bergeron, Yves; Berninger, Frank; Zhai, Lihong; Tardif, Jacques C.; Denneler, Bernhard

    2013-01-01

    Immediate phenotypic variation and the lagged effect of evolutionary adaptation to climate change appear to be two key processes in tree responses to climate warming. This study examines these components in two types of growth models for predicting the 2010–2099 diameter growth change of four major boreal species Betula papyrifera, Pinus banksiana, Picea mariana, and Populus tremuloides along a broad latitudinal gradient in eastern Canada under future climate projections. Climate-growth response models for 34 stands over nine latitudes were calibrated and cross-validated. An adaptive response model (A-model), in which the climate-growth relationship varies over time, and a fixed response model (F-model), in which the relationship is constant over time, were constructed to predict future growth. For the former, we examined how future growth of stands in northern latitudes could be forecasted using growth-climate equations derived from stands currently growing in southern latitudes assuming that current climate in southern locations provide an analogue for future conditions in the north. For the latter, we tested if future growth of stands would be maximally predicted using the growth-climate equation obtained from the given local stand assuming a lagged response to climate due to genetic constraints. Both models predicted a large growth increase in northern stands due to more benign temperatures, whereas there was a minimal growth change in southern stands due to potentially warm-temperature induced drought-stress. The A-model demonstrates a changing environment whereas the F-model highlights a constant growth response to future warming. As time elapses we can predict a gradual transition between a response to climate associated with the current conditions (F-model) to a more adapted response to future climate (A-model). Our modeling approach provides a template to predict tree growth response to climate warming at mid-high latitudes of the Northern Hemisphere. PMID:23468879

  14. Impact of future climate on radial growth of four major boreal tree species in the Eastern Canadian boreal forest.

    PubMed

    Huang, Jian-Guo; Bergeron, Yves; Berninger, Frank; Zhai, Lihong; Tardif, Jacques C; Denneler, Bernhard

    2013-01-01

    Immediate phenotypic variation and the lagged effect of evolutionary adaptation to climate change appear to be two key processes in tree responses to climate warming. This study examines these components in two types of growth models for predicting the 2010-2099 diameter growth change of four major boreal species Betula papyrifera, Pinus banksiana, Picea mariana, and Populus tremuloides along a broad latitudinal gradient in eastern Canada under future climate projections. Climate-growth response models for 34 stands over nine latitudes were calibrated and cross-validated. An adaptive response model (A-model), in which the climate-growth relationship varies over time, and a fixed response model (F-model), in which the relationship is constant over time, were constructed to predict future growth. For the former, we examined how future growth of stands in northern latitudes could be forecasted using growth-climate equations derived from stands currently growing in southern latitudes assuming that current climate in southern locations provide an analogue for future conditions in the north. For the latter, we tested if future growth of stands would be maximally predicted using the growth-climate equation obtained from the given local stand assuming a lagged response to climate due to genetic constraints. Both models predicted a large growth increase in northern stands due to more benign temperatures, whereas there was a minimal growth change in southern stands due to potentially warm-temperature induced drought-stress. The A-model demonstrates a changing environment whereas the F-model highlights a constant growth response to future warming. As time elapses we can predict a gradual transition between a response to climate associated with the current conditions (F-model) to a more adapted response to future climate (A-model). Our modeling approach provides a template to predict tree growth response to climate warming at mid-high latitudes of the Northern Hemisphere.

  15. Quantifying climate-growth relationships at the stand level in a mature mixed-species conifer forest.

    PubMed

    Teets, Aaron; Fraver, Shawn; Weiskittel, Aaron R; Hollinger, David Y

    2018-03-11

    A range of environmental factors regulate tree growth; however, climate is generally thought to most strongly influence year-to-year variability in growth. Numerous dendrochronological (tree-ring) studies have identified climate factors that influence year-to-year variability in growth for given tree species and location. However, traditional dendrochronology methods have limitations that prevent them from adequately assessing stand-level (as opposed to species-level) growth. We argue that stand-level growth analyses provide a more meaningful assessment of forest response to climate fluctuations, as well as the management options that may be employed to sustain forest productivity. Working in a mature, mixed-species stand at the Howland Research Forest of central Maine, USA, we used two alternatives to traditional dendrochronological analyses by (1) selecting trees for coring using a stratified (by size and species), random sampling method that ensures a representative sample of the stand, and (2) converting ring widths to biomass increments, which once summed, produced a representation of stand-level growth, while maintaining species identities or canopy position if needed. We then tested the relative influence of seasonal climate variables on year-to-year variability in the biomass increment using generalized least squares regression, while accounting for temporal autocorrelation. Our results indicate that stand-level growth responded most strongly to previous summer and current spring climate variables, resulting from a combination of individualistic climate responses occurring at the species- and canopy-position level. Our climate models were better fit to stand-level biomass increment than to species-level or canopy-position summaries. The relative growth responses (i.e., percent change) predicted from the most influential climate variables indicate stand-level growth varies less from to year-to-year than species-level or canopy-position growth responses. By assessing stand-level growth response to climate, we provide an alternative perspective on climate-growth relationships of forests, improving our understanding of forest growth dynamics under a fluctuating climate. © 2018 John Wiley & Sons Ltd.

  16. Temporal consistency of spatial pattern in growth of the mussel, Mytilus edulis: Implications for predictive modelling

    NASA Astrophysics Data System (ADS)

    Bergström, Per; Lindegarth, Susanne; Lindegarth, Mats

    2013-10-01

    Human pressures on coastal seas are increasing and methods for sustainable management, including spatial planning and mitigative actions, are therefore needed. In coastal areas worldwide, the development of mussel farming as an economically and ecologically sustainable industry requires geographic information on the growth and potential production capacity. In practice this means that coherent maps of temporally stable spatial patterns of growth need to be available in the planning process and that maps need to be based on mechanistic or empirical models. Therefore, as a first step towards development of models of growth, we assessed empirically the fundamental requirement that there are temporally consistent spatial patterns of growth in the blue mussel, Mytilus edulis. Using a pilot study we designed and dimensioned a transplant experiment, where the spatial consistency in the growth of mussels was evaluated at two resolutions. We found strong temporal and scale-dependent spatial variability in growth but patterns suggested that spatial patterns were uncoupled between growth of shell and that of soft tissue. Spatial patterns of shell growth were complex and largely inconsistent among years. Importantly, however, the growth of soft tissue was qualitatively consistent among years at the scale of km. The results suggest that processes affecting the whole coastal area cause substantial differences in growth of soft tissue among years but that factors varying at the scale of km create strong and persistent spatial patterns of growth, with a potential doubling of productivity by identifying the most suitable locations. We conclude that the observed spatial consistency provides a basis for further development of predictive modelling and mapping of soft tissue growth in these coastal areas. Potential causes of observed patterns, consequences for mussel-farming as a tool for mitigating eutrophication, aspects of precision of modelling and sampling of mussel growth as well as ecological functions in general are discussed.

  17. Influence of four nematodes on root and shoot growth parameters in grape.

    PubMed

    Anwar, S A; Van Gundy, S D

    1989-04-01

    Two grape cultivars, susceptible French Colombard and tolerant Rubired, and four nematodes, Meloidogyne incognita, Pratylenchus vulnus, Tylenchulus semipenetrans, and Xiphinema index, were used to quantify the equilibrium between root (R) and shoot (S) growth. Root and shoot growth of French Colombard was retarded by M. incognita, P. vulnus, and X. index but not by T. semipenetrans. Although the root growth of Rubired was limited by all the nematodes, the shoot growth was limited only by X. index. The R:S ratios of Rubired were higher than those of French Colombard. The reduced R:S ratios of Rubired were primarily an expression of reduction in root systems without an equal reduction in shoot growth, whereas in French Colombard the reduced R:S ratios were due to a reduction in both shoot growth and root growth and to a greater reduction in root growth than shoot growth. All nematodes reproduced equally well on both cultivars. Both foliage and root growth of French Colombard were significantly reduced by M. incognita and P. vulnus. Nematodes reduced the shoot length by reducing the internode length. Accumulative R:S ratios in inoculated plants were significantly smaller than those in controls in all nematode treatments but not at individual harvest dates. Bud break was delayed by X. index and was initiated earlier by P. vulnus and M. incognita. All buds in nematode treatments were less vigorous than in controls.

  18. Identifying ontogenetic, environmental and individual components of forest tree growth

    PubMed Central

    Chaubert-Pereira, Florence; Caraglio, Yves; Lavergne, Christian; Guédon, Yann

    2009-01-01

    Background and Aims This study aimed to identify and characterize the ontogenetic, environmental and individual components of forest tree growth. In the proposed approach, the tree growth data typically correspond to the retrospective measurement of annual shoot characteristics (e.g. length) along the trunk. Methods Dedicated statistical models (semi-Markov switching linear mixed models) were applied to data sets of Corsican pine and sessile oak. In the semi-Markov switching linear mixed models estimated from these data sets, the underlying semi-Markov chain represents both the succession of growth phases and their lengths, while the linear mixed models represent both the influence of climatic factors and the inter-individual heterogeneity within each growth phase. Key Results On the basis of these integrative statistical models, it is shown that growth phases are not only defined by average growth level but also by growth fluctuation amplitudes in response to climatic factors and inter-individual heterogeneity and that the individual tree status within the population may change between phases. Species plasticity affected the response to climatic factors while tree origin, sampling strategy and silvicultural interventions impacted inter-individual heterogeneity. Conclusions The transposition of the proposed integrative statistical modelling approach to cambial growth in relation to climatic factors and the study of the relationship between apical growth and cambial growth constitute the next steps in this research. PMID:19684021

  19. MEASURING ECONOMIC GROWTH FROM OUTER SPACE.

    PubMed

    Henderson, J Vernon; Storeygard, Adam; Weil, David N

    2012-04-01

    GDP growth is often measured poorly for countries and rarely measured at all for cities or subnational regions. We propose a readily available proxy: satellite data on lights at night. We develop a statistical framework that uses lights growth to augment existing income growth measures, under the assumption that measurement error in using observed light as an indicator of income is uncorrelated with measurement error in national income accounts. For countries with good national income accounts data, information on growth of lights is of marginal value in estimating the true growth rate of income, while for countries with the worst national income accounts, the optimal estimate of true income growth is a composite with roughly equal weights. Among poor-data countries, our new estimate of average annual growth differs by as much as 3 percentage points from official data. Lights data also allow for measurement of income growth in sub- and supranational regions. As an application, we examine growth in Sub Saharan African regions over the last 17 years. We find that real incomes in non-coastal areas have grown faster by 1/3 of an annual percentage point than coastal areas; non-malarial areas have grown faster than malarial ones by 1/3 to 2/3 annual percent points; and primate city regions have grown no faster than hinterland areas. Such applications point toward a research program in which "empirical growth" need no longer be synonymous with "national income accounts."

  20. Growth rates and energy intake of hand-reared cheetah cubs (Acinonyx jubatus) in South Africa.

    PubMed

    Bell, K M; Rutherfurd, S M; Morton, R H

    2012-04-01

    Growth rate is an important factor in neonatal survival. The aim of this study was to determine growth rates in hand-reared cheetah cubs in South Africa fed a prescribed energy intake, calculated for growth in the domestic cat. Growth was then compared with previously published data from hand-reared cubs in North America and the relationship between growth and energy intake explored. Daily body weight (BW) gain, feed and energy intake data was collected from 18 hand-reared cheetah cubs up to 120 days of age. The average pre-weaning growth rate was 32 g/day, which is lower than reported in mother-reared cubs and hand-reared cubs in North American facilities. However, post-weaning growth increased to an average of 55 g/day. Growth was approximately linear prior to weaning, but over the entire age range it exhibited a sigmoidal shape with an asymptotic plateau averaging 57 kg. Energy intake associated with pre-weaning growth was 481 kJ ME/kg BW(0.75). Regression analysis described the relationship between metabolic BW, metabolisable energy (ME) intake, and hence daily weight gain. This relationship may be useful in predicting energy intake required to achieve growth rates in hand-reared cheetah cubs similar to those observed for their mother-reared counterparts. © 2011 Blackwell Verlag GmbH.

Top