Sample records for growth

  1. Population growth and economic growth.

    PubMed

    Narayana, D L

    1984-01-01

    This discussion of the issues relating to the problem posed by population explosion in the developing countries and economic growth in the contemporary world covers the following: predictions of economic and social trends; the Malthusian theory of population; the classical or stationary theory of population; the medical triage model; ecological disaster; the Global 2000 study; the limits to growth; critiques of the Limits to Growth model; nonrenewable resources; food and agriculture; population explosion and stabilization; space and ocean colonization; and the limits perspective. The Limits to Growth model, a general equilibrium anti-growth model, is the gloomiest economic model ever constructed. None of the doomsday models, the Malthusian theory, the classical stationary state, the neo-Malthusian medical triage model, the Global 2000 study, are so far reaching in their consequences. The course of events that followed the publication of the "Limits to Growth" in 1972 in the form of 2 oil shocks, food shock, pollution shock, and price shock seemed to bear out formally the gloomy predictions of the thesis with a remarkable speed. The 12 years of economic experience and the knowledge of resource trends postulate that even if the economic pressures visualized by the model are at work they are neither far reaching nor so drastic. Appropriate action can solve them. There are several limitations to the Limits to Growth model. The central theme of the model, which is overshoot and collapse, is unlikely to be the course of events. The model is too aggregative to be realistic. It exaggerates the ecological disaster arising out of the exponential growth of population and industry. The gross underestimation of renewable resources is a basic flaw of the model. The most critical weakness of the model is its gross underestimation of the historical trend of technological progress and the technological possiblities within industry and agriculture. The model does correctly emphasize

  2. Growth

    Treesearch

    John R. Jones; George A. Schier

    1985-01-01

    This chapter considers aspen growth as a process, and discusses some characteristics of the growth and development of trees and stands. For the most part, factors affecting growth are discussed elsewhere, particularly in the GENETICS AND VARIATION chapter and in chapters in PART 11. ECOLOGY. Aspen growth as it relates to wood production is examined in the WOOD RESOURCE...

  3. Growth hormone response to growth hormone-releasing peptide-2 in growth hormone-deficient Little mice

    PubMed Central

    Peroni, Cibele N.; Hayashida, Cesar Y.; Nascimento, Nancy; Longuini, Viviane C.; Toledo, Rodrigo A.; Bartolini, Paolo; Bowers, Cyril Y.; Toledo, Sergio P.A.

    2012-01-01

    OBJECTIVE: To investigate a possible direct, growth hormone-releasing, hormone-independent action of a growth hormone secretagogue, GHRP-2, in pituitary somatotroph cells in the presence of inactive growth hormone-releasing hormone receptors. MATERIALS AND METHODS: The responses of serum growth hormone to acutely injected growth hormone-releasing P-2 in lit/lit mice, which represent a model of GH deficiency arising from mutated growth hormone-releasing hormone-receptors, were compared to those observed in the heterozygous (lit/+) littermates and wild-type (+/+) C57BL/6J mice. RESULTS: After the administration of 10 mcg of growth hormone-releasing P-2 to lit/lit mice, a growth hormone release of 9.3±1.5 ng/ml was observed compared with 1.04±1.15 ng/ml in controls (p<0.001). In comparison, an intermediate growth hormone release of 34.5±9.7 ng/ml and a higher growth hormone release of 163±46 ng/ml were induced in the lit/+ mice and wild-type mice, respectively. Thus, GHRP-2 stimulated growth hormone in the lit/lit mice, and the release of growth hormone in vivo may be only partially dependent on growth hormone-releasing hormone. Additionally, the plasma leptin and ghrelin levels were evaluated in the lit/lit mice under basal and stimulated conditions. CONCLUSIONS: Here, we have demonstrated that lit/lit mice, which harbor a germline mutation in the Growth hormone-releasing hormone gene, maintain a limited but statistically significant growth hormone elevation after exogenous stimulation with GHRP-2. The present data probably reflect a direct, growth hormone-independent effect on Growth hormone S (ghrelin) stimulation in the remaining pituitary somatotrophs of little mice that is mediated by growth hormone S-R 1a. PMID:22473409

  4. Growth assessment in diagnosis of Fetal Growth Restriction. Review.

    PubMed

    Albu, A R; Horhoianu, I A; Dumitrascu, M C; Horhoianu, V

    2014-06-15

    The assessment of fetal growth represents a fundamental step towards the identification of the true growth restricted fetus that is associated to important perinatal morbidity and mortality. The possible ways of detecting abnormal fetal growth are taken into consideration in this review and their strong and weak points are discussed. An important debate still remains about how to discriminate between the physiologically small fetus that does not require special surveillance and the truly growth restricted fetus who is predisposed to perinatal complications, even if its parameters are above the cut-off limits established. In this article, we present the clinical tools of fetal growth assessment: Symphyseal-Fundal Height (SFH) measurement, the fetal ultrasound parameters widely taken into consideration when discussing fetal growth: Abdominal Circumference (AC) and Estimated Fetal Weight (EFW); several types of growth charts and their characteristics: populational growth charts, standard growth charts, individualized growth charts, customized growth charts and growth trajectories.

  5. Growth assessment in diagnosis of Fetal Growth Restriction. Review

    PubMed Central

    Albu, AR; Horhoianu, IA; Dumitrascu, MC; Horhoianu, V

    2014-01-01

    Abstract The assessment of fetal growth represents a fundamental step towards the identification of the true growth restricted fetus that is associated to important perinatal morbidity and mortality. The possible ways of detecting abnormal fetal growth are taken into consideration in this review and their strong and weak points are discussed. An important debate still remains about how to discriminate between the physiologically small fetus that does not require special surveillance and the truly growth restricted fetus who is predisposed to perinatal complications, even if its parameters are above the cut-off limits established. In this article, we present the clinical tools of fetal growth assessment: Symphyseal-Fundal Height (SFH) measurement, the fetal ultrasound parameters widely taken into consideration when discussing fetal growth: Abdominal Circumference (AC) and Estimated Fetal Weight (EFW); several types of growth charts and their characteristics: populational growth charts, standard growth charts, individualized growth charts, customized growth charts and growth trajectories. Abbreviations: FGR = Fetal growth restriction; IUGR = Intrauterine Growth Restriction; SGA = small for gestational age fetus; EFW = estimated fetal weight; AC = abdominal circumference; SD = Standard Deviation; SFH = Symphyseal-fundal height; US = ultrasound; 2D = bidimensional; 3D = tridimensional; RCOG = Royal College of Obstetricians and Gynecologists; FL = femur length; BPD = biparietal diameter; BW = birth weight; IGA = Individualized Growth Assessment; PIH = Pregnancy Induced hypertension; PE = Preeclampsia; NICU = Neonatal Intensive Care Unit. PMID:25408718

  6. Growth velocity in constitutional delay of growth and development.

    PubMed

    Butenandt, Otfrid; Kunze, Detlef

    2010-01-01

    Growth velocity was determined in 121 boys and 58 girls with constitutional delay of growth and development (CDGD) of familial origin. No data were included from patients suffering from growth hormone insufficiency (i.e. neurosecretory dysfunction for growth hormone) or any disease. From 479 values obtained in boys and 230 values obtained in girls the 25th, 50th and 75th percentiles were calculated. The mean growth velocity in children and adolescents with CDGD before the beginning of puberty was lower than the mean growth velocity of other European (British, German or Swiss) standards. Specific data of growth velocity should be used in patients with CDGD since population-based data may underestimate the normal growth velocity of these patients.

  7. Density, ages, and growth rates in old-growth and young-growth forests in coastal Oregon

    USGS Publications Warehouse

    Tappeiner, J. C.; Huffman, D.; Spies, T.; Bailey, John D.

    1997-01-01

    We studied the ages and diameter growth rates of trees in former Douglas-fir (Pseudotsuga menziesii (Mirb.)Franco) old-growth stands on 10 sites and compared them with young-growth stands (50-70 years old, regenerated after timber harvest) in the Coast Range of western Oregon. The diameters and diameter growth rates for the first 100 years of trees in the old-growth stands were significantly greater than those in the young-growth stands. Growth rates in the old stands were comparable with those from long-term studies of young stands in which density is about 100-120 trees/ha; often young-growth stand density is well over 500 trees/ha. Ages of large trees in the old stands ranged from 100 to 420 years; ages in young stands varied by only about 5 to 10 years. Apparently, regeneration of old-growth stands on these sites occurred over a prolonged period, and trees grew at low density with little self-thinning; in contrast, after timber harvest, young stands may develop with high density of trees with similar ages and considerable self-thinning. The results suggest that thinning may be needed in dense young stands where the management objective is to speed development of old-growth characteristics.

  8. Growth hormone in intra-uterine growth retarded newborns.

    PubMed

    Setia, Sajita; Sridhar, M G; Bhat, Vishnu; Chaturvedula, Latha

    2007-11-01

    To study growth hormone levels in IUGR and healthy controls and its association with birth weight and ponderal index. We studied 50 Intra uterine growth retarded (IUGR) and 50 healthy newborns born at term by vaginal delivery in JIPMER, Pondicherry, India. Cord blood was collected at the time of delivery for measurement of growth hormone. When compared with healthy newborns, IUGR newborns had higher growth hormone levels (mean +/- SD, 23.5 +/- 15.6 vs 16.2 +/- 7.61 ngm/ml, P = 0.019). A negative correlation was identified between growth hormone levels and birth weight (r2 = - 0.22, P = 0.03) and ponderal index (r2 = - 0.36, P = 0.008). Correlation of growth hormone levels was much more confident with ponderal index than with birth weight. At birth IUGR infants display increased growth hormone levels which correlate with ponderal index much more confidently than with birth weight.

  9. Sociology of the growth/no-growth debate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphrey, C.R.; Buttel, F.H.

    The properties of conservative, liberal, and radical patterns in social science are analyzed and applied to the growth/no-growth debate in environmental policy literature. The fact that conservatives work with an evolutionary model of society suggests that environmental problems are imperfections to be remedied by science, technology, and the free market. Liberals recognize the benefits and costs of growth, and they articulate ways to minimize the costs through state regulation and planning. Radicals argue for state ownership of the means of production and new cultural values about growth as the only effective environmental policies. This analysis closes with a discussion ofmore » the future of the growth debate in terms of these paradigms. 40 references.« less

  10. Growth hormone regulation of follicular growth.

    PubMed

    Lucy, Matthew C

    2011-01-01

    The somatotropic axis-consisting of growth hormone (GH), the insulin-like growth factors 1 and 2 (IGF1 and IGF2), GH binding protein (GHBP), IGF binding proteins (IGFBPs) 1 to 6, and the cell-surface receptors for GH and the IGFs-has major effects on growth, lactation and reproduction. The primary target tissues for GH are involved in growth and metabolism. The functionality of the somatotropic axis depends in part on the expression of liver GH receptor (GHR), which determines the amount of IGF1 released from the liver in response to GH. The IGF1 acts as a pleiotropic growth factor and also serves as the endocrine negative feedback signal controlling pituitary GH secretion. Growth hormone and IGF1 undergo dynamic changes throughout the life cycle, particularly when animals are either growing, early post partum or lactating. Cells within the reproductive tract can respond directly to GH but to a lesser degree than the primary target tissues. The major impact that GH has on reproduction, therefore, may be secondary to its systemic effects on metabolism (including insulin sensitivity) or secondary to the capacity for GH to control IGF1 secretion. Insulin-like growth factor 1 and IGFBP are also synthesised within the ovary and this local synthesis is a component of the collective IGF1 action on the follicle. Future studies of GH should focus on its direct effects on the follicle as well as its indirect effects mediated by shifts in nutrient metabolism, insulin sensitivity, IGF1 and IGFBP.

  11. Growth Disorders

    MedlinePlus

    ... too little of it may be very short. Treatment with growth hormone can stimulate growth. People can also have too much growth hormone. Usually the cause is a pituitary gland tumor, which is not cancer. Too much growth hormone can cause gigantism in children, where their bones and their body ...

  12. Growth Charts for Prader-Willi Syndrome During Growth Hormone Treatment

    PubMed Central

    Butler, Merlin G.; Lee, Jaehoon; Cox, Devin M.; Manzardo, Ann M.; Gold, June-Anne; Miller, Jennifer L.; Roof, Elizabeth; Dykens, Elisabeth; Kimonis, Virginia; Driscoll, Daniel J.

    2018-01-01

    The purpose of the current study was to develop syndrome-specific standardized growth curves for growth hormone–treated Prader-Willi syndrome (PWS) individuals aged 0 to 18 years. Anthropometric growth-related measures were obtained on 171 subjects with PWS who were treated with growth hormone for at least 40% of their lifespan. They had no history of scoliosis. PWS standardized growth curves were developed for 7 percentile ranges using the LMS method for weight, height, head circumference, weight/length, and BMI along with normative 3rd, 50th, and 97th percentiles plotted using control data from the literature and growth databases. Percentiles were plotted on growth charts for comparison purposes. Growth hormone treatment appears to normalize stature and markedly improves weight in PWS compared with standardized curves for non–growth hormone–treated PWS individuals. Growth chart implications and recommended usage are discussed. PMID:26842920

  13. Method of Promoting Single Crystal Growth During Melt Growth of Semiconductors

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua (Inventor)

    2013-01-01

    The method of the invention promotes single crystal growth during fabrication of melt growth semiconductors. A growth ampoule and its tip have a semiconductor source material placed therein. The growth ampoule is placed in a first thermal environment that raises the temperature of the semiconductor source material to its liquidus temperature. The growth ampoule is then transitioned to a second thermal environment that causes the semiconductor source material in the growth ampoule's tip to attain a temperature that is below the semiconductor source material's solidus temperature. The growth ampoule so-transitioned is then mechanically perturbed to induce single crystal growth at the growth ampoule's tip.

  14. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  15. Step-Growth Polymerization.

    ERIC Educational Resources Information Center

    Stille, J. K.

    1981-01-01

    Following a comparison of chain-growth and step-growth polymerization, focuses on the latter process by describing requirements for high molecular weight, step-growth polymerization kinetics, synthesis and molecular weight distribution of some linear step-growth polymers, and three-dimensional network step-growth polymers. (JN)

  16. Transforming growth factor alpha, Shope fibroma growth factor, and vaccinia growth factor can replace myxoma growth factor in the induction of myxomatosis in rabbits.

    PubMed

    Opgenorth, A; Nation, N; Graham, K; McFadden, G

    1993-02-01

    The epidermal growth factor (EGF) homologues encoded by vaccinia virus, myxoma virus, and malignant rabbit fibroma virus have been shown to contribute to the pathogenicity of virus infection upon inoculation of susceptible hosts. However, since the primary structures of these growth factors and the disease profiles induced by different poxvirus genera vary substantially, the degree to which the various EGF homologues perform similar roles in viral pathogenesis remains unclear. In order to determine whether different EGF-like growth factors can perform qualitatively similar functions in the induction of myxomatosis in rabbits, we created recombinant myxoma virus variants in which the native growth factor, myxoma growth factor (MGF), was disrupted and replaced with either vaccinia virus growth factor, Shope fibroma growth factor, or rat transforming growth factor alpha. Unlike the control virus containing an inactivated MGF gene, which caused marked attenuation of the disease syndrome and substantially less proliferation of the epithelial cell layers in the conjunctiva and respiratory tract, the recombinant myxoma virus strains expressing heterologous growth factors produced infections which were both clinically and histopathologically indistinguishable from wild-type myxomatosis. We conclude that these poxviral and cellular EGF-like growth factors, which are diverse with respect to primary structure and origin, have similar biological functions in the context of myxoma virus pathogenesis and are mitogenic for the same target cells.

  17. Delayed growth

    MedlinePlus

    Growth - slow (child 0 - 5 years); Weight gain - slow (child 0 - 5 years); Slow rate of growth; Retarded growth and development; ... A child should have regular, well-baby check-ups with a health care provider. These checkups are usually scheduled ...

  18. Analysing growth and development of plants jointly using developmental growth stages

    PubMed Central

    Dambreville, Anaëlle; Lauri, Pierre-Éric; Normand, Frédéric; Guédon, Yann

    2015-01-01

    Background and Aims Plant growth, the increase of organ dimensions over time, and development, the change in plant structure, are often studied as two separate processes. However, there is structural and functional evidence that these two processes are strongly related. The aim of this study was to investigate the co-ordination between growth and development using mango trees, which have well-defined developmental stages. Methods Developmental stages, determined in an expert way, and organ sizes, determined from objective measurements, were collected during the vegetative growth and flowering phases of two cultivars of mango, Mangifera indica. For a given cultivar and growth unit type (either vegetative or flowering), a multistage model based on absolute growth rate sequences deduced from the measurements was first built, and then growth stages deduced from the model were compared with developmental stages. Key Results Strong matches were obtained between growth stages and developmental stages, leading to a consistent definition of integrative developmental growth stages. The growth stages highlighted growth asynchronisms between two topologically connected organs, namely the vegetative axis and its leaves. Conclusions Integrative developmental growth stages emphasize that developmental stages are closely related to organ growth rates. The results are discussed in terms of the possible physiological processes underlying these stages, including plant hydraulics, biomechanics and carbohydrate partitioning. PMID:25452250

  19. Urban growth management and ecological sustainability: confronting the "smart growth" fallacy

    Treesearch

    Gabor Zovanyi

    2005-01-01

    Growth management and Smart Growth initiatives in the United States represent an ongoing process of growth accommodation. Because growth by definition constitutes unsustainable behavior in that it is incapable of being continued or maintained indefinitely, ongoing growth accommodation must be recognized as activity incongruous with advancing the goal of ecological...

  20. Growth arrest despite growth hormone replacement, post-craniopharyngioma surgery.

    PubMed Central

    DeVile, C J; Hayward, R D; Neville, B G; Grant, D B; Stanhope, R

    1995-01-01

    Children with growth failure, whether secondary to an endocrinopathy such as growth hormone deficiency or secondary to neurological handicap with poor nutrient intake, grow at a subnormal rate but it is most unusual for a child to have complete growth arrest. PMID:7745571

  1. Infant head circumference growth is saltatory and coupled to length growth.

    PubMed

    Lampl, Michelle; Johnson, Michael L

    2011-05-01

    Rapid growth rates of head circumference and body size during infancy have been reported to predict developmental pathologies that emerge during childhood. This study investigated whether growth in head circumference was concordant with growth in body length. Forty infants (16 males) were followed between the ages of 2 days and 21 months for durations ranging from 4 to 21 months (2616 measurements). Longitudinal anthropometric measurements were assessed weekly (n=12), semi-weekly (n=24) and daily (n=4) during home visits. Individual head circumference growth was investigated for the presence of saltatory patterns. Coincident analysis tested the null hypothesis that head growth was randomly coupled to length growth. Head circumference growth during infancy is saltatory (p<0.05), characterized by median increments of 0.20 cm (95% confidence interval, 0.10-0.30 cm) in 24-h, separated by intervals of no growth ranging from 1 to 21 days. Daily assessments identified that head growth saltations were coupled to length growth saltations within a median time frame of 2 days (interquartile 0-4, range 1-8 days). Assessed at semi-weekly and weekly intervals, an average 82% (SD 0.13) of head growth saltations was non-randomly concordant with length growth (p≤0.006). Normal infant head circumference grows by intermittent, episodic saltations that are temporally coupled to growth in total body length by a process of integrated physiology that remains to be described. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Capital Growth Paths of the Neoclassical Growth Model

    PubMed Central

    Takahashi, Taro

    2012-01-01

    This paper derives the first-order approximated paths of both types of capital in the two-capital neoclassical growth model. The derived capital growth paths reveal that the short-run growth effect of capital injection differs considerably depending on which type of capital is enhanced. This result demonstrates the importance of well-targeted capital enhancement programs such as public sector projects and foreign aid. PMID:23185344

  3. Analysis of craniofacial and extremity growth in patients with growth hormone deficiency during growth hormone therapy.

    PubMed

    de Faria, Maria Estela Justamante; Carvalho, Luciani R; Rossetto, Shirley M; Amaral, Terezinha Sampaio; Berger, Karina; Arnhold, Ivo Jorge Prado; Mendonca, Berenice Bilharinho

    2009-01-01

    There are many controversies regarding side effects on craniofacial and extremity growth due to growth hormone (GH) treatment. Our aim was to estimate GH action on craniofacial development and extremity growth in GH-deficient patients. Twenty patients with GH deficiency with a chronological age ranging from 4.6 to 24.3 years (bone age from 1.5 to 13 years) were divided in 2 groups: group 1 (n = 6), naive to GH treatment, and group 2 (n = 14), ongoing GH treatment for 2-11 years. GH doses (0.1-0.15 U/kg/day) were adjusted to maintain insulin-like growth factor 1 and insulin-like growth factor binding protein 3 levels within the normal range. Anthropometric measurements, cephalometric analyses and facial photographs to verify profile and harmony were performed annually for at least 3 years. Two patients with a disharmonious profile due to mandibular growth attained harmony, and none of them developed facial disharmony. Increased hand or foot size (>P97) was observed in 2 female patients and in 4 patients (1 female), respectively, both not correlated with GH treatment duration and increased levels of insulin-like growth factor 1. GH treatment with standard doses in GH-deficient patients can improve the facial profile in retrognathic patients and does not lead to facial disharmony although extremity growth, mainly involving the feet, can occur. Copyright 2009 S. Karger AG, Basel.

  4. Growth and Growth hormone - Insulin Like Growth Factor -I (GH-IGF-I) Axis in Chronic Anemias.

    PubMed

    Soliman, Ashraf T; De Sanctis, Vincenzo; Yassin, Mohamed; Adel, Ashraf

    2017-04-28

    Anaemia is a global public health problem affecting both developing and developed countries with major consequences for human health as well as social and economic development. It occurs at all stages of the life cycle, but is more prevalent in pregnant women and young children. Iron deficiency anaemia (IDA) was considered to be among the most important contributing factors to the global burden of disease. Prolonged and/or chronic anemia has a negative effect on linear growth especially during the rapid phases (infancy and puberty). Additionally infants with chronic IDA have delayed cognitive, motor, and affective development that may be long-lasting. In view of the significant impact of chronic anemias on growth, pediatricians endocrinologists and hematologists should advocate primary prevention and screening for growth disturbance in these forms of anemias. The extent of the negative effect of different forms of chronic anemias on linear growth and its possible reversibilty is addressed in this review. The possible mechanisms that may impair growth in the different forms of anemias are addressed with special attention to their effect on the growth hormone (GH) - insulin like growth factor -I (IGF-I).

  5. Insulin-like growth factor 1 (IGF-1): a growth hormone

    PubMed Central

    Laron, Z

    2001-01-01

    Aim—To contribute to the debate about whether growth hormone (GH) and insulin-like growth factor 1 (IGF-1) act independently on the growth process. Methods—To describe growth in human and animal models of isolated IGF-1 deficiency (IGHD), such as in Laron syndrome (LS; primary IGF-1 deficiency and GH resistance) and IGF-1 gene or GH receptor gene knockout (KO) mice. Results—Since the description of LS in 1966, 51 patients were followed, many since infancy. Newborns with LS are shorter (42–47 cm) than healthy babies (49–52 cm), suggesting that IGF-1 has some influence on intrauterine growth. Newborn mice with IGF-1 gene KO are 30% smaller. The postnatal growth rate of patients with LS is very slow, the distance from the lowest normal centile increasing progressively. If untreated, the final height is 100–136 cm for female and 109–138 cm for male patients. They have acromicia, organomicria including the brain, heart, gonads, genitalia, and retardation of skeletal maturation. The availability of biosynthetic IGF-1 since 1988 has enabled it to be administered to children with LS. It accelerated linear growth rates to 8–9 cm in the first year of treatment, compared with 10–12 cm/year during GH treatment of IGHD. The growth rate in following years was 5–6.5 cm/year. Conclusion—IGF-1 is an important growth hormone, mediating the protein anabolic and linear growth promoting effect of pituitary GH. It has a GH independent growth stimulating effect, which with respect to cartilage cells is possibly optimised by the synergistic action with GH. PMID:11577173

  6. Direct observation of morphological evolution of a catalyst during carbon nanotube forest growth: new insights into growth and growth termination

    NASA Astrophysics Data System (ADS)

    Jeong, Seojeong; Lee, Jaegeun; Kim, Hwan-Chul; Hwang, Jun Yeon; Ku, Bon-Cheol; Zakharov, Dmitri N.; Maruyama, Benji; Stach, Eric A.; Kim, Seung Min

    2016-01-01

    In this study, we develop a new methodology for transmission electron microscopy (TEM) analysis that enables us to directly investigate the interface between carbon nanotube (CNT) arrays and the catalyst and support layers for CNT forest growth without any damage induced by a post-growth TEM sample preparation. Using this methodology, we perform in situ and ex situ TEM investigations on the evolution of the morphology of the catalyst particles and observe the catalyst particles to climb up through CNT arrays during CNT forest growth. We speculate that the lifted catalysts significantly affect the growth and growth termination of CNT forests along with Ostwald ripening and sub-surface diffusion. Thus, we propose a modified growth termination model which better explains various phenomena related to the growth and growth termination of CNT forests.In this study, we develop a new methodology for transmission electron microscopy (TEM) analysis that enables us to directly investigate the interface between carbon nanotube (CNT) arrays and the catalyst and support layers for CNT forest growth without any damage induced by a post-growth TEM sample preparation. Using this methodology, we perform in situ and ex situ TEM investigations on the evolution of the morphology of the catalyst particles and observe the catalyst particles to climb up through CNT arrays during CNT forest growth. We speculate that the lifted catalysts significantly affect the growth and growth termination of CNT forests along with Ostwald ripening and sub-surface diffusion. Thus, we propose a modified growth termination model which better explains various phenomena related to the growth and growth termination of CNT forests. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05547d

  7. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.

    1987-01-01

    Muscle tissue culture techniques were developed to grow skeletal myofibers which differentiate into more adult-like myofibers. Mechanical simulation studies of these muscle cells in a newly developed mechanical cell simulator can now be performed to study growth processes in skeletal muscle. Conditions in the mechanical cell simulator were defined where mechanical activity can either prevent muscle wasting or stimulate muscle growth. The role of endogenous and exogenous growth factors in tension-induced muscle growth is being investigated under the defined conditions of tissue culture.

  8. Analysing growth and development of plants jointly using developmental growth stages.

    PubMed

    Dambreville, Anaëlle; Lauri, Pierre-Éric; Normand, Frédéric; Guédon, Yann

    2015-01-01

    Plant growth, the increase of organ dimensions over time, and development, the change in plant structure, are often studied as two separate processes. However, there is structural and functional evidence that these two processes are strongly related. The aim of this study was to investigate the co-ordination between growth and development using mango trees, which have well-defined developmental stages. Developmental stages, determined in an expert way, and organ sizes, determined from objective measurements, were collected during the vegetative growth and flowering phases of two cultivars of mango, Mangifera indica. For a given cultivar and growth unit type (either vegetative or flowering), a multistage model based on absolute growth rate sequences deduced from the measurements was first built, and then growth stages deduced from the model were compared with developmental stages. Strong matches were obtained between growth stages and developmental stages, leading to a consistent definition of integrative developmental growth stages. The growth stages highlighted growth asynchronisms between two topologically connected organs, namely the vegetative axis and its leaves. Integrative developmental growth stages emphasize that developmental stages are closely related to organ growth rates. The results are discussed in terms of the possible physiological processes underlying these stages, including plant hydraulics, biomechanics and carbohydrate partitioning. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. [Excessive growth and growth hormone deficiency after treatment for craniopharyngioma].

    PubMed

    López Siguero, J P; García García, E; Martínez-Aedo, M J; Martínez Valverde, A

    2000-07-01

    Some children grow normally or excessively after extirpation of a craniopharyngioma, despite growth hormone deficiency. We report a 4-year-old girl with suprasellar craniopharyngioma. Removal of the tumor resulted in panhypopituitarism. For the next 5 years growth continued at a rate of 8.4-10.6 cm/year and then decreased progressively to 1.2 cm/year. Administration of growth hormone increased growth rate to 9.3 cm/year.

  10. Growth charts for non-growth hormone treated Prader-Willi syndrome.

    PubMed

    Butler, Merlin G; Lee, Jaehoon; Manzardo, Ann M; Gold, June-Anne; Miller, Jennifer L; Kimonis, Virginia; Driscoll, Daniel J

    2015-01-01

    The goal of this study was to generate and report standardized growth curves for weight, height, head circumference, and BMI for non-growth hormone-treated white male and female US subjects with Prader-Willi syndrome (PWS) between 3 and 18 years of age and develop standardized growth charts. Anthropometric measures (N = 133) were obtained according to standard methods from 120 non-growth hormone-treated white subjects (63 males and 57 females) with PWS between 3 and 18 years of age. Standardized growth curves were developed for the third, 10th, 25th, 50th, 75th, 90th, and 97th percentiles by using the LMS method for weight, height, head circumference, and BMI for PWS subjects along with the normative third, 50th, and 97th percentiles from national and international growth data. The LMS smoothing procedure summarized the distribution of the anthropometric variables at each age using three parameters: power of the Box-Cox transformation λ (L), median μ (M) and coefficient of variation δ (S). Weight, height, head circumference, and BMI standardized growth charts representing 7 percentile ranges were developed from 120 non-growth hormone-treated white male and female US subjects with PWS (age range: 3-18 years) and normative third, 50th, and 97th percentiles from national and international data. We encourage the use of syndrome-specific growth standards to examine and evaluate subjects with PWS when monitoring growth patterns and determining nutritional and obesity status. These variables can be influenced by culture, individual medical care, diet intervention, and physical activity plans. Copyright © 2015 by the American Academy of Pediatrics.

  11. Selective LPCVD growth of graphene on patterned copper and its growth mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Huang, B.-C.; Wang, Y.; Woo, J. C. S.

    2016-12-01

    Copper-catalyzed graphene low-pressure chemical-vapor deposition (LPCVD) growth has been regarded as a viable solution towards its integration to CMOS technology, and the wafer-bonding method provides a reliable alternative for transferring the selective graphene grown on a patterned metal film for IC manufacturing. In this paper, selective LPCVD graphene growth using patterned copper dots has been studied. The Raman spectra of grown films have demonstrated large dependence on the growth conditions. To explain the results, the growth mechanisms based on surface adsorption and copper-vapor-assisted growth are investigated by the comparison between the blanket copper films with/without the additional copper source. The copper vapor density is found to be critical for high-quality graphene growth. In addition, the copper-vapor-assisted growth is also evidenced by the carbon deposition on the SiO2 substrate of the patterned-copper-dot sample and chamber wall during graphene growth. This growth mechanism explains the correlation between the growth condition and Raman spectrum for films on copper dots. The study on the copper-catalyzed selective graphene growth on the hard substrate paves the way for the synthesis and integration of the 2D material in VLSI.

  12. Insulin-like growth factor and fibroblast growth factor expression profiles in growth-restricted fetal sheep pancreas.

    PubMed

    Chen, Xiaochuan; Rozance, Paul J; Hay, William W; Limesand, Sean W

    2012-05-01

    Placental insufficiency results in intrauterine growth restriction (IUGR), impaired fetal insulin secretion and less fetal pancreatic β-cell mass, partly due to lower β-cell proliferation rates. Insulin-like growth factors (IGFs) and fibroblast growth factors (FGFs) regulate fetal β-cell proliferation and pancreas development, along with transcription factors, such as pancreatic and duodenal homeobox 1 (PDX-1). We determined expression levels for these growth factors, their receptors and IGF binding proteins in ovine fetal pancreas and isolated islets. In the IUGR pancreas, relative mRNA expression levels of IGF-I, PDX-1, FGF7 and FGFR2IIIb were 64% (P < 0.01), 76% (P < 0.05), 76% (P < 0.05) and 52% (P < 0.01) lower, respectively, compared with control fetuses. Conversely, insulin-like growth factor binding protein 2 (IGFBP-2) mRNA and protein concentrations were 2.25- and 1.2-fold greater (P < 0.05) in the IUGR pancreas compared with controls. In isolated islets from IUGR fetuses, IGF-II and IGFBP-2 mRNA concentrations were 1.5- and 3.7-fold greater (P < 0.05), and insulin mRNA was 56% less (P < 0.05) than control islets. The growth factor expression profiles for IGF and FGF signaling pathways indicate that declines in β-cell mass are due to decreased growth factor signals for both pancreatic progenitor epithelial cell and mature β-cell replication.

  13. ACR Appropriateness Criteria® growth disturbances - risk of intrauterine growth restriction.

    PubMed

    Zelop, Carolyn M; Javitt, Marcia C; Glanc, Phyllis; Dubinsky, Theodore; Harisinghani, Mukesh G; Harris, Robert D; Khati, Nadia J; Mitchell, Donald G; Pandharipande, Pari V; Pannu, Harpreet K; Podrasky, Ann E; Shipp, Thomas D; Siegel, Cary Lynn; Simpson, Lynn; Wall, Darci J; Wong-You-Cheong, Jade J

    2013-09-01

    Fetal growth disturbances include fetuses at risk for intrauterine growth restriction. These fetuses may have an estimated fetal weight at less than the 10% or demonstrate a plateau of fetal growth with an estimated fetal growth greater than the 10%. Uteroplacental insufficiency may play a major role in the etiology of intrauterine growth restriction. Fetuses at risk for intrauterine fetal growth restriction are susceptible to the potential hostility of the intrauterine environment leading to fetal hypoxia and fetal acidosis. Fetal well-being can be assessed using biophysical profile, Doppler velocimetry, fetal heart rate monitoring, and fetal movement counting.Fetal growth disturbances include fetuses at risk for intrauterine growth restriction. These fetuses may have an estimated fetal weight at less than the 10% or demonstrate a plateau of fetal growth with an estimated fetal growth greater than the 10%. Uteroplacental insufficiency may play a major role in the etiology of intrauterine growth restriction. Fetuses at risk for intrauterine fetal growth restriction are susceptible to the potential hostility of the intrauterine environment leading to fetal hypoxia and fetal acidosis. Fetal well-being can be assessed using biophysical profile, Doppler velocimetry, fetal heart rate monitoring, and fetal movement counting.The ACR Appropriateness Criteria® are evidence-based guidelines for specific clinical conditions that are reviewed every two years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer reviewed journals and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances where evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment.

  14. Endocrinological control of growth.

    PubMed

    Sizonenko, P C

    1978-01-01

    Many endocrinological factors control cellular growth of different tissues (cell multiplication and cell volume) and skeletal growth. The role of neuro-transmitters and of hypothalamic releasing and inhibiting factors of growth hormone secretion will be reviewed. The importance of the somatomedins on cartilage growth will be stressed. Thyroid hormones, androgens, and oestrogens have important stimulating actions on skeletal growth and maturation. Conversely, glucocorticoids have an important inhibitory effect on growth. The precise roles of these hormone factors in the regulation of growth hormone secretion, somatomedin production and tissue growth, particularly the cartilage, remain to be completely elucidated.

  15. Growth hormone deficiency - children

    MedlinePlus

    ... be done include: Insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 3 ( ... C, et al. Guidelines for growth hormone and insulin-like growth factor-I treatment in children and adolescents: growth hormone deficiency, ...

  16. Flux growth in a horizontal configuration: An analog to vapor transport growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, J. -Q.; Sales, B. C.; Susner, M. A.

    Flux growth of single crystals is normally performed in a vertical configuration with an upright refractory container holding the flux melt. At high temperatures, flux dissolves the charge, forming a homogeneous solution before nucleation and growth of crystals takes place under proper supersaturation generated by cooling or evaporating the flux. In this paper, we report flux growth in a horizontal configuration with a temperature gradient along the horizontal axis: a liquid transport growth analogous to the vapor transport technique. In a typical liquid transport growth, the charge is kept at the hot end of the refractory container and the fluxmore » melt dissolves the charge and transfers it to the cold end. Once the concentration of charge is above the solubility limit at the cold end, the thermodynamically stable phase nucleates and grows. Compared to the vertical flux growth, the liquid transport growth can provide a large quantity of crystals in a single growth since the charge/flux ratio is not limited by the solubility limit at the growth temperature. This technique is complementary to the vertical flux growth and can be considered when a large amount of crystals is needed but the yield from the conventional vertical flux growth is limited. Finally, we applied this technique to the growth of IrSb 3, Mo 3Sb 7, and MnBi from self-flux, and the growth of FeSe, CrTe 3, NiPSe 3, FePSe 3, CuInP 2S 6, RuCl 3, and OsCl 4 from a halide flux.« less

  17. Flux growth in a horizontal configuration: An analog to vapor transport growth

    DOE PAGES

    Yan, J. -Q.; Sales, B. C.; Susner, M. A.; ...

    2017-07-05

    Flux growth of single crystals is normally performed in a vertical configuration with an upright refractory container holding the flux melt. At high temperatures, flux dissolves the charge, forming a homogeneous solution before nucleation and growth of crystals takes place under proper supersaturation generated by cooling or evaporating the flux. In this paper, we report flux growth in a horizontal configuration with a temperature gradient along the horizontal axis: a liquid transport growth analogous to the vapor transport technique. In a typical liquid transport growth, the charge is kept at the hot end of the refractory container and the fluxmore » melt dissolves the charge and transfers it to the cold end. Once the concentration of charge is above the solubility limit at the cold end, the thermodynamically stable phase nucleates and grows. Compared to the vertical flux growth, the liquid transport growth can provide a large quantity of crystals in a single growth since the charge/flux ratio is not limited by the solubility limit at the growth temperature. This technique is complementary to the vertical flux growth and can be considered when a large amount of crystals is needed but the yield from the conventional vertical flux growth is limited. Finally, we applied this technique to the growth of IrSb 3, Mo 3Sb 7, and MnBi from self-flux, and the growth of FeSe, CrTe 3, NiPSe 3, FePSe 3, CuInP 2S 6, RuCl 3, and OsCl 4 from a halide flux.« less

  18. Growth Hormone Studies in Growth Retardation—Therapeutic Response to Administration of Androgen

    PubMed Central

    Deller, John J.; Plunket, Daniel C.; Forsham, Peter H.

    1966-01-01

    Growth hormone assays were performed before and after androgen administration in a 12-year-old boy with unexplained growth retardation. A subnormal growth hormone secretion in response to a standard hypoglycemic stimulus was demonstrated, and it was corrected by androgen pretreatment. After that, a normal serum growth hormone level and a temporary growth spurt were demonstrated. ImagesFigure 1. PMID:5942009

  19. Growth at puberty.

    PubMed

    Rogol, Alan D; Roemmich, James N; Clark, Pamela A

    2002-12-01

    Somatic growth and maturation are influenced by a number of factors that act independently or in concert to modify an individual's genetic potential. The secular trend in height and adolescent development is further evidence for the significant influence of environmental factors on an individual's genetic potential for linear growth. Nutrition, including energy and specific nutrient intake, is a major determinant of growth. Paramount to normal growth is the general health and well-being of an individual; in fact, normal growth is a strong testament to the overall good health of a child. More recently the effect of physical activity and fitness on linear growth, especially among teenage athletes, has become a topic of interest. Puberty is a dynamic period of development marked by rapid changes in body size, shape, and composition, all of which are sexually dimorphic. One of the hallmarks of puberty is the adolescent growth spurt. Body compositional changes, including the regional distribution of body fat, are especially large during the pubertal transition and markedly sexually dimorphic. The hormonal regulation of the growth spurt and the alterations in body composition depend on the release of the gonadotropins, leptin, the sex-steroids, and growth hormone. It is very likely that interactions among these hormonal axes are more important than their main effects, and that alterations in body composition and the regional distribution of body fat actually are signals to alter the neuroendocrine and peripheral hormone axes. These processes are merely magnified during pubertal development but likely are pivotal all along the way from fetal growth to the aging process.

  20. [Pubertal growth of 1,453 healthy children according to age at pubertal growth spurt onset. The Barcelona longitudinal growth study].

    PubMed

    Carrascosa, Antonio; Yeste, Diego; Moreno-Galdó, Antonio; Gussinyé, Miquel; Ferrández, Ángel; Clemente, María; Fernández-Cancio, Mónica

    2018-02-20

    Pubertal growth pattern differs according to age at pubertal growth spurt onset which occurs over a five years period (girls: 8-13 years, boys: 10-15 years). The need for more than one pubertal reference pattern has been proposed. We aimed to obtain five 1-year-age-interval pubertal patterns. Longitudinal (6 years of age-adult height) growth study of 1,453 healthy children to evaluate height-for-age, growth velocity-for-age and weight-for-age values. According to age at pubertal growth spurt onset girls were considered: very-early matures (8-9 years, n=119), early matures (9-10 years, n=157), intermediate matures (10-11 years, n=238), late matures (11-12 years, n=127) and very-late matures (12-13 years, n=102), and boys: very-early matures (10-11 years, n=110), early matures (11-12 years, n=139), intermediate matures (12-13 years, n=225), late matures (13-14 years, n=133) and very-late matures (14-15 years, n=103). Age at menarche and growth up to adult height were recorded. In both sexes, statistically-significant (P<.0001) and clinically-pertinent differences in pubertal growth pattern (mean height-for-age, mean growth velocity-for-age and mean pubertal height gain, values) were found among the five pubertal maturity groups and between each group and the whole population, despite similar adult height values. The same occurred for age at menarche and growth from menarche to adult height (P<.05). In both sexes, pubertal growth spurt onset is a critical milestone determining pubertal growth and sexual development. The contribution of our data to better clinical evaluation of growth according to the pubertal maturity tempo of each child will obviate the mistakes made when only one pubertal growth reference is used. Copyright © 2018. Publicado por Elsevier España, S.L.U.

  1. Insulin-like growth factor I (IGF-1) Ec/Mechano Growth factor--a splice variant of IGF-1 within the growth plate.

    PubMed

    Schlegel, Werner; Raimann, Adalbert; Halbauer, Daniel; Scharmer, Daniela; Sagmeister, Susanne; Wessner, Barbara; Helmreich, Magdalena; Haeusler, Gabriele; Egerbacher, Monika

    2013-01-01

    Human insulin-like growth factor 1 Ec (IGF-1Ec), also called mechano growth factor (MGF), is a splice variant of insulin-like growth factor 1 (IGF-1), which has been shown in vitro as well as in vivo to induce growth and hypertrophy in mechanically stimulated or damaged muscle. Growth, hypertrophy and responses to mechanical stimulation are important reactions of cartilaginous tissues, especially those in growth plates. Therefore, we wanted to ascertain if MGF is expressed in growth plate cartilage and if it influences proliferation of chondrocytes, as it does in musculoskeletal tissues. MGF expression was analyzed in growth plate and control tissue samples from piglets aged 3 to 6 weeks. Furthermore, growth plate chondrocyte cell culture was used to evaluate the effects of the MGF peptide on proliferation. We showed that MGF is expressed in considerable amounts in the tissues evaluated. We found the MGF peptide to be primarily located in the cytoplasm, and in some instances, it was also found in the nucleus of the cells. Addition of MGF peptides was not associated with growth plate chondrocyte proliferation.

  2. Silicon dendritic web growth

    NASA Technical Reports Server (NTRS)

    Duncan, S.

    1984-01-01

    Technological goals for a silicon dendritic web growth program effort are presented. Principle objectives for this program include: (1) grow long web crystals front continuously replenished melt; (2) develop temperature distribution in web and melt; (3) improve reproductibility of growth; (4) develop configurations for increased growth rates (width and speed); (5) develop new growth system components as required for improved growth; and (6) evaluate quality of web growth.

  3. Plant phototropic growth.

    PubMed

    Fankhauser, Christian; Christie, John M

    2015-05-04

    Plants are photoautotrophic sessile organisms that use environmental cues to optimize multiple facets of growth and development. A classic example is phototropism - in shoots this is typically positive, leading to growth towards the light, while roots frequently show negative phototropism triggering growth away from the light. Shoot phototropism optimizes light capture of leaves in low light environments and hence increases photosynthetic productivity. Phototropins are plasma-membrane-associated UV-A/blue-light activated kinases that trigger phototropic growth. Light perception liberates their protein kinase domain from the inhibitory action of the amino-terminal photosensory portion of the photoreceptor. Following a series of still poorly understood events, phototropin activation leads to the formation of a gradient of the growth hormone auxin across the photo-stimulated stem. The greater auxin concentration on the shaded compared with the lit side of the stem enables growth reorientation towards the light. In this Minireview, we briefly summarize the signaling steps starting from photoreceptor activation until the establishment of a lateral auxin gradient, ultimately leading to phototropic growth in shoots. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Simulating Population Growth.

    ERIC Educational Resources Information Center

    Byington, Scott

    1997-01-01

    Presents a strategy to help students grasp the important implications of population growth. Involves an interactive demonstration that allows students to experience exponential and logistic population growth followed by a discussion of the implications of population-growth principles. (JRH)

  5. Connection between the growth rate distribution and the size dependent crystal growth

    NASA Astrophysics Data System (ADS)

    Mitrović, M. M.; Žekić, A. A.; IIić, Z. Z.

    2002-07-01

    The results of investigations of the connection between the growth rate dispersions and the size dependent crystal growth of potassium dihydrogen phosphate (KDP), Rochelle salt (RS) and sodium chlorate (SC) are presented. A possible way out of the existing confusion in the size dependent crystal growth investigations is suggested. It is shown that the size independent growth exists if the crystals belonging to one growth rate distribution maximum are considered separately. The investigations suggest possible reason for the observed distribution maxima widths, and the high data scattering on the growth rate versus the crystal size dependence.

  6. Media composition: growth factors.

    PubMed

    Hegde, Aparna; Behr, Barry

    2012-01-01

    Despite the fact that the fundamental principle underlying the most common method of culture media constitution is that of mimicking the natural environment of the preimplantation embryo, one major difference that remains between current embryo culture media and in vivo conditions is the absence of growth factors in vitro. Numerous growth factors are known to be present in the in vivo environment of human and nonhuman preimplantation embryos, often with peak concentrations corresponding to when fertilization and preimplantation embryo growth would occur. Although these growth factors are found in very small concentrations, they have a profound effect on tissue growth and differentiation through attachment to factor-specific receptors on cell surfaces. Receptors for many different growth factors have also been detected in human preimplantation embryos. Preimplantation embryos themselves express many growth factors. The growth factors and receptors are metabolically costly to produce, and thus their presence in the environment of the preimplantation embryo and in the embryo respectively strongly implies that embryos are designed to encounter and respond to the corresponding factors. Studies of embryo coculture also indirectly suggest that growth factors can improve in vitro development. Several animal and human studies attest to a probable beneficial effect of addition of growth factors to culture media. However, there is still ambiguity regarding the exact role of growth factors in embryonic development, the optimal dose of growth factors to be added to culture media, the combinatorial effect and endocrine of growth factors in embryonic development.

  7. Modeling Math Growth Trajectory--An Application of Conventional Growth Curve Model and Growth Mixture Model to ECLS K-5 Data

    ERIC Educational Resources Information Center

    Lu, Yi

    2016-01-01

    To model students' math growth trajectory, three conventional growth curve models and three growth mixture models are applied to the Early Childhood Longitudinal Study Kindergarten-Fifth grade (ECLS K-5) dataset in this study. The results of conventional growth curve model show gender differences on math IRT scores. When holding socio-economic…

  8. The Relationship Between Cost Growth and Schedule Growth

    DTIC Science & Technology

    2003-01-01

    Relationship between Cost Growth and Schedule Growth, 35th DoDCAS, SCEA 2002, Integrated Program Management Conference (IPMC) 2002, R. L. Coleman...currently valid OMB control number. 1. REPORT DATE 2003 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE The Relationship Between Cost...

  9. Reappraisal of Regional Growth Charts in the Era of WHO Growth Standards

    PubMed Central

    2013-01-01

    After the WHO Growth Standards (WHOGS) was published in 2006, many countries in the world endorsed and adopted the new growth references as a standard measure for the growth of infants and young children. Certainly, the WHOGS has an impact on the global policy about obesity and underweight in children. Such WHOGS innovation has influenced many regional health authorities and academies, which have managed their own growth charts for a long time, in changing their strategies to develop and use regional growth charts. In Korea, along with the tradition to create a national growth chart every decade, we now face a new era of advancing with the WHOGS. PMID:24224146

  10. Estimation of alga growth stage and lipid content growth rate

    NASA Technical Reports Server (NTRS)

    Embaye, Tsegereda N. (Inventor); Trent, Jonathan D. (Inventor)

    2012-01-01

    Method and system for estimating a growth stage of an alga in an ambient fluid. Measured light beam absorption or reflection values through or from the alga and through an ambient fluid, in each of two or more wavelength sub-ranges, are compared with reference light beam absorption values for corresponding wavelength sub-ranges for in each alga growth stage to determine (1) which alga growth stage, if any, is more likely and (2) whether estimated lipid content of the alga is increasing or has peaked. Alga growth is preferably terminated when lipid content has approximately reached a maximum value.

  11. Reduced growth factor requirement of keloid-derived fibroblasts may account for tumor growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, S.B.; Trupin, K.M.; Rodriguez-Eaton, S.

    Keloids are benign dermal tumors that form during an abnormal wound-healing process is genetically susceptible individuals. Although growth of normal and keloid cells did not differ in medium containing 10% (vol/vol) fetal bovine serum, keloid culture grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) fetal bovine serum, keloid cultures grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) plasma or 1% fetal bovine serum. Conditioned medium from keloid cultures did not stimulate growth of normal cells in plasma nor did it contain detectable platelet-derived growth factor or epidermal growth factor. Keloidmore » fibroblasts responded differently than normal adult fibroblasts to transforming growth factor ..beta... Whereas transforming growth factor ..beta.. reduced growth stimulation by epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from keloids. Normal and keloid fibroblasts also responded differently to hydrocortisone: growth was stimulated in normal adult cells and unaffected or inhibited in keloid cells. Fetal fibroblasts resembled keloid cells in their ability to grow in plasma and in their response to hydrocortisone. The ability of keloid fibroblasts to grow to higher cell densities in low-serum medium than cells from normal adult skin or from normal early or mature scars suggests that a reduced dependence on serum growth factors may account for their prolonged growth in vivo. Similarities between keloid and fetal cells suggest that keloids may result from the untimely expression of growth-control mechanism that is developmentally regulated.« less

  12. Insulin-Like Growth Factor I (IGF-1) Ec/Mechano Growth Factor – A Splice Variant of IGF-1 within the Growth Plate

    PubMed Central

    Schlegel, Werner; Raimann, Adalbert; Halbauer, Daniel; Scharmer, Daniela; Sagmeister, Susanne; Wessner, Barbara; Helmreich, Magdalena; Haeusler, Gabriele; Egerbacher, Monika

    2013-01-01

    Human insulin-like growth factor 1 Ec (IGF-1Ec), also called mechano growth factor (MGF), is a splice variant of insulin-like growth factor 1 (IGF-1), which has been shown in vitro as well as in vivo to induce growth and hypertrophy in mechanically stimulated or damaged muscle. Growth, hypertrophy and responses to mechanical stimulation are important reactions of cartilaginous tissues, especially those in growth plates. Therefore, we wanted to ascertain if MGF is expressed in growth plate cartilage and if it influences proliferation of chondrocytes, as it does in musculoskeletal tissues. MGF expression was analyzed in growth plate and control tissue samples from piglets aged 3 to 6 weeks. Furthermore, growth plate chondrocyte cell culture was used to evaluate the effects of the MGF peptide on proliferation. We showed that MGF is expressed in considerable amounts in the tissues evaluated. We found the MGF peptide to be primarily located in the cytoplasm, and in some instances, it was also found in the nucleus of the cells. Addition of MGF peptides was not associated with growth plate chondrocyte proliferation. PMID:24146828

  13. Anisotropic Growth of Otavite on Calcite: Implications for Heteroepitaxial Growth Mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riechers, Shawn L.; Kerisit, Sebastien N.

    Elucidating how cation intermixing can affect the mechanisms of heteroepitaxial growth in aqueous media has remained a challenging endeavor. Toward this goal, in situ atomic force microscopy was employed to image the heteroepitaxial growth of otavite (CdCO3) at the (10-14) surface of calcite (CaCO3) single crystals in static aqueous conditions. Heteroepitaxial growth proceeded via spreading of three-dimensional (3D) islands and two-dimensional (2D) atomic layers at low and high initial saturation levels, respectively. Experiments were carried out as a function of applied force and imaging mode thus enabling determination of growth mechanisms unaltered by imaging artifacts. This approach revealed the significantmore » anisotropic nature of heteroepitaxial growth on calcite in both growth modes and its dependence on supersaturation, intermixing, and substrate topography. The 3D islands not only grew preferentially along the [42-1] direction relative to the [010] direction, resulting in rod-like surface precipitates, but also showed clear preference for growth from the island end rich in obtuse/obtuse kink sites. Pinning to step edges was observed to often reverse this tendency. In the 2D growth mode, the relative velocities of acute and obtuse steps were observed to switch between the first and second atomic layers. This phenomenon stemmed from the significant Cd-Ca intermixing in the first layer, despite bulk thermodynamics predicting the formation of almost pure otavite. Composition effects were also responsible for the inability of 3D islands to grow on 2D layers in cases where both modes were observed to occur simultaneously. Overall, the AFM images highlighted the effects of intermixing on heteroepitaxial growth, particularly how it can induce thickness-dependent growth mechanisms at the nanoscale.« less

  14. GaN growth via HVPE on SiC/Si substrates: growth mechanisms

    NASA Astrophysics Data System (ADS)

    Sharofidinov, Sh Sh; Redkov, A. V.; Osipov, A. V.; Kukushkin, S. A.

    2017-11-01

    The article focuses on the study of GaN thin film growth via chloride epitaxy on SiC/Si hybrid substrate. SiC buffer layer was grown by a method of substitution of atoms, which allows one to reduce impact of mechanical stress therein on subsequent growth of III-nitride films. It is shown, that change in GaN growth conditions leads to change in its growth mechanism. Three mechanisms: epitaxial, spiral and stepwise growth are considered and mechanical stresses are estimated via Raman spectroscopy.

  15. Nocturnal growth hormone and gonadotrophin secretion in growth retarded children with Crohn's disease.

    PubMed Central

    Farthing, M J; Campbell, C A; Walker-Smith, J; Edwards, C R; Rees, L H; Dawson, A M

    1981-01-01

    Although impaired growth hormone secretion in response to pharmacological stimuli occurs in some growth retarded children with Crohn's disease, its relationship to past and future th is uncertain. We have therefore determined the growth hormone and gonadotrophin response to the physiological stimulus of sleep by continuous venous sampling in five severely gonadotrophin profiles, the mean plasma hormone concentrations during the first five hours of sleep were determined. In three of the five patients, five hour mean growth hormone levels were reduced (3.8, 5.0, and 8.5 mU/l) compared with levels reported previously in normal short children (10-43 mU/l), although the pulsatile pattern of growth hormone secretion was preserved in all. Nocturnal growth hormone secretion was unrelated to the growth velocities of these children during both pre- and post-treatment assessment periods but a significant correlation was found between growth hormone concentration and a disease activity score (r = 0.79, P less than 0.05), suggesting that growth hormone release by the pituitary was influenced by the severity of the disease. Nocturnal growth hormone secretion was also correlated with gonadotrophin secretion (luteinising hormones, r = 0.99, and follicle stimulating hormone, r = 0.96; p less than 0.01) indicating more extensive hypothalamic-pituitary disturbance. These findings suggest that hypothalamic-pituitary function is depressed in growth retarded children with Crohn's disease, but that abnormalities of growth hormone secretion are unlikely to be directly involved in the growth retardation seen in this condition. PMID:7308847

  16. Modelling the growth of plants with a uniform growth logistics.

    PubMed

    Kilian, H G; Bartkowiak, D; Kazda, M; Kaufmann, D

    2014-05-21

    The increment model has previously been used to describe the growth of plants in general. Here, we examine how the same logistics enables the development of different superstructures. Data from the literature are analyzed with the increment model. Increments are growth-invariant molecular clusters, treated as heuristic particles. This approach formulates the law of mass action for multi-component systems, describing the general properties of superstructures which are optimized via relaxation processes. The daily growth patterns of hypocotyls can be reproduced implying predetermined growth invariant model parameters. In various species, the coordinated formation and death of fine roots are modeled successfully. Their biphasic annual growth follows distinct morphological programs but both use the same logistics. In tropical forests, distributions of the diameter in breast height of trees of different species adhere to the same pattern. Beyond structural fluctuations, competition and cooperation within and between the species may drive optimization. All superstructures of plants examined so far could be reproduced with our approach. With genetically encoded growth-invariant model parameters (interaction with the environment included) perfect morphological development runs embedded in the uniform logistics of the increment model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Corruption and economic growth with non constant labor force growth

    NASA Astrophysics Data System (ADS)

    Brianzoni, Serena; Campisi, Giovanni; Russo, Alberto

    2018-05-01

    Based on Brianzoni et al. [1] in the present work we propose an economic model regarding the relationship between corruption in public procurement and economic growth. We extend the benchmark model by introducing endogenous labor force growth, described by the logistic equation. The results of previous studies, as Del Monte and Papagni [2] and Mauro [3], show that countries are stuck in one of the two equilibria (high corruption and low economic growth or low corruption and high economic growth). Brianzoni et al. [1] prove the existence of a further steady state characterized by intermediate levels of capital per capita and corruption. Our aim is to investigate the effects of the endogenous growth around such equilibrium. Moreover, due to the high number of parameters of the model, specific attention is given to the numerical simulations which highlight new policy measures that can be adopted by the government to fight corruption.

  18. [Economic growth with zero population growth and with declining population].

    PubMed

    Kurz, R

    1982-05-01

    The effects of both zero population growth and a declining population on economic growth are considered. Although the neoclassical theory of economic growth leads to optimistic results in such cases, the author suggests that this theory cannot be used as a basis for political action. The need for further research into the economic effects of a stationary or declining population is stressed. (summary in ENG)

  19. 8-Nitro-cGMP promotes bone growth through expansion of growth plate cartilage.

    PubMed

    Hoshino, Marie; Kaneko, Kotaro; Miyamoto, Yoichi; Yoshimura, Kentaro; Suzuki, Dai; Akaike, Takaaki; Sawa, Tomohiro; Ida, Tomoaki; Fujii, Shigemoto; Ihara, Hideshi; Tanaka, Junichi; Tsukuura, Risa; Chikazu, Daichi; Mishima, Kenji; Baba, Kazuyoshi; Kamijo, Ryutaro

    2017-09-01

    In endochondral ossification, growth of bones occurs at their growth plate cartilage. While it is known that nitric oxide (NO) synthases are required for proliferation of chondrocytes in growth plate cartilage and growth of bones, the precise mechanism by which NO facilitates these process has not been clarified yet. C-type natriuretic peptide (CNP) also positively regulate elongation of bones through expansion of the growth plate cartilage. Both NO and CNP are known to use cGMP as the second messenger. Recently, 8-nitro-cGMP was identified as a signaling molecule produced in the presence of NO in various types of cells. Here, we found that 8-nitro-cGMP is produced in proliferating chondrocytes in the growth plates, which was enhanced by CNP, in bones cultured ex vivo. In addition, 8-nitro-cGMP promoted bone growth with expansion of the proliferating zone as well as increase in the number of proliferating cells in the growth plates. 8-Nitro-cGMP also promoted the proliferation of chondrocytes in vitro. On the other hand, 8-bromo-cGMP enhanced the growth of bones with expansion of hypertrophic zone of the growth plates without affecting either the width of proliferating zone or proliferation of chondrocytes. These results indicate that 8-nitro-cGMP formed in growth plate cartilage accelerates chondrocyte proliferation and bone growth as a downstream molecule of NO. Copyright © 2017. Published by Elsevier Inc.

  20. Rearing Mozambique tilapia in tidally-changing salinities: Effects on growth and the growth hormone/insulin-like growth factor I axis.

    PubMed

    Moorman, Benjamin P; Yamaguchi, Yoko; Lerner, Darren T; Grau, E Gordon; Seale, Andre P

    2016-08-01

    The growth hormone (GH)/insulin-like growth factor (IGF) axis plays a central role in the regulation of growth in teleosts and has been shown to be affected by acclimation salinity. This study was aimed at characterizing the effects of rearing tilapia, Oreochromis mossambicus, in a tidally-changing salinity on the GH/IGF axis and growth. Tilapia were raised in fresh water (FW), seawater (SW), or in a tidally-changing environment, in which salinity is switched between FW (TF) and SW (TS) every 6h, for 4months. Growth was measured over all time points recorded and fish reared in a tidally-changing environment grew significantly faster than other groups. The levels of circulating growth hormone (GH), insulin-like growth factor I (IGF-I), pituitary GH mRNA, gene expression of IGF-I, IGF-II, and growth hormone receptor 2 (GHR) in the muscle and liver were also determined. Plasma IGF-I was higher in FW and TS than in SW and TF tilapia. Pituitary GH mRNA was higher in TF and TS than in FW and SW tilapia. Gene expression of IGF-I in the liver and of GHR in both the muscle and liver changed between TF and TS fish. Fish growth was positively correlated with GH mRNA expression in the pituitary, and GHR mRNA expression in muscle and liver tissues. Our study indicates that rearing fish under tidally-changing salinities elicits a distinct pattern of endocrine regulation from that observed in fish reared in steady-state conditions, and may provide a new approach to increase tilapia growth rate and study the regulation of growth in euryhaline fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Growth Kinetics and Morphology of Barite Crystals Derived from Face-Specific Growth Rates

    DOE PAGES

    Godinho, Jose R. A.; Stack, Andrew G.

    2015-03-30

    Here we investigate the growth kinetics and morphology of barite (BaSO 4) crystals by measuring the growth rates of the (001), (210), (010), and (100) surfaces using vertical scanning interferometry. Solutions with saturation indices 1.1, 2.1, and 3.0 without additional electrolyte, in 0.7 M NaCl, or in 1.3 mM SrCl2 are investigated. Face-specific growth rates are inhibited in the SrCl 2 solution relative to a solution without electrolyte, except for (100). Contrarily, growth of all faces is promoted in the NaCl solution. The variation of face-specific rates is solution-specific, which leads to a. change of the crystal morphology and overallmore » growth rate of crystals. The measured face-specific growth rates are used to model the growth of single crystals. Modeled crystals have a morphology and size similar to those grown from solution. Based on the model the time dependence of surface area and growth rates is analyzed. Growth rates change with time due to surface area normalization for small crystals and large growth intervals. By extrapolating rates to crystals with large surfaces areas, time-independent growth rates are 0.783, 2.96, and 0.513 mmol∙m -2∙h -1, for saturation index 2.1 solutions without additional electrolyte, NaCl, and SrCl 2, respectively.« less

  2. Growth Kinetics and Morphology of Barite Crystals Derived from Face-Specific Growth Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godinho, Jose R. A.; Stack, Andrew G.

    Here we investigate the growth kinetics and morphology of barite (BaSO 4) crystals by measuring the growth rates of the (001), (210), (010), and (100) surfaces using vertical scanning interferometry. Solutions with saturation indices 1.1, 2.1, and 3.0 without additional electrolyte, in 0.7 M NaCl, or in 1.3 mM SrCl2 are investigated. Face-specific growth rates are inhibited in the SrCl 2 solution relative to a solution without electrolyte, except for (100). Contrarily, growth of all faces is promoted in the NaCl solution. The variation of face-specific rates is solution-specific, which leads to a. change of the crystal morphology and overallmore » growth rate of crystals. The measured face-specific growth rates are used to model the growth of single crystals. Modeled crystals have a morphology and size similar to those grown from solution. Based on the model the time dependence of surface area and growth rates is analyzed. Growth rates change with time due to surface area normalization for small crystals and large growth intervals. By extrapolating rates to crystals with large surfaces areas, time-independent growth rates are 0.783, 2.96, and 0.513 mmol∙m -2∙h -1, for saturation index 2.1 solutions without additional electrolyte, NaCl, and SrCl 2, respectively.« less

  3. Impaired growth in Rabson-Mendenhall syndrome: lack of effect of growth hormone and insulin-like growth factor-I.

    PubMed

    Longo, N; Singh, R; Griffin, L D; Langley, S D; Parks, J S; Elsas, L J

    1994-09-01

    Mutations in the insulin receptor gene cause the severe insulin-resistant syndromes leprechaunism and Rabson-Mendenhall syndrome. There is no accepted therapy for these inherited conditions. Here we report the results of recombinant human GH (rhGH) and recombinant human insulin-like growth factor-I (rhIGF-I) treatment of a male patient, Atl-2, with Rabson-Mendenhall syndrome. The patient was small for gestational age, had premature dentition, absence of sc fat, acanthosis nigricans, fasting hypoglycemia and postprandial hyperglycemia, and extremely high concentrations of circulating insulin (up to 8500 microU/mL). Fibroblasts and lymphoblasts established from this patient had reduced insulin binding, which was 20-30% of the control value. Binding of epidermal growth factor, IGF-I, and GH to the patient's fibroblasts was normal. The growth of fibroblasts cultured from patient Atl-2 in vitro was intermediate between that of fibroblasts from patients with leprechaunism and control values. The patient's growth curve in vivo was far below the fifth percentile despite adequate nutrition. To stimulate growth, therapy with rhGH was initiated, the rationale being to stimulate hepatic IGF-I production and IGF-I receptor signaling, and bypass the inherited block in insulin receptor signaling. Therapy with rhGH (up to 0.5 mg/kg.week) did not improve growth and failed to increase the levels of circulating IGF-I and IGF-binding protein-3 over a 14-month period. As rhGH could not stimulate growth, rhIGF-I (up to 100 micrograms/kg.day) was given by daily sc injection. No increase in growth velocity was observed over a 14-month period. These results indicate that both GH and IGF-I fail to correct growth in a patient with severe inherited insulin resistance. The lack of efficacy of IGF-I treatment may be related to multiple factors, such as the poor metabolic state of the patient, the deficiency of serum carrier protein for IGF-I, an increased clearance of the growth factor, IGF

  4. The big tent of growth management: smart growth as a movement

    Treesearch

    Edward G. Goetz

    2005-01-01

    Growth management policies in the U.S. have failed to gain significant political support in many regions, limiting efforts to manage development patterns and protect natural resources. The Smart Growth movement has brought new voices into the debate over growth management and has provided a "big tent" under which transportation groups, environmentalists,...

  5. Effect of selection for growth rate on relative growth in rabbits.

    PubMed

    Pascual, M; Pla, M; Blasco, A

    2008-12-01

    The effect of selection for growth rate on relative growth of the rabbit body components was studied. Animals from the 18th generation of a line selected for growth rate were compared with a contemporary control group formed with offspring of embryos that were frozen at the seventh generation of selection of the same line. A total of 313 animals were slaughtered at 4, 9, 13, 20, and 40 wk old. The offal, organs, tissues, and retail cuts were weighed, and several carcass linear measurements were recorded. Huxley's allometric equations relating the weights of the components with respect to BW were fitted. Butterfield's quadratic equations relating the degree of maturity of the components and the degree of maturity of BW were also fitted. In most of the components studied, both models lead to similar patterns of growth. Blood was isometric or early maturing and skin was late maturing or isometric depending on the use of Huxley's or Butterfield's model. Full gastrointestinal tract, liver, kidneys, thoracic viscera, and head were early maturing, and the chilled carcass and reference carcass were late maturing. The retail cuts of the reference carcass showed isometry (forelegs) or late maturing growth (breast and ribs, loin, hind legs, and abdominal walls). Dissectible fat of the carcass and meat of the hind leg had a late development, whereas bone of the hind leg was early maturing. Lumbar circumference length was later maturing than the carcass length and thigh length. Sex did not affect the relative growth of most of the components. Butterfield's model showed that males had an earlier development of full gastrointestinal tract and later growth of kidneys than females. No effect of selection on the relative growth of any of the components studied was found, leading to similar patterns of growth and similar carcass composition at a given degree of maturity after 11 generations of selection for growth rate.

  6. The Uniform Pattern of Growth and Skeletal Maturation during the Human Adolescent Growth Spurt.

    PubMed

    Sanders, James O; Qiu, Xing; Lu, Xiang; Duren, Dana L; Liu, Raymond W; Dang, Debbie; Menendez, Mariano E; Hans, Sarah D; Weber, David R; Cooperman, Daniel R

    2017-12-01

    Humans are one of the few species undergoing an adolescent growth spurt. Because children enter the spurt at different ages making age a poor maturity measure, longitudinal studies are necessary to identify the growth patterns and identify commonalities in adolescent growth. The standard maturity determinant, peak height velocity (PHV) timing, is difficult to estimate in individuals due to diurnal, postural, and measurement variation. Using prospective longitudinal populations of healthy children from two North American populations, we compared the timing of the adolescent growth spurt's peak height velocity to normalized heights and hand skeletal maturity radiographs. We found that in healthy children, the adolescent growth spurt is standardized at 90% of final height with similar patterns for children of both sexes beginning at the initiation of the growth spurt. Once children enter the growth spurt, their growth pattern is consistent between children with peak growth at 90% of final height and skeletal maturity closely reflecting growth remaining. This ability to use 90% of final height as easily identified important maturity standard with its close relationship to skeletal maturity represents a significant advance allowing accurate prediction of future growth for individual children and accurate maturity comparisons for future studies of children's growth.

  7. Island growth as a growth mode in atomic layer deposition: A phenomenological model

    NASA Astrophysics Data System (ADS)

    Puurunen, Riikka L.; Vandervorst, Wilfried

    2004-12-01

    Atomic layer deposition (ALD) has recently gained world-wide attention because of its suitability for the fabrication of conformal material layers with thickness in the nanometer range. Although the principles of ALD were realized about 40 years ago, the description of many physicochemical processes that occur during ALD growth is still under development. A constant amount of material deposited in an ALD reaction cycle, that is, growth-per-cycle (GPC), has been a paradigm in ALD through decades. The GPC may vary, however, especially in the beginning of the ALD growth. In this work, a division of ALD processes to four classes is proposed, on the basis of how the GPC varies with the number of ALD reaction cycles: linear growth, substrate-enhanced growth, and substrate-inhibited growth of type 1 and type 2. Island growth is identified as a likely origin for type 2 substrate-inhibited growth, where the GPC increases and goes through a maximum before it settles to a constant value characteristic of a steady growth. A simple phenomenological model is developed to describe island growth in ALD. The model assumes that the substrate is unreactive with the ALD reactants, except for reactive defects. ALD growth is assumed to proceed symmetrically from the defects, resulting islands of a conical shape. Random deposition is the growth mode on the islands. The model allows the simulation of GPC curves, surface fraction curves, and surface roughness, with physically significant parameters. When the model is applied to the zirconium tetrachloride/water and the trimethylaluminum/water ALD processes on hydrogen-terminated silicon, the calculated GPC curves and surface fractions agree with the experiments. The island growth model can be used to assess the occurrence of island growth, the size of islands formed, and point of formation of a continuous ALD-grown film. The benefits and limitations of the model and the general characteristics of type 2 substrate-inhibited ALD are

  8. Growth axis maturation is linked to nutrition, growth and developmental rate.

    PubMed

    Hetz, Jennifer A; Menzies, Brandon R; Shaw, Geoffrey; Rao, Alexandra; Clarke, Iain J; Renfree, Marilyn B

    2015-08-15

    Maturation of the mammalian growth axis is thought to be linked to the transition from fetal to post-natal life at birth. However, in an altricial marsupial, the tammar wallaby (Macropus eugenii), this process occurs many months after birth but at a time when the young is at a similar developmental stage to that of neonatal eutherian mammals. Here we manipulate growth rates and demonstrate in slow, normal and fast growing tammar young that nutrition and growth rate affect the time of maturation of the growth axis. Maturation of GH/IGF-I axis components occurred earlier in fast growing young, which had significantly increased hepatic GHR, IGF1 and IGFALS expression, plasma IGF-I concentrations, and significantly decreased plasma GH concentrations compared to age-matched normal young. These data support the hypothesis that the time of maturation of the growth axis depends on the growth rate and maturity of the young, which can be accelerated by changing their nutritional status. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Catch-up growth and growth deficits: Nine-year annual panel child growth for native Amazonians in Bolivia

    PubMed Central

    Zhang, Rebecca; Undurraga, Eduardo A.; Zeng, Wu; Reyes-García, Victoria; Tanner, Susan; Leonard, William R.; Behrman, Jere R.; Godoy, Ricardo A.

    2017-01-01

    Background Childhood growth stunting is negatively associated with cognitive and health outcomes, claimed to be irreversible after age 2. Aim To estimate growth rates for children 2 ≤ age ≤ 7 who were stunted (sex-age standardized z-score [HAZ] <−2), marginally-stunted (−2≤ HAZ ≤ −1), or not-stunted (HAZ >−1) at baseline and tracked annually until age 11; frequency of movement among height categories; and variation in height predicted by early childhood height. Participants/methods We used a nine-year annual panel (2002–2010) from a native Amazonian society of horticulturalists-foragers (Tsimane’; n=174 girls; 179 boys at baseline) is used. We used descriptive statistics and random-effect regressions. Results We found some evidence of catch-up growth in HAZ but persistent height deficits. Children stunted at baseline improved 1 HAZ unit by age 11, and had higher annual growth rates than non-stunted children. Marginally-stunted boys had a 0.1 HAZ units higher annual growth rate than non-stunted boys. Despite some catch up, ~80% of marginally-stunted children at baseline remained marginally-stunted by age 11. The height deficit increased from age 2 to11. We found modest year-to-year movement between height categories. Conclusions The prevalence of growth faltering among the Tsimane’ has declined, but hurdles still substantially lock children into height categories. PMID:27251215

  10. Fetal growth velocity and body proportion in the assessment of growth.

    PubMed

    Hiersch, Liran; Melamed, Nir

    2018-02-01

    Fetal growth restriction implies failure of a fetus to meet its growth potential and is associated with increased perinatal mortality and morbidity. Therefore, antenatal detection of fetal growth restriction is of major importance in an attempt to deliver improved clinical outcomes. The most commonly used approach towards screening for fetal growth restriction is by means of sonographic fetal weight estimation, to detect fetuses small for gestational age, defined by an estimated fetal weight <10th percentile for gestational age. However, the predictive accuracy of this approach is limited both by suboptimal detection rate (as it may overlook non-small-for-gestational-age growth-restricted fetuses) and by a high false-positive rate (as most small-for-gestational-age fetuses are not growth restricted). Here, we review 2 strategies that may improve the diagnostic accuracy of sonographic fetal biometry for fetal growth restriction. The first strategy involves serial ultrasound evaluations of fetal biometry. The information obtained through these serial assessments can be interpreted using several different approaches including fetal growth velocity, conditional percentiles, projection-based methods, and individualized growth assessment that can be viewed as mathematical techniques to quantify any decrease in estimated fetal weight percentile, a phenomenon that many care providers assess and monitor routinely in a qualitative manner. This strategy appears promising in high-risk pregnancies where it seems to improve the detection of growth-restricted fetuses at increased risk of adverse perinatal outcomes and, at the same time, decrease the risk of falsely diagnosing healthy constitutionally small-for-gestational-age fetuses as growth restricted. Further studies are needed to determine the utility of this strategy in low-risk pregnancies as well as to optimize its performance by determining the optimal timing and interval between exams. The second strategy refers to the

  11. GSK3 controls axon growth via CLASP-mediated regulation of growth cone microtubules

    PubMed Central

    Hur, Eun-Mi; Saijilafu; Lee, Byoung Dae; Kim, Seong-Jin; Xu, Wen-Lin; Zhou, Feng-Quan

    2011-01-01

    Suppression of glycogen synthase kinase 3 (GSK3) activity in neurons yields pleiotropic outcomes, causing both axon growth promotion and inhibition. Previous studies have suggested that specific GSK3 substrates, such as adenomatous polyposis coli (APC) and collapsin response mediator protein 2 (CRMP2), support axon growth by regulating the stability of axonal microtubules (MTs), but the substrate(s) and mechanisms conveying axon growth inhibition remain elusive. Here we show that CLIP (cytoplasmic linker protein)-associated protein (CLASP), originally identified as a MT plus end-binding protein, displays both plus end-binding and lattice-binding activities in nerve growth cones, and reveal that the two MT-binding activities regulate axon growth in an opposing manner: The lattice-binding activity mediates axon growth inhibition induced by suppression of GSK3 activity via preventing MT protrusion into the growth cone periphery, whereas the plus end-binding property supports axon extension via stabilizing the growing ends of axonal MTs. We propose a model in which CLASP transduces GSK3 activity levels to differentially control axon growth by coordinating the stability and configuration of growth cone MTs. PMID:21937714

  12. Hox11 genes regulate postnatal longitudinal bone growth and growth plate proliferation.

    PubMed

    Pineault, Kyriel M; Swinehart, Ilea T; Garthus, Kayla N; Ho, Edward; Yao, Qing; Schipani, Ernestina; Kozloff, Kenneth M; Wellik, Deneen M

    2015-10-23

    Hox genes are critical regulators of skeletal development and Hox9-13 paralogs, specifically, are necessary for appendicular development along the proximal to distal axis. Loss of function of both Hoxa11 and Hoxd11 results in severe malformation of the forelimb zeugopod. In the radius and ulna of these mutants, chondrocyte development is perturbed, growth plates are not established, and skeletal growth and maturation fails. In compound mutants in which one of the four Hox11 alleles remains wild-type, establishment of a growth plate is preserved and embryos develop normally through newborn stages, however, skeletal phenotypes become evident postnatally. During postnatal development, the radial and ulnar growth rate slows compared to wild-type controls and terminal bone length is reduced. Growth plate height is decreased in mutants and premature growth plate senescence occurs along with abnormally high levels of chondrocyte proliferation in the reserve and proliferative zones. Compound mutants additionally develop an abnormal curvature of the radius, which causes significant distortion of the carpal elements. The progressive bowing of the radius appears to result from physical constraint caused by the disproportionately slower growth of the ulna than the radius. Collectively, these data are consistent with premature depletion of forelimb zeugopod progenitor cells in the growth plate of Hox11 compound mutants, and demonstrate a continued function for Hox genes in postnatal bone growth and patterning. © 2015. Published by The Company of Biologists Ltd.

  13. Growth Factors and Tension-Induced Skeletal Muscle Growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1994-01-01

    The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we

  14. Differential flank growth

    NASA Astrophysics Data System (ADS)

    Zieschang, H. E.; Sievers, A.

    1994-08-01

    With the mathematical basis for the precise analysis of developmental processes in plants, the patterns of growth in phototropic and gravitropic responses have become better understood. A detailed temporal and spatial quantification of a growth process is an important tool for evaluating hypotheses about the underlying physiological mechanisms. Studies of growth rates and curvature show that the original Cholodny-Went hypothesis cannot explain the complex growth patterns during tropic responses of shoots and roots. In addition, regulating factors other than the lateral redistribution of hormones must be taken into account. Electrophysiological studies on roots led to a modification of the Cholodny-Went hypothesis in that redistributions of bioelectrical activities are observed.

  15. Advances in pubertal growth and factors influencing it: Can we increase pubertal growth?

    PubMed Central

    Soliman, Ashraf; De Sanctis, Vincenzo; Elalaily, Rania; Bedair, Said

    2014-01-01

    Puberty is a period of development characterized by partially concurrent changes which includes growth acceleration, alteration in body composition and appearance of secondary sex characteristics. Puberty is characterized by an acceleration and then deceleration in skeletal growth. The initiation, duration and amount of growth vary considerably during the growth spurt. Pubertal growth and biological maturation are dynamic processes regulated by a variety of genetic and environmental factors. Changes in skeletal maturation and bone mineral accretion concomitant with the stage of pubertal development constitute essential components in the evaluation of growth during this pubertal period. Genetic, endocrine and nutritional factors and ethnicity contribute variably to the amount of growth gained during this important period of rapid changes. Many studies investigated the possibility of increasing pubertal growth to gain taller final adult height in adolescents with idiopathic short stature (ISS). The pattern of pubertal growth, its relation to sex maturity rating and factors affecting them has been addressed in this review. The results of different trials to increase final adult height of adolescents using different hormones have been summarized. These data enables Endocrinologists to give in-depth explanations to patients and families about the efficacy and clinical significance as well as the safety of using these therapies in the treatment of adolescents with ISS. PMID:25538878

  16. A role of placental growth factor in hair growth.

    PubMed

    Yoon, Sun-Young; Yoon, Ji-Seon; Jo, Seong Jin; Shin, Chang Yup; Shin, Jong-Yeon; Kim, Jong-Il; Kwon, Ohsang; Kim, Kyu Han

    2014-05-01

    The dermal papilla (DP) comprises specialized mesenchymal cells at the bottom of the hair follicle and plays a pivotal role in hair formation, anagen induction and the hair cycle. In this study, DPs were isolated from human hair follicles and serially subcultured. From each subculture at passages 1, 3, and 5 (n=4), we compared gene expression profiles using mRNA sequencing. Among the growth factors that were down-regulated in later passages of human DP cells (hDPCs), placental growth factor (PlGF) was selected. To elucidate the effect of PlGF on hair growth. We evaluated the effect of PlGF on hDPCs and on ex vivo hair organ culture. We investigated the effect of PlGF on an in vivo model of depilation-induced hair regeneration. We confirmed that the mRNA and protein expression levels of PlGF significantly decreased following subculture of the cells. It was shown that PlGF enhanced hair shaft elongation in ex vivo hair organ culture. Furthermore, PlGF significantly accelerated hair follicle growth and markedly prolonged anagen hair growth in an in vivo model of depilation-induced hair regeneration. PlGF prevented cell death by increasing the levels of phosphorylated extracellular signal-regulated kinase (ERK) and cyclin D1 and promoted survival by up-regulation of phosphorylated Akt and Bcl2, as determined by Western blotting. Our results suggest that PlGF plays a role in the promotion of hair growth and therefore may serve as an additional therapeutic target for the treatment of alopecia. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. The growth hormone–insulin-like growth factor-I axis in the diagnosis and treatment of growth disorders

    PubMed Central

    Blum, Werner F; Alherbish, Abdullah; Alsagheir, Afaf; El Awwa, Ahmed; Kaplan, Walid; Koledova, Ekaterina; Savage, Martin O

    2018-01-01

    The growth hormone (GH)–insulin-like growth factor (IGF)-I axis is a key endocrine mechanism regulating linear growth in children. While paediatricians have a good knowledge of GH secretion and assessment, understanding and use of measurements of the components of the IGF system are less current in clinical practice. The physiological function of this axis is to increase the anabolic cellular processes of protein synthesis and mitosis, and reduction of apoptosis, with each being regulated in the appropriate target tissue. Measurement of serum IGF-I and IGF-binding protein (IGFBP)-3 concentrations can complement assessment of GH status in the investigation of short stature and contribute to prediction of growth response during GH therapy. IGF-I monitoring during GH therapy also informs the clinician about adherence and provides a safety reference to avoid over-dosing during long-term management. PMID:29724795

  18. The growth hormone-insulin-like growth factor-I axis in the diagnosis and treatment of growth disorders.

    PubMed

    Blum, Werner; Alherbish, Abdullah; Alsagheir, Afaf; El Awwa, Ahmed; Kaplan, Walid; Koledova, Ekaterina; Savage, Martin O

    2018-05-03

    The growth hormone (GH)-insulin-like growth factor (IGF)-I axis is a key endocrine mechanism regulating linear growth in children. While paediatricians have a good knowledge of GH secretion and assessment, understanding and use of measurements of the components of the IGF system are less current in clinical practice. The physiological function of this axis is to increase the anabolic cellular processes of protein synthesis and mitosis, and reduction of apoptosis, with each being regulated in the appropriate target tissue. Measurement of serum IGF-I and IGFBP-3 concentrations can complement assessment of GH status in the investigation of short stature and contribute to prediction of growth response during GH therapy. IGF-I monitoring during GH therapy also informs the clinician about adherence and provides a safety reference to avoid over-dosing during long-term management.

  19. Nutritional catch-up growth.

    PubMed

    Gat-Yablonski, Galia; Pando, Rakefet; Phillip, Moshe

    2013-01-01

    Malnutrition, marked by variant nutrient deficiencies, is considered a leading cause of stunted growth worldwide. In developing countries, malnutrition is caused mainly by food shortage and infectious diseases. Malnutrition may also be found in the developed world, where it is due mostly to prematurity, chronic diseases, and anorexia nervosa. In most cases, when food consumption is corrected, spontaneous catch-up (CU) growth occurs. However, CU growth is not always complete, leading to growth deficits. Therefore, it is important to understand the mechanisms that govern this process. Using a rat model of food restriction followed by refeeding, we established a nutrition-induced CU growth model. Levels of leptin and insulin-like growth factor-1 were found to significantly decrease when food was restricted and to increase already 1 day after refeeding. Gene expression analysis of the growth plate revealed that food restriction specifically affects transcription factors such as the hypoxia inducible factor-1 and its downstream targets on the one hand, and global gene expression, indicating epigenetic regulation, on the other. Food restriction also reduced the level of several microRNAs, including the chondrocyte-specific miR-140, which led to an increase in its target, SIRT1, a class III histone deacetylase. These findings may explain the global changes in gene expression observed under nutritional manipulation. We suggest that multiple levels of regulation, including transcription factors, epigenetic mechanisms, and microRNAs respond to nutritional cues and offer a possible explanation for some of the effects of food restriction on epiphyseal growth plate growth. The means whereby these components sense changes in nutritional status are still unknown. Deciphering the role of epigenetic regulation in growth may pave the way for the development of new treatments for children with growth disorders. Copyright © 2013 S. Karger AG, Basel.

  20. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.

    1992-01-01

    The purpose of this program was to extend the work performed in the base program (CR 182247) into the regime of time-dependent crack growth under isothermal and thermal mechanical fatigue (TMF) loading, where creep deformation also influences the crack growth behavior. The investigation was performed in a two-year, six-task, combined experimental and analytical program. The path-independent integrals for application to time-dependent crack growth were critically reviewed. The crack growth was simulated using a finite element method. The path-independent integrals were computed from the results of finite-element analyses. The ability of these integrals to correlate experimental crack growth data were evaluated under various loading and temperature conditions. The results indicate that some of these integrals are viable parameters for crack growth prediction at elevated temperatures.

  1. Recent research on the growth plate: Advances in fibroblast growth factor signaling in growth plate development and disorders.

    PubMed

    Xie, Yangli; Zhou, Siru; Chen, Hangang; Du, Xiaolan; Chen, Lin

    2014-08-01

    Skeletons are formed through two distinct developmental actions, intramembranous ossification and endochondral ossification. During embryonic development, most bone is formed by endochondral ossification. The growth plate is the developmental center for endochondral ossification. Multiple signaling pathways participate in the regulation of endochondral ossification. Fibroblast growth factor (FGF)/FGF receptor (FGFR) signaling has been found to play a vital role in the development and maintenance of growth plates. Missense mutations in FGFs and FGFRs can cause multiple genetic skeletal diseases with disordered endochondral ossification. Clarifying the molecular mechanisms of FGFs/FGFRs signaling in skeletal development and genetic skeletal diseases will have implications for the development of therapies for FGF-signaling-related skeletal dysplasias and growth plate injuries. In this review, we summarize the recent advances in elucidating the role of FGFs/FGFRs signaling in growth plate development, genetic skeletal disorders, and the promising therapies for those genetic skeletal diseases resulting from FGFs/FGFRs dysfunction. Finally, we also examine the potential important research in this field in the future. © 2014 Society for Endocrinology.

  2. Minimizing Public Costs of Residential Growth. Coping With Growth.

    ERIC Educational Resources Information Center

    Weber, Bruce; Beck, Richard

    Rapid residential growth in rural areas or on the fringes of urban areas brings both costs and benefits. Seven factors determine whether new homes and subdivisions generate more revenues than expenditures. Local governments can substantially influence four of these seven factors in order to reduce the public costs of residential growth. Less…

  3. Mental and Motor Growth Patterns and Growth Velocity of Indian Babies. (Longitudinal Growth of Indian Children). Research Report No. 4.

    ERIC Educational Resources Information Center

    Phatak, Pramila; And Others

    This study reports various aspects of the analyses carried out on the longitudinal data reported in a previous study (PS 007 345) for determining the general growth patterns and growth velocity of mental and motor development. Preliminary analyses focused on the selection of the growth curve, its evaluation in the 208 individual cases, and the…

  4. Hyperphagia in male melanocortin 4 receptor deficient mice promotes growth independently of growth hormone.

    PubMed

    Tan, H Y; Steyn, F J; Huang, L; Cowley, M; Veldhuis, J D; Chen, C

    2016-12-15

    Loss of function of the melanocortin 4 receptor (MC4R) results in hyperphagia, obesity and increased growth. Despite knowing that MC4Rs control food intake, we are yet to understand why defects in the function of the MC4R receptor contribute to rapid linear growth. We show that hyperphagia following germline loss of MC4R in male mice promotes growth while suppressing the growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis. We propose that hyperinsulinaemia promotes growth while suppressing the GH-IGF-1 axis. It is argued that physiological responses essential to maintain energy flux override conventional mechanisms of pubertal growth to promote the storage of excess energy while ensuring growth. Defects in melanocortin-4-receptor (MC4R) signalling result in hyperphagia, obesity and increased growth. Clinical observations suggest that loss of MC4R function may enhance growth hormone (GH)-mediated growth, although this remains untested. Using male mice with germline loss of the MC4R, we assessed pulsatile GH release and insulin-like growth factor-1 (IGF-1) production and/or release relative to pubertal growth. We demonstrate early-onset suppression of GH release in rapidly growing MC4R deficient (MC4RKO) mice, confirming that increased linear growth in MC4RKO mice does not occur in response to enhanced activation of the GH-IGF-1 axis. The progressive suppression of GH release in MC4RKO mice occurred alongside increased adiposity and the progressive worsening of hyperphagia-associated hyperinsulinaemia. We next prevented hyperphagia in MC4RKO mice through restricting calorie intake in these mice to match that of wild-type (WT) littermates. Pair feeding of MC4RKO mice did not prevent increased adiposity, but attenuated hyperinsulinaemia, recovered GH release, and normalized linear growth rate to that seen in pair-fed WT littermate controls. We conclude that the suppression of GH release in MC4RKO mice occurs independently of increased adipose mass, and is a

  5. Hyperphagia in male melanocortin 4 receptor deficient mice promotes growth independently of growth hormone

    PubMed Central

    Tan, H. Y.; Huang, L.; Cowley, M.; Veldhuis, J. D.; Chen, C.

    2016-01-01

    Key points Loss of function of the melanocortin 4 receptor (MC4R) results in hyperphagia, obesity and increased growth.Despite knowing that MC4Rs control food intake, we are yet to understand why defects in the function of the MC4R receptor contribute to rapid linear growth.We show that hyperphagia following germline loss of MC4R in male mice promotes growth while suppressing the growth hormone–insulin‐like growth factor‐1 (GH–IGF‐1) axis.We propose that hyperinsulinaemia promotes growth while suppressing the GH–IGF‐1 axis.It is argued that physiological responses essential to maintain energy flux override conventional mechanisms of pubertal growth to promote the storage of excess energy while ensuring growth. Abstract Defects in melanocortin‐4‐receptor (MC4R) signalling result in hyperphagia, obesity and increased growth. Clinical observations suggest that loss of MC4R function may enhance growth hormone (GH)‐mediated growth, although this remains untested. Using male mice with germline loss of the MC4R, we assessed pulsatile GH release and insulin‐like growth factor‐1 (IGF‐1) production and/or release relative to pubertal growth. We demonstrate early‐onset suppression of GH release in rapidly growing MC4R deficient (MC4RKO) mice, confirming that increased linear growth in MC4RKO mice does not occur in response to enhanced activation of the GH–IGF‐1 axis. The progressive suppression of GH release in MC4RKO mice occurred alongside increased adiposity and the progressive worsening of hyperphagia‐associated hyperinsulinaemia. We next prevented hyperphagia in MC4RKO mice through restricting calorie intake in these mice to match that of wild‐type (WT) littermates. Pair feeding of MC4RKO mice did not prevent increased adiposity, but attenuated hyperinsulinaemia, recovered GH release, and normalized linear growth rate to that seen in pair‐fed WT littermate controls. We conclude that the suppression of GH release in MC4RKO mice occurs

  6. Triplet ultrasound growth parameters.

    PubMed

    Vora, Neeta L; Ruthazer, Robin; House, Michael; Chelmow, David

    2006-03-01

    To create ultrasound growth curves for normal growth of fetal triplets using statistical methodology that properly accounts for similarities of growth of fetuses within a mother as well as repeated measurements over time for each fetus. In this longitudinal study, all triplet pregnancies managed at a single tertiary center from 1992-2004 were reviewed. Fetuses with major anomalies, prior selective reduction, or fetal demise were excluded. Data from early and late gestation in which there were fewer than 30 fetal measurements available for analysis were excluded. We used multilevel models to account for variation in growth within a single fetus over time, variations in growth between multiple fetuses within a single mother, and variations in fetal growth between mothers. Medians (50th), 10th, and 90th percentiles were estimated by the creation of multiple quadratic growth models from bootstrap samples adapting a previously published method to compute prediction intervals. Estimated fetal weight was derived from Hadlock's formula. One hundred fifty triplet pregnancies were identified. Twenty-seven pregnancies were excluded for the following reasons: missing records (23), fetal demise (3), and fetal anomaly (1). The study group consisted of 123 pregnancies. The gestational age range was restricted to 14-34 weeks. Figures and tables were developed showing medians, 10th and 90th percentiles for estimated fetal weight, femur length, biparietal diameter, abdominal circumference, and head circumference. Growth curves for triplet pregnancies were derived. These may be useful for identification of abnormal growth in triplet fetuses. III.

  7. Microgravity crystal growth

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Advanced finite element models are used to study three-dimensional, time-dependent flow and segregation in crystal growth systems. In this image of a prototypical model for melt and crystal growth, pathlines at one instant in time are shown for the flow of heated liquid silicon in a cylindrical container. The container is subjected to g-jitter disturbances along the vertical axis. A transverse magnetic field is applied to control them. Such computations are extremely powerful for understanding melt growth in microgravity where g-jitter drives buoyant flows. The simulation is part of the Theoretical Analysis of 3D, Transient Convection and Segregation in Microgravity Bridgman Crystal Growth investigation by Dr. Jeffrey J. Derby of the University of Mirnesota, Minneapolis.

  8. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

    PubMed

    Gaviglio, Angela L; Knelson, Erik H; Blobe, Gerard C

    2017-05-01

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor-like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.-Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. © FASEB.

  9. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation

    PubMed Central

    Gaviglio, Angela L.; Knelson, Erik H.; Blobe, Gerard C.

    2017-01-01

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor–like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.—Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. PMID:28174207

  10. Catalyst–substrate interaction and growth delay in vapor–liquid–solid nanowire growth

    NASA Astrophysics Data System (ADS)

    Kolíbal, Miroslav; Pejchal, Tomáš; Musálek, Tomáš; Šikola, Tomáš

    2018-05-01

    Understanding of the initial stage of nanowire growth on a bulk substrate is crucial for the rational design of nanowire building blocks in future electronic and optoelectronic devices. Here, we provide in situ scanning electron microscopy and Auger microscopy analysis of the initial stage of Au-catalyzed Ge nanowire growth on different substrates. Real-time microscopy imaging and elementally resolved spectroscopy clearly show that the catalyst dissolves the underlying substrate if held above a certain temperature. If the substrate dissolution is blocked (or in the case of heteroepitaxy) the catalyst needs to be filled with nanowire material from the external supply, which significantly increases the initial growth delay. The experiments presented here reveal the important role of the substrate in metal-catalyzed nanowire growth and pave the way for different growth delay mitigation strategies.

  11. Catalyst-substrate interaction and growth delay in vapor-liquid-solid nanowire growth.

    PubMed

    Kolíbal, Miroslav; Pejchal, Tomáš; Musálek, Tomáš; Šikola, Tomáš

    2018-05-18

    Understanding of the initial stage of nanowire growth on a bulk substrate is crucial for the rational design of nanowire building blocks in future electronic and optoelectronic devices. Here, we provide in situ scanning electron microscopy and Auger microscopy analysis of the initial stage of Au-catalyzed Ge nanowire growth on different substrates. Real-time microscopy imaging and elementally resolved spectroscopy clearly show that the catalyst dissolves the underlying substrate if held above a certain temperature. If the substrate dissolution is blocked (or in the case of heteroepitaxy) the catalyst needs to be filled with nanowire material from the external supply, which significantly increases the initial growth delay. The experiments presented here reveal the important role of the substrate in metal-catalyzed nanowire growth and pave the way for different growth delay mitigation strategies.

  12. Excessive growth.

    PubMed

    Narayanaswamy, Vasudha; Rettig, Kenneth R; Bhowmick, Samar K

    2008-09-01

    Tall stature and excessive growth syndrome are a relatively rare concern in pediatric practice. Nevertheless, it is important to identify abnormal accelerated growth patterns in children, which may be the clue in the diagnosis of an underlying disorder. We present a case of pituitary gigantism in a 2 1/2-year-old child and discuss the signs, symptoms, laboratory findings, and the treatment. Brief discussions on the differential diagnosis of excessive growth/tall stature have been outlined. Pituitary gigantism is very rare in the pediatrics age group; however, it is extremely rare in a child that is less than 3 years of age. The nature of pituitary adenoma and treatment options in children with this condition have also been discussed.

  13. Growth outcome: nutritionist perspective.

    PubMed

    Agostoni, Carlo; Fattore, Giovanni

    2013-01-01

    Increasing evidence points to a fundamental role of early nutrition on rates of growth and development, and later health. We may identify three major fields of scientific interest and clinical application. (1) In developing countries poor growth is associated with greater risk of morbidity and mortality from infectious diseases, mainly lower respiratory infections and diarrhea. In these settings, failure to promote compensatory growth may have negative short-term consequences, and the nutritionist's task is the primary prevention of nutrient deficiencies to promote the full expression of the individual genetic potential, while allowing for recovery of early secondary functional deficiencies. (2) A second challenge for nutritionists is represented by the approach to growth impairments in rare disorders, ranging from congenital disorders to chronic infections. Most disorders are favorably influenced by improved nutritional status and better growth, and patients may satisfactorily reach adolescence, pubertal and reproductive age, up to ageing. Even for the less positive conditions, an improvement in the quality of life for families is in any case a rewarding aim. (3) A third challenge is represented by the definition of the role of nutrition on growth in physiological conditions for all individuals. Concern has been raised about the potential adverse long-term consequences of accelerated child growth rates, possibly resulting in a predisposition to develop non-communicable chronic diseases in the adult age. Accordingly, this hypothesis might explain the benefits of breastfeeding in terms of slower early growth, and the fetal origins hypothesis in terms of adverse postnatal catch-up growth in infants born small. Therefore, growth as viewed by a pediatric nutritionist perspective is a complex matter, ranging from the early stages of intrauterine development up to adult ages and ageing processes. Cost/benefit analyses of interventions on growth such as cost per DALYs

  14. Plant Growth-Promoting Rhizobacteria Stimulate Vegetative Growth and Asexual Reproduction of Kalanchoe daigremontiana.

    PubMed

    Park, Yong-Soon; Park, Kyungseok; Kloepper, Joseph W; Ryu, Choong-Min

    2015-09-01

    Certain bacterial species associate with plant roots in soil. The plant growth-promoting rhizobacteria (PGPR) stimulate plant growth and yield in greenhouse and field. Here, we examined whether application of known bacilli PGPR strains stimulated growth and asexual reproduction in the succulent plant Kalanchoe daigremontiana. Four PGPR strains B. amyloliquefaciens IN937a, B. cereus BS107, B. pumilus INR7, and B. subtilis GB03 were applied to young plantlets by soil-drenching, and plant growth and development was monitored for three months. Aerial growth was significantly stimulated in PGPR-inoculated plants, which was observed as increases in plant height, shoot weight, and stem width. The stimulated growth influenced plant development by increasing the total number of leaves per plant. Treatment with bacilli also increased the total root biomass compared with that of control plants, and led to a 2-fold increase in asexual reproduction and plantlet formation on the leaf. Collectively, our results firstly demonstrate that Bacillus spp. promote vegetative development of K. daigremontiana, and the enhanced growth stimulates asexual reproduction and plantlet formation.

  15. Growth of Bacterial Colonies

    NASA Astrophysics Data System (ADS)

    Warren, Mya; Hwa, Terence

    2013-03-01

    On hard agar gel, there is insufficient surface hydration for bacteria to swim or swarm. Instead, growth occurs in colonies of close-packed cells, which expand purely due to repulsive interactions: individual bacteria push each other out of the way through the force of their growth. In this way, bacterial colonies represent a new type of ``active'' granular matter. In this study, we investigate the physical, biochemical, and genetic elements that determine the static and dynamic aspects of this mode of bacterial growth for E. coli. We characterize the process of colony expansion empirically, and use discrete and continuum models to examine the extent to which our observations can be explained by the growth characteristics of non-communicating cells, coupled together by physical forces, nutrients, and waste products. Our results challenge the commonly accepted modes of bacterial colony growth and provide insight into sources of growth limitation in crowded bacterial communities.

  16. Insulin-like growth factor 1: common mediator of multiple enterotrophic hormones and growth factors.

    PubMed

    Bortvedt, Sarah F; Lund, P Kay

    2012-03-01

    To summarize the recent evidence that insulin-like growth factor 1 (IGF1) mediates growth effects of multiple trophic factors and discuss clinical relevance. Recent reviews and original reports indicate benefits of growth hormone (GH) and long-acting glucagon-like peptide 2 (GLP2) analogs in short bowel syndrome and Crohn's disease. This review highlights the evidence that biomarkers of sustained small intestinal growth or mucosal healing and evaluation of intestinal epithelial stem cell biomarkers may improve clinical measures of intestinal growth or response to trophic hormones. Compelling evidence that IGF1 mediates growth effects of GH and GLP2 on intestine or linear growth in preclinical models of resection or Crohn's disease is presented, along with a concept that these hormones or IGF1 may enhance sustained growth if given early after bowel resection. Evidence that suppressor of cytokine signaling protein induction by GH or GLP2 in normal or inflamed intestine may limit IGF1-induced growth, but protect against risk of dysplasia or fibrosis, is reviewed. Whether IGF1 receptor mediates IGF1 action and potential roles of insulin receptors are addressed. IGF1 has a central role in mediating trophic hormone action in small intestine. Better understanding of benefits and risks of IGF1, receptors that mediate IGF1 action, and factors that limit undesirable growth are needed.

  17. Allometries of maximum growth rate versus body mass at maximum growth indicate that non-avian dinosaurs had growth rates typical of fast growing ectothermic sauropsids.

    PubMed

    Werner, Jan; Griebeler, Eva Maria

    2014-01-01

    We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case's study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either of

  18. Allometries of Maximum Growth Rate versus Body Mass at Maximum Growth Indicate That Non-Avian Dinosaurs Had Growth Rates Typical of Fast Growing Ectothermic Sauropsids

    PubMed Central

    Werner, Jan; Griebeler, Eva Maria

    2014-01-01

    We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case’s study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either

  19. Protein crystal growth

    NASA Technical Reports Server (NTRS)

    Bugg, Charles E.

    1993-01-01

    Proteins account for 50% or more of the dry weight of most living systems and play a crucial role in virtually all biological processes. Since the specific functions of essentially all biological molecules are determined by their three-dimensional structures, it is obvious that a detailed understanding of the structural makeup of a protein is essential to any systematic research pertaining to it. At the present time, protein crystallography has no substitute, it is the only technique available for elucidating the atomic arrangements within complicated biological molecules. Most macromolecules are extremely difficult to crystallize, and many otherwise exciting and promising projects have terminated at the crystal growth stage. There is a pressing need to better understand protein crystal growth, and to develop new techniques that can be used to enhance the size and quality of protein crystals. There are several aspects of microgravity that might be exploited to enhance protein crystal growth. The major factor that might be expected to alter crystal growth processes in space is the elimination of density-driven convective flow. Another factor that can be readily controlled in the absence of gravity is the sedimentation of growing crystal in a gravitational field. Another potential advantage of microgravity for protein crystal growth is the option of doing containerless crystal growth. One can readily understand why the microgravity environment established by Earth-orbiting vehicles is perceived to offer unique opportunities for the protein crystallographer. The near term objectives of the Protein Crystal Growth in a Microgravity Environment (PCG/ME) project is to continue to improve the techniques, procedures, and hardware systems used to grow protein crystals in Earth orbit.

  20. Growth Modulation in Achondroplasia.

    PubMed

    McClure, Philip K; Kilinc, Eray; Birch, John G

    2017-09-01

    Achondroplasia is the most common skeletal dysplasia with a rate of nearly 1/10,000. The development of lower extremity deformity is well documented, and various modes of correction have been reported. There are no reports on the use of growth modulation to correct angular deformity in achondroplasia. Medical Records from 1985 to 2015 were reviewed for the diagnosis of achondroplasia and growth modulation procedures. Patients who had been treated for angular deformity of the legs by growth modulation were identified. A detailed analysis of their medical record and preoperative and final lower extremity radiographs was completed. Four patients underwent growth modulation procedures, all to correct existing varus deformity of the legs. Three of the 4 patients underwent bilateral distal femoral and proximal tibial growth modulation. The remaining patient underwent tibial correction only. Two of the 4 patients had a combined proximal fibular epiphysiodesis. All limbs had some improvement of alignment; however, 1 patient went on to bilateral osteotomies. Only 1 limb corrected to a neutral axis with growth modulation alone at last follow-up, initial implantation was done before 5 years of age. Growth modulation is an effective means for deformity correction in the setting of achondroplasia. However implantation may need to be done earlier than would be typical for patients without achondroplasia. Osteotomy may still be required after growth modulation for incomplete correction.

  1. Seasonal variations in ectotherm growth rates: Quantifying growth as an intermittent non steady state compensatory process

    USGS Publications Warehouse

    Guarini, J.-M.; Chauvaud, Laurent; Cloern, J.E.; Clavier, J.; Coston-Guarini, J.; Patry, Y.

    2011-01-01

    Generally, growth rates of living organisms are considered to be at steady state, varying only under environmental forcing factors. For example, these rates may be described as a function of light for plants or organic food resources for animals and these could be regulated (or not) by temperature or other conditions. But, what are the consequences for an individual's growth (and also for the population growth) if growth rate variations are themselves dynamic and not steady state? For organisms presenting phases of dormancy or long periods of stress, this is a crucial question. A dynamic perspective for quantifying short-term growth was explored using the daily growth record of the scallop Pecten maximus (L.). This species is a good biological model for ectotherm growth because the shell records growth striae daily. Independently, a generic mathematical function representing the dynamics of mean daily growth rate (MDGR) was implemented to simulate a diverse set of growth patterns. Once the function was calibrated with the striae patterns, the growth rate dynamics appeared as a forced damped oscillation during the growth period having a basic periodicity during two transitory phases (mean duration 43. days) and appearing at both growth start and growth end. This phase is most likely due to the internal dynamics of energy transfer within the organism rather than to external forcing factors. After growth restart, the transitory regime represents successive phases of over-growth and regulation. This pattern corresponds to a typical representation of compensatory growth, which from an evolutionary perspective can be interpreted as an adaptive strategy to coping with a fluctuating environment. ?? 2011 Elsevier B.V.

  2. Gas-phase kinetics during diamond growth: CH4 as-growth species

    NASA Astrophysics Data System (ADS)

    Harris, Stephen J.

    1989-04-01

    We have used a one-dimensional kinetic analysis to model the gas-phase chemistry that occurred during the diamond growth experiments of Chauhan, Angus, and Gardner [J. Appl. Phys. 47, 4746 (1976)]. In those experiments the weight of diamond seed crystals heated by lamps in a CH4/H2 environment was monitored by a microbalance. No filament or electric discharge was present. Our analysis shows that diamond growth occurred in this system by direct reaction of CH4 on the diamond surface. C2H2 and CH3, which have been proposed as diamond growth species, played no significant role there, although our results do not address their possible contributions in other systems such as filament- or plasma-assisted diamond growth.

  3. Apparatus for silicon web growth of higher output and improved growth stability

    DOEpatents

    Duncan, Charles S.; Piotrowski, Paul A.

    1989-01-01

    This disclosure describes an apparatus to improve the web growth attainable from prior web growth configurations. This apparatus modifies the heat loss at the growth interface in a manner that minimizes thickness variations across the web, especially regions of the web adjacent to the two bounding dendrites. In the unmodified configuration, thinned regions of web, adjacent to the dendrites, were found to be the origin of crystal degradation which ultimately led to termination of the web growth. According to the present invention, thinning adjacent to the dendrites is reduced and the incidence of crystal degradation is similarly reduced.

  4. Cyp26b1 within the growth plate regulates bone growth in juvenile mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minegishi, Yoshiki; Department of Plastic and Reconstructive Surgery, University of Fukui Hospital, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193; Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871

    Highlights: • Retinoic acid and Cyp26b1 were oppositely localized in growth plate cartilage. • Cyp26b1 deletion in chondrocytes decreased bone growth in juvenile mice. • Cyp26b1 deletion reduced chondrocyte proliferation and growth plate height. • Vitamin A-depletion partially reversed growth plate abnormalities caused by Cyp26b1 deficiency. • Cyp26b1 regulates bone growth by controlling chondrocyte proliferation. - Abstract: Retinoic acid (RA) is an active metabolite of vitamin A and plays important roles in embryonic development. CYP26 enzymes degrade RA and have specific expression patterns that produce a RA gradient, which regulates the patterning of various structures in the embryo. However, itmore » has not been addressed whether a RA gradient also exists and functions in organs after birth. We found localized RA activities in the diaphyseal portion of the growth plate cartilage were associated with the specific expression of Cyp26b1 in the epiphyseal portion in juvenile mice. To disturb the distribution of RA, we generated mice lacking Cyp26b1 specifically in chondrocytes (Cyp26b1{sup Δchon} cKO). These mice showed reduced skeletal growth in the juvenile stage. Additionally, their growth plate cartilage showed decreased proliferation rates of proliferative chondrocytes, which was associated with a reduced height in the zone of proliferative chondrocytes, and closed focally by four weeks of age, while wild-type mouse growth plates never closed. Feeding the Cyp26b1 cKO mice a vitamin A-deficient diet partially reversed these abnormalities of the growth plate cartilage. These results collectively suggest that Cyp26b1 in the growth plate regulates the proliferation rates of chondrocytes and is responsible for the normal function of the growth plate and growing bones in juvenile mice, probably by limiting the RA distribution in the growth plate proliferating zone.« less

  5. [Growth hormone treatment update].

    PubMed

    2014-02-01

    Short stature in children is a common cause for referral to pediatric endocrinologists, corresponding most times to normal variants of growth. Initially growth hormone therapy was circumscribed to children presenting growth hormone deficiency. Since the production of recombinant human hormone its use had spread to other pathologies.

  6. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman W.

    1987-01-01

    New muscle tissue culture techniques were developed to grow embryonic skeletal myofibers which are able to differentiate into more adultlike myofibers. Studies on mechanical simulation of cultured muscle cell growth will now be more directly applicable to mechanically-induced growth in adult muscle, and lead to better models for understanding muscle tissue atrophy caused by disuse in the microgravity of space.

  7. New growth and yield data on Caspar third growth

    Treesearch

    Norm Henry

    1999-01-01

    A study established in 1981 to monitor and study the growth response of 18 pre-commercially thinned plots in the coast redwood forest type on the Jackson Demonstration State Forest (JDSF) was re-measured recently. A report documenting the results of the last 12 years of growth response (1987-1998) is being developed currently by the principal researcher Jim Lindquist....

  8. Plant growth-promoting bacterial endophytes.

    PubMed

    Santoyo, Gustavo; Moreno-Hagelsieb, Gabriel; Orozco-Mosqueda, Ma del Carmen; Glick, Bernard R

    2016-02-01

    Bacterial endophytes ubiquitously colonize the internal tissues of plants, being found in nearly every plant worldwide. Some endophytes are able to promote the growth of plants. For those strains the mechanisms of plant growth-promotion known to be employed by bacterial endophytes are similar to the mechanisms used by rhizospheric bacteria, e.g., the acquisition of resources needed for plant growth and modulation of plant growth and development. Similar to rhizospheric plant growth-promoting bacteria, endophytic plant growth-promoting bacteria can act to facilitate plant growth in agriculture, horticulture and silviculture as well as in strategies for environmental cleanup (i.e., phytoremediation). Genome comparisons between bacterial endophytes and the genomes of rhizospheric plant growth-promoting bacteria are starting to unveil potential genetic factors involved in an endophytic lifestyle, which should facilitate a better understanding of the functioning of bacterial endophytes. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. In search of average growth: describing within-year oral reading fluency growth across Grades 1-8.

    PubMed

    Nese, Joseph F T; Biancarosa, Gina; Cummings, Kelli; Kennedy, Patrick; Alonzo, Julie; Tindal, Gerald

    2013-10-01

    Measures of oral reading fluency (ORF) are perhaps the most often used assessment to monitor student progress as part of a response to intervention (RTI) model. Rates of growth in research and aim lines in practice are used to characterize student growth; in either case, growth is generally defined as linear, increasing at a constant rate. Recent research suggests ORF growth follows a nonlinear trajectory, but limitations related to the datasets used in such studies, composed of only three testing occasions, curtails their ability to examine the true functional form of ORF growth. The purpose of this study was to model within-year ORF growth using up to eight testing occasions for 1448 students in Grades 1 to 8 to assess (a) the average growth trajectory for within-year ORF growth, (b) whether students vary significantly in within-year ORF growth, and (c) the extent to which findings are consistent across grades. Results demonstrated that for Grades 1 to 7, a quadratic growth model fit better than either linear or cubic growth models, and for Grade 8, there was no substantial, stable growth. Findings suggest that the expectation for linear growth currently used in practice may be unrealistic. Copyright © 2013 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  10. Ghrelin and the growth hormone secretagogue receptor in growth and development.

    PubMed

    Chanoine, J-P; De Waele, K; Walia, P

    2009-04-01

    The pancreas is a major source of ghrelin in the perinatal period, whereas gastric production progressively increases after birth. Loss of function of the genes for ghrelin or for the constitutively activated growth hormone secretagogue receptor (GHSR) does not affect birth weight and early postnatal growth. However, ghrl(-/-) or ghsr(-/-) mice fed a high fat diet starting soon after weaning are resistant to diet-induced obesity, suggesting that ghrelin affects the maturation of the metabolic axes involved in energy balance. In addition, animal and human studies suggest that GHSR plays a physiological role in linear growth. In mice, absence of the GHSR gene is associated with lower insulin-like growth factor 1 concentrations and lower body mass in adult animals, independently of food intake. In humans, a mutation of the GHSR gene that impairs the constitutive activity of the receptor was found in two families with short stature. Administration of acylated ghrelin to rat pups directly does not affect weight gain. In contrast, administration of ghrelin to pregnant or lactating rats results in greater fetal weight and postnatal weight gain, respectively, suggesting that maternal ghrelin may stimulate perinatal growth. These data point toward a physiological role for ghrelin and GHSR in growth and/or in the maturation of hormonal systems involved in the regulation of energy balance.

  11. Growth and Development

    MedlinePlus

    ... Tots Understanding Puberty Your Child's Changing Voice Your Child's Development: 1.5 Years (18 Months) Your Child's Growth ... 8 Months Your Baby's Growth: 9 Months Your Child's Development (Birth to 3 Years) Your Child's Development: 15 ...

  12. Effect of summer daylight exposure and genetic background on growth in growth hormone-deficient children.

    PubMed

    De Leonibus, C; Chatelain, P; Knight, C; Clayton, P; Stevens, A

    2016-11-01

    The response to growth hormone in humans is dependent on phenotypic, genetic and environmental factors. The present study in children with growth hormone deficiency (GHD) collected worldwide characterised gene-environment interactions on growth response to recombinant human growth hormone (r-hGH). Growth responses in children are linked to latitude, and we found that a correlate of latitude, summer daylight exposure (SDE), was a key environmental factor related to growth response to r-hGH. In turn growth response was determined by an interaction between both SDE and genes known to affect growth response to r-hGH. In addition, analysis of associated networks of gene expression implicated a role for circadian clock pathways and specifically the developmental transcription factor NANOG. This work provides the first observation of gene-environment interactions in children treated with r-hGH.

  13. Effect of summer daylight exposure and genetic background on growth in growth hormone-deficient children

    PubMed Central

    De Leonibus, C; Chatelain, P; Knight, C; Clayton, P; Stevens, A

    2016-01-01

    The response to growth hormone in humans is dependent on phenotypic, genetic and environmental factors. The present study in children with growth hormone deficiency (GHD) collected worldwide characterised gene–environment interactions on growth response to recombinant human growth hormone (r-hGH). Growth responses in children are linked to latitude, and we found that a correlate of latitude, summer daylight exposure (SDE), was a key environmental factor related to growth response to r-hGH. In turn growth response was determined by an interaction between both SDE and genes known to affect growth response to r-hGH. In addition, analysis of associated networks of gene expression implicated a role for circadian clock pathways and specifically the developmental transcription factor NANOG. This work provides the first observation of gene–environment interactions in children treated with r-hGH. PMID:26503811

  14. Rapid population growth.

    PubMed

    1972-01-01

    At the current rate of population growth, world population by 2000 is expected to reach 7 billion or more, with developing countries accounting for some 5.4 billion, and economically advanced nations accounting for 1.6 billion. 'Population explosion' is the result of falling mortality rates and continuing high birth rates. Many European countries, and Japan, have already completed what is termed as demographic transition, that is, birth rates have fallen to below 20 births per 1000 population, death rates to 10/1000 population, and annual growth rates are 1% or less; annual growth rates for less developed countries ranged from 2 to 3.5%. Less developed countries can be divided into 3 groups: 1) countries with both high birth and death rates; 2) countries with high birth rates and low death rates; and 3) countries with intermediate and declining birth rates and low death rates. Rapid population growth has serious economic consequences. It encourages inequities in income distribution; it limits rate of growth of gross national product by holding down level of savings and capital investments; it exerts pressure on agricultural production and land; and it creates unemployment problems. In addition, the quality of education for increasing number of chidren is adversely affected, as high proportions of children reduce the amount that can be spent for the education of each child out of the educational budget; the cost and adequacy of health and welfare services are affected in a similar way. Other serious consequences of rapid population growth are maternal death and illness, and physical and mental retardation of children of very poor families. It is very urgent that over a billion births be prevented in the next 30 years to reduce annual population growth rate from the current 2% to 1% per year.

  15. Intercellular signaling pathways active during and after growth and differentiation of the lumbar vertebral growth plate.

    PubMed

    Dahia, Chitra Lekha; Mahoney, Eric J; Durrani, Atiq A; Wylie, Christopher

    2011-06-15

    Vertebral growth plates at different postnatal ages were assessed for active intercellular signaling pathways. To generate a spatial and temporal map of the major signaling pathways active in the postnatal mouse lumbar vertebral growth plate. The growth of all long bones is known to occur by cartilaginous growth plates. The growth plate is composed of layers of chondrocyets that actively proliferate, differentiate, die and, are replaced by bone. The role of major cell signaling pathways has been suggested for regulation of the fetal long bones. But not much is known about the molecular or cellular signals that control the postnatal vertebral growth plate and hence postnatal vertebral bone growth. Understanding such molecular mechanisms will help design therapeutic treatments for vertebral growth disorders such as scoliosis. Antibodies against activated downstream intermediates were used to identify cells in the growth plate responding to BMP, TGFβ, and FGF in cryosections of lumbar vertebrae from different postnatal age mice to identify the zones that were responding to these signals. Reporter mice were used to identify the chondrocytes responding to hedgehog (Ihh), and Wnt signaling. We present a spatial/temporal map of these signaling pathways during growth, and differentiation of the mouse lumbar vertebral growth plate. During growth and differentiation of the vertebral growth plate, its different components respond at different times to different intercellular signaling ligands. Response to most of these signals is dramatically downregulated at the end of vertebral growth.

  16. A longitudinal study of craniofacial growth in idiopathic short stature and growth hormone-deficient boys treated with growth hormone.

    PubMed

    Kjellberg, H; Wikland, K Albertsson

    2007-06-01

    The aim of this prospective, longitudinal, controlled study is to describe the long-term safety and efficacy of growth hormone (GH) administration on craniofacial morphology in boys with short stature. Forty-six boys, who started GH treatment at the Department of Paediatrics Göteborg Paediatric Growth Research Centre, were consecutively included in the study. Twenty-five boys were classified as growth hormone-deficient (GHD) and 21 as idiopathic short stature (ISS). The patients were injected with 33 (n=31) or 67 (n=15) microg GH/kg body weight/day. The mean age at the start of treatment was 11.8 years [standard deviation (SD) 1.7]. To assess craniofacial growth, standard lateral cephalometric radiographs were obtained at the start of GH treatment, annually during 4 years, and at the end of GH treatment or when growth was less than 1 cm/year. The mean follow-up period was 6.4 years (SD 1.4). Growth changes were compared with boys from a semi-longitudinal reference group of 130 healthy subjects, 7-21 years of age. t-tests for independent and paired samples and multiple regression analysis were applied. Age- and gender-specific standard deviation scores for the cephalometric variables were calculated. Repeated measures analysis of variance was used to identify significant covariates over time, such as low/high GH dose and GHD/ISS and orthodontic treatment. During the study period, eight (out of 40) boys were treated with fixed orthodontic appliances, three with functional appliances (activators), and three with other appliances (plates and lingual arches). During GH treatment period, an overall enhancement in growth of the facial skeleton was observed in boys with short stature. The changes induced by GH yielded a more prognathic growth pattern, a more anterior position of the jaws in relation to the cranial base, and increased anterior rotation of the mandible. The mandibular corpus length and anterior face height of the GH-treated boys were greater at the end of

  17. Geometrical approach to tumor growth.

    PubMed

    Escudero, Carlos

    2006-08-01

    Tumor growth has a number of features in common with a physical process known as molecular beam epitaxy. Both growth processes are characterized by the constraint of growth development to the body border, and surface diffusion of cells and particles at the growing edge. However, tumor growth implies an approximate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic model was introduced in a former paper [C. Escudero, Phys. Rev. E 73, 020902(R) (2006)], and in the present work we extend our analysis and try to shed light on the possible geometrical principles that drive tumor growth. We present two-dimensional models that reproduce the experimental observations, and analyze the unexplored three-dimensional case, for which interesting conclusions on tumor growth are derived.

  18. Urban tree growth modeling

    Treesearch

    E. Gregory McPherson; Paula J. Peper

    2012-01-01

    This paper describes three long-term tree growth studies conducted to evaluate tree performance because repeated measurements of the same trees produce critical data for growth model calibration and validation. Several empirical and process-based approaches to modeling tree growth are reviewed. Modeling is more advanced in the fields of forestry and...

  19. Protein crystal growth tray assembly

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Miller, Teresa Y. (Inventor)

    1992-01-01

    A protein crystal growth tray assembly includes a tray that has a plurality of individual crystal growth chambers. Each chamber has a movable pedestal which carries a protein crystal growth compartment at an upper end. The several pedestals for each tray assembly are ganged together for concurrent movement so that the solutions in the various pedestal growth compartments can be separated from the solutions in the tray's growth chambers until the experiment is to be activated.

  20. Plant growth modelling and applications: the increasing importance of plant architecture in growth models.

    PubMed

    Fourcaud, Thierry; Zhang, Xiaopeng; Stokes, Alexia; Lambers, Hans; Körner, Christian

    2008-05-01

    Modelling plant growth allows us to test hypotheses and carry out virtual experiments concerning plant growth processes that could otherwise take years in field conditions. The visualization of growth simulations allows us to see directly and vividly the outcome of a given model and provides us with an instructive tool useful for agronomists and foresters, as well as for teaching. Functional-structural (FS) plant growth models are nowadays particularly important for integrating biological processes with environmental conditions in 3-D virtual plants, and provide the basis for more advanced research in plant sciences. In this viewpoint paper, we ask the following questions. Are we modelling the correct processes that drive plant growth, and is growth driven mostly by sink or source activity? In current models, is the importance of soil resources (nutrients, water, temperature and their interaction with meristematic activity) considered adequately? Do classic models account for architectural adjustment as well as integrating the fundamental principles of development? Whilst answering these questions with the available data in the literature, we put forward the opinion that plant architecture and sink activity must be pushed to the centre of plant growth models. In natural conditions, sinks will more often drive growth than source activity, because sink activity is often controlled by finite soil resources or developmental constraints. PMA06: This viewpoint paper also serves as an introduction to this Special Issue devoted to plant growth modelling, which includes new research covering areas stretching from cell growth to biomechanics. All papers were presented at the Second International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA06), held in Beijing, China, from 13-17 November, 2006. Although a large number of papers are devoted to FS models of agricultural and forest crop species, physiological and genetic processes have

  1. Entrepreneurship, Information, and Growth

    PubMed Central

    Bunten, Devin; Weiler, Stephan; Weiler, Stephan; Zahran, Sammy

    2016-01-01

    We examine the contribution to economic growth of entrepreneurial “marketplace information” within a regional endogenous growth framework. Entrepreneurs are posited to provide an input to economic growth through the information revealed by their successes and failures. We empirically identify this information source with the regional variation in establishment births and deaths, which create geographic information asymmetries that influence subsequent entrepreneurial activity and economic growth. We find that local establishment birth and death rates are significantly and positively correlated with subsequent entrepreneurship for US counties. To account for the potential endogeneity caused by forward-looking entrepreneurs, we utilize instruments based on historic mining activity. We find that the information spillover component of local establishment birth and death rates have significant positive effects on subsequent entrepreneurship and employment growth for US counties and metropolitan areas. With the help of these intruments, we show that establishment births have a positive and significant effect on future employment growth within all counties, and that in line with the information hypothesis, local establishment death rates have a similar positive effect within metropolitan counties. PMID:27516625

  2. Resolving nanoparticle growth mechanisms from size- and time-dependent growth rate analysis

    NASA Astrophysics Data System (ADS)

    Pichelstorfer, Lukas; Stolzenburg, Dominik; Ortega, John; Karl, Thomas; Kokkola, Harri; Laakso, Anton; Lehtinen, Kari E. J.; Smith, James N.; McMurry, Peter H.; Winkler, Paul M.

    2018-01-01

    Atmospheric new particle formation occurs frequently in the global atmosphere and may play a crucial role in climate by affecting cloud properties. The relevance of newly formed nanoparticles depends largely on the dynamics governing their initial formation and growth to sizes where they become important for cloud microphysics. One key to the proper understanding of nanoparticle effects on climate is therefore hidden in the growth mechanisms. In this study we have developed and successfully tested two independent methods based on the aerosol general dynamics equation, allowing detailed retrieval of time- and size-dependent nanoparticle growth rates. Both methods were used to analyze particle formation from two different biogenic precursor vapors in controlled chamber experiments. Our results suggest that growth rates below 10 nm show much more variation than is currently thought and pin down the decisive size range of growth at around 5 nm where in-depth studies of physical and chemical particle properties are needed.

  3. Growth/no growth boundary of Clostridium perfringens from spores in cooked meat: A logistic analysis.

    PubMed

    Huang, Lihan; Li, Changcheng; Hwang, Cheng-An

    2018-02-02

    Clostridium perfringens is a major foodborne health hazard that can cause acute gastroenteritis in consumers, and is often associated with cooked meat and poultry products. Improper cooling after cooking may allow this pathogen to grow in a product, producing an enterotoxin that causes food poisoning. This study was conducted to evaluate the effect of common ingredients, including sodium tripolyphosphate (STPP), sodium lactate (NaL), and sodium chloride (NaCl), on the germination and outgrowth of C. perfringens spores in meat products. The growth/no growth test was conducted in Shahidi Ferguson Perfringens agar mixed with STPP (0-2500ppm), NaL (0-4%), and NaCl (0-4%) in microplates. Turbidity measurements at 600nm were compared before and after anaerobic incubation at 46°C to evaluate growth and no growth conditions. The dichotomous responses were analyzed by logistic regression to develop a model for estimating the growth probability of C. perfringens. The probability model was used to define the threshold of growth (probability >0.1 or 0.2) of C. perfringens and validated using inoculated ground beef under optimum temperature. Inoculated ground beef was mixed with different combinations of STPP, NaL, and NaCl to observe growth or no growth of C. perfringens, and the probability was calculated from the formulation. If the threshold of growth was set to 0.2, the accuracy of the growth and no growth predictions was 95.7%, with 4.3% over-prediction of growth events (fail-safe). The results from this study suggested that proper combinations of STPP, NaL, and NaCl could be used to control the growth of C. perfringens in cooked beef under the optimum temperature. The results may also suggest that proper combinations of STPP, NaL, and NaCl in cooked meat and poultry products could be used to prevent the growth of C. perfringens during cooling. Published by Elsevier B.V.

  4. Rethinking Economics and Education: Exponential Growth and Post-Growth Strategies

    ERIC Educational Resources Information Center

    Irwin, Ruth

    2017-01-01

    Education is increasingly vocational and structured to serve the ongoing exponential increase in economic growth. Climate change is an outcome of these same economic values and praxes. Attempts to shift these values and our approach to technology are continually absorbed and overcome by the pressing motif of economic growth. In this article, Ruth…

  5. Feeding Practices and Infant Growth: Quantifying the Effects of Breastfeeding Termination and Complementary Food Introduction on BMI z-Score Growth Velocity through Growth Curve Models.

    PubMed

    Horodynski, Mildred A; Pierce, Steven J; Reyes-Gastelum, David; Olson, Beth; Shattuck, Mackenzie

    2017-12-01

    Infant feeding practices are a focus of early obesity prevention. We tested whether infant growth velocity increased after breastfeeding termination and complementary food introduction. Our secondary analysis included a sample of 547 mother-infant dyads from a longitudinal randomized controlled trial conducted in Michigan and Colorado. Infant anthropometrics at birth, baseline, and 6- and 12-month follow-up were standardized to BMI-for-age z-score (ZBMI) according to World Health Organization (WHO) growth charts. We used growth curve models with time-varying predictors to quantify effects of breastfeeding termination and timing of complementary food introduction on growth velocity. Median breastfeeding duration was 2.0 months [confidence interval (CI) = 2.0-2.5]; median introduction of complementary foods occurred at 3.0 months (CI = 2.8-3.2). Breastfed infants not yet introduced to complementary foods had an average ZBMI growth velocity of 0.050 (CI = -0.013 to 0.113) z-score units per month [zpm], not significantly faster than WHO growth trajectory (p = 0.118) defined as 0 zpm. Breastfeeding termination had negligible effect on ZBMI growth velocity (γ 11  = 0.001, CI = -0.027 to 0.030, p = 0.927). Introduction of complementary foods increased ZBMI growth velocity relative to an average child in the sample, but not significantly (γ 12  = 0.033, CI = -0.034 to 0.100, p = 0.334). Growth velocities for infants receiving complementary foods both before and after breastfeeding termination were significantly faster than the WHO growth trajectory (0.083 zpm, CI = 0.052-0.114, and 0.084 zpm, CI = 0.064-0.105, respectively, p's < 0.001). Average postcomplementary food introduction growth velocity was significantly higher than WHO growth trajectory, but did not differ from the sample's initial average trajectory. Growth curve models can accurately estimate effects of feeding practices on infant growth to direct

  6. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo

    NASA Astrophysics Data System (ADS)

    Kim, K. Jin; Li, Bing; Winer, Jane; Armanini, Mark; Gillett, Nancy; Phillips, Heidi S.; Ferrara, Napoleone

    1993-04-01

    THE development of new blood vessels (angiogenesis) is required for many physiological processes including embryogenesis, wound healing and corpus luteum formation1,2. Blood vessel neoformation is also important in the pathogenesis of many disorders1-5, particularly rapid growth and metastasis of solid tumours3-5. There are several potential mediators of tumour angiogenesis, including basic and acidic fibroblast growth factors, tumour necrosis factor-α and transforming factors-α and -β 1,2. But it is unclear whether any of these agents actually mediates angiogenesis and tumour growth in vivo. Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen and an angiogenesis inducer released by a variety of tumour cells and expressed in human tumours in situ. To test whether VEGF may be a tumour angiogenesis factor in vivo, we injected human rhabdomyosar-coma, glioblastoma multiforme or leiomyosarcoma cell lines into nude mice. We report here that treatment with a monoclonal antibody specific for VEGF inhibited the growth of the tumours, but had no effect on the growth rate of the tumour cells In vitro. The density of vessels was decreased in the antibody-treated tumours. These findings demonstrate that inhibition of the action of an angiogenic factor spontaneously produced by tumour cells may suppress tumour growth in vivo.

  7. Contribution of population growth to per capita income and sectoral output growth in Japan, 1880-1970.

    PubMed

    Yamaguchi, M; Kennedy, G

    1984-09-01

    The authors measured the positive and negative contributions of population and labor force growth to the growth of per capita income and sectoral output in Japan in the 1880-1970 period. A 2-sector growth accounting model that treats population and labor growth as separate variables was used. 3 alternative methods were used: the Residual method, the Verdoorn method, and the factor augmenting rate method. The total contribution of population cum labor growth to per capita income growth tended to be negative in the 1880-1930 period and positive in the 1930-40 and 1950-70. Over the 1880-1970 period as a whole, population cum labor growth made a positive contribution to per capita income growth under the Residual method (0.35%/year), the factor augmenting rate method (0.29%/year), and the Verdoorn method (0.01%/year). In addition, population cum labor growth contributed positively to sectoral output growth. The average contribution to agricultural output growth ranged from 1.03% (Verdoorn) - 1.46%/year (factor augmenting rate), while the average contribution to nonagricultural output growth ranged from 1.22% (Verdoorn) - 1.60%/year (Residual). Although these results are dependent on the model used, the fact that all 3 methods yielded consistent results suggests that population cum labor growth did make a positive contribution to per capita income and sectoral output growth in Japan. These findings imply that in economies where the rate of technical change in agricultural and nonagricultural sectors exceeds population growth, policies that reduce agricultural elasticities may be preferable; on the other hand, policies that reduce agricultural elasticities are to be avoided in economies with low rates of technical change. Moreover, in the early stages of economic development, policies that increase agricultural income and price elasticities should be considered.

  8. The transport phenomena during the growth of ZnTe crystal by the temperature gradient solution growth technique

    NASA Astrophysics Data System (ADS)

    Yin, Liying; Jie, Wanqi; Wang, Tao; Zhou, Boru; Yang, Fan

    2017-03-01

    A numerical model is developed to simulate the temperature field, the thermosolutal convection, the solute segregation and the growth interface morphology during the growth of ZnTe crystal from Te rich solution by the temperature gradient solution growth (TGSG) technique. Effects of the temperature gradient on the transport phenomena, the growth interface morphology and the growth rate are examined. The influences of the latent heat and the thermal conductivity of ZnTe crystal on the transport phenomena and the growth interface are also discussed. We find that the mass transfer of ZnTe in the solution is very slow because of the low diffusion coefficient and the lack of mixing in the lower part of the solution. During the growth, dilute solution with high density and low growth temperature accumulates in the central region of the growth interface, making the growth interface change into two distinct parts. The inner part is very concave, while the outer part is relatively flat. Growth conditions in front of the two parts of the growth interface are different. The crystalline quality of the inner part of the ingot is predicted to be worse than that of the outer part. High temperature gradient can significantly increase the growth rate, and avoid the diffusion controlled growth to some extent.

  9. Fibroblast Growth Factor 2: An Epithelial Ductal Cell Growth Inhibitor That Drops Out in Breast Cancer

    DTIC Science & Technology

    2009-10-01

    AD_________________ Award Number: W81XWH-08-1-0708 TITLE: Fibroblast Growth Factor 2: an...September 2008 – 14 September 2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fibroblast Growth Factor 2: an Epithelial Ductal Cell Growth Inhibitor...9 Fibroblast Growth Factor -2: an Epithelial Ductal Cell Growth Inhibitor that Drops Out in Breast Cancer

  10. Plant Growth Regulators.

    ERIC Educational Resources Information Center

    Nickell, Louis G.

    1978-01-01

    Describes the effect of "plant growth regulators" on plants, such as controlling the flowering, fruit development, plant size, and increasing crop yields. Provides a list of plant growth regulators which includes their chemical, common, and trade names, as well as their different use(s). (GA)

  11. On Dinosaur Growth

    NASA Astrophysics Data System (ADS)

    Erickson, Gregory M.

    2014-05-01

    Despite nearly two centuries of investigation, a comprehensive understanding of dinosaur biology has proven intractable. The recent development of means to study tissue-level growth, age these animals, and make growth curves has revolutionized our knowledge of dinosaur lives. From such data it is now understood that dinosaurs grew both disruptively and determinately; that they rarely if ever exceeded a century in age; that they became giants through accelerated growth and dwarfed through truncated development; that they were likely endothermic, sexually matured like crocodiles, and showed survivorship like populations of large mammals; and that basal birds retained dinosaurian physiology.

  12. Growth of III-V films by control of MBE growth front stoichiometry

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank J. (Inventor); Liu, John K. (Inventor); Hancock, Bruce R. (Inventor)

    1992-01-01

    For the growth of strain-layer materials and high quality single and multiple quantum wells, the instantaneous control of growth front stoichiometry is critical. The process of the invention adjusts the offset or phase of molecular beam epitaxy (MBE) control shutters to program the instantaneous arrival or flux rate of In and As4 reactants to grow InAs. The interrupted growth of first In, then As4, is also a key feature.

  13. Crystal Growth Control

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.; Batur, Celal; Bennett, Robert J.

    1997-01-01

    We present an innovative design of a vertical transparent multizone furnace which can operate in the temperature range of 25 C to 750 C and deliver thermal gradients of 2 C/cm to 45 C/cm for the commercial applications to crystal growth. The operation of the eight zone furnace is based on a self-tuning temperature control system with a DC power supply for optimal thermal stability. We show that the desired thermal profile over the entire length of the furnace consists of a functional combination of the fundamental thermal profiles for each individual zone obtained by setting the set-point temperature for that zone. The self-tuning system accounts for the zone to zone thermal interactions. The control system operates such that the thermal profile is maintained under thermal load, thus boundary conditions on crystal growth ampoules can be predetermined prior to crystal growth. Temperature profiles for the growth of crystals via directional solidification, vapor transport techniques, and multiple gradient applications are shown to be easily implemented. The unique feature of its transparency and ease of programming thermal profiles make the furnace useful for scientific and commercial applications for the determination of process parameters to optimize crystal growth conditions.

  14. Carbon nanotube growth density control

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D. (Inventor); Schipper, John F. (Inventor)

    2010-01-01

    Method and system for combined coarse scale control and fine scale control of growth density of a carbon nanotube (CNT) array on a substrate, using a selected electrical field adjacent to a substrate surface for coarse scale density control (by one or more orders of magnitude) and a selected CNT growth temperature range for fine scale density control (by multiplicative factors of less than an order of magnitude) of CNT growth density. Two spaced apart regions on a substrate may have different CNT growth densities and/or may use different feed gases for CNT growth.

  15. Effect of Growth Parameters on SnO2 Nanowires Growth by Electron Beam Evaporation Method

    NASA Astrophysics Data System (ADS)

    Rakesh Kumar, R.; Manjula, Y.; Narasimha Rao, K.

    2018-02-01

    Tin oxide (SnO2) nanowires were synthesized via catalyst assisted VLS growth mechanism by the electron beam evaporation method at a growth temperature of 450 °C. The effects of growth parameters such as evaporation rate of Tin, catalyst film thickness, and different types of substrates on the growth of SnO2 nanowires were studied. Nanowires (NWs) growth was completely seized at higher tin evaporation rates due to the inability of the catalyst particle to initiate the NWs growth. Nanowires diameters were able to tune with catalyst film thickness. Nanowires growth was completely absent at higher catalyst film thickness due to agglomeration of the catalyst film. Optimum growth parameters for SnO2 NWs were presented. Nanocomposites such as Zinc oxide - SnO2, Graphene oxide sheets- SnO2 and Graphene nanosheets-SnO2 were able to synthesize at a lower substrate temperature of 450 °C. These nanocompsoites will be useful in enhancing the capacity of Li-ion batteries, the gas sensing response and also useful in increasing the photo catalytic activity.

  16. The effect of size and competition on tree growth rate in old-growth coniferous forests

    USGS Publications Warehouse

    Das, Adrian

    2012-01-01

    Tree growth and competition play central roles in forest dynamics. Yet models of competition often neglect important variation in species-specific responses. Furthermore, functions used to model changes in growth rate with size do not always allow for potential complexity. Using a large data set from old-growth forests in California, models were parameterized relating growth rate to tree size and competition for four common species. Several functions relating growth rate to size were tested. Competition models included parameters for tree size, competitor size, and competitor distance. Competitive strength was allowed to vary by species. The best ranked models (using Akaike’s information criterion) explained between 18% and 40% of the variance in growth rate, with each species showing a strong response to competition. Models indicated that relationships between competition and growth varied substantially among species. The results also suggested that the relationship between growth rate and tree size can be complex and that how we model it can affect not only our ability to detect that complexity but also whether we obtain misleading results. In this case, for three of four species, the best model captured an apparent and unexpected decline in potential growth rate for the smallest trees in the data set.

  17. 78 FR 69885 - AIM Growth Series (Invesco Growth Series), et al.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-21

    ... designed to ensure that Sub-Advisors comply with a Subadvised Series' investment objective, policies and...] AIM Growth Series (Invesco Growth Series), et al.; Notice of Application November 15, 2013. AGENCY... approval and would grant relief from certain disclosure requirements. APPLICANTS: AIM Growth Series...

  18. Web-dendritic ribbon growth

    NASA Technical Reports Server (NTRS)

    Hilborn, R. B., Jr.; Faust, J. W., Jr.

    1976-01-01

    A web furnace was constructed for pulling dendritic-web samples. The effect of changes in the furnace thermal geometry on the growth of dendritic-web was studied. Several attempts were made to grow primitive dendrites for use as the dendritic seed crystals for web growth and to determine the optimum twin spacing in the dendritic seed crystal for web growth. Mathematical models and computer programs were used to determine the thermal geometries in the susceptor, crucible melt, meniscus, and web. Several geometries were determined for particular furnace geometries and growth conditions. The information obtained was used in conjunction with results from the experimental growth investigations in order to achieve proper conditions for sustained pulling of two dendrite web ribbons. In addition, the facilities for obtaining the following data were constructed: twin spacing, dislocation density, web geometry, resistivity, majority charge carrier type, and minority carrier lifetime.

  19. Microenvironmental autophagy promotes tumour growth.

    PubMed

    Katheder, Nadja S; Khezri, Rojyar; O'Farrell, Fergal; Schultz, Sebastian W; Jain, Ashish; Rahman, Mohammed M; Schink, Kay O; Theodossiou, Theodossis A; Johansen, Terje; Juhász, Gábor; Bilder, David; Brech, Andreas; Stenmark, Harald; Rusten, Tor Erik

    2017-01-19

    As malignant tumours develop, they interact intimately with their microenvironment and can activate autophagy, a catabolic process which provides nutrients during starvation. How tumours regulate autophagy in vivo and whether autophagy affects tumour growth is controversial. Here we demonstrate, using a well characterized Drosophila melanogaster malignant tumour model, that non-cell-autonomous autophagy is induced both in the tumour microenvironment and systemically in distant tissues. Tumour growth can be pharmacologically restrained using autophagy inhibitors, and early-stage tumour growth and invasion are genetically dependent on autophagy within the local tumour microenvironment. Induction of autophagy is mediated by Drosophila tumour necrosis factor and interleukin-6-like signalling from metabolically stressed tumour cells, whereas tumour growth depends on active amino acid transport. We show that dormant growth-impaired tumours from autophagy-deficient animals reactivate tumorous growth when transplanted into autophagy-proficient hosts. We conclude that transformed cells engage surrounding normal cells as active and essential microenvironmental contributors to early tumour growth through nutrient-generating autophagy.

  20. Growth status and estimated growth rate of youth football players: a community-based study.

    PubMed

    Malina, Robert M; Morano, Peter J; Barron, Mary; Miller, Susan J; Cumming, Sean P

    2005-05-01

    To characterize the growth status of participants in community-sponsored youth football programs and to estimate rates of growth in height and weight. Mixed-longitudinal over 2 seasons. Two communities in central Michigan. Members of 33 youth football teams in 2 central Michigan communities in the 2000 and 2001 seasons (Mid-Michigan PONY Football League). Height and weight of all participants were measured prior to each season, 327 in 2000 and 326 in 2001 (n = 653). The body mass index (kg/m) was calculated. Heights and weights did not differ from season to season and between the communities; the data were pooled and treated cross-sectionally. Increments of growth in height and weight were estimated for 166 boys with 2 measurements approximately 1 year apart to provide an estimate of growth rate. Growth status (size-attained) of youth football players relative to reference data (CDC) for American boys and estimated growth rate relative to reference values from 2 longitudinal studies of American boys. Median heights of youth football players approximate the 75th percentiles, while median weights approximate the 75th percentiles through 11 years and then drift toward the 90th percentiles of the reference. Median body mass indexes of youth football players fluctuate about the 85th percentiles of the reference. Estimated growth rates in height approximate the reference and may suggest earlier maturation, while estimated growth rates in weight exceed the reference. Youth football players are taller and especially heavier than reference values for American boys. Estimated rates of growth in height approximate medians for American boys and suggest earlier maturation. Estimated rates of growth in weight exceed those of the reference and may place many youth football players at risk for overweight/obesity, which in turn may be a risk factor for injury.

  1. Ecological economics and economic growth.

    PubMed

    Victor, Peter A

    2010-01-01

    Boulding's 1966 paper on the economics of spaceship Earth established the framework for ecological economics and an understanding of economic growth. In ecological economics, economies are conceptualized as open subsystems of the closed biosphere and are subject to biophysical laws and constraints. Economic growth measured as an increase in real gross domestic product (GDP) has generally been associated with increases in the use of energy and materials and the generation of wastes. Scale, composition, and technology are the proximate determinants of environmental impacts. They are often reduced to two: scale (GDP) and intensity (impact per unit GDP). New work described in this paper defines "green" growth as intensity that declines faster than scale increases. Similarly, "brown" growth occurs when intensity declines more slowly than increases in scale, and "black" growth happens when both scale and intensity increase. These concepts are then related to the environmental Kuznets curve, which can be understood as a transition from brown to green growth. Ecological economics provides a macroperspective on economic growth. It offers broad policy principles, and it challenges the primacy of economic growth as a policy objective, but many important questions remain.

  2. Bone growth marks reveal protracted growth in New Zealand kiwi (Aves, Apterygidae)

    PubMed Central

    Bourdon, Estelle; Castanet, Jacques; de Ricqlès, Armand; Scofield, Paul; Tennyson, Alan; Lamrous, Hayat; Cubo, Jorge

    2009-01-01

    The presence of bone growth marks reflecting annual rhythms in the cortical bone of non-avian tetrapods is now established as a general phenomenon. In contrast, ornithurines (the theropod group including modern birds and their closest relatives) usually grow rapidly in less than a year, such that no annual rhythms are expressed in bone cortices, except scarce growth marks restricted to the outer cortical layer. So far, cyclical growth in modern birds has been restricted to the Eocene Diatryma, the extant parrot Amazona amazonica and the extinct New Zealand (NZ) moa (Dinornithidae). Here we show the presence of lines of arrested growth in the long bones of the living NZ kiwi (Apteryx spp., Apterygidae). Kiwis take 5–6 years to reach full adult body size, which indicates a delayed maturity and a slow reproductive cycle. Protracted growth probably evolved convergently in moa and kiwi sometime since the Middle Miocene, owing to the severe climatic cooling in the southwest Pacific and the absence of mammalian predators. PMID:19515655

  3. Growth enhancement in transgenic tilapia by ectopic expression of tilapia growth hormone.

    PubMed

    Martínez, R; Estrada, M P; Berlanga, J; Guillén, I; Hernández, O; Cabrera, E; Pimentel, R; Morales, R; Herrera, F; Morales, A; Piña, J C; Abad, Z; Sánchez, V; Melamed, P; Lleonart, R; de la Fuente, J

    1996-03-01

    The generation of transgenic fish with the transfer of growth hormone (GH) genes has opened new possibilities for the manipulation of growth in economically important fish species. The tilapia growth hormone (tiGH) cDNA was linked to the human cytomegalovirus (CMV) enhancer-promoter and used to generate transgenic tilapia by microinjection into one-cell embryos. Five transgenic tilapia were obtained from 40 injected embryos. A transgenic animal containing one copy of the transgene per cell was selected to establish a transgenic line. The transgene was stably transmitted to F1 and F2 generations in a Mendelian fashion. Ectopic, low-level expression of tiGH was detected in gonad and muscle cells of F1 transgenic tilapia by immunohystochemical analysis of tissue sections. Nine-month-old transgenic F1 progeny were 82% larger than nontransgenic fish at p = .001. These results showed that low-level ectopic expression of tiGH resulted in a growth acceleration in transgenic tilapia. Tilapia GH gene transfer is an alternative for growth acceleration in tilapia.

  4. Growth curves and the international standard: How children's growth reflects challenging conditions in rural Timor-Leste.

    PubMed

    Spencer, Phoebe R; Sanders, Katherine A; Judge, Debra S

    2018-02-01

    Population-specific growth references are important in understanding local growth variation, especially in developing countries where child growth is poor and the need for effective health interventions is high. In this article, we use mixed longitudinal data to calculate the first growth curves for rural East Timorese children to identify where, during development, deviation from the international standards occurs. Over an eight-year period, 1,245 children from two ecologically distinct rural areas of Timor-Leste were measured a total of 4,904 times. We compared growth to the World Health Organization (WHO) standards using z-scores, and modeled height and weight velocity using the SuperImposition by Translation And Rotation (SITAR) method. Using the Generalized Additive Model for Location, Scale and Shape (GAMLSS) method, we created the first growth curves for rural Timorese children for height, weight and body mass index (BMI). Relative to the WHO standards, children show early-life growth faltering, and stunting throughout childhood and adolescence. The median height and weight for this population tracks below the WHO fifth centile. Males have poorer growth than females in both z-BMI (p = .001) and z-height-for-age (p = .018) and, unlike females, continue to grow into adulthood. This is the most comprehensive investigation to date of rural Timorese children's growth, and the growth curves created may potentially be used to identify future secular trends in growth as the country develops. We show significant deviation from the international standard that becomes most pronounced at adolescence, similar to the growth of other Asian populations. Males and females show different growth responses to challenging conditions in this population. © 2017 Wiley Periodicals, Inc.

  5. Are trait-growth models transferable? Predicting multi-species growth trajectories between ecosystems using plant functional traits

    PubMed Central

    Vesk, Peter A.

    2017-01-01

    Plant functional traits are increasingly used to generalize across species, however few examples exist of predictions from trait-based models being evaluated in new species or new places. Can we use functional traits to predict growth of unknown species in different areas? We used three independently collected datasets, each containing data on heights of individuals from non-resprouting species over a chronosquence of time-since-fire sites from three ecosystems in south-eastern Australia. We examined the influence of specific leaf area, woody density, seed size and leaf nitrogen content on three aspects of plant growth; maximum relative growth rate, age at maximum growth and asymptotic height. We tested our capacity to perform out-of-sample prediction of growth trajectories between ecosystems using species functional traits. We found strong trait-growth relationships in one of the datasets; whereby species with low SLA achieved the greatest asymptotic heights, species with high leaf-nitrogen content achieved relatively fast growth rates, and species with low seed mass reached their time of maximum growth early. However these same growth-trait relationships did not hold across the two other datasets, making accurate prediction from one dataset to another unachievable. We believe there is evidence to suggest that growth trajectories themselves may be fundamentally different between ecosystems and that trait-height-growth relationships may change over environmental gradients. PMID:28486535

  6. Insulin-Like Growth Factor and Epidermal Growth Factor Signaling in Breast Cancer Cell Growth: Focus on Endocrine Resistant Disease

    PubMed Central

    Berdiaki, Aikaterini; Tzardi, Maria

    2015-01-01

    Breast cancer is the most common type of cancer for women worldwide with a lifetime risk amounting to a staggering total of 10%. It is well established that the endogenous synthesis of insulin-like growth factor (IGF) and epidermal growth factor (EGF) polypeptide growth factors are closely correlated to malignant transformation and all the steps of the breast cancer metastatic cascade. Numerous studies have demonstrated that both estrogens and growth factors stimulate the proliferation of steroid-dependent tumor cells, and that the interaction between these signaling pathways occurs at several levels. Importantly, the majority of breast cancer cases are estrogen receptor- (ER-) positive which have a more favorable prognosis and pattern of recurrence with endocrine therapy being the backbone of treatment. Unfortunately, the majority of patients progress to endocrine therapy resistant disease (acquired resistance) whereas a proportion of patients may fail to respond to initial therapy (de novo resistance). The IGF-I and EGF downstream signaling pathways are closely involved in the process of progression to therapy resistant disease. Modifications in the bioavailability of these growth factors contribute critically to disease progression. In the present review therefore, we will discuss in depth how IGF and EGF signaling participate in breast cancer pathogenesis and progression to endocrine resistant disease. PMID:26258011

  7. Helical Growth of Aluminum Nitride: New Insights into Its Growth Habit from Nanostructures to Single Crystals

    PubMed Central

    Zhang, Xing-Hong; Shao, Rui-Wen; Jin, Lei; Wang, Jian-Yu; Zheng, Kun; Zhao, Chao-Liang; Han, Jie-Cai; Chen, Bin; Sekiguchi, Takashi; Zhang, Zhi; Zou, Jin; Song, Bo

    2015-01-01

    By understanding the growth mechanism of nanomaterials, the morphological features of nanostructures can be rationally controlled, thereby achieving the desired physical properties for specific applications. Herein, the growth habits of aluminum nitride (AlN) nanostructures and single crystals synthesized by an ultrahigh-temperature, catalyst-free, physical vapor transport process were investigated by transmission electron microscopy. The detailed structural characterizations strongly suggested that the growth of AlN nanostructures including AlN nanowires and nanohelixes follow a sequential and periodic rotation in the growth direction, which is independent of the size and shape of the material. Based on these experimental observations, an helical growth mechanism that may originate from the coeffect of the polar-surface and dislocation-driven growth is proposed, which offers a new insight into the related growth kinetics of low-dimensional AlN structures and will enable the rational design and synthesis of novel AlN nanostructures. Further, with the increase of temperature, the growth process of AlN grains followed the helical growth model. PMID:25976071

  8. Reference curve for the first-year growth response to growth hormone treatment in prepubertal children with idiopathic growth hormone deficiency: validation of the KIGS first-year growth response curve using the Belgian Register for the Study of Growth and Puberty Problems.

    PubMed

    Straetemans, Saartje; Roelants, Mathieu; Thomas, Muriel; Rooman, Raoul; De Schepper, Jean

    2014-01-01

    Comparing observed and expected growth after first-year growth hormone (GH) therapy is useful for identifying a poor growth response to GH. To generate a first-year, age-specific growth response reference curve for prepubertal Belgian children with idiopathic growth hormone deficiency (iGHD) treated with a standard weight-adjusted GH dose and to compare this national reference with the response references derived from KIGS. First-year height data of 357 prepubertal children (240 males) with iGHD were analyzed. Smooth reference curves of first-year height velocity (HV) in relation to age were created. Differences with the KIGS targets were evaluated after z-score transformation. The observed first-year HVs were log-normal distributed by age and decreased significantly with age (p<0.001). No GH dose or gender effect was observed (p=0.5). Distance to target height, severity of GHD and occurrence of multiple pituitary hormone deficiencies had a positive effect (p<0.01) on the calculated HV SDS. When applying the KIGS targets for severe iGHD, mean HV SDS was close to zero (-0.09±0.84). The developed age-specific growth response curves enable rapid identification of poor response to first-year GH treatment in prepubertal iGHD children. Our results validate the published growth targets derived from the KIGS database. © 2014 S. Karger AG, Basel.

  9. Leptin stimulates aromatase in the growth plate: limiting catch-up growth efficiency.

    PubMed

    Masarwi, Majdi; Shamir, Raanan; Phillip, Moshe; Gat-Yablonski, Galia

    2018-06-01

    Catch-up growth (CUG) in childhood is defined as periods of growth acceleration, after the resolution of growth attenuation causes, bringing the children back to their original growth trajectory. Sometimes, however, CUG is incomplete, leading to permanent growth deficit and short stature. The aim of this study was to investigate the mechanisms that limit nutritional-CUG. Specifically, we focused on the crosstalk between leptin, increased by re-feeding, and sex hormones, which increase with age. In vivo studies were performed in young male Sprague Dawley rats fed ad libitum or subjected to 10/36 days of 40% food restriction followed by 90-120 days of re-feeding. In vitro studies were performed on ATDC5 cells. Analyses of mRNA and protein levels were done using qPCR and Western blot, respectively. CUG was complete in body weight and humerus length in animals that were food-restricted for 10 days but not for those food-restricted for 36 days. In vitro studies showed that leptin significantly increased aromatase gene expression and protein level as well as the expression of estrogen and leptin receptors in a dose- and time-dependent manner. The effect of leptin on aromatase was direct and was mediated through the MAPK/Erk, STAT3 and PI3K pathways. The crosstalk between leptin and aromatase in the growth plate suggests that re-feeding during puberty may lead to increased estrogen level and activity, and consequently, irreversible premature epiphyseal growth plate closure. These results may have important implications for the development of novel treatment strategies for short stature in children. © 2018 Society for Endocrinology.

  10. Growth and yield of Giant Sequoia

    Treesearch

    David J. Dulitz

    1986-01-01

    Very little information exists concerning growth and yield of giant sequoia (Sequoiadendron giganteum [Lindl.] Buchholz). For old-growth trees, diameter growth is the single factor adding increment since maximum height has been obtained. Diameter growth averages 0.04 inches per year in normal old-growth trees but will fluctuate with changes in the...

  11. Nonlinear Growth Curves in Developmental Research

    PubMed Central

    Grimm, Kevin J.; Ram, Nilam; Hamagami, Fumiaki

    2011-01-01

    Developmentalists are often interested in understanding change processes and growth models are the most common analytic tool for examining such processes. Nonlinear growth curves are especially valuable to developmentalists because the defining characteristics of the growth process such as initial levels, rates of change during growth spurts, and asymptotic levels can be estimated. A variety of growth models are described beginning with the linear growth model and moving to nonlinear models of varying complexity. A detailed discussion of nonlinear models is provided, highlighting the added insights into complex developmental processes associated with their use. A collection of growth models are fit to repeated measures of height from participants of the Berkeley Growth and Guidance Studies from early childhood through adulthood. PMID:21824131

  12. Growth factors for nanobacteria

    NASA Astrophysics Data System (ADS)

    Ciftcioglu, Neva; Kajander, E. Olavi

    1999-12-01

    Nanobacteria are novel microorganisms recently isolated from fetal bovine serum and blood of cows and humans. These coccoid, gram negative bacteria in alpha-2 subgroup of Proteobacteria grow slowly under mammalian cell culture conditions but not in common media for microbes. Now we have found two different kinds of culture supplement preparations that improve their growth and make them culturable in the classical sense. These are supernatant fractions of conditioned media obtained from 1 - 3 months old nanobacteria cultures and from about a 2 weeks old Bacillus species culture. Both improved multiplication and particle yields and the latter increased their resistance to gentamicin. Nanobacteria cultured with any of the methods shared similar immunological property, structure and protein pattern. The growth supporting factors were heat-stabile and nondialyzable, and dialysis improved the growth promoting action. Nanobacteria formed stony colonies in a bacteriological medium supplemented with the growth factors. This is an implication that nanobacterial growth is influenced by pre-existing bacterial flora.

  13. Growth Characteristics of Organisms

    NASA Astrophysics Data System (ADS)

    Gatenby, Robert A.; Frieden, B. Roy

    In this chapter a systems viewpoint is taken of the growth characteristics of normal and malignant tissue. We find that such growth is well analyzed by the concepts of Shannon and Fisher information. In Section 3.1 conventional mechanisms of information transmission via DNA, RNA, and proteins are identified, as well as unconventional structures such as lipids and ion gradients. Information storage, flow, and utilization are analyzed, both within cells and over a system of cells. In Section 3.2, malignant tissue growth is found to be accurately described by the use of Fisher information in particular. Cancer growth is seen to occur as a disease of information, in fact an information catastrophe due to the regression of cells to a minimally ordered state consistent with life. The analysis yields many predictions about the growth of healthy tissue and cancerous tissue, some of which are nonintuitive and have a strong bearing on cancer diagnosis and treatment.

  14. Creating new growth platforms.

    PubMed

    Laurie, Donald L; Doz, Yves L; Sheer, Claude P

    2006-05-01

    Sooner or later, most companies can't attain the growth rates expected by their boards and CEOs and demanded by investors. To some extent, such businesses are victims of their own successes. Many were able to sustain high growth rates for a long time because they were in high-growth industries. But once those industries slowed down, the businesses could no longer deliver the performance that investors had come to take for granted. Often, companies have resorted to acquisition, though this strategy has a discouraging track record. Over time, 65% of acquisitions destroy more value than they create. So where does real growth come from? For the past 12 years, the authors have been researching and advising companies on this issue. With the support of researchers at Harvard Business School and Insead, they instituted a project titled "The CEO Agenda and Growth". They identified and approached 24 companies that had achieved significant organic growth and interviewed their CEOs, chief strategists, heads of R&D, CFOs, and top-line managers. They asked, "Where does your growth come from?" and found a consistent pattern in the answers. All the businesses grew by creating new growth platforms (NGPs) on which they could build families of products and services and extend their capabilities into multiple new domains. Identifying NGP opportunities calls for executives to challenge conventional wisdom. In all the companies studied, top management believed that NGP innovation differed significantly from traditional product or service innovation. They had independent, senior-level units with a standing responsibility to create NGPs, and their CEOs spent as much as 50% of their time working with these units. The payoff has been spectacular and lasting. For example, from 1985 to 2004, the medical devices company Medtronic grew revenues at 18% per year, earnings at 20%, and market capitalization at 30%.

  15. Modeling to predict growth/no growth boundaries and kinetic behavior of Salmonella on cutting board surfaces.

    PubMed

    Yoon, Hyunjoo; Lee, Joo-Yeon; Suk, Hee-Jin; Lee, Sunah; Lee, Heeyoung; Lee, Soomin; Yoon, Yohan

    2012-12-01

    This study developed models to predict the growth probabilities and kinetic behavior of Salmonella enterica strains on cutting boards. Polyethylene coupons (3 by 5 cm) were rubbed with pork belly, and pork purge was then sprayed on the coupon surface, followed by inoculation of a five-strain Salmonella mixture onto the surface of the coupons. These coupons were stored at 13 to 35°C for 12 h, and total bacterial and Salmonella cell counts were enumerated on tryptic soy agar and xylose lysine deoxycholate (XLD) agar, respectively, every 2 h, which produced 56 combinations. The combinations that had growth of ≥0.5 log CFU/cm(2) of Salmonella bacteria recovered on XLD agar were given the value 1 (growth), and the combinations that had growth of <0.5 log CFU/cm(2) were assigned the value 0 (no growth). These growth response data from XLD agar were analyzed by logistic regression for producing growth/no growth interfaces of Salmonella bacteria. In addition, a linear model was fitted to the Salmonella cell counts to calculate the growth rate (log CFU per square centimeter per hour) and initial cell count (log CFU per square centimeter), following secondary modeling with the square root model. All of the models developed were validated with observed data, which were not used for model development. Growth of total bacteria and Salmonella cells was observed at 28, 30, 33, and 35°C, but there was no growth detected below 20°C within the time frame investigated. Moreover, various indices indicated that the performance of the developed models was acceptable. The results suggest that the models developed in this study may be useful in predicting the growth/no growth interface and kinetic behavior of Salmonella bacteria on polyethylene cutting boards.

  16. This Is Smart Growth - Publication

    EPA Pesticide Factsheets

    This Is Smart Growth illustrates how communities can turn their visions into reality, using smart growth techniques to improve development. The report features 40 places around the country that have found success by implementing smart growth principles.

  17. A common polymorphism of the growth hormone receptor is associated with increased responsiveness to growth hormone.

    PubMed

    Dos Santos, Christine; Essioux, Laurent; Teinturier, Cécile; Tauber, Maïté; Goffin, Vincent; Bougnères, Pierre

    2004-07-01

    Growth hormone is used to increase height in short children who are not deficient in growth hormone, but its efficacy varies largely across individuals. The genetic factors responsible for this variation are entirely unknown. In two cohorts of short children treated with growth hormone, we found that an isoform of the growth hormone receptor gene that lacks exon 3 (d3-GHR) was associated with 1.7 to 2 times more growth acceleration induced by growth hormone than the full-length isoform (P < 0.0001). In transfection experiments, the transduction of growth hormone signaling through d3-GHR homo- or heterodimers was approximately 30% higher than through full-length GHR homodimers (P < 0.0001). One-half of Europeans are hetero- or homozygous with respect to the allele encoding the d3-GHR isoform, which is dominant over the full-length isoform. These observations suggest that the polymorphism in exon 3 of GHR is important in growth hormone pharmacogenetics.

  18. In situ monitoring of laser-assisted hydrothermal growth of ZnO nanowires: thermally deactivating growth kinetics.

    PubMed

    In, Jung Bin; Kwon, Hyuk-Jun; Lee, Daeho; Ko, Seung Hwan; Grigoropoulos, Costas P

    2014-02-26

    The laser-assisted hydrothermal growth kinetics of a cluster of ZnO nanowires are studied based on optical in situ growth monitoring. The growth yields are orders of magnitude higher than those of conventional hydrothermal methods that use bulk heating. This remarkable improvement is attributed to suppression of precursor depletion occurring by homogeneous growth reactions, as well as to enhanced mass transport. The obtained in situ data show gradually decaying growth kinetics even with negligible precursor consumption. It is revealed that the growth deceleration is caused by thermal deactivation resulting from heat dissipation through the growing nanowires. Finally, it is demonstrated that the tailored temporal modulation of the input power enables sustained growth to extended dimensions. These results provide a key to highly efficient use of growth precursors that has been pursued for industrial use of this functional metal oxide semiconductor. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Growth curves for Laron syndrome.

    PubMed Central

    Laron, Z; Lilos, P; Klinger, B

    1993-01-01

    Growth curves for children with Laron syndrome were constructed on the basis of repeated measurements made throughout infancy, childhood, and puberty in 24 (10 boys, 14 girls) of the 41 patients with this syndrome investigated in our clinic. Growth retardation was already noted at birth, the birth length ranging from 42 to 46 cm in the 12/20 available measurements. The postnatal growth curves deviated sharply from the normal from infancy on. Both sexes showed no clear pubertal spurt. Girls completed their growth between the age of 16-19 years to a final mean (SD) height of 119 (8.5) cm whereas the boys continued growing beyond the age of 20 years, achieving a final height of 124 (8.5) cm. At all ages the upper to lower body segment ratio was more than 2 SD above the normal mean. These growth curves constitute a model not only for primary, hereditary insulin-like growth factor-I (IGF-I) deficiency (Laron syndrome) but also for untreated secondary IGF-I deficiencies such as growth hormone gene deletion and idiopathic congenital isolated growth hormone deficiency. They should also be useful in the follow up of children with Laron syndrome treated with biosynthetic recombinant IGF-I. PMID:8333769

  20. A Decade of Growth

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.; Anzz-Meador, Phillip D.

    2001-01-01

    This paper examines the Space Surveillance Network catalog's growth in low Earth orbit (LEO) and the geosynchronous Earth orbit (GEO) over the decade 1990-2000. During this time, innovative space utilization concepts, e.g. the Iridium and Globalstar commercial communication satellite constellations, have increased the public's consciousness of space. At the same time, however, these constellations have increased spatial density per 10 km altitude bin by factors of two and three respectively. While not displaying as spectacular a growth in spatial density, other regions of space have grown steadily in terms of number, mass, size, and operational lifetime. In this work we categorize launch traffic by type (e.g. payload, rocket body, operational debris, fragmentation debris, or anomalous debris), mass, and size so as to present the observed growth numerically, in terms of mass, and in terms of cross-sectional area. GEO traffic is further categorized by operational longitude. Because growth itself defines only the instantaneous environment, we also examine the higher-order derivatives of growth. In addition, we compare the last decade's growth with modeling results to illustrate the subtle effects of inclination, eccentricity, and size, in addition to spatial densities, on estimating the collision probability. We identify those regions of space most subject to accidental collision.

  1. Hopper Growth of Salt Crystals.

    PubMed

    Desarnaud, Julie; Derluyn, Hannelore; Carmeliet, Jan; Bonn, Daniel; Shahidzadeh, Noushine

    2018-06-07

    The growth of hopper crystals is observed for many substances, but the mechanism of their formation remains ill understood. Here we investigate their growth by performing evaporation experiments on small volumes of salt solutions. We show that sodium chloride crystals that grow very fast from a highly supersaturated solution form a peculiar form of hopper crystal consisting of a series of connected miniature versions of the original cubic crystal. The transition between cubic and such hopper growth happens at a well-defined supersaturation where the growth rate of the cubic crystal reaches a maximum (∼6.5 ± 1.8 μm/s). Above this threshold, the growth rate varies as the third power of supersaturation, showing that a new mechanism, controlled by the maximum speed of surface integration of new molecules, induces the hopper growth of cubic crystals in cascade.

  2. Growth failure, somatomedin and growth hormone levels in juvenile diabetes mellitus--a pilot study.

    PubMed

    Nash, H

    1979-06-01

    Growth hormone (hGH) responsiveness to exercise and somatomedin C (SmC) activity were measured in ten children with insulin-deficient diabetes mellitus. Four of the ten children showed a significant degree of growth retardation. Normal SmC activity was found in association with elevated hGH levels. The hypothesis that growth-retarded diabetics have a failure of Sm production despite high hGH levels (analogous to malnutrition and Laron dwarfism) was not substantiated by this study. Chronic deficiency of insulin, itself a somatomedin, may play a major role in diabetic growth failure.

  3. Initial Growth of Single-Crystalline Nanowires: From 3D Nucleation to 2D Growth.

    PubMed

    Huang, Xh; Li, Gh; Sun, Gz; Dou, Xc; Li, L; Zheng, Lx

    2010-04-17

    The initial growth stage of the single-crystalline Sb and Co nanowires with preferential orientation was studied, which were synthesized in porous anodic alumina membranes by the pulsed electrodeposition technique. It was revealed that the initial growth of the nanowires is a three-dimensional nucleation process, and then gradually transforms to two-dimensional growth via progressive nucleation mechanism, which resulting in a structure transition from polycrystalline to single crystalline. The competition among the nuclei inside the nanoscaled-confined channel and the growth kinetics is responsible for the structure transition of the initial grown nanowires.

  4. Stimulant use and its impact on growth in children receiving growth hormone therapy: an analysis of the KIGS International Growth Database.

    PubMed

    Miller, Bradley S; Aydin, Ferah; Lundgren, Frida; Lindberg, Anders; Geffner, Mitchell E

    2014-01-01

    Children receiving stimulants for attention deficit hyperactivity disorder (ADHD) frequently present to pediatric endocrinology clinics for evaluation and treatment of growth disorders. The worldwide prevalence of stimulant use in children with ADHD also receiving recombinant human growth hormone (rhGH) and the impact on response to rhGH are unknown. Data on children enrolled in the KIGS® (Pfizer International Growth Study) registry were evaluated for the associated diagnosis of ADHD prior to initiation of Genotropin® rhGH. Concomitant stimulant medications and auxological information were captured. Response to rhGH was evaluated using established growth prediction models. The prevalence of ADHD in KIGS was 2.3% (1,748/75,251), with stimulants used in 1.8% (1,326/75,251). Children with idiopathic growth hormone deficiency (IGHD) who received stimulants grew significantly less (1.1 cm) in the first year of rhGH therapy than expected for rhGH-treated non-ADHD IGHD children. After one year of rhGH, idiopathic short stature (ISS) children with ADHD were significantly shorter [0.74 cm (with stimulants) and 0.69 cm (without stimulants)] than non-ADHD ISS children. We demonstrated an impaired response to rhGH in IGHD and ISS children with ADHD. Our findings suggest that the ADHD phenotype, alone or in conjunction with stimulant therapy, may impair the short-term growth response to rhGH.

  5. Fibroblast Growth Factor 2: An Epithelial Ductal Cell Growth Inhibitor That Drops Out in Breast Cancer

    DTIC Science & Technology

    2011-10-01

    fibroblast   growth   factor   receptors  and  their  prognostic...AD_________________ Award Number: W81XWH-08-1-0708 TITLE: Fibroblast Growth Factor 2: an...September 2008 – 14 September 2011 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fibroblast Growth Factor 2: an Epithelial Ductal Cell Growth

  6. Ninety-two years of tree growth and death in a second-growth redwood forest

    Treesearch

    Benjamin G. Iberle; Stephen C. Sillett; Robert Van Pelt; Mark Andre

    2017-01-01

    Mature second-growth redwood (Sequoia sempervirens (D. Don) Endl.) forests are an important and uncommon resource in the redwood region. Development of second-growth redwood forests beyond rotation age is not well understood. Continuous long-term data are especially lacking, considering that the maximum possible age of second-growth stands is now...

  7. Testicular growth and development in puberty.

    PubMed

    Koskenniemi, Jaakko J; Virtanen, Helena E; Toppari, Jorma

    2017-06-01

    To describe pubertal testicular growth in humans, changes in testicular cell populations that result in testicular growth, and the role of testosterone and gonadotrophins follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in testicular growth. When human data were not available, studies in nonhuman primates and/or rodents were used as surrogates. Testicular growth in puberty follows a sigmoidal growth curve, with a large variation in timing of testicular growth and adult testicular volume. Testicular growth early in puberty is due to increase in Sertoli cell number and length of seminiferous tubules, whereas the largest and fastest growth results from the increase in the diameter of the seminiferous tubules first due to spermatogonial proliferation and then due to the expansion of meiotic and haploid germ cells. FSH stimulates Sertoli cell and spermatogonial proliferation, whereas LH/testosterone is mandatory to complete spermatogenesis. However, FSH and LH/testosterone work in synergy and are both needed for normal spermatogenesis. Testicular growth during puberty is rapid, and mostly due to germ cell expansion and growth in seminiferous tubule diameter triggered by androgens. Pre-treatment with FSH before the induction of puberty may improve the treatment of hypogonadotropic hypogonadism, but remains to be proven.

  8. Growth at adolescence. Clinical correlates.

    PubMed

    Daniel, W A

    1985-03-01

    Several highly significant changes occur within a relatively short period of time during adolescence. Great alteration in physique, developmental progress in thinking, and psychologic gains toward attaining ego identity take place but not always synchronously. Attention is paid to physical changes because they are visible and are of intense concern to adolescents, but physicians and other professionals should remember cognitive and psychosocial growth are affected by physical growth, and vice versa. Often there is a temporary disequilibrium in the relationship of these three areas of growth, and this can affect one or another part of the developmental pattern. It is therefore necessary to remind ourselves of the diversity of adolescent growth, and of adolescents, when caring for a young patient and be cognizant of growth in areas other than physical. More and more children with congenital or acquired handicaps are living to become adolescents and perhaps adults. Handicaps can be limited to one of the three major areas of growth or involve them all in varying degrees. For example, sickle cell disease, Crohn's disease, or ulcerative colitis may postpone physical growth for a significant period; this lack of pubertal change can affect psychosocial development but usually does not impair cognitive growth. Mental retardation may have no apparent effect on physical growth but can handicap the adolescent's psychosocial development. Growth still occurs in a sequential pattern but often it seems that handicapped youngsters reach a developmental milestone by a series of "detours." Physicians must recognize these lags or differences and try to facilitate progress, promote self-esteem, and provide understanding. Much can be done with anticipatory guidance. Adolescence often provides the opportunity to overcome past damage or, in some instances, to start anew on a more optimal program for physical and psychosocial growth. Young adolescent boys and girls usually look to the

  9. Growth Mechanism of Microbial Colonies

    NASA Astrophysics Data System (ADS)

    Zhu, Minhui; Martini, K. Michael; Kim, Neil H.; Sherer, Nicholas; Lee, Jia Gloria; Kuhlman, Thomas; Goldenfeld, Nigel

    Experiments on nutrient-limited E. coli colonies, growing on agar gel from single cells reveal a power-law distribution of sizes, both during the growth process and in the final stage when growth has ceased. We developed a Python simulation to study the growth mechanism of the bacterial population and thus understand the broad details of the experimental findings. The simulation takes into account nutrient uptake, metabolic function, growth and cell division. Bacteria are modeled in two dimensions as hard circle-capped cylinders with steric interactions and elastic stress dependent growth characteristics. Nutrient is able to diffuse within and between the colonies. The mechanism of microbial colony growth involves reproduction of cells within the colonies and the merging of different colonies. We report results on the dynamic scaling laws and final state size distribution, that capture in semi-quantitative detail the trends observed in experiment. Supported by NSF Grant 0822613.

  10. Insulin-like growth factors in embryonic and fetal growth and skeletal development (Review).

    PubMed

    Agrogiannis, Georgios D; Sifakis, Stavros; Patsouris, Efstratios S; Konstantinidou, Anastasia E

    2014-08-01

    The insulin-like growth factors (IGF)-I and -II have a predominant role in fetal growth and development. IGFs are involved in the proliferation, differentiation and apoptosis of fetal cells in vitro and the IGF serum concentration has been shown to be closely correlated with fetal growth and length. IGF transcripts and peptides have been detected in almost every fetal tissue from as early in development as pre‑implantation to the final maturation stage. Furthermore, IGFs have been demonstrated to be involved in limb morphogenesis. However, although ablation of Igf genes in mice resulted in growth retardation and delay in skeletal maturation, no impact on outgrowth and patterning of embryonic limbs was observed. Additionally, various molecular defects in the Igf1 and Igf1r genes in humans have been associated with severe intrauterine growth retardation and impaired skeletal maturation, but not with truncated limbs or severe skeletal dysplasia. The conflicting data between in vitro and in vivo observations with regard to bone morphogenesis suggests that IGFs may not be the sole trophic factors involved in fetal skeletal growth and that redundant mechanisms may exist in chondro- and osteogenesis. Further investigation is required in order to elucidate the functions of IGFs in skeletal development.

  11. Epidermal growth factor- and hepatocyte growth factor-receptor activity in serum-free cultures of human hepatocytes.

    PubMed

    Runge, D M; Runge, D; Dorko, K; Pisarov, L A; Leckel, K; Kostrubsky, V E; Thomas, D; Strom, S C; Michalopoulos, G K

    1999-02-01

    Serum-free primary cultures of hepatocytes are a useful tool to study factors triggering hepatocyte proliferation and regeneration. We have developed a chemically defined serum-free system that allows human hepatocyte proliferation in the presence of epidermal growth factor and hepatocyte growth factor. DNA synthesis and accumulation were determined by [3H]thymidine incorporation and fluorometry, respectively. Western blot analyses and co-immunoprecipitations were used to investigate the association of proteins involved in epidermal growth factor and hepatocyte growth factor activation and signaling: epidermal growth factor receptor, hepatocyte growth factor receptor (MET), urokinase-type plasminogen activator and its receptor, and a member of the signal transducer and activator of transcription family, STAT-3. Primary human hepatocytes proliferated under serum-free conditions in a chemically defined medium for up to 12 days. Epidermal growth factor-receptor and MET were present and functional, decreasing over time. MET, urokinase-type plasminogen activator and urokinase-type plasminogen activator receptor co-precipitated to varying degrees during the culture period. STAT-3 co-precipitated with epidermal growth factor-receptor and MET to varying degrees. Proliferation of human hepatocytes can improve by modification of a chemically defined medium originally used for rat hepatocyte cultures. In these long-term cultures of human hepatocytes, hepatocyte growth factor and epidermal growth factor can stimulate growth and differentiation by interacting with their receptors and initiating downstream signaling. This involves complex formation of the receptors with other plasma membrane components for MET (urokinase-type plasminogen activator in context of its receptor) and activation of STAT-3 for both receptors.

  12. Bridgman crystal growth

    NASA Technical Reports Server (NTRS)

    Carlson, Frederick

    1990-01-01

    The objective of this theoretical research effort was to improve the understanding of the growth of Pb(x)Sn(1-x)Te and especially how crystal quality could be improved utilizing the microgravity environment of space. All theoretical growths are done using the vertical Bridgman method. It is believed that improved single crystal yields can be achieved by systematically identifying and studying system parameters both theoretically and experimentally. A computational model was developed to study and eventually optimize the growth process. The model is primarily concerned with the prediction of the thermal field, although mass transfer in the melt and the state of stress in the crystal were of considerable interest. The evolution is presented of the computer simulation and some of the important results obtained. Diffusion controlled growth was first studied since it represented a relatively simple, but nontheless realistic situation. In fact, results from this analysis prompted a study of the triple junction region where the melt, crystal, and ampoule wall meet. Since microgravity applications were sought because of the low level of fluid movement, the effect of gravitational field strength on the thermal and concentration field was also of interest. A study of the strength of coriolis acceleration on the growth process during space flight was deemed necessary since it would surely produce asymmetries in the flow field if strong enough. Finally, thermosolutal convection in a steady microgravity field for thermally stable conditions and both stable and unstable solutal conditions was simulated.

  13. Growth Hormone and Insulin-Like Growth Factor-1.

    PubMed

    Nicholls, Adam R; Holt, Richard I G

    2016-01-01

    Human growth hormone (GH) was first isolated from the human pituitary gland in 1945 and found to promote the growth of children with hypopituitarism. Since the formation of the World Anti-Doping Association, human GH has appeared on the list of forbidden substances. There is a significant amount of anecdotal evidence that human GH is misused by athletes to enhance performance, and there have been a number of high-profile cases of GH use in professional sport. GH secretagogues (GH-Ss), which increase GH secretion, and insulin-like growth factor (IGF-1), which mediates many of the effects of GH, are also misused, although there is less evidence for this. The effectiveness of GH, IGF-1, and GH-Ss as performance-enhancing drugs remains unclear. Evidence from studies of GH use in people with hypopituitarism show several desirable outcomes, including increased lean body mass, increased strength, and increased exercise capacity. These anabolic and metabolic properties, coupled with the difficulty in detecting them, make them attractive as agents of misuse. Studies in healthy young adults have also demonstrated a performance benefit with GH and IGF-1. © 2016 S. Karger AG, Basel.

  14. Scaling Behavior of Firm Growth

    NASA Astrophysics Data System (ADS)

    Stanley, Michael H. R.; Nunes Amaral, Luis A.; Buldyrev, Sergey V.; Havlin, Shlomo; Leschhorn, Heiko; Maass, Philipp; Salinger, Michael A.; Stanley, H. Eugene

    1996-03-01

    The theory of the firm is of considerable interest in economics. The standard microeconomic theory of the firm is largely a static model and has thus proved unsatisfactory for addressing inherently dynamic issues such as the growth of economies. In recent years, many have attempted to develop richer models that provide a more accurate representation of firm dynamics due to learning, innovative effort, and the development of organizational infrastructure. The validity of these new, inherently dynamic theories depends on their consistency with the statistical properties of firm growth, e.g. the relationship between growth rates and firm size. Using the Compustat database over the time period 1975-1991, we find: (i) the distribution of annual growth rates for firms with approximately the same sales displays an exponential form with the logarithm of growth rate, and (ii) the fluctuations in the growth rates --- measured by the width of this distribution --- scale as a power law with the firm sales. We place these findings of scaling behavior in the context of conventional economics by considering firm growth dynamics with temporal correlations and also, by considering a hierarchical organization of the departments of a firm.

  15. Effect of bacterial growth rate on bacteriophage population growth rate.

    PubMed

    Nabergoj, Dominik; Modic, Petra; Podgornik, Aleš

    2018-04-01

    It is important to understand how physiological state of the host influence propagation of bacteriophages (phages), due to the potential higher phage production needs in the future. In our study, we tried to elucidate the effect of bacterial growth rate on adsorption constant (δ), latent period (L), burst size (b), and bacteriophage population growth rate (λ). As a model system, a well-studied phage T4 and Escherichia coli K-12 as a host was used. Bacteria were grown in a continuous culture operating at dilution rates in the range between 0.06 and 0.98 hr -1 . It was found that the burst size increases linearly from 8 PFU·cell -1 to 89 PFU·cell -1 with increase in bacteria growth rate. On the other hand, adsorption constant and latent period were both decreasing from 2.6∙10 -9  ml·min -1 and 80 min to reach limiting values of 0.5 × 10 -9  ml·min -1 and 27 min at higher growth rates, respectively. Both trends were mathematically described with Michaelis-Menten based type of equation and reasons for such form are discussed. By applying selected equations, a mathematical equation for prediction of bacteriophage population growth rate as a function of dilution rate was derived, reaching values around 8 hr -1 at highest dilution rate. Interestingly, almost identical description can be obtained using much simpler Monod type equation and possible reasons for this finding are discussed. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  16. Growth hormone stimulation test

    MedlinePlus

    ... Philadelphia, PA: Elsevier Saunders; 2016:chap 23. Chernecky CC, Berger BJ. Growth hormone (somatotropin, GH) and growth hormone-releasing hormone (GHRH) - blood. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . ...

  17. The growth of birdwings

    NASA Technical Reports Server (NTRS)

    Meunier, K.

    1980-01-01

    Growth and order allometry is defined and applied to the growth of bird effects of negative wing allometry discussed with regard to body size and flight power. Transposition and evolutionary significance are explained.

  18. Inflammatory Diseases and Growth: Effects on the GH–IGF Axis and on Growth Plate

    PubMed Central

    Lazzeroni, Pietro; Sartori, Chiara

    2017-01-01

    This review briefly describes the most common chronic inflammatory diseases in childhood, such as cystic fibrosis (CF), inflammatory bowel diseases (IBDs), juvenile idiopathic arthritis (JIA), and intrauterine growth restriction (IUGR) that can be considered, as such, for the changes reported in the placenta and cord blood of these subjects. Changes in growth hormone (GH) secretion, GH resistance, and changes in the insulin-like growth factor (IGF) system are described mainly in relationship with the increase in nuclear factor-κB (NF-κB) and pro-inflammatory cytokines. Changes in the growth plate are also reported as well as a potential role for microRNAs (miRNAs) and thus epigenetic changes in chronic inflammation. Many mechanisms leading to growth failure are currently known; however, it is clear that further research in the field is still warranted. PMID:28858208

  19. Growth hormone therapy in hypochondroplasia.

    PubMed

    Ramaswami, U; Hindmarsh, P C; Brook, C G

    1999-02-01

    Patients with hypochondroplasia present with variable phenotypes. Children with severe short stature and disproportion of the body segments usually have the mutation Asn540Lys. They respond to growth hormone (GH) therapy with an increase in spinal length and, coupled with a surgical leg-lengthening procedure, it is possible for some patients to achieve adult heights within the normal range. Some children who present with proportionate short stature and hypochondroplasia fail to increase their growth rate at puberty, although the growth spurt can be restored by GH therapy. Others, with an identical presentation, seem to grow normally during puberty. At present, there is no way of predicting who will undergo a normal pubertal growth spurt. We therefore monitor all patients during childhood and give GH treatment only to those patients who fail to develop a growth spurt at puberty. Severe cases may occasionally need treatment before puberty if their growth velocity is compromised, but these will probably also be candidates for a surgical leg-lengthening procedure.

  20. Growth hormone and early treatment.

    PubMed

    Antoniazzi, F; Cavarzere, P; Gaudino, R

    2015-06-01

    Growth hormone (GH) treatment is approved by the US Food and Drug Administration (FDA) not only for GH deficiency (GHD) but also for other childhood growth disorders with growth failure and/or short stature. GHD is the most frequent endocrine disorder presenting with short stature in childhood. During neonatal period, metabolic effects due to congenital GHD require a prompt replacement therapy to avoid possible life-threatening complications. In childhood and adolescence, growth impairment is the most evident effect of GHD and early treatment has the aim of restore normal growth and to reach normal adult height. We reassume in this review the conditions causing GHD and the diagnostic challenge to reach an early diagnosis, and an early treatment, necessary to obtain the best results. Finally, we summarize results obtained in clinical studies about pediatric patients with GHD treated at an early age, in which a marked early catch-up growth and a normalization of adult height were obtained.

  1. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Rosenblum, William M.; Delucas, Lawrence J.; Wilson, William W.

    1989-01-01

    Major advances have been made in several of the experimental aspects of protein crystallography, leaving protein crystallization as one of the few remaining bottlenecks. As a result, it has become important that the science of protein crystal growth is better understood and that improved methods for protein crystallization are developed. Preliminary experiments with both small molecules and proteins indicate that microgravity may beneficially affect crystal growth. For this reason, a series of protein crystal growth experiments using the Space Shuttle was initiated. The preliminary space experiments were used to evolve prototype hardware that will form the basis for a more advanced system that can be used to evaluate effects of gravity on protein crystal growth. Various optical techniques are being utilized to monitor the crystal growth process from the incipient or nucleation stage and throughout the growth phase. The eventual goal of these studies is to develop a system which utilizes optical monitoring for dynamic control of the crystallization process.

  2. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells

    PubMed Central

    Choi, Nahyun; Shin, Soyoung; Song, Sun U.; Sung, Jong-Hyuk

    2018-01-01

    Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif) ligand 1 (CXCL1), platelet-derived endothelial cell growth factor (PD-ECGF), and platelet-derived growth factor-C (PDGF-C). Minoxidil increased extracellular signal–regulated kinases 1/2 (ERK1/2) phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration. PMID:29495622

  3. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells.

    PubMed

    Choi, Nahyun; Shin, Soyoung; Song, Sun U; Sung, Jong-Hyuk

    2018-02-28

    Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif) ligand 1 (CXCL1), platelet-derived endothelial cell growth factor (PD-ECGF), and platelet-derived growth factor-C (PDGF-C). Minoxidil increased extracellular signal-regulated kinases 1/2 (ERK1/2) phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration.

  4. Nanowire growth from the viewpoint of the thin film polylayer growth theory

    NASA Astrophysics Data System (ADS)

    Kashchiev, Dimo

    2018-03-01

    The theory of polylayer growth of thin solid films is employed for description of the growth kinetics of single-crystal nanowires. Expressions are derived for the dependences of the height h and radius r of a given nanowire on time t, as well as for the h(r) dependence. These dependences are applicable immediately after the nanowire nucleation on the substrate and thus include the period during which the nucleated nanowire changes its shape from that of cap to that of column. The analysis shows that the nanowire cap-to-column shape transition is continuous and makes it possible to kinetically define the nanowire shape-transition radius by means of the nanowire radial and axial growth rates. The obtained h(t), r(t) and h(r) dependences are found to provide a good description of available experimental data for growth of self-nucleated GaN nanowires by the vapor-solid mechanism.

  5. IV. Growth Failure in Institutionalized Children

    PubMed Central

    Johnson, Dana E.; Gunnar, Megan R.

    2013-01-01

    Children within institutional care settings experience significant global growth suppression, which is more profound in children with a higher baseline risk of growth impairment (e.g., low birth weight [LBW] infants and children exposed to alcohol in utero). Nutritional insufficiencies as well as suppression of the growth hormone–insulin-like growth factor axis (GH-IGF-1) caused by social deprivation likely both contribute to the etiology of psychosocial growth failure within these settings. Their relative importance and the consequent clinical presentations probably relate to the age of the child. While catch-up growth in height and weight are rapid when children are placed in a more nurturing environment, many factors, particularly early progression through puberty, compromise final height. Potential for growth recovery is greatest in younger children and within more nurturing environments where catch-up in height and weight is positively correlated with caregiver sensitivity and positive regard. Growth recovery has wider implications for child well-being than size alone, because catch-up in height is a positive predictor of cognitive recovery as well. Even with growth recovery, persistent abnormalities of the hypothalamic-pituitary-adrenal system or the exacerbation of micronutrient deficiencies associated with robust catch-up growth during critical periods of development could potentially influence or be responsible for the cognitive, behavioral, and emotional sequelae of early childhood deprivation. Findings in growth-restricted infants and those children with psychosocial growth are similar, suggesting that children experiencing growth restriction within institutional settings may also share the risk of developing the metabolic syndrome in adulthood (obesity, Type 2 diabetes mellitus, hypertension, heart disease). Psychosocial deprivation within any care-giving environment during early life must be viewed with as much concern as any severely debilitating

  6. Growth hormone transgenesis in coho salmon disrupts muscle immune function impacting cross-talk with growth systems.

    PubMed

    Alzaid, Abdullah; Kim, Jin-Hyoung; Devlin, Robert H; Martin, Samuel A M; Macqueen, Daniel J

    2018-04-26

    Suppression of growth during infection may aid resource allocation towards effective immune function. Past work supporting this hypothesis in salmonid fish revealed an immune-responsive regulation of the insulin-like growth factor (IGF) system, an endocrine pathway downstream of growth hormone (GH). Skeletal muscle is the main target for growth and energetic storage in fish, yet little is known about how its growth is regulated during an immune response. We addressed this knowledge gap by characterizing muscle immune responses in size-matched coho salmon ( Oncorhynchus kisutch ) achieving different growth rates. We compared a wild-type strain with two GH transgenic groups from the same genetic background achieving either maximal or suppressed growth, a design separating GH's direct effects from its influence on growth rate and nutritional state. Fish were sampled 30h post-injection with PBS (control) or mimics of bacterial or viral infection. We quantified mRNA expression levels for genes from the GH, GH receptor, IGF hormone, IGF1 receptor and IGF-binding protein families, along with immune genes involved in inflammatory or antiviral responses and muscle growth status marker genes. We demonstrate dampened immune function in GH transgenics compared to wild-type. The muscle of GH transgenics achieving rapid growth showed no detectable antiviral response, coupled with evidence of a constitutive inflammatory state. GH and IGF system gene expression was strongly altered by GH transgenesis and fast growth, both for baseline expression and responses to immune stimulation. Thus, GH transgenesis strongly disrupts muscle immune status and normal GH and IGF system expression responses to immune stimulation. © 2018. Published by The Company of Biologists Ltd.

  7. Plant Growth Research for Food Production: Development and Testing of Expandable Tuber Growth Module

    NASA Technical Reports Server (NTRS)

    Cordova, Brennan A.

    2017-01-01

    Controlled and reliable growth of a variety of vegetable crops is an important capability for manned deep space exploration systems for providing nutritional supplementation and psychological benefits to crew members. Because current systems have been limited to leafy vegetables that require minimal root space, a major goal for these systems is to increase their ability to grow new types of crops, including tuber plants and root vegetables that require a large root space. An expandable root zone module and housing was developed to integrate this capability into the Veggie growth system. The expandable module uses a waterproof, gas-permeable bag with a structure that allows for root space to increase vertically throughout the growth cycle to accommodate for expanding tuber growth, while minimizing the required media mass. Daikon radishes were chosen as an ideal tuber crop for their subterraneous tuber size and rapid growth cycle, and investigations were done to study expanding superabsorbent hydrogels as a potential growth media. These studies showed improved water retention, but restricted oxygen availability to roots with pure gel media. It was determined that these hydrogels could be integrated in lower proportions into standard soil to achieve media expansion and water retention desired. Using the constructed module prototype and ideal gel and soil media mixture, Daikon radishes were grown in the system to test the capability and success of the system through a full growth cycle.

  8. Telomere dynamics in wild brown trout: effects of compensatory growth and early growth investment.

    PubMed

    Näslund, Joacim; Pauliny, Angela; Blomqvist, Donald; Johnsson, Jörgen I

    2015-04-01

    After a period of food deprivation, animals often respond with a period of faster than normal growth. Such responses have been suggested to result in decreased chromosomal maintenance, which in turn may affect the future fitness of an individual. Here, we present a field experiment in which a food deprivation period of 24 days was enforced on fish from a natural population of juvenile brown trout (Salmo trutta) at the start of the high-growth season in spring. The growth of the food-deprived fish and a non-deprived control group was then monitored in the wild during 1 year. Fin tissue samples were taken at the start of the experiment and 1 year after food deprivation to monitor the telomere dynamics, using reduced telomere length as an indicator of maintenance cost. The food-deprived fish showed partial compensatory growth in both mass and length relative to the control group. However, we found no treatment effects on telomere dynamics, suggesting that growth-compensating brown trout juveniles are able to maintain their telomeres during their second year in the stream. However, body size at the start of the experiment, reflecting growth rate during their first year of life, was negatively correlated with change in telomere length over the following year. This result raises the possibility that rapid growth early in life induces delayed costs in cellular maintenance.

  9. Growth Charts (For Parents)

    MedlinePlus

    ... say about a child's health. Why Do Doctors Use Growth Charts? Growth charts are a standard part ... chart, they see which percentile line those measurements land on. The higher the percentile number, the bigger ...

  10. Fibroblast Growth Factors Stimulate Hair Growth through β-Catenin and Shh Expression in C57BL/6 Mice

    PubMed Central

    Lin, Wei-hong; Xiang, Li-Jun; Shi, Hong-Xue; Zhang, Jian; Jiang, Li-ping; Cai, Ping-tao; Lin, Zhen-Lang; Lin, Bei-Bei; Huang, Yan; Zhang, Hai-Lin; Fu, Xiao-Bing; Guo, Ding-Jiong; Li, Xiao-Kun; Wang, Xiao-Jie; Xiao, Jian

    2015-01-01

    Growth factors are involved in the regulation of hair morphogenesis and cycle hair growth. The present study sought to investigate the hair growth promoting activities of three approved growth factor drugs, fibroblast growth factor 10 (FGF-10), acidic fibroblast growth factor (FGF-1), and basic fibroblast growth factor (FGF-2), and the mechanism of action. We observed that FGFs promoted hair growth by inducing the anagen phase in telogenic C57BL/6 mice. Specifically, the histomorphometric analysis data indicates that topical application of FGFs induced an earlier anagen phase and prolonged the mature anagen phase, in contrast to the control group. Moreover, the immunohistochemical analysis reveals earlier induction of β-catenin and Sonic hedgehog (Shh) in hair follicles of the FGFs-treated group. These results suggest that FGFs promote hair growth by inducing the anagen phase in resting hair follicles and might be a potential hair growth-promoting agent. PMID:25685806

  11. Automated protein crystal growth facility

    NASA Astrophysics Data System (ADS)

    Donald, Stacey

    A customer for the protein crystal growth facility fills the specially designed chamber with the correct solutions, fills the syringes with their quenching solutions, and submits the data needed for the proper growth of their crystal. To make sure that the chambers and syringes are filled correctly, a NASA representative may assist the customer. The data needed is the approximate growth time, the growth temperature, and the desired crystal size, but this data can be changed anytime from the ground, if needed. The chambers are gathered and placed into numbered slots in special drawers. Then, data is entered into a computer for each of the chambers. Technicians map out when each chamber's growth should be activated so that all of the chambers have enough time to grow. All of this data is up-linked to the space station when the previous growth session is over. Anti-vibrational containers need to be constructed for the high forces encountered during the lift off and the landing of the space shuttle, and though our team has not designed these containers, we do not feel that there is any reason why a suitable one could not be made. When the shuttle reaches the space station, an astronaut removes a drawer of quenched chambers from the growth facility and inserts a drawer of new chambers. All twelve of the drawers can be replaced in this fashion. The optical disks can also be removed this way. The old drawers are stored for the trip back to earth. Once inside the growth facility, a chamber is removed by the robot and placed in one of 144 active sites at a time previously picked by a technician. Growth begins when the chamber is inserted into an active site. Then, the sensing system starts to determine the size of the protein crystal. All during the crystal's growth, the customer can view the crystal and read all of the crystal's data, such as growth rate and crystal size. When the sensing system determines that the crystal has reached the predetermined size, the robot is

  12. Automated protein crystal growth facility

    NASA Technical Reports Server (NTRS)

    Donald, Stacey

    1994-01-01

    A customer for the protein crystal growth facility fills the specially designed chamber with the correct solutions, fills the syringes with their quenching solutions, and submits the data needed for the proper growth of their crystal. To make sure that the chambers and syringes are filled correctly, a NASA representative may assist the customer. The data needed is the approximate growth time, the growth temperature, and the desired crystal size, but this data can be changed anytime from the ground, if needed. The chambers are gathered and placed into numbered slots in special drawers. Then, data is entered into a computer for each of the chambers. Technicians map out when each chamber's growth should be activated so that all of the chambers have enough time to grow. All of this data is up-linked to the space station when the previous growth session is over. Anti-vibrational containers need to be constructed for the high forces encountered during the lift off and the landing of the space shuttle, and though our team has not designed these containers, we do not feel that there is any reason why a suitable one could not be made. When the shuttle reaches the space station, an astronaut removes a drawer of quenched chambers from the growth facility and inserts a drawer of new chambers. All twelve of the drawers can be replaced in this fashion. The optical disks can also be removed this way. The old drawers are stored for the trip back to earth. Once inside the growth facility, a chamber is removed by the robot and placed in one of 144 active sites at a time previously picked by a technician. Growth begins when the chamber is inserted into an active site. Then, the sensing system starts to determine the size of the protein crystal. All during the crystal's growth, the customer can view the crystal and read all of the crystal's data, such as growth rate and crystal size. When the sensing system determines that the crystal has reached the predetermined size, the robot is

  13. Estimation of the growth curve and heritability of the growth rate for giant panda (Ailuropoda melanoleuca) cubs.

    PubMed

    Che, T D; Wang, C D; Jin, L; Wei, M; Wu, K; Zhang, Y H; Zhang, H M; Li, D S

    2015-03-27

    Giant panda cubs have a low survival rate during the newborn and early growth stages. However, the growth and developmental parameters of giant panda cubs during the early lactation stage (from birth to 6 months) are not well known. We examined the growth and development of giant panda cubs by the Chapman growth curve model and estimated the heritability of the maximum growth rate at the early lactation stage. We found that 83 giant panda cubs reached their maximum growth rate at approximately 75-120 days after birth. The body weight of cubs at 75 days was 4285.99 g. Furthermore, we estimated that the heritability of the maximum growth rate was moderate (h(2) = 0.38). Our study describes the growth and development of giant panda cubs at the early lactation stage and provides valuable growth benchmarks. We anticipate that our results will be a starting point for more detailed research on increasing the survival rate of giant panda cubs. Feeding programs for giant panda cubs need further improvement.

  14. Hormonal Control of Fetal Growth.

    ERIC Educational Resources Information Center

    Cooke, Paul S.; Nicoll, Charles S.

    1983-01-01

    Summarizes recent research on hormonal control of fetal growth, presenting data obtained using a new method for studying the area. Effects of endocrine ablations and congenital deficiencies, studies of hormone/receptor levels, in-vitro techniques, hormones implicated in promoting fetal growth, problems with existing methodologies, and growth of…

  15. Fetal growth restriction and the programming of heart growth and cardiac insulin-like growth factor 2 expression in the lamb.

    PubMed

    Wang, Kimberley C W; Zhang, Lei; McMillen, I Caroline; Botting, Kimberley J; Duffield, Jaime A; Zhang, Song; Suter, Catherine M; Brooks, Doug A; Morrison, Janna L

    2011-10-01

    Reduced growth in fetal life together with accelerated growth in childhood, results in a ~50% greater risk of coronary heart disease in adult life. It is unclear why changes in patterns of body and heart growth in early life can lead to an increased risk of cardiovascular disease in adulthood. We aimed to investigate the role of the insulin-like growth factors in heart growth in the growth-restricted fetus and lamb. Hearts were collected from control and placentally restricted (PR) fetuses at 137-144 days gestation and from average (ABW) and low (LBW) birth weight lambs at 21 days of age. We quantified cardiac mRNA expression of IGF-1, IGF-2 and their receptors, IGF-1R and IGF-2R, using real-time RT-PCR and protein expression of IGF-1R and IGF-2R using Western blotting. Combined bisulphite restriction analysis was used to assess DNA methylation in the differentially methylated region (DMR) of the IGF-2/H19 locus and of the IGF-2R gene. In PR fetal sheep, IGF-2, IGF-1R and IGF-2R mRNA expression was increased in the heart compared to controls. LBW lambs had a greater left ventricle weight relative to body weight as well as increased IGF-2 and IGF-2R mRNA expression in the heart, when compared to ABW lambs. No changes in the percentage of methylation of the DMRs of IGF-2/H19 or IGF-2R were found between PR and LBW when compared to their respective controls. In conclusion, a programmed increased in cardiac gene expression of IGF-2 and IGF-2R may represent an adaptive response to reduced substrate supply (e.g. glucose and/or oxygen) in order to maintain heart growth and may be the underlying cause for increased ventricular hypertrophy and the associated susceptibility of cardiomyocytes to ischaemic damage later in life.

  16. A nonpeptidyl growth hormone secretagogue.

    PubMed

    Smith, R G; Cheng, K; Schoen, W R; Pong, S S; Hickey, G; Jacks, T; Butler, B; Chan, W W; Chaung, L Y; Judith, F

    1993-06-11

    A nonpeptidyl secretagogue for growth hormone of the structure 3-amino-3-methyl-N-(2,3,4,5-tetrahydro-2-oxo-1-([2'-(1H-tetrazol-5 -yl) (1,1'-biphenyl)-4-yl]methyl)-1H-1-benzazepin-3(R)-yl)-butanamid e (L-692,429) has been identified. L-692,429 synergizes with the natural growth hormone secretagogue growth hormone-releasing hormone and acts through an alternative signal transduction pathway. The mechanism of action of L-692,429 and studies with peptidyl and nonpeptidyl antagonists suggest that this molecule is a mimic of the growth hormone-releasing hexapeptide His-D-Trp-Ala-Trp-D-Phe-Lys-NH2 (GHRP-6). L-692,429 is an example of a nonpeptidyl specific secretagogue for growth hormone.

  17. Climate-tree growth models in relation to long-term growth trends of white oak in Pennsylvania

    Treesearch

    D. D. Davis; R. P. Long

    2003-01-01

    We examined long-term growth trends of white oak by comparing tree-ring chronologies developed from an old-growth stand, where the average tree age was 222 years, with a second-growth stand where average tree age was 78 years. Evaluation of basal area growth trends suggested that an anomalous decrease in basal area increment trend occurred in both stands during the...

  18. Growth factors and growth factor receptors in the hippocampus. Role in plasticity and response to injury.

    PubMed

    Nieto-Sampedro, M; Bovolenta, P

    1990-01-01

    Various growth factors are present in the hippocampal formation and appear responsible for the prominent plasticity of this brain area. Although hormone-like growth-promoting polypeptides are the best known, recent studies emphasize the importance in the growth response of molecules such as laminin proteoglycans, neurotransmitters and growth inhibitors. The progress and problems in the study of these substances are reviewed.

  19. Regional Smart Growth Alliances

    EPA Pesticide Factsheets

    This page describes the Urban Land Institute regional smart growth alliances that received funding from EPA to help support economic development, accommodate growth, enhance quality of, and protect the environment in regions across the country.

  20. Catch-up Growth: Cellular and Molecular Mechanisms

    PubMed Central

    Finkielstain, GP; Lui, JC; Baron, J

    2012-01-01

    In mammals, after a period of growth inhibition, body growth often does not just return to a normal rate but actually exceeds the normal rate, resulting in catch-up growth. Recent evidence suggests that catch-up growth occurs because growth-inhibiting conditions delay progression of the physiological mechanisms that normally cause body growth to slow and cease with age. As a result, following the period of growth inhibition, tissues retain a greater proliferative capacity than normal, and therefore grow more rapidly than normal for age. There is evidence that this mechanism contributes both to catch-up growth in terms of body length, which involves proliferation in the growth plate, and to catch-up growth in terms of organ mass, which involves proliferation in multiple non-skeletal tissues. PMID:23428687

  1. Increased Melanoma Growth and Metastasis Spreading in Mice Overexpressing Placenta Growth Factor

    PubMed Central

    Marcellini, Marcella; De Luca, Naomi; Riccioni, Teresa; Ciucci, Alessandro; Orecchia, Angela; Lacal, Pedro Miguel; Ruffini, Federica; Pesce, Maurizio; Cianfarani, Francesca; Zambruno, Giovanna; Orlandi, Augusto; Failla, Cristina Maria

    2006-01-01

    Placenta growth factor (PlGF), a member of the vascular endothelial growth factor family, plays an important role in adult pathological angiogenesis. To further investigate PlGF functions in tumor growth and metastasis formation, we used transgenic mice overexpressing PlGF in the skin under the control of the keratin 14 promoter. These animals showed a hypervascularized phenotype of the skin and increased levels of circulating PlGF with respect to their wild-type littermates. Transgenic mice and controls were inoculated intradermally with B16-BL6 melanoma cells. The tumor growth rate was fivefold increased in transgenic animals compared to wild-type mice, in the presence of a similar percentage of tumor necrotic tissue. Tumor vessel area was increased in transgenic mice as compared to controls. Augmented mobilization of endothelial and hematopoietic stem cells from the bone marrow was observed in transgenic animals, possibly contributing to tumor vascularization. The number and size of pulmonary metastases were significantly higher in transgenic mice compared to wild-type littermates. Finally, PlGF promoted tumor cell invasion of the extracellular matrix and increased the activity of selected matrix metalloproteinases. These findings indicate that PlGF, in addition to enhancing tumor angiogenesis and favoring tumor growth, may directly influence melanoma dissemination. PMID:16877362

  2. Nonlinear Growth Curves in Developmental Research

    ERIC Educational Resources Information Center

    Grimm, Kevin J.; Ram, Nilam; Hamagami, Fumiaki

    2011-01-01

    Developmentalists are often interested in understanding change processes, and growth models are the most common analytic tool for examining such processes. Nonlinear growth curves are especially valuable to developmentalists because the defining characteristics of the growth process such as initial levels, rates of change during growth spurts, and…

  3. Structure, growth kinetics, and ledge flow during vapor-solid-solid growth of copper-catalyzed silicon nanowires.

    PubMed

    Wen, C-Y; Reuter, M C; Tersoff, J; Stach, E A; Ross, F M

    2010-02-10

    We use real-time observations of the growth of copper-catalyzed silicon nanowires to determine the nanowire growth mechanism directly and to quantify the growth kinetics of individual wires. Nanowires were grown in a transmission electron microscope using chemical vapor deposition on a copper-coated Si substrate. We show that the initial reaction is the formation of a silicide, eta'-Cu(3)Si, and that this solid silicide remains on the wire tips during growth so that growth is by the vapor-solid-solid mechanism. Individual wire directions and growth rates are related to the details of orientation relation and catalyst shape, leading to a rich morphology compared to vapor-liquid-solid grown nanowires. Furthermore, growth occurs by ledge propagation at the silicide/silicon interface, and the ledge propagation kinetics suggest that the solubility of precursor atoms in the catalyst is small, which is relevant to the fabrication of abrupt heterojunctions in nanowires.

  4. Genes essential for phototrophic growth by a purple alphaproteobacterium: Genes for phototrophic growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jianming; Yin, Liang; Lessner, Faith H.

    Anoxygenic purple phototrophic bacteria have served as important models for studies of photophosphorylation. The pigment-protein complexes responsible for converting light energy to ATP are relatively simple and these bacteria can grow heterotrophically under aerobic conditions, thus allowing for the study of mutants defective in photophosphorylation. In the past, genes responsible for anoxygenic phototrophic growth have been identified in a number of different bacterial species. Here we systematically studied the genetic basis for this metabolism by using Tn-seq to identify genes essential for the anaerobic growth of the purple bacterium Rhodopseudomonas palustris on acetate in light. We identified 171 genes requiredmore » for growth in this condition, 35 of which are annotated as photosynthesis genes. Among these are a few new genes not previously shown to be essential for phototrophic growth. We verified the essentiality of many of the genes we identified by analyzing the phenotypes of mutants we generated by Tn mutagenesis that had altered pigmentation. We used directed mutagenesis to verify that the R. palustris NADH:quinone oxidoreductase complex IE is essential for phototrophic growth. As a complement to the genetic data, we carried out proteomics experiments in which we found that 429 proteins were present in significantly higher amounts in cells grown anaerobically in light compared to aerobically. Among these were proteins encoded by subset of the phototrophic growth-essential genes.« less

  5. Spontaneous growth in growth hormone deficiency from birth until 7 years of age: development of disease-specific growth curves.

    PubMed

    Mayer, M; Schmitt, K; Kapelari, K; Frisch, H; Köstl, G; Voigt, M

    2010-01-01

    Little is known about spontaneous growth of growth hormone (GH)-deficient children during infancy and childhood. Retrospectively, we calculated disease-specific pretreatment percentiles for height, weight, BMI and growth velocity of 113 GH-deficient boys and 41 GH-deficient girls from birth until 7 years of age, by mean and standard deviation. Infants with idiopathic GH deficiency (GHD) grow in disease-specific percentile channels. There is a significant difference in length and weight from birth onward compared to regional reference (p<0.001). Boys' birth length was 48.7+/-2.9 cm (p<0.001; -1.31+/-1.11 SDS), birth weight was 3.09+/-0.61 kg (p<0.01; -0.92+/-1.19 SDS), and BMI at birth was 12.9+/-1.7. Girls' birth length was 48.1+/-3.4 cm (p<0.05; -1.17+/-1.51 SDS), birth weight was 2.92+/-0.60 kg (p=0.05; -1.08+/-1.19 SDS), and BMI at birth was 12.6+/-2.2. There was a continuous loss of growth velocity, despite a wide variance in the first years, so height deficit became more evident with increasing age. GHD is a congenital disease no matter when height deficit becomes clinically evident, because GH-deficient children grow in disease-specific percentile channels with a highly significantly reduced length and weight, which demonstrates that GH is essential for adequate growth in infancy and early childhood. Copyright (c) 2010 S. Karger AG, Basel.

  6. Numerical Simulation of Nanostructure Growth

    NASA Technical Reports Server (NTRS)

    Hwang, Helen H.; Bose, Deepak; Govindan, T. R.; Meyyappan, M.

    2004-01-01

    Nanoscale structures, such as nanowires and carbon nanotubes (CNTs), are often grown in gaseous or plasma environments. Successful growth of these structures is defined by achieving a specified crystallinity or chirality, size or diameter, alignment, etc., which in turn depend on gas mixture ratios. pressure, flow rate, substrate temperature, and other operating conditions. To date, there has not been a rigorous growth model that addresses the specific concerns of crystalline nanowire growth, while demonstrating the correct trends of the processing conditions on growth rates. Most crystal growth models are based on the Burton, Cabrera, and Frank (BCF) method, where adatoms are incorporated into a growing crystal at surface steps or spirals. When the supersaturation of the vapor is high, islands nucleate to form steps, and these steps subsequently spread (grow). The overall bulk growth rate is determined by solving for the evolving motion of the steps. Our approach is to use a phase field model to simulate the growth of finite sized nanowire crystals, linking the free energy equation with the diffusion equation of the adatoms. The phase field method solves for an order parameter that defines the evolving steps in a concentration field. This eliminates the need for explicit front tracking/location, or complicated shadowing routines, both of which can be computationally expensive, particularly in higher dimensions. We will present results demonstrating the effect of process conditions, such as substrate temperature, vapor supersaturation, etc. on the evolving morphologies and overall growth rates of the nanostructures.

  7. [Growth in puberty].

    PubMed

    Bierich, J R

    1985-01-01

    During puberty growth velocity increases within 3 years from a prepubertal nadir to a maximum, in male to 9-10 cm/year, in female to 7-9 cm/year. This spurt is triggered by the androgenic steroids, in male mainly by testicular testosterone. In patients with anorchia the pubertal growth spurt is missing. The androgens have a dual effect. 1. As comes forth from observations in hypopituitary dwarfs being treated with constant replacement doses of hGH, these steroids potentiate the growth-stimulatory effect of hGH. In order to continue growing at all, these dwarfs need the additional medication of androgenic or anabolic steroids if they are hypogonadotrophic. 2. As demonstrated by our measurements of the nocturnal hGH secretion, androgenic steroids enhance the spontaneous production of hGH by a factor of 2-3. Biologically active androgens appear to be a conditio sine qua non for longitudinal growth after age 11-12. This is in concordance with the statement that adult male castrates are no giants as has often been claimed. The rather tall eunuchs in Istanbul were no Turks but as a rule Sudanese negroes who are racially much taller than Turks.

  8. Regulation of body growth by microRNAs.

    PubMed

    Lui, Julian C

    2017-11-15

    Regulation of body growth remains a fascinating and unresolved biological mystery. One key component of body growth is skeletal and longitudinal bone growth. Children grow taller because their bones grew longer, and the predominant driver of longitudinal bone growth is a cartilaginous structure found near the ends of long bone named the growth plate. Numerous recent studies have started to unveil the importance of microRNAs in regulation of growth plate functions, therefore contributing to regulation of linear growth. In addition to longitudinal growth, other organs in our body need to increase in size and cell number as we grow, and the regulation of organ growth involves both systemic factors like hormones; and other intrinsic mechanisms, which we are just beginning to understand. This review aims to summarize some recent important findings on how microRNAs are involved in both of these processes: the regulation of longitudinal bone growth, and the regulation of organs and overall body growth. Published by Elsevier B.V.

  9. Normal growth and development in the absence of hepatic insulin-like growth factor I

    PubMed Central

    Yakar, Shoshana; Liu, Jun-Li; Stannard, Bethel; Butler, Andrew; Accili, Domenici; Sauer, Brian; LeRoith, Derek

    1999-01-01

    The somatomedin hypothesis proposed that insulin-like growth factor I (IGF-I) was a hepatically derived circulating mediator of growth hormone and is a crucial factor for postnatal growth and development. To reassess this hypothesis, we have used the Cre/loxP recombination system to delete the igf1 gene exclusively in the liver. igf1 gene deletion in the liver abrogated expression of igf1 mRNA and caused a dramatic reduction in circulating IGF-I levels. However, growth as determined by body weight, body length, and femoral length did not differ from wild-type littermates. Although our model proves that hepatic IGF-I is indeed the major contributor to circulating IGF-I levels in mice it challenges the concept that circulating IGF-I is crucial for normal postnatal growth. Rather, our model provides direct evidence for the importance of the autocrine/paracrine role of IGF-I. PMID:10377413

  10. Growth impairment due to transient hypercortisolism.

    PubMed

    Armour, K; Chalew, S; Kowarski, A A

    1986-01-01

    Cushing's syndrome in childhood is generally recognized by classical features such as truncal obesity, striae, easy bruising, moon facies, hypertension and growth retardation. Exceptionally, Cushing's syndrome has been reported to present as growth failure alone. We diagnosed transient hypercortisolism in 6 children who had poor growth as their only presenting abnormality. The 6 children all had integrated concentrations of cortisols (IC-F) (14.1 +/- 1.7 micrograms/dl; mean +/- 1 SD) which exceeded the IC-F in healthy children and adults (5.7 +/- 1.5 micrograms/dl; P less than 0.001). The IC-F of these 6 index cases overlapped the range of IC-F in patients with pathologically proven Cushing's syndrome (20.2 +/- 4.7 micrograms/dl). Four of the 6 patients were treated with human growth hormone for 8 months and showed a marked improvement in their growth rates. Four patients have entered puberty and are growing at normal rates. Three of the 6 children had normal repeat IC-Fs, subsequently, at a time they had normal growth rates. In 1-1/2 to 3 years of follow-up, none of the patients developed any other stigmata of Cushing's syndrome. We conclude that transient hypercortisolism, documented by the IC-F, may cause growth failure without other symptoms of Cushing's syndrome. Growth hormone therapy may improve the growth rate of these children at the time of their poor growth.

  11. Factors That Influence Language Growth.

    ERIC Educational Resources Information Center

    McCarthy, Dorothea, Ed.; And Others

    This booklet contains four articles that discuss factors influencing language growth. The first, "The Child's Equipment for Language Growth" by Charlotte Wells, examines what the child needs for language learning, how the child uses his equipment for language growth, and what school factors facilitate the child's use of his equipment for language…

  12. Root growth dynamics linked to above-ground growth in walnut (Juglans regia).

    PubMed

    Contador, Maria Loreto; Comas, Louise H; Metcalf, Samuel G; Stewart, William L; Porris Gomez, Ignacio; Negron, Claudia; Lampinen, Bruce D

    2015-07-01

    Examination of plant growth below ground is relatively scant compared with that above ground, and is needed to understand whole-plant responses to the environment. This study examines whether the seasonal timing of fine root growth and the spatial distribution of this growth through the soil profile varies in response to canopy manipulation and soil temperature. Plasticity in the seasonal timing and vertical distribution of root production in response to canopy and soil water manipulation was analysed in field-grown walnut (Juglans regia 'Chandler') using minirhizotron techniques. Root production in walnuts followed a unimodal curve, with one marked flush of root growth starting in mid-May, with a peak in mid-June. Root production declined later in the season, corresponding to increased soil temperature, as well as to the period of major carbohydrate allocation to reproduction. Canopy and soil moisture manipulation did not influence the timing of root production, but did influence the vertical distribution of roots through the soil profile. Water deficit appeared to promote root production in deeper soil layers for mining soil water. Canopy removal appeared to promote shallow root production. The findings of this study add to growing evidence that root growth in many ecosystems follows a unimodal curve with one marked flush of root growth in coordination with the initial leaf flush of the season. Root vertical distribution appeared to have greater plasticity than timing of root production in this system, with temperature and/or carbohydrate competition constraining the timing of root growth. Effects on root distribution can have serious impacts on trees, with shallow rooting having negative impacts in years with limited soil water or positive impacts in years with wet springs, and deep rooting having positive impacts on soil water mining from deeper soil layers but negative impacts in years with wet springs. © The Author 2015. Published by Oxford University Press

  13. Growth perturbations in a phenotype with rapid fetal growth preceding preterm labor and term birth.

    PubMed

    Lampl, Michelle; Kusanovic, Juan Pedro; Erez, Offer; Gotsch, Francesca; Espinoza, Jimmy; Goncalves, Luis; Lee, Wesley; Gomez, Ricardo; Nien, Jyh Kae; Frongillo, Edward A; Romero, Roberto

    2009-01-01

    The variability in fetal growth rates and gestation duration in humans is not well understood. Of interest are women presenting with an episode of preterm labor and subsequently delivering a term neonate, who is small relative to peers of similar gestational age. To further understand these relationships, fetal growth patterns predating an episode of preterm labor were investigated. Retrospective analysis of fetal biometry assessed by serial ultrasound in a prospectively studied sample of pregnancies in Santiago, Chile, tested the hypothesis that fetal growth patterns among uncomplicated pregnancies (n = 3,706) and those with an episode of preterm labor followed by term delivery (n = 184) were identical across the time intervals 16-22 weeks, 22-28 weeks, and 28-34 weeks in a multilevel mixed-effects regression. The hypothesis was not supported. Fetal weight growth rate was faster from 16 weeks among pregnancies with an episode of preterm labor (P < 0.05), declined across midgestation (22-28 weeks, P < 0.05), and rebounded between 28 and 34 weeks (P = 0.06). This was associated with perturbations in abdominal circumference growth and proportionately larger biparietal diameter from 22 gestational weeks (P = 0.03), greater femur (P = 0.01), biparietal diameter (P = 0.001) and head circumference (P = 0.02) dimensions relative to abdominal circumference across midgestation (22-28 weeks), followed by proportionately smaller femur diaphyseal length (P = 0.02) and biparietal diameter (P = 0.03) subsequently. A distinctive rapid growth phenotype characterized fetal growth preceding an episode of preterm labor among this sample of term-delivered neonates. Perturbations in abdominal circumference growth and patterns of proportionality suggest an altered growth strategy pre-dating the preterm labor episode.

  14. Crystal growth in fused solvent systems

    NASA Technical Reports Server (NTRS)

    Ulrich, D. R.; Noone, M. J.; Spear, K. E.; White, W. B.; Henry, E. C.

    1973-01-01

    Research is reported on the growth of electronic ceramic single crystals from solution for the future growth of crystals in a microgravity environment. Work included growth from fused or glass solvents and aqueous solutions. Topics discussed include: crystal identification and selection; aqueous solution growth of triglycine sulphate (TGS); and characterization of TGS.

  15. A generalized electrochemical aggregative growth mechanism.

    PubMed

    Ustarroz, Jon; Hammons, Joshua A; Altantzis, Thomas; Hubin, Annick; Bals, Sara; Terryn, Herman

    2013-08-07

    The early stages of nanocrystal nucleation and growth are still an active field of research and remain unrevealed. In this work, by the combination of aberration-corrected transmission electron microscopy (TEM) and electrochemical characterization of the electrodeposition of different metals, we provide a complete reformulation of the Volmer-Weber 3D island growth mechanism, which has always been accepted to explain the early stages of metal electrodeposition and thin-film growth on low-energy substrates. We have developed a Generalized Electrochemical Aggregative Growth Mechanism which mimics the atomistic processes during the early stages of thin-film growth, by incorporating nanoclusters as building blocks. We discuss the influence of new processes such as nanocluster self-limiting growth, surface diffusion, aggregation, and coalescence on the growth mechanism and morphology of the resulting nanostructures. Self-limiting growth mechanisms hinder nanocluster growth and favor coalescence driven growth. The size of the primary nanoclusters is independent of the applied potential and deposition time. The balance between nucleation, nanocluster surface diffusion, and coalescence depends on the material and the overpotential, and influences strongly the morphology of the deposits. A small extent of coalescence leads to ultraporous dendritic structures, large surface coverage, and small particle size. Contrarily, full recrystallization leads to larger hemispherical monocrystalline islands and smaller particle density. The mechanism we propose represents a scientific breakthrough from the fundamental point of view and indicates that achieving the right balance between nucleation, self-limiting growth, cluster surface diffusion, and coalescence is essential and opens new, exciting possibilities to build up enhanced supported nanostructures using nanoclusters as building blocks.

  16. Population growth and consumption.

    PubMed

    Chalkley, K

    1997-04-01

    The relationship between population growth, resource consumption, and environmental degradation is complex. The rise in "greenhouse gases" that will cause climatic change is clearly due to human activity, and pollutants are often concentrated in densely populated areas. However, even an area with a negative population growth, such as Russia, can experience severe environmental degradation due to poor management. Consumption patterns have the most effect on ozone depletion, while population growth threatens biodiversity of and within species through the destruction of ecosystems. Migration joins population growth and social factors, such as land inequality, as major causes of deforestation, and global demand for water is expected to increase faster than the rate of population growth. Coastal development and over-fishing threaten to deplete the oceans, while soil quality is threatened by inappropriate land use. Estimates of the earth's carrying capacity range from less than 3 billion to more than 44 billion people, indicating how difficult it is to assess this figure. Development efforts throughout the world may lead to human gains that will ultimately be negated by environmental losses. These factors have led to growing support for environmentally sustainable development.

  17. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN-depleted head and neck cancer tumor cells.

    PubMed

    Liu, Zhiyong; Hartman, Yolanda E; Warram, Jason M; Knowles, Joseph A; Sweeny, Larissa; Zhou, Tong; Rosenthal, Eben L

    2011-08-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma-mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer, there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here, we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were cocultured with fibroblasts or inoculated with fibroblasts into severe combined immunodeficient mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Coculture experiments showed fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN-silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN-silenced cells compared with control vector-transfected cells, whereas inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast coculture, suggesting the importance of FGFR2 signaling in fibroblast-mediated tumor growth. Analysis of xenografted tumors revealed that EMMPRIN-silenced tumors had a larger stromal compartment compared with control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast-independent tumor growth.

  18. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN depleted head and neck cancer tumor cells

    PubMed Central

    Liu, Zhiyong; Hartman, Yolanda E.; Warram, Jason M.; Knowles, Joseph A.; Sweeny, Larrisa; Zhou, Tong; Rosenthal, Eben L.

    2011-01-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were co-cultured with fibroblasts or inoculated with fibroblasts into SCID mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Co-culture experiments demonstrated fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN silenced cells compared to control vector transfected cells, while inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast co-culture, suggesting the importance of FGFR2 signaling in fibroblast mediated tumor growth. Analysis of xenografted tumors revealed EMMPRIN silenced tumors had a larger stromal compartment compared to control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast independent tumor growth. PMID:21665938

  19. Insulin-like growth factor-I and insulin-like growth factor binding protein-3 cotreatment versus insulin-like growth factor-I alone in two brothers with growth hormone insensitivity syndrome: effects on insulin sensitivity, body composition and linear growth.

    PubMed

    Ekström, Klas; Carlsson-Skwirut, Christine; Ritzén, E Martin; Bang, Peter

    2011-01-01

    Growth hormone insensitivity syndrome (GHIS) is caused by a defective growth hormone receptor (GHR) and is associated with insulin-like growth factor-I (IGF-I) deficiency, severely short stature and, from adolescence, fasting hyperglycemia and obesity. We studied the effects of treatment with IGF-I in either a 1:1 molar complex with IGFBP-3 (IGF-I/BP-3-Tx) or with IGF-I alone (IGF-I-Tx) on metabolism and linear growth. Two brothers, compound heterozygous for a GHR gene defect, were studied. After 8 months without treatment, we examined the short- and long-term effects of IGF-I/BP-3-Tx and, subsequently, IGF-I-Tx on 12-hour overnight levels of IGF-I, GH, insulin, IGFBP-1, insulin sensitivity by hyperinsulinemic euglycemic clamp, body composition by dual-energy X-ray absorptiometry and linear growth. Mean overnight levels of insulin decreased and IGFBP-1, a measure of hepatic insulin sensitivity, increased on both regimens, but was more pronounced on IGF-I-Tx. Insulin sensitivity by clamp showed no consistent changes. Lean body mass increased and abdominal fat mass decreased in both subjects on IGF-I-Tx. However, the changes were inconsistent during IGF-I/BP-3-Tx. Height velocity was low without treatment, increased slightly on IGF-I/BP-3-Tx and doubled on IGF-I-Tx. Both modalities of IGF-I improved determinants of hepatic insulin sensitivity, body composition and linear growth rate; however, IGF-I alone seemed to be more efficient. Copyright © 2011 S. Karger AG, Basel.

  20. Detecting Appropriate Trajectories of Growth in Latent Growth Models: The Performance of Information-Based Criteria

    ERIC Educational Resources Information Center

    Whittaker, Tiffany A.; Khojasteh, Jam

    2017-01-01

    Latent growth modeling (LGM) is a popular and flexible technique that may be used when data are collected across several different measurement occasions. Modeling the appropriate growth trajectory has important implications with respect to the accurate interpretation of parameter estimates of interest in a latent growth model that may impact…

  1. Growth in children with chronic kidney disease: role of nutrition, growth hormone, dialysis, and steroids.

    PubMed

    Ingulli, Elizabeth G; Mak, Robert H

    2014-04-01

    Children with chronic kidney disease (CKD) have impaired growth that leads to short stature in adulthood. The problem persists even with successful transplantation and steroid withdrawal protocols. The aim of this review is to provide an overview of the pressing issues related to growth failure in children with CKD both before and after transplantation. Although great strides have been made in dialysis and transplantation, the incidence of abnormal adult height in children growing up with CKD remains as high as 45-60%. The lack of catch-up growth and resultant short stature is a critical issue for self-esteem and quality of life in many children with CKD. Aggressive daily dialysis, improved nutrition, treatment of metabolic bone disease, and the use of recombinant human growth hormone provide some hope for catch-up growth in select patients. The causes of growth failure in the setting of CKD are multifactorial. Attention to all the details by optimizing nutritional, bone and mineral metabolism, correcting metabolic acidosis and anemia, achieving excellent blood pressure control, reversing cardiovascular complications such as left ventricular hypertrophy, and minimizing the use of corticosteroids is the current standard of care. Aggressive daily dialysis can reverse many of the uremic derangements. For patients not yet on dialysis or for those after renal transplant, early institution of recombinant human growth hormone can promote growth. Improved understanding of the mechanisms of hormone resistance may offer novel targets or measurements of treatment effectiveness.

  2. Advanced dendritic web growth development

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.

    1985-01-01

    A program to develop the technology of the silicon dendritic web ribbon growth process is examined. The effort is being concentrated on the area rate and quality requirements necessary to meet the JPL/DOE goals for terrestrial PV applications. Closed loop web growth system development and stress reduction for high area rate growth is considered.

  3. Near-Death Experiences and Posttraumatic Growth.

    PubMed

    Khanna, Surbhi; Greyson, Bruce

    2015-10-01

    Posttraumatic growth denotes positive psychological change after a traumatic experience that is an improvement over the state before the trauma. Inasmuch as it involves existential reevaluation, posttraumatic growth overlaps with spiritual change, although it also encompasses other domains of positive outcome. This study investigated posttraumatic growth and presence and depth of near-death experience at the time of the close brush with death among 251 survivors of a close brush with death, using the Posttraumatic Growth Inventory and the Near-Death Experience (NDE) Scale. Near-death experiences were associated with greater posttraumatic growth than were close brushes with death in the absence of such an experience, and scores on the NDE Scale were significantly correlated with scores on the Posttraumatic Growth Inventory. To the extent that NDEs are interpreted as spiritual events, these findings support prior research suggesting that spiritual factors make a significant contribution to posttraumatic growth and are consistent with the model that posits challenges to the assumptive worldview as a major stimulus to posttraumatic growth.

  4. Differential effects of insulin-like growth factor I and growth hormone on developmental stages of rat growth plate chondrocytes in vivo.

    PubMed Central

    Hunziker, E B; Wagner, J; Zapf, J

    1994-01-01

    Skeletal growth depends upon enchondral ossification in growth plate cartilage, within which chondrocytes undergo well defined stages of maturation. We infused IGF-I or growth hormone (GH), two key regulators of skeletal growth, into hypophysectomized rats and compared their effects on growth plate chondrocyte differentiation using qualitative and quantitative autoradiography, stereology, and incident light fluorescence microscopy. Stem cell cycle time was shortened from 50 to 15 and 8 d after treatment with IGF-I and GH, respectively. Proliferating cell cycle time decreased from 11 to 4.5 and 3 d, and duration of the hypertrophic phase decreased from 6 to 4 and 2.8 d. Average matrix volume per cell at each differentiation stage was similar for normal, hormone-treated, and untreated hypophysectomized groups. Mean cell volume and cell height were significantly reduced by hypophysectomy at the proliferative and hypertrophic stages, but were restored to physiological values by IGF-I and GH. In contrast, cell productivity, i.e., increases in cell volume, height, and matrix production per unit of time, did not reach normal values with either IGF-I or GH, and this parameter was inversely proportional to cell cycle time or phase duration. IGF-I and GH are thus capable of stimulating growth plate chondrocytes at all stages of differentiation, albeit to variable degrees with respect to individual cell activities. Although it is generally accepted that GH acts at both the stem and proliferating phases of chondrocyte differentiation, our data represent the first evidence in vivo that IGF-I is also capable of stimulating stem cells. Images PMID:8132746

  5. A generalized theory of thin film growth

    NASA Astrophysics Data System (ADS)

    Du, Feng; Huang, Hanchen

    2018-03-01

    This paper reports a theory of thin film growth that is generalized for arbitrary incidence angle during physical vapor deposition in two dimensions. The accompanying kinetic Monte Carlo simulations serve as verification. A special theory already exists for thin film growth with zero incidence angle, and another theory also exists for nanorod growth with a glancing angle. The theory in this report serves as a bridge to describe the transition from thin film growth to nanorod growth. In particular, this theory gives two critical conditions in analytical form of critical coverage, ΘI and ΘII. The first critical condition defines the onset when crystal growth or step dynamics stops following the wedding cake model for thin film growth. The second critical condition defines the onset when multiple-layer surface steps form to enable nanorod growth. Further, this theory also reveals a critical incidence angle, below which nanorod growth is impossible. The critical coverages, together with the critical incidence angle, defines a phase diagram of thin growth versus nanorod growth.

  6. Reserve Growth of Alberta Oil Pools

    USGS Publications Warehouse

    Verma, Mahendra K.; Cook, Troy

    2008-01-01

    This Open-File Report is based on a presentation delivered at the Fourth U.S. Geological Survey Workshop on Reserve Growth on March 10-11, 2008. It summarizes the results of a study of reserve growth of oil pools in Alberta Province, Canada. The study is part of a larger effort involving similar studies of fields in other important petroleum provinces around the world, with the overall objective of gaining a better understanding of reserve growth in fields with different geologic/reservoir parameters and different operating environments. The goals of the study were to: 1. Evaluate historical oil reserve data and assess reserve growth. 2. Develop reserve growth models/functions to help forecast hydrocarbon volumes. 3. Study reserve growth sensitivity to various parameters ? for example, pool size, porosity, oil gravity, and lithology. 4. Compare reserve growth in oil pools/fields of Alberta provinces with those from other large petroleum provinces.

  7. MEASURING ECONOMIC GROWTH FROM OUTER SPACE.

    PubMed

    Henderson, J Vernon; Storeygard, Adam; Weil, David N

    2012-04-01

    GDP growth is often measured poorly for countries and rarely measured at all for cities or subnational regions. We propose a readily available proxy: satellite data on lights at night. We develop a statistical framework that uses lights growth to augment existing income growth measures, under the assumption that measurement error in using observed light as an indicator of income is uncorrelated with measurement error in national income accounts. For countries with good national income accounts data, information on growth of lights is of marginal value in estimating the true growth rate of income, while for countries with the worst national income accounts, the optimal estimate of true income growth is a composite with roughly equal weights. Among poor-data countries, our new estimate of average annual growth differs by as much as 3 percentage points from official data. Lights data also allow for measurement of income growth in sub- and supranational regions. As an application, we examine growth in Sub Saharan African regions over the last 17 years. We find that real incomes in non-coastal areas have grown faster by 1/3 of an annual percentage point than coastal areas; non-malarial areas have grown faster than malarial ones by 1/3 to 2/3 annual percent points; and primate city regions have grown no faster than hinterland areas. Such applications point toward a research program in which "empirical growth" need no longer be synonymous with "national income accounts."

  8. [Therapy with recombinant growth hormone].

    PubMed

    Wabitsch, Martin

    2007-06-07

    Therapy with recombinant growth hormone is currently approved for the indications growth hormone deficiency,Turner syndrome, chronic renal failure, small for gestational age (SGA) and Prader-Willi syndrome. Positive experience from on-going clinical studies (e.g. on obesity, type 2 diabetes, Crohn's disease) support an extended range of applications for recombinant growth hormone. However, growth hormone therapy is very expensive. On the other hand, biosimilars are already available that are significantly lower in price. During the coming years, research must show whether the efficacy and safety of biosimilars (including possible new indications) are equal to that of the established preparations.

  9. Growth curve for Propionibacterium acnes.

    PubMed

    Hall, G S; Pratt-Rippin, K; Meisler, D M; Washington, J A; Roussel, T J; Miller, D

    1994-06-01

    We established growth curves for Propionibacterium acnes isolates recovered from eyes with chronic postoperative endophthalmitis. The growth curve plotted the average of the duplicate bacterial concentration against time. The generation time for P. acnes calculated from the growth curves was approximately 5.1 hours. The growth of P. acnes is slower than other anaerobic bacteria. This may account for its delayed appearance in culture of ocular specimens. It may also explain treatment failure if the concentration of an antibiotic injected into the vitreous does not remain at an effective level during the critical replicative phase of the organism.

  10. Protein crystal growth in space

    NASA Technical Reports Server (NTRS)

    Bugg, C. E.; Clifford, D. W.

    1987-01-01

    The advantages of protein crystallization in space, and the applications of protein crystallography to drug design, protein engineering, and the design of synthetic vaccines are examined. The steps involved in using protein crystallography to determine the three-dimensional structure of a protein are discussed. The growth chamber design and the hand-held apparatus developed for protein crystal growth by vapor diffusion techniques (hanging-drop method) are described; the experimental data from the four Shuttle missions are utilized to develop hardware for protein crystal growth in space and to evaluate the effects of gravity on protein crystal growth.

  11. Fibroblast growth factor receptors in breast cancer.

    PubMed

    Wang, Shuwei; Ding, Zhongyang

    2017-05-01

    Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.

  12. Modeling and Optimization for Epitaxial Growth: Transport and Growth Studies

    DTIC Science & Technology

    1999-01-01

    effect . It is expressed as the sum of these two components j i jC i jT i where jC i and jT i denote the concentration driven and thermally driven...improve manufacturing effectiveness for epitaxial growth of silicon and silicon-germanium (Si-Ge) thin films on a silicon wafer. Growth takes place in the...non-uniformity to compensate for the effects of other phenomena such as reactant depletion, gas heating and gas phase reactions, thermal diffusion of

  13. Latitudinal comparisons of walleye growth in North America and factors influencing growth of walleyes in Kansas reservoirs

    USGS Publications Warehouse

    Quist, M.C.; Guy, C.S.; Schultz, R.D.; Stephen, J.L.

    2003-01-01

    We compared the growth of walleyes Stizostedion vitreum in Kansas to that of other populations throughout North America and determined the effects of the abundance of gizzard shad Dorosoma cepedianum and temperature on the growth of walleyes in Kansas reservoirs. Age was estimated from scales and otoliths collected from walleyes (N = 2,072) sampled with gill nets from eight Kansas reservoirs during fall in 1991-1999. Age-0 gizzard shad abundance was indexed based on summer seining information, and temperature data were obtained from the National Oceanic and Atmospheric Administration. Parameter estimates of von Bertalanffy growth models indicated that the growth of walleyes in Kansas was more similar to that of southern latitude populations (e.g., Mississippi and Texas) than to that of northern (e.g., Manitoba, Minnesota and South Dakota) or middle latitude (e.g., Colorado and Iowa) populations. Northern and middle latitude populations had lower mean back-calculated lengths at age 1, lower growth coefficients, and greater longevity than southern and Kansas populations. A relative growth index (RGI; [Lt/Ls ] ?? 100, where Lt is the observed length at age and Ls is the age-specific standard length derived from a pooled von Bertalanffy growth model) and standardized percentile values (percentile values of mean back-calculated lengths at age) indicated that the growth of walleyes in Kansas was above average compared with that of other populations in North America. The annual growth increments of Kansas walleyes were more variable among years than among reservoirs. The growth increments of age-0 and age-1 walleyes were positively related to the catch rates of gizzard shad smaller than 80 mm, whereas the growth of age-2 and age-3 walleyes was inversely related to mean summer air temperature. Our results provide a framework for comparing North American walleye populations, and our proposed RGI provides a simple, easily interpreted index of growth.

  14. Upwelling-derived oceanographic conditions impact growth performance and growth-related gene expression in intertidal fish.

    PubMed

    Fuentes, Eduardo N; Zuloaga, Rodrigo; Almarza, Oscar; Mendez, Katterinne; Valdés, Juan Antonio; Molina, Alfredo; Pulgar, Jose

    2017-12-01

    Growth is one of the main biological processes in aquatic organisms that is affected by environmental fluctuations such as upwelling (characterized by food-rich waters). In fish, growth is directly related with skeletal muscle increase; which represents the largest tissue of body mass. However, the effects of upwelling on growth, at the physiological and molecular level, are unknown. This study used Girella laevifrons (one of the most abundant intertidal fish in Eastern South Pacific) as a biological model, considering animals from upwelling (U) and non-upwelling (NU) areas. Here, we evaluated the effect of nutritional composition and food availability on growth performance and expression of key growth-related genes (insulin-kike growth factor 1 (igf1) and myosin heavy-chain (myhc)) and atrophy-related genes (muscle ring-finger 1 (murf1), F-box only protein 32 (atrogin-1) and BCL2/adenovirus E1B 19kDa-interacting protein 3 (bnip3)). We reported that, among zones, U fish displayed higher growth performance in response to nutritional composition, specifically between protein- and fiber-rich diets (~1g). We also found in NU fish that atrophy-related genes were upregulated with fiber-rich diet and during fasting (~2-fold at minimum respect U). In conclusion, our results suggest that the growth potential of upwelling fish may be a consequence of differential muscle gene expression. Our data provide a preliminary approach contributing on how upwelling influence fish growth at the physiological and molecular levels. Future studies are required to gain further knowledge about molecular differences between U and NU animals, as well as the possible applications of this knowledge in the aquaculture industry. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. State Growth Models for School Accountability: Progress on Development and Reporting Measures of Student Growth

    ERIC Educational Resources Information Center

    Blank, Rolf K.

    2010-01-01

    The Council of Chief State School Officers (CCSSO) is working to respond to increased interest in the use of growth models for school accountability. Growth models are based on tracking change in individual student achievement scores over multiple years. While growth models have been used for decades in academic research and program evaluation, a…

  16. Racial/ethnic standards for fetal growth: the NICHD Fetal Growth Studies.

    PubMed

    Buck Louis, Germaine M; Grewal, Jagteshwar; Albert, Paul S; Sciscione, Anthony; Wing, Deborah A; Grobman, William A; Newman, Roger B; Wapner, Ronald; D'Alton, Mary E; Skupski, Daniel; Nageotte, Michael P; Ranzini, Angela C; Owen, John; Chien, Edward K; Craigo, Sabrina; Hediger, Mary L; Kim, Sungduk; Zhang, Cuilin; Grantz, Katherine L

    2015-10-01

    Fetal growth is associated with long-term health yet no appropriate standards exist for the early identification of undergrown or overgrown fetuses. We sought to develop contemporary fetal growth standards for 4 self-identified US racial/ethnic groups. We recruited for prospective follow-up 2334 healthy women with low-risk, singleton pregnancies from 12 community and perinatal centers from July 2009 through January 2013. The cohort comprised: 614 (26%) non-Hispanic whites, 611 (26%) non-Hispanic blacks, 649 (28%) Hispanics, and 460 (20%) Asians. Women were screened at 8w0d to 13w6d for maternal health status associated with presumably normal fetal growth (aged 18-40 years; body mass index 19.0-29.9 kg/m(2); healthy lifestyles and living conditions; low-risk medical and obstetrical history); 92% of recruited women completed the protocol. Women were randomized among 4 ultrasonography schedules for longitudinal fetal measurement using the Voluson E8 (GE Healthcare, Milwaukee, WI). In-person interviews and anthropometric assessments were conducted at each visit; medical records were abstracted. The fetuses of 1737 (74%) women continued to be low risk (uncomplicated pregnancy, absent anomalies) at birth, and their measurements were included in the standards. Racial/ethnic-specific fetal growth curves were estimated using linear mixed models with cubic splines. Estimated fetal weight (EFW) and biometric parameter percentiles (5th, 50th, 95th) were determined for each gestational week and comparisons made by race/ethnicity, with and without adjustment for maternal and sociodemographic factors. EFW differed significantly by race/ethnicity >20 weeks. Specifically at 39 weeks, the 5th, 50th, and 95th percentiles were 2790, 3505, and 4402 g for white; 2633, 3336, and 4226 g for Hispanic; 2621, 3270, and 4078 g for Asian; and 2622, 3260, and 4053 g for black women (adjusted global P < .001). For individual parameters, racial/ethnic differences by order of detection were

  17. Neonatal hyperthyroidism impairs epinephrine-provoked secretion of nerve growth factor and epidermal growth factor in mouse saliva.

    PubMed

    Lakshmanan, J; Landel, C P

    1986-07-01

    We examined long-term effects of neonatal hyperthyroidism on salivary secretions of nerve growth factor and epidermal growth factor in male and female mice at the age of 31 days. Hyperthyroidism was induced by thyroxine (T4) injections (0.4 microgram/g body weight/day) during days 0-6. Littermate control mice were treated with vehicle. T4 treatment did not alter the amounts of protein secreted into saliva but hormone administration induced alteration in the types of protein secreted. T4 treatment decreased the contents of both nerve growth factor and epidermal growth factor secreted into the saliva. A Sephadex G-200 column chromatographic profile revealed the presence of two distinct nerve growth factor immunoreactive peaks, while epidermal growth factor immunoreactivity predominantly eluted as a single low molecular weight form. T4 treatment did not alter the molecular nature of their secretion, but the treatment decreased their contents. These results indicate an impairment in salivary secretion of nerve growth factor and epidermal growth factor long after T4 treatment has been discontinued.

  18. Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria.

    PubMed

    do Amaral, Fernanda P; Pankievicz, Vânia C S; Arisi, Ana Carolina M; de Souza, Emanuel M; Pedrosa, Fabio; Stacey, Gary

    2016-04-01

    Plant growth promoting rhizobacteria (PGPR) can associate and enhance the growth of important crop grasses. However, in most cases, the molecular mechanisms responsible for growth promotion are not known. Such research could benefit by the adoption of a grass model species that showed a positive response to bacterial inoculation and was amenable to genetic and molecular research methods. In this work we inoculated different genotypes of the model grass Brachypodium distachyon with two, well-characterized PGPR bacteria, Azospirillum brasilense and Herbaspirillum seropedicae, and evaluated the growth response. Plants were grown in soil under no nitrogen or with low nitrogen (i.e., 0.5 mM KNO3). A variety of growth parameters (e.g., shoot height, root length, number of lateral roots, fresh and dry weight) were measured 35 days after inoculation. The data indicate that plant genotype plays a very important role in determining the plant response to PGPR inoculation. A positive growth response was observed with only four genotypes grown under no nitrogen and three genotypes tested under low nitrogen. However, in contrast, relatively good root colonization was seen with most genotypes, as measured by drop plate counting and direct, microscopic examination of roots. In particular, the endophytic bacteria H. seropedicae showed strong epiphytic and endophytic colonization of roots.

  19. Guiding neuronal growth with light

    PubMed Central

    Ehrlicher, A.; Betz, T.; Stuhrmann, B.; Koch, D.; Milner, V.; Raizen, M. G.; Käs, J.

    2002-01-01

    Control over neuronal growth is a fundamental objective in neuroscience, cell biology, developmental biology, biophysics, and biomedicine and is particularly important for the formation of neural circuits in vitro, as well as nerve regeneration in vivo [Zeck, G. & Fromherz, P. (2001) Proc. Natl. Acad. Sci. USA 98, 10457–10462]. We have shown experimentally that we can use weak optical forces to guide the direction taken by the leading edge, or growth cone, of a nerve cell. In actively extending growth cones, a laser spot is placed in front of a specific area of the nerve's leading edge, enhancing growth into the beam focus and resulting in guided neuronal turns as well as enhanced growth. The power of our laser is chosen so that the resulting gradient forces are sufficiently powerful to bias the actin polymerization-driven lamellipodia extension, but too weak to hold and move the growth cone. We are therefore using light to control a natural biological process, in sharp contrast to the established technique of optical tweezers [Ashkin, A. (1970) Phys. Rev. Lett. 24, 156–159; Ashkin, A. & Dziedzic, J. M. (1987) Science 235, 1517–1520], which uses large optical forces to manipulate entire structures. Our results therefore open an avenue to controlling neuronal growth in vitro and in vivo with a simple, noncontact technique. PMID:12456879

  20. Evaluating growth performance of young stands

    Treesearch

    A. L. Roe; R. E. Benson

    1966-01-01

    A simple procedure for evaluating the diameter growth of young stands in relation to potential growth is described. A comparison technique is developed which contrasts relative diameter of crop trees to the relative diameter growth of the last decade to show the condition and trend of growth in the stand. The method is objective, easy to use, and has several...

  1. Relationships between growth, quality, and stocking within managed old-growth northern hardwoods

    Treesearch

    Chris Gronewold; Anthony W. D' Amato; Brian J. Palik

    2012-01-01

    An understanding of long-term growth dynamics is central to the development of sustainable uneven-aged silvicultural systems for northern hardwood forests in eastern North America. Of particular importance are quantitative assessments of the relationships between stocking control and long-term growth and quality development. This study examined these relationships in a...

  2. Effects of fasting on growth hormone, growth hormone receptor, and insulin-like growth factor-I axis in seawater-acclimated tilapia, Oreochromis mossambicus.

    PubMed

    Fox, B K; Riley, L G; Hirano, T; Grau, E G

    2006-09-15

    Effects of fasting on the growth hormone (GH)--growth hormone receptor (GHR)-insulin-like growth factor-I (IGF-I) axis were characterized in seawater-acclimated tilapia (Oreochromis mossambicus). Fasting for 4 weeks resulted in significant reductions in body weight and specific growth rate. Plasma GH and pituitary GH mRNA levels were significantly elevated in fasted fish, whereas significant reductions were observed in plasma IGF-I and hepatic IGF-I mRNA levels. There was a significant negative correlation between plasma levels of GH and IGF-I in the fasted fish. No effect of fasting was observed on hepatic GHR mRNA levels. Plasma glucose levels were reduced significantly in fasted fish. The fact that fasting elicited increases in GH and decreases in IGF-I production without affecting GHR expression indicates a possible development of GH resistance.

  3. 6-Gingerol inhibits hair shaft growth in cultured human hair follicles and modulates hair growth in mice.

    PubMed

    Miao, Yong; Sun, Yabin; Wang, Wenjun; Du, Benjun; Xiao, Shun-e; Hu, Yijue; Hu, Zhiqi

    2013-01-01

    Ginger (Zingiber officinale) has been traditionally used to check hair loss and stimulate hair growth in East Asia. Several companies produce shampoo containing an extract of ginger claimed to have anti-hair loss and hair growth promotion properties. However, there is no scientific evidence to back up these claims. This study was undertaken to measure 6-gingerol, the main active component of ginger, on hair shaft elongation in vitro and hair growth in vivo, and to investigate its effect on human dermal papilla cells (DPCs) in vivo and in vitro. 6-Gingerol suppressed hair growth in hair follicles in culture and the proliferation of cultured DPCs. The growth inhibition of DPCs by 6-gingerol in vitro may reflect a decrease in the Bcl-2/Bax ratio. Similar results were obtained in vivo. The results of this study showed that 6-gingerol does not have the ability to promote hair growth, on the contrary, can suppress human hair growth via its inhibitory and pro-apoptotic effects on DPCs in vitro, and can cause prolongation of telogen phase in vivo. Thus, 6-gingerol rather than being a hair growth stimulating drug, it is a potential hair growth suppressive drug; i.e. for hair removal.

  4. 6-Gingerol Inhibits Hair Shaft Growth in Cultured Human Hair Follicles and Modulates Hair Growth in Mice

    PubMed Central

    Miao, Yong; Sun, Yabin; Wang, Wenjun; Du, Benjun; Xiao, Shun-e; Hu, Yijue; Hu, Zhiqi

    2013-01-01

    Ginger (Zingiber officinale) has been traditionally used to check hair loss and stimulate hair growth in East Asia. Several companies produce shampoo containing an extract of ginger claimed to have anti-hair loss and hair growth promotion properties. However, there is no scientific evidence to back up these claims. This study was undertaken to measure 6-gingerol, the main active component of ginger, on hair shaft elongation in vitro and hair growth in vivo, and to investigate its effect on human dermal papilla cells (DPCs) in vivo and in vitro. 6-Gingerol suppressed hair growth in hair follicles in culture and the proliferation of cultured DPCs. The growth inhibition of DPCs by 6-gingerol in vitro may reflect a decrease in the Bcl-2/Bax ratio. Similar results were obtained in vivo. The results of this study showed that 6-gingerol does not have the ability to promote hair growth, on the contrary, can suppress human hair growth via its inhibitory and pro-apoptotic effects on DPCs in vitro, and can cause prolongation of telogen phase in vivo. Thus, 6-gingerol rather than being a hair growth stimulating drug, it is a potential hair growth suppressive drug; i.e. for hair removal. PMID:23437345

  5. Stochastic Laplacian growth

    NASA Astrophysics Data System (ADS)

    Alekseev, Oleg; Mineev-Weinstein, Mark

    2016-12-01

    A point source on a plane constantly emits particles which rapidly diffuse and then stick to a growing cluster. The growth probability of a cluster is presented as a sum over all possible scenarios leading to the same final shape. The classical point for the action, defined as a minus logarithm of the growth probability, describes the most probable scenario and reproduces the Laplacian growth equation, which embraces numerous fundamental free boundary dynamics in nonequilibrium physics. For nonclassical scenarios we introduce virtual point sources, in which presence the action becomes the Kullback-Leibler entropy. Strikingly, this entropy is shown to be the sum of electrostatic energies of layers grown per elementary time unit. Hence the growth probability of the presented nonequilibrium process obeys the Gibbs-Boltzmann statistics, which, as a rule, is not applied out from equilibrium. Each layer's probability is expressed as a product of simple factors in an auxiliary complex plane after a properly chosen conformal map. The action at this plane is a sum of Robin functions, which solve the Liouville equation. At the end we establish connections of our theory with the τ function of the integrable Toda hierarchy and with the Liouville theory for noncritical quantum strings.

  6. Growth Of Single Crystalline Copper Nanowhiskers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolb, Matthias; Richter, Gunther

    2010-11-24

    Nanowhiskers are defect free single crystals with high aspect ratios and as result exhibit superior physical, e.g. mechanical properties. This paper sheds light on the kinetics of copper nanowhisker growth and thickening. Whisker growth was provoked by covering silicon wafers with a thin carbon film and subsequently coating them with copper by molecular beam epitaxy. The whiskers grown were examined by scanning electron microscopy and the length and diameter were measured as a function of the amount of copper deposited. The experiments show that nanowhisker growth follows Ruth and Hirth's growth model. A fit of the model parameters to themore » acquired data shows that adsorption of atoms on the substrate and on the whisker surface, with subsequent surface diffusion to the whisker tip, delivers by far the greatest portion of material for whisker growth. Additionally, the experiments demonstrate that the crystallographic orientation of the substrate surface greatly influences the growth rate in the early stage of whisker growth.« less

  7. Growth responses in a mutant dwarf rat to human growth hormone and recombinant human insulin-like growth factor I.

    PubMed

    Skottner, A; Clark, R G; Fryklund, L; Robinson, I C

    1989-05-01

    A new mutant GH-deficient dwarf rat has been used to study the effects of iv infusions of human GH (hGH) and recombinant human insulin-like growth factor I (hIGF-I). This animal has only about 5% of normal pituitary GH content, low circulating GH levels, and no regular GH surges. The defect seems to be specific for GH. Infusions of hIGF-I at 180 micrograms/day for 9 days elevated serum IGF-I concentrations significantly over those in the saline-infused controls (713 +/- 20 ng/ml vs. 395 +/- 31 ng/ml); hGH infusions did not raise IGF-I levels significantly (435 +/- 20 ng/ml). Gel filtration of serum samples showed that the high-dose hIGF-I infusions increased free IGF concentrations, without apparently altering the pattern of IGF-I binding whereas hGH infusions increased the amount of high mol wt IGF-I binding protein. Neither IGF-I nor hGH infusions affected the small amounts of rat GH present in the dwarf rat pituitary glands. Continuous iv infusions of hGH (200 mU/day for 9 days) stimulated body wt gain (2.1 +/- 0.2 g/day) and bone growth (96 +/- 9 microns/day) significantly compared to saline-infused dwarf rats (1.2 +/- 0.3 g/day and 43 +/- 3 microns/day). Infusions of hIGF-I at 180 micrograms/day produced a body wt gain (2.1 +/- 0.5 g/day) similar to that seen in the hGH-infused group but a significantly smaller stimulation of bone growth (63 +/- 3 microns/day). Infusion of a 5-fold lower dose of hIGF-I (36 micrograms/day for 9 days) had no effect on body wt or bone growth. Food intake was unaffected by either hGH or hIGF-I infusions. The pattern of tissue growth was affected differentially by hGH and IGF-I infusions that produced the same overall body wt gain. hGH induced a relatively proportional growth in most of the organs studied, whereas hIGF-I infusion at 180 micrograms/day stimulated a disproportionately greater growth of the kidney, adrenals, and spleen. In some of the animals, tissues were extracted for RIA of IGF-I; the amounts of IGF-I in the liver

  8. Liposomal gene transfer of keratinocyte growth factor improves wound healing by altering growth factor and collagen expression.

    PubMed

    Pereira, Clifford T; Herndon, David N; Rocker, Roland; Jeschke, Marc G

    2007-05-15

    Growth factors affect the complex cascade of wound healing; however, interaction between different growth factors during dermal and epidermal regeneration are still not entirely defined. In the present study, we thought to determine the interaction between keratinocyte growth factor (KGF) administered as liposomal cDNA with other dermal and epidermal growth factors and collagen synthesis in an acute wound. Rats received an acute wound and were divided into two groups to receive weekly subcutaneous injections of liposomes plus the Lac-Z gene (0.22 microg, vehicle), or liposomes plus the KGF cDNA (2.2 microg) and Lac-Z gene (0.22 microg). Histological and immunohistochemical techniques were used to determine growth factor, collagen expression, and dermal and epidermal structure. KGF cDNA increased insulin-like growth factor-I (IGF-I), insulin-like growth factor binding protein-3 (IGFBP-3), and fibroblast growth factor (FGF), decreased transforming growth factor-beta (TGF-beta), while it had no effect on platelet-derived growth factor (PDGF) levels in the wound. KGF cDNA significantly increased collagen Type IV at both the wound edge as well as the wound bed, while it had no effect on collagen Type I and III. KGF cDNA increased re-epithelialization, improved dermal regeneration, and increased neovascularization. Exogenous administered KGF cDNA causes increases in IGF-I, IGF-BP3, FGF, and collagen IV and decreases TGF-beta concentration. KGF gene transfer accelerates wound healing without causing an increase in collagen I or III.

  9. Regression models for linking patterns of growth to a later outcome: infant growth and childhood overweight.

    PubMed

    Wills, Andrew K; Strand, Bjørn Heine; Glavin, Kari; Silverwood, Richard J; Hovengen, Ragnhild

    2016-04-08

    Regression models are widely used to link serial measures of anthropometric size or changes in size to a later outcome. Different parameterisations of these models enable one to target different questions about the effect of growth, however, their interpretation can be challenging. Our objective was to formulate and classify several sets of parameterisations by their underlying growth pattern contrast, and to discuss their utility using an expository example. We describe and classify five sets of model parameterisations in accordance with their underlying growth pattern contrast (conditional growth; being bigger v being smaller; becoming bigger and staying bigger; growing faster v being bigger; becoming and staying bigger versus being bigger). The contrasts are estimated by including different sets of repeated measures of size and changes in size in a regression model. We illustrate these models in the setting of linking infant growth (measured on 6 occasions: birth, 6 weeks, 3, 6, 12 and 24 months) in weight-for-height-for-age z-scores to later childhood overweight at 8y using complete cases from the Norwegian Childhood Growth study (n = 900). In our expository example, conditional growth during all periods, becoming bigger in any interval and staying bigger through infancy, and being bigger from birth were all associated with higher odds of later overweight. The highest odds of later overweight occurred for individuals who experienced high conditional growth or became bigger in the 3 to 6 month period and stayed bigger, and those who were bigger from birth to 24 months. Comparisons between periods and between growth patterns require large sample sizes and need to consider how to scale associations to make comparisons fair; with respect to the latter, we show one approach. Studies interested in detrimental growth patterns may gain extra insight from reporting several sets of growth pattern contrasts, and hence an approach that incorporates several sets of

  10. Systems biology and mechanics of growth.

    PubMed

    Eskandari, Mona; Kuhl, Ellen

    2015-01-01

    In contrast to inert systems, living biological systems have the advantage to adapt to their environment through growth and evolution. This transfiguration is evident during embryonic development, when the predisposed need to grow allows form to follow function. Alterations in the equilibrium state of biological systems breed disease and mutation in response to environmental triggers. The need to characterize the growth of biological systems to better understand these phenomena has motivated the continuum theory of growth and stimulated the development of computational tools in systems biology. Biological growth in development and disease is increasingly studied using the framework of morphoelasticity. Here, we demonstrate the potential for morphoelastic simulations through examples of volume, area, and length growth, inspired by tumor expansion, chronic bronchitis, brain development, intestine formation, plant shape, and myopia. We review the systems biology of living systems in light of biochemical and optical stimuli and classify different types of growth to facilitate the design of growth models for various biological systems within this generic framework. Exploring the systems biology of growth introduces a new venue to control and manipulate embryonic development, disease progression, and clinical intervention. © 2015 Wiley Periodicals, Inc.

  11. Parameters of Technological Growth

    ERIC Educational Resources Information Center

    Starr, Chauncey; Rudman, Richard

    1973-01-01

    Examines the factors involved in technological growth and identifies the key parameters as societal resources and societal expectations. Concludes that quality of life can only be maintained by reducing population growth, since this parameter is the product of material levels, overcrowding, food, and pollution. (JR)

  12. Metropolitan population growth in Arab countries.

    PubMed

    Vaidyanathan, K E

    1977-01-01

    A study or urban population growth in Arab countries has 3 objectives: 1) examination at the micro level of recent demographic trends in selected metropolitan areas of the Arab world and their relationship to changes in the total and urban populations in the respective countries; 2) estimation of net migration by sex and broad age groups for each metropolitan area; and 3) analysis of the pattern of variation in the metropolitan growth rates and their components, migration and natural increase. The study covers the cities proper or urban agglomerations, which includes the suburbs, whose population exceeded 100,000 in the most recent census. Altogether, the study covers 49 metropolitan areas from 9 Arab countries--Algeria; Morocco; Tunisia; Libya; Egypt; Sudan; Syria; Iraq; and Kuwait. Analysis revealed that metropolitan growth rates do follow geographic patterns. In countries with an oil-based economy, metropolitan growth rates are high; in countries with unexploited resources they are slightly below the 1st group; and countries which have pressure on land have low metropolitan growth rates. Population size of the metropolitan area appears to be an important factor associated with variations in metropolitan growth rates and net migration rates. Natural increase emerges as the predominant factor in metropolitan growth, but the differentials in the growth rates are more clearly associated with variations in net migration rates. As all the possibilities of analysis of relationships of metropolitan growth have not been exhausted, it is proposed to examine additional variables as possible factors associated with the speed of metropolitan growth.

  13. Strategic growth decisions in helper cichlids.

    PubMed Central

    Heg, Dik; Bender, Nicole; Hamilton, Ian

    2004-01-01

    Recently, it has been shown that group-living subordinate clownfish Amphiprion percula increase their growth rate after acquiring the dominant breeder male position in the group. Evidence was found for strategic growth adjustments of subordinate fishes depending on the threat of eviction, i.e. subordinates adjust their growth rates so they remain smaller than the dominant fish and thereby limit the threat of being expelled from the territory. However, it is impossible to exclude several alternative factors that potentially could have influenced the observed changes in growth, owing to the nature of that experiment (removing the second-ranking fish--the breeder male--caused the third-ranking fish to change sex to become breeder male and change rank). We studied strategic growth decisions in the group-living Lake Tanganyika cichlid Neolamprologus pulcher under controlled laboratory conditions with ad libitum food availability. First, we show that male breeders grow faster than subordinate male helpers of the same initial size and confirm that N. pulcher shows status-dependent growth. Second, we improved on the experimental design by not removing the dominant breeder male in the group; instead we replaced the breeder male with a new breeder male in a full factorial design and measured growth of the subordinate male helpers is a function of the size difference with the old and the new breeder male. As predicted, male helpers showed strategic growth adjustments, i.e. growing faster when the size difference with the breeder male is large. Strategic growth adjustments were less pronounced than status-dependent growth adjustments. PMID:15801617

  14. Strategic growth decisions in helper cichlids.

    PubMed

    Heg, Dik; Bender, Nicole; Hamilton, Ian

    2004-12-07

    Recently, it has been shown that group-living subordinate clownfish Amphiprion percula increase their growth rate after acquiring the dominant breeder male position in the group. Evidence was found for strategic growth adjustments of subordinate fishes depending on the threat of eviction, i.e. subordinates adjust their growth rates so they remain smaller than the dominant fish and thereby limit the threat of being expelled from the territory. However, it is impossible to exclude several alternative factors that potentially could have influenced the observed changes in growth, owing to the nature of that experiment (removing the second-ranking fish--the breeder male--caused the third-ranking fish to change sex to become breeder male and change rank). We studied strategic growth decisions in the group-living Lake Tanganyika cichlid Neolamprologus pulcher under controlled laboratory conditions with ad libitum food availability. First, we show that male breeders grow faster than subordinate male helpers of the same initial size and confirm that N. pulcher shows status-dependent growth. Second, we improved on the experimental design by not removing the dominant breeder male in the group; instead we replaced the breeder male with a new breeder male in a full factorial design and measured growth of the subordinate male helpers is a function of the size difference with the old and the new breeder male. As predicted, male helpers showed strategic growth adjustments, i.e. growing faster when the size difference with the breeder male is large. Strategic growth adjustments were less pronounced than status-dependent growth adjustments.

  15. Mechanisms Limiting Body Growth in Mammals

    PubMed Central

    Lui, Julian C.

    2011-01-01

    Recent studies have begun to provide insight into a long-standing mystery in biology—why body growth in animals is rapid in early life but then progressively slows, thus imposing a limit on adult body size. This growth deceleration in mammals is caused by potent suppression of cell proliferation in multiple tissues and is driven primarily by local, rather than systemic, mechanisms. Recent evidence suggests that this progressive decline in proliferation results from a genetic program that occurs in multiple organs and involves the down-regulation of a large set of growth-promoting genes. This program does not appear to be driven simply by time, but rather depends on growth itself, suggesting that the limit on adult body size is imposed by a negative feedback loop. Different organs appear to use different types of information to precisely target their adult size. For example, skeletal and cardiac muscle growth are negatively regulated by myostatin, the concentration of which depends on muscle mass itself. Liver growth appears to be modulated by bile acid flux, a parameter that reflects organ function. In pancreas, organ size appears to be limited by the initial number of progenitor cells, suggesting a mechanism based on cell-cycle counting. Further elucidation of the fundamental mechanisms suppressing juvenile growth is likely to yield important insights into the pathophysiology of childhood growth disorders and of the unrestrained growth of cancer. In addition, improved understanding of these growth-suppressing mechanisms may someday allow their therapeutic suspension in adult tissues to facilitate tissue regeneration. PMID:21441345

  16. Oscillating-Crucible Technique for Silicon Growth

    NASA Technical Reports Server (NTRS)

    Daud, T.; Dumas, K. A.; Kim, K. M.; Schwuttke, G. H.; Smetana, P.

    1984-01-01

    Technique yields better mixing of impurities and superior qualiity crystals. Accellerated motion stirs melt which reduces temperature gradients and decreases boundary layer for diffusion of impurities near growing surface. Results better mixing of impurities into melt, decrease in tendency for dendritic growth or cellular growth and crystals with low dislocation density. Applied with success to solution growth and Czochralski growth, resulting in large crystals of superior quality.

  17. Phenomenology of stochastic exponential growth

    NASA Astrophysics Data System (ADS)

    Pirjol, Dan; Jafarpour, Farshid; Iyer-Biswas, Srividya

    2017-06-01

    Stochastic exponential growth is observed in a variety of contexts, including molecular autocatalysis, nuclear fission, population growth, inflation of the universe, viral social media posts, and financial markets. Yet literature on modeling the phenomenology of these stochastic dynamics has predominantly focused on one model, geometric Brownian motion (GBM), which can be described as the solution of a Langevin equation with linear drift and linear multiplicative noise. Using recent experimental results on stochastic exponential growth of individual bacterial cell sizes, we motivate the need for a more general class of phenomenological models of stochastic exponential growth, which are consistent with the observation that the mean-rescaled distributions are approximately stationary at long times. We show that this behavior is not consistent with GBM, instead it is consistent with power-law multiplicative noise with positive fractional powers. Therefore, we consider this general class of phenomenological models for stochastic exponential growth, provide analytical solutions, and identify the important dimensionless combination of model parameters, which determines the shape of the mean-rescaled distribution. We also provide a prescription for robustly inferring model parameters from experimentally observed stochastic growth trajectories.

  18. Placental Adaptations in Growth Restriction

    PubMed Central

    Zhang, Song; Regnault, Timothy R.H.; Barker, Paige L.; Botting, Kimberley J.; McMillen, Isabella C.; McMillan, Christine M.; Roberts, Claire T.; Morrison, Janna L.

    2015-01-01

    The placenta is the primary interface between the fetus and mother and plays an important role in maintaining fetal development and growth by facilitating the transfer of substrates and participating in modulating the maternal immune response to prevent immunological rejection of the conceptus. The major substrates required for fetal growth include oxygen, glucose, amino acids and fatty acids, and their transport processes depend on morphological characteristics of the placenta, such as placental size, morphology, blood flow and vascularity. Other factors including insulin-like growth factors, apoptosis, autophagy and glucocorticoid exposure also affect placental growth and substrate transport capacity. Intrauterine growth restriction (IUGR) is often a consequence of insufficiency, and is associated with a high incidence of perinatal morbidity and mortality, as well as increased risk of cardiovascular and metabolic diseases in later life. Several different experimental methods have been used to induce placental insufficiency and IUGR in animal models and a range of factors that regulate placental growth and substrate transport capacity have been demonstrated. While no model system completely recapitulates human IUGR, these animal models allow us to carefully dissect cellular and molecular mechanisms to improve our understanding and facilitate development of therapeutic interventions. PMID:25580812

  19. Posttraumatic growth and recovery from addiction.

    PubMed

    Haroosh, Eyal; Freedman, Sara

    2017-01-01

    Background : It is well documented that individuals coping with adverse events report both negative outcomes, such as posttraumatic stress symptoms, as well as positive changes, described as posttraumatic growth. Positive changes are also reported in people who have recovered from substance abuse. It seems plausible from the literature that both of these types of positive changes have elements in common. To date, no published studies have examined positive outcomes among people who have recovered from addiction. Objectives : In this study, posttraumatic growth in individuals who were formerly addicted to alcohol or substances, termed 'addiction-related growth,' was examined. Addiction-related growth refers to the growth that an individual undergoes as a result of the addiction itself, and the recovery from the addiction. A successful recovery from addiction is associated with positive changes, particularly regarding spirituality and meaning-making, and the construct of addiction-related growth may explain why. Method : This cross-sectional study examined growth among 104 individuals who had recovered from addiction who were recruited from addiction treatment programmes, between February and July 2012. Questionnaires assessed demographics and substance abuse use and treatment, posttraumatic growth (PTGI); social support (Perceived Social Support Questionnaire); and help-seeking ( Willingness to Seek Help Scale ). Data was analysed using an analysis of variance (ANOVA), Pearson correlations, and multiple regression. Results : Results indicated that addiction-related growth is a phenomenon that accurately captures the positive changes experienced as a result of an individual's struggle with addiction and recovery. This growth was found to be associated with participation in 12-steps programmes, and to be predicted by levels of perceived social support. Conclusions : The results show that recovery from addiction is associated with addiction-related growth. These

  20. Pattern formation with proportionate growth

    NASA Astrophysics Data System (ADS)

    Dhar, Deepak

    It is a common observation that as baby animals grow, different body parts grow approximately at same rate. This property, called proportionate growth is remarkable in that it is not encountered easily outside biology. The models of growth that have been studied in Physics so far, e.g diffusion -limited aggregation, surface deposition, growth of crystals from melt etc. involve only growth at the surface, with the inner structure remaining frozen. Interestingly, patterns formed in growing sandpiles provide a very wide variety of patterns that show proportionate growth. One finds patterns with different features, with sharply defined boundaries. In particular, even with very simple rules, one can produce patterns that show striking resemblance to those seen in nature. We can characterize the asymptotic pattern exactly in some special cases. I will discuss in particular the patterns grown on noisy backgrounds. Supported by J. C. Bose fellowship from DST (India).

  1. Stochastic models for tumoral growth

    NASA Astrophysics Data System (ADS)

    Escudero, Carlos

    2006-02-01

    Strong experimental evidence has indicated that tumor growth belongs to the molecular beam epitaxy universality class. This type of growth is characterized by the constraint of cell proliferation to the tumor border and the surface diffusion of cells at the growing edge. Tumor growth is thus conceived as a competition for space between the tumor and the host, and cell diffusion at the tumor border is an optimal strategy adopted for minimizing the pressure and helping tumor development. Two stochastic partial differential equations are reported in this paper in order to correctly model the physical properties of tumoral growth in (1+1) and (2+1) dimensions. The advantage of these models is that they reproduce the correct geometry of the tumor and are defined in terms of polar variables. An analysis of these models allows us to quantitatively estimate the response of the tumor to an unfavorable perturbation during growth.

  2. Theory of Stochastic Laplacian Growth

    NASA Astrophysics Data System (ADS)

    Alekseev, Oleg; Mineev-Weinstein, Mark

    2017-07-01

    We generalize the diffusion-limited aggregation by issuing many randomly-walking particles, which stick to a cluster at the discrete time unit providing its growth. Using simple combinatorial arguments we determine probabilities of different growth scenarios and prove that the most probable evolution is governed by the deterministic Laplacian growth equation. A potential-theoretical analysis of the growth probabilities reveals connections with the tau-function of the integrable dispersionless limit of the two-dimensional Toda hierarchy, normal matrix ensembles, and the two-dimensional Dyson gas confined in a non-uniform magnetic field. We introduce the time-dependent Hamiltonian, which generates transitions between different classes of equivalence of closed curves, and prove the Hamiltonian structure of the interface dynamics. Finally, we propose a relation between probabilities of growth scenarios and the semi-classical limit of certain correlation functions of "light" exponential operators in the Liouville conformal field theory on a pseudosphere.

  3. The Growth Illusion: How Economic Growth Has Enriched the Few, Impoverished the Many, and Endangered the Planet.

    ERIC Educational Resources Information Center

    Douthwaite, Richard

    The premise of this book is that economic growth has made life considerably worse for people in Britain since 1955 and that, even if growth were beneficial at one stage in human history, it is now damaging. The book presents evidence of social and environmental damage caused by growth and several reasons for a persistence of growth in the face of…

  4. Growth curves for twins in Slovenia.

    PubMed

    Bricelj, Katja; Blickstein, Isaac; Bržan-Šimenc, Gabrijela; Janša, Vid; Lučovnik, Miha; Verdenik, Ivan; Trojner-Bregar, Andreja; Tul, Nataša

    2017-02-01

    Abnormalities of fetal growth are more common in twins. We introduce the growth curves for monitoring fetal growth in twin pregnancies in Slovenia. Slovenian National Perinatal Information System for the period between 2002 and 2010 was used to calculate birth weight percentiles for all live born twins for each week from 22nd to 40th week. The calculated percentiles of birth weight for all live-born twins in Slovenia served as the basis for drawing 'growth' curves. The calculated growth curves for twins will help accurately diagnose small or large twin fetuses for their gestational age in the native central European population.

  5. Modeling Exponential Population Growth

    ERIC Educational Resources Information Center

    McCormick, Bonnie

    2009-01-01

    The concept of population growth patterns is a key component of understanding evolution by natural selection and population dynamics in ecosystems. The National Science Education Standards (NSES) include standards related to population growth in sections on biological evolution, interdependence of organisms, and science in personal and social…

  6. Growth kinetics and growth mechanism of ultrahigh mass density carbon nanotube forests on conductive Ti/Cu supports.

    PubMed

    Sugime, Hisashi; Esconjauregui, Santiago; D'Arsié, Lorenzo; Yang, Junwei; Makaryan, Taron; Robertson, John

    2014-09-10

    We evaluate the growth kinetics and growth mechanism of ultrahigh mass density carbon nanotube forests. They are synthesized by chemical vapor deposition at 450 °C using a conductive Ti/Cu support and Co-Mo catalyst system. We find that Mo stabilizes Co particles preventing lift off during the initial growth stage, thus promoting the growth of ultrahigh mass density nanotube forests by the base growth mechanism. The morphology of the forest gradually changes with growth time, mostly because of a structural change of the catalyst particles. After 100 min growth, toward the bottom of the forest, the area density decreases from ∼ 3-6 × 10(11) cm(-2) to ∼ 5 × 10(10) cm(-2) and the mass density decreases from 1.6 to 0.38 g cm(-3). We also observe part of catalyst particles detached and embedded within nanotubes. The progressive detachment of catalyst particles results in the depletion of the catalyst metals on the substrate surfaces. This is one of the crucial reasons for growth termination and may apply to other catalyst systems where the same features are observed. Using the packed forest morphology, we demonstrate patterned forest growth with a pitch of ∼ 300 nm and a line width of ∼ 150 nm. This is one of the smallest patterning of the carbon nanotube forests to date.

  7. Leptin administration affects growth and skeletal development in a rat intrauterine growth restriction model: preliminary study.

    PubMed

    Bar-El Dadon, Shimrit; Shahar, Ron; Katalan, Vered; Monsonego-Ornan, Efrat; Reifen, Ram

    2011-09-01

    Skeletal abnormalities are one of the hallmarks of growth delay during gestation. The aim of this study was to determine changes induced by leptin in skeletal growth and development in a rat model of intrauterine growth retardation (IUGR) and to elucidate the possible underlying mechanisms. Intrauterine growth retardation was induced prepartum and the effects of leptin to mothers prenatally or to offspring postnatally were studied. Radii were harvested and tested mechanically and structurally. Tibias were evaluated for growth-plate morphometry. On day 40 postpartum, total bone length and mineral density and tibial growth-plate width and numbers of cells within its zones of offspring treated with leptin were significantly greater than in the control group. Postnatal leptin administration in an IUGR model improves the structural properties and elongation rate of bone. These findings could pave the way to preventing some phenotypic presentations of IUGR. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. The relative value of growth.

    PubMed

    Mass, Nathaniel J

    2005-04-01

    Most executives would say that adding a point of growth and gaining a point of operating-profit margin contribute about equally to shareholder value. Margin improvements hit the bottom line immediately, while growth compounds value over time. But the reality is that the two are rarely equivalent. Growth often is far more valuable than managers think. For some companies, convincing the market that they can grow by just one additional percentage point can be worth six, seven, or even ten points of margin improvement. This article presents a new strategic metric, called the relative value of growth (RVG), which gives managers a clear picture of how growth projects and margin improvement initiatives affect shareholder value. Using basic balance sheet and income sheet data, managers can determine their companies' RVGs, as well as those of their competitors. Calculating RVGs gives managers insights into which corporate strategies are working to deliver value and whether their companies are pulling the most powerful value-creation levers. The author examines a number of well-known companies and explains what their RVG numbers say about their strategies. He reviews the unspoken assumption that growth and profits are incompatible over the long term and shows that a fair number of companies are effective at delivering both. Finally, he explains how managers can use the RVG framework to help them define strategies that balance growth and profitability at both the corporate and business unit levels.

  9. Growth factors, nutrient signaling, and cardiovascular aging.

    PubMed

    Fontana, Luigi; Vinciguerra, Manlio; Longo, Valter D

    2012-04-13

    Growth factors regulated by specific macronutrients have been shown to promote aging and accelerate mortality in the majority of the organisms studied. In particular, the enzymes activated by growth hormone, insulin, and insulin-like growth factor-1 in mammals and their orthologs in simple model organisms represent perhaps the best-understood proteins involved in the aging process. Dietary restriction, which reduces the level of insulin-like growth factor-1 and of other growth factors, has been associated with protection from diabetes, cancer, and cardiovascular diseases, and deficiencies in growth hormone signaling and insulin-like growth factor-1 are strongly associated with protection from cancer and diabetes in both mice and humans; however, their role in cardiac function and cardiovascular diseases is controversial. Here, we review the link between growth factors, cardiac function, and heart disease with focus on the cardioprotective and sensitizing effect of growth factors in both model organisms and humans.

  10. Best practices for rural smart growth.

    DOT National Transportation Integrated Search

    2010-07-01

    Smart growth is a development strategy that encompasses economic, environmental and social objectives to manage : the growth of a community. The basic principles of smart growth are to: : Mix land uses. : Take advantage of compact building de...

  11. Growth without growth hormone in combined pituitary hormone deficiency caused by pituitary stalk interruption syndrome.

    PubMed

    Lee, Sang Soo; Han, A-Leum; Ahn, Moon Bae; Kim, Shin Hee; Cho, Won Kyoung; Cho, Kyoung Soon; Park, So Hyun; Jung, Min Ho; Suh, Byung-Kyu

    2017-03-01

    Growth hormone (GH) is an essential element for normal growth. However, reports of normal growth without GH have been made in patients who have undergone brain surgery for craniopharyngioma. Normal growth without GH can be explained by hyperinsulinemia, hyperprolactinemia, elevated leptin levels, and GH variants; however, its exact mechanism has not been elucidated yet. We diagnosed a female patient aged 13 with combined pituitary hormone deficiency (CPHD) caused by pituitary stalk interruption syndrome (PSIS). The patient has experienced recurrent hypoglycemic seizures since birth, but reached the height of 160 cm at the age of 13, showing normal growth. She grew another 8 cm for 3 years after the diagnosis, and she reached her final adult height of 168 cm which was greater than the midparental height, at the age of 16. The patient's blood GH and insulin-like growth factor-I levels were consistently subnormal, although her insulin levels were normal. Her physical examination conducted at the age of 15 showed truncal obesity, dyslipidemia, and osteoporosis, which are metabolic features of GH deficiency (GHD). Herein, we report a case in which a PSIS-induced CPHD patient attained her final height above mid parental height despite a severe GHD.

  12. Vicarious Occupational Posttraumatic Growth

    ERIC Educational Resources Information Center

    Moran, Larry

    2012-01-01

    Traditional studies of posttraumatic growth center on the individual or close family members as they deal with traumatic events. The current study examines workers who experience posttraumatic growth when a coworker has a traumatic experience. The participants in this study were firefighters in suburban Cook County, Illinois. Participants were…

  13. Oral administration of arginine enhances the growth hormone response to growth hormone releasing hormone in short children.

    PubMed

    Loche, S; Carta, D; Muntoni, A C; Corda, R; Pintor, C

    1993-10-01

    We have evaluated the effect of oral administration of arginine chlorhydrate on the growth hormone response to growth hormone releasing hormone in a group of nine short prepubertal children (six boys and four girls). Arginine chlorhydrate 10 g, administered orally 60 min before an i.v. bolus injection of growth hormone releasing hormone 1-29, 1 microgram/kg, significantly enhanced the growth hormone response to the neuropeptide, confirming the results of previous studies which used the i.v. route. Furthermore, our data strengthen the view that the effects of arginine chlorhydrate on growth hormone secretion are mediated by inhibition of endogenous somatostatin release.

  14. INDIVIDUALIZED FETAL GROWTH ASSESSMENT: CRITICAL EVALUATION OF KEY CONCEPTS IN THE SPECIFICATION OF THIRD TRIMESTER GROWTH TRAJECTORIES

    PubMed Central

    Deter, Russell L.; Lee, Wesley; Yeo, Lami; Romero, Roberto

    2012-01-01

    Objectives To characterize 2nd and 3rd trimester fetal growth using Individualized Growth Assessment in a large cohort of fetuses with normal growth outcomes. Methods A prospective longitudinal study of 119 pregnancies was carried out from 18 weeks, MA, to delivery. Measurements of eleven fetal growth parameters were obtained from 3D scans at 3–4 week intervals. Regression analyses were used to determine Start Points [SP] and Rossavik model [P = c (t) k + st] coefficients c, k and s for each parameter in each fetus. Second trimester growth model specification functions were re-established. These functions were used to generate individual growth models and determine predicted s and s-residual [s = pred s + s-resid] values. Actual measurements were compared to predicted growth trajectories obtained from the growth models and Percent Deviations [% Dev = {{actual − predicted}/predicted} × 100] calculated. Age-specific reference standards for this statistic were defined using 2-level statistical modeling for the nine directly measured parameters and estimated weight. Results Rossavik models fit the data for all parameters very well [R2: 99%], with SP’s and k values similar to those found in a much smaller cohort. The c values were strongly related to the 2nd trimester slope [R2: 97%] as was predicted s to estimated c [R2: 95%]. The latter was negative for skeletal parameters and positive for soft tissue parameters. The s-residuals were unrelated to estimated c’s [R2: 0%], and had mean values of zero. Rossavik models predicted 3rd trimester growth with systematic errors close to 0% and random errors [95% range] of 5.7 – 10.9% and 20.0 – 24.3% for one and three dimensional parameters, respectively. Moderate changes in age-specific variability were seen in the 3rd trimester.. Conclusions IGA procedures for evaluating 2nd and 3rd trimester growth are now established based on a large cohort [4–6 fold larger than those used previously], thus permitting more

  15. Measurable characteristics of lysozyme crystal growth

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2005-01-01

    The behavior of protein crystal growth is estimated from measurements performed at both the microscopic and molecular levels. In the absence of solutal flow, it was determined that a model that balances the macromolecular flux toward the crystal surface with the flux of the crystal surface well characterizes crystal growth observed using microscopic methods. Namely, it was determined that the model provides accurate estimates for the crystal-growth velocities upon evaluation of crystal-growth measurements obtained in time. Growth velocities thus determined as a function of solution supersaturation were further interpreted using established deterministic models. From analyses of crystal-growth velocities, it was found that the mode of crystal growth varies with respect to increasing solution supersaturation, possibly owing to kinetic roughening. To verify further the hypothesis of kinetic roughening, crystal growth at the molecular level was examined using atomic force microscopy (AFM). From the AFM measurements, it was found that the magnitude of surface-height fluctuations, h(x), increases with increasing solution supersaturation. In contrast, the estimated characteristic length, xi, decreases rapidly upon increasing solution supersaturation. It was conjectured that the magnitude of both h(x) and xi could possibly determine the mode of crystal growth. Although the data precede any exact theory, the non-critical divergence of h(x) and xi with respect to increasing solution supersaturation was nevertheless preliminarily established. Moreover, approximate models to account for behavior of both h(x) and xi are also presented.

  16. MEASURING ECONOMIC GROWTH FROM OUTER SPACE

    PubMed Central

    Henderson, J. Vernon; Storeygard, Adam; Weil, David N.

    2013-01-01

    GDP growth is often measured poorly for countries and rarely measured at all for cities or subnational regions. We propose a readily available proxy: satellite data on lights at night. We develop a statistical framework that uses lights growth to augment existing income growth measures, under the assumption that measurement error in using observed light as an indicator of income is uncorrelated with measurement error in national income accounts. For countries with good national income accounts data, information on growth of lights is of marginal value in estimating the true growth rate of income, while for countries with the worst national income accounts, the optimal estimate of true income growth is a composite with roughly equal weights. Among poor-data countries, our new estimate of average annual growth differs by as much as 3 percentage points from official data. Lights data also allow for measurement of income growth in sub- and supranational regions. As an application, we examine growth in Sub Saharan African regions over the last 17 years. We find that real incomes in non-coastal areas have grown faster by 1/3 of an annual percentage point than coastal areas; non-malarial areas have grown faster than malarial ones by 1/3 to 2/3 annual percent points; and primate city regions have grown no faster than hinterland areas. Such applications point toward a research program in which “empirical growth” need no longer be synonymous with “national income accounts.” PMID:25067841

  17. Placental weight and birth weight to placental weight ratio in monochorionic and dichorionic growth-restricted and non-growth-restricted twins

    PubMed Central

    Souza, Mariângela Alves; de Lourdes Brizot, Maria; Biancolin, Sckarlet Ernandes; Schultz, Regina; de Carvalho, Mário Henrique Burlacchini; Francisco, Rossana Pulcineli Vieira; Zugaib, Marcelo

    2017-01-01

    OBJECTIVE: The aim of the present study was to compare the placental weight and birth weight/placental weight ratio for intrauterine growth-restricted and non-intrauterine growth-restricted monochorionic and dichorionic twins. METHODS: This was a retrospective analysis of placentas from twin pregnancies. Placental weight and the birth weight/placental weight ratio were compared in intrauterine growth-restricted and non-intrauterine growth-restricted monochorionic and dichorionic twins. The association between cord insertion type and placental lesions in intrauterine growth-restricted and non-intrauterine growth-restricted monochorionic and dichorionic twins was also investigated. RESULTS: A total of 105 monochorionic (intrauterine growth restriction=40; non-intrauterine growth restriction=65) and 219 dichorionic (intrauterine growth restriction=57; non-intrauterine growth restriction=162) placentas were analyzed. A significantly lower placental weight was observed in intrauterine growth-restricted monochorionic (p=0.022) and dichorionic (p<0.001) twins compared to non-intrauterine growth-restricted twins. There was no difference in the birth weight/placental weight ratio between the intrauterine growth restriction and non-intrauterine growth restriction groups for either monochorionic (p=0.36) or dichorionic (p=0.68) twins. Placental weight and the birth weight/placental weight ratio were not associated with cord insertion type or with placental lesions. CONCLUSION: Low placental weight, and consequently reduced functional mass, appears to be involved in fetal growth restriction in monochorionic and dichorionic twins. The mechanism by which low placental weight influences the birth weight/placental weight ratio in intrauterine growth-restricted monochorionic and dichorionic twins needs to be determined in larger prospective studies. PMID:28591337

  18. Optical Diagnostics of Solution Crystal Growth

    NASA Technical Reports Server (NTRS)

    Kim, Yongkee; Reddy, B. R.; George, T. G.; Lal, R. B.

    1996-01-01

    Non-contact optical techniques such as, optical heterodyne, ellipsometry and interferometry, for real time in-situ monitoring of solution crystal growth are demonstrated. Optical heterodyne technique has the capability of measuring the growth rate as small as 1A/sec. In a typical Michelson interferometer set up, the crystal is illuminated by a Zeeman laser with frequency omega(sub 1) and the reference beam with frequency omega(sub 2). As the crystal grows, the phase of the rf signal changes with respect to the reference beam and this phase change is related to the crystal growth rate. This technique is demonstrated with two examples: (1) by measuring the copper tip expansion/shrinkage rate and (2) by measuring the crystal growth rate of L-Arginine Phosphate (LAP). The first test shows that the expansion/shrinkage rate of copper tip was fast in the beginning, and gets slower as the expansion begins to stabilize with time. In crystal growth, the phase change due the crystal growth is measured using a phase meter and a strip chart recorder. Our experimental results indicate a varied growth rate from 69.4 to 92.6A per sec. The ellipsometer is used to study the crystal growth interface. From these measurements and a theoretical modeling of the interface, the various optical parameters can be deduced. Interferometry can also be used to measure the growth rate and concentration gradient in the vicinity of the crystal.

  19. Growth in disorders of adrenal hyperfunction.

    PubMed

    Magiakou, Maria Alexandra

    2004-08-01

    This article reviews how growth is affected in disorders of adrenal hyperfunction. Growth is disturbed by adrenal hypersecretion of androgens or cortisol. Adrenal androgens, when in excess, lead to advanced linear growth and skeletal maturation, and prolonged hypercortisolemia leads to the suppression of growth hormone (GH) secretion and inhibition of somatomedin C and other growth factor effects on their target tissues. In virilizing adrenal tumors height is increased at diagnosis, but after surgical cure the final height is usually in the normal range. In congenital adrenal hyperplasia height is usually compromised by advanced skeletal maturation or by suppressed growth, particularly in the first years of life, due to excess glucocorticoid treatment. The final height is reduced in both clinical forms (salt wasting and simple virilizing) and sexes in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Growth impairment is also the hallmark of Cushing syndrome of whatever etiology when it occurs in children and growing adolescents, and the final height of these patients, even after surgical cure, remains compromised. This is apparently due to direct or indirect growth impairment by the hypercortisolism during the disease, followed by inadequate catch-up growth. Although it seems that GH treatment might be beneficial for improving final height both in patients with congenital adrenal hyperplasia who have poor height predictions and in patients with Cushing disease and GH deficiency, a larger number of studies is needed to confirm this suggestion.

  20. Fibroblast growth factor-2-induced host stroma reaction during initial tumor growth promotes progression of mouse melanoma via vascular endothelial growth factor A-dependent neovascularization.

    PubMed

    Tsunoda, Satoshi; Nakamura, Toshiyuki; Sakurai, Hiroaki; Saiki, Ikuo

    2007-04-01

    Fibroblast growth factor (FGF)-2 has been considered to play a critical role in neovascularization in several tumors; however, its precise role in tumor progression is not fully understood. In the present study, we have characterized the role of FGF-2 in B16-BL6 mouse melanoma cells, focusing on effects during the initial phase of tumor growth. FGF-2 was injected at the tumor inoculation site of dorsal skin during the initial phase. FGF-2 induced marked tumor growth and lymph node metastasis. This was well correlated with an increase in neovascularization in the host stroma. FGF-2 also recruited inflammatory and mesenchymal cells in host stroma. Marked tumor growth, pulmonary metastasis and intensive neovascularization in tumor parenchyma were also observed after a single injection of FGF-2 into the footpad inoculation site. In contrast, repeated injections of FGF-2 at a site remote from the footpad tumor were ineffective in promoting tumor growth and metastasis. These promoting activities of FGF-2 were blocked by local injections of a glucocorticoid hormone, suggesting that host inflammatory responses induced by FGF-2 are associated with FGF-2-induced tumor progression. In addition, although FGF-2 did not promote cellular proliferation and vascular endothelial growth factor A (VEGFA) mRNA expression in B16-BL6 cells in vitro, FGF-2 induced VEGFA expression in host stroma rather than tumor tissue, and local injections of a neutralizing antibody against VEGFA inhibited these activities of FGF-2 in vivo. These results indicate that abundant FGF-2 during the initial phase of tumor growth induces VEGFA-dependent intensive neovascularization in host stroma, and supports marked tumor growth and metastasis.

  1. Fullerene nanomaterials potentiate hair growth.

    PubMed

    Zhou, Zhiguo; Lenk, Robert; Dellinger, Anthony; MacFarland, Darren; Kumar, Krishan; Wilson, Stephen R; Kepley, Christopher L

    2009-06-01

    Hair loss is a common symptom resulting from a wide range of disease processes and can lead to stress in affected individuals. The purpose of this study was to examine the effect of fullerene nanomaterials on hair growth. We used shaved mice as well as SKH-1 "bald" mice to determine if fullerene-based compounds could affect hair growth and hair follicle numbers. In shaved mice, fullerenes increase the rate of hair growth as compared with mice receiving vehicle only. In SKH-1 hairless mice fullerene derivatives given topically or subdermally markedly increased hair growth. This was paralleled by a significant increase in the number of hair follicles in fullerene-treated mice as compared with those mice treated with vehicle only. The fullerenes also increased hair growth in human skin sections maintained in culture. These studies have wide-ranging implications for those conditions leading to hair loss, including alopecia, chemotherapy, and reactions to various chemicals.

  2. Population growth, poverty and health.

    PubMed

    Kibirige, J S

    1997-07-01

    One of the most popular explanations for the many problems that face Africa is population growth. Africa's population has doubled since 1960. Africa has the highest fertility rate in the world and the rate of population growth is higher than in any other region. At the same time, Africa faces a social and economic situation that is viewed by many as alarming. Among the problems that devastate Africa is that of persistent poor health. Africa has lower life expectancy, higher mortality rates and is affected by more disease and illness conditions than any other region. Focusing on sub-Saharan Africa, this paper examines the relationship between population growth, poverty and poor health. While most analyses have focused on population growth as an original cause of poverty and underdevelopment, this paper argues that while both population growth and poor health play a significant role in exacerbating the problem of poverty, they are themselves primary consequences of poverty rather than its cause.

  3. Protecting water resources with smart growth.

    DOT National Transportation Integrated Search

    2004-05-01

    Protecting Water Resources with : Smart Growth is intended for audiences already familiar with smart : growth, who now seek specific ideas : on how techniques for smarter growth : can be used to protect their water : resources. This document is one...

  4. Time dependent impact of perinatal hypoxia on growth hormone, insulin-like growth factor 1 and insulin-like growth factor binding protein-3.

    PubMed

    Kartal, Ömer; Aydınöz, Seçil; Kartal, Ayşe Tuğba; Kelestemur, Taha; Caglayan, Ahmet Burak; Beker, Mustafa Caglar; Karademir, Ferhan; Süleymanoğlu, Selami; Kul, Mustafa; Yulug, Burak; Kilic, Ertugrul

    2016-08-01

    Hypoxic-ischemia (HI) is a widely used animal model to mimic the preterm or perinatal sublethal hypoxia, including hypoxic-ischemic encephalopathy. It causes diffuse neurodegeneration in the brain and results in mental retardation, hyperactivity, cerebral palsy, epilepsy and neuroendocrine disturbances. Herein, we examined acute and subacute correlations between neuronal degeneration and serum growth factor changes, including growth hormone (GH), insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein-3 (IGFBP-3) after hypoxic-ischemia (HI) in neonatal rats. In the acute phase of hypoxia, brain volume was increased significantly as compared with control animals, which was associated with reduced GH and IGF-1 secretions. Reduced neuronal survival and increased DNA fragmentation were also noticed in these animals. However, in the subacute phase of hypoxia, neuronal survival and brain volume were significantly decreased, accompanied by increased apoptotic cell death in the hippocampus and cortex. Serum GH, IGF-1, and IGFBP-3 levels were significantly reduced in the subacute phase of HI. Significant retardation in the brain and body development were noted in the subacute phase of hypoxia. Here, we provide evidence that serum levels of growth-hormone and factors were decreased in the acute and subacute phase of hypoxia, which was associated with increased DNA fragmentation and decreased neuronal survival.

  5. Toucan hand feeding and nestling growth.

    PubMed

    St Leger, Judy; Vince, Martin; Jennings, Jerry; McKerney, Erin; Nilson, Erika

    2012-05-01

    A retrospective analysis of hand-feeding records and growth data from 3 facilities was performed to determine the growth pattern for 8 toucan species raised in captivity. General philosophies of breeding and rearing were similar but approaches to hand-feeding varied. General hand-feeding and chick management records from hatch to fledging were reviewed for 2 of the 3 facilities. Effective hand-feeding formulas were commercially available and minimally modified. Growth curves were developed. Curves approximated typical expected patterns of nestling growth with no loss of weight at fledging. This study provides a basis for hand-feeding protocols and growth curves to assess development.

  6. Investigation of growth dynamics of carbon nanotubes

    PubMed Central

    2017-01-01

    The synthesis of single-walled carbon nanotubes (SWCNTs) with defined properties is required for both fundamental investigations and practical applications. The revealing and thorough understanding of the growth mechanism of SWCNTs is the key to the synthesis of nanotubes with required properties. This paper reviews the current status of the research on the investigation of growth dynamics of carbon nanotubes. The review starts with the consideration of the peculiarities of the growth mechanism of carbon nanotubes. The physical and chemical states of the catalyst during the nanotube growth are discussed. The chirality selective growth of nanotubes is described. The main part of the review is dedicated to the analysis and systematization of the reported results on the investigation of growth dynamics of nanotubes. The studies on the revealing of the dependence of the growth rate of nanotubes on the synthesis parameters are reviewed. The correlation between the lifetime of catalyst and growth rate of nanotubes is discussed. The reports on the calculation of the activation energy of the nanotube growth are summarized. Finally, the growth properties of inner tubes inside SWCNTs are considered. PMID:28503394

  7. Actin growth profile in clathrin-mediated endocytosis

    NASA Astrophysics Data System (ADS)

    Tweten, D. J.; Bayly, P. V.; Carlsson, A. E.

    2017-05-01

    Clathrin-mediated endocytosis in yeast is driven by a protein patch containing close to 100 different types of proteins. Among the proteins are 5000 -10 000 copies of polymerized actin, and successful endocytosis requires growth of the actin network. Since it is not known exactly how actin network growth drives endocytosis, we calculate the spatial distribution of actin growth required to generate the force that drives the process. First, we establish the force distribution that must be supplied by actin growth, by combining membrane-bending profiles obtained via electron microscopy with established theories of membrane mechanics. Next, we determine the profile of actin growth, using a continuum mechanics approach and an iterative procedure starting with an actin growth profile obtained from a linear analysis. The profile has fairly constant growth outside a central hole of radius 45-50 nm, but very little growth in this hole. This growth profile can reproduce the required forces if the actin shear modulus exceeds 80 kPa, and the growing filaments can exert very large polymerization forces. The growth profile prediction could be tested via electron-microscopy or super-resolution experiments in which the turgor pressure is suddenly turned off.

  8. Stimulation of body weight increase and epiphyseal cartilage growth by insulin like growth factor

    NASA Technical Reports Server (NTRS)

    Ellis, S.

    1981-01-01

    The ability of insulin-like growth factor (IGF) to induce growth in hypophysectomized immature rats was tested by continuous infusion of the partially purified factor at daily doses of 6, 21, and 46 mU for an 8-day period. A dose-dependent growth of the proximal epiphyseal cartilage of the tibia and an associated stimulation of the primary spongiosa were produced by these amounts of IGF. The two highest doses of IGF also resulted in dose-dependent increases of body weight. Gel permeation of the sera at neutrality showed that the large-molecular-weight IGF binding protein was not induced by the infusion of IGF, whereas it ws generated in the sera of hypophysectomized rats that were infused with daily doses of 86 mU of human growth hormone.

  9. Phenotypic Signatures Arising from Unbalanced Bacterial Growth

    PubMed Central

    Tan, Cheemeng; Smith, Robert Phillip; Tsai, Ming-Chi; Schwartz, Russell; You, Lingchong

    2014-01-01

    Fluctuations in the growth rate of a bacterial culture during unbalanced growth are generally considered undesirable in quantitative studies of bacterial physiology. Under well-controlled experimental conditions, however, these fluctuations are not random but instead reflect the interplay between intra-cellular networks underlying bacterial growth and the growth environment. Therefore, these fluctuations could be considered quantitative phenotypes of the bacteria under a specific growth condition. Here, we present a method to identify “phenotypic signatures” by time-frequency analysis of unbalanced growth curves measured with high temporal resolution. The signatures are then applied to differentiate amongst different bacterial strains or the same strain under different growth conditions, and to identify the essential architecture of the gene network underlying the observed growth dynamics. Our method has implications for both basic understanding of bacterial physiology and for the classification of bacterial strains. PMID:25101949

  10. Phenotypic signatures arising from unbalanced bacterial growth.

    PubMed

    Tan, Cheemeng; Smith, Robert Phillip; Tsai, Ming-Chi; Schwartz, Russell; You, Lingchong

    2014-08-01

    Fluctuations in the growth rate of a bacterial culture during unbalanced growth are generally considered undesirable in quantitative studies of bacterial physiology. Under well-controlled experimental conditions, however, these fluctuations are not random but instead reflect the interplay between intra-cellular networks underlying bacterial growth and the growth environment. Therefore, these fluctuations could be considered quantitative phenotypes of the bacteria under a specific growth condition. Here, we present a method to identify "phenotypic signatures" by time-frequency analysis of unbalanced growth curves measured with high temporal resolution. The signatures are then applied to differentiate amongst different bacterial strains or the same strain under different growth conditions, and to identify the essential architecture of the gene network underlying the observed growth dynamics. Our method has implications for both basic understanding of bacterial physiology and for the classification of bacterial strains.

  11. Spiritual Growth and Development.

    ERIC Educational Resources Information Center

    Wakefield, Dara V.

    Spiritual living demands growth, and spiritual development has many parallels with human development. Ministers who are knowledgeable of the various stages are best prepared to assist and optimize spiritual growth. The primary benefit of nurturing believers through developmental stages is assured spiritual health and maturity in the context of a…

  12. Light-optimized growth of cyanobacterial cultures: Growth phases and productivity of biomass and secreted molecules in light-limited batch growth.

    PubMed

    Clark, Ryan L; McGinley, Laura L; Purdy, Hugh M; Korosh, Travis C; Reed, Jennifer L; Root, Thatcher W; Pfleger, Brian F

    2018-03-27

    Cyanobacteria are photosynthetic microorganisms whose metabolism can be modified through genetic engineering for production of a wide variety of molecules directly from CO 2 , light, and nutrients. Diverse molecules have been produced in small quantities by engineered cyanobacteria to demonstrate the feasibility of photosynthetic biorefineries. Consequently, there is interest in engineering these microorganisms to increase titer and productivity to meet industrial metrics. Unfortunately, differing experimental conditions and cultivation techniques confound comparisons of strains and metabolic engineering strategies. In this work, we discuss the factors governing photoautotrophic growth and demonstrate nutritionally replete conditions in which a model cyanobacterium can be grown to stationary phase with light as the sole limiting substrate. We introduce a mathematical framework for understanding the dynamics of growth and product secretion in light-limited cyanobacterial cultures. Using this framework, we demonstrate how cyanobacterial growth in differing experimental systems can be easily scaled by the volumetric photon delivery rate using the model organisms Synechococcus sp. strain PCC7002 and Synechococcus elongatus strain UTEX2973. We use this framework to predict scaled up growth and product secretion in 1L photobioreactors of two strains of Synechococcus PCC7002 engineered for production of l-lactate or L-lysine. The analytical framework developed in this work serves as a guide for future metabolic engineering studies of cyanobacteria to allow better comparison of experiments performed in different experimental systems and to further investigate the dynamics of growth and product secretion. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. Frontiers in growth and remodeling

    PubMed Central

    Menzel, Andreas; Kuhl, Ellen

    2012-01-01

    Unlike common engineering materials, living matter can autonomously respond to environmental changes. Living structures can grow stronger, weaker, larger, or smaller within months, weeks, or days as a result of a continuous microstructural turnover and renewal. Hard tissues can adapt by increasing their density and grow strong. Soft tissues can adapt by increasing their volume and grow large. For more than three decades, the mechanics community has actively contributed to understand the phenomena of growth and remodeling from a mechanistic point of view. However, to date, there is no single, unified characterization of growth, which is equally accepted by all scientists in the field. Here we shed light on the continuum modeling of growth and remodeling of living matter, and give a comprehensive overview of historical developments and trends. We provide a state-of-the-art review of current research highlights, and discuss challenges and potential future directions. Using the example of volumetric growth, we illustrate how we can establish and utilize growth theories to characterize the functional adaptation of soft living matter. We anticipate this review to be the starting point for critical discussions and future research in growth and remodeling, with a potential impact on life science and medicine. PMID:22919118

  14. Precise, High-throughput Analysis of Bacterial Growth.

    PubMed

    Kurokawa, Masaomi; Ying, Bei-Wen

    2017-09-19

    Bacterial growth is a central concept in the development of modern microbial physiology, as well as in the investigation of cellular dynamics at the systems level. Recent studies have reported correlations between bacterial growth and genome-wide events, such as genome reduction and transcriptome reorganization. Correctly analyzing bacterial growth is crucial for understanding the growth-dependent coordination of gene functions and cellular components. Accordingly, the precise quantitative evaluation of bacterial growth in a high-throughput manner is required. Emerging technological developments offer new experimental tools that allow updates of the methods used for studying bacterial growth. The protocol introduced here employs a microplate reader with a highly optimized experimental procedure for the reproducible and precise evaluation of bacterial growth. This protocol was used to evaluate the growth of several previously described Escherichia coli strains. The main steps of the protocol are as follows: the preparation of a large number of cell stocks in small vials for repeated tests with reproducible results, the use of 96-well plates for high-throughput growth evaluation, and the manual calculation of two major parameters (i.e., maximal growth rate and population density) representing the growth dynamics. In comparison to the traditional colony-forming unit (CFU) assay, which counts the cells that are cultured in glass tubes over time on agar plates, the present method is more efficient and provides more detailed temporal records of growth changes, but has a stricter detection limit at low population densities. In summary, the described method is advantageous for the precise and reproducible high-throughput analysis of bacterial growth, which can be used to draw conceptual conclusions or to make theoretical observations.

  15. An Exponential Growth Learning Trajectory: Students' Emerging Understanding of Exponential Growth through Covariation

    ERIC Educational Resources Information Center

    Ellis, Amy B.; Ozgur, Zekiye; Kulow, Torrey; Dogan, Muhammed F.; Amidon, Joel

    2016-01-01

    This article presents an Exponential Growth Learning Trajectory (EGLT), a trajectory identifying and characterizing middle grade students' initial and developing understanding of exponential growth as a result of an instructional emphasis on covariation. The EGLT explicates students' thinking and learning over time in relation to a set of tasks…

  16. Growth behavior and growth rate dependency in LEDs performance for Mg-doped a-plane GaN

    NASA Astrophysics Data System (ADS)

    Song, Keun-Man; Kim, Jong-Min; Lee, Dong-Hun; Shin, Chan-Soo; Ko, Chul-Gi; Kong, Bo-Hyun; Cho, Hyung-Koun; Yoon, Dae-Ho

    2011-07-01

    We investigated the influence of growth rate of Mg-doped a-plane GaN on the surface morphological and electrical properties, and the characteristics of InGaN-based nonpolar LEDs. Mg-doped a-plane GaN layers were grown on r-plane sapphire substrate by metalorganic chemical vapor deposition (MOCVD). Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and cathode luminescence (CL) analysis exhibited that the surface morphology changed from stripe features with large triangular pits to rough and rugged surface with small asymmetric V-shape pits, as the growth rate increased. The Mg incorporation into a-plane GaN layers increased with increasing growth rate of Mg-doped a-plane GaN, while the activation efficiency of Mg dopants decreased in a-plane GaN. Additionally, it was found that operation voltage at 20 mA decreased in characteristics of LEDs, as the growth rate of Mg-doped a-plane GaN decreased. Meanwhile, the EL intensity of LEDs with p-GaN layers grown at higher growth rate was improved compared to that of LEDs with p-GaN layers grown at lower growth rate. Such an increase of EL intensity is attributed to the rougher surface morphology with increasing growth rate of Mg-doped a-plane GaN.

  17. UV-B Inhibits Leaf Growth through Changes in Growth Regulating Factors and Gibberellin Levels1[OPEN

    PubMed Central

    Fina, Julieta; AbdElgawad, Hamada; Prinsen, Els

    2017-01-01

    Ultraviolet-B (UV-B) radiation affects leaf growth in a wide range of species. In this work, we demonstrate that UV-B levels present in solar radiation inhibit maize (Zea mays) leaf growth without causing any other visible stress symptoms, including the accumulation of DNA damage. We conducted kinematic analyses of cell division and expansion to understand the impact of UV-B radiation on these cellular processes. Our results demonstrate that the decrease in leaf growth in UV-B-irradiated leaves is a consequence of a reduction in cell production and a shortened growth zone (GZ). To determine the molecular pathways involved in UV-B inhibition of leaf growth, we performed RNA sequencing on isolated GZ tissues of control and UV-B-exposed plants. Our results show a link between the observed leaf growth inhibition and the expression of specific cell cycle and developmental genes, including growth-regulating factors (GRFs) and transcripts for proteins participating in different hormone pathways. Interestingly, the decrease in the GZ size correlates with a decrease in the concentration of GA19, the immediate precursor of the active gibberellin, GA1, by UV-B in this zone, which is regulated, at least in part, by the expression of GRF1 and possibly other transcription factors of the GRF family. PMID:28400494

  18. Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration

    NASA Astrophysics Data System (ADS)

    Chang, Sung-Jin; Hyun, Moon Seop; Myung, Sung; Kang, Min-A.; Yoo, Jung Ho; Lee, Kyoung G.; Choi, Bong Gill; Cho, Youngji; Lee, Gaehang; Park, Tae Jung

    2016-03-01

    Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties during in-plane growth of graphene from reduced graphene oxide (RGO) on copper (Cu) via methane CVD. While graphene is laterally grown from RGO flakes on Cu foils up to a few hundred nanometres during CVD process, it shows appreciable improvement in structural quality. The monotonous enhancement of the structural quality of the graphene with increasing length of the graphene growth from RGO suggests that seeded CVD growth of graphene from RGO on Cu surface is accompanied by the restoration of graphitic structure. The finding provides insight into graphene growth and defect reconstruction useful for the production of tailored carbon nanostructures with required properties.

  19. Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration.

    PubMed

    Chang, Sung-Jin; Hyun, Moon Seop; Myung, Sung; Kang, Min-A; Yoo, Jung Ho; Lee, Kyoung G; Choi, Bong Gill; Cho, Youngji; Lee, Gaehang; Park, Tae Jung

    2016-03-10

    Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties during in-plane growth of graphene from reduced graphene oxide (RGO) on copper (Cu) via methane CVD. While graphene is laterally grown from RGO flakes on Cu foils up to a few hundred nanometres during CVD process, it shows appreciable improvement in structural quality. The monotonous enhancement of the structural quality of the graphene with increasing length of the graphene growth from RGO suggests that seeded CVD growth of graphene from RGO on Cu surface is accompanied by the restoration of graphitic structure. The finding provides insight into graphene growth and defect reconstruction useful for the production of tailored carbon nanostructures with required properties.

  20. Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration

    PubMed Central

    Chang, Sung-Jin; Hyun, Moon Seop; Myung, Sung; Kang, Min-A; Yoo, Jung Ho; Lee, Kyoung G.; Choi, Bong Gill; Cho, Youngji; Lee, Gaehang; Park, Tae Jung

    2016-01-01

    Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties during in-plane growth of graphene from reduced graphene oxide (RGO) on copper (Cu) via methane CVD. While graphene is laterally grown from RGO flakes on Cu foils up to a few hundred nanometres during CVD process, it shows appreciable improvement in structural quality. The monotonous enhancement of the structural quality of the graphene with increasing length of the graphene growth from RGO suggests that seeded CVD growth of graphene from RGO on Cu surface is accompanied by the restoration of graphitic structure. The finding provides insight into graphene growth and defect reconstruction useful for the production of tailored carbon nanostructures with required properties. PMID:26961409

  1. Plant Growth and Development in the ASTROCULTURE(trademark) Space-Based Growth Unit-Ground Based Experiments

    NASA Technical Reports Server (NTRS)

    Bula, R. J.

    1997-01-01

    The ASTROCULTURE(trademark) plant growth unit flown as part on the STS-63 mission in February 1995, represented the first time plants were flown in microgravity in a enclosed controlled environment plant growth facility. In addition to control of the major environmental parameters, nutrients were provided to the plants with the ZEOPONICS system developed by NASA Johnson Space Center scientists. Two plant species were included in this space experiment, dwarf wheat (Triticum aestivum) and a unique mustard called "Wisconsin Fast Plants" (Brassica rapa). Extensive post-flight analyses have been performed on the plant material and it has been concluded that plant growth and development was normal during the period the plants were in the microgravity environment of space. However, adequate plant growth and development control data were not available for direct comparisons of plant responses to the microgravity environment with those of plants grown at 1 g. Such data would allow for a more complete interpretation of the extent that microgravity affects plant growth and development.

  2. Professional Growth & Support System Self-Assessment

    ERIC Educational Resources Information Center

    Education Resource Strategies, 2013

    2013-01-01

    The "Professional Growth & Support System Self-Assessment" is designed to help school systems evaluate their current Professional Growth & Support strategy. The self-assessment is organized around the "Eight Principles of Strategic Professional Growth & Support." Each section allows school leaders to identify the…

  3. Correlation between genome reduction and bacterial growth.

    PubMed

    Kurokawa, Masaomi; Seno, Shigeto; Matsuda, Hideo; Ying, Bei-Wen

    2016-12-01

    Genome reduction by removing dispensable genomic sequences in bacteria is commonly used in both fundamental and applied studies to determine the minimal genetic requirements for a living system or to develop highly efficient bioreactors. Nevertheless, whether and how the accumulative loss of dispensable genomic sequences disturbs bacterial growth remains unclear. To investigate the relationship between genome reduction and growth, a series of Escherichia coli strains carrying genomes reduced in a stepwise manner were used. Intensive growth analyses revealed that the accumulation of multiple genomic deletions caused decreases in the exponential growth rate and the saturated cell density in a deletion-length-dependent manner as well as gradual changes in the patterns of growth dynamics, regardless of the growth media. Accordingly, a perspective growth model linking genome evolution to genome engineering was proposed. This study provides the first demonstration of a quantitative connection between genomic sequence and bacterial growth, indicating that growth rate is potentially associated with dispensable genomic sequences. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  4. CVD growth of graphene at low temperature

    NASA Astrophysics Data System (ADS)

    Zeng, Changgan

    2012-02-01

    Graphene has attracted a lot of research interest owing to its exotic properties and a wide spectrum of potential applications. Chemical vapor deposition (CVD) from gaseous hydrocarbon sources has shown great promises for large-scale graphene growth. However, high growth temperature, typically 1000^oC, is required for such growth. In this talk, I will show a revised CVD route to grow graphene on Cu foils at low temperature, adopting solid and liquid hydrocarbon feedstocks. For solid PMMA and polystyrene precursors, centimeter-scale monolayer graphene films are synthesized at a growth temperature down to 400^oC. When benzene is used as the hydrocarbon source, monolayer graphene flakes with excellent quality are achieved at a growth temperature as low as 300^oC. I will also talk about our recent progress on low-temperature graphene growth using paraterphenyl as precursor. The successful low-temperature growth can be qualitatively understood from the first principles calculations. Our work might pave a way to economical and convenient growth route of graphene, as well as better control of the growth pattern of graphene at low temperature.

  5. Allometric growth in reef-building corals.

    PubMed

    Dornelas, Maria; Madin, Joshua S; Baird, Andrew H; Connolly, Sean R

    2017-03-29

    Predicting demographic rates is a critical part of forecasting the future of ecosystems under global change. Here, we test if growth rates can be predicted from morphological traits for a highly diverse group of colonial symbiotic organisms: scleractinian corals. We ask whether growth is isometric or allometric among corals, and whether most variation in coral growth rates occurs at the level of the species or morphological group. We estimate growth as change in planar area for 11 species, across five morphological groups and over 5 years. We show that coral growth rates are best predicted from colony size and morphology rather than species. Coral size follows a power scaling law with a constant exponent of 0.91. Despite being colonial organisms, corals have consistent allometric scaling in growth. This consistency simplifies the task of projecting community responses to disturbance and climate change. © 2017 The Author(s).

  6. Cells competition in tumor growth poroelasticity

    NASA Astrophysics Data System (ADS)

    Fraldi, Massimiliano; Carotenuto, Angelo R.

    2018-03-01

    Growth of biological tissues has been recently treated within the framework of Continuum Mechanics, by adopting heterogeneous poroelastic models where the interaction between soft matrix and interstitial fluid flow is coupled with inelastic effects ad hoc introduced to simulate the macroscopic volumetric growth determined by cells division, cells growth and extracellular matrix changes occurring at the micro-scale level. These continuum models seem to overcome some limitations intrinsically associated to other alternative approaches based on mass balances in multiphase systems, because the crucial role played by residual stresses accompanying growth and nutrients walkway is preserved. Nevertheless, when these strategies are applied to analyze solid tumors, mass growth is usually assigned in a prescribed form that essentially copies the in vitro measured intrinsic growth rates of the cell species. As a consequence, some important cell-cell dynamics governing mass evolution and invasion rates of cancer cells, as well as their coupling with feedback mechanisms associated to in situ stresses, are inevitably lost and thus the spatial distribution and the evolution with time of the growth inside the tumor -which would be results rather than inputs- are forced to enter in the model simply as data. In order to solve this paradox, it is here proposed an enhanced multi-scale poroelastic model undergoing large deformations and embodying inelastic growth, where the net growth terms directly result from the "interspecific" predator-prey (Volterra/Lotka-like) competition occurring at the micro-scale level between healthy and abnormal cell species. In this way, a system of fully-coupled non-linear PDEs is derived to describe how the fight among cell species to grab the available common resources, stress field, pressure gradients, interstitial fluid flows driving nutrients and inhomogeneous growth all simultaneously interact to decide the tumor fate.

  7. Effects of plant growth regulators on the growth and lipid accumulation of Nannochloropsis oculata (droop) Hibberd

    NASA Astrophysics Data System (ADS)

    Trinh, Cam Tu; Tran, Thanh Huong; Bui, Trang Viet

    2017-09-01

    Nannochloropsis oculata cells were grown in f/2 modified medium of Chiu et al. (2009) supplemented with the plant growth regulators in different concentrations. Lipid accumulation of N. oculata cells was evaluated by using Nile Red dye and Fiji Image J with Analyze Particles. Indole-3-acetic acid (IAA) stimulated the increase of cell density in rapid growth phase (day 6) at high concentration (0.75 mg/L) and in slow growth phase (day 10) at lower concentration (0.50 mg/L). IAA, gibberellic acid (GA3) and zeatin increased content of chlorophyll a, in particular, in f/2 modified medium supplemented with 0.5 mg/L zeatin at the 10th day of culture. Roles of plant growth regulators in growth and lipid accumulation of N. oculata were discussed.

  8. Growth and dissolution kinetics of tetragonal lysozyme

    NASA Technical Reports Server (NTRS)

    Monaco, L. A.; Rosenberger, F.

    1993-01-01

    The growth and dissolution kinetics of lysozyme in a 25 ml solution bridge inside a closed growth cell was investigated. It was found that, under all growth conditions, the growth habit forming (110) and (101) faces grew through layer spreading with different growth rate dependence on supersaturation/temperature. On the other hand, (100) faces which formed only at low temperatures underwent a thermal roughening transition around 12 C.

  9. Precision growth index using the clustering of cosmic structures and growth data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pouri, Athina; Basilakos, Spyros; Plionis, Manolis, E-mail: athpouri@phys.uoa.gr, E-mail: svasil@academyofathens.gr, E-mail: mplionis@physics.auth.gr

    2014-08-01

    We use the clustering properties of Luminous Red Galaxies (LRGs) and the growth rate data provided by the various galaxy surveys in order to constrain the growth index γ) of the linear matter fluctuations. We perform a standard χ{sup 2}-minimization procedure between theoretical expectations and data, followed by a joint likelihood analysis and we find a value of γ=0.56± 0.05, perfectly consistent with the expectations of the ΛCDM model, and Ω{sub m0} =0.29± 0.01, in very good agreement with the latest Planck results. Our analysis provides significantly more stringent growth index constraints with respect to previous studies, as indicated by the fact thatmore » the corresponding uncertainty is only ∼ 0.09 γ. Finally, allowing γ to vary with redshift in two manners (Taylor expansion around z=0, and Taylor expansion around the scale factor), we find that the combined statistical analysis between our clustering and literature growth data alleviates the degeneracy and obtain more stringent constraints with respect to other recent studies.« less

  10. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy.

    PubMed

    Sugg, Kristoffer B; Korn, Michael A; Sarver, Dylan C; Markworth, James F; Mendias, Christopher L

    2017-03-01

    The platelet-derived growth factor receptors alpha and beta (PDGFRα and PDGFRβ) mark fibroadipogenic progenitor cells/fibroblasts and pericytes in skeletal muscle, respectively. While the role that these cells play in muscle growth and development has been evaluated, it was not known whether the PDGF receptors activate signaling pathways that control transcriptional and functional changes during skeletal muscle hypertrophy. To evaluate this, we inhibited PDGFR signaling in mice subjected to a synergist ablation muscle growth procedure, and performed analyses 3 and 10 days after induction of hypertrophy. The results from this study indicate that PDGF signaling is required for fiber hypertrophy, extracellular matrix production, and angiogenesis that occur during muscle growth. © 2017 Federation of European Biochemical Societies.

  11. Crystal Growth Technology

    NASA Astrophysics Data System (ADS)

    Scheel, Hans J.; Fukuda, Tsuguo

    2004-06-01

    This volume deals with the technologies of crystal fabrication, of crystal machining, and of epilayer production and is the first book on industrial and scientific aspects of crystal and layer production. The major industrial crystals are treated: Si, GaAs, GaP, InP, CdTe, sapphire, oxide and halide scintillator crystals, crystals for optical, piezoelectric and microwave applications and more. Contains 29 contributions from leading crystal technologists covering the following topics:

      General aspects of crystal growth technology Silicon Compound semiconductors Oxides and halides Crystal machining Epitaxy and layer deposition Scientific and technological problems of production and machining of industrial crystals are discussed by top experts, most of them from the major growth industries and crystal growth centers. In addition, it will be useful for the users of crystals, for teachers and graduate students in materials sciences, in electronic and other functional materials, chemical and metallurgical engineering, micro-and optoelectronics including nanotechnology, mechanical engineering and precision-machining, microtechnology, and in solid-state sciences.

    • A Comparison of Breeding Bird Communities and Habitat Features Between Old-Growth and Second-Growth Bottomland Hardwood Forest

      Treesearch

      Winston P. Smith; Howard E. Hunt; W. Kent Townley

      2001-01-01

      To characterize bird species composition,relative abundance,and habitat affinities,spot-mapping and strip-count censuses were conducted in an old-growth stand and adjacent second-growth tracts in Moro Bottoms Natural Area, Arkansas, during 1991 and 1992. More species were recorded on the old-growth site (S =35) as compared to the second-growth grid (S =32). Similarly...

    • Plant Growth Research for Food Production: Development and Testing of Expandable Tuber Growth Module

      NASA Technical Reports Server (NTRS)

      Cordova, Brennan A.

      2017-01-01

      Controlled and reliable growth of a variety of vegetable crops is an important capability for manned deep space exploration systems for providing nutritional supplementation and psychological benefits to crew members. Because current systems have been limited to leafy vegetables that require minimal root space, a major goal for these systems is to increase their ability to grow new types of crops, including tuber plants and root vegetables that require a large root space. An expandable root zone module and housing was developed to integrate this capability into the Vegetable Production System (Veggie). The expandable module uses a waterproof, gas-permeable bag with a structure that allows for root space to increase vertically throughout the growth cycle to accommodate for expanding tuber growth, while minimizing the required media mass. Daikon radishes were chosen as an ideal tuber crop for their subterraneous tuber size and rapid growth cycle, and investigations were done to study expanding superabsorbent hydrogels as a potential growth media. These studies showed improved water retention, but restricted oxygen availability to roots with pure gel media. It was determined that these hydrogels could be integrated in lower proportions into standard soil to achieve media expansion and water retention desired. Using the constructed module prototype and ideal gel and soil media mixture, daikon radishes are being grown in the system to test the capability and success of the system through a full growth cycle.

    • Growth characteristics of a new methylomonad.

      PubMed Central

      Chen, B J; Hirt, W; Lim, H C; Tsao, G T

      1977-01-01

      A methylomonad culture was isolated from pond water and examined as a potential source of single-cell protein. A medium containing magnesium sulfate, ammonium hydroxide, sodium phosphate, tap water, and methanol supported the growth of the isolate. Optimal growth conditions in batch cultures for the organism were: temperature, 30 to 33 degrees C; pH 7.1; and phosphate concentration, 0.015 M. The minimum doubling time obtained was 1.6 h. The specific growth rate in batch culture was dependent on the methanol concentration, reaching a maximum around 0.2% (wt/vol). Growth inhibition was apparent above 0.3% (wt/vol), and growth was completely inhibited above 4.6% (wt/vol) methanol. Although the inhibitory effect of formaldehyde on the specific growth rate was much greater than that of formate, the organism utilized formaldehyde, but not formate, as a sole carbon and energy source in batch cultures. The isolate was identified primarily by its inability to utilize any carbon source other than methanol and formaldehyde for growth. Although it is capable of rapid growth on methanol, the organism showed a very weak catalase activity. The amino acid content of the cells compared favorably with the reference levels for the essential amino acids specific by the Food and Agricultural Organization of the United Nations. PMID:15510

    • Predictive factors for intrauterine growth restriction

      PubMed Central

      Albu, AR; Anca, AF; Horhoianu, VV; Horhoianu, IA

      2014-01-01

      Abstract Reduced fetal growth is seen in about 10% of the pregnancies but only a minority has a pathological background and is known as intrauterine growth restriction or fetal growth restriction (IUGR / FGR). Increased fetal and neonatal mortality and morbidity as well as adult pathologic conditions are often associated to IUGR. Risk factors for IUGR are easy to assess but have poor predictive value. For the diagnostic purpose, biochemical serum markers, ultrasound and Doppler study of uterine and spiral arteries, placental volume and vascularization, first trimester growth pattern are object of assessment today. Modern evaluations propose combined algorithms using these strategies, all with the goal of a better prediction of risk pregnancies. Abbreviations: SGA = small for gestational age; IUGR = intrauterine growth restriction; FGR = fetal growth restriction; IUFD = intrauterine fetal demise; HIV = human immunodeficiency virus; PAPP-A = pregnancy associated plasmatic protein A; β-hCG = beta human chorionic gonadotropin; MoM = multiple of median; ADAM-12 = A-disintegrin and metalloprotease 12; PP-13 = placental protein 13; VEGF = vascular endothelial growth factor; PlGF = placental growth factor; sFlt-1 = soluble fms-like tyrosine kinase-1; UAD = uterine arteries Doppler ultrasound; RI = resistence index; PI = pulsatility index; VOCAL = Virtual Organ Computer–Aided Analysis software; VI = vascularization index; FI = flow index; VFI = vascularization flow index; PQ = placental quotient PMID:25408721

    • Hyperbolastic growth models: theory and application

      PubMed Central

      Tabatabai, Mohammad; Williams, David Keith; Bursac, Zoran

      2005-01-01

      Background Mathematical models describing growth kinetics are very important for predicting many biological phenomena such as tumor volume, speed of disease progression, and determination of an optimal radiation and/or chemotherapy schedule. Growth models such as logistic, Gompertz, Richards, and Weibull have been extensively studied and applied to a wide range of medical and biological studies. We introduce a class of three and four parameter models called "hyperbolastic models" for accurately predicting and analyzing self-limited growth behavior that occurs e.g. in tumors. To illustrate the application and utility of these models and to gain a more complete understanding of them, we apply them to two sets of data considered in previously published literature. Results The results indicate that volumetric tumor growth follows the principle of hyperbolastic growth model type III, and in both applications at least one of the newly proposed models provides a better fit to the data than the classical models used for comparison. Conclusion We have developed a new family of growth models that predict the volumetric growth behavior of multicellular tumor spheroids with a high degree of accuracy. We strongly believe that the family of hyperbolastic models can be a valuable predictive tool in many areas of biomedical and epidemiological research such as cancer or stem cell growth and infectious disease outbreaks. PMID:15799781

    • Testing mechanistic models of growth in insects.

      PubMed

      Maino, James L; Kearney, Michael R

      2015-11-22

      Insects are typified by their small size, large numbers, impressive reproductive output and rapid growth. However, insect growth is not simply rapid; rather, insects follow a qualitatively distinct trajectory to many other animals. Here we present a mechanistic growth model for insects and show that increasing specific assimilation during the growth phase can explain the near-exponential growth trajectory of insects. The presented model is tested against growth data on 50 insects, and compared against other mechanistic growth models. Unlike the other mechanistic models, our growth model predicts energy reserves per biomass to increase with age, which implies a higher production efficiency and energy density of biomass in later instars. These predictions are tested against data compiled from the literature whereby it is confirmed that insects increase their production efficiency (by 24 percentage points) and energy density (by 4 J mg(-1)) between hatching and the attainment of full size. The model suggests that insects achieve greater production efficiencies and enhanced growth rates by increasing specific assimilation and increasing energy reserves per biomass, which are less costly to maintain than structural biomass. Our findings illustrate how the explanatory and predictive power of mechanistic growth models comes from their grounding in underlying biological processes. © 2015 The Author(s).

    • Growth without growth hormone in combined pituitary hormone deficiency caused by pituitary stalk interruption syndrome

      PubMed Central

      Lee, Sang Soo; Han, A-Leum; Ahn, Moon Bae; Kim, Shin Hee; Cho, Kyoung Soon; Park, So Hyun; Jung, Min Ho; Suh, Byung-Kyu

      2017-01-01

      Growth hormone (GH) is an essential element for normal growth. However, reports of normal growth without GH have been made in patients who have undergone brain surgery for craniopharyngioma. Normal growth without GH can be explained by hyperinsulinemia, hyperprolactinemia, elevated leptin levels, and GH variants; however, its exact mechanism has not been elucidated yet. We diagnosed a female patient aged 13 with combined pituitary hormone deficiency (CPHD) caused by pituitary stalk interruption syndrome (PSIS). The patient has experienced recurrent hypoglycemic seizures since birth, but reached the height of 160 cm at the age of 13, showing normal growth. She grew another 8 cm for 3 years after the diagnosis, and she reached her final adult height of 168 cm which was greater than the midparental height, at the age of 16. The patient's blood GH and insulin-like growth factor-I levels were consistently subnormal, although her insulin levels were normal. Her physical examination conducted at the age of 15 showed truncal obesity, dyslipidemia, and osteoporosis, which are metabolic features of GH deficiency (GHD). Herein, we report a case in which a PSIS-induced CPHD patient attained her final height above mid parental height despite a severe GHD. PMID:28443260

    • Growth and development of male "little" mice assessed with Parks' theory of feeding and growth.

      PubMed

      Puche, Rodolfo C; Alloatti, Rosa; Chapo, Gustavo

      2002-01-01

      This work was designed to characterize the appetite kinetics and growth of male C57BL/6J (lit) mice. Those variables were assessed with Parks' function of ad libitum feeding and growth. Heterozygous mice (lit/+) attained their mature weight at 12-15 weeks of age, peak growth rate (3.5 g/week) at 5 weeks and displayed the normal decay of food conversion efficiency as a function of age. The homozygous genotype has a chronic defect in the synthesis and secretion of growth hormone (GH). Homozygous mice could not be assessed with Park's function. From the 4th to the 15th week of age, body weight increased linearly and exhibited constant food conversion efficiency. Food intake of both genotypes was commensurate with their body weights. Lit/lit mice became progressively obese. At 40 weeks of age, body fat of lit/lit mice was fivefold that of lit/+ and their body weight was similar to their heterozygous controls. The chronic deficiency of growth hormone produced a lower bone mass (compared to heterozygous controls). Bone mass of both genotypes attained maturity at 12-15 weeks with a maximum growth rate at 5 weeks. Body weight and bone mass grow harmoniously in lit/+ but not in lit/lit mice.

    • Microgravity Plant Growth Demonstration

      NASA Technical Reports Server (NTRS)

      2000-01-01

      Two visitors watch a TV monitor showing plant growth inside a growth chamber designed for operation aboard the Space Shuttle as part of NASA's Space Product Development program. The exhibit, featuring work by the Wisconsin Center for Space Automation and Robotics, was at AirVenture 2000 sponsored by the Experimental Aircraft Association in Oshkosh, WI.

  1. Perspectives on population growth.

    PubMed

    1996-09-01

    Assume that everyone has the same information on population growth. There are many different opinions on what that information means and what should be done about it. Some people worry about current rates of growth, especially in the context of growing per capita consumption, and believe that all reasonable steps should be taken to reduce rates and stabilize population size. Others believe that growing populations can be accommodated by reducing consumption in rich countries, that technological progress will supply the new resources needed, that the development needed to support a larger population can be sustained, that large population size fosters prosperity, or that birth rates are falling and current growth is just temporary. These are all valid positions worthy of at least debate. Interest groups commonly acknowledgement population growth as a significant issue, but offer no response to it. Sometimes the issue goes unrecognized because it conflicts with a more highly valued personal agenda item. Finally, some responses come from confusion and anger rather than reasoning or self-interest. The proponents of these latter arguments bring nothing constructive to the debate.

  2. Canopy disturbance intervals, early growth rates, and canopy accession trends of oak-dominated old-growth forests

    Treesearch

    James S. Rentch; Ray R., Jr. Hicks

    2003-01-01

    Using a radial growth averaging technique, changes in growth rates of overstory oaks were used to quantify canopy disturbance events at five old-growth sites. On average, at least one canopy disturbance occurred on these sites every 3 years; larger multiple-tree disturbances occurred every 17 years. Although there was some variation by site and by historical period,...

  3. Influence of Dietary Copper on Serum Growth-Related Hormone Levels and Growth Performance of Weanling Pigs.

    PubMed

    Wang, Jianguo; Zhu, Xiaoyan; Guo, Yazhou; Wang, Zhe; Zhao, Baoyu; Yin, Yunhou; Liu, Guowen

    2016-07-01

    To investigate the effect of dietary copper on serum growth-related hormones levels and growth performance, a total of 60 weanling pigs were randomly assigned to six groups each containing 10 pigs, fed on basal diets supplemented with 0 (control), 100, 150, 200, 250, and 300 mg/kg copper sulfate for 80 days, respectively. The average daily gain (ADG), feed to gain ratio (F/G), feed intake and serum growth hormone (GH), insulin (INS), insulin-like growth factor 1 (IGF-1), and insulin-like growth factor-binding protein 3 (IGFBP-3) levels were detected at interval of 20 days. The results revealed that ADG, and serum GH, INS, IGF-1, and IGFBP-3 concentrations were increased significantly in the pigs fed on diets added with 100, 150, 200, 250, and 300 mg/kg copper sulfate. Meanwhile, in the pigs supplemented with 250 mg/kg copper sulfate, ADG was increased significantly from the 40th to the 60th day of the experiment (P < 0.01), and the levels of GH, INS, IGF-1, and IGFBP-3 in serum were elevated significantly from the 20th to the 40th day of the experiment (P < 0.01). It is concluded that effects of copper supplemented in the diet on the growth of pigs were related to the increasing levels of GH, INS, IGF-1, and IGFBP-3 in serum which were induced by copper. High dietary copper increase the concentrations of growth-related hormones in serum, resulting in improving the growth performance of weanling pigs.

  4. Segregation control in vertical Bridgman crystal growth

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Kou, S.

    1996-11-01

    To help the crystal grow at a constant dopant concentration in vertical Bridgman crystal growth, the dopant concentration of the growth melt, i.e. the melt from which the crystal grows, was kept constant. To achieve this, three different methods were used to replenish the growth melt at a controlled rate and suppress dopant diffusion between the growth melt and the replenishing melt. In method one, a replenishing crucible having a long melt passageway was immersed in the growth melt. In method two, a replenishing crucible having an independent feed-rate control mechanism was held above the growth melt. In method three, a submerged diffusion baffle was used to form a long melt passageway between the growth melt and the replenishing melt. NaNO 3 was used as a model material for crystal growth. Single crystals were grown by these three methods with effective segregation control. Method two was applied to InSb and single crystals were also grown with effective segregation control.

  5. Neuroendocrine regulation of somatic growth in fishes.

    PubMed

    Dai, XiangYan; Zhang, Wei; Zhuo, ZiJian; He, JiangYan; Yin, Zhan

    2015-02-01

    Growth is a polygenic trait that is under the influence of multiple physiological pathways regulating energy metabolism and muscle growth. Among the possible growth-regulating pathways in vertebrates, components of the somatotropic axis are thought to have the greatest influence. There is growing body of literature focusing on the somatotropic axis and its role regulating growth in fish. This includes research into growth hormone, upstream hypothalamic hormones, insulin-like growth factors, and downstream signaling molecules. Many of these signals have both somatic effects stimulating the growth of tissues and metabolic effects that play a role in nutrient metabolism. Signals of other endocrine axes exhibit profound effects on the function of the somatotropic axis in vivo. In this review we highlight recent advances in our understanding of the teleost fish endocrine somatotropic axis, including emerging research using genetic modified models. These studies have revealed new aspects and challenges associated with regulation of the important steps of somatic growth.

  6. What is this thing called growth?

    Treesearch

    Adrian M. Gilbert

    1954-01-01

    What is this thing called "growth"? We foresters are constantly thinking in terms of growth. We use growth data to evaluate a forest property. We use them to determine how much we can cut. We use them to weigh the results of a type of cutting.

  7. Clinical growth charts for pre-school children.

    PubMed

    Al-Amoud, Maysoon M; Al-Mazrou, Yagob Y; El-Gizouli, Sirrag E; Khoja, Tawfik A; Al-Turki, Khalid A

    2004-11-01

    Growth standards are indicators for normal growth of the children and growth charts are important tools for their growth monitoring. Children from different populations are different in their growth pattern, it is important to create national standards for the growth of children in each population to develop local growth charts, and since these were not available in the Kingdom of Saudi Arabia (KSA), the aim of this study was to construct national growth standards and to develop growth charts for 0-5-years Saudi children. A cross-sectional study following World Health Organization (WHO) criteria in determining sample size was adopted, where by 24000 children from 5 regions in the KSA were selected during the period 1992 to 1995 to be the desired sample. One hundred and two Primary Health Care centers (PHCCs) were selected randomly from the 5 regions, from where the sample was drawn, and a special questionnaire was designed. Weight, height and head circumference were measured by standard procedures. The total number of children examined was 23821 (11913 boys and 11908 girls). Saudi (0-5-years) boys weight and height for age measurements were significantly different from girls. The same difference was found between urban and rural boys and girls and between boys and girls from the different regions of the country (p<0.05). These national standards derived from this study were used to develop national growth charts that are currently utilized to monitor growth in all Saudi health institutes.

  8. Small Size at Birth or Abnormal Intrauterine Growth Trajectory: Which Matters More for Child Growth?

    PubMed Central

    Hutcheon, Jennifer A.; Jacobsen, Geir W.; Kramer, Michael S.; Martinussen, Marit; Platt, Robert W.

    2016-01-01

    Small size at birth is linked with lifelong adverse health implications. However, small size is only a proxy for the pathological process of interest, intrauterine growth restriction. We examined the extent to which information on intrauterine growth patterns improved prediction of childhood anthropometry, above and beyond birth weight alone. We obtained fetal weights estimated via serial ultrasound for 478 children in the Scandinavian Successive Small-for-Gestational-Age Births Study (1986–1988). Size at birth was classified using birth weight-for-gestational-age z scores and conditional fetal growth z scores (reflecting growth between 25 weeks’ gestation and birth) using internal references. Conditional z scores were also expressed as residuals of birth weight z scores. Growth measures were linked with age-5-years anthropometric characteristics using linear regression. In univariable analyses, conditional fetal growth z scores were positively associated with z scores for child height, body mass index, total skinfold thickness, and head circumference (β = 0.24 (95% confidence interval (CI): 0.18, 0.31), β = 0.16 (95% CI: 0.09, 0.23), β = 0.08 (95% CI: 0.01, 0.16), and β = 0.37 (95% CI: 0.22, 0.52), respectively). However, conditional z scores were highly correlated with birth weight z scores (r = 0.9), and residuals explained minimal additional variation in anthropometric factors (null coefficients; adjusted R2 increases < 0.01). Information on the intrauterine trajectory through which birth weight was attained provided little additional insight into child growth beyond that obtained from absolute size at birth. PMID:27257112

  9. Posttraumatic growth in Iranian cancer patients.

    PubMed

    Rahmani, A; Mohammadian, R; Ferguson, C; Golizadeh, L; Zirak, M; Chavoshi, H

    2012-01-01

    To investigate the level and determinants of posttraumatic growth in Iranian cancer patients. This descriptive-correlational design study was conducted within a university-affiliated oncology hospital in Iran. A convenience sample of 450 patients with a definitive diagnosis of cancer of any type completed a demographic questionnaire and a posttraumatic growth inventory. Some disease-related information was obtained from patients' medical records. The mean of posttraumatic growth reported by participants was 76.1. There was a statistically significant association between experience of posttraumatic growth and age (r = - 0.21, P=0.001), education at university level (F = 8.9, P=0.001) and history of treatment by radiotherapy (t = 2.1, P=0.03). The findings of this study suggest that Iranian cancer patients experience a moderate to high level of posttraumatic growth and confirm the hypothesis that the level of posttraumatic growth in non-Western cancer patients is more than that of Western cancer patients. Although, assessing the reasons for this difference needs more investigations.

  10. Detecting Growth Shape Misspecifications in Latent Growth Models: An Evaluation of Fit Indexes

    ERIC Educational Resources Information Center

    Leite, Walter L.; Stapleton, Laura M.

    2011-01-01

    In this study, the authors compared the likelihood ratio test and fit indexes for detection of misspecifications of growth shape in latent growth models through a simulation study and a graphical analysis. They found that the likelihood ratio test, MFI, and root mean square error of approximation performed best for detecting model misspecification…

  11. Fibroblast Growth Factor 2: An Epithelial Ductal Cell Growth Inhibitor That Drops Out in Breast Cancer

    DTIC Science & Technology

    2010-10-01

    AD_________________ Award Number: W81XWH-08-1-0708 TITLE: Fibroblast Growth Factor 2: an...September 2009 – 14 September 2010 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fibroblast Growth Factor 2: an Epithelial Ductal Cell Growth ...8 Appendices…………………………………………………………………………… 8 Supporting Data……………………………………………………………………... 8 Fibroblast Growth Factor -2: an

  12. Tree growth and climate in the Pacific Northwest, North America: a broad-scale analysis of changing growth environments

    Treesearch

    Whitney L. Albright; David L. Peterson

    2013-01-01

    Climate change in the 21st century will affect tree growth in the Pacific Northwest region of North America, although complex climate–growth relationships make it difficult to identify how radial growth will respond across different species distributions. We used a novel method to examine potential growth responses to climate change at a broad geographical scale with a...

  13. Market Acceptance of Smart Growth

    EPA Pesticide Factsheets

    This report finds that smart growth developments enjoy market acceptance because of stability in prices over time. Housing resales in smart growth developments often have greater appreciation than their conventional suburban counterparts.

  14. Measures of Student Growth

    ERIC Educational Resources Information Center

    Texas Education Agency, 2016

    2016-01-01

    Beginning in the 2017-2018 school year, appraisal systems in Texas, whether the state-recommended system or a locally developed system, will need to include a measure of student growth at the individual teacher level. Student growth measures how much a student progresses academically during his or her time with a particular teacher. It takes into…

  15. Postnatal effects of intrauterine treatment of the growth-restricted ovine fetus with intra-amniotic insulin-like growth factor-1.

    PubMed

    Spiroski, A M; Oliver, M H; Jaquiery, A L; Prickett, T C R; Espiner, E A; Harding, J E; Bloomfield, F H

    2017-12-12

    Fetal growth restriction increases the risk of fetal and neonatal mortality and morbidity, and contributes to increased risk of chronic disease later in life. Intra-amniotic insulin-like growth factor-1 (IGF1) treatment of the growth-restricted ovine fetus improves fetal growth, but postnatal effects are unknown. Here we report that intra-amniotic IGF1 treatment of the growth-restricted ovine fetus alters size at birth and mechanisms of early postnatal growth in a sex-specific manner. We also show that maternal plasma C-type natriuretic peptide (CNP) products are related to fetal oxygenation and size at birth, and hence may be useful for non-invasive monitoring of fetal growth restriction. Intrauterine IGF1 treatment in late gestation is a potentially clinically relevant intervention that may ameliorate the postnatal complications of fetal growth restriction. Placental insufficiency-mediated fetal growth restriction (FGR) is associated with altered postnatal growth and metabolism, which are, in turn, associated with increased risk of adult disease. Intra-amniotic insulin-like growth factor-1 (IGF1) treatment of ovine FGR increases growth rate in late gestation, but the effects on postnatal growth and metabolism are unknown. We investigated the effects of intra-amniotic IGF1 administration to ovine fetuses with uteroplacental embolisation-induced FGR on phenotypical and physiological characteristics in the 2  weeks after birth. We measured early postnatal growth velocity, amino-terminal propeptide of C-type natriuretic peptide (NTproCNP), body composition, tissue-specific mRNA expression, and milk intake in singleton lambs treated weekly with 360 μg intra-amniotic IGF1 (FGRI; n = 13 females, 19 males) or saline (FGRS; n = 18 females, 12 males) during gestation, and in controls (CON; n = 15 females, 22 males). There was a strong positive correlation between maternal NTproCNP and fetal oxygenation, and size at birth in FGR lambs. FGR lambs were ∼20% lighter

  16. Hormones and Human and Nonhuman Primate Growth.

    PubMed

    Bernstein, Robin Miriam

    2017-01-01

    The aim of this paper was to review information pertaining to the hormonal regulation of nonhuman primate growth, with specific focus on the growth hormone (GH)-insulin-like growth factor (IGF) axis and adrenal androgens. Hormones of the GH-IGF axis are consistently associated with measures of growth - linear, weight, or both - during the growth period; in adulthood, concentrations of IGF-I, IGF-binding protein-3, and GH-binding protein are not associated with any measures of size. Comparing patterns of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS) may be especially relevant for understanding whether the childhood stage of growth and development is unique to humans and perhaps other apes. Genetic, hormonal, and morphological data on adrenarche in other nonhuman primate species suggest that this endocrine transition is delayed in humans, chimpanzees, and possibly gorillas, while present very early in postnatal life in macaques. This suggests that although perhaps permitted by an extension of the pre-adolescent growth period, childhood builds upon existing developmental substrates rather than having been inserted de novo into an ancestral growth trajectory. Hormones can provide insight regarding the evolution of the human growth trajectory. © 2017 S. Karger AG, Basel.

  17. [Saarland Growth Study: sampling design].

    PubMed

    Danker-Hopfe, H; Zabransky, S

    2000-01-01

    The use of reference data to evaluate the physical development of children and adolescents is part of the daily routine in the paediatric ambulance. The construction of such reference data is based on the collection of extensive reference data. There are different kinds of reference data: cross sectional references, which are based on data collected from a big representative cross-sectional sample of the population, longitudinal references, which are based on follow-up surveys of usually smaller samples of individuals from birth to maturity, and mixed longitudinal references, which are a combination of longitudinal and cross-sectional reference data. The advantages and disadvantages of the different methods of data collection and the resulting reference data are discussed. The Saarland Growth Study was conducted for several reasons: growth processes are subject to secular changes, there are no specific reference data for children and adolescents from this part of the country and the growth charts in use in the paediatric praxis are possibly not appropriate any more. Therefore, the Saarland Growth Study served two purposes a) to create actual regional reference data and b) to create a database for future studies on secular trends in growth processes of children and adolescents from Saarland. The present contribution focusses on general remarks on the sampling design of (cross-sectional) growth surveys and its inferences for the design of the present study.

  18. Prenatal Depression Restricts Fetal Growth

    PubMed Central

    Diego, Miguel A.; Field, Tiffany; Hernandez-Reif, Maria; Schanberg, Saul; Kuhn, Cynthia; Gonzalez-Quintero, Victor Hugo

    2009-01-01

    Objective To identify whether prenatal depression is a risk factor for fetal growth restriction. Methods Midgestation (18-20 weeks GA) estimated fetal weight and urine cortisol and birth weight and gestational age at birth data were collected on a sample of 40 depressed and 40 non-depressed women. Estimated fetal weight and birthweight data were then used to compute fetal growth rates. Results Depressed women had a 13% greater incidence of premature delivery (Odds Ratio (OR) = 2.61) and 15% greater incidence of low birthweight (OR = 4.75) than non-depressed women. Depressed women also had elevated prenatal cortisol levels (p = .006) and fetuses who were smaller (p = .001) and who showed slower fetal growth rates (p = .011) and lower birthweights (p = .008). Mediation analyses further revealed that prenatal maternal cortisol levels were a potential mediator for the relationship between maternal symptoms of depression and both gestational age at birth and the rate of fetal growth. After controlling for maternal demographic variables, prenatal maternal cortisol levels were associated with 30% of the variance in gestational age at birth and 14% of the variance in the rate of fetal growth. Conclusion Prenatal depression was associated with adverse perinatal outcomes, including premature delivery and slower fetal growth rates. Prenatal maternal cortisol levels appear to play a role in mediating these outcomes. PMID:18723301

  19. Growth Angle - a Microscopic View

    NASA Technical Reports Server (NTRS)

    Mazurak, K.; Volz, M. P.; Croll, A.

    2017-01-01

    The growth angle that is formed between the side of the growing crystal and the melt meniscus is an important parameter in the detached Bridgman crystal growth method, where it determines the extent of the crystal-crucible wall gap, and in the Czochralski and float zone methods, where it influences the size and stability of the crystals. The growth angle is a non-equilibrium parameter, defined for the crystal growth process only. For a melt-crystal interface translating towards the crystal (melting), there is no specific angle defined between the melt and the sidewall of the solid. In this case, the corner at the triple line becomes rounded, and the angle between the sidewall and the incipience of meniscus can take a number of values, depending on the position of the triple line. In this work, a microscopic model is developed in which the fluid interacts with the solid surface through long range van der Waals or Casimir dispersive forces. This growth angle model is applied to Si and Ge and compared with the macroscopic approach of Herring. In the limit of a rounded corner with a large radius of curvature, the wetting of the melt on the crystal is defined by the contact angle. The proposed microscopic approach addresses the interesting issue of the transition from a contact angle to a growth angle as the radius of curvature decreases.

  20. Recent growth of conifer species of western North America: Assessing spatial patterns of radial growth trends

    USGS Publications Warehouse

    McKenzie, D.; Hessl, Amy E.; Peterson, D.L.

    2001-01-01

    We explored spatial patterns of low-frequency variability in radial tree growth among western North American conifer species and identified predictors of the variability in these patterns. Using 185 sites from the International Tree-Ring Data Bank, each of which contained 10a??60 raw ring-width series, we rebuilt two chronologies for each site, using two conservative methods designed to retain any low-frequency variability associated with recent environmental change. We used factor analysis to identify regional low-frequency patterns in site chronologies and estimated the slope of the growth trend since 1850 at each site from a combination of linear regression and time-series techniques. This slope was the response variable in a regression-tree model to predict the effects of environmental gradients and species-level differences on growth trends. Growth patterns at 27 sites from the American Southwest were consistent with quasi-periodic patterns of drought. Either 12 or 32 of the 185 sites demonstrated patterns of increasing growth between 1850 and 1980 A.D., depending on the standardization technique used. Pronounced growth increases were associated with high-elevation sites (above 3000 m) and high-latitude sites in maritime climates. Future research focused on these high-elevation and high-latitude sites should address the precise mechanisms responsible for increased 20th century growth.

  1. Progress, Exponential Growth and Post-Growth Education

    ERIC Educational Resources Information Center

    Irwin, Ruth

    2017-01-01

    Teleological progress is the underlying motif of modern culture, and informs education, innovation, and economic development. Progress includes a gradual increase in consumerism. Since the 1940s, the Keynesian Settlement and its embedded belief in progress is legislated in exponential 2-3% economic growth. Unfortunately, climate change is a direct…

  2. Growth dynamics of Australia's polar dinosaurs.

    PubMed

    Woodward, Holly N; Rich, Thomas H; Chinsamy, Anusuya; Vickers-Rich, Patricia

    2011-01-01

    Analysis of bone microstructure in ornithopod and theropod dinosaurs from Victoria, Australia, documents ontogenetic changes, providing insight into the dinosaurs' successful habitation of Cretaceous Antarctic environments. Woven-fibered bone tissue in the smallest specimens indicates rapid growth rates during early ontogeny. Later ontogeny is marked by parallel-fibered tissue, suggesting reduced growth rates approaching skeletal maturity. Bone microstructure similarities between the ornithopods and theropods, including the presence of LAGs in each group, suggest there is no osteohistologic evidence supporting the hypothesis that polar theropods hibernated seasonally. Results instead suggest high-latitude dinosaurs had growth trajectories similar to their lower-latitude relatives and thus, rapid early ontogenetic growth and the cyclical suspensions of growth inherent in the theropod and ornithopod lineages enabled them to successfully exploit polar regions.

  3. Effect of growth hormone treatment on craniofacial growth in children: Idiopathic short stature versus growth hormone deficiency.

    PubMed

    Choi, Sung-Hwan; Fan, Dong; Hwang, Mi-Soo; Lee, Hee-Kyung; Hwang, Chung-Ju

    2017-04-01

    Few studies have evaluated craniofacial growth in boys and girls with idiopathic short stature (ISS) during growth hormone (GH) treatment. The aim of this study was to evaluate the effect of GH treatment on craniofacial growth in children with ISS, compared with those with growth hormone deficiency (GHD). This study included 36 children (mean age, 11.3 ± 1.8 years) who were treated with GH consecutively. Lateral cephalograms were analyzed before and 2 years after start of GH treatment. There were no significant differences in age and sex between ISS and GHD groups and the reference group from semilongitudinal study (10 boys and 8 girls from each group). Before treatment, girls with ISS showed a skeletal Class II facial profile compared with the GHD and reference groups (p = 0.003). During GH treatment, the amount of maxillary length increased beyond norm in the ISS and GHD groups in boys (p = 0.035) > 3 standard deviation score (SDS). Meanwhile, mandibular ramus height (p = 0.001), corpus length, and total mandibular length (p = 0.007 for both) increased more in girls with ISS than in girls with GHD. Lower and total anterior facial heights increased more in girls with ISS than in girls with GHD (p = 0.021 and p = 0.007, respectively), > 7-11 SDS. GH should be administered carefully when treating girls with ISS, because GH treatment has great effects on vertical overgrowth of the mandible and can result in longer face. Copyright © 2016. Published by Elsevier B.V.

  4. Very slow growth of Escherichia coli.

    PubMed Central

    Chesbro, W; Evans, T; Eifert, R

    1979-01-01

    A recycling fermentor (a chemostat with 100% biomass feedback) was used to study glucose-limited behavior of Escherichia coli B. The expectation from mass transfer analysis that growth would asymptotically approach a limit mass determined by the glucose provision rate (GPR) and the culture's maintenance requirement was not met. Instead, growth proceeded at progressively lower rates through three distinct phases. After the fermentor was seeded, but before glucose became limiting, growth followed the usual, exponential path (phase 1). About 12 h postseeding, residual glucose in the fermentor fell below 1 microgram . ml-1 and the growth rate (dx/dt) became constant and a linear function of GPR (phase 2). The specific growth rate, mu, therefore fell continuously throughout the phase. Biomass yield and glucose assimilation (13%) were near the level for exponential growth, however, and independent of GPR over a broad range. At a critical specific growth rate (0.04 h-1 for this strain), phase 2 ended abruptly and phase 3 commenced. In phase 3, the growth rate was again constant, although lower than in phase 2, so that mu continued to fall, but growth rates and yields were praboloid functions of GPR. They were never zero, however, at any positive value of GPR. By inference, the fraction of metabolic energy used for maintenance functions is constant for a given GPR, although different for phases 2 and 3, and independent of biomass. In both phases 2 and 3, orcinol, diphenylamine, and Lowry reactive materials were secreted at near-constant rates such that over 50% as much biosynthetic mass was secreted as was retained by the cells. Images PMID:378981

  5. Skeletal-muscle growth and protein turnover.

    PubMed Central

    Millward, D J; Garlick, P J; Stewart, R J; Nnanyelugo, D O; Waterlow, J C

    1975-01-01

    Because of turnover, protein synthesis and breakdown can each be involved in the regulation of the growth of tissue protein. To investigate the regulation of skeletal-muscle-protein growth we measured rates of protein synthesis and breakdown in growing rats during development on a good diet, during development on a marginally low-protein diet and during rehabilitation on a good diet after a period of severe protein deficiency. Rates of protein synthesis were measured in vivo with a constant intravenous infusion of [14C]tyrosine. The growth rate of muscle protein was measured and the rate of breakdown calculated as breakdown rate=synthesis rate-growth rate. These measurements showed that during development on a good diet there was a fall with age in the rate of protein synthesis resulting from a fall in capacity (RNA concentration) and activity (synthesis rate per unit of RNA). There was a fall with age in the breakdown rate so that the rate was highest in the weaning rats, with a half-life of 3 days. There was a direct correlation between the fractional growth and breakdown rates. During rehabilitation on the good diet, rapid growth was also accompanied by high rates of protein breakdown. During growth on the inadequate diet protein synthesis rates were lesss than in controls, but growth occurred because of decreased rates of protein breakdown. This compression was not complete, however, since ultimate muscle size was only one-half that of controls. It is suggested that increased rates of protein breakdown are a necessary accompaniment to muscle growth and may result from the way in which myofibrils proliferate. PMID:1180916

  6. Growth Hormone Research Society perspective on the development of long-acting growth hormone preparations

    USDA-ARS?s Scientific Manuscript database

    The Growth Hormone (GH) Research Society (GRS) convened a workshop to address important issues regarding trial design, efficacy, and safety of long-acting growth hormone preparations (LAGH). A closed meeting of 55 international scientists with expertise in GH, including pediatric and adult endocrino...

  7. Shoot-derived abscisic acid promotes root growth.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J; Ross, John J

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root-sourced ABA on root growth during water stress. Here, we tested whether foliage-derived ABA could be transported to the roots, and whether this foliage-derived ABA had an influence on root growth under well-watered conditions. Using both application studies of deuterium-labelled ABA and reciprocal grafting between wild-type and ABA-biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage-derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA-deficient scions suggest that foliage-derived ABA inhibits root growth through the root growth-inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage-derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture. © 2015 John Wiley & Sons Ltd.

  8. Human growth hormone induced cholestatic hepatitis in a growth hormone deficient patient with short stature.

    PubMed

    Zahmatkeshan, Mozhghan; Karamizadeh, Zohre; Geramizadeh, Bita; Eshraghian, Ahad

    2014-03-01

    We report a patient with growth hormone deficiency that developed cholestatic hepatitis during treatment with recombinant human growth hormone (HGH). The patient developed jaundice and pruritus during treatment with growth hormone. She did not use any other medications. Her jaundice and pruritus were disappeared and liver enzyme disturbances were normalized after HGH discontinuation. Clinician should be aware of this potential adverse drug reaction and frequent checking of liver enzymes is recommended in patients treating with HGH.

  9. Assessing the Growth of Gifted Students

    ERIC Educational Resources Information Center

    McCoach, D. Betsy; Rambo, Karen E.; Welsh, Megan

    2013-01-01

    This Methodological Brief gives an overview of statistical methods used to gauge academic growth and discusses issues surrounding the measurement of growth in gifted populations. To illustrate some of these issues, we describe a growth model that examines differences in summer lag between gifted and nongifted students. We also provide…

  10. Modelling the growth of feather crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, H.J.; Hunt, J.D.; Evans, P.V.

    1997-02-01

    An existing numerical model of dendritic growth has been adapted to model the growth of twinned columnar dendrites (feather crystals) in a binary aluminium alloy, Examination of the effect of dendrite tip angle on growth has led to an hypothesis regarding the stability of a pointed tip morphology in these crystals.

  11. Neuropsychological development in preschool children born with asymmetrical intrauterine growth restriction and impact of postnatal head growth.

    PubMed

    Klaric, Andrea Simić; Galić, Slavka; Kolundzić, Zdravko; Bosnjak, Vlatka Mejaski

    2013-07-01

    Neuropsychological development and the impact of postnatal head growth were studied in preschool children with asymmetrical intrauterine growth restriction. Examinees born at term with a birth weight below the 10th percentile were matched to the control group according to chronological and gestational age, gender, and maternal education. Fifty children were in each group, with a mean age of 6 years, 4 months. The Touwen neurological examination, the Čuturić developmental test, an imitative hand positions test, and a visual attention test were performed. There were significant differences (P< .03) in motor variables, the developmental quotient, and the imitative hand positions test. Fine motor skills had the most discriminative power. Relative growth of the head in relation to weight gain was positively correlated to neurocognitive outcome. Intrauterine growth-restricted children with a current head circumference ≤10th percentile had poorer outcomes. Conclusively, intrauterine growth restriction has a negative impact on neurocognitive development. Slow postnatal head growth is correlated with a poorer neuropsychological outcome.

  12. Regulation of Transforming Growth Factor β1, Platelet-Derived Growth Factor, and Basic Fibroblast Growth Factor by Silicone Gel Sheeting in Early-Stage Scarring.

    PubMed

    Choi, Jaehoon; Lee, Eun Hee; Park, Sang Woo; Chang, Hak

    2015-01-01

    Hypertrophic scars and keloids are associated with abnormal levels of growth factors. Silicone gel sheets are effective in treating and preventing hypertrophic scars and keloids. There has been no report on the change in growth factors in the scar tissue following the use of silicone gel sheeting for scar prevention. A prospective controlled trial was performed to evaluate whether growth factors are altered by the application of a silicone gel sheet on a fresh surgical scar. Four of seven enrolled patients completed the study. Transforming growth factor (TGF)-β1, platelet-derived growth factor (PDGF), and basic fibroblast growth factor (bFGF) were investigated immunohistochemically in biopsies taken from five scars at 4 months following surgery. In both the epidermis and the dermis, the expression of TGF-β1 (P=0.042 and P=0.042) and PDGF (P=0.043 and P=0.042) was significantly lower in the case of silicone gel sheet-treated scars than in the case of untreated scars. The expression of bFGF in the dermis was significantly higher in the case of silicone gel sheet-treated scars than in the case of untreated scars (P=0.042), but in the epidermis, the expression of bFGF showed no significant difference between the groups (P=0.655). The levels of TGF-β1, PDGF, and bFGF are altered by the silicone gel sheet treatment, which might be one of the mechanisms of action in scar prevention.

  13. Nucleation and growth mechanism of 2D SnS2 by chemical vapor deposition: initial 3D growth followed by 2D lateral growth

    NASA Astrophysics Data System (ADS)

    Zhang, Haodong; van Pelt, Thomas; Nalin Mehta, Ankit; Bender, Hugo; Radu, Iuliana; Caymax, Matty; Vandervorst, Wilfried; Delabie, Annelies

    2018-07-01

    Tin disulfide (SnS2) is a n-type semiconductor with a hexagonally layered crystal structure and has promising applications in nanoelectronics, optoelectronics and sensors. Such applications require the deposition of SnS2 with controlled crystallinity and thickness control at monolayer level on large area substrate. Here, we investigate the nucleation and growth mechanism of two-dimensional (2D) SnS2 by chemical vapor deposition (CVD) using SnCl4 and H2S as precursors. We find that the growth mechanism of 2D SnS2 is different from the classical layer-by-layer growth mode, by which monolayer-thin 2D transition metal dichalcogenides can be formed. In the initial nucleation stage, isolated 2D SnS2 domains of several monolayers high are formed. Next, 2D SnS2 crystals grow laterally while keeping a nearly constant height until layer closure is achieved, due to the higher reactivity of SnS2 crystal edges than basal planes. We infer that the thickness of the 2D SnS2 crystals is determined by the height of initial SnS2 islands. After layer closure, SnS2 grows on grain boundaries and results in 3D growth mode, accompanied by spiral growth. Our findings suggest an approach to prepare 2D SnS2 with a controlled thickness of several monolayers and add more knowledge on the nucleation and growth mechanism of 2D materials.

  14. Challenges in nourishing the intrauterine growth-restricted foetus - Lessons learned from studies in the intrauterine growth-restricted foetal sheep.

    PubMed

    Hay, William W; Brown, Laura D; Rozance, Paul J; Wesolowski, Stephanie R; Limesand, Sean W

    2016-08-01

    Previous attempts to improve growth and development of the intrauterine growth-restricted (IUGR) foetus during pregnancy have not worked or caused harm. Our research identifies tissue-specific mechanisms underlying foetal growth restriction and then tests strategies to improve growth and ameliorate many of the metabolic problems before the infant is born. The goal of our studies is to reduce the impact of foetal growth restriction at critical stages of development on the lifelong complications of IUGR offspring. Defining specific mechanisms that cause growth restriction in the foetus might identify specific nutrients and hormones that could be given to the mother to improve foetal growth and reduce metabolic complications, using strategies first tested in our IUGR animal model. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  15. Axon growth regulation by a bistable molecular switch.

    PubMed

    Padmanabhan, Pranesh; Goodhill, Geoffrey J

    2018-04-25

    For the brain to function properly, its neurons must make the right connections during neural development. A key aspect of this process is the tight regulation of axon growth as axons navigate towards their targets. Neuronal growth cones at the tips of developing axons switch between growth and paused states during axonal pathfinding, and this switching behaviour determines the heterogeneous axon growth rates observed during brain development. The mechanisms controlling this switching behaviour, however, remain largely unknown. Here, using mathematical modelling, we predict that the molecular interaction network involved in axon growth can exhibit bistability, with one state representing a fast-growing growth cone state and the other a paused growth cone state. Owing to stochastic effects, even in an unchanging environment, model growth cones reversibly switch between growth and paused states. Our model further predicts that environmental signals could regulate axon growth rate by controlling the rates of switching between the two states. Our study presents a new conceptual understanding of growth cone switching behaviour, and suggests that axon guidance may be controlled by both cell-extrinsic factors and cell-intrinsic growth regulatory mechanisms. © 2018 The Author(s).

  16. Plant Growth Biophysics: the Basis for Growth Asymmetry Induced by Gravity

    NASA Technical Reports Server (NTRS)

    Cosgrove, D.

    1985-01-01

    The identification and quantification of the physical properties altered by gravity when plant stems grow upward was studied. Growth of the stem in vertical and horizontal positions was recorded by time lapse photography. A computer program that uses a cubic spline fitting algorithm was used to calculate the growth rate and curvature of the stem as a function of time. Plant stems were tested to ascertain whether cell osmotic pressure was altered by gravity. A technique for measuring the yielding properties of the cell wall was developed.

  17. Fluorapatite crystal growth from modified seawater solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Cappellen, P.; Berner, R.A.

    Seeded precipitation experiments were conducted in a pH/fluoride-stat system to study the crystal growth of fluorapatite (FAP) in carbonate-free NaCl-CaCl{sub 2}-NaF-Na{sub 2}HPO{sub 4} solutions, at seawater calcium concentration, chlorinity, and pH. With increasing supersaturation, the dependence of the growth rate on the relative supersaturation changes from parabolic to exponential. This is interpreted as reflecting a transition in the crystal growth mechanism from growth at dislocation-induced surface steps to surface nucleation-controlled growth. The analysis of the kinetic data leads to a mineral-aqueous solution interfacial tension for FAP of 289 mJ/M{sup 2}. The Arrhenius activation energy of the growth reaction in themore » temperature range 12 to 35C is 47 kJ/mol. The effect of pH on FAP growth was tested for pH values from 7 to 8.5. In this range, growth of FAP is catalyzed by hydrogen ions. The apparent growth rate constant is proportional to (a{sub H{sup +}}){sup m} where m, the rate order with respect to H{sup +}, is a non-integral number which depends on pH. At identical degrees of supersaturation, the growth rate of FAP at pH = 7 is nearly twice that at pH = 8. When corrected for bottom water temperatures, pore water pH, and the retardation of Mg{sup 2+}, the experimental growth rates predict that during burial in modern phosphatic sediments, apatite particles grow to sizes on the order of 0.1-10{mu}m. The relatively slow growth kinetics of FAP are consistent with the observed small particle sizes of marine sedimentary apatite.« less

  18. Clonal growth and plant species abundance

    PubMed Central

    Herben, Tomáš; Nováková, Zuzana; Klimešová, Jitka

    2014-01-01

    Background and Aims Both regional and local plant abundances are driven by species' dispersal capacities and their abilities to exploit new habitats and persist there. These processes are affected by clonal growth, which is difficult to evaluate and compare across large numbers of species. This study assessed the influence of clonal reproduction on local and regional abundances of a large set of species and compared the predictive power of morphologically defined traits of clonal growth with data on actual clonal growth from a botanical garden. The role of clonal growth was compared with the effects of seed reproduction, habitat requirements and growth, proxied both by LHS (leaf–height–seed) traits and by actual performance in the botanical garden. Methods Morphological parameters of clonal growth, actual clonal reproduction in the garden and LHS traits (leaf-specific area – height – seed mass) were used as predictors of species abundance, both regional (number of species records in the Czech Republic) and local (mean species cover in vegetation records) for 836 perennial herbaceous species. Species differences in habitat requirements were accounted for by classifying the dataset by habitat type and also by using Ellenberg indicator values as covariates. Key Results After habitat differences were accounted for, clonal growth parameters explained an important part of variation in species abundance, both at regional and at local levels. At both levels, both greater vegetative growth in cultivation and greater lateral expansion trait values were correlated with higher abundance. Seed reproduction had weaker effects, being positive at the regional level and negative at the local level. Conclusions Morphologically defined traits are predictive of species abundance, and it is concluded that simultaneous investigation of several such traits can help develop hypotheses on specific processes (e.g. avoidance of self-competition, support of offspring) potentially

  19. Release kinetics of platelet-derived and plasma-derived growth factors from autologous plasma rich in growth factors.

    PubMed

    Anitua, Eduardo; Zalduendo, Mari Mar; Alkhraisat, Mohammad Hamdan; Orive, Gorka

    2013-10-01

    Many studies have evaluated the biological effects of platelet rich plasma reporting the final outcomes on cell and tissues. However, few studies have dealt with the kinetics of growth factor delivery by plasma rich in growth factors. Venous blood was obtained from three healthy volunteers and processed with PRGF-Endoret technology to prepare autologous plasma rich in growth factors. The gel-like fibrin scaffolds were then incubated in triplicate, in a cell culture medium to monitor the release of PDGF-AB, VEGF, HGF and IGF-I during 8 days of incubation. A leukocyte-platelet rich plasma was prepared employing the same technology and the concentrations of growth factors and interleukin-1β were determined after 24h of incubation. After each period, the medium was collected, fibrin clot was destroyed and the supernatants were stored at -80°C until analysis. The growth factor delivery is diffusion controlled with a rapid initial release by 30% of the bioactive content after 1h of incubation and a steady state release when almost 70% of the growth factor content has been delivered. Autologous fibrin matrix retained almost 30% of the amount of the growth factors after 8 days of incubation. The addition of leukocytes to the formula of platelet rich plasma did not increase the concentration of the growth factors, while it drastically increased the presence of pro-inflammatory IL-1β. Further studies employing an in vitro inflammatory model would be interesting to study the difference in growth factors and pro-inflammatory cytokines between leukocyte-free and leukocyte-rich platelet rich plasma. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Growth in very preterm children: Head growth after discharge is the best independent predictor for cognitive outcome.

    PubMed

    Lidzba, Karen; Rodemann, Susanne; Goelz, Rangmar; Krägeloh-Mann, Ingeborg; Bevot, Andrea

    2016-12-01

    The contribution of growth parameters to the cognitive outcome of very low birth weight (VLBW)/very preterm (VP) infants is difficult to disentangle from other preterm-birth related factors. We hypothesized that long-term cognitive and motor outcome of VLBW/VP infants is most strongly associated with growth in head circumference after hospital discharge. Single-centre prospective longitudinal study: anthropometric measures at different time points (birth, discharge, school-age). 136 VLBW/VP infants (<32weeks gestation/birth weight<1.500g). Cognitive and motor function (Kaufman Assessment Battery for Children; Movement Assessment Battery for Children) at school-age (6.7-10.0years, mean=8.2). In hierarchical multiple regression analyses, growth from birth to discharge significantly predicted cognitive outcome (weight: R 2 change =0.063, p=0.014; length: R 2 change =0.078, p=0.007; HC: R 2 change =0.050, p=0.030), as well as weight gain (R 2 change =0.096, p=0.001) and head growth (R 2 change =0.134, p<0.001) from discharge to school-age. While most growth parameters, especially those from birth to discharge, were significantly influenced by prenatal growth and immaturity related morbidity (R 2 =0.151 to 0.605, all p≤0.001), head growth after discharge was not (R 2 =0.029, p=0.461). Amongst all anthropometric measures, head growth between discharge and school-age is the best independent predictor for cognitive outcome in VLBW/VP infants. Determinants of head growth after discharge need further studies to identify targets for intervention. Copyright © 2016. Published by Elsevier Ireland Ltd.

  1. Gambling on growth.

    PubMed

    Feeney, A

    1990-01-01

    When the assumption is made that economic growth must be increased by 10% to accommodate population increases and to reduce poverty, the question is raised as to whether or not sustainable development is possible. The human population increased 3 times since 1900, and global economic activity has increased 7 times faster than population. Use of fossil fuels has increased by 30 times, and industrial production has increased by 50 times. The by-products of population growth and economic activity are loss of tropical rainforests; species extinction; desertification in Africa, India, and the US; toxic and radioactive pollution; and greenhouse warming and ozone depletion. The atmosphere's stability and human habitation is threatened. Sustainable development, as defined by the World Commission on Environment and Development (WCED) in "Our Common Future," is meeting present needs but not at the expense of future needs. Economic growth must proceed at different rates in different countries to close the gap between the rich and poor. Economic expansion has been criticized by the president of Negative Population Growth and the Environmental Defense Fund's coordinator of reform for the World Bank's environmental policies and Third World countries. US government response during the Reagan administration has been indifference, while support has come from the World Resources Institute, the Worldwatch Institute, the US National Wildlife Federation, and the Population Reference Bureau. Recent support has come from signers of the "G-7 Summit" and from IBM and the Dow Chemical Company. A few shared tenets are 1) that economic development is not sustainable, 2) environmental reforms are necessary to make development sustainable, 3) a trade-off is needed to increase Third World energy use, and 4) population must be stabilized. Many proposals have been offered including reducing population to 2 billion, or 40% of the current level. Reducing poverty globally is an environmentally sound

  2. FGF growth factor analogs

    DOEpatents

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY; Takahashi, Kazuyuki [Germantown, MD

    2012-07-24

    The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.

  3. Catecholamines and in vitro growth of pathogenic bacteria: enhancement of growth varies greatly among bacterial species

    NASA Technical Reports Server (NTRS)

    Belay, Tesfaye; Aviles, Hernan; Vance, Monique; Fountain, Kimberly; Sonnenfeld, Gerald

    2003-01-01

    The purpose of this study was to examine the effects of catecholamines on in vitro growth of a range of bacterial species, including anaerobes. Bacteria tested included: Porphyromonas gingivalis, Bacteriodes fragilis, Shigella boydii, Shigella sonnie, Enterobacter Sp, and Salmonella choleraesuis. The results of the current study indicated that supplementation of bacterial cultures in minimal medium with norepinephrine or epinephrine did not result in increased growth of bacteria. Positive controls involving treatment of Escherichia coli with catecholamines did result in increased growth of that bacterial species. The results of the present study extend previous observations that showed differential capability of catecholamines to enhance bacterial growth in vitro.

  4. Biochemomechanical poroelastic theory of avascular tumor growth

    NASA Astrophysics Data System (ADS)

    Xue, Shi-Lei; Li, Bo; Feng, Xi-Qiao; Gao, Huajian

    2016-09-01

    Tumor growth is a complex process involving genetic mutations, biochemical regulations, and mechanical deformations. In this paper, a thermodynamics-based nonlinear poroelastic theory is established to model the coupling among the mechanical, chemical, and biological mechanisms governing avascular tumor growth. A volumetric growth law accounting for mechano-chemo-biological coupled effects is proposed to describe the development of solid tumors. The regulating roles of stresses and nutrient transport in the tumor growth are revealed under different environmental constraints. We show that the mechano-chemo-biological coupling triggers anisotropic and heterogeneous growth, leading to the formation of layered structures in a growing tumor. There exists a steady state in which tumor growth is balanced by resorption. The influence of external confinements on tumor growth is also examined. A phase diagram is constructed to illustrate how the elastic modulus and thickness of the confinements jointly dictate the steady state of tumor volume. Qualitative and quantitative agreements with experimental observations indicate the developed model is capable of capturing the essential features of avascular tumor growth in various environments.

  5. Different growth regimes in InP nanowire growth mediated by Ag nanoparticles.

    PubMed

    Oliveira, D S; Zavarize, M; Tizei, L H G; Walls, M; Ospina, C A; Iikawa, F; Ugarte, D; Cotta, M A

    2017-12-15

    We report on the existence of two different regimes in one-step Ag-seeded InP nanowire growth. The vapor-liquid-solid-mechanism is present at larger In precursor flows and temperatures, ∼500 °C, yielding high aspect ratio and pure wurtzite InP nanowires with a semi-spherical metal particle at the thin apex. Periodic diameter oscillations can be achieved under extreme In supersaturations at this temperature range, showing the presence of a liquid catalyst. However, under lower temperatures and In precursor flows, large diameter InP nanowires with mixed wurtzite/zincblende segments are obtained, similarly to In-assisted growth. Chemical composition analysis suggest that In-rich droplet formation is catalyzed at the substrate surface via Ag nanoparticles; this process might be facilitated by the sulfur contamination detected in these nanoparticles. Furthermore, part of the original Ag nanoparticle remains solid and is embedded inside the actual catalyst, providing an in situ method to switch growth mechanisms upon changing In precursor flow. Nevertheless, our Ag-seeded InP nanowires exhibit overall optical emission spectra consistent with the observed structural properties and similar to Au-catalyzed InP nanowires. We thus show that Ag nanoparticles may be a suitable replacement for Au in InP nanowire growth.

  6. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.; Malik, S. N.; Laflen, J. H.

    1988-01-01

    A study was performed to examine the applicability of path-independent (P-I) integrals to crack growth problems in hot section components of gas turbine aircraft engines. Alloy 718 was used and the experimental parameters included combined temperature and strain cycling, thermal gradients, elastic-plastic strain levels, and mean strains. A literature review was conducted of proposed P-I integrals, and those capable of analyzing hot section component problems were selected and programmed into the postprocessor of a finite element code. Detailed elastic-plastic finite element analyses were conducted to simulate crack growth and crack closure of the test specimen, and to evaluate the P-I integrals. It was shown that the selected P-I integrals are very effective for predicting crack growth for isothermal conditions.

  7. Growth hormone stimulation test (image)

    MedlinePlus

    ... test is performed by administering the amino acid arginine in a vein to raise hGH levels. The ... to secrete growth hormone in response to the arginine. Lack of hGH can cause growth retardation in ...

  8. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1990-01-01

    The effect of low gravity on the growth of protein crystals and those parameters which will affect growth and crystal quality was studied. The proper design of the flight hardware and experimental protocols are highly dependent on understanding the factors which influence the nucleation and growth of crystals of biological macromolecules. Thus, those factors are investigated and the body of knowledge which has been built up for small molecule crystallization. These data also provide a basis of comparison for the results obtained from low-g experiments. The flows around growing crystals are detailed. The preliminary study of the growth of isocitrate lyase, the crystal morphologies found and the preliminary x ray results are discussed. The design of two apparatus for protein crystal growth by temperature control are presented along with preliminary results.

  9. Structural and compositional differences between old-growth and mature second-growth forests in the Missouri Ozarks

    Treesearch

    Stephen R. Shifley; Lynn M. Roovers; Brian L. Brookshire

    1995-01-01

    There are currently only about 7,900 acres (3,200 ha) of remnant old-growth forest in Missouri, but public land management plans call for old-growth acreage to increase to more than 200,000 acres (81,000 ha). To develop a better quantitative understanding of the transitions that are likely as current forests mature to an old-growth state, we compared a number of...

  10. Is Decoupling GDP Growth from Environmental Impact Possible?

    PubMed

    Ward, James D; Sutton, Paul C; Werner, Adrian D; Costanza, Robert; Mohr, Steve H; Simmons, Craig T

    2016-01-01

    The argument that human society can decouple economic growth-defined as growth in Gross Domestic Product (GDP)-from growth in environmental impacts is appealing. If such decoupling is possible, it means that GDP growth is a sustainable societal goal. Here we show that the decoupling concept can be interpreted using an easily understood model of economic growth and environmental impact. The simple model is compared to historical data and modelled projections to demonstrate that growth in GDP ultimately cannot be decoupled from growth in material and energy use. It is therefore misleading to develop growth-oriented policy around the expectation that decoupling is possible. We also note that GDP is increasingly seen as a poor proxy for societal wellbeing. GDP growth is therefore a questionable societal goal. Society can sustainably improve wellbeing, including the wellbeing of its natural assets, but only by discarding GDP growth as the goal in favor of more comprehensive measures of societal wellbeing.

  11. MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM--mechanism of growth hormone stimulation of skeletal muscle growth in cattle.

    PubMed

    Jiang, H; Ge, X

    2014-01-01

    Growth hormone, also called somatotropin (ST), is a polypeptide hormone produced by the anterior pituitary. The major functions of GH include stimulating bone and skeletal muscle growth, lipolysis, milk production, and expression of the IGF-I gene in the liver. Based on these functions, recombinant bovine ST (bST) and recombinant porcine ST (pST) have been used to improve milk production in dairy cows and lean tissue growth in pigs, respectively. However, despite these applications, the mechanisms of action of GH are not fully understood. Indeed, there has been a lot of controversy over the role of liver-derived circulating IGF-I and locally produced IGF-I in mediating the growth-stimulatory effect of GH during the last 15 yr. It is in this context that we have conducted studies to further understand how GH stimulates skeletal muscle growth in cattle. Our results do not support a role of skeletal muscle-derived IGF-I in GH-stimulated skeletal muscle growth in cattle. Our results indicate that GH stimulates skeletal muscle growth in cattle, in part, by stimulating protein synthesis in muscle through a GH receptor-mediated, IGF-I-independent mechanism. In this review, besides discussing these results, we also argue that liver-derived circulating IGF-I should be still considered as the major mechanism that mediates the growth-stimulatory effect of GH on skeletal muscle in cattle and other domestic animals.

  12. Urban climate modifies tree growth in Berlin

    NASA Astrophysics Data System (ADS)

    Dahlhausen, Jens; Rötzer, Thomas; Biber, Peter; Uhl, Enno; Pretzsch, Hans

    2017-12-01

    Climate, e.g., air temperature and precipitation, differs strongly between urban and peripheral areas, which causes diverse life conditions for trees. In order to compare tree growth, we sampled in total 252 small-leaved lime trees (Tilia cordata Mill) in the city of Berlin along a gradient from the city center to the surroundings. By means of increment cores, we are able to trace back their growth for the last 50 to 100 years. A general growth trend can be shown by comparing recent basal area growth with estimates from extrapolating a growth function that had been fitted with growth data from earlier years. Estimating a linear model, we show that air temperature and precipitation significantly influence tree growth within the last 20 years. Under consideration of housing density, the results reveal that higher air temperature and less precipitation led to higher growth rates in high-dense areas, but not in low-dense areas. In addition, our data reveal a significantly higher variance of the ring width index in areas with medium housing density compared to low housing density, but no temporal trend. Transferring the results to forest stands, climate change is expected to lead to higher tree growth rates.

  13. Urban climate modifies tree growth in Berlin

    NASA Astrophysics Data System (ADS)

    Dahlhausen, Jens; Rötzer, Thomas; Biber, Peter; Uhl, Enno; Pretzsch, Hans

    2018-05-01

    Climate, e.g., air temperature and precipitation, differs strongly between urban and peripheral areas, which causes diverse life conditions for trees. In order to compare tree growth, we sampled in total 252 small-leaved lime trees ( Tilia cordata Mill) in the city of Berlin along a gradient from the city center to the surroundings. By means of increment cores, we are able to trace back their growth for the last 50 to 100 years. A general growth trend can be shown by comparing recent basal area growth with estimates from extrapolating a growth function that had been fitted with growth data from earlier years. Estimating a linear model, we show that air temperature and precipitation significantly influence tree growth within the last 20 years. Under consideration of housing density, the results reveal that higher air temperature and less precipitation led to higher growth rates in high-dense areas, but not in low-dense areas. In addition, our data reveal a significantly higher variance of the ring width index in areas with medium housing density compared to low housing density, but no temporal trend. Transferring the results to forest stands, climate change is expected to lead to higher tree growth rates.

  14. Urban climate modifies tree growth in Berlin.

    PubMed

    Dahlhausen, Jens; Rötzer, Thomas; Biber, Peter; Uhl, Enno; Pretzsch, Hans

    2018-05-01

    Climate, e.g., air temperature and precipitation, differs strongly between urban and peripheral areas, which causes diverse life conditions for trees. In order to compare tree growth, we sampled in total 252 small-leaved lime trees (Tilia cordata Mill) in the city of Berlin along a gradient from the city center to the surroundings. By means of increment cores, we are able to trace back their growth for the last 50 to 100 years. A general growth trend can be shown by comparing recent basal area growth with estimates from extrapolating a growth function that had been fitted with growth data from earlier years. Estimating a linear model, we show that air temperature and precipitation significantly influence tree growth within the last 20 years. Under consideration of housing density, the results reveal that higher air temperature and less precipitation led to higher growth rates in high-dense areas, but not in low-dense areas. In addition, our data reveal a significantly higher variance of the ring width index in areas with medium housing density compared to low housing density, but no temporal trend. Transferring the results to forest stands, climate change is expected to lead to higher tree growth rates.

  15. Study on the Changes in Enzyme and Insulin-like Growth Factor-1 Concentrations in Blood Serum and Growth Characteristics of Velvet Antler during the Antler Growth Period in Sika Deer (Cervus nippon).

    PubMed

    Park, Jaehyun; Jeon, Byongtae; Kang, Sungki; Oh, Mirae; Kim, Myonghwa; Jang, Seyoung; Park, Pyojam; Kim, Sangwoo; Moon, Sangho

    2015-09-01

    This study was conducted to investigate changes in blood enzyme parameters and to evaluate the relationship between insulin-like growth factor-1 (IGF-1), antler growth and body weight during the antler growth of sika deer (Cervus nippon). Serum enzyme activity and IGF-1 concentrations were measured in blood samples collected from the jugular and femoral veins at regular intervals during the antler growth period. Blood samples were taken in the morning from fasted stags (n = 12) which were healthy and showed no clinical signs of disease. Alfalfa was available ad libitum and concentrates were given at 1% of body weight to all stags. The experimental diet was provided at 9 am with water available at all times. There were no significant differences in alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase during antler growth, but alkaline phosphatase concentrations increased with antler growth progression, and the highest alkaline phosphatase concentration was obtained 55 days after antler casting. Serum IGF-1 concentrations measured from blood samples taken from the jugular vein during antler growth, determined that levels of IGF-1 was associated with body weight and antler growth patterns. Serum IGF-1 concentrations were higher at the antler cutting date than other sampling dates. Antler length increased significantly during antler growth (p<0.001), and there was a similar trend to between right and left beams. Body weight increased with antler growth but was not significant. Consequently it appeared that serum alkaline phosphatase concentration was related to antler growth and both antler growth and body weight were associated positively with IGF-1 concentrations during antler growth.

  16. New findings about old-growth forests.

    Treesearch

    Valerie Rapp

    2003-01-01

    Not all forests with old trees are scientifically defined as old growth. Among those that are, the variations are so striking that multiple definitions of old-growth forests are needed, even when the discussion is restricted to Pacific coast old-growth forests from southwestern Oregon to southwestern British Columbia.Scientists understand the basic structural...

  17. Analytics of crystal growth in space

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.; Chang, C. E.; Shlichta, P. J.; Chen, P. S.; Kim, C. K.

    1974-01-01

    Two crystal growth processes considered for spacelab experiments were studied to anticipate and understand phenomena not ordinarily encountered on earth. Computer calculations were performed on transport processes in floating zone melting and on growth of a crystal from solution in a spacecraft environment. Experiments intended to simulate solution growth at micro accelerations were performed.

  18. Surrogate Seeds For Growth Of Crystals

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.

    1989-01-01

    Larger crystals of higher quality grown. Alternative method for starting growth of crystal involves use of seed crystal of different material instead of same material as solution. Intended for growing single-crystal proteins for experiments but applicable in general to growth of crystals from solutions and to growth of semiconductor or other crystals from melts.

  19. Fluorapatite crystal growth from modified seawater solutions

    NASA Astrophysics Data System (ADS)

    Van Cappellen, Philippe; Berner, Robert A.

    Seeded precipitation experiments were conducted in a pH/fluoride-stat system to study the crystal growth of fluorapatite ( FAP ) in carbonate-free NaCl-CaCl 2-NaF-Na 2HPO 4 solutions, at seawater calcium concentration, chlorinity, and pH. With increasing supersaturation, the dependence of the growth rate on the relative supersaturation changes from parabolic to exponential. This is interpreted as reflecting a transition in the crystal growth mechanism from growth at dislocation-induced surface steps to surface nucleation-controlled growth. The analysis of the kinetic data leads to a mineral-aqueous solution interfacial tension for FAP of 289 mJ/m 2. The Arrhenius activation energy of the growth reaction in the temperature range 12 to 35°C is 47 kJ/mol. The inhibition of FAP growth by Mg 2+ ions was investigated over a range of total dissolved Mg of 0 to 60 mM. At dissolved magnesium concentrations typical of marine pore waters (40-60 mM), the rate of FAP growth is 15 to 20 times slower than in the absence of Mg 2+, for the same degree of supersaturation, at 25 °C and pH = 8. The inhibitory effect can be explained by the blocking of growth sites at the surface of FAP crystals by adsorbed Mg 2+ ions. A simple Langmuir adsorption model for the retardation effect of Mg 2+ is supported by the results. The effect of pH on FAP growth was tested for pH values from 7 to 8.5. In this range, growth of FAP is catalyzed by hydrogen ions. The apparent growth rate constant is proportional to ( aH+) m where m, the rate order with respect to H +, is a non-integral number which depends on pH. At identical degrees of supersaturation, the growth rate of FAP at pH = 7 is nearly twice that at pH = 8. When corrected for bottom water temperatures, pore water pH, and the retardation of Mg 2+, the experimental growth rates predict that during burial in modern phosphatic sediments, apatite particles grow to sizes on the order of 0.1-10 μrn. The relatively slow growth kinetics of FAP are

  20. Genetic polymorphisms and protein structures in growth hormone, growth hormone receptor, ghrelin, insulin-like growth factor 1 and leptin in Mehraban sheep.

    PubMed

    Bahrami, A; Behzadi, Sh; Miraei-Ashtiani, S R; Roh, S-G; Katoh, K

    2013-09-15

    The somatotropic axis, the control system for growth hormone (GH) secretion and its endogenous factors involved in the regulation of metabolism and energy partitioning, has promising potentials for producing economically valuable traits in farm animals. Here we investigated single nucleotide polymorphisms (SNPs) of the genes of factors involved in the somatotropic axis for growth hormone (GH1), growth hormone receptor (GHR), ghrelin (GHRL), insulin-like growth factor 1 (IGF-I) and leptin (LEP), using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods in 452 individual Mehraban sheep. A nonradioactive method to allow SSCP detection was used for genomic DNA and PCR amplification of six fragments: exons 4 and 5 of GH1; exon 10 of GH receptor (GHR); exon 1 of ghrelin (GHRL); exon 1 of insulin-like growth factor-I (IGF-I), and exon 3 of leptin (LEP). Polymorphisms were detected in five of the six PCR products. Two electrophoretic patterns were detected for GH1 exon 4. Five conformational patterns were detected for GH1 exon 5 and LEP exon 3, and three for IGF-I exon 1. Only GHR and GHRL were monomorphic. Changes in protein structures due to variable SNPs were also analyzed. The results suggest that Mehraban sheep, a major breed that is important for the animal industry in Middle East countries, has high genetic variability, opening interesting prospects for future selection programs and preservation strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Age class, longevity and growth rate relationships: protracted growth increases in old trees in the eastern United States.

    PubMed

    Johnson, Sarah E; Abrams, Marc D

    2009-11-01

    This study uses data from the International Tree-Ring Data Bank website and tree cores collected in the field to explore growth rate (basal area increment, BAI) relationships across age classes (from young to old) for eight tree species in the eastern US. These species represent a variety of ecological traits and include those in the genera Populus, Quercus, Pinus, Tsuga and Nyssa. We found that most trees in all age classes and species exhibit an increasing BAI throughout their lives. This is particularly unusual for trees in the older age classes that we expected to have declining growth in the later years, as predicted by physiological growth models. There exists an inverse relationship between growth rate and increasing age class. The oldest trees within each species have consistently slow growth throughout their lives, implying an inverse relationship between growth rate and longevity. Younger trees (< 60 years of age) within each species are consistently growing faster than the older trees when they are of the same age resulting from a higher proportion of fast-growing trees in these young age classes. Slow, but increasing, BAI in the oldest trees in recent decades is a continuation of their growth pattern established in previous centuries. The fact that they have not shown a decreasing growth rate in their old age contradicts physiological growth models and may be related to the stimulatory effects of global change phenomenon (climate and land-use history).

  2. NUMERICAL TECHNIQUES TO SOLVE CONDENSATIONAL AND DISSOLUTIONAL GROWTH EQUATIONS WHEN GROWTH IS COUPLED TO REVERSIBLE REACTIONS (R823186)

    EPA Science Inventory

    Noniterative, unconditionally stable numerical techniques for solving condensational and
    dissolutional growth equations are given. Growth solutions are compared to Gear-code solutions for
    three cases when growth is coupled to reversible equilibrium chemistry. In all cases, ...

  3. Growth patterns in children with intrauterine growth retardation and their correlation to neurocognitive development.

    PubMed

    Fattal-Valevski, Aviva; Toledano-Alhadef, Hagit; Leitner, Yael; Geva, Ronny; Eshel, Rina; Harel, Shaul

    2009-07-01

    The relationship between somatic growth and neurocognitive outcome was studied in a cohort of 136 children with intrauterine growth retardation. The children were followed up from birth to 9 to 10 years of age by annual measurements of growth parameters, neurodevelopmental evaluations, and IQ. The rate of catch-up for height between 1 and 2 years of age was significantly higher than the catch-up for weight (P < .001). The cognitive outcome at 9 to 10 years correlated with head circumference at all ages. The neurodevelopmental outcome at 9 to 10 years correlated with weight at all ages. Correlation with head circumference was more significant with IQ, while with weight it was stronger with the neurodevelopmental score. Height at 1 year was a significant predictor for IQ and neurodevelopmental outcome at 9 to 10 years. These findings are of distinct importance for prediction of subsequent neurodevelopmental outcome in children with intrauterine growth retardation.

  4. Vibroconvective mixing applied to vertical Bridgman growth

    NASA Astrophysics Data System (ADS)

    Zawilski, Kevin T.; Claudia, M.; Custodio, C.; DeMattei, Robert C.; Feigelson, Robert S.

    2003-10-01

    A promising method for stirring melts during vertical Bridgman growth is the coupled vibrational stirring (CVS) method. It involves the application of low frequency vibrations to the outside of the growth ampoule and produces strong flows emanating from the fluid surface. Although the technique was pioneered a number of years ago, previous studies have not provided sufficient information to explain how to control CVS generated flows in a particular system. This paper examines both the fluid flow produced by CVS and the effect of these flows on a model oxide growth system. CVS generated flows were studied using tracer particles in a water/glycerin system. The particle velocities were measured as a function of distance from the fluid surface. A large velocity gradient, decreasing from the surface, was found to be present. The velocity profile produced was dependent on the vibrational amplitude and frequency, the crucible diameter, and the fluid viscosity. The effects of CVS flows on the crystal growth interface were studied using NaNO 3 as a model oxide. Under non-growth conditions (i.e. no furnace or crucible translation), the solid-liquid interface position was found to be a strong function of vibrational frequency once CVS generated flows approached the interface. During crystal growth, undesirable growth rate fluctuations were found as the growth interface moved into regions of increasing fluid flow. This data suggests that a control system in which CVS flows are continuously decreased during growth to maintain a constant flow rate in the vicinity of the growth interface is necessary in order to prevent or reduce growth rate fluctuations.

  5. Individual heterogeneity and offspring sex affect the growth-reproduction trade-off in a mammal with indeterminate growth.

    PubMed

    Gélin, Uriel; Wilson, Michelle E; Cripps, Jemma; Coulson, Graeme; Festa-Bianchet, Marco

    2016-04-01

    Reproduction can lead to a trade-off with growth, particularly when individuals reproduce before completing body growth. Kangaroos have indeterminate growth and may always face this trade-off. We combined an experimental manipulation of reproductive effort and multi-year monitoring of a large sample size of marked individuals in two populations of eastern grey kangaroos to test the predictions (1) that reproduction decreases skeletal growth and mass gain and (2) that mass loss leads to reproductive failure. We also tested if sex-allocation strategies influenced these trade-offs. Experimental reproductive suppression revealed negative effects of reproduction on mass gain and leg growth from 1 year to the next. Unmanipulated females, however, showed a positive correlation between number of days lactating and leg growth over periods of 2 years and longer, suggesting that over the long term, reproductive costs were masked by individual heterogeneity in resource acquisition. Mass gain was necessary for reproductive success the subsequent year. Although mothers of daughters generally lost more mass than females nursing sons, mothers in poor condition experienced greater mass gain and arm growth if they had daughters than if they had sons. The strong links between individual mass changes and reproduction suggest that reproductive tactics are strongly resource-dependent.

  6. The Isothermal Dendritic Growth Experiment

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Koss, M. B.; Malarik, D. C.

    1998-01-01

    The growth of dendrites is one of the commonly observed forms of solidification encountered when metals and alloys freeze under low thermal gradients, as occurs in most casting and welding processes. In engineering alloys, the details of the dendritic morphology directly relates to important material responses and properties. Of more generic interest, dendritic growth is also an archetypical problem in morphogenesis, where a complex pattern evolves from simple starting conditions. Thus, the physical understanding and mathematical description of how dendritic patterns emerge during the growth process are of interest to both scientists and engineers. The Isothermal Dendritic Growth Experiment (IDGE) is a basic science experiment designed to measure, for a fundamental test of theory, the kinetics and morphology of dendritic growth without complications induced by gravity-driven convection. The IDGE, a collaboration between Rensselaer Polytechnic Institute, in Troy NY, and NASA's Lewis Research Center (LeRC) was developed over a ten year period from a ground-based research program into a space flight experiment. Important to the success of this flight experiment was provision of in situ near-real-time teleoperations during the spaceflight experiment.

  7. Growth of Solid Solution Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.; Holland, L. R.

    1985-01-01

    The major objective of this program is to determine the conditions under which single crystals of solid solutions can be grown from the melt in a Bridgman configuration with a high degree of chemical homogeneity. The central aim is to assess the role of gravity in the growth process and to explore the possible advantages for growth in the absence of gravity. The alloy system being investigated is the solid solution semiconductor with x-values appropriate for infrared detector applications in Hg sub (1-x) Cd sub x Te the 8 to 14 micro m wavelength region. Both melt and Te-solvent growth are being considered. The study consists of an extensive ground-based experimental and theoretical research effort followed by flight experimentation where appropriate. Experimental facilities have been established for the purification, casting, and crystal growth of the alloy system. Facilities have been also established for the metallurgical, compositional, electric and optical characterization of the alloys. Crystals are being grown by the Bridgman-Stockbarger method and are analyzed by various experimental techniques to evaluate the effects of growth conditions on the longitudinal and radial compositional variations and defect densities in the crystals.

  8. Universality in stochastic exponential growth.

    PubMed

    Iyer-Biswas, Srividya; Crooks, Gavin E; Scherer, Norbert F; Dinner, Aaron R

    2014-07-11

    Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth.

  9. Strigolactones Effects on Root Growth

    NASA Astrophysics Data System (ADS)

    Koltai, Hinanit

    2012-07-01

    Strigolactones (SLs) were defined as a new group of plant hormones that suppress lateral shoot branching. Our previous studies suggested SLs to be regulators of root development. SLs were shown to alter root architecture by regulating lateral root formation and to affect root hair elongation in Arabidopsis. Another important effect of SLs on root growth was shown to be associated with root directional growth. Supplementation of SLs to roots led to alterations in root directional growth, whereas associated mutants showed asymmetrical root growth, which was influenced by environmental factors. The regulation by SLs of root development was shown to be conducted via a cross talk of SLs with other plant hormones, including auxin. SLs were shown to regulate auxin transport, and to interfere with the activity of auxin-efflux carriers. Therefore, it might be that SLs are regulators of root directional growth as a result of their ability to regulated auxin transport. However, other evidences suggest a localized effect of SLs on cell division, which may not necessarily be associated with auxin efflux. These and other, recent hypothesis as to the SLs mode of action and the associated root perception and response to environmental factors will be discussed.

  10. Phytochrome, plant growth and flowering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, R.W.; Bagnall, D.J.

    1994-12-31

    Attempts to use artificially lit cabinets to grow plants identical to those growing in sunlight have provided compelling evidence of the importance of light quality for plant growth. Changing the balance of red (R) to far-red (FR) radiation, but with a fixed photosynthetic input can shift the phytochrome photoequilibrium in a plant and generate large differences in plant growth. With FR enrichment the plants elongate, and may produce more leaf area and dry matter. Similar morphogenic responses are also obtained when light quality is altered only briefly (15-30 min) at the end-of-the-day. Conversely, for plants grown in natural conditions themore » response of plant form to selective spectral filtering has again shown that red and far-red wavebands are important as found by Kasperbauer and coworkers. Also, where photosynthetic photon flux densities (PPFD) of sunlight have been held constant, the removal of far-red alone alters plant growth. As shown for chrysanthemum, with FR depletion plants grown in sunlight are small, more branched and darker green. We examine the implications for plant growth and flowering when the far-red composition of incident radiation in plant growth chambers is manipulated.« less

  11. Universality in Stochastic Exponential Growth

    NASA Astrophysics Data System (ADS)

    Iyer-Biswas, Srividya; Crooks, Gavin E.; Scherer, Norbert F.; Dinner, Aaron R.

    2014-07-01

    Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth.

  12. Phytochrome, plant growth and flowering

    NASA Technical Reports Server (NTRS)

    King, R. W.; Bagnall, D. J.

    1994-01-01

    Attempts to use artificially lit cabinets to grow plants identical to those growing in sunlight have provided compelling evidence of the importance of light quality for plant growth. Changing the balance of red (R) to far-red (FR) radiation, but with a fixed photosynthetic input can shift the phytochrome photoequilibrium in a plant and generate large differences in plant growth. With FR enrichment the plants elongate, and may produce more leaf area and dry matter. Similar morphogenic responses are also obtained when light quality is altered only briefly (15-30 min) at the end-of-the-day. Conversely, for plants grown in natural conditions the response of plant form to selective spectral filtering has again shown that red and far-red wavebands are important as found by Kasperbauer and coworkers. Also, where photosynthetic photon flux densities (PPFD) of sunlight have been held constant, the removal of far-red alone alters plant growth. With FR depletion plants grown in sunlight are small, more branched and darker green. Here we examine the implications for plant growth and flowering when the far-red composition of incident radiation in plant growth chambers is manipulated.

  13. The dynamic relationship between health expenditure and economic growth: is the health-led growth hypothesis valid for Turkey?

    PubMed

    Atilgan, Emre; Kilic, Dilek; Ertugrul, Hasan Murat

    2017-06-01

    The well-known health-led growth hypothesis claims a positive correlation between health expenditure and economic growth. The aim of this paper is to empirically investigate the health-led growth hypothesis for the Turkish economy. The bound test approach, autoregressive-distributed lag approach (ARDL) and Kalman filter modeling are employed for the 1975-2013 period to examine the co-integration relationship between economic growth and health expenditure. The ARDL model is employed in order to investigate the long-term and short-term static relationship between health expenditure and economic growth. The results show that a 1 % increase in per-capita health expenditure will lead to a 0.434 % increase in per-capita gross domestic product. These findings are also supported by the Kalman filter model's results. Our findings show that the health-led growth hypothesis is supported for Turkey.

  14. Responses to betaine and inorganic sulphur of sheep in growth performance and fibre growth.

    PubMed

    Nezamidoust, M; Alikhani, M; Ghorbani, G R; Edriss, M A

    2014-12-01

    Sulphur-containing amino acids (SAA) are essential and usually the first limiting amino acids for growth, milk and wool production. The keratin fibre that grows from epidermal tissue is rich in SAA. The rate of fibre growth and its S content are influenced by the availability of SAA. Betaine is a dietary source for a labile methyl group and actively participates in methionine metabolism by donating methyl groups for the remethylation of homocysteine to methionine. Ruminants are capable of synthesizing SAA from inorganic S sources, and most bacteria in the rumen can use inorganic S to meet their requirements for growth. The objective of this study was to examine whether betaine and an inorganic sulphur supplement could provide methyl groups and sulphur amino acids in a way that growth performance and wool production of ewes and lambs are improved. Treatments performed included betaine supplementation, sulphate supplementation and betaine plus sulphate supplementation with five replications for each treatment. The dry matter intake of the ewes was affected by betaine plus sulphate supplementation (p < 0.05). In the ewes, betaine plus sulphate supplementation increased (p < 0.05) the wool growth rate, wool yield, staple length and wool sulphur concentration, while decreasing wool wax and wool yellowness (p < 0.05). In the lambs, wool growth rate, wool yield, fibre diameter, staple length, staple strength, wool sulphur concentration, wool wax and fibre percentage did not differ (p > 0.05) between treatments. In the ewes, plasma methionine concentration increased (p < 0.05) with betaine plus sulphate treatment. No corresponding difference (p > 0.05) was observed in plasma methionine concentration in the lambs. It can be concluded that betaine plus sulphate supplementation has the potential to change wool characteristics in the ewes, while these compounds were without any effect on growth and wool production of the lambs. Combining the two supplements was advantageous

  15. Defining Old Growth: Implications For Management

    Treesearch

    David L. White; F. Thomas Lloyd

    1994-01-01

    USDA Forest Service (USFS), with the help of scientists from The Nature Conservancy (TNC), Forest Service Research and ther organizations, is developing old-growth definitions for 35 forest types within the Eastern United States (U.S.). Old-growth forests were officially recognized as a resource by the USFS in 1988 and shortly thereafter, the Eastern Old-Growth...

  16. Ontario's Old Growth: A Learner's Handbook.

    ERIC Educational Resources Information Center

    Stabb, Mark

    This handbook was written in response to an identified need for more public information on Ontario's old growth forests. It is meant to be taken into old growth stands, where the learner can see, touch, and study the natural ingredients of old growth forests. Much of the handbook is a guide to forest history, helping the learner to discover…

  17. Oak Growth and Response to Thinning

    Treesearch

    Stephen R. Shifley

    2004-01-01

    Oak growth and yield is simultaneously influenced by tree-, stand-, and landscape-scale factors. At the tree scale oak diameter growth varies by tree species (typically n. red oak >= scarlet oak > black oak > white oak > chestnut oak > chinkapin oak > post oak), but oak diameter growth is even more strongly influenced by crown class. Oak stands go...

  18. Disturbances of bone growth and development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ledesma-Medina, J.; Newman, B.; Oh, K.S.

    1988-03-01

    ''What is growth anyway. Can one talk about positive growth in childhood, neutral growth in maturity, and negative growth in old age. Our goal is to help promote normal positive growth in infants and children. To achieve this, we must be cognizant of the morphologic changes of both normal and abnormal bone formation as they are reflected in the radiographic image of the skeleton. The knowledge of the various causes and the pathophysiologic mechanisms of the disturbances of bone growth and development allows us to recognize the early radiographic manifestations. Endocrine and metabolic disorders affect the whole skeleton, but themore » early changes are best seen in the distal ends of the femurs, where growth rate is most rapid. In skeletal infections and in some vascular injuries two-or three-phase bone scintigraphy supercedes radiography early in the course of the disease. MRI has proved to be very helpful in the early detection of avascular bone necrosis, osteomyelitis, and tumor. Some benign bone tumors and many bone dysplasias have distinct and diagnostic radiographic findings that may preclude further studies. In constitutional diseases of bone, including chromosomal aberrations, skeletal surveys of the patient and all family members together with biochemical and cytogenetic studies are essential for both diagnosis and genetic counseling. Our role is to perform the least invasive and most informative diagnostic imaging modalities that corroborate the biochemical and histologic findings to establish the definitive diagnosis. Unrecognized, misdiagnosed, or improperly treated disturbance of bone growth can result in permanent deformity usually associated with disability. 116 references.« less

  19. Role of growth hormone, insulin-like growth factor-I, and insulin-like growth factor binding proteins in the catabolic response to injury and infection.

    PubMed

    Lang, Charles H; Frost, Robert A

    2002-05-01

    The erosion of lean body mass resulting from protracted critical illness remains a significant risk factor for increased morbidity and mortality in this patient population. Previous studies have documented the well known impairment in nitrogen balance results from both an increase in muscle protein degradation as well as a decreased rate of both myofibrillar and sacroplasmic protein synthesis. This protein imbalance may be caused by an increased presence or activity of various catabolic agents, such as tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6 or glucocorticoids, or may be mediated via a decreased concentration or responsiveness to various anabolic hormones, such as growth hormone or insulin-like growth factor-I. This review focuses on recent developments pertaining to the importance of alterations in the growth hormone-insulin-like growth factor-I axis as a mechanism for the observed defects in muscle protein balance.

  20. Population growth and global security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumford, S.

    A new threat to international and domestic security has emerged in the past three decades: uncontrolled world population growth. Current world population growth control efforts are ineffective. Unchecked growth will threaten global security by depleting food, energy, and other resources. Immigration is another complicating factor that is straining the carrying capacity of some overpopulated regions. Barriers to effective action include the desire of decision-makers to avoid the controversy of abortion and the role of the Catholic church in lobbying against birth control. (3 graphs, 12 photos, 2 tables)

  1. A Model of Controlled Growth

    NASA Astrophysics Data System (ADS)

    Bressan, Alberto; Lewicka, Marta

    2018-03-01

    We consider a free boundary problem for a system of PDEs, modeling the growth of a biological tissue. A morphogen, controlling volume growth, is produced by specific cells and then diffused and absorbed throughout the domain. The geometric shape of the growing tissue is determined by the instantaneous minimization of an elastic deformation energy, subject to a constraint on the volumetric growth. For an initial domain with C}^{2,α boundary, our main result establishes the local existence and uniqueness of a classical solution, up to a rigid motion.

  2. Your Baby's Growth: 5 Months

    MedlinePlus

    ... Search English Español Your Baby's Growth: 5 Months KidsHealth / For Parents / Your Baby's Growth: 5 Months What's ... the Nemours Web site. Note: All information on KidsHealth® is for educational purposes only. For specific medical ...

  3. Your Baby's Growth: 3 Months

    MedlinePlus

    ... Search English Español Your Baby's Growth: 3 Months KidsHealth / For Parents / Your Baby's Growth: 3 Months What's ... the Nemours Web site. Note: All information on KidsHealth® is for educational purposes only. For specific medical ...

  4. Regulation of fish growth hormone transcription.

    PubMed

    Farchi-Pisanty, O; Hackett, P B; Moav, B

    1995-09-01

    Regulation of endogenous fish growth hormone transcription was studied using carp pituitaries in vitro. It was demonstrated that thyroid hormone (T3) and 9-cis retinoic acid have increased the steady state levels of growth hormone messenger RNA in pituitary cells, as compared with beta-actin messenger RNA levels. In contrast, estrogen failed to increase growth hormone mRNA levels. The possible involvement of thyroid hormone receptor in pituitary gene expression was demonstrated by in situ localization of both growth hormone mRNA and thyroid hormone receptor mRNA in the pituitaries as early as 4 days after fertilization.

  5. Placenta: chronicle of intrauterine growth restriction.

    PubMed

    Dicke, Jeffrey M

    2010-09-23

    The foundation for adult health is laid in utero and requires a healthy placenta. A common manifestation of abnormal placental development is impaired fetal growth. While placental pathology is the final common denominator in many cases of fetal growth restriction, a variety of discreet lesions have been described involving both the maternal and fetal circulations at their confluence in the placenta. Detailed examination of the placenta provides a means of elucidating the pathophysiology of poor fetal growth. This is an essential step in developing effective strategies for the prediction, prevention, and possible treatment of the growth restricted fetus.

  6. Old growth in northwestern California national forests.

    Treesearch

    Debby Beardsley; Ralph. Warbington

    1996-01-01

    This report estimates old-growth forest area and summarizes stand characteristics of old growth in northwestern California National Forests by forest type. Old-growth definitions for each forest type are used.

  7. Growth in pediatric renal transplant recipients.

    PubMed

    Vasudevan, A; Phadke, K

    2007-04-01

    One of the fundamental challenges in managing pediatric renal transplant recipient is to ensure normal growth and development. The goal of renal transplant is not just to prolong life but to optimize quality of life. Short stature during childhood may be associated with academic underachievement and development of comorbidities such as attention deficit hyperactivity disorder, learning disability, and mood disorders. The most important factors affecting growth are use of corticosteroids, allograft function, and age and height deficit at the time of transplant. Aggressive conservative management of chronic renal failure and early use of growth hormone therapy will help in optimizing height at time of transplant. Early transplant, steroid minimization or withdrawal, and growth hormone therapy will help in achieving normal adult height in a majority of renal post transplant population. Steroid avoidance to achieve good growth still needs to be validated.

  8. Protein crystal growth in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Bugg, Charles E.

    1988-01-01

    Protein crystal growth is a major experimental problem and is the bottleneck in widespread applications of protein crystallography. Research efforts now being pursued and sponsored by NASA are making fundamental contributions to the understanding of the science of protein crystal growth. Microgravity environments offer the possibility of performing new types of experiments that may produce a better understanding of protein crystal growth processes and may permit growth environments that are more favorable for obtaining high quality protein crystals. A series of protein crystal growth experiments using the space shuttle was initiated. The first phase of these experiments was focused on the development of micro-methods for protein crystal growth by vapor diffusion techniques, using a space version of the hanging drop method. The preliminary space experiments were used to evolve prototype hardware that will form the basis for a more advanced system that can be used to evaluate effects of gravity on protein crystal growth.

  9. Effect of Placenta Previa on Fetal Growth

    PubMed Central

    HARPER, Lorie M.; ODIBO, Anthony O.; MACONES, George A.; CRANE, James P.; CAHILL, Alison G.

    2011-01-01

    Objective To estimate the association between placenta previa and abnormal fetal growth. Study Design Retrospective cohort study of consecutive women undergoing ultrasound between 15–22 weeks. Groups were defined by the presence or absence of complete or partial placenta previa. The primary outcome was intrauterine growth restriction (IUGR), defined as a birth weight <10th percentile by the Alexander growth standard. Univariable, stratified and multivariable analyses were used to estimate the effect of placenta previa on fetal growth restriction. Results Of 59,149 women, 724 (1.2%) were diagnosed with a complete or partial previa. After adjusting for significant confounding factors (black race, gestational diabetes, preeclampsia, and single umbilical artery,), the risk of IUGR remained similar (adjusted odds ratio 1.1, 95% CI 0.9–1.5). The presence of bleeding did not impact the risk of growth restriction. Conclusion Placenta previa is not associated with fetal growth restriction. Serial growth ultrasounds are not indicated in patients with placenta previa. PMID:20599185

  10. Triennial Growth Symposium: Dietary regulation of growth development

    USDA-ARS?s Scientific Manuscript database

    The 2010 Triennial Growth Symposium was held immediately before the Joint Annual Meeting of the American Dairy Science Association, Poultry Science Association, Asociación Mexicana de Producción Animal, Canadian Society of Animal Science, Western Section American Society of Animal Science, and Ameri...

  11. Indeterminate Growth: Could It Represent the Ancestral Condition?

    PubMed Central

    Hariharan, Iswar K.; Wake, David B.; Wake, Marvalee H.

    2016-01-01

    Although we are used to the idea that many organisms stop growing when they reach a predictable size, in many taxa, growth occurs throughout the life of an organism, a phenomenon referred to as indeterminate growth. Our comparative analysis suggests that indeterminate growth may indeed represent the ancestral condition, whereas the permanent arrest of growth may be a more derived state. Consistent with this idea, in diverse taxa, the basal branches show indeterminate growth, whereas more derived branches arrest their growth. Importantly, in some closely related taxa, the termination of growth has evolved in mechanistically distinct ways. Also, even within a single organism, different organs can differ with respect to whether they terminate their growth or not. Finally, the study of tooth development indicates that, even at the level of a single tissue, multiple determinate patterns of growth can evolve from an ancestral one that is indeterminate. PMID:26216720

  12. Structure and development of old-growth, unmanaged second-growth, and extended rotation Pinus resinosa forests in Minnesota, USA

    USGS Publications Warehouse

    Silver, Emily J.; D'Amato, Anthony W.; Fraver, Shawn; Palik, Brian J.; Bradford, John B.

    2013-01-01

    The structure and developmental dynamics of old-growth forests often serve as important baselines for restoration prescriptions aimed at promoting more complex structural conditions in managed forest landscapes. Nonetheless, long-term information on natural patterns of development is rare for many commercially important and ecologically widespread forest types. Moreover, the effectiveness of approaches recommended for restoring old-growth structural conditions to managed forests, such as the application of extended rotation forestry, has been little studied. This study uses several long-term datasets from old growth, extended rotation, and unmanaged second growth Pinus resinosa (red pine) forests in northern Minnesota, USA, to quantify the range of variation in structural conditions for this forest type and to evaluate the effectiveness of extended rotation forestry at promoting the development of late-successional structural conditions. Long-term tree population data from permanent plots for one of the old-growth stands and the extended rotation stands (87 and 61 years, respectively) also allowed for an examination of the long-term structural dynamics of these systems. Old-growth forests were more structurally complex than unmanaged second-growth and extended rotation red pine stands, due in large part to the significantly higher volumes of coarse woody debris (70.7 vs. 11.5 and 4.7 m3/ha, respectively) and higher snag basal area (6.9 vs. 2.9 and 0.5 m2/ha, respectively). In addition, old-growth forests, although red pine-dominated, contained a greater abundance of other species, including Pinus strobus, Abies balsamea, and Picea glauca relative to the other stand types examined. These differences between stand types largely reflect historic gap-scale disturbances within the old-growth systems and their corresponding structural and compositional legacies. Nonetheless, extended rotation thinning treatments, by accelerating advancement to larger tree diameter

  13. [Human growth hormone and Turner syndrome].

    PubMed

    Sánchez Marco, Silvia Beatriz; de Arriba Muñoz, Antonio; Ferrer Lozano, Marta; Labarta Aizpún, José Ignacio; Garagorri Otero, Jesús María

    2017-02-01

    The evaluation of clinical and analytical parameters as predictors of the final growth response in Turner syndrome patients treated with growth hormone. A retrospective study was performed on 25 girls with Turner syndrome (17 treated with growth hormone), followed-up until adult height. Auxological, analytical, genetic and pharmacological parameters were collected. A descriptive and analytical study was conducted to evaluate short (12 months) and long term response to treatment with growth hormone. A favourable treatment response was shown during the first year of treatment in terms of height velocity gain in 66.6% of cases (height-gain velocity >3cm/year). A favourable long-term treatment response was also observed in terms of adult height, which increased by 42.82±21.23cm (1.25±0.76 SDS), with an adult height gain of 9.59±5.39cm (1.68±1.51 SDS). Predictors of good response to growth hormone treatment are: A) initial growth hormone dose, B) time on growth hormone treatment until starting oestrogen therapy, C) increased IGF1 and IGFBP-3 levels in the first year of treatment, and D) height gain velocity in the first year of treatment. Copyright © 2015 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Population Growth Types in India, 1961-71

    ERIC Educational Resources Information Center

    Chakravarti, A. K.

    1976-01-01

    An effective means of cartographic representation of India's population growth and its spatial characteristics is the focus of this paper. A population growth index and population growth types are discussed. (Author/ND)

  15. Crystal growth kinetics of triblock Janus colloids

    NASA Astrophysics Data System (ADS)

    Reinhart, Wesley F.; Panagiotopoulos, Athanassios Z.

    2018-03-01

    We measure the kinetics of crystal growth from a melt of triblock Janus colloids using non-equilibrium molecular dynamics simulations. We assess the impact of interaction anisotropy by systematically varying the size of the attractive patches from 40% to 100% coverage, finding substantially different growth behaviors in the two limits. With isotropic particles, the interface velocity is directly proportional to the subcooling, in agreement with previous studies. With highly anisotropic particles, the growth curves are well approximated by using a power law with exponent and prefactor that depend strongly on the particular surface geometry and patch fraction. This nonlinear growth appears correlated to the roughness of the solid-liquid interface, with the strongest growth inhibition occurring for the smoothest crystal faces. We conclude that crystal growth for patchy particles does not conform to the typical collision-limited mechanism, but is instead an activated process in which the rate-limiting step is the collective rotation of particles into the proper orientation. Finally, we show how differences in the growth kinetics could be leveraged to achieve kinetic control over polymorph growth, either enhancing or suppressing metastable phases near solid-solid coexistence lines.

  16. Experimental intrauterine growth retardation.

    PubMed

    van Marthens, E; Harel, S; Zamenshof, S

    1975-01-01

    The effects of experimental intrauterine growth retardation on subsequent fetal development, especially with respect to brain development, were studied in a new animal model. The rabbit was chosen since it has a perinatal pattern of brain development similar to that of the human. Experimental ischemia was induced during the last trimester by ligation of spiral arterioles and the differential effects on fetal development at term (30th gestational day) are reported. Specific brain regions were examined for wet weight, total cell number (DNA) and total protein content. Highly significant decreases in all these parameters were found in both the cortex and cerebellum following experimental intrauterine growth retardation; these two organs were differentially affected. The prospects and advantages of using this animal model for the study of the postnatal "catch-up growth" are discussed.

  17. New microbial growth factor

    NASA Technical Reports Server (NTRS)

    Bok, S. H.; Casida, L. E., Jr.

    1977-01-01

    A screening procedure was used to isolate from soil a Penicillium sp., two bacterial isolates, and a Streptomyces sp. that produced a previously unknown microbial growth factor. This factor was an absolute growth requirement for three soil bacteria. The Penicillium sp. and one of the bacteria requiring the factor, an Arthrobacter sp., were selected for more extensive study concerning the production and characteristics of the growth factor. It did not seem to be related to the siderochromes. It was not present in soil extract, rumen fluid, or any other medium component tested. It appears to be a glycoprotein of high molecular weight and has high specific activity. When added to the diets for a meadow-vole mammalian test system, it caused an increased consumption of diet without a concurrent increase in rate of weight gain.

  18. Skeletal Effects of Growth Hormone and Insulin-like Growth Factor-I Therapy

    PubMed Central

    Lindsey, Richard C.; Mohan, Subburaman

    2015-01-01

    The growth hormone/insulin-like growth factor (GH/IGF) axis is critically important for the regulation of bone formation, and deficiencies in this system have been shown to contribute to the development of osteoporosis and other diseases of low bone mass. The GH/IGF axis is regulated by a complex set of hormonal and local factors which can act to regulate this system at the level of the ligands, receptors, IGF binding proteins (IGFBPs), or IGFBP proteases. A combination of in vitro studies, transgenic animal models, and clinical human investigations has provided ample evidence of the importance of the endocrine and local actions of both GH and IGF-I, the two major components of the GH/IGF axis, in skeletal growth and maintenance. GH- and IGF-based therapies provide a useful avenue of approach for the prevention and treatment of diseases such as osteoporosis. PMID:26408965

  19. Morphologic and molecular evaluation of Chlamydia trachomatis growth in human endocervix reveals distinct growth patterns

    PubMed Central

    Lewis, Maria E.; Belland, Robert J.; AbdelRahman, Yasser M.; Beatty, Wandy L.; Aiyar, Ashok A.; Zea, Arnold H.; Greene, Sheila J.; Marrero, Luis; Buckner, Lyndsey R.; Tate, David J.; McGowin, Chris L.; Kozlowski, Pamela A.; O'Brien, Michelle; Lillis, Rebecca A.; Martin, David H.; Quayle, Alison J.

    2014-01-01

    In vitro models of Chlamydia trachomatis growth have long been studied to predict growth in vivo. Alternative or persistent growth modes in vitro have been shown to occur under the influence of numerous stressors but have not been studied in vivo. Here, we report the development of methods for sampling human infections from the endocervix in a manner that permits a multifaceted analysis of the bacteria, host and the endocervical environment. Our approach permits evaluating total bacterial load, transcriptional patterns, morphology by immunofluorescence and electron microscopy, and levels of cytokines and nutrients in the infection microenvironment. By applying this approach to two pilot patients with disparate infections, we have determined that their contrasting growth patterns correlate with strikingly distinct transcriptional biomarkers, and are associated with differences in local levels of IFNγ. Our multifaceted approach will be useful to dissect infections in the human host and be useful in identifying patients at risk for chronic disease. Importantly, the molecular and morphological analyses described here indicate that persistent growth forms can be isolated from the human endocervix when the infection microenvironment resembles the in vitro model of IFNγ-induced persistence. PMID:24959423

  20. Douglas-fir growth in mountain ecosystems: water limits tree growth from stand to region

    Treesearch

    Jeremy S. Littell; David L. Peterson; Michael Tjoelker

    2008-01-01

    The purpose of this work is to understand the nature of growth-climate relationships for Douglas-fir (Pseudotsuga menziesii) across the climatic dimensions of its niche. We used a combination of biophysically informed sampling (to identify sample sites) and dendroclimatology (to identify growth-climate relationships) along a climate gradient in...

  1. Growth and yield of shortleaf pine

    Treesearch

    Paul A. Murphy

    1986-01-01

    A survey of available growth and yield information for shortleaf pine (Pinus echinata Mill.) is given. The kinds of studies and data sources that produce this information are also evaluated, and an example of how a growth and yield model can be used to answer management questions is illustrated. Guidelines are given for using growth and yield models, and needs for...

  2. Gordon Research Conference on Crystal Growth (1990)

    DTIC Science & Technology

    1990-04-01

    Labs, MH) 14. Cox Vapor Levitation Epitaxy of Quantum Wires and Wire-like Structures Using Laterally Propagating Surface Steps. (Bellcore, Red Bank) 15...introduced many new aspects of crystal growth, including strained layer superlattices, quantum cluster growth, and vertical zone melting of GaAs...Films 2. E. Bauser Semiconductor Liquid Phase Epitaxy: Growth and Properties of Layers and Heterostructures 3. M. L. Steigerwald Growth of Quantum

  3. Obesity and growth during childhood and puberty.

    PubMed

    Marcovecchio, M Loredana; Chiarelli, Francesco

    2013-01-01

    Growth during childhood and adolescence occurs at different rates and is influenced by the interaction between genetic and environmental factors. Nutritional status plays an important role in regulating growth, and excess body weight early in life can influence growth patterns. Childhood obesity is a growing and alarming problem, associated with several short-term and long-term metabolic and cardiovascular complications. In addition, there is evidence suggesting that excess adiposity during childhood influences growth patterns and pubertal development. Several studies have shown that during prepubertal years obese children have higher height velocity and accelerated bone age compared to lean subjects. However, this prepubertal advantage in growth tends to gradually decrease during puberty, when obese children show a reduced growth spurt compared with lean subjects. Growth hormone (GH) secretion in obese children is reduced, therefore suggesting that increased growth is GH independent. Factors which have been implicated in the accelerated growth in obese children include increased leptin and insulin levels, adrenal androgens, insulin-like growth factor (IGF)-1, IGF-binding protein-1 and GH-binding proteins. Excess body weight during childhood can also influence pubertal development, through an effect on timing of pubertal onset and levels of pubertal hormonal levels. There is clear evidence indicating that obesity leads to early appearance of pubertal signs in girls. In addition, obese girls are also at increased risk of hyperandrogenism. In boys, excess adiposity has been associated with advanced puberty in some studies, whereas others have reported a delay in pubertal onset. The existing evidence on the association between childhood and adolescence obesity underlines a further reason for fighting the epidemics of childhood obesity; that is preventing abnormal growth and pubertal patterns. Copyright © 2013 S. Karger AG, Basel.

  4. Growth/differentiation factor-11: an evolutionary conserved growth factor in vertebrates.

    PubMed

    Funkenstein, Bruria; Olekh, Elena

    2010-11-01

    Growth and differentiation factor-11 (GDF-11) is a member of the transforming growth factor-β superfamily and is thought to be derived together with myostatin (known also as GDF-8) from an ancestral gene. In the present study, we report the isolation and characterization of GDF-11 homolog from a marine teleost, the gilthead sea bream Sparus aurata, and show that this growth factor is highly conserved throughout vertebrates. Using bioinformatics, we identified GDF-11 in Tetraodon, Takifugu, medaka, and stickleback and found that they are highly conserved at the amino acid sequence as well as gene organization. Moreover, we found conservation of syntenic relationships among vertebrates in the GDF-11 locus. Transcripts for GDF-11 can be found in eggs and early embryos, albeit at low levels, while in post-hatching larvae expression levels are high and decreases as development progresses, suggesting that GDF-11 might have a role during early development of fish as found in tetrapods and zebrafish. Finally, GDF-11 is expressed in various tissues in the adult fish including muscle, brain, and eye.

  5. Natural Killer Cells Control Tumor Growth by Sensing a Growth Factor.

    PubMed

    Barrow, Alexander D; Edeling, Melissa A; Trifonov, Vladimir; Luo, Jingqin; Goyal, Piyush; Bohl, Benjamin; Bando, Jennifer K; Kim, Albert H; Walker, John; Andahazy, Mary; Bugatti, Mattia; Melocchi, Laura; Vermi, William; Fremont, Daved H; Cox, Sarah; Cella, Marina; Schmedt, Christian; Colonna, Marco

    2018-01-25

    Many tumors produce platelet-derived growth factor (PDGF)-DD, which promotes cellular proliferation, epithelial-mesenchymal transition, stromal reaction, and angiogenesis through autocrine and paracrine PDGFRβ signaling. By screening a secretome library, we found that the human immunoreceptor NKp44, encoded by NCR2 and expressed on natural killer (NK) cells and innate lymphoid cells, recognizes PDGF-DD. PDGF-DD engagement of NKp44 triggered NK cell secretion of interferon gamma (IFN)-γ and tumor necrosis factor alpha (TNF-α) that induced tumor cell growth arrest. A distinctive transcriptional signature of PDGF-DD-induced cytokines and the downregulation of tumor cell-cycle genes correlated with NCR2 expression and greater survival in glioblastoma. NKp44 expression in mouse NK cells controlled the dissemination of tumors expressing PDGF-DD more effectively than control mice, an effect enhanced by blockade of the inhibitory receptor CD96 or CpG-oligonucleotide treatment. Thus, while cancer cell production of PDGF-DD supports tumor growth and stromal reaction, it concomitantly activates innate immune responses to tumor expansion. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Linear growth trajectories in Zimbabwean infants12

    PubMed Central

    Gough, Ethan K; Moodie, Erica EM; Prendergast, Andrew J; Ntozini, Robert; Moulton, Lawrence H; Humphrey, Jean H; Manges, Amee R

    2016-01-01

    Background: Undernutrition in early life underlies 45% of child deaths globally. Stunting malnutrition (suboptimal linear growth) also has long-term negative effects on childhood development. Linear growth deficits accrue in the first 1000 d of life. Understanding the patterns and timing of linear growth faltering or recovery during this period is critical to inform interventions to improve infant nutritional status. Objective: We aimed to identify the pattern and determinants of linear growth trajectories from birth through 24 mo of age in a cohort of Zimbabwean infants. Design: We performed a secondary analysis of longitudinal data from a subset of 3338 HIV-unexposed infants in the Zimbabwe Vitamin A for Mothers and Babies trial. We used k-means clustering for longitudinal data to identify linear growth trajectories and multinomial logistic regression to identify covariates that were associated with each trajectory group. Results: For the entire population, the mean length-for-age z score declined from −0.6 to −1.4 between birth and 24 mo of age. Within the population, 4 growth patterns were identified that were each characterized by worsening linear growth restriction but varied in the timing and severity of growth declines. In our multivariable model, 1-U increments in maternal height and education and infant birth weight and length were associated with greater relative odds of membership in the least–growth restricted groups (A and B) and reduced odds of membership in the more–growth restricted groups (C and D). Male infant sex was associated with reduced odds of membership in groups A and B but with increased odds of membership in groups C and D. Conclusion: In this population, all children were experiencing growth restriction but differences in magnitude were influenced by maternal height and education and infant sex, birth weight, and birth length, which suggest that key determinants of linear growth may already be established by the time of birth

  7. EGFR ligands drive multipotential stromal cells to produce multiple growth factors and cytokines via early growth response-1.

    PubMed

    Kerpedjieva, Svetoslava S; Kim, Duk Soo; Barbeau, Dominique J; Tamama, Kenichi

    2012-09-01

    Cell therapy with adult bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) presents a promising approach to promote wound healing and tissue regeneration. The strong paracrine capability of various growth factors and cytokines is a key mechanism of MSC-mediated wound healing and tissue regeneration, and the goal of this study is to understand the underlying mechanism that supports the strong paracrine machineries in MSCs. Microarray database analyses revealed that early growth response-1 (EGR1) is highly expressed in MSCs. Our previous studies showed that epidermal growth factor (EGF) treatment induces growth factor production in MSCs in vitro. Since EGF strongly upregulates EGR1, we hypothesized that EGF receptor (EGFR)-EGR1 signaling plays a pivotal role in MSC paracrine activity. EGF treatment upregulated the gene expression of growth factors and cytokines, including EGFR ligands in a protein kinase C (PKC)- and/or mitogen-activated protein kinase-extracellular-signal-regulated kinase-dependent manner, and it was reversed by shRNA against EGR1. PKC activator phorbol 12-myristate 13-acetate enhanced EGFR tyrosyl phosphorylation and upregulated the gene expression of growth factors and cytokines in a heparin-binding EGF-like growth factor (HBEGF) inhibitor CRM197 sensitive manner, indicating an involvement of autocrined HBEGF in the downstream of PKC signaling. Moreover, stimulation with growth factors and cytokines induced the expression of EGFR ligands, presumably via EGR1 upregulation. These data indicate EGR1 as a convergence point of multiple signaling pathways, which in turn augments the production of multiple growth factors and cytokines by enhancing the autocrine signaling with EGFR ligands.

  8. Bibliography on Growth and Education.

    ERIC Educational Resources Information Center

    Western Interstate Commission for Higher Education, Boulder, CO.

    This bibliography presents materials concerning growth and education. Articles and reports are presented in alphabetical order for each of the following categories: growth and equilibrium, energy, environment and health, resources and land, population, business and economics, education, curriculum, communication, consciousness and reality, ethics…

  9. Calcite crystal growth rate inhibition by polycarboxylic acids

    USGS Publications Warehouse

    Reddy, M.M.; Hoch, A.R.

    2001-01-01

    Calcite crystal growth rates measured in the presence of several polycarboxyclic acids show that tetrahydrofurantetracarboxylic acid (THFTCA) and cyclopentanetetracarboxylic acid (CPTCA) are effective growth rate inhibitors at low solution concentrations (0.01 to 1 mg/L). In contrast, linear polycarbocylic acids (citric acid and tricarballylic acid) had no inhibiting effect on calcite growth rates at concentrations up to 10 mg/L. Calcite crystal growth rate inhibition by cyclic polycarboxyclic acids appears to involve blockage of crystal growth sites on the mineral surface by several carboxylate groups. Growth morphology varied for growth in the absence and in the presence of both THFTCA and CPTCA. More effective growth rate reduction by CPTCA relative to THFTCA suggests that inhibitor carboxylate stereochemical orientation controls calcite surface interaction with carboxylate inhibitors. ?? 20O1 Academic Press.

  10. Influence of competition and age on tree growth in structurally complex old-growth forests in northern Minnesota, USA

    Treesearch

    Tuomas Aakala; Shawn Fraver; Anthony W. D' Amato; Brian J. Palik

    2013-01-01

    Factors influencing tree growth in structurally complex forests remain poorly understood. Here we assessed the influence of competition on Pinus resinosa (n = 224) and Pinus strobus (n = 90) growth in four old-growth stands in Minnesota, using mixed effects models. A subset of trees, with...

  11. Copper/solder intermetallic growth studies.

    PubMed

    Kirchner, K W; Lucey, G K; Geis, J

    1993-08-01

    Copper samples, hot solder (eutectic) dipped and thermally aged, were cross-sectioned and placed in an environmental scanning electronic microscope (ESEM). While in the ESEM the samples were heated for approximately 2.5 h at 170 degrees C to stimulate the growth of additional Cu/Sn intermetallic compound. The intent of the study was to obtain a continuous real-time videotape record of the diffusion process and compare the observations to static SEM images reported to represent long-term, naturally aged intermetallic growth. The video obtained allows the observation of the diffusion process and relativistic growth phenomena at the Cu, Cu3Sn, Cu6Sn5, and solder interfaces as well as effects on the bulk Cu and solder. Effects contrary to earlier reports were observed; for example, growth rates of Cu3Sn were found to greatly exceed those of Cu6Sn5.

  12. Is Decoupling GDP Growth from Environmental Impact Possible?

    PubMed Central

    Sutton, Paul C.; Werner, Adrian D.; Costanza, Robert; Mohr, Steve H.; Simmons, Craig T.

    2016-01-01

    The argument that human society can decouple economic growth—defined as growth in Gross Domestic Product (GDP)—from growth in environmental impacts is appealing. If such decoupling is possible, it means that GDP growth is a sustainable societal goal. Here we show that the decoupling concept can be interpreted using an easily understood model of economic growth and environmental impact. The simple model is compared to historical data and modelled projections to demonstrate that growth in GDP ultimately cannot be decoupled from growth in material and energy use. It is therefore misleading to develop growth-oriented policy around the expectation that decoupling is possible. We also note that GDP is increasingly seen as a poor proxy for societal wellbeing. GDP growth is therefore a questionable societal goal. Society can sustainably improve wellbeing, including the wellbeing of its natural assets, but only by discarding GDP growth as the goal in favor of more comprehensive measures of societal wellbeing. PMID:27741300

  13. Parent perception of healthy infant and toddler growth.

    PubMed

    Laraway, Kelly A; Birch, Leann L; Shaffer, Michele L; Paul, Ian M

    2010-04-01

    We hypothesized that parents of infants prefer growth at higher percentiles and are averse to growth at lower percentiles. Of 279 participating parents, only 10% desired their child's weight to be in the lowest quartile. For children weighing in the lowest quartile, 57% of parents thought their child's weight was "too low." In contrast, 66% of parents whose child's weight was in the top quartile preferred their child weigh that much. When viewing hypothetical infant growth trajectories, 47% ranked a growth chart demonstrating growth along the 10th percentile for weight as "least healthy" of 6 growth patterns, and 29% chose charts showing an infant at the 90th percentile for weight at age 1 as "healthiest." In conclusion, parents are averse to growth at the bottom of the weight growth chart but are much less likely to feel negatively about growth at higher percentiles. This is troubling given the childhood obesity epidemic.

  14. Clonal growth and plant species abundance.

    PubMed

    Herben, Tomáš; Nováková, Zuzana; Klimešová, Jitka

    2014-08-01

    Both regional and local plant abundances are driven by species' dispersal capacities and their abilities to exploit new habitats and persist there. These processes are affected by clonal growth, which is difficult to evaluate and compare across large numbers of species. This study assessed the influence of clonal reproduction on local and regional abundances of a large set of species and compared the predictive power of morphologically defined traits of clonal growth with data on actual clonal growth from a botanical garden. The role of clonal growth was compared with the effects of seed reproduction, habitat requirements and growth, proxied both by LHS (leaf-height-seed) traits and by actual performance in the botanical garden. Morphological parameters of clonal growth, actual clonal reproduction in the garden and LHS traits (leaf-specific area - height - seed mass) were used as predictors of species abundance, both regional (number of species records in the Czech Republic) and local (mean species cover in vegetation records) for 836 perennial herbaceous species. Species differences in habitat requirements were accounted for by classifying the dataset by habitat type and also by using Ellenberg indicator values as covariates. After habitat differences were accounted for, clonal growth parameters explained an important part of variation in species abundance, both at regional and at local levels. At both levels, both greater vegetative growth in cultivation and greater lateral expansion trait values were correlated with higher abundance. Seed reproduction had weaker effects, being positive at the regional level and negative at the local level. Morphologically defined traits are predictive of species abundance, and it is concluded that simultaneous investigation of several such traits can help develop hypotheses on specific processes (e.g. avoidance of self-competition, support of offspring) potentially underlying clonal growth effects on abundance. Garden

  15. Twenty-Two Years of Warming, Fertilisation and Shading of Subarctic Heath Shrubs Promote Secondary Growth and Plasticity but Not Primary Growth

    PubMed Central

    Campioli, Matteo; Leblans, Niki; Michelsen, Anders

    2012-01-01

    Most manipulation experiments simulating global change in tundra were short-term or did not measure plant growth directly. Here, we assessed the growth of three shrubs (Cassiope tetragona, Empetrum hermaphroditum and Betula nana) at a subarctic heath in Abisko (Northern Sweden) after 22 years of warming (passive greenhouses), fertilisation (nutrients addition) and shading (hessian fabric), and compare this to observations from the first decade of treatment. We assessed the growth rate of current-year leaves and apical stem (primary growth) and cambial growth (secondary growth), and integrated growth rates with morphological measurements and species coverage. Primary- and total growth of Cassiope and Empetrum were unaffected by manipulations, whereas growth was substantially reduced under fertilisation and shading (but not warming) for Betula. Overall, shrub height and length tended to increase under fertilisation and warming, whereas branching increased mostly in shaded Cassiope. Morphological changes were coupled to increased secondary growth under fertilisation. The species coverage showed a remarkable increase in graminoids in fertilised plots. Shrub response to fertilisation was positive in the short-term but changed over time, likely because of an increased competition with graminoids. More erected postures and large, canopies (requiring enhanced secondary growth for stem reinforcement) likely compensated for the increased light competition in Empetrum and Cassiope but did not avoid growth reduction in the shade intolerant Betula. The impact of warming and shading on shrub growth was more conservative. The lack of growth enhancement under warming suggests the absence of long-term acclimation for processes limiting biomass production. The lack of negative effects of shading on Cassiope was linked to morphological changes increasing the photosynthetic surface. Overall, tundra shrubs showed developmental plasticity over the longer term. However, such plasticity

  16. Carbon Uptake and Storage in Old-Growth and Second-Growth Forests in Central Vermont

    NASA Astrophysics Data System (ADS)

    Lloyd, A. H.; Weisser, O.

    2013-12-01

    Managing forests towards the goal of maximizing carbon uptake and storage provides an important tool for climate change mitigation. There is significant spatial and temporal variation among forests, even within an ecosystem type, in annual uptake and storage of carbon. Understanding the causes for that variation is important in refining management practices and restoration goals that promote carbon storage. We explore the variation in carbon storage and uptake among forests differing in age in central Vermont, comparing young, intermediate-aged, and old-growth forests. We generally expected that younger forests would have a higher annual uptake of carbon than older forests. Significant uncertainty exists, however, about the temporal trajectory from a young, rapidly growing forest to an old-growth forest that may be in a steady-state, with no net uptake of carbon. Within each forest, we compare differences among functional groups of species (e.g., hardwoods versus softwoods) in contribution to overall forest carbon uptake and storage. Our study sites include an old-growth hemlock/mixed hardwood forest that has not been directly affected by human activities, and which contains trees upwards of 350 years old; a 130-year-old mixed hardwood forest that has recolonized former pasture land; and a 90-year-old mixed hardwood forest on formerly agricultural floodplain land. Carbon storage in live and dead biomass pools was estimated from allometric equations, based on repeated measurements of tree diameters in permanently marked study plots. Historical patterns of carbon storage in living biomass were estimated by reconstructing tree diameter from measured increment cores, and then estimating the living biomass in each year. As expected, the old-growth forest stored almost twice the C in live biomass as the two second-growth forests, which stored equivalent amounts of carbon, despite the difference in age. Dead biomass was a larger pool of C in the old-growth forest than in

  17. Fetal, neonatal, infant, and child international growth standards: an unprecedented opportunity for an integrated approach to assess growth and development.

    PubMed

    Garza, Cutberto

    2015-07-01

    The recent publication of fetal growth and gestational age-specific growth standards by the International Fetal and Newborn Growth Consortium for the 21st Century Project and the previous publication by the WHO of infant and young child growth standards based on the WHO Multicentre Growth Reference Study enable evaluations of growth from ∼9 wk gestation to 5 y. The most important features of these projects are the prescriptive approach used for subject selection and the rigorous testing of the assertion that growth is very similar among geographically and ethnically diverse nonisolated populations when health, nutrition, and other care needs are met and the environment imposes minimal constraints on growth. Both studies documented that with adequate controls, the principal source of variability in growth during gestation and early childhood resides among individuals. Study sites contributed much less to observed variability. The agreement between anthropometric measurements common to both studies also is noteworthy. Jointly, these studies provide for the first time, to my knowledge, a conceptually consistent basis for worldwide and localized assessments and comparisons of growth performance in early life. This is an important contribution to improving the health care of children across key periods of growth and development, especially given the appropriate interest in pursuing "optimal" health in the "first 1000 d," i.e., the period covering fertilization/implantation, gestation, and postnatal life to 2 y of age. © 2015 American Society for Nutrition.

  18. Eudaimonic growth: Narrative growth goals predict increases in ego development and subjective well-being 3 years later.

    PubMed

    Bauer, Jack J; McAdams, Dan P

    2010-07-01

    We examine (a) the normative course of eudaimonic well-being in emerging adulthood and (b) whether people's narratives of major life goals might prospectively predict eudaimonic growth 3 years later. We define eudaimonic growth as longitudinal increases in eudaimonic well-being, which we define as the combination of psychosocial maturity and subjective well-being (SWB). College freshmen and seniors took measures of ego development (ED; to assess maturity; Loevinger, 1976) and SWB at Time 1 (T1) and again 3 years later (Time 2). ED levels increased longitudinally across that time for men and T1 freshmen, but SWB levels did not change. Participants also wrote narratives of 2 major life goals at T1 that were coded for an explicit emphasis on specific kinds of personal growth. Participants' intellectual-growth goals (especially agentic ones) predicted increases in ED 3 years later, whereas participants' socioemotional-growth goals (especially communal ones) predicted increases in SWB 3 years later. These findings were independent of the effects of Big Five personality traits-notably conscientiousness, which on its own predicted increases in SWB. We discuss (a) emerging adulthood as the last stop for normative eudaimonic growth in modern society and (b) empirical and theoretical issues surrounding the relations among narrative identity, life planning, dispositional traits, eudaimonia, and 2 paths of personal growth.

  19. Protein Crystal Growth Apparatus for Microgravity

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Dowling, Timothy E. (Inventor)

    1997-01-01

    Apparatus for growing protein crystals under microgravity environment includes a plurality of protein growth assemblies stacked one above the other within a canister. Each of the protein growth assemblies includes a tray having a number of spaced apart growth chambers recessed below an upper surface. the growth chambers each having an upstanding pedestal and an annular reservoir about the pedestal for receiving a wick and precipitating agents. A well is recessed below the top of each pedestal to define a protein crystal growth receptacle. A flexible membrane is positioned on the upper surface of each tray and a sealing plate is positioned above each membrane, each sealing plate having a number of bumpers corresponding in number and alignment to the pedestals for forcing the membrane selectively against the upper end of the respective pedestal to seal the reservoir and the receptacle when the sealing plate is forced down.

  20. Visual simulation of fatigue crack growth

    NASA Astrophysics Data System (ADS)

    Wang, Shuanzhu; Margolin, Harold; Lin, Fengbao

    1998-07-01

    An attempt has been made to visually simulate fatigue crack propagation from a precrack. An integrated program was developed for this purpose. The crack-tip shape was determined at four load positions in the first load cycle. The final shape was a blunt front with an “ear” profile at the precrack tip. A more general model, schematically illustrating the mechanism of fatigue crack growth and striation formation in a ductile material, was proposed based on this simulation. According to the present model, fatigue crack growth is an intermittent process; cyclic plastic shear strain is the driving force applied to both state I and II crack growth. No fracture mode transition occurs between the two stages in the present study. The crack growth direction alternates, moving up and down successively, producing fatigue striations. A brief examination has been made of the crack growth path in a ductile two-phase material.

  1. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1987-01-01

    The solubility and growth mechanism of canavalin were studied, and the applicability of the Schlieren technique to protein crystal growth was investigated. Canavalin which may be crystallized from a basic solution by the addition of hydrogen (H+) ions was shown to have normal solubility characteristics over the range of temperatures (5 to 25 C) and pH (5 to 7.5) studied. The solubility data combined with growth rate data gathered from the seeded growth of canavalin crystals indicated that the growth mechanism at high supersaturation ratios (>1.28) is screw dislocation like. A Schlieren apparatus was constructed and flow patterns were observed in Rochelle salt (sodium potassium tartrate), lysozyme, and canavalin. The critical parameters were identified as the change in density with concentration (dp/dc) and the change in index of refraction with concentration (dn/dc). Some of these values were measured for the materials listed.

  2. Predictive factors for intrauterine growth restriction.

    PubMed

    Albu, A R; Anca, A F; Horhoianu, V V; Horhoianu, I A

    2014-06-15

    Reduced fetal growth is seen in about 10% of the pregnancies but only a minority has a pathological background and is known as intrauterine growth restriction or fetal growth restriction (IUGR / FGR). Increased fetal and neonatal mortality and morbidity as well as adult pathologic conditions are often associated to IUGR. Risk factors for IUGR are easy to assess but have poor predictive value. For the diagnostic purpose, biochemical serum markers, ultrasound and Doppler study of uterine and spiral arteries, placental volume and vascularization, first trimester growth pattern are object of assessment today. Modern evaluations propose combined algorithms using these strategies, all with the goal of a better prediction of risk pregnancies.

  3. Research on growth factors in periodontology.

    PubMed

    Smith, Patricio C; Martínez, Constanza; Cáceres, Mónica; Martínez, Jorge

    2015-02-01

    Growth factors play critical roles in periodontal repair through the regulation of cell behavior. Many of the cell responses regulated by these proteins include cell adhesion, migration, proliferation and differentiation. Periodontal regeneration involves an organized response of different cells, tissues and growth factors implicated in the coordination of these events. However, periodontal tissue reconstruction is an extremely difficult task. Multiple studies have been performed to understand the specific role of growth factors in periodontal wound healing. In the present review we analyze the evidence that supports the roles of growth factors in periodontal wound healing and regeneration. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Synthetic heparin-binding growth factor analogs

    DOEpatents

    Pena, Louis A.; Zamora, Paul; Lin, Xinhua; Glass, John D.

    2007-01-23

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain that binds a heparin-binding growth factor receptor, covalently bound to a hydrophobic linker, which is in turn covalently bound to a non-signaling peptide that includes a heparin-binding domain. The synthetic heparin-binding growth factor analogs are useful as soluble biologics or as surface coatings for medical devices.

  5. The role and future challenges for recombinant growth hormone therapy to promote growth in children after renal transplantation.

    PubMed

    Janjua, Halima S; Mahan, John D

    2011-01-01

    Chronic kidney disease can severely impair linear growth in children. For many children, growth improves after renal transplantation, but for some, growth velocity remains low and for others, catch-up growth is insufficient to compensate for the deficit imparted by renal disease in the preceding years. Inadequate final adult height after renal transplant is multifactorial and can adversely affect the quality of life (QOL), psychosocial development and long term prospects for these children as they grow into adulthood. Growth failure after renal transplant requires thorough evaluation and its management in renal transplant recipients can involve improved nutritional intake, correction of metabolic acidosis, treatment of secondary hyperparathyroidism, steroid-sparing immunosuppression and/or use of recombinant human growth hormone (rGH). Treatment with rGH after renal transplant has been evaluated by a limited number of clinical trials suggesting efficacy and safety for this treatment strategy. Several important clinical questions regarding rGH use in children post-renal transplant remain unanswered. © 2011 John Wiley & Sons A/S.

  6. Intermittent crack growth in fatigue

    NASA Astrophysics Data System (ADS)

    Kokkoniemi, R.; Miksic, A.; Ovaska, M.; Laurson, L.; Alava, M. J.

    2017-07-01

    Fatigue occurs under cyclic loading at stresses below a material’s static strength limit. We consider fatigue crack growth as a stochastic process and perform crack growth experiments in a metal (copper). We follow optically cracks propagating from initial edge notches. The main interest is in the dynamics of the crack growth—the Paris’ law and the initiation phase prior to that—and especially the intermittency this is discovered to display. How the sampling of the crack advancement, performed at regular intervals, influences such measurement results is analysed by the analogy of planar crack dynamics in slow, driven growth.

  7. Cosmic growth and expansion conjoined

    NASA Astrophysics Data System (ADS)

    Linder, Eric V.

    2017-01-01

    Cosmological measurements of both the expansion history and growth history have matured, and the two together provide an important test of general relativity. We consider their joint evolutionary track, showing that this has advantages in distinguishing cosmologies relative to considering them individually or at isolated redshifts. In particular, the joint comparison relaxes the shape degeneracy that makes fσ8(z) curves difficult to separate from the overall growth amplitude. The conjoined method further helps visualization of which combinations of redshift ranges provide the clearest discrimination. We examine standard dark energy cosmologies, modified gravity, and "stuttering" growth, each showing distinct signatures.

  8. Early stages of zeolite growth

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep

    Zeolites are crystalline nonporous aluminosilicates with important applications in separation, purification, and adsorption of liquid and gaseous molecules. However, an ability to tailor the zeolite microstructure, such as particle size/shape and pore-size, to make it benign for specific application requires control over nucleation and particle growth processes. But, the nucleation and crystallization mechanisms of zeolites are not fully understood. In this context, the synthesis of an all-silica zeolite with MFI-type framework has been studied extensively as a model system. Throughout chapters 2, 4 and 5, MFI growth process has been investigated by small-angle x-ray scattering (SAXS) and transmission electron microscopy (TEM). Of fundamental importance is the role of nanoparticles (~5 nm), which are present in the precursor sol, in MFI nucleation and crystallization. Formation of amorphous aggregates and their internal restructuring are concluded as essential steps in MFI nucleation. Early stage zeolite particles have disordered and less crystalline regions within, which indicates the role of structurally distributed population of nanoparticles in growth. Faceting occurs after the depletion of nanoparticles. The chapter 6 presents growth studies in silica sols prepared by using a dimer of tertaprpylammonium (TPA) and reports that MFI nucleation and crystallization are delayed with a more pronounced delay in crystal growth.

  9. Ecosystem growth and development.

    PubMed

    Fath, Brian D; Jørgensen, Sven E; Patten, Bernard C; Straskraba, Milan

    2004-11-01

    One of the most important features of biosystems is how they are able to maintain local order (low entropy) within their system boundaries. At the ecosystem scale, this organization can be observed in the thermodynamic parameters that describe it, such that these parameters can be used to track ecosystem growth and development during succession. Thermodynamically, ecosystem growth is the increase of energy throughflow and stored biomass, and ecosystem development is the internal reorganization of these energy mass stores, which affect transfers, transformations, and time lags within the system. Several proposed hypotheses describe thermodynamically the orientation or natural tendency that ecosystems follow during succession, and here, we consider five: minimize specific entropy production, maximize dissipation, maximize exergy storage (includes biomass and information), maximize energy throughflow, and maximize retention time. These thermodynamic orientors were previously all shown to occur to some degree during succession, and here we present a refinement by observing them during different stages of succession. We view ecosystem succession as a series of four growth and development stages: boundary, structural, network, and informational. We demonstrate how each of these ecological thermodynamic orientors behaves during the different growth and development stages, and show that while all apply during some stages only maximizing energy throughflow and maximizing exergy storage are applicable during all four stages. Therefore, we conclude that the movement away from thermodynamic equilibrium, and the subsequent increase in organization during ecosystem growth and development, is a result of system components and configurations that maximize the flux of useful energy and the amount of stored exergy. Empirical data and theoretical models support these conclusions.

  10. Process for producing vegetative and tuber growth regulator

    NASA Technical Reports Server (NTRS)

    Yorio, Neil C. (Inventor); Stutte, Gary W. (Inventor)

    1999-01-01

    A process of making a vegetative and tuber growth regulator. The vegetative and tuber growth regulator is made by growing potato plants in a recirculating hydroponic system for a sufficient time to produce the growth regulator. Also, the use of the vegetative and growth regulator on solanaceous plants, tuber forming plants and ornamental seedlings by contacting the roots or shoots of the plant with a sufficient amount of the growth regulator to regulate the growth of the plant and one more of canopy size, plant height, stem length, internode number and presence of tubers in fresh mass. Finally, a method for regulating the growth of potato plants using a recirculating hydroponic system is described.

  11. The Regulation of Filamentous Growth in Yeast

    PubMed Central

    Cullen, Paul J.; Sprague, George F.

    2012-01-01

    Filamentous growth is a nutrient-regulated growth response that occurs in many fungal species. In pathogens, filamentous growth is critical for host–cell attachment, invasion into tissues, and virulence. The budding yeast Saccharomyces cerevisiae undergoes filamentous growth, which provides a genetically tractable system to study the molecular basis of the response. Filamentous growth is regulated by evolutionarily conserved signaling pathways. One of these pathways is a mitogen activated protein kinase (MAPK) pathway. A remarkable feature of the filamentous growth MAPK pathway is that it is composed of factors that also function in other pathways. An intriguing challenge therefore has been to understand how pathways that share components establish and maintain their identity. Other canonical signaling pathways—rat sarcoma/protein kinase A (RAS/PKA), sucrose nonfermentable (SNF), and target of rapamycin (TOR)—also regulate filamentous growth, which raises the question of how signals from multiple pathways become integrated into a coordinated response. Together, these pathways regulate cell differentiation to the filamentous type, which is characterized by changes in cell adhesion, cell polarity, and cell shape. How these changes are accomplished is also discussed. High-throughput genomics approaches have recently uncovered new connections to filamentous growth regulation. These connections suggest that filamentous growth is a more complex and globally regulated behavior than is currently appreciated, which may help to pave the way for future investigations into this eukaryotic cell differentiation behavior. PMID:22219507

  12. Crystal growth and crystallography

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.

    1998-01-01

    Selected topics that may be of interest for both crystal-structure and crystal-growth communities are overviewed. The growth of protein crystals, along with that of some other compounds, is one of the topics, and recent insights into related phenomena are considered as examples of applications of general principles. The relationship between crystal growth shape and structure is reviewed and an attempt to introduce semiquantitative characterization of binding for proteins is made. The concept of kinks for complex structures is briefly discussed. Even at sufficiently low supersaturations, the fluctuation of steps may not be sufficient to implement the Gibbs-Thomson law if the kink density is low enough. Subsurface ordering of liquids and growth of rough interfaces from melts is discussed. Crystals growing in microgravity from solution should be more perfect if they preferentially trap stress-inducing impurities, thus creating an impurity-depleted zone around themselves. Evidently, such a zone is developed only around the crystals growing in the absence of convection. Under terrestrial conditions, the self-purified depleted zone is destroyed by convection, the crystal traps more impurity and grows stressed. The stress relief causes mosaicity. In systems containing stress-inducing but poorly trapped impurities, the crystals grown in the absence of convection should be worse than those of their terrestrial counterparts.

  13. Latino Adolescents' Ethnic Identity: Is There a Developmental Progression and Does Growth in Ethnic Identity Predict Growth in Self-Esteem?

    ERIC Educational Resources Information Center

    Umana-Taylor, Adriana J.; Gonzales-Backen, Melinda A.; Guimond, Amy B.

    2009-01-01

    The current longitudinal study of 323 Latino adolescents (50.5% male; M age = 15.31 years) examined whether ethnic identity exploration, resolution, and affirmation demonstrated significant growth over a 4-year period and whether growth in ethnic identity predicted growth in self-esteem. Findings from multiple-group latent growth curve models…

  14. Human Population: Fundamentals of Growth and Change.

    ERIC Educational Resources Information Center

    Stauffer, Cheryl Lynn, Ed.

    This booklet focuses on eight elements of population dynamics: "Population Growth and Distribution"; "Natural Increase and Future Growth"; "Effect of Migration on Population Growth"; "Three Patterns of Population Change"; "Patterns of World Urbanization"; "The Status of Women";…

  15. Deregulation of cell growth and malignant transformation.

    PubMed

    Sulić, Sanda; Panić, Linda; Dikić, Ivan; Volarević, Sinisa

    2005-08-01

    Cell growth and cell division are fundamental aspects of cell behavior in all organisms. Recent insights from many model organisms have shed light on the molecular mechanisms that control cell growth and cell division. A significant body of evidence has now been accumulated, showing a direct link between deregulation of components of cell cycle machinery and cancer. In addition, defects in one or more steps that control growth are important for malignant transformation, as many tumor suppressors and proto-oncogenes have been found to regulate cell growth. The importance of cell growth in tumor development is further supported by the discovery that rapamycin, an effective anticancer drug, inhibits a key regulator of protein synthetic machinery and cell growth, mammalian target of rapamycin (mTOR). In most cases, cell growth and cell division are coupled, thereby maintaining cell size within physiological limits. We believe that, in a long-term perspective, understanding how these two processes are coordinated in vivo and how their interplay is deregulated in a number of diseases, including cancer, may have a direct impact on the efficiency of modern therapeutics.

  16. Growth of single crystals of BaFe12O19 by solid state crystal growth

    NASA Astrophysics Data System (ADS)

    Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia

    2016-10-01

    Single crystals of BaFe12O19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe12O19 are buried in BaFe12O19+1 wt% BaCO3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe12O19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe12O19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth.

  17. Latent Growth and Dynamic Structural Equation Models.

    PubMed

    Grimm, Kevin J; Ram, Nilam

    2018-05-07

    Latent growth models make up a class of methods to study within-person change-how it progresses, how it differs across individuals, what are its determinants, and what are its consequences. Latent growth methods have been applied in many domains to examine average and differential responses to interventions and treatments. In this review, we introduce the growth modeling approach to studying change by presenting different models of change and interpretations of their model parameters. We then apply these methods to examining sex differences in the development of binge drinking behavior through adolescence and into adulthood. Advances in growth modeling methods are then discussed and include inherently nonlinear growth models, derivative specification of growth models, and latent change score models to study stochastic change processes. We conclude with relevant design issues of longitudinal studies and considerations for the analysis of longitudinal data.

  18. Regulation of cell growth by redox-mediated extracellular proteolysis of platelet-derived growth factor receptor beta.

    PubMed

    Okuyama, H; Shimahara, Y; Kawada, N; Seki, S; Kristensen, D B; Yoshizato, K; Uyama, N; Yamaoka, Y

    2001-07-27

    Redox-regulated processes are important elements in various cellular functions. Reducing agents, such as N-acetyl-l-cysteine (NAC), are known to regulate signal transduction and cell growth through their radical scavenging action. However, recent studies have shown that reactive oxygen species are not always involved in ligand-stimulated intracellular signaling. Here, we report a novel mechanism by which NAC blocks platelet-derived growth factor (PDGF)-induced signaling pathways in hepatic stellate cells, a fibrogenic player in the liver. Unlike in vascular smooth muscle cells, we found that reducing agents, including NAC, triggered extracellular proteolysis of PDGF receptor-beta, leading to desensitization of hepatic stellate cells toward PDGF-BB. This effect was mediated by secreted mature cathepsin B. In addition, type II transforming growth factor-beta receptor was also down-regulated. Furthermore, these events seemed to cause a dramatic improvement of rat liver fibrosis. These results indicated that redox processes impact the cell's response to growth factors by regulating the turnover of growth factor receptors and that "redox therapy" is promising for fibrosis-related disease.

  19. Fibroblast growth factor regulates insulin-like growth factor-binding protein production by vascular smooth muscle cells.

    PubMed

    Ververis, J; Ku, L; Delafontaine, P

    1994-02-01

    Insulin-like growth factor I is an important mitogen for vascular smooth muscle cells, and its effects are regulated by several binding proteins. Western ligand blotting of conditioned medium from rat aortic smooth muscle cells detected a 24 kDa binding protein and a 28 kDa glycosylated variant of this protein, consistent with insulin-like growth factor binding protein-4 by size. Low amounts of a glycosylated 38 to 42 kDa doublet (consistent with binding protein-3) and a 31 kDa non-glycosylated protein also were present. Basic fibroblast growth factor markedly increased secretion of the 24 kDa binding protein and its 28 kDa glycosylated variant. This effect was dose- and time-dependent and was inhibited by co-incubation with cycloheximide. Crosslinking of [125I]-insulin-like growth factor I to cell monolayers revealed no surface-associated binding proteins, either basally or after agonist treatment. Induction of binding protein production by fibroblast growth factor at sites of vascular injury may be important in vascular proliferative responses in vivo.

  20. Thick silicon growth techniques

    NASA Technical Reports Server (NTRS)

    Bates, H. E.; Mlavsky, A. I.; Jewett, D. N.

    1973-01-01

    Hall mobility measurements on a number of single crystal silicon ribbons grown from graphite dies have shown some ribbons to have mobilities consistent with their resistivities. The behavior of other ribbons appears to be explained by the introduction of impurities of the opposite sign. Growth of a small single crystal silicon ribbon has been achieved from a beryllia dia. Residual internal stresses of the order of 7 to 18,000 psi have been determined to exist in some silicon ribbon, particularly those grown at rates in excess of 1 in./min. Growth experiments have continued toward definition of a configuration and parameters to provide a reasonable yield of single crystal ribbons. High vacuum outgassing of graphite dies and evacuation and backfilling of growth chambers have provided significant improvements in surface quality of ribbons grown from graphite dies.

  1. Secular trends in growth.

    PubMed

    Fudvoye, Julie; Parent, Anne-Simone

    2017-06-01

    Human adult height has been increasing world-wide for a century and a half. The rate of increase depends on time and place of measurement. Final height appears to have reached a plateau in Northern European countries but it is still increasing in southern European countries as well as Japan. While mean birth length has not changed recently in industrialized countries, the secular trend finally observed in adult height mostly originates during the first 2 years of life. Secular trend in growth is a marker of public health and provides insights into the interaction between growth and environment. It has been shown to be affected by income, social status, infections and nutrition. While genetic factors cannot explain such rapid changes in average population height, epigenetic factors could be the link between growth and environment. Copyright © 2017. Published by Elsevier Masson SAS.

  2. EGFR Ligands Drive Multipotential Stromal Cells to Produce Multiple Growth Factors and Cytokines via Early Growth Response-1

    PubMed Central

    Kerpedjieva, Svetoslava S.; Kim, Duk Soo; Barbeau, Dominique J.

    2012-01-01

    Cell therapy with adult bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) presents a promising approach to promote wound healing and tissue regeneration. The strong paracrine capability of various growth factors and cytokines is a key mechanism of MSC-mediated wound healing and tissue regeneration, and the goal of this study is to understand the underlying mechanism that supports the strong paracrine machineries in MSCs. Microarray database analyses revealed that early growth response-1 (EGR1) is highly expressed in MSCs. Our previous studies showed that epidermal growth factor (EGF) treatment induces growth factor production in MSCs in vitro. Since EGF strongly upregulates EGR1, we hypothesized that EGF receptor (EGFR)–EGR1 signaling plays a pivotal role in MSC paracrine activity. EGF treatment upregulated the gene expression of growth factors and cytokines, including EGFR ligands in a protein kinase C (PKC)- and/or mitogen-activated protein kinase–extracellular-signal-regulated kinase-dependent manner, and it was reversed by shRNA against EGR1. PKC activator phorbol 12-myristate 13-acetate enhanced EGFR tyrosyl phosphorylation and upregulated the gene expression of growth factors and cytokines in a heparin-binding EGF-like growth factor (HBEGF) inhibitor CRM197 sensitive manner, indicating an involvement of autocrined HBEGF in the downstream of PKC signaling. Moreover, stimulation with growth factors and cytokines induced the expression of EGFR ligands, presumably via EGR1 upregulation. These data indicate EGR1 as a convergence point of multiple signaling pathways, which in turn augments the production of multiple growth factors and cytokines by enhancing the autocrine signaling with EGFR ligands. PMID:22316125

  3. Fatigue crack growth in fiber reinforced plastics

    NASA Technical Reports Server (NTRS)

    Mandell, J. F.

    1979-01-01

    Fatigue crack growth in fiber composites occurs by such complex modes as to frustrate efforts at developing comprehensive theories and models. Under certain loading conditions and with certain types of reinforcement, simpler modes of fatigue crack growth are observed. These modes are more amenable to modeling efforts, and the fatigue crack growth rate can be predicted in some cases. Thus, a formula for prediction of ligamented mode fatigue crack growth rate is available.

  4. Workshop on the Growth of Continental Crust

    NASA Technical Reports Server (NTRS)

    Ashwal, Lewis D. (Editor)

    1988-01-01

    Constraints and observations were discussed on a fundamental unsolved problem of global scale relating to the growth of planetary crusts. All of the terrestrial planets were considered, but emphasis was placed on the Earth's continental crust. The title of each session is: (1) Extraterrestrial crustal growth and destruction; (2) Constraints for observations and measurements of terrestrial rocks; (3) Models of crustal growth and destruction; and (4) Process of crustal growth and destruction.

  5. Epitaxial growth of hybrid nanostructures

    NASA Astrophysics Data System (ADS)

    Tan, Chaoliang; Chen, Junze; Wu, Xue-Jun; Zhang, Hua

    2018-02-01

    Hybrid nanostructures are a class of materials that are typically composed of two or more different components, in which each component has at least one dimension on the nanoscale. The rational design and controlled synthesis of hybrid nanostructures are of great importance in enabling the fine tuning of their properties and functions. Epitaxial growth is a promising approach to the controlled synthesis of hybrid nanostructures with desired structures, crystal phases, exposed facets and/or interfaces. This Review provides a critical summary of the state of the art in the field of epitaxial growth of hybrid nanostructures. We discuss the historical development, architectures and compositions, epitaxy methods, characterization techniques and advantages of epitaxial hybrid nanostructures. Finally, we provide insight into future research directions in this area, which include the epitaxial growth of hybrid nanostructures from a wider range of materials, the study of the underlying mechanism and determining the role of epitaxial growth in influencing the properties and application performance of hybrid nanostructures.

  6. Idiopathic scoliosis, growth zones, magnetic therapy.

    PubMed

    Arsenev, A; Dudin, M; Lednev, V; Belova, N; Mikhailov, V; Sokolov, G

    2012-01-01

    The study has been performed to investigate the influence of pulsed magnetic field on the bone growth plates to get new grounds of magneto therapy in AIS treatment. Were used methods of "strong" and "weak" pulsed magnetic fields influence. Application of pulsed magnetic field causes an authentic inhibition of chondrocytes' active proliferation processes, decreases the index of labeled nuclei, indicating the suppression of DNA synthesis, takes place an increase in the unit weight of the more "mature" differentiated chondrocytes. The final result of these effects is the accelerated synostosis of bones' growth plates. Regardless of the reasons that cause growth infringements, the operating organ in the chain is the body's growth plate. Therefore, the appliance of magnetic fields in AIS treatment can be considered as a perspective one concerning growth plates' functional activity local management. To our point of view, the potential of magneto therapy methods in child's orthopedic treatment is significantly higher compared with modern practice.

  7. Preliminary report: BGLIIA-BGLIIB haplotype of growth hormone cluster is associated with glucose intolerance in non-insulin-dependent diabetes mellitus and with growth hormone deficit in growth retardation.

    PubMed

    Bottini, E; Lucarelli, P; Amante, A; Saccucci, P; Gloria-Bottini, F

    2002-01-01

    We studied 101 growth-retarded children from the population of Ancona (Italy). Plasma growth hormone (GH) levels at the end of insulin and clonidine tests were considered for classification of children into 3 categories according to severity of GH deficit: total deficit of GH (TD), partial deficit (PD, and familiar short stature (FSS; no deficit of GH). The BGLIIA*2/BGLIIB*1 haplotype of GH cluster that was previously found to be negatively associated with severe glucose intolerance in non-insulin-dependent diabetes mellitus (NIDDM) is negatively associated with GH deficit in growth-retarded children. The hypothesis that intrauterine growth retardation and glucose intolerance in adult life could be phenotypes of the same underlying genotype has been recently put forward. The present observation suggests that genes influencing both growth and glucose tolerance are encoded in the GH cluster. Copyright 2002 by W.B. Saunders Company

  8. A Comparison of Three Conditional Growth Percentile Methods: Student Growth Percentiles, Percentile Rank Residuals, and a Matching Method

    ERIC Educational Resources Information Center

    Wyse, Adam E.; Seo, Dong Gi

    2014-01-01

    This article provides a brief overview and comparison of three conditional growth percentile methods; student growth percentiles, percentile rank residuals, and a nonparametric matching method. These approaches seek to describe student growth in terms of the relative percentile ranking of a student in relationship to students that had the same…

  9. The Influence of Platelet-Derived Growth Factor and Fibroblast Growth Factor 2 on Oligodendrocyte Development and Remyelination

    DTIC Science & Technology

    2004-01-01

    OLIGODENDROCYTE DEVELOPMENT AND REMYELINATION 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...Z39-18 ABSTRACT Title: THE INFLUENCE OF PLATELET-DERIVED GROWTH FACTOR AND FIBROBLAST GROWTH FACTOR 2 ON OLIGODENDROCYTE DEVELOPMENT AND...GROWTH FACTOR 2 ON OLIGODENDROCYTE DEVELOPMENT AND REMYELINATION by Joshua C. Murtie Thesis/dissertation submitted to the

  10. Determinate growth and modularity in a gorgonian octocoral.

    PubMed

    Lasker, Howard R; Boller, Michael L; Castanaro, John; Sánchez, Juan Armando

    2003-12-01

    Growth rates of branches of colonies of the gorgonian Pseudopterogorgia elisabethae were monitored for 2 years on a reef at San Salvador Island, Bahamas. Images of 261 colonies were made at 6-month intervals and colony and branch growth analyzed. Branch growth rates differed between colonies and between the time intervals in which the measurements were made. Colonies developed a plumelike morphology through a pattern of branch origination and determinate growth in which branch growth rates were greatest at the time the branch originated and branches seldom grew beyond a length of 8 cm. A small number of branches had greater growth rates, did not stop growing, and were sites for the origination of subsequent "generations" of branches. The rate of branch origination decreased with each generation of branching, and branch growth rates were lower on larger colonies, leading to determinate colony growth. Although colonial invertebrates like P. elisabethae grow through the addition of polyps, branches behave as modules with determinate growth. Colony form and size is generated by the iterative addition of branches.

  11. Comparison of yellow poplar growth models on the basis of derived growth analysis variables

    Treesearch

    Keith F. Jensen; Daniel A. Yaussy

    1986-01-01

    Quadratic and cubic polynomials, and Gompertz and Richards asymptotic models were fitted to yellow poplar growth data. These data included height, leaf area, leaf weight and new shoot height for 23 weeks. Seven growth analysis variables were estimated from each function. The Gompertz and Richards models fitted the data best and provided the most accurate derived...

  12. Applied electric field enhances DRG neurite growth: influence of stimulation media, surface coating and growth supplements

    NASA Astrophysics Data System (ADS)

    Wood, Matthew D.; Willits, Rebecca Kuntz

    2009-08-01

    Electrical therapies have been found to aid repair of nerve injuries and have been shown to increase and direct neurite outgrowth during stimulation. This enhanced neural growth existed even after the electric field (EF) or stimulation was removed, but the factors that may influence the enhanced growth, such as stimulation media or surface coating, have not been fully investigated. This study characterized neurite outgrowth and branching under various conditions: EF magnitude and application time, ECM surface coating, medium during EF application and growth supplements. A uniform, low-magnitude EF (24 or 44 V m-1) was applied to dissociated chick embryo dorsal root ganglia seeded on collagen or laminin-coated surfaces. During the growth period, cells were either exposed to NGF or N2, and during stimulation cells were exposed to either unsupplemented media (Ca2+) or PBS (no Ca2+). Parallel controls for each experiment included cells exposed to the chamber with no stimulation and cells remaining outside the chamber. After brief electrical stimulation (10 min), neurite length significantly increased 24 h after application for all conditions studied. Of particular interest, increased stimulation time (10-100 min) further enhanced neurite length on laminin but not on collagen surfaces. Neurite branching was not affected by stimulation on any surface, and no preferential growth of neurites was noted after stimulation. Overall, the results of this report suggest that short-duration electric stimulation is sufficient to enhance neurite length under a variety of conditions. While further data are needed to fully elucidate a mechanism for this increased growth, these data suggest that one focus of those investigations should be the interaction between the growth cone and the substrata.

  13. Diameter growth of individual hardwood trees

    Treesearch

    G.R., Jr. Trimble; G.R. Trimble

    1969-01-01

    Between 1959 and 1967 a study of d.b.h. growth rates was made on individual hardwood trees near Parsons, W. Va. From this study, we obtained information that will help foresters to predict growth. We learned that the correlation of the more easily used crown classification with d.b.h. growth is as good as or better than the correlation of vigor classes with d.b.h....

  14. Chemical Growth Regulators for Guayule Plants

    NASA Technical Reports Server (NTRS)

    Dastoor, M. N.; Schubert, W. W.; Petersen, G. R.

    1982-01-01

    Test Tubes containing Guayule - tissue cultures were used in experiments to test effects of chemical-growth regulators. The shoots grew in response to addition of 2-(3,4-dichlorophenoxy)-triethylamine (triethylamine (TEA) derivative) to agar medium. Preliminary results indicate that a class of compounds that promotes growth in soil may also promote growth in a culture medium. Further experiments are needed to define the effect of the TEA derivative.

  15. Adapting Growth Pole Theory to Community College Development.

    ERIC Educational Resources Information Center

    Brumbach, Mary A.

    2002-01-01

    Explains growth pole theory, which is the theory that growth manifests itself at poles of growth, rather than everywhere at once. Applies this theory to community college development, and offers advice for implementing growth poles by taking an entrepreneurial approach to education. (NB)

  16. Implications of evolutionary engineering for growth and recombinant protein production in methanol-based growth media in the yeast Pichia pastoris.

    PubMed

    Moser, Josef W; Prielhofer, Roland; Gerner, Samuel M; Graf, Alexandra B; Wilson, Iain B H; Mattanovich, Diethard; Dragosits, Martin

    2017-03-17

    Pichia pastoris is a widely used eukaryotic expression host for recombinant protein production. Adaptive laboratory evolution (ALE) has been applied in a wide range of studies in order to improve strains for biotechnological purposes. In this context, the impact of long-term carbon source adaptation in P. pastoris has not been addressed so far. Thus, we performed a pilot experiment in order to analyze the applicability and potential benefits of ALE towards improved growth and recombinant protein production in P. pastoris. Adaptation towards growth on methanol was performed in replicate cultures in rich and minimal growth medium for 250 generations. Increased growth rates on these growth media were observed at the population and single clone level. Evolved populations showed various degrees of growth advantages and trade-offs in non-evolutionary growth conditions. Genome resequencing revealed a wide variety of potential genetic targets associated with improved growth performance on methanol-based growth media. Alcohol oxidase represented a mutational hotspot since four out of seven evolved P. pastoris clones harbored mutations in this gene, resulting in decreased Aox activity, despite increased growth rates. Selected clones displayed strain-dependent variations for AOX-promoter based recombinant protein expression yield. One particularly interesting clone showed increased product titers ranging from a 2.5-fold increase in shake flask batch culture to a 1.8-fold increase during fed batch cultivation. Our data indicate a complex correlation of carbon source, growth context and recombinant protein production. While similar experiments have already shown their potential in other biotechnological areas where microbes were evolutionary engineered for improved stress resistance and growth, the current dataset encourages the analysis of the potential of ALE for improved protein production in P. pastoris on a broader scale.

  17. Xylem traits, leaf longevity and growth phenology predict growth and mortality response to defoliation in northern temperate forests.

    PubMed

    Foster, Jane R

    2017-09-01

    Defoliation outbreaks are biological disturbances that alter tree growth and mortality in temperate forests. Trees respond to defoliation in many ways; some recover rapidly, while others decline gradually or die. Functional traits such as xylem anatomy, growth phenology or non-structural carbohydrate (NSC) storage could explain these responses, but idiosyncratic measures used by defoliation studies have frustrated efforts to generalize among species. Here, I test for functional differences with published growth and mortality data from 37 studies, including 24 tree species and 11 defoliators from North America and Eurasia. I synthesized data into standardized variables suitable for numerical models and used linear mixed-effects models to test the hypotheses that responses to defoliation vary among species and functional groups. Standardized data show that defoliation responses vary in shape and degree. Growth decreased linearly or curvilinearly, least in ring-porous Quercus and deciduous conifers (by 10-40% per 100% defoliation), whereas growth of diffuse-porous hardwoods and evergreen conifers declined by 40-100%. Mortality increased exponentially with defoliation, most rapidly for evergreen conifers, then diffuse-porous, then ring-porous species and deciduous conifers (Larix). Goodness-of-fit for functional-group models was strong (R2c = 0.61-0.88), if lower than species-specific mixed-models (R2c = 0.77-0.93), providing useful alternatives when species data are lacking. These responses are consistent with functional differences in leaf longevity, wood growth phenology and NSC storage. When defoliator activity lags behind wood-growth, either because xylem-growth precedes budburst (Quercus) or defoliator activity peaks later (sawflies on Larix), impacts on annual wood-growth will always be lower. Wood-growth phenology of diffuse-porous species and evergreen conifers coincides with defoliation and responds more drastically, and lower axial NSC storage makes them

  18. Vascular endothelial growth factor and platelet-derived growth factor are potential angiogenic and metastatic factors in human breast cancer.

    PubMed

    Anan, K; Morisaki, T; Katano, M; Ikubo, A; Kitsuki, H; Uchiyama, A; Kuroki, S; Tanaka, M; Torisu, M

    1996-03-01

    Angiogenesis is a prerequisite for tumor growth and metastasis. Tumor angiogenesis may be mediated by several angiogenic factors such as vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), transforming growth factor-alpha, and basic fibroblast growth factor. Differential mRNA expressions of VEGF, PDGF (A chain), transforming growth factor-alpha and basic fibroblast growth factor in 32 primary invasive breast tumors were examined by reverse transcriptase-polymerase chain reaction. We analyzed relationships between mRNA expressions of these angiogenic factors and the degree of angiogenesis, tumor size, and metastasis. Quantification of angiogenesis was achieved by the immunohistochemical staining of endothelial cells with antibody to CD31. VEGF and PDGF-A mRNAs were expressed more frequently in breast tumors than in nontumor breast tissues, whereas no difference was found in expression frequency of either transforming growth factor-alpha or basic fibroblast growth factor mRNA. Vascular counts in tumors correlated with each expression frequency of VEGF and PDGF-A mRNA. PDGF-A mRNA was expressed more frequently in tumors with lymph node metastasis than in those without metastasis. Expression of VEGF and PDGF mRNAs detected by reverse transcriptase-polymerase chain reaction in breast tumors correlates with tumor-related characteristics of angiogenesis and metastatic potential. Analysis of these mRNAs by reverse transcriptase-polymerase chain reaction may be useful for assessing the biologic behavior of a breast tumor before surgical treatment.

  19. The heterotoxicity of Hordeum vulgare L. extracts in four growth stages on germination and seedlings growth of Avena ludoviciana.

    PubMed

    Kolahi, M; Peivastegan, B; Hadizade, I; Abdali, A

    2008-07-15

    Phytotoxicity of barley extracts (Hordeum vulgare L.) on wild oat (Avena ludoviciana Durieu) was investigated. Water extracts five varieties of barley were bioassayed on germination and seedling growth of wild-oat to test the heterotoxicity of barley on wild-oat, study the dynamics of allelopathic potential over four growth stages and identify the most allelopathic plant part of barley in each stage. Whole barley plants were extracted at growth stage 4 (stems not developed enough), whilst for the following growth stages roots, stems, panicles and leaves were extracted separately. Seedling growth bioassays demonstrated that the wild-oat responded differently to the allelopathic potential of barley. For wild-oat radical growth and coleoptile growth were more depressed than germination, though. The allelopathic potential of barley plant parts was not stable over its life cycle for wild-oat. Leaves and stems were the most phytotoxic barley plant parts for wild-oat in the all stages. Among the varieties Eizeh appeared as the best one showing toxicity to seed germination of wild oat at its stage 4 and 8. Results suggested that the response by wild-oat varied depending on the source of allelochemicals (plant part) and the growth stage of the barley plant and kind of variety. The results leaded to conclude that Eizeh variety of barley was good to grow as it has good check on seed germination of wild oat plants as well as it also retarded the growth of root and shoot length of oat.

  20. Silicon carbide - Progress in crystal growth

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony

    1987-01-01

    Recent progress in the development of two processes for producing large-area high-quality single crystals of SiC is described: (1) a modified Lely process for the growth of the alpha polytypes (e.g., 6H SiC) initially developed by Tairov and Tsvetkov (1978, 1981) and Ziegler et al. (1983), and (2) a process for the epitaxial growth of the beta polytype on single-crystal silicon or other substrates. Growth of large-area cubic SiC on Si is described together with growth of defect-free beta-SiC films on alpha-6H SiC crystals and TiC lattice. Semiconducting qualities of silicon carbide crystals grown by various techniques are discussed.

  1. A Simple Plant Growth Analysis.

    ERIC Educational Resources Information Center

    Oxlade, E.

    1985-01-01

    Describes the analysis of dandelion peduncle growth based on peduncle length, epidermal cell dimensions, and fresh/dry mass. Methods are simple and require no special apparatus or materials. Suggests that limited practical work in this area may contribute to students' lack of knowledge on plant growth. (Author/DH)

  2. Serum and urine insulin-like growth factor-1 as biochemical growth maturity indicators.

    PubMed

    Sinha, Mohita; Tripathi, Tulika; Rai, Priyank; Gupta, Santosh Kumar

    2016-12-01

    Biochemical markers are agents directly involved in bone growth and remodeling and can be quantitatively evaluated from various biologic fluids. The aim of this study was to assess the changes in the levels of insulin-like growth factor-1 (IGF-1) in serum and urine as a growth maturity indicator and to compare them with the cervical vertebral maturation radiographic stages. The study was conducted with 72 female subjects aged 8 to 20 years. Cervical vertebral maturation stages, and serum and urine IGF-1 levels were recorded for all subjects, and the subjects were equally divided into the 6 cervical vertebral maturation groups. Median values of IGF-1 for each stage of cervical vertebral maturation were calculated and statistically compared with those of the other stages. The levels of serum and urine IGF-1 at stage 4 of cervical vertebral maturation were significantly higher than those from the other stages (P <0.01). Stage 4 corresponded to a mean age of 13.67 years. A significant correlation was observed between serum and urine IGF-1 (P <0.001). Urine IGF-1 follows the growth curve similar to serum IGF-1. Thus, urine IGF-1 may be regarded as a promising noninvasive tool for growth assessment. Further research is necessary to validate these results in a different population and with a larger sample. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  3. Nerve growth factor released from a novel PLGA nerve conduit can improve axon growth

    NASA Astrophysics Data System (ADS)

    Lin, Keng-Min; Shea, Jill; Gale, Bruce K.; Sant, Himanshu; Larrabee, Patti; Agarwal, Jay

    2016-04-01

    Nerve injury can occur due to penetrating wounds, compression, traumatic stretch, and cold exposure. Despite prompt repair, outcomes are dismal. In an attempt to help resolve this challenge, in this work, a poly-lactic-co-glycolic acid (PLGA) nerve conduit with associated biodegradable drug reservoir was designed, fabricated, and tested. Unlike current nerve conduits, this device is capable of fitting various clinical scenarios by delivering different drugs without reengineering the whole system. To demonstrate the potential of this device for nerve repair, a series of experiments were performed using nerve growth factor (NGF). First, an NGF dosage curve was developed to determine the minimum NGF concentration for optimal axonal outgrowth on chick dorsal root ganglia (DRG) cells. Next, PLGA devices loaded with NGF were evaluated for sustained drug release and axon growth enhancement with the released drug. A 20 d in vitro release test was conducted and the nerve conduit showed the ability to meet and maintain the minimum NGF requirement determined previously. Bioactivity assays of the released NGF showed that drug released from the device between the 15th and 20th day could still promote axon growth (76.6-95.7 μm) in chick DRG cells, which is in the range of maximum growth. These novel drug delivery conduits show the ability to deliver NGF at a dosage that efficiently promotes ex vivo axon growth and have the potential for in vivo application to help bridge peripheral nerve gaps.

  4. Optical Epitaxial Growth of Gold Nanoparticle Arrays.

    PubMed

    Huang, Ningfeng; Martínez, Luis Javier; Jaquay, Eric; Nakano, Aiichiro; Povinelli, Michelle L

    2015-09-09

    We use an optical analogue of epitaxial growth to assemble gold nanoparticles into 2D arrays. Particles are attracted to a growth template via optical forces and interact through optical binding. Competition between effects determines the final particle arrangements. We use a Monte Carlo model to design a template that favors growth of hexagonal particle arrays. We experimentally demonstrate growth of a highly stable array of 50 gold particles with 200 nm diameter, spaced by 1.1 μm.

  5. Biological growth in bodies with incoherent interfaces

    NASA Astrophysics Data System (ADS)

    Swain, Digendranath; Gupta, Anurag

    2018-01-01

    A general theory of thermodynamically consistent biomechanical-biochemical growth in a body, considering mass addition in the bulk and at an incoherent interface, is developed. The incoherency arises due to incompatibility of growth and elastic distortion tensors at the interface. The incoherent interface therefore acts as an additional source of internal stress besides allowing for rich growth kinematics. All the biochemicals in the model are essentially represented in terms of nutrient concentration fields, in the bulk and at the interface. A nutrient balance law is postulated which, combined with mechanical balances and kinetic laws, yields an initial-boundary-value problem coupling the evolution of bulk and interfacial growth, on the one hand, and the evolution of growth and nutrient concentration on the other. The problem is solved, and discussed in detail, for two distinct examples: annual ring formation during tree growth and healing of cutaneous wounds in animals.

  6. Orientations of dendritic growth during solidification

    NASA Astrophysics Data System (ADS)

    Lee, Dong Nyung

    2017-03-01

    Dendrites are crystalline forms which grow far from the limit of stability of the plane front and adopt an orientation which is as close as possible to the heat flux direction. Dendritic growth orientations for cubic metals, bct Sn, and hcp Zn, can be controlled by thermal conductivity, Young's modulus, and surface energy. The control factors have been elaborated. Since the dendrite is a single crystal, its properties such as thermal conductivity that influences the heat flux direction, the minimum Young's modulus direction that influences the strain energy minimization, and the minimum surface energy plane that influences the crystal/liquid interface energy minimization have been proved to control the dendritic growth direction. The dendritic growth directions of cubic metals are determined by the minimum Young's modulus direction and/or axis direction of symmetry of the minimum crystal surface energy plane. The dendritic growth direction of bct Sn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction. The primary dendritic growth direction of hcp Zn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction and the secondary dendrite arm direction of hcp Zn is normal to the primary dendritic growth direction.

  7. Multiple Effects of Growth Hormone in the Body: Is it Really the Hormone for Growth?

    PubMed Central

    Devesa, Jesús; Almengló, Cristina; Devesa, Pablo

    2016-01-01

    In this review, we analyze the effects of growth hormone on a number of tissues and organs and its putative role in the longitudinal growth of an organism. We conclude that the hormone plays a very important role in maintaining the homogeneity of tissues and organs during the normal development of the human body or after an injury. Its effects on growth do not seem to take place during the fetal period or during the early infancy and are mediated by insulin-like growth factor I (IGF-I) during childhood and puberty. In turn, IGF-I transcription is dependent on an adequate GH secretion, and in many tissues, it occurs independent of GH. We propose that GH may be a prohormone, rather than a hormone, since in many tissues and organs, it is proteolytically cleaved in a tissue-specific manner giving origin to shorter GH forms whose activity is still unknown. PMID:27773998

  8. Insulin-like growth factor I gene deletion causing intrauterine growth retardation and severe short stature.

    PubMed

    Woods, K A; Camacho-Hübner, C; Barter, D; Clark, A J; Savage, M O

    1997-11-01

    The first human case of a homozygous molecular defect in the gene encoding insulin-like growth factor I (IGF-I) is described. The patient was a 15-year-old boy from a consanguineous pedigree who presented with severe intrauterine growth failure, sensorineural deafness and mild mental retardation. Endocrine evaluation of the growth hormone (GH)--IGF-I axis revealed elevated GH secretion, undetectable serum IGF-I and normal serum IGF-binding protein-3, acid-labile subunit, and GH-binding activity. Analysis of the IGF-I gene revealed a homozygous partial IGF-I gene deletion involving exons 4 and 5, which encodes a severely truncated mature IGF-I peptide. This patient demonstrates that complete disruption of the IGF-I gene in man is compatible with life, and indicates a major role for IGF-I in human fetal growth. In addition, his neurological abnormalities suggest that IGF-I may be involved in central nervous system development.

  9. Fatigue Crack Growth Rate and Stress-Intensity Factor Corrections for Out-of-Plane Crack Growth

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Herman, Dave J.; James, Mark A.

    2003-01-01

    Fatigue crack growth rate testing is performed by automated data collection systems that assume straight crack growth in the plane of symmetry and use standard polynomial solutions to compute crack length and stress-intensity factors from compliance or potential drop measurements. Visual measurements used to correct the collected data typically include only the horizontal crack length, which for cracks that propagate out-of-plane, under-estimates the crack growth rates and over-estimates the stress-intensity factors. The authors have devised an approach for correcting both the crack growth rates and stress-intensity factors based on two-dimensional mixed mode-I/II finite element analysis (FEA). The approach is used to correct out-of-plane data for 7050-T7451 and 2025-T6 aluminum alloys. Results indicate the correction process works well for high DeltaK levels but fails to capture the mixed-mode effects at DeltaK levels approaching threshold (da/dN approximately 10(exp -10) meter/cycle).

  10. Isothermal dendritic growth: A low gravity experiment

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Hahn, R. C.; Lograsso, T. A.; Rubinstein, E. R.; Selleck, M. E.; Winsa, E.

    1988-01-01

    The Isothermal Dendritic Growth Experiment is an active crystal growth experiment designed to test dendritic growth theory at low undercoolings where convection prohibits such studies at 1 g. The experiment will be essentially autonomous, though limited in-flight interaction through a computer interface is planned. One of the key components of the apparatus will be a crystal growth chamber capable of achieving oriented single crystal dendritic growth. Recent work indicates that seeding the chamber with a crystal of the proper orientation will not, in and of itself, be sufficient to meet this requirement. Additional flight hardware and software required for the STS flight experiment are currently being developed at NASA Lewis Research Center and at Rensselaer Polytechnic Institute.

  11. The biophysics of neuronal growth

    NASA Astrophysics Data System (ADS)

    Franze, Kristian; Guck, Jochen

    2010-09-01

    For a long time, neuroscience has focused on biochemical, molecular biological and electrophysiological aspects of neuronal physiology and pathology. However, there is a growing body of evidence indicating the importance of physical stimuli for neuronal growth and development. In this review we briefly summarize the historical background of neurobiophysics and give an overview over the current understanding of neuronal growth from a physics perspective. We show how biophysics has so far contributed to a better understanding of neuronal growth and discuss current inconsistencies. Finally, we speculate how biophysics may contribute to the successful treatment of lesions to the central nervous system, which have been considered incurable until very recently.

  12. Intrauterine growth restriction - part 1.

    PubMed

    Sharma, Deepak; Shastri, Sweta; Farahbakhsh, Nazanin; Sharma, Pradeep

    2016-12-01

    Intrauterine growth restriction (IUGR) is a major and silent cause of various morbidity and mortality for the fetal and neonatal population. It is defined as a rate of fetal growth that is less than normal for the growth potential of that specific infant. The terms IUGR and small for gestational age (SGA) are often used interchangeably, although there exists subtle differences between the two. IUGR/SGA is an end result of various etiologies that includes maternal, placental and fetal factors and recently added genetic factors too, also contribute to IUGR. In this review article we will cover the antenatal aspect of IUGR and management with proven preventive intervention.

  13. Using a laboratory-based growth model to estimate mass- and temperature-dependent growth parameters across populations of juvenile Chinook Salmon

    USGS Publications Warehouse

    Perry, Russell W.; Plumb, John M.; Huntington, Charles

    2015-01-01

    To estimate the parameters that govern mass- and temperature-dependent growth, we conducted a meta-analysis of existing growth data from juvenile Chinook Salmon Oncorhynchus tshawytscha that were fed an ad libitum ration of a pelleted diet. Although the growth of juvenile Chinook Salmon has been well studied, research has focused on a single population, a narrow range of fish sizes, or a narrow range of temperatures. Therefore, we incorporated the Ratkowsky model for temperature-dependent growth into an allometric growth model; this model was then fitted to growth data from 11 data sources representing nine populations of juvenile Chinook Salmon. The model fit the growth data well, explaining 98% of the variation in final mass. The estimated allometric mass exponent (b) was 0.338 (SE = 0.025), similar to estimates reported for other salmonids. This estimate of b will be particularly useful for estimating mass-standardized growth rates of juvenile Chinook Salmon. In addition, the lower thermal limit, optimal temperature, and upper thermal limit for growth were estimated to be 1.8°C (SE = 0.63°C), 19.0°C (SE = 0.27°C), and 24.9°C (SE = 0.02°C), respectively. By taking a meta-analytical approach, we were able to provide a growth model that is applicable across populations of juvenile Chinook Salmon receiving an ad libitum ration of a pelleted diet.

  14. Puberty, statural growth, and growth hormone release in children with cerebral palsy

    PubMed Central

    Kuperminc, Michelle N.; Gurka, Matthew J.; Houlihan, Christine M.; Henderson, Richard C.; Roemmich, James N.; Rogol, Alan D.

    2010-01-01

    Objective Children with cerebral palsy (CP) are smaller than normally growing children.. The association between the growth hormone (GH) axis and growth in children with CP during puberty is unknown. We compared growth and markers of the GH axis in pre-pubertal and pubertal children with moderate to severe CP and without CP over a three-year period. Study design Twenty children with CP, ages 6–18, Gross Motor Function Classification System levels III–V, were compared to a group of sixty-three normally growing children of similar age. Anthropometry, Tanner stage, bone age, and laboratory analyses were performed every six months for three years. Laboratory values included spontaneous overnight GH release, fasting IGF-1 and IGFBP-3. Repeated measures models were used to evaluate interactions among Tanner stage and group (children with CP vs. reference children), taking into account gender, age, and nutritional status. Results Children with CP grew more slowly than those without CP at all Tanner stages (p<0.01). Patterns of IGF-1 and GH secretion in children with CP were similar to those of the reference group; however, the concentrations of IGF-1 (p<0.01) and GH (p<0.01) were lower in girls with CP, with a similar trend for boys (p=0.10 and 0.14, respectively). Conclusions Diminished circulating IGF-1 and GH concentrations may explain the differences in growth between the two groups. PMID:20216931

  15. Controlling Thermal Gradients During Silicon Web Growth

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Mchugh, J. P.; Skutch, M. E.; Piotrowski, P. A.

    1983-01-01

    Strategically placed slot helps to control critical thermal gradients in crucible for silicon web growth. Slot thermally isolates feed region of crucible from growth region; region where pellets are added stays hot. Heat absorbed by pellets during melting causes thermal unbalance than upsets growth conditions.

  16. Dependence of N-polar GaN rod morphology on growth parameters during selective area growth by MOVPE

    NASA Astrophysics Data System (ADS)

    Li, Shunfeng; Wang, Xue; Mohajerani, Matin Sadat; Fündling, Sönke; Erenburg, Milena; Wei, Jiandong; Wehmann, Hergo-Heinrich; Waag, Andreas; Mandl, Martin; Bergbauer, Werner; Strassburg, Martin

    2013-02-01

    Selective area growth of GaN rods by metalorganic vapor phase epitaxy has attracted great interest due to its novel applications in optoelectronic and photonics. In this work, we will present the dependence of GaN rod morphology on various growth parameters i.e. growth temperature, H2/N2 carrier gas concentration, V/III ratio, total carrier gas flow and reactor pressure. It is found that higher growth temperature helps to increase the aspect ratio of the rods, but reduces the height homogeneity. Furthermore, H2/N2 carrier gas concentration is found to be a critical factor to obtain vertical rod growth. Pure nitrogen carrier gas leads to irregular growth of GaN structure, while an increase of hydrogen carrier gas results in vertical GaN rod growth. Higher hydrogen carrier gas concentration also reduces the diameter and enhances the aspect of the GaN rods. Besides, increase of V/III ratio causes reduction of the aspect ratio of N-polar GaN rods, which could be explained by the relatively lower growth rate on (000-1) N-polar top surface when supplying more ammonia. In addition, an increase of the total carrier gas flow leads to a decrease in the diameter and the average volume of GaN rods. These phenomena are tentatively explained by the change of partial pressure of the source materials and boundary layer thickness in the reactor. Finally, it is shown that the average volume of the N-polar GaN rods keeps a similar value for a reactor pressure PR of 66 and 125 mbar, while an incomplete filling of the pattern opening is observed with PR of 250 mbar. Room temperature photoluminescence spectrum of the rods is also briefly discussed.

  17. Water temperature and fish growth: otoliths predict growth patterns of a marine fish in a changing climate.

    PubMed

    Rountrey, Adam N; Coulson, Peter G; Meeuwig, Jessica J; Meekan, Mark

    2014-08-01

    Ecological modeling shows that even small, gradual changes in body size in a fish population can have large effects on natural mortality, biomass, and catch. However, efforts to model the impact of climate change on fish growth have been hampered by a lack of long-term (multidecadal) data needed to understand the effects of temperature on growth rates in natural environments. We used a combination of dendrochronology techniques and additive mixed-effects modeling to examine the sensitivity of growth in a long-lived (up to 70 years), endemic marine fish, the western blue groper (Achoerodus gouldii), to changes in water temperature. A multi-decadal biochronology (1952-2003) of growth was constructed from the otoliths of 56 fish collected off the southwestern coast of Western Australia, and we tested for correlations between the mean index chronology and a range of potential environmental drivers. The chronology was significantly correlated with sea surface temperature in the region, but common variance among individuals was low. This suggests that this species has been relatively insensitive to past variations in climate. Growth increment and age data were also used in an additive mixed model to predict otolith growth and body size later this century. Although growth was relatively insensitive to changes in temperature, the model results suggested that a fish aged 20 in 2099 would have an otolith about 10% larger and a body size about 5% larger than a fish aged 20 in 1977. Our study shows that species or populations regarded as relatively insensitive to climate change could still undergo significant changes in growth rate and body size that are likely to have important effects on the productivity and yield of fisheries. © 2014 John Wiley & Sons Ltd.

  18. Population Growth: Crisis and Challenge.

    ERIC Educational Resources Information Center

    Beaton, John R., Ed.; Doberenz, Alexander R., Ed.

    The proceedings of this first annual symposium on population growth considers the consequences of this growth, along with possible means of regulation. Topics of speeches include: Population Outlook in Asia (Irene Taeuber); Malnutrition is a Problem of Ecology (Paul Gyorgy); The Leisure Explosion (E. H. Storey); Effects of Pollution on Population…

  19. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Malik, S. N.; Vanstone, R. H.; Kim, K. S.; Laflen, J. H.

    1987-01-01

    The objective of the Elevated Temperature Crack Growth Program is to evaluate proposed nonlinear fracture mechanics methods for application to hot section components of aircraft gas turbine engines. Progress during the past year included linear-elastic fracture mechanics data reduction on nonlinear crack growth rate data on Alloy 718. The bulk of the analytical work centered on thermal gradient problems and proposed fracture mechanics parameters. Good correlation of thermal gradient experimental displacement data and finite element prediction was obtained.

  20. Reliability Growth Testing Effectiveness.

    DTIC Science & Technology

    1984-01-01

    interface boundaries. f. Test facility and equipment descriptions and requirements. g. Procedures and timing for corrective acticns. Uh . Blocks of tme and...apporLionment, FMEA and stress analysis. Instead, reiiability "growth management provides a means of viewing all the reliability program activities in an...A VENDOR SURVEILLANCE 8 A A R GROWTH ESTING. A R PROGRAM4 C B A A NORMALIZED INCREASE 0 2.5% 25% 60 % IN ACQUISITION COST RELATIVE CHANGE IN 1:1 4:1