Nazar, Rahat; Umar, Shahid; Khan, Nafees A.
2015-01-01
Ascorbate (AsA)–glutathione (GSH) cycle metabolism has been regarded as the most important defense mechanism for the resistance of plants under stress. In this study the influence of salicylic acid (SA) was studied on ascorbate-glutathione pathway, S-assimilation, photosynthesis and growth of mustard (Brassica juncea L.) plants subjected to 100 mM NaCl. Treatment of SA (0.5 mM) alleviated the negative effects of salt stress and improved photosynthesis and growth through increase in enzymes of ascorbate-glutathione pathway which suggest that SA may participate in the redox balance under salt stress. The increase in leaf sulfur content through higher activity of ATP sulfurylase (ATPS) and serine acetyl transferase (SAT) by SA application was associated with the increased accumulation of glutathione (GSH) and lower levels of oxidative stress. These effects of SA were substantiated by the findings that application of SA-analog, 2,6, dichloro-isonicotinic acid (INA) and 1 mM GSH treatment produced similar results on rubisco, photosynthesis and growth of plants establishing that SA application alleviates the salt-induced decrease in photosynthesis mainly through inducing the enzyme activity of ascorbate-glutathione pathway and increased GSH production. Thus, SA/GSH could be a promising tool for alleviation of salt stress in mustard plants. PMID:25730495
Dudek, Henryk; Farbiszewski, Ryszard; Rydzewska, Maria; Michno, Tadeusz; Kozłowski, Andrzej
2005-01-01
The aim of the study was to estimate the concentration of glutathione (GSH), ascorbic acid (vitamin C) and thiobarbituric acid (TBA-rs) in single human brain metastases and histologically unchanged nerve tissue. The research was conducted on fragments of neoplasmatic tissue collected from 45 patients undergoing surgery in the Department of Neurosurgery, Medical University of Białystok in years 1996-2002. Concentration of GSH was evaluated using the GSH-400 method, vitamin C using the method of Kyaw and TBA-rs using the method of Salaris and Babs. It has been found that there is a decrease of concentration of GSH and vitamin C and a considerable increase (p < 0.05) of concentration of TBA-rs in investigated single brain human metastasis in correlation to the concentration of the mentioned above substances in unchanged nerve tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Earnshaw, B.A.
1986-01-01
Determinations of endogenous glutathione (GSH), glutathione disulfide (GSSG), ascorbic acid (AA) and dehydroascorbic acid (DHA) in proliferating and developing wild carrot cultures showed that lower levels of GSH and AA were associated with developing cultures. The GSSG and DHA levels did not account for the changes in the levels of antioxidants between proliferating and developing cultures. Studies were designed to test an observed auxin (2,4-Dichlorophenoxyacetic acid, 2,4-D)-antioxidant association. Two fractions (embryo and less developed) were obtained by screening developed cultures which were previously grown in the presence of /sup 14/C-2, 4-D. The embryo fraction had a lower concentration of /supmore » 14/C than the less developed fraction, supporting the association, since the two fractions showed this relationship with respect to GSH and AA concentrations. Determinations of GSH and AA levels of cells grown in various concentrations of 2,4-D showed the association, decreases in the 2,4-D concentration correlated with decreases in the GSH and AA concentrations. The existence of a respiratory pathway involving GSSG reductase, DHA reductase, and AA oxidase was investigated to test whether inhibition of AA oxidase by 2,4-D could explain the auxin-antioxidant association; however, AA oxidase activity was not detected.« less
Carvalho, Márcia; Remião, Fernando; Milhazes, Nuno; Borges, Fernanda; Fernandes, Eduarda; Carvalho, Félix; Bastos, Maria Lourdes
2004-08-05
In the past decade, clinical evidence has increasingly shown that the liver is a target organ for 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") toxicity. The aims of the present in vitro study were: (1) to evaluate and compare the hepatotoxic effects of MDMA and one of its main metabolites, N-methyl-alpha-methyldopamine (N-Me-alpha-MeDA) and (2) to investigate the ability of antioxidants, namely ascorbic acid and N-acetyl-L-cysteine (NAC), to prevent N-Me-alpha-MeDA-induced toxic injury, using freshly isolated rat hepatocytes. Cell suspensions were incubated with MDMA or N-Me-alpha-MeDA in the final concentrations of 0.1, 0.2, 0.4, 0.8, and 1.6 mM for 3 h. To evaluate the potential protective effects of antioxidants, cells were preincubated with ascorbic acid in the final concentrations of 0.1 and 0.5 mM, or NAC in the final concentrations of 0.1 and 1 mM for 15 min before treatment with 1.6 mM N-Me-alpha-MeDA for 3 h (throughout this incubation period the cells were exposed to both compounds). The toxic effects were evaluated by measuring the cell viability, glutathione (GSH) and glutathione disulfide (GSSG), ATP, and the cellular activities of GSH peroxidase (GPX), GSSG reductase (GR), and GSH S-transferase (GST). MDMA induced a concentration- and time-dependent GSH depletion, but had a negligible effect on cell viability, ATP levels, or on the activities of GR, GPX, and GST. In contrast, N-Me-alpha-MeDA was shown to induce not only a concentration- and time-dependent depletion of GSH, but also a depletion of ATP levels accompanied by a loss in cell viability, and decreases in the antioxidant enzyme activities. For both compounds, GSH depletion was not accompanied by increases in GSSG levels, which seems to indicate GSH depletion by adduct formation. Importantly, the presence of ascorbic acid (0.5 mM) or NAC (1 mM) prevented cell death and GSH depletion induced by N-Me-alpha-MeDA. The results provide evidence that MDMA and its metabolite N-Me-alpha-MeDA induce toxicity to freshly isolated rat hepatocytes. Oxidative stress may play a major role in N-Me-alpha-MeDA-induced hepatic toxicity since antioxidant defense systems are impaired and administration of antioxidants prevented N-Me-alpha-MeDA toxicity.
Pérez-Pinzón, M A; Rice, M E
1995-12-24
We determined the ascorbic acid (ascorbate) and glutathione (GSH) contents of eight regions of the CNS from anoxia-tolerant turtles collected in summer and in winter. Ascorbate was of special interest because it is found in exceptionally high levels in the turtle CNS. The temperature-dependence of CNS ascorbate content was established by comparing levels in animals collected from two geographic zones with different average winter temperatures and in animals re-acclimated to different temperatures in the laboratory. The analytical method was liquid chromatography with electrochemical detection. Turtle ascorbate levels were 30-40% lower in animals acclimatized to winter (2 degrees C) than to summer (23 degrees C) in all regions of the CNS. Similarly, GSH levels were 20-30% lower in winter than in summer. Winter ascorbate levels were higher in turtles from Louisiana (19 degrees C) than in turtles acclimatized to winter in Wisconsin (2 degrees C). Summer and winter levels of ascorbate could be reversed by re-acclimating animals to cold (1 degree C) or warm (23 degrees C) temperatures for at least one week. CNS water content did not differ between cold- and warm-acclimated turtles. Taken together, the data indicated that ascorbate and GSH undergo significant seasonal variation and that the catalyst for change is environmental temperature. Steady-state ascorbate content showed a linear dependence on temperature, with a slope of 1.5% per degree C that was independent of CNS region. Lower levels of cerebral antioxidants in turtles exposed to colder temperatures were consistent with the decreased rate of cerebral metabolism that accompanies winter hibernation. Cerebral ascorbate and GSH levels in the turtle remained similar to or higher than those in mammals, even during winter, however. These findings support the notion that unique mechanisms of antioxidant regulation in the turtle contribute to their tolerance of the hypoxia-reoxygenation that characterizes diving behavior.
Liso, Rosalia; De Tullio, Mario C; Ciraci, Samantha; Balestrini, Raffaella; La Rocca, Nicoletta; Bruno, Leonardo; Chiappetta, Adriana; Bitonti, Maria Beatrice; Bonfante, Paola; Arrigoni, Oreste
2004-12-01
To understand the function of ascorbic acid (ASC) in root development, the distribution of ASC, ASC oxidase, and glutathione (GSH) were investigated in cells and tissues of the root apex of Cucubita maxima. ASC was regularly distributed in the cytosol of almost all root cells, with the exception of quiescent centre (QC) cells. ASC also occurred at the surface of the nuclear membrane and correspondingly in the nucleoli. No ASC could be observed in vacuoles. ASC oxidase was detected by immunolocalization mainly in cell walls and vacuoles. This enzyme was particularly abundant in the QC and in differentiating vascular tissues and was absent in lateral root primordia. Administration of the ASC precursor L-galactono-gamma-lactone markedly increased ASC content in all root cells, including the QC. Root treatment with the ASC oxidized product, dehydroascorbic acid (DHA), also increased ASC content, but caused ASC accumulation only in peripheral tissues, where DHA was apparently reduced at the expense of GSH. The different pattern of distribution of ASC in different tissues and cell compartments reflects its possible role in cell metabolism and root morphogenesis.
2012-01-01
Background An increased interest is given to the impact of high fat diet on health worldwide. Abnormalities in lipid metabolism induced by high cholesterol diet (HCD) were reported to exacerbate renal diseases via oxidative stress pathways. Rutin and ascorbic acid showed a protective role against oxidative stress-mediated diseases. Furthermore, both lipid metabolism and tissue response to oxidative stress damage was found to vary according to animal gender. Thus, the objective of this work was to examine possible gender-related differences and the possible protective effects of rutin and ascorbic acid supplementation on high cholesterol diet induced nephrotoxicity. Methods 96 young male and female Wistar albino rats were used. HCD supplemented animals were treated with rutin alone or in combination with ascorbic acid for 6 weeks. Creatinine plasma level was estimated. Furthermore, kidney levels of nucleic acids, total protein, malondialdehyde (MDA), reduced glutathione (GSH), total cholesterol, and triglycerides were determined. Finally, kidney tissues were used for histopathological examination. Results HCD supplementation decreased kidney level of nucleic acids, which was more prominent in female animals. Both vitamin combination significantly attenuated HCD induced decrease in nucleic acids. Moreover, kidney level of MDA was significantly altered by HCD in both genders, which was inhibited by rutin and ascorbic acid alone or in combination in male groups and by both vitamins in female groups. There was a reduction in kidney level of GSH by HCD, especially in male groups, which was attenuated by rutin and ascorbic acid combination. Kidney levels of total cholesterol and triglycerides were significantly increased by HCD supplementation in both genders. Coadministration with rutin and/or ascorbic acid protected from such increase, which was more obvious in both vitamins combination. Histopathological investigation supported vitamins protective effect, which was more prominent in male vitamins combination group. Conclusions HCD-induced renal injury in female was higher than in male animals, suggesting a better anti-oxidative stress defense response in male's kidney. Moreover, the antioxidant and reno-protective effects of rutin and ascorbic acid were augmented following their combination. PMID:22423898
Al-Rejaie, Salim Salih; Abuohashish, Hatem Mustafa; Alkhamees, Osama Abdelrahman; Aleisa, Abdulaziz Mohammed; Alroujayee, Abdulaziz S
2012-03-16
An increased interest is given to the impact of high fat diet on health worldwide. Abnormalities in lipid metabolism induced by high cholesterol diet (HCD) were reported to exacerbate renal diseases via oxidative stress pathways. Rutin and ascorbic acid showed a protective role against oxidative stress-mediated diseases. Furthermore, both lipid metabolism and tissue response to oxidative stress damage was found to vary according to animal gender. Thus, the objective of this work was to examine possible gender-related differences and the possible protective effects of rutin and ascorbic acid supplementation on high cholesterol diet induced nephrotoxicity. 96 young male and female Wistar albino rats were used. HCD supplemented animals were treated with rutin alone or in combination with ascorbic acid for 6 weeks. Creatinine plasma level was estimated. Furthermore, kidney levels of nucleic acids, total protein, malondialdehyde (MDA), reduced glutathione (GSH), total cholesterol, and triglycerides were determined. Finally, kidney tissues were used for histopathological examination. HCD supplementation decreased kidney level of nucleic acids, which was more prominent in female animals. Both vitamin combination significantly attenuated HCD induced decrease in nucleic acids. Moreover, kidney level of MDA was significantly altered by HCD in both genders, which was inhibited by rutin and ascorbic acid alone or in combination in male groups and by both vitamins in female groups. There was a reduction in kidney level of GSH by HCD, especially in male groups, which was attenuated by rutin and ascorbic acid combination. Kidney levels of total cholesterol and triglycerides were significantly increased by HCD supplementation in both genders. Coadministration with rutin and/or ascorbic acid protected from such increase, which was more obvious in both vitamins combination. Histopathological investigation supported vitamins protective effect, which was more prominent in male vitamins combination group. HCD-induced renal injury in female was higher than in male animals, suggesting a better anti-oxidative stress defense response in male's kidney. Moreover, the antioxidant and reno-protective effects of rutin and ascorbic acid were augmented following their combination.
Harakeh, S; Jariwalla, R J
1991-12-01
To elucidate the action of vitamin C on pathogenic human retroviruses, we investigated and compared the effects of noncytoxic concentrations of ascorbic acid (AA), its calcium salt (Ca-ascorbate), and two thiol-based reducing agents [glutathione (GSH) and N-acetyl-L-cysteine (NAC)] against human immunodeficiency virus (HIV)-1 replication in chronically infected T lymphocytes. Ca-ascorbate reduced extracellular HIV reverse transcriptase (RT) activity by about the same magnitude as the equivalent dose of AA. Long-term experiments showed that continuous presence of ascorbate was necessary for HIV suppression. NAC (10 mmol/L) caused less than twofold inhibition of HIV RT and conferred a synergistic effect (approximately eightfold inhibition) when tested simultaneously with AA (0.426 mmol/L). In contrast, nonesterified GSH (less than or equal to 1.838 mmol/L) had no effect on RT concentrations and did not potentiate the anti-HIV effect of AA. These results further support the potent antiviral activity of ascorbate and suggest its therapeutic value in controlling HIV infection in combination with thiols.
Devbhuti, Pritesh; Sikdar, Debasis; Saha, Achintya; Sengupta, Chandana
2011-01-01
A drug may cause alteration in blood-lipid profile and induce lipid peroxidation phenomena on administration in the body. Antioxidant may play beneficial role to control the negative alteration in lipid profile and lipid peroxidation. In view of this context, the present in vivo study was carried out to evaluate the role of ascorbic acid as antioxidant on netilmicin-induced alteration of blood lipid profile and peroxidation parameters. Rabbits were used as experimental animals and blood was collected to estimate blood-lipid profiles, such as total cholesterol (TCh), high density lipoprotein cholesterol (HDL-Ch), low density lipoprotein cholesterol (LDL-Ch), very low density lipoprotein cholesterol (VLDL-Ch), triglycerides (Tg), phospholipids (PL), and total lipids (TL), as well as peroxidation parameters, such as malondialdehyde (MDA), 4-hydroxy-2-nonenal (HNE), reduced glutathione (GSH) and nitric oxide (NO). The results revealed that netilmicin caused significant enhancement of MDA, HNE, TCh, LDL-Ch, VLDL-Ch, Tg levels and reduction in GSH, NO, HDL-Ch, PL, TL levels. On co-administration, ascorbic acid was found to be effective in reducing netilmicin-induced negative alterations of the above parameters.
Giaretta, Elisa; Estrada, Efrén; Bucci, Diego; Spinaci, Marcella; Rodríguez-Gil, Joan E; Yeste, Marc
2015-02-01
The main aim of this work was to evaluate how supplementing freezing and thawing media with reduced glutathione (GSH) and l-ascorbic acid (AA) affected the quality parameters of frozen-thawed boar spermatozoa. With this purpose, semen samples of 12 ejaculates coming from 12 boars were used. Each ejaculate was split into seven aliquots to which 5 mM of GSH and 100 μM of AA were added separately or together at two different steps of freeze-thawing. Various sperm parameters (levels of free cysteine residues in sperm nucleoproteins, sperm viability, acrosome membrane integrity, intracellular peroxide and superoxide levels [ROS], and total and progressive motility) were evaluated before freezing and at 30 and 240 minutes after thawing. Both GSH and AA significantly improved boar sperm cryotolerance when they were separately added to freezing and thawing media. However, the highest improvement was recorded when both freezing and thawing media were supplemented with 5 mM of GSH plus 100 μM of AA. This improvement was observed in sperm viability and acrosome integrity, sperm motility, and nucleoprotein structure. Although ROS levels were not much increased by freeze-thawing procedures, the addition of GSH and AA to both freezing and thawing extenders significantly decreased intracellular peroxide levels and had no impact on superoxide levels. According to our results, we can conclude that supplementation of freezing and thawing media with both GSH and AA has a combined, beneficial effect on frozen-thawed boar sperm, which is greater than that obtained with the separate addition of either GSH or AA. Copyright © 2015 Elsevier Inc. All rights reserved.
Formation of the Thiol Conjugates and Active Metabolite of Clopidogrel by Human Liver Microsomes
Lau, Wei C.; Hollenberg, Paul F.
2012-01-01
We reported previously the formation of a glutathionyl conjugate of the active metabolite (AM) of clopidogrel and the covalent modification of a cysteinyl residue of human cytochrome P450 2B6 in a reconstituted system (Mol Pharmacol 80:839–847, 2011). In this work, we extended our studies of the metabolism of clopidogrel to human liver microsomes in the presence of four reductants, namely, GSH, l-Cys, N-acetyl-l-cysteine (NAC), and ascorbic acid. Our results demonstrated that formation of the AM was greatly affected by the reductant used and the relative amounts of the AM formed were increased in the following order: NAC (17%) < l-Cys (53%) < ascorbic acid (61%) < GSH (100%). AM-thiol conjugates were observed in the presence of NAC, l-Cys, and GSH. In the case of GSH, the formation of both the AM and the glutathionyl conjugate was dependent on the GSH concentrations, with similar Km values of ∼0.5 mM, which indicates that formation of the thiol conjugates constitutes an integral part of the bioactivation processes for clopidogrel. It was observed that the AM was slowly converted to the thiol conjugate, with a half-life of ∼10 h. Addition of dithiothreitol to the reaction mixture reversed the conversion, which resulted in a decrease in AM-thiol conjugate levels and a concomitant increase in AM levels, whereas addition of NAC led to the formation of AM-NAC and a concomitant decrease in AM-GSH levels. These results not only confirm that the AM is formed through oxidative opening of the thiolactone ring but also suggest the existence of an equilibrium between the AM, the thiol conjugates, and the reductants. These factors may affect the effective concentrations of the AM in vivo. PMID:22584220
Reversible Reduction of Nitroxides to Hydroxylamines: the Roles for Ascorbate and Glutathione
Bobko, Andrey A.; Kirilyuk, Igor A.; Grigor'ev, Igor A.; Zweier, Jay L.; Khramtsov, Valery V.
2007-01-01
Biological applications of stable nitroxyl radicals, NR, include their use as contrast agents for magnetic resonance imaging, spin labels, superoxide dismutase mimics, and antioxidants. The rapid reduction of NR in biological samples into hydroxylamines, HA, significantly limits their application. In its turn, reoxidation of HA back to the NR has been used for detection of reactive oxygen species, ROS. In this work comparative studies of the reduction of pyrrolidine, imidazoline and imidazolidine NR by ascorbate were performed taking advantage of recently synthesized tetraethyl substituted NR with much higher stability towards reduction both in vitro and in vivo. Surprisingly, these NR kept 10-50% of initial intensity of electron paramagnetic resonance signal for about 1 h in the presence of hundred fold excess of ascorbate. To explain this data, reoxidation of the corresponding HA by ascorbate radical and dehydroascorbic acid back to the NR was proposed. This hypothesis was supported by direct measurement of the NR appearance from the HA upon ascorbate radical generation by ascorbate oxidase, or in the presence of the dehydroascorbic acid. The reversible reaction between NR and ascorbate was observed for the various types of the NR, and the rate constants for direct and reverse reactions were determined. The equilibrium constants for one-electron reduction of the tetraethyl substituted NR by ascorbate were found to be in the range from 2.65×10−6 to 10−5 which is significantly lower than corresponding values for the tetramethyl substituted NR (less or about 10−4). This explains an establishment of EPR-detectable quasi-equilibrium level of tetraethyl substituted NR in the presence of excess of ascorbate. The redox reactions of the NR-HA couple in ascorbate containing medium was found to be significantly affected by glutathione, GSH. This effect was attributed to the reduction of ascorbate radical by GSH, and the rate constant of this reaction was found to be equal to 10 M−1s−1. In summary, the data provide new insight into the redox chemistry of NR and HA, and significantly affect interpretation and strategy of their use as redox- and ROS-sensitive probes, or as antioxidants. PMID:17210453
Mailankot, Maneesh; Jayalekshmi, H; Chakrabarti, Amit; Alang, Neha; Vasudevan, D M
2009-07-01
Ethanol intoxication resulted in high extent of lipid peroxidation, and reduction in antioxidant defenses (decreased GSH, GSH/GSSG ratio, and catalase, SOD and GPx activities) and (Na+/K+)-ATPase activity in kidney. Alpha-tocopherol treatment effectively protected kidney from ethanol induced oxidative challenge and improved renal (Na+/K+)-ATPase activity. Ethanol induced oxidative stress in the kidney and decreased (Na+/K+)-ATPase activity could be reversed by treatment with ascorbic acid.
Alleviation of isoproturon toxicity to wheat by exogenous application of glutathione.
Nemat Alla, Mamdouh M; Hassan, Nemat M
2014-06-01
Treatment with the recommended field dose of isoproturon to 7-d-old wheat seedlings significantly decreased shoot height, fresh and dry weights during the subsequent 15days. Meanwhile contents of carotenoids, chlorophylls and anthocyanin as well as activities of δ-aminolevulinate dehydratase (ALA-D), phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL) were significantly inhibited. On the other hand, the herbicide significantly increased malondialdehyde (MDA), a naturally occurring product of lipid peroxidation and H2O2, while it significantly decreased the contents of glutathione (GSH) and ascorbic acid (AsA) and reduced the activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX). These findings indicate an induction of a stress status in wheat seedlings following isoproturon treatment. However, exogenous GSH appeared to limit the toxic effects of isoproturon and seemed to overcome this stress status. Most likely, contents of pigment and activities of enzymes were raised to approximate control levels. Moreover, antioxidants were elevated and the oxidative stress indices seemed to be alleviated by GSH application. These results indicate that exogenous GSH enhances enzymatic and nonenzymatic antioxidants to alleviate the effects of isoproturon. Copyright © 2014 Elsevier Inc. All rights reserved.
Li, Shi-Weng; Leng, Yan; Feng, Lin; Zeng, Xiao-Ying
2014-01-01
In vitro experiments were conducted to investigate the effects of abscisic acid (ABA) and Cd on antioxidative defense systems and indole-3-acetic acid (IAA) oxidase during adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings. The exogenous ABA significantly enhanced the number and fresh weight of the adventitious roots. CdCl2 strongly inhibited adventitious rooting. Pretreatment with 10 μM ABA clearly alleviated the inhibitory effect of Cd on rooting. ABA significantly reduced superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT) activities, as well as the levels of glutathione (GSH) and ascorbic acid (ASA) during adventitious rooting. ABA strongly increased IAA-oxidase activity during the induction (0-12 h) and expression (after 48 h) phases and increased the phenols levels. Cd treatment significantly reduced the activities of SOD, APX, POD, and IAA oxidase, as well as GSH level. Cd strongly increased ASA levels. ABA pretreatment counteracted Cd-induced alterations of certain antioxidants and antioxidative enzymes, e.g., remarkably rescued APX and POD activities, reduced the elevated SOD and CAT activities and ASA levels, and recovered the reduced GSH levels, caused by Cd stress. Thus, the physiological effects of the combination of ABA and Cd treatments were opposite of those obtained with Cd treatment alone, suggesting that ABA involved in the regulation of antioxidative defense systems and the alleviation of wounding- and Cd-induced oxidative stress.
Zhang, Liping; Ling, Bo; Wang, Lun; Chen, Hongqi
2017-09-01
An upconversion luminescence method was developed for the determination of glutathione (GSH), L-cysteine (Cys) or L-ascorbic acid (AA) based on redox reaction. We synthesized poly(acrylic acid) (PAA)-modified Mn 2+ -doped NaYF 4 :Yb,Tm upconversion nanoparticles (UCNPs), and the luminescence of these UCNPs was effectively quenched due to their carboxyl groups coordinating with Fe 3+ to form a UCNPs/Fe 3+ system. GSH, Cys or AA reduced Fe 3+ to Fe 2+ , which induced the luminescence recovery of the UCNPs. Under the optimized conditions, wide linear concentration ranges from 0.25-300μM for GSH, 0.5-875μM for Cys and 0.5-350μM for AA were found, and the detection limits (3S/K) were 0.2μM, 0.5μM and 0.2μM, respectively. Thus, the UCNPs/Fe 3+ system was successfully applied for sensing GSH, Cys or AA. Copyright © 2017 Elsevier B.V. All rights reserved.
Gaafa, Khadiga Mohammed; Badawy, Mohammed M; Hamza, Alaaeldin A
2011-10-01
The aim of the present work was to clarify the involvement of free radicals, cytochrome P450 toxic metabolites, and deregulation of calcium homeostasis in the mechanism of diethyldithiocarbamate (DDC) hepatotoxicity. This was elucidated through the preadministration of ascorbic acid (a free radical scavenger), cimetidine (an inhibitor of cytochrome P450 enzymes), or nifedipine (a calcium-blocking agent) before DDC treatment to male albino rats. DDC was administered either as a single dose [800 mg/kg body weight (b.w.), subcutaneously, s.c.] or daily repeated doses for 30 days (400 mg/kg b.w., s.c.). Oxidative stress indicators [e.g., malondialdehyde (MDA), reduced glutathione (GSH), and superoxide dismutase enzyme (SOD)] showed that single or repeated DDC doses induce an increase in MDA level and a decrease in SOD activity in the liver, whereas it causes depletion in hepatic GSH after a single dose and an elevation in its value after repeated doses. Severe histopathological changes were also observed in the livers of rats treated with single or repeated DDC doses. Ascorbic acid, cimetidine, and nifedipine pretreatments were found to induce highly protective effects against the evinced DDC hepatotoxicity, manifesting that free radical, cytochrome P450, and calcium-dependent processes contribute to DDC liver toxicity. Finally, although multiple mechanisms may be involved in the hepatotoxic changes induced by DDC, calcium disarrangement and free radical formation play a more critical role than cytochrome P450 in metabolic events leading to toxic effects of DDC.
Biological effects of low energy nitrogen ion implantation on Jatropha curcas L. seed germination
NASA Astrophysics Data System (ADS)
Xu, Gang; Wang, Xiao-teng; Gan, Cai-ling; Fang, Yan-qiong; Zhang, Meng
2012-09-01
To explore the biological effects of nitrogen ion beam implantation on dry Jatropha curcas seed, a beam of N+ with energy of 25 keV was applied to treat the dry seed at six different doses. N+ beam implantation greatly decreased germination rate and seedling survival rate. The doses within the range of 12 × 1016 to 15 × 1016 ions cm-2 severely damaged the seeds: total antioxidant capacity (TAC), germination rate, seedling survival rate, reduced ascorbate acid (HAsA) and reduced glutathione (GSH) contents, and most of the tested antioxidases activity (i.e. catalase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD)) reached their lowest levels. At a dose of 18 × 1016 ion cm-2, biological repair took place: moderate increases were found in TAC, germination rate, seedling survival rate, HAsA and GSH contents, and some antioxidant enzyme activities (i.e. CAT, APX, SOD and GPX). The dose of 18 × 1016 ions cm-2 may be the optimum dose for use in dry J. curcas seed mutation breeding. CAT, HAsA and GSH contributed to the increase of TAC, but CAT was the most important. POD performed its important role as seed was severely damaged. The main role of the HAsA-GSH cycle appeared to be for regeneration of HAsA.
Metabolic cooperation of ascorbic acid and glutathione in normal and vitamin C-deficient ODS rats.
Wang, Y; Kashiba, M; Kasahara, E; Tsuchiya, M; Sato, E F; Utsumi, K; Inoue, M
2001-01-01
Although the coordination of various antioxidants is important for the protection of organisms from oxidative stress, dynamic aspects of the interaction of endogenous antioxidants in vivo remain to be elucidated. We studied the metabolic coordination of two naturally occurring water-soluble antioxidants, ascorbic acid (AA) and reduced glutathione (GSH), in liver, kidney and plasma of control and scurvy-prone osteogenic disorder Shionogi (ODS) rats that hereditarily lack the ability to synthesize AA. When supplemented with AA, its levels in liver and kidney of ODS rats increased to similar levels of those in control rats. Hepato-renal levels of glutathione were similar with the two animal groups except for the slight increase in its hepatic levels in AA-supplemented ODS rats. Administration of L-buthionine sulfoximine (BSO), a specific inhibitor of GSH synthesis, rapidly decreased the hepato-renal levels of glutathione in a biphasic manner, a rapid phase followed by a slower phase. Kinetic analysis revealed that glutathione turnover was enhanced significantly in liver mitochondria and renal cytosol of ODS rats. Administration of BSO significantly increased AA levels in the liver and kidney of control rats but decreased them in AA-supplemented ODS rats. Kinetic analysis revealed that AA is synthesized by control rat liver by some BSO-enhanced mechanism and the de novo synthesized AA is transferred to the kidney. Such a coordination of the metabolism of GSH and AA in liver and kidney is suppressed in AA-deficient ODS rats. These and other results suggest that the metabolism of AA and GSH forms a compensatory network by which oxidative stress can be decreased.
Kodama, Yuzo; Kishimoto, Yuki; Muramatsu, Yoko; Tatebe, Junko; Yamamoto, Yu; Hirota, Nao; Itoigawa, Yukinari; Atsuta, Ryo; Koike, Kengo; Sato, Tadashi; Aizawa, Koich; Takahashi, Kazuhisa; Morita, Toshisuke; Homma, Sakae; Seyama, Kuniaki; Ishigami, Akihito
2017-11-01
Few studies to date have investigated the antioxidant nutrients such as vitamin C (ascorbic acid), vitamin E (α-tocopherol), retinol and carotenoids in plasma from patients with pulmonary disease in Japan. To clarify the role of antioxidant nutrients such as vitamin C, vitamin E, retinol and various carotenoids in plasma of Japanese patients with chronic obstructive lung diseases (COPD), asthma-COPD overlap syndrome (ACOS) and/or bronchial asthma (BA), we compared to healthy elderly controls. Ascorbic acid (AA), carotenoids (lutein, zeaxanthin, β-cryptoxanthin, α-carotene, β-carotene and lycopene), retinol and α-tocopherol levels in plasma were determined by using a high performance liquid chromatography. Reduced glutathione (GSH), oxidised glutathione (GSSG) in whole blood and urinary 8-OHdG were also determined. Plasma AA level of COPD subjects was significantly lower than that of healthy elderly people. Conversely, ACOS and BA subjects showed no significant difference from healthy elderly people. Moreover, plasma lycopene and total carotenoid levels and GSH content in blood were significantly lower in COPD subjects than these in healthy elderly people. However, other redox markers such as GSSG, GSH/GSSG ratio and urinary 8-OHdG found no significant differences between COPD, ACOS and BA compared to healthy elderly people. These results suggested that COPD of Japanese patients may develop partly because of oxidative stress derived from a shortage of antioxidant nutrients, especially of AA and lycopene, as well as GSH while this may not be the case in both ACOS and BA. © 2016 John Wiley & Sons Ltd.
Noninvasive quantification of ascorbate and glutathione concentration in the elderly human brain
USDA-ARS?s Scientific Manuscript database
In this study, Ascorbate (Asc) and glutathione (GSH) concentrations were non-invasively quantified using double edited 1H MRS at 4T in the occipital cortex of healthy young(age 18 – 22 years, N = 22) and elderly (age 70 – 89 years, N = 22) human subjects. Elderly subjects had a lower GSH concentrati...
Ogunro, P S; Ogungbamigbe, T O
2013-03-01
To evaluate the effect of ageing on the level of antioxidants and lipid peroxidation in healthy individual of various age groups. A total number of 162 healthy males and females volunteer between the ages of 18-80 years were divided into three groups. These volunteers were divided into group i(18-30 yr), group ii (31-60 yrs) and group iii (60-80 yr). Plasma concentration of total bilirubin, uric acid, ascorbic acid, a-tocopherol, retinol, total antioxidant status (TAS), malondialdehyde (MDA), glutathione (GSH) and ceruloplasmin measured. Erythrocyte antioxidant enzyme activities of superoxide dismutase (SOD), catalase (CAT), glutathione and peroxidase (GSHPx) were measured using standard methods. Erythrocyte antioxidant enzymes (GSH-Px and SOD) activities and GSH level were significantly reduced among group iii (p<0.01) and group ii (p<0.05) age group subjects compared to the younger age group i. Conversely, MDA showed a significant increase in group iii (p<0.01) and group ii (p<0.01) compared to younger age group i. CAT activity and TAS level were reduced significantly (p<0.05) in both groups iii and ii compared to younger age group i. Ascorbic acid, a-tocopherol and retinol levels were significantly reduced among group iii (p<0.05) compared to group i. Ageing was associated with increased lipid peroxidation and lower antioxidant defenses. Changes that occur during ageing cannot be avoided but may be delayed and controlled to some extent. To counter these changes, dietary supplementation of a variety of antioxidants might be beneficial.
Liu, Tao; Hu, Xiaohui; Zhang, Jiao; Zhang, Junheng; Du, Qingjie; Li, Jianming
2018-02-15
Low temperature is a crucial factor influencing plant growth and development. The chlorophyll precursor, 5-aminolevulinic acid (ALA) is widely used to improve plant cold tolerance. However, the interaction between H 2 O 2 and cellular redox signaling involved in ALA-induced resistance to low temperature stress in plants remains largely unknown. Here, the roles of ALA in perceiving and regulating low temperature-induced oxidative stress in tomato plants, together with the roles of H 2 O 2 and cellular redox states, were characterized. Low concentrations (10-25 mg·L - 1 ) of ALA enhanced low temperature-induced oxidative stress tolerance of tomato seedlings. The most effective concentration was 25 mg·L - 1 , which markedly increased the ratio of reduced glutathione and ascorbate (GSH and AsA), and enhanced the activities of superoxide dismutase, catalase, ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. Furthermore, gene expression of respiratory burst oxidase homolog1 and H 2 O 2 content were upregulated with ALA treatment under normal conditions. Treatment with exogenous H 2 O 2 , GSH, and AsA also induced plant tolerance to oxidative stress at low temperatures, while inhibition of GSH and AsA syntheses significantly decreased H 2 O 2 -induced oxidative stress tolerance. Meanwhile, scavenging or inhibition of H 2 O 2 production weakened, but did not eliminate, GSH- or AsA- induced tomato plant tolerance to oxidative stress at low temperatures. Appropriate concentrations of ALA alleviated the low temperature-induced oxidative stress in tomato plants via an antioxidant system. The most effective concentration was 25 mg·L - 1 . The results showed that H 2 O 2 induced by exogenous ALA under normal conditions is crucial and may be the initial step for perception and signaling transmission, which then improves the ratio of GSH and AsA. GSH and AsA may then interact with H 2 O 2 signaling, resulting in enhanced antioxidant capacity in tomato plants at low temperatures.
Li, Chuan; Zhang, Wei-Jian; Choi, Jaewoo; Frei, Balz
2016-10-01
Endothelial dysfunction due to vascular inflammation and oxidative stress critically contributes to the etiology of atherosclerosis. The intracellular redox environment plays a key role in regulating endothelial cell function and is intimately linked to cellular thiol status, including and foremost glutathione (GSH). In the present study we investigated whether and how the dietary flavonoid, quercetin, affects GSH status of human aortic endothelial cells (HAEC) and their response to oxidative stress. We found that treating cells with buthionine sulfoximine to deplete cellular GSH levels significantly reduced the capacity of quercetin to inhibit lipopolysaccharide (LPS)-induced oxidant production. Furthermore, incubation of HAEC with quercetin caused a transient decrease and then full recovery of cellular GSH concentrations. The initial decline in GSH was not accompanied by a corresponding increase in glutathione disulfide (GSSG). To the contrary, GSSG levels, which were less than 0.5% of GSH levels at baseline (0.26±0.01 vs. 64.7±1.9nmol/mg protein, respectively), decreased by about 25% during incubation with quercetin. As a result, the GSH: GSSG ratio increased by about 70%, from 253±7 to 372±23. These quercetin-induced changes in GSH and GSSG levels were not affected by treating HAEC with 500µM ascorbic acid phosphate for 24h to increase intracellular ascorbate levels. Incubation of HAEC with quercetin also led to the appearance of extracellular quercetin-glutathione conjugates, which was paralleled by upregulation of the multidrug resistance protein 1 (MRP1). Furthermore, quercetin slightly but significantly increased mRNA and protein levels of glutamate-cysteine ligase (GCL) catalytic and modifier subunits. Taken together, our results suggest that quercetin causes loss of GSH in HAEC, not because of oxidation but due to formation and cellular export of quercetin-glutathione conjugates. Induction by quercetin of GCL subsequently restores GSH levels, thereby suppressing LPS-induced oxidant production. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Infusion of Hibiscus sabdariffa L. Modulates Oxidative Stress in Patients with Marfan Syndrome.
Soto, María Elena; Zuñiga-Muñoz, Alejandra; Guarner Lans, Verónica; Duran-Hernández, Erendira Janet; Pérez-Torres, Israel
2016-01-01
Marfan syndrome (MFS) is associated with progressive aortic dilatation, endothelial dysfunction, and oxidative stress that contribute to the early acute dissection of the vessel and can end up in rupture of the aorta and sudden death. Many studies have described that the organic acids from Hibiscus sabdariffa Linne (HSL) calyces increase cellular antioxidant capacity and decrease oxidative stress. Here we evaluate if the antioxidant properties of HSL infusion improve oxidative stress in MFS patients. Activities of extra cellular super oxide dismutase (ECSOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GSSG-R), glutathione (GSH), lipid peroxidation (LPO) index, total antioxidant capacity (TAC), and ascorbic acid were determined in plasma from MFS patients. Values before and after 3 months of the treatment with 2% HSL infusion were compared in control and MFS subjects. After treatment, there was a significant decrease in ECSOD (p = 0.03), EGPx (p = 0.04), GST (p = 0.03), GSH (p = 0.01), and TAC and ascorbic acid (p = 0.02) but GSSG-R activity (p = 0.04) and LPO (p = 0.02) were increased in MFS patients in comparison to patients receiving the HSL treatment and C subjects. Therefore, the infusion of HSL calyces has antioxidant properties that allow an increase in antioxidant capacity of both the enzymatic and nonenzymatic systems, in the plasma of the MSF patients.
Infusion of Hibiscus sabdariffa L. Modulates Oxidative Stress in Patients with Marfan Syndrome
Soto, María Elena; Zuñiga-Muñoz, Alejandra; Guarner Lans, Verónica; Duran-Hernández, Erendira Janet; Pérez-Torres, Israel
2016-01-01
Marfan syndrome (MFS) is associated with progressive aortic dilatation, endothelial dysfunction, and oxidative stress that contribute to the early acute dissection of the vessel and can end up in rupture of the aorta and sudden death. Many studies have described that the organic acids from Hibiscus sabdariffa Linne (HSL) calyces increase cellular antioxidant capacity and decrease oxidative stress. Here we evaluate if the antioxidant properties of HSL infusion improve oxidative stress in MFS patients. Activities of extra cellular super oxide dismutase (ECSOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GSSG-R), glutathione (GSH), lipid peroxidation (LPO) index, total antioxidant capacity (TAC), and ascorbic acid were determined in plasma from MFS patients. Values before and after 3 months of the treatment with 2% HSL infusion were compared in control and MFS subjects. After treatment, there was a significant decrease in ECSOD (p = 0.03), EGPx (p = 0.04), GST (p = 0.03), GSH (p = 0.01), and TAC and ascorbic acid (p = 0.02) but GSSG-R activity (p = 0.04) and LPO (p = 0.02) were increased in MFS patients in comparison to patients receiving the HSL treatment and C subjects. Therefore, the infusion of HSL calyces has antioxidant properties that allow an increase in antioxidant capacity of both the enzymatic and nonenzymatic systems, in the plasma of the MSF patients. PMID:27413258
Arabidopsis thaliana dehydroascorbate reductase 2: Conformational flexibility during catalysis
NASA Astrophysics Data System (ADS)
Bodra, Nandita; Young, David; Astolfi Rosado, Leonardo; Pallo, Anna; Wahni, Khadija; de Proft, Frank; Huang, Jingjing; van Breusegem, Frank; Messens, Joris
2017-02-01
Dehydroascorbate reductase (DHAR) catalyzes the glutathione (GSH)-dependent reduction of dehydroascorbate and plays a direct role in regenerating ascorbic acid, an essential plant antioxidant vital for defense against oxidative stress. DHAR enzymes bear close structural homology to the glutathione transferase (GST) superfamily of enzymes and contain the same active site motif, but most GSTs do not exhibit DHAR activity. The presence of a cysteine at the active site is essential for the catalytic functioning of DHAR, as mutation of this cysteine abolishes the activity. Here we present the crystal structure of DHAR2 from Arabidopsis thaliana with GSH bound to the catalytic cysteine. This structure reveals localized conformational differences around the active site which distinguishes the GSH-bound DHAR2 structure from that of DHAR1. We also unraveled the enzymatic step in which DHAR releases oxidized glutathione (GSSG). To consolidate our structural and kinetic findings, we investigated potential conformational flexibility in DHAR2 by normal mode analysis and found that subdomain mobility could be linked to GSH binding or GSSG release.
Arabidopsis thaliana dehydroascorbate reductase 2: Conformational flexibility during catalysis
Bodra, Nandita; Young, David; Astolfi Rosado, Leonardo; Pallo, Anna; Wahni, Khadija; De Proft, Frank; Huang, Jingjing; Van Breusegem, Frank; Messens, Joris
2017-01-01
Dehydroascorbate reductase (DHAR) catalyzes the glutathione (GSH)-dependent reduction of dehydroascorbate and plays a direct role in regenerating ascorbic acid, an essential plant antioxidant vital for defense against oxidative stress. DHAR enzymes bear close structural homology to the glutathione transferase (GST) superfamily of enzymes and contain the same active site motif, but most GSTs do not exhibit DHAR activity. The presence of a cysteine at the active site is essential for the catalytic functioning of DHAR, as mutation of this cysteine abolishes the activity. Here we present the crystal structure of DHAR2 from Arabidopsis thaliana with GSH bound to the catalytic cysteine. This structure reveals localized conformational differences around the active site which distinguishes the GSH-bound DHAR2 structure from that of DHAR1. We also unraveled the enzymatic step in which DHAR releases oxidized glutathione (GSSG). To consolidate our structural and kinetic findings, we investigated potential conformational flexibility in DHAR2 by normal mode analysis and found that subdomain mobility could be linked to GSH binding or GSSG release. PMID:28195196
de Freitas-Silva, Larisse; Rodríguez-Ruiz, Marta; Houmani, Hayet; da Silva, Luzimar Campos; Palma, José M; Corpas, Francisco J
2017-11-01
Glyphosate is a broad-spectrum systemic herbicide used worldwide. In susceptible plants, glyphosate affects the shikimate pathway and reduces aromatic amino acid synthesis. Using Arabidopsis seedlings grown in the presence of 20μM glyphosate, we analyzed H 2 O 2 , ascorbate, glutathione (GSH) and protein oxidation content as well as antioxidant catalase, superoxide dismutase (SOD) and ascorbate-glutathione cycle enzyme activity. We also examined the principal NADPH-generating system components, including glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), NADP-malic enzyme (NADP-ME) and NADP-isocitrate dehydrogenase (NADP-ICDH). Glyphosate caused a drastic reduction in growth parameters and an increase in protein oxidation. The herbicide also resulted in an overall increase in GSH content, antioxidant enzyme activity (catalase and all enzymatic components of the ascorbate-glutathione cycle) in addition to the two oxidative phase enzymes, G6PDH and 6PGDH, in the pentose phosphate pathway involved in NADPH generation. In this study, we provide new evidence on the participation of G6PDH and 6PGDH in the response to oxidative stress induced by glyphosate in Arabidopsis, in which peroxisomal enzymes, such as catalase and glycolate oxidase, are positively affected. We suggest that the NADPH provided by the oxidative phase of the pentose phosphate pathway (OxPPP) should serve to maintain glutathione reductase (GR) activity, thus preserving and regenerating the intracellular GSH pool under glyphosate-induced stress. It is particularly remarkable that the 6PGDH activity was unaffected by pro-oxidant and nitrating molecules such as H 2 0 2 , nitric oxide or peroxynitrite. Copyright © 2017 Elsevier GmbH. All rights reserved.
Liu, Xudong; Zhang, Yuchao; Li, Jinquan; Wang, Dong; Wu, Yang; Li, Yan; Lu, Zhisong; Yu, Samuel CT; Li, Rui; Yang, Xu
2014-01-01
Single-walled carbon nanotubes (SWCNTs) have shown increasing promise in the field of biomedicine, especially in applications related to the nervous system. However, there are limited studies available on the neurotoxicity of SWCNTs used in vivo. In this study, neurobehavioral changes caused by SWCNTs in mice and oxidative stress were investigated. The results of ethological analysis (Morris water maze and open-field test), brain histopathological examination, and assessments of oxidative stress (reactive oxygen species [ROS], malondialdehyde [MDA], and glutathione [GSH]), inflammation (nuclear factor κB, tumor necrosis factor α, interleukin-1β), and apoptosis (cysteine-aspartic acid protease 3) in brains showed that 6.25 and 12.50 mg/kg/day SWCNTs in mice could induce cognitive deficits and decreased locomotor activity, brain histopathological alterations, and increased levels of oxidative stress, inflammation, and apoptosis in mouse brains; however, 3.125 mg/kg/day SWCNTs had zero or minor adverse effects in mice, and these effects were blocked by concurrent administration of ascorbic acid. Down-regulation of oxidative stress, inflammation, and apoptosis were proposed to explain the neuroprotective effects of ascorbic acid. This work suggests SWCNTs could induce cognitive deficits and decreased locomotor activity, and provides a strategy to avoid the adverse effects. PMID:24596461
Prasad, Sheo Mohan; Kumar, Sushil; Parihar, Parul; Singh, Rachana
2016-11-01
A field experiment was conducted to investigate the impact of alone and combined exposures of herbicide pretilachlor (5, 10 and 20μgml(-1)) and enhanced UV-B radiation (UV-B1; ambient +2.2kJm(-2) day(-1) and UV-B2; ambient +4.4kJm(-2) day(-1)) on growth, oxidative stress and the ascorbate-glutathione (AsA-GSH) cycle in two agronomically important Azolla spp. viz., Azolla microphylla and Azolla pinnata. Decreased relative growth rate (RGR) in both the species under tested stress could be linked to enhanced oxidative stress, thus higher H2O2 accumulation was observed, that in turn might have caused severe damage to lipids and proteins, thereby decreasing membrane stability. The effects were exacerbated when spp. were exposed to combined treatments of enhanced UV-B and pretilachlor. Detoxification of H2O2 is regulated by enzymes/metabolites of AsA-GSH cycle such as ascorbate peroxidase (APX) and glutathione reductase (GR) activity that were found to be stimulated. While, dehydroascorabte reductase (DHAR) activity, and the amount of metabolites: ascorbate (AsA), glutathione (GSH) and ratios of reduced/oxidized AsA (AsA/DHA) and GSH (GSH/GSSG), showed significant reduction with increasing doses of both the stressors, either applied alone or in combination. Glutathione-S-transferase (GST), an enzyme involved in scavenging of xenobiotics, was found to be stimulated under the tested stress. This study suggests that decline in DHAR activity and in AsA/DHA ratio might have led to enhanced H2O2 accumulation, thus decreased RGR was noticed under tested stress in both the species and the effect was more pronounced in A. pinnata. Owing to better performance of AsA-GSH cycle in A. microphylla, this study substantiates the view that A. microphylla is more tolerant than A. pinnata. Copyright © 2016 Elsevier Inc. All rights reserved.
Saruhan, Neslihan; Terzi, Rabiye; Saglam, Aykut; Kadioglu, Asim
2009-01-01
The ascorbate-glutathione (ASC-GSH) cycle has an important role in defensive processes against oxidative damage generated by drought stress. In this study, the changes that take place in apoplastic and symplastic ASC-GSH cycle enzymes of the leaf and petiole were investigated under drought stress causing leaf rolling in Ctenanthe setosa (Rose.) Eichler (Marantaceae). Apoplastic and symplastic extractions of leaf and petiole were performed at different visual leaf rolling scores from 1 to 4 (1 is unrolled, 4 is tightly rolled and the others are intermediate forms). Glutathione reductase (GR), a key enzyme in the GSH regeneration cycle, and ascorbate (ASC) were present in apoplastic spaces of the leaf and petiole, whereas dehydroascorbate reductase (DHAR), which uses glutathione as reductant, monodehydroascorbate reductase (MDHAR), which uses NAD(P)H as reductant, and glutathione were absent. GR, DHAR and MDHAR activities increased in the symplastic and apoplastic areas of the leaf. Apoplastic and symplastic ASC and dehydroascorbate (DHA), the oxidized form of ascorbate, rose at all scores except score 4 of symplastic ASC in the leaf. On the other hand, while reduced glutathione (GSH) content was enhanced, oxidized glutathione (GSSG) content decreased in the leaf during rolling. As for the petiole, GR activity increased in the apoplastic area but decreased in the symplastic area. DHAR and MDHAR activities increased throughout all scores, but decreased to the score 1 level at score 4. The ASC content of the apoplast increased during leaf rolling. Conversely, symplastic ASC content increased at score 2, however decreased at the later scores. While the apoplastic DHA content declined, symplastic DHA rose at score 2, but later was down to the level of score 1. While GSH content enhanced during leaf rolling, GSSG content did not change except at score 2. As well, there were good correlations between leaf rolling and ASC-GSH cycle enzyme activities in the leaf (GR and DHAR) and leaf rolling and GSSG. These results showed that in apoplastic and symplastic areas, ASC-GSH cycle enzymes leading ROS detoxification may have a role in controlling leaf rolling.
Emoto, Miho C; Matsuoka, Yuta; Yamada, Ken-Ichi; Sato-Akaba, Hideo; Fujii, Hirotada G
2017-04-15
Glutathione (GSH) is the most abundant non-protein thiol that buffers reactive oxygen species in the brain. GSH does not reduce nitroxides directly, but in the presence of ascorbates, addition of GSH increases ascorbate-induced reduction of nitroxides. In this study, we used electron paramagnetic resonance (EPR) imaging and the nitroxide imaging probe, 3-methoxycarbonyl-2,2,5,5-tetramethyl-piperidine-1-oxyl (MCP), to non-invasively obtain spatially resolved redox data from mouse brains depleted of GSH with diethyl maleate compared to control. Based on the pharmacokinetics of the reduction reaction of MCP in the mouse heads, the pixel-based rate constant of its reduction reaction was calculated as an index of the redox status in vivo and mapped as a "redox map". The obtained redox maps from control and GSH-depleted mouse brains showed a clear change in the brain redox status, which was due to the decreased levels of GSH in brains as measured by a biochemical assay. We observed a linear relationship between the reduction rate constant of MCP and the level of GSH for both control and GSH-depleted mouse brains. Using this relationship, the GSH level in the brain can be estimated from the redox map obtained with EPR imaging. Copyright © 2017 Elsevier Inc. All rights reserved.
Antioxidant status in delayed healing type of wounds
Rasik, Anamika M; Shukla, Arti
2000-01-01
This investigation studied the contribution of antioxidants in delaying healing in excision cutaneous wounds (8 mm) in diabetic, aged and immunocompromised animals. Skin levels of catalase, glutathione (GSH), ascorbic acid (AA) and vitamin E in streptozotocin-induced diabetic rat were lower as compared to nondiabetics. The 7-d wound tissue of diabetic rats showed an increased vitamin E level along with depleted GSH content. In aged rats (18 months old), higher levels of skin superoxide dismutase (SOD), glutathione peroxidase (Gpx) and thiobarbituric acid reactive substances (TBARS) and lower levels of catalase and GSH were found as compared to their values in young rats (3–4 months old). The levels of SOD, GPx, catalase, AA, GSH and vitamin E in 7-d wound tissue of aged rats were significantly lower in comparison to those in young rats. However, TBARS were elevated in these wound tissues. The non-wounded skin of immunocompromised (athymic) mice showed lower levels of SOD, catalase, and TBARS and higher GSH and GPx levels in comparison to those present in normal mouse skin. Surprisingly, the analysis of 7-d wound tissue showed higher levels of SOD, catalase, GPx, and GSH and lower TBARS level in athymic mice compared to the wound tissue of normal mice. Thus low levels of antioxidants accompanied by raised levels of markers of free radical damage play a significant role in delaying wound healing in aged rats. In diabetic rats reduced glutathione levels may have a contributory role in delaying the healing process. However, in immunocompromised mice the antioxidant status following injury showed an adapted response. PMID:10971747
Delwing-de Lima, Daniela; Fröhlich, Monique; Dalmedico, Leticia; Aurélio, Juliana Gruenwaldt Maia; Delwing-Dal Magro, Débora; Pereira, Eduardo Manoel; Wyse, Angela T S
2017-04-01
We evaluated the in vitro effects of galactose at 0.1, 3.0, 5.0 and 10.0 mM on thiobarbituric acid-reactive substances (TBA-RS), total sulfhydryl content, protein carbonyl content, on the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and on acetylcholinesterase (AChE) activity in the cerebral cortex, cerebellum and hippocampus of rats. We also investigated the influence of the antioxidants (each at 1 mM), α-tocopherol, ascorbic acid and glutathione, on the effects elicited by galactose on the parameters tested. Results showed that galactose, at a concentration of 3.0 mM, enhanced TBA-RS levels in the hippocampus, cerebral cortex and cerebellum of rats. In the cerebral cortex, galactose at concentrations of 5.0 and 10.0 mM increased TBA-RS and protein carbonyl content, and at 10.0 mM increased CAT activity and decreased AChE activity. In the cerebellum, galactose at concentrations of 5.0 and 10.0 mM increased TBA-RS, SOD and GSH-Px activities. In the hippocampus, galactose at concentrations of 5.0 and 10.0 mM increased TBA-RS and CAT activity and at 10.0 mM decreased GSH-Px. Data showed that at the pathologically high concentration (greater than 5.0 mM), galactose induces lipid peroxidation, protein carbonylation, alters antioxidant defenses in the cerebrum, and also alters cholinesterase activity. Trolox, ascorbic acid and glutathione addition prevented the majority of alterations in oxidative stress parameters and the decrease in AChE activity that were caused by galactose. Our findings lend support to a potential therapeutic strategy for this condition, which may include the use of appropriate antioxidants for ameliorating the damage caused by galactose.
Bito, Tomohiro; Misaki, Taihei; Yabuta, Yukinori; Ishikawa, Takahiro; Kawano, Tsuyoshi; Watanabe, Fumio
2017-04-01
Oxidative stress is implicated in various human diseases and conditions, such as a neurodegeneration, which is the major symptom of vitamin B 12 deficiency, although the underlying disease mechanisms associated with vitamin B 12 deficiency are poorly understood. Vitamin B 12 deficiency was found to significantly increase cellular H 2 O 2 and NO content in Caenorhabditis elegans and significantly decrease low molecular antioxidant [reduced glutathione (GSH) and L-ascorbic acid] levels and antioxidant enzyme (superoxide dismutase and catalase) activities, indicating that vitamin B 12 deficiency induces severe oxidative stress leading to oxidative damage of various cellular components in worms. An NaCl chemotaxis associative learning assay indicated that vitamin B 12 deficiency did not affect learning ability but impaired memory retention ability, which decreased to approximately 58% of the control value. When worms were treated with 1mmol/L GSH, L-ascorbic acid, or vitamin E for three generations during vitamin B 12 deficiency, cellular malondialdehyde content as an index of oxidative stress decreased to the control level, but the impairment of memory retention ability was not completely reversed (up to approximately 50%). These results suggest that memory retention impairment formed during vitamin B 12 deficiency is partially attributable to oxidative stress. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emoto, Miho C.; Department of Neurology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556; Matsuoka, Yuta
Glutathione (GSH) is the most abundant non-protein thiol that buffers reactive oxygen species in the brain. GSH does not reduce nitroxides directly, but in the presence of ascorbates, addition of GSH increases ascorbate-induced reduction of nitroxides. In this study, we used electron paramagnetic resonance (EPR) imaging and the nitroxide imaging probe, 3-methoxycarbonyl-2,2,5,5-tetramethyl-piperidine-1-oxyl (MCP), to non-invasively obtain spatially resolved redox data from mouse brains depleted of GSH with diethyl maleate compared to control. Based on the pharmacokinetics of the reduction reaction of MCP in the mouse heads, the pixel-based rate constant of its reduction reaction was calculated as an index ofmore » the redox status in vivo and mapped as a “redox map”. The obtained redox maps from control and GSH-depleted mouse brains showed a clear change in the brain redox status, which was due to the decreased levels of GSH in brains as measured by a biochemical assay. We observed a linear relationship between the reduction rate constant of MCP and the level of GSH for both control and GSH-depleted mouse brains. Using this relationship, the GSH level in the brain can be estimated from the redox map obtained with EPR imaging. - Highlights: • Redox status of glutathione-depleted mouse brain was examined with EPR imaging. • Redox status of mouse brain changed depending on glutathione (GSH) levels in brains. • Linear relationship between GSH levels and redox status in brains was found. • Using this relation, estimation of GSH levels in brains is possible from EPR images.« less
Biochemical basis of 4-hydroxyanisole induced cell toxicity towards B16-F0 melanoma cells.
Moridani, Majid Y
2006-11-18
In the current work we investigated for the first time the biochemical basis of 4-hydroxyanisole (4-HA) induced toxicity in B16-F0 melanoma cells. It was found that dicoumarol, a diaphorase inhibitor, and 1-bromoheptane, a GSH depleting agent, increased 4-HA induced toxicity towards B16-F0 cells whereas dithiothreitol, a thiol containing agent, and ascorbic acid (AA), a reducing agent, largely prevented 4-HA toxicity. TEMPOL and pyrogallol, free radical scavengers, did not significantly prevent 4-HA toxicity towards B16-F0 cells. GSH>AA>NADH prevented the o-quinone formation when 4-HA was metabolized by tyrosinase/O(2). 4-HA metabolism by horseradish peroxidase/H(2)O(2) was prevented more effectively by AA than NADH>GSH. We therefore concluded that quinone formation was the major pathway for 4-HA induced toxicity in B16-F0 melanoma cells whereas free radical formation played a negligible role in the 4-HA induced toxicity.
Cassia, Raúl; Nocioni, Macarena; Correa-Aragunde, Natalia; Lamattina, Lorenzo
2018-01-01
Here, we review information on how plants face redox imbalance caused by climate change, and focus on the role of nitric oxide (NO) in this response. Life on Earth is possible thanks to greenhouse effect. Without it, temperature on Earth's surface would be around -19°C, instead of the current average of 14°C. Greenhouse effect is produced by greenhouse gasses (GHG) like water vapor, carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxides (N x O) and ozone (O 3 ). GHG have natural and anthropogenic origin. However, increasing GHG provokes extreme climate changes such as floods, droughts and heat, which induce reactive oxygen species (ROS) and oxidative stress in plants. The main sources of ROS in stress conditions are: augmented photorespiration, NADPH oxidase (NOX) activity, β-oxidation of fatty acids and disorders in the electron transport chains of mitochondria and chloroplasts. Plants have developed an antioxidant machinery that includes the activity of ROS detoxifying enzymes [e.g., superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione peroxidase (GPX), and peroxiredoxin (PRX)], as well as antioxidant molecules such as ascorbic acid (ASC) and glutathione (GSH) that are present in almost all subcellular compartments. CO 2 and NO help to maintain the redox equilibrium. Higher CO 2 concentrations increase the photosynthesis through the CO 2 -unsaturated Rubisco activity. But Rubisco photorespiration and NOX activities could also augment ROS production. NO regulate the ROS concentration preserving balance among ROS, GSH, GSNO, and ASC. When ROS are in huge concentration, NO induces transcription and activity of SOD, APX, and CAT. However, when ROS are necessary (e.g., for pathogen resistance), NO may inhibit APX, CAT, and NOX activity by the S-nitrosylation of cysteine residues, favoring cell death. NO also regulates GSH concentration in several ways. NO may react with GSH to form GSNO, the NO cell reservoir and main source of S-nitrosylation. GSNO could be decomposed by the GSNO reductase (GSNOR) to GSSG which, in turn, is reduced to GSH by glutathione reductase (GR). GSNOR may be also inhibited by S-nitrosylation and GR activated by NO. In conclusion, NO plays a central role in the tolerance of plants to climate change.
Cassia, Raúl; Nocioni, Macarena; Correa-Aragunde, Natalia; Lamattina, Lorenzo
2018-01-01
Here, we review information on how plants face redox imbalance caused by climate change, and focus on the role of nitric oxide (NO) in this response. Life on Earth is possible thanks to greenhouse effect. Without it, temperature on Earth’s surface would be around -19°C, instead of the current average of 14°C. Greenhouse effect is produced by greenhouse gasses (GHG) like water vapor, carbon dioxide (CO2), methane (CH4), nitrous oxides (NxO) and ozone (O3). GHG have natural and anthropogenic origin. However, increasing GHG provokes extreme climate changes such as floods, droughts and heat, which induce reactive oxygen species (ROS) and oxidative stress in plants. The main sources of ROS in stress conditions are: augmented photorespiration, NADPH oxidase (NOX) activity, β-oxidation of fatty acids and disorders in the electron transport chains of mitochondria and chloroplasts. Plants have developed an antioxidant machinery that includes the activity of ROS detoxifying enzymes [e.g., superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione peroxidase (GPX), and peroxiredoxin (PRX)], as well as antioxidant molecules such as ascorbic acid (ASC) and glutathione (GSH) that are present in almost all subcellular compartments. CO2 and NO help to maintain the redox equilibrium. Higher CO2 concentrations increase the photosynthesis through the CO2-unsaturated Rubisco activity. But Rubisco photorespiration and NOX activities could also augment ROS production. NO regulate the ROS concentration preserving balance among ROS, GSH, GSNO, and ASC. When ROS are in huge concentration, NO induces transcription and activity of SOD, APX, and CAT. However, when ROS are necessary (e.g., for pathogen resistance), NO may inhibit APX, CAT, and NOX activity by the S-nitrosylation of cysteine residues, favoring cell death. NO also regulates GSH concentration in several ways. NO may react with GSH to form GSNO, the NO cell reservoir and main source of S-nitrosylation. GSNO could be decomposed by the GSNO reductase (GSNOR) to GSSG which, in turn, is reduced to GSH by glutathione reductase (GR). GSNOR may be also inhibited by S-nitrosylation and GR activated by NO. In conclusion, NO plays a central role in the tolerance of plants to climate change. PMID:29545820
Sun, Chengliang; Liu, Lijuan; Yu, Yan; Liu, Wenjing; Lu, Lingli; Jin, Chongwei; Lin, Xianyong
2015-06-01
The possible association with nitric oxide (NO) and ascorbate-glutathione (AsA-GSH) cycle in regulating aluminum (Al) tolerance of wheat (Triticum aestivum L.) was investigated using two genotypes with different Al resistance. Exposure to Al inhibited root elongation, and triggered lipid peroxidation and oxidation of AsA to dehydroascorbate and GSH to glutathione disulfide in wheat roots. Exogenous NO significantly increased endogenous NO levels, and subsequently alleviated Al-induced inhibition of root elongation and oxidation of AsA and GSH to maintain the redox molecules in the reduced form in both wheat genotypes. Under Al stress, significantly increased activities and gene transcriptional levels of ascorbate peroxidase, glutathione reductase, and dehydroascorbate reductase, were observed in the root tips of the Al-tolerant genotype Jian-864. Nitric oxide application enhanced the activity and gene transcriptional level of these enzymes in both wheat genotypes. γ-Glutamylcysteine synthetase was not significantly affected by Al or NO, but NO treatments increased the activity of glutathione peroxidase and glutathione S-transferase to a greater extent than the Al-treated wheat seedlings. Proline was significantly decreased by Al, while it was not affected by NO. These results clearly suggest that NO protects wheat root against Al-induced oxidative stress, possibly through its regulation of the AsA-GSH cycle. © 2014 Institute of Botany, Chinese Academy of Sciences.
Mane, Shirish D; Kamatham, Akhilender Naidu
2018-02-01
Ascorbyl stearate (Asc-s) is a derivative of ascorbic acid with better anti-tumour efficacy compared to its parent compound ascorbic acid. In this study, we have examined radio-sensitizing effect of Asc-s in murine T cell lymphoma (EL4) cells at 4 Gy. Asc-s and radiation treatment reduced cell proliferation, induced apoptosis in a dose dependent manner by arresting the cells at S/G2-M phase of cell cycle. It also decreased the frequency of cancer stem cells per se, with significantly higher decrease in combination with radiation treatment./Further, Asc-s and radiation treatment increased the level of reactive oxygen species (ROS), drop in mitochondrial membrane potential (MMP) and increased caspase-3 activity resulting in apoptosis of EL4 cells. Further it also significantly decreased GSH/GSSG ratio due to binding of Asc-s with thiols. The increase in oxidative stress induced by Asc-s and radiation treatment was abrogated by thiol antioxidants in EL4 cells. Interestingly, this redox modulation triggered significant increase in protein glutathionylation in a time dependent manner. Asc-s treatment resulted in glutathionylation of IKK, p50-NF-kB and mutated p53, thereby inhibiting cancer progression during oxidative stress. Asc-s quenches GSH ensuing Asc-s + GSH adduct thereby further modulating GSH/GSSG ratio as evident from HPLC and docking studies. The anti-tumour effect of Asc-s along with radiation was studied by injecting EL4 cells in synegenicC57/BL6 male mice. Intraperitoneal injection of Asc-s followed by radiation exposure at 4 Gy to the tumour bearing mice resulted in radio-sensitization which is evident from significant regression of tumour as evident from tumour burden index. The survival study supports the data that Asc-s pre-treatment enhances radio-sensitization in murine lymphoma. Our data, suggest that Asc-s and ionizing radiation induced cell cycle arrest and apoptosis by perturbing redox balance through irreversible complexes of thiols with Asc-s, disturbed mitochondrial membrane permeability and activation of caspase-3 in EL4 cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of cigarette smoke on salivary proteins and enzyme activities.
Nagler, R; Lischinsky, S; Diamond, E; Drigues, N; Klein, I; Reznick, A Z
2000-07-15
Exposure of human plasma in vitro to gas-phase cigarette smoke (CS) causes a marked modification of plasma proteins as measured by protein carbonyl assay. Aldehydes present in CS may cause this elevation of protein carbonyls by reacting with sulfhydryl groups of proteins. Saliva is the first body fluid to confront the inhaled CS. Thus, in vitro exposure of saliva to nine "puffs" of CS also showed a distinct increase in protein carbonyls. Ascorbate and desferrioxamine mesylate had little effect on protein carbonyl formation, while GSH and N-acetylcysteine considerably inhibited the accumulation of protein carbonyls due to CS exposure. Following the exposure to CS, the activities of several salivary enzymes-amylase, lactic dehydrogenase (LDH), and acid phosphatase-were found to be significantly reduced (34, 57, and 77%, respectively). However, CS had no effect on the activities of aspartate aminotransferase and alkaline phosphatase. Addition of 1 mM of GSH and N-acetylcysteine considerably protected LDH and amylase activities, suggesting that sulfhydryl groups are affected in LDH and amylase. On the other hand, addition of 1 mM ascorbate caused a further loss of LDH and amylase activities, which could be partially prevented by the addition of desferrioxamine mesylate, implicating metal-catalyzed oxidation processes. Finally, loss of acid phosphatase activity was completely unaffected by any of the above antioxidants. It is concluded that the loss of salivary enzyme activities may be due to various agents in the CS that affect the enzyme activities via different mechanisms. Copyright 2000 Academic Press.
Mucuna pruriens Reduces Stress and Improves the Quality of Semen in Infertile Men
Shukla, Kamla Kant; Ahmad, Mohammad Kaleem; Jaiswar, Shyam Pyari; Shankwar, Satya Narain; Tiwari, Sarvada Chandra
2010-01-01
The present investigation was undertaken to assess the role of Mucuna pruriens in infertile men who were under psychological stress. Study included 60 subjects who were undergoing infertility screening and were found to be suffering from psychological stress, assessed on the basis of a questionnaire and elevated serum cortisol levels. Age-matched 60 healthy men having normal semen parameters and who had previously initiated at least one pregnancy were included as controls. Infertile subjects were administered with M. pruriens seed powder (5 g day−1) orally. For carrying out morphological and biochemical analysis, semen samples were collected twice, first before starting treatment and second after 3 months of treatment. The results demonstrated decreased sperm count and motility in subjects who were under psychological stress. Moreover, serum cortisol and seminal plasma lipid peroxide levels were also found elevated along with decreased seminal plasma glutathione (GSH) and ascorbic acid contents and reduced superoxide dismutase (SOD) and catalase activity. Treatment with M. pruriens significantly ameliorated psychological stress and seminal plasma lipid peroxide levels along with improved sperm count and motility. Treatment also restored the levels of SOD, catalase, GSH and ascorbic acid in seminal plasma of infertile men. On the basis of results of the present study, it may be concluded that M. pruriens not only reactivates the anti-oxidant defense system of infertile men but it also helps in the management of stress and improves semen quality. PMID:18955292
Mucuna pruriens Reduces Stress and Improves the Quality of Semen in Infertile Men.
Shukla, Kamla Kant; Mahdi, Abbas Ali; Ahmad, Mohammad Kaleem; Jaiswar, Shyam Pyari; Shankwar, Satya Narain; Tiwari, Sarvada Chandra
2010-03-01
The present investigation was undertaken to assess the role of Mucuna pruriens in infertile men who were under psychological stress. Study included 60 subjects who were undergoing infertility screening and were found to be suffering from psychological stress, assessed on the basis of a questionnaire and elevated serum cortisol levels. Age-matched 60 healthy men having normal semen parameters and who had previously initiated at least one pregnancy were included as controls. Infertile subjects were administered with M. pruriens seed powder (5 g day(-1)) orally. For carrying out morphological and biochemical analysis, semen samples were collected twice, first before starting treatment and second after 3 months of treatment. The results demonstrated decreased sperm count and motility in subjects who were under psychological stress. Moreover, serum cortisol and seminal plasma lipid peroxide levels were also found elevated along with decreased seminal plasma glutathione (GSH) and ascorbic acid contents and reduced superoxide dismutase (SOD) and catalase activity. Treatment with M. pruriens significantly ameliorated psychological stress and seminal plasma lipid peroxide levels along with improved sperm count and motility. Treatment also restored the levels of SOD, catalase, GSH and ascorbic acid in seminal plasma of infertile men. On the basis of results of the present study, it may be concluded that M. pruriens not only reactivates the anti-oxidant defense system of infertile men but it also helps in the management of stress and improves semen quality.
Deelchand, Dinesh K; Marjańska, Małgorzata; Hodges, James S; Terpstra, Melissa
2016-05-01
Although the MR editing techniques that have traditionally been used for the measurement of glutathione (GSH) concentrations in vivo address the problem of spectral overlap, they suffer detriments associated with inherently long TEs. The purpose of this study was to characterize the sensitivity and specificity for the quantification of GSH concentrations without editing at short TE. The approach was to measure synthetically generated changes in GSH concentrations from in vivo stimulated echo acquisition mode (STEAM) spectra after in vitro GSH spectra had been added to or subtracted from them. Spectra from five test subjects were synthetically altered to mimic changes in the GSH signal. To account for different background noise between measurements, retest spectra (from the same individuals as used to generate the altered data) and spectra from five other individuals were compared with the synthetically altered spectra to investigate the reliability of the quantification of GSH concentration. Using STEAM spectroscopy at 7 T, GSH concentration differences on the order of 20% were detected between test and retest studies, as well as between differing populations in a small sample (n = 5) with high accuracy (R(2) > 0.99) and certainty (p ≤ 0.01). Both increases and decreases in GSH concentration were reliably quantified with small impact on the quantification of ascorbate and γ-aminobutyric acid. These results show the feasibility of using short-TE (1)H MRS to measure biologically relevant changes and differences in human brain GSH concentration. Although these outcomes are specific to the experimental approach used and the spectral quality achieved, this study serves as a template for the analogous scrutiny of quantification reliability for other compounds, methodologies and spectral qualities. Copyright © 2016 John Wiley & Sons, Ltd.
Kolaviron and L-Ascorbic Acid Attenuate Chlorambucil-Induced Testicular Oxidative Stress in Rats
2014-01-01
Chlorambucil (4-[4-[bis(2-chloroethyl)amino]phenyl]butanoic acid) is an alkylating agent, indicated in chronic lymphocytic leukaemia. Kolaviron (KV), a biflavonoid complex from Garcinia kola, and L-ascorbic acid (AA) are known to protect against oxidative damage in vivo. This study evaluates the protective capacity of KV and AA on chlorambucil-induced oxidative stress in the testes of rat. Twenty male Wistar rats (180–200 g) were randomized into four groups: I: control, II: chlorambucil (0.2 mg/kg b.w.), III: 0.2 mg/kg chlorambucil and 100 mg/kg KV, and IV: 0.2 mg/kg chlorambucil and 100 mg/kg AA. After 14 days of treatments, results indicated that chlorambucil caused significant reduction (P < 0.05) in testicular vitamin C and glutathione by 32% and 39%, respectively, relative to control. Similarly, activities of testicular GST, SOD, and CAT reduced significantly by 48%, 47%, and 49%, respectively, in chlorambucil-treated rats relative to control. Testicular MDA and activities of ALP, LDH, and ACP were increased significantly by 53%, 51%, 64%, and 70%, respectively, in the chlorambucil-treated rat. However, cotreatment with KV and AA offered protection and restored the levels of vitamin C, GSH, and MDA as well as SOD, CAT, GST, ACP, ALP, and LDH activities. Overall, kolaviron and L-ascorbic acid protected against chlorambucil-induced damage in the testes of the rat. PMID:25309592
2-Bromo-1,4-naphthoquinone: a potentially improved substitute of menadione in Apatone™ therapy
Graciani, F.S.; Ximenes, V.F.
2012-01-01
Apatone™, a combination of menadione (2-methyl-1,4-naphthoquinone, VK3) and ascorbic acid (vitamin C, VC) is a new strategy for cancer treatment. Part of its effect on tumor cells is related to the cellular pro-oxidative imbalance provoked by the generation of hydrogen peroxide (H2O2) through naphthoquinone redox cycling. In this study, we attempted to find new naphthoquinone derivatives that would increase the efficiency of H2O2 production, thereby potentially increasing its efficacy for cancer treatment. The presence of an electron-withdrawing group in the naphthoquinone moiety had a direct effect on the efficiency of H2O2 production. The compound 2-bromo-1,4-naphthoquinone (BrQ), in which the bromine atom substituted the methyl group in VK3, was approximately 10- and 19-fold more efficient than VK3 in terms of oxygen consumption and H2O2 production, respectively. The ratio [H2O2]produced / [naphthoquinone]consumed was 68 ± 11 and 5.8 ± 0.2 (µM/µM) for BrQ and VK3, respectively, indicating a higher efficacy of BrQ as a catalyst for the autoxidation of ascorbic acid. Both VK3 and BrQ reacted with glutathione (GSH), but BrQ was the more effective substrate. Part of GSH was incorporated into the naphthoquinone, producing a nucleophilic substitution product (Q-SG). The depletion of BrQ by GSH did not prevent its redox capacity since Q-SG was also able to catalyze the production of reactive oxygen species. VK3/VC has already been submitted to clinical trials for the treatment of prostate cancer and has demonstrated promising results. However, replacement of VK3 with BrQ will open new lines of investigation regarding this approach to cancer treatment. PMID:22584645
Effect of antioxidants on vanadate-induced toxicity towards isolated perfused rat livers.
Younes, M; Kayser, E; Strubelt, O
1991-01-01
The effect of trolox C, a water soluble vitamin E analogue, propyl gallate and ascorbate on vanadate hepatotoxicity was investigated in vitro. In isolated perfused livers from fasted rats, sodium orthovanadate (2 mmol/l) led to toxic responses including reduction of oxygen consumption, release of cytosolic (glutamate-pyruvate-transaminase (GPT) and lactate dehydrogenase (LDH)) and mitochondrial (glutamate-dehydrogenase (GLDH)) enzymes, intracellular accumulation of calcium, a marked depletion of glutathione (GSH) and an enhanced formation and release of thiobarbituric acid- (TBA) reactive material. Trolox C and propyl gallate inhibited the release of GPT and LDH partially and that of GLDH totally, but had no influence on vanadate-induced calcium accumulation or on the reduction of oxygen consumption. Both agents suppressed vanadate-induced lipid peroxidation (LPO) and partially prevented GSH depletion. Ascorbate failed to provide any protection probably due to the interference of its pro-oxidant potential with its antioxidant activity. The protection, mainly of mitochondria, afforded by those agents which also inhibited LPO substantiates our previous findings that the pro-oxidant activity of vanadate is mainly responsible for its direct hepatotoxic actions [2]. Besides, reduction of organ perfusion rate due to vasoconstriction also contributes to vanadate toxicity, but oxidative stress is not involved in this indirect toxic activity.
Reduction of protein radicals by GSH and ascorbate: potential biological significance.
Gebicki, Janusz M; Nauser, Thomas; Domazou, Anastasia; Steinmann, Daniel; Bounds, Patricia L; Koppenol, Willem H
2010-11-01
The oxidation of proteins and other macromolecules by radical species under conditions of oxidative stress can be modulated by antioxidant compounds. Decreased levels of the antioxidants glutathione and ascorbate have been documented in oxidative stress-related diseases. A radical generated on the surface of a protein can: (1) be immediately and fully repaired by direct reaction with an antioxidant; (2) react with dioxygen to form the corresponding peroxyl radical; or (3) undergo intramolecular long range electron transfer to relocate the free electron to another amino acid residue. In pulse radiolysis studies, in vitro production of the initial radical on a protein is conveniently made at a tryptophan residue, and electron transfer often leads ultimately to residence of the unpaired electron on a tyrosine residue. We review here the kinetics data for reactions of the antioxidants glutathione, selenocysteine, and ascorbate with tryptophanyl and tyrosyl radicals as free amino acids in model compounds and proteins. Glutathione repairs a tryptophanyl radical in lysozyme with a rate constant of (1.05±0.05)×10(5) M(-1) s(-1), while ascorbate repairs tryptophanyl and tyrosyl radicals ca. 3 orders of magnitude faster. The in vitro reaction of glutathione with these radicals is too slow to prevent formation of peroxyl radicals, which become reduced by glutathione to hydroperoxides; the resulting glutathione thiyl radical is capable of further radical generation by hydrogen abstraction. Although physiologically not significant, selenoglutathione reduces tyrosyl radicals as fast as ascorbate. The reaction of protein radicals formed on insulin, β-lactoglobulin, pepsin, chymotrypsin and bovine serum albumin with ascorbate is relatively rapid, competes with the reaction with dioxygen, and the relatively innocuous ascorbyl radical is formed. On the basis of these kinetics data, we suggest that reductive repair of protein radicals may contribute to the well-documented depletion of ascorbate in living organisms subjected to oxidative stress.
Oxidants, antioxidants, and respiratory tract lining fluids.
Cross, C E; van der Vliet, A; O'Neill, C A; Louie, S; Halliwell, B
1994-01-01
Respiratory tract lining fluids (RTLFs) are a heterogeneous group of substances covering the respiratory tract epithelial cells (RTECs) from nasal mucosa to alveoli. Antioxidant contained in the RTLFs can be expected to provide an initial defense against inhaled environmental toxins. The major antioxidants in RTLF include mucin, uric acid, protein (largely albumin), ascorbic acid, and reduced glutathione (GSH). RTLF antioxidants can be augmented by such processes as transudation/exudation of plasma constituents; RTEC secretory processes, including glandular mucus secretion; and cellular antioxidants derived from lysis of RTECs and of inflammatory cells. The antioxidant composition of RTLFs and their role in modulating normal and pathophysiologic RTEC functions under conditions of oxidative stress are yet to be fully characterized. PMID:7705296
González, Alberto; Moenne, Fabiola; Gómez, Melissa; Sáez, Claudio A; Contreras, Rodrigo A; Moenne, Alejandra
2014-01-01
In order to analyze the effect of OC kappa in redox status, photosynthesis, basal metabolism and growth in Eucalyptus globulus, trees were treated with water (control), with OC kappa at 1 mg mL(-1), or treated with inhibitors of NAD(P)H, ascorbate (ASC), and glutathione (GSH) syntheses and thioredoxin reductase (TRR) activity, CHS-828, lycorine, buthionine sulfoximine (BSO), and auranofin, respectively, and with OC kappa, and cultivated for 4 months. Treatment with OC kappa induced an increase in NADPH, ASC, and GSH syntheses, TRR and thioredoxin (TRX) activities, photosynthesis, growth and activities of basal metabolism enzymes such as rubisco, glutamine synthetase (GlnS), adenosine 5'-phosphosulfate reductase (APR), involved in C, N, and S assimilation, respectively, Krebs cycle and purine/pyrimidine synthesis enzymes. Treatment with inhibitors and OC kappa showed that increases in ASC, GSH, and TRR/TRX enhanced NADPH synthesis, increases in NADPH and TRR/TRX enhanced ASC and GSH syntheses, and only the increase in NADPH enhanced TRR/TRX activities. In addition, the increase in NADPH, ASC, GSH, and TRR/TRX enhanced photosynthesis and growth. Moreover, the increase in NADPH, ASC and TRR/TRX enhanced activities of rubisco, Krebs cycle, and purine/pyrimidine synthesis enzymes, the increase in GSH, NADPH, and TRR/TRX enhanced APR activity, and the increase in NADPH and TRR/TRX enhanced GlnS activity. Thus, OC kappa increases NADPH, ASC, and GSH syntheses leading to a more reducing redox status, the increase in NADPH, ASC, GSH syntheses, and TRR/TRX activities are cross-talking events leading to activation of photosynthesis, basal metabolism, and growth in Eucalyptus trees.
Gumieniczek, Anna; Owczarek, Beata; Pawlikowska, Bernadeta
2012-01-01
The present study was undertaken to determine oxidative/nitrosative stress in aqueous humor of alloxan-induced hyperglycemic rabbits and to investigate the effects of two oral antidiabetic drugs, pioglitazone from peroxisome proliferator-activated receptor gamma (PPARγ) agonists and repaglinide from nonsulfonylurea KATP channel blockers. Ascorbic acid (AA), glutathione (GSH), total antioxidant status (TAS), lipid peroxidation products (LPO), total nitrites (NO2), advanced oxidized protein products (AOPP), and protein carbonyl groups (PCG) were determined using respective colorimetric and ELISA methods. In our hyperglycemic animals, AA decreased by 77%, GSH by 45%, and TAS by 66% as compared to control animals. Simultaneously, LPO increased by 78%, PCG by 60%, AOPP by 84%, and NO2 by 70%. In pioglitazone-treated animals, AA and TAS increased above control values while GSH and PCG were normalized. In turn, LPO was reduced by 54%, AOPP by 84%, and NO2 by 24%, in relation to hyperglycemic rabbits. With repaglinide, AA and TAS were normalized, GSH increased by 20%, while LPO decreased by 45%. Our results show that pioglitazone and repaglinide differ significantly in their ability to ameliorate the parameters like NO2, PCG, and AOPP. In this area, the multimodal action of pioglitazone as PPARγ agonist is probably essential. PMID:22474428
Han, Yi; Chaouch, Sejir; Mhamdi, Amna; Queval, Guillaume; Zechmann, Bernd
2013-01-01
Abstract Aims: Through its interaction with H2O2, glutathione is a candidate for transmission of signals in plant responses to pathogens, but identification of signaling roles is complicated by its antioxidant function. Using a genetic approach based on a conditional catalase-deficient Arabidopsis mutant, cat2, this study aimed at establishing whether GSH plays an important functional role in the transmission of signals downstream of H2O2. Results: Introducing the cad2 or allelic mutations in the glutathione synthesis pathway into cat2 blocked H2O2-triggered GSH oxidation and accumulation. While no effects on NADP(H) or ascorbate were observed, and H2O2-induced decreases in growth were maintained, blocking GSH modulation antagonized salicylic acid (SA) accumulation and SA-dependent responses. Other novel double and triple mutants were produced and compared with cat2 cad2 at the levels of phenotype, expression of marker genes, nontargeted metabolite profiling, accumulation of SA, and bacterial resistance. Most of the effects of the cad2 mutation on H2O2-triggered responses were distinct from those produced by mutations for GLUTATHIONE REDUCTASE1 (GR1) or NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), and were linked to compromised induction of ISOCHORISMATE SYNTHASE1 (ICS1) and ICS1-dependent SA accumulation. Innovation: A novel genetic approach was used in which GSH content or antioxidative capacity was independently modified in an H2O2 signaling background. Analysis of new double and triple mutants allowed us to infer previously undescribed regulatory roles for GSH. Conclusion: In parallel to its antioxidant role, GSH acts independently of NPR1 to allow increased intracellular H2O2 to activate SA signaling, a key defense response in plants. Antioxid. Redox Signal. 18, 2106–2121. PMID:23148658
Abdel-Daim, Mohamed M; Ghazy, Emad W; Fayez, Mostafa
2015-01-01
Tilmicosin (TIL) is a long-acting macrolide antibiotic approved for the treatment of cattle with Bovine Respiratory Disease. However, overdose of TIL has been reported to induce cardiotoxicity. The purpose of our experiment was to evaluate the protective effects of Commiphora molmol (mirazid (MRZ); myrrh) and (or) ascorbic acid (AA) against TIL-induced cardiotoxicity in mice. MRZ and AA were orally administered using stomach gavage, either alone or in combination for 5 consecutive days, followed with a single TIL overdose. TIL overdose induced a significant increase in serum levels of cardiac damage biomarkers (AST, LDH, CK, CK-MB, and cTnT), as well as cardiac lipid peroxidation, but cardiac levels of antioxidant biomarkers (GSH, SOD, CAT, and TAC) were decreased. Both MRZ and AA tended to normalize the elevated serum levels of cardiac injury biomarkers. Furthermore, MRZ and AA reduced TIL-induced lipid peroxidation and oxidative stress parameters. MRZ and AA combined produced a synergistic cardioprotective effect. We conclude that myrrh and (or) vitamin C administration minimizes the toxic effects of TIL through their free-radical-scavenging and potent antioxidant activities.
López-Torres, M; Pérez-Campo, R; Rojas, C; Cadenas, S; Barja, G
1993-08-01
Catalase was continuously inhibited with aminotriazole in the liver and kidney during 33 months in large populations of old and young frogs in order to study the effects of the modification of the tissue antioxidant/prooxidant balance on the life span of a vertebrate species showing an oxygen consumption rate similar to that of humans. Free-radical-related parameters were measured during three consecutive years at 2.5, 14.5, and 26.5 months of experimentation. Aging per se did not decrease antioxidant enzymes and did not increase peroxidation (thiobarbituric acid positive substances, or high-pressure liquid chromatography [HPLC]-malondialdehyde), either cross sectionally or longitudinally. Long-term catalase inhibition leads to time-dependent increases (100-900%) of endogenous superoxide dismutase, GSH, ascorbate, and especially glutathione reductase at 2.5 and 14.5 months of experimentation. This was positively correlated with a higher survival of treated animals (91% in treated versus 46% in controls at 14.5 months of experimentation). The loss of those inductions after 26.5 months leads to a sharp increase in mortality rate. The results show for the first time that simultaneous induction of various tissue antioxidant enzymes and nonenzymatic antioxidants can increase the mean life span of a vertebrate animal. It is concluded that the tissue antioxidant/prooxidant balance is a strong determinant of mean life span.
Sytykiewicz, Hubert
2016-01-01
Reduced forms of ascorbate (AsA) and glutathione (GSH) are among the most important non-enzymatic foliar antioxidants in maize (Zea mays L.). The survey was aimed to evaluate impact of bird cherry-oat aphid (Rhopalosiphum padi L.) or grain aphid (Sitobion avenae F.) herbivory on expression of genes related to ascorbate-glutathione (AsA-GSH) cycle in seedlings of six maize varieties (Ambrozja, Nana, Tasty Sweet, Touran, Waza, Złota Karłowa), differing in resistance to the cereal aphids. Relative expression of sixteen maize genes encoding isoenzymes of ascorbate peroxidase (APX1, APX2, APX3, APX4, APX5, APX6, APX7), monodehydroascorbate reductase (MDHAR1, MDHAR2, MDHAR3, MDHAR4), dehydroascorbate reductase (DHAR1, DHAR2, DHAR3) and glutathione reductase (GR1, GR2) was quantified. Furthermore, effect of hemipterans’ attack on activity of APX, MDHAR, DHAR and GR enzymes, and the content of reduced and oxidized ascorbate and glutathione in maize plants were assessed. Seedling leaves of more resistant Z. mays varieties responded higher elevations in abundance of target transcripts. In addition, earlier and stronger aphid-triggered changes in activity of APX, MDHAR, DHAR and GR enzymes, and greater modulations in amount of the analyzed antioxidative metabolites were detected in foliar tissues of highly resistant Ambrozja genotype in relation to susceptible Tasty Sweet plants. PMID:26907270
Sytykiewicz, Hubert
2016-02-23
Reduced forms of ascorbate (AsA) and glutathione (GSH) are among the most important non-enzymatic foliar antioxidants in maize (Zea mays L.). The survey was aimed to evaluate impact of bird cherry-oat aphid (Rhopalosiphum padi L.) or grain aphid (Sitobion avenae F.) herbivory on expression of genes related to ascorbate-glutathione (AsA-GSH) cycle in seedlings of six maize varieties (Ambrozja, Nana, Tasty Sweet, Touran, Waza, Złota Karłowa), differing in resistance to the cereal aphids. Relative expression of sixteen maize genes encoding isoenzymes of ascorbate peroxidase (APX1, APX2, APX3, APX4, APX5, APX6, APX7), monodehydroascorbate reductase (MDHAR1, MDHAR2, MDHAR3, MDHAR4), dehydroascorbate reductase (DHAR1, DHAR2, DHAR3) and glutathione reductase (GR1, GR2) was quantified. Furthermore, effect of hemipterans' attack on activity of APX, MDHAR, DHAR and GR enzymes, and the content of reduced and oxidized ascorbate and glutathione in maize plants were assessed. Seedling leaves of more resistant Z. mays varieties responded higher elevations in abundance of target transcripts. In addition, earlier and stronger aphid-triggered changes in activity of APX, MDHAR, DHAR and GR enzymes, and greater modulations in amount of the analyzed antioxidative metabolites were detected in foliar tissues of highly resistant Ambrozja genotype in relation to susceptible Tasty Sweet plants.
Singh, Vijay Pratap; Srivastava, Prabhat Kumar; Prasad, Sheo Mohan
2012-12-01
Effects of low (UV-B(L); 0.1 μmol m(-2) s(-1)) and high (UV-B(H); 1.0 μmol m(-2) s(-1)) fluence rates of UV-B radiation on growth, oxidative stress and ascorbate-glutathione cycle (AsA-GSH cycle) were investigated in two cyanobacteria viz. Phormidium foveolarum and Nostoc muscorum under copper (2 and 5 μM) toxicity after 24 and 72 h of experiments. Cu at 2 and 5 μM and UV-B(H) irradiation decreased growth in both the organisms and the effect was more pronounced in N. muscorum. Superoxide radical (SOR) and hydrogen peroxide (H(2)O(2)) productions were significantly enhanced by Cu and UV-B(H) which was accompanied by accelerated lipid peroxidation (malondialdehyde; MDA) and protein oxidation (reactive carbonyl groups; RCG). The components of AsA-GSH cycle, i.e. ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascobate reductase (MDHAR) and dehydroascorbate reductase (DHAR) activities as well as total ascorbate and glutathione contents and their reduced/oxidized ratios were decreased considerably by Cu and UV-B(H). Further, combined treatments of Cu and UV-B(H) exacerbated damaging effects in both the cyanobacteria. Unlike UV-B(H), UV-B(L) irradiation rather than damaging cyanobacteria caused alleviation in Cu-induced toxicity by down-regulating the levels of SOR, H(2)O(2), MDA and RCG due to enhanced activity of APX, GR, MDHAR and DHAR, and contents of ascorbate and glutathione. Results revealed that UV-B radiation at low fluence rate (UV-B(L)) stimulated protective responses in both the organisms under Cu toxicity while UV-B(H) irradiation caused damage alone as well as together with Cu, and the components of AsA-GSH cycle play significant role in these responses. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Matczuk, Magdalena; Prządka, Monika; Aleksenko, Svetlana S; Czarnocki, Zbigniew; Pawlak, Katarzyna; Timerbaev, Andrei R; Jarosz, Maciej
2014-01-01
The mechanism by which the most relevant ruthenium anticancer drugs are activated in tumors to commence their tumor-inhibiting action remains one of the challenging research tasks of present-day metallomics. This contribution aims to capture and identify eventually more reactive species of one of two bis-indazole tetrachloridoruthenate(III) compounds that are progressing in clinical trials. In view of the fact that the transport of ruthenium into cancer cells is governed by transferrin receptors, the susceptibility of the Ru drug adduct with holo-transferrin to exposure by glutathione and ascorbic acid (at their cancer cytosol concentrations) was studied by inductively coupled plasma mass spectrometry (ICP-MS), following isolation of the reaction products by ultrafiltration. Next, capillary electrophoresis coupled to ICP-MS was applied to monitor changes in the Ru speciation both under simulated cancer cytosol conditions and in real cytosol and to assign the charge state of novel metal species. The latter were identified by using tandem electrospray ionization MS in the respective ion mode. The formation of ruthenium(II) species was for the first time revealed, in which the central metal is coordinated by the reduced (GSH) or the oxidized (GSSG) form of glutathione, i.e. [Ru(II)HindCl4(GSH)](2-) and [Ru(II)HindCl4(GSSG)](2-), respectively (Hind = indazole). Ascorbic acid released the ruthenium functionality from the protein-bound form in a different way, the products of adduct cleavage containing aqua ligands. Distribution of low-molecular mass species of Ru in human cytosol was found to have very much in common with the ruthenium speciation assayed under simulated cytosol conditions.
NASA Astrophysics Data System (ADS)
Calas, Aude; Uzu, Gaëlle; Kelly, Frank J.; Houdier, Stephan; Martins, Jean M. F.; Thomas, Fabrice; Molton, Florian; Charron, Aurélie; Dunster, Christina; Oliete, Ana; Jacob, Véronique; Besombes, Jean-Luc; Chevrier, Florie; Jaffrezo, Jean-Luc
2018-06-01
Many studies have demonstrated associations between exposure to ambient particulate matter (PM) and adverse health outcomes in humans that can be explained by PM capacity to induce oxidative stress in vivo. Thus, assays have been developed to quantify the oxidative potential (OP) of PM as a more refined exposure metric than PM mass alone. Only a small number of studies have compared different acellular OP measurements for a given set of ambient PM samples. Yet, fewer studies have compared different assays over a year-long period and with detailed chemical characterization of ambient PM. In this study, we report on seasonal variations of the dithiothreitol (DTT), ascorbic acid (AA), electron spin resonance (ESR) and the respiratory tract lining fluid (RTLF, composed of the reduced glutathione (GSH) and ascorbic acid (ASC)) assays over a 1-year period in which 100 samples were analyzed. A detailed PM10 characterization allowed univariate and multivariate regression analyses in order to obtain further insight into groups of chemical species that drive OP measurements. Our results show that most of the OP assays were strongly intercorrelated over the sampling year but also these correlations differed when considering specific sampling periods (cold vs. warm). All acellular assays are correlated with a significant number of chemical species when considering univariate correlations, especially for the DTT assay. Evidence is also presented of a seasonal contrast over the sampling period with significantly higher OP values during winter for the DTT, AA, GSH and ASC assays, which were assigned to biomass burning species by the multiple linear regression models. The ESR assay clearly differs from the other tests as it did not show seasonal dynamics and presented weaker correlations with other assays and chemical species.
Metal-induced oxidative stress in terrestrial macrolichens.
Kováčik, Jozef; Dresler, Sławomir; Peterková, Viera; Babula, Petr
2018-07-01
Short-term (24 h) responses of Cladonia arbuscula subsp. mitis and Cladonia furcata to copper (CuII) or chromium (CrIII) excess (10 or 100 μM) were compared. C. arbuscula accumulated more Cu and Cr at higher metal doses but both species revealed depletion of K and/or Ca amount. Not only Cu but also Cr typically elevated reactive oxygen species (ROS) formation (fluorescence microscopy detection of total ROS and hydrogen peroxide) and depleted nitric oxide (NO) signal, with Cu showing more negative impact on lipid peroxidation (BODIPY 581/591 C11 staining reagent). Metals and staining reagents also affected anatomical responses and photobiont/mycobiont visibility. Principally different impact of Cu and Cr was observed at antioxidative metabolites level, indicating various ways of metal-induced ROS removal and/or metal chelation: Cu strongly depleted glutathione (GSH) and stimulated phytochelatin 2 (PC2) content while ascorbic acid accumulation was depleted by Cu and stimulated by Cr. Subsequent experiment with GSH biosynthetic inhibitor (buthionine sulfoximine, BSO) revealed that 48 h of exposure is needed to deplete GSH and BSO-induced depletion of GSH and PC2 amounts under Cu or Cr excess elevated ROS but depleted NO. These data suggest close relations between thiols, NO and appearance of oxidative stress (ROS generation) under metallic stress also in lichens. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mostofa, Mohammad Golam; Seraj, Zeba Islam; Fujita, Masayuki
2014-11-01
Nitric oxide (NO) and glutathione (GSH) regulate a variety of physiological processes and stress responses; however, their involvement in mitigating Cu toxicity in plants has not been extensively studied. This study investigated the interactive effect of exogenous sodium nitroprusside (SNP) and GSH on Cu homeostasis and Cu-induced oxidative damage in rice seedlings. Hydroponically grown 12-day-old seedlings were subjected to 100 μM CuSO4 alone and in combination with 200 μM SNP (an NO donor) and 200 μM GSH. Cu exposure for 48 h resulted in toxicity symptoms such as stunted growth, chlorosis, and rolling in leaves. Cu toxicity was also manifested by a sharp increase in lipoxygenase (LOX) activity, lipid peroxidation (MDA), hydrogen peroxide (H2O2), proline (Pro) content, and rapid reductions in biomass, chlorophyll (Chl), and relative water content (RWC). Cu-caused oxidative stress was evident by overaccumulation of reactive oxygen species (ROS; superoxide (O2 (•-)) and H2O2). Ascorbate (AsA) content decreased while GSH and phytochelatin (PC) content increased significantly in Cu-stressed seedlings. Exogenous SNP, GSH, or SNP + GSH decreased toxicity symptoms and diminished a Cu-induced increase in LOX activity, O2 (•-), H2O2, MDA, and Pro content. They also counteracted a Cu-induced increase in superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and glyoxalase I and glyoxalase II activities, which paralleled changes in ROS and MDA levels. These seedlings also showed a significant increase in catalase (CAT), glutathione peroxidase (GPX), dehydroascorbate reductase (DHAR), glutathione S-transferase (GST) activities, and AsA and PC content compared with the seedlings stressed with Cu alone. Cu analysis revealed that SNP and GSH restricted the accumulation of Cu in the roots and leaves of Cu-stressed seedlings. Our results suggest that Cu exposure provoked an oxidative burden while reduced Cu uptake and modulating the antioxidant defense and glyoxalase systems by adding SNP and GSH play an important role in alleviating Cu toxicity. Furthermore, the protective action of GSH and SNP + GSH was more efficient than SNP alone.
Nahar, Kamrun; Hasanuzzaman, Mirza; Alam, Md. Mahabub; Fujita, Masayuki
2015-01-01
Drought is considered one of the most acute environmental stresses presently affecting agriculture. We studied the role of exogenous glutathione (GSH) in conferring drought stress tolerance in mung bean (Vigna radiata L. cv. Binamoog-1) seedlings by examining the antioxidant defence and methylglyoxal (MG) detoxification systems and physiological features. Six-day-old seedlings were exposed to drought stress (−0.7 MPa), induced by polyethylene glycol alone and in combination with GSH (1 mM) for 24 and 48 h. Drought stress decreased seedling dry weight and leaf area; resulted in oxidative stress as evidenced by histochemical detection of hydrogen peroxide (H2O2) and O2⋅− in the leaves; increased lipid peroxidation (malondialdehyde), reactive oxygen species like H2O2 content and O2⋅− generation rate and lipoxygenase activity; and increased the MG level. Drought decreased leaf succulence, leaf chlorophyll and relative water content (RWC); increased proline (Pro); decreased ascorbate (AsA); increased endogenous GSH and glutathione disulfide (GSSG) content; decreased the GSH/GSSG ratio; increased ascorbate peroxidase and glutathione S-transferase activities; and decreased the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and catalase. The activities of glyoxalase I (Gly I) and glyoxalase II (Gly II) increased due to drought stress. In contrast to drought stress alone, exogenous GSH enhanced most of the components of the antioxidant and glyoxalase systems in drought-affected mung bean seedlings at 24 h, but GSH did not significantly affect AsA, Pro, RWC, leaf succulence and the activities of Gly I and DHAR after 48 h of stress. Thus, exogenous GSH supplementation with drought significantly enhanced the antioxidant components and successively reduced oxidative damage, and GSH up-regulated the glyoxalase system and reduced MG toxicity, which played a significant role in improving the physiological features and drought tolerance. PMID:26134121
Alleviation of ascorbic acid-induced gastric high acidity by calcium ascorbate in vitro and in vivo.
Lee, Joon-Kyung; Jung, Sang-Hyuk; Lee, Sang-Eun; Han, Joo-Hui; Jo, Eunji; Park, Hyun-Soo; Heo, Kyung-Sun; Kim, Deasun; Park, Jeong-Sook; Myung, Chang-Seon
2018-01-01
Ascorbic acid is one of the most well-known nutritional supplement and antioxidant found in fruits and vegetables. Calcium ascorbate has been developed to mitigate the gastric irritation caused by the acidity of ascorbic acid. The aim of this study was to compare calcium ascorbate and ascorbic acid, focusing on their antioxidant activity and effects on gastric juice pH, total acid output, and pepsin secretion in an in vivo rat model, as well as pharmacokinetic parameters. Calcium ascorbate and ascorbic acid had similar antioxidant activity. However, the gastric fluid pH was increased by calcium ascorbate, whereas total acid output was increased by ascorbic acid. In the rat pylorus ligation-induced ulcer model, calcium ascorbate increased the gastric fluid pH without changing the total acid output. Administration of calcium ascorbate to rats given a single oral dose of 100 mg/kg as ascorbic acid resulted in higher plasma concentrations than that from ascorbic acid alone. The area under the curve (AUC) values of calcium ascorbate were 1.5-fold higher than those of ascorbic acid, and the C max value of calcium ascorbate (91.0 ng/ml) was higher than that of ascorbic acid (74.8 ng/ml). However, their T max values were similar. Thus, although calcium ascorbate showed equivalent antioxidant activity to ascorbic acid, it could attenuate the gastric high acidity caused by ascorbic acid, making it suitable for consideration of use to improve the side effects of ascorbic acid. Furthermore, calcium ascorbate could be an appropriate antioxidant substrate, with increased oral bioavailability, for patients with gastrointestinal disorders.
Alleviation of ascorbic acid-induced gastric high acidity by calcium ascorbate in vitro and in vivo
Lee, Joon-Kyung; Jung, Sang-Hyuk; Lee, Sang-Eun; Han, Joo-Hui; Jo, Eunji; Park, Hyun-Soo; Heo, Kyung-Sun; Kim, Deasun
2018-01-01
Ascorbic acid is one of the most well-known nutritional supplement and antioxidant found in fruits and vegetables. Calcium ascorbate has been developed to mitigate the gastric irritation caused by the acidity of ascorbic acid. The aim of this study was to compare calcium ascorbate and ascorbic acid, focusing on their antioxidant activity and effects on gastric juice pH, total acid output, and pepsin secretion in an in vivo rat model, as well as pharmacokinetic parameters. Calcium ascorbate and ascorbic acid had similar antioxidant activity. However, the gastric fluid pH was increased by calcium ascorbate, whereas total acid output was increased by ascorbic acid. In the rat pylorus ligation-induced ulcer model, calcium ascorbate increased the gastric fluid pH without changing the total acid output. Administration of calcium ascorbate to rats given a single oral dose of 100 mg/kg as ascorbic acid resulted in higher plasma concentrations than that from ascorbic acid alone. The area under the curve (AUC) values of calcium ascorbate were 1.5-fold higher than those of ascorbic acid, and the Cmax value of calcium ascorbate (91.0 ng/ml) was higher than that of ascorbic acid (74.8 ng/ml). However, their Tmax values were similar. Thus, although calcium ascorbate showed equivalent antioxidant activity to ascorbic acid, it could attenuate the gastric high acidity caused by ascorbic acid, making it suitable for consideration of use to improve the side effects of ascorbic acid. Furthermore, calcium ascorbate could be an appropriate antioxidant substrate, with increased oral bioavailability, for patients with gastrointestinal disorders. PMID:29302210
Chularojmontri, L.; Gerdprasert, O.; Wattanapitayakul, S. K.
2013-01-01
Citrus flavonoids have been shown to reduce cardiovascular disease (CVD) risks prominently due to their antioxidant effects. Here we investigated the protective effect of pummelo (Citrus maxima, CM) fruit juice in rat cardiac H9c2 cells against doxorubicin (DOX-) induced cytotoxicity. Four antioxidant compositions (ascorbic acid, hesperidin, naringin, and gallic acid) were determined by HPLC. CM significantly increased cardiac cell survival from DOX toxicity as evaluated by MTT assay. Reduction of cellular oxidative stress was monitored by the formation of DCF fluorescent product and total glutathione (GSH) levels. The changes in glutathione-S-transferase (GST) activity and expression were determined by enzyme activity assay and Western blot analysis, respectively. Influence of CM on senescence-associated β-galactosidase activity (SA-β-gal) was also determined. The mechanisms of cytoprotection involved reduction of intracellular oxidative stress, maintaining GSH availability, and enhanced GST enzyme activity and expression. DOX-induced cellular senescence was also attenuated by long-term CM treatment. Thus, CM fruit juice can be promoted as functional fruit to protect cells from oxidative cell death, enhance the phase II GSTP enzyme activity, and decrease senescence phenotype population induced by cardiotoxic agent such as DOX. PMID:23401708
Drying effects on the antioxidant properties of tomatoes and ginger.
Gümüşay, Özlem Aktürk; Borazan, Alev Akpınar; Ercal, Nuran; Demirkol, Omca
2015-04-15
In this study, the effects of four different drying processes, sun drying (SD), oven drying (OD), vacuum oven drying (VOD) and freeze drying (FD) for tomatoes (Solanum lycopersicum) and ginger (Zingiber officinale) in terms of thiolic and phenolic contents have been studied. Thiol content, total phenolic content (TPC), ascorbic acid (AA) content, and cupric ion reducing antioxidant capacity (CUPRAC) were determined in fresh and dried samples. Glutathione (GSH) and cysteine (Cys) were determined as the thiol contents of tomatoes and ginger. Significant losses were observed in the contents of TPC, AA, GSH and Cys and CUPRAC values in all samples that were dried using the thermal method. There was a statistically significant difference in the losses of the TPC, AA, and thiol contents between the use of thermal drying and freeze drying (except Cys in tomatoes) methods. Freeze dried tomato and ginger samples have been found to have better antioxidant properties. Copyright © 2014 Elsevier Ltd. All rights reserved.
Emir, Uzay E; Deelchand, Dinesh; Henry, Pierre-Gilles; Terpstra, Melissa
2011-04-01
The transverse relaxation times (T(2)) and concentrations of Ascorbate (Asc) and glutathione (GSH) were measured from a single dataset of double-edited spectra that were acquired at several TEs at 4 T in the human brain. Six TEs between 102 and 152 ms were utilized to calculate T(2) for the group of 12 subjects scanned five times each. Spectra measured at all six TEs were summed to quantify the concentration in each individual scan. LCModel fitting was optimized for the quantification of the Asc and GSH double-edited spectra. When the fitted baseline was constrained to be flat, T(2) was found to be 67 ms (95% confidence interval, 50-83 ms) for GSH and ≤115 ms for Asc using the sum of spectra measured over 60 scans. The Asc and GSH concentrations quantified in each of the 60 scans were 0.62 ± 0.08 and 0.81 ± 0.11 µmol/g [mean ± standard deviation (SD), n = 60], respectively, using 10 µmol/g N-acetylaspartate as an internal reference and assuming a constant influence of N-acetylaspartate and antioxidant T(2) relaxation in the reference solution and in vivo. The T(2) value of GSH was measured for the first time in the human brain. The data are consistent with short T(2) for both antioxidants. These T(2) values are essential for the absolute quantification of Asc and GSH concentrations measured at long TE, and provide a critical step towards addressing assumptions about T(2), and therefore towards the quantification of concentrations without the possibility of systematic bias. Copyright © 2010 John Wiley & Sons, Ltd.
Sekine, Seiji; Kubo, Kazuhiro; Tadokoro, Tadahiro; Saito, Morio
2006-04-01
We examined the effects of ascorbic acid (AsA) and glutathione (GSH; experiment 1) and of GSH in acetaminophen-fed rats (experiment 2) on dietary docosahexaenoic acid (DHA)-induced tissue lipid peroxidation. In experiment 1, AsA-requiring Osteogenic Disorder Shionogi/Shi-od/od (ODS) rats were fed soybean protein diets containing DHA (10.0% total energy) and AsA at 50 (low) or 300 (normal) mg/kg without (low) or with (normal) methionine at 2 g/kg for 32 d. In experiment 2, ODS rats were fed diets containing DHA (7.8% total energy) and acetaminophen (4 g/kg) with different levels of dietary methionine (low, moderate, high, and excessive at 0, 3, 6, and 9 g/kg, respectively) for 30 d. Tissue lipid peroxides and antioxidant levels were determined. In experiment 1, liver lipid peroxide levels in the low-AsA group were lower than those in the normal-AsA group, but kidney and testis lipid peroxide levels in the low-AsA group were higher than those in the normal-AsA group. Dietary methionine tended to decrease tissue lipid peroxide levels but did not decrease vitamin E (VE) consumption. In experiment 2, a high level of methionine (6 g/kg) decreased liver lipid peroxide levels and VE consumption. However, generation of tissue lipid peroxides and VE consumption were not decreased further by a higher dose of methionine (9 g/kg). Higher than normal levels of dietary methionine are not necessarily associated with decreased dietary DHA-induced generation of tissue lipid peroxides and VE consumption except that the GSH requirement is increased in a condition such as acetaminophen feeding.
Wu, Qi; Su, Nana; Chen, Qin; Shen, Wenbiao; Shen, Zhenguo; Xia, Yan; Cui, Jin
2015-01-01
Hydrogen gas (H2) was recently proposed as a therapeutic antioxidant and signaling molecule in clinical trials. However, the underlying physiological roles of H2 in plants remain unclear. In the present study, hydrogen-rich water (HRW) was used to characterize the physiological roles of H2 in enhancing the tolerance of Brassica campestris against cadmium (Cd). The results showed that both 50 μM CdCl2 and 50%-saturated HRW induced an increase of endogenous H2 in Brassica campestris seedlings, and HRW alleviated Cd toxicity related to growth inhibition and oxidative damage. Seedlings supplied with HRW exhibited increased root length and reduced lipid peroxidation, similar to plants receiving GSH post-treatment. Additionally, seedlings post-treated with HRW accumulated higher levels of reduced glutathione (GSH) and ascorbic acid (AsA) and showed increased GST and GPX activities in roots. Molecular evidence illustrated that the expression of genes such as GS, GR1 and GR2, which were down-regulated following the addition of Cd, GSH or BSO, could be reversed to varying degrees by the addition of HRW. Based on these results, it could be proposed that H2 might be an important regulator for enhancing the tolerance of Brassica campestris seedlings against Cd, mainly by governing reduced glutathione homeostasis.
Chugh, Vishal; Kaur, Narinder; Grewal, M S; Gupta, Anil K
2013-04-01
The role of oxidative stress management was evaluated in two maize (Zea mays L.) genotypes - Parkash (drought-resistant) and Paras (drought-sensitive), subjected to drought stress during reproductive stage. Alterations in their antioxidant pools - glutathione (GSH) and ascorbic acid (AsA) combined with activities of enzymes glutathione reductase (GR), ascorbate peroxidase (APX), peroxidase (POX) and catalase (CAT) involved in defense against oxidative stress and stress parameters, namely chlorophyll (Chl), hydrogen peroxide (H2O2) and malondialdehyde (MDA) were investigated in flag leaves from silk emergence till maturity. The drought caused transient increase in GR, APX, POX and CAT activities in drought-tolerant genotype (Parkash) which decreased at later stages with the extended period of drought stress. However, in Paras, drought stress caused decrease in activities of GR and CAT from initial period of stress till the end of experiment, except for POX which showed slight increase in activity. A significant increase in GSH content was observed in Parkash till 35 days after silking (DAS), whereas in Paras, GSH content remained lower than irrigated till maturity. Parkash which had higher AsA and Chl contents, also showed lower H2O2 and MDA levels than Paras under drought stress conditions. However, at the later stages, decline in antioxidant enzyme activities in Parkash due to severe drought stress led to enhanced membrane damage, as revealed by the accumulation of MDA. Our data indicated that significant activation of antioxidant system in Parkash might be responsible for its drought-tolerant behavior under drought stress and helped it to cope with the stress up to a definite period. Thus, the results indicate that antioxidant status and lipid peroxidation in flag leaves can be used as indices of drought tolerance in maize plants and also as potential biochemical targets for the crop improvement programmes to develop drought-tolerant cultivars.
Fu, Juanjuan; Sun, Yongfang; Chu, Xitong; Xu, Yuefei; Hu, Tianming
2014-01-01
The protective effects of 5-aminolevulenic acid (ALA) on germination of Elymus nutans Griseb. seeds under cold stress were investigated. Seeds of E. nutans (Damxung, DX and Zhengdao, ZD) were pre-soaked with various concentrations (0, 0.1, 0.5, 1, 5, 10 and 25 mg l(-1)) of ALA for 24 h before germination under cold stress (5°C). Seeds of ZD were more susceptible to cold stress than DX seeds. Both seeds treated with ALA at low concentrations (0.1-1 mg l(-1)) had higher final germination percentage (FGP) and dry weight at 5°C than non-ALA-treated seeds, whereas exposure to higher ALA concentrations (5-25 mg l(-1)) brought about a dose dependent decrease. The highest FGP and dry weight of germinating seeds were obtained from seeds pre-soaked with 1 mg l(-1) ALA. After 5 d of cold stress, pretreatment with ALA provided significant protection against cold stress in the germinating seeds, significantly enhancing seed respiration rate and ATP synthesis. ALA pre-treatment also increased reduced glutathione (GSH), ascorbic acid (AsA), total glutathione, and total ascorbate concentrations, and the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), whereas decreased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), and superoxide radical (O2•-) release in both germinating seeds under cold stress. In addition, application of ALA increased H+-ATPase activity and endogenous ALA concentration compared with cold stress alone. Results indicate that ALA considered as an endogenous plant growth regulator could effectively protect E. nutans seeds from cold-induced oxidative damage during germination without any adverse effect.
Fu, Juanjuan; Sun, Yongfang; Chu, Xitong; Xu, Yuefei; Hu, Tianming
2014-01-01
The protective effects of 5-aminolevulenic acid (ALA) on germination of Elymus nutans Griseb. seeds under cold stress were investigated. Seeds of E. nutans (Damxung, DX and Zhengdao, ZD) were pre-soaked with various concentrations (0, 0.1, 0.5, 1, 5, 10 and 25 mg l−1) of ALA for 24 h before germination under cold stress (5°C). Seeds of ZD were more susceptible to cold stress than DX seeds. Both seeds treated with ALA at low concentrations (0.1–1 mg l−1) had higher final germination percentage (FGP) and dry weight at 5°C than non-ALA-treated seeds, whereas exposure to higher ALA concentrations (5–25 mg l−1) brought about a dose dependent decrease. The highest FGP and dry weight of germinating seeds were obtained from seeds pre-soaked with 1 mg l−1 ALA. After 5 d of cold stress, pretreatment with ALA provided significant protection against cold stress in the germinating seeds, significantly enhancing seed respiration rate and ATP synthesis. ALA pre-treatment also increased reduced glutathione (GSH), ascorbic acid (AsA), total glutathione, and total ascorbate concentrations, and the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), whereas decreased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), and superoxide radical (O2 •−) release in both germinating seeds under cold stress. In addition, application of ALA increased H+-ATPase activity and endogenous ALA concentration compared with cold stress alone. Results indicate that ALA considered as an endogenous plant growth regulator could effectively protect E. nutans seeds from cold-induced oxidative damage during germination without any adverse effect. PMID:25207651
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasaki, T.; Toyama, H.; Oda, K.
1994-05-01
An oxidative stress is postulated to be important in tissue injury after ischemia and reperfusion, inflammation, aging and various disease. Glutathione (GSH), one of the major antioxidants in the brain, is presumed to be responsible for the metabolism and retention of [Tc-99m] HM-PAO. In order to visualize the regional localization of GSH in the brain, the relationship between the concentrations of tissue GSH and uptake of [Tc-99m] meso-HM-PAO and [Tc-99m] d,l-HM-PAO was studied in mice. Increasing load of diethyl maleate (DEM), a reducing agent of GSH and several other thiols, before [Tc-99m] meso-HM-PAO injection, led to a dose dependent decreasemore » of GSH and [Tc-99m] meso-HM-PAO. At the highest dose of loaded DEM, the uptake of [Tc-99m] meso-HM-PAO in the brain was decreased to 20-30% of the control. In contrast, pretreatment with DEM did little affect the [Tc-99m] d,l-HM-PAO uptake. To elucidate the retention mechanism of [Tc-99m] HM-PAO in brain, we studied the in vitro interactions of [Tc-99m] meso-HMPAO and [Tc-99m] d,l-HM-PAO with GSH, ascorbate and cysteine by measuring octanol-extractable radioactivity, which is remaining intact [Tc-99m] HM-PAO, as a function of incubation period. The disappearance raw of [Tc-99m] meso-HMPAO and [TC-99m] d,l-HM-PAO were 0.18 and 0.96%/min, respectively. Either meso or d,l-isomer did not interact with ascorbate or cysteine. This result suggested that the retention mechanism of [Tc-99m] meso- and d,l-isomers in brain was related to their specific interaction with GSH, and did not related to non-specific interaction with various thiols or other reducing agents. This extremely high reaction rate of [Tc-99m] d,l-HM-PAO with GSH could explain the capability of a small amount of GSH to trap [Tc-99m] d,l-HM-PAO in maximum DEM loading. These results indicated that [Tc-99m] meso-HMPAO would be suitable to image the concentration of GSH in the brain, as opposed d,l-isomer that images blood flow.« less
Yogeeta, Surinder Kumar; Raghavendran, Hanumantha Rao Balaji; Gnanapragasam, Arunachalam; Subhashini, Rajakannu; Devaki, Thiruvengadam
2006-10-27
Disruption of mitochondria and free radical mediated tissue injury have been reported during cardiotoxicity induced by isoproterenol (ISO), a beta-adrenergic catecholamine. The present study was designed to investigate the effect of the combination of ferulic acid (FA) and ascorbic acid (AA) on the mitochondrial damage in ISO induced cardiotoxicity. Induction of rats with ISO (150 mg/kg b.wt., i.p.) for 2 days resulted in a significant decrease in the activities of respiratory chain enzymes (NADH dehydrogenase and cytochrome c-oxidase), tricarboxylic acid cycle enzymes (isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, alpha-ketoglutarate dehydrogenase), mitochondrial antioxidants (GPx, GST, SOD, CAT, GSH), cytochromes (b, c, c1, aa3) and in the level of mitochondrial phospholipids. A marked elevation in mitochondrial lipid peroxidation, mitochondrial levels of cholesterol, triglycerides and free fatty acids were also observed in ISO intoxicated rats. Pre-co-treatment with the combination of FA (20 mg/kg b.wt.) and AA (80 mg/kg b.wt.) orally for 6 days significantly enhanced the attenuation of these functional abnormalities and restored normal mitochondrial function when compared to individual drug treated groups. Mitigation of ISO induced biochemical and morphological changes in mitochondria were more pronounced with a combination of FA and AA rather than the individual drug treated groups. Transmission electron microscopic observations also correlated with these biochemical parameters. Hence, these findings demonstrate the synergistic ameliorative potential of FA and AA on mitochondrial function during beta-adrenergic catecholamine induced cardiotoxicity and associated oxidative stress in rats.
Kesba, Hosny H; El-Beltagi, Hossam S
2012-04-01
To investigate the effect of humic acid on nematode infected, resistant and susceptible grapes in relation to lipid peroxidation and antioxidant mechanisms on selected biochemical parameters known as proactive substances. The grape rootstocks, superior, superior/freedom and freedom were reacted differently to Meloidogyne incognita and Rotylenchulus reniformis according to rootstock progenitor. Two weeks after inoculation, two commercial products of humic acid were applied at the rate of (2, 4 mL or grams/plant) as soil drench. After 4 months, nematode soil populations were extracted and counted. A subsample of roots from each plant was stained and gall numbers, embedded stages per root were calculated, final population, nematode build up (Pf/Pi), average of eggs/eggmass were estimated. Subsamples of fresh root of each treatment were chemically analyzed. Freedom reduced significantly the nematode criteria and build up. Humic acid granules appeared to be more suppressive to nematode build up on superior and the higher dose on superior/freedom than liquid treatments. On freedom, all treatments reduced significantly the nematode build up regardless to the material nature. The higher dose was more effective than the lower one. As a result of humic acid applications, the malondialdehyde (MDA) and H2O2 contents were significantly reduced after humic acid treatments while the antioxidant compounds glutathione (GSH), ascorbic acid (ASA) and total phenol contents were significantly increased when compared with check. Antioxidant defense enzymes ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT) and polyphenol oxidase (PPO)showed significant increase in their specific activities in treated plants compared with nematode treated check. Humic acid treatments improve the yield of grape by increasing the contents of antioxidant compounds and the specific activities of antioxidant enzymes.
Kesba, Hosny H; El-Beltagi, Hossam S
2012-01-01
Objective To investigate the effect of humic acid on nematode infected, resistant and susceptible grapes in relation to lipid peroxidation and antioxidant mechanisms on selected biochemical parameters known as proactive substances. Methods The grape rootstocks, superior, superior/freedom and freedom were reacted differently to Meloidogyne incognita and Rotylenchulus reniformis according to rootstock progenitor. Two weeks after inoculation, two commercial products of humic acid were applied at the rate of (2, 4 mL or grams/plant) as soil drench. After 4 months, nematode soil populations were extracted and counted. A subsample of roots from each plant was stained and gall numbers, embedded stages per root were calculated, final population, nematode build up (Pf/Pi), average of eggs/eggmass were estimated. Subsamples of fresh root of each treatment were chemically analyzed. Results Freedom reduced significantly the nematode criteria and build up. Humic acid granules appeared to be more suppressive to nematode build up on superior and the higher dose on superior/freedom than liquid treatments. On freedom, all treatments reduced significantly the nematode build up regardless to the material nature. The higher dose was more effective than the lower one. As a result of humic acid applications, the malondialdehyde (MDA) and H2O2 contents were significantly reduced after humic acid treatments while the antioxidant compounds glutathione (GSH), ascorbic acid (ASA) and total phenol contents were significantly increased when compared with check. Antioxidant defense enzymes ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT) and polyphenol oxidase (PPO)showed significant increase in their specific activities in treated plants compared with nematode treated check. Conclusions Humic acid treatments improve the yield of grape by increasing the contents of antioxidant compounds and the specific activities of antioxidant enzymes. PMID:23569915
Effect of platelets on apparent leucocyte ascorbic acid content.
Evans, R M; Currie, L; Campbell, A
1980-09-01
The leucocyte ascorbic acid content is widely used as a measure of tissue ascorbic acid status. Standard methods of analysis, however, isolate both leucocytes and platelets (buffy layer), with consequent overestimation, since platelet ascorbic acid is attributed to the leucocytes. Fourteen healthy individuals on ascorbic acid supplements and 11 patients on mega dose ascorbic acid therapy were studied. A significant correlation was demonstrated between the 'leucocyte' ascorbic acid content and the platelet: leucocyte ratio (r = 0.70, P < 0.001). It is suggested that changes in the relative distribution of platelets and leucocytes in the blood will result in an apparent change in the 'leucocyte' ascorbic acid content regardless of any actual change in the ascorbic acid content of the cells.
Kim, Won; Bae, Seyeon; Kim, Hyemin; Kim, Yejin; Choi, Jiwon; Lim, Sun Young; Lee, Hei Jin; Lee, Jihyuk; Choi, Jiyea; Jang, Mirim; Lee, Kyoung Eun; Chung, Sun G.; Hwang, Young-il
2013-01-01
The L-gulono-γ-lactone oxidase gene (Gulo) encodes an essential enzyme in the synthesis of ascorbic acid from glucose. On the basis of previous findings of bone abnormalities in Gulo-/- mice under conditions of ascorbic acid insufficiency, we investigated the effect of ascorbic acid insufficiency on factors related to bone metabolism in Gulo-/- mice. Four groups of mice were raised for 4 weeks under differing conditions of ascorbic acid insufficiency, namely, wild type; ascorbic acid-sufficient Gulo-/- mice, 3-week ascorbic acid-insufficient Gulo-/- mice, and 4-week ascorbic acid-insufficient Gulo-/- mice. Four weeks of ascorbic acid insufficiency resulted in significant weight loss in Gulo-/- mice. Interestingly, average plasma osteocalcin levels were significantly decreased in Gulo-/- mice after 3 weeks of ascorbic acid insufficiency. In addition, the tibia weight in ascorbic acid-sufficient Gulo-/- mice was significantly higher than that in the other three groups. Moreover, significant decreases in trabecular bone volume near to the growth plate, as well as in trabecular bone attachment to the growth plate, were evident in 3- or 4-week ascorbic acid-insufficient Gulo-/-. In summary, ascorbic acid insufficiency in Gulo-/- mice results in severe defects in normal bone formation, which are closely related to a decrease in plasma osteocalcin levels. PMID:24386598
Guo, W L; Chen, R G; Gong, Z H; Yin, Y X; Ahmed, S S; He, Y M
2012-11-28
To elucidate how physiological and biochemical mechanisms of chilling stress are regulated by abscisic acid (ABA) pretreatment, pepper variety (cv. 'P70') seedlings were pretreated with 0.57 mM ABA for 72 h and then subjected to chilling stress at 10°/6°C (day/night). Chilling stress caused severe necrotic lesions on the leaves and increased malondialdehyde and H(2)O(2) levels. Activities of monodehydroascorbate reductase (DHAR), dehydroascorbate reductase, glutathione reductase, guaiacol peroxidase, ascorbate peroxidase, ascorbate, and glutathione increased due to chilling stress during the 72 h, while superoxide dismutase and catalase activities decreased during 24 h, suggesting that chilling stress activates the AsA-GSH cycle under catalase deactivation in pepper leaves. ABA pretreatment induced significant increases in the above-mentioned enzyme activities and progressive decreases in ascorbate and glutathione levels. On the other hand, ABA-pretreated seedlings under chilling stress increased superoxide dismutase and guaiacol peroxidase activities and lowered concentrations of other antioxidants compared with untreated chilling-stressed plants. These seedlings showed concomitant decreases in foliage damage symptoms, and levels of malondialdehyde and H(2)O(2). Induction of Mn-SOD and POD was observed in chilling-stressed plants treated with ABA. The expression of DHAR1 and DHAR2 was altered by chilling stress, but it was higher in the presence than in the absence of ABA at 24 h. Overall, the results indicate that exogenous application of ABA increases tolerance of plants to chilling-induced oxidative damage, mainly by enhancing superoxide dismutase and guaiacol peroxidase activities and related gene expression.
Regulation of ascorbic acid metabolism by blue LED light irradiation in citrus juice sacs.
Zhang, Lancui; Ma, Gang; Yamawaki, Kazuki; Ikoma, Yoshinori; Matsumoto, Hikaru; Yoshioka, Terutaka; Ohta, Satoshi; Kato, Masaya
2015-04-01
In the present study, the effects of red and blue LED lights on the accumulation of ascorbic acid (AsA) were investigated in the juice sacs of three citrus varieties, Satsuma mandarin, Valencia orange, and Lisbon lemon. The results showed that the blue LED light treatment effectively increased the AsA content in the juice sacs of the three citrus varieties, whereas the red LED light treatment did not. By increasing the blue LED light intensity, the juice sacs of the three citrus varieties accumulated more AsA. Moreover, continuous irradiation with blue LED light was more effective than pulsed irradiation for increasing the AsA content in the juice sacs of the three citrus varieties. Gene expression results showed that the modulation of AsA accumulation by blue LED light was highly regulated at the transcription level. The up-regulation of AsA biosynthetic genes (CitVTC1, CitVTC2, CitVTC4, and CitGLDH), AsA regeneration genes (CitMDAR1, CitMDAR2, and CitDHAR) and two GSH-producing genes (CitGR and CitchGR) contributed to these increases in the AsA content in the three citrus varieties. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Vitamin C in human health and disease is still a mystery ? An overview
Naidu, K Akhilender
2003-01-01
Ascorbic acid is one of the important water soluble vitamins. It is essential for collagen, carnitine and neurotransmitters biosynthesis. Most plants and animals synthesize ascorbic acid for their own requirement. However, apes and humans can not synthesize ascorbic acid due to lack of an enzyme gulonolactone oxidase. Hence, ascorbic acid has to be supplemented mainly through fruits, vegetables and tablets. The current US recommended daily allowance (RDA) for ascorbic acid ranges between 100–120 mg/per day for adults. Many health benefits have been attributed to ascorbic acid such as antioxidant, anti-atherogenic, anti-carcinogenic, immunomodulator and prevents cold etc. However, lately the health benefits of ascorbic acid has been the subject of debate and controversies viz., Danger of mega doses of ascorbic acid? Does ascorbic acid act as a antioxidant or pro-oxidant ? Does ascorbic acid cause cancer or may interfere with cancer therapy? However, the Panel on dietary antioxidants and related compounds stated that the in vivo data do not clearly show a relationship between excess ascorbic acid intake and kidney stone formation, pro-oxidant effects, excess iron absorption. A number of clinical and epidemiological studies on anti-carcinogenic effects of ascorbic acid in humans did not show any conclusive beneficial effects on various types of cancer except gastric cancer. Recently, a few derivatives of ascorbic acid were tested on cancer cells, among them ascorbic acid esters showed promising anticancer activity compared to ascorbic acid. Ascorbyl stearate was found to inhibit proliferation of human cancer cells by interfering with cell cycle progression, induced apoptosis by modulation of signal transduction pathways. However, more mechanistic and human in vivo studies are needed to understand and elucidate the molecular mechanism underlying the anti-carcinogenic property of ascorbic acid. Thus, though ascorbic acid was discovered in 17th century, the exact role of this vitamin/nutraceutical in human biology and health is still a mystery in view of many beneficial claims and controversies. PMID:14498993
Horio, Fumihiko; Kiyama, Keiichiro; Kobayashi, Misato; Kawai, Kaori; Tsuda, Takanori
2006-02-01
ODS rat has a hereditary defect in ascorbic acid biosynthesis and is a useful animal model for elucidating the physiological role of ascorbic acid. We previously demonstrated by using ODS rats that ascorbic acid deficiency changes the hepatic gene expression of acute phase proteins, as seen in acute inflammation. In this study, we investigated the effects of ascorbic acid deficiency on the production of inflammatory chemokine, cytokine-induced neutrophil chemoattractant-1 (CINC-1), in ODS rats. Male ODS rats (6 wk of age) were fed a basal diet containing ascorbic acid (300 mg/kg diet) or a diet without ascorbic acid for 14 d. Obvious symptoms of scurvy were not observed in the ascorbic acid-deficient rats. Ascorbic acid deficiency significantly elevated the serum concentration of CINC-1 on d 14. The liver and spleen CINC-1 concentrations in the ascorbic acid-deficient rats were significantly elevated to 600% and 180% of the respective values in the control rats. However, the lung concentration of CINC-1 was not affected by ascorbic acid deficiency. Ascorbic acid deficiency significantly elevated the hepatic mRNA level of CINC-1 (to 480% of the value in the control rats), but not the lung mRNA level. These results demonstrate that ascorbic acid deficiency elevates the serum, liver and spleen concentrations of CINC-1 as seen in acute inflammation, and suggest that ascorbic acid deficiency stimulate the hepatic CINC-1 gene expression.
Singha, Indrani; Das, Subir Kumar
2014-10-01
The phytochemicals present in the grapes are responsible for nutraceutical and health benfits due to their antioxidant properties. These phytochemicals, however, vary greatly among different cultivars. In this study, we evaluated the antioxidant potential and protective role of four different Indian grape (Vitis vinifera) cultivars extracts, namely Flame seedless (Black grapes), Kishmish chorni (Black with reddish brown), Red globe (Red) and Thompson seedless mutant (Sonaka, Green) against the Fenton-like reagent (200 μmole H2O2, 2 mmole ascorbate, 25 μmole FeSO4)-induced liver damage. Non-enzymatic antioxidants, such as glutathione (GSH) levels and activities of antioxidant enzymes, such as glutathione S-transferase (GST) and superoxide dismutase (SOD), as well as total antioxidant capacity (TAC) were highest in the grape seed, followed by skin and pulp. Among edible parts of different cultivars, skin of Flame seedless (Black) cultivar showed highest antioxidant potential, while the Thompson seedless the least potential. These antioxidants were found to be significantly (P < 0.01) correlated with the levels of total phenol, flavonoids and ascorbic acid. Fenton-like reagent treatment significantly (P < 0.001) decreased GSH content by 39.1% and activities of catalase (CAT) by 43.2% and glutathione reductase (GR) by 60%, while increasing thiobarbituric acid reactive substances (TBARS) and nitric oxide levels by 2.13-fold and 0.64-fold, respectively and GST activity by 0.81-fold. Pre-treatment with grape seed extracts showed the best hepatoprotective action against Fenton-like reagent-induced damage, followed by the extracts of skin and pulp of any cultivar. Thus, our study showed the significant amounts of antioxidants were in grape seed, followed by its skin and pulp, which varied among the cultivars and was associated with the protective action of grape extracts against Fenton-like reagent-induced liver damage ex-vivo.
Liu, Fenghong; Wang, Lei; Gu, Liang; Zhao, Wei; Su, Hongyan; Cheng, Xianhao
2015-12-01
In our preliminary study, the ripe fruits of two highbush blueberry (Vaccinium corymbosum L.) cultivars, cv 'Berkeley' and cv 'Bluecrop', were found to contain different levels of ascorbic acid. However, factors responsible for these differences are still unknown. In the present study, ascorbic acid content in fruits was compared with expression profiles of ascorbic acid biosynthetic and recycling genes between 'Bluecrop' and 'Berkeley' cultivars. The results indicated that the l-galactose pathway was the predominant route of ascorbic acid biosynthesis in blueberry fruits. Moreover, higher expression levels of the ascorbic acid biosynthetic genes GME, GGP, and GLDH, as well as the recycling genes MDHAR and DHAR, were associated with higher ascorbic acid content in 'Bluecrop' compared with 'Berkeley', which indicated that a higher efficiency ascorbic acid biosynthesis and regeneration was likely to be responsible for the higher ascorbic acid accumulation in 'Bluecrop'. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lou, Lili; Kang, Jingquan; Pang, Hongxi; Li, Qiuyu; Du, Xiaoping; Wu, Wei; Chen, Junxiu; Lv, Jinyin
2017-01-01
Cadmium (Cd) pollution in food chains pose a potential health risk for humans. Sulfur (S) is a significant macronutrient that plays a significant role in the regulation of plant responses to diverse biotic and abiotic stresses. However, no information is currently available about the impact of S application on ascorbate-glutathione metabolism (ASA-GSH cycle) of Pakchoi plants under Cd stress. The two previously identified genotypes, namely, Aikangqing (a Cd-tolerant cultivar) and Qibaoqing (a Cd-sensitive cultivar), were utilized to investigate the role of S to mitigate Cd toxicity in Pakchoi plants under different Cd regimes. Results showed that Cd stress inhibited plant growth and induced oxidative stress. Exogenous application of S significantly increased the tolerance of Pakchoi seedlings suffering from Cd stress. This effect was demonstrated by increased growth parameters; stimulated activities of the antioxidant enzymes and upregulated genes involved in the ASA-GSH cycle and S assimilation; and by the enhanced ASA, GSH, phytochelatins, and nonprotein thiol production. This study shows that applying S nutrition can mitigate Cd toxicity in Pakchoi plants which has the potential in assisting the development of breeding strategies aimed at limiting Cd phytoaccumulation and decreasing Cd hazards in the food chain. PMID:28933771
Pulmonary bioavailability of ascorbic acid in an ascorbate-synthesising species, the horse.
Deaton, Christopher M; Marlin, David J; Smith, Nicola C; Roberts, Colin A; Harris, Pat A; Kelly, Frank J; Schroter, Robert C
2003-04-01
Vitamin C (ascorbic acid) is a non-enzymatic antioxidant important in protecting the lung against oxidative damage and is decreased in lung lining fluid of horses with airway inflammation. To examine possible therapeutic regimens in a species with ascorbate-synthesising capacity, we studied the effects of oral supplementation of two forms of ascorbic acid, (each equivalent to 20 mg ascorbic acid per kg body weight) on the pulmonary and systemic antioxidant status of six healthy ponies in a 3 x 3 Latin square design. Two weeks supplementation with ascorbyl palmitate significantly increased mean plasma ascorbic acid concentrations compared to control (29 +/- 5 and 18 +/- 7 micromol/l, respectively; p < 0.05). Calcium ascorbyl-2-monophosphate, a more stable form of ascorbic acid, also increased mean plasma ascorbic acid concentrations, but not significantly (23 +/- 1 micromol/l; p = 0.07). The concentration of ascorbic acid in bronchoalveolar lavage fluid increased in five out of six ponies following supplementation with either ascorbyl palmitate or calcium ascorbyl-2-monophosphate compared with control (30 +/- 10, 25 +/- 4 and 18 +/- 8 micromol/l, respectively; p < 0.01). Neither supplement altered the concentration of glutathione, uric acid or alpha-tocopherol in plasma or bronchoalveolar lavage fluid. In conclusion, the concentration of lung lining fluid ascorbic acid is increased following ascorbic acid supplementation (20 mg/kg body weight) in an ascorbate-synthesising species.
Słaba, Mirosława; Różalska, Sylwia; Bernat, Przemysław; Szewczyk, Rafał; Piątek, Milena A; Długoński, Jerzy
2015-12-01
The acceleration of alachlor degradation by Paecilomyces marquandii under controlled and optimized conditions of fungal cultivation in liquid batches was observed (by ca. 20% in comparison to the flask cultures). Acidic environment and oxygen limitation resulted in deterioration of herbicide elimination. Efficient xenobiotic degradation did not correlate with free radicals formation, but some conditions of bioreactor cultivation such as neutral pH and oxygen enriched atmosphere (pO2⩾30%) caused a decrease in the reactive oxygen species (ROS) accumulation in mycelia. The changes in the glutathione (GSH) and ascorbic acid (AA) levels, also in the dismutase (SOD) and catalase (CAT) activities showed active response of the tested fungus against alachlor induced oxidative stress. These results will contribute to the improvement of chloroacetanilides elimination by fungi and extend the knowledge concerning oxidative stress induction and fungal cellular defense. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nyandieka, H S; Wakhis, J; Kilonzo, M M
1990-10-01
The influence of nutritional factors on aflatoxin B1 (AFB1)-induced liver tumours was investigated in rats. When a dose of 500 micrograms AFB1/kg body weight was given to rats in the absence of any anticarcinogen, 80 per cent of the rats developed liver tumours as compared to 0 to 40 per cent in those which received anticarcinogens. While beta-carotene totally inhibited the development of liver tumours ascorbic acid, selenium, and uric acid reduced the percentages of tumour-bearing rats to 13 per cent each. GSH and vitamin E also reduced these percentages to 20 and 40 per cent respectively. The reduction of tumour incidence by each anticarcinogen was associated with induction of increased microsomal enzyme activity. Inhibition of AFB1-induced liver cancer development thus seems to occur through microsomal enzyme induction and AFB1 activation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ourique, Fabiana; Kviecinski, Maicon R.; Zirbel, Guilherme
The purpose of the study was to obtain further in vivo data of antitumor effects and mechanisms triggered by juglone and Q7 in combination with ascorbate. The study was done using Ehrlich ascites tumor-bearing mice. Treatments were intraperitoneal every 24 h for 9 days. Control group was treated with excipient. Previous tests selected the doses of juglone and Q7 plus ascorbate (1 and 100 mg/kg, respectively). Samples of ascitic fluid were collected to evaluate carbonyl proteins, GSH and activity of antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase. Hypoxia inducible factor HIF-1α, GLUT1, proteins driving cell cycle (p53, p16more » and cyclin A) and apoptosis (poly-ADP-polymerase PARP, Bax and Bcl-xL) were assessed by western blot. Tumor cells were categorized by the phase of cell cycle using flow cytometry and type of cell death using acridine orange/ethidium bromide. A glucose uptake assessment was performed by liquid scintillation using Ehrlich tumor cells cultured with {sup 14}C-deoxyglucose. Treatments caused increased protein carbonylation and activity of antioxidant enzymes and decreased levels of GSH, HIF-1α, GLUT1 and glucose uptake in tumor cells. They also caused increased number of tumor cells in G1, p53 and p16 activation and decreased cyclin A, but only when combined with ascorbate. Apoptosis was induced mostly when treatments were done with ascorbate, causing PARP and Bax cleavage, and increased Bax/Bcl-xL ratio. Juglone and Q7 in combination with ascorbate caused inhibition of tumor progress in vivo by triggering apoptosis and cell cycle arrest associated with oxidative stress, suppression of HIF-1 and uncoupling of glycolytic metabolism. - Highlights: • Ascorbate potentiates the inhibition caused by juglone and Q7on tumor progress in vivo. • Juglone and Q7 with ascorbate caused widespread oxidative stress in tumor tissue. • Treatments inhibited HIF-1 and GLUT1 expression causing reduced glucose uptake. • Treatments induced cell cycle arrest and apoptosis in tumor in vivo.« less
Treatment of Irradiated Mice with High-Dose Ascorbic Acid Reduced Lethality
Sato, Tomohito; Kinoshita, Manabu; Yamamoto, Tetsuo; Ito, Masataka; Nishida, Takafumi; Takeuchi, Masaru; Saitoh, Daizoh; Seki, Shuhji; Mukai, Yasuo
2015-01-01
Ascorbic acid is an effective antioxidant and free radical scavenger. Therefore, it is expected that ascorbic acid should act as a radioprotectant. We investigated the effects of post-radiation treatment with ascorbic acid on mouse survival. Mice received whole body irradiation (WBI) followed by intraperitoneal administration of ascorbic acid. Administration of 3 g/kg of ascorbic acid immediately after exposure significantly increased mouse survival after WBI at 7 to 8 Gy. However, administration of less than 3 g/kg of ascorbic acid was ineffective, and 4 or more g/kg was harmful to the mice. Post-exposure treatment with 3 g/kg of ascorbic acid reduced radiation-induced apoptosis in bone marrow cells and restored hematopoietic function. Treatment with ascorbic acid (3 g/kg) up to 24 h (1, 6, 12, or 24 h) after WBI at 7.5 Gy effectively improved mouse survival; however, treatments beyond 36 h were ineffective. Two treatments with ascorbic acid (1.5 g/kg × 2, immediately and 24 h after radiation, 3 g/kg in total) also improved mouse survival after WBI at 7.5 Gy, accompanied with suppression of radiation-induced free radical metabolites. In conclusion, administration of high-dose ascorbic acid might reduce radiation lethality in mice even after exposure. PMID:25651298
Khan, Mumtaz; Daud, M K; Basharat, Ali; Khan, Muhammad Jamil; Azizullah, Azizullah; Muhammad, Niaz; Muhammad, Noor; Ur Rehman, Zia; Zhu, Shui Jin
2016-05-01
Plants face changes in leaves under lead (Pb) toxicity. Reduced glutathione (GSH) has several functions in plant metabolism, but its role in alleviating Pb toxicity in cotton leaves is still unknown. In the present study, cotton seedlings (28 days old) were exposed to 500 μM Pb and 50 μM GSH, both alone and in combination, for a period of 10 days, in the Hoagland solution under controlled growth conditions. Results revealed Pb-induced changes in cotton's leaf morphology, photosynthesis, and oxidative metabolism. However, exogenous application of GSH restored leaf growth. GSH triggered build up of chlorophyll a, chlorophyll b, and carotenoid contents and boosted fluorescence ratios (F v/F m and F v/F 0). Moreover, GSH reduced the malondialdehyde (MDA), hydrogen peroxide (H2O2), and Pb contents in cotton leaves. Results further revealed that total soluble protein contents were decreased under Pb toxicity; however, exogenously applied GSH improved these contents in cotton leaves. Activities of antioxidant enzymes (catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione reductase (GR), and ascorbate peroxidase (APX)) were also increased by GSH application under Pb toxicity. Microscopic analysis showed that excess Pb shattered thylakoid membranes in chloroplasts. However, GSH stabilized ultrastructure of Pb-stressed cotton leaves. These findings suggested that exogenously applied GSH lessened the adverse effects of Pb and improved cotton's tolerance to oxidative stress.
Effect of docosahexaenoic acid and ascorbate on peroxidation of retinal membranes of ODS rats.
Wang, Jin-Ye; Sekine, Seiji; Saito, Morio
2003-04-01
Mutant male osteogenic disorder Shionogi (ODS) rats, unable to synthesize ascorbic acid, were fed diets containing a high content of docosahexaenoic acid (DHA) and different amounts of ascorbic acid, to study the effect of DHA on peroxidative susceptibility of the retina and possible antioxidant action of ascorbic acid. ODS rats were fed from 7 weeks of age with diets containing high DHA (6.4% of total energy). A control group received a diet high in linoleic acid. The diets also contained varying amounts of ascorbic acid. Fatty acid compositions and phospholipid hydroperoxides in rod outer segment (ROS) membranes, and retinal ascorbic acid were analyzed. DHA in ROS membranes was significantly increased in rats fed high DHA, compared with the linoleic acid diet. Levels of phospholipid hydroperoxides in the DHA-fed rats were significantly higher than the linoleic acid-fed rats. Ascorbic acid supplementation did not suppress the phospholipid hydroperoxide levels after a high DHA diet, even when the supplement increased the content of retinal ascorbic acid. In conclusion, high DHA feeding induced a marked increase of phospholipid hydroperoxides in ROS membranes of ODS rats. Supplementation of ascorbic acid did not reverse this increase.
An acute study on the relative gastro-intestinal absorption of a novel form of calcium ascorbate.
Bush, M J; Verlangieri, A J
1987-07-01
Several functions of L-ascorbic acid (vitamin C) have been suggested in addition to its role in the prevention of scurvy. Consequently, a controversy has arisen over the daily intake of the vitamin which will afford maximum benefits. Rapid cellular uptake and delayed renal excretion of ascorbic acid would be conducive to providing optimum cellular concentration for biochemical activity. ESTER-C (patent pending), a complex consisting of L-ascorbic acid and Ca++, has been recently developed by Inter-Cal Corporation (421 Miller Road, Prescott, AZ 86301). It has been proposed that the structure of ESTER-C may render it more readily absorbed and less rapidly excreted than the acid or salt form of the vitamin. To test this hypothesis, ESTER-C and L-ascorbic acid were administered to two groups of rats. Blood was sampled at 20, 40, 80, 160 and 240 minutes and plasma analyzed for ascorbic acid. As urine appeared in collection cups, it was tested qualitatively for the presence of ascorbic acid. The plasma concentration of ascorbic acid was higher in ESTER-C treated rats at 20, 40 and 80 minutes than in rats given L-ascorbic acid. Ascorbic acid was detected in the urine of animals administered ESTER-C later than in those treated with L-ascorbic acid. These results support the hypothesis that ESTER-C is absorbed more readily and excreted less rapidly than L-ascorbic acid.
Elmore, Amy R
2005-01-01
L-Ascorbic Acid, Calcium Ascorbate, Magnesium Ascorbate, Magnesium Ascorbyl Phosphate, Sodium Ascorbate, and Sodium Ascorbyl Phosphate function in cosmetic formulations primarily as antioxidants. Ascorbic Acid is commonly called Vitamin C. Ascorbic Acid is used as an antioxidant and pH adjuster in a large variety of cosmetic formulations, over 3/4 of which were hair dyes and colors at concentrations between 0.3% and 0.6%. For other uses, the reported concentrations were either very low (<0.01%) or in the 5% to 10% range. Calcium Ascorbate and Magnesium Ascorbate are described as antioxidants and skin conditioning agents--miscellaneous for use in cosmetics, but are not currently used. Sodium Ascorbyl Phosphate functions as an antioxidant in cosmetic products and is used at concentrations ranging from 0.01% to 3%. Magnesium Ascorbyl Phosphate functions as an antioxidant in cosmetics and was reported being used at concentrations from 0.001% to 3%. Sodium Ascorbate also functions as an antioxidant in cosmetics at concentrations from 0.0003% to 0.3%. Related ingredients (Ascorbyl Palmitate, Ascorbyl Dipalmitate, Ascorbyl Stearate, Erythorbic Acid, and Sodium Erythorbate) have been previously reviewed by the Cosmetic Ingredient Review (CIR) Expert Panel and found "to be safe for use as cosmetic ingredients in the present practices of good use." Ascorbic Acid is a generally recognized as safe (GRAS) substance for use as a chemical preservative in foods and as a nutrient and/or dietary supplement. Calcium Ascorbate and Sodium Ascorbate are listed as GRAS substances for use as chemical preservatives. L-Ascorbic Acid is readily and reversibly oxidized to L-dehydroascorbic acid and both forms exist in equilibrium in the body. Permeation rates of Ascorbic Acid through whole and stripped mouse skin were 3.43 +/- 0.74 microg/cm(2)/h and 33.2 +/- 5.2 microg/cm(2)/h. Acute oral and parenteral studies in mice, rats, rabbits, guinea pigs, dogs, and cats demonstrated little toxicity. Ascorbic Acid and Sodium Ascorbate acted as a nitrosation inhibitor in several food and cosmetic product studies. No compound-related clinical signs or gross or microscopic pathological effects were observed in either mice, rats, or guinea pigs in short-term studies. Male guinea pigs fed a control basal diet and given up to 250 mg Ascorbic Acid orally for 20 weeks had similar hemoglobin, blood glucose, serum iron, liver iron, and liver glycogen levels compared to control values. Male and female F344/N rats and B6C3F(1) mice were fed diets containing up to 100,000 ppm Ascorbic Acid for 13 weeks with little toxicity. Chronic Ascorbic Acid feeding studies showed toxic effects at dosages above 25 mg/kg body weight (bw) in rats and guinea pigs. Groups of male and female rats given daily doses up to 2000 mg/kg bw Ascorbic Acid for 2 years had no macro- or microscopically detectable toxic lesions. Mice given Ascorbic Acid subcutaneous and intravenous daily doses (500 to 1000 mg/kg bw) for 7 days had no changes in appetite, weight gain, and general behavior; and histological examination of various organs showed no changes. Ascorbic Acid was a photoprotectant when applied to mice and pig skin before exposure to ultraviolet (UV) radiation. The inhibition of UV-induced suppression of contact hypersensitivity was also noted. Magnesium Ascorbyl Phosphate administration immediately after exposure in hairless mice significantly delayed skin tumor formation and hyperplasia induced by chronic exposure to UV radiation. Pregnant mice and rats were given daily oral doses of Ascorbic Acid up to 1000 mg/kg bw with no indications of adult-toxic, teratogenic, or fetotoxic effects. Ascorbic Acid and Sodium Ascorbate were not genotoxic in several bacterial and mammalian test systems, consistent with the antioxidant properties of these chemicals. In the presence of certain enzyme systems or metal ions, evidence of genotoxicity was seen. The National Toxicology Program (NTP) conducted a 2-year oral carcinogenesis bioassay of Ascorbic Acid (25,000 and 50,000 ppm) in F344/N rats and B6C3F(1) mice. Ascorbic Acid was not carcinogenic in either sex of both rats and mice. Inhibition of carcinogenesis and tumor growth related to Ascorbic Acid's antioxidant properties has been reported. Sodium Ascorbate has been shown to promote the development of urinary carcinomas in two-stage carcinogenesis studies. Dermal application of Ascorbic Acid to patients with radiation dermatitis and burn victims had no adverse effects. Ascorbic Acid was a photoprotectant in clinical human UV studies at doses well above the minimal erythema dose (MED). An opaque cream containing 5% Ascorbic Acid did not induce dermal sensitization in 103 human subjects. A product containing 10% Ascorbic Acid was nonirritant in a 4-day minicumulative patch assay on human skin and a facial treatment containing 10% Ascorbic Acid was not a contact sensitizer in a maximization assay on 26 humans. Because of the structural and functional similarities of these ingredients, the Panel believes that the data on one ingredient can be extrapolated to all of them. The Expert Panel attributed the finding that Ascorbic Acid was genotoxic in these few assay systems due to the presence of other chemicals, e.g., metals, or certain enzyme systems, which effectively convert Ascorbic Acid's antioxidant action to that of a pro-oxidant. When Ascorbic Acid acts as an antioxidant, the Panel concluded that Ascorbic Acid is not genotoxic. Supporting this view were the carcinogenicity studies conducted by the NTP, which demonstrated no evidence of carcinogenicity. Ascorbic Acid was found to effectively inhibit nitrosamine yield in several test systems. The Panel did review studies in which Sodium Ascorbate acted as a tumor promoter in animals. These results were considered to be related to the concentration of sodium ions and the pH of urine in the test animals. Similar effects were seen with sodium bicarbonate. Because of the concern that certain metal ions may combine with these ingredients to produce pro-oxidant activity, the Panel cautioned formulators to be certain that these ingredients are acting as antioxidants in cosmetic formulations. The Panel believed that the clinical experience in which Ascorbic Acid was used on damaged skin with no adverse effects and the repeat-insult patch test (RIPT) using 5% Ascorbic Acid with negative results supports the finding that this group of ingredients does not present a risk of skin sensitization. These data coupled with an absence of reports in the clinical literature of Ascorbic Acid sensitization strongly support the safety of these ingredients.
Laporte, Daniel; Valdés, Natalia; González, Alberto; Sáez, Claudio A; Zúñiga, Antonio; Navarrete, Axel; Meneses, Claudio; Moenne, Alejandra
2016-08-01
Transcriptomic analyses were performed in the green macroalga Ulva compressa cultivated with 10μM copper for 24h. Nucleotide sequences encoding antioxidant enzymes, ascorbate peroxidase (ap), dehydroascorbate reductase (dhar) and glutathione reductase (gr), enzymes involved in ascorbate (ASC) synthesis l-galactose dehydrogenase (l-gdh) and l-galactono lactone dehydrogenase (l-gldh), in glutathione (GSH) synthesis, γ-glutamate-cysteine ligase (γ-gcl) and glutathione synthase (gs), and metal-chelating proteins metallothioneins (mt) were identified. Amino acid sequences encoded by transcripts identified in U. compressa corresponding to antioxidant system enzymes showed homology mainly to plant and green alga enzymes but those corresponding to MTs displayed homology to animal and plant MTs. Level of transcripts encoding the latter proteins were quantified in the alga cultivated with 10μM copper for 0-12 days. Transcripts encoding enzymes of the antioxidant system increased with maximal levels at day 7, 9 or 12, and for MTs at day 3, 7 or 12. In addition, the involvement of calmodulins (CaMs), calcium-dependent protein kinases (CDPKs), and the mitogen-activated protein kinase kinase (MEK1/2) in the increase of the level of the latter transcripts was analyzed using inhibitors. Transcript levels decreased with inhibitors of CaMs, CDPKs and MEK1/2. Thus, copper induces overexpression of genes encoding antioxidant enzymes, enzymes involved in ASC and GSH syntheses and MTs. The increase in transcript levels may involve the activation of CaMs, CDPKs and MEK1/2 in U. compressa. Copyright © 2016 Elsevier B.V. All rights reserved.
Konta, Eliziane Mieko; Almeida, Mara Ribeiro; do Amaral, Cátia Lira; Darin, Joana Darc Castania; de Rosso, Veridiana V; Mercadante, Adriana Zerlotti; Antunes, Lusânia Maria Greggi; Bianchi, Maria Lourdes Pires
2014-01-01
Various species of the genus Passiflora have been extensively used in traditional medicine as sedatives, anxiolytics, diuretics and analgesics. In the present study, after the identification and quantification of phytochemical compounds from yellow passion fruit pulp by liquid chromatography-photodiode array-mass spectrometry (HPLC-PDA-MS/MS), its antihypertensive effect was investigated on spontaneously hypertensive rats. Additionally, the renal function, evaluated by kidney/body weight, serum creatinine, proteinuria, urinary flow, reduced glutathione (GSH) levels and thiobarbituric acid-reactive substances (TBARS) and mutagenicity in bone marrow cells were assessed to evaluate the safety of passion fruit consumption. Yellow passion fruit pulp (5, 6 or 8 g/kg b.w.) was administered by gavage once a day for 5 consecutive days. HLPC-PDA-MS/MS analysis revealed that yellow passion fruit pulp contains phenolic compounds, ascorbic acid, carotenoids and flavonoids. The highest dose of passion fruit pulp significantly reduced the systolic blood pressure, increased the GSH levels and decreased TBARS. There were no changes in renal function parameters or the frequency of micronuclei in bone marrow cells. In conclusion, the antihypertensive effect of yellow passion fruit pulp, at least in part, might be due to the enhancement of the antioxidant status. The exact mechanisms responsible by this effect need further investigation. Copyright © 2013 John Wiley & Sons, Ltd.
Supplementation of Ascorbic Acid in Weanling Horses Following Prolonged Transportation
Ralston, Sarah; Stives, Michelle
2012-01-01
Simple Summary Horses normally synthesize adequate amounts of ascorbic acid (vitamin C) in their liver to meet their needs for the vitamin. However, prolonged stress results in low plasma concentrations and reduced immune function. Weanling horses were supplemented with ascorbic acid for 5 or 10 days or no ascorbic acid (4 per group) following 50+ hours of transportation. Supplementation caused increases in plasma concentrations but both supplemented groups had decreased plasma ascorbic acid for 1 to 3 weeks following cessation of supplementation, possibly due to suppressed synthesis. Supplementation of ascorbic acid following prolonged stress will increase plasma concentrations, but prolonged supplementation should be avoided. Abstract Though horses synthesize ascorbic acid in their liver in amounts that meet their needs under normal circumstances, prolonged stress results in low plasma concentrations due to enhanced utilization and renal excretion and can reduce immune function. It was hypothesized that plasma ascorbic acid could be maintained in weanling horses by oral supplementation following prolonged transportation. Weanlings were supplemented with no ascorbic acid (Tx 0: n = 4), 5 grams ascorbic acid twice daily for 5 days (Tx 1: n = 4) or for 10 days (Tx 2: n = 4) following >50 hours of transportation. Supplementation caused slight (P < 0.2) increases in plasma ascorbic acid concentrations. Both supplemented groups had decreased (P < 0.05) plasma concentrations for 1 to 3 weeks following cessation of supplementation, possibly due to increased renal excretion or suppressed hepatic synthesis. Supplementation of ascorbic acid following prolonged stress will increase plasma concentrations, but prolonged supplementation should be avoided. PMID:26486916
Intracellular Ascorbate Prevents Endothelial Barrier Permeabilization by Thrombin*
Parker, William H.; Qu, Zhi-chao; May, James M.
2015-01-01
Intracellular ascorbate (vitamin C) has previously been shown to tighten the endothelial barrier and maintain barrier integrity during acute inflammation in vitro. However, the downstream effectors of ascorbate in the regulation of endothelial permeability remain unclear. In this study, we evaluated ascorbate as a mediator of thrombin-induced barrier permeabilization in human umbilical vein endothelial cells and their immortalized hybridoma line, EA.hy926. We found that the vitamin fully prevented increased permeability to the polysaccharide inulin by thrombin in a dose-dependent manner, and it took effect both before and after subjection to thrombin. Thrombin exposure consumed intracellular ascorbate but not the endogenous antioxidant GSH. Likewise, the antioxidants dithiothreitol and tempol did not reverse permeabilization. We identified a novel role for ascorbate in preserving cAMP during thrombin stimulation, resulting in two downstream effects. First, ascorbate maintained the cortical actin cytoskeleton in a Rap1- and Rac1-dependent manner, thus preserving stable adherens junctions between adjacent cells. Second, ascorbate prevented actin polymerization and formation of stress fibers by reducing the activation of RhoA and phosphorylation of myosin light chain. Although ascorbate and thrombin both required calcium for their respective effects, ascorbate did not prevent thrombin permeabilization by obstructing calcium influx. However, preservation of cAMP by ascorbate was found to depend on both the production of nitric oxide by endothelial nitric-oxide synthase, which ascorbate is known to activate, and the subsequent generation cGMP by guanylate cyclase. Together, these data implicate ascorbate in the prevention of inflammatory endothelial barrier permeabilization and explain the underlying signaling mechanism. PMID:26152729
Tao, Yi-Ming; Yao, Le-Yi; Qin, Qiu-Yan; Shen, Wang
2013-12-26
Polyphenol oxidase (PPO) from jackfruit bulb was purified through acetone precipitation, ion-exchange column, and gel filtration column. PPO was a dimer with the molecular weight of 130 kDa determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration. The Km was 8.3 and 18.2 mM using catechol and 4-methylcatechol as substrates, respectively. The optimum pH was 7.0 (catechol as the substrate) or 6.5 (4-methylcatechol as the substrate). The optimum temperature was 8 °C. The enzyme was stable below 40 °C. The activation energy (Ea) of heat inactivation was estimated to be 103.30 kJ/mol. The PPO activity was activated by Mn(2+), SDS, Tween-20, Triton X-100, citric acid, and malic acid but inhibited by K(+), Zn(2+), Mg(2+), Ca(2+), Ba(2+), cetyl trimethyl ammonium bromide (CTAB), kojic acid, tropolone, glutathione (GSH), cysteine (Cys), and ascorbic acid (AA). Cys and AA were effective to reduce browning of jackfruit bulbs during the storage at 8 °C for 15 days.
Yilmaz, Okkeş; Ozkan, Yusuf; Yildirim, Mehmet; Oztürk, A Ihsan; Erşan, Yasemin
2002-01-01
In this research, it has been aimed to evaluate the improvement effects of alpha lipoic acid (ALA), ascorbic acid-6-palmitate (AA6P), fish oil (FO), and their combination (COM) on some biochemical properties in erythrocytes of streptozotocin (STZ)-induced diabetic male rats. According to experimental results, glutathione (GSH) level in erythrocytes decreased in diabetes (P < 0.01), D + ALA, and D + AA6P groups (P < 0.001). Malonaldehyde (MA) level increased in diabetes (P < 0.05), D + FO, and D + COM groups (P < 0.001), but its level in D + AA6P and D + ALA groups was lower in diabetes group (P < 0.01). Total lipid level in diabetes and diabetes plus antioxidant administered groups were higher than control. Total cholesterol level was high in diabetes and D + ALA groups (P < 0.05), but its level reduced in D + FO compared to control and diabetes groups, P < 0.05, < 0.001, respectively. Total triglyceride (TTG) level was high in the D + ALA (P < 0.05) and D + COM (P < 0.001) groups. In contrast, TTG level in blood of diabetes group was higher than diabetes plus antioxidant and FO administered groups (P < 0.001). According to gas chromatography analysis results, while the palmitic acid raised in diabetes group (P < 0.05), stearic acid in D + FO, D + ALA, and diabetes groups was lower than control (P < 0.05), oleic acid reduced in D + COM and D + FO groups, but its level raised in D + AA6P and D + ALA groups (P < 0.01). As the linoleic acid (LA) elevated in ALA + D, D + AA6P, and diabetes groups, linolenic acid level in diabetes, D + AA6P, and D + FO groups was lower than control (P < 0.001). Arachidonic acid (AA) decreased in D + ALA, D+ AA6P, and diabetes groups (P < 0.01), but its level in D + COM and D + FO was higher than control (P < 0.05). Docosahexaenoic acid (DHA) increased in D + AA6P and D + COM (P < 0.05). While the total saturated fatty acid level raised in diabetes group, its level reduced in D + ALA and D + FO groups (P < 0.05). In contrast, total unsaturated fatty acid level in D + ALA and D + FO groups was higher than control (P < 0.05). In conclusion, present data have confirmed that the combination of the ALA, AA6P, and FO have improvement effects on the recycling of GSSG to reduced GSH in erythrocytes of diabetic rats, and in addition to this, oxidative stress was suppressed by ALA and AA6P, and unsaturated fatty acid degree was raised by the effects of ALA and FO. Copyright 2002 Wiley-Liss, Inc.
Cherdyntseva, Nadezda V; Ivanova, Anna A; Ivanov, Vladimir V; Cherdyntsev, Evgeny; Nair, Cherupally Krishnan Krishnan; Kagiya, Tsutomu V
2013-01-01
To investigate the potential of the anti-oxidant ascorbic acid glucoside (AA-2G) to modulate neurotoxicity induced by high doses of nitrotriazole radiosensitizer. Male and female C56Bl/6xCBA hybrid mice aged 8-14 weeks (weight 18-24 g) were used. Nitrotriazole drug radiosensitizer sanazole at a high dose of 2, 1 g/kg was per os administered to induce neurotoxicity at mice. Ascorbic acid glucoside was given 30 min before the sanazole administration. Serum ascorbic acid, brain glutathione level, as well as behavioral performance using open field apparatus were measured. Administration of high (non-therapeutic) doses of the nitrotriazole drug sanazole results in neurotoxicity in mice as evidenced from behavioral performance, emotional activity and depletion of the cellular antioxidant, glutathione, in the brain. The serum levels of ascorbic acid was also found reduced in high dose sanazole treated animals. Per os administration of ascorbic acid glucoside significantly reduced the neurotoxicity. This effect was associated with the prevention of glutathione depletion in mouse brain and restoring the ascorbic acid level in serum. Administration of ascorbic acid glucoside, but not ascorbic acid, before sanazole administration protected from sanazole-induced neurotoxicity by preventing the decrease in the brain reduced glutathione level and providing high level of ascorbic acid in plasma.
Determining Glutathione Levels in Plants.
Sahoo, Smita; Awasthi, Jay Prakash; Sunkar, Ramanjulu; Panda, Sanjib Kumar
2017-01-01
Upon exposure to abiotic stresses, plants tend to accumulate excessive amounts of reactive oxygen species (ROS) that inturn react with cellular lipids, proteins, and DNA. Therefore, decreasing ROS accumulation is indispensible to survive under stress, which is accomplished by inducing enzymatic and nonenzymatic antioxidant defense pathways. Glutathione, particularly reduced glutathione (GSH), represents a principal anitioxidant that could decrease ROS through scavenging them directly or indirectly through ascorbate-glutathione cycle or GSH peroxidases. Glutathione content can be determined using HPLC or spectrophotometric assays. In this chapter, we provided detailed assays to determine total, reduced, and oxidized gluathione using spectrophotometric method.
Cahyanurani, Annisa' Bias; Chiu, Kuo-Hsun; Wu, Tsung-Meng
2017-09-01
4-tert-octylphenol (OP) is a persistent environmental pollutant with an endocrine-disrupting property. In the present study, we examined the effect of various concentrations of OP (0, 0.5, 1, 1.5, 2 and 3 mg L -1 ) applied to an aquatic plant, the submersed macrophyte Ceratophyllum demersum. The toxic effect caused by OP inhibited the plant's growth rate, reduced total chlorophyll content and increased levels of the reactive oxygen species (ROS) O 2 •- and H 2 O 2 . OP treatment significantly increased the activities of antioxidant enzymes including superoxide dismutase, guaiacol peroxidase, glutathione reductase and ascorbate peroxidase. The contents of the non-enzymatic antioxidant glutathione (GSH) and ratio of GSH to glutathione disulfide were markedly increased with OP treatment. Pretreatment with buthionine sulfoximine, a specific and potent inhibitor of GSH biosynthesis, significantly reduced total GSH content and conferred a more severe toxic phenotype on OP exposure. Thus, with OP-induced oxidative stress, C. demersum might actively regulate the antioxidant machinery, especially the biosynthesis and redox state of GSH. Copyright © 2017 Elsevier Ltd. All rights reserved.
Szigeti, Tamás; Dunster, Christina; Cattaneo, Andrea; Cavallo, Domenico; Spinazzè, Andrea; Saraga, Dikaia E; Sakellaris, Ioannis A; de Kluizenaar, Yvonne; Cornelissen, Eric J M; Hänninen, Otto; Peltonen, Matti; Calzolai, Giulia; Lucarelli, Franco; Mandin, Corinne; Bartzis, John G; Záray, Gyula; Kelly, Frank J
2016-01-01
In the frame of the OFFICAIR project, indoor and outdoor PM2.5 samples were collected in office buildings across Europe in two sampling campaigns (summer and winter). The ability of the particles to deplete physiologically relevant antioxidants (ascorbic acid (AA), reduced glutathione (GSH)) in a synthetic respiratory tract lining fluid, i.e., oxidative potential (OP), was assessed. Furthermore, the link between particulate OP and the concentration of the PM constituents was investigated. The mean indoor PM2.5 mass concentration values were substantially lower than the related outdoor values with a mean indoor/outdoor PM2.5 mass concentration ratio of 0.62 and 0.61 for the summer and winter campaigns respectively. The OP of PM2.5 varied markedly across Europe with the highest outdoor OP(AA) m(-3) and OP(GSH) m(-3) (% antioxidant depletion/m(3) air) values obtained for Hungary, while PM2.5 collected in Finland exhibited the lowest values. Seasonal variation could be observed for both indoor and outdoor OP(AA) m(-3) and OP(GSH) m(-3) with higher mean values during winter. The indoor/outdoor OP(AA) m(-3) and OP(GSH) m(-3) ratios were less than one with 4 and 17 exceptions out of the 40 cases respectively. These results indicate that indoor air is generally less oxidatively challenging than outdoors. Correlation analysis revealed that trace elements play an important role in determining OP, in particular, the Cu content. Indoor air chemistry might affect OP since weaker correlations were obtained for indoor PM2.5. Our findings also suggest that office workers may be exposed to health relevant PM constituents to a different extent within the same building. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pandey, Indu; Kant, Rama
2016-03-15
Clinical manifestations owing to l-ascorbic acid for scurvy as comparison to d-ascorbic acid and challenges of chiral purity are overcome by using chiral selective conductive polymer nanocomposite which mimics antibodies and enzymes. A novel chiral selective imprinted polyaniline-ferrocene-sulfonic acid film has been electrochemically fabricated on C-dots modified pencil graphite electrode. The performance of the obtained l-ascorbic acid or d-ascorbic acid chiral selective sensor was investigated by electrochemical impedance spectroscopy, cyclic and differential pulse voltammetry. The surface characteristics of the C-dots, chiral sensor before and after the de-doping of chiral d- and l-ascorbic acid were characterized by scanning electron microscopy, Raman spectroscopy and X-ray diffraction spectroscopy. Excellent recognition results were obtained by difference in electron transfer resistance. The proposed chiral sensor is capable of measuring d-ascorbic acid or l-ascorbic acid in aqueous as well as in real and commercial samples within the range of 0.020-0.187 nM and 0.003-0.232 nM with detection limit of 0.00073 nM and 0.00016 nM, respectively. The proposed method has also been examined for the chiral selective recognition of ascorbic acid isomers (d- and l-) quantitatively, in complicated matrices of real samples. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Yu Ping; Cheng, Fei; Zhou, Yan Hong
Highlights: Black-Right-Pointing-Pointer Activity of certain Calvin cycle enzymes and CO{sub 2} assimilation are induced by BRs. Black-Right-Pointing-Pointer BRs upregulate the activity of the ascorbate-glutathione cycle in the chloroplasts. Black-Right-Pointing-Pointer BRs increase the chloroplast thiol reduction state. Black-Right-Pointing-Pointer A BR-induced reducing environment increases the stability of photosynthetic enzymes. -- Abstract: Brassinosteroids (BRs) play important roles in plant growth, development, photosynthesis and stress tolerance; however, the mechanism underlying BR-enhanced photosynthesis is currently unclear. Here, we provide evidence that an increase in the BR level increased the quantum yield of PSII, activities of Rubisco activase (RCA) and fructose-1,6-bisphosphatase (FBPase), and CO{sub 2} assimilation.more » BRs upregulated the transcript levels of genes and activity of enzymes involved in the ascorbate-glutathione cycle in the chloroplasts, leading to an increased ratio of reduced (GSH) to oxidized (GSSG) glutathione in the chloroplasts. An increased GSH/GSSG ratio protected RCA from proteolytic digestion and increased the stability of redox-sensitive enzymes in the chloroplasts. These results strongly suggest that BRs are capable of regulating the glutathione redox state in the chloroplasts through the activation of the ascorbate-glutathione cycle. The resulting increase in the chloroplast thiol reduction state promotes CO{sub 2} assimilation, at least in part, by enhancing the stability and activity of redox-sensitive photosynthetic enzymes through post-translational modifications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kviecinski, M.R., E-mail: mrkviecinski@hotmail.com; Pedrosa, R.C., E-mail: rozangelapedrosa@gmail.com; Felipe, K.B., E-mail: kakabettega@yahoo.com.br
2012-05-04
Highlights: Black-Right-Pointing-Pointer The cytotoxicity of juglone is markedly increased by ascorbate. Black-Right-Pointing-Pointer T24 cell death by oxidative stress is necrosis-like. Black-Right-Pointing-Pointer Redox cycling by juglone/ascorbate inhibits cell proliferation. Black-Right-Pointing-Pointer Cellular migration is impaired by juglone/ascorbate. -- Abstract: The effects of juglone on T24 cells were assessed in the presence and absence of ascorbate. The EC{sub 50} value for juglone at 24 h decreased from 28.5 {mu}M to 6.3 {mu}M in the presence of ascorbate. In juglone-treated cells, ascorbate increased ROS formation (4-fold) and depleted GSH (65%). N-acetylcysteine or catalase restricted the juglone/ascorbate-mediated effects, highlighting the role of oxidative stress inmore » juglone cytotoxicity. Juglone alone or associated with ascorbate did not cause caspase-3 activation or PARP cleavage, suggesting necrosis-like cell death. DNA damage and the mild ER stress caused by juglone were both enhanced by ascorbate. In cells treated with juglone (1-5 {mu}M), a concentration-dependent decrease in cell proliferation was observed. Ascorbate did not impair cell proliferation but its association with juglone led to a clonogenic death state. The motility of ascorbate-treated cells was not affected. Juglone slightly restricted motility, but cells lost their ability to migrate most noticeably when treated with juglone plus ascorbate. We postulate that juglone kills cells by a necrosis-like mechanism inhibiting cell proliferation and the motility of T24 cells. These effects are enhanced in the presence of ascorbate.« less
Control of enzymatic browning in apple slices by using ascorbic acid under different conditions.
el-Shimi, N M
1993-01-01
Control of phenol oxidase activity in apple slices by the use of ascorbic acid at different pH values, temperature and time of incubation was investigated. The enzyme was almost inactivated at 1% and 1.5% ascorbic acid. Ascorbic acid solution (1%) caused a remarkable inhibition with the increasing acidity up to pH = 1. Heating treatments for apple slices dipped in 1% ascorbic acid caused a reduction of enzymatic browning, optimum temperature for inactivation of the enzyme was between 60-70 degrees C for 15 minutes. Increasing the time of dipping apple slices in 1% ascorbic acid solutions and at different pH values reduce phenolase activity.
Investigation of the antioxidant status in multiple myeloma patients: effects of therapy.
Mehdi, Wesen A; Zainulabdeen, Jwan A; Mehde, Atheer A
2013-01-01
Multiple myeloma is a malignant silent incurable plasma cell disorder. The present study aimed to assessed the activation of the oxidative stress pathway in affected patients. Advanced oxidation protein products (AOPPs), malondialdehyde (MDA), adenosine deaminase (ADA), total antioxidant capacity (TAC) levels, glutathione, ascorbic acid (vitamin C), α-tocopherol (vitamin E) in addition to related enzymes glutathione peroxidase (GSH-Px), glutathione reductase (GSH-R) and superoxide dismutase (SOD) were analyzed in sixty patients with multiple myeloma before and after one month treatment with induction therapy. The results of the study showed a significant elevation in AOPPs, MDA, ADA levels in patients with multiple myeloma before and after treatment in comparison to healthy control samples In contrast TAC glutathione, vitamin C and E, and the antioxidant enzymes levels were decreased significantly. On comparing samples of MM patients after treatment, there was significant increase of TAC glutathione, vitamin C and E, and the antioxidant enzymes in parallel with decreasing AOPPs, MDA and ADA levels in comparison with samples of patients before treatment. The results indicate oxidative stress and DNA damage activity increase in MM and are alleviated in response to therapy.
21 CFR 172.315 - Nicotinamide-ascorbic acid complex.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Nicotinamide-ascorbic acid complex. 172.315... HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.315 Nicotinamide-ascorbic acid complex. Nicotinamide-ascorbic acid complex may be safely used in accordance with the following prescribed conditions...
Therapeutic review: is ascorbic acid of value in chromium poisoning and chromium dermatitis?
Bradberry, S M; Vale, J A
1999-01-01
Repeated topical exposure to chromium(VI) may cause an allergic contact dermatitis or the formation of chrome ulcers. Systemic toxicity may occur following the ingestion of a chromium(VI) salt, from chromium(VI)-induced skin burns, or from inhalation of chromium(VI) occurring occupationally. Soluble chromium(VI) salts are usually absorbed more easily and cross cell membranes more readily than trivalent chromium salts, and, therefore chromium(VI) is more toxic than chromium(III). In experimental studies, endogenous ascorbic acid in rat lung, liver, and kidney and human plasma, effectively reduces chromium(VI) to chromium(III). The administration of exogenous ascorbic acid has been advocated therefore in the treatment of systemic chromium poisoning and chromium dermatitis to enhance the extracellular reduction of chromium(VI) to the less bioavailable chromium(III). In vitro experiments confirm that the addition of ascorbic acid to plasma containing chromium(VI) leads to a dose-dependent reduction of chromium(VI) to chromium(III). In animal studies, parenteral ascorbic acid 0.5-5 g/kg significantly reduced chromium-induced nephrotoxicity when administered 30 minutes before parenteral sodium dichromate and up to 1 hour after parenteral sodium chromate dosing. Parenteral ascorbic acid 0.5-5 g/kg also reduced mortality when given orally up to 2 hours after oral potassium dichromate dosing. However, the administration of parenteral ascorbic acid more than 2 hours after parenteral chromate in these experimental studies did not protect against renal damage, and parenteral ascorbic acid given 3 hours postparenteral chromate increased toxicity. In addition, there is no confirmed clinical evidence that the administration of ascorbic acid lessens morbidity or mortality in systemic chromium poisoning. A possible reason for the lack of benefit of ascorbic acid when administration is delayed, is that chromium(VI) cellular uptake has occurred prior to ascorbic acid administration. Topical 10% ascorbic acid has been claimed to reduce significantly the healing time of experimentally induced chrome ulcers in guinea pigs. The proposed mechanism is reduction on the skin surface of chromium(VI) to chromium(III). Several case reports suggest that topical ascorbic acid is effective in the management of chromium dermatitis but this has not been confirmed in controlled clinical trials and, moreover, the practical difficulties of frequent application are likely to limit its usefulness. Based on experimental studies, substantial amounts of ascorbic acid would need to be administered, preferably parenterally, soon after exposure to prevent systemic toxicity from chromium(VI) in humans. However, as ascorbic acid is a metabolic precursor of oxalate, the administration of ascorbic acid in high dose could lead to acute oxalate nephropathy, particularly in the presence of renal failure. While smaller doses of ascorbic acid (e.g., 10 g intravenously) are not toxic, such doses probably will not reduce the mortality from systemic chromium poisoning. There is currently insufficient evidence to advocate the use of ascorbic acid in the management of systemic chromium toxicity. Topical ascorbic acid may reduce dermal hexavalent chromium exposure, but this observation must be confirmed in controlled studies.
21 CFR 182.8013 - Ascorbic acid.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ascorbic acid. 182.8013 Section 182.8013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8013 Ascorbic acid. (a) Product. Ascorbic acid. (b) Conditions...
21 CFR 582.3013 - Ascorbic acid.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ascorbic acid. 582.3013 Section 582.3013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Ascorbic acid. (a) Product. Ascorbic acid. (b) Conditions of use. This substance is generally recognized as...
Intracellular Ascorbate Prevents Endothelial Barrier Permeabilization by Thrombin.
Parker, William H; Qu, Zhi-chao; May, James M
2015-08-28
Intracellular ascorbate (vitamin C) has previously been shown to tighten the endothelial barrier and maintain barrier integrity during acute inflammation in vitro. However, the downstream effectors of ascorbate in the regulation of endothelial permeability remain unclear. In this study, we evaluated ascorbate as a mediator of thrombin-induced barrier permeabilization in human umbilical vein endothelial cells and their immortalized hybridoma line, EA.hy926. We found that the vitamin fully prevented increased permeability to the polysaccharide inulin by thrombin in a dose-dependent manner, and it took effect both before and after subjection to thrombin. Thrombin exposure consumed intracellular ascorbate but not the endogenous antioxidant GSH. Likewise, the antioxidants dithiothreitol and tempol did not reverse permeabilization. We identified a novel role for ascorbate in preserving cAMP during thrombin stimulation, resulting in two downstream effects. First, ascorbate maintained the cortical actin cytoskeleton in a Rap1- and Rac1-dependent manner, thus preserving stable adherens junctions between adjacent cells. Second, ascorbate prevented actin polymerization and formation of stress fibers by reducing the activation of RhoA and phosphorylation of myosin light chain. Although ascorbate and thrombin both required calcium for their respective effects, ascorbate did not prevent thrombin permeabilization by obstructing calcium influx. However, preservation of cAMP by ascorbate was found to depend on both the production of nitric oxide by endothelial nitric-oxide synthase, which ascorbate is known to activate, and the subsequent generation cGMP by guanylate cyclase. Together, these data implicate ascorbate in the prevention of inflammatory endothelial barrier permeabilization and explain the underlying signaling mechanism. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Maniyar, Shaheen A; Jargar, Jameel G; Das, Swastika N; Dhundasi, Salim A; Das, Kusal K
2012-01-01
Objective To evaluate the alteration of chemical behavior of L-ascorbic acid (vitamin C) with metal ion (nickel) at different pH solutions in vitro. Methods Spectra of pure aqueous solution of L-ascorbic acid (E mark) compound and NiSO4 (H2O) (sigma USA) were evaluated by UV visible spectrophotometer. Spectral analysis of L-ascorbic acid and nickel at various pH (2.0, 7.0, 7.4 and 8.6) at room temperature of 29 °C was recorded. In this special analysis, combined solution of L-ascorbic acid and nickel sulfate at different pH was also recorded. Results The result revealed that λmax (peak wavelength of spectra) of L-ascorbic acid at pH 2.0 was 289.0 nm whereas at neutral pH 7.0, λmax was 295.4 nm. In alkaline pH 8.6, λmax was 295.4 nm and at pH 7.4 the λmax of L-ascorbic acid remained the same as 295.4 nm. Nickel solution at acidic pH 2.0 was 394.5 nm, whereas at neutral pH 7.0 and pH 7.4 were the same as 394.5 nm. But at alkaline pH 8.6, λmax value of nickel sulfate became 392.0 nm. The combined solution of L-ascorbic acid and nickel sulfate (6 mg/mL each) at pH 2.0 showed 292.5 nm and 392.5 nm, respectively whereas at pH 7.0, L-ascorbic acid showed 296.5 nm and nickel sulfate showed 391.5 nm. At pH 7.4, L-ascorbic acid showed 297.0 nm and nickel sulfate showed 394.0 nm in the combined solution whereas at pH 8.6 (alkaline) L-ascorbic acid and nickel sulfate were showing 297.0 and 393.5 nm, respectively. Conclusions Results clearly indicate an altered chemical behavior of L-ascorbic acid either alone or in combination with nickel sulfate in vitro at different pH. Perhaps oxidation of L-ascorbic acid to L-dehydro ascorbic acid via the free radical (HSc*) generation from the reaction of H2ASc + Ni (II) is the cause of such alteration of λmax value of L-ascorbic acid in the presence of metal nickel. PMID:23569901
Morais, H; Rodrigues, P; Ramos, C; Forgács, E; Cserháti, T; Oliveira, J
2002-10-01
The effect of ascorbic acid, light, and storage on the stability of the pigments beta-carotene and capsanthin in red pepper (Capsicum annuum) powder has been elucidated by determining the amount of pigment in samples treated by various concentrations of ascorbic acid. Determination of pigment concentration has been performed after different storage times using high-performance liquid chromatography. The dependence of the concentration of pigments on the concentration of ascorbic acid, presence of light and the storage time has been assessed by stepwise regression analysis. The concentration of pigments decreased at longer storage time and increased at higher concentration of ascorbic acid, beta-carotene being more sensitive towards storage time and concentration of ascorbic acid than capsanthin. Interaction between the effects of light and storage time, and light and concentration of ascorbic acid has been established.
NASA Astrophysics Data System (ADS)
Tominaga, Yoko; Kadota, Kazunori; Shimosaka, Atsuko; Yoshida, Mikio; Oshima, Kotaro; Shirakawa, Yoshiyuki
2018-05-01
The preparation of the titanium dioxide hollow particles encapsulating L-ascorbic acid via sol-gel process using inkjet nozzle has been performed, and the sustained release and the effect protecting against degradation of L-ascorbic acid in the particles were investigated. The morphology of titanium dioxide particles was evaluated by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). The sustained release and the effect protecting against degradation of L-ascorbic acid were estimated by dialysis bag method in phosphate buffer saline (PBS) (pH = 7.4) as release media. The prepared titanium dioxide particles exhibited spherical porous structures. The particle size distribution of the titanium dioxide particles was uniform. The hollow titanium dioxide particles encapsulating L-ascorbic acid showed the sustained release. It was also found that the degradation of L-ascorbic acid could be inhibited by encapsulating L-ascorbic acid in the titanium dioxide hollow particles.
Interference of ascorbic acid with chemical analytes.
Meng, Qing H; Irwin, William C; Fesser, Jennifer; Massey, K Lorne
2005-11-01
Ascorbic acid can interfere with methodologies involving redox reactions, while comprehensive studies on main chemistry analysers have not been reported. We therefore attempted to determine the interference of ascorbic acid with analytes on the Beckman Synchron LX20. Various concentrations of ascorbic acid were added to serum, and the serum analytes were measured on the LX20. With a serum ascorbic acid concentration of 12.0 mmol/L, the values for sodium, potassium, calcium and creatinine increased by 43%, 58%, 103% and 26%, respectively (P<0.01). With a serum ascorbic acid concentration of 12.0 mmol/L, the values for chloride, total bilirubin and uric acid decreased by 33%, 62% and 83%, respectively (P<0.01), and were undetectable for total cholesterol, triglyceride, ammonia and lactate. There was no definite influence of ascorbic acid on analytical values for total CO(2), urea, glucose, phosphate, total protein, albumin, amylase, creatine kinase, creatine kinase-MB, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total iron, unbound iron-binding capacity or magnesium. Ascorbic acid causes a false increase in sodium, potassium, calcium and creatinine results and a false decrease in chloride, total bilirubin, uric acid, total cholesterol, triglyceride, ammonia and lactate results.
Martinello, Flávia; Luiz da Silva, Edson
2006-11-01
Ascorbic acid interferes negatively in peroxidase-based tests (Trinder method). However, the precise mechanism remains unclear for tests that use peroxide, a phenolic compound and 4-aminophenazone (4-AP). We determined the chemical mechanism of this interference, by examining the effects of ascorbic acid in the reaction kinetics of the production and reduction of the oxidized chromophore in urate, cholesterol, triglyceride and glucose tests. Reaction of ascorbic acid with the Trinder method constituents was also verified. Ascorbic acid interfered stoichiometrically with all tests studied. However, it had two distinct effects on the reaction rate. In the urate test, ascorbic acid decreased the chromophore formation with no change in its production kinetics. In contrast, in cholesterol, triglyceride and glucose tests, an increase in the lag phase of color development occurred. Of all the Trinder constituents, only peroxide reverted the interference. In addition, ascorbic acid did not interfere with oxidase activity nor reduce significantly the chromophore formed. Peroxide depletion was the predominant chemical mechanism of ascorbic acid interference in the Trinder method with phenolics and 4-AP. Distinctive effects of ascorbic acid on the reaction kinetics of urate, cholesterol, glucose and triglyceride might be due to the rate of peroxide production by oxidases.
Taira, Norihisa; Katsuyama, Yushi; Yoshioka, Masato; Muraoka, Osamu; Morikawa, Toshio
2018-04-10
l-Ascorbic acid has multifunctional benefits on skin aesthetics, including inhibition of melanin production, and is widely used in cosmetics. It, however, has low stability and poor skin penetration. We hypothesize that alkylglyceryl-l-ascorbic acid derivatives, highly stable vitamin C-alkylglycerol conjugates, would have similar anti-melanogenic activity with better stability and penetration. We test 28 alkylglyceryl-l-ascorbic acid derivatives ( 1 - 28 ) on theophylline-stimulated B16 melanoma 4A5 cells to determine if they inhibit melanogenesis and establish any structure-function relationships. Although not the most potent inhibitors, 3- O -(2,3-dihydroxypropyl)-2- O -hexyl-l-ascorbic acid ( 6 , IC 50 = 81.4 µM) and 2- O -(2,3-dihydroxypropyl)-3- O -hexyl-l-ascorbic acid ( 20 , IC 50 = 117 µM) are deemed the best candidate derivatives based on their inhibitory activities and low toxicities. These derivatives are also found to be more stable than l-ascorbic acid and to have favorable characteristics for skin penetration. The following structural requirements for inhibitory activity of alkylglyceryl-l-ascorbic acid derivatives are also determined: (i) alkylation of glyceryl-l-ascorbic acid is essential for inhibitory activity; (ii) the 3- O -alkyl-derivatives ( 2 - 14 ) exhibit stronger inhibitory activity than the corresponding 2- O -alkyl-derivatives ( 16 - 28 ); and (iii) derivatives with longer alkyl chains have stronger inhibitory activities. Mechanistically, our studies suggest that l-ascorbic acid derivatives exert their effects by suppressing the mRNA expression of tyrosinase and tyrosine-related protein-1.
Sahin, N; Onderci, M; Sahin, K; Gursu, M F; Smith, M O
2004-02-01
1. The effects of ascorbic acid (L-ascorbic acid) and melatonin supplementation on performance, carcase characteristics, malondialdehyde (MDA) as lipid peroxidation indicator, ascorbic acid, retinol, tocopherol and mineral status in the Japanese quail (Coturnix coturnix japonica) exposed to high ambient temperature were evaluated. 2. Two hundred and forty Japanese quails (10 d old) were randomly assigned to 8 treatment groups consisting of 10 replicates of three birds each. The birds were kept in a temperature-controlled room at 22 degrees C (Thermoneutral, TN groups) or 34 degrees C (for 8 h/d; 09:00 to 17:00 h; Heat stress, HS groups). Birds in both TN and HS were fed either a basal (control) diet or the basal diet supplemented with 250 mg of L-ascorbic acid/kg of diet (Ascorbic acid group), 40 mg of melatonin/kg of diet (Melatonin group) or both (Ascorbic acid + Melatonin group). 3. Supplementing heat-stressed quails with ascorbic acid and melatonin improved performance compared with the control group. Effects generally were greatest in quails supplemented with both ascorbic acid and melatonin. 4. Although supplementation did not consistently restore the concentrations of serum ascorbic acid, retinol and tocopherol to those of TN groups, these concentrations increased significantly with supplementation. Furthermore, serum and liver MDA and serum cholesterol and glucose concentrations were lower in the supplemented groups than in the heat-stressed controls. 5. Within each environment, excretion of Ca, P, Mg, Zn, Fe and Cr were lowest in the combination group and, in all cases, highest in the HS group. Interactions between diet and temperature were detected for live weight gain, cold carcase weight, MDA, ascorbic acid, tocopherol concentrations and excretion of zinc. 6. The results of the study indicate that ascorbic acid and melatonin supplementation attenuate the decline in performance and antioxidant and mineral status caused by heat stress and such supplementation may offer protection against heat-stress-related depression in performance of Japanese quails.
Shen, Wenbiao
2012-01-01
This work examines the involvement of haem oxygenase-1 (HO-1) in salicylic acid (SA)-induced alleviation of oxidative stress as a result of cadmium (Cd) stress in alfalfa (Medicago sativa L.) seedling roots. CdCl2 exposure caused severe growth inhibition and Cd accumulation, which were potentiated by pre-treatment with zinc protoporphyrin (ZnPPIX), a potent HO-1 inhibitor. Pre-treatment of plants with the HO-1 inducer haemin or SA, both of which could induce MsHO1 gene expression, significantly reduced the inhibition of growth and Cd accumulation. The alleviation effects were also evidenced by a decreased content of thiobarbituric acid-reactive substances (TBARS). The antioxidant behaviour was confirmed by histochemical staining for the detection of lipid peroxidation and the loss of plasma membrane integrity. Furthermore, haemin and SA pre-treatment modulated the activities of ascorbate peroxidase (APX), superoxide dismutase (SOD), and guaiacol peroxidase (POD), or their corresponding transcripts. Significant enhancement of the ratios of reduced/oxidized homoglutathione (hGSH), ascorbic acid (ASA)/dehydroascorbate (DHA), and NAD(P)H/NAD(P)+, and expression of their metabolism genes was observed, consistent with a decreased reactive oxygen species (ROS) distribution in the root tips. These effects are specific for HO-1, since ZnPPIX blocked the above actions, and the aggravated effects triggered by SA plus ZnPPIX were differentially reversed when carbon monoxide (CO) or bilirubin (BR), two catalytic by-products of HO-1, was added. Together, the results suggest that HO-1 is involved in the SA-induced alleviation of Cd-triggered oxidative stress by re-establishing redox homeostasis. PMID:22915740
Yogeeta, Surinder Kumar; Hanumantra, Rao Balaji Raghavendran; Gnanapragasam, Arunachalam; Senthilkumar, Subramanian; Subhashini, Rajakannu; Devaki, Thiruvengadam
2006-05-01
The present study aims at evaluating the effect of the combination of ferulic acid and ascorbic acid on isoproterenol-induced abnormalities in lipid metabolism. The rats were divided into eight groups: Control, isoproterenol, ferulic acid alone, ascorbic acid alone, ferulic acid+ascorbic acid, ferulic acid+isoproterenol, ascorbic acid+isoproterenol and ferulic acid+ascorbic acid+isoproterenol. Ferulic acid (20 mg/kg b.w.t.) and ascorbic acid (80 mg/kg b.w.t.) both alone and in combination was administered orally for 6 days and on the fifth and the sixth day, isoproterenol (150 mg/kg b.w.t.) was injected intraperitoneally to induce myocardial injury to rats. Induction of rats with isoproterenol resulted in a significant increase in the levels of triglycerides, total cholesterol, free fatty acids, free and ester cholesterol in both serum and cardiac tissue. A rise in the levels of phospholipids, lipid peroxides, low density lipoprotein and very low density lipoprotein-cholesterol was also observed in the serum of isoproterenol-intoxicated rats. Further, a decrease in the level of high density lipoprotein in serum and in the phospholipid levels, in the heart of isoproterenol-intoxicated rats was observed, which was paralleled by abnormal activities of lipid metabolizing enzymes: total lipase, cholesterol ester synthase, lipoprotein lipase and lecithin: cholesterol acyl transferase. Pre-cotreatment with the combination of ferulic acid and ascorbic acid significantly attenuated these alterations and restored the levels to near normal when compared to individual treatment groups. Histopathological observations were also in correlation with the biochemical parameters. These findings indicate the synergistic protective effect of ferulic acid and ascorbic acid on isoproterenol-induced abnormalities in lipid metabolism.
Role of ascorbic acid in stratum corneum lipid models exposed to UV irradiation.
Trommer, Hagen; Böttcher, Roif; Pöppl, Andreas; Hoentsch, Joachim; Wartewig, Siegfried; Neubert, Reinhard H H
2002-07-01
The effects of ascorbic acid on Stratum corneum lipid models following ultraviolet irradiation were studied adding iron ions as transition metal catalysts. Lipid peroxidation was quantified by the thiobarbituric acid assay. The qualitative changes were studied on a molecular level by mass spectrometry. To elucidate the nature of free radical involvement we carried out electron paramagnetic resonance studies. The influence of ascorbic acid on the concentration of hydroxyl radicals was examined using the spin trapping technique. Moreover, we checked the vitamin's ability to react with stable radicals. Ascorbic acid was found to have prooxidative effects in all lipid systems in a concentration dependent manner. The degradation products of ascorbic acid after its prooxidative action were detected. The concentration of the hydroxyl radicals in the Fenton assay was decreased by ascorbic acid. The quantification assay of 2,2-diphenyl-1-picrylhydrazyl hydrate showed reduced concentration levels of the stable radical caused by ascorbic acid. Considering human skin and its constant exposure to UV light and oxygen, an increased pool of iron ions in irradiated skin and the depletion of co-antioxidants, the administration of ascorbic acid in cosmetic formulations or in sunscreens could unfold adverse effects among the Stratum corneum lipids.
Changes in the Ascorbate System during Seed Development of Vicia faba L. 1
Arrigoni, Oreste; De Gara, Laura; Tommasi, Franca; Liso, Rosalia
1992-01-01
Large changes occur in the ascorbate system during the development of Vicia faba seed and these appear closely related to what are generally considered to be the three stages of embryogenesis. During the first stage, characterized by embryonic cells with high mitotic activity, the ascorbic acid/dehydroascorbic acid ratio is about 7, whereas in the following stage, characterized by rapid cell elongation (stage 2), it is lower than 1. The different ascorbic/dehydroascorbic ratio may be correlated with the level of ascorbate free radical reductase activity, which is high in stage 1 and lower in stage 2. Ascorbate peroxidase activity is high and remains constant throughout stages 1 and 2, but it decreases when the water content of the seed begins to decline (stage 3). In the dry seed, the enzyme disappears together with ascorbic acid. Ascorbate peroxidase activity is observed to be 10 times higher than that of catalase, suggesting that ascorbate peroxidase, rather than catalase, is utilized in scavenging the H2O2 produced in the cell metabolism. There is no ascorbate oxidase in the seed of V. faba. V. faba seeds acquire the capability to synthesize ascorbic acid only after 30 days from anthesis, i.e. shortly before the onset of seed desiccation. This suggests that (a) the young seed is furnished with ascorbic acid by the parent plant throughout the period of intense growth, and (b) it is necessary for the seed to be endowed with the ascorbic acid biosynthetic system before entering the resting state so that the seed can promptly synthesize the ascorbic acid needed to reestablish metabolic activity when germination starts. PMID:16668855
Tu, Hongbin; Wang, Yu; Li, Hongyan; Brinster, Lauren R; Levine, Mark
2017-09-01
Despite its transport by glucose transporters (GLUTs) in vitro, it is unknown whether dehydroascorbic acid (oxidized vitamin C, DHA) has any in vivo function. To investigate, we created a chemical transport knockout model using the vitamin C analog 6-bromo-ascorbate. This analog is transported on sodium-dependent vitamin C transporters but its oxidized form, 6-bromo-dehydroascorbic acid, is not transported by GLUTs. Mice (gulo -/- ) unable to synthesize ascorbate (vitamin C) were raised on 6-bromo-ascorbate. Despite normal survival, centrifugation of blood produced hemolysis secondary to near absence of red blood cell (RBC) ascorbate/6-bromo-ascorbate. Key findings with clinical implications were that RBCs in vitro transported dehydroascorbic acid but not bromo-dehydroascorbic acid; RBC ascorbate in vivo was obtained only via DHA transport; ascorbate via DHA transport in vivo was necessary for RBC structural integrity; and internal RBC ascorbate was essential to maintain ascorbate plasma concentrations in vitro/in vivo. Published by Elsevier B.V.
Regulation of embryonic neurotransmitter and tyrosine hydroxylase protein levels by ascorbic acid
Meredith, M. Elizabeth; May, James M.
2013-01-01
Scope: Ascorbic acid (ascorbate) is required to recycle tetrahydrobiopterin, which is necessary for neurotransmitter synthesis by the rate-limiting enzymes tyrosine and tryptophan hydroxylases. We sought to determine whether ascorbate might regulate embryonic brain cortex monoamine synthesis utilizing transgenic mouse models with varying intracellular ascorbate levels. Methods and Results: In embryos lacking the sodium-dependent vitamin C transporter 2 (SVCT2), very low levels of brain ascorbate decreased cortex levels of norepinephrine and dopamine by approximately 33%, but had no effect on cortex serotonin or its metabolite, 5-hydroxyindole acetic acid. This decrease in ascorbate also led to a decrease in protein levels of tyrosine hydroxylase, but not of tryptophan hydroxylase. Increased cortex ascorbate in embryos carrying extra copies of the SVCT2 resulted in increased levels of dopamine and its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), as well as serotonin and 5-hydroxyindole acetic acid. Conclusion: The dependence of embryonic brain cortex neurotransmitter synthesis and tyrosine hydroxylase expression on intracellular ascorbate emphasizes the importance of receiving adequate ascorbate during development. PMID:24095796
Raseetha, Siva; Leong, Sze Ying; Burritt, David John; Oey, Indrawati
2013-06-01
The purpose of this research was to understand the degradation of ascorbic acid and glutathione content in broccoli florets (Brassica oleracea L. italica cv. Bellstar) during prolonged storage and subsequent mechanical processing. The initial content of total ascorbic acid and glutathione in broccoli florets averaged at 5.18 ± 0.23 and 0.70 ± 0.03 μmol/g fresh weight, respectively. Results showed that the content of ascorbic acid and glutathione in broccoli degraded during storage at 23°C, for at least 4.5-fold after 6 days of storage. On each day of storage, broccoli florets were mechanically processed, but the content of total ascorbic acid and glutathione was not significantly affected. When the mechanically processed broccoli florets were further incubated for up to 6h, the amount of ascorbic acid was greatly reduced as compared to glutathione. To obtain an in-depth understanding on the degradation of ascorbic acid and glutathione, the activity of enzymes involved in plant antioxidative system via ascorbate-glutathione cycle, as a response towards oxidative stress that took place during storage was determined in this study. The content of total ascorbic acid and glutathione in broccoli florets before and after mechanical processing were found to decrease concurrently with the activity of ascorbic acid peroxidase and glutathione reductase over the experimental storage duration. Meanwhile, the effect of oxidative stress on the content of ascorbic acid and glutathione was apparent during the 6h of incubation after mechanical processing. This phenomenon was demonstrated by the level of oxidative stress biomarkers examined, in which the formation of lipid peroxides, protein carbonyls and DNA oxidised products was positively associated with the degradation of total ascorbic acid and glutathione. Copyright © 2012 Elsevier Ltd. All rights reserved.
[Alleviation of salt stress during maize seed germination by presoaking with exogenous sugar].
Zhao, Ying; Yang, Ke-jun; Li, Zuo-tong; Zhao, Chang-jiang; Xu, Jing-yu; Hu, Xue- wei; Shi, Xin-xin; Ma, Li-feng
2015-09-01
The maize variety Kenyu 6 was used to study the effects of exogenous glucose (Glc) and sucrose (Suc) on salt tolerance of maize seeds at germination stage under 150 mmol · L(-1) NaCl treatment. Results showed that under salt stress condition, 0.5 mmol · L(-1) exogenous Glc and Suc presoaking could promote seed germination and early seedling growth. Compared with the salt treatment, Glc presoaking increased the shoot length, radicle length and corresponding dry mass up to 1.5, 1.3, 2.1 and 1.8 times, and those of the Suc presoaking treatment increased up to 1.7, 1.3. 2.7 and 1.9 times, respectively. Exogenous Glc and Suc presoaking resulted in decreased levels of thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) content of maize shoot under salt stress, which were lowered by 24.9% and 20.6% respectively. Exogenous Glc and Suc presoaking could increase the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione reductase (GR) and induce glucose-6-phosphate dehydrogenase (G6PDH) activity of maize shoot under salt stress. Compared with the salt treatment. Glc presoaking increased the activity of SOD, APX, GPX, GR and G6PDH by 66.2%, 62.9%, 32.0%, 38.5% and 50.5%, and those of the Suc presoaking increased by 67.5%, 59.8%, 30.0%, 38.5% and 50.4%, respectively. Glc and Suc presoaking also significantly increased the contents of ascorbic acid (ASA) and glutathione (GSH), ASA/DHA and GSH/GSSG. The G6PDH activity was found closely related with the strong antioxidation capacity induced by exogenous sugars. In addition, Glc and Suc presoaking enhanced K+/Na+ in maize shoot by 1.3 and 1.4 times of water soaking salt treatment, respectively. These results indicated that exogenous Glc and Suc presoaking could improve antioxidation capacity of maize seeds and maintain the in vivo K+/Na+ ion balance to alleviate the inhibitory effect of salt stress on maize seed germination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchini, T.; Magnani, N.D.; Paz, M.L.
2014-01-15
It is suggested that systemic oxidative stress and inflammation play a central role in the onset and progression of cardiovascular diseases associated with the exposure to particulate matter (PM). The aim of this work was to evaluate the time changes of systemic markers of oxidative stress and inflammation, after an acute exposure to Residual Oil Fly Ash (ROFA). Female Swiss mice were intranasally instilled with a ROFA suspension (1.0 mg/kg body weight) or saline solution, and plasma levels of oxidative damage markers [thiobarbituric acid reactive substances (TBARSs) and protein carbonyls], antioxidant status [reduced (GSH) and oxidized (GSSG) glutathione, ascorbic acidmore » levels, and superoxide dismutase (SOD) activity], cytokines levels, and intravascular leukocyte activation were evaluated after 1, 3 or 5 h of exposure. Oxidative damage to lipids and decreased GSH/GSSG ratio were observed in ROFA-exposed mice as early as 1 h. Afterwards, increased protein oxidation, decreased ascorbic acid content and SOD activity were found in this group at 3 h. The onset of an adaptive response was observed at 5 h after the ROFA exposure, as indicated by decreased TBARS plasma content and increased SOD activity. The observed increase in oxidative damage to plasma macromolecules, together with systemic antioxidants depletion, may be a consequence of a systemic inflammatory response triggered by the ROFA exposure, since increased TNF-α and IL-6 plasma levels and polymorphonuclear leukocytes activation was found at every evaluated time point. These findings contribute to the understanding of the increase in cardiovascular morbidity and mortality, in association with environmental PM inhalation. - Highlights: • An acute exposure to ROFA triggers the occurrence of systemic oxidative stress. • Changes in plasmatic oxidative stress markers appear as early as 1 h after exposure. • ROFA induces proinflammatory cytokines release and intravascular leukocyte activation. • PMN activation is a relevant source of reactive oxygen species in this model. • These findings may account for previously described cardiopulmonary alterations.« less
Sen, S; Mukherjee, S
1997-01-01
Effect of unsaturated and saturated fats on cholesterol metabolism was studied in ascorbate sufficient and deficient guineapigs. Experimental animals were made chronic ascorbic acid deficient by allowing oral intake of 0.5 mg ascorbic acid/day/animal. Elevation in serum and liver cholesterol and triglyceride along with depression in cholesterol oxidation and 7 alpha-hydroxylation in liver was observed in unsaturated fat fed guineapigs with ascorbate deficiency. Liver microsomal cytochrome P-450 level was found to be low in ascorbate deficient animals. Polyunsaturated fat intake could not lower the serum cholesterol level in ascorbate deficiency. Today polyunsaturated fat in the diet is encouraged all over the world for its hypocholesterolemic effect. This study indicates that polyunsaturated fat intake with ascorbic acid deficiency may produce hypercholesterolemia.
Dasgupta, Jaydip; Elliott, Ruth A; Tincello, Douglas G
2009-01-01
Consumption of carbonated soft drinks is independently associated with the development of overactive bladder (OR 1.41, 95% Cl 1.02-1.95). We have shown previously that artificial sweeteners, present in carbonated soft drinks, enhanced detrusor muscle contraction. Other constituents of soft drinks are preservatives and antioxidants, we evaluated the effects of two of these, ascorbic acid and citric acid, on the contractile response of isolated rat bladder muscle strips. Detrusor muscle strips were suspended in a perfusion organ bath. We determined the effect of ascorbic acid and citric acid on the contractile responses to electrical field stimulation (EFS) in the absence and presence of atropine, carbachol, alpha, beta methylene ATP, potassium and calcium. Ascorbic acid and citric acid (10(-7) M to 10(-3) M) enhanced the contractile response to 10 Hz EFS compared to control (P < 0.01). The frequency and amplitude of spontaneous bladder contractions were enhanced in the presence of ascorbic acid and citric acid by 14%, 21%, 21%, and 11% respectively. Ascorbic acid 10(-4) M significantly increased the atropine resistant response to EFS 5 Hz by 37% (P < 0.01) and inhibited contraction in response to carbachol 10(-4) M by 24%, (P < 0.05). Both ascorbic acid 10(-4) M and citric acid 10(-5) M significantly enhanced maximum contractile responses to alpha, beta methylene ATP, KCI and calcium compared to control. Ascorbic acid and citric acid augmented bladder muscle contraction possibly by enhanced Ca(2+) influx. Presynaptic neurotransmitter release was enhanced by ascorbic acid. Carbonated beverages containing preservatives may aggravate symptoms of OAB. (c) 2009 Wiley-Liss, Inc.
Noh, A Long Sae Mi; Yim, Mijung
2011-03-01
Despite numerous reports of the synergistic effects of beta-glycerophosphate and ascorbic acid in inducing the differentiation of osteoblasts, little is known about their roles in osteoclastic differentiation. Therefore, we investigated the effect of beta-glycerophosphate on osteoclastogenesis in the presence of ascorbic acid using primary mouse bone marrow cultures treated with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-kappaB ligand (RANKL). Beta-Glycerophosphate dose-dependently increased RANKL-induced osteoclast formation in the presence of ascorbic acid. This stimulatory effect was apparent when beta-glycerophosphate and ascorbic acid were only added during the late stages of the culture period, indicating that they influence later events in osteoclastic differentiation. While the combination of beta-glycerophosphate and ascorbic acid inhibited RANKL-stimulated activation of ERK and p38, and degradation of IkappaB, it increased the induction of c-Fos and NFATc1. In addition, beta-glycerophosphate and ascorbic acid together enhanced the induction of COX-2 following RANKL stimulation. Taken together, our data suggest that beta-glycerophosphate and ascorbic acid have synergistic effects on osteoclast formation, increasing RANKL-mediated induction of c-Fos, NFATc1 and COX-2 in osteoclast precursors.
NASA Astrophysics Data System (ADS)
Salkić, M.; Selimović, A.; Pašalić, H.; Keran, H.
2014-03-01
A selective and accurate direct spectrophotometric method was developed for the determination of L-as cor bic acid in dietary supplements. Background correction was based on the oxidation of L-ascorbic acid by potassi um peroxydisulfate in an acidic medium. The molar absorptivity of the proposed method was 1.41 · 104 l/(mol · cm) at 265 nm. The method response was linear up to an L-ascorbic acid concentration of 12.00 μg/ml. The detection limit was 0.11 μg/ml, and the relative standard deviation was 0.9 % (n = 7) for 8.00 μg/ml L-ascorbic acid. Other compounds commonly found in the dietary supplements did not interfere with the detection of L-ascorbic acid. The proposed procedure was successfully applied to the determination of L-ascorbic acid in these supplements, and the results obtained agreed with those obtained by iodine titration.
Remini, Hocine; Mertz, Christian; Belbahi, Amine; Achir, Nawel; Dornier, Manuel; Madani, Khodir
2015-04-15
The stability of ascorbic acid and colour intensity in pasteurised blood orange juice (Citrus sinensis [L.] Osbeck) during one month of storage was investigated at 4-37 °C. The effects of ascorbic acid fortification (at 100, 200 mg L(-1)) and deaeration, temperature/time storage on the kinetic behaviour were determined. Ascorbic acid was monitored by HPLC-DAD and colour intensity by spectrophotometric measurements. Degradation kinetics were best fitted by first-order reaction models for both ascorbic acid and colour intensity. Three models (Arrhenius, Eyring and Ball) were used to assess the temperature-dependent degradation. Following the Arrhenius model, activation energies were ranged from 51 to 135 kJ mol(-1) for ascorbic acid and from 49 to 99 kJ mol(-1) for colour intensity. The effect of storage temperature and deaeration are the most influent factors on kinetics degradation, while the fortification revealed no significant effect on ascorbic acid content and colour intensity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Acuña, Aníbal I; Esparza, Magdalena; Kramm, Carlos; Beltrán, Felipe A; Parra, Alejandra V; Cepeda, Carlos; Toro, Carlos A; Vidal, René L; Hetz, Claudio; Concha, Ilona I; Brauchi, Sebastián; Levine, Michael S; Castro, Maite A
2013-01-01
Huntington's disease has been associated with a failure in energy metabolism and oxidative damage. Ascorbic acid is a powerful antioxidant highly concentrated in the brain where it acts as a messenger, modulating neuronal metabolism. Using an electrophysiological approach in R6/2 HD slices, we observe an abnormal ascorbic acid flux from astrocytes to neurons, which is responsible for alterations in neuronal metabolic substrate preferences. Here using striatal neurons derived from knock-in mice expressing mutant huntingtin (STHdhQ cells), we study ascorbic acid transport. When extracellular ascorbic acid concentration increases, as occurs during synaptic activity, ascorbic acid transporter 2 (SVCT2) translocates to the plasma membrane, ensuring optimal ascorbic acid uptake for neurons. In contrast, SVCT2 from cells that mimic HD symptoms (dubbed HD cells) fails to reach the plasma membrane under the same conditions. We reason that an early impairment of ascorbic acid uptake in HD neurons could lead to early metabolic failure promoting neuronal death.
Acuña, Aníbal I.; Esparza, Magdalena; Kramm, Carlos; Beltrán, Felipe A.; Parra, Alejandra V.; Cepeda, Carlos; Toro, Carlos A.; Vidal, René L.; Hetz, Claudio; Concha, Ilona I.; Brauchi, Sebastián; Levine, Michael S.; Castro, Maite A.
2013-01-01
Huntington’s disease has been associated with a failure in energy metabolism and oxidative damage. Ascorbic acid is a powerful antioxidant highly concentrated in the brain where it acts as a messenger, modulating neuronal metabolism. Using an electrophysiological approach in R6/2 HD slices, we observe an abnormal ascorbic acid flux from astrocytes to neurons, which is responsible for alterations in neuronal metabolic substrate preferences. Here using striatal neurons derived from knock-in mice expressing mutant huntingtin (STHdhQ cells), we study ascorbic acid transport. When extracellular ascorbic acid concentration increases, as occurs during synaptic activity, ascorbic acid transporter 2 (SVCT2) translocates to the plasma membrane, ensuring optimal ascorbic acid uptake for neurons. In contrast, SVCT2 from cells that mimic HD symptoms (dubbed HD cells) fails to reach the plasma membrane under the same conditions. We reason that an early impairment of ascorbic acid uptake in HD neurons could lead to early metabolic failure promoting neuronal death. PMID:24336051
NASA Astrophysics Data System (ADS)
Acuña, Aníbal I.; Esparza, Magdalena; Kramm, Carlos; Beltrán, Felipe A.; Parra, Alejandra V.; Cepeda, Carlos; Toro, Carlos A.; Vidal, René L.; Hetz, Claudio; Concha, Ilona I.; Brauchi, Sebastián; Levine, Michael S.; Castro, Maite A.
2013-12-01
Huntington’s disease has been associated with a failure in energy metabolism and oxidative damage. Ascorbic acid is a powerful antioxidant highly concentrated in the brain where it acts as a messenger, modulating neuronal metabolism. Using an electrophysiological approach in R6/2 HD slices, we observe an abnormal ascorbic acid flux from astrocytes to neurons, which is responsible for alterations in neuronal metabolic substrate preferences. Here using striatal neurons derived from knock-in mice expressing mutant huntingtin (STHdhQ cells), we study ascorbic acid transport. When extracellular ascorbic acid concentration increases, as occurs during synaptic activity, ascorbic acid transporter 2 (SVCT2) translocates to the plasma membrane, ensuring optimal ascorbic acid uptake for neurons. In contrast, SVCT2 from cells that mimic HD symptoms (dubbed HD cells) fails to reach the plasma membrane under the same conditions. We reason that an early impairment of ascorbic acid uptake in HD neurons could lead to early metabolic failure promoting neuronal death.
Shishehbore, Masoud Reza; Aghamiri, Zahra
2014-01-01
In this study, a new reaction system for quantitative determination of ascorbic acid was introduced. The developed method is based on inhibitory effect of ascorbic acid on the Orange G-bromate system. The change in absorbance was followed spectrophotometrically at 478 nm. The dependence of sensitivity on the reaction variables including reagents concentration, temperature and time was investigated. Under optimum experimental conditions, calibration curve was linear over the range 0.7 - 33.5 μg mL(-1) of ascorbic acid including two linear segments and the relative standard deviations (n = 6) for 5.0 and 20.0 μg mL(-1) of ascorbic acid were 1.08 and 1.02%, respectively. The limit of detection was 0.21 μg mL(-) (1) of ascorbic acid. The effect of diverse species was also investigated. The developed method was successfully applied for the determination of ascorbic acid in pharmaceutical samples. The results were in a good agreement with those of reference method.
Paudel, K P; Kumar, S; Meur, S K; Kumaresan, A
2010-04-01
The present study evaluated the effectiveness of ascorbic acid, catalase, chlorpromazine and their combinations in reducing the cryodamages to crossbred bull (Bos taurus x Bos indicus) spermatozoa. A total of 32 ejaculates (eight each from four bulls) were diluted in Tris-citric acid-fructose-egg yolk-glycerol extender. Each ejaculate was split into six parts (five treatment and one control). Treatment groups included 10 mm ascorbic acid, 0.1 mm chlorpromazine, 200 IU/ml catalase, 10 mm ascorbic acid + 0.1 mm chlorpromazine or 200 IU/ml catalase + 0.1 mm chlorpromazine in the extender. Fluorescent probes (Fluorescein isothiocyanate--Pisum sativum agglutinin + Propidium iodide) were used for the assessment of spermatozoa viability and acrosomal status. The proportion of acrosome intact live (AIL), acrosome intact dead, acrosome reacted live and acrosome reacted dead sperm was assessed in fresh, equilibrated and frozen-thawed semen. The functional status of the sperm was assessed using hypo-osmotic sperm swelling test (HOSST). Activities of acrosin and hyaluronidase enzyme were also determined. Lipid peroxidation level was assayed based on the melonaldehyde (MDA) production. In cryopreserved semen, the values of AIL spermatozoa, HOSST response, hyaluronidase and acrosin activity were reduced by 53%, 47%, 34% and 54%, respectively from their initial values in fresh semen. However, MDA level was threefold higher in the frozen-thawed sperm compared with fresh sperm. Significant (p < 0.05) improvement in motility, viability, HOSST response, retention of hyaluonidase and acrosin and reduction in MDA was recorded in ascorbic acid, catalase, ascorbic acid + chlorpromazine and catalase + chlorpromazine incorporated groups. The percentage of AIL sperm was significantly (p < 0.05) higher in ascorbic acid, catalase and ascorbic acid + chlorpromazine incorporated groups compared with the control. Chlorpromazine alone did not improve the post-thaw semen quality but when combined with either ascorbic acid or catalase, improvement in semen quality was noticed. It was inferred that incorporation of ascorbic acid, catalase and ascorbic acid + chlorpromazine in semen extender improved the post-thaw semen quality in crossbred bulls.
Sasso, Simone; Dalmedico, Leticia; Delwing-Dal Magro, Débora; Wyse, Angela T S; Delwing-de Lima, Daniela
2014-08-01
In the present investigation, we initially evaluated the in vitro effect of N-acetylarginine on thiobarbituric acid-reactive substances (TBA-RS), total sulfhydryl content and on the activities of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the blood, kidney and liver of rats. Results showed that N-acetylarginine, at a concentration of 5.0 μM, decreased the activity of CAT in erythrocytes, enhanced TBA-RS in the renal cortex, decreased CAT and SOD activities in the renal medulla and decreased CAT and increased SOD and GSH-Px activities in the liver of 60-day-old rats. Furthermore, we tested the influence of the antioxidants, trolox and ascorbic acid, as well as of the N(ω) -nitro-L-arginine methyl ester (L-NAME) on the effects elicited by N-acetylarginine on the parameters tested. Antioxidants and L-NAME prevented most of the alterations caused by N-acetylarginine on the oxidative stress parameters evaluated. Data indicate that oxidative stress induction is probably mediated by the generation of NO and/or ONOO(-) and other free radicals because L-NAME and antioxidants prevented the effects caused by N-acetylarginine in the blood, renal tissues and liver of rats. Our findings lend support to a potential therapeutic strategy for this condition, which may include the use of appropriate antioxidants for ameliorating the damage caused by N-acetylarginine. Copyright © 2014 John Wiley & Sons, Ltd.
Tripathi, Durgesh K.; Mishra, Rohit K.; Singh, Swati; Singh, Samiksha; Vishwakarma, Kanchan; Sharma, Shivesh; Singh, Vijay P.; Singh, Prashant K.; Prasad, Sheo M.; Dubey, Nawal K.; Pandey, Avinash C.; Sahi, Shivendra; Chauhan, Devendra K.
2017-01-01
The present study investigates ameliorative effects of nitric oxide (NO) against zinc oxide nanoparticles (ZnONPs) phytotoxicity in wheat seedlings. ZnONPs exposure hampered growth of wheat seedlings, which coincided with reduced photosynthetic efficiency (Fv/Fm and qP), due to increased accumulation of zinc (Zn) in xylem and phloem saps. However, SNP supplementation partially mitigated the ZnONPs-mediated toxicity through the modulation of photosynthetic activity and Zn accumulation in xylem and phloem saps. Further, the results reveal that ZnONPs treatments enhanced levels of hydrogen peroxide and lipid peroxidation (as malondialdehyde; MDA) due to severely inhibited activities of the following ascorbate–glutatione cycle (AsA–GSH) enzymes: ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase and dehydroascorbate reductase, and its associated metabolites ascorbate and glutathione. In contrast to this, the addition of SNP together with ZnONPs maintained the cellular functioning of the AsA–GSH cycle properly, hence lesser damage was noticed in comparison to ZnONPs treatments alone. The protective effect of SNP against ZnONPs toxicity on fresh weight (growth) can be reversed by 2-(4carboxy-2-phenyl)-4,4,5,5-tetramethyl- imidazoline-1-oxyl-3-oxide, a NO scavenger, and thus suggesting that NO released from SNP ameliorates ZnONPs toxicity. Overall, the results of the present study have shown the role of NO in the reducing of ZnONPs toxicity through the regulation of accumulation of Zn as well as the functioning of the AsA–GSH cycle. PMID:28220127
Joanny, P; Steinberg, J; Robach, P; Richalet, J P; Gortan, C; Gardette, B; Jammes, Y
2001-06-01
Eight subjects were placed in a decompression chamber for 31 days at pressures from sea level (SL) to 8848 m altitude equivalent. Whole blood lipid peroxidation (LP) was increased at 6000 m by a mean of 23% (P<0.05), at 8000 m by 79% (P<0.01) and at 8848 m by 94% (P<0.01). (All figures are means.) Two days after return to sea level (RSL), it remained high, by 81% (P<0.01), while corresponding erythrocyte GSH/GSSG ratios decreased by 31, 46, 49, 48%, respectively (each P<0.01). Erythrocyte SOD and plasma ascorbate did not change significantly. At sea level, maximal exercise induced a 49% increase in LP (P<0.01), and a 27% decrease in erythrocyte GSH/GSSG ratio relative to resting values (P<0.05). At 6000 m, the LP was enhanced further from 23 (P<0.05) to 66% (P<0.01), and after RSL from 81 (P<0.01) to 232% (P<0.01), while pre-exercise GSH/GSSG ratios did not change significantly. Exercise did not change plasma ascorbate relative to sea level or to 6000 m, but decreased after RSL by 32% (P<0.01). These findings suggest that oxidative stress is induced by prolonged hypobaric hypoxia, and is maintained by rapid return to sea level, similar to the post-hypoxic re-oxygenation process. It is increased by physical exercise.
The kinetics of oxidation of bilirubin and ascorbic acid in solution
NASA Astrophysics Data System (ADS)
Solomonov, A. V.; Rumyantsev, E. V.; Kochergin, B. A.; Antina, E. V.
2012-07-01
The results of a comparative study of the oxidation of bilirubin, ascorbic acid, and their mixture in aqueous solutions under the action of air oxygen and hydrogen peroxide are presented. The observed and true rate constants for the oxidation reactions were determined. It was shown that the oxidation of tetrapyrrole pigment occurred under these conditions bypassing the stage of biliverdin formation to monopyrrole products. Simultaneous oxidation of bilirubin and ascorbic acid was shown to be accompanied by the inhibition of ascorbic acid oxidation by bilirubin, whereas ascorbic acid itself activated the oxidation of bilirubin.
A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid.
Castro, Maite A; Beltrán, Felipe A; Brauchi, Sebastián; Concha, Ilona I
2009-07-01
In this review, we discuss a novel function of ascorbic acid in brain energetics. It has been proposed that during glutamatergic synaptic activity neurons preferably consume lactate released from glia. The key to this energetic coupling is the metabolic activation that occurs in astrocytes by glutamate and an increase in extracellular [K(+)]. Neurons are cells well equipped to consume glucose because they express glucose transporters and glycolytic and tricarboxylic acid cycle enzymes. Moreover, neuronal cells express monocarboxylate transporters and lactate dehydrogenase isoenzyme 1, which is inhibited by pyruvate. As glycolysis produces an increase in pyruvate concentration and a decrease in NAD(+)/NADH, lactate and glucose consumption are not viable at the same time. In this context, we discuss ascorbic acid participation as a metabolic switch modulating neuronal metabolism between rest and activation periods. Ascorbic acid is highly concentrated in CNS. Glutamate stimulates ascorbic acid release from astrocytes. Ascorbic acid entry into neurons and within the cell can inhibit glucose consumption and stimulate lactate transport. For this switch to occur, an ascorbic acid flow is necessary between astrocytes and neurons, which is driven by neural activity and is part of vitamin C recycling. Here, we review the role of glucose and lactate as metabolic substrates and the modulation of neuronal metabolism by ascorbic acid.
de la Torre, Daniel
2008-01-01
The daily variations in cellular and apoplastic ascorbic acid and dehydroascorbic acid levels in a Mediterranean durum wheat cultivar (Triticum durum Desf. cv. Camacho) were analyzed in order to relate them to ambient ozone exposure and to subsequent stomatally absorbed ozone fluxes. The aim of this study is to prove the effectiveness and accuracy of a computer model (SODA) to calculate the mesophyll resistance (rm) to ozone uptake, the percentage of ozone detoxification by apoplastic ascorbic acid, and the ozone flux to the plasmalemma (Fm) in a Mediterranean durum wheat cultivar. These calculated factors were related to apoplastic ascorbic acid levels and to ambient ozone concentrations. These relationships were obtained with a view to explaining the detoxification of ozone by apoplastic ascorbic acid. Ozone detoxifications of up to 52% were found at midday, when maximum ozone concentrations and maximum apoplastic ascorbic acid are seen. Mesophyll resistance was minimum at this time, and ozone flux to the plasmalemma was reduced because of the reaction of ozone with apoplastic ascorbic acid. PMID:19082416
de la Torre, Daniel
2008-12-14
The daily variations in cellular and apoplastic ascorbic acid and dehydroascorbic acid levels in a Mediterranean durum wheat cultivar (Triticum durum Desf. cv. Camacho) were analyzed in order to relate them to ambient ozone exposure and to subsequent stomatally absorbed ozone fluxes. The aim of this study is to prove the effectiveness and accuracy of a computer model (SODA) to calculate the mesophyll resistance (rm) to ozone uptake, the percentage of ozone detoxification by apoplastic ascorbic acid, and the ozone flux to the plasmalemma (Fm) in a Mediterranean durum wheat cultivar. These calculated factors were related to apoplastic ascorbic acid levels and to ambient ozone concentrations. These relationships were obtained with a view to explaining the detoxification of ozone by apoplastic ascorbic acid. Ozone detoxifications of up to 52% were found at midday, when maximum ozone concentrations and maximum apoplastic ascorbic acid are seen. Mesophyll resistance was minimum at this time, and ozone flux to the plasmalemma was reduced because of the reaction of ozone with apoplastic ascorbic acid.
NASA Astrophysics Data System (ADS)
Silva, Cesar R.; Simoni, Jose A.; Collins, Carol H.; Volpe, Pedro L. O.
1999-10-01
Ascorbic acid is suggested as the weighable compound for the standardization of iodine solutions in an analytical experiment in general chemistry. The experiment involves an iodometric titration in which iodine reacts with ascorbic acid, oxidizing it to dehydroascorbic acid. The redox titration endpoint is determined by the first iodine excess that is complexed with starch, giving a deep blue-violet color. The results of the titration of iodine solution using ascorbic acid as a calibration standard were compared with the results acquired by the classic method using a standardized solution of sodium thiosulfate. The standardization of the iodine solution using ascorbic acid was accurate and precise, with the advantages of saving time and avoiding mistakes due to solution preparation. The colorless ascorbic acid solution gives a very clear and sharp titration end point with starch. It was shown by thermogravimetric analysis that ascorbic acid can be dried at 393 K for 2 h without decomposition. This experiment allows general chemistry students to perform an iodometric titration during a single laboratory period, determining with precision the content of vitamin C in pharmaceutical formulations.
Degradation of L-Ascorbic Acid in the Amorphous Solid State.
Sanchez, Juan O; Ismail, Yahya; Christina, Belinda; Mauer, Lisa J
2018-03-01
Ascorbic acid degradation in amorphous solid dispersions was compared to its degradation in the crystalline state. Physical blends and lyophiles of ascorbic acid and polymers (pectins and polyvinylpyrrolidone [PVP]) were prepared initially at 50:50 (w/w), with further studies using the polymer that best inhibited ascorbic acid crystallization in the lyophiles in 14 vitamin : PVP ratios. Samples were stored in controlled environments (25 to 60 °C, 0% to 23% RH) for 1 mo and analyzed periodically to track the physical appearance, change in moisture content, physical state (powder x-ray diffraction and polarized light microscopy), and vitamin loss (high performance liquid chromatography) over time. The glass transition temperatures of select samples were determined using differential scanning calorimetry, and moisture sorption profiles were generated. Ascorbic acid in the amorphous form, even in the glassy amorphous state, was more labile than in the crystalline form in some formulations at the highest storage temperature. Lyophiles stored at 25 and 40 °C and those in which ascorbic acid had crystallized at 60 °C (≥70% ascorbic acid : PVP) had no significant difference in vitamin loss (P > 0.05) relative to physical blend controls, and the length of storage had little effect. At 60 °C, amorphous ascorbic acid lyophiles (≤60% ascorbic acid : PVP) lost significantly more vitamin (P < 0.05) relative to physical blend controls after 1 wk, and vitamin loss significantly increased over time. In these lyophiles, vitamin degradation also significantly increased (P < 0.05) at lower proportions of ascorbic acid, a scenario likely encountered in foods wherein vitamins are naturally present or added at low concentrations and production practices may promote amorphization of the vitamin. Vitamin C is one of the most unstable vitamins in foods. This study documents that amorphous ascorbic acid is less stable than crystalline ascorbic acid in some environments (for example, higher temperatures within 1 wk), especially when the vitamin is present at low concentrations in a product. These findings increase the understanding of how material science properties influence the stability of vitamin C. © 2018 Institute of Food Technologists®.
Protective and Therapeutic Agents for War Gases - Solutions of BAL
1945-04-02
Ascorbic Acid 1.07 Thiosorbitol :7 7§ Catechol 1.07 Menthol p-Toluene Sulfinic Gum Tragacanth .76 Acid 1.07 Glycine .74 Formamidlne Sulfinic...Hydrazine hydrochlorlde d-iao-ascorbic acid Iflcotlnlc acid Ascorbic acid "Avonex" (oat flour concentrate) Sulfanilamide Camphor Menthol Thiodiglycol
Ascorbate as a Biosynthetic Precursor in Plants
Debolt, Seth; Melino, Vanessa; Ford, Christopher M.
2007-01-01
Background and Aims l-Ascorbate (vitamin C) has well-documented roles in many aspects of redox control and anti-oxidant activity in plant cells. This Botanical Briefing highlights recent developments in another aspect of l-ascorbate metabolism: its function as a precursor for specific processes in the biosynthesis of organic acids. Scope The Briefing provides a summary of recent advances in our understanding of l-ascorbate metabolism, covering biosynthesis, translocation and functional aspects. The role of l-ascorbate as a biosynthetic precursor in the formation of oxalic acid, l-threonic acid and l-tartaric acid is described, and progress in elaborating the mechanisms of the formation of these acids is reviewed. The potential conflict between the two roles of l-ascorbate in plant cells, functional and biosynthetic, is highlighted. Conclusions Recent advances in the understanding of l-ascorbate catabolism and the formation of oxalic and l-tartaric acids provide compelling evidence for a major role of l-ascorbate in plant metabolism. Combined experimental approaches, using classic biochemical and emerging ‘omics’ technologies, have provided recent insight to previously under-investigated areas. PMID:17098753
Fetoui, Hamadi; Makni, Mohamed; Garoui, El Mouldi; Zeghal, Najiba
2010-11-01
Lambda-cyhalothrin is a synthetic pyrethroid insecticide used worldwide in agriculture, home pest control, protection of foodstuff and disease vector control. The objective of this study was to investigate the propensity of lambda-cyhalothrin (LTC) to induce oxidative stress, changes in biochemical parameters and enzyme activities in the kidney of male rats and its possible attenuation by Vitamin C (vit C). Renal function, histopathology, tissue malondialdehyde (MDA), protein carbonyl (PCO) levels, antioxidant enzyme activities and reduced glutathione (GSH) levels were evaluated. Exposure of rats to lambda-cyhalothrin, during 3 weeks, caused a significant increase in kidney MDA and protein carbonyl levels (p<0.01) as compared to controls. Co-administration of vitamin C was effective in reducing MDA and PCO levels. The kidney of LTC-treated rats exhibited severe vacuolations, cells infiltration and widened tubular lumen. The activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST) were significantly decreased due to lambda-cyhalothrin exposure. Co-administration of vitamin C ameliorated the increase in enzymatic activities of aminotransferases (AST and ALT), lactate dehydrogenase (LDH), creatinine and urea levels and improved the antioxidant status. These data indicated the protective role of ascorbic acid against lambda-cyhalothrin-induced nephrotoxicity and suggested a significant contribution of its antioxidant property to these beneficial effects. Copyright © 2009 Elsevier GmbH. All rights reserved.
Metabolic Conversion of l-Ascorbic Acid to Oxalic Acid in Oxalate-accumulating Plants 1
Yang, Joan C.; Loewus, Frank A.
1975-01-01
l-Ascorbic acid-1-14C and its oxidation product, dehydro-l-ascorbic acid, produced labeled oxalic acid in oxalate-accumulating plants such as spinach seedlings (Spinacia oleracea) and the detached leaves of woodsorrel (Oxalis stricta and O. oregana), shamrock (Oxalis adenopylla), and begonia (Begonia evansiana). In O. oregana, conversion occurred equally well in the presence or absence of light. This relationship between l-ascorbic acid metabolism and oxalic acid formation must be given careful consideration in attempts to explain oxalic accumulation in plants. PMID:16659288
Sequential injection redox or acid-base titration for determination of ascorbic acid or acetic acid.
Lenghor, Narong; Jakmunee, Jaroon; Vilen, Michael; Sara, Rolf; Christian, Gary D; Grudpan, Kate
2002-12-06
Two sequential injection titration systems with spectrophotometric detection have been developed. The first system for determination of ascorbic acid was based on redox reaction between ascorbic acid and permanganate in an acidic medium and lead to a decrease in color intensity of permanganate, monitored at 525 nm. A linear dependence of peak area obtained with ascorbic acid concentration up to 1200 mg l(-1) was achieved. The relative standard deviation for 11 replicate determinations of 400 mg l(-1) ascorbic acid was 2.9%. The second system, for acetic acid determination, was based on acid-base titration of acetic acid with sodium hydroxide using phenolphthalein as an indicator. The decrease in color intensity of the indicator was proportional to the acid content. A linear calibration graph in the range of 2-8% w v(-1) of acetic acid with a relative standard deviation of 4.8% (5.0% w v(-1) acetic acid, n=11) was obtained. Sample throughputs of 60 h(-1) were achieved for both systems. The systems were successfully applied for the assays of ascorbic acid in vitamin C tablets and acetic acid content in vinegars, respectively.
Expression of Ascorbic Acid Oxidase in Zucchini Squash (Cucurbita pepo L.).
Lin, L S; Varner, J E
1991-05-01
The expression of ascorbic acid oxidase was studied in zucchini squash (Cucurbita pepo L.), one of the most abundant natural sources of the enzyme. In the developing fruit, specific activity of ascorbic acid oxidase was highest between 4 and 6 days after anthesis. Protein and mRNA levels followed the same trend as enzyme activity. Highest growth rate of the fruit occurred before 6 days after anthesis. Within a given fruit, ascorbic acid oxidase activity and mRNA level were highest in the epidermis, and lowest in the central placental region. In leaf tissue, ascorbic acid oxidase activity was higher in young leaves, and very low in old leaves. Within a given leaf, enzyme activity was highest in the fast-growing region (approximately the lower third of the blade), and lowest in the slow-growing region (near leaf apex). High expression of ascorbic acid oxidase at a stage when rapid growth is occurring (in both fruits and leaves), and localization of the enzyme in the fruit epidermis, where cells are under greatest tension during rapid growth in girth, suggest that ascorbic acid oxidase might be involved in reorganization of the cell wall to allow for expansion. Based on the known chemistry of dehydroascorbic acid, the end product of the ascorbic acid oxidase-catalyzed reaction, we have proposed several hypotheses to explain how dehydroascorbic acid might cause cell wall "loosening."
Salivary ascorbic acid levels in betel quid chewers: A biochemical study.
Shetty, Shishir R; Babu, Subhas; Kumari, Suchetha; Prasad, Rajendra; Bhat, Supriya; Fazil, K A
2013-07-01
Quid chewing practice has been a part of our tradition since centuries with little known evidence of oral cancer. However, recent trends show a rise in occurrence of oral cancer often associated with tobacco and arecanut usage. Ascorbic acid is an important salivary antioxidant. Betel leaf which is used in quid is known to contain ascorbic acid. The aim of our study was to assess the salivary levels of ascorbic acid in traditional quid chewers so as to determine whether the betel leaf has protective antioxidant action. Salivary ascorbic acid levels of 60 subjects were estimated using the Dinitrophenyl hydrazine method. The results revealed that quid chewers who used betel leaf had higher salivary ascorbic acid content compared to nonbetel leaf quid chewers. This could possibly be due to the protective antioxidants in the betel leaf.
PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN
PLASMID DNA DAMAGE CAOUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN
ABSTRACT
Both dimethylarsinic acid (DMA(V)) and dimethylarsinous acid (DMA(III)) release iron from human liver ferritin (HLF) with or without the presence of ascorbic acid. ...
NASA Astrophysics Data System (ADS)
Ahn, D. U.; Nam, K. C.
2004-09-01
Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% α-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+α-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.
Effects of L-ascorbic acid on physicochemical characteristics of wheat starch.
Majzoobi, Mahsa; Radi, Mohsen; Farahnaky, Asgar; Tongdang, Tawee
2012-03-01
The main objective of this study was to determine the effects of l-ascorbic acid, as a permitted additive in bakery products, on characteristics of wheat starch. Suspensions of wheat starch (30%, w/w) in water containing 140 mg/kg ascorbic acid before and after gelatinization were prepared and studied using different techniques. The results of scanning electron microscopy showed that some spots appeared on the surface of the starch granules as a result of the addition of ascorbic acid. However, no changes in the starch crystalline pattern and its degree of crystallinity were observed by X-ray diffraction technique. For ungelatinized samples, no difference in the pasting properties of the samples was determined by the rapid visco analyzer, whereas for the gelatinized samples, peak and final viscosities decreased for the samples contained ascorbic acid. Determination of the intrinsic viscosities of the samples showed that addition of ascorbic acid to the gelatinized samples reduced the intrinsic viscosity. In general, it was found that ascorbic acid had some degradation effects on wheat starch molecules particularly after gelatinization. © 2012 Institute of Food Technologists®
A direct ascorbate fuel cell with an anion exchange membrane
NASA Astrophysics Data System (ADS)
Muneeb, Omar; Do, Emily; Tran, Timothy; Boyd, Desiree; Huynh, Michelle; Ghosn, Gregory; Haan, John L.
2017-05-01
Ascorbic Acid (Vitamin C) is investigated as a renewable alternative fuel for alkaline direct liquid fuel cells (DLFCs). The environmentally- and biologically-friendly compound, L-ascorbic acid (AA) has been modeled and studied experimentally under acidic fuel cell conditions. In this work, we demonstrate that ascorbic acid is a more efficient fuel in alkaline media than in acidic media. An operating direct ascorbate fuel cell is constructed with the combination of L-ascorbic acid and KOH as the anode fuel, air or oxygen as the oxidant, a polymer anion exchange membrane, metal or carbon black anode materials and metal cathode catalyst. Operation of the fuel cell at 60 °C using 1 M AA and 1 M KOH as the anode fuel and electrolyte, respectively, and oxygen gas at the cathode, produces a maximum power density of 73 mW cm-2, maximum current density of 497 mA cm-2 and an open circuit voltage of 0.90 V. This performance is significantly greater than that of an ascorbic acid fuel cell with a cation exchange membrane, and it is competitive with alkaline DLFCs fueled by alcohols.
Kobayashi, Misato; Hoshinaga, Yukiko; Miura, Natsuko; Tokuda, Yuki; Shigeoka, Shigeru; Murai, Atsushi; Horio, Fumihiko
2014-01-01
The mechanisms underlying the decrease in hepatic cytochrome P-450 (CYP) content in ascorbic acid deficiency was investigated in scurvy-prone ODS rats. First, male ODS rats were fed a diet containing sufficient ascorbic acid (control) or a diet without ascorbic acid (deficient) for 18 days, with or without the intraperitoneal injection of phenobarbital. Ascorbic acid deficiency decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial cytochrome oxidase (COX) complex IV subunit I protein, and simultaneously increased heme oxygenase-1 protein in microsomes and mitochondria. Next, heme oxygenase-1 inducers, that is lipopolysaccharide and hemin, were administered to phenobaribital-treated ODS rats fed sufficient ascorbic acid. The administration of these inducers decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial COX complex IV subunit I protein. These results suggested that the stimulation of hepatic heme oxygenase-1 expression by ascorbic acid deficiency caused the decrease in CYP content in liver.
Combined effect of selenium and ascorbic acid on alcohol induced hyperlipidemia in male guinea pigs.
Asha, G S; Indira, M
2004-02-01
Alcoholics usually suffer from malnutrition and are especially deficient in micronutrients like vitamin C, selenium and Zn. In the present study, combined effects of selenium and ascorbic acid on alcohol-induced hyperlipidemia were studied in guinea pigs. Four groups of male guinea pigs were maintained for 45 days as follows: control (1 mg ascorbate (AA)/100 g body mass/day), ethanol (900 mg ethanol/100 g body mass + 1 mg AA/100 g body mass/day), selenium+ascorbic acid [(25 mg AA + 0.05 mg Se)/100 g body mass/day], ethanol+selenium+ascorbic acid [(25 mg AA + 0.05 mg Se + 900 mg ethanol)/100 g body mass/day]. Co-administration of selenium and ascorbic acid along with alcohol reduced the concentration of all lipids, as also evidenced from the decreased activities of hydroxymethylglutaryl-CoA reductase and enhanced activities of plasma lecithin cholesterol acyl transferase and lipoprotein lipase. Concentrations of bile acids were increased. We conclude that the supplementation of Se and ascorbic acid reduced alcohol induced hyperlipidemia, by decreased synthesis and increased catabolism.
Leite, Gabriel Adan Araújo; Figueiredo, Thamiris Moreira; Sanabria, Marciana; Dias, Ana Flávia Mota Gonçalves; Silva, Patrícia Villela E; Martins Junior, Airton da Cunha; Barbosa Junior, Fernando; Kempinas, Wilma De Grava
2017-10-01
Dyslipidemias are occurring earlier in the population due to the increase of obesity and bad eating habits. Rosuvastatin inhibits the enzyme HMG-CoA reductase, decreasing total cholesterol. Ascorbic acid is an important antioxidant compound for male reproductive system. This study aimed to evaluate whether ascorbic acid supplementation may prevent the reproductive damage provoked by rosuvastatin administration at prepuberty. Male pups were distributed into six experimental groups that received saline solution 0.9%, 3 or 10mg/kg/day of rosuvastatin, 150mg/day of ascorbic acid, or 150mg/day of ascorbic acid associated with 3 or 10mg/kg/day of rosuvastatin from post-natal day (PND) 23 until PND53. Rosuvastatin-treated groups showed delayed puberty installation, androgen depletion and impairment on testicular and epididymal morphology. Ascorbic acid partially prevented these reproductive damages. In conclusion, rosuvastatin exposure is a probable risk to reproductive development and ascorbic acid supplementation may be useful to prevent the reproductive impairment of rosuvastatin exposure. Copyright © 2017 Elsevier Inc. All rights reserved.
Exploring the Lean Phenotype of Glutathione-Depleted Mice: Thiol, Amino Acid and Fatty Acid Profiles
Elshorbagy, Amany K.; Jernerén, Fredrik; Scudamore, Cheryl L.; McMurray, Fiona; Cater, Heather; Hough, Tertius; Cox, Roger; Refsum, Helga
2016-01-01
Background Although reduced glutathione (rGSH) is decreased in obese mice and humans, block of GSH synthesis by buthionine sulfoximine (BSO) results in a lean, insulin-sensitive phenotype. Data is lacking about the effect of BSO on GSH precursors, cysteine and glutamate. Plasma total cysteine (tCys) is positively associated with stearoyl-coenzyme A desaturase (SCD) activity and adiposity in humans and animal models. Objective To explore the phenotype, amino acid and fatty acid profiles in BSO-treated mice. Design Male C3H/HeH mice aged 11 weeks were fed a high-fat diet with or without BSO in drinking water (30 mmol/L) for 8 weeks. Amino acid and fatty acid changes were assessed, as well as food consumption, energy expenditure, locomotor activity, body composition and liver vacuolation (steatosis). Results Despite higher food intake, BSO decreased particularly fat mass but also lean mass (both P<0.001), and prevented fatty liver vacuolation. Physical activity increased during the dark phase. BSO decreased plasma free fatty acids and enhanced insulin sensitivity. BSO did not alter liver rGSH, but decreased plasma total GSH (tGSH) and rGSH (by ~70%), and liver tGSH (by 82%). Glutamate accumulated in plasma and liver. Urine excretion of cysteine and its precursors was increased by BSO. tCys, rCys and cystine decreased in plasma (by 23–45%, P<0.001 for all), but were maintained in liver, at the expense of decreased taurine. Free and total plasma concentrations of the SCD products, oleic and palmitoleic acids were decreased (by 27–38%, P <0.001 for all). Conclusion Counterintuitively, block of GSH synthesis decreases circulating tCys, raising the question of whether the BSO-induced obesity-resistance is linked to cysteine depletion. Cysteine-supplementation of BSO-treated mice is warranted to dissect the effects of cysteine and GSH depletion on energy metabolism. PMID:27788147
Warner, Timothy A; Kang, Jing-Qiong; Kennard, John A; Harrison, Fiona E
2015-02-01
Seizures are a known co-occurring symptom of Alzheimer's disease, and they can accelerate cognitive and neuropathological dysfunction. Sub-optimal vitamin C (ascorbic acid) deficiency, that is low levels that do not lead the sufferer to present with clinical signs of scurvy (e.g. lethargy, hemorrhage, hyperkeratosis), are easily obtainable with insufficient dietary intake, and may contribute to the oxidative stress environment of both Alzheimer's disease and epilepsy. The purpose of this study was to test whether mice that have diminished brain ascorbic acid in addition to carrying human Alzheimer's disease mutations in the amyloid precursor protein (APP) and presenilin 1 (PSEN1) genes, had altered electrical activity in the brain (electroencephalography; EEG), and were more susceptible to pharmacologically induced seizures. Brain ascorbic acid was decreased in APP/PSEN1 mice by crossing them with sodium vitamin C transporter 2 (SVCT2) heterozygous knockout mice. These mice have an approximately 30% decrease in brain ascorbic acid due to lower levels of SVCT2 that supplies the brain with ASC. SVCT2+/-APP/PSEN1 mice had decreased ascorbic acid and increased oxidative stress in brain, increased mortality, faster seizure onset latency following treatment with kainic acid (10 mg/kg i.p.), and more ictal events following pentylenetetrazol (50 mg/kg i.p.) treatment. Furthermore, we report the entirely novel phenomenon that ascorbic acid deficiency alone increased the severity of kainic acid- and pentylenetetrazol-induced seizures. These data suggest that avoiding ascorbic acid deficiency may be particularly important in populations at increased risk for epilepsy and seizures, such as Alzheimer's disease. Copyright © 2014 Elsevier B.V. All rights reserved.
Salivary ascorbic acid levels in betel quid chewers: A biochemical study
Shetty, Shishir R.; Babu, Subhas; Kumari, Suchetha; Prasad, Rajendra; Bhat, Supriya; Fazil, K. A.
2013-01-01
Background: Quid chewing practice has been a part of our tradition since centuries with little known evidence of oral cancer. However, recent trends show a rise in occurrence of oral cancer often associated with tobacco and arecanut usage. Ascorbic acid is an important salivary antioxidant. Betel leaf which is used in quid is known to contain ascorbic acid. Aim: The aim of our study was to assess the salivary levels of ascorbic acid in traditional quid chewers so as to determine whether the betel leaf has protective antioxidant action. Materials and Methods: Salivary ascorbic acid levels of 60 subjects were estimated using the Dinitrophenyl hydrazine method. Results: The results revealed that quid chewers who used betel leaf had higher salivary ascorbic acid content compared to nonbetel leaf quid chewers. This could possibly be due to the protective antioxidants in the betel leaf. PMID:24455594
D-erythroascorbic acid: Its preparations, chemistry, and metabolism (fungi and plants)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loewus, F.A.; Seib, P.A.
1991-01-01
The origin of oxalate in plants has received considerable attention and glycolate metabolism has been generally regarded as a prime precursor candidate although studies on the metabolism of L-ascorbic acid single out that plant constituent as well. Experiments with oxalate-accumulating plants that contain little or no tartaric acid revealed the presence of a comparable L-ascorbic acid metabolism with the exception that the cleavage products were oxalic acid and L-threonic acid or products of L-threonic acid metabolism. A reasonable mechanism for cleavage of L-ascorbic acid at the endiolic bond is found in studies on the photooxygenation of L-ascorbic acid. Presumably, analogsmore » of L-ascorbic acid that differ only in the substituent at C4 also form a hydroperoxide in the presence of alkaline hydrogen peroxide and subsequently yield oxalic acid and the corresponding aldonic acid or its lactone. We became interested in such a possibility when we discovered that L-ascorbic acid was rare or absent in certain yeasts and fungi whereas a L-ascorbic acid analog, D-glycero-pent-2-enono- 1,4-lactone (D-erythroascorbic acid), was present. It has long been known that oxalate occurs in yeasts and fungi and its production plays a role in plant pathogenesis. As to the biosynthetic origin of fungal oxalic acid there is little information although it is generally assumed that oxaloacetate or possibly, glycolate, might be that precursor.« less
D-erythroascorbic acid: Its preparations, chemistry, and metabolism (fungi and plants). Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loewus, F.A.; Seib, P.A.
1991-12-31
The origin of oxalate in plants has received considerable attention and glycolate metabolism has been generally regarded as a prime precursor candidate although studies on the metabolism of L-ascorbic acid single out that plant constituent as well. Experiments with oxalate-accumulating plants that contain little or no tartaric acid revealed the presence of a comparable L-ascorbic acid metabolism with the exception that the cleavage products were oxalic acid and L-threonic acid or products of L-threonic acid metabolism. A reasonable mechanism for cleavage of L-ascorbic acid at the endiolic bond is found in studies on the photooxygenation of L-ascorbic acid. Presumably, analogsmore » of L-ascorbic acid that differ only in the substituent at C4 also form a hydroperoxide in the presence of alkaline hydrogen peroxide and subsequently yield oxalic acid and the corresponding aldonic acid or its lactone. We became interested in such a possibility when we discovered that L-ascorbic acid was rare or absent in certain yeasts and fungi whereas a L-ascorbic acid analog, D-glycero-pent-2-enono- 1,4-lactone (D-erythroascorbic acid), was present. It has long been known that oxalate occurs in yeasts and fungi and its production plays a role in plant pathogenesis. As to the biosynthetic origin of fungal oxalic acid there is little information although it is generally assumed that oxaloacetate or possibly, glycolate, might be that precursor.« less
Wilhelm, Ethel A; Bortolatto, Cristiani F; Jesse, Cristiano R; Luchese, Cristiane
2014-12-01
The protective effect of ebselen was investigated against 3-nitropropionic acid (3-NP)-induced behavioral and biochemical toxicities in rats. Ebselen (10 or 25 mg/kg, intragastrically) was administered to rats 30 min before 3-NP (20 mg/kg, intraperitoneally) once a day for a period of 4 days. Locomotor activity, motor coordination, and body weight gain were determined. The striatal content of reactive oxygen species (ROS), reduced glutathione (GSH), ascorbic acid (AA), and protein carbonyl as well as catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-S-transferase (GST) activities was determined 24 h after the last dose of 3-NP. Na(+)/ K(+)-ATPase, succinate dehydrogenase (SDH), and δ-aminolevulinic dehydratase (δ-ALA-D) activities were also determined. The results demonstrated that ebselen at a dose of 25 mg/kg, but not at 10 mg/kg, protected against (1) a decrease in locomotor activity, motor coordination impairment, and body weight loss; (2) striatal oxidative damage, which was characterized by an increase in ROS levels, protein carbonyl content, and GR activity, an inhibition of CAT and GPx activities, and a decrease in GSH levels; and (3) an inhibition of SDH and Na(+)/K(+)-ATPase activities, induced by 3-NP. GST activity and AA levels were not modified by ebselen or 3-NP. Ebselen was not effective against the inhibition of δ-ALA-D activity induced by 3-NP. The results revealed a significant correlation between SDH activity and ROS levels, and SDH activity and latency to fall (rotarod test). The present study highlighted the protective effect of ebselen against 3-NP-induced toxicity in rats.
Photodynamic toxicity and its prevention by antioxidative agents in Bufo arenarum embryos.
Stockert, Juan C; Herkovits, Jorge
2003-11-05
In this work we describe an experimental model to evaluate the photodynamic toxicity on amphibian embryos, as well as the protective effect of antioxidants against the lethal oxidative stress induced by photosensitization. Bufo arenarum embryos were treated with 10 mg/l methylene blue (MB) in AMPHITOX solution for 72 h and then irradiated with a red laser or white light for variable times. Both light sources affected the survival of MB-treated animals and lethal effects occurred within the initial 12 h post-irradiation. For white light irradiation, the most effective phototoxic condition in our study, the LD10, 50 and 90 at 6 h post-irradiation corresponded to 13.57, 19.87 and 29.10 J/cm2, respectively. To explore the action of antioxidants against the photogenerated oxidative stress, MB-treated embryos were incubated with 1mM glutathione (GSH) or ascorbic acid (AA) during 48 h before irradiation. For GSH and 21.6 J/cm2 irradiation, the survival increased from 20 to 90%, whereas 100% survival was achieved with AA even after 43.2 J/cm2 irradiation. These results indicate that both the lethal photodynamic effect and its prevention by antioxidants can be evaluated by means of a simple toxicity test employing amphibian embryos.
Circulating oxidative stress caused by Psoroptes natalensis infestation in Indian water buffaloes.
Mahajan, Sumit; Panigrahi, Padma Nibash; Dey, Sahadeb; Dan, Ananya; Kumar, Akhilesh; Mahendran, K; Maurya, P S
2017-09-01
The present study reports the circulating oxidative stress associated with Psoroptes natalensis infestation in Indian water buffaloes. Three non-descriptive water buffaloes, age ranging between 4 and 9 years, presented to Referral Veterinary Polyclinic, IVRI, for treatment served as clinical subject. The infested animals were treated with Ivermectin subcutaneously and Amitraz topically along with antioxidant like ascorbic acid, Vitamin E and selenium. The level of lipid peroxidase was significantly higher (3.94 ± 0.34) in Psoroptes infested buffalo and was reduced significantly ( P ≤ 0.05) after treatment (1.56 ± 0.40). The significantly higher levels of MDA before treatment signify the role of lipid peroxide mediated skin lesions in P. natalensis infested buffaloes. Similarly the activities of the body antioxidant like GSH and CAT were significantly higher ( P ≤ 0.05) after treatment. The less level of the body antioxidant (GSH) and reduced activities of the antioxidant enzymes like CAT and SOD before treatment imply that Psoroptes mite-infested buffaloes were in a state of significant oxidative stress. The study provides information on oxidative stress indices in P. natalensis infested buffaloes and gives additional insight regarding the pathogenesis of the disease and its management.
Ascorbic acid and tannins from Emblica officinalis Gaertn. Fruits--a revisit.
Majeed, Muhammed; Bhat, Beena; Jadhav, Atul N; Srivastava, Jyotish S; Nagabhushanam, Kalyanam
2009-01-14
The fruits of Emblica officinalis Gaertn. (Euphorbiaceae), also known as amla in Ayurveda, are considered to be a rich source of ascorbic acid. However, the antioxidant activities exhibited by E. officinalis extract are superior to those of ascorbic acid itself. Low molecular hydrolyzable tannins emblicanins A and B have been suggested in the earlier literature to be the contributory antioxidant molecules in the extract. This work finds no evidence for the presence of emblicanins A and B in the extract. In addition, the high content of ascorbic acid is also questionable due to previous nonidentification of coeluting mucic acid gallates. This paper reports a new HPLC method to detect even trace amounts of ascorbic acid in E. officinalis fruit juice or extract.
Kim, Hyun-Wook; Hwang, Ko-Eun
2017-01-01
We investigated the effects of fermented red beet extract and ascorbic acid on color development in meat emulsions. The pH of meat emulsions containing red beet extract decreased with an increase in the amount of extract added. The redness of the treated meat emulsions was higher than that of the control with no added nitrite or fermented red beet extract (p<0.05), though the redness of the meat emulsions treated with fermented red beet extract only was lower than in that treated with both fermented red beet extract and ascorbic acid (p<0.05). The highest VBN, TBARS, and total viable count values were observed in the control, and these values in the meat emulsions treated with fermented red beet extract were higher than in that treated with both fermented red beet extract and ascorbic acid (p<0.05). E. coli and coliform bacteria were not found in any of the meat emulsions tested. Treatment T2, containing nitrite and ascorbic acid, had the highest overall acceptability score (p<0.05); however, there was no significant difference between the T2 treatment and the T6 treatment, which contained 10% pre-converted nitrite from red beet extract and 0.05% ascorbic acid (p>0.05). The residual nitrite content of the meat emulsions treated with ascorbic acid was lower than in those treated without ascorbic acid (p<0.05). Thus, the combination of fermented red beet extract and ascorbic acid could be a viable alternative to synthetic nitrite for the stability of color development in meat emulsions. PMID:28515652
Hamdauoui, M; Doghri, T; Tritar, B
1995-01-01
The aim of our study was to evaluate the bioavailability of iron from a typical Tunisian meal 'couscous' provided to healthy rats with or without appropriate mixtures of tea plus ascorbic acid and to search for the optimal amount of ascorbic acid able to overcome the inhibitory effect of tea prepared under realistic Tunisian circumstances. Our findings show that a tea decoction (100 mg/ml) reduced nonheme iron absorption from couscous by 50% (16.5 vs. 33.1%; p < 0.01). In contrast, administration of 20 mg ascorbic acid increased nonheme iron absorption from couscous by more than 100% (66.8 vs. 33.1%; p < 0.001). Administration of ascorbic acid (20 mg) in a tea decoction (100 mg/ml) completely counteracted the inhibiting effect of tea and significantly improved the nonheme iron absorption from couscous (34 vs. 33% in the control group; NS). The same effect was shown when 10 mg ascorbic acid was added to the tea decoction; however, 5 mg ascorbic acid was not able to overcome the inhibitory effect of tea on nonheme iron absorption from couscous (33.1 vs. 19.4%; p < 0.01). Our findings demonstrate that a molar ratio of ascorbic acid and tea equal or superior to 0.25 or 0.50 is necessary to overcome the inhibitory effect in rats of tea prepared under Tunisian circumstances. In relation to human nutrition, for Tunisians who regularly drink tea, we suggest a much greater amount of ascorbic acid than that normally recommended for normal subjects.
Choi, Yun-Sang; Kim, Tae-Kyung; Jeon, Ki-Hong; Park, Jong-Dae; Kim, Hyun-Wook; Hwang, Ko-Eun; Kim, Young-Boong
2017-01-01
We investigated the effects of fermented red beet extract and ascorbic acid on color development in meat emulsions. The pH of meat emulsions containing red beet extract decreased with an increase in the amount of extract added. The redness of the treated meat emulsions was higher than that of the control with no added nitrite or fermented red beet extract ( p <0.05), though the redness of the meat emulsions treated with fermented red beet extract only was lower than in that treated with both fermented red beet extract and ascorbic acid ( p <0.05). The highest VBN, TBARS, and total viable count values were observed in the control, and these values in the meat emulsions treated with fermented red beet extract were higher than in that treated with both fermented red beet extract and ascorbic acid ( p <0.05). E. coli and coliform bacteria were not found in any of the meat emulsions tested. Treatment T2, containing nitrite and ascorbic acid, had the highest overall acceptability score ( p <0.05); however, there was no significant difference between the T2 treatment and the T6 treatment, which contained 10% pre-converted nitrite from red beet extract and 0.05% ascorbic acid ( p >0.05). The residual nitrite content of the meat emulsions treated with ascorbic acid was lower than in those treated without ascorbic acid ( p <0.05). Thus, the combination of fermented red beet extract and ascorbic acid could be a viable alternative to synthetic nitrite for the stability of color development in meat emulsions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, E.H.
1991-01-01
Relationships between ozone (O3) tolerance and leaf ascorbic acid concentrations in O3-susceptible (O3-S) 'Hark' and O3-resistant (O3-R) 'Hood' soybean, Glycine max (L.) Merr., cultivars were examined with high-performance liquid chromatography (HPLC). Leaf samples were analyzed at 4 intervals during a 24 h period. Soybean cultivars grown in the greenhouse with charcoal filtered (CF) and nonfiltered (NF) air showed daily oscillations in ascorbic acid production. Highest ascorbic acid levels in leaves during light coincided with highest concentrations of photochemical oxidants in the atmosphere at 2:00 p.m. The resistant genotype produced more ascorbic acid in its trifoliate leaves than did the correspondingmore » susceptible genotype. Under CF air (an O3-reduced environment) O3-S and O3-R cultivars showed rhythms in ascorbic acid production. In NF air (an O3 stress environment) the O3-R cultivar alone showed rhythms in ascorbic acid production. Results indicated that superior O3 tolerance in the Hood soybean cultivar (compared with Hark) was associated with a greater increase in endogenous levels of ascorbic acid. Ascorbic acid may scavenge free radicals and thereby protect cells from injury by O3 or other oxyradical products. Plants defend themselves against photochemical oxidant stress, such as O3, by several mechanisms. Experimental evidence indicates that antioxidant defense systems existing in plant tissues may function to protect cellular components from deleterious effects of photochemical oxidants through endogenous and exogenous controls.« less
Industrial production of L-ascorbic Acid (vitamin C) and D-isoascorbic acid.
Pappenberger, Günter; Hohmann, Hans-Peter
2014-01-01
L-ascorbic acid (vitamin C) was first isolated in 1928 and subsequently identified as the long-sought antiscorbutic factor. Industrially produced L-ascorbic acid is widely used in the feed, food, and pharmaceutical sector as nutritional supplement and preservative, making use of its antioxidative properties. Until recently, the Reichstein-Grüssner process, designed in 1933, was the main industrial route. Here, D-sorbitol is converted to L-ascorbic acid via 2-keto-L-gulonic acid (2KGA) as key intermediate, using a bio-oxidation with Gluconobacter oxydans and several chemical steps. Today, industrial production processes use additional bio-oxidation steps with Ketogulonicigenium vulgare as biocatalyst to convert D-sorbitol to the intermediate 2KGA without chemical steps. The enzymes involved are characterized by a broad substrate range, but remarkable regiospecificity. This puzzling specificity pattern can be understood from the preferences of these enyzmes for certain of the many isomeric structures which the carbohydrate substrates adopt in aqueous solution. Recently, novel enzymes were identified that generate L-ascorbic acid directly via oxidation of L-sorbosone, an intermediate of the bio-oxidation of D-sorbitol to 2KGA. This opens the possibility for a direct route from D-sorbitol to L-ascorbic acid, obviating the need for chemical rearrangement of 2KGA. Similar concepts for industrial processes apply for the production of D-isoascorbic acid, the C5 epimer of L-ascorbic acid. D-isoascorbic acid has the same conformation at C5 as D-glucose and can be derived more directly than L-ascorbic acid from this common carbohydrate feed stock.
21 CFR 182.3013 - Ascorbic acid.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ascorbic acid. 182.3013 Section 182.3013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... acid. (a) Product. Ascorbic acid. (b) Conditions of use. This substance is generally recognized as safe...
Aqueous humour and ultraviolet radiation.
Ringvold, A
1980-01-01
Studies on the ultraviolet ray absorption in the aqueous humour of rabbit, cat, monkey, guinea pig, and rat showed marked species differences. In the rabbit aqueous the ascorbic acid, the proteins, and some amino acids (tyrosine, phenylalanine, cystine, and tryptophane) are together responsible for the total absorption, and a very great part of it refers to the ascorbic acid content. Accordingly, species with significant amounts of ascorbic acid in the aqueous (monkey, rabbit, guinea pig) have a greater absorption capacity towards ultraviolet radiation than species (cat, rat) lacking this substance. This effect of the ascorbic acid may contribute in protecting the lens against the most biotoxic ultraviolet rays. It seems that the ascorbic acid concentration is highest in the aqueous of typical day animals and lowest in species being active in the dark, indicating a correlation between the aqueous' ascorbic acid level and the quantity of incident light on the eye. The possible significance of changed aqueous ultraviolet ray absorption in the pathogenesis of human cataract development is discussed.
Röhr, Dominik; Halfter, Hartmut; Schulz, Jörg B; Young, Peter; Gess, Burkhard
2017-07-01
Peripheral nerve myelination involves rapid production of tightly bound lipid layers requiring cholesterol biosynthesis and myelin protein expression, but also a collagen-containing extracellular matrix providing mechanical stability. In previous studies, we showed a function of ascorbic acid in peripheral nerve myelination and extracellular matrix formation in adult mice. Here, we sought the mechanism of action of ascorbic acid in peripheral nerve myelination using different paradigms of myelination in vivo and in vitro. We found impaired myelination and reduced collagen expression in Sodium-dependent Vitamin C Transporter 2 heterozygous mice (SVCT2 +/- ) during peripheral nerve development and after peripheral nerve injury. In dorsal root ganglion (DRG) explant cultures, hypo-myelination could be rescued by precoating with different collagen types. The activity of the ascorbic acid-dependent demethylating Ten-eleven-translocation (Tet) enzymes was reduced in ascorbic acid deprived and SVCT2 +/- DRG cultures. Further, in ascorbic acid-deprived DRG cultures, methylation of a CpG island in the collagen alpha1 (IV) and alpha2 (IV) bidirectional promoter region was increased compared to wild-type and ascorbic acid treated controls. Taken together, these results provide further evidence for the function of ascorbic acid in myelination and extracellular matrix formation in peripheral nerves and suggest a putative molecular mechanism of ascorbic acid function in Tet-dependent demethylation of collagen promoters. © 2017 Wiley Periodicals, Inc.
Li, Shi-Weng; Zeng, Xiao-Ying; Leng, Yan; Feng, Lin; Kang, Xiao-Hu
2018-06-08
In vitro experiments were performed to determine whether auxin can mediate the formation of adventitious roots in response to heavy metal and drought stresses using a model rooting plant, mung bean [Vigna radiata (L.) Wilczek]. The treatments with CdCl 2 or mannitol alone significantly inhibited the formation and growth of adventitious roots in mung bean seedlings. In contrast, when CdCl 2 or mannitol was applied together with indole-3-butyric acid (IBA), IBA considerably cancelled the inhibition of adventitious rooting by stresses. Treatment with CdCl 2 or mannitol alone significantly increased the soluble protein and malondialdehyde (MDA) contents. CdCl 2 and mannitol stress each induced differentially significant changes in the activities of antioxidative enzyme and antioxidant levels during adventitious rooting. Notably, both CdCl 2 and mannitol stress strongly reduced the peroxidase (POD) and ascorbate peroxidase (APX) activities and glutathione (GSH) and phenols levels. Catalase and superoxide dismutase (SOD) activity were enhanced by CdCl 2 but reduced by mannitol. CdCl 2 increased the ascorbate acid (ASA) level, which was decreased by mannitol. Furthermore, when CdCl 2 or mannitol was applied together with IBA, IBA counteracted the CdCl 2 - or mannitol-induced increase or decrease in certain antioxidants, MDA, and antioxidative enzymes. These results suggest that Cd and mannitol stress inhibition of adventitious rooting is associated with the regulation of antioxidative enzymes and antioxidants in cells to defense the oxidative stress. Moreover, IBA alleviates the effects of Cd and mannitol stress on the rooting process partially through the regulation of antioxidative defense systems. Copyright © 2018 Elsevier Inc. All rights reserved.
López-Orenes, Antonio; Martínez-Pérez, Ascensión; Calderón, Antonio A; Ferrer, María A
2014-11-01
Zygophyllum fabago is a promising species for restoring heavy metal (HM) polluted soils, although the mechanisms involved in HM tolerance in this non-model plant remain largely unknown. This paper analyses the extent to which redox-active compounds and enzymatic antioxidants in roots, stems and leaves are responsible for Pb tolerance in a metallicolous ecotype of Z. fabago and the possible influence of salicylic acid (SA) pretreatment (24 h, 0.5 mM SA) in the response to Pb stress. SA pretreatment reduced both the accumulation of Pb in roots and even more so the concentration of Pb in aerial parts of the plants, although a similar drop in the content of chlorophylls and in the maximum quantum yield of photosystem II was observed in both Pb- and SA-Pb-treated plants. Pb increased the endogenous free SA levels in all organs and this response was enhanced in root tissues upon SA pretreatment. Generally, Pb induced a reduction in catalase, ascorbate peroxidase and glutathione reductase specific activities, whereas dehydroascorbate reductase was increased in all organs of control plants. SA pretreatment enhanced the Pb-induced H2O2 accumulation in roots by up-regulating Fe-superoxide dismutase isoenzymes. Under Pb stress, the GSH redox ratio remained highly reduced in all organs while the ascorbic acid redox ratio dropped in leaf tissues where a rise in lipid peroxidation products and electrolyte leakage was observed. Finally, an organ-dependent accumulation of proline and β-carboline alkaloids was found, suggesting these nitrogen-redox-active compounds could play a role in the adaptation strategies of this species to Pb stress. Copyright © 2014. Published by Elsevier Masson SAS.
Hosotani, Keisuke; Yoshida, Minoru; Kitagawa, Masahiro
2005-07-01
To evaluate the effects of supplementing diets with carotenoid and ascorbic acid (AsA) on the antioxidative ability of Osteogenic Disorder-Shionogi (ODS) rats, we added synthetic beta-carotene (betaC), AsA, and powders of persimmon (Ka) and pods (Po) containing betaC and AsA to the diet and obtained the following results. The urinary 8-hydroxydeoxyguanosine (8-OHdG) concentration was low in the -betaC.AsA and +AsA groups but high in the +betaC.AsA, +Ka, and +Po groups. The thiobarbituric acid-reactive substances (TBARS) in both the liver and skin were higher in the -betaC.AsA group than in the +betaC.AsA group and were low in the +Ka and +Po groups. As antioxidant enzymes, glutathione peroxidase (GSH-Px) activity was high in the +betaC.AsA group, low in the -beta3C.AsA group in both the skin and liver, and also high in the + Ka and +Po group in the liver. Superoxide dismutase (SOD) activity was high in the -betaC.AsA group and low in the +betaC.AsA and +Ka groups in both the skin and liver. Catalase (CAT) activity in the liver was low in the -betaC.AsA, +AsA, and +betaC groups and high in the +betaC.AsA and +Po groups. These results confirmed that the administration of betaC, AsA, and persimmons and pods increases antioxidative ability in the skin and liver of ultraviolet-b(UV-B)-irradiated ODS rats.
Khairnar, Upasana; Upaganlawar, Aman; Upasani, Chandrashekhar
2016-01-01
Background. Present study was designed to evaluate the protective effects of protocatechuic acid alone and in combination with ascorbic acid in aniline hydrochloride induced spleen toxicity in rats. Materials and Methods. Male Wistar rats of either sex (200-250 g) were used and divided into different groups. Spleen toxicity was induced by aniline hydrochloride (100 ppm) in drinking water for a period of 28 days. Treatment group received protocatechuic acid (40 mg/kg/day, p.o.), ascorbic acid (40 mg/kg/day, p.o.), and combination of protocatechuic acid (20 mg/kg/day, p.o.) and ascorbic acid (20 mg/kg/day, p.o.) followed by aniline hydrochloride. At the end of treatment period serum and tissue parameters were evaluated. Result. Rats supplemented with aniline hydrochloride showed a significant alteration in body weight, spleen weight, feed consumption, water intake, hematological parameters (haemoglobin content, red blood cells, white blood cells, and total iron content), tissue parameters (lipid peroxidation, reduced glutathione, and nitric oxide content), and membrane bound phosphatase (ATPase) compared to control group. Histopathology of aniline hydrochloride induced spleen showed significant damage compared to control rats. Treatment with protocatechuic acid along with ascorbic acid showed better protection as compared to protocatechuic acid or ascorbic acid alone in aniline hydrochloride induced spleen toxicity. Conclusion. Treatment with protocatechuic acid and ascorbic acid in combination showed significant protection in aniline hydrochloride induced splenic toxicity in rats.
2014-01-01
Background Cross-sectional data suggests that a low level of plasma ascorbic acid positively associates with both Body Mass Index (BMI) and Waist Circumference (WC). This leads to questions about a possible relationship between dietary intake of ascorbic acid and subsequent changes in anthropometry, and whether such associations may depend on genetic predisposition to obesity. Hence, we examined whether dietary ascorbic acid, possibly in interaction with the genetic predisposition to a high BMI, WC or waist-hip ratio adjusted for BMI (WHR), associates with subsequent annual changes in weight (∆BW) and waist circumference (∆WC). Methods A total of 7,569 participants’ from MONICA, the Diet Cancer and Health study and the INTER99 study were included in the study. We combined 50 obesity associated single nucleotide polymorphisms (SNPs) in four genetic scores: a score of all SNPs and a score for each of the traits (BMI, WC and WHR) with which the SNPs associate. Linear regression was used to examine the association between ascorbic acid intake and ΔBW or ΔWC. SNP-score × ascorbic acid interactions were examined by adding product terms to the models. Results We found no significant associations between dietary ascorbic acid and ∆BW or ∆WC. Regarding SNP-score × ascorbic acid interactions, each additional risk allele of the 14 WHR associated SNPs associated with a ∆WC of 0.039 cm/year (P = 0.02, 95% CI: 0.005 to 0.073) per 100 mg/day higher ascorbic acid intake. However, the association to ∆WC only remained borderline significant after adjustment for ∆BW. Conclusion In general, our study does not support an association between dietary ascorbic acid and ∆BW or ∆WC, but a diet with a high content of ascorbic acid may be weakly associated to higher WC gain among people who are genetically predisposed to a high WHR. However, given the quite limited association any public health relevance is questionable. PMID:24886192
Ascorbic Acid Determination in Commercial Fruit Juice Samples by Cyclic Voltammetry
Pisoschi, Aurelia Magdalena; Danet, Andrei Florin; Kalinowski, Slawomir
2008-01-01
A method was developed for assessing ascorbic acid concentration in commercial fruit juice by cyclic voltammetry. The anodic oxidation peak for ascorbic acid occurs at about 490 mV on a Pt disc working electrode (versus SCE). The influence of the potential sweep speed on the peak height was studied. The obtained calibration graph shows a linear dependence between peak height and ascorbic acid concentration in the domain (0.1–10 mmol·L−1). The equation of the calibration graph was y = 6.391x + 0.1903 (where y represents the value of intensity measured for the anodic peak height, expressed as μA and x the analyte concentration, as mmol·L−1, r2 = 0.9995, r.s.d. = 1.14%, n = 10, Cascorbic acid = 2 mmol·L−1). The developed method was applied to ascorbic acid assessment in fruit juice. The ascorbic acid content determined ranged from 0.83 to 1.67 mmol·L−1 for orange juice, from 0.58 to 1.93 mmol·L−1 for lemon juice, and from 0.46 to 1.84 mmol·L−1 for grapefruit juice. Different ascorbic acid concentrations (from standard solutions) were added to the analysed samples, the degree of recovery being comprised between 94.35% and 104%. Ascorbic acid determination results obtained by cyclic voltammetry were compared with those obtained by the volumetric method with dichlorophenol indophenol. The results obtained by the two methods were in good agreement. PMID:19343183
Ascorbic acid deficiency in patients with lichen planus.
Nicolae, Ilinca; Mitran, Cristina Iulia; Mitran, Madalina Irina; Ene, Corina Daniela; Tampa, Mircea; Georgescu, Simona Roxana
2017-01-01
Recent studies have highlighted the role of oxidative stress in the pathogenesis of lichen planus (LP). In the present study, the interest of the authors is focused on the investigation of ascorbic acid status in patients with LP and identification of parameters that might influence the level of this vitamin. We analyzed the level of urinary ascorbic acid (reflectometric method) in 77 patients with LP (cutaneous LP (CLP)-49 cases; oral LP (OLP)-28 cases) and 50 control subjects. The evaluation of all participants included clinical examination and laboratory and imaging tests. Compared to the control group (19.82 mg/dl) the level of ascorbic acid was significantly lower both in patients with CLP (8.47 mg/dl, p = 0.001) and in those with OLP (8.04 mg/dl, p = 0.001). In patients with LP it was found that the deficiency of ascorbic acid increases with age (r = -0.318, p = 0.032). The urinary concentrations of ascorbic acid were significantly lower in patients with LP associated with infections compared to patients with LP without infections. The urinary ascorbic acid level may be a useful parameter in identifying patients with LP who are at risk of developing viral or bacterial infections.
Landi, Marco; Degl'Innocenti, Elena; Guglielminetti, Lorenzo; Guidi, Lucia
2013-06-01
Polyphenol oxidase (PPO) and, to a minor extent, peroxidase (POD) represent the key enzymes involved in enzymatic browning, a negative process induced by cutting fresh-cut produce such as lettuce (Lactuca sativa) and rocket salad (Eruca sativa). Although ascorbic acid is frequently utilised as an anti-browning agent, its mechanism in the prevention of the browning phenomenon is not clearly understood. The activity of PPO and POD and their isoforms in lettuce (a high-browning and low-ascorbic acid species) and rocket salad (a low-browning and high-ascorbic species) was characterised. The kinetic parameters of PPO and in vitro ascorbic acid-PPO inhibition were also investigated. In rocket salad, PPO activity was much lower than that in lettuce and cutting induced an increase in PPO activity only in lettuce. Exogenous ascorbic acid (5 mmol L(-1)) reduced PPO activity by about 90% in lettuce. POD did not appear to be closely related to browning in lettuce. PPO is the main enzyme involved in the browning phenomenon; POD appears to play a minor role. The concentration of endogenous ascorbic acid in rocket salad was related to its low-browning sensitivity after cutting. In lettuce, the addition of ascorbic acid directly inhibited PPO activity. The results suggest that the high ascorbic acid content found in rocket salad plays an effective role in reducing PPO activity. © 2012 Society of Chemical Industry.
Varo-Ghiuru, Florin; Miclea, Ileana; Hettig, Andrea; Ladoşi, Ioan; Miclea, Vasile; Egerszegi, István; Zăhan, Marius
2015-01-01
Due to pour quality of cryopreserved boar semen, artificial innsemination with frozen-thawed semen is quite limited. Developing protocols of boar semen cryopreservation represents a priority but also a challange. The goal of the present study was to evaluate the antioxidant potential of lutein, Trolox, ascorbic acid, and certain combinations of Trolox with ascorbic acid on boar semen cryopreservation procedure. Antioxidants were added to lactose-egg yolk extender, containing a final concentration of 3% glycerol and 0.5% Equex-STM. Semen of six boars was cryopreserved using straw-freezing procedure. After cryopreservation semen was thawed and evaluated for motility, normal apical ridge (NAR), hypo-osmotic swelling test (HOST) and DNA fragmentation index (DFI). Data were analyzed by one-way ANOVA. The results showed better motility after thawing at the concentration of 10 μM lutein, 200 μM Trolox, 200 μM ascorbic acid and 400-200 μM Trolox and ascorbic acid. The supplementation on boar freezing extender with 10 μM lutein increased post-thawed motility, NAR and HOST values (P < 0.01), and decrease DFI (P < 0.05) in comparison with control group. Similar results were obtained using 400-200 μM Trolox and ascorbic acid, with better results in the case of DFI (P < 0.01). In comparison with the control group, a concentration of 200 μM Trolox and 200 μM ascorbic acid provided significant differences (P < 0.01) of motility and NAR. The analysis of sperm characteristics showed that lutein and the mix between Trolox and ascorbic acid used in boar semen cryopreservation can improve the quality of spermatozoa.
Free radicals mediate postshock contractile impairment in cardiomyocytes.
Tsai, Min-Shan; Sun, Shijie; Tang, Wanchun; Ristagno, Giuseppe; Chen, Wen-Jone; Weil, Max Harry
2008-12-01
Previous studies demonstrated myocardial dysfunction after electrical shock and indicated it may be related to free radicals. Whether the free radicals are generated after electrical shock has not been documented at the cellular level. This study was to investigate whether electrical shock generates intracellular free radicals inside cardiomyocytes and to evaluate whether reducing intracellular free radicals by pretreatment of ascorbic acid would reduce the contractile dysfunction after electrical shock. Randomized prospective animal study. University affiliated research laboratory. Sprague-Dawley rats. Cardiomyocytes isolated from adult male rats were divided into four groups: (1) electrical shock alone; (2) electrical shock pretreated with ascorbic acid; (3) pretreated with ascorbic acid alone; and (4) control. Ascorbic acid (0.2 mM) was administrated in the perfusate of the ascorbic acid + electrical shock and ascorbic acid groups. A 2-J electrical shock was delivered to the electrical shock and ascorbic acid + electrical shock groups. DCFH-DA-loaded cardiomyocytes showed increased intracellular free radicals after electrical shock. The contractions and Ca2+ transients were recorded optically with fura-2 loading. Within 4 mins after electrical shock in the electrical shock group, the length shortening decreased from 8.4% +/- 2.5% to 5.6% +/- 3.4% (p = 0.000) and the Ca2+ transient decreased from 1.15 +/- 0.13 au to 1.08 +/- 0.1 au (p = 0.038). Compared with control, a significant difference in length shortening (p = 0.001) but not Ca2+ transient (p = 0.052) was noted. In the presence of ascorbic acid, electrical shock did not affect length shortening and Ca2+ transient. Electrical shock generates free radicals inside the cardiomyocyte, and causes contractile impairment and associated decrease of Ca transient. Administering ascorbic acid may improve such damage by eliminating free radicals.
Penella, Consuelo; Calatayud, Ángeles; Melgar, Juan C
2017-01-01
Exogenous application of biochemicals has been found to improve water stress tolerance in herbaceous crops but there are limited studies on deciduous fruit trees. The goal of this research was to study if ascorbic acid applications could improve physiological mechanisms associated with water stress tolerance in young fruit trees. Ascorbic acid was foliarly applied at a concentration of 250 ppm to water-stressed and well-watered peach trees (control) of two cultivars ('Scarletprince' and 'CaroTiger'). Trees received either one or two applications, and 1 week after the second application all trees were rewatered to field capacity. Upon rewatering, CO 2 assimilation and stomatal conductance of water-stressed 'Scarletprince' trees sprayed with ascorbic acid (one or two applications) were similar to those of well-irrigated trees, but water-stressed trees that had not received ascorbic acid did not recover photosynthetical functions. Also, water status in sprayed water-stressed 'Scarletprince' trees was improved to values similar to control trees. On the other hand, water-stressed 'CaroTiger' trees needed two applications of ascorbic acid to reach values of CO 2 assimilation similar to control trees but these applications did not improve their water status. In general terms, different response mechanisms to cope with water stress in presence of ascorbic acid were found in each cultivar, with 'Scarletprince' trees preferentially using proline as compatible solute and 'CaroTiger' trees relying on stomatal regulation. The application of ascorbic acid reduced cell membrane damage and increased catalase activity in water-stressed trees of both cultivars. These results suggest that foliar applications of ascorbic acid could be used as a management practice for improving water stress tolerance of young trees under suboptimal water regimes.
Penella, Consuelo; Calatayud, Ángeles; Melgar, Juan C.
2017-01-01
Exogenous application of biochemicals has been found to improve water stress tolerance in herbaceous crops but there are limited studies on deciduous fruit trees. The goal of this research was to study if ascorbic acid applications could improve physiological mechanisms associated with water stress tolerance in young fruit trees. Ascorbic acid was foliarly applied at a concentration of 250 ppm to water-stressed and well-watered peach trees (control) of two cultivars (‘Scarletprince’ and ‘CaroTiger’). Trees received either one or two applications, and 1 week after the second application all trees were rewatered to field capacity. Upon rewatering, CO2 assimilation and stomatal conductance of water-stressed ‘Scarletprince’ trees sprayed with ascorbic acid (one or two applications) were similar to those of well-irrigated trees, but water-stressed trees that had not received ascorbic acid did not recover photosynthetical functions. Also, water status in sprayed water-stressed ‘Scarletprince’ trees was improved to values similar to control trees. On the other hand, water-stressed ‘CaroTiger’ trees needed two applications of ascorbic acid to reach values of CO2 assimilation similar to control trees but these applications did not improve their water status. In general terms, different response mechanisms to cope with water stress in presence of ascorbic acid were found in each cultivar, with ‘Scarletprince’ trees preferentially using proline as compatible solute and ‘CaroTiger’ trees relying on stomatal regulation. The application of ascorbic acid reduced cell membrane damage and increased catalase activity in water-stressed trees of both cultivars. These results suggest that foliar applications of ascorbic acid could be used as a management practice for improving water stress tolerance of young trees under suboptimal water regimes. PMID:28979284
Determination of the ascorbic acid content of two medicinal plants in Nigeria.
H A, Okeri; P O, Alonge
2006-01-01
The fresh and dried leaves of two edible plants, Oldenlandia corymbosa and Dissotis rotundifolia have been assayed for their ascorbic acid content. They were found to be rich sources of ascorbic acid (vitamin C) when compared with some common garden fruits and vegetables. Students' t-test statistical analysis using INSTAT.EXE program for the results (mean+/-SEM) shows that there was no significant difference for the fresh leaves of the individual plants and also there is no significant difference for the dried leaves (P=0.05). However, there was significant difference between ascorbic acid content of the fresh and dried leaves of the same plant, obviously indicating that the fresh leaves contain more ascorbic acid than the dried leaves.
Kerchev, Pavel I; Fenton, Brian; Foyer, Christine H; Hancock, Robert D
2012-02-01
The peach-potato aphid (Myzus persicae Sulzer) is a major pest of potato (Solanum tuberosum L.) but the molecular characterization of this interaction particularly with regard to oxidants and antioxidants remains to be undertaken. Aphid colonies reared on potato leaves containing high ascorbate were twice the size of those grown on leaves with low ascorbate. Infestation-dependent decreases in the abundance of key transcripts such as chloroplastic FeSOD, peroxisomal catalase 2, PR1 and JAZ1 preceded detectable leaf H(2)O(2) or polyphenol accumulation. The leaf glutathione pool was increased 48 h after infestation, but the amount of ascorbate was unchanged. The ascorbate/dehydroacorbate (DHA) ratio was lower at 48 h but the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) was unchanged. While DHA reductase and GSSG reductase activities were unaffected by aphid feeding, non-specific peroxidase activities were enhanced 48 h following aphid infestation. Brown ethanol-insoluble deposits were observed close to leaf veins following aphid infestation. Taken together, the results demonstrate that high ascorbate favours aphid colony expansion and that perturbations in the leaf antioxidant system are intrinsic to the potato leaf response to aphids. Moreover, these changes together with the induction of hormone-related transcripts precede the deposition of defence-associated oxidized polyphenols along the stylet track. © 2011 Blackwell Publishing Ltd.
21 CFR 172.315 - Nicotinamide-ascorbic acid complex.
Code of Federal Regulations, 2013 CFR
2013-04-01
... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.315 Nicotinamide-ascorbic acid complex...: (a) The additive is the product of the controlled reaction between ascorbic acid and nicotinamide...
21 CFR 172.315 - Nicotinamide-ascorbic acid complex.
Code of Federal Regulations, 2012 CFR
2012-04-01
... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.315 Nicotinamide-ascorbic acid complex...: (a) The additive is the product of the controlled reaction between ascorbic acid and nicotinamide...
Sikora, Małgorzata; Świeca, Michał
2018-01-15
Enzymatic browning limits the postharvest life of minimally processed foods, thus the study selected the optimal inhibitors of polyphenol oxidase (PPO) and evaluated their effect on enzymatic browning, phenolics and antioxidant capacity of stored mung bean sprouts. The sprouts treated with 2mM and 20mM ascorbic acid had a lowered PPO activity; compared to the control by 51% and 60%, respectively. The inhibition was reflected in a significant decrease in enzymatic browning. The sprouts treated with 20mM ascorbic acid had 22% and 23% higher phenolic content after 3 and 7days of storage, respectively. Both storage and ascorbic acid treatment increased potential bioaccessibility of phenolics. Generally, there was no effect of the treatments on the antioxidant capacity; however, a significant increase in the reducing potential was determined for the sprouts washed with 20mM ascorbic acid. In conclusion, ascorbic acid treatments may improve consumer quality of stored sprouts. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Munawaroh, H.; adillah, G. F.; Saputri, L. N. M. Z.; Hanif, Q. A.; Hidayat, R.; Wahyuningsih, S.
2016-02-01
Study of color stability of anthocyanin from extract mangosteen pericarp (Garcinia mangostana L.) with co-pigmentation method has been conducted. Malic acid and ascorbic acid used as a co-pigment to stabilize the anthocyanin structure through formation of new binding between anthocyanin. Anthocyanin from mangosteen pericarp were isolated by several steps, including maceration, extraction, and Thin Layer Chromatography (TLC). The anthocyanin separation was conducted by TLC, while the identification of functional groups of those compound, were used FTIR (Fourier Transform Infrared Spectroscopy) for spectra analysis. Ultraviolet- visible absorption spectra have represented differences absorbance and color intensity in various pH. Copigmentation with malic acid and ascorbic acid in many composition and temperature were also well described. Meanwhile, anthocyanin-malic acid and anthocyanin-ascorbic acid have color retention higher than that of pure anthocyanin. Maximum color retention has been achieved at a ratio of 1:3 and 1:5 for ascorbic acid and malic acid, respectively. Therefore, the addition of ascorbic acid and malic acid as a copigment shows the ability to protect color retention of anthocyanin (mangosteen pericarp) from degradation process. The better efficiency of DSSC (η) have been achieved, whereas n of controlled anthocyanin, anthocyanin-ascorbic acid, and anthocyanin-malic acid were 0,1996%, 0,2922%, 0,3029%, respectively.
New evidence for antioxidant properties of vitamin C.
Vojdani, A; Bazargan, M; Vojdani, E; Wright, J
2000-01-01
This study was designed to examine the effect of 500 to 5,000 mg of ascorbic acid on DNA adducts, natural killer (NK) cell activity, programmed cell death, and cell cycle analysis of human peripheral blood leukocytes. According to our hypothesis, if ascorbic acid is a pro-oxidant, doses between 500 and 5,000 mg should enhance DNA adduct formation, decrease immune function, change the cell cycle progression, and increase the rate of apoptosis. Twenty healthy volunteers were divided into four groups and given either placebo or daily doses of 500, 1,000 or 5,000 mg of ascorbic acid for a period of 2 weeks. On days 0, 1, 7, 15, and 21, blood was drawn from them, and the leukocytes were separated and examined for intracellular levels of ascorbic acid, the level of 8-hydroxyguanosine, NK cell activity, cell cycle progression, and apoptosis. Depending on the subjects, between a 0% and a 40% increase in cellular absorption of ascorbic acid was observed when daily doses of 500 mg were used. At doses greater than 500 mg, this cellular absorption was not increased further, and all doses produced equivalent increases in ascorbic acid on days 1 to 15. This increase in cellular concentration of ascorbic acid resulted in no statistically meaningful changes in the level of 8-hydroxyguanosine, increased NK cytotoxic activity, a reduced percentage of cells undergoing apoptosis, and switched cell cycle phases from S and G2/M to G0/G1. After a period of 1 week, with no placebo or vitamin washout, ascorbic acid levels along with functional assays returned to the baseline and became equivalent to placebos. In comparison with baseline values, no change (not more than daily assays variation) was seen in ascorbate concentrations or other assays during oral placebo treatment. We concluded that ascorbic acid is an antioxidant and that doses up to 5,000 mg neither induce mutagenic lesions nor have negative effects on NK cell activity, apoptosis, or cell cycle.
Méndez, Rosa Olivia; Wyatt, C Jane; Saavedra, Javier; Ornelas, Alicia
2002-12-01
Ascorbic acid is one of the important antioxidant nutrients that can aid in the prevention of oxidative cellular damage. Adequate dietary intake is essential as humans can not synthesize this vitamin. It has been reported that smokers require higher dietary intakes to maintain their serum levels. The objective of this study was to determine serum levels of ascorbic acid in young male smokers and non smokers in the city of Hermosillo, Sonora, Mexico. In addition, their dietary intake of ascorbic acid was determined by a 24 h dietary recall. The dietary intake of ascorbic acid in 12 smokers was 64 +/- 11 mg/d and in 13 non smokers it was 70 +/- 12 mg/d. The smokers in this study did not meet the dietary recommendation of 100 mg/d. Serum ascorbic acid values in smokers and non smokers were 24.2 +/- 6.9 mumol/L and 30.9 +/- 3.7 mumol/L respectively. No significant difference was found among the 2 groups. Although the average serum ascorbic acid values fell within the range considered normal, 50% of the smokers had individual values that were below 23 mumol/L, indicating that these subjects have hipovitaminosis. A positive correlation between intake and serum levels was obtained for smokers (r = 0.71; p = 0.03). The results of this study suggest smokers may be at increased risk for chronic diseases due to their low intake and low serum levels of ascorbic acid.
Abbasi, A; Niakousari, M
2008-05-15
The aim of this research was to determine shelf life stability of un-pasteurized lemon juice filled in clear or dark green glass bottles. Presence of light, time and temperature affect the ascorbic acid retention in citrus juices. Bottles were stored at room temperature (27 +/- 3 degrees C) and in the refrigerator (3 +/- 1 degrees C). Total soluble solids, total titrable acidity and pH value were measured every three weeks and analysis was carried out on ascorbic acid content by means of titration method in the presence of 2,6-dichlorophenol indophenol. The study was carried out for 12 weeks after which slight changes in color, taste and apparent texture in some samples were observed and ascorbic acid content reduced by 50%. Soluble solids content, pH value and total acidity were 5.5 degrees Brix, 2.73 and 5 g/100 mL, respectively which appeared not to be significantly influenced by storage time or conditions. Ascorbic acid content initially at 38.50 mg/100 mL was sharply reduced to about 22 mg/100 mL within the first three weeks of storage. The final ascorbic acid content of all samples was about 15 mg/100 mL. The deteriorative reaction of ascorbic acid in the juice at all conditions followed a first-order kinetic model with activation energy of 137 cal mol(-1).
Effect of curcumin against oxidation of biomolecules by hydroxyl radicals.
Borra, Sai Krishna; Mahendra, Jaideep; Gurumurthy, Prema; Jayamathi; Iqbal, Shabeer S; Mahendra, Little
2014-10-01
Among various reactive oxygen species, hydroxyl radicals have the strongest chemical activity, which can damage a wide range of essential biomolecules such as lipids, proteins, and DNA. The objective of this study was to investigate the beneficial effects of curcumin on prevention of oxidative damage of biomolecules by hydroxyl radicals generated in in vitro by a Fenton like reaction. We have incubated the serum, plasma and whole blood with H2O2/Cu2+/ Ascorbic acid system for 4 hours at 37 0C and observed the oxidation of biomolecules like albumin, lipids, proteins and DNA. Curcumin at the concentrations of 50,100 and 200 μmoles, prevented the formation of ischemia modified albumin, MDA, protein carbonyls, oxidized DNA and increased the total antioxidant levels and GSH significantly. These observations suggest the hydroxyl radical scavenging potentials of curcumin and protective actions to prevent the oxidation of biomolecules by hydroxyl radicals.
21 CFR 172.315 - Nicotinamide-ascorbic acid complex.
Code of Federal Regulations, 2014 CFR
2014-04-01
... (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.315 Nicotinamide-ascorbic acid complex. Nicotinamide-ascorbic acid complex may be safely used in accordance with the following prescribed conditions: (a) The additive is the product of...
Musatti, Alida; Manzoni, Matilde; Rollini, Manuela
2013-01-25
The study was aimed at investigating the best biotransformation conditions to increase intracellular glutathione (GSH) levels in samples of baker's yeast (Saccharomyces cerevisiae) employing either the commercially available compressed and dried forms. Glucose, GSH precursors amino acids, as well as other cofactors, were dissolved in a biotransformation solution and yeast cells were added (5%dcw). Two response surface central composite designs (RSCCDs) were performed in sequence: in the first step the influence of amino acid composition (cysteine, glycine, glutamic acid and serine) on GSH accumulation was investigated; once their formulation was set up, the influence of other components was studied. Initial GSH content was found 0.53 and 0.47%dcw for compressed and dried forms. GSH accumulation ability of baker's yeast in compressed form was higher at the beginning of shelf life, that is, in the first week, and a maximum of 2.04%dcw was obtained. Performance of yeast in dried form was not found satisfactory, as the maximum GSH level was 1.18%dcw. When cysteine lacks from the reaction solution, yeast cells do not accumulate GSH. With dried yeast, the highest GSH yields occurred when cysteine was set at 3 g/L, glycine and glutamic acid at least at 4 g/L, without serine. Employing compressed yeast, the highest GSH yields occurred when cysteine and glutamic acid were set at 2-3 g/L, while glycine and serine higher than 2 g/L. Results allowed to set up an optimal and feasible procedure to obtain GSH-enriched yeast biomass, with up to threefold increase with respect to initial content. Copyright © 2012 Elsevier B.V. All rights reserved.
Ahn, Hee-Jeong; Li, Chao; Cho, Hye-Bin; Park, Sunghoon; Chang, Pahn-Shick; Kim, Young-Wan
2015-02-15
A mutant derived from a cyclodextrin glucantransferase with an alanine residue as its acid/base catalyst residue (CGT-E284A) catalyzed regioselective glycosylation at 3-OH of l-ascorbic acid using α-maltosyl fluoride (αG2F) and l-ascorbic acid as the donor and acceptor, respectively, yielding 3-O-α-maltosyl-l-ascorbate (AA3αG2). The optimum conditions were determined by high-performance liquid chromatography analysis with 20mM αG2F and 40mM l-ascorbic acid as the substrates at pH 7.5 and 25°C with 1mg/ml of the enzyme for 24h. Calcium ions bound in CGT-E284A played an important role in the transglycosylation. CGT-E284A exhibited typical saturation kinetic behaviour for αG2F at a fixed acceptor concentration (40mM), and substrate inhibition by l-ascorbic acid was observed at high l-ascorbic acid concentrations (>60mM). AA3αG2 was isolated from a preparative scale reaction with a yield of 29%, and it showed extremely high stability under oxidative conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
2010-01-01
hematocrit, low oxygen tension, acetaminophen, uric acid , ascorbic acid , maltose, galactose, xy- lose, lactose, operator inexperience, age of strips, heat...Biomedical, Waltham, MA) that corrects for the effects of anemia, low oxygen tension, acetaminophen, uric acid , ascorbic acid , maltose, galactose, xylose, and...resulted in inappropriately high glucometer values (data not shown). The effects of interfering substances (acetaminophen, uric acid , ascorbic acid
Nitric Oxide in Plants: The Roles of Ascorbate and Hemoglobin
Wang, Xiaoguang; Hargrove, Mark S.
2013-01-01
Ascorbic acid and hemoglobins have been linked to nitric oxide metabolism in plants. It has been hypothesized that ascorbic acid directly reduces plant hemoglobin in support of NO scavenging, producing nitrate and monodehydroascorbate. In this scenario, monodehydroascorbate reductase uses NADH to reduce monodehydroascorbate back to ascorbate to sustain the cycle. To test this hypothesis, rates of rice nonsymbiotic hemoglobin reduction by ascorbate were measured directly, in the presence and absence of purified rice monodehydroascorbate reductase and NADH. Solution NO scavenging was also measured methodically in the presence and absence of rice nonsymbiotic hemoglobin and monodehydroascorbate reductase, under hypoxic and normoxic conditions, in an effort to gauge the likelihood of these proteins affecting NO metabolism in plant tissues. Our results indicate that ascorbic acid slowly reduces rice nonsymbiotic hemoglobin at a rate identical to myoglobin reduction. The product of the reaction is monodehydroascorbate, which can be efficiently reduced back to ascorbate in the presence of monodehydroascorbate reductase and NADH. However, our NO scavenging results suggest that the direct reduction of plant hemoglobin by ascorbic acid is unlikely to serve as a significant factor in NO metabolism, even in the presence of monodehydroascorbate reductase. Finally, the possibility that the direct reaction of nitrite/nitrous acid and ascorbic acid produces NO was measured at various pH values mimicking hypoxic plant cells. Our results suggest that this reaction is a likely source of NO as the plant cell pH drops below 7, and as nitrite concentrations rise to mM levels during hypoxia. PMID:24376554
21 CFR 182.8013 - Ascorbic acid.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ascorbic acid. 182.8013 Section 182.8013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8013 Ascorbic acid. (a...
21 CFR 182.8013 - Ascorbic acid.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ascorbic acid. 182.8013 Section 182.8013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8013 Ascorbic acid. (a...
21 CFR 182.8013 - Ascorbic acid.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ascorbic acid. 182.8013 Section 182.8013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8013 Ascorbic acid. (a...
21 CFR 182.8013 - Ascorbic acid.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ascorbic acid. 182.8013 Section 182.8013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8013 Ascorbic acid. (a...
Nutritional aspects of ascorbic acid: uses and abuses.
Vilter, R W
1980-12-01
Ascorbic acid in physiological doses is essential for the normal functioning of the human body. Larger doses are required to treat a severe deficiency of vitamin C intake, as in the case of scurvy. Occasionally, massive doses may be required to treat a metabolic defect involving ascorbic acid. There has been some mention of megadose therapy with ascorbic acid for the prevention of colds, the improved healing of wounds and even the treatment of cancer, but no acceptable scientific data have been presented. In fact, in a few instances, such therapy has proved injurious.
Diffusive properties of Vitamin C aqueous solutions by quasielastic neutron scattering
NASA Astrophysics Data System (ADS)
Migliardo, F.; Magazù, S.; Migliardo, P.
2001-07-01
Quasi elastic neutron scattering (QENS) results on aqueous solutions of L-ascorbic acid (Vitamin C) are reported. Data, collected by the IRIS spectrometer at the ISIS facility on partially deuterated L-ascorbic acid in D 2O and on hydrogenated L-ascorbic acid in H 2O, allow to characterize the diffusive dynamics of both hydrated Vitamin C and water, revealing that this latter is strongly affected by the presence of L-ascorbic acid and furnishing a hydration number value of ∼5 at T=33°C.
Kehinde, Olaniyi S; Christianah, Oyewopo I; Oyetunji, Oyewopo A
2018-01-01
The effect of the concomitant use of sodium benzoate (NaB) and ascorbic acid on human health remains controversial. Therefore, the current study is designed to investigate the effect of NaB and ascorbic acid on the testicular function of adult Wistar rats. Adult Wistar rats were randomly allotted into Control (vehicle; received 1 ml of distilled water), NaB-treated (SB-treated; received 100 mg/kg body weight; b.w ), ascorbic acid-treated (AA-treated; received 150 mg/kg b.w ) and NaB+ ascorbic acid-treated (SB+AA-treated) groups. The treatment lasted for 28 days and the administration was given orally. The body weight change was monitored. Semen analysis, biochemical assay and histological examination were performed. Treatment with NaB significantly altered the cytoarchitecture of testicular tissue, sperm quality, testicular endocrine function and oxidative stress status without any alteration in body weight gain compared to control. In addition, treatment with NaB+ ascorbic acid exacerbated testicular tissue disruption, impaired sperm quality and testicular endocrine impairment with significant reduction in oxidative stress and unaltered body weight gain when compared with NaB-treated group. This study suggests that ascorbic acid and NaB synergistically aggravates testicular dysfunction. This is independent of oxidative stress status.
Wade, Kaitlin H; Forouhi, Nita G; Cook, Derek G; Johnson, Paul; McConnachie, Alex; Morris, Richard W; Rodriguez, Santiago; Ye, Zheng; Ebrahim, Shah; Padmanabhan, Sandosh; Watt, Graham; Bruckdorfer, K Richard; Wareham, Nick J; Whincup, Peter H; Chanock, Stephen; Sattar, Naveed; Lawlor, Debbie A; Davey Smith, George; Timpson, Nicholas J
2015-01-01
Observational studies showed that circulating L-ascorbic acid (vitamin C) is inversely associated with cardiometabolic traits. However, these studies were susceptible to confounding and reverse causation. We assessed the relation between L-ascorbic acid and 10 cardiometabolic traits by using a single nucleotide polymorphism in the solute carrier family 23 member 1 (SLC23A1) gene (rs33972313) associated with circulating L-ascorbic acid concentrations. The observed association between rs33972313 and cardiometabolic outcomes was compared with that expected given the rs33972313-L-ascorbic acid and L-ascorbic acid-outcome associations. A meta-analysis was performed in the following 5 independent studies: the British Women's Heart and Health Study (n = 1833), the MIDSPAN study (n = 1138), the Ten Towns study (n = 1324), the British Regional Heart Study (n = 2521), and the European Prospective Investigation into Cancer (n = 3737). With the use of a meta-analysis of observational estimates, inverse associations were shown between L-ascorbic acid and systolic blood pressure, triglycerides, and the waist-hip ratio [the strongest of which was the waist-hip ratio (-0.13-SD change; 95% CI: -0.20-, -0.07-SD change; P = 0.0001) per SD increase in L-ascorbic acid], and a positive association was shown with high-density lipoprotein (HDL) cholesterol. The variation at rs33972313 was associated with a 0.18-SD (95% CI: 0.10-, 0.25-SD; P = 3.34 × 10⁻⁶) increase in L-ascorbic acid per effect allele. There was no evidence of a relation between the variation at rs33972313 and any cardiometabolic outcome. Although observed estimates were not statistically different from expected associations between rs33972313 and cardiometabolic outcomes, estimates for low-density lipoprotein cholesterol, HDL cholesterol, triglycerides, glucose, and body mass index were in the opposite direction to those expected. The nature of the genetic association exploited in this study led to limited statistical application, but despite this, when all cardiometabolic traits were assessed, there was no evidence of any trend supporting a protective role of L-ascorbic acid. In the context of existing work, these results add to the suggestion that observational relations between L-ascorbic acid and cardiometabolic health may be attributable to confounding and reverse causation.
Stress-induced ascorbic acid depletion and cortisol production in two salmonid fishes
Wedemeyer, Gary
1969-01-01
Interrenal ascorbic acid and serum cortisol were measured in non-specificity stressed yearling coho salmon and rainbow trout.Interrenal ascorbate was markedly decreased during stress but increased to normal if adaptation occurred.Serum cortisol was elevated by non-specific stress and remained high after interrenal ascorbate had returned to initial levels.
Anderson, R
1979-09-01
The effects of ascorbic acid and calcium and sodium ascorbate at a concentration range of 10(-6)M - 10(-1)M on polymorphonuclear leucocyte (PMN) phagocytosis of Candida albicans and post-phagocytic nitroblue tetrazolium (NBT) reduction, hexose monophosphate shunt (HMS) activity and myeloperoxidase-mediated iodination of ingested protein were investigated. Phagocytosis of C. albicans was unaffected by ascorbate concentrations of 10(-6)M - 10(-2)M; however, progressive inhibition was observed at concentrations of 10(-2)M upwards. Enhancement of resting and stimulated HMS activity and NBT reduction was evident at ascorbate concentrations of 10(-5) M - 10(-2)M. The stimulations of HMS activity and NBT reduction was independent of myeloperoxidase iodination of ingested protein and this latter function was strongly inhibited by ascorbate. Concentrations of ascorbic acid and calcium and sodium ascorbate which caused inhibition of phagocytosis and HMS activity were the same as those which mediated stimulation of cell motility, indicating that independent cellular mechanisms may govern motility and phagocytosis.
Further Studies on Oxalic Acid Biosynthesis in Oxalate-accumulating Plants 1
Nuss, Richard F.; Loewus, Frank A.
1978-01-01
l-Ascorbic acid functions as a precursor of oxalic acid in several oxalate-accumulating plants. The present study extends this observation to include Rumex crispus L. (curly dock), Amaranthus retroflexus L. (red root pigweed), Chenopodium album L. (lamb's-quarters), Beta vulgaris L. (sugar beet), Halogeton glomeratus M. Bieb. (halogeton), and Rheum rhabarbarum L. (rhubarb). Several species with low oxalate content are also examined. When l-[1-14C]ascorbic acid is supplied to young seedlings of R. crispus or H. glomeratus, a major portion of the 14C is released over a 24-hour period as 14CO2 and only a small portion is recovered as [14C]oxalate, unlike cuttings from 2- or 4-month-old plants which retain a large part of the 14C as [14C]oxalic acid and release very little 14CO2. Support for an intermediate role of oxalate in the release of 14CO2 from l-[1-14C]ascorbic acid is seen in the rapid release of 14CO2 by R. crispus and H. glomeratus seedlings labeled with [14C]oxalic acid. The common origin of oxalic acid carbon in the C1 and C2 fragment from l-ascorbic acid is demonstrated by comparison of 14C content of oxalic acid in several oxalate-accumulators after cuttings or seedlings are supplied equal amounts of l-[1-14C]- or l-[UL-14C]ascorbic acid. Theoretically, l-[1-14C]ascorbic acid will produce labeled oxalic acid containing three times as much 14C as l-[UL-14C]ascorbic acid when equal amounts of label are provided. Experimentally, a ratio of 2.7 ± 0.5 is obtained in duplicate experiments with six different species. PMID:16660342
Singh, Gurpreet; Mohanty, B P; Saini, G S S
2016-02-15
Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide. Copyright © 2015 Elsevier B.V. All rights reserved.
Decalcification by ascorbic acid for immuno- and affinohistochemical techniques on the inner ear.
Merchán-Pérez, A; Gil-Loyzaga, P; Bartolomé, M V; Remezal, M; Fernández, P; Rodríguez, T
1999-08-01
An ascorbic acid decalcifying solution was applied to immuno- and affinohistochemical studies on the inner ear. Rat inner ears fixed in 4% paraformaldehyde in PBS or in 2% acetic acid in ethanol solutions were adequately decalcified in an ascorbic acid solution, at a temperature of 4 degrees C. The decalcifying solution was prepared with 1% ascorbic acid and 0.84% sodium chloride in distilled water (pH 2.5-2.6). The decalcification time was in a direct relationship to the specimen calcification. In this study, two neuroactive substances (gamma-aminobutyric acid and calcitonin gene-related peptide), neurofilaments, and the galectine endogenous lectin were successfully detected immunohistochemically.
A Bioengineered Human Skin Equivalent (HSE) for the Evaluation of Protectants
2006-11-01
agonist clofibrate to the growth media. Medium supplemented with 25 μM palmitic acid , 15 μM linoleic acid , 25 μM oleic acid , 7 μM arachidonic acid , 0.25...granules (indicated by arrows). Fig. 6: A cross section of the HSE with lipids, ascorbic acid and clofibrate supplementation. The combination of... Clofibrate , Ascorbic Acid and Lipids Compared With the Lipid Profile of Native Human Skin. Clofibrate 300 μM Lipid class Control No ascorbic
Ascorbic acid reduces noise-induced nitric oxide production in the guinea pig ear.
Heinrich, Ulf-Rüdiger; Fischer, Ilka; Brieger, Jürgen; Rümelin, Andreas; Schmidtmann, Irene; Li, Huige; Mann, Wolf J; Helling, Kai
2008-05-01
Noise-induced hearing loss can be caused, among other causes, by increased nitric oxide (NO) production in the inner ear leading to nitroactive stress and cell destruction. Some studies in the literature suggest that the degree of hearing loss (HL) could be reduced in an animal model through ascorbic acid supplementation. To identify the effect of ascorbic acid on tissue-dependent NO content in the inner ear of the guinea pig, we determined the local NO production in the organ of Corti and the lateral wall separately 6 hours after noise exposure. Prospective animal study in guinea pigs. Over a period of 7 days, male guinea pigs were supplied with minimum (25 mg/kg body weight/day) and maximum (525 mg/kg body weight/day) ascorbic acid doses, and afterwards exposed to noise (90 dB sound pressure level for 1 hour). The acoustic-evoked potentials were recorded before and after noise exposure. The organ of Corti and the lateral wall were incubated differently for 6 hours in culture medium, and the degree of NO production was determined by chemiluminescence. Ascorbic acid treatment reduced the hearing threshold shift after noise exposure depending on concentration. When the maximum ascorbic acid dose was substituted, NO production was significantly reduced in the lateral wall after noise exposure and slightly reduced in the organ of Corti. Oral supplementation of the natural radical scavenger ascorbic acid reduces the NO-production rate in the inner ear in noisy conditions. This finding supports the concept of inner ear protection by ascorbic acid supplementation.
Boekholdt, S Matthijs; Meuwese, Marijn C; Day, Nicholas E; Luben, Robert; Welch, Ailsa; Wareham, Nicholas J; Khaw, Kay-Tee
2006-09-01
High plasma concentrations of ascorbic acid, a marker of fruit and vegetable intake, are associated with low risk of coronary artery disease. Whether this relationship is explained by a reduction in systemic inflammation is unclear. We investigated the relationship between ascorbic acid plasma concentration and coronary artery disease risk, and in addition whether this relationship depended on classical risk factors and C-reactive protein (CRP) concentration. We used a prospective nested case-control design. The study consisted of 979 cases and 1794 controls (1767 men and 1006 women). Increasing ascorbic acid quartiles were associated with lower age, BMI, systolic and diastolic blood pressure, and CRP concentration, but with higher HDL-cholesterol concentration. No associations existed between ascorbic acid concentration and total cholesterol concentration or LDL-cholesterol concentration. When data from men and women were pooled, the risk estimates decreased with increasing ascorbic acid quartiles such that people in the highest ascorbic acid quartile had an odds ratio for future coronary artery disease of 0.67 (95 % CI 0.52, 0.87) compared with those in the lowest quartile (P for linearity=0.001). This relationship was independent of sex, age, diabetes, smoking, BMI, LDL-cholesterol, HDL-cholesterol, systolic blood pressure and CRP level. These data suggest that the risk reduction associated with higher ascorbic acid plasma concentrations, a marker of fruit and vegetable intake, is independent of classical risk factors and also independent of CRP concentration.
Wade, Kaitlin H; Forouhi, Nita G; Cook, Derek G; Johnson, Paul; McConnachie, Alex; Morris, Richard W; Rodriguez, Santiago; Ye, Zheng; Ebrahim, Shah; Padmanabhan, Sandosh; Watt, Graham; Bruckdorfer, K Richard; Wareham, Nick J; Whincup, Peter H; Chanock, Stephen; Sattar, Naveed; Lawlor, Debbie A; Davey Smith, George; Timpson, Nicholas J
2015-01-01
Background: Observational studies showed that circulating l-ascorbic acid (vitamin C) is inversely associated with cardiometabolic traits. However, these studies were susceptible to confounding and reverse causation. Objectives: We assessed the relation between l-ascorbic acid and 10 cardiometabolic traits by using a single nucleotide polymorphism in the solute carrier family 23 member 1 (SLC23A1) gene (rs33972313) associated with circulating l-ascorbic acid concentrations. The observed association between rs33972313 and cardiometabolic outcomes was compared with that expected given the rs33972313-l-ascorbic acid and l-ascorbic acid–outcome associations. Design: A meta-analysis was performed in the following 5 independent studies: the British Women's Heart and Health Study (n = 1833), the MIDSPAN study (n = 1138), the Ten Towns study (n = 1324), the British Regional Heart Study (n = 2521), and the European Prospective Investigation into Cancer (n = 3737). Results: With the use of a meta-analysis of observational estimates, inverse associations were shown between l-ascorbic acid and systolic blood pressure, triglycerides, and the waist-hip ratio [the strongest of which was the waist-hip ratio (−0.13-SD change; 95% CI: −0.20-, −0.07-SD change; P = 0.0001) per SD increase in l-ascorbic acid], and a positive association was shown with high-density lipoprotein (HDL) cholesterol. The variation at rs33972313 was associated with a 0.18-SD (95% CI: 0.10-, 0.25-SD; P = 3.34 × 10−6) increase in l-ascorbic acid per effect allele. There was no evidence of a relation between the variation at rs33972313 and any cardiometabolic outcome. Although observed estimates were not statistically different from expected associations between rs33972313 and cardiometabolic outcomes, estimates for low-density lipoprotein cholesterol, HDL cholesterol, triglycerides, glucose, and body mass index were in the opposite direction to those expected. Conclusions: The nature of the genetic association exploited in this study led to limited statistical application, but despite this, when all cardiometabolic traits were assessed, there was no evidence of any trend supporting a protective role of l-ascorbic acid. In the context of existing work, these results add to the suggestion that observational relations between l-ascorbic acid and cardiometabolic health may be attributable to confounding and reverse causation. PMID:25527764
Effect of ascorbic acid on prevention of hypercholesterolemia induced atherosclerosis.
Das, S; Ray, R; Snehlata; Das, N; Srivastava, L M
2006-04-01
The notion that oxidation of lipids and propagation of free radicals may contribute to the pathogenesis of atherosclerosis is supported by a large body of evidence. To circumvent the damage caused by oxygen free radicals, antioxidants are needed which provide the much needed neutralization of free radical by allowing the pairing of electrons. In this study we have investigated the effect of ascorbic acid, a water soluble antioxidant on the development of hypercholesterolemia induced atherosclerosis in rabbits. Rabbits were made hypercholesterolemic and atherosclerotic by feeding 100 mg cholesterol/day. Different doses of ascorbic acid were administered to these rabbits. Low dose of ascorbic acid (0.5 mg/100 g body weight/day) did not have any significant effect on the percent of total area covered by atherosclerotic plaque. However, ascorbic acid when fed at a higher dose (15 mg/100 g body weight/day) was highly effective in reducing the atherogenecity. With this dose the percent of total surface area covered by atherosclerotic plaque was significantly less (p < 0.001). This suggests that use of ascorbic acid may have great promise in the prevention of hypercholesterolemia induced atherosclerosis.
Capcarova, M; Kolesarova, A; Kalafova, A; Bulla, J; Sirotkin, A V
2015-07-01
The aim of the present study was to determine the activity of superoxide dismutase (SOD), total antioxidant status (TAS) of the hen granulosa cells, and selected biochemical parameters, including calcium, phosphorus, sodium, potassium, glucose, cholesterol, proteins, in the culture medium of granulosa cells after exposing them to ascorbic acid in vitro conditions. Ovarian granulosa cells of hens were incubated with various doses of ascorbic acid (E1 0.09 mg/ml, E2 0.13 mg/ml, E3 0.17 mg/ml, E4 0.33 mg/ml, E5 0.5 mg/ml). Ascorbic acid did not manifest antioxidant potential and higher doses of ascorbic acid (0.17; 0.33 and 0.5 mg/ml) decreased the activity of SOD in granulosa cells. Vitamin application resulted in a significantly (p<0.05) higher accumulation of Na+ and K+ in culture media of granulosa cells and decreased the concentration of glucose and proteins. These results indicate that ascorbic acid might be involved in the regulation of selected biochemical and physiological processes in ovarian granulosa cells.
Das, Kusal K; Gupta, Amrita Das; Dhundasi, Salim A; Patil, Ashok M; Das, Swastika N; Ambekar, Jeevan G
2006-01-01
Nickel exposure greatly depletes intracellular ascorbate and alters ascorbate-cholesterol metabolism. We studied the effect of the simultaneous oral treatment with L-ascorbic acid (50 mg/100 g body weight (BW) and nickel sulfate (2.0 mg/100 g BW, i.p) on nickelinduced changes in serum lipid profiles and liver histopathology. Nickel-treated rats showed a significant increase in serum low-density lipoprotein-cholesterol, total cholesterol, triglycerides, and a significant decrease in serum high-density lipoprotein-cholesterol. In the liver, nickel sulfate caused a loss of normal architecture, fatty changes, extensive vacuolization in hepatocytes, eccentric nuclei, and Kupffer cell hypertrophy. Simultaneous administration of L-ascorbic acid with nickel sulfate improved both the lipid profile and liver impairments when compared with rats receiving nickel sulfate only. The results indicate that L-ascorbic acid is beneficial in preventing nickel-induced lipid alterations and hepatocellular damage.
Davidsson, L; Walczyk, T; Morris, A; Hurrell, R F
1998-05-01
The influence of ascorbic acid on iron absorption from an iron-fortified, chocolate-flavored milk drink (6.3 mg total Fe per serving) was evaluated with a stable-isotope technique in 20 6-7-y-old Jamaican children. Each child received two test meals labeled with 5.6 mg 57Fe and 3.0 mg 58Fe as ferrous sulfate on 2 consecutive days. Three different doses of ascorbic acid (0, 25, and 50 mg per 25-g serving) were evaluated in two separate studies by using a crossover design. Iron isotope ratios were measured by negative thermal ionization mass spectrometry. In the first study, iron absorption was significantly greater (P < 0.0001) after the addition of 25 mg ascorbic acid: geometric mean iron absorption was 1.6% (range: 0.9-4.2%) and 5.1% (2.2-17.3%) for the test meals containing 0 and 25 mg ascorbic acid, respectively. In the second study, a significant difference (P < 0.05) in iron absorption was observed when the ascorbic acid content was increased from 25 to 50 mg: geometric mean iron absorption was 5.4% (range: 2.7-10.8%) compared with 7.7% (range: 4.7-16.5%), respectively. The chocolate drink contained relatively high amounts of polyphenolic compounds, phytic acid, and calcium, all well-known inhibitors of iron absorption. The low iron absorption without added ascorbic acid shows that chocolate milk is a poor vehicle for iron fortification unless sufficient amounts of an iron-absorption enhancer are added. Regular consumption of iron-fortified chocolate milk drinks containing added ascorbic acid could have a positive effect on iron nutrition in population groups vulnerable to iron deficiency.
Inyang, U E; Abah, U J
1997-01-01
Fully riped cashew apples (yellow variety) were steamed for 7 minutes prior to juice extraction. The extracted juice was blended with various proportions of sweet orange juice. Chemical composition and organoleptic evaluation were carried out on both the blended and unblended juices. The ascorbic acid content of unsteamed cashew apple juice was 287 mg/100 ml. Steaming of the cashew apple prior to juice extraction resulted in a decreased (230 mg/100 ml) content of ascorbic acid. It also led to slight decreases in soluble solids and titratable acidity. A comparison of the chemical composition of the two juices showed that the orange juice contained more sugars, titratable acidity and soluble solids but less ascorbic acid than cashew apple juice. Consequently, the soluble solids, titratable acidity, reducing and total sugars of the blends increased with increase in the proportions of orange juice while the content of ascorbic acid was decreasing. In spite of the decrease in ascorbic acid content of the blends, results showed that blended juice would no doubt be a very good source of ascorbic acid. Result of the organoleptic evaluation revealed that a 60% cashew apple and 40% orange juice gave a good quality juice in terms of flavor, after taste and overall acceptability.
Zhao, Rong; Holmgren, Arne
2004-02-01
Ebselen is a selanazal drug recently revealed as a highly efficient peroxiredoxin mimic catalyzing the hydroperoxide reduction by the mammalian thioredoxin system [thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH]. The mammalian Trx system is a dehydroascorbic acid reductase recycling ascorbic acid essential for cell functions. Here we report that ebselen strongly facilitated the recycling of ascorbic acid by the TrxR both with and without Trx present. Reduction of dehydroascorbic acid by TrxR has a pH optimum of 6.4, and only approximately 55% of this activity at a physiological pH of 7.4. Ebselen at 6 microM enhances this reaction three-fold and with the same pH optimum of 6.4. The mechanism of the ebselen effect is suggested to involve reduction of dehydroascorbic acid by the ebselen selenol, a highly efficient two-electron reductant. Thus, ebselen acts as an antioxidant to lower the peroxide tone inside cells and to facilitate the recycling of dehydroascorbic acid to ascorbic acid, so as to increase the radical scavenging capacity of ascorbic acid directly or indirectly via vitamin E. The high ascorbic acid recycling efficiency of ebselen at pH 6.4 may play a major role in oxidatively stressed cells, where cytosol acidosis may trigger various responses, including apoptosis.
Trommer, Hagen; Böttcher, Rolf; Huschka, Christoph; Wohlrab, Wolfgang; Neubert, Reinhard H H
2005-08-01
This study is the continuation of our research into vitamin C and its possible effects on human skin after topical administration. The effects of ascorbic acid, iron ions and UV irradiation on stratum corneum lipid models were investigated. The lipid models used were: a simple system (linolenic acid dispersion), a complex system (liposomes consisting of dipalmitoylphosphatidylcholine, cholesterol and linolenic acid) and complex systems with additionally incorporated ceramides (types III and IV). The lipid peroxidation was quantified by the thiobarbituric acid assay. A human adult low-calcium high-temperature (HaCaT) keratinocytes cell culture was used as a second in-vitro model. The amount of intracellular peroxides was determined by measuring the fluorescence intensity using the dihydrorhodamine 123 assay. Electron paramagnetic resonance spectroscopy was used to study the influence of ascorbic acid and iron ions on the signal intensity of 5-doxylstearic acid during UV exposure. Ascorbic acid showed prooxidative properties in the thiobarbituric acid assay whereas cell protection was measured in the HaCaT keratinocytes experiments. Electron paramagnetic resonance investigations revealed different extents of free radical production generated by iron ions, ascorbic acid and UV irradiation. In evaluating the results from this study new aspects of the mechanism of lipid damage caused by these three factors were suggested, transcending the simple redox behaviour of ascorbic acid.
2012-04-02
during cutaneous wound healing . Mediators Inflamm. 2010, 342328. Ringseis, R., Muller, A., Herter, C., Gahler, S., Steinhart, H., Eder, K., 2006. CLA...glutamylcysteine (GGC), a dipeptide and precursor of glutathione (GSH), and conjugated linoleic acid (CLA), a trans-fatty acid, exhibit antioxidant properties...synthesis in human endothelial cells. Changes in levels of 8-epi-PGF2a, thiobarbituric acid reac- tive substances (TBARS), GSH, total antioxidants , GSH
Electronic structures and spectra of two antioxidants: uric acid and ascorbic acid
NASA Astrophysics Data System (ADS)
Shukla, M. K.; Mishra, P. C.
1996-04-01
Electronic absorption and fluorescence spectra of aqueous solutions of two well known antioxidants, uric acid and ascorbic acid (vitamin C), have been studied at different pH. The observed spectra have been interpreted in terms of neutral and anionic forms of the molecules with the help of molecular orbital calculations. The N 3 site of uric acid has been shown to be the most acidic. Fluorescence of uric acid seems to originate from an anion of the molecule in a wide pH range. Around pH 3, both the neutral and anionic forms of ascorbic acid appear to be present in aqueous solutions. In aqueous media, ascorbic acid appears to get converted easily to its dehydro form and this conversion does not seem to be reversible. An anion of dehydroascorbic acid seems to be formed on heating dehydroascorbic acid in aqueous solutions.
Li, Zhaowei; Su, Da; Lei, Bingting; Wang, Fubiao; Geng, Wei; Pan, Gang; Cheng, Fangmin
2015-03-15
To clarify the complex relationship between ascorbate-glutathione (AsA-GSH) cycle and H2O2-induced leaf senescence, the genotype-dependent difference in some senescence-related physiological parameters and the transcript levels and the temporal patterns of genes involved in the AsA-GSH cycle during leaf senescence were investigated using two rice genotypes, namely, the early senescence leaf (esl) mutant and its wild type. Meanwhile, the triggering effect of exogenous H2O2 on the expression of OsAPX genes was examined using detached leaves. The results showed that the esl mutant had higher H2O2 level than its wild type at the initial stage of leaf senescence. At transcriptional level, the association of expression of various genes involved in the AsA-GSH cycle with leaf senescence was isoform dependent. For OsAPXs, the transcripts of two cytosolic OsAPX genes (OsAPX1 and OsAPX2), thylakoid-bound OsAPX8, chloroplastic OsAPX7 and peroxisomal OsAPX4 exhibited remarkable genotype-dependent variation in their expression levels and temporal patterns during leaf senescence, there were significantly increasing transcripts of OsAXP1 and OsAPX7, severely repressed transcripts of OsAPX4 and OsAPX8 for the esl rice at the initial leaf senescence. In contrast, the repressing transcript of OsAPX8 was highly sensitive to the increasing H2O2 level in the senescing rice leaves, while higher H2O2 concentration resulted in the enhancing transcripts of two cytosolic OsAPX genes, OsAPX7 transcript was greatly variable with different H2O2 concentrations and incubating duration, suggesting that the different OsAPXs isoforms played a complementary role in perceiving and scavenging H2O2 accumulation at various H2O2 concentrations during leaf senescence. Higher H2O2 level, increased AsA level, higher activities of APX and glutathione reductase (GR), and relatively stable GSH content during the entire sampling period in the leaves of esl mutant implied that a close interrelationship existed between AsA level and APX activity in the ongoing senescence of rice leaves. The GSH supply in rice leaves was not the limiting factor for the efficient maintenance of AsA-GSH cycle, despite the senescence-related change in GR activity between the two rice genotypes. Copyright © 2014 Elsevier GmbH. All rights reserved.
Savini, Isabella; Catani, Maria Valeria; Rossi, Antonello; Duranti, Guglielmo; Melino, Gerry; Avigliano, Luciana
2002-02-01
Epidermal keratinocytes undergo differentiation in response to several stimuli to form the cornified envelope, a structure that contributes to the barrier function of skin. Although differentiation has been extensively analyzed, the precise role of vitamin C during this process is still not defined. Ascorbic acid, besides acting as a radical scavenger, has been shown to promote mesenchymal differentiation. In this study, we found that keratinocytes grown in ascorbate-supplemented medium developed a differentiated phenotype, as demonstrated by enhanced expression of marker genes and increase in cornified envelope content. The pro-differentiating effects of ascorbate were mediated by the protein-kinase-C-dependent induction of activating protein 1 DNA binding activity; indeed, down-modulation of protein kinase C activity abolished differentiation triggered by ascorbic acid. Although vitamin C appeared to regulate the same signaling pathway modulated by calcium, a classical in vitro inducer of epidermal differentiation, nonetheless terminally differentiated keratinocytes exhibited different ascorbate homeostasis and cellular antioxidant status. Indeed, we found that, unlike calcium, differentiation promoted by ascorbate was accompanied by (i) an enhanced ascorbate transport, due to overexpression of specific transporters, (ii) a great efficiency of dehydroascorbate uptake, and (iii) an increase in glutathione content with respect to proliferating cells. Ascorbic acid may be useful to promote epidermal differentiation, avoiding depletion of hydrophilic antioxidant stores.
Vitamin C transporter gene polymorphisms, dietary vitamin C and serum ascorbic acid.
Cahill, Leah E; El-Sohemy, Ahmed
2009-01-01
Vitamin C transporter proteins SVCT1 and SVCT2 are required for the absorption and transport of vitamin C in humans. This study aims to determine whether common SVCT genotypes modify the association between dietary vitamin C and serum ascorbic acid. Non-smoking men and women (n=1,046) aged 20-29 were participants of the Toronto Nutrigenomics and Health Study. Overnight fasting blood samples were collected to determine serum ascorbic acid concentrations by HPLC and to genotype for two SVCT1 (rs4257763 and rs6596473) and two SVCT2 (rs6139591 and rs2681116) polymorphisms. No diet-gene interactions were observed for the vitamin C transporter polymorphisms, however, the average (mean+/-SE) serum ascorbic acid concentrations differed between rs4257763 genotypes (GG: 24.4+/-1.3, GA: 26.8+/-1.1, AA: 29.7+/-1.4 micromol/l; p=0.002). For this polymorphism, the correlation between dietary vitamin C and serum ascorbic acid was only significant in subjects with a G allele. The SVCT2 polymorphisms also appeared to modify the strength of the diet-serum correlation. Our findings demonstrate that genetic variation in SVCT1 can influence serum ascorbic acid concentrations and that SVCT1 and SVCT2 genotypes modify the strength of the correlation between dietary vitamin C and serum ascorbic acid. Copyright © 2010 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Jiang, Qiu-Yun; Zhuo, Feng; Long, Shi-Hui; Zhao, Hai-Di; Yang, Dan-Jing; Ye, Zhi-Hong; Li, Shao-Shan; Jing, Yuan-Xiao
2016-02-01
A greenhouse pot experiment was conducted to study the impact of arbuscular mycorrhizal fungi-Glomus versiforme (Gv) and Rhizophagus intraradices (Ri) on the growth, Cd uptake, antioxidant indices [glutathione reductase (GR), ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT), ascorbate (ASA), glutathione (GSH) and malonaldehyde (MDA)] and phytochelatins (PCs) production of Lonicera japonica in Cd-amended soils. Gv and Ri significantly increased P acquisition, biomass of shoots and roots at all Cd treatments. Gv significantly decreased Cd concentrations in shoots and roots, and Ri also obviously reduced Cd concentrations in shoots but increased Cd concentrations in roots. Meanwhile, activities of CAT, APX and GR, and contents of ASA and PCs were remarkably higher in Gv/Ri-inoculated plants than those of uninoculated plants, but lower MDA and GSH contents in Gv/Ri-inoculated plants were found. In conclusion, Gv and Ri symbiosis alleviated Cd toxicity of L. japonica through the decline of shoot Cd concentrations and the improvement of P nutrition, PCs content and activities of GR, CAT, APX in inoculated plants, and then improved plant growth. The decrease of shoot Cd concentrations in L. japonica inoculated with Gv/Ri would provide a clue for safe production of this plant from Cd-contaminated soils.
Supplement of a chitosan and ascorbic acid mixture for Crohn's disease: a pilot study.
Tsujikawa, Tomoyuki; Kanauchi, Osamu; Andoh, Akira; Saotome, Takao; Sasaki, Masaya; Fujiyama, Yoshihide; Bamba, Tadao
2003-02-01
Although the pathogenesis of Crohn's disease remains unclear, dietary fat is thought to exacerbate intestinal inflammation. Chitosan is a water-insoluble dietary fiber, and a chitosan and ascorbic acid mixture has been shown in rats to increase fecal fat excretion without affecting protein digestibility. However, it remains unclear whether a chitosan and ascorbic acid mixture is safe and effective for patients with Crohn's disease. We designed a pilot trial to investigate the tolerability and amount of fat excretion after the oral administration of a chitosan and ascorbic mixture for inactive Crohn's disease. Eleven outpatients were given seven tablets daily of a chitosan and ascorbic mixture (chitosan was given at 1.05 g/d) for 8 wk. Patients did not interrupt their respective therapies for Crohn's disease. The bowel movements of most patients increased slightly during the study. Nutritional and inflammatory markers in patients did not differ before and after treatment. The chitosan and ascorbic acid mixture significantly increased the fat concentration in the feces during treatment. These results indicated that oral administration of a chitosan and ascorbic acid mixture in patients with Crohn's disease is tolerable and increases fecal fat excretion without affecting disease activity.
Structural basis for 18-β-glycyrrhetinic acid as a novel non-GSH analog glyoxalase I inhibitor.
Zhang, Hong; Huang, Qiang; Zhai, Jing; Zhao, Yi-ning; Zhang, Li-ping; Chen, Yun-yun; Zhang, Ren-wei; Li, Qing; Hu, Xiao-peng
2015-09-01
Glyoxalase I (GLOI), a glutathione (GSH)-dependent enzyme, is overexpressed in tumor cells and related to multi-drug resistance in chemotherapy, making GLOI inhibitors as potential anti-tumor agents. But the most studied GSH analogs exhibit poor pharmacokinetic properties. The aim of this study was to discover novel non-GSH analog GLOI inhibitors and analyze their binding mechanisms. Mouse GLOI (mGLOI) was expressed in BL21 (DE3) pLysS after induction with isopropyl-β-D-1-thiogalactopyranoside and purified using AKTA FPLC system. An in vitro mGLOI enzyme assay was used to screen a small pool of compounds containing carboxyl groups. Crystal structure of the mGLOI-inhibitor complex was determined at 2.3 Å resolution. Molecular docking study was performed using Discovery Studio 2.5 software package. A natural compound 18-β-glycyrrhetinic acid (GA) and its derivative carbenoxolone were identified as potent competitive non-GSH analog mGLOI inhibitors with Ki values of 0.29 μmol/L and 0.93 μmol/L, respectively. Four pentacyclic triterpenes (ursolic acid, oleanolic acid, betulic acid and tripterine) showed weak activities (mGLOI inhibition ratio <25% at 10 μmol/L) and other three (maslinic acid, corosolic acid and madecassic acid) were inactive. The crystal structure of the mGLOI-GA complex showed that the carboxyl group of GA mimicked the γ-glutamyl residue of GSH by hydrogen bonding to the glutamyl sites (residues Arg38B, Asn104B and Arg123A) in the GSH binding site of mGLOI. The extensive van der Waals interactions between GA and the surrounding residues also contributed greatly to the binding of GA and mGLOI. This work demonstrates a carboxyl group to be an important functional feature of non-GSH analog GLOI inhibitors.
Borges-Santos, Maria Dorotéia; Moreto, Fernando; Pereira, Paulo Câmara Marques; Ming-Yu, Yong; Burini, Roberto Carlos
2012-07-01
Patients with positivity for the human immunodeficiency virus (HIV⁺) present low concentrations of antioxidant nutrients, including total glutathione (GSH) and its precursors. We investigated the responses of the sulfur-containing amino acid pathway to cysteine and glutamine (Gln) dietary supplements in patients with HIV⁺ compared with healthy controls. Twelve treated patients (six men and six women, 22-45 y old) and 20 healthy controls (10 men and 10 women, 20-59 y old) were randomly assigned to 7-d dietary supplements containing N-acetylcysteine (NAC; 1 g/d) or Gln (20 g/d), with a 7-d washout period ingesting their usual diet. Blood samples were drawn after an overnight fast. High-performance liquid chromatographic plasma analysis of sulfur-containing amino acids (methionine, homocysteine, cysteine, and taurine), GSH, oxidized GSH, and serine, glycine, glutamic acid, and Gln was carried out moments before and after 7-d supplementations. Statistical comparisons were undertaken between groups and between dietary supplements (P < 0.05). Patients with HIV⁺ showed higher oxidized GSH and lower concentrations of GSH and all amino acids except homocysteine. The HIV⁺ group responded to the NAC by increased levels of sulfur-containing amino acids and GSH and equalized taurine and GSH levels in the control group. The Gln supplements also equalized the levels of GSH, Gln, and glycine in the control group. An increase in GSH may be attained by NAC or Gln supplementation, with NAC acting by increasing cysteine levels and Gln likely acting by replenishing the glycine pool (trial registered at http://www.clinicaltrials.gov, identifier NCT00910442). Copyright © 2012 Elsevier Inc. All rights reserved.
Mitamura, Kuniko; Hori, Naohiro; Mino, Shiori; Iida, Takashi; Hofmann, Alan F; Ikegawa, Shigeo
2012-04-01
The 3-sulfates of the S-acyl glutathione (GSH) conjugates of five natural bile acids (cholic, chenodeoxycholic, deoxycholic, ursodeoxycholic, and lithocholic) were synthesized as reference standards in order to investigate their possible formation by a rat liver cytosolic fraction. Their structures were confirmed by proton nuclear magnetic resonance, as well as by means of electrospray ionization-linear ion-trap mass spectrometry with negative-ion detection. Upon collision-induced dissociation, structurally informative product ions were observed. Using a triple-stage quadrupole instrument, selected reaction monitoring analyses by monitoring characteristic transition ions allowed the achievement of a highly sensitive and specific assay. This method was used to determine whether the 3-sulfates of the bile acid-GSH conjugates (BA-GSH) were formed when BA-GSH were incubated with a rat liver cytosolic fraction to which 3'-phosphoadenosine 5'-phosphosulfate had been added. The S-acyl linkage was rapidly hydrolyzed to form the unconjugated bile acid. A little sulfation of the GSH conjugates occurred, but greater sulfation at C-3 of the liberated bile acid occurred. Sulfation was proportional to the hydrophobicity of the unconjugated bile acid. Thus GSH conjugates of bile acids as well as their C-3 sulfates if formed in vivo are rapidly hydrolyzed by cytosolic enzymes. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Antioxidative responses of Ocimum basilicum to sodium chloride or sodium sulphate salinization.
Tarchoune, I; Sgherri, C; Izzo, R; Lachaal, M; Ouerghi, Z; Navari-Izzo, F
2010-09-01
Soils and ground water in nature are dominated by chloride and sulphate salts. There have been several studies concerning NaCl salinity, however, little is known about the Na(2)SO(4) one. The effects on antioxidative activities of chloride or sodium sulphate in terms of the same Na(+) equivalents (25 mM Na(2)SO(4) and 50 mM NaCl) were studied on 30 day-old plants of Ocimum basilicum L., variety Genovese subjected to 15 and 30 days of treatment. Growth, thiobarbituric acid reactive substances (TBARS), relative ion leakage ratio (RLR), hydrogen peroxide (H(2)O(2)), ascorbate and glutathione contents as well as the activities of ascorbate peroxidase (APX, EC 1.11.1.11); glutathione reductase (GR, EC 1.6.4.2) and peroxidases (POD, EC 1.11.1.7) were determined. In leaves, growth was more depressed by 25 mM Na(2)SO(4) than 50 mM NaCl. The higher sensitivity of basil to Na(2)SO(4) was associated with an enhanced accumulation of H(2)O(2), an inhibition of APX, GR and POD activities (with the exception of POD under the 30-day-treatment) and a lower regeneration of reduced ascorbate (AsA) and reduced glutathione (GSH). However, the changes in the antioxidant metabolism were enough to limit oxidative damage, explaining the fact that RLR and TBARS levels were unchanged under both Na(2)SO(4) and NaCl treatment. Moreover, for both salts the 30-day-treatment reduced H(2)O(2) accumulation, unchanged RLR and TBARS levels, and enhanced the levels of antioxidants and antioxidative enzymes, thus achieving an adaptation mechanism against reactive oxygen species. 2010 Elsevier Masson SAS. All rights reserved.
Cheng, Guojun; Karunakaran, Ramakrishnan; East, Alison K; Munoz-Azcarate, Olaya; Poole, Philip S
2017-04-01
As glutathione (GSH) plays an essential role in growth and symbiotic capacity of rhizobia, a glutathione synthetase (gshB) mutant of Rhizobium leguminosarum biovar viciae 3841 (Rlv3841) was characterised. It fails to efficiently utilise various compounds as a sole carbon source, including glucose, succinate, glutamine and histidine, and shows 60%-69% reduction in uptake rates of glucose, succinate and the non-metabolisable substrate α-amino isobutyric acid. The defect in glucose uptake can be overcome by addition of exogenous GSH, indicating GSH, but not its bacterial synthesis, is required for efficient transport. GSH is not involved in the regulation of the activity of Rlv3841's transporters via the global regulator of transport, PtsNTR. Although lack of GSH reduces transcription of the branched amino acid transporter, this was not the case for all uptake transport systems, for example, the amino acid permease. This suggests GSH alters activity and/or assembly of transport systems by an unknown mechanism. In interaction with plants, the gshB mutant is not only severely impaired in rhizosphere colonisation, but also shows a 50% reduction in dry weight of plants and nitrogen-fixation ability. This reveals that changes in GSH metabolism affect the bacterial-plant interactions required for symbiosis. © FEMS 2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hata, Kuniki; Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 319-1195; Urushibara, Ayumi
Highlights: •We report a novel mechanism of radiation protection of DNA by chemical activity of ascorbic acid. •The “chemical repair” of DNA damage was revealed using biochemical assay and chemical kinetics analysis. •We found that ascorbic acid significantly repairs precursors of nucleobase lesions and abasic sites. •However, ascorbic acid seldom repairs precursors of DNA-strand breaks. -- Abstract: We quantified the damage yields produced in plasmid DNA by γ-irradiation in the presence of low concentrations (10–100 μM) of ascorbic acid, which is a major antioxidant in living systems, to clarify whether it chemically repairs radiation damage in DNA. The yield ofmore » DNA single strand breaks induced by irradiation was analyzed with agarose gel electrophoresis as conformational changes in closed circular plasmids. Base lesions and abasic sites were also observed as additional conformational changes by treating irradiated samples with glycosylase proteins. By comparing the suppression efficiencies to the induction of each DNA lesion, in addition to scavenging of the OH radicals derived from water radiolysis, it was found that ascorbic acid promotes the chemical repair of precursors of AP-sites and base lesions more effectively than those of single strand breaks. We estimated the efficiency of the chemical repair of each lesion using a kinetic model. Approximately 50–60% of base lesions and AP-sites were repaired by 10 μM ascorbic acid, although strand breaks were largely unrepaired by ascorbic acid at low concentrations. The methods in this study will provide a route to understanding the mechanistic aspects of antioxidant activity in living systems.« less
Sadeghi, Akram; Ebrahimzadeh Bideskan, Alireza; Alipour, Fatemeh; Fazel, Alireza; Haghir, Hossein
2013-02-01
The aim of this study was to investigate ascorbic acid and garlic protective effects on lead-induced neurotoxicity during rat hippocampus development. 90 pregnant wistar rats were divided randomly into nine groups: 1- Animals received leaded water (L). 2- Rats received leaded water and ascorbic acid (L+AA). 3- Animals received leaded water and garlic juice (L+G). 4-Animals received leaded water, ascorbic acid and garlic juice (L+G+AA). 5- Rats treated with ascorbic acid (AA). 6- Rats treated with garlic juice (G). 7- Rats treated with ascorbic acid and garlic juice (AA+G). 8- Rats treated with tap water plus 0.4 ml/l normal hydrogen chloride (HCl) and 0.5 mg/l Glucose (Sham). 9- Normal group (N). Leaded water (1500 ppm), garlic juice (1 ml/100g/day, gavage) and ascorbic acid (500 mg/kg/day, IP) were used. Finally, blood lead levels (BLL) were measured in both rats and their offspring. The rat offspring brain sections were stained using Toluidine Blue and photographed. Dark neurons (DNs) were counted to compare all groups. BLL significantly increased in L group compared to control and sham groups and decreased in L+G and L+AA groups in comparison to the L group (P<0.05). the number of DNs in the CA1, CA3, and DG of rat offspring hippocampus significantly increased in L group in comparison to control and sham groups (P<0.05) and decreased in L+G and L+AA groups compared to L group (P<0.05). Garlic juice and ascorbic acid administration during pregnancy and lactation may protect lead-induced neural damage in rat offspring hippocampus.
Gulliver, John; Morley, David; Dunster, Chrissi; McCrea, Adrienne; van Nunen, Erik; Tsai, Ming-Yi; Probst-Hensch, Nicoltae; Eeftens, Marloes; Imboden, Medea; Ducret-Stich, Regina; Naccarati, Alessio; Galassi, Claudia; Ranzi, Andrea; Nieuwenhuijsen, Mark; Curto, Ariadna; Donaire-Gonzalez, David; Cirach, Marta; Vermeulen, Roel; Vineis, Paolo; Hoek, Gerard; Kelly, Frank J
2018-01-01
Oxidative potential (OP) of particulate matter (PM) is proposed as a biologically-relevant exposure metric for studies of air pollution and health. We aimed to evaluate the spatial variability of the OP of measured PM 2.5 using ascorbate (AA) and (reduced) glutathione (GSH), and develop land use regression (LUR) models to explain this spatial variability. We estimated annual average values (m -3 ) of OP AA and OP GSH for five areas (Basel, CH; Catalonia, ES; London-Oxford, UK (no OP GSH ); the Netherlands; and Turin, IT) using PM 2.5 filters. OP AA and OP GSH LUR models were developed using all monitoring sites, separately for each area and combined-areas. The same variables were then used in repeated sub-sampling of monitoring sites to test sensitivity of variable selection; new variables were offered where variables were excluded (p > .1). On average, measurements of OP AA and OP GSH were moderately correlated (maximum Pearson's maximum Pearson's R = = .7) with PM 2.5 and other metrics (PM 2.5 absorbance, NO 2 , Cu, Fe). HOV (hold-out validation) R 2 for OP AA models was .21, .58, .45, .53, and .13 for Basel, Catalonia, London-Oxford, the Netherlands and Turin respectively. For OP GSH , the only model achieving at least moderate performance was for the Netherlands (R 2 = .31). Combined models for OP AA and OP GSH were largely explained by study area with weak local predictors of intra-area contrasts; we therefore do not endorse them for use in epidemiologic studies. Given the moderate correlation of OP AA with other pollutants, the three reasonably performing LUR models for OP AA could be used independently of other pollutant metrics in epidemiological studies. Copyright © 2017 Elsevier Inc. All rights reserved.
Ma, Lichao; Wang, Yanrong; Liu, Wenxian; Liu, Zhipeng
2014-11-01
GDP-mannose 3', 5'-epimerase (GME) catalyses the conversion of GDP-D-mannose to GDP-L-galactose, an important step in the ascorbic acid (ascorbic acid) biosynthetic pathway in higher plants. In this study, a novel cDNA fragment (MsGME) encoding a GME protein was isolated and characterised from alfalfa (Medicago sativa). An expression analysis confirmed that MsGME expression was induced by salinity, PEG and acidity stresses. MsGME overexpression in Arabidopsis enhanced tolerance of the transgenic plants to salt, drought and acid. Real-time PCR analysis revealed that the transcript levels of GDP-D-mannose pyrophosphorylase (GMP), L-galactose-phosphate 1-P phosphatase (GP) and GDP-L-galactose phosphorylase (GGP) were increased in transgenic Arabidopsis (T3 generation). Moreover, the ascorbate content was increased in transgenic Arabidopsis. Our results suggest that MsGME can effectively enhance tolerance of transgenic Arabidopsis to acid, drought and salt by increasing ascorbate accumulation.
Szymula, M
2004-01-01
The antioxidant efficiency of two hydrophilic species, ascorbic acid (AA) and propyl gallate (PG), in an anionic surfactant system are studied. Ascorbic acid and propyl gallate are dissolved/solubilized in a microemulsion formed by water, pentanol, and sodium dodecyl sulfate. The determination of propyl gallate decomposition/oxidation kinetics shows enhanced oxidation of PG with increasing pentanol concentration in the system. When ascorbic acid and propyl gallate are both present in water, in surfactant aqueous solution, and in the studied microemulsion systems, the molecular complex AAPG is formed. After some time the complex decomposes.
Radhakrishnakartha, Harikrishnan; Appu, Abhilash Puthuvelvippel; Indira, Madambath
2014-01-15
The impact of ascorbic acid supplementation against ethanol induced Leydig cell toxicity was studied in guinea pigs. Male guinea pigs were exposed to ethanol (4g/kgb.wt.) for 90 days. After 90 days, ethanol administration was completely stopped and animals in the ethanol group were divided into abstention group and ascorbic acid supplemented group (25mg/100gb.wt.) and those in control group were maintained as control and control+ascorbic acid group. Ethanol administration reduced the serum testosterone and LH (luteinising hormone) levels and elevated estradiol levels. Cholesterol levels in Leydig cell were increased whereas the mRNA and protein expressions of StAR (steroidogenic acute regulatory) protein, cytochrome P450scc (cytochrome p450side chain cleavage enzyme), 3β-HSD (3β-hydroxysteroid dehydrogenase), 17β-HSD (17β-hydroxysteroid dehydrogenase) and LH receptor were drastically reduced. Administration of ascorbic acid resulted in alteration of all these parameters indicating enhanced recovery from ethanol induced inhibition of Leydig cell steroidogenesis. Although abstention could also reduce the inhibition of steroidogenesis, this was lesser in comparison with ascorbic acid supplemented group. © 2013 Published by Elsevier B.V.
Mochizuki, H; Oda, H; Yokogoshi, H
2000-04-01
The effect of dietary taurine on ascorbic acid metabolism and hepatic drug-metabolizing enzymes was investigated in rats fed diets containing polychlorinated biphenyls (PCB) to determine whether taurine has an adaptive and protective function in xenobiotic-treated animals. Young male Wistar rats (60 g) were fed diets containing 0 or 0.2 g/kg diet PCB with or without 30 g/kg diet of taurine for 14 d. The rats fed the PCB-containing diets had greater liver weight, higher ascorbic acid concentrations in the liver and spleen and greater hepatic cytochrome P-450 contents than control rats that were not treated with PCB (P < 0.01). In PCB-fed rats, urinary ascorbic acid excretion was enhanced, and serum cholesterol concentration (especially HDL-cholesterol) was significantly elevated compared with those in control rats. Dietary taurine significantly potentiated the increases in the urinary excretion of ascorbic acid and the rise in the levels of cytochrome P-450 which were caused by PCB treatment. On the other hand, the supplementation of taurine to control diet did not alter these variables. Taurine may enhance the hepatic drug-metabolizing systems, leading to the stimulation of the ascorbic acid metabolism in rats fed diets containing PCB.
Fritea, Luminţa; Tertiş, Mihaela; Cristea, Cecilia; Săndulescu, Robert
2013-01-01
The electrochemical behavior of ascorbic acid and uric acid on glassy carbon bare electrodes and ones modified with β-cyclodextrin entrapped in polyethyleneimine film has been investigated using square wave voltammetry. The electrode modification was achieved in order to separate the voltammetric peaks of ascorbic acid and uric acid when present in the same solution. On the modified electrodes the potential of the oxidation peak of the ascorbic acid was shifted to more negative values by over 0.3 V, while in the case of uric acid, the negative potential shift was about 0.15 V compared to the bare glassy carbon electrode. When the two compounds were found together in the solution, on the bare electrode only a single broad signal was observed, while on the modified electrode the peak potentials of these two compounds were separated by 0.4 V. When the uric acid concentration remained constant, the peak intensity of the ascorbic acid is increased linearly with the concentration (r2 = 0.996) and when the ascorbic acid concentration remains constant, the peak intensity of the uric acid increased linearly with the concentration (r2 = 0.992). FTIR measurements supported the formation of inclusion complexes. In order to characterize the modification of the electrodes microscopic studies were performed. The modified electrodes were successfully employed for the determination of ascorbic acid in pharmaceutical formulations with a detection limit of 0.22 μM. PMID:24287544
Bagheri, Rita; Ahmad, Javed; Bashir, Humayra; Iqbal, Muhammad; Qureshi, M Irfan
2017-03-01
Sulphur (S) deficiency, cadmium (Cd) toxicity and their combinations are of wide occurrence throughout agricultural lands. We assessed the impact of short-term (2 days) and long-term (4 days) applications of cadmium (40 μg/g soil) on spinach plants grown on sulphur-sufficient (300 μM SO 4 2- ) and sulphur-deficient (30 μM SO 4 2- ) soils. Compared with the control (+S and -Cd), oxidative stress was increased by S deficiency (-S and -Cd), cadmium (+S and +Cd) and their combination stress (-S and +Cd) in the order of (S deficiency) < (Cd stress) < (S deficiency and +Cd stress). SDS-PAGE profile of leaf proteins showed a high vulnerability of rubisco large subunit (RbcL) to S deficiency. Rubisco small subunit (RbcS) was particularly sensitive to Cd as well as dual stress (+Cd and -S) but increased with Cd in the presence of S. Cysteine content in low molecular weight proteins/peptide was also affected, showing a significant increase under cadmium treatment. Components of ascorbate-glutathione antioxidant system altered their levels, showing the maximum decline in ascorbate (ASA), dehydroascorbate (DHA), total ascorbate (ASA + DHA, hereafter TA), glutathione (GSH) and total glutathione (GSH + GSSG, hereafter TG) under S deficiency. However, total ascorbate and total glutathione increased, besides a marginal increase in their reduced and oxidized forms, when Cd was applied in the presence of sufficient S. Sulphur supply also helped in increasing the activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR) and catalase (CAT) under Cd stress. However, their activity suffered by S deficiency and by Cd stress during S deficiency. Each stress declined the contents of soluble protein and photosynthetic pigments; the highest decline in contents of protein and pigments occurred under S deficiency and dual stress respectively. The fresh and dry weights, although affected adversely by every stress, declined most under dual stress. It may be concluded that an optimal level of S is required during Cd stress for better response of SOD, APX, GR and CAT activity, as well as synthesis of cysteine. RbcS is as highly sensitive to S deficiency as RbcL is to Cd stress.
Inhibition of Human Amylin Aggregation and Cellular Toxicity by Lipoic Acid and Ascorbic Acid.
Azzam, Sarah Kassem; Jang, Hyunwoo; Choi, Myung Chul; Alsafar, Habiba; Lukman, Suryani; Lee, Sungmun
2018-04-30
More than 30 human degenerative diseases result from protein aggregation such as Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM). Islet amyloid deposits, a hallmark in T2DM, are found in pancreatic islets of more than 90 % of T2DM patients. An association between amylin aggregation and reduction in β-cell mass was also established by post-mortem studies. A strategy in preventing protein aggregation-related disorders is to inhibit the protein aggregation and associated toxicity. In this study we demonstrated that two inhibitors, lipoic acid and ascorbic acid, significantly inhibited amylin aggregation. Compared to amylin (15 μM) as 100 %, lipoic acid and ascorbic acid reduced amylin fibril formation to 42.1 ± 17.2 % and 42.9 ± 12.8 % respectively, which is confirmed by fluorescence and TEM images. In cell viability tests, both inhibitors protected RIN-m5f β-cells from the toxicity of amylin aggregates. At 10:1 molar ratio of lipoic acid to amylin, lipoic acid with amylin increased the cell viability to 70.3 %, whereas only 42.8 % RIN-m5f β-cells survived in amylin aggregates. For ascorbic acid, an equimolar ratio achieved the highest cell viability of 63.3 % as compared to 42.8 % with amylin aggregates only. Docking results showed that lipoic acid and ascorbic acid physically interact with amylin amyloidogenic region (residues Ser20-Ser29) via hydrophobic interactions; hence reducing aggregation levels. Therefore, lipoic acid and ascorbic acid prevented amylin aggregation via hydrophobic interactions, which resulted in the prevention of cell toxicity in vitro.
Yamamoto, I; Ohmori, H
1981-01-01
In the presence, but not in the absence of Cu2+, ascorbate decomposes histamine in citrate phosphate buffer (pH 6.5) at 37 degrees, but not at 0 degrees. The breakdown is completely inhibited by catalase, but only slightly by superoxide dismutase, and scavengers of OH. like benzoic acid, ethanol or potassium iodide. A1 O2 scavenger, alpha-tocopherol also did not show significant effects on the reaction. On the other hand, addition of H2O2 to the reaction mixture markedly enhances the rate of histamine breakdown induced by ascorbate or ascorbate-Cu2+ systems. However, H2O2 alone cannot breakdown histamine even in the presence of Cu2+. Histamine breakdown induced by ascorbate appears to be dependent upon the autooxidation of this vitamin. From these results and the findings reported by Chatterjee et al. that the products of its aerobic oxidation, dehydroascorbic acid and H2O2 were ineffective in reacting with histamine in the presence of Cu2+, it is concluded that the combination of H2O2 and the intermediate of ascorbate oxidation (monodehydroascorbic acid or other unstable species), both of which are produced during the autooxidation of ascorbate, plays a major role in the histamine transformation by ascorbate-Cu2+ system.
21 CFR 182.3013 - Ascorbic acid.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ascorbic acid. 182.3013 Section 182.3013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3013 Ascorbic...
Pro-oxidant effects of Ecstasy and its metabolites in mouse brain synaptosomes
Barbosa, Daniel José; Capela, João Paulo; Oliveira, Jorge MA; Silva, Renata; Ferreira, Luísa Maria; Siopa, Filipa; Branco, Paula Sério; Fernandes, Eduarda; Duarte, José Alberto; de Lourdes Bastos, Maria; Carvalho, Félix
2012-01-01
BACKGROUND AND PURPOSE 3,4-Methylenedioxymethamphetamine (MDMA or ‘Ecstasy’) is a worldwide major drug of abuse known to elicit neurotoxic effects. The mechanisms underlying the neurotoxic effects of MDMA are not clear at present, but the metabolism of dopamine and 5-HT by monoamine oxidase (MAO), as well as the hepatic biotransformation of MDMA into pro-oxidant reactive metabolites is thought to contribute to its adverse effects. EXPERIMENTAL APPROACH Using mouse brain synaptosomes, we evaluated the pro-oxidant effects of MDMA and its metabolites, α-methyldopamine (α-MeDA), N-methyl-α-methyldopamine (N-Me-α-MeDA) and 5-(glutathion-S-yl)-α-methyldopamine [5-(GSH)-α-MeDA], as well as those of 5-HT, dopamine, l-DOPA and 3,4-dihydroxyphenylacetic acid (DOPAC). KEY RESULTS 5-HT, dopamine, l-DOPA, DOPAC and MDMA metabolites α-MeDA, N-Me-α-MeDA and 5-(GSH)-α-MeDA, concentration- and time-dependently increased H2O2 production, which was significantly reduced by the antioxidants N-acetyl-l-cysteine (NAC), ascorbic acid and melatonin. From experiments with MAO inhibitors, it was observed that H2O2 generation induced by 5-HT was totally dependent on MAO-related metabolism, while for dopamine, it was a minor pathway. The MDMA metabolites, dopamine, l-DOPA and DOPAC concentration-dependently increased quinoproteins formation and, like 5-HT, altered the synaptosomal glutathione status. Finally, none of the compounds modified the number of polarized mitochondria in the synaptosomal preparations, and the compounds’ pro-oxidant effects were unaffected by prior mitochondrial depolarization, excluding a significant role for mitochondrial-dependent mechanisms of toxicity in this experimental model. CONCLUSIONS AND IMPLICATIONS MDMA metabolites along with high levels of monoamine neurotransmitters can be major effectors of neurotoxicity induced by Ecstasy. PMID:21506960
Kalay, Zeynep; Cevher, Sule Coskun
2012-08-01
Cutaneous wound healing is a highly complex process, which includes inflammation, cell proliferation, matrix deposition and remodelling phases. Various growth factors, like epidermal growth factor (EGF), play an important role during wound healing. However, little is known about relationship between EGF and oxidant-antioxidant events in cutaneous wound healing models. Thus we planned to evaluate the connection between EGF therapy and oxidative stress in dermal tissue followed by wounding. Fifty-four adult male Wistar-albino rats were randomly divided into three groups: control, untreated and topical EGF administrated group. A linear full-thickness excision of 40 mm in length on both sides of spinal cord was made on the back of each rat and sutured under anaesthesia and sterile conditions. Excision was closed with 4/0 atraumatic silk suture. EGF solution was freshly prepared at 10 ng/ml dose in thilotears gel under aseptic conditions. Following the surgery, 1 ml of EGF solution was administered to wound strips one time in everyday. The animals were euthanised and wound tissues were collected on days 1, 5, 7 and 14. Thiobarbituric acid reactive substans (TBARS), glutathione (GSH), reactive nitrogen oxide species (NOx), ascorbic acid levels and superoxide dismutase activity were measured spectrophotometrically. TBARS levels decreased and NOx levels increased on day 5 after operation, and GSH levels were increased on day 14 in EGF administered group compared with untreated group. Our data showed that EGF may act like an antioxidant by scavenging toxic oxidation products in wound tissue. In addition, it may contribute healing of the wound tissue in earlier stages and suggest a potential effective role for antioxidant therapies, especially until day 5. © 2011 The Authors. © 2011 Blackwell Publishing Ltd and Medicalhelplines.com Inc.
Patro, Ganesh; Bhattamisra, Subrat Kumar; Mohanty, Bijay Kumar; Sahoo, Himanshu Bhusan
2016-01-01
Objective: Mimosa pudica Linn. (Mimosaceae) is traditionally used as a folk medicine to treat various ailments including convulsions, alopecia, diarrhea, dysentery, insomnia, tumor, wound healing, snake bite, etc., Here, the study was aimed to evaluate the antioxidant potential of M. pudica leaves extract against 2, 2-diphenyl-1-picrylhydrazyl (DPPH) (in vitro) and its modulatory effect on rat brain enzymes. Materials and Methods: Total phenolic, flavonoid contents, and in vitro antioxidant potential against DPPH radical were evaluated from various extracts of M. pudica leaves. In addition, ethyl acetate extract of Mimosa pudica leaves (EAMP) in doses of 100, 200, and 400 mg/kg/day were administered orally for 7 consecutive days to albino rats and evaluated for the oxidative stress markers as thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) from rat brain homogenate. Results: The ethyl acetate extract showed the highest total phenolic content and total flavonoid content among other extracts of M. pudica leaves. The percentage inhibition and IC50 value of all the extracts were followed dose-dependency and found significant (P < 0.01) as compared to standard (ascorbic acid). The oxidative stress markers as SOD, CAT, and GSH were increased significantly (P < 0.01) at 200 and 400 mg/kg of EAMP treated animals and decreased significantly the TBARS level at 400 mg/kg of EAMP as compared to control group. Conclusion: These results revealed that the ethyl acetate extract of M. pudica exhibits both in vitro antioxidant activity against DPPH and in vivo antioxidant activity by modulating brain enzymes in the rat. This could be further correlated with its potential to neuroprotective activity due to the presence of flavonoids and phenolic contents in the extract. SUMMARY Total phenolic, flavonoid contents and in-vitro antioxidant potential were evaluated from various extracts of M. pudica leaves. Again, in-vivo antioxidant evaluation from brain homogenate on oxidative stress markers as TBARS, SOD, CAT and GSH from rat was investigated. Our findings revealed that M. pudica possesses both in-vitro and in-vivo antioxidant activity due to presence of phenolics and flavonoids. PMID:26941532
Abdul Kamal Nazer, Meeran Mohideen; Hameed, Abdul Rahman Shahul; Riyazuddin, Patel
2004-01-01
A simple and rapid potentiometric method for the estimation of ascorbic acid in pharmaceutical dosage forms has been developed. The method is based on treating ascorbic acid with iodine and titration of the iodide produced equivalent to ascorbic acid with silver nitrate using Copper Based Mercury Film Electrode (CBMFE) as an indicator electrode. Interference study was carried to check possible interference of usual excipients and other vitamins. The precision and accuracy of the method was assessed by the application of lack-of-fit test and other statistical methods. The results of the proposed method and British Pharmacopoeia method were compared using F and t-statistical tests of significance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calabrese, E.J.; Barrett, T.J.; Leonard, D.A.
1988-01-01
The interrelationship between tissue ascorbic acid levels and tissue ..beta..-glucuronidase activity was examined in rats injected with 3-methylcholanthrene, an agent which induces ascorbic acid synthesis in rats. Six Fisher 344 rats were dosed intraperitoneally (IP) with 30 mg/kg of 3-methylcholanthrene. Ascorbic acid levels and ..beta..-glucuronidase (..beta..-G) activity were determined for lung, liver and kidney tissues. In a follow-up study, rats were dosed for three consecutive days with 3-methylcholanthrene. Controls in both groups were dosed IP with Emulphor (EL-620). Animals were sacrificed one week after the final dosage and lung, liver and kidney tissues were examined.
Urinary and plasma oxalate during ingestion of pure ascorbic acid: a re-evaluation.
Fituri, N; Allawi, N; Bentley, M; Costello, J
1983-01-01
Daily ingestion of 8 g of pure ascorbic acid by 8 normal subjects for 7 days did not, in contrast to previous reports in the literature, significantly alter urinary or plasma oxalate during or after ingestion. When urine with raised ascorbate values was heated at 100 degrees C for 30 min, a significant increase in urinary oxalate concentration was observed. Plasma ascorbate reached a mean value during ingestion of 3.3 mg/100 ml. Urinary citrate excretion significantly decreased during the first 4 days of ascorbic acid ingestion; however, the urinary inhibitory activity of calcium oxalate crystal growth was not significantly altered. Urinary and serum urate as well as urinary calcium and magnesium were unaltered by ingestion of the vitamin supplement.
Synthesis and antioxidant properties of a new lipophilic ascorbic acid analogue.
Cotelle, Philippe; Cotelle, Nicole; Teissier, Elisabeth; Vezin, Hervé
2003-03-20
4-(4-Hydroxyphenyl)-5-(4-hydroxyphenylmethyl)-2-hydroxyfurane-2-one 1 was prepared by an acidic dimerisation of 4-hydroxyphenylpyruvic acid and some of its antioxidant and spectroscopic properties have been measured and compared to that of ascorbic acid. 1 is as good an antioxidant as ascorbic acid in the DPPH (2,2-diphenyl-1-picryl hydrazyl radical) test and the inhibition of hydroxyl radical and a powerful inhibitor of the Cu(2+) or AAPH (2,2'-azobis-(2-amidinopropane) dihydrochloride) induced oxidation of human LDL. 1 gives a stable radical characterised by its ESR spectrum similarly to ascorbic acid but in lower concentration and with a different reactivity towards nitroxides. Theoretical calculations allow us to propose the structure for the radical formed from 1, to explain its lower stability than ascorbyl radical and to evaluate the lipophilicity of 1.
Effect of ascorbic acid on storage of Greyhound erythrocytes.
Fontes, Jorge A; Banerjee, Uddyalok; Iazbik, M Cristina; Marín, Liliana M; Couto, C Guillermo; Palmer, Andre F
2015-09-01
To assess changes in biochemical and biophysical properties of canine RBCs during cold (1° to 6°C) storage in a licensed RBC additive solution (the RBC preservation solution designated AS-1) supplemented with ascorbic acid. Blood samples from 7 neutered male Greyhounds; all dogs had negative results when tested for dog erythrocyte antigen 1.1. Blood was collected into citrate-phosphate-dextrose and stored in AS-1. Stored RBCs were supplemented with 7.1mM ascorbic acid or with saline (0.9% NaCl) solution (control samples). Several biochemical and biophysical properties of RBCs were measured, including percentage hemolysis, oxygen-hemoglobin equilibrium, and the kinetic rate constants for O2 dissociation, carbon monoxide association, and nitric oxide dioxygenation. Greyhound RBCs stored in AS-1 supplemented with ascorbic acid did not have significantly decreased hemolysis, compared with results for the control samples, during the storage period. In this study, ascorbic acid did not reduce hemolysis during storage. Several changes in stored canine RBCs were identified as part of the hypothermic storage lesion.
Lee, Eunmi; Kim, Kyusik; Choi, Moonjae; Lee, Youngmoo; Park, Jin-Won; Kim, Bumsang
2010-11-01
pH-Responsive P(MAA-co-EGMA) hydrogel microparticles were prepared and their feasibility as intelligent delivery carriers was evaluated. P(MAA-co-EGMA) hydrogel microparticles were synthesized via dispersion photopolymerization. There was a drastic change in the swelling ratio of P(MAA-co-EGMA) microparticles at a pH of ~ 5 and, as the amount of MAA in the hydrogel increased, the swelling ratio increased at a pH above 5. The loading efficiency of the ascorbic acid into the hydrogel was affected more by the degree of swelling of the hydrogel than the electrostatic interaction between the hydrogel and the loaded ascorbic acid. The P(MAA-co-EGMA) hydrogel microparticles showed a pH-sensitive release behavior. Thus, at pH 4 almost none of the ascorbic acid permeated through the skin while at pH 6 relatively high skin permeability was obtained. The ascorbic acid loaded in the hydrogel particles was hardly degraded and its stability was maintained at high temperature.
Covarrubias-Pinto, Adriana; Moll, Pablo; Solís-Maldonado, Macarena; Acuña, Aníbal I.; Riveros, Andrea; Miró, María Paz; Papic, Eduardo; Beltrán, Felipe A.; Cepeda, Carlos; Concha, Ilona I.; Brauchi, Sebastián; Castro, Maite A.
2016-01-01
Failure in energy metabolism and oxidative damage are associated with Huntington’s disease (HD). Ascorbic acid released during synaptic activity inhibits use of neuronal glucose, favouring lactate uptake to sustain brain activity. Here, we observe a decreased expression of GLUT3 in STHdhQ111 cells (HD cells) and R6/2 mice (HD mice). Localisation of GLUT3 is decreased at the plasma membrane in HD cells affecting the modulation of glucose uptake by ascorbic acid. An ascorbic acid analogue without antioxidant activity is able to inhibit glucose uptake in HD cells. The impaired modulation of glucose uptake by ascorbic acid is directly related to ROS levels indicating that oxidative stress sequesters the ability of ascorbic acid to modulate glucose utilisation. Therefore, in HD, a decrease in GLUT3 localisation at the plasma membrane would contribute to an altered neuronal glucose uptake during resting periods while redox imbalance should contribute to metabolic failure during synaptic activity. PMID:26456058
Jaeschke, Débora Pez; Marczak, Ligia Damasceno Ferreira; Mercali, Giovana Domeneghini
2016-05-15
The effect of electric field on ascorbic acid and carotenoid degradation in acerola pulp during ohmic heating was evaluated. Ascorbic acid kinetic degradation was evaluated at 80, 85, 90 and 95°C during 60 min of thermal treatment by ohmic and conventional heating. Carotenoid degradation was evaluated at 90 and 95°C after 50 min of treatment. The different temperatures evaluated showed the same effect on degradation rates. To investigate the influence of oxygen concentration on the degradation process, ohmic heating was also carried out under rich and poor oxygen modified atmospheres at 90°C. Ascorbic acid and carotenoid degradation was higher under a rich oxygen atmosphere, indicating that oxygen is the limiting reagent of the degradation reaction. Ascorbic acid and carotenoid degradation was similar for both heating technologies, demonstrating that the presence of the oscillating electric field did not influence the mechanisms and rates of reactions associated with the degradation process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hasegawa, Masashi; Ogihara, Tohru; Tamai, Hiroshi; Hiroi, Mayo
2009-08-04
Recent clinical trials have demonstrated the efficacy and safety of therapeutic hypothermia for neonatal hypoxic ischemic encephalopathy (HIE). We previously reported that the levels of non-protein-bound iron and ascorbic acid (AA) are increased in the CSF of infants with HIE. In this study, we investigated the effect of hypothermia on the combined cytotoxicity of Fe and AA for differentiated PC12 cells. The optimal settings for hypothermic treatment were a temperature of 30-32 degrees C, rescue time window of less than 6 h, and minimum duration of at least 24 h. Hypothermia effectively prevented the loss of the mitochondrial transmembrane potential from 6 h to 72 h (end of the study period) and attenuated the release of apoptotic proteins (cytochrome c and apoptosis-inducing factor) at 6 h of exposure to Fe-AA. Activation of caspase-3 was also delayed until 24 h. Akt was transiently activated, although no influence of temperature was observed. Elevation of oxidative stress markers, including ortho-, meta-, and di-tyrosine (markers of protein oxidation) and 4-hydroxynonenal (lipid peroxidation) was significantly attenuated when the temperature was reduced by 5 degrees C. The half-cell reduction potential (Ehc) of GSSG/2GSH redox couple ranged from -220 to -180 mV in unstressed differentiated PC12 cells, and apoptosis was triggered when Ehc exceeded -180 mV. Hypothermia prevented Ehc from rising above -180 mV within 24 h of exposure to Fe-AA. In conclusion, hypothermia prevented cell death due to Fe-AA toxicity by inhibiting apoptotic pathways through maintenance of a reduced cellular environment, as well as by alleviating oxidative stress.
β-aminobutyric acid mediated drought stress alleviation in maize (Zea mays L.).
Shaw, Arun K; Bhardwaj, Pardeep K; Ghosh, Supriya; Roy, Sankhajit; Saha, Suman; Sherpa, Ang R; Saha, Samir K; Hossain, Zahed
2016-02-01
The present study highlights the role of β-aminobutyric acid (BABA) in alleviating drought stress effects in maize (Zea mays L.). Chemical priming was imposed by pretreating 1-week-old plants with 600 μM BABA prior to applying drought stress. Specific activities of key antioxidant enzymes and metabolites (ascorbate and glutathione) levels of ascorbate-glutathione cycle were studied to unravel the priming-induced modulation of plant defense system. Furthermore, changes in endogenous ABA and JA concentrations as well as mRNA expressions of key genes involved in their respective biosynthesis pathways were monitored in BABA-primed (BABA+) and non-primed (BABA-) leaves of drought-challenged plants to better understand the mechanistic insights into the BABA-induced hormonal regulation of plant response to water-deficit stress. Accelerated stomatal closure, high relative water content, and less membrane damage were observed in BABA-primed leaves under water-deficit condition. Elevated APX and SOD activity in non-primed leaves found to be insufficient to scavenge all H2O2 and O2 (·-) resulting in oxidative burst as evident after histochemical staining with NBT and DAB. A higher proline accumulation in non-primed leaves also does not give much protection against drought stress. Increased GR activity supported with the enhanced mRNA and protein expressions might help the BABA-primed plants to maintain a high GSH pool essential for sustaining balanced redox status to counter drought-induced oxidative stress damages. Hormonal analysis suggests that in maize, BABA-potentiated drought tolerance is primarily mediated through JA-dependent pathway by the activation of antioxidant defense systems while ABA biosynthesis pathway also plays an important role in fine-tuning of drought stress response.
Komiyama, Kota; Ashikaga, Takashi; Inagaki, Dai; Miyabe, Tomonori; Arai, Marina; Yoshida, Kiyotaka; Miyazawa, Satoshi; Nakada, Akihiro; Kawamura, Iwanari; Masuda, Shinichiro; Nagamine, Sho; Hojo, Rintaro; Aoyama, Yuya; Tsuchiyama, Takaaki; Fukamizu, Seiji; Shibui, Takashi; Sakurada, Harumizu
2017-01-25
Sodium bicarbonate and ascorbic acid have been proposed to prevent contrast-induced nephropathy (CIN). The present study evaluated the effect of their combined use on CIN incidence.Methods and Results:We prospectively enrolled 429 patients with chronic kidney disease (CKD: baseline estimated glomerular filtration rate <60 mL/min/1.73 m 2 ) prior to elective coronary catheterization. CIN was defined as absolute (≥0.5 mg/dL) or relative (≥25%) increase in serum creatinine within 72 h. In the saline hydration (n=218) and combined sodium bicarbonate+ascorbic acid (n=211) groups, a total of 1,500-2,500 mL 0.9% saline was given before and after the procedure. In addition, the combination group received 20 mEq sodium bicarbonate and 3 g ascorbic acid i.v. before the procedure, followed by 2 g ascorbic acid after the procedure and a further 2 g after 12 h. There were no significant differences between the basic characteristics and contrast volume in the 2 groups. CIN occurred in 19 patients (8.7%) in the saline group, and in 6 patients (2.8%) in the combined treatment group (P=0.008). Combined sodium bicarbonate and ascorbic acid could prevent CIN following catheterization in CKD patients.
Cholula-Díaz, Jorge L; Lomelí-Marroquín, Diana; Pramanick, Bidhan; Nieto-Argüello, Alfonso; Cantú-Castillo, Luis A; Hwang, Hyundoo
2018-03-01
Ascorbic acid (vitamin C) has an essential role in the human body mainly due to its antioxidant function. In this work, metallic silver nanoparticle (AgNP) colloids were used in SERS experiments to detect ascorbic acid in aqueous solution. The AgNPs were synthesized by a green method using potato starch as reducing and stabilizing agent, and water as the solvent. The optical properties of the yellowish as-synthesized silver colloids were characterized by UV-vis spectroscopy, in which besides a typical band at 410 nm related to the localized surface plasmon resonance of the silver nanoparticles, a shoulder band around 500 nm, due to silver nanoparticle cluster formation, is presented when relatively higher concentrations of starch are used in the synthesis. These starch-capped silver nanoparticles show an intrinsic Raman peak at 1386 cm -1 assigned to deformation modes of the starch structure. The increase of the intensity of the SERS peak at 1386 cm -1 with an increase in the concentration of the ascorbic acid is related to a decrease of the gap between dimers and trimers of the silver nanoparticle clusters produced by the presence of ascorbic acid in the colloid. The limit of detection of this technique for ascorbic acid is 0.02 mM with a measurement concentration range of 0.02-10 mM, which is relevant for the application of this method for detecting ascorbic acid in biological specimen. Copyright © 2017 Elsevier B.V. All rights reserved.
Cryptosporidium-contaminated water disinfection by a novel Fenton process.
Matavos-Aramyan, Sina; Moussavi, Mohsen; Matavos-Aramyan, Hedieh; Roozkhosh, Sara
2017-05-01
Three novel modified advanced oxidation process systems including ascorbic acid-, pro-oxidants- and ascorbic acid-pro-oxidants-modified Fenton system were utilized to study the disinfection efficiency on Cryptosporidium-contaminated drinking water samples. Different concentrations of divalent and trivalent iron ions, hydrogen peroxide, ascorbic acid and pro-oxidants at different exposure times were investigated. These novel systems were also compared to the classic Fenton system and to the control system which comprised of only hydrogen peroxide. The complete in vitro mechanism of the mentioned modified Fenton systems are also provided. The results pointed out that by considering the optimal parameter limitations, the ascorbic acid-modified Fenton system decreased the Cryptosporidium oocytes viability to 3.91%, while the pro-oxidant-modified and ascorbic acid-pro-oxidant-modified Fenton system achieved an oocytes viability equal to 1.66% and 0%, respectively. The efficiency of the classic Fenton at optimal condition was observed to be 20.12% of oocytes viability. The control system achieved 86.14% of oocytes viability. The optimum values of the operational parameters during this study are found to be 80mgL -1 for the divalent iron, 30mgL -1 for ascorbic acid, 30mmol for hydrogen peroxide, 25mgL -1 for pro-oxidants and an exposure time equal to 5min. The ascorbic acid-pro-oxidants-modified Fenton system achieved a promising complete water disinfection (0% viability) at the optimal conditions, leaving this method a feasible process for water disinfection or decontamination, even at industrial scales. Copyright © 2017 Elsevier Inc. All rights reserved.
Ascorbic acid prevents vascular dysfunction induced by oral glucose load in healthy subjects.
De Marchi, Sergio; Prior, Manlio; Rigoni, Anna; Zecchetto, Sara; Rulfo, Fanny; Arosio, Enrico
2012-01-01
To examine the effects of oral glucose load on forearm circulatory regulation before and after ascorbic acid administration in healthy subjects. Microcirculation study with laser Doppler was performed at the hand in basal conditions, after ischemia and after acetylcholine and nitroprusside; strain gauge plethysmography was performed at basal and after ischemia. The tests were repeated in the same sequence 2 hour after oral administration of glucose (75 g). The subjects were randomised for administration of ascorbic acid (1 g bid) or placebo (sodium bicarbonate 1 g bid) for 10 days. After that, the tests were repeated before and after a new oral glucose load. Blood pressure and heart rate were monitored. Macrocirculatory flux, pressure values and heart rate were unvaried throughout the study. The glucose load caused a reduction in the hyperemic peak flow with laser Doppler and plethysmography; it reduced flux recovery time and hyperemic curve area after ischemia; acetylcholine elicited a minor increase in flux with laser Doppler. The response to nitroprusside was unvaried after glucose load as compared to basal conditions. Treatment with ascorbic acid prevented the decrease in hyperemia after glucose, detected with laser Doppler and plethysmography. Ascorbic acid prevented the decreased response to acetylcholine after glucose, the response to nitroprusside was unaffected by ascorbic acid. Results after placebo were unvaried. Oral glucose load impairs endothelium dependent dilation and hyperaemia at microcirculation, probably via oxidative stress; ascorbic acid can prevent it. Copyright © 2011 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.
Kobayashi, Sho; Lee, Jaeyong; Takao, Toshifumi; Fujii, Junichi
2017-09-23
Glutathione (GSH) plays pivotal roles in antioxidation and detoxification. The transsulfuration pathway, in conjunction with methionine metabolism, produces equimolar amounts of cysteine (Cys) and 2-oxobutyric acid (2OB). The resulting 2OB is then converted into 2-aminobutyric acid (2AB) by a transaminase and is utilized as a substitute for Cys by the GSH-synthesizing machinery to produce ophthalmic acid (OPT). By establishing a method for simultaneously measuring Cys, GSH, and OPT by liquid chromatography-mass spectrometry, we found that fasting causes an elevation in OPT levels in the liver and blood plasma, even though the levels of Cys and GSH are decreased. Autophagy was activated, but the levels of GSH/OPT-synthesizing enzymes remained unchanged. After 6 h of fasting, the mice were given 1% 2AB and/or 5% glucose in the drinking water for an additional 24 h and the above metabolites analyzed. 2AB administration caused an increase in OPT levels, and, when glucose was co-administered with 2AB, the levels of OPT were elevated further but GSH levels were decreased somewhat. These results suggest that, while Cys is utilized for glyconeogenesis under fasting conditions, reaching levels that were insufficient for the synthesis of GSH, 2OB was preferentially converted to 2AB via amino acid catabolism and was utilized as a building block for OPT. Thus the consumption of Cys and the parallel elevation of 2AB under fasting conditions appeared to force γ-glutamylcysteine synthetase to form γ-glutamyl-2AB, despite the fact that the enzyme has a higher Km value for 2AB than Cys. Copyright © 2017 Elsevier Inc. All rights reserved.
Santos, Ítala Mônica Sales; da Rocha Tomé, Adriana; Saldanha, Gláucio Barros; Ferreira, Paulo Michel Pinheiro; Militão, Gardenia Carmem Gadelha
2009-01-01
Ascorbic acid has many nonenzymatic actions and is a powerful water-soluble antioxidant. It protects low density lipoproteins from oxidation and reduces harmful oxidants in the central nervous system. Pilocarpine-induced seizures have been suggested to be mediated by increases in oxidative stress. Current studies have suggested that antioxidant compounds may afford some level of neuroprotection against the neurotoxicity of seizures. The objective of the present study was to evaluate the neuroprotective effects of ascorbic acid (AA) in rats, against the observed oxidative stress during seizures induced by pilocarpine. Wistar rats were treated with 0.9% saline (i.p., control group), ascorbic acid (500 mg/kg, i.p., AA group), pilocarpine (400 mg/kg, i.p., pilocarpine group), and the association of ascorbic acid (500 mg/kg, i.p.) plus pilocarpine (400 mg/kg, i.p.), 30 min before of administration of ascorbic acid (AA plus pilocarpine group). After the treatments all groups were observed for 6 h. The enzyme activities as well as the lipid peroxidation and nitrite concentrations were measured using spectrophotometric methods and the results compared to values obtained from saline and pilocarpine-treated animals. Protective effects of ascorbic acid were also evaluated on the same parameters. In pilocarpine group there was a significant increase in lipid peroxidation and nitrite level. However, no alteration was observed in superoxide dismutase and catalase activities. Antioxidant treatment significantly reduced the lipid peroxidation level and nitrite content as well as increased the superoxide dismutase and catalase activities in hippocampus of adult rats after seizures induced by pilocarpine. Our findings strongly support the hypothesis that oxidative stress in hippocampus occurs during seizures induced by pilocarpine, proving that brain damage induced by the oxidative process plays a crucial role in seizures pathogenic consequences, and also imply that a strong protective effect could be achieved using ascorbic acid. PMID:20716907
Takebayashi, Jun; Kaji, Hiroaki; Ichiyama, Kenji; Makino, Kazutaka; Gohda, Eiichi; Yamamoto, Itaru; Tai, Akihiro
2007-10-15
Inhibitory effects of 2-O-substituted ascorbic acid derivatives, ascorbic acid 2-glucoside (AA-2G), ascorbic acid 2-phosphate (AA-2P), and ascorbic acid 2-sulfate (AA-2S), on 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative hemolysis of sheep erythrocytes were studied and were compared with those of ascorbic acid (AA) and other antioxidants. The order of the inhibition efficiency was AA-2S> or =Trolox=uric acid> or =AA-2P> or =AA-2G=AA>glutathione. Although the reactivity of the AA derivatives against AAPH-derived peroxyl radical (ROO(*)) was much lower than that of AA, the derivatives exerted equal or more potent protective effects on AAPH-induced hemolysis and membrane protein oxidation. In addition, the AA derivatives were found to react per se with ROO(*), not via AA as an intermediate. These findings suggest that secondary reactions between the AA derivative radical and ROO(*) play a part in hemolysis inhibition. Delayed addition of the AA derivatives after AAPH-induced oxidation of erythrocytes had already proceeded showed weaker inhibition of hemolysis compared to that of AA. These results suggest that the AA derivatives per se act as biologically effective antioxidants under moderate oxidative stress and that AA-2G and AA-2P may be able to act under severe oxidative stress after enzymatic conversion to AA in vivo.
Singh, Vijay Pratap; Singh, Samiksha; Kumar, Jitendra; Prasad, Sheo Mohan
2015-06-01
In plants, hydrogen sulfide (H2S) is an emerging novel signaling molecule that is involved in growth regulation and abiotic stress responses. However, little is known about its role in the regulation of arsenate (As(V)) toxicity. Therefore, hydroponic experiments were conducted to investigate whether sodium hydrosulfide (NaHS; a source of H2S) is involved in the regulation of As(V) toxicity in pea seedlings. Results showed that As(V) caused decreases in growth, photosynthesis (measured as chlorophyll fluorescence) and nitrogen content, which was accompanied by the accumulation of As. As(V) treatment also reduced the activities of cysteine desulfhydrase and nitrate reductase, and contents of H2S and nitric oxide (NO). However, addition of NaHS ameliorated As(V) toxicity in pea seedlings, which coincided with the increased contents of H2S and NO. The cysteine level was higher under As(V) treatment in comparison to all other treatments (As-free; NaHS; As(V)+NaHS). The content of reactive oxygen species (ROS) and damage to lipids, proteins and membranes increased by As(V) while NaHS alleviated these effects. Enzymes of the ascorbate-glutathione cycle (AsA-GSH cycle) showed inhibition of their activities following As(V) treatment while their activities were increased by application of NaHS. The redox status of ascorbate and glutathione was disturbed by As(V) as indicated by a steep decline in their reduced/oxidized ratios. However, simultaneous NaHS application restored the redox status of the ascorbate and glutathione pools. The results of this study demonstrated that H2S and NO might both be involved in reducing the accumulation of As and triggering up-regulation of the AsA-GSH cycle to counterbalance ROS-mediated damage to macromolecules. Furthermore, the results suggest a crucial role of H2S in plant priming, and in particular for pea seedlings in mitigating As(V) stress. Copyright © 2015 Elsevier GmbH. All rights reserved.
Microencapsulation of methylglyoxal and two derivatives
NASA Technical Reports Server (NTRS)
Nozawa, Y.; Fox, S. W.
1981-01-01
Microcapsules of methylglyoxal, methylglyoxal bis(guanylhydrazone), and methylglyoxal-ascorbic acid condensation complex were prepared and release curves were determined. The effect of various concentrations of hydrochloric acid on the decomposition of the ascorbic acid complex was investigated.
Radhakrishnakartha, Harikrishnan; Appu, Abhilash Puthuvelvippel; Madambath, Indira
2014-02-01
Chronic ethanol exposure causes hyperlipidemia. The present study was designed to investigate the impact of ascorbic acid supplementation on ethanol induced hyperlipidemia in testis and to compare it with that of abstinence from taking alcohol. Thirty-six male guinea pigs were divided into two groups and were maintained for 90 days as follows (1) control (C) (2) ethanol treated group (E) (4 g/kg body wt/day). Ethanol was administered for 90 days and on 90th day, alanine amino transaminase (ALT), aspartate amino transaminase (AST) and γ-glutamyltransferase (GGT) in serum was assayed. The animals in the ethanol group were further divided into an ascorbic acid supplemented group (25 mg/100 g body wt/day) (E+AA) and an ethanol abstention group (EAG) and those in the control group were divided into a control group and a control+ascorbic acid group (C+AA). There was significant increase in levels of testicular cholesterol, free fatty acid, phospholipids and triglycerides in the ethanol group. There was also a significant increase in the activity of HMG CoA reductase and decrease in activity of testicular glucose-6-phosphate dehydrogenase (G6PDH) and malic enzyme in ethanol-ingested animals that further led to decreased levels of serum testosterone. Alcohol administration also enhanced the activity of testicular alcohol dehydrogenase (ADH). Ascorbic acid supplementation and abstention altered all these parameters induced by chronic alcohol administration. Histological studies were also in line with the above results. Ascorbic acid was able to reinstate the cholesterol homeostasis in testis which could have further restored the testicular steroidogenesis. The present study demonstrated that ascorbic acid is effective in reducing the hyperlipidemia induced by chronic alcohol administration and produced a better recovery than abstention.
Bispo, Vanderson S; Dantas, Lucas S; Chaves, Adriano B; Pinto, Isabella F D; Silva, Railmara P DA; Otsuka, Felipe A M; Santos, Rodrigo B; Santos, Aline C; Trindade, Danielle J; Matos, Humberto R
2017-01-01
Hepatic disorders such as steatosis and alcoholic steatohepatitis are common diseases that affect thousands of people around the globe. This study aims to identify the main phenol compounds using a new HPLC-ESI+-MS/MS method, to evaluate some oxidative stress parameters and the hepatoprotective action of green dwarf coconut water, caffeic and ascorbic acids on the liver and serum of rats treated with ethanol. The results showed five polyphenols in the lyophilized coconut water spiked with standards: chlorogenic acid (0.18 µM), caffeic acid (1.1 µM), methyl caffeate (0.03 µM), quercetin (0.08 µM) and ferulic acid (0.02 µM) isomers. In the animals, the activity of the serum γ-glutamyltranspeptidase (γ-GT) was reduced to 1.8 I.U/L in the coconut water group, 3.6 I.U/L in the ascorbic acid group and 2.9 I.U/L in the caffeic acid groups, when compared with the ethanol group (5.1 I.U/L, p<0.05). Still in liver, the DNA analysis demonstrated a decrease of oxidized bases compared to ethanol group of 36.2% and 48.0% for pretreated and post treated coconut water group respectively, 42.5% for the caffeic acid group, and 34.5% for the ascorbic acid group. The ascorbic acid was efficient in inhibiting the thiobarbituric acid reactive substances (TBARS) in the liver by 16.5% in comparison with the ethanol group. These data indicate that the green dwarf coconut water, caffeic and ascorbic acids have antioxidant, hepatoprotective and reduced DNA damage properties, thus decreasing the oxidative stress induced by ethanol metabolism.
Gönüllü, U; Sensoy, D; Uner, M; Yener, G; Altinkurt, T
2006-01-01
Calcium ascorbate (CAAS), which is a hydrophilic and stable derivative of ascorbic acid (vitamin C) (AA), is commonly used in foods as an antioxidative agent. There are very limited reports on its dermatological use in the literature. In this paper, it is reported that CAAS could be used in place of ascorbic acid, which has chemical stability problems in topicals due to degradation by oxidation. The aim of this study was to investigate the skin-hydrating effect of CAAS compared to those of ascorbic acid and tocopherol (vitamin E) (T), which is a potential skin moisturizer and commonly used in dermocosmetics. Vitamins are incorporated into two kinds of base creams (o/w and w/o emulsion creams), alone and in combinations. Formulations were applied to the inner forearms of volunteers, and skin conductance was measured by using a corneometer. Data obtained were statistically evaluated. It was found that the skin-hydrating effect of CAAS was higher than that of AA and lower than that of T. However, its effect was very close to that of T.
Intravenous ascorbic acid to prevent and treat cancer-associated sepsis?
2011-01-01
The history of ascorbic acid (AA) and cancer has been marked with controversy. Clinical studies evaluating AA in cancer outcome continue to the present day. However, the wealth of data suggesting that AA may be highly beneficial in addressing cancer-associated inflammation, particularly progression to systemic inflammatory response syndrome (SIRS) and multi organ failure (MOF), has been largely overlooked. Patients with advanced cancer are generally deficient in AA. Once these patients develop septic symptoms, a further decrease in ascorbic acid levels occurs. Given the known role of ascorbate in: a) maintaining endothelial and suppression of inflammatory markers; b) protection from sepsis in animal models; and c) direct antineoplastic effects, we propose the use of ascorbate as an adjuvant to existing modalities in the treatment and prevention of cancer-associated sepsis. PMID:21375761
Ascorbic Acid Efflux from Human Brain Microvascular Pericytes: Role of Re-uptake
May, James M.; Qu, Zhi-chao
2015-01-01
Microvascular pericytes take up ascorbic acid on the ascorbate transporter SVCT2. Intracellular ascorbate then protects the cells against apoptosis induced by culture at diabetic glucose concentrations. To investigate whether pericytes might also provide ascorbate to the underlying endothelial cells, we studied ascorbate efflux from human pericytes. When loaded with ascorbate to intracellular concentrations of 0.8–1.0 mM, almost two-thirds of intracellular ascorbate effluxed from the cells over 2 h. This efflux was opposed by ascorbate re-uptake from the medium, since preventing re-uptake by destroying extracellular ascorbate with ascorbate oxidase increased ascorbate loss even further. Ascorbate re-uptake occurred on the SVCT2, since its blockade by replacing medium sodium with choline, by the SVCT2 inhibitor sulfinpyrazone, or by extracellular ascorbate accelerated ascorbate loss from the cells. This was supported by finding that net efflux of radiolabeled ascorbate was increased by unlabeled extracellular ascorbate with a half-maximal effect in the range of the high affinity Km of the SVCT2. Intracellular ascorbate did not inhibit its efflux. To assess the mechanism of ascorbate efflux, known inhibitors of volume-regulated anion channels (VRACs) were tested. These potently inhibited ascorbate transport into cells on the SVCT2, but not its efflux. An exception was the anion transport inhibitor DIDS, which, despite inhibition of ascorbate uptake, also inhibited net efflux at 25–50 µM. These results suggest that ascorbate efflux from vascular pericytes occurs on a DIDS-inhibitable transporter or channel different from VRACs. Further, ascorbate efflux is opposed by re-uptake of ascorbate on the SVCT2, providing a potential regulatory mechanism. PMID:26340060
Genotoxic effect of ethacrynic acid and impact of antioxidants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, William M.; Hoffman, Jared D.; Loo, George, E-mail: g_loo@uncg.edu
It is known that ethacrynic acid (EA) decreases the intracellular levels of glutathione. Whether the anticipated oxidative stress affects the structural integrity of DNA is unknown. Therefore, DNA damage was assessed in EA-treated HCT116 cells, and the impact of several antioxidants was also determined. EA caused both concentration-dependent and time-dependent DNA damage that eventually resulted in cell death. Unexpectedly, the DNA damage caused by EA was intensified by either ascorbic acid or trolox. In contrast, EA-induced DNA damage was reduced by N-acetylcysteine and by the iron chelator, deferoxamine. In elucidating the DNA damage, it was determined that EA increased themore » production of reactive oxygen species, which was inhibited by N-acetylcysteine and deferoxamine but not by ascorbic acid and trolox. Also, EA decreased glutathione levels, which were inhibited by N-acetylcysteine. But, ascorbic acid, trolox, and deferoxamine neither inhibited nor enhanced the capacity of EA to decrease glutathione. Interestingly, the glutathione synthesis inhibitor, buthionine sulfoxime, lowered glutathione to a similar degree as EA, but no noticeable DNA damage was found. Nevertheless, buthionine sulfoxime potentiated the glutathione-lowering effect of EA and intensified the DNA damage caused by EA. Additionally, in examining redox-sensitive stress gene expression, it was found that EA increased HO-1, GADD153, and p21mRNA expression, in association with increased nuclear localization of Nrf-2 and p53 proteins. In contrast to ascorbic acid, trolox, and deferoxamine, N-acetylcysteine suppressed the EA-induced upregulation of GADD153, although not of HO-1. Overall, it is concluded that EA has genotoxic properties that can be amplified by certain antioxidants. - Highlights: • Ethacrynic acid (EA) caused cellular DNA damage. • EA-induced DNA damage was potentiated by ascorbic acid or trolox. • EA increased ROS production, not inhibited by ascorbic acid or trolox. • EA decreased glutathione levels, not prevented by ascorbic acid or trolox. • Buthionine sulfoxime intensified the DNA damage caused by EA.« less
Effect of Curcumin Against Oxidation of Biomolecules by Hydroxyl Radicals
Mahendra, Jaideep; Gurumurthy, Prema; Jayamathi; Iqbal, Shabeer S; Mahendra, Little
2014-01-01
Background: Among various reactive oxygen species, hydroxyl radicals have the strongest chemical activity, which can damage a wide range of essential biomolecules such as lipids, proteins, and DNA. Objective: The objective of this study was to investigate the beneficial effects of curcumin on prevention of oxidative damage of biomolecules by hydroxyl radicals generated in in vitro by a Fenton like reaction. Materials and Methods: We have incubated the serum, plasma and whole blood with H2O2/Cu2+/ Ascorbic acid system for 4 hours at 37 0C and observed the oxidation of biomolecules like albumin, lipids, proteins and DNA. Results: Curcumin at the concentrations of 50,100 and 200 μmoles, prevented the formation of ischemia modified albumin, MDA, protein carbonyls, oxidized DNA and increased the total antioxidant levels and GSH significantly. Conclusion: These observations suggest the hydroxyl radical scavenging potentials of curcumin and protective actions to prevent the oxidation of biomolecules by hydroxyl radicals. PMID:25478334
Yang, B S; Yamazaki, M; Wan, Q; Kato, N
1996-12-01
The effects were compared of the addition of graded levels of L-cystine and of L-cysteine (0.3, 3, or 5%) to a 10% casein diet on several metabolic parameters in rats. The growth-promoting effect of cystine was equivalent to that of cysteine. Supplementation of these two amino acids elevated serum cholesterol, liver ascorbic acid, liver nonprotein sulfhydryl (SH) and kidney metallothionein, and reduced the activity of serum ceruloplasmin. The responses of serum cholesterol, liver nonprotein SH, and serum ceruloplasmin to cystine were greater than of those to cysteine. When the basal diet was supplemented with 0.3% of these amino acids, the elevation of liver ascorbic acid by cystine supplementation was less than that by cysteine supplementation. However, when supplemented with 5% of these amino acids, the elevation of liver ascorbic acid by cystine was greater than that by cysteine. There was no difference in the influence of cystine and cysteine on kidney metallothionein. This study demonstrates that dietary cystine and cysteine had the same influence on growth, but had a differential influence on such metabolic parameters as liver nonprotein SH, serum ceruloplasmin, serum cholesterol, and tissue ascorbic acid.
USDA-ARS?s Scientific Manuscript database
Aqueous solutions of ethanol and ascorbic acid alone and in combination were compared to a commonly used sanitizer, sodium hypochlorite, and a leading commercial antibrowning agent containing calcium ascorbate (CA)for their efficacy to inhibit microbial growth and browning on fresh-cut lotus root. F...
The Use of Ascorbic Acid as a Food Additive: Technical-Legal Issues
Varvara, Michele; Bozzo, Giancarlo; Celano, Giuseppe; Disanto, Chiara; Pagliarone, Cosimo Nicola
2016-01-01
Ascorbic acid (C6H8O6) is an organic compound belonging to the family of monosaccharide. It is highly soluble in water, and is often called one of the secrets of the Mediterranean diet. Its use is widespread in the food industry is also important, having always been exploited for its antioxidant and stabilising ability. Many indeed are the additive formulations that take advantage of these properties. The purpose of this paper is to explain the characteristics that make ascorbic acid an important food additive and to emphasise the technical and legal issues related to its use in food productions. In particular, in the course of this employment, laws and scientific studies have been applied to the resolution of a lawsuit, having as its object the use of ascorbic acid in preparations of ground beef sold at a butcher shop. The views expressed in court by the technical consultant have led to the acquittal of the accused, in the light of the demonstrated and proven non-toxicity of the molecule and the use of a mixture of additives for the production of sausage. The European and national legislations, supported by numerous scientific studies, define the possible use of ascorbic acid according to the principle of quantum satis, and it can be used in foods for children. Our work aims to represent further evidence of the safety of use of ascorbic acid as a food additive, and – as confirmed by the legal decision reported – it wants to bring out the prospects for use of ascorbic acid for technological purposes even by registered establishments. PMID:27800425
Ali Mirani, Zulfiqar; Khan, Muhammad Naseem; Siddiqui, Anila; Khan, Fouzia; Aziz, Mubashir; Naz, Shagufta; Ahmed, Ayaz; Khan, Seema Ismat
2018-02-01
Staphylococcus aureus is a Gram-positive pathogen, well known for its resistance and versatile lifestyle. Under unfavourable conditions, it adapts biofilm mode of growth. For staphylococcal biofilm formation, production of extracellular polymeric substances (EPS) is a pre-requisite, which is regulated by ica operon-encoded enzymes. This study was designed to know the impact of ascorbic acid on biofilm formation and colony spreading processes of S. aureus and MRSA. The isolates of methicillin-resistant S. aureus (MRSA) used in present study, were recovered from different food samples. Various selective and differential media were used for identification and confirmation of S. aureus . Agar dilution method was used for determination of oxacillin and ascorbic acid resistance level. MRSA isolates were re-confirmed by E-test and by amplification of mecA gene. Tube methods and Congo-Red agar were used to study biofilm formation processes. Gene expression studies were carried on real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The results revealed the presence of mecA gene belonging to SCC mecA type IV along with agr type II in the isolates. In vitro studies showed the sub-inhibitory concentration of oxacillin induced biofilm production. However, addition of sub-inhibitory dose of ascorbic acid was found to inhibit EPS production, biofilm formation and augment colony spreading on soft agar plates. The inhibition of biofilm formation and augmentation of colony spreading observed with ascorbic acid alone or in combination with oxacillin. Moreover, gene expression studies showed that ascorbic acid increases agr expression and decreases icaA gene expression. The present study concluded that ascorbic acid inhibits biofilm formation, promotes colony spreading and increases agr gene expression in MRSA.
Protective role of ascorbic acid in the decontamination of cow milk casein by gamma-irradiation.
Kouass Sahbani, Saloua; Klarskov, Klaus; Aloui, Amine; Kouass, Salah; Landoulsi, Ahmed
2013-06-01
The aim of this work was to investigate the protective role of ascorbic acid on irradiation-induced modification of casein. Casein stock solutions were irradiated with increasing doses 2-10 kGy using (60)Co Gamma rays at a dose rate D• = 136.73 Gy/min at room temperature. The total viable microorganism content of cow milk casein was evaluated by Plate Count Agar (PCA) incubation for 48 h at 37°C. Sodium dodecylsulfate gel electrophoresis (SDS-PAGE) and Matrix-Assisted Laser Desorption-Ionization Time-of-Flight mass spectrometry (MALDI-TOF-MS) analysis were used to evaluate the effect of gamma irradiation on casein integrity. Gamma irradiation reduced the bacterial contamination of casein solutions at a lower irradiation dose when performed in the presence of ascorbic acid. The irradiation treatment of casein in the absence of ascorbic acid with a dose of 4 kGy could reduce 99% of the original amount of bacterial colonies. However, in the presence of ascorbic acid the irradiation treatment of casein with a dose lower than 2 kGy could reduce 99% of the original amount of bacterial colonies which suggested that the irradiation dose lower than 2 kGy achieved almost the entire decontamination result. SDS-PAGE and MALDI-TOF-MS analysis showed that ascorbic acid protected cow milk casein from degradation and subsequent aggregation probably by scavenging oxygen and protein radicals produced by the irradiation. It is demonstrated that the combination of gamma irradiation and ascorbic acid produce additive effects, providing acceptable hygienic quality of cow milk casein and protects caseins against Reactive Oxygen Species (ROS) generated, during the irradiation process.
1978-02-01
abatement Ascorbic acid TNT process Purification of dinitrotoluenes Specification grade TNT 20. ABST RACT ( C f~~.. se reverse .f ~~ If nse,ee s’ d...inexpensive carbohydrates, such that the resulting mixture , upon subsequent nitra tion , would yield specification grade TNT. Using ascorbic acid as a... acid solution, the undesired DNT isomers were considerably reduced, whereas the desired 2,4- and 2,6-DNT’s were virtually unaffected . 2 UNCLASSIFIED
Mahapatra, Santanu Kar; Chakraborty, Subhankari Prasad; Roy, Somenath
2011-01-01
The aim of this present study was to evaluate the immune functions and immune responses in nicotine-induced (10 mM) macrophages and concurrently establish the immunomodulatory role of aqueous extract of Ocimum gratissimum (Ae-Og) and ascorbic acid. In this study, nitrite generations and some phenotype functions by macrophages were studied. Beside that, release of Th1 cytokines (TNF-α, IL-12) and Th2 cytokines (IL-10, TGF-β) was measured by ELISA, and the expression of these cytokines at mRNA level was analyzed by real-time PCR. Ae-Og, at a dose of 10 μg/mL, significantly reduced the nicotine-induced NO generation and iNOSII expression. Similar kinds of response were observed with supplementation of ascorbic acid (0.01 mM). The administration of Ae-Og and ascorbic acid increased the decreased adherence, chemotaxis, phagocytosis, and intracellular killing of bacteria in nicotine-treated macrophages. Ae-Og and ascorbic acid were found to protect the murine peritoneal macrophages through downregulation of Th1 cytokines in nicotine-treated macrophages with concurrent activation of Th2 responses. These findings strongly enhanced our understanding of the molecular mechanism leading to nicotine-induced suppression of immune functions and provide additional rationale for application of anti-inflammatory therapeutic approaches by O. gratissimum and ascorbic acid for different inflammatory disease prevention and treatment during nicotine toxicity. PMID:22220218
Aortic wall damage in mice unable to synthesize ascorbic acid
Maeda, Nobuyo; Hagihara, Hiroyuki; Nakata, Yukiko; Hiller, Sylvia; Wilder, Jennifer; Reddick, Robert
2000-01-01
By inactivating the gene for l-gulono-γ-lactone oxidase, a key enzyme in ascorbic acid synthesis, we have generated mice that, like humans, depend on dietary vitamin C. Regular chow, containing about 110 mg/kg of vitamin C, is unable to support the growth of the mutant mice, which require l-ascorbic acid supplemented in their drinking water (330 mg/liter). Upon withdrawal of supplementation, plasma and tissue ascorbic acid levels decreased to 10–15% of normal within 2 weeks, and after 5 weeks the mutants became anemic, began to lose weight, and die. Plasma total antioxidative capacities were approximately 37% normal in homozygotes after feeding the unsupplemented diet for 3–5 weeks. As plasma ascorbic acid decreased, small, but significant, increases in total cholesterol and decreases in high density lipoprotein cholesterol were observed. The most striking effects of the marginal dietary vitamin C were alterations in the wall of aorta, evidenced by the disruption of elastic laminae, smooth muscle cell proliferation, and focal endothelial desquamation of the luminal surface. Thus, marginal vitamin C deficiency affects the vascular integrity of mice unable to synthesize ascorbic acid, with potentially profound effects on the pathogenesis of vascular diseases. Breeding the vitamin C-dependent mice with mice carrying defined genetic mutations will provide numerous opportunities for systematic studies of the role of antioxidants in health and disease. PMID:10639167
Aortic wall damage in mice unable to synthesize ascorbic acid.
Maeda, N; Hagihara, H; Nakata, Y; Hiller, S; Wilder, J; Reddick, R
2000-01-18
By inactivating the gene for L-gulono-gamma-lactone oxidase, a key enzyme in ascorbic acid synthesis, we have generated mice that, like humans, depend on dietary vitamin C. Regular chow, containing about 110 mg/kg of vitamin C, is unable to support the growth of the mutant mice, which require L-ascorbic acid supplemented in their drinking water (330 mg/liter). Upon withdrawal of supplementation, plasma and tissue ascorbic acid levels decreased to 10-15% of normal within 2 weeks, and after 5 weeks the mutants became anemic, began to lose weight, and die. Plasma total antioxidative capacities were approximately 37% normal in homozygotes after feeding the unsupplemented diet for 3-5 weeks. As plasma ascorbic acid decreased, small, but significant, increases in total cholesterol and decreases in high density lipoprotein cholesterol were observed. The most striking effects of the marginal dietary vitamin C were alterations in the wall of aorta, evidenced by the disruption of elastic laminae, smooth muscle cell proliferation, and focal endothelial desquamation of the luminal surface. Thus, marginal vitamin C deficiency affects the vascular integrity of mice unable to synthesize ascorbic acid, with potentially profound effects on the pathogenesis of vascular diseases. Breeding the vitamin C-dependent mice with mice carrying defined genetic mutations will provide numerous opportunities for systematic studies of the role of antioxidants in health and disease.
A dual-selective fluorescent probe for GSH and Cys detection: Emission and pH dependent selectivity.
Tang, Yunqiang; Jin, Longyi; Yin, Bingzhu
2017-11-15
A novel fluorescent probe 1 based on acridine orange was developed for the selective detection and bioimaging of biothiols. The probe exhibits higher selectivity and turn-on fluorescence response to cysteine (Cys), homocysteine (Hcy), and glutathione (GSH) than to other amino acids. Importantly, the probe responds to GSH and Cys/Hcy with distinct fluorescence emissions in PBS buffer at pH of 7.4. The Cys/Hcy-triggered tandem S N Ar-rearrangement reaction and GSH-induced S N Ar reaction with the probe led to the corresponding amino-acridinium and thio-acridinium dyes, respectively, which can discriminate GSH from Cys/Hcy through different emission channels. Interestingly, Cys finishes the tandem reaction with the probe and subsequently forms amino-acridinium and Hcy/GSH induces S N Ar reaction with the probe to form thio-acridiniums at weakly acidic conditions (pH 6.0), enabling Cys to be discriminated from Hcy/GSH at different emissions. Finally, we demonstrated that probe 1 can selectively probe GSH over Cys and Hcy or Cys over GSH and Hcy in HeLa cells through multicolor imaging. Copyright © 2017 Elsevier B.V. All rights reserved.
Retana-Ugalde, Raquel; Casanueva, Esther; Altamirano-Lozano, Mario; González-Torres, Cristina; Mendoza-Núñez, Víctor Manuel
2008-01-01
To determine the useful dosage of ascorbic acid and alpha-tocopherol against oxidative stress and DNA damage in the elderly. A double-blind controlled clinical assay carried out in a sample of 66 healthy subjects divided into three age-paired random groups with 22 subjects in each group. Group A received placebo and group B was administered 500 mg of ascorbic acid and 400 IU of alpha-tocopherol, whereas group C received 1,000 mg of ascorbic acid and 400 IU of alpha-tocopherol for a 6-month period. The following measurements were performed before and after the 6-month treatment period: thiobarbituric acid reactive substances (TBARS); total antioxidant status (TAS); superoxide dismutase (SOD), and glutation peroxidase (GPx) and DNA damage by comet assay. After 6 months, group B subjects exhibited an increase in SOD and GPx enzyme levels; however, this was not statistically significant (p > 0.05). Likewise, TBARS and TAS concentrations remained unchanged (p > 0.05). In addition, in group C the decrease in TBARS and increase in SOD, GPx, and TAS were not statistically significant (p > 0.05). Similarly, average DNA migration showed no significant differences with high-dosage ascorbic acid and alpha-tocopherol. These findings suggest that administration of 1,000 mg of ascorbic acid plus 400 IU of alpha-tocopherol for 6 months is not useful for diminishing oxidative stress and DNA damage in healthy elderly adults. 2008 S. Karger AG, Basel.
Chen, Hongqi; Ling, Bo; Yuan, Fei; Zhou, Cailing; Chen, Jingguo; Wang, Lun
2012-01-01
A highly sensitive flow-injection chemiluminescence (FIA-CL) method based on the CdTe nanocrystals and potassium permanganate chemiluminescence system was developed for the determination of L-ascorbic acid. It was found that sodium hexametaphosphate (SP), as an enhancer, could increase the chemiluminescence (CL) emission from the redox reaction of CdTe quantum dots with potassium permanganate in near-neutral pH conditions. L-ascorbic acid is suggested as a sensitive enhancer for use in the above energy-transfer excitation process. Under optimal conditions, the calibration graph of emission intensity against logarithmic l-ascorbic acid concentration was linear in the range 1.0 × 10(-9)-5.0 × 10(-6) mol/L, with a correlation coefficient of 0.9969 and relative standard deviation (RSD) of 2.3% (n = 7) at 5.0 × 10(-7) mol/L. The method was successfully used to determine L-ascorbic acid in vitamin C tablets. The possible mechanism of the chemiluminescence in the system is also discussed. Copyright © 2012 John Wiley & Sons, Ltd.
Rojas-Graü, M A; Soliva-Fortuny, R; Niartín-Belloso, O
2008-08-01
Polyphenoloxidase (PPO) and peroxidase (POD) were evaluated in fresh-cut Fuji apple slices and the effeet of the individual or combined use of ascorbic acid, 4-hexylresorcinol, N-acetylcysteine, and glutathione on their respective activities was determined. Additionally, color changes during storage at 4 degrees C were measured throughout 14 d of storage. PPO activity increased with storage time and was inhibited by the individual use of N-acetylcysteine and glutathione. POD activity in the apple slices was effectively inhibited by the combined use of ascorbic acid with any of the other antibrowning agents. On the other hand, an individual treatment with 1% N-acetylcysteine helped in maintaining the color of fresh-cut apples during 14 d of storage, whereas the use of ascorbic acid was not enough to prevent color deterioration of the apple slices from the 1st day of storage. The results obtained corroborated the effectiveness of other natural antibrowning agents over the traditional use of ascorbic acid in the control of the enzymatic browning in the fresh-cut fruit industry.
A simple 2D composite image analysis technique for the crystal growth study of L-ascorbic acid.
Kumar, Krishan; Kumar, Virender; Lal, Jatin; Kaur, Harmeet; Singh, Jasbir
2017-06-01
This work was destined for 2D crystal growth studies of L-ascorbic acid using the composite image analysis technique. Growth experiments on the L-ascorbic acid crystals were carried out by standard (optical) microscopy, laser diffraction analysis, and composite image analysis. For image analysis, the growth of L-ascorbic acid crystals was captured as digital 2D RGB images, which were then processed to composite images. After processing, the crystal boundaries emerged as white lines against the black (cancelled) background. The crystal boundaries were well differentiated by peaks in the intensity graphs generated for the composite images. The lengths of crystal boundaries measured from the intensity graphs of composite images were in good agreement (correlation coefficient "r" = 0.99) with the lengths measured by standard microscopy. On the contrary, the lengths measured by laser diffraction were poorly correlated with both techniques. Therefore, the composite image analysis can replace the standard microscopy technique for the crystal growth studies of L-ascorbic acid. © 2017 Wiley Periodicals, Inc.
Atkinson, C J; Dodds, P A A; Ford, Y Y; Le Mière, J; Taylor, J M; Blake, P S; Paul, N
2006-03-01
A number of strawberry varieties were surveyed for their total ellagic acid concentration, and attempts were made to determine if ellagic acid and ascorbic acid concentrations of two strawberry cultivars could be increased by polythene reflective mulches. After adjusting crop yields and cultivation using polythene mulches with two different PAR reflective capacities, field- and polytunnel-grown strawberries were analysed for ellagic acid and ascorbic acid concentrations by HPLC. Comparative measurements of yield and fruit quality were determined along with plant developmental changes. Ellagic acid concentration varied widely with strawberry cultivar (60-341 microg g(-1) frozen weight), as did the ratio of conjugated ellagic acid : free ellagic acid. Also, there was significant year-to-year variation in total ellagic acid concentration with some cultivars. Mulches with different reflective capacities impacted on strawberry production; highly reflective mulches significantly increased growth and yield, the latter due to increases in fruit size and number. Highly reflective mulches significantly increased total concentrations of ellagic acid and ascorbic acid relative to control in fruit of different cultivars. The potential of agronomic practices to enhance the concentration and amounts of these important dietary bioactive compounds is discussed.
Exploration of pro-oxidant and antioxidant activities of the flavonoid myricetin.
Chobot, Vladimir; Hadacek, Franz
2011-01-01
Flavonoids are ubiquitous phenolic plant metabolites. Many of them are well known for their pro- and antioxidant properties. Myricetin has been reported to be either a potent antioxidant or a pro-oxidant depending on the conditions. The reaction conditions for the pro- and antioxidant activities were therefore investigated using variations of the deoxyribose degradation assay systems. The deoxyribose degradation assay systems were conducted as follows; H(2)O(2)/Fe(III)/ascorbic acid, H(2)O(2)/Fe(III), Fe(III)/ascorbic acid, and Fe(III). Each system was carried out in two variants, FeCl(3) (iron ions added as FeCl(3)) and FeEDTA (iron added in complex with ethylenediaminetetraacetic acid). When ascorbic acid was present, myricetin showed antioxidant properties, especially when it occurred in complex with iron. In ascorbic acid-free systems, pro-oxidant activities prevailed, which where enhanced if iron was in complex with EDTA. Myricetin's antioxidant activity depends on both the reactive oxygen species (ROS) scavenging and iron ions chelation properties. The pro-oxidative properties are caused by reduction of molecular oxygen to ROS and iron(III) to iron(II). Myricetin is able to substitute for ascorbic acid albeit less efficiently.
Calcium availability but not its content modulates metal toxicity in Scenedesmus quadricauda.
Kováčik, Jozef; Dresler, Sławomir
2018-01-01
Impact of calcium nutrition (pre-culture on solid medium with standard or elevated Ca dose, i. e. 0.17 and 4.40mM marked as low and high Ca) on acute metal toxicity (Cd, Mn and Pb, 24h of exposure to 10µM) in freshwater green alga Scenedesmus quadricauda was studied. Surprisingly, Ca content differed only slightly between low and high Ca samples and applied metals rather suppressed its amount. Na content was higher in metal-exposed high Ca samples, indicating that Ca/Na ratio may affect accumulation of metals. Content of heavy metals increased in order Cd < Mn < Pb and high Ca samples contained less metal than low Ca samples at least in absorbed fraction. Accumulation of ascorbic acid and thiols (GSH - glutathione and PC2 - phytochelatin 2) was affected mainly by Cd, GSH also by Mn and PC2 by Pb with often significant differences between low Ca and high Ca samples. Calcium nutrition also affected responses of algae to metals at the level of antioxidative enzyme activities (SOD, APX, and CAT) and elevated values were typically found in high Ca samples while ROS (hydrogen peroxide and superoxide radical) were mainly depleted in Mn treatment. These data confirm that Ca nutrition affects accumulation of metals in algae and metabolic parameters as observed in vascular plants but, unlike them, rather Ca/Na ratio than absolute Ca content seems to regulate the uptake of metals. Copyright © 2017 Elsevier Inc. All rights reserved.
Torres, P; Galleguillos, P; Lissi, E; López-Alarcón, C
2008-10-15
The oxygen radical absorbance capacity (ORAC) methodology has been employed to estimate the antioxidant capacity of human blood plasma and human urine using pyrogallol red (ORAC-PGR) as target molecule. Uric acid, reduced glutathione, human serum albumin, and ascorbic acid (ASC) inhibited the consumption of pyrogallol red, but only ASC generated an induction time. Human blood plasma and human urine protected efficiently pyrogallol red. In these assays, both biological fluids generated neat induction times that were removed by ascorbate oxidase. From these results, ORAC-PGR method could be proposed as a simple alternative to evaluate an ORAC index and, simultaneously, to estimate the concentration of ascorbic acid in human blood plasma or human urine.
Mancini, Simone; Preziuso, Giovanna; Dal Bosco, Alessandro; Roscini, Valentina; Szendrő, Zsolt; Fratini, Filippo; Paci, Gisella
2015-12-01
The objective of this study was to evaluate the effect of Curcuma longa powder and ascorbic acid on some quality traits of rabbit burgers. The burgers (burgers control with no additives; burgers with 3.5 g of turmeric powder/100g meat; burgers with 0.1g of ascorbic acid/100g meat) were analyzed at Days 0 and 7 for pH, color, drip loss, cooking loss, fatty acid profile, TBARS, antioxidant capacity (ABTS, DPPH and FRAP) and microbial growth. The addition of turmeric powder modified the meat color, produced an antioxidant capacity similar to ascorbic acid and determined a lower cooking loss than other formulations. Turmeric powder might be considered as a useful natural antioxidant, increasing the quality and extending the shelf life of rabbit burgers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Quantitative Determination of Citric and Ascorbic Acid in Powdered Drink Mixes
ERIC Educational Resources Information Center
Sigmann, Samuella B.; Wheeler, Dale E.
2004-01-01
A procedure by which the reactions are used to quantitatively determine the amount of total acid, the amount of total ascorbic acid and the amount of citric acid in a given sample of powdered drink mix, are described. A safe, reliable and low-cost quantitative method to analyze consumer product for acid content is provided.
Nguyen, Dan; Samson, Susan L; Reddy, Vasumathi T; Gonzalez, Erica V; Sekhar, Rajagopal V
2013-06-01
Aging is associated with impaired fasted oxidation of nonesterified fatty acids (NEFA) suggesting a mitochondrial defect. Aging is also associated with deficiency of glutathione (GSH), an important mitochondrial antioxidant, and with insulin resistance. This study tested whether GSH deficiency in aging contributes to impaired mitochondrial NEFA oxidation and insulin resistance, and whether GSH restoration reverses these defects. Three studies were conducted: (i) in 82-week-old C57BL/6 mice, the effect of naturally occurring GSH deficiency and its restoration on mitochondrial (13) C1 -palmitate oxidation and glucose metabolism was compared with 22-week-old C57BL/6 mice; (ii) in 20-week C57BL/6 mice, the effect of GSH depletion on mitochondrial oxidation of (13) C1 -palmitate and glucose metabolism was studied; (iii) the effect of GSH deficiency and its restoration on fasted NEFA oxidation and insulin resistance was studied in GSH-deficient elderly humans, and compared with GSH-replete young humans. Chronic GSH deficiency in old mice and elderly humans was associated with decreased fasted mitochondrial NEFA oxidation and insulin resistance, and these defects were reversed with GSH restoration. Acute depletion of GSH in young mice resulted in lower mitochondrial NEFA oxidation, but did not alter glucose metabolism. These data suggest that GSH is a novel regulator of mitochondrial NEFA oxidation and insulin resistance in aging. Chronic GSH deficiency promotes impaired NEFA oxidation and insulin resistance, and GSH restoration reverses these defects. Supplementing diets of elderly humans with cysteine and glycine to correct GSH deficiency could provide significant metabolic benefits. © 2013 John Wiley & Sons Ltd and the Anatomical Society.
Ascorbic acid metabolism during sweet cherry (Prunus avium) fruit development
Ni, Zhiyou; Lin, Lijin; Tang, Yi; Wang, Zhihui; Wang, Xun; Wang, Jin; Lv, Xiulan; Xia, Hui
2017-01-01
To elucidate metabolism of ascorbic acid (AsA) in sweet cherry fruit (Prunus avium ‘Hongdeng’), we quantified AsA concentration, cloned sequences involved in AsA metabolism and investigated their mRNA expression levels, and determined the activity levels of selected enzymes during fruit development and maturation. We found that AsA concentration was highest at the petal-fall period (0 days after anthesis) and decreased progressively during ripening, but with a slight increase at maturity. AsA did nevertheless continue to accumulate over time because of the increase in fruit fresh weight. Full-length cDNAs of 10 genes involved in the L-galactose pathway of AsA biosynthesis and 10 involved in recycling were obtained. Gene expression patterns of GDP-L-galactose phosphorylase (GGP2), L-galactono-1, 4-lactone dehydrogenase (GalLDH), ascorbate peroxidase (APX3), ascorbate oxidase (AO2), glutathione reductase (GR1), and dehydroascorbate reductase (DHAR1) were in accordance with the AsA concentration pattern during fruit development, indicating that genes involved in ascorbic acid biosynthesis, degradation, and recycling worked in concert to regulate ascorbic acid accumulation in sweet cherry fruit. PMID:28245268
Qureshi, Irfan Zia; Mahmood, Tariq
2010-07-01
Occupational exposure to toxic heavy metals may render industrial workers with thyroid-related problems. Here, we examined the role of ascorbic acid (vitamin C) against hexavalent chromium Cr (VI)-induced damage in rat thyroid gland. Potassium dichromate (K2Cr2O7) and ascorbic acid doses were 60 microg and 120 mg kg(-1) body wt (intraperitoneally [i.p.]) respectively. Treatment regimens were group I rats, saline treated control; group II, only K2Cr2O7; group III, ascorbic acid 1 hour prior K2Cr2O7; group IV, simultaneous doses of ascorbic acid and K2Cr2O7, and group V, a combined premix dose of ascorbic acid and K2 Cr2O7 (2:1 ratio). Blood samples were taken before dosing the animals and 48 hours post exposure to determine the serum thyroid-stimulating hormone (TSH), free triiodothyronine (FT3) and free thyroxine (FT4) concentrations. Toward end of experiment, rats were sacrificed and thyroid glands were processed to evaluate the extent of cellular insult. Results showed significantly increased TSH and decreased FT3 and FT4 concentrations in groups II, III and IV rats as compared to control levels (p < 0.05). In contrast, in group V rats, serum TSH, FT3 and FT4 concentrations neared control concentrations. Histopathologically, protective effect of ascorbic acid was found in group V rats only, where thyroid gland structure neared control thyroid except the follicular size that was decreased (p < 0.05). Follicular density was no different from control. Basal laminae were intact, interfollicular spaces were normal. Colloid retraction and/or reabsorption were reduced maximally. Epithelial cell height was no different from control; epithelial follicular index increased only 1.3 fold, whereas nuclear-cytoplasmic (N/C) ratio was decreased by 14% only. The study indicates that the ascorbic acid may have the potential to protect thyroid gland from chromium toxicity; however, the study warrants further in-depth experimentation to precisely elucidate this role.
Akbulut, Sami; Elbe, Hulya; Eris, Cengiz; Dogan, Zumrut; Toprak, Gulten; Otan, Emrah; Erdemli, Erman; Turkoz, Yusuf
2014-01-01
AIM: To investigate the potential role of oxidative stress and the possible therapeutic effects of N-acetyl cysteine (NAC), amifostine (AMF) and ascorbic acid (ASC) in methotrexate (MTX)-induced hepatotoxicity. METHODS: An MTX-induced hepatotoxicity model was established in 44 male Sprague Dawley rats by administration of a single intraperitoneal injection of 20 mg/kg MTX. Eleven of the rats were left untreated (Model group; n = 11), and the remaining rats were treated with a 7-d course of 50 mg/kg per day NAC (MTX + NAC group; n = 11), 50 mg/kg per single dose AMF (MTX + AMF group; n = 11), or 10 mg/kg per day ASC (MTX + ASC group; n = 11). Eleven rats that received no MTX and no treatments served as the negative control group. Structural and functional changes related to MTX- and the various treatments were assessed by histopathological analysis of liver tissues and biochemical assays of malondialdehyde (MDA), superoxide dismutase (SOD), catalase, glutathione (GSH) and xanthine oxidase activities and of serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and total bilirubin. RESULTS: Exposure to MTX caused structural and functional hepatotoxicity, as evidenced by significantly worse histopathological scores [median (range) injury score: control group: 1 (0-3) vs 7 (6-9), P = 0.001] and significantly higher MDA activity [409 (352-466) nmol/g vs 455.5 (419-516) nmol/g, P < 0.05]. The extent of MTX-induced perturbation of both parameters was reduced by all three cytoprotective agents, but only the reduction in hepatotoxicity scores reached statistical significance [4 (3-6) for NAC, 4.5 (3-5) for AMF and 6 (5-6) for ASC; P = 0.001, P = 0.001 and P < 0.005 vs model group respectively]. Exposure to MTX also caused a significant reduction in the activities of GSH and SOD antioxidants in liver tissues [control group: 3.02 (2.85-3.43) μmol/g and 71.78 (61.88-97.81) U/g vs model group: 2.52 (2.07-3.34) μmol/g and 61.46 (58.27-67.75) U/g, P < 0.05]; however, only the NAC treatment provided significant increases in these antioxidant enzyme activities [3.22 (2.54-3.62) μmol/g and 69.22 (61.13-100.88) U/g, P < 0.05 and P < 0.01 vs model group respectively]. CONCLUSION: MTX-induced structural and functional damage to hepatic tissues in rats may involve oxidative stress, and cytoprotective agents (NAC > AMF > ASC) may alleviate MTX hepatotoxicity. PMID:25110444
Aposhian, H Vasken; Morgan, Daniel L; Queen, H L Sam; Maiorino, Richard M; Aposhian, Mary M
2003-01-01
Some medical practitioners prescribe GSH and vitamin C alone or in combination with DMPS or DMSA for patients with mercury exposure that is primarily due to the mercury vapor emitted by dental amalgams. This study tested the hypothesis that GSH, vitamin C, or lipoic acid alone or in combination with DMPS or DMSA would decrease brain mercury. Young rats were exposed to elemental mercury by individual nose cone, at the rate of 4.0 mg mercury per m3 air for 2 h per day for 7 consecutive days. After a 7-day equilibrium period, DMPS, DMSA, GSH, vitamin C, lipoic acid alone, or in combination was administered for 7 days and the brain and kidneys of the animals removed and analyzed for mercury by cold vapor atomic absorption. None of these regimens reduced the mercury content of the brain. Although DMPS or DMSA was effective in reducing kidney mercury concentrations, GSH, vitamin C, lipoic acid alone, or in combination were not. One must conclude that the palliative effect, if any, of GSH, vitamin C, or lipoic acid for treatment of mercury toxicity due to mercury vapor exposure does not involve mercury mobilization from the brain and kidney.
Vitamin C: update on physiology and pharmacology
Mandl, J; Szarka, A; Bánhegyi, G
2009-01-01
Although ascorbic acid is an important water-soluble antioxidant and enzyme cofactor in plants and animals, humans and some other species do not synthesize ascorbate due to the lack of the enzyme catalyzing the final step of the biosynthetic pathway, and for them it has become a vitamin. This review focuses on the role of ascorbate in various hydroxylation reactions and in the redox homeostasis of subcellular compartments including mitochondria and endoplasmic reticulum. Recently discovered functions of ascorbate in nucleic acid and histone dealkylation and proteoglycan deglycanation are also summarized. These new findings might delineate a role for ascorbate in the modulation of both pro- and anti-carcinogenic mechanisms. Recent advances and perspectives in therapeutic applications are also reviewed. On the basis of new and earlier observations, the advantages of the lost ability to synthesize ascorbate are pondered. The increasing knowledge of the functions of ascorbate and of its molecular sites of action can mechanistically substantiate a place for ascorbate in the treatment of various diseases. PMID:19508394
Formation of an ascorbate-apatite composite layer on titanium.
Ito, Atsuo; Sogo, Yu; Ebihara, Yuko; Onoguchi, Masahiro; Oyane, Ayako; Ichinose, Noboru
2007-09-01
An ascorbate-apatite composite layer was successfully formed on NaOH- and heat-treated titanium by coprecipitating L-ascorbic acid phosphate and low-crystalline apatite in a supersaturated calcium phosphate solution at 37 degrees C for 48 h. The supersaturated calcium phosphate solutions used have chemical compositions attainable by mixing infusion fluids officially approved for clinical use. The amount of immobilized L-ascorbic acid phosphate ranged from 1.0 to 2.3 microg mm(-2), which is most likely to be sufficient for the in vitro osteogenic differentiation of mesenchymal stem cells on titanium. Since ascorbate is important for the collagen synthesis and subsequent osteogenesis of mesenchymal stem cells, titanium coated with the ascorbate-apatite composite layer would be useful as a scaffold in bone tissue engineering and as a bone substitute.
Kobayashi, Yayoi; Hirano, Seishiro
2008-10-01
Trivalent arsenicals such as arsenite (iAs(III)), monomethylarsonous acid (MMA(III)) and dimethylarsinous acid (DMA(III)) are more toxic than analogous pentavalent compounds such as arsenate (iAs(V)), monomethylarsonic acid (MMA(V)) and dimethylarsinic acid (DMA(V)). It has been reported that arsenic-glutathione (As-GSH) complexes such as arsenic triglutathione (ATG) and methylarsenic diglutathione (MADG) are major metabolites in rat bile following intravenous administration of iAs(III). Recently, we have shown that both ATG and MADG are unstable and easily hydrolyzed to iAs(III) and MMA(III), respectively, and that MMA(III) is oxidized to MMA(V) in bile. In the present study we report the effects of H(2)O(2) and GSH on the stability of As-GSH complexes in rat bile. Male SD rats were injected intravenously with saline or iAs(III) at a dose of 0.2 or 2.0 mg As/kg body weight, and bile fluid was collected on ice for 30 min. To estimate the stability of As-GSH complexes in bile, ATG or MADG was added to untreated, heat-treated, catalase-treated, or dialyzed bile, and then incubated at 37 degrees C for 10 min. Concentrations of biliary H(2)O(2) and GSH in the higher dose group were 12.6- and 4.5-times higher than the control value, respectively. Exogenously added trivalent arsenicals were oxidized to pentavalent arsenicals in the bile depending on the biliary concentration of H(2)O(2). Both catalase and dialysis prevented oxidation of trivalent arsenicals to the corresponding pentavalent compounds. Exogenously added GSH stabilized As-GSH complexes in bile. These results suggest that H(2)O(2) converts trivalent arsenicals to less toxic pentavalent arsenicals, whereas GSH prevents hydrolysis of As-GSH complexes and the generation of unconjugated toxic trivalent arsenicals.
p-Aminophenol-induced liver toxicity: tentative evidence of a role for acetaminophen.
Song, H; Chen, T S
2001-01-01
p-Aminophenol (PAP) is a widely used industrial chemical and a metabolite of analgesics, such as acetaminophen (APAP). It was found recently that PAP, a known nephrotoxicant, could cause acute hepatotoxicity in mice but not in rats. The mechanism of hepatotoxicity is not known. The aim of this study was to investigate the role of N-acetylation of PAP to APAP in PAP-induced toxicity. Male C57BL/6 mice injected intraperitoneally (i.p.) with various doses of PAP were sacrificed at 12 hours for measurement of serum glutamic-pyruvic transaminase (GPT) and sorbitol dehydrogenase (SDH) levels and determination of the extent of hepatic nonprotein sulfhydryl (NPSH) and glutathione (GSH) depletion. Plasma levels of APAP and its metabolites were measured by HPLC after PAP administration. p-Aminophenol depleted NPSH in a dose- and time-dependent manner. Depletion of NPSH in mouse liver occurred at PAP doses above 400 mg/kg. Buthionine sulfoximine (BSO), an inhibitor of GSH synthesis, potentiated the PAP-induced hepatotoxicity. Ascorbate, a reducing agent, did not affect PAP-induced hepatotoxicity and NPSH depletion. After PAP treatment, APAP and its sulfate and glucuronide conjugates as well as GSH conjugates (APAP-cysteine and APAP-mercapturate) were detected in the plasma. The results suggest the roles of GSH and N-acetylation of PAP to APAP in PAP-induced hepatotoxicity.
Ivanov, Vadim; Ivanova, Svetlana; Kalinovsky, Tatiana; Niedzwiecki, Aleksandra; Rath, Matthias
2016-01-01
Calcium, sodium and potassium channel blockers are widely prescribed medications for a variety of health problems, most frequently for cardiac arrhythmias, hypertension, angina pectoris and other disorders. However, chronic application of channel blockers is associated with numerous side effects, including worsening cardiac pathology. For example, nifedipine, a calcium-channel blocker was found to be associated with increased mortality and increased risk for myocardial infarction. In addition to the side effects mentioned above by different channel blockers, these drugs can cause arterial wall damage, thereby contributing to vascular wall structure destabilization and promoting events facilitating rupture of plaques. Collagen synthesis is regulated by ascorbic acid, which is also essential for its optimum structure as a cofactor in lysine and proline hydroxylation, a precondition for optimum crosslinking of collagen and elastin. Therefore, the main objective in this study was to evaluate effects of various types of channel blockers on intracellular accumulation and cellular functions of ascorbate, specifically in relation to formation and extracellular deposition of major collagen types relevant for vascular function. Effects of select Na- and Ca- channel blockers on collagen synthesis and deposition were evaluated in cultured human dermal fibroblasts and aortic smooth muscle cells by immunoassay. All channel blockers tested demonstrated inhibitory effects on collagen type I deposition to the ECM by fibroblasts, each to a different degree. Ascorbic acid significantly increased collagen I ECM deposition. Nifedipine (50 µM), a representative of channel blockers tested, significantly reduced ascorbic acid and ascorbyl palmitate-dependent ECM deposition of collagen type l and collagen type lV by cultured aortic smooth muscle cells. In addition, nifedipine (50 µM) significantly reduced ascorbate-dependent collagen type l and type lV synthesis by cultured aortic smooth muscle cells, assayed by measuring intracellular collagen content. We observed increased intracellular levels of ascorbate under supplementation with elevated doses of ascorbic acid, as well as its lipid soluble derivative ascorbyl palmitate. Nifedipine reduced ascorbic acid intracellular influx in cultured aortic smooth muscle cells with nifedipine (50 µM) compared to control. Adverse effects of nifedipine were neutralized either by an increased level of cell supplementation with ascorbic acid or by substituting it with ascorbyl palmitate. These studies suggest that adverse effects of channel blockers could be caused by their weakening the arterial wall integrity by interfering with proper extracellular matrix formation. In conclusion, these studies confirm the adverse effects of channel blockers on collagen type l and lV deposition, the key ECM components essential for maintaining optimal structural integrity of the arterial walls. Ascorbate supplementation reversed channel blocker inhibition of these collagen types synthesis and deposition. The results of this study imply the benefits of ascorbate and ascorbate palmitate supplementation in medical management of cardiovascular disease in order to compensate for adverse effects of channel blockers. PMID:27335688
Ivanov, Vadim; Ivanova, Svetlana; Kalinovsky, Tatiana; Niedzwiecki, Aleksandra; Rath, Matthias
2016-01-01
Calcium, sodium and potassium channel blockers are widely prescribed medications for a variety of health problems, most frequently for cardiac arrhythmias, hypertension, angina pectoris and other disorders. However, chronic application of channel blockers is associated with numerous side effects, including worsening cardiac pathology. For example, nifedipine, a calcium-channel blocker was found to be associated with increased mortality and increased risk for myocardial infarction. In addition to the side effects mentioned above by different channel blockers, these drugs can cause arterial wall damage, thereby contributing to vascular wall structure destabilization and promoting events facilitating rupture of plaques. Collagen synthesis is regulated by ascorbic acid, which is also essential for its optimum structure as a cofactor in lysine and proline hydroxylation, a precondition for optimum crosslinking of collagen and elastin. Therefore, the main objective in this study was to evaluate effects of various types of channel blockers on intracellular accumulation and cellular functions of ascorbate, specifically in relation to formation and extracellular deposition of major collagen types relevant for vascular function. Effects of select Na- and Ca- channel blockers on collagen synthesis and deposition were evaluated in cultured human dermal fibroblasts and aortic smooth muscle cells by immunoassay. All channel blockers tested demonstrated inhibitory effects on collagen type I deposition to the ECM by fibroblasts, each to a different degree. Ascorbic acid significantly increased collagen I ECM deposition. Nifedipine (50 µM), a representative of channel blockers tested, significantly reduced ascorbic acid and ascorbyl palmitate-dependent ECM deposition of collagen type l and collagen type lV by cultured aortic smooth muscle cells. In addition, nifedipine (50 µM) significantly reduced ascorbate-dependent collagen type l and type lV synthesis by cultured aortic smooth muscle cells, assayed by measuring intracellular collagen content. We observed increased intracellular levels of ascorbate under supplementation with elevated doses of ascorbic acid, as well as its lipid soluble derivative ascorbyl palmitate. Nifedipine reduced ascorbic acid intracellular influx in cultured aortic smooth muscle cells with nifedipine (50 µM) compared to control. Adverse effects of nifedipine were neutralized either by an increased level of cell supplementation with ascorbic acid or by substituting it with ascorbyl palmitate. These studies suggest that adverse effects of channel blockers could be caused by their weakening the arterial wall integrity by interfering with proper extracellular matrix formation. In conclusion, these studies confirm the adverse effects of channel blockers on collagen type l and lV deposition, the key ECM components essential for maintaining optimal structural integrity of the arterial walls. Ascorbate supplementation reversed channel blocker inhibition of these collagen types synthesis and deposition. The results of this study imply the benefits of ascorbate and ascorbate palmitate supplementation in medical management of cardiovascular disease in order to compensate for adverse effects of channel blockers.
Zhou, Xiaohua; Tai, Akihiro; Yamamoto, Itaru
2003-03-01
It has been shown that ascorbate (AsA) and its stable derivative, ascorbic acid 2-O-alpha-glucoside (AA-2G), do not elicit neurite outgrowth in PC12 cells. However, these ascorbates are synergistically enhanced by both dibutyryl cyclic AMP (Bt(2)cAMP)- and nerve growth factor (NGF)-induced neurite outgrowth in this model. In the present study, the effects of a series of novel lipophilic ascorbate derivatives, 6-acylated ascorbic acid 2-O-alpha-glucosides (6-Acyl-AA-2G), on neurite outgrowth induced by Bt(2)cAMP and NGF were examined in PC12 cells. We found that all the tested acylated ascorbate derivatives enhanced neurite formation induced by both agents in a dose-dependent manner. Of the 6-Acyl-AA-2G derivatives, 6-octanoyl ascorbic acid 2-O-alpha-glucoside (6-Octa-AA-2G) enhanced the Bt(2)cAMP-induced phosphorylated MAPK p44 and p42 expression. A alpha-glucosidase inhibitor, castanospermine, completely abrogated the promotion of neurite outgrowth and MAPK expression by 6-Octa-AA-2G. Addition of 6-Octa-AA-2G (0.5 mM) to PC12 cells caused a rapid and significant increase in intracellular AsA content, which reached a maximum and was maintained from 12 to 24 h after the culture. These findings suggest that 6-Acyl-AA-2G is rapidly hydrolyzed to AsA within the cell and enhances neurite differentiation through the interaction with the inducer-activated MAPK pathway.
[Cellular and intracellular transport of vitamin C. The physiologic aspects].
Szarka, András; Lőrincz, Tamás
2013-10-20
Vitamin C requirement is satisfied by natural sources and vitamin C supplements in the ordinary human diet. The two major forms of vitamin C in the diet are L-ascorbic acid and L-dehydroascorbic acid. Both ascorbate and dehydroascorbate are absorbed along the entire length of the human intestine. The reduced form, L-ascorbic acid is imported by an active mechanism, requiring two sodium-dependent vitamin C transporters (SVCT1 and SVCT2). The transport of the oxidized form, dehydroascorbate is mediated by glucose transporters GLUT1, GLUT3 and possibly GLUT4. Initial rate of uptake of both ascorbate and dehydroascorbate is saturable with increasing external substrate concentration. Vitamin C plasma concentrations are tightly controlled when the vitamin is taken orally. It has two simple reasons, on the one hand, the capacity of the transporters is limited, on the other hand the two Na+-dependent transporters can be down-regulated by an elevated level of ascorbate.
NASA Astrophysics Data System (ADS)
Lacroix, M.; Ouattara, B.; Saucier, L.; Giroux, M.; Smoragiewicz, W.
2004-09-01
The present study was conducted to evaluate the combined effect of gamma irradiation in presence of ascorbic acid on the microbiological characteristics and thiobarbituric acid-reactive substances (TBARS) concentration of ground beef coated with an edible coating, crosslinked by gamma irradiation. The medium fat ground beef patties (23% fat ) were divided into two separate treatment groups: (i) control (ground beef without additive), (ii) ground beef with 0.5% (w/w) ascorbic acid. Meat samples were irradiated at doses of 0, 1, 2, and 3 kGy and stored at 4±2°C. The content of TBARS was evaluated. After 7 days of storage, Enterobacteriaceae, presumptive Staphylococcus aureus, presumptive Pseudomonas spp., Brochothrix thermosphacta and lactic acid bacteria were enumerated. Results showed that lactic acid bacteria and Br. thermosphacta were more resistant to irradiation than Enterobacteriaceae and Pseudomonas. The content in TBARS was stabilized during post-irradiation storage for samples containing ascorbic acid. Shelf life extension periods estimated on the basis of a limit level of 6 log CFU/g for APCs were 4, 7, and 10 days for samples irradiated at 1, 2, and 3 kGy, respectively. However, the incorporation of ascorbic acid in ground beef did not improve significantly ( p>0.05) the inhibitory effect of gamma irradiation.
Adduct formation of ionic and nanoparticular silver with amino acids and glutathione
NASA Astrophysics Data System (ADS)
Blaske, Franziska; Stork, Lisa; Sperling, Michael; Karst, Uwe
2013-09-01
To investigate the interaction of ionic and nanoparticular silver with amino acids and small peptides, an electrospray ionization time-of-flight mass spectrometry method was developed. Monomeric and oligomeric silver adducts were formed with amino acids including cysteine (Cys), methionine, histidine, lysine, or the tripeptide glutathione (GSH). The obtained spectra for ionic silver show clusters in different ratios between Ag+ and the reaction partners (X) including [Ag n X m - ( n + 1)H]- ( n = 1-4, m = 1-3). Regarding Cys, adduct clusters up to n = 5 and m = 4 were observed as well. Considering silver-GSH interactions, even doubly charged oligomers occur generating [Ag( a + 1)GSH a - ( a + 3)H]2- ( a = 5-7) and [Ag b GSH b - ( b + 2)H]2- ( b = 4-8) ions. 1H NMR data of free GSH compared to that after treatment with Ag+ confirm sulfur-metal interactions due to changing chemical shifts for the protons located adjacent to the thiol group. Density functional theory calculations for silver-GSH clusters may explain the formation of experimentally recorded large clusters due to cooperative effects between silver and carboxylic acid side chains. Both sets of experiments indicate the presence of these adducts in the liquid phase. For silver nanoparticles, the respective data confirm the release of silver ions and the subsequent adduct formation.
NASA Astrophysics Data System (ADS)
Apichartsrangkoon, Arunee; Chattong, Utaiwan; Chunthanom, Pornprapa
2012-06-01
The biologically active constituents of pennywort juice were analyzed by HPLC. The juice extract contained the bioactive glycosides, including asiaticoside and madecassoside. Antioxidant properties of juices were determined in terms of ferric-reducing antioxidant power assay, total polyphenol, β-carotene and ascorbic acid contents. After processing, asiaticoside, madecassoside and β-carotene in the extracted juice were relatively stable with no significant losses occurring. Pressurization could significantly retain ascorbic acid, polyphenols and antioxidant capacity than those pasteurization or sterilization. For storage assessment, asiaticoside in the processed juices was relatively stable during 4 months storage. Losses of ascorbic acid in the pressurized juice during storage were greater than in pasteurized and sterilized juice. However, the total amount of ascorbic acid retained in pressurized juice was still higher than those thermal-treated products.
Yang, Ming; Barak, Otto F; Dujic, Zeljko; Madden, Dennis; Bhopale, Veena M; Bhullar, Jasjeet; Thom, Stephen R
2015-08-15
Predicated on evidence that diving-related microparticle generation is an oxidative stress response, this study investigated the role that oxygen plays in augmenting production of annexin V-positive microparticles associated with open-water SCUBA diving and whether elevations can be abrogated by ascorbic acid. Following a cross-over study design, 14 male subjects ingested placebo and 2-3 wk later ascorbic acid (2 g) daily for 6 days prior to performing either a 47-min dive to 18 m of sea water while breathing air (∼222 kPa N2/59 kPa O2) or breathing a mixture of 60% O2/balance N2 from a tight-fitting face mask at atmospheric pressure for 47 min (∼40 kPa N2/59 kPa O2). Within 30 min after the 18-m dive in the placebo group, neutrophil activation, and platelet-neutrophil interactions occurred, and the total number of microparticles, as well as subgroups bearing CD66b, CD41, CD31, CD142 proteins or nitrotyrosine, increased approximately twofold. No significant elevations occurred among divers after ingesting ascorbic acid, nor were elevations identified in either group after breathing 60% O2. Ascorbic acid had no significant effect on post-dive intravascular bubble production quantified by transthoracic echocardiography. We conclude that high-pressure nitrogen plays a key role in neutrophil and microparticle-associated changes with diving and that responses can be abrogated by dietary ascorbic acid supplementation. Copyright © 2015 the American Physiological Society.
Leite, Gabriel Adan Araújo; Figueiredo, Thamiris Moreira; Guerra, Marina Trevizan; Borges, Cibele Dos Santos; Fernandes, Fábio Henrique; Anselmo-Franci, Janete Aparecida; Kempinas, Wilma De Grava
2018-05-18
Obesity during childhood and adolescence is closely related to dysfunctions on lipid profile in children. Rosuvastatin is a statin that decreases serum total cholesterol. Ascorbic acid is an important antioxidant compound for male reproduction. Pre-pubertal male rats were distributed into six experimental groups that received saline solution 0.9% (vehicle), 3 or 10 mg/kg/day of rosuvastatin, 150 mg/day of ascorbic acid, or 3 or 10 mg/kg/day of rosuvastatin co-administered with 150 mg/day of ascorbic acid by gavage from post-natal day (PND)23 until PND53. Rats were maintained until adulthood and mated with nulliparous females to obtain the male offspring, whose animals were evaluated at adulthood in relation to reproductive parameters. This study is a follow up of a previous paper addressing potential effects on F0 generation only (Leite et al., 2017). Male offspring from rosuvastatin-exposed groups showed increased sperm DNA fragmentation, androgen depletion and impairment on the testicular and epididymal structure. Ascorbic acid coadministered to the fathers ameliorated the reproductive damage in the offspring. In summary, paternal exposure to rosuvastatin may affect the reproduction in the male offspring; however, paternal supplementation with ascorbic acid was able to reduce the reproductive impairment in the male offspring caused by statin treatment to the fathers. Copyright © 2018 Elsevier Ltd. All rights reserved.
Green reduction of graphene oxide by ascorbic acid
NASA Astrophysics Data System (ADS)
Khosroshahi, Zahra; Kharaziha, Mahshid; Karimzadeh, Fathallah; Allafchian, Alireza
2018-01-01
Graphene, a single layer of sp2-hybridized carbon atoms in a hexagonal (two-dimensional honey-comb) lattice, has attracted strong scientific and technological interest due to its novel and excellent optical, chemical, electrical, mechanical and thermal properties. The solution-processable chemical reduction of Graphene oxide (GO is considered as the most favorable method regarding mass production of graphene. Generally, the reduction of GO is carried out by chemical approaches using different reductants such as hydrazine and sodium borohydride. These components are corrosive, combustible and highly toxic which may be dangerous for personnel health and the environment. Hence, these reducing agents are not promising choice for reducing of graphene oxide (GO). As a consequence, it is necessary for further development and optimization of eco-friendly, natural reducing agent for clean and effective reduction of GO. Ascorbic acid, an eco-friendly and natural reducing agents, having a mild reductive ability and nontoxic property. So, the aim of this research was to green synthesis of GO with ascorbic acid. For this purpose, the required amount of NaOH and ascorbic acid were added to GO solution (0.5 mg/ml) and were heated at 95 °C for 1 hour. According to the X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and electrochemical results, GO were reduced with ascorbic acid like hydrazine with better electrochemical properties and ascorbic acid is an ideal substitute for hydrazine in the reduction of graphene oxide process.
Oxidative stress and acute-phase response in patients with pressure sores.
Cordeiro, Maria Bernarda Cavalcanti; Antonelli, Elida Juliana; da Cunha, Daniel Ferreira; Júnior, Alceu Afonso Jordão; Júnior, Virmondes Rodrigues; Vannucchi, Helio
2005-09-01
We investigated the relation between oxidative stress and the occurrence of the acute-phase response with serum ascorbic acid and alpha-tocopherol levels in patients with pressure sores. The following groups of patients were studied: 1) those who had patients with pressure sores, 2) those who had pneumonia, and 3) those who did not develop pressure sores or any type of infection (control). Concentrations of total proteins, albumin, creatinine, iron, ferritin, transferrin, C-reactive protein, alpha1-acid glycoprotein, total iron-binding capacity, ascorbic acid, alpha-tocopherol, and malondialdehyde were measured during the first days of hospitalization. Albumin concentrations were significantly lower (P < 0.05) and C-reactive protein concentrations were significantly higher (P < 0.05) in patients with pressure sores compared with controls. Concentrations of ascorbic acid and alpha-tocopherol were significantly decreased (P < 0.05) in patients who had pressure sores or infection, whereas malondialdehyde concentrations were significantly increased (P < 0.05) compared with control patients. Five of 11 patients (55.56%) with pressure sores and 10 of 12 patients (83.33%) with pneumonia presented serum ascorbic acid concentrations below the reference value (34 to 91 micromol/L). Concentrations of ascorbic acid and alpha-tocopherol versus malondialdehyde were significantly correlated in the three patient groups (r = -0.44, P < 0.05; r = -0.55, P < 0.01, respectively). Patients with pressure sores and acute infection present a systemic inflammatory response accompanied by an increase in lipid peroxidation that is associated with decreased serum ascorbic acid and alpha-tocopherol levels, suggesting that these patients may be at risk for important nutritional deficiencies.
Ascorbate degradation in tomato leads to accumulation of oxalate, threonate and oxalyl threonate.
Truffault, Vincent; Fry, Stephen C; Stevens, Rebecca G; Gautier, Hélène
2017-03-01
Ascorbate content in plants is controlled by its synthesis from carbohydrates, recycling of the oxidized forms and degradation. Of these pathways, ascorbate degradation is the least studied and represents a lack of knowledge that could impair improvement of ascorbate content in fruits and vegetables as degradation is non-reversible and leads to a depletion of the ascorbate pool. The present study revealed the nature of degradation products using [ 14 C]ascorbate labelling in tomato, a model plant for fleshy fruits; oxalate and threonate are accumulated in leaves, as is oxalyl threonate. Carboxypentonates coming from diketogulonate degradation were detected in relatively insoluble (cell wall-rich) leaf material. No [ 14 C]tartaric acid was found in tomato leaves. Ascorbate degradation was stimulated by darkness, and the degradation rate was evaluated at 63% of the ascorbate pool per day, a percentage that was constant and independent of the initial ascorbate or dehydroascorbic acid concentration over periods of 24 h or more. Furthermore, degradation could be partially affected by the ascorbate recycling pathway, as lines under-expressing monodehydroascorbate reductase showed a slight decrease in degradation product accumulation. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Zhang, Jiayu; Zhou, Xue; Wu, Wenbo; Wang, Jiachun; Xie, Hong; Wu, Zhigang
2017-04-01
Alpha-lipoic acid (α-LA) is an important antioxidant that is capable of regenerating other antioxidants, such as glutathione (GSH). However, the underlying molecular mechanism by which α-LA regenerates GSH remains poorly understood. The current study aimed to investigate whether α-LA regenerates GSH by activation of Nrf2 to alleviate cadmium-induced cytotoxicity in HepG2 cells. In the present study, we found that cadmium induced cell death by depletion of GSH through inactivation of Nrf2. Addition of α-LA to cadmium-treated cells reactivated Nrf2 and regenerated GSH through elevating the Nrf2-downstream genes γ-glutamate-cysteine ligase (γ-GCL) and GR, both of which are key enzymes for GSH synthesis. However, blocking Nrf2 with brusatol in the cells co-treated with α-LA and cadmium reduced the mRNA and the protein levels of γ-GCL and GR, thus suppressed GSH regeneration by α-LA. Our results indicated that α-LA activated Nrf2 signaling pathway, which upregulated the transcription of the enzymes for GSH synthesis and therefore GSH contents to alleviate cadmium-induced cytotoxicity in HepG2 cells. Copyright © 2017. Published by Elsevier B.V.
Falahatkar, B.; Dabrowski, K.; Arslan, M.; Rinchard, J.
2006-01-01
This study was conducted to examine the effects of different forms and concentrations of ascorbic acid (vitamin C), and different enrichment times (24 and 48 h post ovulation) on egg, embryo and alevin ascorbate concentrations and survival of rainbow trout (enrichment was at the ova stage). In experiments 1 and 2, fertilized eggs were immersed in water containing ascorbate at 0 (control), 100, 1000 mg L-1 l-ascorbic acid (AA) and 2000 mg L -1 l-ascorbyl monophosphate (AP). In experiment 3, 0 (control), 500 and 1000 mg L-1 AA neutralized (N) with NaOH, 1000 mg L-1 AA non-neutralized (NN), 1000 and 2000 mg L-1 AP immersions were used. The mean total ascorbic acid (TAA) and dehydroascorbic acid (DHA) concentrations were measured before fertilization, at 3 and 24 h after fertilization, at the eyed stage, and in hatched alevins. We observed significant differences in TAA concentration at different immersion levels at 3 and 24 h after fertilization. Survival decreased significantly depending on the level of vitamin C, pH of the solutions and immersion time. We suggest that when broodstock rainbow trout do not have enough vitamin C in their ovaries, immersion of eggs in 1000 mg L-1 of neutralized AA may be useful. ?? 2006 Blackwell Publishing Ltd.
Ballinger, Carol A.; Plopper, Charles G.; McDonald, Ruth J.; Bartolucci, Alfred A.; Postlethwait, Edward M.; Harkema, Jack R.
2011-01-01
Children chronically exposed to high levels of ozone (O3), the principal oxidant pollutant in photochemical smog, are more vulnerable to respiratory illness and infections. The specific factors underlying this differential susceptibility are unknown but may be related to air pollutant-induced nasal alterations during postnatal development that impair the normal physiological functions (e.g., filtration and mucociliary clearance) serving to protect the more distal airways from inhaled xenobiotics. In adult animal models, chronic ozone exposure is associated with adaptations leading to a decrease in airway injury. The purpose of our study was to determine whether cyclic ozone exposure induces persistent morphological and biochemical effects on the developing nasal airways of infant monkeys early in life. Infant (180-day-old) rhesus macaques were exposed to 5 consecutive days of O3 [0.5 parts per million (ppm), 8 h/day; “1-cycle”] or filtered air (FA) or 11 biweekly cycles of O3 (FA days 1–9; 0.5 ppm, 8 h/day on days 10–14; “11-cycle”). The left nasal passage was processed for light microscopy and morphometric analysis. Mucosal samples from the right nasal passage were processed for GSH, GSSG, ascorbate (AH2), and uric acid (UA) concentration. Eleven-cycle O3 induced persistent rhinitis, squamous metaplasia, and epithelial hyperplasia in the anterior nasal airways of infant monkeys, resulting in a 39% increase in the numeric density of epithelial cells. Eleven-cycle O3 also induced a 65% increase in GSH concentrations at this site. The persistence of epithelial hyperplasia was positively correlated with changes in GSH. These results indicate that early life ozone exposure causes persistent nasal epithelial alterations in infant monkeys and provide a potential mechanism for the increased susceptibility to respiratory illness exhibited by children in polluted environments. PMID:21131400
An efficient synthesis of tetramic acid derivatives with extended conjugation from L-Ascorbic Acid
Singh, Biswajit K; Bisht, Surendra S; Tripathi, Rama P
2006-01-01
Background Tetramic acids with polyenyl substituents are an important class of compounds in medicinal chemistry. Both solid and solution phase syntheses of such molecules have been reported recently. Thiolactomycin, a clinical candidate for treatment of tuberculosis has led to further explorations in this class. We have recently developed an efficient synthesis of tetramic acids derivatives from L- ascorbic acid. In continuation of this work, we have synthesised dienyl tetramic acid derivatives. Results 5,6-O-Isopropylidene-ascorbic acid on reaction with DBU led to the formation of tetronolactonyl allyl alcohol, which on oxidation with pyridinium chlorochromate gave the respective tetranolactonyl allylic aldehydes. Wittig olefination followed by reaction of the resulting tetranolactonyl dienyl esters with different amines resulted in the respective 5-hydroxy lactams. Subsequent dehydration of the hydroxy lactams with p-toluene sulphonic acid afforded the dienyl tetramic acid derivatives. All reactions were performed at ambient temperature and the yields are good. Conclusion An efficient and practical method for the synthesis of dienyl tetramic acid derivatives from inexpensive and easily accessible ascorbic acid has been developed. The compounds bear structural similarities to the tetramic acid based polyenic antibiotics and thus this method offers a new and short route for the synthesis of tetramic acid derivatives of biological significance. PMID:17147830
An efficient synthesis of tetramic acid derivatives with extended conjugation from L-ascorbic acid.
Singh, Biswajit K; Bisht, Surendra S; Tripathi, Rama P
2006-12-06
Tetramic acids with polyenyl substituents are an important class of compounds in medicinal chemistry. Both solid and solution phase syntheses of such molecules have been reported recently. Thiolactomycin, a clinical candidate for treatment of tuberculosis has led to further explorations in this class. We have recently developed an efficient synthesis of tetramic acids derivatives from L-ascorbic acid. In continuation of this work, we have synthesised dienyl tetramic acid derivatives. 5,6-O-isopropylidene-ascorbic acid on reaction with DBU led to the formation of tetronolactonyl allyl alcohol, which on oxidation with pyridinium chlorochromate gave the respective tetranolactonyl allylic aldehydes. Wittig olefination followed by reaction of the resulting tetranolactonyl dienyl esters with different amines resulted in the respective 5-hydroxy lactams. Subsequent dehydration of the hydroxy lactams with p-toluene sulphonic acid afforded the dienyl tetramic acid derivatives. All reactions were performed at ambient temperature and the yields are good. An efficient and practical method for the synthesis of dienyl tetramic acid derivatives from inexpensive and easily accessible ascorbic acid has been developed. The compounds bear structural similarities to the tetramic acid based polyenic antibiotics and thus this method offers a new and short route for the synthesis of tetramic acid derivatives of biological significance.
Formulation with ascorbic acid and sucrose modulates catechin bioavailability from green tea
Peters, Catrina M.; Green, Rodney J.; Janle, Elsa M.; Ferruzzi, Mario G.
2009-01-01
In order to investigate the impact of common food ingredients on catechin absorption, green tea (GT) extract (50 mg) was formulated plain, with sucrose (GT+S), with ascorbic acid (GT+AA) and with sucrose and ascorbic acid (GT+S+AA). Bioavailability and bioaccessibility were assessed in Sprague Dawley rats and an in vitro digestion/Caco-2 cell model respectively. Absorption of epigallocatechin (EGC) and epigallocatechin gallate (EGCG) was significantly (P<0.05) enhanced in GT+S+AA formulations (AUC0-6h= 3237.0 and 181.8 pmol*h/L plasma respectively) relative to GT control (AUC0-6h = 1304.1 and 61.0 pmol*h/L plasma respectively). In vitro digestive recovery was higher for EGC and epicatechin (EC) (∼51-53%) relative to EGCG and epicatechin gallate (ECG) (< 20%) and was modestly enhanced in GT+S and GT+S+AA formulations. Accumulation of EGC, EGCG and ECG by Caco-2 cells was significantly (P<0.05) higher from GT+S+AA compared to other formulations while retention of catechins was enhanced in presence of ascorbic acid. These data suggest that formulation with sucrose and ascorbic acid may improve catechin bioavailability by enhancing bioaccessibility and intestinal uptake from tea. PMID:20161530
Cilla, Antonio; Alegría, Amparo; de Ancos, Begoña; Sánchez-Moreno, Concepción; Cano, M Pilar; Plaza, Lucía; Clemente, Gonzalo; Lagarda, María J; Barberá, Reyes
2012-07-25
A study was made of the effect of high-pressure processing (HPP) and thermal treatment (TT) on plant bioactive compounds (tocopherols, carotenoids, and ascorbic acid) in 12 fruit juice-milk beverages and of how the food matrix [whole milk (JW), skimmed milk (JS), and soy milk (JSy)] modulates their bioaccessibility (%). HPP (400 MPa/40 °C/5 min) produced a significant decrease in carotenoid and ascorbic acid bioaccessibility in all three beverages and maintained the bioaccessibility of tocopherols in JW and JS while decreasing it in JSy. TT (90 °C/30 s) produced a significant decrease in tocopherol and carotenoid bioaccessibility in all three beverages and increased the bioaccessibility of ascorbic acid. With regard to the food matrix, α-tocopherol and ascorbic acid bioaccessibility was greatest in JW beverages and lowest in JSy beverages, whereas no significant differences were found among the three beverages in terms of carotenoid bioaccessibility. HPP-treated samples showed higher tocopherol and carotenoid bioaccessibility than TT-treated samples, thus indicating that HPP combined with a milk matrix positively modulates the bioaccessibility of certain types of bioactive components of food, mainly those of a lipophilic nature.
Negishi, Osamu; Negishi, Yukiko
2017-09-01
Enzyme catalyzing the cleavage of the phenylpropanoid side chain was partially purified by ion exchange and gel filtration column chromatography after (NH 4 ) 2 SO 4 precipitation. Enzyme activities were dependent on the concentration of dithiothreitol (DTT) or glutathione (GSH) and activated by addition of 0.5 mM Fe 2+ . Enzyme activity for ferulic acid was as high as for 4-coumaric acid in the presence of GSH, suggesting that GSH acts as an endogenous reductant in vanillin biosynthesis. Analyses of the enzymatic reaction products with quantitative NMR (qNMR) indicated that an amount of glyoxylic acid (GA) proportional to vanillin was released from ferulic acid by the enzymatic reaction. These results suggest that phenylpropanoid 2,3-dioxygenase is involved in the cleavage of the ferulic acid side chain to form vanillin and GA in Vanilla planifolia.
The Oxidation of Ascorbic Acid by Hexacyanoferrate(III) Ion in Acidic Aqueous Media.
ERIC Educational Resources Information Center
Martins, Luis J. A.; da Costa, J. Barbosa
1988-01-01
Describes a kinetic and mechanistic investigation of ascorbic acid by a substitution-inert complex in acidic medium suitable for the undergraduate level. Discusses obtaining the second order rate constant for the rate determining step at a given temperature and comparison with the value predicted on the basis of the Marcus cross-relation. (CW)
Younis, Mahmoud El-Baz; Hasaneen, Mohammed Naguib Abdel-Ghany; Abdel-Aziz, Heba Mahmoud Mohammed
2010-10-01
Exposure of dark- or ambient visible light-grown broad bean seedlings to low (LL) and high (HL) visible light intensities, UV-A or UV-C, either alone or in combination, induced significant increases in total phenolic compounds as well as in anthocyanins content, throughout the germination period, as compared with the respective levels in control seedlings. In general, as compared with control levels, exposure of both dark- or light-grown broad bean seedlings to LL, HL, UV-A or UV-C, induced significant increases in the contents of non-enzymatic antioxidants (total ascorbate; ASA-DASA and total glutathione; GSSG-GSH) and enzymatic antioxidant activities (superoxide dismutase; SOD, catalase; CAT, ascorbate peroxidase; APO and glutathione reductase; GR). The obtained results are discussed in relation to induced mechanisms of protection and repair from the inevitable exposure to damaging visible light and UV-radiation. © 2010 Landes Bioscience
Hasaneen, Mohammed Naguib Abdel-Ghany; Abdel-Aziz, Heba Mahmoud Mohammed
2010-01-01
Exposure of dark- or ambient visible light-grown broad bean seedlings to low (LL) and high (HL) visible light intensities, UV-A or UV-C, either alone or in combination, induced significant increases in total phenolic compounds as well as in anthocyanins content, throughout the germination period, as compared with the respective levels in control seedlings. In general, as compared with control levels, exposure of both dark- or light-grown broad bean seedlings to LL, HL, UV-A or UV-C, induced significant increases in the contents of non-enzymatic antioxidants (total ascorbate; ASA-DASA and total glutathione; GSSG-GSH) and enzymatic antioxidant activities (superoxide dismutase; SOD, catalase; CAT, ascorbate peroxidase; APO and glutathione reductase; GR). The obtained results are discussed in relation to induced mechanisms of protection and repair from the inevitable exposure to damaging visible light and UV radiation. PMID:20505357
Narnoliya, Lokesh K; Sangwan, Rajender S; Singh, Sudhir P
2018-06-01
Rose-scented geranium (Pelargonium sp.) is widely known as aromatic and medicinal herb, accumulating specialized metabolites of high economic importance, such as essential oils, ascorbic acid, and tartaric acid. Ascorbic acid and tartaric acid are multifunctional metabolites of human value to be used as vital antioxidants and flavor enhancing agents in food products. No information is available related to the structural and functional properties of the enzymes involved in ascorbic acid and tartaric acid biosynthesis in rose-scented geranium. In the present study, transcriptome mining was done to identify full-length genes, followed by their bioinformatic and molecular modeling investigations and understanding of in silico structural and functional properties of these enzymes. Evolutionary conserved domains were identified in the pathway enzymes. In silico physicochemical characterization of the catalytic enzymes revealed isoelectric point (pI), instability index, aliphatic index, and grand average hydropathy (GRAVY) values of the enzymes. Secondary structural prediction revealed abundant proportion of alpha helix and random coil confirmations in the pathway enzymes. Three-dimensional homology models were developed for these enzymes. The predicted structures showed significant structural similarity with their respective templates in root mean square deviation analysis. Ramachandran plot analysis of the modeled enzymes revealed that more than 84% of the amino acid residues were within the favored regions. Further, functionally important residues were identified corresponding to catalytic sites located in the enzymes. To, our best knowledge, this is the first report which provides a foundation on functional annotation and structural determination of ascorbic acid and tartaric acid pathway enzymes in rose-scanted geranium.
Tajmir-Riahi, H A
1990-10-01
The interaction of L-ascorbic acid with alkaline earth metal ions has been investigated in aqueous solution at pH 6-7. The solid salts of the type Mg(L-ascorbate)2.4H2O, Ca(L-ascorbate)2.2H2O, Sr(L-ascorbate)2.2H2O and Ba(L-ascorbate)2.2H2O were isolated and characterized by means of 13C NMR and FT-IR spectroscopy. Spectroscopic and other evidence suggested that in aqueous solution, the binding of the alkaline earth metal ions is through the O-3 atom of the ascorbate anion, while in the solid state the binding of the Mg(II) is different from those of the other alkaline earth metal ion salts. The Mg(II) ion binds to the O-3, O-1 atom of the two ascorbate anions and to two H2O molecules, while the eight-coordination around the Ca(II), Sr(II), and Ba(II) ions would be completed by the coordination of three acid anions, through O-5, O-6 of the first, O-3, O-5, O-6 of the second and O-1 of the third anion as well as to two H2O molecules. The structural properties of the alkaline earth metal-ascorbate salts are different in the solid and aqueous solution.
Effects of vitamins A and D on the biosynthesis of L-ascorbic acid by rat-liver microsomes
Ghosh, N. C.; Chatterjee, Ipsita; Chatterjee, G. C.
1965-01-01
1. The synthesis of l-ascorbic acid from either d-glucuronolactone or l-gulonolactone by liver microsomes of rats is decreased under conditions of hypervitaminosis A; under hypervitaminosis D the synthesis from d-glucuronolactone is increased and that from l-gulonolactone is not affected. 2. The microsomal conversion of l-gulonolactone into l-ascorbic acid is impaired in liver tissues of rats made deficient with respect to either vitamin A or vitamin D when compared with the controls maintained on stock diet. PMID:16749110
The changes in the electronic spectra of ascorbic acid induced by laser radiation
NASA Astrophysics Data System (ADS)
Danyaeva, J. S.; Kutsenko, S. A.
2018-04-01
The results of research the changes in the absorption spectra of aqueous solutions of ascorbic acid under the influence of laser radiation are presented. The solutions were irradiated with the radiation of semiconductor lasers with wavelengths of 408 and 532 nm, YAG: Nd3+ laser with a wavelength of 1064 nm and a nitrogen laser with a wavelength of 337.1 nm. The photoinduced changes in the spectrum are revealed, which indicate the breakage of π -> π bonds in the molecule of ascorbic acid during its destruction.
Morphological Diversity in Crystal Growth of l-Ascorbic Acid Dissolved in Methanol
NASA Astrophysics Data System (ADS)
Ito, Miho; Izui, Machiko; Yamazaki, Yoshihiro; Matsushita, Mitsugu
2003-06-01
Morphological diagram with respect to crystal growth of l-ascorbic acid (C6H8O6; so-called vitamin C) from methanol solution on a flat glass dish is presented. Varying humidity and initial concentration of l-ascorbic acid in methanol solution, the following three distinct kinds of growing patterns have been observed: homogeneous disk, concentric ring and dendrite. In addition, in higher concentration clearly faceted small single crystals grow in any humidity less than 90%. Crossovers from one pattern to another were observed, too.
Hasanuzzaman, Mirza; Alam, Md. Mahabub; Rahman, Anisur; Hasanuzzaman, Md.; Nahar, Kamrun; Fujita, Masayuki
2014-01-01
The present study investigates the roles of exogenous proline (Pro, 5 mM) and glycine betaine (GB, 5 mM) in improving salt stress tolerance in salt sensitive (BRRI dhan49) and salt tolerant (BRRI dhan54) rice (Oryza sativa L.) varieties. Salt stresses (150 and 300 mM NaCl for 48 h) significantly reduced leaf relative water (RWC) and chlorophyll (chl) content and increased endogenous Pro and increased lipid peroxidation and H2O2 levels. Ascorbate (AsA), glutathione (GSH) and GSH/GSSG, ascorbate peroxidae (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione peroxidase (GPX), catalase (CAT), and glyoxalase I (Gly I) activities were reduced in sensitive variety and these were increased in tolerant variety due to salt stress. The glyoxalase II (Gly II), glutathione S-transferase (GST), and superoxide dismutase (SOD) activities were increased in both cultivars by salt stress. Exogenous Pro and GB application with salt stress improved physiological parameters and reduced oxidative damage in both cultivars where BRRI dhan54 showed better tolerance. The result suggests that exogenous application of Pro and GB increased rice seedlings' tolerance to salt-induced oxidative damage by upregulating their antioxidant defense system where these protectants rendered better performance to BRRI dhan54 and Pro can be considered as better protectant than GB. PMID:24991566
Kendig, Derek M.; Tarloff, Joan B.
2007-01-01
Lactate dehydrogenase (LDH) release is frequently used as an end-point for cytotoxicity studies. We have been unable to measure LDH release during studies using para-aminophenol (PAP) in LLC-PK1 cells. When LLC-PK1 cells were incubated with either PAP (0–10 mM) or menadione (0–1000 μM), viability was markedly reduced when assessed by alamar Blue or total LDH activity but not by release of LDH into the incubation medium. In addition, we incubated cells with PAP or menadione and compared LDH activity using two different assays. Both assays confirmed our observation of decreased LDH activity in cell lysates without corresponding increases in LDH activity in incubation media. Using purified LDH and 10 mM PAP, we that PAP produced loss of LDH activity that was inversely proportional to the amount of LDH initially added. In additional experiments, we incubated 0.5 units of LDH for 1 h with varying concentrations of PAP, menadione, hydrogen peroxide (H2O2) or cisplatin. All four chemicals produced concentration-dependent decreases in LDH activity. In previous experiments, inclusion of antioxidants such as reduced glutathione (GSH) and ascorbate protected cells from PAP toxicity. GSH (1 mM) preserved LDH activity in the presence of toxicants while ascorbate (1 mM) only prevented LDH loss induced by PAP. These studies suggest that LDH that is released into the incubation medium is susceptible to degradation when reactive chemicals are present. PMID:17079110
Pretti, L; Bazzu, G; Serra, P A; Nieddu, G
2014-03-15
A simple and rapid method was developed for in vivo simultaneous determination of ascorbic-acid and antioxidant capacity in microdialysates from cladodes of Opuntia ficus-indica (L.) Miller. The method is verified in water-stressed plants, as compared with a well-watered test controls. The microdialysis probe construction and insertion procedure was specifically developed to minimise the tissue trauma of the plant and to obtain optimal dialysis performance. Microdialysis was performed using a flow rate of 3 μL/min and the samples were analysed by HPLC coupled to electrochemical detection of ascorbic-acid and DPPH-determined antioxidant capacity. Our data indicate exponential decay of the concentrations of the analysed compounds as a function of microdialysis sampling time. Water-stressed Opuntia show decreased ascorbic acid levels and increased the others antioxidants. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effect of antacid and ascorbic acid on serum salicylate concentration.
Hansten, P D; Hayton, W L
1980-01-01
To determine the effect of antacid or ascorbic acid administration on plateau serum salicylate concentrations, nine healthy subjects were given each of the following treatments by balanced block design: choline salicylate (equivalent to 3.76 or 5.62 Gm/day of aspirin); choline salicylate plus magnesium-aluminum hydroxide (120 ml/day); or choline salicylate plus ascorbic acid (3 Gm/day). In subjects developing a control serum salicylate level above 10 mg/dl, antacid administration produced a decrease in serum salicylate level (mean 19.8 mg/dl vs. 15.8 mg/dl) (P less than 0.01). Ascorbic acid administration was not associated with a significant change in serum salicylate. The reduction in serum salicylate following antacid appears to be due to antacid-induced alkalinization of the urine with resultant increase in renal salicylate clearance. Antacid administration should be considered a potential cause of altered serum salicylate concentration in patients receiving large doses of salicylate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiang, Tony K.L.; Teng Xiaowei; Surendradoss, Jayakumar
2011-05-01
The present study was conducted in sandwich-cultured rat hepatocytes to investigate the chemical basis of glutathione (GSH) depletion by valproic acid (VPA) and evaluate the role of GSH depletion in VPA toxicity. Among the synthetic metabolites of VPA investigated, 4-ene-VPA and (E)-2,4-diene-VPA decreased cellular levels of total GSH, but only (E)-2,4-diene-VPA was more effective and more potent than the parent drug. The in situ generated, cytochrome P450-dependent 4-ene-VPA did not contribute to GSH depletion by VPA, as suggested by the experiment with a cytochrome P450 inhibitor, 1-aminobenzotriazole, to decrease the formation of this metabolite. In support of a role formore » metabolites, alpha-F-VPA and octanoic acid, which do not undergo biotransformation to form a 2,4-diene metabolite, CoA ester, or glucuronide, did not deplete GSH. A time course experiment showed that GSH depletion did not occur prior to the increase in 2',7'-dichlorofluorescein (a marker of oxidative stress), the decrease in [2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium] (WST-1) product formation (a marker of cell viability), or the increase in lactate dehydrogenase (LDH) release (a marker of necrosis) in VPA-treated hepatocytes. In conclusion, the cytochrome P450-mediated 4-ene-VPA pathway does not play a role in the in situ depletion of GSH by VPA, and GSH depletion is not an initiating event in VPA toxicity in sandwich-cultured rat hepatocytes.« less
Vitamin C physiology: the known and the unknown and Goldilocks
Padayatty, Sebastian J; Levine, Mark
2016-01-01
Vitamin C (Ascorbic Acid), the antiscorbutic vitamin, cannot be synthesized by humans and other primates, and has to be obtained from diet. Ascorbic acid is an electron donor and acts as a cofactor for fifteen mammalian enzymes. Two sodium-dependent transporters are specific for ascorbic acid, and its oxidation product dehydroascorbic acid is transported by glucose transporters. Ascorbic acid is differentially accumulated by most tissues and body fluids. Plasma and tissue vitamin C concentrations are dependent on amount consumed, bioavailability, renal excretion, and utilization. To be biologically meaningful or to be clinically relevant, in vitro and in vivo studies of vitamin C actions have to take into account physiologic concentrations of the vitamin. In this paper, we review vitamin C physiology; the many phenomena involving vitamin C where new knowledge has accrued or where understanding remains limited; raise questions about the vitamin that remain to be answered; and explore lines of investigations that are likely to be fruitful. PMID:26808119
Inoue, H; Hirobe, M
1987-05-29
The interchange reaction of disulfides was caused by the copper(II)/ascorbic acid/O2 system. The incubation of two symmetric disulfides, L-cystinyl-bis-L-phenylalanine (PP) and L-cystinyl-bis-L-tyrosine (TT), with L-ascorbic acid and CuSO4 in potassium phosphate buffer (pH 7.2, 50 mM) resulted in the formation of an asymmetric disulfide, L-cystinyl-L-phenylalanine-L-tyrosine (PT), and the final ratio of PP:PT:TT was 1:2:1. As the reaction was inhibited by catalase and DMSO only at the initial time, hydroxyl radical generated by the copper(II)/ascorbic acid/O2 system seemed to be responsible for the initiation of the reaction. Oxytocin and insulin were denatured by this system, and catalase and DMSO similarly inhibited these denaturations. As the composition of amino acids was unchanged after the reaction, hydroxyl radical was thought to cause the cleavage and/or interchange reaction of disulfides to denature the peptides.
Ascorbic Acid Efflux and Re-uptake in Endothelial Cells: Maintenance of Intracellular Ascorbate
May, James M.; Qu, Zhi-chao
2013-01-01
Entry of vitamin C or ascorbate into most tissues requires its movement across the endothelial cell barrier of vessels. If trans-cellular ascorbate movement occurs, then it should be evident as ascorbate efflux from endothelial cells. Cultured EA.926 endothelial cells that had been loaded to about 3.5 mM intracellular ascorbate lost 70–80% of ascorbate to the medium over several hours at 37 °C via a non-saturable process that was insensitive to anion transport inhibitors and thiol reagents. Oxidation of this extracellular ascorbate by ascorbate oxidase or ferricyanide enhanced apparent ascorbate efflux, suggesting that efflux of the vitamin was countered in part by its re-uptake on ascorbate transporters. Although basal ascorbate efflux was not calcium-dependent, increased entry of calcium into the cells enhanced ascorbate release. These results support the hypothesis that ascorbate efflux reflects trans-endothelial cell ascorbate movement out of the blood vessel. PMID:19148707
Ascorbic acid efflux and re-uptake in endothelial cells: maintenance of intracellular ascorbate.
May, James M; Qu, Zhi-chao
2009-05-01
Entry of vitamin C or ascorbate into most tissues requires its movement across the endothelial cell barrier of vessels. If trans-cellular ascorbate movement occurs, then it should be evident as ascorbate efflux from endothelial cells. Cultured EA.926 endothelial cells that had been loaded to about 3.5 mM intracellular ascorbate lost 70-80% of ascorbate to the medium over several hours at 37 degrees C via a non-saturable process that was insensitive to anion transport inhibitors and thiol reagents. Oxidation of this extracellular ascorbate by ascorbate oxidase or ferricyanide enhanced apparent ascorbate efflux, suggesting that efflux of the vitamin was countered in part by its re-uptake on ascorbate transporters. Although basal ascorbate efflux was not calcium-dependent, increased entry of calcium into the cells enhanced ascorbate release. These results support the hypothesis that ascorbate efflux reflects trans-endothelial cell ascorbate movement out of the blood vessel.
Effect of glutathione during bottle storage of sparkling wine.
Webber, Vanessa; Dutra, Sandra Valduga; Spinelli, Fernanda Rodrigues; Carnieli, Gilberto João; Cardozo, Alejandro; Vanderlinde, Regina
2017-02-01
Reduced glutathione (GSH) is an efficient antioxidant on limiting browning, losing varietal aromas and off-flavor formation. Therefore, this study aims to evaluate the effect of GSH addition (10, 20 and 30mgL(-1)) after the disgorging of the sparkling wine during storage. The sparkling wines were analyzed at 1, 6, 12 and 18months of storage according to the color index, concentration of the free SO2, phenolic compounds, catechin, epicatechin, caffeic acid, coumaric acid, acetaldehyde, total and reduced glutathione. The results show that GSH concentration decreased to the level of the control sparkling wine during the first 6months, and the total glutathione gradually declined up to 12months. The GSH reduces browning and acetaldehyde formation for up to 12months. However, the presence of glutathione had low or no influence on the concentration of free SO2, total phenolics, catechin, epicatechin, caffeic and coumaric acids. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kaya, Armagan
2017-09-01
Ascorbic acid is an important antioxidant that plays role both on growth and development and also stress response of the plant. The purpose of this study was to determine the effect of ascorbate on physiological and biochemical changes of sunflower that was exposed to multiple stresses. Chlorophyll and carotenoid contents decreased and glutathione, ascorbate and malondialdehyde contents as well as antioxidant enzyme activities increased for sunflower plant that was exposed to 50 mM NaCl and pendimethalin at different concentrations. These changes were found to be more significant in groups simultaneously exposed to both stress factors. While malondialdehyde content decreased, chlorophyll, carotenoid, ascorbate, glutathione contents and antioxidant enzyme activities increased in plants treated exogenously with ascorbate, compared to the untreated samples. According to the findings of our study; compared to individual stress, the effect of stress is more pronounced in sunflower exposed to multiple stresses, and treatment with exogenous ascorbate reduces the negative effects of stress.
Kaur, Balwinder; Pandiyan, Thangarasu; Satpati, Biswarup; Srivastava, Rajendra
2013-11-01
In this paper, we report the synthesis of silver nanoparticle-decorated reduced graphene oxide composite (AgNPs/rGO) by heating the mixture of graphene oxide and silver nitrate aqueous solution in the presence of sodium hydroxide. This material was characterized by means of X-ray diffraction, UV-vis spectroscopy, and transmission electron microscopy. AgNPs/rGO based electrochemical sensor was fabricated for the simultaneous determination of ascorbic acid, dopamine, uric acid, and tryptophan. Electrochemical studies were carried out by using cyclic voltammetry, linear sweep voltammetry, and chronoamperometry. AgNPs/rGO modified electrode exhibited excellent electrocatalytic activity, stability, sensitivity, and selectivity with well-separated oxidation peaks toward ascorbic acid, dopamine, uric acid, and tryptophan in the simultaneous determination of their quaternary mixture. The analytical performance of this material as a chemical sensor was demonstrated for the determination of ascorbic acid and dopamine in commercial pharmaceutical samples such as vitamin C tablets and dopamine injections, respectively. The applicability of this sensor was also extended in the determination of uric acid in human urine samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Effects of decreased availability of sulfur amino acids in severe childhood undernutrition
USDA-ARS?s Scientific Manuscript database
In studies of glutathione (GSH) metabolism in children with severe childhood undernutrition (SCU), slower erythrocyte GSH synthesis in children with edema was associated with lower concentrations of cysteine, the rate-limiting precursor of GSH synthesis. This finding suggested a shortage of cysteine...
Shi, Wen-Guang; Li, Hong; Liu, Tong-Xian; Polle, Andrea; Peng, Chang-Hui; Luo, Zhi-Bin
2015-01-01
A greenhouse experiment was conducted to study whether exogenous abscisic acid (ABA) mediates the responses of poplars to excess zinc (Zn). Populus × canescens seedlings were treated with either basal or excess Zn levels and either 0 or 10 μm ABA. Excess Zn led to reduced photosynthetic rates, increased Zn accumulation, induced foliar ABA and salicylic acid (SA), decreased foliar gibberellin (GA3 ) and auxin (IAA), elevated root H2 O2 levels, and increased root ratios of glutathione (GSH) to GSSG and foliar ratios of ascorbate (ASC) to dehydroascorbate (DHA) in poplars. While exogenous ABA decreased foliar Zn concentrations with 7 d treatments, it increased levels of endogenous ABA, GA3 and SA in roots, and resulted in highly increased foliar ASC accumulation and ratios of ASC to DHA. The transcript levels of several genes involved in Zn uptake and detoxification, such as yellow stripe-like family protein 2 (YSL2) and plant cadmium resistance protein 2 (PCR2), were enhanced in poplar roots by excess Zn but repressed by exogenous ABA application. These results suggest that exogenous ABA can decrease Zn concentrations in P. × canescens under excess Zn for 7 d, likely by modulating the transcript levels of key genes involved in Zn uptake and detoxification. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Hussain, Peerzada R.; Omeera, A.; Suradkar, Prashant P.; Dar, Mohd A.
2014-10-01
Gamma irradiation alone and in combination with ascorbic acid was tested for preventing the surface browning and maintaining the quality attributes of minimally processed eggplant. Eggplant samples after preparation were subjected to treatment of gamma irradiation in the dose range of 0.25-1.0 kGy and to combination treatments of ascorbic acid dip at a concentration of 2.0% w/v and gamma irradiation (dose range 0.5-2.0 kGy) followed by storage at 3±1 °C, RH 80%. Studies revealed inverse correlation (r=-0.93) between the polyphenol oxidase (PPO) activity, browning index and the treatments of ascorbic acid and gamma irradiation. Combinatory treatment of 2.0% w/v ascorbic acid and 1.0 kGy gamma irradiation proved to be significantly (p≤0.05) effective in inhibiting the PPO activity, preventing the surface browning and maintaining the creamy white color and other quality attributes of minimally processed eggplant up to 6 days of refrigerated storage. Sensory evaluation revealed that control and 0.25 kGy irradiated samples were unacceptable only after 3 days of storage. Samples irradiated at 0.5 kGy and 0.75 kGy were unacceptable after 6 days of storage. Microbial analysis revealed that radiation processing of minimally processed eggplant at 1.0 kGy with and without ascorbic acid resulted in around 1 and 1.5 log reduction in yeast and mold count as well as bacterial count just after treatment and 6 days of storage therefore, enhances the microbial safety.
Wonoputri, Vita; Gunawan, Cindy; Liu, Sanly; Barraud, Nicolas; Yee, Lachlan H; Lim, May; Amal, Rose
2015-10-14
In this study, catalytic generation of nitric oxide by a copper(II) complex embedded within a poly(vinyl chloride) matrix in the presence of nitrite (source of nitric oxide) and ascorbic acid (reducing agent) was shown to effectively control the formation and dispersion of nitrifying bacteria biofilms. Amperometric measurements indicated increased and prolonged generation of nitric oxide with the addition of the copper complex when compared to that with nitrite and ascorbic acid alone. The effectiveness of the copper complex-nitrite-ascorbic acid system for biofilm control was quantified using protein analysis, which showed enhanced biofilm suppression when the copper complex was used in comparison to that with nitrite and ascorbic acid treatment alone. Confocal laser scanning microscopy (CLSM) and LIVE/DEAD staining revealed a reduction in cell surface coverage without a loss of viability with the copper complex and up to 5 mM of nitrite and ascorbic acid, suggesting that the nitric oxide generated from the system inhibits proliferation of the cells on surfaces. Induction of nitric oxide production by the copper complex system also triggered the dispersal of pre-established biofilms. However, the addition of a high concentration of nitrite and ascorbic acid to a pre-established biofilm induced bacterial membrane damage and strongly decreased the metabolic activity of planktonic and biofilm cells, as revealed by CLSM with LIVE/DEAD staining and intracellular adenosine triphosphate measurements, respectively. This study highlights the utility of the catalytic generation of nitric oxide for the long-term suppression and removal of nitrifying bacterial biofilms.
Kosik-Bogacka, Danuta I.; Baranowska-Bosiacka, Irena; Marchlewicz, Mariola; Kolasa, Agnieszka; Jakubowska, Katarzyna; Olszewska, Maria; Łanocha, Natalia; Wiernicki, Ireneusz; Millo, Barbara; Wiszniewska, Barbara; Chlubek, Dariusz
2011-01-01
Summary Background The aim of this study was to assess the effect of diet supplementation with L-ascorbic acid (500 mg/L), tocopherol (3 mg/kg b.w.), and/or a water soluble analog of tocopherol (Trolox) (48 mg/L) on ion transport in the colon of rats subjected to a chronic exposure (9 months) to 0.1% lead acetate in drinking water. Material/Methods The electrophysiological parameters of the colon wall were measured with Ussing methods. Lead content in the whole blood was analyzed by graphite furnace atomic absorption spectrometry (GFAAS) using Zeeman correction. L-ascorbic acid and tocopherol in plasma was measured by high performance liquid chromatography. Immunohistochemical reaction was carried out for visualization of occludin, the intracellular tight junction protein. Results We showed a strong inhibitory effect of lead on the electrophysiological parameters, changes in intestinal permeability, disappearance of junctional occludin, decreased amount of mucus covering the colon surface, and the accumulation of PAS-positive substance in the apical region of the cytoplasm in the absorptive cells. Conclusions Supplementation with tocopherol or Trolox did not exert a beneficial influence on the studied parameters. L-ascorbic acid positively influenced the examined electrophysiological parameters, as it cancelled the inhibitory influence of lead on ion transport in the rat colon. L-ascorbic acid also protected against tight junction disruption of epithelial cells in the colon of the lead-treated rats. A similar effect was observed in the group of rats receiving lead and supplemented with L-ascorbic acid plus Trolox. PMID:21169903
Akutsu, Kazuhiko; Kitagawa, Yoko; Yoshimitsu, Masato; Takatori, Satoshi; Fukui, Naoki; Osakada, Masakazu; Uchida, Kotaro; Azuma, Emiko; Kajimura, Keiji
2018-05-01
Polyethylene glycol 300 is commonly used as a base material for "analyte protection" in multiresidue pesticide analysis via gas chromatography-mass spectrometry. However, the disadvantage of the co-injection method using polyethylene glycol 300 is that it causes peak instability in α-cyano pyrethroids (type II pyrethroids) such as fluvalinate. In this study, we confirmed the instability phenomenon in type II pyrethroids and developed novel analyte protectants for acetone/n-hexane mixture solution to suppress the phenomenon. Our findings revealed that among the examined additive compounds, three lipophilic ascorbic acid derivatives, 3-O-ethyl-L-ascorbic acid, 6-O-palmitoyl-L-ascorbic acid, and 6-O-stearoyl-L-ascorbic acid, could effectively stabilize the type II pyrethroids in the presence of polyethylene glycol 300. A mixture of the three ascorbic acid derivatives and polyethylene glycol 300 proved to be an effective analyte protectant for multiresidue pesticide analysis. Further, we designed and evaluated a new combination of analyte protectant compounds without using polyethylene glycol or the troublesome hydrophilic compounds. Consequently, we obtained a set of 10 medium- and long-chain saturated fatty acids as an effective analyte protectant suitable for acetone/n-hexane solution that did not cause peak instability in type II pyrethroids. These analyte protectants will be useful in multiresidue pesticide analysis by gas chromatography-mass spectrometry in terms of ruggedness and reliable quantitativeness. Graphical abstract Comparison of effectiveness of the addition of lipophilic derivatives of ascorbic acid in controlling the instability phenomenon of fluvalinate with polyethylene glycol 300.
Erythrocyte and platelet fatty acids in retinitis pigmentosa.
Stanzial, A M; Bonomi, L; Cobbe, C; Olivieri, O; Girelli, D; Trevisan, M T; Bassi, A; Ferrari, S; Corrocher, R
1991-05-01
The fatty acid composition and the glutathione-peroxidase activity (GSH-Px) of erythrocytes and platelets, the production of malondialdehyde (MDA) by platelets and the activity of the main systems of transmembrane cation transport in erythrocyte have been studied in 12 patients (5 males and 7 females) affected by retinitis pigmentosa (RP). A remarkable increase of saturated fatty acids (SFA), particularly of stearic acid (C18:0), has been noted in these patients. The reduced unsaturated/saturated fatty acids ratio (PUFA/SFA) observed in both erythrocytes and platelets and the decrease of arachidonic acid in platelets may depend by an active peroxidation process as documented by the increase of MDA. Platelet glutathione-peroxidase (PTL-GSH-PX) and plasma retinol were in the normal range, whereas erythrocyte glutathione-peroxidase (E-GSH-PX), MDA and plasma alfa-toco-pherol were increased in patients with RP. The activities of Na(+)-K+ pump, cotransport and Na(+)-Li+ countertransport were normal in RP erythrocytes.
Plasma Levels of Folates, Riboflavin, Vitamin B6, and Ascorbate in Severely Disturbed Children.
ERIC Educational Resources Information Center
Sankar, D. V. Siva
1979-01-01
The plasma levels of folic acid, ascorbic acid, pyridoxine, and riboflavin were studied in 125 severely emotionally disturbed children (ages 5-16 years) to determine whether they had overt vitamin deficiencies. (Author/DLS)
Auer, B L; Auer, D; Rodgers, A L
1998-03-01
The present study was undertaken to determine the effect of ingestion of large doses of vitamin C on urinary oxalate excretion and on a number of other biochemical and physicochemical risk factors associated with calcium oxalate urolithiasis. A further objective was to determine urinary ascorbate excretion and to relate it qualitatively to ingested levels of the vitamin and oxalate excretion. Ten healthy males participated in a protocol in which 4 g ascorbic acid was ingested for 5 days. Urines (24 h) were collected prior to, during and after the protocol. The urine collection procedure was designed to allow for the analysis of oxalate in the presence and absence of an EDTA preservative and for the analysis of ascorbic acid by manual titration using 2,6 dichlorophenolindophenol. Physicochemical risk factors such as the calcium oxalate relative supersaturation and Tiselius risk index were calculated from urine composition. The results showed that erroneously high analytical oxalate levels occur in the asence of preservative. In the preserved samples there was no significant increase in oxalate excretion at any stage of the protocol. Ascorbate excretion increased when vitamin C ingestion commenced but levelled out after 24 hours suggesting that saturation of the metabolic pool is reached within 24 hours after which ingested ascorbic acid is excreted unmetabolized in the urine. While transient statistically significant changes occurred in some of the biochemical risk factors, they were not regarded as being clinically significant. There were no changes in either the calcium oxalate relative supersaturation or Tiselius risk index. It is concluded that ingestion of large doses of ascorbic acid does not affect the principal risk factors associated with calcium oxalate kidney stone formation.
Zheng, Jie; Yang, Baoru; Trépanier, Martin; Kallio, Heikki
2012-03-28
Sea buckthorn berries (Hippophaë rhamnoides ssp. mongolica) of nine varieties were collected from three growth locations in five inconsecutive years (n = 152) to study the compositional differences of sugars, sugar alcohols, fruit acids, and ascorbic acid in berries of different genotypes. Fructose and glucose (major sugars) were highest in Chuiskaya and Vitaminaya among the varieties studied, respectively. Malic acid and quinic acid (major acids) were highest in Pertsik and Vitaminaya, respectively. Ascorbic acid was highest in Oranzhevaya and lowest in Vitaminaya. Berry samples of nine varieties collected from two growth locations in five years (n = 124) were combined to study the effects of latitude and weather conditions on the composition of H. rhamnoides ssp. mongolica. Sea buckthorn berries grown at lower latitude had higher levels of total sugar and sugar/acid ratio and a lower level of total acid and were supposed to have better sensory properties than those grown at higher latitude. Glucose, quinic acid, and ascorbic acid were hardly influenced by weather conditions. The other components showed various correlations with temperature, radiation, precipitation, and humidity variables. In addition, fructose, sucrose, and myo-inositol correlated positively with each other and showed negative correlation with malic acid on the basis of all the samples studied (n = 152).
Makavitskaya, M; Svistunenko, D; Navaselsky, I; Hryvusevich, P; Mackievic, V; Rabadanova, C; Tyutereva, E; Samokhina, V; Straltsova, D; Sokolik, A; Voitsekhovskaja, O; Demidchik, V
2018-02-17
Ascorbate is not often considered as a signalling molecule in plants. This study demonstrates that, in Arabidopsis roots, exogenous L-ascorbic acid triggers a transient increase of the cytosolic free calcium activity ([Ca2+]cyt.) that is central to plant signalling. Exogenous copper and iron stimulates the ascorbate-induced [Ca2+]cyt. elevation while cation channel blockers, free radical scavengers, low extracellular [Ca2+], transition metal chelators and removal of the cell wall inhibit this reaction. These data show that apoplastic redox-active transition metals are involved in the ascorbate-induced [Ca2+]cyt. elevation. Exogenous ascorbate also induces a moderate increase in programmed cell death symptoms in intact roots, but it does not activate Ca2+ influx currents in patch-clamped root protoplasts. Intriguingly, the replacement of gluconate with ascorbate in the patch-clamp pipette reveales a large ascorbate efflux current, which shows sensitivity to the anion channel blocker, anthracene-9-carboxylic acid (A9C), indicative of the ascorbate release via anion channels. EPR spectroscopy measurements demonstrates that salinity (NaCl) triggers the accumulation of root apoplastic ascorbyl radicals in A9C-dependent manner, confirming that L-ascorbate leaks through anion channels under depolarisation. This mechanism may underlie ascorbate release, signalling phenomena, apoplastic redox reactions, iron acquisition and control the ionic and electrical equilibrium (together K+ efflux via GORK channels).
Clemente, Maria R.; Bustos-Sanmamed, Pilar; Loscos, Jorge; James, Euan K.; Pérez-Rontomé, Carmen; Navascués, Joaquín; Gay, Marina; Becana, Manuel
2012-01-01
In plants and other organisms, glutathione (GSH) biosynthesis is catalysed sequentially by γ-glutamylcysteine synthetase (γECS) and glutathione synthetase (GSHS). In legumes, homoglutathione (hGSH) can replace GSH and is synthesized by γECS and a specific homoglutathione synthetase (hGSHS). The subcellular localization of the enzymes was examined by electron microscopy in several legumes and gene expression was analysed in Lotus japonicus plants treated for 1–48 h with 50 μM of hormones. Immunogold localization studies revealed that γECS is confined to chloroplasts and plastids, whereas hGSHS is also in the cytosol. Addition of hormones caused differential expression of thiol synthetases in roots. After 24–48 h, abscisic and salicylic acids downregulated GSHS whereas jasmonic acid upregulated it. Cytokinins and polyamines activated GSHS but not γECS or hGSHS. Jasmonic acid elicited a coordinated response of the three genes and auxin induced both hGSHS expression and activity. Results show that the thiol biosynthetic pathway is compartmentalized in legumes. Moreover, the similar response profiles of the GSH and hGSH contents in roots of non-nodulated and nodulated plants to the various hormonal treatments indicate that thiol homeostasis is independent of the nitrogen source of the plants. The differential regulation of the three mRNA levels, hGSHS activity, and thiol contents by hormones indicates a fine control of thiol biosynthesis at multiple levels and strongly suggests that GSH and hGSH play distinct roles in plant development and stress responses. PMID:22442424
Clemente, Maria R; Bustos-Sanmamed, Pilar; Loscos, Jorge; James, Euan K; Pérez-Rontomé, Carmen; Navascués, Joaquín; Gay, Marina; Becana, Manuel
2012-06-01
In plants and other organisms, glutathione (GSH) biosynthesis is catalysed sequentially by γ-glutamylcysteine synthetase (γECS) and glutathione synthetase (GSHS). In legumes, homoglutathione (hGSH) can replace GSH and is synthesized by γECS and a specific homoglutathione synthetase (hGSHS). The subcellular localization of the enzymes was examined by electron microscopy in several legumes and gene expression was analysed in Lotus japonicus plants treated for 1-48 h with 50 μM of hormones. Immunogold localization studies revealed that γECS is confined to chloroplasts and plastids, whereas hGSHS is also in the cytosol. Addition of hormones caused differential expression of thiol synthetases in roots. After 24-48 h, abscisic and salicylic acids downregulated GSHS whereas jasmonic acid upregulated it. Cytokinins and polyamines activated GSHS but not γECS or hGSHS. Jasmonic acid elicited a coordinated response of the three genes and auxin induced both hGSHS expression and activity. Results show that the thiol biosynthetic pathway is compartmentalized in legumes. Moreover, the similar response profiles of the GSH and hGSH contents in roots of non-nodulated and nodulated plants to the various hormonal treatments indicate that thiol homeostasis is independent of the nitrogen source of the plants. The differential regulation of the three mRNA levels, hGSHS activity, and thiol contents by hormones indicates a fine control of thiol biosynthesis at multiple levels and strongly suggests that GSH and hGSH play distinct roles in plant development and stress responses.
Takebayashi, Jun; Tai, Akihiro; Gohda, Eiichi; Yamamoto, Itaru
2006-04-01
The aim of this study was to characterize the antioxidant activity of three ascorbic acid (AA) derivatives O-substituted at the C-2 position of AA: ascorbic acid 2-glucoside (AA-2G), ascorbic acid 2-phosphate (AA-2P), and ascorbic acid 2-sulfate (AA-2S). The radical-scavenging activities of these AA derivatives and some common low molecular-weight antioxidants such as uric acid or glutathione against 1,1-diphenyl-picrylhydrazyl (DPPH) radical, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS+), or galvinoxyl radical were kinetically and stoichiometrically evaluated under pH-controlled conditions. Those AA derivatives slowly and continuously reacted with DPPH radical and ABTS+, but not with galvinoxyl radical. They effectively reacted with DPPH radical under acidic conditions and with ABTS+ under neutral conditions. In contrast, AA immediately quenched all species of radicals tested at all pH values investigated. The reactivity of Trolox, a water-soluble vitamin E analogue, was comparable to that of AA in terms of kinetics and stoichiometrics. Uric acid and glutathione exhibited long-lasting radical-scavenging activity against these radicals under certain pH conditions. The radical-scavenging profiles of AA derivatives were closer to those of uric acid and glutathione rather than to that of AA. The number of radicals scavenged by one molecule of AA derivatives, uric acid, or glutathione was equal to or greater than that by AA or Trolox under the appropriate conditions. These data suggest the potential usage of AA derivatives as radical scavengers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Yayoi; Hirano, Seishiro
2008-10-01
Trivalent arsenicals such as arsenite (iAs{sup III}), monomethylarsonous acid (MMA{sup III}) and dimethylarsinous acid (DMA{sup III}) are more toxic than analogous pentavalent compounds such as arsenate (iAs{sup V}), monomethylarsonic acid (MMA{sup V}) and dimethylarsinic acid (DMA{sup V}). It has been reported that arsenic-glutathione (As-GSH) complexes such as arsenic triglutathione (ATG) and methylarsenic diglutathione (MADG) are major metabolites in rat bile following intravenous administration of iAs{sup III}. Recently, we have shown that both ATG and MADG are unstable and easily hydrolyzed to iAs{sup III} and MMA{sup III}, respectively, and that MMA{sup III} is oxidized to MMA{sup V} in bile. In themore » present study we report the effects of H{sub 2}O{sub 2} and GSH on the stability of As-GSH complexes in rat bile. Male SD rats were injected intravenously with saline or iAs{sup III} at a dose of 0.2 or 2.0 mg As/kg body weight, and bile fluid was collected on ice for 30 min. To estimate the stability of As-GSH complexes in bile, ATG or MADG was added to untreated, heat-treated, catalase-treated, or dialyzed bile, and then incubated at 37 deg. C for 10 min. Concentrations of biliary H{sub 2}O{sub 2} and GSH in the higher dose group were 12.6- and 4.5-times higher than the control value, respectively. Exogenously added trivalent arsenicals were oxidized to pentavalent arsenicals in the bile depending on the biliary concentration of H{sub 2}O{sub 2}. Both catalase and dialysis prevented oxidation of trivalent arsenicals to the corresponding pentavalent compounds. Exogenously added GSH stabilized As-GSH complexes in bile. These results suggest that H{sub 2}O{sub 2} converts trivalent arsenicals to less toxic pentavalent arsenicals, whereas GSH prevents hydrolysis of As-GSH complexes and the generation of unconjugated toxic trivalent arsenicals.« less
Vitamin C Content of Commercial Orange Juices
ERIC Educational Resources Information Center
Haddad, Paul
1977-01-01
Describes an experiment designed to confirm that newly purchased commercial orange juice contains sufficient ascorbic acid to meet government standards, and to establish the rate of aerial oxidation of this ascorbic acid when the juice is stored in a refrigerator. (MLH)
NASA Astrophysics Data System (ADS)
Sharma, Ravi; Thakur, R. C.; Sani, Balwinder; Kumar, Harsh
2017-12-01
Using density and sound velocity partial molar volumes, partial molar adiabatic compressibilities, partial molar expansibilities and structure of L-ascorbic acid have been determined in water and aqueous mixtures of D-glucose and D-fructose at different concentrations and temperatures. Masson's equation was used to analyze the measured data. The obtained parameters have been interpreted in terms of solute-solute and solute-solvent interactions. It is found that the L-ascorbic acid acts as structure breaker in water as well in binary studied mixtures.
Moyad, Mark A; Combs, Maile A; Crowley, David C; Baisley, Joshua E; Sharma, Prachi; Vrablic, Angelica S; Evans, Malkanthi
2009-01-01
The incidence and prevalence of kidney stones are notable and are projected to increase over the next decade. Risk factors for kidney stones abound, but a prominent risk factor is hyperoxaluria, which has numerous etiologies, including vitamin C (ascorbic acid) dietary supplement intake. This randomized, double-blind, crossover study examined the effects of two different vitamin C formulations and found that vitamin C with metabolites (Ester-C) significantly reduced urine oxalate levels compared to ascorbic acid. This is a potential novel finding that requires further clinical evaluation.
Brenner, G
1975-07-11
Blood level determinations of ascorbic acid were carried out in 11 male probands after oral application of a new vitamin C retard preparation. In comparative tests the same probands received identical doses of a non retarded vitamine C preparations after a period without application of 2 weeks. The results obtained show that after application of the new vitamin C retard preparation the absorption of ascorbic acid is increased and thus a marked improvement of the bioavailability of vitamin C is attained as compared to the non retarded form.
Elikov, A V; Tsapok, P I
2010-01-01
Study status of cholesterol metabolism, processes of lipid peroxidation and antioxidant protection in blood plasma, erythrocytes and homogenates of the, heart, liver, muscle femors of rats attached to movement active. Establishment effects application of ascorbic acid and alpha-tocopherol. Ascorbic acid and alpha-tocopherol were infused daily. The daily dosage was 2 and 1 mg respectively. Characteristic shift changes of cholesterol metabolism in conditions of limited muscular activity were revealed. It was shown that vitamin antioxidants play a role in correction of metabolic disorders in case of immobile distress syndrome.
Polushina, N D; Kartazaeva, V A; Botvineva, L A; Kozhevnikov, S A
2000-01-01
Effects of a single and course intake of glucose, ascorbic acid and rutin in combination with mineral water Essentuki N17 on blood levels of glucose, hydrocortisone, ACTH, insulin were studied in 336 Wistar male rats. 80 patients with diabetes mellitus type I and II received a course of ascorutin and mineral water. Mineral water proved able to reduce a hyperglycemic effect of vitamins. A course of mineral water and ascorutin promotes improvement of carbohydrate, lipid metabolism, elevates plasma content of ascorbic acid, diminishes the need in sugar-reducing drugs.
Ruiz-Ramos, M; Vargas, L Alberto; Fortoul Van der Goes, T I; Cervantes-Sandoval, A; Mendoza-Nunez, V M
2010-06-01
To determine the effect of ascorbic acid and alpha-tocopherol on oxidative stress and bone mineral density (BMD) in elderly people. A double-blind, controlled clinical assay was carried out in a sample of 90 elderly subjects divided into three age-paired random groups with 30 subjects in each group. Group Tx0 received placebo, group Tx1 received 500 mg of ascorbic acid and 400 IU of alpha-tocopherol, whereas group Tx2 received 1,000 mg of ascorbic acid and 400 IU of alpha-tocopherol, for a 12-month period. We measured thiobarbituric acid reactive substances (TBARS), total antioxidant status (TAS), superoxide dismutase (SOD), and glutation peroxidase (GPx); BMD was obtained on DXA of hip and spine before and after the 12-month treatment period with supplementation of vitamins C and E. We found a positive correlation between hip-BMD and SOD (r = 0.298, p < 0.05) and GPx (r = 0.214, p < 0.05). Also, a significantly lower decrease of LPO (p < 0.05) was observed as linked with hip bone loss in the Tx2 group than in the Tx0 group. Our findings suggest that that administration of 1,000 mg of ascorbic acid together with 400 IU of alpha-tocopherol could be useful in preventing or aiding in the treatment of age-related osteoporosis.
Mora, Marylhi; Medina-Leendertz, Shirley J; Bonilla, Ernesto; Terán, Raikelin E; Paz, Milagros C; Arcaya, José Luis
2013-06-01
In the present study we compared the effects of minocycline and ascorbic acid in the life span, motor activity and lipid peroxidation of Drosophila melanogaster, in an effort to find a substance capable of providing protection against oxidative stress in aging. In the flies treated with minocycline a very significant increase in the life span (101 +/- 1.33 days) was observed when compared to those treated with ascorbic acid and controls (42.3% and 38.4%, respectively). The motor activity of minocycline treated flies also increased significantly with respect to control and ascorbic acid fed flies, from the 3rd to the 9th week of treatment. With regard to lipid peroxidation, it was found that the levels of malondialdehyde (MDA) in flies treated with minocycline showed no statistical differences to the control on the first day of treatment, but a significantly lower content on the day of 50% survival. In contrast, in flies treated with ascorbic acid significantly elevated levels of MDA compared to control and minocycline treated flies were detected throughout. These results suggest a protective effect of minocycline against oxidative stress and aging in D. melanogaster. An inhibitory effect on reactive oxygen species production may be an important contributing factor.
Hasegawa, Tomoka; Li, Minqi; Hara, Kuniko; Sasaki, Muneteru; Tabata, Chihiro; de Freitas, Paulo Henrique Luiz; Hongo, Hiromi; Suzuki, Reiko; Kobayashi, Masatoshi; Inoue, Kiichiro; Yamamoto, Tsuneyuki; Oohata, Noboru; Oda, Kimimitsu; Akiyama, Yasuhiro; Amizuka, Norio
2011-08-01
Osteogenic disorder shionogi (ODS) rats carry a hereditary defect in ascorbic acid synthesis, mimicking human scurvy when fed with an ascorbic acid-deficient (aa-def) diet. As aa-def ODS rats were shown to feature disordered bone formation, we have examined the bone mineralization in this rat model. A fibrous tissue layer surrounding the trabeculae of tibial metaphyses was found in aa-def ODS rats, and this layer showed intense alkaline phosphatase activity and proliferating cell nuclear antigen-immunopositivity. Many osteoblasts detached from the bone surfaces and were characterized by round-shaped rough endoplasmic reticulum (rER), suggesting accumulation of malformed collagen inside the rER. Accordingly, fine, fragile fibrillar collagenous structures without evident striation were found in aa-def bones, which may result from misassembling of the triple helices of collagenous α-chains. Despite a marked reduction in bone formation, ascorbic acid deprivation seemed to have no effect on mineralization: while reduced in number, normal matrix vesicles and mineralized nodules could be seen in aa-def bones. Fine needle-like mineral crystals extended from these mineralized nodules, and were apparently bound to collagenous fibrillar structures. In summary, collagen mineralization seems unaffected by ascorbic acid deficiency in spite of the fine, fragile collagenous fibrils identified in the bones of our animal model.
Parker, Tory L; Miller, Samantha A; Myers, Lauren E; Miguez, Fernando E; Engeseth, Nicki J
2010-01-13
Previous research has demonstrated that certain combinations of compounds result in a decrease in toxic or pro-oxidative effects, previously noted when compounds were administered singly. Thus, there is a need to study many complex interactions further. Two in vitro techniques [electron paramagnetic resonance (EPR) and oxygen radical absorbance capacity (ORAC) assays] were used in this study to assess pro- and antioxidant capacity and synergistic potential of various compounds. Rutin, p-coumaric acid, abscisic acid, ascorbic acid, and a sugar solution were evaluated individually at various concentrations and in all 26 possible combinations at concentrations found in certain foods (honey or papaya), both before and after simulated digestion. EPR results indicated sugar-containing combinations provided significantly higher antioxidant capacity; those combinations containing sugars and ascorbic acid demonstrated synergistic potential. The ORAC assay suggested additive effects, with some combinations having synergistic potential, although fewer combinations were significantly synergistic after digestion. Finally, ascorbic acid, caffeic acid, quercetin, and urate were evaluated at serum-achievable levels. EPR analysis did not demonstrate additive or synergistic potential, although ORAC analysis did, principally in combinations containing ascorbic acid.
Nencini, Cristina; Franchi, Gian Gabriele; Cavallo, Federica; Micheli, Lucia
2010-04-01
This study investigated the protective effect of Allium neapolitanum Cyr., a spontaneous species of the Italian flora, compared with garlic (Allium sativum L.) on liver injury induced by ethanol in rats. Male albino Wistar rats were orally treated with fresh Allium homogenates (leaves or bulbs, 250 mg/kg) daily for 5 days, whereas controls received vehicle only. At the end of the experimental 5-day period, the animals received an acute ethanol dose (6 mL/kg, i.p.) 2 hours before the last Allium administration and were sacrificed 6 hours after ethanol administration. The activities of catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GR) and the levels of malondialdehyde (MDA), ascorbic acid (AA), and reduced (GSH) and oxidized glutathione in liver tissue were determined. Administration of both Allium species for 5 days (leaves or bulbs) led to no statistical variation of nonenzymatic parameters versus the control group; otherwise Allium treatment caused an increase of GSH and AA levels compared with the ethanol group and a diminution of MDA levels, showing in addition that A. neapolitanum bulb had the best protective effect. Regarding to enzymatic parameters, GR and CAT activities were enhanced significantly compared with the ethanol group, whereas SOD activity showed a trend different from other parameters estimated. However, the treatment with both Allium species followed by acute ethanol administration reestablished the nonenzymatic parameters similar to control values and enhanced the activities of the enzymes measured. These results suggest that fresh Allium homogenates (leaves or bulbs) possess antioxidant properties and provide protection against ethanol-induced liver injury.
Hazini, Ahmet; Işıldak, İbrahim; Alpdağtaş, Saadet; Önül, Abdullah; Şenel, Ünal; Kocaman, Tuba; Dur, Ali; Iraz, Mustafa; Uyarel, Hüseyin
2015-01-01
Introduction Acute myocardial infarction (AMI) is still one of the most common causes of death worldwide. In recent years, for diagnosis of myocardial ischemia, a new parameter, called ischemia modified albumin (IMA), which is thought to be more advantageous than common methods, has been researched. Aim In this study, systematic analysis of parameters considered to be related to myocardial ischemia has been performed, comparing between control and myocardial ischemia groups. Material and methods We selected 40 patients with AMI and 25 healthy controls for this study. Ischemia modified albumin levels, glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) antioxidant enzyme activities and non-enzymatic antioxidants such as retinol, α-tocopherol, β-carotene and ascorbic acid levels were investigated in both groups. Glutathione (GSH) and malondialdehyde (MDA) levels, which are indicators of oxidative stress, were compared between patient and control groups. Results Ischemia modified albumin levels were found significantly higher in the AMI diagnosed group when compared with controls. The MDA level was elevated in the patient group, whereas the GSH level was decreased. SOD, GPx and CAT enzyme levels were decreased in the patient group, where it could be presumed that oxidative stress causes the cardiovascular diseases. Conclusions Due to the increased oxidative stress, non-enzymatic and enzymatic antioxidant capacity was affected. Systematic investigation of parameters related to myocardial infarction has been performed, and it is believed that such parameters can contribute to protection and early diagnosis of AMI and understanding the mechanism of development of the disease. PMID:26677379
Olayinka, Ebenezer Tunde; Ore, Ayokanmi; Adeyemo, Oluwatobi Adewumi; Ola, Olaniyi Solomon; Olotu, Olaoluwa Oluwaseun; Echebiri, Roseline Chinonye
2015-01-01
Procarbazine (PCZ) (indicated in Hodgkin’s disease), is an alkylating agent known to generate free radicals in vivo, while Quercetin (QCT) is a flavonoid antioxidant with proven free radical scavenging capacity. This study investigated the protective effects of QCT on PCZ-induced oxidative damage in the rat. Male Wistar rats (160–180 g) were randomized into five groups (n = 5/group): I (control), II PCZ-treated (2 mg/kg body weight (bw) for seven days); III pre-treated with QCT (20 mg/kg bw) for seven days, followed by PCZ for seven days; IV co-treated with PCZ and QCT for seven days and V administered QCT alone for seven days. PCZ caused a significant increase in plasma total bilirubin, urea, and creatinine when compared with control (P < 0.05). Similarly, plasma activities of alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and γ-glutamyl transferase (γ-GT) were significantly increased in the PCZ-treated group relative to control. Furthermore, PCZ caused a significant decrease in the activities of hepatic superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) as well as levels of ascorbic acid (AA) and glutathione (GSH). This was followed by a significant increase in hepatic malondialdehyde (MDA) content. However, QCT pre-treatment and co-treatment ameliorated the PCZ-induced changes in plasma levels of urea, creatinine, and bilirubin as well as the activities of ALP, AST, ALT, and GGT. QCT also ameliorated hepatic AA and GSH levels and the activities of SOD, CAT, and GST. This all suggests that QCT protected against PCZ-induced oxidative damage in rats. PMID:26783707
Antioxidant Activity of Royal Jelly Hydrolysates Obtained by Enzymatic Treatment.
Gu, Hyejung; Song, In-Bong; Han, Hye-Ju; Lee, Na-Young; Cha, Ji-Yun; Son, Yeon-Kyong; Kwon, Jungkee
2018-02-01
Recently, research on the processing of raw functional materials with the aim of improving various physiological activities has been conducted. In this study, we investigated the antioxidant activity of royal jelly (RJ) hydrolysates obtained from three commercial proteases. Enzyme-treated royal jelly (ERJ), in which the RJ hydrolysates were converted into easy-to-absorb shorter chain monomers through the removal of two known allergen proteins, showed no difference in the content of ( E )-10-hydroxydec-2-enoicacid (10-HDA) or the freshness parameter and showed a significant increase in total free amino acid content. The antioxidant activity of ERJ was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and chemical assays. The ERJ showed about 80% DPPH-radical scavenging activity at same concentration of ascorbic acid. The antioxidant effect of ERJ was confirmed to be due to reduction of intracellular reactive oxidative species (ROS) and nitric oxide (NO) production in LPS-treated macrophages. Moreover, ERJ significantly increased the activity of the antioxidant enzyme superoxide dismutase (SOD) and the level of the antioxidant glutathione (GSH) in a dose-dependent manner. Interestingly, these antioxidant activities of ERJ were stronger than those of non-treated RJ. These findings indicate that ERJ has high potential as an antioxidant agent for use in human and animal diets.
ASCORBIC ACID IS DECREASED IN INDUCED SPUTUM OF MILD ASTHMATICS
Asthma is primarily an airways inflammatory disease, and the bronchial airways have been shown to be particularly susceptible to oxidant-induced tissue damage. The antioxidant ascorbic acid (AA) plays an essential role in defending against oxidant attack in the airways. Decreased...
2010-01-01
Background Dietary treatment is often recommended as the first line of treatment for women with mild iron deficiency. Although it is well established that ascorbic acid enhances iron absorption, it is less clear whether the consumption of ascorbic acid rich foods (such as kiwifruit) with meals fortified with iron improves iron status. The aim of this study is to investigate whether the consumption of ZESPRI® GOLD kiwifruit (a fruit high in ascorbic acid and carotenoids) with an iron fortified breakfast cereal meal increases iron status in women with low iron stores. Methods/Design Eighty nine healthy women aged 18-44 years with low iron stores (serum ferritin (SF) ≤ 25 μg/L, haemoglobin (Hb) ≥ 115 g/L) living in Auckland, New Zealand were randomised to receive an iron fortified breakfast cereal (16 mg iron per serve) and either two ZESPRI® GOLD kiwifruit or a banana (low ascorbic acid and carotenoid content) to eat at breakfast time every day for 16 weeks. Iron status (SF, Hb, C-reactive protein (CRP) and soluble transferrin receptor (sTfR)), ascorbic acid and carotenoid status were measured at baseline and after 16 weeks. Anthropometric measures, dietary intake, physical activity and blood loss were measured before and after the 16 week intervention. Discussion This randomised controlled intervention study will be the first study to investigate the effect of a dietary based intervention of an iron fortified breakfast cereal meal combined with an ascorbic acid and carotenoid rich fruit on improving iron status in women with low iron stores. Trial registration ACTRN12608000360314 PMID:20102633
Ebrahimzadeh-Bideskan, Ali-Reza; Hami, Javad; Alipour, Fatemeh; Haghir, Hossein; Fazel, Ali-Reza; Sadeghi, Akram
2016-10-01
Lead exposure has negative effects on developing nervous system and induces apoptosis in newly generated neurons. Natural antioxidants (i.e. Ascorbic acid and Garlic) might protect against lead-induced neuronal cell damage. The aim of the present study was to investigate the protective effects of Ascorbic acid and Garlic administration during pregnancy and lactation on lead-induced apoptosis in rat developing hippocampus. Timed pregnant Wistar rats were administrated with Lead (1500 ppm) via drinking water (Pb group) or lead plus Ascorbic acid (Pb + AA Group, 500 mg/kg, IP), or lead plus Garlic Extract (Pb + G Group, 1 ml garlic juice/100 g BW, via Gavage) from early gestation (GD 0) until postnatal day 50 (PN 50). At the end of experiments, the pups' brains were carefully dissected. To identify neuronal death, the brain sections were stained with TUNEL assay. Mean of blood and brain lead levels increased significantly in Pb group comparing to other studied groups (P < 0.01). There was significant reduction in blood and brain lead level in Pb + AA and Pb + G groups when compared to those of Pb group (P < 0.01). The mean number of TUNEL positive cells in the CA1, CA3, and DG was significantly lower in the groups treated by either Ascorbic acid or Garlic (P < 0.05). Administration of Ascorbic acid and Garlic during pregnancy and lactation protect against lead-induced neuronal cell apoptosis in the hippocampus of rat pups partially via the reduction of Pb concentration in the blood and in the brain.
The role of topically applied L-ascorbic acid in ex-vivo examination of burn-injured human skin
NASA Astrophysics Data System (ADS)
Pielesz, Anna; Biniaś, Dorota; Bobiński, Rafał; Sarna, Ewa; Paluch, Jadwiga; Waksmańska, Wioletta
2017-10-01
Wound treatment and healing is complex and is comprised of an elaborate set of processes including cellular, spectroscopic and biochemical ones as well as the ;reaction; of local tissue to thermal injury. Vitamin C as L-ascorbic acid (LA) prevents injurious effects of oxidants because it reduces reactive oxygen species to stable molecules, it becomes oxidized to the short-lived ascorbyl radical. As a result, antioxidant treatment may contribute to minimizing injury in burn patients. The aim of this study is to assess changes in molecular structure of collagen extracted from human epidermis burn wound scab during incubation of the epidermis in L-ascorbic acid solution. The study will be performed using FTIR and FT Raman spectroscopies. During this research it was observed that the intensity of Raman peaks increased where healing was being modified by LA. The intensity of the amide III band at 1247 cm- 1 relative to the intensity at 1326 cm- 1 was used to test tissue repair degree at the incision site. FTIR spectra were recorded from frozen specimens of serum modified by LA; an analysis of shifts in the amide I band position was conducted. The appearance of a new band for frozen samples modified by LA was observed around 1149-1220 cm- 1. The above conclusions confirmed the creation of hydrogen bonds between Nsbnd H stretch and Cdbnd O. Samples being incubated in solutions of L-ascorbic acid demonstrated the absence of electrophoretic bands of albumin. Alterations in the surface of the skin incubated in L-ascorbic acid were investigated with the use of Scanning Electron Microscopy (SEM). A decrease in external symptoms of burn injury was noted in the damaged epidermis incubated in L-ascorbic acid.
Hasanuzzaman, Mirza; Nahar, Kamrun; Gill, Sarvajeet S.; Alharby, Hesham F.; Razafindrabe, Bam H. N.; Fujita, Masayuki
2017-01-01
Cadmium (Cd) is considered as one of the most toxic metals for plant growth and development. In the present study, we investigated the role of externally applied hydrogen peroxide (H2O2) in regulating the antioxidant defense and glyoxalase systems in conferring Cd-induced oxidative stress tolerance in rapeseed (Brassica napus L.). Seedlings were pretreated with 50 μM H2O2 for 24 h. These pretreated seedlings as well as non-pretreated seedlings were grown for another 48 h at two concentrations of CdCl2 (0.5 and 1.0 mM). Both the levels of Cd increased MDA and H2O2 levels and lipoxygenase activity while ascorbate (AsA) declined significantly. However, reduced glutathione (GSH) content showed an increase at 0.5 mM CdCl2, but glutathione disulfide (GSSG) increased at any level of Cd with a decrease in GSH/GSSG ratio. The activities of ascorbate peroxidase (APX) and glutathione S-transferase (GST) upregulated due to Cd treatment in dose-dependent manners, while glutathione reductase (GR) and glutathione peroxidase (GPX) increased only at 0.5 mM CdCl2 and decreased at higher dose. The activity of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glyoxalase I (Gly I), and glyoxalase II (Gly II) decreased under Cd stress. On the other hand, H2O2 pretreated seedlings, when exposed to Cd, AsA and GSH contents and GSH/GSSG ratio increased noticeably. H2O2 pretreatment increased the activities of APX, MDHAR, DHAR, GR, GST, GPX, and CAT of Cd affected seedlings. Thus enhancement of both the non-enzymatic and enzymatic antioxidants helped to decrease the oxidative damage as indicated by decreased levels of H2O2 and MDA. The seedlings which were pretreated with H2O2 also showed enhanced glyoxalase system. The activities of Gly I, and Gly II and the content of GSH increased significantly due to H2O2 pretreatment in Cd affected seedlings, compared to the Cd-stressed plants without H2O2 pretreatment which were vital for methylglyoxal detoxification. So, the major roles of H2O2 were improvement of antioxidant defense system and glyoxalase system which protected plants from the damage effects of ROS and MG. The mechanism of H2O2 to induce antioxidant defense and glyoxalase system and improving physiology under stress condition is not known clearly which should be elucidated. The signaling roles of H2O2 and its interaction with other signaling molecules, phytohormones or other biomolecules and their roles in stress protection should be explored. PMID:28239385
Wring, S A; Hart, J P; Birch, B J
1989-12-01
High-performance liquid chromatography with electrochemical detection (LCEC), incorporating a novel carbon-epoxy resin working electrode modified with cobalt phthalocyanine, has been employed for preliminary studies directed towards the determination of normal circulating levels of reduced glutathione (GSH) in human plasma. The mobile phase consisted of 0.05 M phosphate buffer (pH 3) containing 0.1% m/m ethylenediaminetetraacetic acid (EDTA); the calibration graph was linear in the range 0.24-30.7 ng of GSH injected. The mean recovery of GSH added to a control serum over the physiological concentration range (0.38-3.07 ng ml-1) was 99%; this was achieved following a simple sample pre-treatment method, prior to LCEC, involving chelation of divalent cations with EDTA and subsequent acidification with orthophosphoric acid. Using the LCEC method, the mean circulating level of GSH in plasma, found in three normal subjects, was 2.69 microM, GSH; this indicates that the method might be applicable to the determination of depressed circulating levels of GSH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rai, L.C.; Raizada, M.
1987-08-01
Exposure of Nostoc muscorum to different concentrations of Ni and Ag brought about reduction in growth, carbon fixation, heterocyst production, and nitrogenase activity and increase in the loss of ions (K+, Na+). In an attempt to ameliorate the toxicity of test metals by ascorbic acid, glutathione, and sulfur-containing amino acids (L-cysteine and L-methionine), it was found that the level of protection by ascorbic acid and glutathione was more for Ag than Ni. However, metal-induced inhibition of growth and carbon fixation was equally ameliorated by methionine. But the level of protection by cysteine was quite different, i.e., 27% for Ni andmore » 22% for Ag. Protection of metal toxicity in N. muscorum by amino acids lends further support to self-detoxifying ability of cyanobacteria because they are known to synthesize all essential amino acids.« less
Efficient depletion of ascorbate by amino acid and protein radicals under oxidative stress.
Domazou, Anastasia S; Zelenay, Viviane; Koppenol, Willem H; Gebicki, Janusz M
2012-10-15
Ascorbate levels decrease in organisms subjected to oxidative stress, but the responsible reactions have not been identified. Our earlier studies have shown that protein C-centered radicals react rapidly with ascorbate. In aerobes, these radicals can react with oxygen to form peroxyl radicals. To estimate the relative probabilities of the reactions of ascorbate with protein C- and O-centered radicals, we measured by pulse radiolysis the rate constants of the reactions of C-centered radicals in Gly, Ala, and Pro with O₂ and of the resultant peroxyl radicals with ascorbate. Calculations based on the concentrations of ascorbate and oxygen in human tissues show that the relative probabilities of reactions of the C-centered amino acid radicals with O₂ and ascorbate vary between 1:2.6 for the pituitary gland and 1:0.02 for plasma, with intermediate ratios for other tissues. The high frequency of occurrence of Gly, Ala, and Pro in proteins and the similar reaction rate constants of their C-centered radicals with O₂ and their peroxo-radicals with ascorbate suggest that our results are also valid for proteins. Thus, the formation of protein C- or O-centered radicals in vivo can account for the loss of ascorbate in organisms under oxidative stress. Copyright © 2012 Elsevier Inc. All rights reserved.
Vitamin C transport and its role in the central nervous system
May, James M.
2013-01-01
Vitamin C, or ascorbic acid, is important as an antioxidant and participates in numerous cellular functions. Although it circulates in plasma in micromolar concentrations, it reaches millimolar concentrations in most tissues. These high ascorbate cellular concentrations are thought to be generated and maintained by the SVCT2 (Slc23a2), a specific transporter for ascorbate. The vitamin is also readily recycled from its oxidized forms inside cells. Neurons in the central nervous system (CNS) contain some of the highest ascorbic acid concentrations of mammalian tissues. Intracellular ascorbate serves several functions in the CNS, including antioxidant protection, peptide amidation, myelin formation, synaptic potentiation, and protection against glutamate toxicity. The importance of the SVCT2 for CNS function is supported by the finding that its targeted deletion in mice causes widespread cerebral hemorrhage and death on post-natal day one. Neuronal ascorbate content as maintained by this protein also has relevance for human disease, since ascorbate supplements decrease infarct size in ischemia-reperfusion injury models of stroke, and since ascorbate may protect neurons from the oxidant damage associated with neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s. The aim of this review is to assess the role of the SVCT2 in regulating neuronal ascorbate homeostasis and the extent to which ascorbate affects brain function and antioxidant defenses in the CNS. PMID:22116696
Han, Min; Pendem, Suresh; Teh, Suet Ling; Sukumaran, Dinesh K; Wu, Feng; Wilson, John X
2010-01-01
Endothelial barrier dysfunction contributes to morbidity in sepsis. We tested the hypothesis that raising the intracellular ascorbate concentration protects the endothelial barrier from septic insult by inhibiting protein phosphatase type 2A. Monolayer cultures of microvascular endothelial cells were incubated with ascorbate, dehydroascorbic acid (DHAA), the NADPH oxidase inhibitors apocynin and diphenyliodonium, or the PP2A inhibitor okadaic acid and then were exposed to septic insult (lipopolysaccharide and interferon-gamma). Under standard culture conditions that depleted intracellular ascorbate, septic insult stimulated oxidant production and PP2A activity, dephosphorylated phosphoserine and phosphothreonine residues in the tight junction-associated protein occludin, decreased the abundance of occludin at cell borders, and increased monolayer permeability to albumin. NADPH oxidase inhibitors prevented PP2A activation and monolayer leak, showing that these changes required reactive oxygen species. Okadaic acid, at a concentration that inhibited PP2A activity and monolayer leak, prevented occludin dephosphorylation and redistribution, implicating PP2A in the response of occludin to septic insult. Incubation with ascorbate or DHAA raised intracellular ascorbate concentrations and mitigated the effects of septic insult. In conclusion, ascorbate acts within microvascular endothelial cells to inhibit septic stimulation of oxidant production by NADPH oxidase and thereby prevents PP2A activation, PP2A-dependent dephosphorylation and redistribution of occludin, and disruption of the endothelial barrier. Copyright 2009 Elsevier Inc. All rights reserved.
[Effect of temperature on the aerobic degradation of vitamin C in citric fruit juices].
Alvarado, J D; Palacios Viteri, N
1989-12-01
By means of the method of the 2,4-dinitrophenylhydrazine the total ascorbic acid content in lima, lemon, tangerine and grapefruit juices, fresh and kept at four temperatures and different times, was determined. It was confirmed that in all the cases, the aerobic degradation of ascorbic acid follows a kinetic first order and that the values of the reaction rate are different between species and even between varieties of lemon and tangerine. The values of the equation terms are reported, and examples of application given. Within a range from 20 degrees to 92 degrees C, the effect of temperature on the velocity of the ascorbic acid degradation is described satisfactorily following the Arrhenius equation, in accordance with which, the corresponding values of activation energy are calculated to compare them with other published values. With the simple application of the method, in two steps, and considering that the L-ascorbic acid and the L-dehydroascorbic acid are predominant, the results can be used to calculate the vitamin C losses in citric fruit juices, indicated when they are processed by traditional thermal treatments.
NASA Astrophysics Data System (ADS)
Schulz, Anke; Trage, Claudia; Schwarz, Helmut; Kroh, Lothar W.
2007-05-01
A new method is presented which allows the simultaneous detection of various [alpha]-dicarbonyl compounds generated in the course of the nonenzymatic browning reaction initiated by thermal treatment of l-ascorbic acid, namely: glyoxal, methylglyoxal, diacetyl, 3-deoxy-l-pentosone, and l-threosoneE 3-Deoxy-l-threosone was successfully identified as a new C4-[alpha]-dicarbonyl structure for the first time in the degradation of Vitamin C by application of this non-chromatographic mass spectrometric approach. Moreover, a more detailed elucidation of the mechanistic scenario with respect to the oxidative and nonoxidative pathways is presented by using dehydro-l-ascorbic acid and 2,3-diketo-l-gulonic acid instead of l-ascorbic acid as a starting material. Furthermore, the postulated pathways are corroborated with the aid of 13C-isotopic labeling studies. The investigations were extended to baby food, and the successful detection of [alpha]-dicarbonyl compounds characteristic for Vitamin C degradation proved the matrix tolerance of the introduced method.
21 CFR 172.315 - Nicotinamide-ascorbic acid complex.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 172.315 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.315 Nicotinamide-ascorbic acid complex...
Ilinoiu, Elida Cristina; Manea, Florica; Serra, Pier Andrea; Pode, Rodica
2013-01-01
The present paper aims to miniaturize a graphite-epoxy and synthetic zeolite-modified graphite-epoxy composite macroelectrode as a quasi-microelectrode aiming in vitro and also, envisaging in vivo simultaneous electrochemical detection of dopamine (DA) and ascorbic acid (AA) neurotransmitters, or DA detection in the presence of AA. The electrochemical behavior and the response of the designed materials to the presence of dopamine and ascorbic acid without any protective membranes were studied by cyclic voltammetry and constant-potential amperometry techniques. The catalytic effect towards dopamine detection was proved for the synthetic zeolite-modified graphite-epoxy composite quasi-microelectrode, allowing increasing the sensitivity and selectivity for this analyte detection, besides a possible electrostatic attraction between dopamine cation and the negative surface of the synthetic zeolite and electrostatic repulsion with ascorbic acid anion. Also, the synthetic zeolite-modified graphite-epoxy composite quasi-microelectrode gave the best electroanalytical parameters for dopamine detection using constant-potential amperometry, the most useful technique for practical applications. PMID:23736851
Ilinoiu, Elida Cristina; Manea, Florica; Serra, Pier Andrea; Pode, Rodica
2013-06-03
The present paper aims to miniaturize a graphite-epoxy and synthetic zeolite-modified graphite-epoxy composite macroelectrode as a quasi-microelectrode aiming in vitro and also, envisaging in vivo simultaneous electrochemical detection of dopamine (DA) and ascorbic acid (AA) neurotransmitters, or DA detection in the presence of AA. The electrochemical behavior and the response of the designed materials to the presence of dopamine and ascorbic acid without any protective membranes were studied by cyclic voltammetry and constant-potential amperometry techniques. The catalytic effect towards dopamine detection was proved for the synthetic zeolite-modified graphite-epoxy composite quasi-microelectrode, allowing increasing the sensitivity and selectivity for this analyte detection, besides a possible electrostatic attraction between dopamine cation and the negative surface of the synthetic zeolite and electrostatic repulsion with ascorbic acid anion. Also, the synthetic zeolite-modified graphite-epoxy composite quasi-microelectrode gave the best electroanalytical parameters for dopamine detection using constant-potential amperometry, the most useful technique for practical applications.
NASA Astrophysics Data System (ADS)
Wulandari, Puji; Daryono, Budi Setiadi; Supriyadi
2017-06-01
Melon (Cucumis melo L.) cultivar Hikapel, a new cultivar of melon, is one of non-netted orange-fleshed melon. Non-netted orange-fleshed melon is known as source of several phytochemicals such as phenolics, flavonoids, ascorbic acid, and carotenoids. During the ripening stages there are chemical changes of the fruit including antioxidant properties. The aims of this research were to study the changes of antioxidant activity and antioxidant compound during ripening stages of melon cv. Hikapel. Melon with three ripening stages (27 DAA, 29 DAA, and 32 DAA) were harvested and analyzed their antioxidant activity, ascorbic acid, total-phenolic, -flavonoid, and -carotenoid content. The results showed that ascorbic acid and carotenoid content increased during ripening stages, whereas total phenolic and antioxidant activity decreased. The ripening stages affected antioxidant activity of Cucumis melo L. cv. Hikapel. Antioxidant activity positively correlated with ascorbic acid, total-phenolic, and -flavonoid content. On the other hand, total carotenoid negatively correlated with antioxidant activity.
Sun, Li-rui; Wang, Yan; Xia, Chun-gu
2017-01-01
The synthesis of L-ascorbyl flurbiprofenate was achieved by esterification and transesterification in nonaqueous organic medium with Novozym 435 lipase as biocatalyst. The conversion was greatly influenced by the kinds of organic solvents, speed of agitation, catalyst loading amount, reaction time, and molar ratio of acyl donor to L-ascorbic acid. A series of solvents were investigated, and tert-butanol was found to be the most suitable from the standpoint of the substrate solubility and the conversion for both the esterification and transesterification. When flurbiprofen was used as acyl donor, 61.0% of L-ascorbic acid was converted against 46.4% in the presence of flurbiprofen methyl ester. The optimal conversion of L-ascorbic acid was obtained when the initial molar ratio of acyl donor to ascorbic acid was 5 : 1. kinetics parameters were solved by Lineweaver-Burk equation under nonsubstrate inhibition condition. Since transesterification has lower conversion, from the standpoint of productivity and the amount of steps required, esterification is a better method compared to transesterification. PMID:28421196
Mauro, Maria A; Dellarosa, Nicolò; Tylewicz, Urszula; Tappi, Silvia; Laghi, Luca; Rocculi, Pietro; Rosa, Marco Dalla
2016-03-15
The effects of the addition of calcium lactate and ascorbic acid to sucrose osmotic solutions on cell viability and microstructure of apple tissue were studied. In addition, water distribution and mobility modification of the different cellular compartments were observed. Fluorescence microscopy, light microscopy and time domain nuclear magnetic resonance (TD-NMR) were respectively used to evaluate cell viability and microstructural changes during osmotic dehydration. Tissues treated in a sucrose-calcium lactate-ascorbic acid solution did not show viability. Calcium lactate had some effects on cell walls and membranes. Sucrose solution visibly preserved the protoplast viability and slightly influenced the water distribution within the apple tissue, as highlighted by TD-NMR, which showed higher proton intensity in the vacuoles and lower intensity in cytoplasm-free spaces compared to other treatments. The presence of ascorbic acid enhanced calcium impregnation, which was associated with permeability changes of the cellular wall and membranes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Orlický, Jozef; Gmucová, Katarína; Thurzo, Ilja; Pavlásek, Juraj
2003-04-01
Aqueous solutions of ascorbic acid in unsupported and supported aqueous solutions and real samples were studied by the kinetics-sensitive double-step voltcoulommetric method with the aim to contribute to a better understanding of its behavior in biological systems. The data obtained from measurements made on analytes prepared in the laboratory, as well as those made on real samples (some commercial orange drinks, flash of the fresh fruits) point to the redox reaction of L-ascorbic acid (L-AH2) being very sensitive to both the presence of dissolved gaseous species (O2, CO2) and the ionic strenght in the analyte. Either the dissolved gaseous species, or the higher ionic strength caused by both the presence of supporting electrolyte and increased total concentration of ascorbic acid, respectively, give birth to the degradation of L-AH2. Naturally, the highest percentage of L-AH2 was spotted in fresh fruit.
García Esteban, Elena; Cózar-Bernal, María José; Rabasco Álvarez, Antonio M; González-Rodríguez, María Luisa
2018-06-11
The aim of this study was to evaluate the stability of levodopa liposomes co-loaded with three different antioxidants (curcumin, ascorbic acid and superoxide dismutase (SOD)). For this purpose, multilamellar liposomes were prepared. Curcumin was added into the lipid bilayer while ascorbic acid and SOD were placed into the aqueous phase. The influence of preparation technique and surface charge were also investigated. Vesicles were characterized and free radical scavenging potential was determined. From stability study, ascorbic acid showed better stabilizing effect. These co-loaded liposomes also exhibited potential radical scavenging activity where ascorbic acid played a key role. From the study of different preparation techniques and charge, we concluded that cationic liposomes made by Thin Layer Evaporation following extrusion offered the best physicochemical and stability properties. A dual mechanism of these liposomes implies the chemical stabilization of levodopa (dose reduction) and the antioxidant effect, with a preventive effect on Parkinson´s disease.
Fraga, Hugo Pacheco de Freitas; Vieira, Leila do Nascimento; Puttkammer, Catarina Corrêa; Dos Santos, Henrique Pessoa; Garighan, Julio de Andrade; Guerra, Miguel Pedro
2016-12-01
Here we propose a protocol for embryogenic cultures induction, proliferation and maturation for the Brazilian conifer Podocarpus lambertii, and investigated the effect of abscisic acid (ABA) and glutathione (GSH) supplementation on the maturation phase. ABA, zeatin (Z) and salicylic acid (SA) endogenous levels were quantified. Number of somatic embryos obtained in ABA-supplemented treatment was significant higher than in ABA-free treatment, showing the relevance of ABA supplementation during somatic embryos maturation. Histological analysis showed the stereotyped sequence of developmental stages in conifer somatic embryos, reaching the late torpedo-staged embryo. GSH supplementation in maturation culture medium improved the somatic embryos number and morphological features. GSH 0mM and GSH 0.1mM treatments correlated with a decreased ABA endogenous level during maturation, while GSH 0.5mM treatment showed constant levels. All treatments resulted in decreased Z endogenous levels, supporting the concept that cytokinins are important during the initial cell division but not for the later stages of embryo development. The lowest SA levels found in GSH 0.5mM treatment were coincident with early embryonic development, and this treatment resulted in the highest development of somatic embryos. Thus, a correlation between lower SA levels and improved somatic embryo formation can be hypothesized. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Flux of Nutrients Between the Middle and Southern Adriatic Sea (Gargano-Split section)
2013-04-28
silico molybdate in acid solution to mo- lybdenum blue by ascorbic acid . Oxalic acid is introduced to the sam- ple to minimize interferences from...sensitivity of this method. Nitrite is measured by reacting the sample under acidic conditions with sulfanilamide to form a diazo compound that then...colorimetric method in which a blue compound is formed by the reaction of phosphate, molybdate and antimony followed by reduction with ascorbic acid . The reduced
Schindler, T H; Magosaki, N; Jeserich, M; Olschewski, M; Nitzsche, E; Holubarsch, C; Solzbach, U; Just, H
2000-01-01
In chronic smokers there is evidence for increased formation of oxygen-derived free radicals within the vessel wall impairing endothelial function. It has been suggested that the inactivation of endothelium-derived nitric oxide by oxygen free radicals contributes to endothelial dysfunction. Hence, we tested the hypothesis that in chronic smokers the antioxidant ascorbic acid could improve abnormal endothelial function of epicardial coronary arteries. Thirty-one patients (mean age 57 +/- 9 years) referred for routine diagnostic catheterization for evaluation of chest pain and without angiographically significant coronary artery stenoses were randomly assigned to one of the study groups to assess vasomotor response of epicardial coronary arteries due to cold pressor testing (CPT) before and after intravenous infusion of 3 g of ascorbic acid or 100 ml x 0.9% saline infusion. In 6 controls (mean age 55 +/- 3 years) CPT led to a similar increase in luminal area before and after ascorbic acid administration (26.5 +/- 15.0 vs. 28.4 +/- 17.7%, p = NS). In 15 chronic smokers (mean age 55 +/- 9 years), CPT induced a decrease in the luminal area of -18.5 +/- 6.3%. This flow-dependent vasoconstriction was significantly reversed to 7.7 +/- 6.2% (p < or = 0.03) vasodilation after intravenous ascorbic acid administration. In 10 chronic smokers (mean age 57 +/- 11 years) saline infusion (placebo) did not have a significant effect on CPT-induced vasoconstriction (-12.7 +/- 5.1 vs. -13.1 +/- 5.1%, p = NS). The CPT-induced increase in luminal area in chronic smokers after ascorbic acid infusion was significant compared to controls and placebo (each p < or = 0.05). Our assessment of endothelium-independent responses to nitroglycerin revealed no significant differences between the single study groups (p = NS). In chronic smokers acute intravenous administration of ascorbic acid significantly improves CPT-induced coronary endothelium-dependent dysfunction. According to the current understanding, this effect is due to improved cellular redox imbalance and prevention of nitric oxide inactivation in the endothelium and subendothelial space.
Kostman, Todd A.; Tarlyn, Nathan M.; Loewus, Frank A.; Franceschi, Vincent R.
2001-01-01
l-Ascorbic acid (AsA) and its metabolic precursors give rise to oxalic acid (OxA) found in calcium oxalate crystals in specialized crystal idioblast cells in plants; however, it is not known if AsA and OxA are synthesized within the crystal idioblast cell or transported in from surrounding mesophyll cells. Isolated developing crystal idioblasts from Pistia stratiotes were used to study the pathway of OxA biosynthesis and to determine if idioblasts contain the entire path and are essentially independent in OxA synthesis. Idioblasts were supplied with various 14C-labeled compounds and examined by micro-autoradiography for incorporation of 14C into calcium oxalate crystals. [14C]OxA gave heavy labeling of crystals, indicating the isolated idioblasts are functional in crystal formation. Incubation with [1-14C]AsA also gave heavy labeling of crystals, whereas [6-14C]AsA gave no labeling. Labeled precursors of AsA (l-[1-14C]galactose; d-[1-14C]mannose) also resulted in crystal labeling, as did the ascorbic acid analog, d-[1-14C]erythorbic acid. Intensity of labeling of isolated idioblasts followed the pattern OxA > AsA (erythorbic acid) > l-galactose > d-mannose. Our results demonstrate that P. stratiotes crystal idioblasts synthesize the OxA used for crystal formation, the OxA is derived from the number 1 and 2 carbons of AsA, and the proposed pathway of ascorbic acid synthesis via d-mannose and l-galactose is operational in individual P. stratiotes crystal idioblasts. These results are discussed with respect to fine control of calcium oxalate precipitation and the concept of crystal idioblasts as independent physiological compartments. PMID:11161021
Effect of ascorbate and dehydroascorbate on tissue uptake of glucose.
Mooradian, A D
1987-09-01
In vitro studies have suggested that ascorbate or dehydroascorbate share with glucose the same tissue-transport carrier. To determine if ascorbic acid or its oxidized form can inhibit tissue uptake of glucose, the brain uptake index (BUI) and muscle uptake index of glucose were determined by single arterial injection tissue-sampling technique. The injectate was either buffered Ringer's solution with varying concentrations of ascorbate, dehydroascorbate (pH 7.4), or 70% serum from individuals on vitamin C supplements. Ascorbic acid over a wide range of concentrations (0-10,000 mg/L) did not reduce the BUI. Ascorbic acid reduced BUI from the control value of 33 +/- 3.2 to 20.1 +/- 2.2% (P less than .01) only at 100,000 mg/L; this effect was probably secondary to osmotic disruption of blood-brain barrier. In contrast, dehydroascorbate inhibited the BUI of glucose from baseline value of 32.8 +/- 1.1 to 10.7 +/- 0.67%, with an estimated Ki of 13.0 mM. Masseter muscle glucose uptake was not significantly altered over a wide range of ascorbate or dehydroascorbate concentrations in the injectate. Dehydroascorbate (7500 mg/L) did not significantly reduce the BUI of [14C]phenylalanine (55.2 +/- 4.4 vs. 62.1 +/- 4.2% in controls). When serum from six individuals on calcium ascorbate (3-5 g/day) was compared with that of nine controls, the BUI was not different (19.3 +/- 1.7 vs. 19.3 +/- 1.1%). Similarly, supplementing the diet of eight healthy volunteers with 1 g calcium ascorbate for 8 days did not alter the BUI of glucose.(ABSTRACT TRUNCATED AT 250 WORDS)
ERIC Educational Resources Information Center
Ito, Takashi; Perera, D. M. Neluni T.; Nagasaka, Shinobu
2008-01-01
This article describes an undergraduate electrochemistry laboratory experiment in which the students measure the L-ascorbic acid content of a real sample. Gold electrodes modified with self-assembled monolayers (SAMs) of thioctic acid and cysteamine are prepared to study the effects of surface modification on the electrode reaction of L-ascorbic…
Sulfur Deprivation Results in Oxidative Perturbation in Chlorella sorokiniana (211/8k).
Salbitani, Giovanna; Vona, Vincenza; Bottone, Claudia; Petriccione, Milena; Carfagna, Simona
2015-05-01
Sulfur deficiency in plant cells has not been considered as a potential abiotic factor that can induce oxidative stress. We studied the antioxidant defense system of Chlorella sorokiniana cultured under sulfur (S) deficiency, imposed for a maximum period of 24 h, to evaluate the effect of an S shortage on oxidative stress. S deprivation induced an immediate (30 min) but transient increase in the intracellular H2O2 content, which suggests that S limitation can lead to a temporary redox disturbance. After 24 h, S deficiency in Chlorella cells decreased the glutathione content to <10% of the value measured in cells that were not subjected to S deprivation. Consequently, we assumed that the cellular antioxidative mechanisms could be altered by a decrease in the total glutathione content. The total ascorbate pool increased within 2 h after the initiation of S depletion, and remained high until 6 h; however, ascorbate regeneration was inhibited under limited S conditions, indicated by a significant decrease in the ascorbate/dehydroascorbate (AsA/DHA) ratios. Furthermore, ascorbate peroxidase (APX) and superoxide dismutase (SOD) were activated under S deficiency, but we assumed that these enzymes were involved in maintaining the cellular H2O2 balance for at least 4 h after the initiation of S starvation. We concluded that S deprivation triggers redox changes and induces antioxidant enzyme activities in Chlorella cells. The accumulation of total ascorbate, changes in the reduced glutathione/oxidized glutathione (GSH/GSSG) ratios and an increase in the activity of SOD and APX enzymes indicate that oxidative perturbation occurs during S deprivation. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
21 CFR 582.5013 - Ascorbic acid.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ascorbic acid. 582.5013 Section 582.5013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...
21 CFR 582.5013 - Ascorbic acid.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ascorbic acid. 582.5013 Section 582.5013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...
21 CFR 582.5013 - Ascorbic acid.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ascorbic acid. 582.5013 Section 582.5013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...
21 CFR 582.5013 - Ascorbic acid.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ascorbic acid. 582.5013 Section 582.5013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...
21 CFR 582.3013 - Ascorbic acid.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ascorbic acid. 582.3013 Section 582.3013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 582.3013...
21 CFR 582.5013 - Ascorbic acid.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ascorbic acid. 582.5013 Section 582.5013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...
Devi Ramaiya, Shiamala; Bujang, Japar Sidik; Zakaria, Muta Harah; King, Wong Sing; Shaffiq Sahrir, Muhd Arif
2013-03-30
The levels of sugars, ascorbic acid, total phenolic content (TPC) and total antioxidant activity (TAA) were determined in fruit juices from seven passion fruit (Passiflora spp.) cultivars: P. edulis cultivars Purple, Frederick, Yellow, Pink, P. edulis f. flavicarpa, P. maliformis and P. quadrangularis (we also tested this cultivar's mesocarp). Purple and Yellow P. edulis had significantly higher total sugar, 142.85 ± 0.17 g kg⁻¹ and 139.69 ± 0.12 g kg⁻¹, respectively, than other cultivars. Glucose and fructose content were higher in juice from vine-ripened fruits of Purple, Frederick and Yellow P. edulis, P. quadrangularis and P. maliformis. Sucrose content was significantly higher in juice of non-vine-ripened fruits of P. edulis (Pink) and P. edulis f. flavicarpa. Ascorbic acid, TPC and TAA were significantly higher in vine-ripened Purple and Yellow P. edulis; ranges were 0.22-0.33 g kg⁻¹, 342.80-382.00 mg gallic acid equivalent L⁻¹ and 409.13-586.70 µmol Trolox L⁻¹, respectively. Based on principal component analysis (PCA) and cluster analysis, the main variables - °Brix, total sugar, glucose, fructose, ascorbic acid, TPC and TAA - formed the characteristics for the group comprising Purple and Yellow P. edulis. Glucose, fructose, sucrose, ascorbic acid, TAA and TPC were quantified in passion fruit juices. Variation of the above variables in juices of Passiflora depends on the cultivar and ripeness. © 2012 Society of Chemical Industry.
Hong, Chang-Young; Park, Se-Yeong; Kim, Seon-Hong; Lee, Su-Yeon; Choi, Won-Sil; Choi, In-Gyu
2016-10-01
This study was carried out to better understand the characteristic modification mechanisms of monolignols by enzyme system of Abortiporus biennis and to induce the degradation of monolignols. Degradation and polymerization of monolignols were simultaneously induced by A. biennis. Whole cells of A. biennis degraded coniferyl alcohol to vanillin and coniferyl aldehyde, and degraded sinapyl alcohol to 2,6-dimethoxybenzene- 1,4-diol, with the production of dimers. The molecular weight of monolignols treated with A. biennis increased drastically. The activities of lignin degrading enzymes were monitored for 24 h to determine whether there was any correlation between monolignol biomodification and ligninolytic enzymes. We concluded that complex enzyme systems were involved in the degradation and polymerization of monolignols. To degrade monolignols, ascorbic acid was added to the culture medium as a reducing agent. In the presence of ascorbic acid, the molecular weight was less increased in the case of coniferyl alcohol, while that of sinapyl alcohol was similar to that of the control. Furthermore, the addition of ascorbic acid led to the production of various degraded compounds: syringaldehyde and acid compounds. Accordingly, these results demonstrated that ascorbic acid prevented the rapid polymerization of monolignols, thus stabilizing radicals generated by enzymes of A. biennis. Thereafter, A. biennis catalyzed the oxidation of stable monolignols. As a result, ascorbic acid facilitated predominantly monolignols degradation by A. biennis through the stabilization of radicals. These findings showed outstanding ability of A. biennis to modify the lignin compounds rapidly and usefully.
Chromium-induced membrane damage: protective role of ascorbic acid.
Dey, S K; Nayak, P; Roy, S
2001-07-01
Importance of chromium as environmental toxicant is largely due to impact on the body to produce cellular toxicity. The impact of chromium and their supplementation with ascorbic acid was studied on plasma membrane of liver and kidney in male Wistar rats (80-100 g body weight). It has been observed that the intoxication with chromium (i.p.) at the dose of 0.8 mg/100 g body weight per day for a period of 28 days causes significant increase in the level of cholesterol and decrease in the level of phospholipid of both liver and kidney. The alkaline phosphatase, total ATPase and Na(+)-K(+)-ATPase activities were significantly decreased in both liver and kidney after chromium treatment, except total ATPase activity of kidney. It is suggested that chromium exposure at the present dose and duration induce for the alterations of structure and function of both liver and kidney plasma membrane. Ascorbic acid (i.p. at the dose of 0.5 mg/100 g body weight per day for period of 28 days) supplementation can reduce these structural changes in the plasma membrane of liver and kidney. But the functional changes can not be completely replenished by the ascorbic acid supplementation in response to chromium exposure. So it is also suggested that ascorbic acid (nutritional antioxidant) is useful free radical scavenger to restrain the chromium-induced membrane damage.
Relative hyperoxaluria, crystalluria and haematuria after megadose ingestion of vitamin C.
Auer, B L; Auer, D; Rodgers, A L
1998-09-01
Long-term or high-dosage consumption of vitamin C may play a role in calcium oxalate kidney stone formation. The present study was undertaken to determine the biochemical and physicochemical risk factors in a male subject who developed haematuria and calcium oxalate crystalluria after ingestion of large doses of ascorbic acid for 8 consecutive days. Twenty-four-hour urine samples were collected before and during the ascorbic acid ingestion period as well as after the detection of haematuria. A special procedure was implemented for urine collections to allow for oxalate, ascorbate and other urinalysis. Oxalate was determined in the presence of EDTA to prevent in vitro conversion to ascorbic acid, whereas ascorbate itself was determined by manual titration in a redox method using the dye dichlorophenolindophenol. Urinalysis data were used to compute calcium oxalate relative supersaturations and Tiselius risk indices, whereas scanning electron microscopy was used to examine urinary deposits. Oxalate excretion increased by about 350% during ascorbate ingestion before haematuria. Ascorbate concentrations also increased dramatically but appeared to reach a plateau maximum. Increasing calcium excretion was accompanied by decreasing potassium and phosphate values. The calcium oxalate relative supersaturation and Tiselius risk index increased during vitamin C ingestion and large aggregates of calcium oxalate dihydrate crystals were observed by scanning electron microscopy immediately after the detection of haematuria. High percentage metabolic conversion of ascorbate to oxalate in this subject caused relative hyperoxaluria and crystalluria, the latter manifesting itself as haematuria. Clinicians need to be alerted to the potential dangers of large dose ingestion of vitamin C in some individuals.
21 CFR 862.1095 - Ascorbic acid test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ascorbic acid test system. 862.1095 Section 862.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862...
21 CFR 862.1095 - Ascorbic acid test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ascorbic acid test system. 862.1095 Section 862.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862...
21 CFR 862.1095 - Ascorbic acid test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ascorbic acid test system. 862.1095 Section 862.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862...
21 CFR 862.1095 - Ascorbic acid test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ascorbic acid test system. 862.1095 Section 862.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862...
21 CFR 862.1095 - Ascorbic acid test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ascorbic acid test system. 862.1095 Section 862.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862...
PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN
Plasmid DNA damage caused by methylated arsenicals, ascorbic acid and human liver ferritin.
Arsenic causes cancer in human skin, urinary bladder, lung, liver and kidney and is a significant world-wide public health problem. Although the metabolism of inorganic arsenic is ...
Begara-Morales, Juan C.; Sánchez-Calvo, Beatriz; Chaki, Mounira; Valderrama, Raquel; Mata-Pérez, Capilla; Padilla, María N.; Corpas, Francisco J.; Barroso, Juan B.
2016-01-01
Nitric oxide (NO) is a biological messenger that orchestrates a plethora of plant functions, mainly through post-translational modifications (PTMs) such as S-nitrosylation or tyrosine nitration. In plants, hundreds of proteins have been identified as potential targets of these NO-PTMs under physiological and stress conditions indicating the relevance of NO in plant-signaling mechanisms. Among these NO protein targets, there are different antioxidant enzymes involved in the control of reactive oxygen species (ROS), such as H2O2, which is also a signal molecule. This highlights the close relationship between ROS/NO signaling pathways. The major plant antioxidant enzymes, including catalase, superoxide dismutases (SODs) peroxiredoxins (Prx) and all the enzymatic components of the ascorbate-glutathione (Asa-GSH) cycle, have been shown to be modulated to different degrees by NO-PTMs. This mini-review will update the recent knowledge concerning the interaction of NO with these antioxidant enzymes, with a special focus on the components of the Asa-GSH cycle and their physiological relevance. PMID:26909095
Xu, Xianghua; Liu, Cuiying; Zhao, Xiaoyan; Li, Renying; Deng, Wenjing
2014-11-01
Chemical and biological analyses were used to investigate the growth response and antioxidant defense mechanism of maize seedlings (Zea mays L.) grown in soils with 0-100 mg kg(-1) Cd. Results showed that maize seedlings have strong abilities to accumulate and tolerate high concentrations of Cd. For soil with 50 mg kg(-1) Cd, the Cd contents in roots and shoots of maize seedlings are as large as 295.6 and 153.0 mg kg(-1) DW, respectively, without visible symptoms of toxicity. Lower soil Cd concentrations lead to a decrease in reduced glutathione (GSH) content in leaves of maize seedlings, whereas higher soil Cd concentrations resulted in an increase in the activities of superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase. Maize seedlings have strong capacities to adapt to low concentrations of Cd by consuming GSH and to develop an antioxidative enzyme system to defend against high-Cd stress.
Matsumoto, Shigekiyo; Shingu, Chihiro; Koga, Hironori; Hagiwara, Satoshi; Iwasaka, Hideo; Noguchi, Takayuki; Yokoi, Isao
2010-07-01
Electron spin resonance (ESR)-silent ascorbate solutions generate a detectable, likely concentration-dependent signal of ascorbyl free radicals (AFR) immediately upon addition of a molar excess of dimethyl sulfoxide (DMSO). We aimed to perform quantitative ESR analysis of AFR in real time after addition of DMSO (AFR/DMSO) to evaluate ascorbate concentrations in fresh hippocampus or plasma following systemic administration of kainate in mice. Use of a special tissue-type quartz cell allowed immediate detection of AFR/DMSO ESR spectra in fresh tissues from mice. AFR/DMSO content was increased significantly in fresh hippocampus or plasma obtained during kainate-induced seizures of mice, reaching maximum levels at 90 min after intraperitoneal administration of 50 mg/kg kainic acid. This suggests that oxidative injury of the hippocampus resulted from the accumulation of large amounts of ascorbic acid in the brain after kainic acid administration. AFR/DMSO content measured on an ESR spectrometer can be used for real-time evaluation of ascorbate content in fresh tissue. Due to the simplicity, good performance, low cost and real-time monitoring of ascorbate, this method may be applied to clinical research and treatment in the future.
Nguyen, Dan; Hsu, Jean W.; Jahoor, Farook
2014-01-01
Background: HIV-infected patients are reported to have impaired oxidation of fatty acids despite increased availability, suggesting a mitochondrial defect. We investigated whether diminished levels of a key mitochondrial antioxidant, glutathione (GSH), was contributing to defective fatty acid oxidation in older HIV-infected patients, and if so, the metabolic mechanisms contributing to GSH deficiency in these patients. Methods: In an open-label design, 8 older GSH-deficient HIV-infected males were studied before and after 14 days of oral supplementation with the GSH precursors cysteine and glycine. A combination of stable-isotope tracers, calorimetry, hyperinsulinemic-euglycemic clamp, and dynamometry were used to measure GSH synthesis, fasted and insulin-stimulated (fed) mitochondrial fuel oxidation, insulin sensitivity, body composition, anthropometry, forearm-muscle strength, and lipid profiles. Results: Impaired synthesis contributed to GSH deficiency in the patients and was restored with cysteine plus glycine supplementation. GSH improvement was accompanied by marked improvements in fasted and fed mitochondrial fuel oxidation. Associated benefits included improvements in insulin sensitivity, body composition, anthropometry, muscle strength, and dyslipidemia. Conclusions: This work identifies 2 novel findings in older HIV-infected patients: 1) diminished synthesis due to decreased availability of cysteine and glycine contributes to GSH deficiency and can be rapidly corrected by dietary supplementation of these precursors and 2) correction of GSH deficiency is associated with improvement of mitochondrial fat and carbohydrate oxidation in both fasted and fed states and with improvements in insulin sensitivity, body composition, and muscle strength. The role of GSH on ameliorating metabolic complications in older HIV-infected patients warrants further investigation. PMID:24081740
The importance of vitamin C for hydroxylation of vitamin D3 to 1,25(OH)2D3 in man.
Cantatore, F P; Loperfido, M C; Magli, D M; Mancini, L; Carrozzo, M
1991-06-01
The effects of vitamin C on 1,25(OH)2D3 synthesis in humans were evaluated; the study included 20 females. They were divided into 2 groups. The first of the 10 subjects (age range 55-71) received ascorbic acid at a dose of 150 mg/die i.v. for 10 days; the second 10 subjects (age range 55-69) received a placebo i.v. for 10 days. In a later study (after a 30-day washout) the same two groups were tested for the second time with ascorbic acid at a dose of 1,000 mg/die i.v. for 10 days and placebo i.v. for 10 days. Serum calcium and phosphorus, serum Ca++, serum proteins, blood and urinary pH, serum 25(OH)D3 and 1,25(OH)2D3, serum PTH, urinary hydroxyprolin were tested before and after the treatments. In the first study a significant increase in serum 1,25(OH)2D3 was observed after ascorbic acid while no significant variation was observed for the other parameters. In the second study, a significant increase in serum Ca++ and a significant decrease in serum 1,25(OH)2D3 were observed after ascorbic acid while no significant variation was observed for the other parameters. The authors conclude that ascorbic acid promotes 1,25(OH)2D3 synthesis at a paraphysiologic dose (150 mg/die) in humans but this synthesis is inhibited at higher doses (1,000 mg/die). The latter effect by Ca++ or by an effect of ascorbate on 1 alpha-hydroxylase enzyme could be mediated.
Tawasri, Patcharanee; Ampasavate, Chadarat; Tharatha, Somsak
2016-01-01
The objective of this randomized, open-label, single-dose, two-phase crossover study was to determine the effect of ascorbic acid on pharmacokinetics of ganoderic acid A, an important biologically active triterpenoid compound with anticancer activities, following oral administration of water extract of fruiting bodies of Ling Zhi in 12 healthy male subjects. Each subject was randomized to receive either one of the two regimens: (1) a single dose of 3,000 mg of the Ling Zhi preparation or (2) a single dose of 3,000 mg of the Ling Zhi preparation in combination with 2,500 mg of ascorbic acid. After a washout period of at least two weeks, subjects were switched to receive the alternate regimen. Blood samples were collected in each phase immediately before dosing and at specific time points for 8 hours after dosing. Plasma ganoderic acid A concentrations were quantified using liquid chromatography-mass spectrometry (LC-MS). The pharmacokinetic parameters analyzed were maximal plasma concentration (C max), time to reach peak concentration (T max), area under the plasma concentration-time curve (AUC), and half-life (t 1/2). An oral coadministration of ascorbic acid with Ling Zhi preparation did not significantly alter the pharmacokinetic parameters of ganoderic acid A in healthy male subjects. PMID:27747224
Lin, C. Y.; Key, Joe L.
1967-01-01
The data reported indicate that the oxidation-reduction balance of the ascorbic acid system is not causally related to the auxin-regulation of cell elongation. There was no shift in the ascorbic acid (AA) to dehydroascorbic acid (DHA) ratio with growth-promoting concentration of auxin in several plant tissues. The AA to DHA ratio was experimentally increased without altering the growth rate. Inhibition of growth by supra-optimal auxin was associated with a decrease in the AA to DHA ratio. Since the AA to DHA ratio was lowered by EDTA treatment without altering growth, it seems unlikely that the decrease in the AA to DHA ratio related to the inhibition of growth by high levels of auxin. PMID:16656564
Shi, Chunli; Zhou, Xue; Zhang, Jiayu; Wang, Jiachun; Xie, Hong; Wu, Zhigang
2016-07-01
α-Lipoic acid (α-LA) is a potent natural antioxidant, which is capable of regenerating glutathione (GSH). However, the mechanisms by which α-LA regenerates reduced glutathione (rGSH) via the reduction of oxidized glutathione (GSSG) by glutathione reductase (GR) are still not well understood. In the present study, we investigated if α-LA replenished rGSH by GR via Nrf2/ARE signaling pathway in cadmium-treated HepG2 cells. We found that α-LA antagonized the oxidative damage and alleviated the cytotoxicity in cadmium-induced HepG2 cells by regeneration of rGSH. α-LA regenerated rGSH by activating Nrf2 signaling pathway via promoting the nuclear translocation of Nrf2, which upregulates the transcription of GR, and thus increased the activity of GR. Our results indicated that α-LA was an effective agent to antagonize the oxidative stress and alleviate the cytotoxicity in cadmium-treated HepG2 cells by regenerating rGSH through activating Nrf2 signaling pathway. Copyright © 2016. Published by Elsevier B.V.
Inhalation exposure of rats to metal aerosol. I. Effects on pulmonary surfactant and ascorbic acid.
Kováciková, Z; Chorvatovicová, D
1992-02-01
Female albino Wistar rats were exposed to less than 5 microns particles separated from nickel refinery waste. The generated aerosol of 50 mg m-3 mainly consisted of metal oxides, the most toxic being NiO and Cr2O3. The exposure of 5 h per day, 5 days per week, lasted for 4 weeks or 4 months. At the end of the exposure period the amounts of pulmonary surfactant and ascorbic acid were estimated in both exposed and control rats. The amount of pulmonary surfactant was elevated after both exposure times, while ascorbic acid increased significantly (P less than 0.02) only after 4 weeks of exposure.
Determination of glutathione in spruce needles by liquid chromatography/tandem mass spectrometry.
Gucek, Marjan; Makuc, Simon; Mlakar, Anita; Bericnik-Vrbovsek, Julija; Marsel, Joze
2002-01-01
For the determination of glutathione (GSH) and its oxidized form (GSSG) in spruce needles their electrospray mass and MS/MS spectra were recorded with an ion trap mass spectrometer (ITMS, LCQ, Finnigan) and a triple stage quadrupole mass spectrometer (TSQ, Quattro II, Micromass). A study of the stability of GSH in aqueous solutions shows the presence of dimeric and trimeric forms of GSH, as well as GSSG, GSH-sulfonate and GSH-sulfinic acid. The same components were also found in extracts of spruce needles. We developed an assay which is suitable for monitoring low concentrations of GSH and similar compounds in plant tissues, employing the sensitivity and specificity of LC/MS/MS. Preliminary results on the mass spectrometric determination of GSH in spruce needles are given. Copyright 2002 John Wiley & Sons, Ltd.
A GREENER SYNTHESIS OF CORE (FE, CU)-SHELL (AU, PT, PD AND AG) NANOCRYSTALS USING AQUEOUS VITAMIN C
A greener method to fabricate the novel core (Fe and Cu)-shell (noble metals) metal nanocrystals using aqueous ascorbic acid (vitamin C) is described. Transition metal salts such as Cu and Fe were reduced using ascorbic acid, a benign naturally available antioxidant, and then add...
An Inquiry into the Effect of Heating on Ascorbic Acid
ERIC Educational Resources Information Center
Yip, Din Yan
2009-01-01
Investigations that study the effect of heating on ascorbic acid are commonly performed in schools, but the conclusions obtained are quite variable and controversial. Some results indicate that heating may destroy vitamin C, but others suggest that heating may have no effect. This article reports an attempt to resolve this confusion through a…
ERIC Educational Resources Information Center
Watkins, Kenneth W.; Olson, June A.
1980-01-01
Describes a physical chemistry experiment that allows students to test the effect of ionic strength on the rates of a reaction between ions. The reduction of hexacyanoferrate III by ascorbic acid is detailed. Comparisons with the iodine clock reaction are made. (CS)
Scurvy in the present times: vitamin C allergy leading to strict fast food diet.
Shaath, Tarek; Fischer, Ryan; Goeser, Megan; Rajpara, Anand; Aires, Daniel
2016-01-15
Scurvy results from a deficiency of vitamin C, a nutrient otherwise known as ascorbic acid. Today, scurvy is rare yet emerges in select patients. The patient reported herein developed scurvy secondary to deliberate avoidance of vitamin C-rich foods. Classic cutaneous manifestations of scurvy include follicular hyperkeratosis and perifollicular hemorrhage encompassing coiled "corkscrew" hairs and hairs bent into "swan-neck" deformities. Ecchymoses, purpura, and petechiae are also characteristically prominent. Classic oral abnormalities include erythematous, swollen gingivae that hemorrhage from subtle microtrauma.Subungual linear splinter hemorrhages may also manifest as a sign of the disease. To establish the diagnosis requirements include characteristic physical exam findings, evidence of inadequate dietary intake, and rapid reversal of symptoms upon supplementation. Although unnecessary for diagnosis, histological findings demonstrate perifollicular inflammation and hemorrhage, fibrosis, and hyperkeratosis, amongst dilated hair follicles and keratin plugging. Although citrus fruit allergies have been historically documented, ascorbic acid has not been previously reported as an allergen. Although lacking absolute certainty, this report suggests a presumed case of ascorbic acid allergy based on patient history and favorable response to ascorbic acid desensitization therapy.
Modelling and analysis of a direct ascorbic acid fuel cell
NASA Astrophysics Data System (ADS)
Zeng, Yingzhi; Fujiwara, Naoko; Yamazaki, Shin-ichi; Tanimoto, Kazumi; Wu, Ping
L-Ascorbic acid (AA), also known as vitamin C, is an environmentally-benign and biologically-friendly compound that can be used as an alternative fuel for direct oxidation fuel cells. While direct ascorbic acid fuel cells (DAAFCs) have been studied experimentally, modelling and simulation of these devices have been overlooked. In this work, we develop a mathematical model to describe a DAAFC and validate it with experimental data. The model is formulated by integrating the mass and charge balances, and model parameters are estimated by best-fitting to experimental data of current-voltage curves. By comparing the transient voltage curves predicted by dynamic simulation and experiments, the model is further validated. Various parameters that affect the power generation are studied by simulation. The cathodic reaction is found to be the most significant determinant of power generation, followed by fuel feed concentration and the mass-transfer coefficient of ascorbic acid. These studies also reveal that the power density steadily increases with respect to the fuel feed concentration. The results may guide future development and operation of a more efficient DAAFC.
Obradović, Valentina; Babić, Jurislav; Šubarić, Drago; Jozinović, Antun; Ačkar, Đurđica; Klarić, Ilija
2015-09-15
The influence of Hokkaido pumpkin powder (PP) addition to corn grits at levels 4%, 6%, and 8% and ascorbic acid (AA) addition at levels 0.5% and 1% was evaluated. Extrusion was done using a single-screw extruder at two temperature regimes: 135/170/170°C (E1) and 100/150/150°C (E2). Mathematical models that describe the influence of additives on the colour of extrudates were determined. Raw extrusion mixtures as well as obtained extrudates were tested for ascorbic acid, polyphenol, proteins, fat, crude fibre, ash and carotenoids content, and antioxidant activity. E1 extrusion regime acted favourably on polyphenols, crude fibre content, and antioxidant activity. It also caused higher fat degradation than E2 extrusion. Xanthophylls (lutein and zeaxanthin) were less sensitive to extrusion than carotenes (α-carotene, 9-cis-β-carotene and 13-cis-β-carotene). Ascorbic acid was more sensitive to higher extrusion temperatures (49-76% degradation). It provided protection to carotenoids and consequently the colour of the extrudates. Copyright © 2015 Elsevier Ltd. All rights reserved.
Guldiken, Burcu; Gibis, Monika; Boyacioglu, Dilek; Capanoglu, Esra; Weiss, Jochen
2017-03-22
Black carrot anthocyanins are known to be relatively stable because they contain acylated anthocyanins. The degradation of vitamin C (l-ascorbic acid) on anthocyanins is a known fact in beverage systems. In this study, the effects of various liposomal systems, including black carrot extract (0.1%, 0.2%, 0.4% w/w) and lecithin (1%, 2%, 4% w/w), on the color and degradation of anthocyanin in different ascorbic acid (0.01%, 0.025%, 0.05%, 0.1% w/w) concentrations were examined via UV/VIS spectroscopy and visual control of the color. The physical characteristics of the liposomal systems resulted in particle diameters of 41-46 nm and zeta-potentials of (-23)-(-20) mV. The encapsulation efficiencies of the liposomal systems increased up to 50% with increasing lecithin concentrations. The encapsulation of black carrot extract in liposomes enhanced the color and stability of the anthocyanins during storage. This study showed that the degradation of anthocyanins due to ascorbic acid can be reduced by liposomes in aqueous solutions.
Escobedo-Avellaneda, Zamantha; Pérez-Simón, Izaskun; Lavilla-Martín, María; Baranda-González, Ana; Welti-Chanes, Jorge
2017-03-01
A new approach to the use of high hydrostatic pressure is its combination with high and intermediate temperatures applied to obtain safe foods of high quality. The effect of high hydrostatic pressure on color, residual polyphenol oxidase and pectin methylesterase activity, and total phenolic and l-ascorbic acid contents of orange-strawberry-banana beverages was evaluated. Beverages were treated at 500 and 600 MPa at 19-64 ℃ during 2-10 min. The effect of the come up time was also evaluated and results were compared with the untreated and the thermally processed (80 ℃/7 min) products. Untreated beverages had total phenolic content of 210.2±12.3 mg gallic acid/100 g and 19.1 ± 0.6 mg l-ascorbic acid/100 g. For most high hydrostatic pressure treatment conditions, total phenolic content, l-ascorbic acid, and color did not change significantly. Maximum levels of inactivation of polyphenol oxidase and pectin methylesterase were 96.2 and 48% at 600 MPa/64 ℃/10 min, while the thermal treatment led to inactivation of 99.6 and 94.1% of both enzymes, but with negative color changes. l-ascorbic acid content was slightly decreased with the thermal treatment while total phenolic content was not affected. High hydrostatic pressure treatments of beverages at 600 MPa/64 ℃/10 min are recommended to retain maximal total phenolic content and l-ascorbic acid and achieve an acceptable polyphenol oxidase inactivation level.
Bankaji, I; Caçador, I; Sleimi, N
2015-09-01
Environmental pollution by trace metal elements (TMEs) is a serious problem worldwide, increasing in parallel with the development of human technology. The present research aimed to examine the response of halophytic species Suaeda fruticosa to oxidative stress posed by combined abiotic stresses. Plants have been grown for 1 month with an irrigation solution supplemented with 200 mM NaCl and 400 μM Cd(2+) or 400 μM Cu(2+). The level of glutathione (GSH), phytochelatins (PCs), and antioxidant enzyme activities [ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and catalase (CAT)] as well as lipid peroxidation was studied to see the stress exerted by the TME and the level of tolerance and detoxification strategy adopted by S. fruticosa. Relative growth rate (RGR) decreased under Cd(2+) stress in this species, whereas Cu(2+) did not have any impact on S. fruticosa performance. Cd(2+) or Cu(2+) enhanced malondialdehyde, suggesting reactive oxygen species-induced disruption of membrane integrity and oxidative stress in S. fruticosa. On the other hand, the activities of the antioxidant enzymes CAT, APX, and GPX diminished and mineral nutrition was disturbed by metal stress. S. fruticosa was able to synthesize PCs in response to TME toxicity. However, data indicate that GSH levels underwent a significant decrease in roots and leaves of S. fruticosa stressed by Cd(2+) or Cu(2+). The GSH depletion accompanied by the increase of phytochelatin concentration suggests the involvement of GSH in the synthesis of phytochelatins.
Oxidation of ascorbic acid by a (salen)ruthenium(VI) nitrido complex in aqueous solution.
Wang, Qian; Man, Wai-Lun; Lam, William W Y; Lau, Tai-Chu
2014-12-25
The oxidation of ascorbic acid (H2A) by [Ru(VI)(N)(L)(MeOH)](+) in aqueous acidic solutions has the following stoichiometry: 2[Ru(VI)(N)] + 3H2A → 2[Ru(III)(NH2-HA)](+) + A. Mechanisms involving HAT/N-rebound at low pH (≤2) and nucleophilic attack at the nitride at high pH (≥5) are proposed.
Rodríguez, Marcela C; Rubianes, María D; Rivas, Gustavo A
2008-11-01
We report the highly selective and sensitive voltammetric dopamine quantification in the presence of ascorbic acid and serotonin by using glassy carbon electrodes modified with a dispersion of multi-wall carbon nanotubes (MWCNT) in polyethylenimine, PEI (GCE/MWCNT-PEI). The electrocatalytic activity of the MWCNT deposited on the glassy carbon electrode has allowed an important decrease in the overvoltages for the oxidation of ascorbic acid and dopamine, making possible a clear definition of dopamine, serotonin and ascorbic acid oxidation processes. The sensitivities for dopamine in the presence and absence of 1.0 mM ascorbic acid and serotonin were (2.18 +/- 0.03) x 10(5) microAM(-1) (r = 0.9998); and (2.10 +/- 0.07) x 10(5) miroAM(-1) (r=0.9985), respectively, demonstrating the excellent performance of the GCE/MWCNT-PEI. The detection limit for dopamine in the mixture was 9.2 x 10(-7) M. The R. S. D. for the determination of 50 microM dopamine using four different electrodes was 3.9% when modified with the same MWCNT/PEI dispersion, and 4.6% when using four different dispersions. The modified electrode has been successfully applied for recovery assays of dopamine in human blood serum. Therefore, the new sensor represents an interesting and promising alternative for the electrochemical quantification of neurotransmitters and other analytes of clinical interest.
Kriaa, Mouna; Ouhibi, Rabeb; Graba, Héla; Besbes, Souhail; Jardak, Mohamed; Kammoun, Radhouane
2016-02-01
The impact of Aspergillus tubingensis glucose oxidase (GOD) in combination with α-amylase and ascorbic acid on dough properties, qualities and shelf life of bread was investigated. Regression models of alveograph and texture parameters of dough and bread were adjusted. Indeed, the mixture of GOD (44 %) and ascorbic acid (56 %) on flour containing basal improver showed its potential as a corrective action to get better functional and rheological properties of dough and bread texture. Furthermore, wheat flour containing basal additives and enriched with GOD (63.8 %), ascorbic acid (32 %) and α- amylase (4.2 %) led to high technological bread making parameters, to decrease the crumb firmness and chewiness and to improve elasticity, adhesion, cohesion and specific volume of bread. In addition to that, the optimized formulation addition significantly reduced water activity and therefore decreased bread susceptibility to microbial spoilage. These findings demonstrated that GOD could partially substitute not only ascorbic acid but also α-amylase. The generated models allowed to predict the behavior of wheat flour containing additives in the range of values tested and to define the additives formula that led to desired rheological and baking qualities of dough. This fact provides new perspectives to compensate flour quality deficiencies at the moment of selecting raw materials and technological parameters reducing the production costs and facilitating gluten free products development. Graphical abstractᅟ.
Onoda, Atsuto; Takeda, Ken; Umezawa, Masakazu
2018-09-01
Recent cohort studies have revealed that perinatal exposure to particulate air pollution, including carbon-based nanoparticles, increases the risk of brain disorders. Although developmental neurotoxicity is currently a major issue in the toxicology of nanoparticles, critical information for understanding the mechanisms underlying the developmental neurotoxicity of airway exposure to carbon black nanoparticle (CB-NP) is still lacking. In order to investigate these mechanisms, we comprehensively analyzed fluctuations in the gene expression profile of the frontal cortex of offspring mice exposed maternally to CB-NP, using microarray analysis combined with Gene Ontology information. We also analyzed differences in the enriched function of genes dysregulated by maternal CB-NP exposure with and without ascorbic acid pretreatment to refine specific alterations in gene expression induced by CB-NP. Total of 652 and 775 genes were dysregulated by CB-NP in the frontal cortex of 6- and 12-week-old offspring mice, respectively. Among the genes dysregulated by CB-NP, those related to extracellular matrix structural constituent, cellular response to interferon-beta, muscle organ development, and cysteine-type endopeptidase inhibitor activity were ameliorated by ascorbic acid pretreatment. A large proportion of the dysregulated genes, categorized in hemostasis, growth factor, chemotaxis, cell proliferation, blood vessel, and dopaminergic neurotransmission, were, however, not ameliorated by ascorbic acid pretreatment. The lack of effects of ascorbic acid on the dysregulation of genes following maternal CB-NP exposure suggests that the contribution of oxidative stress to the effects of CB-NP on these biological functions, i.e., cell migration and proliferation, blood vessel maintenance, and dopaminergic neuron system, may be limited. At least, ascorbic acid pretreatment is hardly likely to be able to protect the brain of offspring from developmental neurotoxicity of CB-NP. The present study provides insight into the mechanisms underlying developmental neurotoxicity following maternal nanoparticle exposure. Copyright © 2018 Elsevier B.V. All rights reserved.
Improving iron absorption from a Peruvian school breakfast meal by adding ascorbic acid or Na2EDTA.
Davidsson, L; Walczyk, T; Zavaleta, N; Hurrell, R
2001-02-01
Iron-fortified school breakfasts have been introduced in Peru to combat childhood iron deficiency. We evaluated whether iron absorption from a school breakfast meal was improved by increasing the ascorbic acid content or by adding an alternative enhancer of iron absorption, Na2EDTA. In a crossover design, iron absorption from test meals was evaluated by erythrocyte incorporation of 58Fe and 57Fe. The test meals (wheat bread and a drink containing cereal, milk, and soy) contained 14 mg added Fe (as ferrous sulfate) including 2.0-2.6 mg 58Fe or 4.0-7.0 mg 57Fe. Geometric mean iron absorption increased significantly from 5.1% to 8.2% after the molar ratio of ascorbic acid to fortification iron was increased from 0.6:1 to 1.6:1 (P < 0.01; n = 9). Geometric mean iron absorption increased significantly from 2.9% to 3.8%, from 2.2% to 3.5%, and from 2.4% to 3.7% after addition of Na2EDTA at molar ratios relative to fortification iron of 0.3:1, 0.7:1, and 1:1, respectively, compared with test meals containing no added enhancers (P < 0.01; n = 10 for all). Iron absorption after addition of ascorbic acid (molar ratio 0.6:1) was not significantly different from that after addition of Na2EDTA (molar ratio 0.7:1). Ascorbic acid and Na2EDTA did not differ significantly in their enhancing effects on iron absorption at molar ratios of 0.6:1 to 0.7:1 relative to fortification iron. Additional ascorbic acid (molar ratio 1.6:1) increased iron absorption significantly. Increasing the molar ratio of Na2EDTA to fortification iron from 0.3:1 to 1:1 had no effect on iron absorption.
Kucinska-Lipka, J; Gubanska, I; Strankowski, M; Cieśliński, H; Filipowicz, N; Janik, H
2017-06-01
In this paper we described synthesis and characteristic of obtained hydrophilic polyurethanes (PURs) modified with ascorbic acid (commonly known as vitamin C). Such materials may find an application in the biomedical field, for example in the regenerative medicine of soft tissues, according to ascorbic acid wide influence on tissue regeneration Flora (2009), Szymańska-Pasternak et al. (2011), Taikarimi and Ibrahim (2011), Myrvik and Volk (1954), Li et al. (2001), Cursino et al. (2005) . Hydrophilic PURs were obtained with the use of amorphous α,ω-dihydroxy(ethylene-butylene adipate) (dHEBA) polyol, 1,4-butanediol (BDO) chain extender and aliphatic 4,4'-methylenebis(cyclohexyl isocyanate) (HMDI). HMDI was chosen as a nontoxic diisocyanate, suitable for biomedical PUR synthesis. Modification with l-ascorbic acid (AA) was performed to improve obtained PUR materials biocompatibility. Chemical structure of obtained PURs was provided and confirmed by Fourier transform infrared spectroscopy (FTIR) and Proton nuclear magnetic resonance spectroscopy ( 1 HNMR). Differential scanning calorimetry (DSC) was used to indicate the influence of ascorbic acid modification on such parameters as glass transition temperature, melting temperature and melting enthalpies of obtained materials. To determine how these materials may potentially behave, after implementation in tissue, degradation behavior of obtained PURs in various chemical environments, which were represented by canola oil, saline solution, distilled water and phosphate buffered saline (PBS) was estimated. The influence of AA on hydrophilic-hydrophobic character of obtained PURs was established by contact angle study. This experiment revealed that ascorbic acid significantly improves hydrophilicity of obtained PUR materials and the same cause that they are more suitable candidates for biomedical applications. Good hemocompatibility characteristic of studied PUR materials was confirmed by the hemocompatibility test with human blood. Microbiological tests were carried out to indicate the microbiological sensitivity of obtained PURs. Results of performed studies showed that obtained AA-modified PUR materials may find an application in soft tissue regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.
Skrha, Jan; Prázný, Martin; Hilgertová, Jirina; Weiserová, Hana
2003-03-01
Alpha-tocopherol and ascorbic acid form a part of scavenger system influencing the level of oxidative stress in diabetes mellitus. The aim of this study was to evaluate serum concentrations of alpha-tocopherol and ascorbic acid in Type 1 and Type 2 diabetes mellitus and to compare them with the presence of vascular complications as well as with oxidative stress and endothelial dysfunction. A total of 38 Type 1 and 62 Type 2 diabetic patients were subdivided into those with and without angiopathy. Serum alpha-tocopherol and ascorbic acid concentrations were estimated in all patients and in 38 healthy persons. Their results were compared with diabetes control, with oxidative stress measured by plasma malondialdehyde and with endothelial dysfunction estimated by serum N-acetyl-beta-glucosaminidase activity. In addition, the differences in biochemical variables were compared between patients with and without angiopathy. Serum alpha-tocopherol related to the sum of cholesterol and triglyceride concentrations (AT/CHT ratio) was significantly lower in diabetic patients with macroangiopathy than in those without vascular changes (p<0.05). Serum ascorbic acid levels were significantly lower only in Type 2 diabetic patients with macroangiopathy as compared with healthy controls as well as with patients without vascular disease (p<0.01). Positive relationship was observed between serum alpha-tocopherol and cholesterol or triglyceride concentrations in both Type 1 and Type 2 diabetic patients. The presence of oxidative stress together with endothelial dysfunction measured by N-acetyl-beta-glucosaminidase activity was accompanied by lower AT/CHT ratio (p<0.005) in Type 2 diabetic patients. Diabetic patients with proven angiopathy or with advanced oxidative stress and endothelial dysfunction have significantly lower AT/CHT ratio and ascorbic acid concentration in serum. Their low concentrations may participate at the increased level of oxidative stress in these individuals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong Lijun; Li Qing, E-mail: qli@swu.edu.cn; Lin Hua
Novel flower-like silver nanoarchitectures were synthesized via a facile and environmentally benign route in the presence of citric acid and ascorbic acid. The flower-like structures are composed of nano-petals of ca. 20 nm in thickness. The products were characterized with X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The growth mechanism of flower-like silver nanoarchitectures involves a film-fold process. Some crucial factors affect the nanocrchitectures growth, such as, pH, the concentration of citric acid, and the concentration of ascorbic acid, have also been discussed.
Cruz-Álvarez, Silvia; Santana-Martínez, Ricardo; Avila-Chávez, Euclides; Barrera-Oviedo, Diana; Hernández-Pando, Rogelio; Pedraza-Chaverri, José; Maldonado, Perla D
2017-05-14
Apocynin (APO) is a well-known NADPH oxidase (NOX) inhibitor. However, several studies have reported its ability to increase glutathione (GSH) levels. Due to GSH is a major non-enzymatic antioxidant in brain, the aim of this study was to evaluate, in the striatum of control and quinolinic acid (QUIN) injected rats, the effect of APO administration on: (1) GSH levels, (2) activity of some enzymes involved in the GSH metabolism, and (3) nuclear factor erythroid-2-related factor 2 (Nrf2) mRNA levels. Animals received QUIN 240nmol in right striatum and APO (5mg/kg, i.p.), 30min before and 60min after intrastriatal injection. APO treatment prevented the QUIN-induced histological damage to the striatum. In control rats, APO treatment increased GSH and Nrf2 mRNA levels and the activities of gamma-glutamylcysteine ligase (γ-GCL), glutathione-S-transferase (GST) and glutathione peroxidase (GPx). On the other hand, APO treatment prevented the QUIN-induced decrease in GSH and Nrf2 levels, and in γ-GCL and GPx activities. These data indicate that APO is able to increase GSH levels and the activity of proteins involved in its metabolism, which could be associated with its ability to increase the Nrf2 mRNA levels. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
den Braver, Michiel W; Vermeulen, Nico P E; Commandeur, Jan N M
2017-03-01
Modification of cellular macromolecules by reactive drug metabolites is considered to play an important role in the initiation of tissue injury by many drugs. Detection and identification of reactive intermediates is often performed by analyzing the conjugates formed after trapping by glutathione (GSH). Although sensitivity of modern mass spectrometrical methods is extremely high, absolute quantification of GSH-conjugates is critically dependent on the availability of authentic references. Although 1 H NMR is currently the method of choice for quantification of metabolites formed biosynthetically, its intrinsically low sensitivity can be a limiting factor in quantification of GSH-conjugates which generally are formed at low levels. In the present study, a simple but sensitive and generic method for absolute quantification of GSH-conjugates is presented. The method is based on quantitative alkaline hydrolysis of GSH-conjugates and subsequent quantification of glutamic acid and glycine by HPLC after precolumn derivatization with o-phthaldialdehyde/N-acetylcysteine (OPA/NAC). Because of the lower stability of the glycine OPA/NAC-derivate, quantification of the glutamic acid OPA/NAC-derivate appeared most suitable for quantification of GSH-conjugates. The novel method was used to quantify the concentrations of GSH-conjugates of diclofenac, clozapine and acetaminophen and quantification was consistent with 1 H NMR, but with a more than 100-fold lower detection limit for absolute quantification. Copyright © 2017. Published by Elsevier B.V.
Liu, S M; Sun, H X; Jose, C; Murray, A; Sun, Z H; Briegel, J R; Jacob, R; Tan, Z L
2011-02-01
The interaction between blood glutathione (GSH) and supplementation of selenium (Se, 2.5 mg/kg diet) on meat colour and fatty acids concentrations was studied. Forty eight Merino lambs selected for high blood GSH (HGSH) or low GSH (LGSH) concentration were used. They were fed individually with or without Se supplement for 8 weeks. There were interactions (P<0.05) between GSH and Se on the colour stability (as w630 nm/w580 nm ratio) of m. longissimus (LD), m. semimembranosus (SM) and m. semitendinosus. Without Se supplementation the ratio was higher in HGSH than LGSH group. However, the difference was reduced with Se supplement. Polyunsaturated and n-3 fatty acids in SM and LD were higher in HGSH than in LGSH group (P<0.05), and did not change with Se supplement. Se supplementation increased Se content in LD (P<0.001) and the lungs (P<0.05), but had no influence in the heart. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.
The effect of intravitreal injection of vehicle solutions on form deprivation myopia in tree shrews.
Ward, Alexander H; Siegwart, John T; Frost, Michael R; Norton, Thomas T
2016-04-01
lntravitreal injection of substances dissolved in a vehicle solution is a common tool used to assess retinal function. We examined the effect of injection procedures (three groups) and vehicle solutions (four groups) on the development of form deprivation myopia (FDM) in juvenile tree shrews, mammals closely related to primates, starting at 24 days of visual experience (about 45 days of age). In seven groups (n = 7 per group), the myopia produced by monocular form deprivation (FD) was measured daily for 12 days during an 11-day treatment period. The FD eye was randomly selected; the contralateral eye served as an untreated control. The refractive state of both eyes was measured daily, starting just before FD began (day 1); axial component dimensions were measured on day 1 and after eleven days of treatment (day 12). Procedure groups: the myopia (treated eye - control eye refraction) in the FD group was the reference. The sham group only underwent brief daily anesthesia and opening of the conjunctiva to expose the sclera. The puncture group, in addition, had a pipette inserted daily into the vitreous. In four vehicle groups, 5 μL of vehicle was injected daily. The NaCl group received 0.85% NaCl. In the NaCl + ascorbic acid group, 1 mg/mL of ascorbic acid was added. The water group received sterile water. The water + ascorbic acid group received water with ascorbic acid (1 mg/mL). We found that the procedures associated with intravitreal injections (anesthesia, opening of the conjunctiva, and puncture of the sclera) did not significantly affect the development of FDM. However, injecting 5 μL of any of the four vehicle solutions slowed the development of FDM. NaCl had a small effect; myopia development in the last 6 days (-0.15 ± 0.08 D/day) was significantly less than in the FD group (-0.55 ± 0.06 D/day). NaCl + Ascorbic acid further slowed the development of FDM on several treatment days. H2O (-0.09 ± 0.05 D/day) and H2O + ascorbic acid (-0.08 ± 0.05 D/day) both almost completely blocked myopia development. The treated eye vitreous chamber elongation, compared with the control eye, in all groups was consistent with the amount of myopia. When FD continued (days 12-16) without injections in the water and water + ascorbic acid groups, the rate of myopia development quickly increased. Thus, it appears the vehicles affected retinal signaling rather than causing damage. The effect of water and water + ascorbic acid may be due to reduced osmolality or ionic concentration near the tip of the injection pipette. The effect of ascorbic acid, compared to NaCl alone, may be due to its reported dopaminergic activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Influence of dicarbonyls on kinetic characteristics of glutathione peroxidase.
Lankin, V Z; Shumaev, K B; Tikhaze, A K; Kurganov, B I
2017-07-01
Se-containing glutathione peroxidase (GSH-Px) is one of the key enzymes of the body's antioxidant system. The kinetic characteristics of GSH-Px (substrate is tert-butyl hydroperoxide) after modification of the enzyme by various concentrations of natural dicarbonyls (glyoxal, methylglyoxal, malonic dialdehyde) were studied. It was shown that dicarbonyls affected both K m and V max for GSH-Px. It is suggested that the effect of various dicarbonyls on GSH-Px depends on the molecular mechanisms of their interaction with the amino acid residues of the enzyme.
Loscos, Jorge; Matamoros, Manuel A; Becana, Manuel
2008-03-01
Ascorbate and glutathione are major antioxidants and redox buffers in plant cells but also play key functions in growth, development, and stress responses. We have studied the regulation of ascorbate and homoglutathione biosynthesis in common bean (Phaseolus vulgaris) nodules under stress conditions and during aging. The expression of five genes of the major ascorbate biosynthetic pathway was analyzed in nodules, and evidence was found that L-galactono-1,4-lactone dehydrogenase, the last committed step of the pathway, is posttranscriptionally regulated. Also, in nodules under stress conditions, gamma-glutamylcysteine synthetase was translationally regulated, but homoglutathione synthetase (mRNA and activity) and homoglutathione (content and redox state) were not affected. Most interestingly, in nodules exposed to jasmonic acid, dehydroascorbate reductase activity was posttranslationally suppressed, ascorbate oxidase showed strong transcriptional up-regulation, and dehydroascorbate content increased moderately. These changes were not due to a direct effect of jasmonic acid on the enzyme activities but might be part of the signaling pathway in the response of nodules to stress. We determined ascorbate, homoglutathione, and ascorbate-glutathione pathway enzyme activities in two senescing stages of nodules undergoing oxidative stress. When all parameters were expressed on a nodule fresh weight basis, we found that in the first stage ascorbate decreased by 60% and homoglutathione and antioxidant activities remained fairly constant, whereas in the second stage ascorbate and homoglutathione, their redox states, and their associated enzyme activities significantly decreased. The coexistence in the same plants of nodules at different senescence stages, with different ascorbate concentrations and redox states, indicates that the life span of nodules is in part controlled by endogenous factors and points to ascorbate as one of the key players.
Ascorbic acid: Chemistry, biology and the treatment of cancer☆
Du, Juan; Cullen, Joseph J.; Buettner, Garry R.
2013-01-01
Since the discovery of vitamin C, the number of its known biological functions is continually expanding. Both the names ascorbic acid and vitamin C reflect its antiscorbutic properties due to its role in the synthesis of collagen in connective tissues. Ascorbate acts as an electron-donor keeping iron in the ferrous state thereby maintaining the full activity of collagen hydroxylases; parallel reactions with a variety of dioxygenases affect the expression of a wide array of genes, for example via the HIF system, as well as via the epigenetic landscape of cells and tissues. In fact, all known physiological and biochemical functions of ascorbate are due to its action as an electron donor. The ability to donate one or two electrons makes AscH− an excellent reducing agent and antioxidant. Ascorbate readily undergoes pH-dependent autoxidation producing hydrogen peroxide (H2O2). In the presence of catalytic metals this oxidation is accelerated. In this review, we show that the chemical and biochemical nature of ascorbate contribute to its antioxidant as well as its prooxidant properties. Recent pharmacokinetic data indicate that intravenous (i.v.) administration of ascorbate bypasses the tight control of the gut producing highly elevated plasma levels; ascorbate at very high levels can act as prodrug to deliver a significant flux of H2O2 to tumors. This new knowledge has rekindled interest and spurred new research into the clinical potential of pharmacological ascorbate. Knowledge and understanding of the mechanisms of action of pharmacological ascorbate bring a rationale to its use to treat disease especially the use of i.v. delivery of pharmacological ascorbate as an adjuvant in the treatment of cancer. PMID:22728050
Micheli, L; Cerretani, D; Collodel, G; Menchiari, A; Moltoni, L; Fiaschi, A I; Moretti, E
2016-05-01
This study was aimed to assess the antioxidant enzymatic and non-enzymatic compounds in semen of infertile men. Seventy-four infertile patients were grouped according to their clinical diagnosis: genitourinary infection, varicocele, idiopathic infertility. Semen samples of fertile men represent the control. Semen characteristics were evaluated by light and transmission electron microscopy (TEM). TEM data was quantified with a mathematical formula, which provides numerical scores. Spectrophotometric and HPLC methods were used to measure the amount of reduced (GSH), oxidised glutathione (GSSG), ascorbic acid (AA) and malondialdehyde (MDA, marker of lipid peroxidation) and the activity of glutathione reductase, catalase (CAT), glutathione peroxidase. Infertile groups showed significantly decreased values of sperm parameters vs. In infection and varicocele groups, the seminal MDA levels were significantly increased when compared to controls (p < 0.001), indicating an alteration of oxidative status and a peroxidative damage. In infection and varicocele groups, AA levels were reduced (p < 0.05) vs. control; in the varicocele group, the GSH levels were also decreased (p < 0.05). Significantly higher CAT activity was observed in infection and varicocele groups vs. fertile men (p < 0.001 and p < 0.05 respectively). The GSH/GSSG ratio was significantly decreased in varicocele and idiopathic infertility groups vs. control (p < 0.01). The study of the alteration of a single parameter of oxidative stress or of the antioxidant system may not have a relevant clinical value to estimate male fertilising potential and the background of infertility causes, since complex and multifactorial mechanisms are involved in different pathologies. In our study, each pathology is characterised by a definite pattern of markers such as MDA and enzymatic and non-enzymatic antioxidant compounds. In the different pathologies related to infertility, the identification of the complex of involved parameters could be useful in the diagnosis, prognosis and in the choice of a possible treatment such as specific antioxidant supplements. © 2016 American Society of Andrology and European Academy of Andrology.
Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells.
Ahamed, Maqusood; Akhtar, Mohd Javed; Siddiqui, Maqsood A; Ahmad, Javed; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; AlSalhi, Mohamad S; Alrokayan, Salman A
2011-05-10
Due to the interesting magnetic and electrical properties with good chemical and thermal stabilities, nickel ferrite nanoparticles are being utilized in many applications including magnetic resonance imaging, drug delivery and hyperthermia. Recent studies have shown that nickel ferrite nanoparticles produce cytotoxicity in mammalian cells. However, there is very limited information concerning the toxicity of nickel ferrite nanoparticles at the cellular and molecular level. The aim of this study was to investigate the cytotoxicity, oxidative stress and apoptosis induction by well-characterized nickel ferrite nanoparticles (size 26 nm) in human lung epithelial (A549) cells. Nickel ferrite nanoparticles induced dose-dependent cytotoxicity in A549 cells demonstrated by MTT, NRU and LDH assays. Nickel ferrite nanoparticles were also found to induce oxidative stress evidenced by generation of reactive oxygen species (ROS) and depletion of antioxidant glutathione (GSH). Further, co-treatment with the antioxidant L-ascorbic acid mitigated the ROS generation and GSH depletion due to nickel ferrite nanoparticles suggesting the potential mechanism of oxidative stress. Quantitative real-time PCR analysis demonstrated that following the exposure of A549 cells to nickel ferrite nanoparticles, the level of mRNA expressions of cell cycle checkpoint protein p53 and apoptotic proteins (bax, caspase-3 and caspase-9) were significantly up-regulated, whereas the expression of anti-apoptotic proteins (survivin and bcl-2) were down-regulated. Moreover, activities of caspase-3 and caspase-9 enzymes were also significantly higher in nickel ferrite nanoparticles exposed cells. To the best of our knowledge this is the first report showing that nickel ferrite nanoparticles induced apoptosis in A549 cells through ROS generation and oxidative stress via p53, survivin, bax/bcl-2 and caspase pathways. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Pt(IV) complexes as prodrugs for cisplatin.
Shi, Yi; Liu, Shu-An; Kerwood, Deborah J; Goodisman, Jerry; Dabrowiak, James C
2012-02-01
The antitumor effects of platinum(IV) complexes, considered prodrugs for cisplatin, are believed to be due to biological reduction of Pt(IV) to Pt(II), with the reduction products binding to DNA and other cellular targets. In this work we used pBR322 DNA to capture the products of reduction of oxoplatin, c,t,c-[PtCl(2)(OH)(2)(NH(3))(2)], 3, and a carboxylate-modified analog, c,t,c-[PtCl(2)(OH)(O(2)CCH(2)CH(2)CO(2)H)(NH(3))(2)], 4, by ascorbic acid (AsA) or glutathione (GSH). Since carbonate plays a significant role in the speciation of platinum complexes in solution, we also investigated the effects of carbonate on the reduction/DNA-binding process. In pH 7.4 buffer in the absence of carbonate, both 3 and 4 are reduced by AsA to cisplatin (confirmed using ((195))Pt NMR), which binds to and unwinds closed circular DNA in a manner consistent with the formation of the well-known 1, 2 intrastrand DNA crosslink. However, when GSH is used as the reducing agent for 3 and 4, ((195))Pt NMR shows that cisplatin is not produced in the reaction medium. Although the Pt(II) products bind to closed circular DNA, their effect on the mobility of Form I DNA is different from that produced by cisplatin. When physiological carbonate is present in the reduction medium, ((13))C NMR shows that Pt(II) carbonato complexes form which block or impede platinum binding to DNA. The results of the study vis-à-vis the ability of the Pt(IV) complexes to act as prodrugs for cisplatin are discussed. Copyright © 2011 Elsevier Inc. All rights reserved.
Permeation enhancing polymers in oral delivery of hydrophilic macromolecules: thiomer/GSH systems.
Bernkop-Schnürch, A; Kast, C E; Guggi, D
2003-12-05
Thiolated polymers (= thiomers) in combination with reduced glutathione (GSH) were shown to improve the uptake of hydrophilic macromolecules from the GI tract. The mechanism responsible for this permeation enhancing effect seems to be based on the thiol groups of the polymer. These groups inhibit protein tyrosine phosphatase, being involved in the closing process of tight junctions, via a GSH-mediated mechanism. The strong permeation enhancing effect of various thiomer/GSH systems such as poly(acrylic acid)-cysteine/GSH or chitosan-4-thio-butylamidine (chitosan-TBA)/GSH could be shown via permeation studies on freshly excised intestinal mucosa in Ussing-type chambers. Furthermore, the efficacy of the system was also shown in vivo. By utilizing poly(acrylic acid)-cysteine/GSH as carrier matrix, an absolute oral bioavailability for low molecular weight heparin of 19.9 +/- 9.3% and a pharmacological efficacy--calculated on the basis of the areas under the reduction in serum glucose levels of the oral formulation versus subcutaneous (s.c.) injection-for orally given insulin of 7% could be achieved. The incorporation of salmon calcitonin in chitosan-TBA/GSH led on the other hand to a pharmacological efficacy based on the areas under the reduction in plasma calcium levels of the oral thiomer formulation versus intravenous (i.v.) injection of 1.3%. Because of this high efficacy (i), the possibility to combine thiomer/GSH systems with additional low molecular weight permeation enhancers acting in other ways (ii) and minimal toxicological risks as these polymers are not absorbed from the GI tract (iii), thiolated polymers represent a promising novel tool for the oral administration of hydrophilic macromolecules.
2012-01-01
example, probiotics (Kailasapathy, 2002; Rokka and Rantamäki, 2010), folic acid (Madziva et al., 2006) and ascorbic acid (Wijaya et al., 2011...Kailasapathy, K. 2002. Microencapsulation of Probiotic Bacteria: Technology and Potential Applications. Current Issues in Intestinal Microbiology, 3: 39-48...Re´, M. I. 1998. Microencapsulation by spray drying. Drying Technology, 16:1195–1236. Rokka, S., and Rantamäki, P. 2010. Protecting probiotic
Leboy, P S; Vaias, L; Uschmann, B; Golub, E; Adams, S L; Pacifici, M
1989-10-15
During the process of endochondral bone formation, proliferating chondrocytes give rise to hypertrophic chondrocytes, which then deposit a mineralized matrix to form calcified cartilage. Chondrocyte hypertrophy and matrix mineralization are associated with expression of type X collagen and the induction of high levels of the bone/liver/kidney isozyme of alkaline phosphatase. To determine what role vitamin C plays in these processes, chondrocytes derived from the cephalic portion of 14-day chick embryo sternae were grown in the absence or presence of exogenous ascorbic acid. Control untreated cells displayed low levels of type X collagen and alkaline phosphatase activity throughout the culture period. However, cells grown in the presence of ascorbic acid produced increasing levels of alkaline phosphatase activity and type X collagen mRNA and protein. Both alkaline phosphatase activity and type X collagen mRNA levels began to increase within 24 h of ascorbate treatment; by 9 days, the levels of both alkaline phosphatase activity and type X collagen mRNA were 15-20-fold higher than in non-ascorbate-treated cells. Ascorbate treatment also increased calcium deposition in the cell layer and decreased the levels of types II and IX collagen mRNAs; these effects lagged significantly behind the elevation of alkaline phosphatase and type X collagen. Addition of beta-glycerophosphate to the medium increased calcium deposition in the presence of ascorbate but had no effect on levels of collagen mRNAs or alkaline phosphatase. The results suggest that vitamin C may play an important role in endochondral bone formation by modulating gene expression in hypertrophic chondrocytes.
USDA-ARS?s Scientific Manuscript database
To determine if membrane-bound G-proteins are involved in the regulation of defense responses against ozone in the leaf apoplast, the apoplastic concentrations of ascorbic acid and phenolic glycosides in Arabidopsis thaliana L. lines with null mutations in the alpha- and beta-subunits were compared ...
Methylene Blue-Ascorbic Acid: An Undergraduate Experiment in Kinetics.
ERIC Educational Resources Information Center
Snehalatha, K. C.; And Others
1997-01-01
Describes a laboratory exercise involving methylene blue and L-ascorbic acid in a simple clock reaction technique to illustrate the basic concepts of chemical kinetics. If stock solutions are supplied and each type of experiment takes no more than half an hour, the entire investigation can be completed in three practical sessions of three hours…
USDA-ARS?s Scientific Manuscript database
The hydrolytic and oxidative stability of L-(+)-ascorbic acid (AA) into plasticized pectin films were separately studied in view of preserving vitamin C activity and/or to achieve localized antioxidant activity at pharmaceutical and food interfaces. Films were made with each one of the enzymatically...
USDA-ARS?s Scientific Manuscript database
Vitamin C (ascorbic acid) is an essential micronutrient involved in several physiological processes such as growth, reproduction, and immune response. Requirements of vitamin C during gamete formation and early life stages of catfish are not known. Ascorbic acid (1 mg/mL/kg BW) was administered in...
Measuring Vitamin C Content of Commercial Orange Juice Using a Pencil Lead Electrode
ERIC Educational Resources Information Center
King, David; Friend, Jeffrey; Kariuki, James
2010-01-01
A pencil lead successfully served as an electrode for the determination of ascorbic acid in commercial orange juice. Cyclic voltammetry was used as an electrochemical probe to measure the current produced from the oxidation of ascorbic acid with a variety of electrodes. The data demonstrate that the less expensive pencil lead electrode gives…
USDA-ARS?s Scientific Manuscript database
Leafy Brassica crops: collard (Brassica oleracea L.), mustard (B. juncea L.) and turnip (B. rapa) greens are important commercial and culinary vegetables; especially in the southern United States. However, almost no information on essential human-health vitamins [ascorbic acid (vit C), folate (vit...
Reactivation of Breast Cancer Micrometastases by Senescent Bone Marrow Stroma
2012-07-01
diluted to different dilutions with MEM containing 15% FBS/Penn/Strep, 0.28 mM L-Ascorbic Acid 2-Phosphate and 10 mM β- Glycerophosphate and 1 ml was added...MEM containing 15% FBS/Penn/Strep, 0.28 mM L-Ascorbic Acid 2-Phosphate and 10 mM β- Glycerophosphate . Mouse osteoclasts produced numerous, measurable
Development of a Novel Synthetic Drug for Osteoporosis and Fracture Healing
2014-09-01
jlg/ml of ascorbic acid (Wako Chemicals, Rich .. ond, VA, USA) and 5 mi\\1. ~- glycerophosphate (Sigma) were added. The medium was changed every other...confluent, 50 lg/ml of ascorbic acid (Wako Chemicals, Richmond, VA, USA) and 5 mM b- glycerophosphate (Sigma) were added. The med- ium was changed every
Quasi elastic and inelastic neutron scattering study of vitamin C aqueous solutions
NASA Astrophysics Data System (ADS)
Migliardo, F.; Branca, C.; Magazù, S.; Migliardo, P.; Coppolino, S.; Villari, A.; Micali, N.
2002-02-01
In this paper, new results obtained by quasi elastic and inelastic neutron scattering experiments performed on vitamin C ( L-ascorbic acid)/H 2O mixtures are reported. The data analysis of the QENS measurements, by a separation of the diffusive dynamics of hydrated L-ascorbic acid from that of water, furnishes quantitative evidences of a random jump diffusion motion of vitamin C and shows that the water dynamics is strongly affected by the presence of L-ascorbic acid. Concerning the INS experiment, we are able, through the behaviour of neutron spectra across the glass transition temperature ( T g≈233 K for the vitamin C/water system), to collocate the investigated system in the Angell “strong-fragile” scheme.
Kim, Jun-Hwan; Kang, Ju-Chan
2017-05-01
Juvenile rockfish Sebastes schlegelii (mean length 10.8±1.4cm, and mean weight 31.7±3.6g) were exposed for 4 weeks with the different levels of dietary chromium (Cr 6+ ) at 0, 120 and 240mg/L and ascorbic acids (AsA) at 100, 200 and 400mg/L. Significant accumulation occurred in specific tissues and hematological parameters were altered: red blood cell count, hematocrit, and hemoglobin increased; plasma components were altered including calcium, glucose, cholesterol, total protein, glutamic oxalate transaminase, and glutamic pyruvate transaminase. However, magnesium and alkaline phosphatase concentrations were unchanged. Ascorbic acids reduced both chromium uptake into tissues and altered hematological parameters. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Olkhovych, Olga; Volkogon, Mykola; Taran, Nataliya; Batsmanova, Lyudmyla; Kravchenko, Inna
2016-04-01
The paper covers the research of copper and zinc nanoparticle effect on the content of ascorbic acid, and quantitative and qualitative composition of amino acids and acylcarnitines in Pistia stratiotes L. plants. Plant exposition to copper nanoparticles led to the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 25 %), and (3) the amount of all studied amino acids except for the glycine amino acid. At this, the amount of 5-oxoproline, arginine, leucine, ornithine, phenylalanine, proline, serine, and tyrosine was two times lower than in control plants. The reduction of the contents of 8 out of 12 investigated acylcarnitines (namely C0, C2, C3, C5, C6, C8, C16, C18:1) was observed in plants under the influence of copper nanoparticles. The result of plants incubation with zinc nanoparticles was the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 15 %), (3) the content of leucine, methionine, phenylalanine, proline, and tyrosine (more than twice), and (4) the content of 10 acylcarnitines (C0, C2, C3, C4, C5, C10, C16, C18, C18:1, C18:2). The observed reduction in amino acid contents may negatively affect plants adaptive reactions associated with de novo synthesis of stress proteins. At the same time, the decrease in the content of acylcarnitines, responsible for fatty acid transportation, may lead to the changes in the activity and direction of lipid metabolism in plants and reduce plant's ability to use free fatty acids as the oxidation substrate for cell reparation.
Long, Yue; Dong, Xin; Yuan, Yawei; Huang, Jinqiang; Song, Jiangang; Sun, Yumin; Lu, Zhijie; Yang, Liqun; Yu, Weifeng
2015-07-01
The study examined the global metabolic and some biochemical changes in rats with cholestasis induced by bile duct ligation (BDL). Serum samples were collected in male Wistar rats with BDL (n = 8) and sham surgery (n = 8) at day 3 after surgery for metabolomics analysis using a combination of reversed phase chromatography and hydrophilic interaction chromatography (HILIC) and quadrupole-time-of-flight mass spectrometry (Q-TOF MS). The serum levels of malondialdehyde (MDA), total antioxidative capacity (T-AOC), glutathione (GSH) and glutathione disulfide (GSSG), the activities of superoxide dismutase (SOD) and glutathion peroxidase (GSH-Px) were measured to estimate the oxidative stress state. Key changes after BDL included increased levels of l-phenylalanine, l-glutamate, l-tyrosine, kynurenine, l-lactic acid, LysoPC(c) (14:0), glycine and succinic acid and decreased levels of l-valine, PC(b) (19:0/0:0), taurine, palmitic acid, l-isoleucine and citric acid metabolism products. And treatment with BDL significantly decreased the levels of GSH, T-AOC as well as SOD, GSH-Px activities, and upregulated MDA levels. The changes could be mapped to metabolism of amino acids and lipids, Krebs cycle and glycolysis, as well as increased oxidative stress and decreased antioxidant capability. Our study indicated that BDL induces major changes in the metabolism of all 3 major energy substances, as well as oxidative stress.
Byshneva, L N; Senchuk, V V
2002-01-01
The effect of UV radiation in vitro on the level of ascorbate, SH-groups and glutathione reductase activity in the soluble fraction of bovine eye lens was studied. UV-Irradiation increased NADPH-oxidoreductase activity, the level of ascorbate oxidation and decreased the content of SH-groups and activity of glutathione reductase. Significant activation of the NADPH-oxidoreductase activity in the presence of ascorbate and Cu2+ was observed after UV-irradiation. It is suggested that ascorbate may play an important role in the UV-induced lens pathology.
Wu, Xuan; Li, Yan; Lin, Chen; Hu, Xiao-Yu; Wang, Leyong
2015-04-21
Novel GSH- and pH-responsive supramolecular vesicles constructed by an amphiphilic inclusion complex formed from water-soluble pillar[5]arene and lysine derivative have been successfully developed, which can efficiently encapsulate anticancer drug MTZ and show rapid MTZ-release in a simulated acidic tumor environment with high GSH concentration, and exhibit potent antitumor activity.
Preparation and evaluation of microparticles from thiolated polymers via air jet milling.
Hoyer, Herbert; Schlocker, Wolfgang; Krum, Kafedjiiski; Bernkop-Schnürch, Andreas
2008-06-01
Microparticles were formulated by incorporation of the model protein horseradish peroxidase in (thiolated) chitosan and (thiolated) poly(acrylic acid) via co-precipitation. Dried protein/polymer complexes were ground with an air jet mill and resulting particles were evaluated regarding size distribution, shape, zeta potential, drug load, protein activity, release pattern, swelling behaviour and cytotoxicity. The mean particle size distribution was 0.5-12 microm. Non-porous microparticles with a smooth surface were prepared. Microparticles from (thiolated) chitosan had a positive charge whereas microparticles from (thiolated) poly(acrylic acid) were negatively charged. The maximum protein load for microparticles based on chitosan, chitosan-glutathione (Ch-GSH), poly(acrylic acid) (PAA) and for poly(acrylic acid)-glutathione (PAA-GSH) was 7+/-1%, 11+/-2%, 4+/-0.2% and 7+/-2%, respectively. The release profile of all microparticles followed a first order release kinetic. Chitosan (0.5mg), Ch-GSH, PAA and PAA-GSH particles showed a 31.4-, 13.8-, 54.2- and a 42.2-fold increase in weight, respectively. No significant cytotoxicity could be found. Thiolated microparticles prepared by jet milling technique were shown to be stable and to have controlled drug release characteristics. After further optimizations the preparation method described here might be a useful tool for the production of protein loaded drug delivery systems.
Zhu, He; Long, Min-Hui; Wu, Jie; Wang, Meng-Meng; Li, Xiu-Yang; Shen, Hong; Xu, Jin-Di; Zhou, Li; Fang, Zhi-Jun; Luo, Yi; Li, Song-Lin
2015-12-02
Cyclophosphamide (CP), a chemotherapeutic agent, is restricted due to its side effects, especially hepatotoxicity. Ginseng has often been clinically used with CP in China, but whether and how ginseng reduces the hepatotoxicity is unknown. In this study, the hepatoprotective effects and mechanisms under the combined usage were investigated. It was found that ginseng could ameliorate CP-induced elevations of ALP, ALT, ALS, MDA and hepatic deterioration, enhance antioxidant enzymes' activities and GSH's level. Metabolomics study revealed that 33 endogenous metabolites were changed by CP, 19 of which were reversed when ginseng was co-administrated via two main pathways, i.e., GSH metabolism and primary bile acids synthesis. Furthermore, ginseng could induce expression of GCLC, GCLM, GS and GST, which associate with the disposition of GSH, and expression of FXR, CYP7A1, NTCP and MRP 3, which play important roles in the synthesis and transport of bile acids. In addition, NRF 2, one of regulatory elements on the expression of GCLC, GCLM, GS, GST, NTCP and MRP3, was up-regulated when ginseng was co-administrated. In conclusion, ginseng could alleviate CP-induced hepatotoxicity via modulating the disordered homeostasis of GSH and bile acid, which might be mediated by inducing the expression of NRF 2 in liver.
Cao, Jun; Jiang, Liping; Zhang, Xiaomei; Yao, Xiaofeng; Geng, Chengyan; Xue, Xiangxin; Zhong, Laifu
2008-01-01
Oxidative stress plays an important role during inflammatory diseases and antioxidant administration to diminish oxidative stress may arrest inflammatory processes. Boron has been implicated to modulate certain inflammatory mediators and regulate inflammatory processes. Here we investigated the role of the tripeptide glutathione (GSH) in modulating the effects of boric acid (BA) on lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-alpha) formation in THP-1 monocytes. Interestingly, we found that BA had no significant effects on both TNF-alpha production and intracellular GSH contents, whereas it could inhibit LPS-induced TNF-alpha formation and ameliorated the d,l-buthionine-S,R-sulfoximine (BSO)-induced GSH depletion. Twenty-four hour incubation with BSO induced a decrease of the intracellular GSH and an increase of TNF-alpha. Treatment with N-acetyl-l-cysteine (NAC) did not significantly increase intracellular content of GSH but significantly reduced the secretion of TNF-alpha. BSO-pretreatment for 24h enhanced the LPS-induced secretion and mRNA expression of TNF-alpha further. BA inhibited LPS-stimulated TNF-alpha formation was also seen after GSH depletion by BSO. These results indicate that BA may have anti-inflammatory effect in the LPS-stimulated inflammation and the effect of BA on TNF-alpha secretion may be induced via a thiol-dependent mechanism.
Ioannidi, Eugenia; Kalamaki, Mary S; Engineer, Cawas; Pateraki, Irene; Alexandrou, Dimitris; Mellidou, Ifigeneia; Giovannonni, James; Kanellis, Angelos K
2009-01-01
L-ascorbate (the reduced form of vitamin C) participates in diverse biological processes including pathogen defence mechanisms, and the modulation of plant growth and morphology, and also acts as an enzyme cofactor and redox status indicator. One of its chief biological functions is as an antioxidant. L-ascorbate intake has been implicated in the prevention/alleviation of varied human ailments and diseases including cancer. To study the regulation of accumulation of this important nutraceutical in fruit, the expression of 24 tomato (Solanum lycopersicon) genes involved in the biosynthesis, oxidation, and recycling of L-ascorbate during the development and ripening of fruit have been characterized. Taken together with L-ascorbate abundance data, the results show distinct changes in the expression profiles for these genes, implicating them in nodal regulatory roles during the process of L-ascorbate accumulation in tomato fruit. The expression of these genes was further studied in the context of abiotic and post-harvest stress, including the effects of heat, cold, wounding, oxygen supply, and ethylene. Important aspects of the hypoxic and post-anoxic response in tomato fruit are discussed. The data suggest that L-galactose-1-phosphate phosphatase could play an important role in regulating ascorbic acid accumulation during tomato fruit development and ripening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Lan; Saunders, R. Jesse; Drobná, Zuzana
2012-10-01
Arsenic (+ 3 oxidation state) methyltransferase (AS3MT) is the key enzyme in the pathway for methylation of arsenicals. A common polymorphism in the AS3MT gene that replaces a threonyl residue in position 287 with a methionyl residue (AS3MT/M287T) occurs at a frequency of about 10% among populations worldwide. Here, we compared catalytic properties of recombinant human wild-type (wt) AS3MT and AS3MT/M287T in reaction mixtures containing S-adenosylmethionine, arsenite (iAs{sup III}) or methylarsonous acid (MAs{sup III}) as substrates and endogenous or synthetic reductants, including glutathione (GSH), a thioredoxin reductase (TR)/thioredoxin (Trx)/NADPH reducing system, or tris (2-carboxyethyl) phosphine hydrochloride (TCEP). With either TR/Trx/NADPHmore » or TCEP, wtAS3MT or AS3MT/M287T catalyzed conversion of iAs{sup III} to MAs{sup III}, methylarsonic acid (MAs{sup V}), dimethylarsinous acid (DMAs{sup III}), and dimethylarsinic acid (DMAs{sup V}); MAs{sup III} was converted to DMAs{sup III} and DMAs{sup V}. Although neither enzyme required GSH to support methylation of iAs{sup III} or MAs{sup III}, addition of 1 mM GSH decreased K{sub m} and increased V{sub max} estimates for either substrate in reaction mixtures containing TR/Trx/NADPH. Without GSH, V{sub max} and K{sub m} values were significantly lower for AS3MT/M287T than for wtAS3MT. In the presence of 1 mM GSH, significantly more DMAs{sup III} was produced from iAs{sup III} in reactions catalyzed by the M287T variant than in wtAS3MT-catalyzed reactions. Thus, 1 mM GSH modulates AS3MT activity, increasing both methylation rates and yield of DMAs{sup III}. AS3MT genotype exemplified by differences in regulation of wtAS3MT and AS3MT/M287T-catalyzed reactions by GSH may contribute to differences in the phenotype for arsenic methylation and, ultimately, to differences in the disease susceptibility in individuals chronically exposed to inorganic arsenic. -- Highlights: ► Human AS3MT and AS3MT(M287T) require a dithiol reductant for optimal activity. ► Both enzymes methylate arsenite to tri- and pentavalent methylated metabolites. ► Neither enzyme requires glutathione (GSH) to methylate arsenite or methylarsonite. ► However, in presence of a dithiol addition of 1 mM GSH increases methylation rates. ► In presence of 1 mM GSH, AS3MT(M287T) produces more dimethylarsinite than AS3MT.« less
NASA Astrophysics Data System (ADS)
Manurung, I. R.; Rosmayati; Rahmawati, N.
2018-02-01
Antioxidant applications are expected to reduce the adverse effects of soil saline. This research was conducted in plastic house, Plant Tissue Laboratory Faculty of Agriculture and Plant Physiology Laboratory Faculty of Mathematic and Natural Science, Universitas Sumatera Utara, Medan also in Research Centers and Industry Standardization, Medan from July-December 2016. The objective of the research was to know the effect of various antioxidant treatments with different concentrations (control, ascorbic acid 250, 500 and 750 ppm; salicylic acid 250, 500 and 750 ppm; α-tocopherol 250, 500 and 750 ppm) on fourth generation soybean physiology in saline condition (Electric Conductivity 5-6 dS/m). The results of this research showed that the antioxidant type and concentration affected not significantly to physiology of fourth generation soybean. Descriptively the highest average of superoxide dismutase and peroxide dismutase was showed on ascorbic acid 250 ppm. The highest average of ascorbate peroxidase was showed on α-tocopherol 750 ppm. The highest average of carotenoid content was showed on ascorbic acid 500 ppm. The highest average of chlorophyll content was showed on α-tocopherol 250 ppm. The highest average of ratio of K/Na was showed on salicylic acid 250 ppm.
Bravo, Karent; Sepulveda-Ortega, Stella; Lara-Guzman, Oscar; Navas-Arboleda, Alejandro A; Osorio, Edison
2015-05-01
Cape gooseberry (Physalis peruviana) is an exotic fruit highly valued for its organoleptic properties and bioactive compounds. Considering that the presence of phenolics and ascorbic acid could contribute to its functional capacity, it is important to investigate the quality parameters, bioactive contents and functional properties with respect to genotype and ripening time. In this study the genotype effect was evaluated in 15 cultivars for two different harvest times. Changes during maturation were recorded in two commercial cultivars within seven levels of maturity. Multivariate statistical analysis suggested that phenolic content and ORAC value were mainly affected by harvest time and that ascorbic acid content and DPPH level were mainly affected by genotype. In addition, acidity, phenolic content, ORAC value and inhibition of LDL oxidation decreased with maturity, but soluble solids content, ascorbic acid content, β-carotene content and DPPH-scavenging activity were higher in mature fruits. The phenolic content, ascorbic acid content and antioxidant properties of Cape gooseberry fruit were strongly affected by cultivar, harvest time and maturity state. Consequently, the harvest time must be scheduled carefully to gain the highest proportion of bioactive compounds according to the specific cultivar and the environment where it is grown. © 2014 Society of Chemical Industry.
A clinical pilot study of lignin--ascorbic acid combination treatment of herpes simplex virus.
Lopez, Blanca Silvia Gonzalez; Yamamoto, Masaji; Utsumi, Katsuaki; Aratsu, Chiaki; Sakagami, Hiroshi
2009-01-01
Antiviral drugs as well as natural remedies have been used to reduce symptoms and the rate of recurrences of herpes simplex virus type 1 (HSV-1) infection, a common disease. To evaluate anti-HSV-1 activity of a pine cone lignin and ascorbic acid treatment, a clinical pilot study was carried out. Forty-eight healthy patients of both genders between 4 and 61 years old (mean: 31+/-16 years), with active lesions of HSV-1, took part in the study. According to the HSV-1 stage at the presentation, the patients were classified into the prodromic (16 patients), erythema (11 patients), papule edema (1 patient), vesicle/pustule (13 patients) and ulcer stages (7 patients). One mg of lignin-ascorbic acid tablet or solution was orally administered three times daily for a month. Clinical evaluations were made daily the first week and at least three times a week during the second week after the onset and every six months during the subsequent year to identify recurrence episodes. The patients who began the lignin-ascorbic acid treatment within the first 48 hours of symptom onset did not develop HSV-1 characteristic lesions, whereas those patients who began the treatment later experienced a shorter duration of cold sore lesions and a decrease in the symptoms compared with previous episodes. The majority of the patients reported the reduction in the severity of symptoms and the reduction in the recurrence episodes after the lignin-ascorbic acid treatment compared with previous episodes, suggesting its possible applicability for the prevention and treatment of HSV-1 infection.
Sadat, Umar; Usman, Ammara; Gillard, Jonathan H; Boyle, Jonathan R
2013-12-10
This study sought to perform a systematic review with meta-analysis of randomized controlled trials comparing the use of ascorbic acid with placebo or other treatment options for the treatment of contrast induced-acute kidney injury (CI-AKI) in patients undergoing coronary angiography. CI-AKI remains the most widely discussed and debated topic in cardiovascular medicine, with its incidence increasing due to an increasing number of contrast media-enhanced radiological procedures being performed. MEDLINE, Embase, and Cochrane central databases were searched from inception to May 2013, without language restrictions. For a study to be selected, it had to report the incidence of CI-AKI as an outcome measure. Studies were excluded if at least 1 study arm did not have ascorbic acid administered alone or with saline solution hydration. Data were extracted by 1 author, and random checks were made by another author. Nine randomized, controlled trials reported data on the incidence of CI-AKI in 1,536 patients who had completed the trial and were included in the final analysis. Patients receiving ascorbic acid had 33% less risk of CI-AKI compared with patients receiving placebo or an alternate pharmacological treatment (risk ratio by random-effects model: 0.672; 95% confidence interval, 0.466 to 0.969; p = 0.034). Ascorbic acid provides effective nephroprotection against CI-AKI and may form a part of effective prophylactic pharmacological regimens. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Park, J H; Kang, S N; Shin, D; Hur, I C; Kim, I S; Jin, S K
2013-02-01
Influence of Achyranthes japonica Nakai Extract (AJNE) on properties of pork sausages were studied in the present investigation. AJNE was added to sausages alone or in combination with ascorbic acid to obtain a comparative analysis on properties of control and ascorbic acid added-sausages. Results showed that addition of 0.05% AJNE led to a decrease in color L* and whiteness (W), and an increase in color b* of pork sausage samples (p<0.05). Although color a* of pork sausages containing AJNE was not significantly different, ascorbic acid added-sausages were highest amongst other treatments (p<0.05). Sausages containing AJNE had lower non-heme iron values and peroxide value (POV) than control sausages (p<0.05); however, high nitrosomyoglobin content was observed in AJNE added-sausages (p<0.05). Ascorbic acid led to a decrease in residual nitrite concentration of sausages (p<0.05), but no difference was found in AJNE added-sausages. Free radical scavenging analysis showed that AJNE did not affect 1,1-diphenyl -2-picrylhydrazyl (DPPH) activity of sausages, whereas ascorbic acid added-sausages showed relatively higher activity among the samples (p<0.05). Addition of AJNE had no influence on texture properties of sausages. In sensory evaluation, AJNE treatment had significant effects on color (p<0.05), but no significant effects on aroma, flavor, springiness, juiciness, and overall acceptability. In conclusion, the addition of AJNE, as a natural supplement may offer natural antioxidants for pork sausages, and appears to be particularly effective in inducing changes in non-heme iron concentration, POV value and nitrosomyglobin content.
Park, J. H.; Kang, S. N.; Shin, D.; Hur, I. C.; Kim, I. S.; Jin, S. K.
2013-01-01
Influence of Achyranthes japonica Nakai Extract (AJNE) on properties of pork sausages were studied in the present investigation. AJNE was added to sausages alone or in combination with ascorbic acid to obtain a comparative analysis on properties of control and ascorbic acid added-sausages. Results showed that addition of 0.05% AJNE led to a decrease in color L* and whiteness (W), and an increase in color b* of pork sausage samples (p<0.05). Although color a* of pork sausages containing AJNE was not significantly different, ascorbic acid added-sausages were highest amongst other treatments (p<0.05). Sausages containing AJNE had lower non-heme iron values and peroxide value (POV) than control sausages (p<0.05); however, high nitrosomyoglobin content was observed in AJNE added-sausages (p<0.05). Ascorbic acid led to a decrease in residual nitrite concentration of sausages (p<0.05), but no difference was found in AJNE added-sausages. Free radical scavenging analysis showed that AJNE did not affect 1,1-diphenyl -2-picrylhydrazyl (DPPH) activity of sausages, whereas ascorbic acid added-sausages showed relatively higher activity among the samples (p<0.05). Addition of AJNE had no influence on texture properties of sausages. In sensory evaluation, AJNE treatment had significant effects on color (p<0.05), but no significant effects on aroma, flavor, springiness, juiciness, and overall acceptability. In conclusion, the addition of AJNE, as a natural supplement may offer natural antioxidants for pork sausages, and appears to be particularly effective in inducing changes in non-heme iron concentration, POV value and nitrosomyglobin content. PMID:25049789
Wu, Chia-Yen; Lee, Han-Jung; Liu, Chi-Fang; Korivi, Mallikarjuna; Chen, Hwei-Hsien; Chan, Ming-Huan
2015-03-01
Hair cells are highly sensitive to environmental insults and other therapeutic drugs. The adverse effects of drugs such as aminoglycosides can cause hair cell death and lead to hearing loss and imbalance. The objective of the present study was to evaluate the protective activity of L-ascorbic acid, N-acetylcysteine (NAC) and apocynin on neomycin-induced hair cell damage in zebrafish (Danio rerio) larvae at 5 days post fertilization (dpf). Results showed that the loss of hair cells within the neuromasts of the lateral lines after neomycin exposure was evidenced by a significantly lower number of neuromasts labeled with fluorescent dye FM1-43FX observed under a microscope. Co-administration with L-ascorbic acid, NAC and apocynin protected neomycin-induced hair cell loss within the neuromasts. Moreover, these three compounds reduced the production of reactive oxygen species (ROS) in neuromasts exposed to neomycin, indicating that their antioxidant action is involved. In contrast, the neuromasts were labeled with specific fluorescent dye Texas-red conjugated with neomycin to detect neomycin uptake. Interestingly, the uptake of neomycin into hair cells was not influenced by these three antioxidant compounds. These data imply that prevention of hair cell damage against neomycin by L-ascorbic acid, NAC and apocynin might be associated with inhibition of excessive ROS production, but not related to modulating neomycin uptake. Our findings conclude that L-ascorbic acid, NAC and apocynin could be used as therapeutic drugs to protect aminoglycoside-induced listening impairment after further confirmatory studies. Copyright © 2014 John Wiley & Sons, Ltd.
Nakano, Masako; Onodera, Aya; Saito, Emi; Tanabe, Miyako; Yajima, Kazue; Takahashi, Jiro; Nguyen, Van Chuyen
2008-08-01
The present study was performed to investigate the effect of astaxanthin in combination with other antioxidants against oxidative damage in streptozotocin (STZ)-induced diabetic Osteogenic Disorder Shionogi (ODS) rats. Diabetic-ODS rats were divided into five groups: control, astaxanthin, ascorbic acid, alpha-tocopherol, and tocotrienol. Each of the four experimental groups was administered a diet containing astaxanthin (0.1 g/kg), in combination with ascorbic acid (3.0 g/kg), alpha-tocopherol (0.1 g/kg), or tocotrienol (0.1 g/kg) for 20 wk. The effects of astaxanthin with other antioxidants on lipid peroxidation, urinary 8-hydroxy-2-deoxyguanosine (8-OHdG) excretion, serum creatinine (Cr) level, creatinine clearance (Ccr), and urinary protein content were assessed. The serum lipid peroxide levels and chemiluminescent (CL) intensity in the liver of the alpha-tocopherol and tocotrienol groups were significantly reduced in comparison to that of the control group. In the alpha-tocopherol group, urinary 8-OHdG excretion, serum Cr level, Ccr, urinary albumin excretion, and urinary protein concentration were significantly decreased as compared with those in the control group. Additionally, the CL intensity in the kidney of the alpha-tocopherol group was significantly lower, but that of the ascorbic acid group was significantly higher than that in the control group. These results indicate that dietary astaxanthin in combination with alpha-tocopherol has an inhibitory effect on oxidative stress. On the other hand, our study suggests that excessive ascorbic acid intake increases lipid peroxidation in diabetic rats.
Ascorbic acid selectively improves large elastic artery compliance in postmenopausal women.
Moreau, Kerrie L; Gavin, Kathleen M; Plum, Angela E; Seals, Douglas R
2005-06-01
The compliance of large elastic arteries in the cardiothoracic region decreases with advancing age/menopause and plays an important role in the increased prevalence of cardiovascular diseases in postmenopausal women. We determined whether oxidative stress contributes to the reduced large elastic artery compliance of postmenopausal women. Carotid artery compliance was measured during acute intravenous infusions of saline (baseline control) and supraphysiological doses of the potent antioxidant ascorbic acid in premenopausal (n=10; 23+/-1; mean+/-SE) and estrogen-deficient postmenopausal (n=21; 55+/-1 years) healthy sedentary women. Carotid artery compliance was 56% lower in postmenopausal compared with premenopausal women during baseline control (P<0.0001). Ascorbic acid infusion increased carotid artery compliance by 26% in postmenopausal women (1.11+/-0.07 to 1.38+/-0.08 mm2/mm Hgx10(-1); P<0.001) but had no effect in premenopausal women (2.50+/-0.25 versus 2.43+/-0.20 mm2/mm Hgx10(-1)). Carotid artery diameter, blood pressure, and heart rate were unaffected by ascorbic acid. In the pooled population, the change in arterial compliance with ascorbic acid correlated with baseline waist-to-hip ratio (r=0.56; P=0.001), plasma norepinephrine (r=0.58; P=0.001), and LDL cholesterol (r=0.54; P=0.001). These results suggest that oxidative stress may be an important mechanism contributing to the reduced large elastic artery compliance of sedentary, estrogen-deficient postmenopausal women. Increased abdominal fat storage, sympathetic nervous system activity, and LDL cholesterol may be mechanistically involved in oxidative stress-associated suppression of arterial compliance in postmenopausal women.
Experience with the Use of Hemopure in the Care of a Massively Burned Adult
2014-03-01
transfusion. They did consent to the use of human albumin and hemostatic adjuncts including tranexamic acid and recombinant fac- tor VII. Adjuncts to...adverse events occurred during the infusion of HBOC- 201 and he remained normotensive. Ascorbic acid was administered intravenously at a dose of 500 mg...obtaining the drug should be initiated as soon as possible. During infusion, ascorbic acid should be given to keep HBOC in a reduced state and to
Dewhirst, Rebecca A; Clarkson, Graham J J; Rothwell, Steve D; Fry, Stephen C
2017-10-15
Post-harvest treatments of pre-packaged salad leaves potentially cause l-ascorbate loss, but the mechanisms of ascorbate degradation remain incompletely understood, especially in planta. We explored the extent and pathways of ascorbate loss in variously washed and stored salad leaves. Ascorbate was assayed by 2,6-dichlorophenolindophenol titration, and pathways were monitored by 14 C-radiolabelling followed by high-voltage electrophoresis. All leaves tested showed ascorbate loss during storage: lettuce showed the greatest percentage loss, wild rocket the least. Spinach leaves were particularly prone to losing ascorbate during washing, especially with simultaneous mechanical agitation; however, washing in the presence of hypochlorite did not significantly increase ascorbate loss. In spinach, [ 14 C]oxalate was the major product of [ 14 C]ascorbate degradation, suggesting that commercial washing causes oxidative stress. This study highlights that ascorbate/dehydroascorbic acid are lost via the oxidative pathway during washing and post-harvest storage of salad leaves. Thus changes to washing procedures could potentially increase the post-harvest retention of ascorbate. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Summary of Operational Rations
1982-06-01
fortification of instant coffee with ascorbic acid; of cocoa beverag.e powder and enriched sweet chocolate with vitamin A, ascorbic acid, thiamin and...and ice cream mix Staples such as flour, sugar, rice, macaroni, and shortening Instant puddings Salt, pepper, and other spices 14 MEAL, COMBAT...Turkey Loaf Fruit, Enriched Sweet Chocolate, Crackers, and Cheese Spread *All menus include instant coffee, dry, nondairy cream substitute
ERIC Educational Resources Information Center
Scanlon, Christopher; Gebeyehu, Zewdu; Griffin, Kameron; Dabke, Rajeev B.
2014-01-01
An undergraduate laboratory experiment for the volumetric quantitative analysis of ascorbic acid and iron in dietary supplement tablets is presented. Powdered samples of the dietary supplement tablets were volumetrically titrated against electrolytically generated reagents, and the mass of dietary reagent in the tablet was determined from the…