Science.gov

Sample records for gt1-7 hypothalamic neurons

  1. Chronic exposure to KATP channel openers results in attenuated glucose sensing in hypothalamic GT1-7 neurons.

    PubMed

    Haythorne, Elizabeth; Hamilton, D Lee; Findlay, John A; Beall, Craig; McCrimmon, Rory J; Ashford, Michael L J

    2016-12-01

    Individuals with Type 1 diabetes (T1D) are often exposed to recurrent episodes of hypoglycaemia. This reduces hormonal and behavioural responses that normally counteract low glucose in order to maintain glucose homeostasis, with altered responsiveness of glucose sensing hypothalamic neurons implicated. Although the molecular mechanisms are unknown, pharmacological studies implicate hypothalamic ATP-sensitive potassium channel (KATP) activity, with KATP openers (KCOs) amplifying, through cell hyperpolarization, the response to hypoglycaemia. Although initial findings, using acute hypothalamic KCO delivery, in rats were promising, chronic exposure to the KCO NN414 worsened the responses to subsequent hypoglycaemic challenge. To investigate this further we used GT1-7 cells to explore how NN414 affected glucose-sensing behaviour, the metabolic response of cells to hypoglycaemia and KATP activity. GT1-7 cells exposed to 3 or 24 h NN414 exhibited an attenuated hyperpolarization to subsequent hypoglycaemic challenge or NN414, which correlated with diminished KATP activity. The reduced sensitivity to hypoglycaemia was apparent 24 h after NN414 removal, even though intrinsic KATP activity recovered. The NN414-modified glucose responsiveness was not associated with adaptations in glucose uptake, metabolism or oxidation. KATP inactivation by NN414 was prevented by the concurrent presence of tolbutamide, which maintains KATP closure. Single channel recordings indicate that NN414 alters KATP intrinsic gating inducing a stable closed or inactivated state. These data indicate that exposure of hypothalamic glucose sensing cells to chronic NN414 drives a sustained conformational change to KATP, probably by binding to SUR1, that results in loss of channel sensitivity to intrinsic metabolic factors such as MgADP and small molecule agonists.

  2. Effect of glutamate and extracellular calcium on uptake of inorganic lead (Pb2+) in immortalized mouse hypothalamic GT1-7 neuronal cells.

    PubMed

    Loikkanen, J; Naarala, J; Vähäkangas, K H; Savolainen, K M

    2006-01-25

    We have previously shown that although glutamate alone has no effects on viability of mouse hypothalamic GT1-7 cells, it clearly enhances Pb2+-induced cytotoxicity. It is likely that Pb2+ must enter cells to exert most of its toxic effects. Pb2+ is known to substitute for Ca2+ in many cellular processes. Therefore, we studied the uptake mechanisms of Pb2+ into GT1-7 neuronal cells with a special focus on the role of extracellular calcium (Ca2+), voltage-sensitive calcium channels (VSCCs) and glutamate. Basal uptake of Pb2+ (1 microM or 10 microM), i.e. without any external stimulus, clearly increased in nominally Ca2+-free buffer and was partially abolished by 13 mM Ca2+ when compared to uptake in the presence of a physiological concentration of extracellular Ca2+ (1.3 mM). Depolarization by 25 mM K+, or antagonists of VSCCs, verapamil (10 microM) or flunarizine (10 microM) had no clear effect on basal Pb2+ uptake. Glutamate (1 mM) increased Pb2+ uptake, but only when cells were treated with 1 microM Pb2+ in the presence of 1.3 mM Ca2+. Our data suggest that Pb2+ competes for the same cellular uptake pathways with Ca2+, although not via VSCCs. In addition, enhancement of Pb2+-induced neurotoxicity by glutamate may be due to increased neuronal uptake of Pb2+.

  3. Regulation of GNRH production by estrogen and bone morphogenetic proteins in GT1-7 hypothalamic cells.

    PubMed

    Otani, Hiroyuki; Otsuka, Fumio; Takeda, Masaya; Mukai, Tomoyuki; Terasaka, Tomohiro; Miyoshi, Tomoko; Inagaki, Kenichi; Suzuki, Jiro; Ogura, Toshio; Lawson, Mark A; Makino, Hirofumi

    2009-10-01

    Recent studies have shown that bone morphogenetic proteins (BMPs) are important regulators in the pituitary-gonadal endocrine axis. We here investigated the effects of BMPs on GNRH production controlled by estrogen using murine GT1-7 hypothalamic neuron cells. GT1-7 cells expressed estrogen receptor alpha (ERalpha; ESR1 as listed in MGI Database), ERbeta (ESR2 as listed in MGI Database), BMP receptors, SMADs, and a binding protein follistatin. Treatment with BMP2 and BMP4 had no effect on Gnrh mRNA expression; however, BMP6 and BMP7 significantly increased Gnrh mRNA expression as well as GnRH production by GT1-7 cells. Notably, the reduction of Gnrh expression caused by estradiol (E(2)) was restored by cotreatment with BMP2 and BMP4, whereas it was not affected by BMP6 or BMP7. E(2) activated extracellular signal-regulated kinase (ERK) 1/2 and stress-activated protein kinase/c-Jun NH(2)-terminal kinase (SAPK/JNK) signaling but did not activate p38-mitogen-activated protein kinase (MAPK) signaling in GT1-7 cells. Inhibition of ERK1/ERK2 reversed the inhibitory effect of estrogen on Gnrh expression, whereas SAPK/JNK inhibition did not affect the E(2) actions. Expression levels of Eralpha and Erbeta were reduced by BMP2 and BMP4, but were increased by BMP6 and BMP7. Treatment with an ER antagonist inhibited the E(2) effects on Gnrh suppression including reduction of E(2)-induced ERK phosphorylation, suggesting the involvement of genomic ER actions in Gnrh suppression. BMP2 and BMP4 also suppressed estrogen-induced phosphorylation of ERK1/ERK2 and SAPK/JNK signaling, suggesting that BMP2 and BMP4 downregulate estrogen effects by attenuating ER-MAPK signaling. Considering that BMP6 and BMP7 increased the expression of alpha1E-subunit of R-type calcium channel (Cacna1e), which is critical for GNRH secretion, it is possible that BMP6 and BMP7 directly stimulate GNRH release by GT1-7 cells. Collectively, a newly uncovered interaction of BMPs and ER may be involved in

  4. Glutamate increases toxicity of inorganic lead in GT1-7 neurons: partial protection induced by flunarizine.

    PubMed

    Loikkanen, Jarkko; Naarala, Jonne; Vähäkangas, Kirsi H; Savolainen, Kai M

    2003-12-01

    Recent studies point to an interaction between the glutamatergic neurotransmitter system and inorganic lead (Pb) neurotoxicity. Pb (1-100 microM) evoked cytotoxicity over the period of 72 h in mouse hypothalamic GT1-7 neurons. Glutamate (0.1 or 1 mM) on its own did not have any effect on cell viability. However, 1 mM glutamate clearly increased Pb-induced cell death at 48 and 72 h. Although flunarizine (0.1-10 microM), an antagonist of L- and T-type voltage-sensitive calcium channels (VSCCs), partially protected from the cytotoxicity induced by co-exposure to Pb (10 or 100 micro M) and glutamate (1 mM), it had no protective effect on cytotoxicity induced by Pb alone. The flunarizine-induced protection was dependent on time and observed only at 48 h. Neither verapamil, an antagonist of L-type VSCCs, nor DIDS, an inhibitor of anion exchange, at non-toxic concentrations (0.1-10 microM) had any effect on cytotoxicity induced by Pb alone or together with glutamate at any studied time point. Co-exposure to Pb and glutamate also resulted in more prominent production of reactive oxygen species (ROS) than either of the compounds alone. Interestingly, we observed an increase in intracellular glutathione (GSH) levels in cells exposed to micromolar concentrations of Pb. Glutamate decreased the levels of intracellular GSH and also partially reduced the Pb-induced increase in GSH levels. These results suggest that the interaction of glutamate and Pb results in increased neuronal cell death via mechanisms that involve an increase in ROS production, a decrease in intracellular GSH defense against oxidative stress and probably T-type VSCCs.

  5. Pb2+-induced toxicity is associated with p53-independent apoptosis and enhanced by glutamate in GT1-7 neurons.

    PubMed

    Loikkanen, Jarkko; Chvalova, Katerina; Naarala, Jonne; Vähäkangas, Kirsi H; Savolainen, Kai M

    2003-09-30

    Recent studies indicate that the glutamatergic neurotransmitter system is involved in neurotoxicity caused by inorganic lead (Pb2+). We studied the role of apoptosis in the effects induced by Pb2+ (0.01-100 microM) and glutamate (0.1 and 1 mM) in mouse hypothalamic GT1-7 neurons. Although glutamate alone had no effect on cell viability, it enhanced neuronal cell death induced by Pb2+ (1-100 microM) within 72 h. Glutamate alone neither induced caspase-3-like protease activity nor promoted internucleosomal DNA fragmentation, both biochemical hallmarks of apoptosis. However, concurrent exposure to Pb2+ (10 or 100 microM) and glutamate (1 mM) resulted in more prominent cleavage of the fluorogenic caspase-3 substrate (Ac-DEVD-AMC) than caused by the same Pb2+ concentrations alone at 24-72 h. The highest caspase-3-like protease activities were measured at 48 h. Internucleosomal DNA fragmentation caused by Pb2+ (10 or 100 microM) alone or together with glutamate (1 mM) was evident at 96 h, less clear at 72 h and absent at 48 h. Immunoblotting did not reveal any changes in p53 protein levels in cells exposed to Pb2+, glutamate or their combination at any studied time point (3-72 h). Our results suggest that Pb2+-induced neurotoxicity may partially be mediated through p53-independent apoptosis and enhanced by glutamate.

  6. Serotonin stimulates GnRH secretion through the c-Src-PLC gamma1 pathway in GT1-7 hypothalamic cells.

    PubMed

    Kim, Hyeon Soo; Yumkham, Sanatombi; Choi, Jang Hyun; Son, Gi Hoon; Kim, Kyungjin; Ryu, Sung Ho; Suh, Pann-Ghill

    2006-09-01

    Serotonin is a neurotransmitter that alters the hypothalamic-pituitary-adrenal axis. To date, however, the molecular mechanisms underlying the role of serotonin in hormone secretion have remained largely unclear. In this study, we report that serotonin activates phospholipase C (PLC) gamma1 in an Src-dependent manner in hypothalamic GT1-7 cells, and that pretreatment with either 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazole [3, 4-d] pyrimidine, an Src-kinase inhibitor, or U73122, a PLC inhibitor, attenuates the serotonin-induced increase in calcium levels. Also, PLC gamma1 binds to c-Src through the Src-homology (SH) 223 domain upon serotonin treatment. Moreover, calcium increase is alleviated in the cells transientlyexpressing SH223 domain-deleted PLC gamma1 or lipase inactive mutant PLC gamma1, as compared with cells transfected with wild-type PLC gamma1. Furthermore, the inhibition of the activities of either PLC or Src results in a significant diminution of the serotonin-induced release of gonadotropin-releasing hormone (GnRH). In addition, the results of our small-interfering RNA experiment confirm that endogenous PLC gamma1 is a prerequisite for serotonin-mediated signaling pathways. Taken together, our findings demonstrate that serotonin stimulates the release of GnRH through the Src-PLC gamma1 pathway, via the modulation of intracellular calcium levels.

  7. 17beta-estradiol at physiological concentrations augments Ca(2+) -activated K+ currents via estrogen receptor beta in the gonadotropin-releasing hormone neuronal cell line GT1-7.

    PubMed

    Nishimura, Ichiro; Ui-Tei, Kumiko; Saigo, Kaoru; Ishii, Hirotaka; Sakuma, Yasuo; Kato, Masakatsu

    2008-02-01

    Estrogens play essential roles in the neuroendocrine control of reproduction. In the present study, we focused on the effects of 17beta-estradiol (E2) on the K(+) currents that regulate neuronal cell excitability and carried out perforated patch-clamp experiments with the GnRH-secreting neuronal cell line GT1-7. We revealed that a 3-d incubation with E2 at physiological concentrations (100 pm to 1 nm) augmented Ca(2+)-activated K(+) [K(Ca)] currents without influencing Ca(2+)-insensitive voltage-gated K(+) currents in GT1-7 cells. Acute application of E2 (1 nm) had no effect on the either type of K(+) current. The augmentation was completely blocked by an estrogen receptor (ER) antagonist, ICI-182,780. An ERbeta-selective agonist, 2,3-bis(4-hydroxyphenyl)-propionitrile, augmented the K(Ca) currents, although an ERalpha-selective agonist, 4,4',4''-[4-propyl-(1H)-pyrazole-1,3,5-triyl]tris-phenol, had no effect. Knockdown of ERbeta by means of RNA interference blocked the effect of E2 on the K(Ca) currents. Furthermore, semiquantitative RT-PCR analysis revealed that the levels of BK channel subunit mRNAs for alpha and beta4 were significantly increased by incubating cells with 300 pm E2 for 3 d. In conclusion, E2 at physiological concentrations augments K(Ca) currents through ERbeta in the GT1-7 GnRH neuronal cell line and increases the expression of the BK channel subunit mRNAs, alpha and beta4.

  8. Effect of Chlorotriazine Pesticides on Gonadotrophin Releasing Hormone in the Neuronal GT1-7 Cell Line and Hypothalamic Explants

    EPA Science Inventory

    Gonadotrophin releasing hormone (GnRH) stimulates the release of pituitary luteinizing hormone (LH) and follicle stimulating hormone. These pituitary hormones are necessary for normal reproductive function in both males and females. It is well recognized that disruption of nor...

  9. Algae Undaria pinnatifida Protects Hypothalamic Neurons against Endoplasmic Reticulum Stress through Akt/mTOR Signaling.

    PubMed

    Kim, Jongwan; Moon, Il Soo; Goo, Tae-Won; Moon, Seong-Su; Seo, Minchul

    2015-11-25

    Increased endoplasmic reticulum (ER) stress is known to be one of the causes of hypothalamic neuronal damage, as well as a cause of metabolic disorders such as obesity and diabetes. Recent evidence has suggested that Undaria pinnatifida (UP), an edible brown algae, has antioxidant activity. However, the neuroprotective effect of UP has yet to be examined. In this study, to investigate the neuroprotective effect of UP on ER stress-induced neuronal damage in mouse hypothalamic neurons, mice immortal hypothalamic neurons (GT1-7) were incubated with extract of UP. ER stress was induced by treating with tunicamycin. Tunicamycin induced apoptotic cell death was compared with the vehicle treatment through excessive ER stress. However UP protected GT1-7 cells from cell death, occurring after treatment with tunicamycin by reducing ER stress. Treatment with UP resulted in reduced increment of ATF6 and CHOP, and recovered the decrease of phosphorylation of Akt/mTOR by tunicamycin and the increment of autophagy. These results show that UP protects GT1-7 cells from ER stress induced cell death through the Akt/mTOR pathway. The current study suggests that UP may have a beneficial effect on cerebral neuronal degeneration in metabolic diseases with elevated ER stress.

  10. Mutual interaction of kisspeptin, estrogen and bone morphogenetic protein-4 activity in GnRH regulation by GT1-7 cells.

    PubMed

    Terasaka, Tomohiro; Otsuka, Fumio; Tsukamoto, Naoko; Nakamura, Eri; Inagaki, Kenichi; Toma, Kishio; Ogura-Ochi, Kanako; Glidewell-Kenney, Christine; Lawson, Mark A; Makino, Hirofumi

    2013-12-05

    Reproduction is integrated by interaction of neural and hormonal signals converging on hypothalamic neurons for controlling gonadotropin-releasing hormone (GnRH). Kisspeptin, the peptide product of the kiss1 gene and the endogenous agonist for the GRP54 receptor, plays a key role in the regulation of GnRH secretion. In the present study, we investigated the interaction between kisspeptin, estrogen and BMPs in the regulation of GnRH production by using mouse hypothalamic GT1-7 cells. Treatment with kisspeptin increased GnRH mRNA expression and GnRH protein production in a concentration-dependent manner. The expression levels of kiss1 and GPR54 were not changed by kisspeptin stimulation. Kisspeptin induction of GnRH was suppressed by co-treatment with BMPs, with BMP-4 action being the most potent for suppressing the kisspeptin effect. The expression of kisspeptin receptor, GPR54, was suppressed by BMPs, and this effect was reversed in the presence of kisspeptin. It was also revealed that BMP-induced Smad1/5/8 phosphorylation and Id-1 expression were suppressed and inhibitory Smad6/7 was induced by kisspeptin. In addition, estrogen induced GPR54 expression, while kisspeptin increased the expression levels of ERα and ERβ, suggesting that the actions of estrogen and kisspeptin are mutually enhanced in GT1-7 cells. Moreover, kisspeptin stimulated MAPKs and AKT signaling, and ERK signaling was functionally involved in the kisspeptin-induced GnRH expression. BMP-4 was found to suppress kisspeptin-induced GnRH expression by reducing ERK signaling activity. Collectively, the results indicate that the axis of kisspeptin-induced GnRH production is bi-directionally controlled, being augmented by an interaction between ERα/β and GPR54 signaling and suppressed by BMP-4 action in GT1-7 neuron cells.

  11. Subunit profiling and functional characteristics of acetylcholine receptors in GT1-7 cells.

    PubMed

    Arai, Yuki; Ishii, Hirotaka; Kobayashi, Makito; Ozawa, Hitoshi

    2017-03-01

    GnRH neurons form a final common pathway for the central regulation of reproduction. Although the involvement of acetylcholine in GnRH secretion has been reported, direct effects of acetylcholine and expression profiles of acetylcholine receptors (AChRs) still remain to be studied. Using immortalized GnRH neurons (GT1-7 cells), we analyzed molecular expression and functionality of AChRs. Expression of the mRNAs were identified in the order α7 > β2 = β1 ≧ α4 ≧ α5 = β4 = δ > α3 for nicotinic acetylcholine receptor (nAChR) subunits and m4 > m2 for muscarinic acetylcholine receptor (mAChR) subtypes. Furthermore, this study revealed that α7 nAChRs contributed to Ca(2+) influx and GnRH release and that m2 and m4 mAChRs inhibited forskolin-induced cAMP production and isobutylmethylxanthine-induced GnRH secretion. These findings demonstrate the molecular profiles of AChRs, which directly contribute to GnRH secretion in GT1-7 cells, and provide one possible regulatory action of acetylcholine in GnRH neurons.

  12. Cultured hypothalamic neurons are resistant to inflammation and insulin resistance induced by saturated fatty acids.

    PubMed

    Choi, Sun Ju; Kim, Francis; Schwartz, Michael W; Wisse, Brent E

    2010-06-01

    Hypothalamic inflammation induced by high-fat feeding causes insulin and leptin resistance and contributes to the pathogenesis of obesity. Since in vitro exposure to saturated fatty acids causes inflammation and insulin resistance in many cultured cell types, we determined how cultured hypothalamic neurons respond to this stimulus. Two murine hypothalamic neuronal cell cultures, N43/5 and GT1-7, were exposed to escalating concentrations of saturated fatty acids for up to 24 h. Harvested cells were evaluated for activation of inflammation by gene expression and protein content. Insulin-treated cells were evaluated for induction of markers of insulin receptor signaling (p-IRS, p-Akt). In both hypothalamic cell lines, inflammation was induced by prototypical inflammatory mediators LPS and TNFalpha, as judged by induction of IkappaBalpha (3- to 5-fold) and IL-6 (3- to 7-fold) mRNA and p-IkappaBalpha protein, and TNFalpha pretreatment reduced insulin-mediated p-Akt activation by 30% (P < 0.05). By comparison, neither mixed saturated fatty acid (100, 250, or 500 microM for hypothalamic neurons, whereas they did in control muscle and endothelial cell lines. Despite the lack of evidence of inflammatory signaling, saturated fatty acid exposure in cultured hypothalamic neurons causes endoplasmic reticulum stress, induces mitogen-activated protein kinase, and causes apoptotic cell death with prolonged exposure. We conclude that saturated fatty acid exposure does not induce inflammatory signaling or insulin resistance in cultured hypothalamic neurons. Therefore, hypothalamic neuronal inflammation in the setting of DIO may involve an indirect mechanism mediated by saturated fatty acids on nonneuronal cells.

  13. Neuropeptide Y stimulates autophagy in hypothalamic neurons

    PubMed Central

    Aveleira, Célia A.; Botelho, Mariana; Carmo-Silva, Sara; Ferreira-Marques, Marisa; Nóbrega, Clévio; Cortes, Luísa; Valero, Jorge; Sousa-Ferreira, Lígia; Álvaro, Ana R.; Santana, Magda; Kügler, Sebastian; Pereira de Almeida, Luís

    2015-01-01

    Aging is characterized by autophagy impairment that contributes to age-related disease aggravation. Moreover, it was described that the hypothalamus is a critical brain area for whole-body aging development and has impact on lifespan. Neuropeptide Y (NPY) is one of the major neuropeptides present in the hypothalamus, and it has been shown that, in aged animals, the hypothalamic NPY levels decrease. Because caloric restriction (CR) delays aging, at least in part, by stimulating autophagy, and also increases hypothalamic NPY levels, we hypothesized that NPY could have a relevant role on autophagy modulation in the hypothalamus. Therefore, the aim of this study was to investigate the role of NPY on autophagy in the hypothalamus. Using both hypothalamic neuronal in vitro models and mice overexpressing NPY in the hypothalamus, we observed that NPY stimulates autophagy in the hypothalamus. Mechanistically, in rodent hypothalamic neurons, NPY increases autophagy through the activation of NPY Y1 and Y5 receptors, and this effect is tightly associated with the concerted activation of PI3K, MEK/ERK, and PKA signaling pathways. Modulation of hypothalamic NPY levels may be considered a potential strategy to produce protective effects against hypothalamic impairments associated with age and to delay aging. PMID:25775546

  14. Transcriptional profiling of fetal hypothalamic TRH neurons

    PubMed Central

    2011-01-01

    Background During murine hypothalamic development, different neuroendocrine cell phenotypes are generated in overlapping periods; this suggests that cell-type specific developmental programs operate to achieve complete maturation. A balance between programs that include cell proliferation, cell cycle withdrawal as well as epigenetic regulation of gene expression characterizes neurogenesis. Thyrotropin releasing hormone (TRH) is a peptide that regulates energy homeostasis and autonomic responses. To better understand the molecular mechanisms underlying TRH neuron development, we performed a genome wide study of its transcriptome during fetal hypothalamic development. Results In primary cultures, TRH cells constitute 2% of the total fetal hypothalamic cell population. To purify these cells, we took advantage of the fact that the segment spanning -774 to +84 bp of the Trh gene regulatory region confers specific expression of the green fluorescent protein (GFP) in the TRH cells. Transfected TRH cells were purified by fluorescence activated cell sorting, various cell preparations pooled, and their transcriptome compared to that of GFP- hypothalamic cells. TRH cells undergoing the terminal phase of differentiation, expressed genes implicated in protein biosynthesis, intracellular signaling and transcriptional control. Among the transcription-associated transcripts, we identified the transcription factors Klf4, Klf10 and Atf3, which were previously uncharacterized within the hypothalamus. Conclusion To our knowledge, this is one of the first reports identifying transcripts with a potentially important role during the development of a specific hypothalamic neuronal phenotype. This genome-scale study forms a rational foundation for identifying genes that might participate in the development and function of hypothalamic TRH neurons. PMID:21569245

  15. Leptin signalling pathways in hypothalamic neurons.

    PubMed

    Kwon, Obin; Kim, Ki Woo; Kim, Min-Seon

    2016-04-01

    Leptin is the most critical hormone in the homeostatic regulation of energy balance among those so far discovered. Leptin primarily acts on the neurons of the mediobasal part of hypothalamus to regulate food intake, thermogenesis, and the blood glucose level. In the hypothalamic neurons, leptin binding to the long form leptin receptors on the plasma membrane initiates multiple signaling cascades. The signaling pathways known to mediate the actions of leptin include JAK-STAT signaling, PI3K-Akt-FoxO1 signaling, SHP2-ERK signaling, AMPK signaling, and mTOR-S6K signaling. Recent evidence suggests that leptin signaling in hypothalamic neurons is also linked to primary cilia function. On the other hand, signaling molecules/pathways mitigating leptin actions in hypothalamic neurons have been extensively investigated in an effort to treat leptin resistance observed in obesity. These include SOCS3, tyrosine phosphatase PTP1B, and inflammatory signaling pathways such as IKK-NFκB and JNK signaling, and ER stress-mitochondrial signaling. In this review, we discuss leptin signaling pathways in the hypothalamus, with a particular focus on the most recently discovered pathways.

  16. GnRH agonist reduces estrogen receptor dimerization in GT1-7 cells: evidence for cross-talk between membrane-initiated estrogen and GnRH signaling.

    PubMed

    Chason, Rebecca J; Kang, Jung-Hoon; Gerkowicz, Sabrina A; Dufau, Maria L; Catt, Kevin J; Segars, James H

    2015-03-15

    17β-estradiol (E2), a key participant on the initiation of the LH surge, exerts both positive and negative feedback on GnRH neurons. We sought to investigate potential interactions between estrogen receptors alpha (ERα) and beta (ERβ) and gonadotropin releasing hormone receptor (GnRH-R) in GT1-7 cells. Radioligand binding studies demonstrated a significant decrease in saturation E2 binding in cells treated with GnRH agonist. Conversely, there was a significant reduction in GnRH binding in GT1-7 cells treated with E2. In BRET(1) experiments, ERα-ERα dimerization was suppressed in GT1-7 cells treated with GnRH agonist (p < 0.05). There was no evidence of direct interaction between ERs and GnRH-R. This study provides the first evidence of reduced ERα homodimerization by GnRH agonist. Collectively, these findings demonstrate significant cross-talk between membrane-initiated GnRH and E2 signaling in GT1-7 cells.

  17. Susceptibility of GT1-7 cells to mouse-passaged field scrapie isolates with a long incubation.

    PubMed

    Miyazawa, Kohtaro; Okada, Hiroyuki; Iwamaru, Yoshifumi; Masujin, Kentaro; Yokoyama, Takashi

    2014-01-01

    A typical feature of scrapie in sheep and goats is the accumulation of disease-associated prion protein. Scrapie consists of many strains with different biological properties. Nine natural sheep scrapie cases were transmitted to wild-type mice and mouse-passaged isolates were classified into 2 types based on incubation time: short and long. These 2 types displayed a distinct difference in their pathology. We attempted to transmit these mouse-passaged isolates to 2 murine cell lines (GT1-7 and L929) to compare their properties. All of the isolates were transmitted to L929 cells. However, only mouse-passaged field isolates with a long incubation time were transmitted to GT1-7 cells. This specific susceptibility of GT1-7 cells was also confirmed with a primary-passaged isolate that was not completely adapted to the new host species. Characterization of the mechanisms of the specific susceptibility of GT1-7 cells to isolates with a long incubation time may lead to a greater understanding of the differences among prion strains.

  18. Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding.

    PubMed

    Kim, Jae Geun; Suyama, Shigetomo; Koch, Marco; Jin, Sungho; Argente-Arizon, Pilar; Argente, Jesús; Liu, Zhong-Wu; Zimmer, Marcelo R; Jeong, Jin Kwon; Szigeti-Buck, Klara; Gao, Yuanqing; Garcia-Caceres, Cristina; Yi, Chun-Xia; Salmaso, Natalina; Vaccarino, Flora M; Chowen, Julie; Diano, Sabrina; Dietrich, Marcelo O; Tschöp, Matthias H; Horvath, Tamas L

    2014-07-01

    We found that leptin receptors were expressed in hypothalamic astrocytes and that their conditional deletion led to altered glial morphology and synaptic inputs onto hypothalamic neurons involved in feeding control. Leptin-regulated feeding was diminished, whereas feeding after fasting or ghrelin administration was elevated in mice with astrocyte-specific leptin receptor deficiency. These data reveal an active role of glial cells in hypothalamic synaptic remodeling and control of feeding by leptin.

  19. Neuronal Androgen Receptor Regulates Insulin Sensitivity via Suppression of Hypothalamic NF-κB–Mediated PTP1B Expression

    PubMed Central

    Yu, I-Chen; Lin, Hung-Yun; Liu, Ning-Chun; Sparks, Janet D.; Yeh, Shuyuan; Fang, Lei-Ya; Chen, Lumin; Chang, Chawnshang

    2013-01-01

    Clinical investigations highlight the increased incidence of metabolic syndrome in prostate cancer (PCa) patients receiving androgen deprivation therapy (ADT). Studies using global androgen receptor (AR) knockout mice demonstrate that AR deficiency results in the development of insulin resistance in males. However, mechanisms by which AR in individual organs coordinately regulates insulin sensitivity remain unexplored. Here we tested the hypothesis that functional AR in the brain contributes to whole-body insulin sensitivity regulation and to the metabolic abnormalities developed in AR-deficient male mice. The mouse model selectively lacking AR in the central nervous system and AR-expressing GT1-7 neuronal cells were established and used to delineate molecular mechanisms in insulin signaling modulated by AR. Neuronal AR deficiency leads to reduced insulin sensitivity in middle-aged mice. Neuronal AR regulates hypothalamic insulin signaling by repressing nuclear factor-κB (NF-κB)–mediated induction of protein-tyrosine phosphatase 1B (PTP1B). Hypothalamic insulin resistance leads to hepatic insulin resistance, lipid accumulation, and visceral obesity. The functional deficiency of AR in the hypothalamus leads to male mice being more susceptible to the effects of high-fat diet consumption on PTP1B expression and NF-κB activation. These findings suggest that in men with PCa undergoing ADT, reduction of AR function in the brain may contribute to insulin resistance and visceral obesity. Pharmacotherapies targeting neuronal AR and NF-κB may be developed to combat the metabolic syndrome in men receiving ADT and in elderly men with age-associated hypogonadism. PMID:23139353

  20. A small population of hypothalamic neurons govern fertility: the critical role of VAX1 in GnRH neuron development and fertility maintenance.

    PubMed

    Hoffmann, Hanne M; Mellon, Pamela L

    2016-01-01

    GT1-7, we show that VAX1 is a direct regulator of Gnrh1 transcription by binding key ATTA sites within the Gnrh1 promoter. This study identifies VAX1 as a key transcription factor regulating GnRH expression and establishes VAX1 as a novel candidate gene implicated in heritable infertility.

  1. A small population of hypothalamic neurons govern fertility: the critical role of VAX1 in GnRH neuron development and fertility maintenance

    PubMed Central

    Hoffmann, Hanne M.; Mellon, Pamela L.

    2017-01-01

    Fertility depends on the correct maturation and function of approximately 800 gonadotropin-releasing hormone (GnRH) neurons in the brain. GnRH neurons are at the apex of the hypothalamic-pituitary-gonadal axis that regulates fertility. In adulthood, GnRH neurons are scattered throughout the anterior hypothalamic area and project to the median eminence, where GnRH is released into the portal vasculature to stimulate release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the pituitary. LH and FSH then regulate gonadal steroidogenesis and gametogenesis. Absence of GnRH neurons or inappropriate GnRH release leads to infertility. Despite the critical role of GnRH neurons in fertility, we still have a limited understanding of the genes responsible for proper GnRH neuron development and function in adulthood. GnRH neurons originate in the olfactory placode then migrate into the brain. Homeodomain transcription factors expressed within GnRH neurons or along their migratory path are candidate genes for inherited infertility. Using a combined in vitro and in vivo approach, we have identified Ventral Anterior Homeobox 1 (Vax1) as a novel homeodomain transcription factor responsible for GnRH neuron maturation and fertility. GnRH neuron counts in Vax1 knock-out embryos revealed Vax1 to be required for the presence of GnRH-expressing cells at embryonic day 17.5 (E17.5), but not at E13.5. To localize the effects of Vax1 on fertility, we generated Vax1flox mice and crossed them with Gnrhcre mice to specifically delete Vax1 within GnRH neurons. GnRH staining in Vax1flox/flox:GnRHcre mice show a total absence of GnRH expression in the adult. We performed lineage tracing in Vax1flox/flox:GnRHcre:RosaLacZ mice which proved GnRH neurons to be alive, but incapable of expressing GnRH. The absence of GnRH leads to delayed puberty, hypogonadism and complete infertility in both sexes. Finally, using the immortalized model GnRH neuron cell lines, GN11 and GT1-7, we

  2. Hypothalamic leptin-neurotensin-hypocretin neuronal networks in zebrafish.

    PubMed

    Levitas-Djerbi, Talia; Yelin-Bekerman, Laura; Lerer-Goldshtein, Tali; Appelbaum, Lior

    2015-04-01

    Neurotensin (NTS) is a 13 amino acid neuropeptide that is expressed in the hypothalamus. In mammals, NTS-producing neurons that express leptin receptor (LepRb) regulate the function of hypocretin/orexin (HCRT) and dopamine neurons. Thus, the hypothalamic leptin-NTS-HCRT neuronal network orchestrates key homeostatic output, including sleep, feeding, and reward. However, the intricate mechanisms of the circuitry and the unique role of NTS-expressing neurons remain unclear. We studied the NTS neuronal networks in zebrafish and cloned the genes encoding the NTS neuropeptide and receptor (NTSR). Similar to mammals, the ligand is expressed primarily in the hypothalamus, while the receptor is expressed widely throughout the brain in zebrafish. A portion of hypothalamic nts-expressing neurons are inhibitory and some coexpress leptin receptor (lepR1). As in mammals, NTS and HCRT neurons are localized adjacently in the hypothalamus. To track the development and axonal projection of NTS neurons, the NTS promoter was isolated. Transgenesis and double labeling of NTS and HCRT neurons showed that NTS axons project toward HCRT neurons, some of which express ntsr. Moreover, another target of NTS neurons is ntsr-expressing dopaminergeric neurons. These findings suggest structural circuitry between leptin, NTS, and hypocretinergic or dopaminergic neurons and establish the zebrafish as a model to study the role of these neuronal circuits in the regulation of feeding, sleep, and reward.

  3. Cell death mechanisms in GT1-7 GnRH cells exposed to polychlorinated biphenyls PCB74, PCB118, and PCB153

    SciTech Connect

    Dickerson, Sarah M.; Guevara, Esperanza; Woller, Michael J.; Gore, Andrea C.

    2009-06-01

    Exposure to endocrine disrupting chemicals (EDCs) such as polychlorinated biphenyls (PCBs) causes functional deficits in neuroendocrine systems. We used an immortalized hypothalamic GT1-7 cell line, which synthesizes the neuroendocrine peptide gonadotropin-releasing hormone (GnRH), to examine the neurotoxic and endocrine disrupting effects of PCBs and their mechanisms of action. Cells were treated for 1, 4, 8, or 24 h with a range of doses of a representative PCB from each of three classes: coplanar (2,4,4',5-tetrachlorobiphenyl: PCB74), dioxin-like coplanar (2',3,4,4',5' pentachlorobiphenyl: PCB118), non-coplanar (2,2',4,4',5,5'-hexachlorobiphenyl: PCB153), or their combination. GnRH peptide concentrations, cell viability, apoptotic and necrotic cell death, and caspase activation were quantified. In general, GnRH peptide levels were suppressed by high doses and longer durations of PCBs, and elevated at low doses and shorter timepoints. The suppression of GnRH peptide levels was partially reversed in cultures co-treated with the estrogen receptor antagonist ICI 182,780. All PCBs reduced viability and increased both apoptotic and necrotic cell death. Although the effects for the three classes of PCBs were often similar, subtle differences in responses, together with evidence that the combination of PCBs acted slightly different from individual PCBs, suggest that the three tested PCB compounds may act via slightly different or more than one mechanism. These results provide evidence that PCB congeners have endocrine disrupting and/or neurotoxic effects on the hypothalamic GnRH cell line, a finding that has implications for environmental endocrine disruption in animals.

  4. Network of hypothalamic neurons that control appetite.

    PubMed

    Sohn, Jong-Woo

    2015-04-01

    The central nervous system (CNS) controls food intake and energy expenditure via tight coordinations between multiple neuronal populations. Specifically, two distinct neuronal populations exist in the arcuate nucleus of hypothalamus (ARH): the anorexigenic (appetite-suppressing) pro-opiomelanocortin (POMC) neurons and the orexigenic (appetite-increasing) neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons. The coordinated regulation of neuronal circuit involving these neurons is essential in properly maintaining energy balance, and any disturbance therein may result in hyperphagia/obesity or hypophagia/starvation. Thus, adequate knowledge of the POMC and NPY/AgRP neuron physiology is mandatory to understand the pathophysiology of obesity and related metabolic diseases. This review will discuss the history and recent updates on the POMC and NPY/AgRP neuronal circuits, as well as the general anorexigenic and orexigenic circuits in the CNS.

  5. Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes.

    PubMed

    Romanov, Roman A; Zeisel, Amit; Bakker, Joanne; Girach, Fatima; Hellysaz, Arash; Tomer, Raju; Alpár, Alán; Mulder, Jan; Clotman, Frédéric; Keimpema, Erik; Hsueh, Brian; Crow, Ailey K; Martens, Henrik; Schwindling, Christian; Calvigioni, Daniela; Bains, Jaideep S; Máté, Zoltán; Szabó, Gábor; Yanagawa, Yuchio; Zhang, Ming-Dong; Rendeiro, Andre; Farlik, Matthias; Uhlén, Mathias; Wulff, Peer; Bock, Christoph; Broberger, Christian; Deisseroth, Karl; Hökfelt, Tomas; Linnarsson, Sten; Horvath, Tamas L; Harkany, Tibor

    2017-02-01

    The hypothalamus contains the highest diversity of neurons in the brain. Many of these neurons can co-release neurotransmitters and neuropeptides in a use-dependent manner. Investigators have hitherto relied on candidate protein-based tools to correlate behavioral, endocrine and gender traits with hypothalamic neuron identity. Here we map neuronal identities in the hypothalamus by single-cell RNA sequencing. We distinguished 62 neuronal subtypes producing glutamatergic, dopaminergic or GABAergic markers for synaptic neurotransmission and harboring the ability to engage in task-dependent neurotransmitter switching. We identified dopamine neurons that uniquely coexpress the Onecut3 and Nmur2 genes, and placed these in the periventricular nucleus with many synaptic afferents arising from neuromedin S(+) neurons of the suprachiasmatic nucleus. These neuroendocrine dopamine cells may contribute to the dopaminergic inhibition of prolactin secretion diurnally, as their neuromedin S(+) inputs originate from neurons expressing Per2 and Per3 and their tyrosine hydroxylase phosphorylation is regulated in a circadian fashion. Overall, our catalog of neuronal subclasses provides new understanding of hypothalamic organization and function.

  6. Few isolated neurons in hypothalamic hamartomas may cause gelastic seizures.

    PubMed

    Waldau, Ben; McLendon, Roger E; Fuchs, Herbert E; George, Timothy M; Grant, Gerald A

    2009-01-01

    Hypothalamic hamartomas (HHs) are congenital, benign masses in the hypothalamus and tuber cinereum that may cause central precocious puberty and gelastic seizures. Nodules of small neurons are thought to be a universal feature of the microarchitecture of HH lesions associated with epilepsy. Here we describe the case of a 5-year-old boy with gelastic seizures who underwent resection of a HH that contained nodules of glial cells, but only few, randomly distributed neurons. HHs that contain few or no neurons have only been reported thus far in cases associated with precocious puberty. This case demonstrates that few solitary neurons in HHs can drive the development of gelastic seizures, and nodules of small neurons may not be a universal feature of HHs associated with epilepsy. This finding is clinically important since hypothalamic hamartomas with rare neurons can easily be misdiagnosed as pilocytic astrocytomas or subependymomas if their presence is overlooked. A neuronal stain is helpful in making the correct diagnosis in these cases.

  7. Hypothalamic CRH neurons orchestrate complex behaviours after stress

    PubMed Central

    Füzesi, Tamás; Daviu, Nuria; Wamsteeker Cusulin, Jaclyn I.; Bonin, Robert P.; Bains, Jaideep S.

    2016-01-01

    All organisms possess innate behavioural and physiological programmes that ensure survival. In order to have maximum adaptive benefit, these programmes must be sufficiently flexible to account for changes in the environment. Here we show that hypothalamic CRH neurons orchestrate an environmentally flexible repertoire of behaviours that emerge after acute stress in mice. Optical silencing of CRH neurons disrupts the organization of individual behaviours after acute stress. These behavioural patterns shift according to the environment after stress, but this environmental sensitivity is blunted by activation of PVN CRH neurons. These findings provide evidence that PVN CRH cells are part of a previously unexplored circuit that matches precise behavioural patterns to environmental context following stress. Overactivity in this network in the absence of stress may contribute to environmental ambivalence, resulting in context-inappropriate behavioural strategies. PMID:27306314

  8. Ventromedial hypothalamic neurons control a defensive emotion state.

    PubMed

    Kunwar, Prabhat S; Zelikowsky, Moriel; Remedios, Ryan; Cai, Haijiang; Yilmaz, Melis; Meister, Markus; Anderson, David J

    2015-03-06

    Defensive behaviors reflect underlying emotion states, such as fear. The hypothalamus plays a role in such behaviors, but prevailing textbook views depict it as an effector of upstream emotion centers, such as the amygdala, rather than as an emotion center itself. We used optogenetic manipulations to probe the function of a specific hypothalamic cell type that mediates innate defensive responses. These neurons are sufficient to drive multiple defensive actions, and required for defensive behaviors in diverse contexts. The behavioral consequences of activating these neurons, moreover, exhibit properties characteristic of emotion states in general, including scalability, (negative) valence, generalization and persistence. Importantly, these neurons can also condition learned defensive behavior, further refuting long-standing claims that the hypothalamus is unable to support emotional learning and therefore is not an emotion center. These data indicate that the hypothalamus plays an integral role to instantiate emotion states, and is not simply a passive effector of upstream emotion centers.

  9. Differential involvement of hypothalamic vasopressin neurons in multiple system atrophy.

    PubMed

    Benarroch, Eduardo E; Schmeichel, Ann M; Sandroni, Paola; Low, Phillip A; Parisi, Joseph E

    2006-10-01

    We sought to determine whether there is differential involvement of different groups of hypothalamic arginine-vasopressin (AVP) synthesizing neurons in multiple system atrophy (MSA). Hypothalamus was obtained from five subjects with clinical diagnosis of MSA confirmed neuropathologically and five age-matched controls. Sections were immunostained for AVP, and cells with visible nuclei were counted in the posterior portion of the paraventricular nucleus (PVNp), supraoptic nucleus (SON), magnocellular PVN and suprachiasmatic nucleus (SCN). Sections of the hypothalamus and medulla were also immunostained for tyrosine hydroxylase (TH). There was a significant loss of AVP neurons in the PVNp in MSA compared with controls (17 +/- 3 versus 59 +/- 10 cells/section, P < 0.01). There was preservation of AVP- and TH-immunoreactive neurons in the SON and magnocellular PVN in all MSA cases. In contrast, there was marked depletion of TH-immunoreactive fibres innervating these magnocellular AVP neurons, coincident with a loss of neurons in the A1 area (6 +/- 1 versus 13 +/- 1 cells/section, P < 0.01). There was loss of AVP neurons in the SCN in MSA compared with control cases (14 +/- 3 versus 71 +/- 16 cells/section, P < 0.02). Our results indicate that, in MSA, loss of AVP neurons in the PVNp may contribute to sympathetic failure, whereas loss of catecholaminergic input from the brainstem to the magnocellular AVP neurons may contribute to impaired AVP secretion in response to orthostatic stress. Loss of AVP neurons in the SCN may contribute to impaired circadian regulation of endocrine and autonomic functions.

  10. Tibolone Rapidly Attenuates the GABAB Response in Hypothalamic Neurones

    PubMed Central

    Qiu, Jian; Bosch, Martha A.; Rønnekleiv, Oline K.; Kloosterboer, Helenius J.; Kelly, Martin J.

    2008-01-01

    Tibolone is primarily used for the treatment of climacteric symptoms. Tibolone is rapidly converted into three major metabolites: 3α- and 3β-hydroxy-tibolone (3α- and 3βOH-tibolone), which have oestrogenic effects, and the Δ4-isomer (Δ4-tibolone), which has progestogenic and androgenic effects. Since tibolone is effective in treating climacteric symptoms, the effects on the brain may be explained by the oestrogenic activity of tibolone. Previously using whole-cell patch clamp recording, we found that 17β-oestradiol (E2) rapidly altered GABA neurotransmission in hypothalamic neurones through a membrane oestrogen receptor (mER). E2 reduced the potency of the GABAB receptor agonist baclofen to activate G-protein-coupled, inwardly rectifying K+ channels in hypothalamic neurones. Therefore, we hypothesized that tibolone may have some rapid effects through the mER and sought to elucidate the signalling pathway of tibolone’s action using selective inhibitors and whole cell recording in ovariectomized female guinea pigs and mice. A sub-population of neurones was identified post hoc as proopiomelanocortin (POMC) neurones by immunocytochemical staining. Similar to E2, we have found that tibolone and its active metabolite 3βOH-tibolone rapidly reduced the potency of the GABAB receptor agonist baclofen to activate GIRK channels in POMC neurones. The effects were blocked by the ER antagonist ICI 182,780. Other metabolites of tibolone (3αOH-tibolone and Δ4-tibolone) had no effect. Furthermore, tibolone (and 3βOH-tibolone) was fully efficacious in ERαKO and ERβKO mice to attenuate GABAB responses. The effects of tibolone were blocked by phospholipase C inhibitor U73122. However, in contrast to E2, the effects of tibolone were not blocked by protein kinase C inhibitors or protein kinase A inhibitors. It appears that tibolone (and 3βOH-tibolone) activates phospholipase C leading to PIP2 metabolism and direct alteration of GIRK channel function. Therefore, tibolone

  11. Membrane-initiated Estrogen Signaling in Hypothalamic Neurons

    PubMed Central

    Kelly, Martin J.; Rønnekleiv, Oline K.

    2008-01-01

    Summary It is well known that many of the actions of 17β-estradiol (E2) in the central nervous system are mediated via intracellular receptor/transcription factors that interact with steroid response elements on target genes. However, there is compelling evidence for membrane steroid receptors for estrogen in hypothalamic and other brain neurons. But it is not well understood how estrogen signals via membrane receptors, and how these signals impact not only membrane excitability but also gene transcription in neurons. Indeed, it has been known for sometime that E2 can rapidly alter neuronal activity within seconds, indicating that some cellular effects can occur via membrane delimited events. In addition, E2 can affect second messenger systems including calcium mobilization and a plethora of kinases to alter cell signaling. Therefore, this review will consider our current knowledge of rapid membrane-initiated and intracellular signaling by E2 in the hypothalamus, the nature of receptors involved and how they contribute to homeostatic functions. PMID:18538919

  12. Ventromedial hypothalamic neurons control a defensive emotion state

    PubMed Central

    Kunwar, Prabhat S; Zelikowsky, Moriel; Remedios, Ryan; Cai, Haijiang; Yilmaz, Melis; Meister, Markus; Anderson, David J

    2015-01-01

    Defensive behaviors reflect underlying emotion states, such as fear. The hypothalamus plays a role in such behaviors, but prevailing textbook views depict it as an effector of upstream emotion centers, such as the amygdala, rather than as an emotion center itself. We used optogenetic manipulations to probe the function of a specific hypothalamic cell type that mediates innate defensive responses. These neurons are sufficient to drive multiple defensive actions, and required for defensive behaviors in diverse contexts. The behavioral consequences of activating these neurons, moreover, exhibit properties characteristic of emotion states in general, including scalability, (negative) valence, generalization and persistence. Importantly, these neurons can also condition learned defensive behavior, further refuting long-standing claims that the hypothalamus is unable to support emotional learning and therefore is not an emotion center. These data indicate that the hypothalamus plays an integral role to instantiate emotion states, and is not simply a passive effector of upstream emotion centers. DOI: http://dx.doi.org/10.7554/eLife.06633.001 PMID:25748136

  13. Excitatory actions of GABA in developing rat hypothalamic neurones.

    PubMed Central

    Chen, G; Trombley, P Q; van den Pol, A N

    1996-01-01

    1. Gramicidin-perforated patch clamp recording was employed to study GABA-mediated responses in rat hypothalamic neurones (n = 102) with an intracellular Cl- concentration unaltered by the pipette solution. 2. In young cultures after 1-7 days in vitro (DIV), GABA induced depolarizing membrane potentials (+16.5 +/- 1.3 mV) that often surpassed the threshold for the firing of action potentials (-42 +/- 1 mV) and resulted in an increase in neuronal activity. The depolarizing responses to GABA in young cultures were dose dependent. The concentration of GABA necessary to evoke the half-maximal depolarization (EC50) was 2.8 microM. In contrast, GABA induced hyperpolarizing membrane potentials (-12.0 +/- 1.4 mV) and a decrease in neuronal activity in older neurones (20-33 DIV). Both the depolarization and the hyperpolarization induced by GABA were blocked by bicuculline, indicating a mediation by GABAA receptors. 3. The reversal potentials of the GABA-evoked currents were between -40 to -50 mV during the first week of culture, and shifted to below -70 mV after 3 weeks of culture. In parallel, neurones that were dissociated from older animals (postnatal day 5) had a more negative reversal potential for the GABA-evoked currents than cells from younger animals (embryonic day 15), suggesting that the negative shift of the reversal potential occurs both in vitro and in vivo. Our data suggest that the mechanism for GABA-induced depolarization is the depolarized Cl- reversal potential found in young but not older neurones. 4. Consistent with the depolarizing response to exogenous application of GABA, some spontaneous depolarizing postsynaptic potentials in young cultures were insensitive to AP5-CNQX, but were eliminated by bicuculline, indicating that synaptically released GABA mediated excitatory synaptic transmission in early development. 5. By combining a rapid computer-controlled delivery of GABA with subthreshold positive current injections into recorded neurones, we found

  14. Optogenetic identification of hypothalamic orexin neuron projections to paraventricular spinally projecting neurons.

    PubMed

    Dergacheva, Olga; Yamanaka, Akihiro; Schwartz, Alan R; Polotsky, Vsevolod Y; Mendelowitz, David

    2017-04-01

    Orexin neurons, and activation of orexin receptors, are generally thought to be sympathoexcitatory; however, the functional connectivity between orexin neurons and a likely sympathetic target, the hypothalamic spinally projecting neurons (SPNs) in the paraventricular nucleus of the hypothalamus (PVN) has not been established. To test the hypothesis that orexin neurons project directly to SPNs in the PVN, channelrhodopsin-2 (ChR2) was selectively expressed in orexin neurons to enable photoactivation of ChR2-expressing fibers while examining evoked postsynaptic currents in SPNs in rat hypothalamic slices. Selective photoactivation of orexin fibers elicited short-latency postsynaptic currents in all SPNs tested (n = 34). These light-triggered responses were heterogeneous, with a majority being excitatory glutamatergic responses (59%) and a minority of inhibitory GABAergic (35%) and mixed glutamatergic and GABAergic currents (6%). Both glutamatergic and GABAergic responses were present in the presence of tetrodotoxin and 4-aminopyridine, suggesting a monosynaptic connection between orexin neurons and SPNs. In addition to generating postsynaptic responses, photostimulation facilitated action potential firing in SPNs (current clamp configuration). Glutamatergic, but not GABAergic, postsynaptic currents were diminished by application of the orexin receptor antagonist almorexant, indicating orexin release facilitates glutamatergic neurotransmission in this pathway. This work identifies a neuronal circuit by which orexin neurons likely exert sympathoexcitatory control of cardiovascular function.NEW & NOTEWORTHY This is the first study to establish, using innovative optogenetic approaches in a transgenic rat model, that there are robust heterogeneous projections from orexin neurons to paraventricular spinally projecting neurons, including excitatory glutamatergic and inhibitory GABAergic neurotransmission. Endogenous orexin release modulates glutamatergic, but not GABAergic

  15. Crucial role of zebrafish prox1 in hypothalamic catecholaminergic neurons development

    PubMed Central

    Pistocchi, Anna; Gaudenzi, Germano; Carra, Silvia; Bresciani, Erica; Del Giacco, Luca; Cotelli, Franco

    2008-01-01

    Background Prox1, the vertebrate homolog of prospero in Drosophila melanogaster, is a divergent homeogene that regulates cell proliferation, fate determination and differentiation during vertebrate embryonic development. Results Here we report that, in zebrafish, prox1 is widely expressed in several districts of the Central Nervous System (CNS). Specifically, we evidenced prox1 expression in a group of neurons, already positive for otp1, located in the hypothalamus at the level of the posterior tuberculum (PT). Prox1 knock-down determines the severe loss of hypothalamic catecholaminergic (CA) neurons, identified by tyrosine hydroxylase (TH) expression, and the synergistic prox1/otp1 overexpression induces the appearance of hypothalamic supernumerary TH-positive neurons and ectopic TH-positive cells on the yolk epitelium. Conclusion Our findings indicate that prox1 activity is crucial for the proper development of the otp1-positive hypothalamic neuronal precursors to their terminal CA phenotype. PMID:18331627

  16. Activation of hypothalamic gono-like neurons in female rats during estrus☆

    PubMed Central

    Ren, Xiaoxuan; Wang, Shaojun; Rong, Peijing; Zhu, Bing

    2012-01-01

    In mammals, gonadal function is controlled by the activity of hypothalamic gonadotropin-releasing hormone neurons, which control the secretion of adenohypophyseal and gonadal hormones. However, there are a number of unanswered questions in relation to gonadal function. It is currently unknown how erotogenic stimulation of the genitals influences the subpopulation of hypothalamic medial preoptic area neurons, antidromically identified as projecting to the median eminence at different periods of the estrous cycle. Additionally, the distinctiveness of hypothalamic medial preoptic area neurons, with respect to methods of feedback control by exogenous hormones, is also unknown. In this study, spontaneous discharges from individual neurons encountered within the medial preoptic area, gono-like neurons, were recorded extracellularly using glass microelectrodes. To confirm the cellular and histochemical properties of the recording units, antidromic stimulation was performed using a side-by-side bipolar stimulating electrode placed into the median eminence, alongside microiontophoretic injections of the conventional tracer, horseradish peroxidase. In addition, further immunohistochemical analyses were performed. Results showed that elevated gono-neuron activity was accompanied by increased background activity and greater responses to erotogenic stimuli during estrus. Application of clitoral traction stimulation resulted in increased activation of the gono-like neurons. This neuronal activity was noticeably inhibited by β-estradiol administration. Immunohistochemical analyses revealed the presence of gonadotropin-releasing hormone-reactive protein in hypothalamic cells in which electrophysiological recordings were taken. Thus, medial preoptic area neurons represent the subset of hypothalamic gonadotropin-releasing hormone neurons described from brain slices in vitro, and might serve as a useful physiological model to form the basis of future in vivo studies. PMID:25337091

  17. Hypothalamic TLR2 triggers sickness behavior via a microglia-neuronal axis

    PubMed Central

    Jin, Sungho; Kim, Jae Geun; Park, Jeong Woo; Koch, Marco; Horvath, Tamas L.; Lee, Byung Ju

    2016-01-01

    Various pathophysiologic mechanisms leading to sickness behaviors have been proposed. For example, an inflammatory process in the hypothalamus has been implicated, but the signaling modalities that involve inflammatory mechanisms and neuronal circuit functions are ill-defined. Here, we show that toll-like receptor 2 (TLR2) activation by intracerebroventricular injection of its ligand, Pam3CSK4, triggered hypothalamic inflammation and activation of arcuate nucleus microglia, resulting in altered input organization and increased activity of proopiomelanocortin (POMC) neurons. These animals developed sickness behavior symptoms, including anorexia, hypoactivity, and hyperthermia. Antagonists of nuclear factor kappa B (NF-κB), cyclooxygenase pathway and melanocortin receptors 3/4 reversed the anorexia and body weight loss induced by TLR2 activation. These results unmask an important role of TLR2 in the development of sickness behaviors via stimulation of hypothalamic microglia to promote POMC neuronal activation in association with hypothalamic inflammation. PMID:27405276

  18. MCT2 Expression and Lactate Influx in Anorexigenic and Orexigenic Neurons of the Arcuate Nucleus

    PubMed Central

    Cortes-Campos, Christian; Elizondo, Roberto; Carril, Claudio; Martínez, Fernando; Boric, Katica; Nualart, Francisco; Garcia-Robles, Maria Angeles

    2013-01-01

    Hypothalamic neurons of the arcuate nucleus control food intake, releasing orexigenic and anorexigenic neuropeptides in response to changes in glucose concentration. Several studies have suggested that the glucosensing mechanism is governed by a metabolic interaction between neurons and glial cells via lactate flux through monocarboxylate transporters (MCTs). Hypothalamic glial cells (tanycytes) release lactate through MCT1 and MCT4; however, similar analyses in neuroendocrine neurons have yet to be undertaken. Using primary rat hypothalamic cell cultures and fluorimetric assays, lactate incorporation was detected. Furthermore, the expression and function of MCT2 was demonstrated in the hypothalamic neuronal cell line, GT1-7, using kinetic and inhibition assays. Moreover, MCT2 expression and localization in the Sprague Dawley rat hypothalamus was analyzed using RT-PCR, in situ hybridization and Western blot analyses. Confocal immunohistochemistry analyses revealed MCT2 localization in neuronal but not glial cells. Moreover, MCT2 was localized to ∼90% of orexigenic and ∼60% of anorexigenic neurons as determined by immunolocalization analysis of AgRP and POMC with MCT2-positives neurons. Thus, MCT2 distribution coupled with lactate uptake by hypothalamic neurons suggests that hypothalamic neurons control food intake using lactate to reflect changes in glucose levels. PMID:23638108

  19. Leptin signaling in GFAP-expressing adult glia cells regulates hypothalamic neuronal circuits and feeding

    PubMed Central

    Kim1, Jae Geun; Suyama, Shigetomo; Koch, Marco; Jin, Sungho; Argente-Arizon, Pilar; Argente, Jesus; Liu, Zhong-Wu; Zimmer, Marcelo R.; Jeong, Jin Kwon; Szigeti-Buck, Klara; Gao, Yuanqing; Garcia-Caceres, Cristina; Yi, Chun-Xia; Salmaso, Natalina; Vaccarino, Flora M.; Chowen, Julie; Diano, Sabrina; Dietrich, Marcelo O; Tschöp, Matthias H.; Horvath, Tamas L.

    2014-01-01

    We have shown that synaptic re-organization of hypothalamic feeding circuits in response to metabolic shifts involves astrocytes, cells that can directly respond to the metabolic hormone, leptin, in vitro. It is not known whether the role of glia cells in hypothalamic synaptic adaptions is active or passive. Here we show that leptin receptors are expressed in hypothalamic astrocytes and that conditional, adult deletion of leptin receptors in astrocytes leads to altered glial morphology, decreased glial coverage and elevated synaptic inputs onto pro-opiomelanocortin (POMC)- and Agouti-related protein (AgRP)-producing neurons. Leptin-induced suppression of feeding was diminished, while rebound feeding after fasting or ghrelin administration was elevated in mice with astrocyte-specific leptin receptor deficiency. These data unmask an active role of glial cells in the initiation of hypothalamic synaptic plasticity and neuroendocrine control of feeding by leptin. PMID:24880214

  20. Sleep-waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats.

    PubMed

    Szymusiak, R; Alam, N; Steininger, T L; McGinty, D

    1998-08-24

    Numerous lesion, stimulation and recording studies in experimental animals demonstrate the importance of neurons within the preoptic/anterior hypothalamic area (POA) in the regulation of sleep induction and sleep maintenance. Recently, a discrete cluster of cells in the ventrolateral POA (vlPOA) of rats was found to exhibit elevated c-fos gene expression during sleep, indicating that these neurons are strongly activated during nonREM and/or REM sleep stages. We examined neuronal discharge during wakefulness and sleep throughout the dorsal to ventral extent of the lateral POA in rats, using chronic microwire technique. We found that neurons with elevated discharge rates during sleep, compared to waking, were localized to the vlPOA. As a group, vlPOA neurons displayed elevated discharge rates during both nonREM and REM sleep. Discharge of vlPOA neurons reflected the depth of sleep, i.e., discharge rates increased significantly from light to deep nonREM sleep. During recovery sleep following 12-14 h of sleep deprivation, vlPOA neurons displayed increased sleep-related discharge, compared to baseline sleep. Neurons in the vlPOA displaying increased neuronal discharge during sleep were located in the same area where neurons exhibit increased c-fos gene expression during sleep. Such neurons are likely components of a rostral hypothalamic mechanism that regulates sleep onset and sleep maintenance.

  1. [Effect of the intermittent hypoxic training on the functioning of peptidergic neurons of the paraventricular hypothalamic nucleus and brain stem neurons in rats].

    PubMed

    Abramov, A V

    1998-03-01

    Internittent hypoxic training (IHT) increased the quantity and secretory activity of peptidergic neurons of the paraventricular hypothalamic nucleus (PHN) and activated neurons of the dorsal motor nucleus of n.vagus. These structures seem to take part in realisation of the IHT activating effect on condition of the pancreatic delta-cells. The effect involves insulin-stimulating and insuloprotective effects realised via hypothalamic and neuro-conducting ways of regulation of the endocrine pancreas with a direct participation of hypothalamic neuropeptides.

  2. Microglia Dictate the Impact of Saturated Fat Consumption on Hypothalamic Inflammation and Neuronal Function

    PubMed Central

    Valdearcos, Martin; Robblee, Megan M.; Benjamin, Daniel I.; Nomura, Daniel K.; Xu, Allison W.; Koliwad, Suneil K.

    2014-01-01

    Diets rich in saturated fat produce inflammation, gliosis, and neuronal stress in the mediobasal hypothalamus (MBH). Here we show that microglia mediate this process and its functional impact. Although microglia and astrocytes accumulate in the MBH of mice fed a diet rich in saturated fatty acids (SFAs), only the microglia undergo inflammatory activation, along with a build-up of hypothalamic SFAs. Enteric gavage specifically with SFAs reproduces microglial activation and neuronal stress in the MBH, and SFA treatment activates murine microglia, but not astrocytes, in culture. Moreover, depleting microglia abrogates SFA-induced inflammation in hypothalamic slices. Remarkably, depleting microglia from the MBH of mice abolishes inflammation and neuronal stress induced by excess SFA consumption, and in this context, microglial depletion enhances leptin signaling and reduces food intake. We thus show that microglia sense SFAs and orchestrate an inflammatory process in the MBH that alters neuronal function when SFA consumption is high. PMID:25497089

  3. Firing Behavior and Network Activity of Single Neurons in Human Epileptic Hypothalamic Hamartoma

    PubMed Central

    Steinmetz, Peter N.; Wait, Scott D.; Lekovic, Gregory P.; Rekate, Harold L.; Kerrigan, John F.

    2013-01-01

    Objective: Human hypothalamic hamartomas (HH) are intrinsically epileptogenic and are associated with treatment-resistant gelastic seizures. The basic cellular mechanisms responsible for seizure onset within HH are unknown. We used intra-operative microwire recordings of single neuron activity to measure the spontaneous firing rate of neurons and the degree of functional connection between neurons within the tumor. Technique: Fourteen patients underwent transventricular endoscopic resection of HH for treatment-resistant epilepsy. Prior to surgical resection, single neuron recordings from bundled microwires (total of nine contacts) were obtained from HH tissue. Spontaneous activity was recorded for two or three 5-min epochs under steady-state general anesthesia. Off-line analysis included cluster analysis of single unit activity and probability analysis of firing relationships between pairs of neurons. Results: Altogether, 222 neurons were identified (mean 6 neurons per recording epoch). Cluster analysis of single neuron firing utilizing a mixture of Gaussians model identified two distinct populations on the basis of firing rate (median firing frequency 0.6 versus 15.0 spikes per second; p < 10−5). Cluster analysis identified three populations determined by levels of burst firing (median burst indices of 0.015, 0.18, and 0.39; p < 10−15). Unbiased analysis of spontaneous single unit behavior showed that 51% of all possible neuron pairs within each recording epoch had a significant level of firing synchrony (p < 10−15). The subgroup of neurons with higher median firing frequencies was more likely to demonstrate synchronous firing (p < 10−7). Conclusion: Hypothalamic hamartoma tissue in vivo contains neurons which fire spontaneously. The activity of single neurons is diverse but distributes into at least two electrophysiological phenoytpes. Functional linkage between single neurons suggests that HH neurons exist within local networks that may

  4. Hypothalamic glucose-sensing: role of Glia-to-neuron signaling.

    PubMed

    Tonon, M C; Lanfray, D; Castel, H; Vaudry, H; Morin, F

    2013-12-01

    The hypothalamus senses hormones and nutrients in order to regulate energy balance. In particular, detection of hypothalamic glucose levels has been shown to regulate both feeding behavior and peripheral glucose homeostasis, and impairment of this regulatory system is believed to be involved in the development of obesity and diabetes. Several data clearly demonstrate that glial cells are key elements in the perception of glucose, constituting with neurons a "glucose-sensing unit". Characterization of this interplay between glia and neurons represents an exciting challenge, and will undoubtedly contribute to identify new candidates for therapeutic intervention. The purpose of this review is to summarize the current data that stress the importance of glia in central glucose-sensing. The nature of the glia-to-neuron signaling is discussed, with a special focus on the endozepine ODN, a potent anorexigenic peptide that is highly expressed in hypothalamic glia.

  5. Differential effects of histamine on the activity of hypothalamic dopaminergic neurons in the rat.

    PubMed

    Fleckenstein, A E; Lookingland, K J; Moore, K E

    1994-01-01

    The effect of intracerebroventricular administration of histamine on hypothalamic dopaminergic neuronal activity was estimated in male rats by measuring concentrations of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in brain regions containing terminals or perikarya of these neurons. Three distinct, regionally specific neurochemical responses were apparent. In the median eminence and intermediate lobe of the pituitary, histamine affected neither DOPAC nor dopamine concentrations, suggesting no effect on tuberoinfundibular or periventricular-hypophysial dopaminergic neuronal activity. In the medial zona incerta and in the dorsomedial, rostral periventricular and medial preoptic hypothalamic nuclei, histamine effected a dose- and time-related increase in both DOPAC and dopamine concentrations; these effects were blocked by destruction of noradrenergic neurons projecting to these regions, suggesting that these changes are attributable to noradrenergic neuronal activation, and that histamine does not affect the activity of incertohypothalamic or periventricular-preoptic dopaminergic neurons located in these brain regions. In the suprachiasmatic, caudal periventricular and paraventricular hypothalamic nuclei, histamine effected a dose- and time-related increase in DOPAC, but not dopamine, concentrations; these effects were blocked by the H1 antagonist mepyramine, but not the H2 antagonist zolantidine. Destruction of noradrenergic neurons projecting to these regions did not prevent the histamine-induced increases in DOPAC concentrations. These data indicate that histamine increases the activity of dopaminergic neurons projecting to the suprachiasmatic, caudal periventricular and paraventricular nuclei via an action at H1 receptors. Overall, these results reveal that i.c.v. administration of histamine differentially affects the activity of the various dopaminergic neuronal systems of the rat hypothalamus.

  6. Pharmacological properties of GABAA receptors in rat hypothalamic neurons expressing the epsilon-subunit.

    PubMed

    Sergeeva, Olga A; Andreeva, Nadja; Garret, Maurice; Scherer, Annette; Haas, Helmut L

    2005-01-05

    The pharmacological properties and functional role of native GABA(A) receptors (GABA(A)Rs) were investigated in rat hypothalamic neurons expressing the epsilon-subunit with the help of whole-cell patch-clamp recording and single-cell reverse transcription-PCR. Two cell groups were identified: histaminergic tuberomamillary and orexinergic/hypocretinergic neurons. Approximately 25% of histaminergic and 70% of orexinergic neurons contained mRNA encoding for the epsilon-subunit. Double-immunofluorescence staining revealed a somatic localization of this protein in these two neuronal groups. Constitutive activity, diazepam modulation, fast desensitization of maximal currents, and activation by propofol (6-98 microm) of GABA(A)Rs did not correlate with epsilon-subunit expression. Propofol at 3-12 microm potentiated GABA-mediated currents similarly in all neurons. However, noise variance analysis of GABA-mediated currents enhanced by propofol revealed a significant difference between epsilon-positive and epsilon-negative neurons. The former displayed no difference between control and potentiated responses, and, in the latter, noise was decreased in the presence of propofol. Spontaneous IPSCs recorded in cultured hypothalamic neurons were prolonged in the presence of propofol in all epsilon-negative neurons, whereas propofol-resistant IPSCs were recorded in epsilon-positive cells. The infrequent expression of the epsilon-subunit may be a key factor in the recently discovered central role of the tuberomamillary nucleus in anesthesia.

  7. Glut4 expression defines an insulin-sensitive hypothalamic neuronal population.

    PubMed

    Ren, Hongxia; Yan, Shijun; Zhang, Baifang; Lu, Taylor Y; Arancio, Ottavio; Accili, Domenico

    2014-07-01

    Insulin signaling in the CNS modulates satiety and glucose metabolism, but insulin target neurons are poorly defined. We have previously shown that ablation of insulin receptors (InsR) in Glut4-expressing tissues results in systemic abnormalities of insulin action. We propose that Glut4 neurons constitute an insulin-sensitive neuronal subset. We determined their gene expression profiles using flow-sorted hypothalamic Glut4 neurons. Gene ontology analyses demonstrated that Glut4 neurons are enriched in olfacto-sensory receptors, M2 acetylcholine receptors, and pathways required for the acquisition of insulin sensitivity. Following genetic ablation of InsR, transcriptome profiling of Glut4 neurons demonstrated impairment of the insulin, peptide hormone, and cAMP signaling pathways, with a striking upregulation of anion homeostasis pathway. Accordingly, hypothalamic InsR-deficient Glut4 neurons showed reduced firing activity. The molecular signature of Glut4 neurons is consistent with a role for this neural population in the integration of olfacto-sensory cues with hormone signaling to regulate peripheral metabolism.

  8. Neurogenin 3 mediates sex chromosome effects on the generation of sex differences in hypothalamic neuronal development

    PubMed Central

    Scerbo, María J.; Freire-Regatillo, Alejandra; Cisternas, Carla D.; Brunotto, Mabel; Arevalo, Maria A.; Garcia-Segura, Luis M.; Cambiasso, María J.

    2014-01-01

    The organizational action of testosterone during critical periods of development is the cause of numerous sex differences in the brain. However, sex differences in neuritogenesis have been detected in primary neuronal hypothalamic cultures prepared before the peak of testosterone production by fetal testis. In the present study we assessed the hypothesis of that cell-autonomous action of sex chromosomes can differentially regulate the expression of the neuritogenic gene neurogenin 3 (Ngn3) in male and female hypothalamic neurons, generating sex differences in neuronal development. Neuronal cultures were prepared from male and female E14 mouse hypothalami, before the fetal peak of testosterone. Female neurons showed enhanced neuritogenesis and higher expression of Ngn3 than male neurons. The silencing of Ngn3 abolished sex differences in neuritogenesis, decreasing the differentiation of female neurons. The sex difference in Ngn3 expression was determined by sex chromosomes, as demonstrated using the four core genotypes mouse model, in which a spontaneous deletion of the testis-determining gene Sry from the Y chromosome was combined with the insertion of the Sry gene onto an autosome. In addition, the expression of Ngn3, which is also known to mediate the neuritogenic actions of estradiol, was increased in the cultures treated with the hormone, but only in those from male embryos. Furthermore, the hormone reversed the sex differences in neuritogenesis promoting the differentiation of male neurons. These findings indicate that Ngn3 mediates both cell-autonomous actions of sex chromosomes and hormonal effects on neuritogenesis. PMID:25071448

  9. Identification of hypothalamic neuron-derived neurotrophic factor as a novel factor modulating appetite.

    PubMed

    Byerly, Mardi S; Swanson, Roy D; Semsarzadeh, Nina N; McCulloh, Patrick S; Kwon, Kiwook; Aja, Susan; Moran, Timothy H; Wong, G William; Blackshaw, Seth

    2013-06-15

    Disruption of finely coordinated neuropeptide signals in the hypothalamus can result in altered food intake and body weight. We identified neuron-derived neurotrophic factor (NENF) as a novel secreted protein through a large-scale screen aimed at identifying novel secreted hypothalamic proteins that regulate food intake. We observed robust Nenf expression in hypothalamic nuclei known to regulate food intake, and its expression was altered under the diet-induced obese (DIO) condition relative to the fed state. Hypothalamic Nenf mRNA was regulated by brain-derived neurotrophic factor (BDNF) signaling, itself an important regulator of appetite. Delivery of purified recombinant BDNF into the lateral cerebral ventricle decreased hypothalamic Nenf expression, while pharmacological inhibition of trkB signaling increased Nenf mRNA expression. Furthermore, recombinant NENF administered via an intracerebroventricular cannula decreased food intake and body weight and increased hypothalamic Pomc and Mc4r mRNA expression. Importantly, the appetite-suppressing effect of NENF was abrogated in obese mice fed a high-fat diet, demonstrating a diet-dependent modulation of NENF function. We propose the existence of a regulatory circuit involving BDNF, NENF, and melanocortin signaling. Our study validates the power of using an integrated experimental and bioinformatic approach to identify novel CNS-derived proteins with appetite-modulating function and reveals NENF as an important central modulator of food intake.

  10. Understanding how discrete populations of hypothalamic neurons orchestrate complicated behavioral states

    PubMed Central

    Graebner, Allison K.; Iyer, Manasi; Carter, Matthew E.

    2015-01-01

    A major question in systems neuroscience is how a single population of neurons can interact with the rest of the brain to orchestrate complex behavioral states. The hypothalamus contains many such discrete neuronal populations that individually regulate arousal, feeding, and drinking. For example, hypothalamic neurons that express hypocretin (Hcrt) neuropeptides can sense homeostatic and metabolic factors affecting wakefulness and orchestrate organismal arousal. Neurons that express agouti-related protein (AgRP) can sense the metabolic needs of the body and orchestrate a state of hunger. The organum vasculosum of the lamina terminalis (OVLT) can detect the hypertonicity of blood and orchestrate a state of thirst. Each hypothalamic population is sufficient to generate complicated behavioral states through the combined efforts of distinct efferent projections. The principal challenge to understanding these brain systems is therefore to determine the individual roles of each downstream projection for each behavioral state. In recent years, the development and application of temporally precise, genetically encoded tools has greatly improved our understanding of the structure and function of these neural systems. This review will survey recent advances in our understanding of how these individual hypothalamic populations can orchestrate complicated behavioral states due to the combined efforts of individual downstream projections. PMID:26300745

  11. Hypothalamic neuron projection to autonomic preganglionic levels related with glucose metabolism: a fluorescent labelling study in the rat.

    PubMed

    Portillo, F; Carrasco, M; Vallo, J J

    1996-06-07

    The location of hypothalamic paraventricular neurons projecting to sympathetic preganglionic levels and related to the autonomic regulation of various organs involved in glucose metabolism (OGM) was determined by ipsilateral injections of two fluorescent tracers, Diamidino Yellow into the left dorsal motor nucleus of the vagus and Fast Blue into the left intermediolateral cell column of the T8-T9 spinal cord. Hypothalamospinal neurons were mainly located in the dorsal part of the paraventricular hypothalamic nucleus (PVH) and the hypothalamobulbar neurons were most abundant in the ventral, medial and extreme lateral parts of the PVH. No double-labelled neurons were found in the hypothalamus. These results can help the knowledge of the neural hypothalamic network related with the autonomic hypothalamic control.

  12. Neuronal glucoprivation enhances hypothalamic histamine turnover in rats.

    PubMed

    Oohara, A; Yoshimatsu, H; Kurokawa, M; Oishi, R; Saeki, K; Sakata, T

    1994-08-01

    Histamine (HA) turnover in the rat hypothalamus following insufficient energy supply due to glucoprivation was examined after administration of insulin or 2-deoxy-D-glucose (2-DG). HA turnover was assessed by accumulation of tele-methylhistamine (t-MH), a major metabolite of brain HA, following administration of pargyline. Intraperitoneal injection of 1, 2, and 4 U/kg of insulin, which had no influence on steady-state levels of HA and t-MH, increased pargyline-induced accumulation of t-MH. Accumulation of t-MH due to pargyline was inversely related to the concomitant plasma glucose concentration after different doses of insulin. The level of t-MH accumulated by pargyline did not change compared with that of controls, when a euglycemic condition was maintained or insulin at a dose of 6 mU per rat was infused into the third cerebroventricle. Intracerebroventricular infusion of 24 mumol per rat of 2-DG, which had no influence on steady-state levels of HA and t-MH, increased the level of t-MH enhanced by pargyline. The results indicate that an increase in hypothalamic HA turnover in response to glucoprivation may be involved in homeostatic regulation of energy metabolism in the brain.

  13. Anorexia and impaired glucose metabolism in mice with hypothalamic ablation of Glut4 neurons.

    PubMed

    Ren, Hongxia; Lu, Taylor Y; McGraw, Timothy E; Accili, Domenico

    2015-02-01

    The central nervous system (CNS) uses glucose independent of insulin. Nonetheless, insulin receptors and insulin-responsive glucose transporters (Glut4) often colocalize in neurons (Glut4 neurons) in anatomically and functionally distinct areas of the CNS. The apparent heterogeneity of Glut4 neurons has thus far thwarted attempts to understand their function. To answer this question, we used Cre-dependent, diphtheria toxin-mediated cell ablation to selectively remove basal hypothalamic Glut4 neurons and investigate the resulting phenotypes. After Glut4 neuron ablation, mice demonstrate altered hormone and nutrient signaling in the CNS. Accordingly, they exhibit negative energy balance phenotype characterized by reduced food intake and increased energy expenditure, without locomotor deficits or gross neuronal abnormalities. Glut4 neuron ablation affects orexigenic melanin-concentrating hormone neurons but has limited effect on neuropeptide Y/agouti-related protein and proopiomelanocortin neurons. The food intake phenotype can be partially normalized by GABA administration, suggesting that it arises from defective GABAergic transmission. Glut4 neuron-ablated mice show peripheral metabolic defects, including fasting hyperglycemia and glucose intolerance, decreased insulin levels, and elevated hepatic gluconeogenic genes. We conclude that Glut4 neurons integrate hormonal and nutritional cues and mediate CNS actions of insulin on energy balance and peripheral metabolism.

  14. Bicarbonate contributes to GABAA receptor-mediated neuronal excitation in surgically resected human hypothalamic hamartomas.

    PubMed

    Kim, Do-Young; Fenoglio, Kristina A; Kerrigan, John F; Rho, Jong M

    2009-01-01

    The role of bicarbonate (HCO(3)(-)) in GABA(A) receptor-mediated depolarization of human hypothalamic hamartoma (HH) neurons was investigated using cellular electrophysiological and calcium imaging techniques. Activation of GABA(A) receptors with muscimol (30 microM) provoked neuronal excitation in over 70% of large (18-22 microM) HH neurons in HCO(3)(-) buffer. Subsequent perfusion of HCO(3)(-)-free HEPES buffer produced partial suppression of muscimol-induced excitation. Additionally, 53% of large HH neurons under HCO(3)(-)-free conditions exhibited reduced intracellular calcium accumulation by muscimol. These results suggest that HCO(3)(-) efflux through GABA(A) receptors on a subpopulation of large HH neurons may contribute to membrane depolarization and subsequent activation of L-type calcium channels.

  15. Activation of synaptic and extrasynaptic glycine receptors by taurine in preoptic hypothalamic neurons.

    PubMed

    Bhattarai, Janardhan Prasad; Park, Soo Joung; Chun, Sang Woo; Cho, Dong Hyu; Han, Seong Kyu

    2015-11-03

    Taurine is an essential amino-sulfonic acid having a fundamental function in the brain, participating in both cell volume regulation and neurotransmission. Using a whole cell voltage patch clamp technique, the taurine-activated neurotransmitter receptors in the preoptic hypothalamic area (PHA) neurons were investigated. In the first set of experiments, different concentrations of taurine were applied on PHA neurons. Taurine-induced responses were concentration-dependent. Taurine-induced currents were action potential-independent and sensitive to strychnine, suggesting the involvement of glycine receptors. In addition, taurine activated not only α-homomeric, but also αβ-heteromeric glycine receptors in PHA neurons. Interestingly, a low concentration of taurine (0.5mM) activated glycine receptors, whereas a higher concentration (3mM) activated both glycine and gamma-aminobutyric acid A (GABAA) receptors in PHA neurons. These results suggest that PHA neurons are influenced by taurine and respond via glycine and GABAA receptors.

  16. An ATF4-ATG5 signaling in hypothalamic POMC neurons regulates obesity.

    PubMed

    Xiao, Yuzhong; Deng, Yalan; Yuan, Feixiang; Xia, Tingting; Liu, Hao; Li, Zhigang; Chen, Shanghai; Liu, Zhixue; Ying, Hao; Liu, Yi; Zhai, Qiwei; Guo, Feifan

    2017-03-28

    ATF4 (activating transcription factor 4) is an important transcription factor that has many biological functions, while its role in hypothalamic POMC (pro-opiomelanocortin-alpha) neurons in the regulation of energy homeostasis has not been explored. We recently discovered that mice with an Atf4 deletion specific to POMC neurons (PAKO mice) are lean and have higher energy expenditure. Furthermore, these mice are resistant to high-fat diet (HFD)-induced obesity and obesity-related metabolic disorders. Mechanistically, we found the expression of ATG5 (autophagy related 5) is upregulated in POMC neurons of PAKO mice, and ATF4 regulates ATG5 expression by binding directly to its promoter. Mice with Atf4 and Atg5 double knockout in POMC neurons have reduced energy expenditure and gain more fat mass compared with PAKO mice under a HFD. Finally, the effect of Atf4 knockout in POMC neurons is possibly mediated by enhanced ATG5-dependent macroautophagy/autophagy and α-melanocyte-stimulating hormone (α-MSH) production in the hypothalamus. Together, this work not only identifies a beneficial role for ATF4 in hypothalamic POMC neurons in the regulation of obesity, but also provides a new potential therapeutic target for obesity and obesity-related metabolic diseases.

  17. Monosodium glutamate-sensitive hypothalamic neurons contribute to the control of bone mass

    NASA Technical Reports Server (NTRS)

    Elefteriou, Florent; Takeda, Shu; Liu, Xiuyun; Armstrong, Dawna; Karsenty, Gerard

    2003-01-01

    Using chemical lesioning we previously identified hypothalamic neurons that are required for leptin antiosteogenic function. In the course of these studies we observed that destruction of neurons sensitive to monosodium glutamate (MSG) in arcuate nuclei did not affect bone mass. However MSG treatment leads to hypogonadism, a condition inducing bone loss. Therefore the normal bone mass of MSG-treated mice suggested that MSG-sensitive neurons may be implicated in the control of bone mass. To test this hypothesis we assessed bone resorption and bone formation parameters in MSG-treated mice. We show here that MSG-treated mice display the expected increase in bone resorption and that their normal bone mass is due to a concomitant increase in bone formation. Correction of MSG-induced hypogonadism by physiological doses of estradiol corrected the abnormal bone resorptive activity in MSG-treated mice and uncovered their high bone mass phenotype. Because neuropeptide Y (NPY) is highly expressed in MSG-sensitive neurons we tested whether NPY regulates bone formation. Surprisingly, NPY-deficient mice had a normal bone mass. This study reveals that distinct populations of hypothalamic neurons are involved in the control of bone mass and demonstrates that MSG-sensitive neurons control bone formation in a leptin-independent manner. It also indicates that NPY deficiency does not affect bone mass.

  18. Relative number and distribution of murine hypothalamic proopiomelanocortin neurons innervating distinct target sites.

    PubMed

    King, Connie M; Hentges, Shane T

    2011-01-01

    Proopiomelanocortin (POMC) neurons send projections widely throughout the brain consistent with their role in regulating numerous homeostatic processes and mediating analgesia and reward. Recent data suggest that POMC neurons located in the rostral and caudal extents of the arcuate nucleus of the hypothalamus may mediate selective actions, however it is not clear if POMC neurons in these regions of the arcuate nucleus innervate specific target sites. In the present study, fluorescent microspheres and cholera toxin B were used to retrogradely label POMC neurons in POMC-DsRed transgenic mice. The number and location of POMC cells projecting to the supraoptic nucleus, periaqueductal gray, ventral tegmental area, paraventricular nucleus, lateral hypothalamic nucleus, amygdala and the dosal vagal complex was determined. Tracer injected unilaterally labeled POMC neurons in both sides of the arcuate nucleus. While the total number of retrogradely labeled cells in the arcuate nucleus varied by injection site, less than 10% of POMC neurons were labeled with tracer injected into any target area. Limited target sites appear to be preferentially innervated by POMC neurons that reside in the rostral or caudal extremes of the arcuate nucleus, whereas the majority of target sites are innervated by diffusely distributed POMC neurons. The modest number of cells projecting to each target site indicates that relatively few POMC neurons may mediate potent and specific physiologic responses and therefore disturbed signaling in a very few POMC neurons may have significant consequences.

  19. Relative Number and Distribution of Murine Hypothalamic Proopiomelanocortin Neurons Innervating Distinct Target Sites

    PubMed Central

    King, Connie M.; Hentges, Shane T.

    2011-01-01

    Proopiomelanocortin (POMC) neurons send projections widely throughout the brain consistent with their role in regulating numerous homeostatic processes and mediating analgesia and reward. Recent data suggest that POMC neurons located in the rostral and caudal extents of the arcuate nucleus of the hypothalamus may mediate selective actions, however it is not clear if POMC neurons in these regions of the arcuate nucleus innervate specific target sites. In the present study, fluorescent microspheres and cholera toxin B were used to retrogradely label POMC neurons in POMC-DsRed transgenic mice. The number and location of POMC cells projecting to the supraoptic nucleus, periaqueductal gray, ventral tegmental area, paraventricular nucleus, lateral hypothalamic nucleus, amygdala and the dosal vagal complex was determined. Tracer injected unilaterally labeled POMC neurons in both sides of the arcuate nucleus. While the total number of retrogradely labeled cells in the arcuate nucleus varied by injection site, less than 10% of POMC neurons were labeled with tracer injected into any target area. Limited target sites appear to be preferentially innervated by POMC neurons that reside in the rostral or caudal extremes of the arcuate nucleus, whereas the majority of target sites are innervated by diffusely distributed POMC neurons. The modest number of cells projecting to each target site indicates that relatively few POMC neurons may mediate potent and specific physiologic responses and therefore disturbed signaling in a very few POMC neurons may have significant consequences. PMID:21991375

  20. Near-Perfect Synaptic Integration by Nav1.7 in Hypothalamic Neurons Regulates Body Weight.

    PubMed

    Branco, Tiago; Tozer, Adam; Magnus, Christopher J; Sugino, Ken; Tanaka, Shinsuke; Lee, Albert K; Wood, John N; Sternson, Scott M

    2016-06-16

    Neurons are well suited for computations on millisecond timescales, but some neuronal circuits set behavioral states over long time periods, such as those involved in energy homeostasis. We found that multiple types of hypothalamic neurons, including those that oppositely regulate body weight, are specialized as near-perfect synaptic integrators that summate inputs over extended timescales. Excitatory postsynaptic potentials (EPSPs) are greatly prolonged, outlasting the neuronal membrane time-constant up to 10-fold. This is due to the voltage-gated sodium channel Nav1.7 (Scn9a), previously associated with pain-sensation but not synaptic integration. Scn9a deletion in AGRP, POMC, or paraventricular hypothalamic neurons reduced EPSP duration, synaptic integration, and altered body weight in mice. In vivo whole-cell recordings in the hypothalamus confirmed near-perfect synaptic integration. These experiments show that integration of synaptic inputs over time by Nav1.7 is critical for body weight regulation and reveal a mechanism for synaptic control of circuits regulating long term homeostatic functions.

  1. Colocalization of vasopressin and oxytocin in hypothalamic magnocellular neurons in water-deprived rats.

    PubMed

    Telleria-Diaz, A; Grinevich, V V; Jirikowski, G F

    2001-01-01

    The posterior lobe hormones vasopressin and oxytocin are expressed in mutually-exclusive sets of magnocellular hypothamalic neurons. However, under certain functional conditions a partial coexpression has been observed. In the present study we subjected adult rats to long-term osmotic stress by water deprivation for up to 3 days. After 3 days, a marked reduction of vasopressin immunostaining was observed in the paraventricular and supraoptic nuclei as compared with controls. Coexistence of oxytocin and vasopressin occurred in a portion of the magnocellular neurons. Many fibers of the hypothalamic-neurohypophyseal tract contained both peptides. Rehydration for 24 h after 3 days of thirsting resulted in a light recovery of vasopressin immunoreactivity with almost none magnocellular neurons containing both nonapeptides. Our findings indicate that magnocellular hypothalamo neurohypophysial neurons are capable of oxytocin and vasopressin coexpression upon extended osmotic stress.

  2. Molecular and cellular regulation of hypothalamic melanocortin neurons controlling food intake and energy metabolism.

    PubMed

    Koch, M; Horvath, T L

    2014-07-01

    The brain receives and integrates environmental and metabolic information, transforms these signals into adequate neuronal circuit activities, and generates physiological behaviors to promote energy homeostasis. The responsible neuronal circuitries show lifetime plasticity and guaranty metabolic health and survival. However, this highly evolved organization has become challenged nowadays by chronic overload with nutrients and reduced physical activity, which results in an ever-increasing number of obese individuals worldwide. Research within the last two decades has aimed to decipher the responsible molecular and cellular mechanisms for regulation of the hypothalamic melanocortin neurons, which have a key role in the control of food intake and energy metabolism. This review maps the central connections of the melanocortin system and highlights its global position and divergent character in physiological and pathological metabolic events. Moreover, recently uncovered molecular and cellular processes in hypothalamic neurons and glial cells that drive plastic morphological and physiological changes in these cells, and account for regulation of food intake and energy metabolism, are brought into focus. Finally, potential functional interactions between metabolic disorders and psychiatric diseases are discussed.

  3. Activation of neurons in the hypothalamic dorsomedial nucleus via hypothalamic projections of the nucleus of the solitary tract following refeeding of fasted rats.

    PubMed

    Renner, Eva; Szabó-Meltzer, Kinga I; Puskás, Nela; Tóth, Zsuzsanna E; Dobolyi, Arpád; Palkovits, Miklós

    2010-01-01

    We report that satiation evokes neuronal activity in the ventral subdivision of the hypothalamic dorsomedial nucleus (DMH) as indicated by increased c-fos expression in response to refeeding in fasted rats. The absence of significant Fos activation following food presentation without consumption suggests that satiation but not craving for food elicits the activation of ventral DMH neurons. The distribution pattern of the prolactin-releasing peptide (PrRP)-immunoreactive (ir) network showed remarkable correlations with the distribution of activated neurons within the DMH. The PrRP-ir fibers and terminals were immunolabeled with tyrosine hydroxylase, suggesting their origin in lower brainstem instead of local, hypothalamic PrRP cells. PrRP-ir fibers arising from neurons of the nucleus of the solitary tract could be followed to the hypothalamus. Unilateral transections of these fibers at pontine and caudal hypothalamic levels resulted in a disappearance of the dense PrRP-ir network in the ventral DMH while PrRP immunoreactivity was increased in transected fibers caudal to the knife cuts as well as in perikarya of the nucleus of the solitary tract ipsilateral to the transections. In accord with these changes, the number of Fos-expressing neurons following refeeding declined in the ipsilateral but remained high in the contralateral DMH. However, the Fos response in the ventral DMH was not attenuated following chemical lesion (neonatal monosodium glutamate treatment) of the hypothalamic arcuate nucleus, another possible source of DMH inputs. These findings suggest that PrRP projections from the nucleus of the solitary tract contribute to the activation of ventral DMH neurons during refeeding, possibly by transferring information on cholecystokinin-mediated satiation.

  4. Hypothalamic neuronal histamine modulates febrile response but not anorexia induced by lipopolysaccharide.

    PubMed

    Chiba, Seiichi; Itateyama, Emi; Oka, Kyoko; Masaki, Takayuki; Sakata, Toshiie; Yoshimatsu, Hironobu

    2005-05-01

    This study examined the contribution of hypothalamic neuronal histamine (HA) to the anorectic and febrile responses induced by lipopolysaccharide (LPS), an exogenous pyrogen, and the endogenous pyrogens interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha). Intraperitoneal (ip) injection of LPS, IL-1beta, or TNF-alpha suppressed 24-hr cumulative food intake and increased rectal temperature in rats. To analyze the histaminergic contribution, rats were pretreated with intracerebroventricular (icv) injection of 2.44 mmol/kg or ip injection of 244 mmol/kg of alpha-fluoromethylhistidine (FMH), a suicide inhibitor of histidine decarboxylase (HDC), to deplete neural HA. The depletion of neural HA augmented the febrile response to ip injection of LPS and IL-1beta and alleviated the anorectic response to ip injection of IL-1beta. However, the depletion of neural HA did not modify the LPS-induced anorectic response or TNF-alpha-induced febrile and anorectic responses. Consistent with these results, the rate of hypothalamic HA turnover, assessed by the accumulation of tele-methylhistamine (t-MH), was elevated with ip injections of LPS and IL-1beta, but unaffected by TNF-alpha at equivalent doses. This suggests that (i) LPS and IL-1beta activate hypothalamic neural HA turnover; (ii) hypothalamic neural HA suppresses the LPS- and IL-1beta-induced febrile responses and accelerates the IL-1beta-induced anorectic response; and (iii) TNF-alpha modulates the febrile and anorectic responses via a neural HA-independent pathway. Therefore, hypothalamic neural HA is involved in the IL-1beta-dominant pathway, rather than the TNF-alpha-dominant pathway, preceding the systemic inflammatory response induced by exogenous pyrogens, such as LPS. Further research on this is needed.

  5. Thermal stimulation of hypothalamic neurones in unanaesthetized rabbits

    PubMed Central

    Hellon, R. F.

    1967-01-01

    1. A technique has been devised for recording unit activity in the anterior hypothalamus of conscious rabbits during the controlled displacement of local temperature by 1-2° C. The region at 1 and 2 mm from the mid line was explored. 2. All the units studied showed spontaneous activity before thermal stimulation with a mean rate of 9 impulses/sec (range 1/16 sec to 65/sec). 3. Twenty-seven (10%) of the recorded neurones showed a change in firing rate which could be related to the temperature changes. Twenty-one of the cells were `warm-sensitive' and were excited when temperature was raised or inhibited when it was lowered. The other six units were `cold-sensitive' and showed the opposite type of response. 4. Apart from this directional grouping, it was possible to classify the responses into four categories: A, five cells whose firing rate was always proportional to local temperature over a range from 2° C below to 2° C above body temperature; B, six cells whose average level of firing changed during the period of observation, but whose sensitivity to temperature was not affected; C, eight cells which showed a threshold and were only affected by temperature above or below a certain level; D, four cells whose changes in frequency either led or lagged behind the temperature changes. 5. The positions of these sensitive units in the hypothalamus did not show any apparent pattern, except that 75% of them were found 1 mm lateral to the mid line; the remaining 25% were 2 mm lateral. PMID:6065885

  6. Local synaptic release of glutamate from neurons in the rat hypothalamic arcuate nucleus.

    PubMed Central

    Belousov, A B; van den Pol, A N

    1997-01-01

    1. The hypothalamic arcuate nucleus (ARC) contains neuroendocrine neurons that regulate endocrine secretions by releasing substances which control anterior pituitary hormonal release into the portal blood stream. Many neuroactive substances have been identified in the ARC, but the existence of excitatory neurons in the ARC and the identity of an excitatory transmitter have not been investigated physiologically. 2. In the present experiments using whole-cell current- and voltage-clamp recording of neurons from cultures and slices of the ARC, we demonstrate for the first time that some of the neurons in the ARC secrete glutamate as their transmitter. 3. Using microdrop stimulation of presynaptic neurons in ARC slices, we found that local axons from these glutamatergic neurons make local synaptic contact with other neurons in the ARC and that all evoked excitatory postsynaptic potentials could be blocked by the selective ionotropic glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10 microM) and D,L-2-amino-5-phosphonovalerate (AP5; 100 microM). To determine the identity of ARC neurons postsynaptic to local glutamatergic neurons, we used antidromic stimulation to reveal that many of these cells were neuroendocrine neurons by virtue of their maintaining axon terminals in the median eminence. 4. In ARC cultures, postsynaptic potentials, both excitatory and inhibitory, were virtually eliminated by the glutamate receptor antagonists AP5 and CNQX, underlining the functional importance of glutamate within this part of the neuroendocrine brain. 5. GABA was secreted by a subset of ARC neurons from local axons. The GABAA receptor antagonist bicuculline released glutamatergic neurons from chronic inhibition mediated by synaptically released GABA, resulting in further depolarization and an increase in the amplitude and frequency of glutamate-mediated excitatory postsynaptic potentials. Images Figure 1 PMID:9130170

  7. Lipoprotein Lipase is an Important Modulator of Lipid Uptake and Storage in Hypothalamic Neurons

    PubMed Central

    Libby, Andrew E.; Wang, Hong; Mittal, Richa; Sungelo, Mitchell; Potma, Eric; Eckel, Robert H.

    2015-01-01

    LPL is the rate-limiting enzyme for uptake of TG-derived FFA in peripheral tissues, and the enzyme is expressed in the brain and CNS. We previously created a mouse which lacks neuronal LPL. This animal becomes obese on a standard chow, and we observed reduced lipid uptake in the hypothalamus at 3 months preceding obesity. In our present study, we replicated the animal phenotype in an immortalized mouse hypothalamic cell line (N41) to examine how LPL affects expression of AgRP as well as entry and storage of lipids into neurons. We show that LPL is able to modulate levels of the orexigenic peptide AgRP. LPL also exerts effects on lipid uptake into culture neurons, and that uptake of neutral lipid can be enhanced even by mutant LPL lacking catalytic activity. N41 cells also accumulate neutral lipid in droplets, and this is at least in part regulated by LPL. These data in addition to those published in mice with neuron-specific deletion of LPL suggest that neuronal LPL is an important regulator of lipid homeostasis in neurons and that alterations in LPL levels may have important effects on systemic metabolism and neuronal lipid biology. PMID:26265042

  8. Cell type-specific transcriptomics of hypothalamic energy-sensing neuron responses to weight-loss.

    PubMed

    Henry, Fredrick E; Sugino, Ken; Tozer, Adam; Branco, Tiago; Sternson, Scott M

    2015-09-02

    Molecular and cellular processes in neurons are critical for sensing and responding to energy deficit states, such as during weight-loss. Agouti related protein (AGRP)-expressing neurons are a key hypothalamic population that is activated during energy deficit and increases appetite and weight-gain. Cell type-specific transcriptomics can be used to identify pathways that counteract weight-loss, and here we report high-quality gene expression profiles of AGRP neurons from well-fed and food-deprived young adult mice. For comparison, we also analyzed Proopiomelanocortin (POMC)-expressing neurons, an intermingled population that suppresses appetite and body weight. We find that AGRP neurons are considerably more sensitive to energy deficit than POMC neurons. Furthermore, we identify cell type-specific pathways involving endoplasmic reticulum-stress, circadian signaling, ion channels, neuropeptides, and receptors. Combined with methods to validate and manipulate these pathways, this resource greatly expands molecular insight into neuronal regulation of body weight, and may be useful for devising therapeutic strategies for obesity and eating disorders.

  9. Cell type-specific transcriptomics of hypothalamic energy-sensing neuron responses to weight-loss

    PubMed Central

    Henry, Fredrick E; Sugino, Ken; Tozer, Adam; Branco, Tiago; Sternson, Scott M

    2015-01-01

    Molecular and cellular processes in neurons are critical for sensing and responding to energy deficit states, such as during weight-loss. Agouti related protein (AGRP)-expressing neurons are a key hypothalamic population that is activated during energy deficit and increases appetite and weight-gain. Cell type-specific transcriptomics can be used to identify pathways that counteract weight-loss, and here we report high-quality gene expression profiles of AGRP neurons from well-fed and food-deprived young adult mice. For comparison, we also analyzed Proopiomelanocortin (POMC)-expressing neurons, an intermingled population that suppresses appetite and body weight. We find that AGRP neurons are considerably more sensitive to energy deficit than POMC neurons. Furthermore, we identify cell type-specific pathways involving endoplasmic reticulum-stress, circadian signaling, ion channels, neuropeptides, and receptors. Combined with methods to validate and manipulate these pathways, this resource greatly expands molecular insight into neuronal regulation of body weight, and may be useful for devising therapeutic strategies for obesity and eating disorders. DOI: http://dx.doi.org/10.7554/eLife.09800.001 PMID:26329458

  10. Distribution of hypothalamic vasoactive intestinal peptide immunoreactive neurons in the male native Thai chicken.

    PubMed

    Kamkrathok, Boonyarit; Sartsoongnoen, Natagarn; Prakobsaeng, Nattiya; Rozenboim, Israel; Porter, Tom E; Chaiseha, Yupaporn

    2016-08-01

    Avian prolactin (PRL) secretion is under stimulatory control by the PRL-releasing factor (PRF), vasoactive intestinal peptide (VIP). The neuroendocrine regulation of the avian reproductive system has been extensively studied in females. However, there are limited data in males. The aim of this study was to elucidate the VIPergic system and its relationship to PRL and testosterone (T) in the male native Thai chicken. The distributions of VIP-immunoreactive (-ir) neurons and fibers were determined by immunohistochemistry. Changes in VIP-ir neurons within the nucleus inferioris hypothalami (IH) and nucleus infundibuli hypothalami (IN) areas were compared across the reproductive stages. Plasma levels of PRL and T were determined by enzyme-linked immunosorbent assay and then compared across the reproductive stages. The results revealed that the highest accumulations of VIP-ir neurons were concentrated only within the IH-IN, and VIP-ir neurons were not detected within other hypothalamic nuclei. Within the IH-IN, VIP-ir neurons were low in premature and aging males and markedly increased in mature males. Changes in VIP-ir neurons within the IH-IN were directly mirrored with changes in PRL and T levels across the reproductive stages. These results suggested that VIP neurons in the IH-IN play a regulatory role in year-round reproductive activity in males. The present study also provides additional evidence that VIP is the PRF in non-seasonal, continuously breeding equatorial species.

  11. Hypothalamic dopaminergic neurons in an animal model of seasonal affective disorder.

    PubMed

    Deats, Sean P; Adidharma, Widya; Yan, Lily

    2015-08-18

    Light has profound effects on mood regulation as exemplified in seasonal affective disorder (SAD) and the therapeutic benefits of light therapy. However, the underlying neural pathways through which light regulates mood are not well understood. Our previous work has developed the diurnal grass rat, Arvicanthis niloticus, as an animal model of SAD. Following housing conditions of either 12:12 h dim light:dark (DLD) or 8:16 h short photoperiod (SP), which mimic the lower light intensity or short day-length of winter, respectively, grass rats exhibit an increase in depression-like behavior compared to those housed in a 12:12 h bright light:dark (BLD) condition. Furthermore, we have shown that the orexinergic system is involved in mediating the effects of light on mood and anxiety. To explore other potential neural substrates involved in the depressive phenotype, the present study examined hypothalamic dopaminergic (DA) and somatostatin (SST) neurons in the brains of grass rats housed in DLD, SP and BLD. Using immunostaining for tyrosine hydroxylase (TH) and SST, we found that the number of TH- and SST-ir cells in the hypothalamus was significantly lower in the DLD and SP groups compared to the BLD group. We also found that treating BLD animals with a selective orexin receptor 1 (OX1R) antagonist SB-334867 significantly reduced the number of hypothalamic TH-ir cells. The present study suggests that the hypothalamic DA neurons are sensitive to daytime light deficiency and are regulated by an orexinergic pathway. The results support the hypothesis that the orexinergic pathways mediate the effects of light on other neuronal systems that collectively contribute to light-dependent changes in the affective state.

  12. Islet 1 specifies the identity of hypothalamic melanocortin neurons and is critical for normal food intake and adiposity in adulthood

    PubMed Central

    Nasif, Sofia; de Souza, Flavio S. J.; González, Laura E.; Yamashita, Miho; Orquera, Daniela P.; Rubinstein, Marcelo

    2015-01-01

    Food intake and body weight regulation depend on proper expression of the proopiomelanocortin gene (Pomc) in a group of neurons located in the mediobasal hypothalamus of all vertebrates. These neurons release POMC-encoded melanocortins, which are potent anorexigenic neuropeptides, and their absence from mice or humans leads to hyperphagia and severe obesity. Although the pathophysiology of hypothalamic POMC neurons is well understood, the genetic program that establishes the neuronal melanocortinergic phenotype and maintains a fully functional neuronal POMC phenotype throughout adulthood remains unknown. Here, we report that the early expression of the LIM-homeodomain transcription factor Islet 1 (ISL1) in the developing hypothalamus promotes the terminal differentiation of melanocortinergic neurons and is essential for hypothalamic Pomc expression since its initial onset and throughout the entire lifetime. We detected ISL1 in the prospective hypothalamus just before the onset of Pomc expression and, from then on, Pomc and Isl1 coexpress. ISL1 binds in vitro and in vivo to critical homeodomain binding DNA motifs present in the neuronal Pomc enhancers nPE1 and nPE2, and mutations of these sites completely disrupt the ability of these enhancers to drive reporter gene expression to hypothalamic POMC neurons in transgenic mice and zebrafish. ISL1 is necessary for hypothalamic Pomc expression during mouse and zebrafish embryogenesis. Furthermore, conditional Isl1 inactivation from POMC neurons impairs Pomc expression, leading to hyperphagia and obesity. Our results demonstrate that ISL1 specifies the identity of hypothalamic melanocortin neurons and is required for melanocortin-induced satiety and normal adiposity throughout the entire lifespan. PMID:25825735

  13. Developmental programming of hypothalamic neuronal circuits: impact on energy balance control

    PubMed Central

    Gali Ramamoorthy, Thanuja; Begum, Ghazala; Harno, Erika; White, Anne

    2015-01-01

    The prevalence of obesity in adults and children has increased globally at an alarming rate. Mounting evidence from both epidemiological studies and animal models indicates that adult obesity and associated metabolic disorders can be programmed by intrauterine and early postnatal environment- a phenomenon known as “fetal programming of adult disease.” Data from nutritional intervention studies in animals including maternal under- and over-nutrition support the developmental origins of obesity and metabolic syndrome. The hypothalamic neuronal circuits located in the arcuate nucleus controlling appetite and energy expenditure are set early in life and are perturbed by maternal nutritional insults. In this review, we focus on the effects of maternal nutrition in programming permanent changes in these hypothalamic circuits, with experimental evidence from animal models of maternal under- and over-nutrition. We discuss the epigenetic modifications which regulate hypothalamic gene expression as potential molecular mechanisms linking maternal diet during pregnancy to the offspring's risk of obesity at a later age. Understanding these mechanisms in key metabolic genes may provide insights into the development of preventative intervention strategies. PMID:25954145

  14. Forskolin delays the ethanol-induced desensitization of hypothalamic beta-endorphin neurons in primary cultures.

    PubMed

    Boyadjieva, N; Reddy, B V; Sarkar, D K

    1997-05-01

    Ethanol and its metabolite acetaldehyde have been shown to stimulate immunoreactive beta-endorphin (IR-beta-EP) secretion from hypothalamic neurons in primary cultures. Also, chronic ethanol and acetal-dehyde have been shown to cause the development of tolerance and desensitization of these neurons. In this study, we determined some of the cellular events leading to desensitization of the function of beta-endorphin (beta-EP) secretory neurons. The fetal hypothalamic cells were treated with various doses of ethanol (25 and 50 mM) or acetaldehyde (6.25, 12.5, and 25 mM) for 6 hr or treated with these drugs at 12 hr intervals for 72 hr. Determination of IR-beta-EP concentrations in the media revealed that ethanol increased IR-beta-EP secretion from these cultures for 12 hr, after this period, the cultured cells did not respond to ethanol. Acetaldehyde stimulated IR-beta-EP secretion from this culture for a period of 48 hr, but the IR-beta-EP secretory response to acetaldehyde reduced gradually with time during the first 48-hr period and reached the basal level at 72 hr. The desensitization of beta-EP neurons 12 hr after treatment with alcohol did not seem to be related to the loss of viable cells, because chronic ethanol exposures did not produce any effect on cell viability. However, reduced IR- beta-EP secretory response to acetaldehyde with time was associated with the time-dependent increase in cell death. Pretreatment of cultures with a cAMP analog, forskolin, increased the activity of functional beta-EP neurons and delayed the ethanol desensitization effects on these neurons. Pretreatment of forskolin did not delay the acetaldehyde desensitization of beta-EP neurons, but protected these cells from acetaldehyde toxicity. These results suggest that (i) chronic treatment with ethanol desensitizes beta-EP-secreting neurons due to reduced cellular functions and (ii) chronic acetaldehyde reduces beta-EP neurotransmission due to cell death. Furthermore, data suggest

  15. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance

    PubMed Central

    Brown, Juliette A.; Woodworth, Hillary L.; Leinninger, Gina M.

    2015-01-01

    Survival depends on an organism’s ability to sense nutrient status and accordingly regulate intake and energy expenditure behaviors. Uncoupling of energy sensing and behavior, however, underlies energy balance disorders such as anorexia or obesity. The hypothalamus regulates energy balance, and in particular the lateral hypothalamic area (LHA) is poised to coordinate peripheral cues of energy status and behaviors that impact weight, such as drinking, locomotor behavior, arousal/sleep and autonomic output. There are several populations of LHA neurons that are defined by their neuropeptide content and contribute to energy balance. LHA neurons that express the neuropeptides melanin-concentrating hormone (MCH) or orexins/hypocretins (OX) are best characterized and these neurons play important roles in regulating ingestion, arousal, locomotor behavior and autonomic function via distinct neuronal circuits. Recently, another population of LHA neurons containing the neuropeptide Neurotensin (Nts) has been implicated in coordinating anorectic stimuli and behavior to regulate hydration and energy balance. Understanding the specific roles of MCH, OX and Nts neurons in harmonizing energy sensing and behavior thus has the potential to inform pharmacological strategies to modify behaviors and treat energy balance disorders. PMID:25741247

  16. Metabolic regulation of lateral hypothalamic glucose-inhibited orexin neurons may influence midbrain reward neurocircuitry.

    PubMed

    Sheng, Zhenyu; Santiago, Ammy M; Thomas, Mark P; Routh, Vanessa H

    2014-09-01

    Lateral hypothalamic area (LHA) orexin neurons modulate reward-based feeding by activating ventral tegmental area (VTA) dopamine (DA) neurons. We hypothesize that signals of peripheral energy status influence reward-based feeding by modulating the glucose sensitivity of LHA orexin glucose-inhibited (GI) neurons. This hypothesis was tested using electrophysiological recordings of LHA orexin-GI neurons in brain slices from 4 to 6week old male mice whose orexin neurons express green fluorescent protein (GFP) or putative VTA-DA neurons from C57Bl/6 mice. Low glucose directly activated ~60% of LHA orexin-GFP neurons in both whole cell and cell attached recordings. Leptin indirectly reduced and ghrelin directly enhanced the activation of LHA orexin-GI neurons by glucose decreases from 2.5 to 0.1mM by 53±12% (n=16, P<0.001) and 41±24% (n=8, P<0.05), respectively. GABA or neurotensin receptor blockade prevented leptin's effect on glucose sensitivity. Fasting increased activation of LHA orexin-GI neurons by decreased glucose, as would be predicted by these hormonal effects. We also evaluated putative VTA-DA neurons in a novel horizontal slice preparation containing the LHA and VTA. Decreased glucose increased the frequency of spontaneous excitatory post-synaptic currents (sEPSCs; 125 ± 40%, n=9, P<0.05) and action potentials (n=9; P<0.05) in 45% (9/20) of VTA DA neurons. sEPSCs were completely blocked by AMPA and NMDA glutamate receptor antagonists (CNQX 20 μM, n=4; APV 20μM, n=4; respectively), demonstrating that these sEPSCs were mediated by glutamatergic transmission onto VTA DA neurons. Orexin-1 but not 2 receptor antagonism with SB334867 (10μM; n=9) and TCS-OX2-29 (2μM; n=5), respectively, blocks the effects of decreased glucose on VTA DA neurons. Thus, decreased glucose increases orexin-dependent excitatory glutamate neurotransmission onto VTA DA neurons. These data suggest that the glucose sensitivity of LHA orexin-GI neurons links metabolic state and reward

  17. Stress and Sucrose Intake Modulate Neuronal Activity in the Anterior Hypothalamic Area in Rats

    PubMed Central

    Mitra, Arojit; Guèvremont, Geneviève; Timofeeva, Elena

    2016-01-01

    The anterior hypothalamic area (AHA) is an important integrative relay structure for a variety of autonomic, endocrine, and behavioral responses including feeding behavior and response to stress. However, changes in the activity of the AHA neurons during stress and feeding in freely moving rats are not clear. The present study investigated the firing rate and burst activity of neurons in the central nucleus of the AHA (cAHA) during sucrose intake in non-stressful conditions and after acute stress in freely behaving rats. Rats were implanted with micro-electrodes into the cAHA, and extracellular multi-unit activity was recorded during 1-h access to 10% sucrose in non-stressful conditions or after acute foot shock stress. Acute stress significantly reduced sucrose intake, total sucrose lick number, and lick frequency in licking clusters, and increased inter-lick intervals. At the cluster start (CS) of sucrose licking, the cAHA neurons increased (CS-excited, 20% of the recorded neurons), decreased (CS-inhibited, 42% of the neurons) or did not change (CS-nonresponsive, 38% of the neurons) their firing rate. Stress resulted in a significant increase in the firing rate of the CS-inhibited neurons by decreasing inter-spike intervals within the burst firing of these neurons. This increase in the stress-induced firing rate of the CS-inhibited neurons was accompanied by a disruption of the correlation between the firing rate of CS-inhibited and CS-nonresponsive neurons that was observed in non-stressful conditions. Stress did not affect the firing rate of the CS-excited and CS-nonresponsive neurons. However, stress changed the pattern of burst firing of the CS-excited and CS-nonresponsive neurons by decreasing and increasing the burst number in the CS-excited and CS-nonresponsive neurons, respectively. These results suggest that the cAHA neurons integrate the signals related to stress and intake of palatable food and play a role in the stress- and eating-related circuitry

  18. Odour-induced analgesia mediated by hypothalamic orexin neurons in mice

    PubMed Central

    Tashiro, Shogo; Yamaguchi, Ran; Ishikawa, Sodemi; Sakurai, Takeshi; Kajiya, Katsuko; Kanmura, Yuichi; Kuwaki, Tomoyuki; Kashiwadani, Hideki

    2016-01-01

    Various folk remedies employ certain odorous compounds with analgesic effects. In fact, linalool, a monoterpene alcohol found in lavender extracts, has been found to attenuate pain responses via subcutaneous, intraperitoneal, intrathecal, and oral administration. However, the analgesic effects of odorous compounds mediated by olfaction have not been thoroughly examined. We performed behavioural pain tests under odourant vapour exposure in mice. Among six odourant molecules examined, linalool significantly increased the pain threshold and attenuated pain behaviours. Olfactory bulb or epithelium lesion removed these effects, indicating that olfactory sensory input triggered the effects. Furthermore, immunohistochemical analysis revealed that linalool activated hypothalamic orexin neurons, one of the key mediators for pain processing. Formalin tests in orexin neuron-ablated and orexin peptide-deficient mice showed orexinergic transmission was essential for linalool odour-induced analgesia. Together, these findings reveal central analgesic circuits triggered by olfactory input in the mammalian brain and support a potential therapeutic approach for treating pain with linalool odour stimulation. PMID:27845440

  19. Somatic nonhomologous crossing-over between neuropeptide genes in rat hypothalamic neurons.

    PubMed Central

    Mohr, E; Peters, A; Morris, J F; Richter, D

    1994-01-01

    Molecular biological and immunocytochemical data demonstrate nonhomologous crossing-over between the closely linked vasopressin (VP) and oxytocin (OT) genes in rat hypothalamic neuroendocrine neurons. Reverse transcription of hypothalamic total RNA from wild-type or homozygous Brattleboro aged rats combined with polymerase chain reaction (PCR) amplifications in the presence of appropriate 5' forward and 3' reverse primers deduced from the VP and OT cDNA sequences yielded PCR products that, upon cloning and sequencing, revealed several hybrid transcripts. They encode the N-terminal part of the VP precursor fused to the C-terminal part of the OT precursor (VP/OT transcripts) and vice versa (OT/VP transcripts). VP/OT hybrid precursor proteins have been identified immunocytochemically in enlarged cisternae of the rough endoplasmic reticulum, yet there is no evidence that the products can be secreted from affected cells. Recombination appears to be a rather frequent genetic event affecting about 0.06-0.1% of the rat vasopressinergic magnocellular neurons in aged rats. Images PMID:7972073

  20. Zebrafish adult-derived hypothalamic neurospheres generate gonadotropin-releasing hormone (GnRH) neurons

    PubMed Central

    Cortés-Campos, Christian; Letelier, Joaquín; Ceriani, Ricardo; Whitlock, Kathleen E.

    2015-01-01

    ABSTRACT Gonadotropin-releasing hormone (GnRH) is a hypothalamic decapeptide essential for fertility in vertebrates. Human male patients lacking GnRH and treated with hormone therapy can remain fertile after cessation of treatment suggesting that new GnRH neurons can be generated during adult life. We used zebrafish to investigate the neurogenic potential of the adult hypothalamus. Previously we have characterized the development of GnRH cells in the zebrafish linking genetic pathways to the differentiation of neuromodulatory and endocrine GnRH cells in specific regions of the brain. Here, we developed a new method to obtain neural progenitors from the adult hypothalamus in vitro. Using this system, we show that neurospheres derived from the adult hypothalamus can be maintained in culture and subsequently differentiate glia and neurons. Importantly, the adult derived progenitors differentiate into neurons containing GnRH and the number of cells is increased through exposure to either testosterone or GnRH, hormones used in therapeutic treatment in humans. Finally, we show in vivo that a neurogenic niche in the hypothalamus contains GnRH positive neurons. Thus, we demonstrated for the first time that neurospheres can be derived from the hypothalamus of the adult zebrafish and that these neural progenitors are capable of producing GnRH containing neurons. PMID:26209533

  1. Lateral Hypothalamic Area Glutamatergic Neurons and Their Projections to the Lateral Habenula Regulate Feeding and Reward

    PubMed Central

    Stamatakis, Alice M.; Van Swieten, Maaike; Basiri, Marcus L.; Blair, Grace A.; Kantak, Pranish

    2016-01-01

    The overconsumption of calorically dense, highly palatable foods is thought to be a major contributor to the worldwide obesity epidemic; however, the precise neural circuits that directly regulate hedonic feeding remain elusive. Here, we show that lateral hypothalamic area (LHA) glutamatergic neurons, and their projections to the lateral habenula (LHb), negatively regulate the consumption of palatable food. Genetic ablation of LHA glutamatergic neurons increased daily caloric intake and produced weight gain in mice that had access to a high-fat diet, while not altering general locomotor activity. Anterior LHA glutamatergic neurons send a functional glutamatergic projection to the LHb, a brain region involved in processing aversive stimuli and negative reward prediction outcomes. Pathway-specific, optogenetic stimulation of glutamatergic LHA-LHb circuit resulted in detectable glutamate-mediated EPSCs as well as GABA-mediated IPSCs, although the net effect of neurotransmitter release was to increase the firing of most LHb neurons. In vivo optogenetic inhibition of LHA-LHb glutamatergic fibers produced a real-time place preference, whereas optogenetic stimulation of LHA-LHb glutamatergic fibers had the opposite effect. Furthermore, optogenetic inhibition of LHA-LHb glutamatergic fibers acutely increased the consumption of a palatable liquid caloric reward. Collectively, these results demonstrate that LHA glutamatergic neurons are well situated to bidirectionally regulate feeding and potentially other behavioral states via their functional circuit connectivity with the LHb and potentially other brain regions. SIGNIFICANCE STATEMENT In this study, we show that the genetic ablation of LHA glutamatergic neurons enhances caloric intake. Some of these LHA glutamatergic neurons project to the lateral habenula, a brain area important for generating behavioral avoidance. Optogenetic stimulation of this circuit has net excitatory effects on postsynaptic LHb neurons. This is the

  2. Nutrient sensing and insulin signaling in neuropeptide-expressing immortalized, hypothalamic neurons: A cellular model of insulin resistance.

    PubMed

    Fick, Laura J; Belsham, Denise D

    2010-08-15

    Obesity and type 2 diabetes mellitus represent a significant global health crisis. These two interrelated diseases are typified by perturbed insulin signaling in the hypothalamus. Using novel hypothalamic cell lines, we have begun to elucidate the molecular and intracellular mechanisms involved in the hypothalamic control of energy homeostasis and insulin resistance. In this review, we present evidence of insulin and glucose signaling pathways that lead to changes in neuropeptide gene expression. We have identified some of the molecular mechanisms involved in the control of de novo hypothalamic insulin mRNA expression. And finally, we have defined key mechanisms involved in the etiology of cellular insulin resistance in hypothalamic neurons that may play a fundamental role in cases of high levels of insulin or saturated fatty acids, often linked to the exacerbation of obesity and diabetes.

  3. Distribution of osmoregulatory peptides and neuronal-glial configuration in the hypothalamic magnocellular nuclei of desert rodents.

    PubMed

    Ouali-Hassenaoui, Saliha; Bendjelloul, Mounira; Dekar, Aicha; Theodosis, Dionysia

    2011-12-01

    The desert rodents Psammomys obesus and Gerbillus tarabuli live under extreme conditions and overcome food and water shortage by modes of food and fluid intake specific to each species. Using immunohistochemistry and electron microscopy, we found that the hypothalamic magnocellular nuclei, and in particular, their vasopressinergic component, is highly and similarly developed in Psammomys and Gerbillus. In comparison to other rodents, the hypothalamus in both species contains more magnocellular VP neurons that, together with oxytocin neurons, accumulate in distinct and extensive nuclei. As in dehydrated rodents, many magnocellular neurons contained both neuropeptides. A striking feature of the hypothalamic magnocellular system of Psammomys and Gerbillus was its display of ultrastructural properties related to heightened neurosecretion, namely, a significant reduction in glial coverage of neuronal somata and dendrites in the hypothalamic nuclei. There were many neuronal elements whose surfaces were directly juxtaposed and shared the same synapses. Their magnocellular nuclei also showed a high level of sialylated isoform of the Neural Cell Adhesion Molecule (PSA-NCAM) that underlies their capacity for neuronal and glial plasticity. These species thus offer striking models of structural neuronal and glial plasticity linked to natural conditions of heightened neurosecretion.

  4. Neurotrophin-3 potentiates excitatory GABAergic synaptic transmission in cultured developing hypothalamic neurones of the rat

    PubMed Central

    Gao, Xiao-Bing; van den Pol, A N

    1999-01-01

    Neurotrophin-3 (NT-3) supports the survival and differentiation of neurones in the central and peripheral nervous systems through a number of mechanisms that occur in a matter of hours or days. NT-3 may also have a more rapid mode of action that influences synaptic activity in mature neurones. In the present study, the effect of NT-3 on developing GABAergic synapses was investigated in 3- to 7-day-old cultures of rat hypothalamic neurones with whole-cell patch-clamp recording. NT-3 induced a substantial dose-dependent potentiation of the frequency of spontaneous postsynaptic currents (sPSCs; 160 %) in developing neurones during a period when GABA evoked inward (depolarizing) current, as determined with gramicidin-perforated patch recordings. The NT-3 effect was long lasting; continued enhancement was found > 30 min after NT-3 wash-out. NT-3 evoked a substantial 202 % increase in total GABA-mediated inward current, measured as the time-current integral. Action potential frequency was also increased by NT-3 (to 220 %). The frequency of GABA-mediated miniature postsynaptic currents in developing neurones in the presence of tetrodotoxin was potentiated (to 140 %) by NT-3 with no change in the mean amplitude, suggesting a presynaptic locus of the effect. In striking contrast to immature neurones, when more mature neurones were studied, NT-3 did not enhance the frequency of GABA-mediated spontaneous postsynaptic currents (sPSCs), but instead evoked a slight (16 %) decrease. The frequency of miniature post-synaptic currents was also slightly decreased (16 %) by the NT-3, with no change in amplitude. These results were recorded during a later period of neuronal maturity when GABA would evoke outward (hyperpolarizing) currents. NT-3 had no effect on the mean amplitude of GABA-evoked postsynaptic currents in either developing or mature neurones. Intracellular application of K252a, a non-selective tyrosine kinase inhibitor, did not block the NT-3 effect postsynaptically. In

  5. Depressed basal hypothalamic neuronal activity in type-1 diabetic mice is correlated with proinflammatory secretion of HMBG1.

    PubMed

    Thinschmidt, Jeffrey S; Colon-Perez, Luis M; Febo, Marcelo; Caballero, Sergio; King, Michael A; White, Fletcher A; Grant, Maria B

    2016-02-26

    We recently found indicators of hypothalamic inflammation and neurodegeneration linked to the loss of neuroprotective factors including insulin-like growth factor (IGF-1) and IGF binding protein-2 (IGFBP-3) in mice made diabetic using streptozotocin (STZ). In the current work, a genetic model of type-1 diabetes (Ins2(Akita) mouse) was used to evaluate changes in neuronal activity and concomitant changes in the proinflammatory mediator high-mobility group box-1 (HMBG1). We found basal hypothalamic neuronal activity as indicated by manganese-enhanced magnetic resonance imaging (MEMRI) was significantly decreased in 8 months old, but not 2 months old Ins2(Akita) diabetic mice compared to controls. In tissue from the same animals we evaluated the expression of HMBG1 using immunohistochemistry and confocal microscopy. We found decreased HMBG1 nuclear localization in the paraventricular nucleus of the hypothalamus (PVN) in 8 months old, but not 2 months old diabetic animals indicating nuclear release of the protein consistent with an inflammatory state. Adjacent thalamic regions showed little change in HMBG1 nuclear localization and neuronal activity as a result of diabetes. This work extends our previous findings demonstrating changes consistent with hypothalamic neuroinflammation in STZ treated animals, and shows active inflammatory processes are correlated with changes in basal hypothalamic neuronal activity in Ins2(Akita) mice.

  6. Interactions between Kisspeptin Neurons and Hypothalamic Tuberoinfundibular Dopaminergic Neurons in Aged Female Rats

    PubMed Central

    Iwata, Kinuyo; Ikehara, Masaaki; Kunimura, Yuyu; Ozawa, Hitoshi

    2016-01-01

    Kisspeptin neurons in the arcuate nucleus (ARC) regulate prolactin secretion, and are in physical contact with tuberoinfundibular dopaminergic (TIDA) neurons, which inhibit prolactin secretion. Prolactin levels in the blood are increased with advancing age in rats; therefore, we investigated the interactions with TIDA neurons and kisspeptin neurons in aged female rats (24 months of age), relative to those of young adult female rats (9–10 weeks of age). Plasma prolactin levels in the aged rats were significantly higher than those of young adult rats. Tyrosine hydroxylase (TH)-immunoreactive (ir) cell bodies and kisspeptin-ir nerve fibers were found in the dorsomedial ARC of both groups. The number of TH-ir cell bodies in the dorsomedial ARC did not differ significantly between groups. Additionally, no significant differences in the number of TH-ir cells in contact with kisspeptin-ir fibers was observed between groups. However, the number of kisspeptin-ir or Kiss1 mRNA-expressing cells in the ARC was significantly reduced in the aged rats compared with that of the young rats. These results suggest that the contacts between TIDA neurons and kisspeptin neurons are maintained after reproductive senescence, while production of kisspeptin in the ARC decreases significantly during aging. PMID:28127107

  7. Hypothalamic Vasopressinergic Projections Innervate Central Amygdala GABAergic Neurons: Implications for Anxiety and Stress Coping

    PubMed Central

    Hernández, Vito S.; Hernández, Oscar R.; Perez de la Mora, Miguel; Gómora, María J.; Fuxe, Kjell; Eiden, Lee E.; Zhang, Limei

    2016-01-01

    The arginine-vasopressin (AVP)-containing hypothalamic magnocellular neurosecretory neurons (VPMNNs) are known for their role in hydro-electrolytic balance control via their projections to the neurohypophysis. Recently, projections from these same neurons to hippocampus, habenula and other brain regions in which vasopressin infusion modulates contingent social and emotionally-affected behaviors, have been reported. Here, we present evidence that VPMNN collaterals also project to the amygdaloid complex, and establish synaptic connections with neurons in central amygdala (CeA). The density of AVP innervation in amygdala was substantially increased in adult rats that had experienced neonatal maternal separation (MS), consistent with our previous observations that MS enhances VPMNN number in the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus. In the CeA, V1a AVP receptor mRNA was only observed in GABAergic neurons, demonstrated by complete co-localization of V1a transcripts in neurons expressing Gad1 and Gad2 transcripts in CeA using the RNAscope method. V1b and V2 receptor mRNAs were not detected, using the same method. Water-deprivation (WD) for 24 h, which increased the metabolic activity of VPMNNs, also increased anxiety-like behavior measured using the elevated plus maze (EPM) test, and this effect was mimicked by bilateral microinfusion of AVP into the CeA. Anxious behavior induced by either WD or AVP infusion was reversed by CeA infusion of V1a antagonist. VPMNNs are thus a newly discovered source of CeA inhibitory circuit modulation, through which both early-life and adult stress coping signals are conveyed from the hypothalamus to the amygdala. PMID:27932956

  8. Hypothalamic Vasopressinergic Projections Innervate Central Amygdala GABAergic Neurons: Implications for Anxiety and Stress Coping.

    PubMed

    Hernández, Vito S; Hernández, Oscar R; Perez de la Mora, Miguel; Gómora, María J; Fuxe, Kjell; Eiden, Lee E; Zhang, Limei

    2016-01-01

    The arginine-vasopressin (AVP)-containing hypothalamic magnocellular neurosecretory neurons (VPMNNs) are known for their role in hydro-electrolytic balance control via their projections to the neurohypophysis. Recently, projections from these same neurons to hippocampus, habenula and other brain regions in which vasopressin infusion modulates contingent social and emotionally-affected behaviors, have been reported. Here, we present evidence that VPMNN collaterals also project to the amygdaloid complex, and establish synaptic connections with neurons in central amygdala (CeA). The density of AVP innervation in amygdala was substantially increased in adult rats that had experienced neonatal maternal separation (MS), consistent with our previous observations that MS enhances VPMNN number in the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus. In the CeA, V1a AVP receptor mRNA was only observed in GABAergic neurons, demonstrated by complete co-localization of V1a transcripts in neurons expressing Gad1 and Gad2 transcripts in CeA using the RNAscope method. V1b and V2 receptor mRNAs were not detected, using the same method. Water-deprivation (WD) for 24 h, which increased the metabolic activity of VPMNNs, also increased anxiety-like behavior measured using the elevated plus maze (EPM) test, and this effect was mimicked by bilateral microinfusion of AVP into the CeA. Anxious behavior induced by either WD or AVP infusion was reversed by CeA infusion of V1a antagonist. VPMNNs are thus a newly discovered source of CeA inhibitory circuit modulation, through which both early-life and adult stress coping signals are conveyed from the hypothalamus to the amygdala.

  9. Dopamine/Tyrosine Hydroxylase Neurons of the Hypothalamic Arcuate Nucleus Release GABA, Communicate with Dopaminergic and Other Arcuate Neurons, and Respond to Dynorphin, Met-Enkephalin, and Oxytocin

    PubMed Central

    Zhang, Xiaobing

    2015-01-01

    We employ transgenic mice with selective expression of tdTomato or cre recombinase together with optogenetics to investigate whether hypothalamic arcuate (ARC) dopamine/tyrosine hydroxylase (TH) neurons interact with other ARC neurons, how they respond to hypothalamic neuropeptides, and to test whether these cells constitute a single homogeneous population. Immunostaining with dopamine and TH antisera was used to corroborate targeted transgene expression. Using whole-cell recording on a large number of neurons (n = 483), two types of neurons with different electrophysiological properties were identified in the dorsomedial ARC where 94% of TH neurons contained immunoreactive dopamine: bursting and nonbursting neurons. In contrast to rat, the regular oscillations of mouse bursting neurons depend on a mechanism involving both T-type calcium and A-type potassium channel activation, but are independent of gap junction coupling. Optogenetic stimulation using cre recombinase-dependent ChIEF-AAV-DJ expressed in ARC TH neurons evoked postsynaptic GABA currents in the majority of neighboring dopamine and nondopamine neurons, suggesting for the first time substantial synaptic projections from ARC TH cells to other ARC neurons. Numerous met-enkephalin (mENK) and dynorphin-immunoreactive boutons appeared to contact ARC TH neurons. mENK inhibited both types of TH neuron through G-protein coupled inwardly rectifying potassium currents mediated by δ and μ opioid receptors. Dynorphin-A inhibited both bursting and nonbursting TH neurons by activating κ receptors. Oxytocin excited both bursting and nonbursting neurons. These results reveal a complexity of TH neurons that communicate extensively with neurons within the ARC. SIGNIFICANCE STATEMENT Here, we show that the great majority of mouse hypothalamic arcuate nucleus (ARC) neurons that synthesize TH in the dorsomedial ARC also contain immunoreactive dopamine, and show either bursting or nonbursting electrical activity. Unlike

  10. β-Arrestin Regulates Estradiol Membrane-Initiated Signaling in Hypothalamic Neurons

    PubMed Central

    Wong, Angela M.; Abrams, Matthew C.; Micevych, Paul E.

    2015-01-01

    Estradiol (E2) action in the nervous system is the result of both direct nuclear and membrane-initiated signaling (EMS). E2 regulates membrane estrogen receptor-α (ERα) levels through opposing mechanisms of EMS-mediated trafficking and internalization. While ß-arrestin-mediated mERα internalization has been described in the cortex, a role of ß-arrestin in EMS, which underlies multiple physiological processes, remains undefined. In the arcuate nucleus of the hypothalamus (ARH), membrane-initiated E2 signaling modulates lordosis behavior, a measure of female sexually receptivity. To better understand EMS and regulation of ERα membrane levels, we examined the role of ß-arrestin, a molecule associated with internalization following agonist stimulation. In the present study, we used an immortalized neuronal cell line derived from embryonic hypothalamic neurons, the N-38 line, to examine whether ß-arrestins mediate internalization of mERα. β-arrestin-1 (Arrb1) was found in the ARH and in N-38 neurons. In vitro, E2 increased trafficking and internalization of full-length ERα and ERαΔ4, an alternatively spliced isoform of ERα, which predominates in the membrane. Treatment with E2 also increased phosphorylation of extracellular-signal regulated kinases 1/2 (ERK1/2) in N-38 neurons. Arrb1 siRNA knockdown prevented E2-induced ERαΔ4 internalization and ERK1/2 phosphorylation. In vivo, microinfusions of Arrb1 antisense oligodeoxynucleotides (ODN) into female rat ARH knocked down Arrb1 and prevented estradiol benzoate-induced lordosis behavior compared with nonsense scrambled ODN (lordosis quotient: 3 ± 2.1 vs. 85.0 ± 6.0; p < 0.0001). These results indicate a role for Arrb1 in both EMS and internalization of mERα, which are required for the E2-induction of female sexual receptivity. PMID:25803606

  11. GABA-mediated oxytocinergic inhibition in dorsal horn neurons by hypothalamic paraventricular nucleus stimulation.

    PubMed

    Rojas-Piloni, Gerardo; López-Hidalgo, Mónica; Martínez-Lorenzana, Guadalupe; Rodríguez-Jiménez, Javier; Condés-Lara, Miguel

    2007-03-16

    In anaesthetized rats, we tested whether the unit activity of dorsal horn neurons that receive nociceptive input is modulated by electrical stimulation of the hypothalamic paraventricular nucleus (PVN). An electrophysiological mapping of dorsal horn neurons at L3-L4 let us choose cells responding to a receptive field located in the toes region of the left hindpaw. Dorsal horn neurons were classified according to their response properties to peripheral stimulation. Wide Dynamic Range (WDR) cells responding to electrical stimulation of the peripheral receptive field and presenting synaptic input of Adelta, Abeta, and C-fibers were studied. Suspected interneurons that are typically silent and lack peripheral receptive field responses were also analyzed. PVN electrical stimulation inhibits Adelta (-55.0+/-10.2%), C-fiber (-73.1+/-6.7%), and post-discharge (-75.0+/-8.9%) peripheral activation in WDR cells, and silent interneurons were activated. So, this last type of interneuron was called a PVN-ON cell. In WDR cells, the inhibition of peripheral responses caused by PVN stimulation was blocked by intrathecal administration of a specific oxytocin antagonist or bicuculline. However, PVN-ON cell activation was blocked by the same specific oxytocin antagonist, but not by bicuculline. Our results suggest that PVN stimulation inhibits nociceptive peripheral-evoked responses in WDR neurons by a descending oxytocinergic pathway mediated by GABAergic PVN-ON cells. We discuss our observation that the PVN electrical stimulation selectively inhibits Adelta and C-fiber activity without affecting Abeta fibers. We conclude that Adelta and C-fibers receive a presynaptic inhibition mediated by GABA.

  12. Corticotropin releasing factor excites neurons of posterior hypothalamic nucleus to produce tachycardia in rats

    PubMed Central

    Gao, He-Ren; Zhuang, Qian-Xing; Li, Bin; Li, Hong-Zhao; Chen, Zhang-Peng; Wang, Jian-Jun; Zhu, Jing-Ning

    2016-01-01

    Corticotropin releasing factor (CRF), a peptide hormone involved in the stress response, holds a key position in cardiovascular regulation. Here, we report that the central effect of CRF on cardiovascular activities is mediated by the posterior hypothalamic nucleus (PH), an important structure responsible for stress-induced cardiovascular changes. Our present results demonstrate that CRF directly excites PH neurons via two CRF receptors, CRFR1 and CRFR2, and consequently increases heart rate (HR) rather than the mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA). Bilateral vagotomy does not influence the tachycardia response to microinjection of CRF into the PH, while β adrenergic receptor antagonist propranolol almost totally abolishes the tachycardia. Furthermore, microinjecting CRF into the PH primarily increases neuronal activity of the rostral ventrolateral medulla (RVLM) and rostral ventromedial medulla (RVMM), but does not influence that of the dorsal motor nucleus of the vagus nerve (DMNV). These findings suggest that the PH is a critical target for central CRF system in regulation of cardiac activity and the PH-RVLM/RVMM-cardiac sympathetic nerve pathways, rather than PH-DMNV-vagus pathway, may contribute to the CRF-induced tachycardia. PMID:26831220

  13. Corticotropin releasing factor excites neurons of posterior hypothalamic nucleus to produce tachycardia in rats.

    PubMed

    Gao, He-Ren; Zhuang, Qian-Xing; Li, Bin; Li, Hong-Zhao; Chen, Zhang-Peng; Wang, Jian-Jun; Zhu, Jing-Ning

    2016-02-01

    Corticotropin releasing factor (CRF), a peptide hormone involved in the stress response, holds a key position in cardiovascular regulation. Here, we report that the central effect of CRF on cardiovascular activities is mediated by the posterior hypothalamic nucleus (PH), an important structure responsible for stress-induced cardiovascular changes. Our present results demonstrate that CRF directly excites PH neurons via two CRF receptors, CRFR1 and CRFR2, and consequently increases heart rate (HR) rather than the mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA). Bilateral vagotomy does not influence the tachycardia response to microinjection of CRF into the PH, while β adrenergic receptor antagonist propranolol almost totally abolishes the tachycardia. Furthermore, microinjecting CRF into the PH primarily increases neuronal activity of the rostral ventrolateral medulla (RVLM) and rostral ventromedial medulla (RVMM), but does not influence that of the dorsal motor nucleus of the vagus nerve (DMNV). These findings suggest that the PH is a critical target for central CRF system in regulation of cardiac activity and the PH-RVLM/RVMM-cardiac sympathetic nerve pathways, rather than PH-DMNV-vagus pathway, may contribute to the CRF-induced tachycardia.

  14. Postsynaptic Depolarization Enhances GABA Drive to Dorsomedial Hypothalamic Neurons through Somatodendritic Cholecystokinin Release.

    PubMed

    Crosby, Karen M; Baimoukhametova, Dinara V; Bains, Jaideep S; Pittman, Quentin J

    2015-09-23

    Somatodendritically released peptides alter synaptic function through a variety of mechanisms, including autocrine actions that liberate retrograde transmitters. Cholecystokinin (CCK) is a neuropeptide expressed in neurons in the dorsomedial hypothalamic nucleus (DMH), a region implicated in satiety and stress. There are clear demonstrations that exogenous CCK modulates food intake and neuropeptide expression in the DMH, but there is no information on how endogenous CCK alters synaptic properties. Here, we provide the first report of somatodendritic release of CCK in the brain in male Sprague Dawley rats. CCK is released from DMH neurons in response to repeated postsynaptic depolarizations, and acts in an autocrine fashion on CCK2 receptors to enhance postsynaptic NMDA receptor function and liberate the retrograde transmitter, nitric oxide (NO). NO subsequently acts presynaptically to enhance GABA release through a soluble guanylate cyclase-mediated pathway. These data provide the first demonstration of synaptic actions of somatodendritically released CCK in the hypothalamus and reveal a new form of retrograde plasticity, depolarization-induced potentiation of inhibition. Significance statement: Somatodendritic signaling using endocannabinoids or nitric oxide to alter the efficacy of afferent transmission is well established. Despite early convincing evidence for somatodendritic release of neurohypophysial peptides in the hypothalamus, there is only limited evidence for this mode of release for other peptides. Here, we provide the first evidence for somatodendritic release of the satiety peptide cholecystokinin (CCK) in the brain. We also reveal a new form of synaptic plasticity in which postsynaptic depolarization results in enhancement of inhibition through the somatodendritic release of CCK.

  15. Brain-derived neurotrophic factor but not neurotrophin-3 enhances differentiation of somatostatin neurons in hypothalamic cultures.

    PubMed

    Loudes, C; Petit, F; Kordon, C; Faivre-Bauman, A

    2000-09-01

    The present work investigated whether neurotrophins could differentially affect in vitro growth and maturation of two related subsets of hypothalamic neurons, hypophysiotropic somatostatin (SRIH) neurons projecting from the periventricular area and arcuate SRIH interneurons. For this purpose, the hypothalamus of 17-day-old rat fetuses was sampled and separated into a ventral and a dorsal fragment containing respectively periventricular and arcuate regions. Each fragment was dissociated and seeded separately in defined medium. Brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3), two important members of the neurotrophin family involved in neuronal differentiation and plasticity, were added to the cultures at seeding time. After 6 or 11 days in vitro, neurons were labeled with an anti-SRIH antiserum and submitted to morphometric analysis. In parallel, SRIH mRNA was estimated by semiquantitative reverse-transcriptase-polymerase chain reaction, and neuronal SRIH content, basal and depolarisation-stimulated releases measured by radioimmunoassay. The response of control, non-labeled neurons was estimated by neuronal counts and by assaying glutamic acid decarboxylase, a marker of a large majority of hypothalamic neurons. BDNF markedly increased the size and the branching number of SRIH periventricular cell bodies. Expression of SRIH mRNA, as well as SRIH content and release into the culture medium, were also stimulated by the neurotrophin. Non-SRIH neurons were not affected by the treatment. Under the same conditions, arcuate neurons exhibited a weak, mostly transient response to BDNF. NT-3 was ineffective on either neuronal subset. Immunoneutralization of Trk receptors provided further evidence for BDNF effect specificity. The results indicate that BDNF is a selective activator of the differentiation of hypophysiotropic SRIH neurons in the periventricular area of the hypothalamus.

  16. Fermentable carbohydrate alters hypothalamic neuronal activity and protects against the obesogenic environment.

    PubMed

    Anastasovska, Jelena; Arora, Tulika; Sanchez Canon, Gina J; Parkinson, James R C; Touhy, Kieran; Gibson, Glen R; Nadkarni, Nachiket A; So, Po-Wah; Goldstone, Anthony P; Thomas, E Louise; Hankir, Mohammed K; Van Loo, Jan; Modi, Neena; Bell, Jimmy D; Frost, Gary

    2012-05-01

    Obesity has become a major global health problem. Recently, attention has focused on the benefits of fermentable carbohydrates on modulating metabolism. Here, we take a system approach to investigate the physiological effects of supplementation with oligofructose-enriched inulin (In). We hypothesize that supplementation with this fermentable carbohydrate will not only lead to changes in body weight and composition, but also to modulation in neuronal activation in the hypothalamus. Male C57BL/6 mice were maintained on a normal chow diet (control) or a high fat (HF) diet supplemented with either oligofructose-enriched In or corn starch (Cs) for 9 weeks. Compared to HF+Cs diet, In supplementation led to significant reduction in average daily weight gain (mean ± s.e.m.: 0.19 ± 0.01 g vs. 0.26 ± 0.02 g, P < 0.01), total body adiposity (24.9 ± 1.2% vs. 30.7 ± 1.4%, P < 0.01), and lowered liver fat content (11.7 ± 1.7% vs. 23.8 ± 3.4%, P < 0.01). Significant changes were also observed in fecal bacterial distribution, with increases in both Bifidobacteria and Lactobacillius and a significant increase in short chain fatty acids (SCFA). Using manganese-enhanced MRI (MEMRI), we observed a significant increase in neuronal activation within the arcuate nucleus (ARC) of animals that received In supplementation compared to those fed HF+Cs diet. In conclusion, we have demonstrated for the first time, in the same animal, a wide range of beneficial metabolic effects following supplementation of a HF diet with oligofructose-enriched In, as well as significant changes in hypothalamic neuronal activity.

  17. Adenovirus-mediated gene delivery to hypothalamic magnocellular neurons in mice

    NASA Technical Reports Server (NTRS)

    Vasquez, E. C.; Beltz, T. G.; Meyrelles, S. S.; Johnson, A. K.

    1999-01-01

    Vasopressin is synthesized by magnocellular neurons in supraoptic (SON) and paraventricular (PVN) hypothalamic nuclei and released by their axon terminals in the neurohypophysis (NH). With its actions as an antidiuretic hormone and vasoactive agent, vasopressin plays a pivotal role in the control of body fluids and cardiovascular homeostasis. Because of its well-defined neurobiology and functional importance, the SON/PVN-NH system is ideal to establish methods for gene transfer of genetic material into specific pathways in the mouse central nervous system. In these studies, we compared the efficiency of transferring the gene lacZ, encoding for beta-galactosidase (beta-gal), versus a gene encoding for green fluorescent protein by using replication-deficient adenovirus (Ad) vectors in adult mice. Transfection with viral concentrations up to 2 x 10(7) plaque-forming units per coverslip of NH, PVN, and SON in dissociated, cultured cells caused efficient transfection without cytotoxicity. However, over an extended period of time, higher levels (50% to 75% of the cells) of beta-gal expression were detected in comparison with green fluorescent protein (5% to 50% of the cells). With the use of a stereotaxic approach, the pituitary glands of mice were injected with Ad (4 x 10(6) plaque-forming units). In material from these animals, we were able to visualize the expression of the beta-gal gene in the NH and in magnocellular neurons of both the PVN and SON. The results of these experiments indicate that Ad-Rous sarcoma virus promoter-beta-gal is taken up by nerve terminals at the injection site (NH) and retrogradely transported to the soma of the neurons projecting to the NH. We conclude that the application of these experimental approaches will provide powerful tools for physiological studies and potential approaches to deliver therapeutic genes to treat diseases.

  18. Tuberal Hypothalamic Neurons Secreting the Satiety Molecule Nesfatin-1 Are Critically Involved in Paradoxical (REM) Sleep Homeostasis

    PubMed Central

    Jego, Sonia; Salvert, Denise; Renouard, Leslie; Mori, Masatomo; Goutagny, Romain; Luppi, Pierre-Hervé; Fort, Patrice

    2012-01-01

    The recently discovered Nesfatin-1 plays a role in appetite regulation as a satiety factor through hypothalamic leptin-independent mechanisms. Nesfatin-1 is co-expressed with Melanin-Concentrating Hormone (MCH) in neurons from the tuberal hypothalamic area (THA) which are recruited during sleep states, especially paradoxical sleep (PS). To help decipher the contribution of this contingent of THA neurons to sleep regulatory mechanisms, we thus investigated in rats whether the co-factor Nesfatin-1 is also endowed with sleep-modulating properties. Here, we found that the disruption of the brain Nesfatin-1 signaling achieved by icv administration of Nesfatin-1 antiserum or antisense against the nucleobindin2 (NUCB2) prohormone suppressed PS with little, if any alteration of slow wave sleep (SWS). Further, the infusion of Nesfatin-1 antiserum after a selective PS deprivation, designed for elevating PS needs, severely prevented the ensuing expected PS recovery. Strengthening these pharmacological data, we finally demonstrated by using c-Fos as an index of neuronal activation that the recruitment of Nesfatin-1-immunoreactive neurons within THA is positively correlated to PS but not to SWS amounts experienced by rats prior to sacrifice. In conclusion, this work supports a functional contribution of the Nesfatin-1 signaling, operated by THA neurons, to PS regulatory mechanisms. We propose that these neurons, likely releasing MCH as a synergistic factor, constitute an appropriate lever by which the hypothalamus may integrate endogenous signals to adapt the ultradian rhythm and maintenance of PS in a manner dictated by homeostatic needs. This could be done through the inhibition of downstream targets comprised primarily of the local hypothalamic wake-active orexin- and histamine-containing neurons. PMID:23300698

  19. Depolarization of surface-attached hypothalamic mouse neurons studied by acoustic wave (thickness shear mode) detector.

    PubMed

    Cheung, Shilin; Fick, Laura J; Belsham, Denise D; Thompson, Michael

    2010-02-01

    Isolation of neurons from animal tissue is an important aspect of understanding basic biochemical processes such as the action of hormones and neurotransmitters. In the present work, the focus is on an effort to evaluate the utility of acoustic wave physics for the study of such cells. Immortalised hypothalamic neuronal cells from mouse embryos were cultured on the surface of the gold electrode of a 9.0 MHz thickness-shear mode acoustic wave sensor. These cells, which are clonal, are imposed on the surface of the device at a confluence in the range of 80-100%. The coated sensor is incorporated into a flow-injection configuration such that electrolytes can be introduced in order to examine their effects through measurement by network analysis. Both series resonance frequency, fs, and motional resistance, R(m), were measured in a number of experiments involving the injection of KCl and NaCl into the sensor-neuron system. The various responses to these electrolytes were interpreted in terms of changes in cellular structure associated with the depolarization process. The sensor-neuron system was found to elicit different responses to the addition of KCl and NaCl. Preliminary findings indicate that the TSM sensor does not purely measure changes in the membrane potential upon KCl addition. Typical changes in fs for 15 mM, 30 mM and 60 mM KCl additions were 54 +/- 15, 80 +/- 26 and 142 +/- 58 Hz (mean +/- standard deviation) respectively. Typical changes in R(m) for these KCl additions were 7 +/- 3, 13 +/- 4 and 23 +/- 6 Omega, respectively. These results were concluded after 17 runs at each concentration. Despite the large relative standard deviations, the dependence of f(s) and R(m) with respect to concentration was apparent. Controls performed by coating the TSM sensor with laminin or a cell attachment matrix showed no significant changes in either f(s) or R(m) for the same solutions tested on the sensor-neuron system.

  20. Sex difference in physical activity, energy expenditure and obesity driven by a subpopulation of hypothalamic POMC neurons

    PubMed Central

    Burke, Luke K.; Doslikova, Barbora; D'Agostino, Giuseppe; Greenwald-Yarnell, Megan; Georgescu, Teodora; Chianese, Raffaella; Martinez de Morentin, Pablo B.; Ogunnowo-Bada, Emmanuel; Cansell, Celine; Valencia-Torres, Lourdes; Garfield, Alastair S.; Apergis-Schoute, John; Lam, Daniel D.; Speakman, John R.; Rubinstein, Marcelo; Low, Malcolm J.; Rochford, Justin J.; Myers, Martin G.; Evans, Mark L.; Heisler, Lora K.

    2016-01-01

    Objective Obesity is one of the primary healthcare challenges of the 21st century. Signals relaying information regarding energy needs are integrated within the brain to influence body weight. Central among these integration nodes are the brain pro-opiomelanocortin (POMC) peptides, perturbations of which disrupt energy balance and promote severe obesity. However, POMC neurons are neurochemically diverse and the crucial source of POMC peptides that regulate energy homeostasis and body weight remains to be fully clarified. Methods Given that a 5-hydroxytryptamine 2c receptor (5-HT2CR) agonist is a current obesity medication and 5-HT2CR agonist's effects on appetite are primarily mediated via POMC neurons, we hypothesized that a critical source of POMC regulating food intake and body weight is specifically synthesized in cells containing 5-HT2CRs. To exclusively manipulate Pomc synthesis only within 5-HT2CR containing cells, we generated a novel 5-HT2CRCRE mouse line and intercrossed it with Cre recombinase-dependent and hypothalamic specific reactivatable PomcNEO mice to restrict Pomc synthesis to the subset of hypothalamic cells containing 5-HT2CRs. This provided a means to clarify the specific contribution of a defined subgroup of POMC peptides in energy balance and body weight. Results Here we transform genetically programed obese and hyperinsulinemic male mice lacking hypothalamic Pomc with increased appetite, reduced physical activity and compromised brown adipose tissue (BAT) into lean, healthy mice via targeted restoration of Pomc function only within 5-HT2CR expressing cells. Remarkably, the same metabolic transformation does not occur in females, who despite corrected feeding behavior and normalized insulin levels remain physically inactive, have lower energy expenditure, compromised BAT and develop obesity. Conclusions These data provide support for the functional heterogeneity of hypothalamic POMC neurons, revealing that Pomc expression within 5-HT2CR

  1. Effects of oleic acid on distinct populations of neurons in the hypothalamic arcuate nucleus are dependent on extracellular glucose levels.

    PubMed

    Wang, R; Cruciani-Guglielmacci, C; Migrenne, S; Magnan, C; Cotero, V E; Routh, V H

    2006-03-01

    Pharmacological manipulation of fatty acid metabolism in the hypothalamic arcuate nucleus (ARC) alters energy balance and glucose homeostasis. Thus, we tested the hypotheses that distinctive populations of ARC neurons are oleic acid (OA) sensors that exhibit a glucose dependency, independent of whether some of these OA sensors are also glucose-sensing neurons. We used patch-clamp recordings to investigate the effects of OA on ARC neurons in brain slices from 14- to 21-day-old Sprague-Dawley (SD) rats. Additionally, we recorded spontaneous discharge rate in ARC neurons in 8-wk-old fed and fasted SD rats in vivo. Patch-clamp studies showed that in 2.5 mM glucose 12 of 94 (13%) ARC neurons were excited by 2 microM OA (OA-excited or OAE neurons), whereas six of 94 (6%) were inhibited (OA-inhibited2.5 or OAI2.5 neurons). In contrast, in 0.1 mM glucose, OA inhibited six of 20 (30%) ARC neurons (OAI0.1 neurons); none was excited. None of the OAI0.1 neurons responded to OA in 2.5 mM glucose. Thus OAI2.5 and OAI0.1 neurons are distinct. Similarly, in seven of 20 fed rats (35%) the overall response was OAE-like, whereas in three of 20 (15%) it was OAI-like. In contrast, in fasted rats only OAI-like response were observed (three of 15; 20%). There was minimal overlap between OA-sensing neurons and glucose-sensing neurons. In conclusion, OA regulated three distinct subpopulations of ARC neurons in a glucose-dependent fashion. These data suggest that an interaction between glucose and fatty acids regulates OA sensing in ARC neurons.

  2. Mecamylamine pretreatment counteracts cigarette smoke induced changes in hypothalamic catecholamine neuron systems and in anterior pituitary function.

    PubMed

    Andersson, K

    1985-11-01

    We have studied the effects of acute, intermittent exposure to tobacco smoke on discrete hypothalamic CA nerve terminal networks and on neuroendocrine function by means of quantitative histofluorimetrical determinations of catecholamine (CA) fluorescence in sections of rat brain and by radioimmunoassay procedures for hormones. Acute intermittent exposure to cigarette smoke induced a lowering of NA levels and increased NA turnover in discrete hypothalamic nerve terminal regions. This exposure also induced increases in DA turnover in the median eminence. The cigarette smoke lowered TSH, prolactin, LH and FSH serum levels, but induced an increase in serum corticosterone concentrations. To determine if the above mentioned changes in neuroendocrine function were nicotine mediated, a cholinergic nicotine-like blocking agent, mecamylamine, was administered prior to exposure to cigarette smoke. Pretreatment with mecamylamine (1.0 mg kg-1) counteracted the cigarette smoke induced changes in CA levels and turnover in all hypothalamic CA nerve terminal regions as well as the changes in serum levels of the pituitary hormones and corticosterone. It is suggested that acute intermittent exposure to cigarette smoke, via its nicotine component, lowers TSH, prolactin, LH and FSH secretion at least in part through activation of the tubero-infundibular DA neurons. Furthermore, the nicotine component of the cigarette smoke is suggested to induce the increase in corticosterone serum levels via increasing NA turnover in the paraventricular hypothalamic nucleus.

  3. Differential role of hypothalamic orexin/hypocretin neurons in reward seeking motivated by cocaine versus palatable food.

    PubMed

    Martin-Fardon, Rémi; Cauvi, Gabrielle; Kerr, Tony M; Weiss, Friedbert

    2016-08-24

    Hypothalamic orexin/hypocretin (Orx/Hcrt) neurons are thought to mediate both food-reinforced behaviors and behavior motivated by drugs of abuse. However, the relative role of the Orx/Hcrt system in behavior motivated by food versus drugs of abuse remains unclear. This investigation addressed this question by contrasting hypothalamic Orx/Hcrt neuronal activation associated with reinstatement of reward seeking induced by stimuli conditioned to cocaine (COC) versus highly palatable food reward, sweetened condensed milk (SCM). Orx/Hcrt neuronal activation in the lateral hypothalamus, dorsomedial hypothalamus and perifornical area, determined by dual c-fos/orx immunocytochemistry, was quantified in rat brains, following reinstatement of reward seeking induced by a discriminative stimulus (S(+) ) conditioned to COC or SCM. The COC S(+) and SCM S(+) initially produced the same magnitude of reward seeking. However, over four subsequent tests, behavior induced by the SCM S(+) decreased to extinction levels, whereas reinstatement induced by the COC S(+) perseverated at undiminished levels. Following both the first and fourth tests, the percentage of Orx/Hcrt cells expressing Fos was significantly increased in all hypothalamic subregions in rats tested with the COC S(+) but not rats tested with the SCM S(+) . These findings point toward a role for the Orx/Hcrt system in perseverating, compulsive-like COC seeking but not behavior motivated by palatable food. Moreover, analysis of the Orx/Hcrt recruitment patterns suggests that failure of Orx/Hcrt neurons in the lateral hypothalamus to respond to inhibitory inputs from Orx/Hcrt neurons in the dorsomedial hypothalamus/perifornical area may contribute to the perseverating nature of COC seeking.

  4. Distribution of Hypophysiotropic Thyrotropin-Releasing Hormone (TRH)-Synthesizing Neurons in the Hypothalamic Paraventricular Nucleus of the Mouse

    PubMed Central

    Kádár, Andrea; Sánchez, Edith; Wittmann, Gábor; Singru, Praful S.; Füzesi, Tamás; Marsili, Alessandro; Larsen, P. Reed; Liposits, Zsolt; Lechan, Ronald M.; Fekete, Csaba

    2010-01-01

    Hypophysiotropic thyrotropin-releasing hormone (TRH) neurons, the central regulators of the hypothalamus-pituitary-thyroid axis, are located in the hypothalamic paraventricular nucleus (PVN) in a partly overlapping distribution with non-hypophysiotropic TRH neurons. The distribution of hypophysiotropic TRH neurons in the rat PVN is well understood, but the localization of these neurons is unknown in mice. To determine the distribution and phenotype of hypophysiotropic TRH neurons in mice, double- and triple-labeling experiments were performed on sections of intact mice, and mice treated intravenously and intraperitonially with the retrograde tracer Fluoro-Gold. TRH neurons were located in all parts of the PVN except the periventricular zone. Hypophysiotropic TRH neurons were observed only at the mid level of the PVN, primarily in the compact part. In the this part of the PVN, TRH-neurons were intermingled with oxytocin and vasopressin neurons, but based on their size, the TRH neurons were parvocellular and did not contain magnocellular neuropeptides. Co-localization of TRH and CART were observed only in areas where hypophysiotropic TRH neurons were located. In accordance with the morphological observations, hypothyroidism increased TRH mRNA content of neurons only at the mid level of the PVN. These data demonstrate that the distribution of hypophysiotropic TRH neurons in mice is vastly different from the pattern in rats, with a dominant occurrence of these neurosecretory cells in the compact part and adjacent regions at the mid level of the PVN. Furthermore, our data demonstrate that the organization of the PVN is markedly different in mice and rats. PMID:20737594

  5. Orexin-A suppresses postischemic glucose intolerance and neuronal damage through hypothalamic brain-derived neurotrophic factor.

    PubMed

    Harada, Shinichi; Yamazaki, Yui; Tokuyama, Shogo

    2013-01-01

    Orexin-A (a glucose-sensing neuropeptide in the hypothalamus) and brain-derived neurotrophic factor (BDNF; a member of the neurotrophin family) play roles in many physiologic functions, including regulation of glucose metabolism. We previously showed that the development of postischemic glucose intolerance is one of the triggers of ischemic neuronal damage. The aim of this study was to determine whether there was an interaction between orexin-A and BDNF functions in the hypothalamus after cerebral ischemic stress. Male ddY mice were subjected to 2 hours of middle cerebral artery occlusion (MCAO). Neuronal damage was estimated by histologic and behavioral analyses. Expression of protein levels was analyzed by Western blot. Small interfering RNA directed BDNF, orexin-A, and SB334867 [N-(2-methyl-6-benzoxazolyl)-N'-1,5-naphthyridin-4-yl urea; a specific orexin-1 receptor antagonist] were administered directly into the hypothalamus. The level of hypothalamic orexin-A, detected by immunohistochemistry, was decreased on day 1 after MCAO. Intrahypothalamic administration of orexin-A (1 or 5 pmol/mouse) significantly and dose-dependently suppressed the development of postischemic glucose intolerance on day 1 and development of neuronal damage on day 3. The MCAO-induced decrease in insulin receptor levels in the liver and skeletal muscle on day 1 was recovered to control levels by orexin-A, and this effect of orexin-A was reversed by the administration of SB334867 as well as by hypothalamic BDNF knockdown. These results suggest that suppression of postischemic glucose intolerance by orexin-A assists in the prevention of cerebral ischemic neuronal damage. In addition, hypothalamic BDNF may play an important role in this effect of orexin-A.

  6. Hypothalamic gonadotropin-releasing hormone (GnRH) receptor neurons fire in synchrony with the female reproductive cycle.

    PubMed

    Schauer, Christian; Tong, Tong; Petitjean, Hugues; Blum, Thomas; Peron, Sophie; Mai, Oliver; Schmitz, Frank; Boehm, Ulrich; Leinders-Zufall, Trese

    2015-08-01

    Gonadotropin-releasing hormone (GnRH) controls mammalian reproduction via the hypothalamic-pituitary-gonadal (hpg) axis, acting on gonadotrope cells in the pituitary gland that express the GnRH receptor (GnRHR). Cells expressing the GnRHR have also been identified in the brain. However, the mechanism by which GnRH acts on these potential target cells remains poorly understood due to the difficulty of visualizing and identifying living GnRHR neurons in the central nervous system. We have developed a mouse strain in which GnRHR neurons express a fluorescent marker, enabling the reliable identification of these cells independent of the hormonal status of the animal. In this study, we analyze the GnRHR neurons of the periventricular hypothalamic nucleus in acute brain slices prepared from adult female mice. Strikingly, we find that the action potential firing pattern of these neurons alternates in synchrony with the estrous cycle, with pronounced burst firing during the preovulatory period. We demonstrate that GnRH stimulation is sufficient to trigger the conversion from tonic to burst firing in GnRHR neurons. Furthermore, we show that this switch in the firing pattern is reversed by a potent GnRHR antagonist. These data suggest that endogenous GnRH acts on GnRHR neurons and triggers burst firing in these cells during late proestrus and estrus. Our data have important clinical implications in that they indicate a novel mode of action for GnRHR agonists and antagonists in neurons of the central nervous system that are not part of the classical hpg axis.

  7. Estrogen-induced dendritic spine elimination on female rat ventromedial hypothalamic neurons that project to the periaqueductal gray.

    PubMed

    Calizo, Lyngine H; Flanagan-Cato, Loretta M

    2002-06-03

    Neurons of the ventromedial hypothalamic nucleus (VMH) that project to the periaqueductal gray (PAG) form a crucial segment of the motor pathway that produces the lordosis posture, the hallmark of female rat sexual behavior. One suggested mechanism through which estrogen facilitates lordosis is by remodeling synaptic connectivity within the VMH. For instance, estrogen alters VMH dendritic spine density. Little is known, however, about the local VMH microcircuitry governing lordosis nor how estrogen alters synaptic connectivity within this local circuit to facilitate sexual behavior. The goal of this study was to define better the neuron types within the VMH microcircuitry and to examine whether estrogen alters synaptic connectivity, as measured by dendritic spine density, on VMH projection neurons. A retrograde tracer was injected into the PAG of ovariectomized rats treated with vehicle or estradiol. Retrogradely labeled VMH neurons were filled with Lucifer yellow, then immunostained for estrogen receptor-alpha (ER alpha). VMH neurons that project to the PAG had more dendrites than functionally unidentified neurons. Additionally, VMH projection neurons could be subdivided into those located within the cluster of ER alpha-containing neurons and those medial to the cluster. Estrogen decreased spine density by 57% on the long primary dendrites of VMH projection neurons located within the ER alpha cluster but not on projection neurons medial to the cluster. Only 4% of the VMH projection neurons expressed ER alpha. These results suggest that estrogen may facilitate sexual behavior by decreasing spines selectively, via an indirect mechanism, on a subset of VMH neurons that project to the PAG.

  8. Area-specific analysis of the distribution of hypothalamic neurons projecting to the rat ventral tegmental area, with special reference to the GABAergic and glutamatergic efferents

    PubMed Central

    Kalló, Imre; Molnár, Csilla S.; Szöke, Sarolta; Fekete, Csaba; Hrabovszky, Erik; Liposits, Zsolt

    2015-01-01

    The ventral tegmental area (VTA) is a main regulator of reward and integrates a wide scale of hormonal and neuronal information. Feeding-, energy expenditure-, stress, adaptation- and reproduction-related hypothalamic signals are processed in the VTA and influence the reward processes. However, the neuroanatomical origin and chemical phenotype of neurons mediating these signals to the VTA have not been fully characterized. In this study we have systematically mapped hypothalamic neurons that project to the VTA using the retrograde tracer Choleratoxin B subunit (CTB) and analyzed their putative gamma-aminobutyric acid (GABA) and/or glutamate character with in situ hybridization in male rats. 23.93 ± 3.91% of hypothalamic neurons projecting to the VTA was found in preoptic and 76.27 ± 4.88% in anterior, tuberal and mammillary hypothalamic regions. Nearly half of the retrogradely-labeled neurons in the preoptic, and more than one third in the anterior, tuberal and mammillary hypothalamus appeared in medially located regions. The analyses of vesicular glutamate transporter 2 (VGLUT2) and glutamate decarboxylase 65 (GAD65) mRNA expression revealed both amino acid markers in different subsets of retrogradely-labeled hypothalamic neurons, typically with the predominance of the glutamatergic marker VGLUT2. About one tenth of CTB-IR neurons were GAD65-positive even in hypothalamic nuclei expressing primarily VGLUT2. Some regions were populated mostly by GAD65 mRNA-containing retrogradely-labeled neurons. These included the perifornical part of the lateral hypothalamus where 58.63 ± 19.04% of CTB-IR neurons were GABAergic. These results indicate that both the medial and lateral nuclear compartments of the hypothalamus provide substantial input to the VTA. Furthermore, colocalization studies revealed that these projections not only use glutamate but also GABA for neurotransmission. These GABAergic afferents may underlie important inhibitory mechanism to fine-tune the

  9. Hypocretin/Orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system.

    PubMed

    Li, Ying; Gao, Xiao Bing; Sakurai, Takeshi; van den Pol, Anthony N

    2002-12-19

    Neurons that release hypocretin/orexin modulate sleep, arousal, and energy homeostasis; the absence of hypocretin results in narcolepsy. Here we present data on the physiological characteristics of these cells, identified with GFP in transgenic mouse brain slices. Hypocretin-1 and -2 depolarized hypocretin neurons by 15mV and evoked an increase in spike frequency (+366% from a 1-3 Hz baseline). The mechanism for this appears to be hypocretin-mediated excitation of local glutamatergic neurons that regulate hypocretin neuron activity, in part by presynaptic facilitation of glutamate release. This represents a possible mechanism for orchestrating the output of the diffuse hypothalamic arousal system. No direct effect of hypocretin on membrane properties of hypocretin cells was detected. Norepinephrine and serotonin, transmitters of other arousal systems, decreased spike frequency and evoked outward currents, whereas acetylcholine and histamine had little effect.

  10. Lateral hypothalamic orexin and melanin-concentrating hormone neurons provide direct input to gonadotropin-releasing hormone neurons in the human

    PubMed Central

    Skrapits, Katalin; Kanti, Vivien; Savanyú, Zsófia; Maurnyi, Csilla; Szenci, Ottó; Horváth, András; Borsay, Beáta Á.; Herczeg, László; Liposits, Zsolt; Hrabovszky, Erik

    2015-01-01

    Hypophysiotropic projections of gonadotropin-releasing hormone (GnRH)-synthesizing neurons form the final common output way of the hypothalamus in the neuroendocrine control of reproduction. Several peptidergic neuronal systems of the medial hypothalamus innervate human GnRH cells and mediate crucially important hormonal and metabolic signals to the reproductive axis, whereas much less is known about the contribution of the lateral hypothalamic area to the afferent control of human GnRH neurons. Orexin (ORX)- and melanin-concentrating hormone (MCH)-synthesizing neurons of this region have been implicated in diverse behavioral and autonomic processes, including sleep and wakefulness, feeding and other functions. In the present immunohistochemical study, we addressed the anatomical connectivity of these neurons to human GnRH cells in post-mortem hypothalamic samples obtained from autopsies. We found that 38.9 ± 10.3% and 17.7 ± 3.3% of GnRH-immunoreactive (IR) perikarya in the infundibular nucleus of human male subjects received ORX-IR and MCH-IR contacts, respectively. On average, each 1 mm segment of GnRH dendrites received 7.3 ± 1.1 ORX-IR and 3.7 ± 0.5 MCH-IR axo-dendritic appositions. Overall, the axo-dendritic contacts dominated over the axo-somatic contacts and represented 80.5 ± 6.4% of ORX-IR and 76.7 ± 4.6% of MCH-IR inputs to GnRH cells. Based on functional evidence from studies of laboratory animals, the direct axo-somatic and axo-dendritic input from ORX and MCH neurons to the human GnRH neuronal system may convey critical metabolic and other homeostatic signals to the reproducive axis. In this study, we also report the generation and characterization of new antibodies for immunohistochemical detection of GnRH neurons in histological sections. PMID:26388735

  11. Classical and Membrane-Initiated Estrogen Signaling in an In Vitro Model of Anterior Hypothalamic Kisspeptin Neurons

    PubMed Central

    Wong, Angela M.; Kathiresan, Anupama S. Q.; Micevych, Paul E.

    2015-01-01

    The neuropeptide kisspeptin is essential for sexual maturation and reproductive function. In particular, kisspeptin-expressing neurons in the anterior rostral periventricular area of the third ventricle are generally recognized as mediators of estrogen positive feedback for the surge release of LH, which stimulates ovulation. Estradiol induces kisspeptin expression in the neurons of the rostral periventricular area of the third ventricle but suppresses kisspeptin expression in neurons of the arcuate nucleus that regulate estrogen-negative feedback. To focus on the intracellular signaling and response to estradiol underlying positive feedback, we used mHypoA51 cells, an immortalized line of kisspeptin neurons derived from adult female mouse hypothalamus. mHypoA51 neurons express estrogen receptor (ER)-α, classical progesterone receptor (PR), and kisspeptin, all key elements of estrogen-positive feedback. As with kisspeptin neurons in vivo, 17β-estradiol (E2) induced kisspeptin and PR in mHypoA51s. The ERα agonist, 1,3,5-Tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole, produced similar increases in expression, indicating that these events were mediated by ERα. However, E2-induced PR up-regulation required an intracellular ER, whereas kisspeptin expression was stimulated through a membrane ER activated by E2 coupled to BSA. These data suggest that anterior hypothalamic kisspeptin neurons integrate both membrane-initiated and classical nuclear estrogen signaling to up-regulate kisspeptin and PR, which are essential for the LH surge. PMID:25730107

  12. Effect of copper on extracellular levels of key pro-inflammatory molecules in hypothalamic GN11 and primary neurons.

    PubMed

    Spisni, Enzo; Valerii, Maria Chiara; Manerba, Marcella; Strillacci, Antonio; Polazzi, Elisabetta; Mattia, Toni; Griffoni, Cristiana; Tomasi, Vittorio

    2009-07-01

    Copper dyshomeostasis is responsible for the neurological symptoms observed in the genetically inherited copper-dependent disorders (e.g., Menkes' and Wilson's diseases), but it has been also shown to have an important role in neurodegenerative diseases such as Alzheimer disease, prion diseases, Parkinson's disease and amyotrophic lateral sclerosis. It is widely accepted that increased extracellular copper levels contribute to neuronal pathogenic process by increasing the production of dangerous radical oxygen species, but the existence of other molecular mechanisms explaining copper neurotoxicity has not been investigated yet. By using a cellular model based on hypothalamic GN11 cultured neurons exposed to copper supplementation and by analysing the cell conditioned media, we try here to identify new molecular events explaining the association between extracellular copper accumulation and neuronal damages. We show here that increased extracellular copper levels produce a wide complex of alterations in the neuronal extracellular environment. In particular, copper affects the secretion of molecules involved in the protection of neurons against oxidative stress, such as cyclophilin A (CypA), or of molecules capable of shifting neuronal cells towards a pro-inflammatory state, such as IL-1alpha, IL-12, Rantes, neutrophil gelatinase-associated lipocalin (NGAL) and secreted protein acidic and rich in cysteine (SPARC). Copper pro-inflammatory properties have been confirmed by using primary neurons.

  13. Age-dependent changes in amino acid phenotype and the role of glutamate release from hypothalamic proopiomelanocortin neurons.

    PubMed

    Dennison, Christina S; King, Connie M; Dicken, Matthew S; Hentges, Shane T

    2016-04-15

    Hypothalamic proopiomelanocortin (POMC) neurons are important regulators of energy balance. Recent studies indicate that in addition to their peptides, POMC neurons can release either the amino acid (AA) transmitter gamma-aminobutyric acid (GABA) or glutamate. A small subset of POMC neurons appears to have a dual AA phenotype based on coexpression of mRNA for the vesicular glutamate transporter (vGlut2) and the GABA synthetic enzyme Gad67. To determine whether the colocalization of GABAergic and glutamatergic markers may be indicative of a switch in AA transmitter phenotype, fluorescent in situ hybridization was used to detect vGlut2 and Gad mRNA in POMC neurons during early postnatal development. The percentage of POMC neurons expressing vGlut2 mRNA in POMC neurons progressively decreased from ∼40% at day 1 to less than 10% by 8 weeks of age, whereas Gad67 was only expressed in ∼10% of POMC neurons at day 1 and increased until ∼45% of POMC neurons coexpressed Gad67 at 8 weeks of age. To determine whether the expression of vGlut2 may play a role in energy balance regulation, genetic deletion of vGlut2 in POMC neurons was accomplished using Cre-lox technology. Male, but not female, mice lacking vGlut2 in POMC neurons were unable to maintain energy balance to the same extent as control mice when fed a high-fat diet. Altogether, the results indicate that POMC neurons are largely glutamatergic early in life and that the release of glutamate from these cells is involved in sex- and diet-specific regulation of energy balance.

  14. Endoplasmic Reticulum Stress PERK-ATF4-CHOP Pathway Is Associated with Hypothalamic Neuronal Injury in Different Durations of Stress in Rats

    PubMed Central

    Yi, Shanyong; Shi, Weibo; Wang, He; Ma, Chunling; Zhang, Xiaojing; Wang, Songjun; Cong, Bin; Li, Yingmin

    2017-01-01

    The hypothalamus, which is the initial part of the hypothalamic-pituitary-adrenal (HPA) axis, plays a critical role in regulating stress in the central nervous system. The present study aimed to determine whether endoplasmic reticulum stress in hypothalamic neurons is differentially stimulated by varying durations of stress exposure, which ultimately leads to pathological changes in neurons by affecting HPA axis function. There is a need for better morphological evidence of the mechanisms involved in stress-induced neuron injury. A stress model was established in rats by restraining for 8 h and forced ice-water swimming for 5 min each day. The stress-inducing process lasted for 1, 3, 7, 14, and 21 days. Enzyme-linked immunosorbent assay (ELISA) was used to assay serum glucocorticoid levels. Thionine staining was used to observe morphological changes in hypothalamic neurons. Immunohistochemistry and microscopy-based multicolor tissue cytometry (MMTC) was used to detect changes in expression of endoplasmic reticulum stress protein GRP78, ATF4, and CHOP. Serum glucocorticoid levels significantly increased after 3 days of stress exposure and the levels peaked by 7 days. By 21 days, however, the levels were significantly decreased. Thionine staining revealed that prolonged stress exposure resulted in hypothalamic neurons with edema, a lack of Nissl bodies, and pyknotic neurons. Immunohistochemistry and MMTC showed that increasing stress periods significantly decreased GRP78 expression, although ATF4 and CHOP protein expression significantly increased. Stress resulted in pathological changes and significant dynamic changes because of endoplasmic reticulum stress in rat hypothalamic neurons. These results suggested that the endoplasmic reticulum stress PERK-ATF4-CHOP pathway may be associated with hypothalamic neuronal injury. PMID:28392758

  15. Somato-Dendritic Localization and Signaling by Leptin Receptors in Hypothalamic POMC and AgRP Neurons

    PubMed Central

    Ha, Sangdeuk; Baver, Scott; Huo, Lihong; Gata, Adriana; Hairston, Joyce; Huntoon, Nicholas; Li, Wenjing; Zhang, Thompson; Benecchi, Elizabeth J.; Ericsson, Maria; Hentges, Shane T.; Bjørbæk, Christian

    2013-01-01

    Leptin acts via neuronal leptin receptors to control energy balance. Hypothalamic pro-opiomelanocortin (POMC) and agouti-related peptide (AgRP)/Neuropeptide Y (NPY)/GABA neurons produce anorexigenic and orexigenic neuropeptides and neurotransmitters, and express the long signaling form of the leptin receptor (LepRb). Despite progress in the understanding of LepRb signaling and function, the sub-cellular localization of LepRb in target neurons has not been determined, primarily due to lack of sensitive anti-LepRb antibodies. Here we applied light microscopy (LM), confocal-laser scanning microscopy (CLSM), and electron microscopy (EM) to investigate LepRb localization and signaling in mice expressing a HA-tagged LepRb selectively in POMC or AgRP/NPY/GABA neurons. We report that LepRb receptors exhibit a somato-dendritic expression pattern. We further show that LepRb activates STAT3 phosphorylation in neuronal fibers within several hypothalamic and hindbrain nuclei of wild-type mice and rats, and specifically in dendrites of arcuate POMC and AgRP/NPY/GABA neurons of Leprb+/+ mice and in Leprbdb/db mice expressing HA-LepRb in a neuron specific manner. We did not find evidence of LepRb localization or STAT3-signaling in axon-fibers or nerve-terminals of POMC and AgRP/NPY/GABA neurons. Three-dimensional serial EM-reconstruction of dendritic segments from POMC and AgRP/NPY/GABA neurons indicates a high density of shaft synapses. In addition, we found that the leptin activates STAT3 signaling in proximity to synapses on POMC and AgRP/NPY/GABA dendritic shafts. Taken together, these data suggest that the signaling-form of the leptin receptor exhibits a somato-dendritic expression pattern in POMC and AgRP/NPY/GABA neurons. Dendritic LepRb signaling may therefore play an important role in leptin’s central effects on energy balance, possibly through modulation of synaptic activity via post-synaptic mechanisms. PMID:24204898

  16. Enhanced astroglial GABA uptake attenuates tonic GABAA inhibition of the presympathetic hypothalamic paraventricular nucleus neurons in heart failure.

    PubMed

    Pandit, Sudip; Jo, Ji Yoon; Lee, Sang Ung; Lee, Young Jae; Lee, So Yeong; Ryu, Pan Dong; Lee, Jung Un; Kim, Hyun-Woo; Jeon, Byeong Hwa; Park, Jin Bong

    2015-08-01

    γ-Aminobutyric acid (GABA) generates persistent tonic inhibitory currents (Itonic) and conventional inhibitory postsynaptic currents in the hypothalamic paraventricular nucleus (PVN) via activation of GABAA receptors (GABAARs). We investigated the pathophysiological significance of astroglial GABA uptake in the regulation of Itonic in the PVN neurons projecting to the rostral ventrolateral medulla (PVN-RVLM). The Itonic of PVN-RVLM neurons were significantly reduced in heart failure (HF) compared with sham-operated (SHAM) rats. Reduced Itonic sensitivity to THIP argued for the decreased function of GABAAR δ subunits in HF, whereas similar Itonic sensitivity to benzodiazepines argued against the difference of γ2 subunit-containing GABAARs in SHAM and HF rats. HF Itonic attenuation was reversed by a nonselective GABA transporter (GAT) blocker (nipecotic acid, NPA) and a GAT-3 selective blocker, but not by a GAT-1 blocker, suggesting that astroglial GABA clearance increased in HF. Similar and minimal Itonic responses to bestrophin-1 blockade in SHAM and HF neurons further argued against a role for astroglial GABA release in HF Itonic attenuation. Finally, the NPA-induced inhibition of spontaneous firing was greater in HF than in SHAM PVN-RVLM neurons, whereas diazepam induced less inhibition of spontaneous firing in HF than in SHAM neurons. Overall, our results showed that combined with reduced GABAARs function, the enhanced astroglial GABA uptake-induced attenuation of Itonic in HF PVN-RVLM neurons explains the deficit in tonic GABAergic inhibition and increased sympathetic outflow from the PVN during heart failure.

  17. Prenatal fat exposure and hypothalamic PPAR β/δ: Possible relationship to increased neurogenesis of orexigenic peptide neurons.

    PubMed

    Chang, G-Q; Karatayev, O; Lukatskaya, O; Leibowitz, S F

    2016-05-01

    Gestational exposure to a fat-rich diet, while elevating maternal circulating fatty acids, increases in the offspring's hypothalamus and amygdala the proliferation and density of neurons that express neuropeptides known to stimulate consummatory behavior. To understand the relationship between these phenomena, this study examined in the brain of postnatal offspring (day 15) the effect of prenatal fat exposure on the transcription factor, peroxisome proliferator-activated receptor (PPAR) β/δ, which is sensitive to fatty acids, and the relationship of PPAR β/δ to the orexigenic neuropeptides, orexin, melanin-concentrating hormone, and enkephalin. Prenatal exposure to a fat-rich diet compared to low-fat chow increased the density of cells immunoreactive for PPAR β/δ in the hypothalamic paraventricular nucleus (PVN), perifornical lateral hypothalamus (PFLH), and central nucleus of the amygdala (CeA), but not the hypothalamic arcuate nucleus or basolateral amygdaloid nucleus. It also increased co-labeling of PPAR β/δ with the cell proliferation marker, BrdU, or neuronal marker, NeuN, and the triple labeling of PPAR β/δ with BrdU plus NeuN, indicating an increase in proliferation and density of new PPAR β/δ neurons. Prenatal fat exposure stimulated the double-labeling of PPAR β/δ with orexin or melanin-concentrating hormone in the PFLH and enkephalin in the PVN and CeA and also triple-labeling of PPAR β/δ with BrdU and these neuropeptides, indicating that dietary fat increases the genesis of PPAR β/δ neurons that produce these peptides. These findings demonstrate a close anatomical relationship between PPAR β/δ and the increased proliferation and density of peptide-expressing neurons in the hypothalamus and amygdala of fat-exposed offspring.

  18. NEURONAL ACTIVITY AND STRESS DIFFERENTIALLY REGULATE HIPPOCAMPAL AND HYPOTHALAMIC CORTICOTROPIN-RELEASING HORMONE EXPRESSION IN THE IMMATURE RAT

    PubMed Central

    HATALSKI, C. G.; BRUNSON, K. L.; TANTAYANUBUTR, B.; CHEN, Y.; BARAM, T. Z.

    2011-01-01

    Corticotropin-releasing hormone, a major neuromodulator of the neuroendocrine stress response, is expressed in the immature hippocampus, where it enhances glutamate receptor-mediated excitation of principal cells. Since the peptide influences hippocampal synaptic efficacy, its secretion from peptidergic interneuronal terminals may augment hippocampal-mediated functions such as learning and memory. However, whereas information regarding the regulation of corticotropin-releasing hormone’s abundance in CNS regions involved with the neuroendocrine responses to stress has been forthcoming, the mechanisms regulating the peptide’s levels in the hippocampus have not yet been determined. Here we tested the hypothesis that, in the immature rat hippocampus, neuronal stimulation, rather than neuroendocrine challenge, influences the peptide’s expression. Messenger RNA levels of corticotropin-releasing hormone in hippocampal CA1, CA3 and the dentate gyrus, as well as in the hypothalamic paraventricular nucleus, were determined after cold, a physiological challenge that activates the hypothalamic pituitary adrenal system in immature rats, and after activation of hippocampal neurons by hyperthermia. These studies demonstrated that, while cold challenge enhanced corticotropin-releasing hormone messenger RNA levels in the hypothalamus, hippocampal expression of this neuropeptide was unchanged. Secondly, hyperthermia stimulated expression of hippocampal immediate-early genes, as well as of corticotropin-releasing hormone. Finally, the mechanism of hippocampal corticotropin-releasing hormone induction required neuronal stimulation and was abolished by barbiturate administration. Taken together, these results indicate that neuronal stimulation may regulate hippocampal corticotropin-releasing hormone expression in the immature rat, whereas the peptide’s expression in the hypothalamus is influenced by neuroendocrine challenges. PMID:11113306

  19. A novel floor plate boundary defined by adjacent En1 and Dbx1 microdomains distinguishes midbrain dopamine and hypothalamic neurons.

    PubMed

    Nouri, Navid; Awatramani, Rajeshwar

    2017-03-01

    The mesodiencephalic floor plate (mdFP) is the source of diverse neuron types. Yet, how this structure is compartmentalized has not been clearly elucidated. Here, we identify a novel boundary subdividing the mdFP into two microdomains, defined by engrailed 1 (En1) and developing brain homeobox 1 (Dbx1). Utilizing simultaneous dual and intersectional fate mapping, we demonstrate that this boundary is precisely formed with minimal overlap between En1 and Dbx1 microdomains, unlike many other boundaries. We show that the En1 microdomain gives rise to dopaminergic (DA) neurons, whereas the Dbx1 microdomain gives rise to subthalamic (STN), premammillary (PM) and posterior hypothalamic (PH) populations. To determine whether En1 is sufficient to induce DA neuron production beyond its normal limit, we generated a mouse strain that expresses En1 in the Dbx1 microdomain. In mutants, we observed ectopic production of DA neurons derived from the Dbx1 microdomain, at the expense of STN and PM populations. Our findings provide new insights into subdivisions in the mdFP, and will impact current strategies for the conversion of stem cells into DA neurons.

  20. Imbalanced K+ and Ca2+ subthreshold interactions contribute to increased hypothalamic presympathetic neuronal excitability in hypertensive rats

    PubMed Central

    Sonner, P M; Lee, S; Ryu, P D; Lee, S Y; Stern, J E

    2011-01-01

    We investigated here whether an opposing interplay between the subthreshold currents A-type potassium (IA) and T-type calcium (IT) influences membrane excitability in presympathetic neurones of the hypothalamic paraventricular nucleus (PVN) that innervate the rostral ventrolateral medulla (RVLM). Moreover, we assessed whether a shift in the balance between these two subthreshold currents contributed to increased neuronal activity in hypertension. To this end, we obtained simultaneous electrophysiological recordings, confocal Ca2+ imaging, and single-cell RT-PCR samples from identified PVN-RVLM neurones in sham and renovascular hypertensive rats. Our results indicate that IA and IT, displaying overlapping voltage-dependent and kinetic properties, are present in PVN-RVLM neurones. We found that the relative predominance of each current at hyperpolarized membrane potentials dictates whether PVN-RVLN neurones express a low-threshold spike (LTS) or a transient outward rectification (TOR). Moreover, we report the IA/IT balance to be correlated with the relative expression of Kv4.3 and Cav3.1 subunit mRNA within individual neurones. Pharmacological blockade of IA resulted in an enhanced IT-mediated LTS, as well as LTS-mediated somatodendritic Ca2+ transients. In hypertensive rats, we found a shift in the IT/IA balance, towards an IT predominance, due in part to a diminished Kv4.3 and enhanced Cav3.1 mRNA subunits expression. The imbalanced IT/IA relationship resulted in enhanced LTS, LTS-mediated somatodendritic Ca2+ transients, and increased firing activity in hypertensive rats. Taken together, our results support that a balanced IT/IA interaction influences membrane excitability and Ca2+ dynamics in PVN-RVLM neurones. Moreover, an imbalanced relationship favouring IT results in enhanced neuronal excitability and firing discharge in hypertensive rats, constituting thus a likely mechanism contributing to the characteristic sympathoexcitation observed in this disease. PMID

  1. Simulated GABA synaptic input and L-type calcium channels form functional microdomains in hypothalamic gonadotropin-releasing hormone neurons.

    PubMed

    Hemond, Peter J; O'Boyle, Michael P; Roberts, Carson B; Delgado-Reyes, Alfonso; Hemond, Zoe; Suter, Kelly J

    2012-06-27

    Hypothalamic gonadotropin-releasing hormone (GnRH) neurons integrate the multiple internal and external cues that regulate sexual reproduction. In contrast to other neurons that exhibit extensive dendritic arbors, GnRH neurons usually have a single dendrite with relatively little branching. This largely precludes the integration strategy in which a single dendritic branch serves as a unit of integration. In the present study, we identify a gradient in L-type calcium channels in dendrites of mouse GnRH neurons and its interaction with GABAergic and glutamatergic inputs. Higher levels of L-type calcium channels are in somata/proximal dendrites (i.e., 0-26 μm) and distal dendrites (∼130 μm dendrite length), but intervening midlengths of dendrite (∼27-130 μm) have reduced L-type calcium channels. Using uncaging of GABA, there is a decreasing GABAergic influence along the dendrite and the impact of GABA(A) receptors is dependent on activation of L-type calcium channels. This results in amplification of proximal GABAergic signals and attenuation of distal dendritic signals. Most interestingly, the intervening dendritic regions create a filter through which only relatively high-amplitude, low-frequency GABAergic signaling to dendrites elicits action potentials. The findings of the present study suggest that GnRH dendrites adopt an integration strategy whereby segments of single nonbranching GnRH dendrites create functional microdomains and thus serve as units of integration.

  2. Lack of effect of potassium channel openers on ATP-modulated potassium channels recorded from rat ventromedial hypothalamic neurones.

    PubMed Central

    Sellers, A. J.; Boden, P. R.; Ashford, M. L.

    1992-01-01

    1. Single neuronal cells were freshly isolated from the ventromedial hypothalamic nuclei (VMHN) of the rat brain. Currents through ATP-modulated and large conductance (160 and 250 pS) calcium-activated potassium channels were recorded by the cell-attached and excised inside-out patch techniques. 2. BRL38227 (lemakalim; 30-90 microM) applied to the superfusing medium produced no change in firing rate of isolated glucose-receptive VMHN neurones in cell-attached recordings. 3. BRL38227, at concentrations of between 30-100 microM applied to the intracellular (cytoplasmic) aspect of inside-out patches, had no effect on the activity of ATP-sensitive K+ channels in the absence of ATP or in the presence of a sub-maximal inhibitory concentration (3 mM) of ATP. Cromakalim, pinacidil, minoxidil sulphate and diazoxide also produced no effect under these conditions. 4. The potassium channel openers (KCO's) were tested on ATP-activated potassium channels recorded from a further subpopulation of VMHN neurones. Application of BRL38227 (up to and including 100 microM) to this channel in inside-out patches either in the absence of ATP or when activated by 5 mM ATP had no effect on channel activity. Identical results were obtained with cromakalim and pinacidil. 5. BRL38227 had no effect on either of the large conductance (250 pS and 160 pS) calcium-activated potassium channels in VMHN neurones. 6. Intracellular recordings were made from glucose-receptive VMHN neurones in rat brain slices. Cromakalim (50 microM) or diazoxide (60 microM) did not alter the firing rate or passive membrane properties of these neurones demonstrated to be sensitive to tolbutamide (0.1 mM).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1467829

  3. Rbpj-κ mediated Notch signaling plays a critical role in development of hypothalamic Kisspeptin neurons

    PubMed Central

    Biehl, Matthew J; Raetzman, Lori T

    2015-01-01

    The mammalian arcuate nucleus (ARC) houses neurons critical for energy homeostasis and sexual maturation. Proopiomelanocortin (POMC) and Neuropeptide Y (NPY) neurons function to balance energy intake and Kisspeptin neurons are critical for the onset of puberty and reproductive function. While the physiological roles of these neurons have been well established, their development remains unclear. We have previously shown that Notch signaling plays an important role in cell fate within the ARC of mice. Active Notch signaling prevented neural progenitors from differentiating into feeding circuit neurons, whereas conditional loss of Notch signaling lead to a premature differentiation of these neurons. Presently, we hypothesized that Kisspeptin neurons would similarly be affected by Notch manipulation. To address this, we utilized mice with a conditional deletion of the Notch signaling co-factor Rbpj-κ (Rbpj cKO), or mice persistently expressing the Notch1 intracellular domain (NICD tg) within Nkx2.1 expressing cells of the developing hypothalamus. Interestingly, we found that in both models, a lack of Kisspeptin neurons are observed. This suggests that Notch signaling must be properly titrated for formation of Kisspeptin neurons. These results led us to hypothesize that Kisspeptin neurons of the ARC may arise from a different lineage of intermediate progenitors than NPY neurons and that Notch was responsible for the fate choice between these neurons. To determine if Kisspeptin neurons of the ARC differentiate similarly through a Pomc intermediate, we utilized a genetic model expressing the tdTomato fluorescent protein in all cells that have ever expressed Pomc. We observed some Kisspeptin expressing neurons labeled with the Pomc reporter similar to NPY neurons, suggesting that these distinct neurons can arise from a common progenitor. Finally, we hypothesized that temporal differences leading to premature depletion of progenitors in cKO mice lead to our observed

  4. Altered neuronal responses to feeding-relevant peptides as sign of developmental plasticity in the hypothalamic regulatory system of body weight.

    PubMed

    Davidowa, Helga; Li, Yuzhen; Plagemann, Andreas

    2003-01-01

    Neuronal plasticity during the critical postnatal period of development seems to promote a change in the function of the hypothalamic regulatory system of body weight. Rats raised in small litters (SL) of only three pups per mother compared to ten or twelve in control litters (CL) gain significantly more weight than normal rats till weaning and are overweight also in later life. These rats are known to express hyperleptinemia, hyperglycemia and hyperinsulinemia. The review summarizes the results of action of leptin and insulin as well as of several feeding-relevant neuropeptides on neuronal activity of hypothalamic regulatory centres in overweight SL rats compared to controls. The study was performed on brain slices perfused with solution containing 10 mM glucose. Whereas a normally inhibitory action of leptin and insulin on medial arcuate neurons (ArcM) is reduced in SL rats and partly replaced by activation, the normally activating effect of these hormones on ventromedial (VMH) neurons is altered to predominant inhibition. Inhibition of ArcM neurons may decrease the release of the orexigenic neuropeptide Y (NPY) and agouti gene-related protein (AGRP). Thus, the negative feedback by leptin and insulin on food intake is replaced by diminished response and partly positive feedback processes in SL rats. The action of NPY and AGRP as well as of the orexigenic melanin-concentrating hormone on paraventricular (PVH) and VMH neurons is also shaped from activation or bimodal effects to predominant inhibition. Such inhibition of PVH and VMH might lead to reduced energy expenditure in small litter rats. Also the anorexigenic melanocortin alpha-MSH seems to contribute into increased energy storage. These altered responses of hypothalamic neurons in overweight small litter rats might reflect a general mechanism of neurochemical plasticity and "malprogramming" of hypothalamic neuropeptidergic systems leading to a permanently altered regulatory function.

  5. Over-Expression of Leptin Receptors in Hypothalamic POMC Neurons Increases Susceptibility to Diet-Induced Obesity

    PubMed Central

    Gamber, Kevin M.; Huo, Lihong; Ha, Sangdeuk; Hairston, Joyce E.; Greeley, Sarah; Bjørbæk, Christian

    2012-01-01

    Diet-induced obesity (DIO) in rodents is characterized by impaired activation of signal-transducer and activator of transcription 3 (STAT3) by leptin receptors (LepRb) within the hypothalamic arcuate nucleus. This signaling defect likely plays an important role in development of DIO. However, the neuro-chemical identity of the leptin-STAT3 resistant arcuate neurons has not been determined and the underlying mechanisms responsible for development of cellular leptin resistance remain unclear. To investigate this, we first measured arcuate gene expression of known key signaling components of the LepRb signaling pathway and tested whether specifically the critical arcuate pro-opiomelanocortin (POMC) neurons are resistant to LepRb-STAT3 signaling in mice given a high-fat-diet (HFD) compared to mice provided a low-fat control diet (LFD). We found that leptin-dependent STAT3 phosphorylation was decreased within POMC neurons of HFD mice. In addition, Leprb mRNA and suppressor of cytokine signaling 3 (Socs3) mRNA were elevated in the arcuate of HFD mice. To investigate whether increased LepRb expression per se in POMC neurons can influence development of DIO and Socs3 expression, we created mice that over-express LepRb selectively in POMC neurons (POMC-LepRb). No differences in body weight, fat mass or food intake were found between LFD POMC-LepRb mice and LFD controls. Surprisingly, body weight, fat mass and caloric intake of HFD POMC-LepRb mice was markedly higher than HFD control mice. In addition, arcuate Socs3 mRNA was increased in HFD POMC-LepRb mice compared to HFD controls. These data show that specifically POMC neurons of DIO mice are resistant to STAT3 activation by leptin, indicating that those cells might play a role in development of DIO. Furthermore, over-expression of LepRb selectively in POMC neurons increases susceptibility to the development of DIO. We propose a model where over-reactivity of the leptin-LepRb signaling system in arcuate neurons may play

  6. Non-Neuronal Cells in the Hypothalamic Adaptation to Metabolic Signals

    PubMed Central

    Freire-Regatillo, Alejandra; Argente-Arizón, Pilar; Argente, Jesús; García-Segura, Luis Miguel; Chowen, Julie A.

    2017-01-01

    Although the brain is composed of numerous cell types, neurons have received the vast majority of attention in the attempt to understand how this organ functions. Neurons are indeed fundamental but, in order for them to function correctly, they rely on the surrounding “non-neuronal” cells. These different cell types, which include glia, epithelial cells, pericytes, and endothelia, supply essential substances to neurons, in addition to protecting them from dangerous substances and situations. Moreover, it is now clear that non-neuronal cells can also actively participate in determining neuronal signaling outcomes. Due to the increasing problem of obesity in industrialized countries, investigation of the central control of energy balance has greatly increased in attempts to identify new therapeutic targets. This has led to interesting advances in our understanding of how appetite and systemic metabolism are modulated by non-neuronal cells. For example, not only are nutrients and hormones transported into the brain by non-neuronal cells, but these cells can also metabolize these metabolic factors, thus modifying the signals reaching the neurons. The hypothalamus is the main integrating center of incoming metabolic and hormonal signals and interprets this information in order to control appetite and systemic metabolism. Hence, the factors transported and released from surrounding non-neuronal cells will undoubtedly influence metabolic homeostasis. This review focuses on what is known to date regarding the involvement of different cell types in the transport and metabolism of nutrients and hormones in the hypothalamus. The possible involvement of non-neuronal cells, in particular glial cells, in physiopathological outcomes of poor dietary habits and excess weight gain are also discussed. PMID:28377744

  7. Reduced fasting-induced activation of hypothalamic arcuate neurons is associated with hyperleptinemia and increased leptin sensitivity in obese mice.

    PubMed

    Becskei, Csilla; Lutz, Thomas A; Riediger, Thomas

    2010-08-01

    Fasting increases c-Fos expression in neuropeptide Y (NPY) neurons of the hypothalamic arcuate nucleus (ARC) in lean, but not in hyperleptinemic mice with late-onset obesity (LOO). Although obesity is associated with leptin resistance, we hypothesized that under fasting conditions, leptin sensitivity might be restored and that hyperleptinemia may counteract the neuronal response to fasting. We investigated whether the reduced fasting response of ARC neurons in LOO is paralleled by an increase in leptin sensitivity, as measured by leptin-induced STAT-3 phosphorylation. To assess leptin's role in the modulation of the fasting-induced ARC activation, we investigated c-Fos responses and hormone and metabolite levels in hyperleptinemic diet-induced obese (DIO) and in leptin-deficient ob/ob mice. Leptin induced a stronger STAT-3 phosphorylation in fasted LOO and lean mice than in ad libitum-fed animals. Similar to LOO, hyperleptinemic DIO mice showed no c-Fos response after fasting, while ob/ob mice showed a stronger response than lean control mice. Mimicking hyperleptinemia by repeated leptin injections in lean mice during fasting attenuated the fasting-induced c-Fos expression. Our findings indicate that high leptin levels prevent the fasting-induced activation of ARC neurons in mice. Moreover, leptin sensitivity is dynamic in obese subjects and depends on the feeding status. During short-term increases in leptin sensitivity, e.g., during fasting, leptin signaling appears to be effective, even in hyperleptinemic obesity. As reflected by the blockade of the fasting-induced ARC activation, fasting seems to interfere with the responsiveness of the ARC to signals related to the status of energy intake.

  8. Chronic intermittent hypoxia increases sympathetic control of blood pressure: role of neuronal activity in the hypothalamic paraventricular nucleus.

    PubMed

    Sharpe, Amanda L; Calderon, Alfredo S; Andrade, Mary Ann; Cunningham, J Thomas; Mifflin, Steven W; Toney, Glenn M

    2013-12-01

    Like humans with sleep apnea, rats exposed to chronic intermittent hypoxia (CIH) experience arterial hypoxemias and develop hypertension characterized by exaggerated sympathetic nerve activity (SNA). To gain insights into the poorly understood mechanisms that initiate sleep apnea/CIH-associated hypertension, experiments were performed in rats exposed to CIH for only 7 days. Compared with sham-treated normoxic control rats, CIH-exposed rats (n = 8 rats/group) had significantly increased hematocrit (P < 0.001) and mean arterial pressure (MAP; P < 0.05). Blockade of ganglionic transmission caused a significantly (P < 0.05) greater reduction of MAP in rats exposed to CIH than control rats (n = 8 rats/group), indicating a greater contribution of SNA in the support of MAP even at this early stage of CIH hypertension. Chemical inhibition of neuronal discharge in the hypothalamic paraventricular nucleus (PVN) (100 pmol muscimol) had no effect on renal SNA but reduced lumbar SNA (P < 0.005) and MAP (P < 0.05) more in CIH-exposed rats (n = 8) than control rats (n = 7), indicating that CIH increased the contribution of PVN neuronal activity in the support of lumbar SNA and MAP. Because CIH activates brain regions controlling body fluid homeostasis, the effects of internal carotid artery injection of hypertonic saline were tested and determined to increase lumbar SNA more (P < 0.05) in CIH-exposed rats than in control rats (n = 9 rats/group). We conclude that neurogenic mechanisms are activated early in the development of CIH hypertension such that elevated MAP relies on increased sympathetic tonus and ongoing PVN neuronal activity. The increased sensitivity of Na(+)/osmosensitive circuitry in CIH-exposed rats suggests that early neuroadaptive responses among body fluid regulatory neurons could contribute to the initiation of CIH hypertension.

  9. Lateral Hypothalamic Stimulation Reduces Hyperalgesia Through Spinally Descending Orexin-A Neurons in Neuropathic Pain.

    PubMed

    Wardach, Jacob; Wagner, Monica; Jeong, Younhee; Holden, Janean E

    2016-03-01

    No evidence to date shows that lateral hypothalamic (LH) stimulation produces orexin-A-mediated antinociception in the spinal cord dorsal horn (SCDH) in a model of neuropathic pain. We conducted experiments to examine the effect of orexin-A-mediated LH stimulation in female rats with chronic constriction injury (CCI) on thermal hyperalgesia. Rats receiving carbachol into the LH demonstrated antinociception on both the left CCI and right nonligated paws (p < .05). Rats were given carbachol in the LH followed by intrathecal injection of the orexin-1 (OX1) receptor antagonist SB-334867, which blocked LH-induced antinociception compared with control groups (p < .05) in the left paw, but not in the right paw. These findings support the hypothesis that LH stimulation produces antinociception in rats with thermal hyperalgesia from neuropathic pain via an orexin-A connection between the LH and the SCDH. Identification of this pathway may lead to studies using orexins to manage clinical pain.

  10. Modulation of body temperature and LH secretion by hypothalamic KNDy (kisspeptin, neurokinin B and dynorphin) neurons: A novel hypothesis on the mechanism of hot flushes

    PubMed Central

    Rance, Naomi E.; Dacks, Penny A.; Mittelman-Smith, Melinda A.; Romanovsky, Andrej A.; Krajewski-Hall, Sally J.

    2013-01-01

    Despite affecting millions of individuals, the etiology of hot flushes remains unknown. Here we review the physiology of hot flushes, CNS pathways regulating heat-dissipation effectors, and effects of estrogen on thermoregulation in animal models. Based on the marked changes in hypothalamic kisspeptin, neurokinin B and dynorphin (KNDy) neurons in postmenopausal women, we hypothesize that KNDy neurons play a role in the mechanism of flushes. In the rat, KNDy neurons project to preoptic thermoregulatory areas that express the neurokinin 3 receptor (NK3R), the primary receptor for NKB. Furthermore, activation of NK3R in the median preoptic nucleus, part of the heat-defense pathway, reduces body temperature. Finally, ablation of KNDy neurons reduces cutaneous vasodilatation and partially blocks the effects of estrogen on thermoregulation. These data suggest that arcuate KNDy neurons relay estrogen signals to preoptic structures regulating heat-dissipation effectors, supporting the hypothesis that KNDy neurons participate in the generation of flushes. PMID:23872331

  11. Interaction between neuronal uptake inhibitors and presynaptic serotonin autoreceptors in rat hypothalamic slices: comparison of K+ and electrical depolarization.

    PubMed

    Passarelli, F; Galzin, A M; Langer, S Z

    1987-09-01

    In rat hypothalamic slices prelabeled with [3H]-5-hydroxytryptamine ([3H]-5-HT), exposure to the 5-HT receptor agonist lysergic acid diethylamide (0.1-1 microM) or 5-methoxytryptamine (0.1-10 microM) decreased in a concentration-dependent manner the release of 3H-transmitter elicited by high K+ or electrical stimulation. Exposure to the 5-HT autoreceptor antagonist methiothepin (0.1-1 microM) increased in a concentration-dependent manner the K+ stimulation-evoked overflow of [3H]-5-HT and a similar increase was observed under conditions of electrical stimulation. In contrast, exposure to the nontricyclic 5-HT uptake inhibitor citalopram (0.1-1 microM) did not modify by itself the electrically evoked overflow of [3H]-5-HT, but increased in a concentration-dependent manner the release of 3H-transmitter elicited by K+ stimulation. This effect of citalopram on transmitter release was potentiated when the endogenous stores of 5-HT were depleted by pretreatment with para-chlorophenylalanine methyl ester (300 mg/kg i.p.). Citalopram was shown previously to antagonize the inhibition by lysergic acid diethylamide of the electrically evoked release of [3H]-5-HT in rat hypothalamic slices. Yet, this inhibitor of neuronal uptake of 5-HT did not antagonize the effects of lysergic acid diethylamide when the release of [3H]-5-HT was evoked by K+ depolarization. Electrical stimulation represents a more physiological experimental model for transmitter release than exposure to high K+, and therefore the interaction between 5-HT uptake blockade and presynaptic inhibitory 5-HT autoreceptors, observed in the hypothalamus with electrical stimulation but not with K+ depolarization, remains of biological relevance.

  12. Central ghrelin increases food foraging/hoarding that is blocked by GHSR antagonism and attenuates hypothalamic paraventricular nucleus neuronal activation.

    PubMed

    Thomas, Michael A; Ryu, Vitaly; Bartness, Timothy J

    2016-02-01

    The stomach-derived "hunger hormone" ghrelin increases in the circulation in direct response to time since the last meal, increasing preprandially and falling immediately following food consumption. We found previously that peripheral injection of ghrelin potently stimulates food foraging (FF), food hoarding (FH), and food intake (FI) in Siberian hamsters. It remains, however, largely unknown if central ghrelin stimulation is necessary/sufficient to increase these behaviors regardless of peripheral stimulation of the ghrelin receptor [growth hormone secretagogue receptor (GHSR)]. We injected three doses (0.01, 0.1, and 1.0 μg) of ghrelin into the third ventricle (3V) of Siberian hamsters and measured changes in FF, FH, and FI. To test the effects of 3V ghrelin receptor blockade, we used the potent GHSR antagonist JMV2959 to block these behaviors in response to food deprivation or a peripheral ghrelin challenge. Finally, we examined neuronal activation in the arcuate nucleus and paraventricular hypothalamic nucleus in response to peripheral ghrelin administration and 3V GHSR antagonism. Third ventricular ghrelin injection significantly increased FI through 24 h and FH through day 4. Pretreatment with 3V JMV2959 successfully blocked peripheral ghrelin-induced increases in FF, FH, and FI at all time points and food deprivation-induced increases in FF, FH, and FI up to 4 h. c-Fos immunoreactivity was significantly reduced in the paraventricular hypothalamic nucleus, but not in the arcuate nucleus, following pretreatment with intraperitoneal JMV2959 and ghrelin. Collectively, these data suggest that central GHSR activation is both necessary and sufficient to increase appetitive and consummatory behaviors in Siberian hamsters.

  13. Modulation of AgRP-neuronal function by SOCS3 as an initiating event in diet-induced hypothalamic leptin resistance.

    PubMed

    Olofsson, Louise E; Unger, Elizabeth K; Cheung, Clement C; Xu, Allison W

    2013-02-19

    Chronic consumption of a fat-rich diet leads to attenuation of leptin signaling in hypothalamic neurons, a hallmark feature of cellular leptin resistance. To date, little is known about the temporal and spatial dysregulation of neuronal function under conditions of nutrient excess. We show that agouti-related protein (AgRP)-expressing neurons precede proopiomelanocortin neurons in developing diet-induced cellular leptin resistance. High-fat diet-induced up-regulation of suppressor of cytokine signaling-3 (SOCS3) occurs in AgRP neurons before proopiomelanocortin and other hypothalamic neurons. SOCS3 expression in AgRP neurons increases after 2 d of high-fat feeding, but reduces after switching to a low-fat diet for 1 d. Consistently, transgenic overexpression of SOCS3 in AgRP neurons produces metabolic phenotypes resembling those observed after short-term high-fat feeding. We further show that AgRP neurons are the predominant cell type situated outside the blood-brain barrier in the mediobasal hypothalamus. AgRP neurons are more responsive to low levels of circulating leptin, but they are also more prone to development of leptin resistance in response to a small increase in blood leptin concentrations. Collectively, these results suggest that AgRP neurons are able to sense slight changes in plasma metabolic signals, allowing them to serve as first-line responders to fluctuation of energy intake. Furthermore, modulation of SOCS3 expression in AgRP neurons may play a dynamic and physiological role in metabolic fine tuning in response to short-term changes of nutritional status.

  14. Evidence that diet-induced hyperleptinemia, but not hypothalamic gliosis, causes ghrelin resistance in NPY/AgRP neurons of male mice.

    PubMed

    Briggs, Dana I; Lockie, Sarah H; Benzler, Jonas; Wu, Qunli; Stark, Romana; Reichenbach, Alex; Hoy, Andrew J; Lemus, Moyra B; Coleman, Harold A; Parkington, Helena C; Tups, Alex; Andrews, Zane B

    2014-07-01

    High-fat diet (HFD) feeding causes ghrelin resistance in arcuate neuropeptide Y (NPY)/Agouti-related peptide neurons. In the current study, we investigated the time course over which this occurs and the mechanisms responsible for ghrelin resistance. After 3 weeks of HFD feeding, neither peripheral nor central ghrelin increased food intake and or activated NPY neurons as demonstrated by a lack of Fos immunoreactivity or whole-cell patch-clamp electrophysiology. Pair-feeding studies that matched HFD calorie intake with chow calorie intake show that HFD exposure does not cause ghrelin resistance independent of body weight gain. We observed increased plasma leptin in mice fed a HFD for 3 weeks and show that leptin-deficient obese ob/ob mice are still ghrelin sensitive but become ghrelin resistant when central leptin is coadministered. Moreover, ob/ob mice fed a HFD for 3 weeks remain ghrelin sensitive, and the ability of ghrelin to induce action potential firing in NPY neurons was blocked by leptin. We also examined hypothalamic gliosis in mice fed a chow diet or HFD, as well as in ob/ob mice fed a chow diet or HFD and lean controls. HFD-fed mice exhibited increased glial fibrillary acidic protein-positive cells compared with chow-fed mice, suggesting that hypothalamic gliosis may underlie ghrelin resistance. However, we also observed an increase in hypothalamic gliosis in ob/ob mice fed a HFD compared with chow-fed ob/ob and lean control mice. Because ob/ob mice fed a HFD remain ghrelin sensitive, our results suggest that hypothalamic gliosis does not underlie ghrelin resistance. Further, pair-feeding a HFD to match the calorie intake of chow-fed controls did not increase body weight gain or cause central ghrelin resistance; thus, our evidence suggests that diet-induced hyperleptinemia, rather than diet-induced hypothalamic gliosis or HFD exposure, causes ghrelin resistance.

  15. Plasticity of hypothalamic dopamine neurons during lactation results in dissociation of electrical activity and release.

    PubMed

    Romanò, Nicola; Yip, Siew H; Hodson, David J; Guillou, Anne; Parnaudeau, Sébastien; Kirk, Siobhan; Tronche, François; Bonnefont, Xavier; Le Tissier, Paul; Bunn, Stephen J; Grattan, Dave R; Mollard, Patrice; Martin, Agnès O

    2013-03-06

    Tuberoinfundibular dopamine (TIDA) neurons are the central regulators of prolactin (PRL) secretion. Their extensive functional plasticity allows a change from low PRL secretion in the non-pregnant state to the condition of hyperprolactinemia that characterizes lactation. To allow this rise in PRL, TIDA neurons are thought to become unresponsive to PRL at lactation and functionally silenced. Here we show that, contrary to expectations, the electrical properties of the system were not modified during lactation and that the neurons remained electrically responsive to a PRL stimulus, with PRL inducing an acute increase in their firing rate during lactation that was identical to that seen in non-pregnant mice. Furthermore, we show a long-term organization of TIDA neuron electrical activity with an harmonization of their firing rates, which remains intact during lactation. However, PRL-induced secretion of dopamine (DA) at the median eminence was strongly blunted during lactation, at least in part attributable to lack of phosphorylation of tyrosine hydroxylase, the key enzyme involved in DA synthesis. We therefore conclude that lactation, rather than involving electrical silencing of TIDA neurons, represents a condition of decoupling between electrical activity at the cell body and DA secretion at the median eminence.

  16. Histaminergic responses by hypothalamic neurons that regulate lordosis and their modulation by estradiol

    PubMed Central

    Dupré, Christophe; Lovett-Barron, Matthew; Pfaff, Donald W.; Kow, Lee-Ming

    2010-01-01

    How do fluctuations in the level of generalized arousal of the brain affect the performance of specific motivated behaviors, such as sexual behaviors that depend on sexual arousal? A great deal of previous work has provided us with two important starting points in answering this question: (i) that histamine (HA) serves generalized CNS arousal and (ii) that heightened electrical activity of neurons in the ventromedial nucleus of the hypothalamus (VMN) is necessary and sufficient for facilitating the primary female sex behavior in laboratory animals, lordosis behavior. Here we used patch clamp recording technology to analyze HA effects on VMN neuronal activity. The results show that HA acting through H1 receptors (H1R) depolarizes these neurons. Further, acute administration of estradiol, an estrogen necessary for lordosis behavior to occur, heightens this effect. Hyperpolarization, which tends to decrease excitability and enhance inhibition, was not affected by acute estradiol or mediated by H1R but was mediated by other HA receptor subtypes, H2 and H3. Sampling of mRNA from individual VMN neurons showed colocalization of expression of H1 receptor mRNA with estrogen receptor (ER)-α mRNA but also revealed ER colocalization with the other HA receptor subtypes and colocalization of different subtypes with each other. The latter finding provides the molecular basis for complex “push-pull” regulation of VMN neuronal excitability by HA. Thus, in the simplest causal route, HA, acting on VMN neurons through H1R provides a mechanism by which elevated states of generalized CNS arousal can foster a specific estrogen-dependent, aroused behavior, sexual behavior. PMID:20562342

  17. Suprachiasmatic nuclei and Circadian rhythms. The role of suprachiasmatic nuclei on rhythmic activity of neurons in the lateral hypothalamic area, ventromedian nuclei and pineal gland

    NASA Technical Reports Server (NTRS)

    Nishino, H.

    1977-01-01

    Unit activity of lateral hypothalamic area (LHA) and Ventromedian nuclei (VMN) was recorded in urethane anesthetized male rats. A 5 to 10 sec. a 3-5 min and a circadian rhythmicity were observed. In about 15% of all neurons, spontaneous activity of LHA and VMN showed reciprocal relationships. Subthreshold stimuli applied at a slow rate in the septum and the suprachiasmatic nuclei (SCN) suppressed the rhythms without changing firing rates. On the other hand, stimulation of the optic nerve at a rate of 5 to 10/sec increased firing rates in 1/3 of neurons of SCN. Iontophoretically applied acetylcholine increased 80% of tested neurons of SCN, whereas norepinephrine, dopamine and 5 HT inhibited 64, 60 and 75% of SCN neurons respectively. These inhibitions were much stronger in neurons, the activity of which was increased by optic nerve stimulation. Stimulation of the SCN inhibited the tonic activity in cervical sympathetic nerves.

  18. Application of the Co-culture Membrane System Pointed to a Protective Role of Catestatin on Hippocampal Plus Hypothalamic Neurons Exposed to Oxygen and Glucose Deprivation.

    PubMed

    Mele, Maria; Morelli, Sabrina; Fazzari, Gilda; Avolio, Ennio; Alò, Raffaella; Piscioneri, Antonella; De Bartolo, Loredana; Facciolo, Rosa Maria; Canonaco, Marcello

    2016-11-05

    Depletion of oxygen and glucose even for brief periods is sufficient to cause cerebral ischemia, which is a predominant worldwide cause of motor deficits with the reduction of life quality and subsequently death. Hence, more insights regarding protective measures against ischemic events are becoming a major research goal. Among the many neuronal factors, N-methyl-D-aspartate receptors (NMDAR), orexinergic neuroreceptors (ORXR), and sympatho-inhibitory neuropeptide catestatin (CST) are widely involved with ischemic episodes. In this study, it was possible to induce in vitro ischemic conditions of the hamster (Mesocricetus auratus) hippocampal and hypothalamic neuronal cultures, grown on a newly compartmentalized membrane system, via oxygen and glucose deprivation (OGD). These cultures displayed notably differentiated NMDARergic and ORXergic receptor expression activities along with evident brain-derived neurotrophic factor (BDNF) plus orexin A (ORX-A) secretion, especially under co-cultured conditions. Interestingly, addition of CST in OGD-insulted hippocampal cells accounted for upregulated GluN1 and ORX1R transcripts that in the case of the latter neuroreceptor was very strongly (p < 0.001) increased when co-cultured with hypothalamic cells. Similarly, hypothalamic neurons supplied very evident upregulations of GluN1, ORX1R, and above all of GluN2A transcripts along with increased BDNF and ORX-A secretion in the presence of hippocampal cells. Overall, the preferential CST effects on BDNF plus ORX-A production together with altered NMDAR and ORXR levels, especially in co-cultured hypothalamic cells pointed to ORX-containing neurons as major protective constituents against ischemic damages thus opening new scenarios on the cross-talking roles of CST during ischemic disorders.

  19. Copper Enhances Zinc-Induced Neurotoxicity and the Endoplasmic Reticulum Stress Response in a Neuronal Model of Vascular Dementia

    PubMed Central

    Tanaka, Ken-ichiro; Kawahara, Masahiro

    2017-01-01

    Zinc (Zn), an essential trace element, is secreted by synaptic vesicles during neuronal excitation and plays several critical roles in neuronal information processing. However, excess Zn ion (Zn2+) is neurotoxic and has a causative role in the pathogenesis of vascular dementia. Here, we investigated the molecular mechanism of Zn2+-induced neurotoxicity by using immortalized hypothalamic neurons (GT1-7 cells), which are more vulnerable than other neuronal cells to Zn2+. We examined the effects of other metal ions on the Zn2+-induced neurotoxicity in these cells and found that sub-lethal concentrations of copper ion (Cu2+) markedly exacerbated Zn2+-induced neurotoxicity. The co-administration of Cu2+ and Zn2+ also significantly increased the expression of genes related to the endoplasmic reticulum's stress response, including CHOP, GADD34, and ATF4. Similar to Zn2+, Cu2+ is stored in presynaptic vesicles and secreted during neuronal excitation. Thus, based on our results, we hypothesize here that Cu2+ interacts with Zn2+ in the synapse to synergistically promote neuronal death and significantly influence the pathogenesis of vascular dementia. PMID:28232787

  20. Dendritic arbor of neurons in the hypothalamic ventromedial nucleus in female prairie voles (Microtus ochrogaster).

    PubMed

    Ferri, Sarah L; Rohrbach, Carlos J; Way, Samantha E; Curtis, Kathleen S; Curtis, J Thomas; Flanagan-Cato, Loretta M

    2013-01-01

    Female mating behavior in rats is associated with hormone-induced changes in the dendritic arbor of neurons in the ventromedial nucleus of the hypothalamus (VMH), particularly the ventrolateral portion. Regulation of mating behavior in female prairie voles differs substantially from that in rats; therefore, we examined the dendritic morphology of VMH neurons in this species. Sexually naïve adult female prairie voles were housed with a male to activate the females' reproductive endocrine system. Following 48 h of cohabitation, females were tested for evidence of reproductive activation by assessing the level of male sexual interest, after which their brains were processed using Golgi impregnation, which allowed ventrolateral VMH neurons to be visualized and analyzed. Dendritic arborization in the female prairie vole VMH neurons was strikingly similar to that of female rats. The key difference was that in the prairie voles the long primary dendrites extended considerably further than those observed in rats. Although most female voles paired with males exhibited sexual activation, some females did not. These two groups displayed specific differences in their VMH dendrites. In particular, the long primary dendrites were longer in the reproductively active females compared with those in the non-activated females. Overall, dendrite lengths were positively correlated with plasma estradiol levels in females exposed to males, but not in unpaired females. Although causal relationships between the neuroendocrine events, dendrite length, and the outward, behavioral manifestation of reproductive activation cannot be determined from this study, these results suggest an association between ventrolateral VMH dendrite morphology and female mating behavior in prairie voles, akin to what has been observed in female rats.

  1. Regulation of hypothalamic neuronal sensing and food intake by ketone bodies and fatty acids.

    PubMed

    Le Foll, Christelle; Dunn-Meynell, Ambrose A; Miziorko, Henri M; Levin, Barry E

    2014-04-01

    Metabolic sensing neurons in the ventromedial hypothalamus (VMH) alter their activity when ambient levels of metabolic substrates, such as glucose and fatty acids (FA), change. To assess the relationship between a high-fat diet (HFD; 60%) intake on feeding and serum and VMH FA levels, rats were trained to eat a low-fat diet (LFD; 13.5%) or an HFD in 3 h/day and were monitored with VMH FA microdialysis. Despite having higher serum levels, HFD rats had lower VMH FA levels but ate less from 3 to 6 h of refeeding than did LFD rats. However, VMH β-hydroxybutyrate (β-OHB) and VMH-to-serum β-OHB ratio levels were higher in HFD rats during the first 1 h of refeeding, suggesting that VMH astrocyte ketone production mediated their reduced intake. In fact, using calcium imaging in dissociated VMH neurons showed that ketone bodies overrode normal FA sensing, primarily by exciting neurons that were activated or inhibited by oleic acid. Importantly, bilateral inhibition of VMH ketone production with a 3-hydroxy-3-methylglutaryl-CoA synthase inhibitor reversed the 3- to 6-h HFD-induced inhibition of intake but had no effect in LFD-fed rats. These data suggest that a restricted HFD intake regimen inhibits caloric intake as a consequence of FA-induced VMH ketone body production by astrocytes.

  2. Hypothalamic melanin concentrating hormone neurons communicate the nutrient value of sugar

    PubMed Central

    Domingos, Ana I; Sordillo, Aylesse; Dietrich, Marcelo O; Liu, Zhong-Wu; Tellez, Luis A; Vaynshteyn, Jake; Ferreira, Jozelia G; Ekstrand, Mats I; Horvath, Tamas L; de Araujo, Ivan E; Friedman, Jeffrey M

    2013-01-01

    Sugars that contain glucose, such as sucrose, are generally preferred to artificial sweeteners owing to their post-ingestive rewarding effect, which elevates striatal dopamine (DA) release. While the post-ingestive rewarding effect, which artificial sweeteners do not have, signals the nutrient value of sugar and influences food preference, the neural circuitry that mediates the rewarding effect of glucose is unknown. In this study, we show that optogenetic activation of melanin-concentrating hormone (MCH) neurons during intake of the artificial sweetener sucralose increases striatal dopamine levels and inverts the normal preference for sucrose vs sucralose. Conversely, animals with ablation of MCH neurons no longer prefer sucrose to sucralose and show reduced striatal DA release upon sucrose ingestion. We further show that MCH neurons project to reward areas and are required for the post-ingestive rewarding effect of sucrose in sweet-blind Trpm5−/− mice. These studies identify an essential component of the neural pathways linking nutrient sensing and food reward. DOI: http://dx.doi.org/10.7554/eLife.01462.001 PMID:24381247

  3. A functional coupling between extrasynaptic NMDA receptors and A-type K+ channels under astrocyte control regulates hypothalamic neurosecretory neuronal activity

    PubMed Central

    Naskar, Krishna; Stern, Javier E

    2014-01-01

    Neuronal activity is controlled by a fine-tuned balance between intrinsic properties and extrinsic synaptic inputs. Moreover, neighbouring astrocytes are now recognized to influence a wide spectrum of neuronal functions. Yet, how these three key factors act in concert to modulate and fine-tune neuronal output is not well understood. Here, we show that in rat hypothalamic magnocellular neurosecretory cells (MNCs), glutamate NMDA receptors (NMDARs) are negatively coupled to the transient, voltage-gated A-type K+ current (IA). We found that activation of NMDARs by extracellular glutamate levels influenced by astrocyte glutamate transporters resulted in a significant inhibition of IA. The NMDAR–IA functional coupling resulted from activation of extrasynaptic NMDARs, was calcium- and protein kinase C-dependent, and involved enhanced steady-state, voltage-dependent inactivation of IA. The NMDAR–IA coupling diminished the latency to the first evoked spike in response to membrane depolarization and increased the total number of evoked action potentials, thus strengthening the neuronal input/output function. Finally, we found a blunted NMDA-mediated inhibition of IA in dehydrated rats. Together, our findings support a novel signalling mechanism that involves a functional coupling between extrasynaptic NMDARs and A-type K+ channels, which is influenced by local astrocytes. We show this signalling complex to play an important role in modulating hypothalamic neuronal excitability, which may contribute to adaptive responses during a sustained osmotic challenge such as dehydration. PMID:24835172

  4. Properties of native P2X receptors in large multipolar neurons dissociated from rat hypothalamic arcuate nucleus.

    PubMed

    Wakamori, Minoru; Sorimachi, Masaru

    2004-04-16

    ATP, the ligand of P2X receptors, is a candidate of neurotransmitter or co-transmitter in the peripheral and the central nervous systems. Anatomical studies have revealed the wide distribution of P2X receptors in the brain. So far, P2X-mediated small synaptic responses have been recorded in some brain regions. To determine the physiological significance of postsynaptic ATP receptors in the brain, we have investigated the P2X responses in rat dissociated hypothalamic arcuate neurons by using the patch-clamp technique. ATP evoked inward currents in a concentration-dependent manner (EC(50)=42 microM) at a holding potential of -70 mV. The current-voltage relationship showed a marked inward rectification starting around -10 mV. Although neither 300 microM alphabeta-methylene-ATP nor 300 microM betagamma-methylene-ATP induced any currents, 100 microM ATPgammaS and 100 microM 2-methylthio-ATP evoked inward currents of which amplitude was about 60% of the control currents evoked by 100 microM ATP. PPADS, one of P2 receptor antagonists, inhibited the ATP-evoked currents in a time- and a concentration-dependent manners (IC(50)=19 microM at 2 min). Permeant Ca(2+) inhibited the ATP-evoked currents in the range of millimolars (IC(50)=7 mM); however, Cd(2+) (1-300 microM), a broad cation channel blocker, facilitated the currents with slow off-response. Zn(2+) in the range of 1-100 microM facilitated the currents whereas Zn(2+) at the concentrations over 100 microM inhibited the currents. These observations suggest that functional P2X receptors are expressed in the hypothalamic arcuate nucleus. The most likely subunit combinations of the P2X receptors are P2X(2)-homomultimer and P2X(2)/P2X(6)-heteromultimer.

  5. Induction and subcellular redistribution of progesterone receptor A and B by tamoxifen in the hypothalamic ventromedial neurons of young adult female Wistar rats.

    PubMed

    Sá, Susana I; Fonseca, Bruno M; Teixeira, Natércia; Madeira, M Dulce

    2016-01-15

    The ventrolateral division of the hypothalamic ventromedial nucleus (VMNvl) is a brain center for estrogen-dependent triggering of female sexual behavior upon progesterone receptor (PR) activation. We examined the agonistic and antagonistic actions of tamoxifen in this nucleus by analyzing its effects on the total number of PR-immunoreactive neurons, PR mRNA and protein levels, and subcellular location of PRs in ovariectomized Wistar rats. The results show that tamoxifen has no agonistic action in the number of PR-immunoreactive neurons, but increases PR expression and labeling in the nucleus and cytoplasm of VMNvl neurons that constitutively express PRs. As an antagonist, tamoxifen partially inhibited the estradiol-dependent increase in the number of PR-immunoreactive neurons and in PR mRNA and protein levels, without interfering with the subcellular location of the protein. We suggest that tamoxifen influence on PR expression in the VMNvl critically depends on the presence or absence of estradiol.

  6. Fasted/fed states regulate postsynaptic hub protein DYNLL2 and glutamatergic transmission in oxytocin neurons in the hypothalamic paraventricular nucleus.

    PubMed

    Suyama, Shigetomo; Kodaira-Hirano, Misato; Otgon-Uul, Zesemdorj; Ueta, Yoichi; Nakata, Masanori; Yada, Toshihiko

    2016-04-01

    The neurons in the hypothalamus regulate food intake and energy metabolism on reception of systemic energy states. Accumulating evidences have indicated that synaptic transmission on the hypothalamic neurons is modulated by the metabolic condition related to fasted/fed states, and that this modulation of synaptic plasticity plays a role in regulation of feeding. It has been shown that oxytocin (Oxt) neurons in the paraventricular nucleus (PVN) of the hypothalamus sense and integrate various peripheral and central signals and thereby induce satiety. However, whether metabolic conditions regulate the synaptic transmission on Oxt neurons in PVN remains unclear. The present study examined whether the fasted/fed states regulate synaptic transmission on Oxt neurons in PVN. The miniature excitatory postsynaptic currents (mEPSCs) onto Oxt neurons in PVN were increased under ad lib fed condition compared to 24h fasted condition. Furthermore, the NMDA receptor-mediated EPSC on Oxt neurons was increased under fed, compared to fasted, condition. In Oxt neurons, dynein light chain 2 (DYNLL2), a protein suggested to be implicated in the NMDA receptor trafficking to the postsynaptic site, was increased under fed, compared to fasted, condition. The present results suggest that feeding increases excitatory synaptic input on PVN Oxt neurons via mechanisms involving DYNLL2 upregulation and NMDA receptor-mediated synaptic reorganization.

  7. Molecular Profiling of Human Induced Pluripotent Stem Cell-Derived Hypothalamic Neurones Provides Developmental Insights into Genetic Loci for Body Weight Regulation.

    PubMed

    Yao, L; Liu, Y; Qiu, Z; Kumar, S; Curran, J E; Blangero, J; Chen, Y; Lehman, D M

    2017-02-01

    Recent data suggest that common genetic risks for metabolic disorders such as obesity may be human-specific and exert effects via the central nervous system. To overcome the limitation of human tissue access for study, we have generated induced human pluripotent stem cell (hiPSC)-derived neuronal cultures that recapture many features of hypothalamic neurones within the arcuate nucleus. In the present study, we have comprehensively characterised this model across development, benchmarked these neurones to in vivo events, and demonstrate a link between obesity risk variants and hypothalamic development. The dynamic transcriptome across neuronal maturation was examined using microarray and RNA sequencing methods at nine time points. K-means clustering of the longitudinal data was conducted to identify co-regulation and microRNA control of biological processes. The transcriptomes were compared with those of 103 samples from 13 brain regions reported in the Genotype-Tissue Expression database (GTEx) using principal components analysis. Genes with proximity to body mass index (BMI)-associated genetic variants were mapped to the developmentally expressed genesets, and enrichment significance was assessed with Fisher's exact test. The human neuronal cultures have a transcriptional and physiological profile of neuropeptide Y/agouti-related peptide arcuate nucleus neurones. The neuronal transcriptomes were highly correlated with adult hypothalamus compared to any other brain region from the GTEx. Also, approximately 25% of the transcripts showed substantial changes in expression across neuronal development and potential co-regulation of biological processes that mirror neuronal development in vivo. These developmentally expressed genes were significantly enriched for genes in proximity to BMI-associated variants. We confirmed the utility of this in vitro human model for studying the development of key hypothalamic neurones involved in energy balance and show that genes at

  8. Sweet Taste Receptor Serves to Activate Glucose- and Leptin-Responsive Neurons in the Hypothalamic Arcuate Nucleus and Participates in Glucose Responsiveness

    PubMed Central

    Kohno, Daisuke; Koike, Miho; Ninomiya, Yuzo; Kojima, Itaru; Kitamura, Tadahiro; Yada, Toshihiko

    2016-01-01

    The hypothalamic feeding center plays an important role in energy homeostasis. In the feeding center, whole-body energy signals including hormones and nutrients are sensed, processed, and integrated. As a result, food intake and energy expenditure are regulated. Two types of glucose-sensing neurons exist in the hypothalamic arcuate nucleus (ARC): glucose-excited neurons and glucose-inhibited neurons. While some molecules are known to be related to glucose sensing in the hypothalamus, the mechanisms underlying glucose sensing in the hypothalamus are not fully understood. The sweet taste receptor is a heterodimer of taste type 1 receptor 2 (T1R2) and taste type 1 receptor 3 (T1R3) and senses sweet tastes. T1R2 and T1R3 are distributed in multiple organs including the tongue, pancreas, adipose tissue, and hypothalamus. However, the role of sweet taste receptors in the ARC remains to be clarified. To examine the role of sweet taste receptors in the ARC, cytosolic Ca2+ concentration ([Ca2+]i) in isolated single ARC neurons were measured using Fura-2 fluorescent imaging. An artificial sweetener, sucralose at 10−5–10−2 M dose dependently increased [Ca2+]i in 12–16% of ARC neurons. The sucralose-induced [Ca2+]i increase was suppressed by a sweet taste receptor inhibitor, gurmarin. The sucralose-induced [Ca2+]i increase was inhibited under an extracellular Ca2+-free condition and in the presence of an L-type Ca2+ channel blocker, nitrendipine. Sucralose-responding neurons were activated by high-concentration of glucose. This response to glucose was markedly suppressed by gurmarin. More than half of sucralose-responding neurons were activated by leptin but not ghrelin. Percentages of proopiomelanocortin (POMC) neurons among sucralose-responding neurons and sweet taste receptor expressing neurons were low, suggesting that majority of sucralose-responding neurons are non-POMC neurons. These data suggest that sweet taste receptor-mediated cellular activation mainly

  9. Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism.

    PubMed

    Marcelin, Geneviève; Jo, Young-Hwan; Li, Xiaosong; Schwartz, Gary J; Zhang, Ying; Dun, Nae J; Lyu, Rong-Ming; Blouet, Clémence; Chang, Jaw K; Chua, Streamson

    2014-02-01

    Tight control of glucose excursions has been a long-standing goal of treatment for patients with type 2 diabetes mellitus in order to ameliorate the morbidity and mortality associated with hyperglycemia. Fibroblast growth factor (FGF) 19 is a hormone-like enterokine released postprandially that emerged as a potential therapeutic agent for metabolic disorders, including diabetes and obesity. Remarkably, FGF19 treatment has hypoglycemic actions that remain potent in models of genetic and acquired insulin resistance. Here, we provided evidence that the central nervous system responds to FGF19 administered in the periphery. Then, in two mouse models of insulin resistance, leptin-deficiency and high-fat diet feeding, third intra-cerebro-ventricular infusions of FGF19 improved glycemic status, reduced insulin resistance and potentiated insulin signaling in the periphery. In addition, our study highlights a new mechanism of central FGF19 action, involving the suppression of AGRP/NPY neuronal activity. Overall, our work unveils novel regulatory pathways induced by FGF19 that will be useful in the design of novel strategies to control diabetes in obesity.

  10. Effects of embryonic ethanol exposure at low doses on neuronal development, voluntary ethanol consumption and related behaviors in larval and adult zebrafish: Role of hypothalamic orexigenic peptides.

    PubMed

    Sterling, M E; Chang, G-Q; Karatayev, O; Chang, S Y; Leibowitz, S F

    2016-05-01

    Embryonic exposure to ethanol is known to affect neurochemical systems in rodents and increase alcohol drinking and related behaviors in humans and rodents. With zebrafish emerging as a powerful tool for uncovering neural mechanisms of numerous diseases and exhibiting similarities to rodents, the present report building on our rat studies examined in zebrafish the effects of embryonic ethanol exposure on hypothalamic neurogenesis, expression of orexigenic neuropeptides, and voluntary ethanol consumption and locomotor behaviors in larval and adult zebrafish, and also effects of central neuropeptide injections on these behaviors affected by ethanol. At 24h post-fertilization, zebrafish embryos were exposed for 2h to ethanol, at low concentrations of 0.25% and 0.5%, in the tank water. Embryonic ethanol compared to control dose-dependently increased hypothalamic neurogenesis and the proliferation and expression of the orexigenic peptides, galanin (GAL) and orexin (OX), in the anterior hypothalamus. These changes in hypothalamic peptide neurons were accompanied by an increase in voluntary consumption of 10% ethanol-gelatin and in novelty-induced locomotor and exploratory behavior in adult zebrafish and locomotor activity in larvae. After intracerebroventricular injection, these peptides compared to vehicle had specific effects on these behaviors altered by ethanol, with GAL stimulating consumption of 10% ethanol-gelatin more than plain gelatin food and OX stimulating novelty-induced locomotor behavior while increasing intake of food and ethanol equally. These results, similar to those obtained in rats, suggest that the ethanol-induced increase in genesis and expression of these hypothalamic peptide neurons contribute to the behavioral changes induced by embryonic exposure to ethanol.

  11. Central action of ELABELA reduces food intake and activates arginine vasopressin and corticotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus.

    PubMed

    Santoso, Putra; Maejima, Yuko; Kumamoto, Kensuke; Takenoshita, Seiichi; Shimomura, Kenju

    2015-09-30

    ELABELA (ELA) is a novel hormone consisting of 32 amino acid peptides found in humans as well as other vertebrates and is considered to play an important role in the circulatory system through the apelin receptor (APJ). However, whether ELA also acts in the central nervous system remains unknown. Here, we show that ELA functions as an anorexigenic hormone in adult mouse brain. An intracerebroventricular injection of ELA reduces food intake and activates arginine vasopressin (AVP) and corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus (PVN), a hypothalamic region that regulates food intake. Cytosolic calcium ([Ca]i) measurement shows that ELA dose dependently increases [Ca]i in single AVP and CRH-immunoreactive neurons isolated from the PVN. Our data suggest that ELA functions as an anorexigenic hormone through activation of AVP and CRH neurons in the PVN.

  12. Stressor-responsive central nesfatin-1 activates corticotropin-releasing hormone, noradrenaline and serotonin neurons and evokes hypothalamic-pituitary-adrenal axis

    PubMed Central

    Yoshida, Natsu; Maejima, Yuko; Sedbazar, Udval; Ando, Akihiko; Kurita, Hideharu; Damdindorj, Boldbaatar; Takano, Eisuke; Gantulga, Darambazar; Iwasaki, Yusaku; Kurashina, Tomoyuki; Onaka, Tatsushi; Dezaki, Katsuya; Nakata, Masanori; Mori, Masatomo; Yada, Toshihiko

    2010-01-01

    A recently discovered satiety molecule, nesfatin-1, is localized in neurons of the hypothalamus and brain stem and colocalized with stress-related substances, corticotropin-releasing hormone (CRH), oxytocin, proopiomelanocortin, noradrenaline (NA) and 5-hydroxytryptamine (5-HT). Intracerebroventricular (icv) administration of nesfatin-1 produces fear-related behaviors and potentiates stressor-induced increases in plasma adrenocorticotropic hormone (ACTH) and corticosterone levels in rats. These findings suggest a link between nesfatin-1 and stress. In the present study, we aimed to further clarify the neuronal network by which nesfatin-1 could induce stress responses in rats. Restraint stress induced c-Fos expressions in nesfatin-1-immunoreactive neurons in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) of the hypothalamus, and in the nucleus of solitary tract (NTS), locus coeruleus (LC) and dorsal raphe nucleus (DR) in the brain stem, without altering plasma nesfatin-1 levels. Icv nesfatin-1 induced c-Fos expressions in the PVN, SON, NTS, LC, DR and median raphe nucleus, including PVN-CRH, NTS-NA, LC-NA and DR-5-HT neurons. Nesfatin-1 increased cytosolic Ca2+ concentration in the CRH-immunoreactive neurons isolated from PVN. Icv nesfatin-1 increased plasma ACTH and corticosterone levels. These results indicate that the central nesfatin-1 system is stimulated by stress and activates CRH, NA and 5-HT neurons and hypothalamic-pituitary-adrenal axis, evoking both central and peripheral stress responses. PMID:20966530

  13. Single cell transcriptomics of hypothalamic warm sensitive neurons that control core body temperature and fever response Signaling asymmetry and an extension of chemical neuroanatomy.

    PubMed

    Eberwine, James; Bartfai, Tamas

    2011-03-01

    We report on an 'unbiased' molecular characterization of individual, adult neurons, active in a central, anterior hypothalamic neuronal circuit, by establishing cDNA libraries from each individual, electrophysiologically identified warm sensitive neuron (WSN). The cDNA libraries were analyzed by Affymetrix microarray. The presence and frequency of cDNAs were confirmed and enhanced with Illumina sequencing of each single cell cDNA library. cDNAs encoding the GABA biosynthetic enzyme Gad1 and of adrenomedullin, galanin, prodynorphin, somatostatin, and tachykinin were found in the WSNs. The functional cellular and in vivo studies on dozens of the more than 500 neurotransmitters, hormone receptors and ion channels, whose cDNA was identified and sequence confirmed, suggest little or no discrepancy between the transcriptional and functional data in WSNs; whenever agonists were available for a receptor whose cDNA was identified, a functional response was found. Sequencing single neuron libraries permitted identification of rarely expressed receptors like the insulin receptor, adiponectin receptor 2 and of receptor heterodimers; information that is lost when pooling cells leads to dilution of signals and mixing signals. Despite the common electrophysiological phenotype and uniform Gad1 expression, WSN transcriptomes show heterogeneity, suggesting strong epigenetic influence on the transcriptome. Our study suggests that it is well-worth interrogating the cDNA libraries of single neurons by sequencing and chipping.

  14. Arg-Phe-amide-related peptides influence gonadotropin-releasing hormone neurons.

    PubMed

    Kelestimur, Haluk; Kacar, Emine; Uzun, Aysegul; Ozcan, Mete; Kutlu, Selim

    2013-06-25

    The hypothalamic Arg-Phe-amide-related peptides, gonadotropin-inhibitory hormone and orthologous mammalian peptides of Arg-Phe-amide, may be important regulators of the hypothalamus-pituitary-gonadal reproductive axis. These peptides may modulate the effects of kisspeptins because they are presently recognized as the most potent activators of the hypothalamus-pituitary-gonadal axis. However, their effects on gonadotropin-releasing hormone neurons have not been investigated. In the current study, the GT1-7 cell line-expressing gonadotropin-releasing hormone was used as a model to explore the effects of Arg-Pheamide-related peptides on kisspeptin activation. Intracellular calcium concentration was quantified using the calcium-sensitive dye, fura-2 acetoxymethyl ester. Gonadotropin-releasing hormone released into the medium was detected via enzyme-linked immunosorbent assay. Results showed that 100 nmol/L kisspeptin-10 significantly increased gonadotropin-releasing hormone levels (at 120 minutes of exposure) and intracellular calcium concentrations. Co-treatment of kisspeptin with 1 μmol/L gonadotropin-inhibitory hormone or 1 μmol/L Arg-Phe-amide-related peptide-1 significantly attenuated levels of kisspeptin-induced gonadotropin-releasing hormone but did not affect kisspeptin-induced elevations of intracellular calcium concentration. Overall, the results suggest that gonadotropin-inhibitory hormone and Arg-Phe-amide-related peptide-1 may have inhibitory effects on kisspeptin-activated gonadotropin-releasing hormone neurons independent of the calcium signaling pathway.

  15. Effect of Cholesterol Reduction on Receptor Signaling in Neurons*

    PubMed Central

    Fukui, Kenji; Ferris, Heather A.; Kahn, C. Ronald

    2015-01-01

    Diabetes mellitus is associated with a variety of complications, including alterations in the central nervous system (CNS). We have recently shown that diabetes results in a reduction of cholesterol synthesis in the brain due to decreased insulin stimulation of SREBP2-mediated cholesterol synthesis in neuronal and glial cells. In the present study, we explored the effects of the decrease in cholesterol on neuronal cell function using GT1-7 hypothalamic cells subjected to cholesterol depletion in vitro using three independent methods: 1) exposure to methyl-β-cyclodextrin, 2) treatment with the HMG-CoA reductase inhibitor simvastatin, and 3) shRNA-mediated knockdown of SREBP2. All three methods produced 20–31% reductions in cellular cholesterol content, similar to the decrease in cholesterol synthesis observed in diabetes. All cholesterol-depleted neuron-derived cells, independent of the method of reduction, exhibited decreased phosphorylation/activation of IRS-1 and AKT following stimulation by insulin, insulin-like growth factor-1, or the neurotrophins (NGF and BDNF). ERK phosphorylation/activation was also decreased after methyl-β-cyclodextrin and statin treatment but increased in cells following SREBP2 knockdown. In addition, apoptosis in the presence of amyloid-β was increased. Reduction in cellular cholesterol also resulted in increased basal autophagy and impairment of induction of autophagy by glucose deprivation. Together, these data indicate that a reduction in neuron-derived cholesterol content, similar to that observed in diabetic brain, creates a state of insulin and growth factor resistance that could contribute to CNS-related complications of diabetes, including increased risk of neurodegenerative diseases, such as Alzheimer disease. PMID:26370080

  16. Arcuate hypothalamic AgRP and putative POMC neurons show opposite changes in spiking across multiple timescales

    PubMed Central

    Mandelblat-Cerf, Yael; Ramesh, Rohan N; Burgess, Christian R; Patella, Paola; Yang, Zongfang; Lowell, Bradford B; Andermann, Mark L

    2015-01-01

    Agouti-related-peptide (AgRP) neurons—interoceptive neurons in the arcuate nucleus of the hypothalamus (ARC)—are both necessary and sufficient for driving feeding behavior. To better understand the functional roles of AgRP neurons, we performed optetrode electrophysiological recordings from AgRP neurons in awake, behaving AgRP-IRES-Cre mice. In free-feeding mice, we observed a fivefold increase in AgRP neuron firing with mounting caloric deficit in afternoon vs morning recordings. In food-restricted mice, as food became available, AgRP neuron firing dropped, yet remained elevated as compared to firing in sated mice. The rapid drop in spiking activity of AgRP neurons at meal onset may reflect a termination of the drive to find food, while residual, persistent spiking may reflect a sustained drive to consume food. Moreover, nearby neurons inhibited by AgRP neuron photostimulation, likely including satiety-promoting pro-opiomelanocortin (POMC) neurons, demonstrated opposite changes in spiking. Finally, firing of ARC neurons was also rapidly modulated within seconds of individual licks for liquid food. These findings suggest novel roles for antagonistic AgRP and POMC neurons in the regulation of feeding behaviors across multiple timescales. DOI: http://dx.doi.org/10.7554/eLife.07122.001 PMID:26159614

  17. Influence of the hypothalamic paraventricular nucleus on cardiovascular neurones in the rostral ventrolateral medulla of the rat.

    PubMed

    Yang, Z; Coote, J H

    1998-12-01

    1. The question of whether neurones in the paraventricular nucleus (PVN) of the hypothalamus have an excitatory influence on reticulo-spinal vasomotor neurones of the rostral ventrolateral medulla (RVL) has been addressed in this study using anaesthetized rats. 2. Extracellular microelectrode recordings were made from sixty vasomotor neurones in the RVL, identified by their cardiac cycle-related probability of discharge, by the decrease in activity in response to an increase in arterial blood pressure produced by intravenous phenylephrine and by the increase in activity in response to a decrease in blood pressure produced by intravenous nitroprusside. 3. More than 70 % of these RVL vasomotor neurones were identified as spinally projecting by antidromically activating their axons via a stimulating electrode in the lateral funiculus of the T2 or T10 segment of spinal cord. 4. Activation of neurones at different sites in the PVN with a microinjection of d,l-homocysteic acid (DLH) elicited either pressor or depressor responses. 5. At PVN pressor sites fifteen RVL vasomotor neurones were shown to be activated prior to the blood pressure change. A further twenty RVL vasomotor neurones were observed to decrease activity following the blood pressure rise. At PVN depressor sites twelve RVL neurones were inhibited prior to the blood pressure change whereas another thirteen identified RVL neurones increased their discharge following the fall in blood pressure. 6. In three rats single shock electrical stimulation at a PVN pressor site, first identified with DLH, elicited a single or double action potential in thirteen RVL neurones with a latency of 27 +/- 1 ms. 7. It is concluded that PVN neurones may elicit increases in blood pressure via excitatory connections with RVL-spinal vasomotor neurones, and that other PVN neurones may elicit decreases in blood pressure via inhibitory connections with these RVL neurones.

  18. An In Vitro System Comprising Immortalized Hypothalamic Neuronal Cells (GT1–7 Cells) for Evaluation of the Neuroendocrine Effects of Essential Oils

    PubMed Central

    Mizuno, Dai; Konoha-Mizuno, Keiko; Mori, Miwako; Yamazaki, Kentaro; Haneda, Toshihiro; Koyama, Hironari; Kawahara, Masahiro

    2015-01-01

    Aromatherapy and plant-based essential oils are widely used as complementary and alternative therapies for symptoms including anxiety. Furthermore, it was reportedly effective for the care of several diseases such as Alzheimer's disease and depressive illness. To investigate the pharmacological effects of essential oils, we developed an in vitro assay system using immortalized hypothalamic neuronal cells (GT1–7 cells). In this study, we evaluated the effects of essential oils on neuronal death induced by hydrogen peroxide (H2O2), aluminum, zinc, or the antagonist of estrogen receptor (tamoxifen). Among tests of various essential oils, we found that H2O2-induced neuronal death was attenuated by the essential oils of damask rose, eucalyptus, fennel, geranium, ginger, kabosu, mandarin, myrrh, and neroli. Damask rose oil had protective effects against aluminum-induced neurotoxicity, while geranium and rosemary oil showed protective activity against zinc-induced neurotoxicity. In contrast, geranium oil and ginger oil enhanced the neurotoxicity of tamoxifen. Our in vitro assay system could be useful for the neuropharmacological and endocrine pharmacological studies of essential oils. PMID:26576190

  19. Increased densities of nitric oxide synthase expressing neurons in the temporal cortex and the hypothalamic paraventricular nucleus of polytoxicomanic heroin overdose victims: possible implications for heroin neurotoxicity.

    PubMed

    Bernstein, Hans-Gert; Trübner, Kurt; Krebs, Philipp; Dobrowolny, Henrik; Bielau, Hendrik; Steiner, Johann; Bogerts, Bernhard

    2014-01-01

    Heroin is one of the most dangerous drugs of abuse, which may exert various neurotoxic actions on the brain (such as gray matter loss, neuronal apoptosis, mitochondrial dysfunction, synaptic defects, depression of adult neurogenensis, as well as development of spongiform leucoencephalopathy). Some of these toxic effects are probably mediated by the gas nitric oxide (NO). We studied by morphometric analysis the numerical density of neurons expressing neuronal nitric oxide synthase (nNOS) in cortical and hypothalamic areas of eight heroin overdose victims and nine matched controls. Heroin addicts showed significantly increased numerical densities of nNOS immunoreactive cells in the right temporal cortex and the left paraventricular nucleus. Remarkably, in heroin abusers, but not in controls, we observed not only immunostained interneurons, but also cortical pyramidal cells. Given that increased cellular expression of nNOS was accompanied by elevated NO generation in brains of heroin addicts, these elevated levels of NO might have contributed to some of the known toxic effects of heroin (for example, reduced adult neurogenesis, mitochondrial pathology or disturbances in synaptic functioning).

  20. Redistribution of NMDA Receptors in Estrogen-Receptor-β-Containing Paraventricular Hypothalamic Neurons following Slow-Pressor Angiotensin II Hypertension in Female Mice with Accelerated Ovarian Failure

    PubMed Central

    Marques-Lopes, Jose; Tesfaye, Ephrath; Israilov, Sigal; Van Kempen, Tracey A.; Wang, Gang; Glass, Michael J.; Pickel, Virginia M.; Iadecola, Costantino; Waters, Elizabeth M.; Milner, Teresa A.

    2017-01-01

    Hypertension in male and aging female rodents is associated with glutamate-dependent plasticity in the hypothalamus, but existing models have failed to capture distinct transitional menopausal phases that could have a significant impact on the synaptic plasticity and emergent hypertension. In rodents, accelerated ovarian failure (AOF) induced by systemic injection of 4-vinylcyclohexane diepoxide mimics the estrogen fluctuations seen in human menopause including the perimenopause transition (peri-AOF) and postmenopause (post-AOF). Thus, we used the mouse AOF model to determine the impact of slow-pressor angiotensin II (AngII) administration on blood pressure and on the subcellular distribution of obligatory N-methyl-D-aspartate (NMDA) receptor GluN1 subunits in the paraventricular hypothalamic nucleus (PVN), a key estrogen-responsive cardiovascular regulatory area. Estrogen-sensitive neuronal profiles were identified in mice expressing enhanced green fluorescent protein under the promoter for estrogen receptor (ER) β, a major ER in the PVN. Slow-pressor AngII increased arterial blood pressure in mice at peri- and post-AOF time points. In control oil-injected (nonhypertensive) mice, AngII decreased the total number of GluN1 in ERβ-containing PVN dendrites. In contrast, AngII resulted in a reapportionment of GluN1 from the cytoplasm to the plasma membrane of ERβ-containing PVN dendrites in peri-AOF mice. Moreover, in post-AOF mice, AngII increased total GluN1, dendritic size and radical production in ERβ-containing neurons. These results indicate that unique patterns of hypothalamic glutamate receptor plasticity and dendritic structure accompany the elevated blood pressure in peri- and post-AOF time points. Our findings suggest the possibility that distinct neurobiological processes are associated with the increased blood pressure during perimenopausal and postmenopausal periods. PMID:27078860

  1. Effect of anorexinergic peptides, cholecystokinin (CCK) and cocaine and amphetamine regulated transcript (CART) peptide, on the activity of neurons in hypothalamic structures of C57Bl/6 mice involved in the food intake regulation.

    PubMed

    Pirnik, Zdeno; Maixnerová, Jana; Matysková, Resha; Koutová, Darja; Zelezná, Blanka; Maletínská, Lenka; Kiss, Alexander

    2010-01-01

    The hypothalamus plays an important role in food consumption, receiving information about energy balance via hormonal, metabolic, and neural inputs. Its neurons produce neuropeptides influencing energy balance. Especially important to regulation of food consumption are certain hypothalamic structures, including the arcuate (ARC) and ventromedial (VMN) nuclei and the lateral hypothalamic area (LHA). We determined the impact of cholecystokinin (CCK) and cocaine and amphetamine regulated transcript (CART) peptide, on activity of ARC and VMN neurons and hypocretin (Hcrt) synthesizing neurons in LHA. ARC is an integrative nucleus regulating food consumption, VMN is considered to be a satiety centre, and LHA a hunger sensing centre. After overnight fasting, male C57Bl/6 mice received intraperitoneal injection of (i.p.) saline (SAL) or CCK (4microg/kg) or intracerebroventricular injection of (i.c.v.) CART peptide (0.1microg/mice) or CCK (i.p.) followed by CART peptide (i.c.v.) 5min later. Sixty minutes later, the presence of Fos or Fos/Hcrt immunostaining indicated activity of ARC and VMN neurons, as well as of Hcrt cells in LHA. CCK alone did not influence neuronal activity in any of the nuclei studied. CART peptide stimulated neurons in ARC and VMN (p<0.01) but decreased Hcrt neuronal activity in LHA (p<0.05). Co-administration of both peptides synergistically stimulated ARC neurons (p<0.01) and asynergistically inhibited LHA Hcrt neurons (p<0.01). Results indicate that CCK may modify the effect of CART peptide and thus substantially influence activity of neurons in hypothalamic structures involved in regulation of food intake.

  2. Prenatal exposure to ethanol stimulates hypothalamic CCR2 chemokine receptor system: Possible relation to increased density of orexigenic peptide neurons and ethanol drinking in adolescent offspring.

    PubMed

    Chang, G-Q; Karatayev, O; Leibowitz, S F

    2015-12-03

    Clinical and animal studies indicate that maternal consumption of ethanol during pregnancy increases alcohol drinking in the offspring. Possible underlying mechanisms may involve orexigenic peptides, which are stimulated by prenatal ethanol exposure and themselves promote drinking. Building on evidence that ethanol stimulates neuroimmune factors such as the chemokine CCL2 that in adult rats is shown to colocalize with the orexigenic peptide, melanin-concentrating hormone (MCH) in the lateral hypothalamus (LH), the present study sought to investigate the possibility that CCL2 or its receptor CCR2 in LH is stimulated by prenatal ethanol exposure, perhaps specifically within MCH neurons. Our paradigm of intraoral administration of ethanol to pregnant rats, at low-to-moderate doses (1 or 3g/kg/day) during peak hypothalamic neurogenesis, caused in adolescent male offspring twofold increase in drinking of and preference for ethanol and reinstatement of ethanol drinking in a two-bottle choice paradigm under an intermittent access schedule. This effect of prenatal ethanol exposure was associated with an increased expression of MCH and density of MCH(+) neurons in LH of preadolescent offspring. Whereas CCL2(+) cells at this age were low in density and unaffected by ethanol, CCR2(+) cells were dense in LH and increased by prenatal ethanol, with a large percentage (83-87%) identified as neurons and found to colocalize MCH. Prenatal ethanol also stimulated the genesis of CCR2(+) and MCH(+) neurons in the embryo, which co-labeled the proliferation marker, BrdU. Ethanol also increased the genesis and density of neurons that co-expressed CCR2 and MCH in LH, with triple-labeled CCR2(+)/MCH(+)/BrdU(+) neurons that were absent in control rats accounting for 35% of newly generated neurons in ethanol-exposed rats. With both the chemokine and MCH systems believed to promote ethanol consumption, this greater density of CCR2(+)/MCH(+) neurons in the LH of preadolescent rats suggests that

  3. Lateral hypothalamic area orexin-A influence the firing activity of gastric distension-sensitive neurons and gastric motility in rats.

    PubMed

    Hao, Heling; Luan, Xiao; Guo, Feifei; Sun, Xiangrong; Gong, Yanling; Xu, Luo

    2016-06-01

    The orexins system consists of two G-protein coupled receptors (the orexin-1 and the orexin-2 receptor) and two neuropeptides, orexin-A and orexin-B. Orexin-A is an excitatory neuropeptide that regulates arousal, wakefulness and appetite. Recent studies have shown that orexin-A may promote gastric motility. We aim to explore the effects of orexin-A on the gastric -distension (GD) sensitive neurons and gastric motility in the lateral hypothalamic area (LHA), and the possible regulation by the paraventricular nucleus (PVN). Extracellular single unit discharges were recorded and the gastric motility was monitored by administration of orexin-A into the LHA and electrical stimulation of the PVN. There were GD neurons in the LHA, and administration of orexin-A to the LHA could increase the firing rate of both GD-excitatory (GD-E) and GD-inhibited (GD-I) neurons. The gastric motility was significantly enhanced by injection of orexin-A into the LHA with a dose dependent manner, which could be completely abolished by pre-treatment with orexin-A receptor antagonist SB334867. Electrical stimulation of the PVN could significantly increase the firing rate of GD neurons responsive to orexin-A in the LHA as well as promote gastric motility of rats. However, those effects could be partly blocked by pre-treatment with SB334867 in the LHA. It is suggested that orexin-A plays an important role in promoting gastric motility via LHA. The PVN may be involved in regulation of LHA on gastric motility.

  4. GHRP-6-induced changes in electrical activity of single cells in the arcuate, ventromedial and periventricular nucleus neurones [correction of nuclei] of a hypothalamic slice preparation in vitro.

    PubMed

    Hewson, A K; Viltart, O; McKenzie, D N; Dyball, R E; Dickson, S L

    1999-12-01

    unresponsive and the remaining three cells (15.8%) were significantly inhibited. Of 19 cells recorded in the periventricular nucleus, 13 (68.4%) were unresponsive to GHRP-6 and six (31.6%) were significantly inhibited. Thus, electrophysiological studies in vitro suggest that: (1) neurones in the hypothalamic arcuate nucleus, ventromedial nucleus and periventricular nucleus show changes in electrical activity in response to GHRP-6; and (2) the arcuate nucleus cells excited by GHRP-6 are also subject to inhibitory control by somatostatin.

  5. Parvalbumin-Neurons of the Ventrolateral Hypothalamic Parvafox Nucleus Receive a Glycinergic Input: A Gene-Microarray Study

    PubMed Central

    Szabolcsi, Viktoria; Albisetti, Gioele W.; Celio, Marco R.

    2017-01-01

    The ventrolateral hypothalamic parvafox (formerly called PV1-Foxb1) nucleus is an anatomical entity of recent discovery and unknown function. With a view to gaining an insight into its putative functional role(s), we conducted a gene-microarray analysis and, armed with the forthcoming data, controlled the results with the Allen databases and the murine BrainStars (B*) database. The parvafox nucleus was specifically sampled by laser-capture microdissection and the transcriptome was subjected to a microarray analysis on Affymetrix chips. Eighty-two relevant genes were found to be potentially more expressed in this brain region than in either the cerebral cortex or the hippocampus. When the expression patterns of these genes were counterchecked in the Allen-Database of in-situ hybridizations and in the B*-microarray database, their localization in the parvafox region was confirmed for thirteen. For nine novel genes, which are particularly interesting because of their possible involvement in neuromodulation, the expression was verified by quantitative real time-PCR. Of particular functional importance may be the occurrence of glycine receptors, the presence of which indicates that the activity of the parvafox nucleus is under ascending inhibitory control. PMID:28167900

  6. Basic fibroblast growth factor priming increases the responsiveness of immortalized hypothalamic luteinizing hormone releasing hormone neurones to neurotrophic factors.

    PubMed

    Gallo, F; Morale, M C; Tirolo, C; Testa, N; Farinella, Z; Avola, R; Beaudet, A; Marchetti, B

    2000-10-01

    The participation of growth factors (GFs) in the regulation of luteinizing hormone releasing hormone (LHRH) neuronal function has recently been proposed, but little is known about the role played by GFs during early LHRH neurone differentiation. In the present study, we have used combined biochemical and morphological approaches to study the ability of a number of GFs normally expressed during brain development, including basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), insulin and insulin-like growth factor I (IGF-I) to induce survival, differentiation, proliferation, and phenotypic expression of immortalized (GT1-1) LHRH neurones in vitro, at early (3-days in vitro, 3-DIV) and late (8-DIV) stages of neuronal differentiation. Comparison of GF-treated vs untreated neurones grown in serum-deprived (SD) medium demonstrated bFGF to be the most potent, and insulin the least active in promoting neuronal differentiation. Thus, at both 3-DIV and 8-DIV, but especially at 8-DIV, bFGF induced the greatest increase in the total length and number of LHRH processes/cell and in growth cone surface area. bFGF was also the most active at 3-DIV, and IGF-I at 8-DIV, in counteracting SD-induced cell death, whereas EGF was the most potent in increasing [3H]thymidine incorporation. All GFs studied decreased the spontaneous release of LHRH from GT1-1 cells when applied at 3-DIV or 8-DIV, except for insulin which was inactive at both time-points and bFGF which was inactive at 8-DIV. Pre-treatment of GT1-1 cells with a suboptimal ('priming') dose of bFGF for 12 h followed by application of the different GFs induced a sharp potentiation of the neurotrophic and proliferative effects of the latter and particularly of those of IGF-I. Moreover, bFGF priming counteracted EGF-induced decrease in LHRH release and significantly stimulated LHRH secretion following IGF-I or insulin application, suggesting that bFGF may sensitize LHRH neurones to differentiating effects of

  7. Water deprivation increases Fos expression in hypothalamic corticotropin-releasing factor neurons induced by right atrial distension in awake rats.

    PubMed

    Benedetti, Mauricio; Rorato, Rodrigo; Castro, Margaret; Machado, Benedito H; Antunes-Rodrigues, Jose; Elias, Lucila L K

    2008-11-01

    Atrial mechanoreceptors, sensitive to stretch, contribute in regulating heart rate and intravascular volume. The information from those receptors reaches the nucleus tractus solitarius and then the paraventricular nucleus (PVN), known to have a crucial role in the regulation of cardiovascular function. Neurons in the PVN synthesize CRF, AVP, and oxytocin (OT). Stimulation of atrial mechanoreceptors was performed in awake rats implanted with a balloon at the junction of the superior vena cava and right atrium. Plasma ACTH, AVP, and OT concentrations and Fos, CRF, AVP, and OT immunolabeling in the PVN were determined after balloon inflation in hydrated and water-deprived rats. The distension of the balloon increased the plasma ACTH concentrations, which were higher in water-deprived than in hydrated rats (P < 0.05). In addition, the distension in the water-deprived group decreased plasma AVP concentrations (P < 0.05), compared with the respective control group. The distension increased the number of Fos- and double-labeled Fos/CRF neurons in the parvocellular PVN, which was higher in the water-deprived than in the hydrated group (P < 0.01). There was no difference in the Fos expression in magnocellular PVN neurons after distension in hydrated and water-deprived groups, compared with respective controls. In conclusion, parvocellular CRF neurons showed an increase of Fos expression induced by stimulation of right atrial mechanoreceptors, suggesting that CRF participates in the cardiovascular reflex adjustments elicited by volume loading. Activation of CRF neurons in the PVN by cardiovascular reflex is affected by osmotic stimulation.

  8. Effects of chronic restraint stress on social behaviors and the number of hypothalamic oxytocin neurons in male rats.

    PubMed

    Li, Jin; Li, Han-Xia; Shou, Xiao-Jing; Xu, Xin-Jie; Song, Tian-Jia; Han, Song-Ping; Zhang, Rong; Han, Ji-Sheng

    2016-12-01

    Oxytocin (OXT) and vasopressin (AVP) are considered to be related to mammalian social behavior and the regulation of stress responses. The present study investigated the effects of chronic homotypic restraint stress (CHRS) on social behaviors and anxiety, as well as its repercussions on OXT- and AVP-positive neurons in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) nuclei in rat. Male Sprague-Dawley rats receiving CHRS were exposed to repeated restraint stress of 30min per day for 10days. Changes in social approach behaviors were evaluated with the three-chambered social approach task. Changes in anxiety-like behaviors were evaluated in the light-dark box test. The number of neurons expressing oxytocin and/or vasopressin in PVN and SON were examined by immunohistochemistry techniques. The results demonstrated that social approach was increased and anxiety was decreased following 10-day exposure to CHRS. Furthermore, the number of OXT-immunoreactive cells in PVN was increased significantly, whereas no change in SON was seen. The number of AVP immunoreactive cells either in PVN or SON was unaffected. The results of this study suggest that certain types of stress could be effective in the treatment of social dysfunction in persons with mental disorders such as autism, social anxiety disorder. The therapeutic effects may be mediated by changes in the function of OXT neurons in PVN.

  9. Control of energy balance by hypothalamic gene circuitry involving two nuclear receptors, neuron-derived orphan receptor 1 and glucocorticoid receptor.

    PubMed

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Seunghee; Lee, Soo-Kyung; Lee, Jae W

    2013-10-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance.

  10. Involvement of the Beta-Endorphin Neurons of the Hypothalamic Arcuate Nucleus in Ethanol-Induced Place Preference Conditioning in Mice

    PubMed Central

    Pastor, Raúl; Font, Laura; Miquel, Marta; Phillips, Tamara J.; Aragon, Carlos M.G.

    2014-01-01

    Background Increasing evidence indicates that mu- and delta-opioid receptors are decisively involved in the retrieval of memories underlying conditioned effects of ethanol. The precise mechanism by which these receptors participate in such effects remains unclear. Given the important role of the proopiomelanocortin (POMc)-derived opioid peptide beta-endorphin, an endogenous mu- and delta-opioid receptor agonist, in some of the behavioral effects of ethanol, we hypothesized that beta-endorphin would also be involved in ethanol conditioning. Methods In the present study we treated female Swiss mice with estradiol valerate (EV), which induces a neurotoxic lesion of the beta-endorphin neurons of the hypothalamic arcuate nucleus (ArcN). These mice were compared to saline-treated controls to investigate the role of beta-endorphin in the acquisition, extinction and reinstatement of ethanol (0 or 2 g/kg; i.p.)-induced conditioned place preference (CPP). Results Immunohistochemical analyses confirmed a decreased number of POMc-containing neurons of the ArcN with EV treatment. EV did not affect the acquisition or reinstatement of ethanol-induced CPP, but facilitated its extinction. Behavioral sensitization to ethanol, seen during the conditioning days, was not present in EV-treated animals. Conclusions The present data suggest that ArcN beta-endorphins are involved in the retrieval of conditioned memories of ethanol, and are implicated in the processes that underlie extinction of ethanol-cue associations. Results also reveal a dissociated neurobiology supporting behavioral sensitization to ethanol and its conditioning properties, as a beta-endorphin deficit affected sensitization to ethanol, while leaving acquisition and reinstatement of ethanol-induced CPP unaffected. PMID:22014186

  11. Differential effects of omega-3 fatty acid docosahexaenoic acid and palmitate on the circadian transcriptional profile of clock genes in immortalized hypothalamic neurons

    PubMed Central

    Greco, James A.; Oosterman, Johanneke E.

    2014-01-01

    Diets high in saturated fatty acids (SFAs) are associated with the development of circadian dysregulation, obesity, and Type 2 diabetes mellitus. Conversely, polyunsaturated fatty acids (PUFAs) have recently been identified to improve insulin sensitivity, reduce weight gain, and relieve obesity-induced inflammation. While saturated fatty acids, such as the prevalent dietary fatty acid palmitate, have been implicated in circadian disruption, there is a paucity of studies regarding the effects of PUFAs on circadian parameters. Therefore, the immortalized murine neuronal model, mHypoE-37, was utilized to examine the effects of the SFA palmitate and omega-3 PUFA docosahexaenoic acid (DHA) on circadian rhythms. The mHypoE-37 neurons express the core clock genes, Bmal1, Per2, and Rev-erbα, in a circadian manner. 25 μM of palmitate significantly increased the transcriptional expression of Bmal1, without altering the expression of inflammatory markers TLR4, IκBα, and IL-6, nor the orexigenic neuropeptide AgRP, suggesting that the observed disruption of the molecular clock is the result of a mechanism distinct from that of hypothalamic cellular inflammation. Furthermore, treatment with the PUFA DHA resulted in alterations in the circadian expression profile of Bmal1, although differentially from the effects of palmitate. In the presence of DHA, the disruptive effects of palmitate on Bmal1 were less pronounced, suggesting a protective effect of DHA. These studies are the first to identify the potential for omega-3 PUFAs to protect against palmitate-mediated dysregulation of circadian parameters and will ultimately improve the understanding of circadian control mechanisms. PMID:25144192

  12. Regulation of neurite growth in immortalized mouse hypothalamic neurons and rat hippocampal primary cultures by teneurin C-terminal-associated peptide-1.

    PubMed

    Al Chawaf, A; St Amant, K; Belsham, D; Lovejoy, D A

    2007-02-23

    Teneurins are a highly conserved family of four type II transmembrane proteins that are expressed in the CNS. The protein possesses several functional domains including a unique bioactive 40-41 amino acid sequence at the extracellular terminus. Synthetic versions of this teneurin C-terminal-associated peptide (TCAP) can modulate cyclic AMP accumulation, cell proliferation and teneurin mRNA levels in vitro. Furthermore, i.c.v. injections of TCAP-1 into rat brain induce major changes in acoustic startle response behavior 3 weeks after administration, suggesting that the peptide may act to alter interneuron communication via changes in neurite and axon outgrowth. Synthetic mouse/rat TCAP-1 was used to treat cultured immortalized mouse hypothalamic cells, to determine if TCAP-1 could directly regulate neurite and axon growth. TCAP-1-treated cells showed a significant increase in the length of neurites accompanied by a marked increase in beta-tubulin transcription and translation as determined by real-time PCR and Western blot analysis, respectively. Changes in alpha-actinin-4 transcription and beta-actin protein expression were also noted. Immunofluorescence confocal microscopy using beta-tubulin antiserum showed enhanced resolution of beta-tubulin cytoskeletal elements throughout the cell. In order to determine if the effects of TCAP-1 could be reproduced in primary neuronal cultures, primary cultures of E18 rat hippocampal cells were treated with 100 nM TCAP-1. The TCAP-1-treated hippocampal cultures showed a significant increase in both the number of cells, dendritic branching and the presence of large and fasciculated beta-tubulin immunoreactive axons. These data suggest that TCAP acts, in part, as a functional region of the teneurins to regulate neurite and axonal growth of neurons.

  13. Topography of subnuclei of the hypothalamic paraventricular nucleus in rats and sensitivity of their neurons to insulin defficiency

    SciTech Connect

    Goufman, E.I.

    1985-07-01

    This investigation was undertaken to study the reaction of paraventricular nuclei (PVN) subnuclei to insulin deficiency and to elevation of the blood glucose level under conditions of experimental alloxan diabetes. Experiments were carried out on 15 control and 15 experimental mature male Wistar rats. The state of the carbohydrate metabolism of the diabetic and control animals was judged by the blood glucose and radioimmune insulin levels. The results of these investigations show that both magnocellular and parvocellular neurons of PVN react to alloxan diabetes, which supports the hypothesis that PVN of the hypothalamus participates in the control of carbohydrate metabolism.

  14. Influence of serial electrical stimulations of perifornical and posterior hypothalamic orexin-containing neurons on regulation of sleep homeostasis and sleep-wakefulness cycle recovery from experimental comatose state and anesthesia-induced deep sleep.

    PubMed

    Chijavadze, E; Chkhartishvili, E; Babilodze, M; Maglakelidze, N; Nachkebia, N

    2013-11-01

    The work was aimed for the ascertainment of following question - whether Orexin-containing neurons of dorsal and lateral hypothalamic, and brain Orexinergic system in general, are those cellular targets which can speed up recovery of disturbed sleep homeostasis and accelerate restoration of sleep-wakefulness cycle phases during some pathological conditions - experimental comatose state and/or deep anesthesia-induced sleep. Study was carried out on white rats. Modeling of experimental comatose state was made by midbrain cytotoxic lesions at intra-collicular level.Animals were under artificial respiration and special care. Different doses of Sodium Ethaminal were used for deep anesthesia. 30 min after comatose state and/or deep anesthesia induced sleep serial electrical stimulations of posterior and/or perifornical hypothalamus were started. Stimulation period lasted for 1 hour with the 5 min intervals between subsequent stimulations applied by turn to the left and right side hypothalamic parts.EEG registration of cortical and hippocampal electrical activity was started immediately after experimental comatose state and deep anesthesia induced sleep and continued continuously during 72 hour. According to obtained new evidences, serial electrical stimulations of posterior and perifornical hypothalamic Orexin-containing neurons significantly accelerate recovery of sleep homeostasis, disturbed because of comatose state and/or deep anesthesia induced sleep. Speed up recovery of sleep homeostasis was manifested in acceleration of coming out from comatose state and deep anesthesia induced sleep and significant early restoration of sleep-wakefulness cycle behavioral states.

  15. GABA type B receptor signaling in proopiomelanocortin neurons protects against obesity, insulin resistance, and hypothalamic inflammation in male mice on a high-fat diet.

    PubMed

    Ito, Yoshihiro; Banno, Ryoichi; Shibata, Miyuki; Adachi, Koichi; Hagimoto, Shigeru; Hagiwara, Daisuke; Ozawa, Yoshiharu; Goto, Motomitsu; Suga, Hidetaka; Sugimura, Yoshihisa; Bettler, Bernhard; Oiso, Yutaka; Arima, Hiroshi

    2013-10-23

    There is evidence suggesting that the GABA system in the arcuate nucleus, where orexigenic neuropeptide Y and agouti-related peptide as well as anorexigenic proopiomelanocortin (POMC) are expressed, plays an important role in energy balance. In this study, we generated POMC-specific GABAB receptor-deficient [knock-out (KO)] mice. Male KO mice on a high-fat diet (HFD) showed mild increases in body weight (BW) at the age of 9 weeks compared to wild-type (WT) mice, and the differences remained significant until 16 weeks old. However, there was no difference in BW in females between genotypes. While food intake was similar between genotypes, oxygen consumption was significantly decreased in the male KO mice. The insulin tolerance test revealed that the male KO mice were less insulin sensitive compared to WT mice at the age of 8 weeks, when there was no significant difference in BW between genotypes. Despite increased BW, POMC mRNA expression in the arcuate nucleus was significantly decreased in the KO mice compared to WT mice at the age of 16 weeks. Furthermore, the expression of TNFα as well as IL-6, proinflammatory markers in the hypothalamus, was significantly increased in the KO mice on a HFD compared to WT mice. This demonstrates that the deletion of GABAB receptors in POMC neurons in the male mice on a HFD results in obesity, insulin resistance, and hypothalamic inflammation. Furthermore, the decreased POMC expression in the obese KO mice suggests that the regulation of POMC expression through GABAB receptors is essential for proper energy balance.

  16. Mu-Opioid Stimulation in Rat Prefrontal Cortex Engages Hypothalamic Orexin/Hypocretin-Containing Neurons, and Reveals Dissociable Roles of Nucleus Accumbens and Hypothalamus in Cortically Driven Feeding

    PubMed Central

    Mena, Jesus D.; Selleck, Ryan A.

    2013-01-01

    Mu-opioid receptor (μOR) stimulation within ventral medial prefrontal cortex (vmPFC) induces feeding and hyperactivity, resulting possibly from recruitment of glutamate signaling in multiple vmPFC projection targets. We tested this hypothesis by analyzing Fos expression in vmPFC terminal fields after intra-vmPFC μOR stimulation, and by examining of the impact of glutamate receptor blockade in two feeding-related targets of vmPFC, the lateral-perifornical hypothalamic area (LH-PeF) and nucleus accumbens shell (Acb shell), upon behavioral effects elicited by intra-vmPFC μOR stimulation in rats. Intra-vmPFC infusion of the μOR agonist, DAMGO, provoked Fos expression in the dorsomedial sector of tuberal hypothalamus (including the perifornical area) and increased the percentage of Fos-expressing hypocretin/orexin-immunoreactive neurons in these zones. NMDA receptor blockade in the LH-PeF nearly eliminated intra-vmPFC DAMGO-induced food intake without altering DAMGO-induced hyperactivity. In contrast, blocking AMPA-type glutamate receptors within the Acb shell (the feeding-relevant subtype in this structure) antagonized intra-vmPFC DAMGO-induced hyperlocomotion but enhanced food intake. Intra-vmPFC DAMGO also elevated the breakpoint for sucrose-reinforced progressive-ratio responding; this effect was significantly enhanced by concomitant AMPA blockade in the Acb shell. Conversely, intra-Acb shell AMPA stimulation reduced breakpoint and increased nonspecific responding on the inactive lever. These data indicate intra-vmPFC μOR signaling jointly modulates appetitive motivation and generalized motoric activation through functionally dissociable vmPFC projection targets. These findings may shed light on the circuitry underlying disorganized appetitive responses in psychopathology; e.g., binge eating and opiate or alcohol abuse, disorders in which μORs and aberrant cortical activation have been implicated. PMID:24259576

  17. Recovery of hypothalamic tuberoinfundibular dopamine neurons from acute toxicant exposure is dependent upon protein synthesis and associated with an increase in parkin and ubiquitin carboxy-terminal hydrolase-L1 expression.

    PubMed

    Benskey, Matthew; Behrouz, Bahareh; Sunryd, Johan; Pappas, Samuel S; Baek, Seung-Hoon; Huebner, Marianne; Lookingland, Keith J; Goudreau, John L

    2012-06-01

    Hypothalamic tuberoinfundibular dopamine (TIDA) neurons remain unaffected in Parkinson disease (PD) while there is significant degeneration of midbrain nigrostriatal dopamine (NSDA) neurons. A similar pattern of susceptibility is observed in acute and chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse and rotenone rat models of degeneration. It is not known if the resistance of TIDA neurons is a constitutive or induced cell-autonomous phenotype for this unique subset of DA neurons. In the present study, treatment with a single injection of MPTP (20 mg/kg; s.c.) was employed to examine the response of TIDA versus NSDA neurons to acute injury. An acute single dose of MPTP caused an initial loss of DA from axon terminals of both TIDA and NSDA neurons, with recovery occurring solely in TIDA neurons by 16 h post-treatment. Initial loss of DA from axon terminals was dependent on a functional dopamine transporter (DAT) in NSDA neurons but DAT-independent in TIDA neurons. The active metabolite of MPTP, 1-methyl, 4-phenylpyradinium (MPP+), reached higher concentration and was eliminated slower in TIDA compared to NSDA neurons, which indicates that impaired toxicant bioactivation or distribution is an unlikely explanation for the observed resistance of TIDA neurons to MPTP exposure. Inhibition of protein synthesis prevented TIDA neuron recovery, suggesting that the ability to recover from injury was dependent on an induced, rather than a constitutive cellular mechanism. Further, there were no changes in total tyrosine hydroxylase (TH) expression following MPTP, indicating that up-regulation of the rate-limiting enzyme in DA synthesis does not account for TIDA neuronal recovery. Differential candidate gene expression analysis revealed a time-dependent increase in parkin and ubiquitin carboxyl-terminal hydrolase-L1 (UCH-L1) expression (mRNA and protein) in TIDA neurons during recovery from injury. Parkin expression was also found to increase with incremental

  18. The role of hypothalamic mTORC1 signaling in insulin regulation of food intake, body weight, and sympathetic nerve activity in male mice.

    PubMed

    Muta, Kenjiro; Morgan, Donald A; Rahmouni, Kamal

    2015-04-01

    Insulin action in the brain particularly the hypothalamus is critically involved in the regulation of several physiological processes, including energy homeostasis and sympathetic nerve activity, but the underlying mechanisms are poorly understood. The mechanistic target of rapamycin complex 1 (mTORC1) is implicated in the control of diverse cellular functions, including sensing nutrients and energy status. Here, we examined the role of hypothalamic mTORC1 in mediating the anorectic, weight-reducing, and sympathetic effects of central insulin action. In a mouse hypothalamic cell line (GT1-7), insulin treatment increased mTORC1 activity in a time-dependent manner. In addition, intracerebroventricular (ICV) administration of insulin to mice activated mTORC1 pathway in the hypothalamic arcuate nucleus, a key site of central action of insulin. Interestingly, inhibition of hypothalamic mTORC1 with rapamycin reversed the food intake- and body weight-lowering effects of ICV insulin. Rapamycin also abolished the ability of ICV insulin to cause lumbar sympathetic nerve activation. In GT1-7 cells, we found that insulin activation of mTORC1 pathway requires phosphatidylinositol 3-kinase (PI3K). Consistent with this, genetic disruption of PI3K in mice abolished insulin stimulation of hypothalamic mTORC1 signaling as well as the lumbar sympathetic nerve activation evoked by insulin. These results demonstrate the importance of mTORC1 pathway in the hypothalamus in mediating the action of insulin to regulate energy homeostasis and sympathetic nerve traffic. Our data also highlight the key role of PI3K as a link between insulin receptor and mTORC1 signaling in the hypothalamus.

  19. Supression of the steroid-primed luteinizing hormone surge in the female rat by sodium dimethyldithiocarbamate: Relationship to hypothalamic catecholamines and GnRH neuronal activation

    EPA Science Inventory

    In female rodents, hypothalamic norepinephrine (NE) has a role in stimulating the secretion of gonadotropin-releasing hormone (GnRH) that triggers the ovulatory surge of luteinizing hormone (LH). NE synthesis from dopamine requires the presence of dopamine--hydroxylase (DH) an...

  20. A mutation in cnot8, component of the Ccr4-not complex regulating transcript stability, affects expression levels of developmental regulators and reveals a role of Fgf3 in development of caudal hypothalamic dopaminergic neurons.

    PubMed

    Koch, Peter; Löhr, Heiko B; Driever, Wolfgang

    2014-01-01

    While regulation of the activity of developmental control genes at the transcriptional level as well as by specific miRNA-based degradation are intensively studied, little is known whether general cellular mechanisms controlling mRNA decay may contribute to differential stability of mRNAs of developmental control genes. Here, we investigate whether a mutation in the deadenylation dependent mRNA decay pathway may reveal differential effects on developmental mechanisms, using dopaminergic differentiation in the zebrafish brain as model system. In a zebrafish genetic screen aimed at identifying genes controlling dopaminergic neuron development we isolated the m1061 mutation that selectively caused increased dopaminergic differentiation in the caudal hypothalamus, while other dopaminergic groups were not affected. Positional cloning revealed that m1061 causes a premature stop codon in the cnot8 open reading frame. Cnot8 is a component of the Ccr4-Not complex and displays deadenylase activity, which is required for removal of the poly (A) tail in bulk mRNA turnover. Analyses of expression of developmental regulators indicate that loss of Cnot8 activity results in increased mRNA in situ hybridization signal levels for a subset of developmental control genes. We show that in the area of caudal hypothalamic dopaminergic differentiation, mRNA levels for several components of the FGF signaling pathway, including Fgf3, FGF receptors, and FGF target genes, are increased. Pharmacological inhibition of FGF signaling or a mutation in the fgf3 gene can compensate the gain of caudal hypothalamic dopaminergic neurons in cnot8m1061 mutants, indicating a role for Fgf3 in control of development of this dopaminergic population. The cnot8m1061 mutant phenotype provides an in vivo system to study roles of the Cnot8 deadenylase component of the mRNA decay pathway in vertebrate development. Our data indicate that attenuation of Cnot8 activity differentially affects mRNA levels of

  1. A Mutation in cnot8, Component of the Ccr4-Not Complex Regulating Transcript Stability, Affects Expression Levels of Developmental Regulators and Reveals a Role of Fgf3 in Development of Caudal Hypothalamic Dopaminergic Neurons

    PubMed Central

    Koch, Peter; Löhr, Heiko B.; Driever, Wolfgang

    2014-01-01

    While regulation of the activity of developmental control genes at the transcriptional level as well as by specific miRNA-based degradation are intensively studied, little is known whether general cellular mechanisms controlling mRNA decay may contribute to differential stability of mRNAs of developmental control genes. Here, we investigate whether a mutation in the deadenylation dependent mRNA decay pathway may reveal differential effects on developmental mechanisms, using dopaminergic differentiation in the zebrafish brain as model system. In a zebrafish genetic screen aimed at identifying genes controlling dopaminergic neuron development we isolated the m1061 mutation that selectively caused increased dopaminergic differentiation in the caudal hypothalamus, while other dopaminergic groups were not affected. Positional cloning revealed that m1061 causes a premature stop codon in the cnot8 open reading frame. Cnot8 is a component of the Ccr4-Not complex and displays deadenylase activity, which is required for removal of the poly (A) tail in bulk mRNA turnover. Analyses of expression of developmental regulators indicate that loss of Cnot8 activity results in increased mRNA in situ hybridization signal levels for a subset of developmental control genes. We show that in the area of caudal hypothalamic dopaminergic differentiation, mRNA levels for several components of the FGF signaling pathway, including Fgf3, FGF receptors, and FGF target genes, are increased. Pharmacological inhibition of FGF signaling or a mutation in the fgf3 gene can compensate the gain of caudal hypothalamic dopaminergic neurons in cnot8m1061 mutants, indicating a role for Fgf3 in control of development of this dopaminergic population. The cnot8m1061 mutant phenotype provides an in vivo system to study roles of the Cnot8 deadenylase component of the mRNA decay pathway in vertebrate development. Our data indicate that attenuation of Cnot8 activity differentially affects mRNA levels of

  2. Somatostatin receptor subtypes sst1 and sst2 elicit opposite effects on the response to glutamate of mouse hypothalamic neurones: an electrophysiological and single cell RT-PCR study.

    PubMed

    Lanneau, C; Viollet, C; Faivre-Bauman, A; Loudes, C; Kordon, C; Epelbaum, J; Gardette, R

    1998-01-01

    We have previously shown that somatostatin can either enhance or decrease AMPA/kainate receptor-mediated responses to glutamate in mouse-dissociated hypothalamic neurones grown in vitro. To investigate whether this effect is due to differential activation of somatostatin (SRIF) receptor subtypes, we compared modulation of the response to glutamate by SRIF with that induced by CH-275 and octreotide, two selective agonists of sst1 and sst2/sst5 receptors, respectively. Somatostatin either significantly decreased (49%) or increased (30%) peak currents induced by glutamate, and was ineffective in the remaining cells. Only the decreased response was obtained with octreotide, whereas only increased responses were elicited by CH-275 (47 and 35% of the tested cells, respectively). Mean amplitude variations under somatostatin or octreotide on the one hand, and under somatostatin or CH-275 on the other hand, were equivalent. Pertussis toxin pretreatment significantly decreased the number of cells inhibited by somatostatin or octreotide, but had no effect on the frequency of neurones showing increased sensitivity to glutamate during somatostatin or CH-275 application. About half of the neurones tested by single cell reverse transcriptase polymerase chain reaction (RT-PCR) expressed only one sst receptor (sst1 in 26% and sst2 in 22% of studied cells). Out of the remaining neurones, 34% displayed neither sst1 nor sst2 mRNAs, whereas 18% showed a simultaneous expression of both mRNA subtypes. Expression of sst1 or sst2 mRNA subtypes matched totally with the effects of somatostatin on sensitivity to glutamate in 79% of the neurones processed for PCR after recordings. These data show that pertussis toxin-insensitive activation of the sst1 receptor subtype mediates somatostatin-induced increase in sensitivity to glutamate, whereas decrease in the response to glutamate is linked to pertussis toxin-sensitive activation of the sst2 receptor subtype.

  3. Androgen receptors and estrogen receptors are colocalized in male rat hypothalamic and limbic neurons that express Fos immunoreactivity induced by mating.

    PubMed

    Gréco, B; Edwards, D A; Michael, R P; Clancy, A N

    1998-01-01

    Conversion of testosterone into estradiol is important for male rat sexual behavior, and both steroids probably contribute to mating. The distributions of neurons containing androgen receptors (AR) and estrogen receptors (ER) overlap, and many AR-immunoreactive (AR-ir) neurons express Fos immunoreactivity (Fos-ir) induced by mating. Because mating-induced Fos-ir in the male rat occurs mainly in AR-ir neurons, and because both steroids are important for mating, we hypothesized that (i) AR-ir and ER-ir are colocalized and that (ii) some of these neurons are activated during mating. We examined, in adjacent sections from the medial preoptic area (MPN) through the central tegmental field (CTF), the expression of ER-ir in: (i) AR-ir-containing neurons, and (ii) Fos-ir-expressive neurons. PG21 anti-AR, OA-11-824 anti-c-fos, H222 or 1D5 anti-ER primary antibodies were visualized, respectively, with cyanine-conjugated, fluorescein- or cyanine-conjugated, and fluorescein-conjugated secondary antibodies in male rats which were killed 1 h after ejaculating with a receptive female. In MPN, bed nucleus of the stria terminalis (BNST), and medial amygdala (MEA), 80-90% of ER-ir labeling occurred in AR-ir-positive neurons but only about 30% of AR-ir neurons were ER-ir-positive. No ER-ir was found in the CTF. This suggests the presence of three types of brain neurons sensitive to gonadal steroid hormones: neurons sensitive to androgens only, neurons sensitive to both androgens and estrogens, and neurons sensitive to estrogens only. About 50% of ER-ir labeling occurred in cells expressing mating-induced Fos-ir but only about 30% of Fos-ir neurons were ER-ir-positive. These findings suggest that, in the MPN, at least two different neuronal populations are activated during mating: the first contains AR-ir only and the second contains AR-ir and ER-ir. In the BNST and MEA, at least three hormonally sensitive populations are activated during mating: the two described above plus a third

  4. Metabolic Benefit of Chronic Caloric Restriction and Activation of Hypothalamic AGRP/NPY Neurons in Male Mice Is Independent of Ghrelin.

    PubMed

    Rogers, Nicole H; Walsh, Heidi; Alvarez-Garcia, Oscar; Park, Seongjoon; Gaylinn, Bruce; Thorner, Michael O; Smith, Roy G

    2016-04-01

    Aging is associated with attenuated ghrelin signaling. During aging, chronic caloric restriction (CR) produces health benefits accompanied by enhanced ghrelin production. Ghrelin receptor (GH secretagogue receptor 1a) agonists administered to aging rodents and humans restore the young adult phenotype; therefore, we tested the hypothesis that the metabolic benefits of CR are mediated by endogenous ghrelin. Three month-old male mice lacking ghrelin (Ghrelin-/-) or ghrelin receptor (Ghsr-/-), and their wild-type (WT) littermates were randomly assigned to 2 groups: ad libitum (AL) fed and CR, where 40% food restriction was introduced gradually to allow Ghrelin-/- and Ghsr-/- mice to metabolically adapt and avoid severe hypoglycemia. Twelve months later, plasma ghrelin, metabolic parameters, ambulatory activity, hypothalamic and liver gene expression, as well as body composition were measured. CR increased plasma ghrelin and des-acyl ghrelin concentrations in WT and Ghsr-/- mice. CR of WT, Ghsr-/-, and Ghrelin-/- mice markedly improved metabolic flexibility, enhanced ambulatory activity, and reduced adiposity. Inactivation of Ghrelin or Ghsr had no effect on AL food intake or food anticipatory behavior. In contrast to the widely held belief that endogenous ghrelin regulates food intake, CR increased expression of hypothalamic Agrp and Npy, with reduced expression of Pomc across genotypes. In the AL context, ablation of ghrelin signaling markedly inhibited liver steatosis, which correlated with reduced Pparγ expression and enhanced Irs2 expression. Although CR and administration of GH secretagogue receptor 1a agonists both benefit the aging phenotype, we conclude the benefits of chronic CR are a consequence of enhanced metabolic flexibility independent of endogenous ghrelin or des-acyl ghrelin signaling.

  5. Melanin-concentrating hormone (MCH) immunoreactivity in the brain and pituitary of the dogfish Scyliorhinus canicula. Colocalization with alpha-melanocyte-stimulating hormone (alpha-MSH) in hypothalamic neurons.

    PubMed

    Vallarino, M; Andersen, A C; Delbende, C; Ottonello, I; Eberle, A N; Vaudry, H

    1989-01-01

    The distribution of melanin-concentrating hormone (MCH) in the central nervous system of the dogfish Scyliorhinus canicula was determined by indirect immunofluorescence and peroxidase-anti-peroxidase techniques, using an antiserum raised against synthetic salmon MCH. Three groups of MCH-positive cell bodies were localized in the posterior hypothalamus. The most prominent cell group was detected in the nucleus sacci vasculosi. Scattered MCH-immunoreactive cells were observed in the nucleus tuberculi posterioris and in the nucleus lateralis tuberis. At the pituitary level, the caudal part of the median lobe of the pars distalis contained strongly MCH-positive perikarya. Some of these cells were liquor-contacting-type. Immunoreactive fibers originating from the hypothalamic perikarya projected throughout the dorsal wall of the posterior hypothalamus. Positive fibers were also detected within the thalamus and the central gray of the mesencephalon. The distribution of MCH-containing neurons was compared to that of alpha-MSH-immunoreactive elements using consecutive, 5-micron thick sections. Both MCH- and alpha-MSH-immunoreactive peptides were found in the same neurons of the nucleus sacci vasculosi. These data suggest that MCH and alpha-MSH, two neuropeptides which exert antagonistic activities on skin melanophores, may also act in a coordinate manner in the central nervous system of cartilaginous fish.

  6. Age-related alterations in hypothalamic kisspeptin, neurokinin B, and dynorphin neurons and in pulsatile LH release in female and male rats.

    PubMed

    Kunimura, Yuyu; Iwata, Kinuyo; Ishigami, Akihito; Ozawa, Hitoshi

    2017-02-01

    Pulsatile secretion of gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) decreases during aging. Kisspeptin (encoded by Kiss1) neurons in the arcuate nucleus coexpress neurokinin B (Tac3) and dynorphin (Pdyn) and are critical for regulating the GnRH/LH pulse. We therefore examined kisspeptin neurons by histochemistry and pulsatile LH release in rats aged 2-3 (Young), 12-13 (Young-Middle), 19-22 (Late-Middle), and 24-26 (Old) months. Total LH concentrations, sampled for 3 hours, decreased in both sexes with aging. In females, numbers of Tac3 and Pdyn neurons were significantly reduced in all aging rats, and numbers of Kiss1 neurons were significantly reduced in Late-Middle and Old rats. In males, numbers of all 3 neuron-types were significantly decreased in all aging rats. GnRH agonist induced LH release in all animals; however, the increased LH concentration in all aging rats was less than that in Young rats. These results suggest that expression of each gene in kisspeptin neurons may be controlled individually during aging, and that reduction of their expression or change in pituitary responsiveness may cause attenuated pulsatile LH secretion.

  7. The role of tanycytes in hypothalamic glucosensing

    PubMed Central

    Elizondo-Vega, Roberto; Cortes-Campos, Christian; Barahona, Maria J; Oyarce, Karina A; Carril, Claudio A; García-Robles, Maria A

    2015-01-01

    Tanycytes are elongated hypothalamic glial cells that cover the basal walls of the third ventricle; their apical regions contact the cerebrospinal fluid (CSF), and their processes reach hypothalamic neuronal nuclei that control the energy status of an organism. These nuclei maintain the balance between energy expenditure and intake, integrating several peripheral signals and triggering cellular responses that modify the feeding behaviour and peripheral glucose homeostasis. One of the most important and well-studied signals that control this process is glucose; however, the mechanism by which this molecule is sensed remains unknown. We along with others have proposed that tanycytes play a key role in this process, transducing changes in CSF glucose concentration to the neurons that control energy status. Recent studies have demonstrated the expression and function of monocarboxylate transporters and canonical pancreatic β cell glucose sensing molecules, including glucose transporter 2 and glucokinase, in tanycytes. These and other data, which will be discussed in this review, suggest that hypothalamic glucosensing is mediated through a metabolic interaction between tanycytes and neurons through lactate. This article will summarize the recent evidence that supports the importance of tanycytes in hypothalamic glucosensing, and discuss the possible mechanisms involved in this process. Finally, it is important to highlight that a detailed analysis of this mechanism could represent an opportunity to understand the evolution of associated pathologies, including diabetes and obesity, and identify new candidates for therapeutic intervention. PMID:26081217

  8. Role of developmental factors in hypothalamic function

    PubMed Central

    Biran, Jakob; Tahor, Maayan; Wircer, Einav; Levkowitz, Gil

    2015-01-01

    The hypothalamus is a brain region which regulates homeostasis by mediating endocrine, autonomic and behavioral functions. It is comprised of several nuclei containing distinct neuronal populations producing neuropeptides and neurotransmitters that regulate fundamental body functions including temperature and metabolic rate, thirst and hunger, sexual behavior and reproduction, circadian rhythm, and emotional responses. The identity, number and connectivity of these neuronal populations are established during the organism’s development and are of crucial importance for normal hypothalamic function. Studies have suggested that developmental abnormalities in specific hypothalamic circuits can lead to obesity, sleep disorders, anxiety, depression and autism. At the molecular level, the development of the hypothalamus is regulated by transcription factors (TF), secreted growth factors, neuropeptides and their receptors. Recent studies in zebrafish and mouse have demonstrated that some of these molecules maintain their expression in the adult brain and subsequently play a role in the physiological functions that are regulated by hypothalamic neurons. Here, we summarize the involvement of some of the key developmental factors in hypothalamic development and function by focusing on the mouse and zebrafish genetic model organisms. PMID:25954163

  9. Estradiol and Progesterone Differentially Regulate the Dendritic Arbor of Neurons in the Hypothalamic Ventromedial Nucleus of the Female Rat(Rattus norvegicus)

    PubMed Central

    GRIFFIN, GERALD D.; FLANAGAN-CATO, LORETTA M.

    2008-01-01

    The ventromedial nucleus of the hypothalamus (VMH), with its major subdivisions, the dorsomedial and ventrolateral VMH (dmVMH and vlVMH, respectively), has been studied extensively for its role in female sexual behavior. This behavior is controlled by the vlVMH through the cellular actions of estradiol combined with progesterone. Although the effects of treatment with estradiol alone on neuronal morphology in the vlVMH have been examined, much less is known about the combined effects of estradiol and progesterone on neuronal structure. The present study employed Golgi impregnation to investigate the effects of estradiol treatment alone vs. estradiol combined with progesterone treatment on dendritic arbor of VMH neurons. The dendritic arbor of VMH neurons was somewhat different in the vlVMH vs. the dmVMH, with longer and more dendrites in the vlVMH. Estradiol treatment alone caused a marked reduction in the length of long primary dendrites in the vlVMH, but not in the dmVMH. The estradiol-induced retraction of long primary dendrites in the vlVMH was reversed within 4 hours of progesterone treatment. The differences in the dendritic arbors of dmVMH and vlVMH provide further support for the notion that these two regions have different patterns of neural connectivity. In addition, this study is the first to report opposing effects of estradiol alone vs. estradiol plus progesterone on the dendritic arbor of neurons in the vlVMH. These results suggest a structural mechanism for estradiol alone to have a modest effect on mating behavior while setting the stage for its ample expression. PMID:18698598

  10. Passive transfer of narcolepsy: anti-TRIB2 autoantibody positive patient IgG causes hypothalamic orexin neuron loss and sleep attacks in mice.

    PubMed

    Katzav, Aviva; Arango, Maria T; Kivity, Shaye; Tanaka, Susumu; Givaty, Gili; Agmon-Levin, Nancy; Honda, Makoto; Anaya, Juan-Manuel; Chapman, Joab; Shoenfeld, Yehuda

    2013-09-01

    Narcolepsy is a sleep disorder characterized by excessive daytime sleepiness and cataplexy (a sudden weakening of posture muscle tone usually triggered by emotion) caused by the loss of orexin neurons in the hypothalamus. Autoimmune mechanisms are implicated in narcolepsy by increased frequency of specific HLA alleles and the presence of specific autoantibody (anti-Tribbles homolog 2 (TRIB2) antibodies) in the sera of patients with narcolepsy. Presently, we passively transferred narcolepsy to naïve mice by injecting intra-cerebra-ventricularly (ICV) pooled IgG positive for anti-TRIB2 antibodies. Narcolepsy-IgG-injected mice had a loss of the NeuN (neuronal marker), synaptophysin (synaptic marker) and orexin-positive neurons in the lateral hypothalamus area in narcolepsy compared to control-IgG-injected mice and these changes were associated with narcolepsy-like immobility attacks at four weeks post injection and with hyperactivity and long term memory deficits in the staircase and novel object recognition tests. Similar behavioral and cognitive deficits are observed in narcoleptic patients. This is the first report of passive transfer of experimental narcolepsy to naïve mice induced by autoantibodies and supports the autoimmune pathogenesis in narcolepsy.

  11. A Relationship between Reduced Nucleus Accumbens Shell and Enhanced Lateral Hypothalamic Orexin Neuronal Activation in Long-Term Fructose Bingeing Behavior

    PubMed Central

    Rorabaugh, Jacki M.; Stratford, Jennifer M.; Zahniser, Nancy R.

    2014-01-01

    Fructose accounts for 10% of daily calories in the American diet. Fructose, but not glucose, given intracerebroventricularly stimulates homeostatic feeding mechanisms within the hypothalamus; however, little is known about how fructose affects hedonic feeding centers. Repeated ingestion of sucrose, a disaccharide of fructose and glucose, increases neuronal activity in hedonic centers, the nucleus accumbens (NAc) shell and core, but not the hypothalamus. Rats given glucose in the intermittent access model (IAM) display signatures of hedonic feeding including bingeing and altered DA receptor (R) numbers within the NAc. Here we examined whether substituting fructose for glucose in this IAM produces bingeing behavior, alters DA Rs and activates hedonic and homeostatic feeding centers. Following long-term (21-day) exposure to the IAM, rats given 8–12% fructose solutions displayed fructose bingeing but unaltered DA D1R or D2R number. Fructose bingeing rats, as compared to chow bingeing controls, exhibited reduced NAc shell neuron activation, as determined by c-Fos-immunoreactivity (Fos-IR). This activation was negatively correlated with orexin (Orx) neuron activation in the lateral hypothalamus/perifornical area (LH/PeF), a brain region linking homeostatic to hedonic feeding centers. Following short-term (2-day) access to the IAM, rats exhibited bingeing but unchanged Fos-IR, suggesting only long-term fructose bingeing increases Orx release. In long-term fructose bingeing rats, pretreatment with the Ox1R antagonist SB-334867 (30 mg/kg; i.p.) equally reduced fructose bingeing and chow intake, resulting in a 50% reduction in calories. Similarly, in control rats, SB-334867 reduced chow/caloric intake by 60%. Thus, in the IAM, Ox1Rs appear to regulate feeding based on caloric content rather than palatability. Overall, our results, in combination with the literature, suggest individual monosaccharides activate distinct neuronal circuits to promote feeding behavior

  12. Glucose Alters Per2 Rhythmicity Independent of AMPK, Whereas AMPK Inhibitor Compound C Causes Profound Repression of Clock Genes and AgRP in mHypoE-37 Hypothalamic Neurons

    PubMed Central

    Oosterman, Johanneke E.; Belsham, Denise D.

    2016-01-01

    Specific neurons in the hypothalamus are regulated by peripheral hormones and nutrients to maintain proper metabolic control. It is unclear if nutrients can directly control clock gene expression. We have therefore utilized the immortalized, hypothalamic cell line mHypoE-37, which exhibits robust circadian rhythms of core clock genes. mHypoE-37 neurons were exposed to 0.5 or 5.5 mM glucose, comparable to physiological levels in the brain. Per2 and Bmal1 mRNAs were assessed every 3 hours over 36 hours. Incubation with 5.5 mM glucose significantly shortened the period and delayed the phase of Per2 mRNA levels, but had no effect on Bmal1. Glucose had no significant effect on phospho-GSK3β, whereas AMPK phosphorylation was altered. Thus, the AMPK inhibitor Compound C was utilized, and mRNA levels of Per2, Bmal1, Cryptochrome1 (Cry1), agouti-related peptide (AgRP), carnitine palmitoyltransferase 1C (Cpt1c), and O-linked N-acetylglucosamine transferase (Ogt) were measured. Remarkably, Compound C dramatically reduced transcript levels of Per2, Bmal1, Cry1, and AgRP, but not Cpt1c or Ogt. Because AMPK was not inhibited at the same time or concentrations as the clock genes, we suggest that the effect of Compound C on gene expression occurs through an AMPK-independent mechanism. The consequences of inhibition of the rhythmic expression of clock genes, and in turn downstream metabolic mediators, such as AgRP, could have detrimental effects on overall metabolic processes. Importantly, the effects of the most commonly used AMPK inhibitor Compound C should be interpreted with caution, considering its role in AMPK-independent repression of specific genes, and especially clock gene rhythm dysregulation. PMID:26784927

  13. Hypothalamic Survival Circuits: Blueprints for Purposive Behaviors

    PubMed Central

    Sternson, Scott M.

    2015-01-01

    Neural processes that direct an animal’s actions toward environmental goals are critical elements for understanding behavior. The hypothalamus is closely associated with motivated behaviors required for survival and reproduction. Intense feeding, drinking, aggressive, and sexual behaviors can be produced by a simple neuronal stimulus applied to discrete hypothalamic regions. What can these “evoked behaviors” teach us about the neural processes that determine behavioral intent and intensity? Small populations of neurons sufficient to evoke a complex motivated behavior may be used as entry points to identify circuits that energize and direct behavior to specific goals. Here, I review recent applications of molecular genetic, optogenetic, and pharmacogenetic approaches that overcome previous limitations for analyzing anatomically complex hypothalamic circuits and their interactions with the rest of the brain. These new tools have the potential to bridge the gaps between neurobiological and psychological thinking about the mechanisms of complex motivated behavior. PMID:23473313

  14. Hypothalamic neuropeptides and the regulation of appetite.

    PubMed

    Parker, Jennifer A; Bloom, Stephen R

    2012-07-01

    Neuropeptides released by hypothalamic neurons play a major role in the regulation of feeding, acting both within the hypothalamus, and at other appetite regulating centres throughout the brain. Where classical neurotransmitters signal only within synapses, neuropeptides diffuse over greater distances affecting both nearby and distant neurons expressing the relevant receptors, which are often extrasynaptic. As well as triggering a behavioural output, neuropeptides also act as neuromodulators: altering the response of neurons to both neurotransmitters and circulating signals of nutrient status. The mechanisms of action of hypothalamic neuropeptides with established roles in feeding, including melanin-concentrating hormone (MCH), the orexins, α-melanocyte stimulating hormone (α-MSH), agouti-gene related protein (AgRP), neuropeptide Y, and oxytocin, are reviewed in this article, with emphasis laid on both their effects on appetite regulating centres throughout the brain, and on examining the evidence for their physiological roles. In addition, evidence for the involvement of several putative appetite regulating hypothalamic neuropeptides is assessed including, ghrelin, cocaine and amphetamine-regulated transcript (CART), neuropeptide W and the galanin-like peptides. This article is part of a Special Issue entitled 'Central control of Food Intake'.

  15. Estrogen Signaling in Hypothalamic Circuits Controling Reproduction

    PubMed Central

    Kelly, Martin J.; Qiu, Jian

    2010-01-01

    It is well known that many of the actions of 17β-estradiol (E2) in the central nervous system are mediated via intracellular receptor/transcription factors that interact with steroid response elements on target genes. However, there is compelling evidence for membrane steroid receptors for estrogen in hypothalamic and other brain neurons. Yet, it is not well understood how estrogen signals via membrane receptors, and how these signals impact not only membrane excitability but also gene transcription in neurons that modulate GnRH neuronal excitability. Indeed, it has been known for sometime that E2 can rapidly alter neuronal activity within seconds, indicating that some cellular effects can occur via membrane delimited events. In addition, E2 can affect second messenger systems including calcium mobilization and a plethora of kinases to alter cell signaling. Therefore, this review will consider our current knowledge of rapid membrane-initiated and intracellular signaling by E2 in hypothalamic neurons critical for reproductive function. PMID:20807512

  16. Hypothalamic glucose sensing: making ends meet

    PubMed Central

    Routh, Vanessa H.; Hao, Lihong; Santiago, Ammy M.; Sheng, Zhenyu; Zhou, Chunxue

    2014-01-01

    The neuroendocrine system governs essential survival and homeostatic functions. For example, growth is needed for development, thermoregulation maintains optimal core temperature in a changing environment, and reproduction ensures species survival. Stress and immune responses enable an organism to overcome external and internal threats while the circadian system regulates arousal and sleep such that vegetative and active functions do not overlap. All of these functions require a significant portion of the body's energy. As the integrator of the neuroendocrine system, the hypothalamus carefully assesses the energy status of the body in order to appropriately partition resources to provide for each system without compromising the others. While doing so the hypothalamus must ensure that adequate glucose levels are preserved for brain function since glucose is the primary fuel of the brain. To this end, the hypothalamus contains specialized glucose sensing neurons which are scattered throughout the nuclei controlling distinct neuroendocrine functions. We hypothesize that these neurons play a key role in enabling the hypothalamus to partition energy to meet these peripheral survival needs without endangering the brain's glucose supply. This review will first describe the varied mechanisms underlying glucose sensing in neurons within discrete hypothalamic nuclei. We will then evaluate the way in which peripheral energy status regulates glucose sensitivity. For example, during energy deficit such as fasting specific hypothalamic glucose sensing neurons become sensitized to decreased glucose. This increases the gain of the information relay when glucose availability is a greater concern for the brain. Finally, changes in glucose sensitivity under pathological conditions (e.g., recurrent insulin-hypoglycemia, diabetes) will be addressed. The overall goal of this review is to place glucose sensing neurons within the context of hypothalamic control of neuroendocrine function

  17. The Role of Hypothalamic Neuropeptides in Neurogenesis and Neuritogenesis

    PubMed Central

    Bakos, Jan; Zatkova, Martina; Bacova, Zuzana; Ostatnikova, Daniela

    2016-01-01

    The hypothalamus is a source of neural progenitor cells which give rise to different populations of specialized and differentiated cells during brain development. Newly formed neurons in the hypothalamus can synthesize and release various neuropeptides. Although term neuropeptide recently undergoes redefinition, small-size hypothalamic neuropeptides remain major signaling molecules mediating short- and long-term effects on brain development. They represent important factors in neurite growth and formation of neural circuits. There is evidence suggesting that the newly generated hypothalamic neurons may be involved in regulation of metabolism, energy balance, body weight, and social behavior as well. Here we review recent data on the role of hypothalamic neuropeptides in adult neurogenesis and neuritogenesis with special emphasis on the development of food intake and social behavior related brain circuits. PMID:26881105

  18. Increasing Fatty Acid Oxidation Remodels the Hypothalamic Neurometabolome to Mitigate Stress and Inflammation

    PubMed Central

    McFadden, Joseph W.; Aja, Susan; Li, Qun; Bandaru, Veera V. R.; Kim, Eun-Kyoung; Haughey, Norman J.; Kuhajda, Francis P.; Ronnett, Gabriele V.

    2014-01-01

    Modification of hypothalamic fatty acid (FA) metabolism can improve energy homeostasis and prevent hyperphagia and excessive weight gain in diet-induced obesity (DIO) from a diet high in saturated fatty acids. We have shown previously that C75, a stimulator of carnitine palmitoyl transferase-1 (CPT-1) and fatty acid oxidation (FAOx), exerts at least some of its hypophagic effects via neuronal mechanisms in the hypothalamus. In the present work, we characterized the effects of C75 and another anorexigenic compound, the glycerol-3-phosphate acyltransferase (GPAT) inhibitor FSG67, on FA metabolism, metabolomics profiles, and metabolic stress responses in cultured hypothalamic neurons and hypothalamic neuronal cell lines during lipid excess with palmitate. Both compounds enhanced palmitate oxidation, increased ATP, and inactivated AMP-activated protein kinase (AMPK) in hypothalamic neurons in vitro. Lipidomics and untargeted metabolomics revealed that enhanced catabolism of FA decreased palmitate availability and prevented the production of fatty acylglycerols, ceramides, and cholesterol esters, lipids that are associated with lipotoxicity-provoked metabolic stress. This improved metabolic signature was accompanied by increased levels of reactive oxygen species (ROS), and yet favorable changes in oxidative stress, overt ER stress, and inflammation. We propose that enhancing FAOx in hypothalamic neurons exposed to excess lipids promotes metabolic remodeling that reduces local inflammatory and cell stress responses. This shift would restore mitochondrial function such that increased FAOx can produce hypothalamic neuronal ATP and lead to decreased food intake and body weight to improve systemic metabolism. PMID:25541737

  19. Histaminergic neurons in the hypothalamic thermoregulatory pathways

    SciTech Connect

    Lomax, P.; Green, M.D.

    1981-11-01

    Based on neurochemical and neurophysiological research, especially over the past decade, considerable evidence exists for accepting histamine as a central neurotransmitter alongside the other neuroamines. The data supporting a functional role are not complete, but they do exhibit a consistent pattern in the case of the central thermoregulatory pathways. Thus, the region of the thermoregulatory centers in the rostral hypothalamus contains relatively high concentrations of histamine and the enzyme systems for its synthesis and degradation: degeneration studies indicate histaminergic pathways in the hypothalamus; thermoregulatory changes can be induced by activation of either H/sub 1/ or H/sub 2/ receptors; behavioral studies reveal different functional roles for H/sub 1/ and H/sub 2/ receptors; and the thermoregulatory responses to histamine are detectable across different species, even in nonhomeothermic animals. This evidence supports assigning a transmitter function to histamine in the central thermoregulatory pathways that would appear to be as well-founded as the comparable data amassed for other neuroamines.

  20. Activation of A-type gamma-aminobutyric acid receptors excites gonadotropin-releasing hormone neurons.

    PubMed

    DeFazio, R Anthony; Heger, Sabine; Ojeda, Sergio R; Moenter, Suzanne M

    2002-12-01

    Gamma-aminobutyric acid (GABA), acting through GABA(A) receptors (GABA(A)R), is hypothesized to suppress reproduction by inhibiting GnRH secretion, but GABA actions directly on GnRH neurons are not well established. In green fluorescent protein-identified adult mouse GnRH neurons in brain slices, gramicidin-perforated-patch-clamp experiments revealed the reversal potential (E(GABA)) for current through GABA(A)Rs was depolarized relative to the resting potential. Furthermore, rapid GABA application elicited action potentials in GnRH neurons but not controls. The consequence of GABA(A)R activation depends on intracellular chloride levels, which are maintained by homeostatic mechanisms. Membrane proteins that typically extrude chloride (KCC-2 cotransporter, CLC-2 channel) were absent from the GT1-7 immortalized GnRH cell line and GnRH neurons in situ or were not localized to the proper cell compartment for function. In contrast, GT1-7 cells and some GnRH neurons expressed the chloride-accumulating cotransporter, NKCC-1. Patch-clamp experiments showed that blockade of NKCC hyperpolarized E(GABA) by lowering intracellular chloride. Regardless of reproductive state, rapid GABA application excited GnRH neurons. In contrast, bath application of the GABA(A)R agonist muscimol transiently increased then suppressed firing; suppression persisted 4-15 min. Rapid activation of GABA(A)R thus excites GnRH neurons whereas prolonged activation reduces excitability, suggesting the physiological consequence of synaptic activation of GABA(A)R in GnRH neurons is excitation.

  1. Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes

    PubMed Central

    Fuente-Martín, Esther; García-Cáceres, Cristina; Granado, Miriam; de Ceballos, María L.; Sánchez-Garrido, Miguel Ángel; Sarman, Beatrix; Liu, Zhong-Wu; Dietrich, Marcelo O.; Tena-Sempere, Manuel; Argente-Arizón, Pilar; Díaz, Francisca; Argente, Jesús; Horvath, Tamas L.; Chowen, Julie A.

    2012-01-01

    Glial cells perform critical functions that alter the metabolism and activity of neurons, and there is increasing interest in their role in appetite and energy balance. Leptin, a key regulator of appetite and metabolism, has previously been reported to influence glial structural proteins and morphology. Here, we demonstrate that metabolic status and leptin also modify astrocyte-specific glutamate and glucose transporters, indicating that metabolic signals influence synaptic efficacy and glucose uptake and, ultimately, neuronal function. We found that basal and glucose-stimulated electrical activity of hypothalamic proopiomelanocortin (POMC) neurons in mice were altered in the offspring of mothers fed a high-fat diet. In adulthood, increased body weight and fasting also altered the expression of glucose and glutamate transporters. These results demonstrate that whole-organism metabolism alters hypothalamic glial cell activity and suggest that these cells play an important role in the pathology of obesity. PMID:23064363

  2. Hypothalamic control of brown adipose tissue thermogenesis

    PubMed Central

    Labbé, Sebastien M.; Caron, Alexandre; Lanfray, Damien; Monge-Rofarello, Boris; Bartness, Timothy J.; Richard, Denis

    2015-01-01

    It has long been known, in large part from animal studies, that the control of brown adipose tissue (BAT) thermogenesis is insured by the central nervous system (CNS), which integrates several stimuli in order to control BAT activation through the sympathetic nervous system (SNS). SNS-mediated BAT activity is governed by diverse neurons found in brain structures involved in homeostatic regulations and whose activity is modulated by various factors including oscillations of energy fluxes. The characterization of these neurons has always represented a challenging issue. The available literature suggests that the neuronal circuits controlling BAT thermogenesis are largely part of an autonomic circuitry involving the hypothalamus, brainstem and the SNS efferent neurons. In the present review, we recapitulate the latest progresses in regards to the hypothalamic regulation of BAT metabolism. We briefly addressed the role of the thermoregulatory pathway and its interactions with the energy balance systems in the control of thermogenesis. We also reviewed the involvement of the brain melanocortin and endocannabinoid systems as well as the emerging role of steroidogenic factor 1 (SF1) neurons in BAT thermogenesis. Finally, we examined the link existing between these systems and the homeostatic factors that modulate their activities. PMID:26578907

  3. The organic anion transporting polypeptide 1a5 is a pivotal transporter for the uptake of microcystin-LR by gonadotropin-releasing hormone neurons.

    PubMed

    Ding, Jie; Wang, Jing; Xiang, Zou; Diao, Weiyi; Su, Moxi; Shi, Weiwei; Wan, Ting; Han, Xiaodong

    2017-01-01

    Microcystins (MCs) are widely distributed hepatotoxic polypeptides produced by cyanobacteria. Microcystin-LR (MC-LR) has the broadest distribution and strongest toxicity among more than 80 isoforms of hepatotoxic MCs. MC-LR suppresses the expression of gonadotropin-releasing hormone (GnRH) that is critically required for the release of testosterone, resulting in the induction of male reproductive toxicity. However, the specific mechanisms of the uptake of MC-LR by GnRH-secreting neurons still remain unclear. In this study, GT1-7 cells were exposed to MC-LR in order to determine whether the GnRH-secreting neurons were the target of MC-LR that could induce male reproductive toxicity. Our data demonstrated that at least four organic anion transporting polypeptides (Oatp1a4, Oatp1a5, Oatp5a1, Oatp2b1) were expressed in GnRH neurons at the mRNA level, but only Oatp1a5 was expressed at the protein level. Furthermore, we demonstrated that MC-LR could not be transported into Oatp1a5-deficient GT1-7 cells which were protected from cell viability loss induced by MC-LR. These data suggest that Oatp1a5 may play an important role in the toxic effect of MC-LR on GnRH neurons.

  4. Amphetamine, an appetite suppressant, decreases neuropeptide Y immunoreactivity in rat hypothalamic paraventriculum.

    PubMed

    Hsieh, Yih-Shou; Yang, Shun-Fa; Kuo, Dong-Yih

    2005-04-15

    Amphetamine (AMPH) is a well-known anorectic agent. The mechanism underlying the anorectic response of AMPH has been attributed to its inhibitory effect on hypothalamic neuropeptide Y (NPY), an orexigenic peptide in the brain. However, there is still lack of genomic or in situ immunohistochemical evidence to prove it. The present study was aimed to assess the molecular mechanism of AMPH anorexia by immunostaining of hypothalamic NPY protein in the area of paraventricular nucleus (PVN) and by detecting the change of hypothalamic NPY mRNA level using RT-PCR. Results revealed that an AMPH treatment might reduce the expression of NPY at both transcriptional and posttranslational levels. Comparatively, a treatment of clomipramine, a serotonin transporter inhibitor, was unable to reduce NPY mRNA level, revealing the noninvolvement of hypothalamic NPY gene in serotonin anorexia. Our results provided genomic and in situ immunohistochemical evidence to confirm the mediation of hypothalamic NPY neurons in the anorectic action of AMPH.

  5. Hypothalamic BOLD response to glucose intake and hypothalamic volume are similar in anorexia nervosa and healthy control subjects

    PubMed Central

    van Opstal, Anna M.; Westerink, Anna M.; Teeuwisse, Wouter M.; van der Geest, Mirjam A. M.; van Furth, Eric F.; van der Grond, Jeroen

    2015-01-01

    Background: Inconsistent findings about the neurobiology of Anorexia Nervosa (AN) hinder the development of effective treatments for this severe mental disorder. Therefore, the need arises for elucidation of neurobiological factors involved in the pathophysiology of AN. The hypothalamus plays a key role in the neurobiological processes that govern food intake and energy homeostasis, processes that are disturbed in anorexia nervosa (AN). The present study will assess the hypothalamic response to energy intake and the hypothalamic structure in patients with AN and healthy controls. Methods: Ten women aged 18–30 years diagnosed with AN and 11 healthy, lean (BMI < 23 kg/m2) women in the same age range were recruited. We used functional magnetic resonance imaging (MRI) to determine function of the hypothalamus in response to glucose. Structural MRI was used to determine differences in hypothalamic volume and local gray matter volume using manual segmentation and voxel-based morphometry. Results: No differences were found in hypothalamic volume and neuronal activity in response to a glucose load between the patients and controls. Whole brain structural analysis showed a significant decrease in gray matter volume in the cingulate cortex in the AN patients, bilaterally. Conclusions: We argue that in spite of various known changes in the hypothalamus the direct hypothalamic response to glucose intake is similar in AN patients and healthy controls. PMID:25999808

  6. [Hypothalamic involvement in multiple sclerosis].

    PubMed

    Darlix, A; Mathey, G; Monin, M-L; Sauvée, M; Braun, M; Schaff, J-L; Debouverie, M

    2012-05-01

    Hypothalamic involvement is a rare condition in patients with multiple sclerosis (MS). We report two patients with a long history of MS who presented with severe acute hypothermia with associated thrombocytopenia and elevated transaminase levels. Several cases of hypothermia or hyperthermia in patients with MS have been reported in the literature. They could be linked with hypothalamic lesions, in particular in the pre-optic area. However, other anatomical locations seem to be involved in thermoregulation and can be affected by MS. Besides, some cases of syndrome of inappropriate antidiuretic hormone secretion have been reported in patients with MS. Finally, some sleep disorders, particularly hypersomnia or narcolepsy, could be related to hypothalamic lesions, through the fall in hypocretin-1 in the cerebrospinal fluid. Hypocretin-1 is a neuropeptide that is secreted by some hypothalamic cells. It plays a role in the sleep-awake rhythm. We report one patient with narcolepsy and cataplexy before the first symptoms of MS appeared. Hypothalamic signs are rare in MS. However, several series of autopsies have shown a high frequency of demyelinating lesions in the hypothalamic area. Among these lesions, the proportion of active lesions seems elevated. Yet only few of them have a clinical or biological translation such as thermoregulation dysfunction, sleep disorders or natremia abnormalities. Thus, it seems unlikely that inflammatory hypothalamic lesions alone, even when bilateral, could be the explanation of these signs. A sufficient number of inflammatory demyelinating lesions, which we can observe in patients with a long history of MS and an already severe disability, is probably necessary to develop such a rare symptomatology. Hypothalamic signs might be a factor of poor prognosis for the disease course and progression of the disability.

  7. Single-Cell RNA-Seq Reveals Hypothalamic Cell Diversity.

    PubMed

    Chen, Renchao; Wu, Xiaoji; Jiang, Lan; Zhang, Yi

    2017-03-28

    The hypothalamus is one of the most complex brain structures involved in homeostatic regulation. Defining cell composition and identifying cell-type-specific transcriptional features of the hypothalamus is essential for understanding its functions and related disorders. Here, we report single-cell RNA sequencing results of adult mouse hypothalamus, which defines 11 non-neuronal and 34 neuronal cell clusters with distinct transcriptional signatures. Analyses of cell-type-specific transcriptomes reveal gene expression dynamics underlying oligodendrocyte differentiation and tanycyte subtypes. Additionally, data analysis provides a comprehensive view of neuropeptide expression across hypothalamic neuronal subtypes and uncover Crabp1(+) and Pax6(+) neuronal populations in specific hypothalamic sub-regions. Furthermore, we found food deprivation exhibited differential transcriptional effects among the different neuronal subtypes, suggesting functional specification of various neuronal subtypes. Thus, the work provides a comprehensive transcriptional perspective of adult hypothalamus, which serves as a valuable resource for dissecting cell-type-specific functions of this complex brain region.

  8. [Functional hypothalamic amenorrhea].

    PubMed

    Stárka, Luboslav; Dušková, Michaela

    2015-10-01

    Functional hypothalamic amenorrhea (FHA) besides pregnancy and syndrome of polycystic ovary is one of the most common causes of secondary amenorrhea. FHA results from the aberrations in pulsatile gonadotropin-releasing hormone (GnRH) secretion, which in turn causes impairment of the gonadotropins (follicle-stimulating hormone and luteinizing hormone). FHA is a form of the defence of organism in situations where life functions are more important than reproductive function. FHA is reversible; it can be normalized after ceasing the stress situation. There are three types of FHA: weight loss related, stress-related, and exercise-related amenorrhea. The final consequences are complex hormonal changes manifested by profound hypoestrogenism. Additionally, these patients present mild hypercortisolemia, low serum insulin levels, low insulin-like growth factor 1 (IGF-1) and low total triiodothyronine. Women health in this disorder is disturbed in several aspects including the skeletal system, cardiovascular system, and mental problems. Patients manifest a decrease in bone mass density, which is related to an increase in fracture risk. Therefore, osteopenia and osteoporosis are the main long-term complications of FHA. Cardiovascular complications include endothelial dysfunction and abnormal changes in the lipid profile. FHA patients present significantly higher depression and anxiety and also sexual problems compared to healthy subjects.

  9. Paraventricular Hypothalamic Mechanisms of Chronic Stress Adaptation

    PubMed Central

    Herman, James P.; Tasker, Jeffrey G.

    2016-01-01

    The hypothalamic paraventricular nucleus (PVN) is the primary driver of hypothalamo–pituitary–adrenocortical (HPA) responses. At least part of the role of the PVN is managing the demands of chronic stress exposure. With repeated exposure to stress, hypophysiotrophic corticotropin-releasing hormone (CRH) neurons of the PVN display a remarkable cellular, synaptic, and connectional plasticity that serves to maximize the ability of the HPA axis to maintain response vigor and flexibility. At the cellular level, chronic stress enhances the production of CRH and its co-secretagogue arginine vasopressin and rearranges neurotransmitter receptor expression so as to maximize cellular excitability. There is also evidence to suggest that efficacy of local glucocorticoid feedback is reduced following chronic stress. At the level of the synapse, chronic stress enhances cellular excitability and reduces inhibitory tone. Finally, chronic stress causes a structural enhancement of excitatory innervation, increasing the density of glutamate and noradrenergic/adrenergic terminals on CRH neuronal cell somata and dendrites. Together, these neuroplastic changes favor the ability of the HPA axis to retain responsiveness even under conditions of considerable adversity. Thus, chronic stress appears able to drive PVN neurons via a number of convergent mechanisms, processes that may play a major role in HPA axis dysfunction seen in variety of stress-linked disease states. PMID:27843437

  10. Gelastic epilepsy: Beyond hypothalamic hamartomas.

    PubMed

    Uribe-San-Martin, Reinaldo; Ciampi, Ethel; Lawson-Peralta, Balduin; Acevedo-Gallinato, Keryma; Torrealba-Marchant, Gonzalo; Campos-Puebla, Manuel; Godoy-Fernández, Jaime

    2015-01-01

    Gelastic epilepsy or laughing seizures have been historically related to children with hypothalamic hamartomas. We report three adult patients who had gelastic epilepsy, defined as the presence of seizures with a prominent laugh component, including brain imaging, surface/invasive electroencephalography, positron emission tomography, and medical/surgical outcomes. None of the patients had hamartoma or other hypothalamic lesion. Two patients were classified as having refractory epilepsy (one had biopsy-proven neurocysticercosis and the other one hippocampal sclerosis and temporal cortical dysplasia). The third patient had no lesion on MRI and had complete control with carbamazepine. Both lesional patients underwent resective surgery, one with complete seizure control and the other one with poor outcome. Although hypothalamic hamartomas should always be ruled out in patients with gelastic epilepsy, laughing seizures can also arise from frontal and temporal lobe foci, which can be surgically removed. In addition, we present the first case of gelastic epilepsy due to neurocysticercosis.

  11. [Cortico-hypothalamic interneuronal correlation during learning in cats].

    PubMed

    Merzhanova, G Kh; Berg, A I

    1988-01-01

    Spatial-temporal organization of neuronal activity in the motor cortex and hypothalamus lateral nucleus (inter- and intrastructural neuronal interactions) in cats with elaborated conditioned alimentary instrumental reflexes were studied by means of recording the multineuronal activity of structures under investigation and with the use of cross-correlation method of analysis. An increase was shown of the number of cortico-hypothalamic neurones pairs acting in interconnection after elaboration of conditioned reflexes, and a decrease of their number at extinction due to interaction with temporal delays (up to 30 ms). Local (intrastructural) connections of the motor cortex and lateral hypothalamus had opposite dynamics at extinction of the conditioned reflexes: the number of the first increased and the number of the second decreased. The character of the interconnected activity of neurones pairs of interstructural interaction is discussed.

  12. Neuronal expression of glucosylceramide synthase in central nervous system regulates body weight and energy homeostasis.

    PubMed

    Nordström, Viola; Willershäuser, Monja; Herzer, Silke; Rozman, Jan; von Bohlen Und Halbach, Oliver; Meldner, Sascha; Rothermel, Ulrike; Kaden, Sylvia; Roth, Fabian C; Waldeck, Clemens; Gretz, Norbert; de Angelis, Martin Hrabě; Draguhn, Andreas; Klingenspor, Martin; Gröne, Hermann-Josef; Jennemann, Richard

    2013-01-01

    Hypothalamic neurons are main regulators of energy homeostasis. Neuronal function essentially depends on plasma membrane-located gangliosides. The present work demonstrates that hypothalamic integration of metabolic signals requires neuronal expression of glucosylceramide synthase (GCS; UDP-glucose:ceramide glucosyltransferase). As a major mechanism of central nervous system (CNS) metabolic control, we demonstrate that GCS-derived gangliosides interacting with leptin receptors (ObR) in the neuronal membrane modulate leptin-stimulated formation of signaling metabolites in hypothalamic neurons. Furthermore, ganglioside-depleted hypothalamic neurons fail to adapt their activity (c-Fos) in response to alterations in peripheral energy signals. Consequently, mice with inducible forebrain neuron-specific deletion of the UDP-glucose:ceramide glucosyltransferase gene (Ugcg) display obesity, hypothermia, and lower sympathetic activity. Recombinant adeno-associated virus (rAAV)-mediated Ugcg delivery to the arcuate nucleus (Arc) significantly ameliorated obesity, specifying gangliosides as seminal components for hypothalamic regulation of body energy homeostasis.

  13. Neuronal Expression of Glucosylceramide Synthase in Central Nervous System Regulates Body Weight and Energy Homeostasis

    PubMed Central

    Nordström, Viola; Willershäuser, Monja; Herzer, Silke; Rozman, Jan; von Bohlen und Halbach, Oliver; Meldner, Sascha; Rothermel, Ulrike; Kaden, Sylvia; Roth, Fabian C.; Waldeck, Clemens; Gretz, Norbert; de Angelis, Martin Hrabě; Draguhn, Andreas; Klingenspor, Martin

    2013-01-01

    Hypothalamic neurons are main regulators of energy homeostasis. Neuronal function essentially depends on plasma membrane-located gangliosides. The present work demonstrates that hypothalamic integration of metabolic signals requires neuronal expression of glucosylceramide synthase (GCS; UDP-glucose:ceramide glucosyltransferase). As a major mechanism of central nervous system (CNS) metabolic control, we demonstrate that GCS-derived gangliosides interacting with leptin receptors (ObR) in the neuronal membrane modulate leptin-stimulated formation of signaling metabolites in hypothalamic neurons. Furthermore, ganglioside-depleted hypothalamic neurons fail to adapt their activity (c-Fos) in response to alterations in peripheral energy signals. Consequently, mice with inducible forebrain neuron-specific deletion of the UDP-glucose:ceramide glucosyltransferase gene (Ugcg) display obesity, hypothermia, and lower sympathetic activity. Recombinant adeno-associated virus (rAAV)-mediated Ugcg delivery to the arcuate nucleus (Arc) significantly ameliorated obesity, specifying gangliosides as seminal components for hypothalamic regulation of body energy homeostasis. PMID:23554574

  14. Specification of select hypothalamic circuits and innate behaviors by the embryonic patterning gene Dbx1

    PubMed Central

    Sokolowski, Katie; Esumi, Shigeyuki; Hirata, Tsutomu; Kamal, Yasman; Tran, Tuyen; Lam, Andrew; Oboti, Livio; Brighthaupt, Sherri-Chanelle; Zaghlula, Manar; Martinez, Jennifer; Ghimbovschi, Svetlana; Knoblach, Susan; Pierani, Alessandra; Tamamaki, Nobuaki; Shah, Nirao M; Jones, Kevin S; Corbin, Joshua G

    2015-01-01

    SUMMARY The hypothalamus integrates information required for the production of a variety of innate behaviors such as feeding, mating, aggression and predator avoidance. Despite an extensive knowledge of hypothalamic function, how embryonic genetic programs specify circuits that regulate these behaviors remains unknown. Here, we find that in the hypothalamus the developmentally regulated homeodomain-containing transcription factor Dbx1 is required for the generation of specific subclasses of neurons within the lateral hypothalamic area/zona incerta (LH) and the arcuate (Arc) nucleus. Consistent with this specific developmental role, Dbx1 hypothalamic-specific conditional-knockout mice display attenuated responses to predator odor and feeding stressors but do not display deficits in other innate behaviors such as mating or conspecific aggression. Thus, activity of a single developmentally regulated gene, Dbx1, is a shared requirement for the specification of hypothalamic nuclei governing a subset of innate behaviors. PMID:25864637

  15. Hypothalamic involvement in chronic migraine

    PubMed Central

    Peres, M; del Rio, M S.; Seabra, M; Tufik, S; Abucham, J; Cipolla-Neto, J; Silberstein, S; Zukerman, E

    2001-01-01

    OBJECTIVES—Chronic migraine (CM), previously called transformed migraine, is a frequent headache disorder that affects 2%-3% of the general population. Analgesic overuse, insomnia, depression, and anxiety are disorders that are often comorbid with CM. Hypothalamic dysfunction has been implicated in its pathogenesis, but it has never been studied in patients with CM. The aim was to analyze hypothalamic involvement in CM by measurement of melatonin, prolactin, growth hormone, and cortisol nocturnal secretion.
METHODS—A total of 338 blood samples (13/patient) from 17 patients with CM and nine age and sex matched healthy volunteers were taken. Melatonin, prolactin, growth hormone, and cortisol concentrations were determined every hour for 12 hours. The presence of comorbid disorders was also evaluated.
RESULTS—An abnormal pattern of hypothalamic hormonal secretion was found in CM. This included: (1) a decreased nocturnal prolactin peak, (2) increased cortisol concentrations, (3) a delayed nocturnal melatonin peak in patients with CM, and (4) lower melatonin concentrations in patients with CM with insomnia. Growth hormone secretion did not differ from controls.
CONCLUSION—These results support hypothalamic involvement in CM, shown by a chronobiologic dysregulation, and a possible hyperdopaminergic state in patients with CM. Insomnia might be an important variable in the study findings.

 PMID:11723194

  16. A treasure trove of hypothalamic neurocircuitries governing body weight homeostasis.

    PubMed

    Vianna, Claudia R; Coppari, Roberto

    2011-01-01

    Changes in physical activities and feeding habits have transformed the historically rare disease of obesity into a modern metabolic pandemic. Obesity occurs when energy intake exceeds energy expenditure over time. This energy imbalance significantly increases the risk for cardiovascular disease and type 2 diabetes mellitus and as such represents an enormous socioeconomic burden and health threat. To combat obesity, a better understanding of the molecular mechanisms and neurocircuitries underlying normal body weight homeostasis is required. In the 1940s, pioneering lesion experiments unveiled the importance of medial and lateral hypothalamic structures. In the 1980s and 1990s, several neuropeptides and peripheral hormones critical for appropriate feeding behavior, energy expenditure, and hence body weight homeostasis were identified. In the 2000s, results from metabolic analyses of genetically engineered mice bearing mutations only in selected neuronal groups greatly advanced our knowledge of the peripheral/brain feedback-loop modalities by which central neurons control energy balance. In this review, we will summarize these recent progresses with particular emphasis on the biochemical identities of hypothalamic neurons and molecular components underlying normal appetite, energy expenditure, and body weight homeostasis. We will also parse which of those neurons and molecules are critical components of homeostatic adaptive pathways against obesity induced by hypercaloric feeding.

  17. Hypothalamic proopiomelanocortin processing and the regulation of energy balance

    PubMed Central

    Wardlaw, Sharon L.

    2011-01-01

    Hypothalamic proopiomelanocortin (POMC) neurons play a key role in regulating energy balance and neuroendocrine function. Much attention has been focused on regulation of POMC gene expression with less emphasis on regulated peptide processing. This is particularly important given the complexity of posttranslational POMC processing which is essential for the generation of biologically active MSH peptides. Mutations that impair POMC sorting and processing are associated with obesity in humans and in animals. Specifically, mutations in the POMC processing enzymes prohormone convertase 1/3 (PCI/3) and in carboxypeptidase E (CPE) and in the α-MSH degrading enzyme, PRCP, are associated with changes in energy balance. There is increasing evidence that POMC processing is regulated with respect to energy balance. Studies have implicated both the leptin and insulin signaling pathways in the regulation of POMC at various steps in the processing pathway. This article will review the role of hypothalamic POMC in regulating energy balance with a focus on POMC processing. PMID:21208604

  18. Hypothalamic ER stress: A bridge between leptin resistance and obesity.

    PubMed

    Ramírez, Sara; Claret, Marc

    2015-06-22

    The prevalence of obesity has increased worldwide at an alarming rate. However, non-invasive pharmacological treatments remain elusive. Leptin resistance is a general feature of obesity, thus strategies aimed at enhancing the sensitivity to this hormone may constitute an excellent therapeutical approach to counteract current obesity epidemics. Nevertheless, the etiology and neuronal basis of leptin resistance remains an enigma. A recent hypothesis gaining substantial experimental support is that hypothalamic endoplasmic reticulum (ER) stress plays a causal role in the development of leptin resistance and obesity. The objective of this review article is to provide an updated view on current evidence connecting hypothalamic ER stress with leptin resistance. We discuss the experimental findings supporting this hypothesis, as well as the potential causes and underlying mechanisms leading to this metabolic disorder. Understanding these mechanisms may provide key insights into the development of novel intervention approaches.

  19. Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction

    PubMed Central

    Zorzano, Antonio; Claret, Marc

    2015-01-01

    Mitochondrial dynamics is a term that encompasses the movement of mitochondria along the cytoskeleton, regulation of their architecture, and connectivity mediated by tethering and fusion/fission. The importance of these events in cell physiology and pathology has been partially unraveled with the identification of the genes responsible for the catalysis of mitochondrial fusion and fission. Mutations in two mitochondrial fusion genes (MFN2 and OPA1) cause neurodegenerative diseases, namely Charcot-Marie Tooth type 2A and autosomal dominant optic atrophy (ADOA). Alterations in mitochondrial dynamics may be involved in the pathophysiology of prevalent neurodegenerative conditions. Moreover, impairment of the activity of mitochondrial fusion proteins dysregulates the function of hypothalamic neurons, leading to alterations in food intake and in energy homeostasis. Here we review selected findings in the field of mitochondrial dynamics and their relevance for neurodegeneration and hypothalamic dysfunction. PMID:26113818

  20. Hypothalamic Hormones and Metabolism

    PubMed Central

    Thio, Liu Lin

    2011-01-01

    Summary The ketogenic diet is an effective treatment for medically intractable epilepsy and may have antiepileptogenic, neuroprotective, and antitumor properties. While on a ketogenic diet, the body obtains most of its calories from fat rather than carbohydrates. This dramatic change in caloric composition results in a unique metabolic state. In turn, these changes in caloric composition and metabolism alter some of the neurohormones that participate in the complex neuronal network regulating energy homeostasis. Two observed changes are an increase in serum leptin and a decrease in serum insulin. These opposing changes in leptin and insulin are unique compared to other metabolic stimuli and may modify the activity of several cell signaling cascades including phosphoinositidyl-3 kinase (PI3K), adenosine monophosphate activated protein kinase (AMPK), and mammalian target of rapamycin (mTOR). These cell signaling pathways may mediate the anticonvulsant and other beneficial effects of the diet, though the neurohormonal changes induced by the ketogenic diet and the physiological consequences of these changes remain poorly characterized. PMID:21856125

  1. [Hypothalamic inflammation and energy balance deregulations: focus on chemokines.

    PubMed

    Le Thuc, Ophélia; Rovère, Carole

    2016-01-01

    The hypothalamus is a key brain region in the regulation of energy balance. It especially controls food intake and both energy storage and expenditure through integration of humoral, neural and nutrient-related signals and cues. Hypothalamic neurons and glial cells act jointly to orchestrate, both spatially and temporally, regulated metabolic functions of the hypothalamus. Thus, the existence of a causal link between hypothalamic inflammation and deregulations of feeding behavior, such as involuntary weight-loss or obesity, has been suggested. Among the inflammatory mediators that could induce deregulations of hypothalamic control of the energy balance, chemokines represent interesting candidates. Indeed, chemokines, primarily known for their chemoattractant role of immune cells to the inflamed site, have also been suggested capable of neuromodulation. Thus, chemokines could disrupt cellular activity together with synthesis and/or secretion of multiple neurotransmitters/mediators that are involved in the maintenance of energy balance. Here, we relate, on one hand, recent results showing the primary role of the central chemokinergic signaling CCL2/CCR2 for metabolic and behavioral adaptation to high-grade inflammation, especially loss of appetite and weight, through its activity on hypothalamic neurons producing the orexigenic peptide Melanin-Concentrating Hormone (MCH) and, on the other hand, results that suggest that chemokines could also deregulate hypothalamic neuropeptidergic circuits to induce an opposite phenotype and eventually participate in the onset/development of obesity. In more details, we will emphasize a study recently showing, in a model of high-grade acute inflammation of LPS injection in mice, that central CCL2/CCR2 signaling is of primary importance for several aspects explaining weight loss associated with inflammation: after LPS injection, animals lose weight, reduce their food intake, increase their fat oxidation (thus energy consumption from

  2. The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia.

    PubMed

    Song, Kun; Wang, Hong; Kamm, Gretel B; Pohle, Jörg; Reis, Fernanda de Castro; Heppenstall, Paul; Wende, Hagen; Siemens, Jan

    2016-09-23

    Body temperature homeostasis is critical for survival and requires precise regulation by the nervous system. The hypothalamus serves as the principal thermostat that detects and regulates internal temperature. We demonstrate that the ion channel TRPM2 [of the transient receptor potential (TRP) channel family] is a temperature sensor in a subpopulation of hypothalamic neurons. TRPM2 limits the fever response and may detect increased temperatures to prevent overheating. Furthermore, chemogenetic activation and inhibition of hypothalamic TRPM2-expressing neurons in vivo decreased and increased body temperature, respectively. Such manipulation may allow analysis of the beneficial effects of altered body temperature on diverse disease states. Identification of a functional role for TRP channels in monitoring internal body temperature should promote further analysis of molecular mechanisms governing thermoregulation and foster the genetic dissection of hypothalamic circuits involved with temperature homeostasis.

  3. Fluorescent visualisation of the hypothalamic oxytocin neurones activated by cholecystokinin-8 in rats expressing c-fos-enhanced green fluorescent protein and oxytocin-monomeric red fluorescent protein 1 fusion transgenes.

    PubMed

    Katoh, A; Shoguchi, K; Matsuoka, H; Yoshimura, M; Ohkubo, J-I; Matsuura, T; Maruyama, T; Ishikura, T; Aritomi, T; Fujihara, H; Hashimoto, H; Suzuki, H; Murphy, D; Ueta, Y

    2014-05-01

    The up-regulation of c-fos gene expression is widely used as a marker of neuronal activation elicited by various stimuli. Anatomically precise observation of c-fos gene products can be achieved at the RNA level by in situ hybridisation or at the protein level by immunocytochemistry. Both of these methods are time and labour intensive. We have developed a novel transgenic rat system that enables the trivial visualisation of c-fos expression using an enhanced green fluorescent protein (eGFP) tag. These rats express a transgene consisting of c-fos gene regulatory sequences that drive the expression of a c-fos-eGFP fusion protein. In c-fos-eGFP transgenic rats, robust nuclear eGFP fluorescence was observed in osmosensitive brain regions 90 min after i.p. administration of hypertonic saline. Nuclear eGFP fluorescence was also observed in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) 90 min after i.p. administration of cholecystokinin (CCK)-8, which selectively activates oxytocin (OXT)-secreting neurones in the hypothalamus. In double transgenic rats that express c-fos-eGFP and an OXT-monomeric red fluorescent protein 1 (mRFP1) fusion gene, almost all mRFP1-positive neurones in the SON and PVN expressed nuclear eGFP fluorescence 90 min after i.p. administration of CCK-8. It is possible that not only a plane image, but also three-dimensional reconstruction image may identify cytoplasmic vesicles in an activated neurone at the same time.

  4. Hypothalamic neurohormones and immune responses

    PubMed Central

    Quintanar, J. Luis; Guzmán-Soto, Irene

    2013-01-01

    The aim of this review is to provide a comprehensive examination of the current literature describing the neural-immune interactions, with emphasis on the most recent findings of the effects of neurohormones on immune system. Particularly, the role of hypothalamic hormones such as Thyrotropin-releasing hormone (TRH), Corticotropin-releasing hormone (CRH) and Gonadotropin-releasing hormone (GnRH). In the past few years, interest has been raised in extrapituitary actions of these neurohormones due to their receptors have been found in many non-pituitary tissues. Also, the receptors are present in immune cells, suggesting an autocrine or paracrine role within the immune system. In general, these neurohormones have been reported to exert immunomodulatory effects on cell proliferation, immune mediators release and cell function. The implications of these findings in understanding the network of hypothalamic neuropeptides and immune system are discussed. PMID:23964208

  5. Hypothalamic neurohormones and immune responses.

    PubMed

    Quintanar, J Luis; Guzmán-Soto, Irene

    2013-01-01

    The aim of this review is to provide a comprehensive examination of the current literature describing the neural-immune interactions, with emphasis on the most recent findings of the effects of neurohormones on immune system. Particularly, the role of hypothalamic hormones such as Thyrotropin-releasing hormone (TRH), Corticotropin-releasing hormone (CRH) and Gonadotropin-releasing hormone (GnRH). In the past few years, interest has been raised in extrapituitary actions of these neurohormones due to their receptors have been found in many non-pituitary tissues. Also, the receptors are present in immune cells, suggesting an autocrine or paracrine role within the immune system. In general, these neurohormones have been reported to exert immunomodulatory effects on cell proliferation, immune mediators release and cell function. The implications of these findings in understanding the network of hypothalamic neuropeptides and immune system are discussed.

  6. An indirect action contributes to c-fos induction in paraventricular hypothalamic nucleus by neuropeptide Y

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neuropeptide Y (NPY) is a well-established orexigenic peptide and hypothalamic paraventricular nucleus (PVH) is one major brain site that mediates the orexigenic action of NPY. NPY induces abundant expression of C-Fos, an indicator for neuronal activation, in the PVH, which has been used extensively...

  7. SF-1 in the ventral medial hypothalamic nucleus: A key regulator of homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ventral medial hypothalamic nucleus (VMH) regulates food intake and body weight homeostasis. The nuclear receptor NR5A1 (steroidogenic factor 1; SF-1) is a transcription factor whose expression is highly restricted in the VMH and is required for the development of the nucleus. Neurons expressing...

  8. Glucose and hypothalamic astrocytes: More than a fueling role?

    PubMed

    Leloup, C; Allard, C; Carneiro, L; Fioramonti, X; Collins, S; Pénicaud, L

    2016-05-26

    Brain plays a central role in energy homeostasis continuously integrating numerous peripheral signals such as circulating nutrients, and in particular blood glucose level, a variable that must be highly regulated. Then, the brain orchestrates adaptive responses to modulate food intake and peripheral organs activity in order to achieve the fine tuning of glycemia. More than fifty years ago, the presence of glucose-sensitive neurons was discovered in the hypothalamus, but what makes them specific and identifiable still remains disconnected from their electrophysiological signature. On the other hand, astrocytes represent the major class of macroglial cells and are now recognized to support an increasing number of neuronal functions. One of these functions consists in the regulation of energy homeostasis through neuronal fueling and nutrient sensing. Twenty years ago, we discovered that the glucose transporter GLUT2, the canonical "glucosensor" of the pancreatic beta-cell together with the glucokinase, was also present in astrocytes and participated in hypothalamic glucose sensing. Since then, many studies have identified other actors and emphasized the astroglial participation in this mechanism. Growing evidence suggest that astrocytes form a complex network and have to be considered as spatially coordinated and regulated metabolic units. In this review we aim to provide an updated view of the molecular and respective cellular pathways involved in hypothalamic glucose sensing, and their relevance in physiological and pathological states.

  9. Effects of undernourishment on the hypothalamic orexinergic system.

    PubMed

    Pinos, H; Pérez-Izquierdo, M A; Carrillo, B; Collado, P

    2011-01-10

    The present study examined the effects of a severely restricted diet during the pre- and postnatal periods with later nutritional rehabilitation on orexin hypothalamic neurons in male and female Wistar rats. Immunocytochemistry was used to reveal orexin-immunoreactive (orexin-ir) cells in the ventromedial hypothalamus (VMH), dorsomedial hypothalamus (DMH), lateral hypothalamic area (LH) and the perifornical nucleus (PF). Dietary restriction decreased the number of orexin-ir cells in the LH, whereas DMH or PF orexin-ir populations were not affected in either male or female rats. Nutritional rehabilitation resulted in a differential recovery that depended on the period during which rehabilitation occurred and on the sex of the animal. In summary, our study suggests that the hypothalamic nuclei implicated in eating behavior present a differential vulnerability to adverse environmental conditions during development. Specifically, among the studied nuclei only the LH orexin-ir cells were sensitive to severe food deprivation during development in male and female rats. These results suggest that starvation interferes with developmental events that occur during CNS sexual differentiation.

  10. Hypothalamic thermosensitivity in capsaicin-desensitized rats.

    PubMed Central

    Cormarèche-Leydier, M; Shimada, S G; Stitt, J T

    1985-01-01

    In rats, we tested the hypothesis that capsaicin desensitization reduces hypothalamic warm thermosensitivity. We locally heated and cooled the hypothalamus using water-perfused thermodes while observing thermoregulatory variables. In untreated rats, a small dose of capsaicin had profound effects on thermoregulation. However, desensitizing rats to capsaicin had no effect on hypothalamic thermosensitivity for metabolic rate or changes in body temperature due to displacements of hypothalamic temperature. Contrary to current opinion, we conclude that capsaicin desensitization does not alter hypothalamic thermosensitivity to warm or cold. PMID:4020699

  11. Computational Analysis of the Hypothalamic Control of Food Intake

    PubMed Central

    Tabe-Bordbar, Shayan; Anastasio, Thomas J.

    2016-01-01

    Food-intake control is mediated by a heterogeneous network of different neural subtypes, distributed over various hypothalamic nuclei and other brain structures, in which each subtype can release more than one neurotransmitter or neurohormone. The complexity of the interactions of these subtypes poses a challenge to understanding their specific contributions to food-intake control, and apparent consistencies in the dataset can be contradicted by new findings. For example, the growing consensus that arcuate nucleus neurons expressing Agouti-related peptide (AgRP neurons) promote feeding, while those expressing pro-opiomelanocortin (POMC neurons) suppress feeding, is contradicted by findings that low AgRP neuron activity and high POMC neuron activity can be associated with high levels of food intake. Similarly, the growing consensus that GABAergic neurons in the lateral hypothalamus suppress feeding is contradicted by findings suggesting the opposite. Yet the complexity of the food-intake control network admits many different network behaviors. It is possible that anomalous associations between the responses of certain neural subtypes and feeding are actually consistent with known interactions, but their effect on feeding depends on the responses of the other neural subtypes in the network. We explored this possibility through computational analysis. We made a computer model of the interactions between the hypothalamic and other neural subtypes known to be involved in food-intake control, and optimized its parameters so that model behavior matched observed behavior over an extensive test battery. We then used specialized computational techniques to search the entire model state space, where each state represents a different configuration of the responses of the units (model neural subtypes) in the network. We found that the anomalous associations between the responses of certain hypothalamic neural subtypes and feeding are actually consistent with the known structure

  12. Hypothalamic pituitary adrenal axis and hypothalamic-neurohypophyseal responsiveness in water-deprived rats.

    PubMed

    Grinevich, V; Ma, X M; Verbalis, J; Aguilera, G

    2001-10-01

    The differential effects of osmotic stimulation on magnocellular and parvocellular hypothalamic neurons were studied by analysis of corticotropin-releasing hormone (CRH) and vasopressin (VP) expression in controls and 48-h water-deprived rats subjected to either restraint for 1 h or a single lipopolysaccharide injection (250 microg/100 g). Water deprivation reduced basal CRH mRNA levels but the increments following 4 h of restraint or 6 h lipopolysaccharide (LPS) injection were similar to those in controls. In contrast, water deprivation had no effect on basal VP heteronuclear RNA (hnRNA) and mRNA levels in parvocellular neurons, but responses to restraint or LPS injection were reduced. VP expression in magnocellular paraventricular and supraoptic nuclei, and plasma sodium and vasopressin were higher in water-deprived rats, changes which were unaffected by restraint. LPS injection reduced VP mRNA but not hnRNA levels in magnocellular neurons and increased plasma vasopressin levels only in water-deprived rats independently of changes in plasma sodium. This was accompanied by an increase in vasopressin mRNA content in the posterior pituitary. The data show that the blunted ACTH responses to acute stress during chronic osmotic stimulation are correlated with the inability of parvocellular neurons to increase VP rather than CRH expression. In addition, LPS-induced endotoxemia causes disturbances of the magnocellular vasopressinergic system with an unexpected potentiation of osmotic simulated VP secretion. The lack of increase in VP transcription after LPS and changes in VP mRNA distribution suggest that endotoxemia affect the secretory process at the levels of the neurohypophyseal axon terminal.

  13. Hypothalamic effects of thyroid hormones on metabolism.

    PubMed

    Martínez-Sánchez, Noelia; Alvarez, Clara V; Fernø, Johan; Nogueiras, Rubén; Diéguez, Carlos; López, Miguel

    2014-10-01

    Over the past few decades, obesity and its related metabolic disorders have increased at an epidemic rate in the developed and developing world. New signals and factors involved in the modulation of energy balance and metabolism are continuously being discovered, providing potential novel drug targets for the treatment of metabolic disease. A parallel strategy is to better understand how hormonal signals, with an already established role in energy metabolism, work, and how manipulation of the pathways involved may lead to amelioration of metabolic dysfunction. The thyroid hormones belong to the latter category, with dysregulation of the thyroid axis leading to marked alterations in energy balance. The potential of thyroid hormones in the treatment of obesity has been known for decades, but their therapeutic use has been hampered because of side-effects. Data gleaned over the past few years, however, have uncovered new features at the mechanisms of action involved in thyroid hormones. Sophisticated neurobiological approaches have allowed the identification of specific energy sensors, such as AMP-activated protein kinase and mechanistic target of rapamycin, acting in specific groups of hypothalamic neurons, mediating many of the effects of thyroid hormones on food intake, energy expenditure, glucose, lipid metabolism, and cardiovascular function. More extensive knowledge about these molecular mechanisms will be of great relevance for the treatment of obesity and metabolic syndrome.

  14. Hypothyroidism compromises hypothalamic leptin signaling in mice.

    PubMed

    Groba, Claudia; Mayerl, Steffen; van Mullem, Alies A; Visser, Theo J; Darras, Veerle M; Habenicht, Andreas J; Heuer, Heike

    2013-04-01

    The impact of thyroid hormone (TH) on metabolism and energy expenditure is well established, but the role of TH in regulating nutritional sensing, particularly in the central nervous system, is only poorly defined. Here, we studied the consequences of hypothyroidism on leptin production as well as leptin sensing in congenital hypothyroid TRH receptor 1 knockout (Trhr1 ko) mice and euthyroid control animals. Hypothyroid mice exhibited decreased circulating leptin levels due to a decrease in fat mass and reduced leptin expression in white adipose tissue. In neurons of the hypothalamic arcuate nucleus, hypothyroid mice showed increased leptin receptor Ob-R expression and decreased suppressor of cytokine signaling 3 transcript levels. In order to monitor putative changes in central leptin sensing, we generated hypothyroid and leptin-deficient animals by crossing hypothyroid Trhr1 ko mice with the leptin-deficient ob/ob mice. Hypothyroid Trhr1/ob double knockout mice showed a blunted response to leptin treatment with respect to body weight and food intake and exhibited a decreased activation of phospho-signal transducer and activator of transcription 3 as well as a up-regulation of suppressor of cytokine signaling 3 upon leptin treatment, particularly in the arcuate nucleus. These data indicate alterations in the intracellular processing of the leptin signal under hypothyroid conditions and thereby unravel a novel mode of action by which TH affects energy metabolism.

  15. Hypothalamic carnitine metabolism integrates nutrient and hormonal feedback to regulate energy homeostasis.

    PubMed

    Stark, Romana; Reichenbach, Alex; Andrews, Zane B

    2015-12-15

    The maintenance of energy homeostasis requires the hypothalamic integration of nutrient feedback cues, such as glucose, fatty acids, amino acids, and metabolic hormones such as insulin, leptin and ghrelin. Although hypothalamic neurons are critical to maintain energy homeostasis research efforts have focused on feedback mechanisms in isolation, such as glucose alone, fatty acids alone or single hormones. However this seems rather too simplistic considering the range of nutrient and endocrine changes associated with different metabolic states, such as starvation (negative energy balance) or diet-induced obesity (positive energy balance). In order to understand how neurons integrate multiple nutrient or hormonal signals, we need to identify and examine potential intracellular convergence points or common molecular targets that have the ability to sense glucose, fatty acids, amino acids and hormones. In this review, we focus on the role of carnitine metabolism in neurons regulating energy homeostasis. Hypothalamic carnitine metabolism represents a novel means for neurons to facilitate and control both nutrient and hormonal feedback. In terms of nutrient regulation, carnitine metabolism regulates hypothalamic fatty acid sensing through the actions of CPT1 and has an underappreciated role in glucose sensing since carnitine metabolism also buffers mitochondrial matrix levels of acetyl-CoA, an allosteric inhibitor of pyruvate dehydrogenase and hence glucose metabolism. Studies also show that hypothalamic CPT1 activity also controls hormonal feedback. We hypothesis that hypothalamic carnitine metabolism represents a key molecular target that can concurrently integrate nutrient and hormonal information, which is critical to maintain energy homeostasis. We also suggest this is relevant to broader neuroendocrine research as it predicts that hormonal signaling in the brain varies depending on current nutrient status. Indeed, the metabolic action of ghrelin, leptin or insulin

  16. Differential Acute and Chronic Effects of Leptin on Hypothalamic Astrocyte Morphology and Synaptic Protein Levels

    PubMed Central

    García-Cáceres, Cristina; Fuente-Martín, Esther; Burgos-Ramos, Emma; Granado, Miriam; Frago, Laura M.; Barrios, Vicente; Horvath, Tamas

    2011-01-01

    Astrocytes participate in neuroendocrine functions partially through modulation of synaptic input density in the hypothalamus. Indeed, glial ensheathing of neurons is modified by specific hormones, thus determining the availability of neuronal membrane space for synaptic inputs, with the loss of this plasticity possibly being involved in pathological processes. Leptin modulates synaptic inputs in the hypothalamus, but whether astrocytes participate in this action is unknown. Here we report that astrocyte structural proteins, such as glial fibrillary acidic protein (GFAP) and vimentin, are induced and astrocyte morphology modified by chronic leptin administration (intracerebroventricular, 2 wk), with these changes being inversely related to modifications in synaptic protein densities. Similar changes in glial structural proteins were observed in adult male rats that had increased body weight and circulating leptin levels due to neonatal overnutrition (overnutrition: four pups/litter vs. control: 12 pups/litter). However, acute leptin treatment reduced hypothalamic GFAP levels and induced synaptic protein levels 1 h after administration, with no effect on vimentin. In primary hypothalamic astrocyte cultures leptin also reduced GFAP levels at 1 h, with an induction at 24 h, indicating a possible direct effect of leptin. Hence, one mechanism by which leptin may affect metabolism is by modifying hypothalamic astrocyte morphology, which in turn could alter synaptic inputs to hypothalamic neurons. Furthermore, the responses to acute and chronic leptin exposure are inverse, raising the possibility that increased glial activation in response to chronic leptin exposure could be involved in central leptin resistance. PMID:21343257

  17. Alterations in the hypothalamic melanocortin pathway in amyotrophic lateral sclerosis.

    PubMed

    Vercruysse, Pauline; Sinniger, Jérôme; El Oussini, Hajer; Scekic-Zahirovic, Jelena; Dieterlé, Stéphane; Dengler, Reinhard; Meyer, Thomas; Zierz, Stephan; Kassubek, Jan; Fischer, Wilhelm; Dreyhaupt, Jens; Grehl, Torsten; Hermann, Andreas; Grosskreutz, Julian; Witting, Anke; Van Den Bosch, Ludo; Spreux-Varoquaux, Odile; Ludolph, Albert C; Dupuis, Luc

    2016-04-01

    Amyotrophic lateral sclerosis, the most common adult-onset motor neuron disease, leads to death within 3 to 5 years after onset. Beyond progressive motor impairment, patients with amyotrophic lateral sclerosis suffer from major defects in energy metabolism, such as weight loss, which are well correlated with survival. Indeed, nutritional intervention targeting weight loss might improve survival of patients. However, the neural mechanisms underlying metabolic impairment in patients with amyotrophic lateral sclerosis remain elusive, in particular due to the lack of longitudinal studies. Here we took advantage of samples collected during the clinical trial of pioglitazone (GERP-ALS), and characterized longitudinally energy metabolism of patients with amyotrophic lateral sclerosis in response to pioglitazone, a drug with well-characterized metabolic effects. As expected, pioglitazone decreased glycaemia, decreased liver enzymes and increased circulating adiponectin in patients with amyotrophic lateral sclerosis, showing its efficacy in the periphery. However, pioglitazone did not increase body weight of patients with amyotrophic lateral sclerosis independently of bulbar involvement. As pioglitazone increases body weight through a direct inhibition of the hypothalamic melanocortin system, we studied hypothalamic neurons producing proopiomelanocortin (POMC) and the endogenous melanocortin inhibitor agouti-related peptide (AGRP), in mice expressing amyotrophic lateral sclerosis-linked mutant SOD1(G86R). We observed lower Pomc but higher Agrp mRNA levels in the hypothalamus of presymptomatic SOD1(G86R) mice. Consistently, numbers of POMC-positive neurons were decreased, whereas AGRP fibre density was elevated in the hypothalamic arcuate nucleus of SOD1(G86R) mice. Consistent with a defect in the hypothalamic melanocortin system, food intake after short term fasting was increased in SOD1(G86R) mice. Importantly, these findings were replicated in two other amyotrophic

  18. Neurokinin B Causes Acute GnRH Secretion and Repression of GnRH Transcription in GT1–7 GnRH Neurons

    PubMed Central

    Glidewell-Kenney, Christine A.; Shao, Paul P.; Iyer, Anita K.; Grove, Anna M. H.; Meadows, Jason D.

    2013-01-01

    Genetic studies in human patients with idiopathic hypogonadotropic hypogonadism (IHH) identified mutations in the genes that encode neurokinin B (NKB) and the neurokinin 3 receptor (NK3R). However, determining the mechanism whereby NKB regulates gonadotropin secretion has been difficult because of conflicting results from in vivo studies investigating the luteinizing hormone (LH) response to senktide, a NK3R agonist. NK3R is expressed in a subset of GnRH neurons and in kisspeptin neurons that are known to regulate GnRH secretion. Thus, one potential source of inconsistency is that NKB could produce opposing direct and indirect effects on GnRH secretion. Here, we employ the GT1-7 cell model to elucidate the direct effects of NKB on GnRH neuron function. We find that GT1-7 cells express NK3R and respond to acute senktide treatment with c-Fos induction and increased GnRH secretion. In contrast, long-term senktide treatment decreased GnRH secretion. Next, we focus on the examination of the mechanism underlying the long-term decrease in secretion and determine that senktide treatment represses transcription of GnRH. We further show that this repression of GnRH transcription may involve enhanced c-Fos protein binding at novel activator protein-1 (AP-1) half-sites identified in enhancer 1 and the promoter, as well as chromatin remodeling at the promoter of the GnRH gene. These data indicate that NKB could directly regulate secretion from NK3R-expressing GnRH neurons. Furthermore, whether the response is inhibitory or stimulatory toward GnRH secretion could depend on the history or length of exposure to NKB because of a repressive effect on GnRH transcription. PMID:23393128

  19. Oestrogen Modulates Hypothalamic Control of Energy Homeostasis Through Multiple Mechanisms

    PubMed Central

    Roepke, Troy A.

    2009-01-01

    The control of energy homeostasis in women is correlated with the anorectic effects of oestrogen, which can attenuate body weight gain and reduce food intake in rodent models. This review will investigate the multiple signalling pathways and cellular targets that oestrogen utilises to control energy homeostasis in the hypothalamus. Oestrogen affects all of the hypothalamic nuclei that control energy homeostasis. Oestrogen controls the activity of hypothalamic neurones through gene regulation and neuronal excitability. Oestrogen’s primary cellular pathway is the control of gene transcription through the classical ERs (ERα and ERβ) with ERα having the primary role in energy homeostasis. Oestrogen also controls energy homeostasis through membrane-mediated events via membrane-associated ERs or a novel, putative membrane ER that is coupled to G-proteins. Therefore, oestrogen has at least two receptors with multiple signalling and transcriptional pathways to activate during immediate and long-term anorectic effects. Ultimately, it is the interactions of all the receptor-mediated processes in hypothalamus and other areas of the CNS that will determine the anorectic effects of oestrogen and its control of energy homeostasis. PMID:19076267

  20. Ghrelin Regulates Glucose and Glutamate Transporters in Hypothalamic Astrocytes

    PubMed Central

    Fuente-Martín, Esther; García-Cáceres, Cristina; Argente-Arizón, Pilar; Díaz, Francisca; Granado, Miriam; Freire-Regatillo, Alejandra; Castro-González, David; Ceballos, María L.; Frago, Laura M.; Dickson, Suzanne L.; Argente, Jesús; Chowen, Julie A.

    2016-01-01

    Hypothalamic astrocytes can respond to metabolic signals, such as leptin and insulin, to modulate adjacent neuronal circuits and systemic metabolism. Ghrelin regulates appetite, adiposity and glucose metabolism, but little is known regarding the response of astrocytes to this orexigenic hormone. We have used both in vivo and in vitro approaches to demonstrate that acylated ghrelin (acyl-ghrelin) rapidly stimulates glutamate transporter expression and glutamate uptake by astrocytes. Moreover, acyl-ghrelin rapidly reduces glucose transporter (GLUT) 2 levels and glucose uptake by these glial cells. Glutamine synthetase and lactate dehydrogenase decrease, while glycogen phosphorylase and lactate transporters increase in response to acyl-ghrelin, suggesting a change in glutamate and glucose metabolism, as well as glycogen storage by astrocytes. These effects are partially mediated through ghrelin receptor 1A (GHSR-1A) as astrocytes do not respond equally to desacyl-ghrelin, an isoform that does not activate GHSR-1A. Moreover, primary astrocyte cultures from GHSR-1A knock-out mice do not change glutamate transporter or GLUT2 levels in response to acyl-ghrelin. Our results indicate that acyl-ghrelin may mediate part of its metabolic actions through modulation of hypothalamic astrocytes and that this effect could involve astrocyte mediated changes in local glucose and glutamate metabolism that alter the signals/nutrients reaching neighboring neurons. PMID:27026049

  1. Ghrelin Regulates Glucose and Glutamate Transporters in Hypothalamic Astrocytes.

    PubMed

    Fuente-Martín, Esther; García-Cáceres, Cristina; Argente-Arizón, Pilar; Díaz, Francisca; Granado, Miriam; Freire-Regatillo, Alejandra; Castro-González, David; Ceballos, María L; Frago, Laura M; Dickson, Suzanne L; Argente, Jesús; Chowen, Julie A

    2016-03-30

    Hypothalamic astrocytes can respond to metabolic signals, such as leptin and insulin, to modulate adjacent neuronal circuits and systemic metabolism. Ghrelin regulates appetite, adiposity and glucose metabolism, but little is known regarding the response of astrocytes to this orexigenic hormone. We have used both in vivo and in vitro approaches to demonstrate that acylated ghrelin (acyl-ghrelin) rapidly stimulates glutamate transporter expression and glutamate uptake by astrocytes. Moreover, acyl-ghrelin rapidly reduces glucose transporter (GLUT) 2 levels and glucose uptake by these glial cells. Glutamine synthetase and lactate dehydrogenase decrease, while glycogen phosphorylase and lactate transporters increase in response to acyl-ghrelin, suggesting a change in glutamate and glucose metabolism, as well as glycogen storage by astrocytes. These effects are partially mediated through ghrelin receptor 1A (GHSR-1A) as astrocytes do not respond equally to desacyl-ghrelin, an isoform that does not activate GHSR-1A. Moreover, primary astrocyte cultures from GHSR-1A knock-out mice do not change glutamate transporter or GLUT2 levels in response to acyl-ghrelin. Our results indicate that acyl-ghrelin may mediate part of its metabolic actions through modulation of hypothalamic astrocytes and that this effect could involve astrocyte mediated changes in local glucose and glutamate metabolism that alter the signals/nutrients reaching neighboring neurons.

  2. Hypothalamic KLF4 mediates leptin's effects on food intake via AgRP.

    PubMed

    Imbernon, Monica; Sanchez-Rebordelo, Estrella; Gallego, Rosalia; Gandara, Marina; Lear, Pamela; Lopez, Miguel; Dieguez, Carlos; Nogueiras, Ruben

    2014-07-01

    Krüppel-like factor 4 (KLF4) is a zinc-finger-type transcription factor expressed in a range of tissues that plays multiple functions. We report that hypothalamic KLF4 represents a new transcription factor specifically modulating agouti-related protein (AgRP) expression in vivo. Hypothalamic KLF4 colocalizes with AgRP neurons and is modulated by nutritional status and leptin. Over-expression of KLF4 in the hypothalamic arcuate nucleus (ARC) induces food intake and increases body weight through the specific stimulation of AgRP, as well as blunting leptin sensitivity in lean rats independent of forkhead box protein 01 (FoxO1). Down-regulation of KLF4 in the ARC inhibits fasting-induced food intake in both lean and diet-induced obese (DIO) rats. Silencing KLF4, however, does not, on its own, enhance peripheral leptin sensitivity in DIO rats.

  3. The histone acetyltransferase MOF activates hypothalamic polysialylation to prevent diet-induced obesity in mice

    PubMed Central

    Brenachot, Xavier; Rigault, Caroline; Nédélec, Emmanuelle; Laderrière, Amélie; Khanam, Tasneem; Gouazé, Alexandra; Chaudy, Sylvie; Lemoine, Aleth; Datiche, Frédérique; Gascuel, Jean; Pénicaud, Luc; Benani, Alexandre

    2014-01-01

    Overfeeding causes rapid synaptic remodeling in hypothalamus feeding circuits. Polysialylation of cell surface molecules is a key step in this neuronal rewiring and allows normalization of food intake. Here we examined the role of hypothalamic polysialylation in the long-term maintenance of body weight, and deciphered the molecular sequence underlying its nutritional regulation. We found that upon high fat diet (HFD), reduced hypothalamic polysialylation exacerbated the diet-induced obese phenotype in mice. Upon HFD, the histone acetyltransferase MOF was rapidly recruited on the St8sia4 polysialyltransferase-encoding gene. Mof silencing in the mediobasal hypothalamus of adult mice prevented activation of the St8sia4 gene transcription, reduced polysialylation, altered the acute homeostatic feeding response to HFD and increased the body weight gain. These findings indicate that impaired hypothalamic polysialylation contribute to the development of obesity, and establish a role for MOF in the brain control of energy balance. PMID:25161885

  4. Suppression of the HPA Axis During Cholestasis Can Be Attributed to Hypothalamic Bile Acid Signaling.

    PubMed

    McMillin, Matthew; Frampton, Gabriel; Quinn, Matthew; Divan, Ali; Grant, Stephanie; Patel, Nisha; Newell-Rogers, Karen; DeMorrow, Sharon

    2015-12-01

    Suppression of the hypothalamic-pituitary-adrenal (HPA) axis has been shown to occur during cholestatic liver injury. Furthermore, we have demonstrated that in a model of cholestasis, serum bile acids gain entry into the brain via a leaky blood brain barrier and that hypothalamic bile acid content is increased. Therefore, the aim of the current study was to determine the effects of bile acid signaling on the HPA axis. The data presented show that HPA axis suppression during cholestatic liver injury, specifically circulating corticosterone levels and hypothalamic corticotropin releasing hormone (CRH) expression, can be attenuated by administration of the bile acid sequestrant cholestyramine. Secondly, treatment of hypothalamic neurons with various bile acids suppressed CRH expression and secretion in vitro. However, in vivo HPA axis suppression was only evident after the central injection of the bile acids taurocholic acid or glycochenodeoxycholic acid but not the other bile acids studied. Furthermore, we demonstrate that taurocholic acid and glycochenodeoxycholic acid are exerting their effects on hypothalamic CRH expression after their uptake through the apical sodium-dependent bile acid transporter and subsequent activation of the glucocorticoid receptor. Taken together with previous studies, our data support the hypothesis that during cholestatic liver injury, bile acids gain entry into the brain, are transported into neurons through the apical sodium-dependent bile acid transporter and can activate the glucocorticoid receptor to suppress the HPA axis. These data also lend themselves to the broader hypothesis that bile acids may act as central modulators of hypothalamic peptides that may be altered during liver disease.

  5. Regulation of hypothalamic corticotropin-releasing hormone transcription by elevated glucocorticoids.

    PubMed

    Evans, Andrew N; Liu, Ying; Macgregor, Robert; Huang, Victoria; Aguilera, Greti

    2013-11-01

    Negative glucocorticoid feedback is essential for preventing the deleterious effects of excessive hypothalamic pituitary adrenal axis axis activation, with an important target being CRH transcription in the hypothalamic paraventricular nucleus. The aim of these studies was to determine whether glucocorticoids repress CRH transcription directly in CRH neurons, by examining glucocorticoid effects on glucocorticoid receptor (GR)-CRH promoter interaction and the activation of proteins required for CRH transcription. Immunoprecipitation of hypothalamic chromatin from intact or adrenalectomized rats subjected to either stress or corticosterone injections showed minor association of the proximal CRH promoter with the GR compared with that with phospho-CREB (pCREB). In contrast, the Period-1 (Per1, a glucocorticoid-responsive gene) promoter markedly recruited GR. Stress increased pCREB recruitment by the CRH but not the Per1 promoter, irrespective of circulating glucocorticoids. In vitro, corticosterone pretreatment (30 minutes or 18 hours) only slightly inhibited basal and forskolin-stimulated CRH heteronuclear RNA in primary hypothalamic neuronal cultures and CRH promoter activity in hypothalamic 4B cells. In 4B cells, 30 minutes or 18 hours of corticosterone exposure had no effect on forskolin-induced nuclear accumulation of the recognized CRH transcriptional regulators, pCREB and transducer of regulated CREB activity 2. The data show that inhibition of CRH transcription by physiological glucocorticoids in vitro is minor and that direct interaction of GR with DNA in the proximal CRH promoter may not be a major mechanism of CRH gene repression. Although GR interaction with distal promoter elements may have a role, the data suggest that transcriptional repression of CRH by glucocorticoids involves protein-protein interactions and/or modulation of afferent inputs to the hypothalamic paraventricular nucleus.

  6. Defective regulation of POMC precedes hypothalamic inflammation in diet-induced obesity

    PubMed Central

    Souza, Gabriela F. P.; Solon, Carina; Nascimento, Lucas F.; De-Lima-Junior, Jose C.; Nogueira, Guilherme; Moura, Rodrigo; Rocha, Guilherme Z.; Fioravante, Milena; Bobbo, Vanessa; Morari, Joseane; Razolli, Daniela; Araujo, Eliana P.; Velloso, Licio A.

    2016-01-01

    Obesity is the result of a long-term positive energy balance in which caloric intake overrides energy expenditure. This anabolic state results from the defective activity of hypothalamic neurons involved in the sensing and response to adiposity. However, it is currently unknown what the earliest obesity-linked hypothalamic defect is and how it orchestrates the energy imbalance present in obesity. Using an outbred model of diet-induced obesity we show that defective regulation of hypothalamic POMC is the earliest marker distinguishing obesity-prone from obesity-resistant mice. The early inhibition of hypothalamic POMC was sufficient to transform obesity-resistant in obesity-prone mice. In addition, the post-prandial change in the blood level of β-endorphin, a POMC-derived peptide, correlates with body mass gain in rodents and humans. Taken together, these results suggest that defective regulation of POMC expression, which leads to a change of β-endorphin levels, is the earliest hypothalamic defect leading to obesity. PMID:27373214

  7. Nutrient-sensing hypothalamic TXNIP links nutrient excess to energy imbalance in mice.

    PubMed

    Blouet, Clémence; Schwartz, Gary J

    2011-04-20

    Nutrient excess in obesity and diabetes is emerging as a common putative cause for multiple deleterious effects across diverse cell types, responsible for a variety of metabolic dysfunctions. The hypothalamus is acknowledged as an important regulator of whole-body energy homeostasis, through both detection of nutrient availability and coordination of effectors that determine nutrient intake and utilization, thus preventing cellular and whole-body nutrient excess. However, the mechanisms underlying hypothalamic nutrient detection and its impact on peripheral nutrient utilization remain poorly understood. Recent data suggest a role for thioredoxin-interacting protein (TXNIP) as a molecular nutrient sensor important in the regulation of energy metabolism, but the role of hypothalamic TXNIP in the regulation of energy balance has not been evaluated. Here we show in mice that TXNIP is expressed in nutrient-sensing neurons of the mediobasal hypothalamus, responds to hormonal and nutrient signals, and regulates adipose tissue metabolism, fuel partitioning, and glucose homeostasis. Hypothalamic expression of TXNIP is induced by acute nutrient excess and in mouse models of obesity and diabetes, and downregulation of mediobasal hypothalamic TXNIP expression prevents diet-induced obesity and insulin resistance. Thus, mediobasal hypothalamic TXNIP plays a critical role in nutrient sensing and the regulation of fuel utilization.

  8. Hypothalamic astroglial connexins are required for brain glucose sensing-induced insulin secretion.

    PubMed

    Allard, Camille; Carneiro, Lionel; Grall, Sylvie; Cline, Brandon H; Fioramonti, Xavier; Chrétien, Chloé; Baba-Aissa, Fawzia; Giaume, Christian; Pénicaud, Luc; Leloup, Corinne

    2014-02-01

    Hypothalamic glucose detection participates in maintaining glycemic balance, food intake, and thermogenesis. Although hypothalamic neurons are the executive cells involved in these responses, there is increasing evidence that astrocytes participate in glucose sensing (GS); however, it is unknown whether astroglial networking is required for glucose sensitivity. Astroglial connexins 30 and 43 (Cx30 and Cx43) form hexameric channels, which are apposed in gap junctions, allowing for the intercellular transfer of small molecules such as glucose throughout the astroglial networks. Here, we hypothesized that hypothalamic glucose sensitivity requires these connexins. First, we showed that both Cxs are enriched in the rat hypothalamus, with highly concentrated Cx43 expression around blood vessels of the mediobasal hypothalamus (MBH). Both fasting and high glycemic levels rapidly altered the protein levels of MBH astroglial connexins, suggesting cross talk within the MBH between glycemic status and the connexins' ability to dispatch glucose. Finally, the inhibition of MBH Cx43 (by transient RNA interference) attenuated hypothalamic glucose sensitivity in rats, which was demonstrated by a pronounced decreased insulin secretion in response to a brain glucose challenge. These results illustrate that astroglial connexins contribute to hypothalamic GS.

  9. Hypothalamic control of bone metabolism.

    PubMed

    Sharan, Kunal; Yadav, Vijay K

    2014-10-01

    Bones are structures in vertebrates that provide support to organs, protect soft organs, and give them shape and defined features, functions that are essential for their survival. To perform these functions, bones are constantly renewed throughout life. The process through which bones are renewed is known as bone remodeling, an energy demanding process sensitive to changes in energy homeostasis of the organism. A close interplay takes place between the diversity of nutritional cues and metabolic signals with different elements of the hypothalamic circuits to co-ordinate energy metabolism with the regulation of bone mass. In this review, we focus on how mouse and human genetics have elucidated the roles of hormonal signals and neural circuits that originate in, or impinge on, the hypothalamus in the regulation of bone mass. This will help to understand the mechanisms whereby regulation of bone is gated and dynamically regulated by the hypothalamus.

  10. Inhibition of hypothalamic MCT1 expression increases food intake and alters orexigenic and anorexigenic neuropeptide expression

    PubMed Central

    Elizondo-Vega, Roberto; Cortés-Campos, Christian; Barahona, María José; Carril, Claudio; Ordenes, Patricio; Salgado, Magdiel; Oyarce, Karina; García-Robles, María de los Angeles

    2016-01-01

    Hypothalamic glucosensing, which involves the detection of glucose concentration changes by brain cells and subsequent release of orexigenic or anorexigenic neuropeptides, is a crucial process that regulates feeding behavior. Arcuate nucleus (AN) neurons are classically thought to be responsible for hypothalamic glucosensing through a direct sensing mechanism; however, recent data has shown a metabolic interaction between tanycytes and AN neurons through lactate that may also be contributing to this process. Monocarboxylate transporter 1 (MCT1) is the main isoform expressed by tanycytes, which could facilitate lactate release to hypothalamic AN neurons. We hypothesize that MCT1 inhibition could alter the metabolic coupling between tanycytes and AN neurons, altering feeding behavior. To test this, we inhibited MCT1 expression using adenovirus-mediated transfection of a shRNA into the third ventricle, transducing ependymal wall cells and tanycytes. Neuropeptide expression and feeding behavior were measured in MCT1-inhibited animals after intracerebroventricular glucose administration following a fasting period. Results showed a loss in glucose regulation of orexigenic neuropeptides and an abnormal expression of anorexigenic neuropeptides in response to fasting. This was accompanied by an increase in food intake and in body weight gain. Taken together, these results indicate that MCT1 expression in tanycytes plays a role in feeding behavior regulation. PMID:27677351

  11. Projections from the Subfornical Region of the Lateral Hypothalamic Area

    PubMed Central

    GOTO, MARINA; CANTERAS, NEWTON S.; BURNS, GULLY; SWANSON, LARRY W.

    2010-01-01

    The L-shaped anterior zone of the lateral hypothalamic area’s subfornical region (LHAsfa) is delineated by a pontine nucleus incertus input. Function evidence suggests the subfornical region and nucleus incertus modulate foraging and defensive behaviors, although subfornical region connections are poorly understood. A high resolution Phaseolus vulgaris-leucoagglutinin (PHAL) structural analysis is presented here of the LHAsfa neuron population’s overall axonal projection pattern. The strongest LHAsfa targets are in the interbrain and cerebral hemisphere. The former include inputs to anterior hypothalamic nucleus, dorsomedial part of the ventromedial nucleus, and ventral region of the dorsal premammillary nucleus (defensive behavior control system components), and to lateral habenula and dorsal region of the dorsal premammillary nucleus (foraging behavior control system components). The latter include massive inputs to lateral and medial septal nuclei (septo-hippocampal system components), and inputs to bed nuclei of the stria terminalis posterior division related to the defensive behavior system, intercalated amygdalar nucleus (projecting to central amygdalar nucleus), and posterior part of the basomedial amygdalar nucleus. LHAsfa vertical and horizontal limb basic projection patterns are similar, although each preferentially innervates certain terminal fields. Lateral hypothalamic area regions immediately medial, lateral, and caudal to the LHAsfa each generate quite distinct projection patterns. Combined with previous evidence that major sources LHAsfa neural inputs include the parabrachial nucleus (nociceptive information), defensive and foraging behavior system components, and the septo-hippocampal system, the present results suggest that the LHAsfa helps match adaptive behavioral responses (either defensive or foraging) to current internal motivational status and external environmental conditions. PMID:16261534

  12. The hypothalamic peptidergic system, hypocretin/orexin and vigilance control.

    PubMed

    Nishino, Seiji

    2007-06-01

    Using forward and reverse genetics, the genes (hypocretin/orexin ligand and its receptor) involved in the pathogenesis of the sleep disorder, narcolepsy, in animals, have been identified. Mutations in hypocretin related-genes are extremely rare in humans, but hypocretin-ligand deficiency is found in most narcolepsy-cataplexy cases. Hypocretin deficiency in humans can be clinically detected by CSF hypocretin-1 measures, and undetectably low CSF hypocretin-1 is now included in the revised international diagnostic criteria of narcolepsy. Since hypocretin-ligand deficiency is the major pathophysiology in human narcolepsy, hypocretin replacements (using hypocretin agonists or gene therapy) are promising future therapeutic options. New insights into the roles of hypocretin system on sleep physiology have also rapidly increased. Hypocretins are involved in various fundamental hypothalamic functions such as feeding, energy homeostasis and neuroendocrine regulation. Hypocretin neurons project to most ascending arousal systems (including monoaminergic and cholinergic systems), and generally exhibit excitatory inputs. Together with the recent finding of the sleep promoting system in the hypothalamus (especially in the GABA/galanin ventrolateral preoptic area which exhibits inhibitory inputs to these ascending systems), the hypothalamus is now recognized as the most important brain site for the sleep switch, and other peptidergic systems may also participate in this regulation. Meanwhile, narcolepsy now appears to be a more complex condition than previously thought. The pathophysiology of the disease is involved in the abnormalities of sleep and various hypothalamic functions due to hypocretin deficiency, such as the changes in energy homeostasis, stress reactions and rewarding. Narcolepsy is therefore, an important model to study the link between sleep regulation and other fundamental hypothalamic functions.

  13. Hypothalamic neuropeptide systems and anticipatory weight change in Siberian hamsters.

    PubMed

    Adam, C L; Mercer, J G

    2001-01-01

    Seasonal animals are able both to programme changes in body weight in response to annual changes in photoperiod (anticipatory regulation) and to correct changes in body weight caused by imposed energetic demand (compensatory regulation). Experimental evidence from the Siberian hamster suggests that seasonally appropriate body weight is continually reset according to photoperiodic history, even when actual body weight is driven away from this target weight by manipulation of energy intake. These characteristics constitute the "sliding set point" of seasonal body weight regulation. To define the mechanisms and molecules underlying anticipatory body weight regulation, we are investigating the involvement of hypothalamic systems with an established role in the compensatory defence of body weight. Weight loss or restricted growth induced by short days (SD) results in low circulating leptin compared with long day (LD) controls. However, this chronic low leptin signal is read differently from acute low leptin resulting from food deprivation; leptin receptor gene expression in the hypothalamic arcuate nucleus (ARC) is lower in SD, whereas food deprivation increases expression levels, suggesting changes in sensitivity to leptin feedback. SD alterations in mRNA levels for a number of hypothalamic neuropeptide and receptor genes appear counter-intuitive for a SD body weight trajectory. However, early increases in ARC cocaine-and amphetamine-regulated transcript (CART) gene expression in SDs could be involved in driving body weight loss or growth restriction. The sites of photoperiod interaction with energy balance neuronal circuitry and the neurochemical encoding of body weight set point require full characterisation. Study of anticipatory regulation in seasonal animals offers new insight into body weight regulation across mammalian species, including man.

  14. PI3K in the ventromedial hypothalamic nucleus mediates estrogenic actions on energy expenditure in female mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogens act in the ventromedial hypothalamic nucleus (VMH) to regulate body weight homeostasis. However, the molecular mechanisms underlying these estrogenic effects are unknown. We show that activation of estrogen receptor-a (ERa) stimulates neural firing of VMH neurons expressing ERa, and these ...

  15. GABAergic Projections from Lateral Hypothalamus to Paraventricular Hypothalamic Nucleus Promote Feeding

    PubMed Central

    Wu, Zhaofei; Kim, Eun Ran; Sun, Hao; Xu, Yuanzhong; Mangieri, Leandra R.; Li, De-Pei; Pan, Hui-Lin; Xu, Yong; Arenkiel, Benjamin R.

    2015-01-01

    Lesions of the lateral hypothalamus (LH) cause hypophagia. However, activation of glutamatergic neurons in LH inhibits feeding. These results suggest a potential importance for other LH neurons in stimulating feeding. Our current study in mice showed that disruption of GABA release from adult LH GABAergic neurons reduced feeding. LH GABAergic neurons project extensively to the paraventricular hypothalamic nucleus (PVH), and optogenetic stimulation of GABAergic LH → PVH fibers induced monosynaptic IPSCs in PVH neurons, and potently increased feeding, which depended on GABA release. In addition, disruption of GABA-A receptors in the PVH reduced feeding. Thus, we have identified a new feeding pathway in which GABAergic projections from the LH to the PVH promote feeding. PMID:25716832

  16. Central Regulation of Hypothalamic-Pituitary-Thyroid Axis Under Physiological and Pathophysiological Conditions

    PubMed Central

    Lechan, Ronald M.

    2014-01-01

    TRH is a tripeptide amide that functions as a neurotransmitter but also serves as a neurohormone that has a critical role in the central regulation of the hypothalamic-pituitary-thyroid axis. Hypophysiotropic TRH neurons involved in this neuroendocrine process are located in the hypothalamic paraventricular nucleus and secrete TRH into the pericapillary space of the external zone of the median eminence for conveyance to anterior pituitary thyrotrophs. Under basal conditions, the activity of hypophysiotropic TRH neurons is regulated by the negative feedback effects of thyroid hormone to ensure stable, circulating, thyroid hormone concentrations, a mechanism that involves complex interactions between hypophysiotropic TRH neurons and the vascular system, cerebrospinal fluid, and specialized glial cells called tanycytes. Hypophysiotropic TRH neurons also integrate other humoral and neuronal inputs that can alter the setpoint for negative feedback regulation by thyroid hormone. This mechanism facilitates adaptation of the organism to changing environmental conditions, including the shortage of food and a cold environment. The thyroid axis is also affected by other adverse conditions such as infection, but the central mechanisms mediating suppression of hypophysiotropic TRH may be pathophysiological. In this review, we discuss current knowledge about the mechanisms that contribute to the regulation of hypophysiotropic TRH neurons under physiological and pathophysiological conditions. PMID:24423980

  17. Critical role for hypothalamic mTOR activity in energy balance

    PubMed Central

    Mori, Hiroyuki; Inoki, Ken; Münzberg, Heike; Opland, Darren; Faouzi, Miro; Villanueva, Eneida C.; Ikenoue, Tsuneo; Kwiatkowski, David; MacDougald, Ormond A; Myers, Martin G.; Guan, Kun-Liang

    2009-01-01

    Summary The mammalian target of Rapamycin (mTOR) promotes anabolic cellular processes in response to growth factors and metabolic cues. The TSC1 and TSC2 tumor suppressors are major upstream inhibitory regulators of mTOR signaling. Mice with Rip2/Cre-mediated deletion of Tsc1 (Rip-Tsc1cKO mice) developed hyperphagia and obesity, suggesting that hypothalamic disruption (for which Rip2/Cre is well known) of Tsc1 may dysregulate feeding circuits via mTOR activation. Indeed, Rip-Tsc1cKO mice displayed increased mTOR signaling and enlarged neuron cell size in a number of hypothalamic populations, including Pomc neurons. Furthermore, Tsc1 deletion with Pomc/Cre (Pomc-Tsc1cKO mice) resulted in dysregulation of Pomc neurons and hyperphagic obesity. Treatment with the mTOR inhibitor, rapamycin, ameliorated the hyperphagia, obesity, and the altered Pomc neuronal morphology in developing or adult Pomc-Tsc1cKO mice, and cessation of treatment reinstated these phenotypes. Thus, ongoing mTOR activation in Pomc neurons blocks the catabolic function of these neurons to promote nutrient intake and increased adiposity. PMID:19356717

  18. Oestradiol and Diet Modulate Energy Homeostasis and Hypothalamic Neurogenesis in the Adult Female Mouse

    PubMed Central

    Bless, E. P.; Reddy, T.; Acharya, K. D.; Beltz, B. S.; Tetel, M. J.

    2014-01-01

    Leptin and oestradiol have overlapping functions in energy homeostasis and fertility, and receptors for these hormones are localised in the same hypothalamic regions. Although, historically, it was assumed that mammalian adult neurogenesis was confined to the olfactory bulbs and the hippocampus, recent research has found new neurones in the male rodent hypothalamus. Furthermore, some of these new neurones are leptin-sensitive and affected by diet. In the present study, we tested the hypothesis that diet and hormonal status modulate hypothalamic neurogenesis in the adult female mouse. Adult mice were ovariectomised and implanted with capsules containing oestradiol (E2) or oil. Within each group, mice were fed a high-fat diet (HFD) or maintained on standard chow (STND). All animals were administered i.c.v. 5-bromo-2′-deoxyuridine (BrdU) for 9 days and sacrificed 34 days later after an injection of leptin to induce phosphorylation of signal transducer of activation and transcription 3 (pSTAT3). Brain tissue was immunohistochemically labelled for BrdU (newly born cells), Hu (neuronal marker) and pSTAT3 (leptin sensitive). Although mice on a HFD became obese, oestradiol protected against obesity. There was a strong interaction between diet and hormone on new cells (BrdU+) in the arcuate, ventromedial hypothalamus and dorsomedial hypothalamus. HFD increased the number of new cells, whereas E2 inhibited this effect. Conversely, E2 increased the number of new cells in mice on a STND diet in all hypothalamic regions studied. Although the total number of new leptin-sensitive neurones (BrdU-Hu-pSTAT3) found in the hypothalamus was low, HFD increased these new cells in the arcuate, whereas E2 attenuated this induction. These results suggest that adult neurogenesis in the hypothalamic neurogenic niche is modulated by diet and hormonal status and is related to energy homeostasis in female mice. PMID:25182179

  19. [Symptomatic hypersomnia due to orexin deficiency in hypothalamic lesions].

    PubMed

    Kanbayashi, Takashi; Arii, Junko; Kubota, Hiroaki; Yano, Tamami; Kashiwagi, Mitsuru; Yoshikawa, Sousuke; Tohyama, Jun; Sawaishi, Yukio

    2006-09-01

    Narcolepsy is characterized by excessive daytime sleepiness (EDS), cataplexy and other abnormal manifestations of REM sleep. Recently, it was discovered that the pathophysiology of idiopathic narcolepsy-cataplexy is linked to orexin ligand deficiency in the brain and cerebrospinal fluid. Orexin neurons localize in the posterior hypothalamic area, which was previously described as "waking center" by von Economo in 1920s. Hypersomnia due to orexin ligand deficiency can also occur during the course of other neurological conditions, such as hypothalamic tumor, encephalopathy and demyelinating disorder (i.e. symptomatic hypersomnia). We experienced 8 pediatric cases with symptomatic hypersomnia. These cases were diagnosed as brain tumor (n = 2), head trauma (n = 1), encephalopathy (n = 1), demyelinating disorder (n = 3) and infarction (n = 1). Six pediatric cases with orexin measurements from the literatures were additionally included and total 14 cases were studied. Although it is difficult to rule out the comorbidity of idiopathic narcolepsy in some cases, a review of the case histories reveals numerous unquestionable cases of symptomatic hypersomnia. In these cases, the occurrences of the hypersomnia run parallel with the rise and fall of the causative diseases. Most of symptomatic hypersomnia cases show both extended nocturnal sleep time and EDS consisting of prolonged sleep episodes of NREM sleep. The features of nocturnal sleep and EDS in symptomatic hypersomnia are more similar to idiopathic hypersomnia than to narcolepsy.

  20. A screen for modulators reveals that orexin-A rapidly stimulates thyrotropin releasing hormone expression and release in hypothalamic cell culture.

    PubMed

    Cote-Vélez, Antonieta; Martínez Báez, Anabel; Lezama, Leticia; Uribe, Rosa María; Joseph-Bravo, Patricia; Charli, Jean-Louis

    2017-02-02

    In the paraventricular nucleus of the mammalian hypothalamus, hypophysiotropic thyrotropin releasing hormone (TRH) neurons integrate metabolic information and control the activity of the thyroid axis. Additional populations of TRH neurons reside in various hypothalamic areas, with poorly defined connections and functions, albeit there is evidence that some may be related to energy balance. To establish extracellular modulators of TRH hypothalamic neurons activity, we performed a screen of neurotransmitters effects in hypothalamic cultures. Cell culture conditions were chosen to facilitate the full differentiation of the TRH neurons; these conditions had permitted the characterization of the effects of known modulators of hypophysiotropic TRH neurons. The major end-point of the screen was Trh mRNA levels, since they are generally rapidly (0.5-3h) modified by synaptic inputs onto TRH neurons; in some experiments, TRH cell content or release was also analyzed. Various modulators, including histamine, serotonin, β-endorphin, met-enkephalin, and melanin concentrating hormone, had no effect. Glutamate, as well as ionotropic agonists (kainate and N-Methyl-d-aspartic acid), increased Trh mRNA levels. Baclofen, a GABAB receptor agonist, and dopamine enhanced Trh mRNA levels. An endocannabinoid receptor 1 inverse agonist promoted TRH release. Somatostatin increased Trh mRNA levels and TRH cell content. Orexin-A rapidly increased Trh mRNA levels, TRH cell content and release, while orexin-B decreased Trh mRNA levels. These data reveal unaccounted regulators, which exert potent effects on hypothalamic TRH neurons in vitro.

  1. Fetal alcohol programming of hypothalamic proopiomelanocortin system by epigenetic mechanisms and later life vulnerability to stress.

    PubMed

    Bekdash, Rola; Zhang, Changqing; Sarkar, Dipak

    2014-09-01

    Hypothalamic proopiomelanocortin (POMC) neurons, one of the major regulators of the hypothalamic-pituitary-adrenal (HPA) axis, immune functions, and energy homeostasis, are vulnerable to the adverse effects of fetal alcohol exposure (FAE). These effects are manifested in POMC neurons by a decrease in Pomc gene expression, a decrement in the levels of its derived peptide β-endorphin and a dysregulation of the stress response in the adult offspring. The HPA axis is a major neuroendocrine system with pivotal physiological functions and mode of regulation. This system has been shown to be perturbed by prenatal alcohol exposure. It has been demonstrated that the perturbation of the HPA axis by FAE is long-lasting and is linked to molecular, neurophysiological, and behavioral changes in exposed individuals. Recently, we showed that the dysregulation of the POMC system function by FAE is induced by epigenetic mechanisms such as hypermethylation of Pomc gene promoter and an alteration in histone marks in POMC neurons. This developmental programming of the POMC system by FAE altered the transcriptome in POMC neurons and induced a hyperresponse to stress in adulthood. These long-lasting epigenetic changes influenced subsequent generations via the male germline. We also demonstrated that the epigenetic programming of the POMC system by FAE was reversed in adulthood with the application of the inhibitors of DNA methylation or histone modifications. Thus, prenatal environmental influences, such as alcohol exposure, could epigenetically modulate POMC neuronal circuits and function to shape adult behavioral patterns. Identifying specific epigenetic factors in hypothalamic POMC neurons that are modulated by fetal alcohol and target Pomc gene could be potentially useful for the development of new therapeutic approaches to treat stress-related diseases in patients with fetal alcohol spectrum disorders.

  2. Decoding Ventromedial Hypothalamic Neural Activity during Male Mouse Aggression

    PubMed Central

    Dollar, Piotr; Perona, Pietro

    2014-01-01

    The ventromedial hypothalamus, ventrolateral area (VMHvl) was identified recently as a critical locus for inter-male aggression. Optogenetic stimulation of VMHvl in male mice evokes attack toward conspecifics and inactivation of the region inhibits natural aggression, yet very little is known about its underlying neural activity. To understand its role in promoting aggression, we recorded and analyzed neural activity in the VMHvl in response to a wide range of social and nonsocial stimuli. Although response profiles of VMHvl neurons are complex and heterogeneous, we identified a subpopulation of neurons that respond maximally during investigation and attack of male conspecific mice and during investigation of a source of male mouse urine. These “male responsive” neurons in the VMHvl are tuned to both the inter-male distance and the animal's velocity during attack. Additionally, VMHvl activity predicts several parameters of future aggressive action, including the latency and duration of the next attack. Linear regression analysis further demonstrates that aggression-specific parameters, such as distance, movement velocity, and attack latency, can model ongoing VMHvl activity fluctuation during inter-male encounters. These results represent the first effort to understand the hypothalamic neural activity during social behaviors using quantitative tools and suggest an important role for the VMHvl in encoding movement, sensory, and motivation-related signals. PMID:24760856

  3. Dopamine Autoreceptor Regulation of a Hypothalamic Dopaminergic Network

    PubMed Central

    Stagkourakis, Stefanos; Kim, Hoseok; Lyons, David J.; Broberger, Christian

    2016-01-01

    Summary How autoreceptors contribute to maintaining a stable output of rhythmically active neuronal circuits is poorly understood. Here, we examine this issue in a dopamine population, spontaneously oscillating hypothalamic rat (TIDA) neurons, that underlie neuroendocrine control of reproduction and neuroleptic side effects. Activation of dopamine receptors of the type 2 family (D2Rs) at the cell-body level slowed TIDA oscillations through two mechanisms. First, they prolonged the depolarizing phase through a combination of presynaptic increases in inhibition and postsynaptic hyperpolarization. Second, they extended the discharge phase through presynaptic attenuation of calcium currents and decreased synaptic inhibition. Dopamine reuptake blockade similarly reconfigured the oscillation, indicating that ambient somatodendritic transmitter concentration determines electrical behavior. In the absence of D2R feedback, however, discharge was abolished by depolarization block. These results indicate the existence of an ultra-short feedback loop whereby neuroendocrine dopamine neurons tune network behavior to echoes of their own activity, reflected in ambient somatodendritic dopamine, and also suggest a mechanism for antipsychotic side effects. PMID:27149844

  4. Nicotinic α4 Receptor-Mediated Cholinergic Influences on Food Intake and Activity Patterns in Hypothalamic Circuits.

    PubMed

    García, Ana P; Aitta-aho, Teemu; Schaaf, Laura; Heeley, Nicholas; Heuschmid, Lena; Bai, Yunjing; Barrantes, Francisco J; Apergis-Schoute, John

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) play an important role in regulating appetite and have been shown to do so by influencing neural activity in the hypothalamus. To shed light on the hypothalamic circuits governing acetylcholine's (ACh) regulation of appetite this study investigated the influence of hypothalamic nAChRs expressing the α4 subunit. We found that antagonizing the α4β2 nAChR locally in the lateral hypothalamus with di-hydro-ß-erythroidine (DHβE), an α4 nAChR antagonist with moderate affinity, caused an increase in food intake following free access to food after a 12 hour fast, compared to saline-infused animals. Immunocytochemical analysis revealed that orexin/hypocretin (HO), oxytocin, and tyrosine hydroxylase (TH)-containing neurons in the A13 and A12 of the hypothalamus expressed the nAChR α4 subunit in varying amounts (34%, 42%, 50%, and 51%, respectively) whereas melanin concentrating hormone (MCH) neurons did not, suggesting that DHβE-mediated increases in food intake may be due to a direct activation of specific hypothalamic circuits. Systemic DHβE (2 mg/kg) administration similarly increased food intake following a 12 hour fast. In these animals a subpopulation of orexin/hypocretin neurons showed elevated activity compared to control animals and MCH neuronal activity was overall lower as measured by expression of the immediate early gene marker for neuronal activity cFos. However, oxytocin neurons in the paraventricular hypothalamus and TH-containing neurons in the A13 and A12 did not show differential activity patterns. These results indicate that various neurochemically distinct hypothalamic populations are under the influence of α4β2 nAChRs and that cholinergic inputs to the lateral hypothalamus can affect satiety signals through activation of local α4β2 nAChR-mediated transmission.

  5. Molecular Approach to Hypothalamic Rhythms

    DTIC Science & Technology

    1998-06-24

    expressed predominanyly by cortical and hippocampal interneurons that affects the onset of slow-wave sleep. To learn about the cellular mechanisms of...partially overlap with those expressing somatostatin. A significant percentage of cortistatin-positive neurons is also positive for parvalbumin . In...the rat, mouse preprocortistatin mRNA is present in GABAergic interneurons in the cerebral cortex and hippocampus. The preprocortistatin gene

  6. Molecular Approach to Hypothalamic Rhythms

    DTIC Science & Technology

    1994-03-14

    in vitro to Targeted Cloning Strategy for reset or phase shift circadian rhythms of neuronal G Protein-Coupled Receptors activity in the SCN (Prosser...behavioral circadian rhythms . Light, serotonin and melatonin are the dominant stimuli which affect the phase of the endogenous clock. The grantee has devised...shifting the phase of circadian rhythms , and to rule out the prevailing alternative hypothesis that the effect was mediated by the 5-HT1A receptor coupled

  7. Bardoxolone methyl prevents obesity and hypothalamic dysfunction.

    PubMed

    Camer, Danielle; Yu, Yinghua; Szabo, Alexander; Wang, Hongqin; Dinh, Chi H L; Huang, Xu-Feng

    2016-08-25

    High-fat (HF) diet-induced obesity is associated with hypothalamic leptin resistance and low grade chronic inflammation, which largely impairs the neuroregulation of negative energy balance. Neuroregulation of negative energy balance is largely controlled by the mediobasal and paraventricular nuclei regions of the hypothalamus via leptin signal transduction. Recently, a derivative of oleanolic acid, bardoxolone methyl (BM), has been shown to have anti-inflammatory effects. We tested the hypothesis that BM would prevent HF diet-induced obesity, hypothalamic leptin resistance, and inflammation in mice fed a HF diet. Oral administration of BM via drinking water (10 mg/kg daily) for 21 weeks significantly prevented an increase in body weight, energy intake, hyperleptinemia, and peripheral fat accumulation in mice fed a HF diet. Furthermore, BM treatment prevented HF diet-induced decreases in the anorexigenic effects of peripheral leptin administration. In the mediobasal and paraventricular nuclei regions of the hypothalamus, BM administration prevented HF diet-induced impairments of the downstream protein kinase b (Akt) pathway of hypothalamic leptin signalling. BM treatment also prevented an increase in inflammatory cytokines, tumour necrosis factor alpha (TNFα) and interleukin 6 (IL-6) in these two hypothalamic regions. These results identify a potential novel neuropharmacological application for BM in preventing HF diet-induced obesity, hypothalamic leptin resistance, and inflammation.

  8. Hypothalamic dysfunction following whole-brain irradiation

    SciTech Connect

    Mechanick, J.I.; Hochberg, F.H.; LaRocque, A.

    1986-10-01

    The authors describe 15 cases with evidence of hypothalamic dysfunction 2 to 9 years following megavoltage whole-brain x-irradiation for primary glial neoplasm. The patients received 4000 to 5000 rads in 180- to 200-rad fractions. Dysfunction occurred in the absence of computerized tomography-delineated radiation necrosis or hypothalamic invasion by tumor, and antedated the onset of dementia. Fourteen patients displayed symptoms reflecting disturbances of personality, libido, thirst, appetite, or sleep. Hyperprolactinemia (with prolactin levels up to 70 ng/ml) was present in all of the nine patients so tested. Of seven patients tested with thyrotropin-releasing hormone, one demonstrated an abnormal pituitary gland response consistent with a hypothalamic disorder. Seven patients developed cognitive abnormalities. Computerized tomography scans performed a median of 4 years after tumor diagnosis revealed no hypothalamic tumor or diminished density of the hypothalamus. Cortical atrophy was present in 50% of cases and third ventricular dilatation in 58%. Hypothalamic dysfunction, heralded by endocrine, behavioral, and cognitive impairment, represents a common, subtle form of radiation damage.

  9. Neuroanatomy and physiology of the avian hypothalamic/pituitary axis: clinical aspects.

    PubMed

    Ritchie, Midge

    2014-01-01

    This article describes the anatomy of the avian hypothalamic/pituitary axis, the hypothalamic-pituitary-thyroid axis, the hypothalamic-pituitary-adrenal axis, the hypothalamic-pituitary-gonadal axis, the somatotrophic axis, and neurohypophysis.

  10. Pacemaking Kisspeptin Neurons

    PubMed Central

    Kelly, Martin J.; Zhang, Chunguang; Qiu, Jian; Rønnekleiv, Oline K.

    2013-01-01

    Kisspeptin (Kiss1) neurons are vital for reproduction. GnRH neurons express the kisspeptin receptor, GPR 54, and kisspeptins potently stimulate the release of GnRH by depolarising and inducing sustained action potential firing in GnRH neurons. As such Kiss1 neurons may be the pre-synaptic pacemaker neurons in the hypothalamic circuitry that controls reproduction. There are at least two different populations of Kiss1 neurons: one in the rostral periventricular area (RP3V) that is stimulated by oestrogens and the other in the arcuate nucleus that is inhibited by oestrogens. How each of these Kiss1 neuronal populations participate in the regulation of the reproductive cycle is currently under intense investigation. Based on electrophysiological studies in the guinea pig and mouse, Kiss1 neurons in general are capable of generating burst firing behavior. Essentially all Kiss1 neurons, which have been studied thus far in the arcuate nucleus, express the ion channels necessary for burst firing, which include hyperpolarization-activated, cyclic nucleotide gated cation (HCN) channels and the T-type calcium (Cav3.1) channels. Under voltage clamp conditions, these channels produce distinct currents that under current clamp conditions can generate burst firing behavior. The future challenge is to identify other key channels and synaptic inputs involved in the regulation of the firing properties of Kiss1 neurons and the physiological regulation of the expression of these channels and receptors by oestrogens and other hormones. The ultimate goal is to understand how Kiss1 neurons control the different phases of GnRH neurosecretion and hence reproduction. PMID:23884368

  11. Decreased leptin uptake in hypothalamic nuclei with ageing in Wistar rats.

    PubMed

    Fernández-Galaz, C; Fernández-Agulló, T; Campoy, F; Arribas, C; Gallardo, N; Andrés, A; Ros, M; Carrascosa, J M

    2001-10-01

    Leptin interacts with specific receptors in hypothalamic nuclei and modulates energy balance. Growing evidence has shown the association of obesity and hyperleptinaemia with non-insulin-dependent diabetes mellitus and insulin resistance. The aged Wistar rat shows peripheral insulin resistance in the absence of obesity and alterations of glucose homeostasis. However, it is not known whether, in these animals, the leptin action is altered. Here we studied the effect of ageing on plasma leptin concentration and the ability of hypothalamic nuclei to capture i.c.v.-injected digoxigenin-labelled leptin. Our data indicate that 24-month-old animals are hyperleptinaemic. However, daily food intake was greater in old animals, suggesting that they are leptin resistant. Leptin uptake in the hypothalamus was reduced in old rats. This uptake was a receptor-mediated process as demonstrated by displacement. Leptin accumulation in hypothalamic nuclei was partially colocalized with neuropeptide Y fibres. Immunohistochemical and western blot analyses showed a lower amount of the long form of leptin receptors in the hypothalamus of aged rats. Analysis by RT-PCR also demonstrated a decreased expression of leptin receptor mRNA in old animals. We conclude that the lower leptin uptake may be explained, at least in part, by a decreased amount of receptors in hypothalamic neurones of the aged rats.

  12. Improved metabolic phenotype of hypothalamic PTP1B-deficiency is dependent upon the leptin receptor☆

    PubMed Central

    Tsou, Ryan C.; Rak, Kimberly S.; Zimmer, Derek J.; Bence, Kendra K.

    2014-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is a known regulator of central metabolic signaling, and mice with whole brain-, leptin receptor (LepRb) expressing cell-, or proopiomelanocortin neuron-specific PTP1B-deficiency are lean, leptin hypersensitive, and display improved glucose homeostasis. However, whether the metabolic effects of central PTP1B-deficiency are due to action within the hypothalamus remains unclear. Moreover, whether or not these effects are exclusively due to enhanced leptin signaling is unknown. Here we report that mice with hypothalamic PTP1B-deficiency (Nkx2.1-PTP1B–/–) display decreased body weight and adiposity on high-fat diet with no associated improvements in glucose tolerance. Consistent with previous reports, we find that hypothalamic deletion of the LepRb in mice (Nkx2.1-LepRb–/–) results in extreme hyperphagia and obesity. Interestingly, deletion of hypothalamic PTP1B and LepRb (Nkx2.1-PTP1B–/–:LepRb–/–) does not rescue the hyperphagia or obesity of Nkx2.1-LepRb–/– mice, suggesting that hypothalamic PTP1B contributes to the central control of energy balance through a leptin receptor-dependent pathway. PMID:24749060

  13. Sonic hedgehog lineage in the mouse hypothalamus: from progenitor domains to hypothalamic regions

    PubMed Central

    2012-01-01

    Background The hypothalamus is a brain region with essential functions for homeostasis and energy metabolism, and alterations of its development can contribute to pathological conditions in the adult, like hypertension, diabetes or obesity. However, due to the anatomical complexity of the hypothalamus, its development is not well understood. Sonic hedgehog (Shh) is a key developmental regulator gene expressed in a dynamic pattern in hypothalamic progenitor cells. To obtain insight into hypothalamic organization, we used genetic inducible fate mapping (GIFM) to map the lineages derived from Shh-expressing progenitor domains onto the four rostrocaudally arranged hypothalamic regions: preoptic, anterior, tuberal and mammillary. Results Shh-expressing progenitors labeled at an early stage (before embryonic day (E)9.5) contribute neurons and astrocytes to a large caudal area including the mammillary and posterior tuberal regions as well as tanycytes (specialized median eminence glia). Progenitors labeled at later stages (after E9.5) give rise to neurons and astrocytes of the entire tuberal region and in particular the ventromedial nucleus, but not to cells in the mammillary region and median eminence. At this stage, an additional Shh-expressing domain appears in the preoptic area and contributes mostly astrocytes to the hypothalamus. Shh-expressing progenitors do not contribute to the anterior region at any stage. Finally, we show a gradual shift from neurogenesis to gliogenesis, so that progenitors expressing Shh after E12.5 generate almost exclusively hypothalamic astrocytes. Conclusions We define a fate map of the hypothalamus, based on the dynamic expression of Shh in the hypothalamic progenitor zones. We provide evidence that the large neurogenic Shh-expressing progenitor domains of the ventral diencephalon are continuous with those of the midbrain. We demonstrate that the four classical transverse zones of the hypothalamus have clearly defined progenitor domains

  14. Depolarizing stimuli cause persistent and selective loss of orexin in rat hypothalamic slice culture.

    PubMed

    Katsuki, Hiroshi; Kurosu, Shinsuke; Michinaga, Shotaro; Hisatsune, Akinori; Isohama, Yoichiro; Izumi, Yasuhiko; Kume, Toshiaki; Akaike, Akinori

    2010-06-01

    A hypothalamic neuropeptide orexin (hypocretin) is a critical regulator of physiological processes including sleep/wakefulness and feeding. Using organotypic slice culture of rat hypothalamus, we found that exposure to elevated extracellular concentration of K(+) (+10-30 mM) for 24-72h led to a substantial decrease in the number of neurons immunoreactive for orexin and a co-existing neuropeptide dynorphin-A. In contrast, the same treatment affected neither the number of melanin-concentrating hormone-immunoreactive neurons nor the number of total neurons. A substantial decrease of orexin-immunoreactive neurons was also induced by 72h treatment with 1-10 microM veratridine, a Na(+) channel activator. The effect of elevated K(+) was only partially reversible, and that of veratridine was virtually irreversible, although the decrease in orexin immunoreactivity was not associated with signs of cell damage assessed by propidium iodide uptake and Hoechst 33342 nuclear staining. In addition, the level of preproorexin mRNA did not decrease during treatment with elevated K(+) or veratridine. After treatment with elevated K(+) and veratridine, c-Fos immunoreactivity appeared in orexin-immunoreactive neurons but not in melanin-concentrating hormone-immunoreactive neurons, suggesting selective excitation of orexin neurons. However, the amount of orexin released extracellularly was paradoxically decreased by treatment with elevated K(+) and veratridine. Overall, these characteristics of orexin neurons may be taken into consideration to understand the behaviors of these neurons under physiological and pathophysiological conditions.

  15. Hindbrain lactostasis regulates hypothalamic AMPK activity and metabolic neurotransmitter mRNA and protein responses to hypoglycemia.

    PubMed

    Gujar, Amit D; Ibrahim, Baher A; Tamrakar, Pratistha; Cherian, Ajeesh Koshy; Briski, Karen P

    2014-04-01

    Nerve cell metabolic activity is monitored in multiple brain regions, including the hypothalamus and hindbrain dorsal vagal complex (DVC), but it is unclear if individual metabolosensory loci operate autonomously or interact to coordinate central nervous system (CNS) reactivity to energy imbalance. This research addressed the hypothesis that hypoglycemia-associated DVC lactoprivation stimulates hypothalamic AMPK activity and metabolic neurotransmitter expression. As DVC catecholaminergic neurons express biomarkers for metabolic monitoring, we investigated whether these cells are a source of lactate deficit signaling to the hypothalamus. Caudal fourth ventricle (CV4) infusion of the glucose metabolite l-lactate during insulin-induced hypoglycemia reversed changes in DVC A2 noradrenergic, arcuate neuropeptide Y (NPY) and pro-opiomelanocortin (POMC), and lateral hypothalamic orexin-A (ORX) neuronal AMPK activity, coincident with exacerbation of hypoglycemia. Hindbrain lactate repletion also blunted hypoglycemic upregulation of arcuate NPY mRNA and protein. This treatment did not alter hypoglycemic paraventricular oxytocin (OT) and lateral hypothalamic ORX mRNA profiles, but exacerbated or reversed adjustments in OT and ORX neuropeptide synthesis, respectively. CV4 delivery of the monocarboxylate transporter inhibitor, 4-CIN, increased A2 phosphoAMPK (pAMPK), elevated circulating glucose, and stimulated feeding, responses that were attenuated by 6-hydroxydopamine pretreatment. 4-CIN-infused rats exhibited increased (NPY, ORX neurons) or decreased (POMC neurons) pAMPK concurrent with hyperglycemia. These data show that hindbrain lactoprivic signaling regulates hypothalamic AMPK and key effector neurotransmitter responses to hypoglycemia. Evidence that A2 AMPK activity is lactate-dependent, and that DVC catecholamine cells are critical for lactoprivic control of glucose, feeding, and hypothalamic AMPK, implies A2 derivation of this metabolic regulatory stimulus.

  16. Psychogenic gelastic seizures in a patient with hypothalamic hamartoma.

    PubMed

    Scarella, Timothy; Macken, Michael P; Gerard, Elizabeth; Schuele, Stephan U

    2012-06-01

    Gelastic seizures are classically associated with hypothalamic hamartoma. The most effective treatment for gelastic epilepsy is surgery, although confirming that a hypothalamic hamartoma is an epileptic lesion prior to surgical intervention is challenging. Here, we report the case of a patient with a hypothalamic hamartoma who was diagnosed with psychogenic non-epileptic gelastic seizures using video-EEG monitoring. [Published with video sequences].

  17. Electrical Interactions Between Mammalian Cortical Neurons

    DTIC Science & Technology

    1988-09-28

    nuclei. Kynurenic acid and Dtf-glutamylglycine (broad-spectrum EAA antagonists) reduced EPSPs in supraoptic neurons, while N-methyl-D-aspartate (NMDA...antagonists had relatively little effect on EPSPs . Other studies showed that kynurenic acid had dose-dependent effects on EPSPs of at least two types of...The primary method has been to examine the effects of EAA antagonists on EPSPs of hypothalamic neurons. Finally, another objective is to ascertain

  18. Ghrelin in Central Neurons

    PubMed Central

    Ferrini, F; Salio, C; Lossi, L; Merighi, A

    2009-01-01

    Ghrelin, an orexigenic peptide synthesized by endocrine cells of the gastric mucosa, is released in the bloodstream in response to a negative energetic status. Since discovery, the hypothalamus was identified as the main source of ghrelin in the CNS, and effects of the peptide have been mainly observed in this area of the brain. In recent years, an increasing number of studies have reported ghrelin synthesis and effects in specific populations of neurons also outside the hypothalamus. Thus, ghrelin activity has been described in midbrain, hindbrain, hippocampus, and spinal cord. The spectrum of functions and biological effects produced by the peptide on central neurons is remarkably wide and complex. It ranges from modulation of membrane excitability, to control of neurotransmitter release, neuronal gene expression, and neuronal survival and proliferation. There is not at present a general consensus concerning the source of ghrelin acting on central neurons. Whereas it is widely accepted that the hypothalamus represents the most important endogenous source of the hormone in CNS, the existence of extra-hypothalamic ghrelin-synthesizing neurons is still controversial. In addition, circulating ghrelin can theoretically be another natural ligand for central ghrelin receptors. This paper gives an overview on the distribution of ghrelin and its receptor across the CNS and critically analyses the data available so far as regarding the effects of ghrelin on central neurotransmission. PMID:19721816

  19. Ghrelin in central neurons.

    PubMed

    Ferrini, F; Salio, C; Lossi, L; Merighi, A

    2009-03-01

    Ghrelin, an orexigenic peptide synthesized by endocrine cells of the gastric mucosa, is released in the bloodstream in response to a negative energetic status. Since discovery, the hypothalamus was identified as the main source of ghrelin in the CNS, and effects of the peptide have been mainly observed in this area of the brain. In recent years, an increasing number of studies have reported ghrelin synthesis and effects in specific populations of neurons also outside the hypothalamus. Thus, ghrelin activity has been described in midbrain, hindbrain, hippocampus, and spinal cord. The spectrum of functions and biological effects produced by the peptide on central neurons is remarkably wide and complex. It ranges from modulation of membrane excitability, to control of neurotransmitter release, neuronal gene expression, and neuronal survival and proliferation. There is not at present a general consensus concerning the source of ghrelin acting on central neurons. Whereas it is widely accepted that the hypothalamus represents the most important endogenous source of the hormone in CNS, the existence of extra-hypothalamic ghrelin-synthesizing neurons is still controversial. In addition, circulating ghrelin can theoretically be another natural ligand for central ghrelin receptors. This paper gives an overview on the distribution of ghrelin and its receptor across the CNS and critically analyses the data available so far as regarding the effects of ghrelin on central neurotransmission.

  20. Cross-talk between metabolism and reproduction: The role of POMC and SF1 neurons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy homeostasis and reproduction require tight coordination, but the mechanisms underlying their interaction are not fully understood. Two sets of hypothalamic neurons, namely pro-opiomelanocortin (POMC) neurons in the arcuate nucleus and steroidogenic factor-1 (SF1) neurons in the ventromedial h...

  1. Immunoglobulin therapy in idiopathic hypothalamic dysfunction.

    PubMed

    Huppke, Peter; Heise, Alexander; Rostasy, Kevin; Huppke, Brenda; Gärtner, Jutta

    2009-09-01

    Idiopathic hypothalamic dysfunction is a rare disorder presenting at age 3-7 years. Severe hypothalamic and brainstem dysfunction leads to death in 25% of patients. The disease is presumed to be autoimmune, or in some cases paraneoplastic. No successful treatment has been reported. Patient V. developed hyperphagia, hypersomnia, and extreme aggression at age 7 years, accompanied by episodes of hyperthermia, hypothermia, sinus bradycardia, hypernatremia, hyponatremia, persistent hyperprolactinemia, hypothyroidism, and growth-hormone deficiency. At age 9 years, a diagnosis of idiopathic hypothalamic dysfunction was rendered, and immunoglobulin therapy was commenced. Nine courses of immunoglobulins, at a dose of 2 g/kg every 4 weeks, were administered. Reproducible improvements in behavior and no further episodes of hyponatremia or hypernatremia and sinus bradycardia were evident. The endocrinologic abnormalities and poor thermoregulation remained. Administration of immunoglobulins during late stages of idiopathic hypothalamic dysfunction led to improvement in some but not all signs. Assuming an autoimmune basis for this disorder, treatment during early stages of disease should be more effective. To facilitate such early treatment, increased awareness of this disorder is necessary, to allow for early diagnosis.

  2. Gelastic seizures: not always hypothalamic hamartoma.

    PubMed

    Cheung, Christina S; Parrent, Andrew G; Burneo, Jorge G

    2007-12-01

    Gelastic seizures are often associated with hypothalamic hamartomas. However, focal cortical dysplasias can also cause "laughing seizures", and such cases can be difficult to localize with EEG. This case report presents a 29-year-old woman who was successfully rendered free of gelastic seizures after resection of a frontal cortical dysplasia, localized through MRI and SPECT imaging.[Published with video sequences].

  3. Flatfish metamorphosis: a hypothalamic independent process?

    PubMed

    Campinho, Marco A; Silva, Nadia; Roman-Padilla, Javier; Ponce, Marian; Manchado, Manuel; Power, Deborah M

    2015-03-15

    Anuran and flatfish metamorphosis are tightly regulated by thyroid hormones that are the necessary and sufficient factors that drive this developmental event. In the present study whole mount in situ hybridization (WISH) and quantitative PCR in sole are used to explore the central regulation of flatfish metamorphosis. Central regulation of the thyroid in vertebrates is mediated by the hypothalamus-pituitary-thyroid (HPT) axis. Teleosts diverge from other vertebrates as hypothalamic regulation in the HPT axis is proposed to be through hypothalamic inhibition although the regulatory factor remains enigmatic. The dynamics of the HPT axis during sole metamorphosis revealed integration between the activity of the thyrotrophes in the pituitary and the thyroid follicles. No evidence was found supporting a role for thyroid releasing hormone (trh) or corticotrophin releasing hormone (crh) in hypothalamic control of TH production during sole metamorphosis. Intriguingly the results of the present study suggest that neither hypothalamic trh nor crh expression changes during sole metamorphosis and raises questions about the role of these factors and the hypothalamus in regulation of thyrotrophs.

  4. Hyperprolactinemia from radiation-induced hypothalamic hypopituitarism

    SciTech Connect

    Corkill, G.; Hanson, F.W.; Gold, E.M.; White, V.A.

    1980-01-01

    In 1975 Samaan et al., described the effects of radiation damage of the hypothalamus in 15 patients with head and neck cancer. Shalet et al., in 1977 described endocrine morbidity in adults who as children had been irradiated for brain tumors. This report describes instances of hyperprolactinemia and associated hypothalamic, pituitary, and thyroid dysfunction following irradiation of a young adult female for brain neoplasia.

  5. [Changes in the cholecystokinin-synthetizing hypothalamic system during experimental diabetes mellitus in rats].

    PubMed

    Abramov, A V; Kolesnik, Iu M; Trzhetsinskiĭ, S D; Orlovskiĭ, M A

    1998-01-01

    The investigation was performed in 96 Wistar rats. Diabetes mellitus was induced by single injection of 50 mg/kg of streptozotocin. Cholecystokinin (CCK) synthesizing neurons were identified in hypothalamic structures using indirect immunofluorescence. In latent period of diabetes (2 wks) number of CCK--immunopositive neurons increases, especially in paraventricular and suprachiasmatic nuclei, while in ventrolateral subnucleus of arcuate nucleus and parvicellular subnucleus of paraventricular nucleus areas occupied by immunoreactive material in neurons and their CCK content are reduced. By the end of wk 5 of the disease increase in number of CCK immunopositive neurons was registered only in medial parvicellular subnucleus of paraventricular nucleus whereas in other structures their number was reduced. The administration of CCK to intact animals causes increase of insulin content in endocrinocytes of pancreatic islets, but does not affect the level of hypoglycemia. The administration of the peptide to animals with diabetes leads to destruction of pancreatic islets, decline in endocrinocyte number and insulin content and marked hypoglycemia. Thus, the data obtained indicate the significant role of hypothalamic peptidergic system and CCK in regulation of beta-endocrinocyte function.

  6. [Role of the medial region of the hypothalamus in regulating the activity of the respiratory neurons of the medulla oblongata].

    PubMed

    Baklavadzhian, O G; Nersesian, L B

    1976-10-01

    The influence of high frequency stimulation of postero- and anteromedial hypothalamic regions on the activity of single neurons of the bulbar respiratory center was studied in anesthetized cats with normal respiration. No strictly localized facilitatory or inhibitory points were found in these regions. Excitatory as well as inhibitory descending pathways were activated by the hypothalamic stimulation. The effect was mainly facilitating. The excitatory and inhibitory influences of the medial hypothalamus modulated spike activity of both inspiratory and expiratory neurons of the bulbar respiratory center. Some functional aspects of the mechanism for hypothalamic regulation of the activity of bulbar respiratory neurons are discussed.

  7. Hypothalamic responses to fasting indicate metabolic reprogramming away from glycolysis toward lipid oxidation.

    PubMed

    Poplawski, Michal M; Mastaitis, Jason W; Yang, Xue-Jun; Mobbs, Charles V

    2010-11-01

    Nutrient-sensitive hypothalamic neurons regulate energy balance and glucose homeostasis, but the molecular mechanisms mediating hypothalamic responses to nutritional state remain incompletely characterized. To address these mechanisms, the present studies used quantitative PCR to characterize the expression of a panel of genes the hypothalamic expression by nutritional status of which had been suggested by DNA microarray studies. Although these genes regulate a variety of function, the most prominent set regulate intermediary metabolism, and the overall pattern clearly indicated that a 48-h fast produced a metabolic reprogramming away from glucose metabolism and toward the utilization of alternative fuels, particularly lipid metabolism. This general reprogramming of intermediary metabolism by fasting was observed both in cortex and hypothalamus but most prominently in hypothalamus. The effect of fasting on the expression of these genes may be mediated by reduction in plasma glucose or glucose metabolism, rather than leptin, because they were generally recapitulated by hypoglycemia even in the presence of elevated insulin and in vitro by low glucose but were not recapitulated in ob/ob mice. These studies suggest that fasting reduces glucose metabolism and thus minimizes the production of hypothalamic malonyl-coenzyme A. However, because the reprogramming of glucose metabolism by fasting was also observed in cortex, this apparent substrate competition may mediate more general responses to nutritional deprivation, including those responsible for the protective effects of dietary restriction. The present studies also provide a large panel of novel glucose-regulated genes that can be used as markers of glucose action to address mechanisms mediating hypothalamic responses to nutritional state.

  8. Inhibition of deprivation-induced food intake by GABAA antagonists: roles of the hypothalamic, endocrine and alimentary mechanisms

    PubMed Central

    Kamatchi, Ganesan L.; Rathanaswami, Palaniswami

    2012-01-01

    The role of gamma amino butyric acid A receptors/neurons of the hypothalamic, endocrine and alimentary systems in the food intake seen in hunger was studied in 20 h food-deprived rats. Food deprivation decreased blood glucose, serum insulin and produced hyperphagia. The hyperphagia was inhibited by subcutaneous or ventromedial hypothalamic administration of gamma amino butyric acid A antagonists picrotoxin or bicuculline. Although results of blood glucose was variable, insulin level was increased by picrotoxin or bicuculline. In contrast, lateral hypothalamic administration of these agents failed to reproduce the above changes. Subcutaneous administration of picrotoxin or bicuculline increased gastric content, decreased gastric motility and small bowel transit. In contrast, ventromedial or lateral hypothalamic administration of picrotoxin or bicuculline failed to alter the gastric content but decreased the small bowel transit. The results of alimentary studies suggest that gamma amino butyric acid neurons of both ventromedial and lateral hypothalamus selectively regulate small bowel transit but not the gastric content. It may be concluded that ventromedial hypothalamus plays a dominant role in the regulation of food intake and that picrotoxin or bicuculline inhibited food intake by inhibiting gamma amino butyric acid receptors of the ventromedial hypothalamus, increasing insulin level and decreasing the gut motility. PMID:22798708

  9. Prenatal fat-rich diet exposure alters responses of embryonic neurons to the chemokine, CCL2, in the hypothalamus.

    PubMed

    Poon, K; Abramova, D; Ho, H T; Leibowitz, S

    2016-06-02

    Maternal consumption of a high-fat diet (HFD) during pregnancy is found to stimulate the genesis of hypothalamic orexigenic peptide neurons in the offspring, while HFD intake in adult animals produces a systemic low-grade inflammation which increases neuroimmune factors that may affect neurogenesis and neuronal migration. Building on this evidence and our recent study showing that the inflammatory chemokine, CCL2, stimulates the migration of hypothalamic neurons and expression of orexigenic neuropeptides, we tested here the possibility that prenatal exposure to a HFD in rats affects this chemokine system, both CCL2 and its receptors, CCR2 and CCR4, and alters its actions on hypothalamic neurons, specifically those expressing the neuropeptides, enkephalin (ENK) and galanin (GAL). Using primary dissociated hypothalamic neurons extracted from embryos on embryonic day 19, we found that prenatal HFD exposure compared to chow control actually reduces the expression of CCL2 in these hypothalamic neurons, while increasing CCR2 and CCR4 expression, and also reduces the sensitivity of hypothalamic neurons to CCL2. The HFD abolished the dose-dependent, stimulatory effect of CCL2 on the number of migrated neurons and even shifted its normal stimulatory effect on migrational velocity and distance traveled by control neurons to an inhibition of migration. Further, it abolished the dose-dependent, stimulatory effect of CCL2 on neuronal expression of ENK and GAL. These results demonstrate that prenatal HFD exposure greatly disturbs the functioning of the CCL2 chemokine system in embryonic hypothalamic neurons, reducing its endogenous levels and ability to promote the migration of neurons and their expression of orexigenic peptides.

  10. A New Population of Parvocellular Oxytocin Neurons Controlling Magnocellular Neuron Activity and Inflammatory Pain Processing.

    PubMed

    Eliava, Marina; Melchior, Meggane; Knobloch-Bollmann, H Sophie; Wahis, Jérôme; da Silva Gouveia, Miriam; Tang, Yan; Ciobanu, Alexandru Cristian; Triana del Rio, Rodrigo; Roth, Lena C; Althammer, Ferdinand; Chavant, Virginie; Goumon, Yannick; Gruber, Tim; Petit-Demoulière, Nathalie; Busnelli, Marta; Chini, Bice; Tan, Linette L; Mitre, Mariela; Froemke, Robert C; Chao, Moses V; Giese, Günter; Sprengel, Rolf; Kuner, Rohini; Poisbeau, Pierrick; Seeburg, Peter H; Stoop, Ron; Charlet, Alexandre; Grinevich, Valery

    2016-03-16

    Oxytocin (OT) is a neuropeptide elaborated by the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. Magnocellular OT neurons of these nuclei innervate numerous forebrain regions and release OT into the blood from the posterior pituitary. The PVN also harbors parvocellular OT cells that project to the brainstem and spinal cord, but their function has not been directly assessed. Here, we identified a subset of approximately 30 parvocellular OT neurons, with collateral projections onto magnocellular OT neurons and neurons of deep layers of the spinal cord. Evoked OT release from these OT neurons suppresses nociception and promotes analgesia in an animal model of inflammatory pain. Our findings identify a new population of OT neurons that modulates nociception in a two tier process: (1) directly by release of OT from axons onto sensory spinal cord neurons and inhibiting their activity and (2) indirectly by stimulating OT release from SON neurons into the periphery.

  11. Fetal Alcohol Programming of Hypothalamic Proopiomelanocortin System by Epigenetic Mechanisms and Later Life Vulnerability to Stress

    PubMed Central

    Bekdash, Rola; Zhang, Changqing; Sarkar, Dipak

    2014-01-01

    Hypothalamic proopiomelanocortin (POMC) neurons, one of the major regulators of the HPA axis, immune functions, and energy homeostasis, are vulnerable to the adverse effects of fetal alcohol exposure (FAE). These effects are manifested in POMC neurons by a decrease in Pomc gene expression, a decrement in the levels of its derived peptide β-endorphin (β-EP) and a dysregulation of the stress response in the adult offspring. The HPA axis is a major neuroendocrine system with pivotal physiological functions and mode of regulation. This system has been shown to be perturbed by prenatal alcohol exposure. It has been demonstrated that the perturbation of the HPA axis by FAE is long-lasting and is linked to molecular, neurophysiological and behavioral changes in exposed individuals. Recently, we showed that the dysregulation of the POMC system function by FAE is induced by epigenetic mechanisms such as hypermethylation of POMC gene promoter and an alteration in histone marks in POMC neurons. This developmental programming of the POMC system by FAE altered the transcriptome in POMC neurons and induced a hyperresponse to stress in adulthood. These long-lasting epigenetic changes influenced subsequent generations via the male germline. We also demonstrated that the epigenetic programming of the POMC system by FAE was reversed in adulthood with the application of the inhibitors of DNA methylation or histone modifications. Thus, prenatal environmental influences such as alcohol exposure could epigenetically modulate POMC neuronal circuits and function to shape adult behavioral patterns. Identifying specific epigenetic factors in hypothalamic POMC neurons that are modulated by fetal alcohol and target Pomc gene could be potentially useful for the development of new therapeutic approaches to treat stress-related diseases in patients with Fetal Alcohol Spectrum Disorders. PMID:25069392

  12. Organisation of the human dorsomedial hypothalamic nucleus.

    PubMed

    Koutcherov, Yuri; Mai, Juergen K; Ashwell, Ken W; Paxinos, George

    2004-01-19

    This study used acetylcholinesterase (AChE) histochemistry to reveal the organization of the dorsomedial hypothalamic nucleus (DM) in the human. Topographically, the human DM is similar to DM in the monkey and rat. It is wedged between the paraventricular nucleus, dorsally, and the ventromedial nucleus, ventrally. Laterally, DM borders the lateral hypothalamic area while medially it approaches the 3rd ventricle. The AChE staining distinguished two subcompartments of the human DM: the larger diffuse and the smaller compact DM. The subcompartmental organization of the human DM appears homologous to that found in the monkey and less complex than that reported in rats. Understanding of the organization of DM creates meaningful anatomical reference for physiological and pharmacological studies in the human hypothalamus.

  13. Hypothalamic NUCKS regulates peripheral glucose homoeostasis.

    PubMed

    Qiu, Beiying; Shi, Xiaohe; Zhou, Qiling; Chen, Hui Shan; Lim, Joy; Han, Weiping; Tergaonkar, Vinay

    2015-08-01

    Nuclear ubiquitous casein and cyclin-dependent kinase substrate (NUCKS) is highly expressed in the brain and peripheral metabolic organs, and regulates transcription of a number of genes involved in insulin signalling. Whole-body depletion of NUCKS (NKO) in mice leads to obesity, glucose intolerance and insulin resistance. However, a tissue-specific contribution of NUCKS to the observed phenotypes remains unknown. Considering the pivotal roles of insulin signalling in the brain, especially in the hypothalamus, we examined the functions of hypothalamic NUCKS in the regulation of peripheral glucose metabolism. Insulin signalling in the hypothalamus was impaired in the NKO mice when insulin was delivered through intracerebroventricular injection. To validate the hypothalamic specificity, we crossed transgenic mice expressing Cre-recombinase under the Nkx2.1 promoter with floxed NUCKS mice to generate mice with hypothalamus-specific deletion of NUCKS (HNKO). We fed the HNKO and littermate control mice with a normal chow diet (NCD) and a high-fat diet (HFD), and assessed glucose tolerance, insulin tolerance and metabolic parameters. HNKO mice showed mild glucose intolerance under an NCD, but exacerbated obesity and insulin resistance phenotypes under an HFD. In addition, NUCKS regulated levels of insulin receptor in the brain. Unlike HNKO mice, mice with immune-cell-specific deletion of NUCKS (VNKO) did not develop obesity or insulin-resistant phenotypes under an HFD. These studies indicate that hypothalamic NUCKS plays an essential role in regulating glucose homoeostasis and insulin signalling in vivo.

  14. Transient Receptor Potential Canonical 3 (TRPC3) Channels Are Required for Hypothalamic Glucose Detection and Energy Homeostasis.

    PubMed

    Chrétien, Chloé; Fenech, Claire; Liénard, Fabienne; Grall, Sylvie; Chevalier, Charlène; Chaudy, Sylvie; Brenachot, Xavier; Berges, Raymond; Louche, Katie; Stark, Romana; Nédélec, Emmanuelle; Laderrière, Amélie; Andrews, Zane B; Benani, Alexandre; Flockerzi, Veit; Gascuel, Jean; Hartmann, Jana; Moro, Cédric; Birnbaumer, Lutz; Leloup, Corinne; Pénicaud, Luc; Fioramonti, Xavier

    2017-02-01

    The mediobasal hypothalamus (MBH) contains neurons capable of directly detecting metabolic signals such as glucose to control energy homeostasis. Among them, glucose-excited (GE) neurons increase their electrical activity when glucose rises. In view of previous work, we hypothesized that transient receptor potential canonical type 3 (TRPC3) channels are involved in hypothalamic glucose detection and the control of energy homeostasis. To investigate the role of TRPC3, we used constitutive and conditional TRPC3-deficient mouse models. Hypothalamic glucose detection was studied in vivo by measuring food intake and insulin secretion in response to increased brain glucose level. The role of TRPC3 in GE neuron response to glucose was studied by using in vitro calcium imaging on freshly dissociated MBH neurons. We found that whole-body and MBH TRPC3-deficient mice have increased body weight and food intake. The anorectic effect of intracerebroventricular glucose and the insulin secretory response to intracarotid glucose injection are blunted in TRPC3-deficient mice. TRPC3 loss of function or pharmacological inhibition blunts calcium responses to glucose in MBH neurons in vitro. Together, the results demonstrate that TRPC3 channels are required for the response to glucose of MBH GE neurons and the central effect of glucose on insulin secretion and food intake.

  15. Hypothalamic tanycytes—masters and servants of metabolic, neuroendocrine, and neurogenic functions

    PubMed Central

    Goodman, Timothy; Hajihosseini, Mohammad K.

    2015-01-01

    There is a resurgent interest in tanycytes, a radial glial-like cell population occupying the floor and ventro-lateral walls of the third ventricle (3V). Tanycytes reside in close proximity to hypothalamic neuronal nuclei that regulate appetite and energy expenditure, with a subset sending projections into these nuclei. Moreover, tanycytes are exposed to 3V cerebrospinal fluid and have privileged access to plasma metabolites and hormones, through fenestrated capillaries. Indeed, some tanycytes act as conduits for trafficking of these molecules into the brain parenchyma. Tanycytes can also act as neural stem/progenitor cells, supplying the postnatal and adult hypothalamus with new neurons. Collectively, these findings suggest that tanycytes regulate and integrate important trophic and metabolic processes and possibly endow functional malleability to neuronal circuits of the hypothalamus. Hence, manipulation of tanycyte biology could provide a valuable tool for modulating hypothalamic functions such as energy uptake and expenditure in order to tackle prevalent eating disorders such as obesity and anorexia. PMID:26578855

  16. Electrophysiological properties and subunit composition of GABAA receptors in patients with gelastic seizures and hypothalamic hamartoma.

    PubMed

    Wu, Jie; Chang, Yongchang; Li, Guohui; Xue, Fenqin; DeChon, Jamie; Ellsworth, Kevin; Liu, Qiang; Yang, Kechun; Bahadroani, Nasim; Zheng, Chao; Zhang, Jianliang; Rekate, Harold; Rho, Jong M; Kerrigan, John F

    2007-07-01

    Abnormalities in GABA(A) receptor structure and/or function have been associated with various forms of epilepsy in both humans and animals. Whether this is true for patients with gelastic seizures and hypothalamic hamartoma (HH) is unknown. In this study, we characterized the pharmacological properties and native subunit composition of GABA(A) receptors on acutely dissociated single neurons from surgically resected HH tissues using patch-clamp, immunocytochemical, and RT-PCR techniques. We found that 1) GABA induced an inward current (I(GABA)) at a holding potential of -60 mV; 2) I(GABA) was mimicked by the GABA(A) receptor agonist muscimol and blocked by the GABA(A) receptor antagonist bicuculline, suggesting that I(GABA) was mediated principally through the GABA(A) receptor; 3) the EC(50) and Hill coefficient derived from the I(GABA) concentration-response curve were 6.8 muM and 1.9, respectively; 4) the current-voltage curve was linear at a reversal potential close to zero; and 5) I(GABA) exhibited low sensitivity to zinc and diazepam but higher sensitivity to pentobarbital and pregnanolone. Additionally, using Xenopus oocytes microtransplanted with normal human hypothalamic tissue, we confirmed that the functional properties of GABA(A) receptors were similar to those seen in small isolated HH neurons. Finally, the expression profile of GABA(A) receptor subunits obtained from normal control human hypothalamic tissue was identical to that from surgically resected human HH tissue. Taken together, our data indicate that GABA(A) receptors on small HH neurons exhibit normal pharmacosensitivity and subunit composition. These findings bear relevance to a broader understanding of inhibitory neurotransmission in human HH tissue.

  17. A rapid interference between glucocorticoids and cAMP-activated signalling in hypothalamic neurones prevents binding of phosphorylated cAMP response element binding protein and glucocorticoid receptor at the CRE-Like and composite GRE sites of thyrotrophin-releasing hormone gene promoter.

    PubMed

    Díaz-Gallardo, M Y; Cote-Vélez, A; Charli, J L; Joseph-Bravo, P

    2010-04-01

    Glucocorticoids or cAMP increase, within minutes, thyrotrophin-releasing hormone (TRH) transcription in hypothalamic primary cultures, although this effect is prevented if cells are simultaneously incubated with both drugs. Rat TRH promoter contains a CRE site at -101/-94 bp and a composite GRE element (cGRE) at -218/-197 bp. Nuclear extracts of hypothalamic cells incubated with 8Br-cAMP or dexamethasone, and not their combination, bind to oligonucleotides containing the CRE or cGRE sequences. Adjacent to CRE are Sp/Krüppel response elements, and flanking the GRE half site, two AP1 binding sites. The present study aimed to identify the hypothalamic transcription factors that bind to these sites. We verified that the effects of glucocorticoid were not mimicked by corticosterone-bovine serum albumin. Footprinting and chromatin immunoprecipitation (ChIP) assays were used to examine the interaction of cAMP- and glucocorticoid-mediated regulation of TRH transcription at the CRE and cGRE regions of the TRH promoter. Nuclear extracts from hypothalamic cells incubated for 1 h with cAMP or glucocorticoids protected CRE. The GRE half site was recognised by nuclear proteins from cells stimulated with glucocorticoids and, for the adjacent AP-1 sites, by nuclear proteins from cells stimulated with cAMP or phorbol esters. Protection of CRE or cGRE was lost if cells were coincubated with dexamethasone and 8Br-cAMP. ChIP assays revealed phospho-CREB, c-Jun, Sp1, c-Fos and GR antibodies bound the TRH promoter of cells treated with cAMP or glucocorticoids; anti:RNA-polymerase II immunoprecipitated TRH promoter in a similar proportion as anti:pCREB or anti:GR. Recruitment of pCREB, SP1 or GR was lost when cells were exposed simultaneously to 8Br-cAMP and glucocorticoids. The data show that while pCREB and Sp1 bind to CRE-2, or GR to cGRE of the TRH promoter, the mutual antagonism between cAMP and glucocorticoid signalling, which prevent their binding to TRH promoter, could serve as

  18. Hypothalamic Ceramide Levels Regulated by CPT1C Mediate the Orexigenic Effect of Ghrelin

    PubMed Central

    Ramírez, Sara; Martins, Luís; Jacas, Jordi; Carrasco, Patricia; Pozo, Macarena; Clotet, Josep; Serra, Dolors; Hegardt, Fausto G.; Diéguez, Carlos; López, Miguel; Casals, Núria

    2013-01-01

    Recent data suggest that ghrelin exerts its orexigenic action through regulation of hypothalamic AMP-activated protein kinase pathway, leading to a decline in malonyl-CoA levels and desinhibition of carnitine palmitoyltransferase 1A (CPT1A), which increases mitochondrial fatty acid oxidation and ultimately enhances the expression of the orexigenic neuropeptides agouti-related protein (AgRP) and neuropeptide Y (NPY). However, it is unclear whether the brain-specific isoform CPT1C, which is located in the endoplasmic reticulum of neurons, may play a role in this action. Here, we demonstrate that the orexigenic action of ghrelin is totally blunted in CPT1C knockout (KO) mice, despite having the canonical ghrelin signaling pathway activated. We also demonstrate that ghrelin elicits a marked upregulation of hypothalamic C18:0 ceramide levels mediated by CPT1C. Notably, central inhibition of ceramide synthesis with myriocin negated the orexigenic action of ghrelin and normalized the levels of AgRP and NPY, as well as their key transcription factors phosphorylated cAMP-response element–binding protein and forkhead box O1. Finally, central treatment with ceramide induced food intake and orexigenic neuropeptides expression in CPT1C KO mice. Overall, these data indicate that, in addition to formerly reported mechanisms, ghrelin also induces food intake through regulation of hypothalamic CPT1C and ceramide metabolism, a finding of potential importance for the understanding and treatment of obesity. PMID:23493572

  19. Norepinephrine release and reuptake by hypothalamic synaptosomes of spontaneously hypertensive rats

    SciTech Connect

    Hano, T.; Jeng, Y.; Rho, J.

    1989-03-01

    We compared the overflow of endogenous norepinephrine during electrical field stimulation, the norepinephrine content, and the rate of initial neuronal uptake of (3H)norepinephrine in synaptosomes isolated from hypothalamus and brainstem of spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats at 7 and 13 weeks of age. The synaptosomes of two rats, a SHR and a WKY rat control, were simultaneously processed and subjected to the same electrical field stimulation. The overflow of endogenous norepinephrine during electrical stimulation (2 Hz, 2 minutes) in the hypothalamic synaptosomes of 7-week-old SHR was significantly greater, whereas the overflow of 13-week-old SHR was equivalent to the age-matched WKY rat. The norepinephrine content of synaptosomes was about the same in SHR and age-matched controls. There was also significantly enhanced (3H)norepinephrine uptake in the hypothalamic synaptosomes of young SHR, but neither the hypothalamic nor the brainstem samples of 13-week-old SHR showed any significant difference in their rate of (3H)norepinephrine uptake. These data are similar to those we observed (unpublished observations) in perfused mesenteric artery system in which norepinephrine release was significantly elevated during periarterial nerve stimulation only in young SHR. Thus, these results suggest that a parallel enhancement of norepinephrine release in hypothalamus with that of peripheral nervous system may play an important role during development of hypertension in young SHR.

  20. The role of astrocytes in the hypothalamic response and adaptation to metabolic signals.

    PubMed

    Chowen, Julie A; Argente-Arizón, Pilar; Freire-Regatillo, Alejandra; Frago, Laura M; Horvath, Tamas L; Argente, Jesús

    2016-09-01

    The hypothalamus is crucial in the regulation of homeostatic functions in mammals, with the disruption of hypothalamic circuits contributing to chronic conditions such as obesity, diabetes mellitus, hypertension, and infertility. Metabolic signals and hormonal inputs drive functional and morphological changes in the hypothalamus in attempt to maintain metabolic homeostasis. However, the dramatic increase in the incidence of obesity and its secondary complications, such as type 2 diabetes, have evidenced the need to better understand how this system functions and how it can go awry. Growing evidence points to a critical role of astrocytes in orchestrating the hypothalamic response to metabolic cues by participating in processes of synaptic transmission, synaptic plasticity and nutrient sensing. These glial cells express receptors for important metabolic signals, such as the anorexigenic hormone leptin, and determine the type and quantity of nutrients reaching their neighboring neurons. Understanding the mechanisms by which astrocytes participate in hypothalamic adaptations to changes in dietary and metabolic signals is fundamental for understanding the neuroendocrine control of metabolism and key in the search for adequate treatments of metabolic diseases.

  1. Hypothalamic Programming of Systemic Aging Involving IKKβ/NF-κB and GnRH

    PubMed Central

    Zhang, Guo; Li, Juxue; Purkayastha, Sudarshana; Tang, Yizhe; Zhang, Hai; Yin, Ye; Li, Bo; Liu, Gang; Cai, Dongsheng

    2013-01-01

    Summary Aging is a result of gradual and overall functional deteriorations across the body; however, it is unknown if an individual tissue works to primarily mediate aging progress and lifespan control. Here we found that the hypothalamus is important for the development of whole-body aging in mice, and the underlying basis involves hypothalamic immunity mediated by IKKβ/NF-κB and related microglia-neuron immune crosstalk. Several interventional models were developed showing that aging retardation and lifespan extension are achieved in mice through preventing against aging-related hypothalamic or brain IKKβ/NF-κB activation. Mechanistic studies further revealed that IKKβ/NF-κB inhibits GnRH to mediate aging-related hypothalamic GnRH decline, and GnRH treatment amends aging-impaired neurogenesis and decelerates aging. In conclusion, the hypothalamus has a programmatic role in aging development via immune-neuroendocrine integration, and immune inhibition or GnRH restoration in the hypothalamus/brain represent two potential strategies for optimizing lifespan and combating aging-related health problems. PMID:23636330

  2. Temperature guardian neurons in the preoptic area of the hypothalamus.

    PubMed

    Basta, D; Tzschentke, B; Nichelmann, M

    1997-09-05

    Applying the slice method extracellular recordings of 218 hypothalamic neurons in Muscovy ducks during sinusoidal temperature changes were investigated. Seven neurons reacted in a hitherto unknown manner to temperatures very near the physiological limits. Four were exclusively sensitive to temperatures around 36.1 degrees C and three to temperatures around 42.3 degrees C. We recommend to call this kind of neurons temperature guardian neurons. The presented results suggest that the current neuronal model of temperature regulation of vertebrates should be extended by aspects of the two-tier theory of Bligh [J. Bligh, The thermosensitivity of the hypothalamus and thermoregulation in mammals, Biol. Rev. 41 (1966) 317-367].

  3. Membrane potential dye imaging of ventromedial hypothalamus neurons from adult mice to study glucose sensing.

    PubMed

    Vazirani, Reema P; Fioramonti, Xavier; Routh, Vanessa H

    2013-11-27

    Studies of neuronal activity are often performed using neurons from rodents less than 2 months of age due to the technical difficulties associated with increasing connective tissue and decreased neuronal viability that occur with age. Here, we describe a methodology for the dissociation of healthy hypothalamic neurons from adult-aged mice. The ability to study neurons from adult-aged mice allows the use of disease models that manifest at a later age and might be more developmentally accurate for certain studies. Fluorescence imaging of dissociated neurons can be used to study the activity of a population of neurons, as opposed to using electrophysiology to study a single neuron. This is particularly useful when studying a heterogeneous neuronal population in which the desired neuronal type is rare such as for hypothalamic glucose sensing neurons. We utilized membrane potential dye imaging of adult ventromedial hypothalamic neurons to study their responses to changes in extracellular glucose. Glucose sensing neurons are believed to play a role in central regulation of energy balance. The ability to study glucose sensing in adult rodents is particularly useful since the predominance of diseases related to dysfunctional energy balance (e.g. obesity) increase with age.

  4. Connections of the juxtaventromedial region of the lateral hypothalamic area in the male rat

    PubMed Central

    Hahn, Joel D.; Swanson, Larry W.

    2015-01-01

    Evolutionary conservation of the hypothalamus attests to its critical role in the control of fundamental behaviors. However, our knowledge of hypothalamic connections is incomplete, particularly for the lateral hypothalamic area (LHA). Here we present the results of neuronal pathway-tracing experiments to investigate connections of the LHA juxtaventromedial region, which is parceled into dorsal (LHAjvd) and ventral (LHAjvv) zones. Phaseolus vulgaris leucoagglutinin (PHAL, for outputs) and cholera toxin B subunit (CTB, for inputs) coinjections were targeted stereotaxically to the LHAjvd/v. Results: LHAjvd/v connections overlapped highly but not uniformly. Major joint outputs included: Bed nuc. stria terminalis (BST), interfascicular nuc. (BSTif) and BST anteromedial area, rostral lateral septal (LSr)- and ventromedial hypothalamic (VMH) nuc., and periaqueductal gray. Prominent joint LHAjvd/v input sources included: BSTif, BST principal nuc., LSr, VMH, anterior hypothalamic-, ventral premammillary-, and medial amygdalar nuc., and hippocampal formation (HPF) field CA1. However, LHAjvd HPF retrograde labeling was markedly more abundant than from the LHAjvv; in the LSr this was reversed. Furthermore, robust LHAjvv (but not LHAjvd) targets included posterior- and basomedial amygdalar nuc., whereas the midbrain reticular nuc. received a dense input from the LHAjvd alone. Our analyses indicate the existence of about 500 LHAjvd and LHAjvv connections with about 200 distinct regions of the cerebral cortex, cerebral nuclei, and cerebrospinal trunk. Several highly LHAjvd/v-connected regions have a prominent role in reproductive behavior. These findings contrast with those from our previous pathway-tracing studies of other LHA medial and perifornical tier regions, with different connectional behavioral relations. The emerging picture is of a highly differentiated LHA with extensive and far-reaching connections that point to a role as a central coordinator of behavioral control

  5. Severe hyponatremia caused by hypothalamic adrenal insufficiency.

    PubMed

    Shibata, T; Oeda, T; Saito, Y

    1999-05-01

    A 60-year-old woman was admitted with severe hyponatremia. Basal values of adrenocorticotropic hormone (ACTH), thyroid hormone and cortisol were normal on admission. Impairment of water diuresis was observed by water loading test. Initially, we diagnosed her condition as the syndrome of inappropriate secretion of antidiuretic hormone (SIADH). By provocation test, we finally confirmed that the hyponatremia was caused by hypothalamic adrenal insufficiency. The basal values of ACTH and cortisol might not be sufficient to exclude the possibility of adrenal insufficiency. Therefore, it is necessary to evaluate adrenal function by provocation test or to re-evaluate it after recovery from hyponatremia.

  6. Hypothalamic control of sleep in aging.

    PubMed

    Rolls, Asya

    2012-09-01

    The timing of sleep and its duration are affected by circadian and homeostatic factors. Physiological and behavioral attributes such as the duration of previous wake period, food availability, temperature, and stress all affect sleep and its quality. As many of these physiological inputs are integrated in the hypothalamus, it is not surprising that this brain structure plays a crucial role in the regulation of sleep. I will discuss this role also in the context of aging, which is associated with changes in both hypothalamic function and the composition of sleep.

  7. Activity-dependent Notch signalling in the hypothalamic-neurohypophysial system of adult mouse brains.

    PubMed

    Mannari, T; Miyata, S

    2014-08-01

    Notch signalling has a key role in cell fate specification in developing brains; however, recent studies have shown that Notch signalling also participates in the regulation of synaptic plasticity in adult brains. In the present study, we examined the expression of Notch3 and Delta-like ligand 4 (DLL4) in the hypothalamic-neurohypophysial system (HNS) of the adult mouse. The expression of DLL4 was higher in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) compared to adjacent hypothalamic regions. Double-labelling immunohistochemistry using vesicular GABA transporter and glutamate transporter revealed that DLL4 was localised at a subpopulation of excitatory and inhibitory axonal boutons against somatodendrites of arginine vasopressin (AVP)- and oxytocin (OXT)-containing magnocellular neurones. In the neurohypophysis (NH), the expression of DLL4 was seen at OXT- but not AVP-containing axonal terminals. The expression of Notch3 was seen at somatodendrites of AVP- and OXT-containing magnocellular neurones in the SON and PVN and at pituicytes in the NH. Chronic physiological stimulation by salt loading, which remarkably enhances the release of AVP and OXT, decreased the number of DLL4-immunoreactive axonal boutons in the SON and PVN. Moreover, chronic and acute osmotic stimulation promoted proteolytic cleavage of Notch3 to yield the intracellular fragments of Notch3 in the HNS. Thus, the present study demonstrates activity-dependent reduction of DLL4 expression and proteolytic cleavage of Notch3 in the HNS, suggesting that Notch signalling possibly participates in synaptic interaction in the hypothalamic nuclei and neuroglial interaction in the NH.

  8. Ketogenic diet in the treatment of seizures associated with hypothalamic hamartomas.

    PubMed

    Chapman, Kevin E; Kim, Do-Young; Rho, Jong M; Ng, Yu-Tze; Kerrigan, John F

    2011-05-01

    Seizures associated with hypothalamic hamartoma (HH) are notoriously intractable to medical therapy, and while surgical resection affords most affected patients with complete or near seizure-freedom, there remains a need to identify alternative treatments. In this retrospective study, we identified six patients from a large cohort of 220 patients with HH who were treated with the ketogenic diet (KD). Four patients had a 50-90% reduction in multiple seizure types (including gelastic, partial-onset and atonic seizures), and two individuals failed to respond. In order to study possible mechanisms, we then performed microelectrode recordings of small neurons in surgically resected HH tissue slices. Exposure to ketone bodies decreased spontaneous firing in 5 of 7 small HH neurons. These preliminary results suggest that seizures associated with HH may respond favorably to the KD, and that ketone bodies might directly modulate the intrinsic epileptogenicity of HH tissue.

  9. 2-deoxy-D-glucose suppresses food intake through activation of hypothalamic histamine in rats.

    PubMed

    Sakata, T; Tamari, Y; Kang, M; Yoshimatsu, H

    1994-08-01

    The aim of this experiment was to demonstrate whether brain histamine contributes to delayed suppression of food intake after administration of 2-deoxy-D-glucose (2-DG). Food intake decreased significantly for 48 h after infusion of 2-DG into the rat third cerebroventricle. This delayed decrease in food intake was abolished by depletion of neuronal histamine by intraperitoneal pretreatment with alpha-fluoromethylhistidine (160 mumol/rat), a suicide inhibitor of a histamine-synthesizing enzyme. Intracerebroventricular infusion of 24 mumol 2-DG accelerated turnover rate of hypothalamic histamine. These results indicate that the delayed feeding suppression by 2-DG is modulated through histaminergic neurons in the hypothalamus. This histaminergic response may be related, at least in part, to homeostatic control of energy metabolism in the brain.

  10. Mitogen-activated protein kinase signaling pathways promote low-density lipoprotein receptor-related protein 1-mediated internalization of beta-amyloid protein in primary cortical neurons.

    PubMed

    Yang, Wei-Na; Ma, Kai-Ge; Qian, Yi-Hua; Zhang, Jian-Shui; Feng, Gai-Feng; Shi, Li-Li; Zhang, Zhi-Chao; Liu, Zhao-Hui

    2015-07-01

    Mounting evidence suggests that the pathological hallmarks of Alzheimer's disease (AD) are caused by the intraneuronal accumulation of beta-amyloid protein (Aβ). Reuptake of extracellular Aβ is believed to contribute significantly to the intraneuronal Aβ pool in the early stages of AD. Published reports have claimed that the low-density lipoprotein receptor-related protein 1 (LRP1) mediates Aβ1-42 uptake and lysosomal trafficking in GT1-7 neuronal cells and mouse embryonic fibroblast non-neuronal cells. However, there is no direct evidence supporting the role of LRP1 in Aβ internalization in primary neurons. Our recent study indicated that p38 MAPK and ERK1/2 signaling pathways are involved in regulating α7 nicotinic acetylcholine receptor (α7nAChR)-mediated Aβ1-42 uptake in SH-SY5Y cells. This study was designed to explore the regulation of MAPK signaling pathways on LRP1-mediated Aβ internalization in neurons. We found that extracellular Aβ1-42 oligomers could be internalized into endosomes/lysosomes and mitochondria in cortical neurons. Aβ1-42 and LRP1 were also found co-localized in neurons during Aβ1-42 internalization, and they could form Aβ1-42-LRP1 complex. Knockdown of LRP1 expression significantly decreased neuronal Aβ1-42 internalization. Finally, we identified that p38 MAPK and ERK1/2 signaling pathways regulated the internalization of Aβ1-42 via LRP1. Therefore, these results demonstrated that LRP1, p38 MAPK and ERK1/2 mediated the internalization of Aβ1-42 in neurons and provided evidence that blockade of LRP1 or inhibitions of MAPK signaling pathways might be a potential approach to lowering brain Aβ levels and served a potential therapeutic target for AD.

  11. Effects of risperidone treatment on the expression of hypothalamic neuropeptide in appetite regulation in Wistar rats.

    PubMed

    Kursungoz, Canan; Ak, Mehmet; Yanik, Tulin

    2015-01-30

    Although the use of atypical antipsychotic drugs has been successful in the treatment of schizophrenia, they can cause some complications in the long-term use, including weight gain. Patients using these drugs tend to disrupt treatment primarily due to side effects. The atypical antipsychotic mechanism of action regulates a number of highly disrupted neurotransmitter pathways in the brains of psychotic patients but may also cause impairment of neurohormonal pathways in different brain areas. In this study, we investigated the circulating levels of hypothalamic neurohormones, which are related to appetite regulation; neuropeptide Y (NPY); alpha melanocyte stimulating hormone (α-MSH); cocaine and amphetamine regulated transcript (CART); agouti-related peptide (AgRP); and leptin in male Wistar rats, which were treated with risperidone, a serotonin antagonist, for four weeks. Alterations in the mRNA expression levels of these candidate genes in the hypothalamus were also analyzed. We hypothesized that risperidone treatment might alter both hypothalamic and circulating levels of neuropeptides through serotonergic antagonism, resulting in weight gain. Gene expression studies revealed that the mRNA expression levels of proopiomelanocortin (POMC), AgRP, and NPY decreased as well as their plasma levels, except for NPY. Unexpectedly, CART mRNA levels increased when their plasma levels decreased. Because POMC neurons express the serotonin receptor (5HT2C), the serotonergic antagonism of risperidone on POMC neurons may cause an increase in appetite and thus increase food consumption even in a short-term trial in rats.

  12. Unravelling cortico-hypothalamic pathways regulating unconditioned fear-induced antinociception and defensive behaviours.

    PubMed

    Falconi-Sobrinho, Luiz Luciano; Anjos-Garcia, Tayllon Dos; Elias-Filho, Daoud Hibrahim; Coimbra, Norberto Cysne

    2017-02-01

    The medial prefrontal cortex can influence unconditioned fear-induced defensive mechanisms organised by diencephalic neurons that are under tonic GABAergic inhibition. The posterior hypothalamus (PH) is involved with anxiety- and panic attack-like responses. To understand this cortical mediation, our study characterised anterior cingulate cortex (ACC)-PH pathways and investigated the effect of ACC local inactivation with lidocaine. We also investigated the involvement of PH ionotropic glutamate receptors in the defensive behaviours and fear-induced antinociception by microinjecting NBQX (an AMPA/kainate receptor antagonist) and LY235959 (a NMDA receptor antagonist) into the PH. ACC pretreatment with lidocaine decreased the proaversive effect and antinociception evoked by GABAA receptor blockade in the PH, which suggests that there may be descending excitatory pathways from this cortical region to the PH. Microinjections of both NBQX and LY235959 into the PH also attenuated defensive and antinociceptive responses. This suggests that the blockade of AMPA/kainate and NMDA receptors reduces the activity of glutamatergic efferent pathways. Both inputs from the ACC to the PH and glutamatergic hypothalamic short links disinhibited by intra-hypothalamic GABAA receptors blockade are potentially implicated. Microinjection of a bidirectional neurotracer in the PH showed a Cg1-PH pathway and PH neuronal reciprocal connections with the periaqueductal grey matter. Microinjections of an antegrade neurotracer into the Cg1 showed axonal fibres and glutamatergic vesicle-immunoreactive terminal boutons surrounding both mediorostral-lateroposterior thalamic nucleus and PH neuronal perikarya. These data suggest a critical role played by ACC-PH glutamatergic pathways and AMPA/kainate and NMDA receptors in the panic attack-like reactions and antinociception organised by PH neurons.

  13. Reproductive Regulation of Gene Expression in the Hypothalamic Supraoptic and Paraventricular Nuclei.

    PubMed

    Augustine, R A; Bouwer, G T; Seymour, A J; Grattan, D R; Brown, C H

    2016-04-01

    Oxytocin secretion is required for successful reproduction. Oxytocin is synthesised by magnocellular neurones of the hypothalamic supraoptic and paraventricular nuclei and the physiological demand for oxytocin synthesis and secretion is increased for birth and lactation. Therefore, we used a polymerase chain reaction (PCR) array screen to determine whether genes that might be important for synthesis and/or secretion of oxytocin are up- or down-regulated in the supraoptic and paraventricular nuclei of late-pregnant and lactating rats, compared to virgin rats. We then validated the genes that were most highly regulated using real time-quantitative PCR. Among the most highly regulated genes were those that encode for suppressors of cytokine signalling, which are intracellular inhibitors of prolactin signalling. Prolactin receptor activation changes gene expression via phosphorylation of signal transducer and activator of transcription 5 (STAT5). Using double-label immunohistochemistry, we found that phosphorylated STAT5 was expressed in almost all oxytocin neurones of late-pregnant and lactating rats but was almost absent from oxytocin neurones of virgin rats. We conclude that increased prolactin activation of oxytocin neurones might contribute to the changes in gene expression by oxytocin neurones required for normal birth and lactation.

  14. Cell type-dependent trafficking of neuropeptide Y-containing dense core granules in CNS neurons.

    PubMed

    Ramamoorthy, Prabhu; Wang, Qian; Whim, Matthew D

    2011-10-12

    Neuropeptide transmitters are synthesized throughout the CNS and play important modulatory roles. After synthesis in the neuronal cell body, it is generally assumed that peptides are transported to nonspecialized sites of release. However, apart from a few cases, this scenario has not been thoroughly examined. Using wild-type and NPY(GFP) transgenic mice, we have studied the subcellular distribution of neuropeptide Y (NPY), a prototypical and broadly expressed neuropeptide. NPY puncta were found in the dendrites and axons of hippocampal GABAergic interneurons in situ. In contrast in hypothalamic GABAergic interneurons, NPY was restricted to the axon. Surprisingly this differential trafficking was preserved when the neurons were maintained in vitro. When hippocampal and hypothalamic neurons were transfected with NPY-Venus, the distribution of the fluorescent puncta replicated the cell type-specific distribution of endogenous neuropeptide Y. The NPY puncta in the axons of hippocampal and hypothalamic neurons colocalized with the sites of classical transmitter release (identified by staining for synapsin and the vesicular GABAergic transporter, VGAT). In hippocampal neurons, most of the postsynaptic NPY puncta were clustered opposite synapsin-containing varicosities. When neurons were stained for a second neuropeptide, agouti-related protein, immunoreactivity was found in the axon and dendrites of hippocampal neurons but only in the axons of hypothalamic neurons, thus mimicking the polarized distribution of NPY. These results indicate that the trafficking of neuropeptide-containing dense core granules is markedly cell type specific and is not determined entirely by the characteristics of the particular peptide per se.

  15. Apolipoprotein A-IV inhibits AgRP/NPY neurons and activates POMC neurons in the arcuate nucleus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apolipoprotein A-IV (apoA-IV) in the brain potently suppresses food intake. However the mechanisms underlying its anorexigenic effects remain to be identified. We first examined the effects of apoA-IV on cellular activities in hypothalamic neurons that co-express agouti-related peptide (AgRP) and ne...

  16. Lateral Hypothalamic Circuits for Feeding and Reward

    PubMed Central

    Stuber, Garret D.; Wise, Roy A.

    2016-01-01

    In experiments conducted over 60 years ago, the lateral hypothalamic area (LHA) was identified as a critical neuroanatomical substrate for motivated behavior. Electrical stimulation of the LHA induces voracious feeding even in non-restricted animals. In the absence of food, animals will work tirelessly, often lever-pressing 1000’s of times per hour, for electrical stimulation at the same site that provokes feeding, drinking, and other species-typical motivated behaviors. Here we review the classic findings from electrical stimulation studies and integrate them with more recent work that has utilized contemporary circuit-based approaches to study the LHA. We identify specific anatomically and molecularly defined LHA elements that integrate diverse information arising from cortical, extended amygdala, and basal forebrain networks to ultimately generate a highly specified and invigorated behavioral state conveyed via LHA projections to downstream reward and feeding specific circuits. PMID:26814589

  17. MEMBRANE ESTROGEN RECEPTOR REGULATION OF HYPOTHALAMIC FUNCTION

    PubMed Central

    Micevych, Paul E.; Kelly, Martin J.

    2012-01-01

    Over the decades, our understanding of estrogen receptor (ER) function has evolved. Today we are confronted by at least two nuclear ERs: ERα and ERβ; and a number of putative membrane ERs, including ERα, ERβ, ER-X, GPR30 and Gq-mER. These receptors all bind estrogens or at least estrogenic compounds and activate intracellular signaling pathways. In some cases, a well-defined pharmacology, and physiology has been discovered. In other cases, the identity or the function remains to be elucidated. This mini-review attempts to synthesize our understanding of 17β-estradiol membrane signaling within hypothalamic circuits involved in homeostatic functions focusing on reproduction and energy balance. PMID:22538318

  18. Lateral hypothalamic circuits for feeding and reward.

    PubMed

    Stuber, Garret D; Wise, Roy A

    2016-02-01

    In experiments conducted over 60 years ago, the lateral hypothalamic area (LHA) was identified as a critical neuroanatomical substrate for motivated behavior. Electrical stimulation of the LHA induces voracious feeding even in well-fed animals. In the absence of food, animals will work tirelessly, often lever-pressing thousands of times per hour, for electrical stimulation at the same site that provokes feeding, drinking and other species-typical motivated behaviors. Here we review the classic findings from electrical stimulation studies and integrate them with more recent work that has used contemporary circuit-based approaches to study the LHA. We identify specific anatomically and molecularly defined LHA elements that integrate diverse information arising from cortical, extended amygdala and basal forebrain networks to ultimately generate a highly specified and invigorated behavioral state conveyed via LHA projections to downstream reward and feeding-specific circuits.

  19. Peripheral injection of ghrelin induces Fos expression in the dorsomedial hypothalamic nucleus in rats

    PubMed Central

    Kobelt, Peter; Wisser, Anna-Sophia; Stengel, Andreas; Goebel, Miriam; Inhoff, Tobias; Noetzel, Steffen; Veh, Rüdiger W.; Bannert, Norbert; van der Voort, Ivo; Wiedenmann, Bertram; Klapp, Burghard F.; Taché, Yvette; Mönnikes, Hubert

    2009-01-01

    Peripheral ghrelin has been shown to act as a gut–brain peptide exerting a potent orexigenic effect on food intake. The dorsomedial nucleus of the hypothalamus (DMH) is innervated by projections from other brain areas being part of the network of nuclei controlling energy homeostasis, among others NPY/AgRP-positive fibers arising from the arcuate nucleus (ARC). The aim of the study was to determine if peripherally administered ghrelin affects neuronal activity in the DMH, as assessed by Fos expression. The number of Fos positive neurons was determined in the DMH, paraventricular nucleus of the hypothalamus (PVN), ARC, ventromedial hypothalamic nucleus (VMH), nucleus of the solitary tract (NTS) and in the area postrema(AP) in non-fasted Sprague–Dawley rats in response to intraperitoneally (ip) injected ghrelin (3 nmol/rat) or vehicle (0.15 M NaCl). Peripheral ghrelin induced a significant increase in the number of Fos-ir positive neurons/section compared with vehicle in the ARC (mean±SEM: 49±2 vs. 23±2 neurons/section, p=0.001), PVN (69±5 vs. 34±3, p=0.001), and DMH (142±5 vs. 83±5, p<0.001). Fos-ir positive neurons were mainly localized within the ventral part of the DMH. No change in Fos expression was observed in the VMH (53±8 vs. 48±6, p=0.581), NTS (42±2 vs.40±3, p=0.603), and in the AP (7±1 vs. 5±1, p=0.096). Additional double-labelling with anti-Fos and anti-AgRP revealed that Fos positive neurons in the DMH were encircled by a network of AgRP-ir positive fibers. These data indicate that peripheral ghrelin activates DMH neurons and that NPY-/AgRP-positive fibers may be involved in the response. PMID:18329635

  20. Water deprivation activates a glutamatergic projection from the hypothalamic paraventricular nucleus to the rostral ventrolateral medulla.

    PubMed

    Stocker, Sean D; Simmons, Johnny R; Stornetta, Ruth L; Toney, Glenn M; Guyenet, Patrice G

    2006-02-01

    Elevated sympathetic outflow contributes to the maintenance of blood pressure in water-deprived rats. The neural circuitry underlying this response may involve activation of a pathway from the hypothalamic paraventricular nucleus (PVH) to the rostral ventrolateral medulla (RVLM). We sought to determine whether the PVH-RVLM projection activated by water deprivation is glutamatergic and/or contains vasopressin- or oxytocin-neurophysins. Vesicular glutamate transporter 2 (VGLUT2) mRNA was detected by in situ hybridization in the majority of PVH neurons retrogradely labeled from the ipsilateral RVLM with cholera toxin subunit B (CTB; 85% on average, with regional differences). Very few RVLM-projecting PVH neurons were immunoreactive for oxytocin- or vasopressin-associated neurophysin. Injection of biotinylated dextran amine (BDA) into the PVH produced clusters of BDA-positive nerve terminals within the ipsilateral RVLM that were immunoreactive (ir) for the VGLUT2 protein. Some of these terminals made close appositions with tyrosine-hydroxylase-ir dendrites (presumptive C1 cells). In water-deprived rats (n=4), numerous VGLUT2 mRNA-positive PVH neurons retrogradely labeled from the ipsilateral RVLM with CTB were c-Fos-ir (16-40%, depending on PVH region). In marked contrast, few glutamatergic, RVLM-projecting PVH neurons were c-Fos-ir in control rats (n=3; 0-3%, depending on PVH region). Most (94% +/- 4%) RVLM-projecting PVH neurons activated by water deprivation contained VGLUT2 mRNA. In summary, most PVH neurons that innervate the RVLM are glutamatergic, and this population includes the neurons that are activated by water deprivation. One mechanism by which water deprivation may increase the sympathetic outflow is activation of a glutamatergic pathway from the PVH to the RVLM.

  1. Fatty Acid Transporter CD36 Mediates Hypothalamic Effect of Fatty Acids on Food Intake in Rats

    PubMed Central

    Moullé, Valentine S.; Le Foll, Christelle; Philippe, Erwann; Kassis, Nadim; Rouch, Claude; Marsollier, Nicolas; Bui, Linh-Chi; Guissard, Christophe; Dairou, Julien; Lorsignol, Anne; Pénicaud, Luc; Levin, Barry E.; Cruciani-Guglielmacci, Céline; Magnan, Christophe

    2013-01-01

    Variations in plasma fatty acid (FA) concentrations are detected by FA sensing neurons in specific brain areas such as the hypothalamus. These neurons play a physiological role in the control of food intake and the regulation of hepatic glucose production. Le Foll et al. previously showed in vitro that at least 50% of the FA sensing in ventromedial hypothalamic (VMH) neurons is attributable to the interaction of long chain FA with FA translocase/CD36 (CD36). The present work assessed whether in vivo effects of hypothalamic FA sensing might be partly mediated by CD36 or intracellular events such as acylCoA synthesis or β-oxidation. To that end, a catheter was implanted in the carotid artery toward the brain in male Wistar rats. After 1 wk recovery, animals were food-deprived for 5 h, then 10 min infusions of triglyceride emulsion, Intralipid +/− heparin (IL, ILH, respectively) or saline/heparin (SH) were carried out and food intake was assessed over the next 5 h. Experimental groups included: 1) Rats previously injected in ventromedian nucleus (VMN) with shRNA against CD36 or scrambled RNA; 2) Etomoxir (CPT1 inhibitor) or saline co-infused with ILH/SH; and 3) Triacsin C (acylCoA synthase inhibitor) or saline co-infused with ILH/SH. ILH significantly lowered food intake during refeeding compared to SH (p<0.001). Five hours after refeeding, etomoxir did not affect this inhibitory effect of ILH on food intake while VMN CD36 depletion totally prevented it. Triacsin C also prevented ILH effects on food intake. In conclusion, the effect of FA to inhibit food intake is dependent on VMN CD36 and acylCoA synthesis but does not required FA oxidation. PMID:24040150

  2. Ca(2+) -permeable AMPA receptors associated with epileptogenesis of hypothalamic hamartoma.

    PubMed

    Kitaura, Hiroki; Sonoda, Masaki; Teramoto, Sayaka; Shirozu, Hiroshi; Shimizu, Hiroshi; Kimura, Tadashi; Masuda, Hiroshi; Ito, Yosuke; Takahashi, Hitoshi; Kwak, Shin; Kameyama, Shigeki; Kakita, Akiyoshi

    2017-04-01

    Hypothalamic hamartoma (HH), composed of neurons and glia without apparent cytologic abnormalities, is a rare developmental malformation in humans. Patients with HH often have characteristic medically refractory gelastic seizures, and intrinsic epileptogenesis within the lesions has been speculated. Herein we provide evidence to suggest that in HH neurons, Ca(2+) permeability through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors is aberrantly elevated. In needle biopsy specimens of HH tissue, field potential recordings demonstrated spontaneous epileptiform activities similar to those observed in other etiologically distinct epileptogenic tissues. In HH, however, these activities were clearly abolished by application of Joro Spider Toxin (JSTX), a specific inhibitor of the Ca(2+) -permeable AMPA receptor. Consistent with these physiologic findings, the neuronal nuclei showed disappearance of adenosine deaminase acting on RNA 2 (ADAR2) immunoreactivity. Furthermore, examination of glutamate receptor 2 (GluA2) messenger RNA (mRNA) revealed that editing efficiency at the glutamine/arginine site was significantly low. These results suggest that neurons in HH may bear Ca(2+) -permeable AMPA receptors due to dislocation of ADAR2.

  3. Neuroanatomy of melanocortin-4 receptor pathway in the lateral hypothalamic area.

    PubMed

    Cui, Huxing; Sohn, Jong-Woo; Gautron, Laurent; Funahashi, Hisayuki; Williams, Kevin W; Elmquist, Joel K; Lutter, Michael

    2012-12-15

    The central melanocortin system regulates body energy homeostasis including the melanocortin-4 receptor (MC4R). The lateral hypothalamic area (LHA) receives dense melanocortinergic inputs from the arcuate nucleus of the hypothalamus and regulates multiple processes including food intake, reward behaviors, and autonomic function. By using a mouse line in which green fluorescent protein (GFP) is expressed under control of the MC4R gene promoter, we systemically investigated MC4R signaling in the LHA by combining double immunohistochemistry, electrophysiology, and retrograde tracing techniques. We found that LHA MC4R-GFP neurons coexpress neurotensin as well as the leptin receptor but do not coexpress other peptide neurotransmitters found in the LHA including orexin, melanin-concentrating hormone, and nesfatin-1. Furthermore, electrophysiological recording demonstrated that leptin, but not the MC4R agonist melanotan II, hyperpolarizes the majority of LHA MC4R-GFP neurons in an ATP- sensitive potassium channel-dependent manner. Retrograde tracing revealed that LHA MC4R-GFP neurons do not project to the ventral tegmental area, dorsal raphe nucleus, nucleus accumbens, and spinal cord, and only limited number of neurons project to the nucleus of the solitary tract and parabrachial nucleus. Our findings provide new insights into MC4R signaling in the LHA and its potential implications in homeostatic regulation of body energy balance.

  4. PI3K in the ventromedial hypothalamic nucleus mediates estrogenic actions on energy expenditure in female mice

    PubMed Central

    Saito, Kenji; He, Yanlin; Yang, Yongjie; Zhu, Liangru; Wang, Chunmei; Xu, Pingwen; Hinton, Antentor Othrell; Yan, Xiaofeng; Zhao, Jean; Fukuda, Makoto; Tong, Qingchun; Clegg, Deborah J.; Xu, Yong

    2016-01-01

    Estrogens act in the ventromedial hypothalamic nucleus (VMH) to regulate body weight homeostasis. However, the molecular mechanisms underlying these estrogenic effects are unknown. We show that activation of estrogen receptor-α (ERα) stimulates neural firing of VMH neurons expressing ERα, and these effects are blocked with intracellular application of a pharmacological inhibitor of the phosphatidyl inositol 3-kinase (PI3K). Further, we demonstrated that mice with genetic inhibition of PI3K activity in VMH neurons showed a sexual dimorphic obese phenotype, with only female mutants being affected. In addition, inhibition of VMH PI3K activity blocked effects of 17β-estradiol to stimulate energy expenditure, but did not affect estrogen-induced anorexia. Collectively, our results indicate that PI3K activity in VMH neurons plays a physiologically relevant role in mediating estrogenic actions on energy expenditure in females. PMID:26988598

  5. Hypothalamic dysfunction without hamartomas causing gelastic seizures in optic nerve hypoplasia.

    PubMed

    Fink, Cassandra; Borchert, Mark; Simon, Carrie Zaslow; Saper, Clifford

    2015-02-01

    This report describes gelastic seizures in patients with optic nerve hypoplasia and hypothalamic dysfunction without hypothalamic hamartoma. All participants (n = 4) from the optic nerve hypoplasia registry study at Children's Hospital Los Angeles presenting with gelastic seizures were included. The clinical and pathology characteristics include hypothalamic dysgenesis and dysfunction, but no hamartomas. Optic nerve hypoplasia is the only reported condition with gelastic seizures without hypothalamic hamartomas, suggesting that hypothalamic disorganization alone can cause gelastic seizures.

  6. Behavioral state-dependent thermal feedback influencing the hypothalamic thermostat.

    PubMed

    Parmeggiani, P L; Azzaroni, A; Calasso, M

    2000-11-01

    The experimental evidence on the behavioral state-dependent compartmentalization of temperature in the central nervous system of three homeothermic species has been reviewed to address the question of how selective brain cooling influences hypothalamic temperature regulation.

  7. The Hypocretin/Orexin Neuronal Networks in Zebrafish.

    PubMed

    Elbaz, Idan; Levitas-Djerbi, Talia; Appelbaum, Lior

    2016-12-24

    The hypothalamic Hypocretin/Orexin (Hcrt) neurons secrete two Hcrt neuropeptides. These neurons and peptides play a major role in the regulation of feeding, sleep wake cycle, reward-seeking, addiction, and stress. Loss of Hcrt neurons causes the sleep disorder narcolepsy. The zebrafish has become an attractive model to study the Hcrt neuronal network because it is a transparent vertebrate that enables simple genetic manipulation, imaging of the structure and function of neuronal circuits in live animals, and high-throughput monitoring of behavioral performance during both day and night. The zebrafish Hcrt network comprises ~16-60 neurons, which similar to mammals, are located in the hypothalamus and widely innervate the brain and spinal cord, and regulate various fundamental behaviors such as feeding, sleep, and wakefulness. Here we review how the zebrafish contributes to the study of the Hcrt neuronal system molecularly, anatomically, physiologically, and pathologically.

  8. Anti-Obesity Sodium Tungstate Treatment Triggers Axonal and Glial Plasticity in Hypothalamic Feeding Centers

    PubMed Central

    Amigó-Correig, Marta; Barceló-Batllori, Sílvia; Soria, Guadalupe; Krezymon, Alice; Benani, Alexandre; Pénicaud, Luc; Tudela, Raúl; Planas, Anna Maria; Fernández, Eduardo

    2012-01-01

    Objective This study aims at exploring the effects of sodium tungstate treatment on hypothalamic plasticity, which is known to have an important role in the control of energy metabolism. Methods Adult lean and high-fat diet-induced obese mice were orally treated with sodium tungstate. Arcuate and paraventricular nuclei and lateral hypothalamus were separated and subjected to proteomic analysis by DIGE and mass spectrometry. Immunohistochemistry and in vivo magnetic resonance imaging were also performed. Results Sodium tungstate treatment reduced body weight gain, food intake, and blood glucose and triglyceride levels. These effects were associated with transcriptional and functional changes in the hypothalamus. Proteomic analysis revealed that sodium tungstate modified the expression levels of proteins involved in cell morphology, axonal growth, and tissue remodeling, such as actin, CRMP2 and neurofilaments, and of proteins related to energy metabolism. Moreover, immunohistochemistry studies confirmed results for some targets and further revealed tungstate-dependent regulation of SNAP25 and HPC-1 proteins, suggesting an effect on synaptogenesis as well. Functional test for cell activity based on c-fos-positive cell counting also suggested that sodium tungstate modified hypothalamic basal activity. Finally, in vivo magnetic resonance imaging showed that tungstate treatment can affect neuronal organization in the hypothalamus. Conclusions Altogether, these results suggest that sodium tungstate regulates proteins involved in axonal and glial plasticity. The fact that sodium tungstate could modulate hypothalamic plasticity and networks in adulthood makes it a possible and interesting therapeutic strategy not only for obesity management, but also for other neurodegenerative illnesses like Alzheimer’s disease. PMID:22802935

  9. Centrally injected histamine increases posterior hypothalamic acetylcholine release in hemorrhage-hypotensive rats.

    PubMed

    Altinbas, Burcin; Yilmaz, Mustafa S; Savci, Vahide; Jochem, Jerzy; Yalcin, Murat

    2015-01-01

    Histamine, acting centrally as a neurotransmitter, evokes a reversal of hemorrhagic hypotension in rats due to the activation of the sympathetic and the renin-angiotensin systems as well as the release of arginine vasopressin and proopiomelanocortin-derived peptides. We demonstrated previously that central nicotinic cholinergic receptors are involved in the pressor effect of histamine. The aim of the present study was to examine influences of centrally administrated histamine on acetylcholine (ACh) release at the posterior hypothalamus-a region characterized by location of histaminergic and cholinergic neurons involved in the regulation of the sympathetic activity in the cardiovascular system-in hemorrhage-hypotensive anesthetized rats. Hemodynamic and microdialysis studies were carried out in Sprague-Dawley rats. Hemorrhagic hypotension was induced by withdrawal of a volume of 1.5 ml blood/100 g body weight over a period of 10 min. Acute hemorrhage led to a severe and long-lasting decrease in mean arterial pressure (MAP), heart rate (HR), and an increase in extracellular posterior hypothalamic ACh and choline (Ch) levels by 56% and 59%, respectively. Intracerebroventricularly (i.c.v.) administered histamine (50, 100, and 200 nmol) dose- and time-dependently increased MAP and HR and caused an additional rise in extracellular posterior hypothalamic ACh and Ch levels at the most by 102%, as compared to the control saline-treated group. Histamine H1 receptor antagonist chlorpheniramine (50 nmol; i.c.v.) completely blocked histamine-evoked hemodynamic and extracellular posterior hypothalamic ACh and Ch changes, whereas H2 and H3/H4 receptor blockers ranitidine (50 nmol; i.c.v.) and thioperamide (50 nmol; i.c.v.) had no effect. In conclusion, centrally administered histamine, acting via H1 receptors, increases ACh release at the posterior hypothalamus and causes a pressor and tachycardic response in hemorrhage-hypotensive anesthetized rats.

  10. Differences in food intake of tumour-bearing cachectic mice are associated with hypothalamic serotonin signalling

    PubMed Central

    Dwarkasing, Jvalini T; Boekschoten, Mark V; Argilès, Joseph M; van Dijk, Miriam; Busquets, Silvia; Penna, Fabio; Toledo, Miriam; Laviano, Alessandro; Witkamp, R F; van Norren, Klaske

    2015-01-01

    Background Anorexia is a common symptom among cancer patients and contributes to malnutrition and strongly impinges on quality of life. Cancer-induced anorexia is thought to be caused by an inability of food intake-regulating systems in the hypothalamus to respond adequately to negative energy balance during tumour growth. Here, we show that this impaired response of food-intake control is likely to be mediated by altered serotonin signalling and by failure in post-transcriptional neuropeptide Y (NPY) regulation. Methods Two tumour cachectic mouse models with different food intake behaviours were used: a C26-colon adenocarcinoma model with increased food intake and a Lewis lung carcinoma model with decreased food intake. This contrast in food intake behaviour between tumour-bearing (TB) mice in response to growth of the two different tumours was used to distinguish between processes involved in cachexia and mechanisms that might be important in food intake regulation. The hypothalamus was used for transcriptomics (affymetrix chips). Results In both models, hypothalamic expression of orexigenic NPY was significantly higher compared with controls, suggesting that this change does not directly reflect food intake status but might be linked to negative energy balance in cachexia. Expression of genes involved in serotonin signalling showed to be different between C26-TB mice and Lewis lung carcinoma-TB mice and was inversely associated with food intake. In vitro, using hypothalamic cell lines, serotonin repressed neuronal hypothalamic NPY secretion while not affecting messenger NPY expression, suggesting that serotonin signalling can interfere with NPY synthesis, transport, or secretion. Conclusions Altered serotonin signalling is associated with changes in food intake behaviour in cachectic TB mice. Serotonins' inhibitory effect on food intake under cancer cachectic conditions is probably via affecting the NPY system. Therefore, serotonin regulation might be a

  11. Loss of hypothalamic corticotropin-releasing hormone markedly reduces anxiety behaviors in mice

    PubMed Central

    Zhang, Rong; Asai, Masato; Mahoney, Carrie E; Joachim, Maria; Shen, Yuan; Gunner, Georgia; Majzoub, Joseph A

    2016-01-01

    A long-standing paradigm posits that hypothalamic corticotropin-releasing hormone (CRH) regulates neuroendocrine functions such as adrenal glucocorticoid release, while extra-hypothalamic CRH plays a key role in stressor-triggered behaviors. Here we report that hypothalamus-specific Crh knockout mice (Sim1CrhKO mice, created by crossing Crhflox with Sim1Cre mice) have absent Crh mRNA and peptide mainly in the paraventricular nucleus of the hypothalamus (PVH) but preserved Crh expression in other brain regions including amygdala and cerebral cortex. As expected, Sim1CrhKO mice exhibit adrenal atrophy as well as decreased basal, diurnal and stressor-stimulated plasma corticosterone secretion and basal plasma ACTH, but surprisingly, have a profound anxiolytic phenotype when evaluated using multiple stressors including open field, elevated plus maze, holeboard, light-dark box, and novel object recognition task. Restoring plasma corticosterone did not reverse the anxiolytic phenotype of Sim1CrhKO mice. Crh-Cre driver mice revealed that PVHCrh fibers project abundantly to cingulate cortex and the nucleus accumbens shell, and moderately to medial amygdala, locus coeruleus, and solitary tract, consistent with the existence of PVHCrh-dependent behavioral pathways. Although previous, nonselective attenuation of CRH production or action, genetically in mice and pharmacologically in humans, respectively, has not produced the anticipated anxiolytic effects, our data show that targeted interference specifically with hypothalamic Crh expression results in anxiolysis. Our data identify neurons that express both Sim1 and Crh as a cellular entry point into the study of CRH-mediated, anxiety-like behaviors and their therapeutic attenuation. PMID:27595593

  12. Novel aspects of hypothalamic-pituitary-adrenal axis regulation and glucocorticoid actions

    PubMed Central

    Uchoa, Ernane Torres; Aguilera, Greti; Herman, James P.; Fiedler, Jenny L.; Deak, Terrence; Cordeiro de Sousa, Maria Bernardete

    2014-01-01

    Normal hypothalamic-pituitary-adrenal (HPA) axis activity leading to rhythmic and episodic release of adrenal glucocorticoids is essential for body homeostasis and survival during stress. Acting through specific intracellular receptors in the brain and periphery, glucocorticoids regulate behavior, metabolic, cardiovascular, immune, and neuroendocrine activities. In contrast to chronic elevated levels, circadian and acute stress-induced increases in glucocorticoids are necessary for hippocampal neuronal survival and memory acquisition and consolidation, through inhibiting apoptosis, facilitating glutamate transmission and inducing immediate early genes and spine formation. In addition to its metabolic actions leading to increasing energy availability, glucocorticoids have profound effects on feeding behavior, mainly through modulation of orexigenic and anorixegenic neuropeptides. Evidence is also emerging that in addition to the recognized immune suppressive actions of glucocorticoids by counteracting adrenergic proinflammatory actions, circadian elevations have priming effects in the immune system, potentiating acute defensive responses. In addition, negative feedback by glucocorticoids involves multiple mechanisms leading to limiting HPA axis activation and preventing deleterious effects of excessive glucocorticoid production. Adequate glucocorticoid secretion to meet body demands is tightly regulated by a complex neural circuitry controlling hypothalamic corticotrophin releasing hormone (CRH) and vasopressin secretion, the main regulators of pituitary adrenocorticotrophic hormone (ACTH). Rapid feedback mechanisms, likely involving non-genomic actions of glucocorticoids, mediate immediate inhibition of hypothalamic CRH and ACTH secretion, while intermediate and delayed mechanisms mediated by genomic actions involve modulation of limbic circuitry and peripheral metabolic messengers. Consistent with their key adaptive roles, HPA axis components are evolutionarily

  13. Pure endoscopic management of epileptogenic hypothalamic hamartomas.

    PubMed

    Chibbaro, S; Cebula, H; Scholly, J; Todeschi, J; Ollivier, I; Timofeev, A; Ganau, M; Di Emidio, P; Valenti, M P; Staack, A M; Bast, T; Steinhoff, B J; Hirsch, E; Kehrli, P; Proust, F

    2017-02-07

    Hypothalamic hamartomas (HH) are rare congenital malformations located in the region of the tuber cinereum and third ventricle. Their usual clinical presentation is characterized by gelastic/dacrystic seizures which often become pharmaco-resistant and progress to secondary focal/generalized intractable epilepsy causing mostly in children cognitive and behavioral problems (particularly in cases of progressive epileptic encephalopathy) and precocious puberty. Whereas gelastic seizures can be surgically controlled either by resection of the lesion or disconnection (tissue-destructive) procedures, aimed at functionally prevent the spreading of the epileptic burst; generalized seizures tend to respond better to HH excision rather than isolated neocortical resections, which generally fail to control them. Prospective analysis of 14 consecutive patients harboring HH treated in an 8-year period; 12 patients had unilateral and two bilateral HH. All patients were managed by pure endoscopic excision of the HH. The mean operative time was 48 min and mean hospital stay was 2 days; perioperative blood loss was negligible in all cases. Two patients showed a transient diabetes insipidus (DI); no transient or permanent postoperative neurological deficit or memory impairment was recorded. Complete HH excision was achieved in 10/14 patients. At a mean follow-up of 48 months, no wound infection, meningitis, postoperative hydrocephalus, and/or mortality were recorded in this series of patients. Eight patients became seizure free (Engel class I), 2 other experienced worthwhile improvement of disabling seizures (Engel class II); 2 patients were cured from gelastic attacks while still experiencing focal dyscognitive seizures; and 2, having bilateral HH (both undergoing unilateral HH excision), did not experience significant improvement and required later on a temporal lobectomy coupled to amygdalohyppocampectomy. Overall, the followings resulted to be predictive factors for better

  14. CCL5/RANTES contributes to hypothalamic insulin signaling for systemic insulin responsiveness through CCR5

    PubMed Central

    Chou, Szu-Yi; Ajoy, Reni; Changou, Chun Austin; Hsieh, Ya-Ting; Wang, Yang-Kao; Hoffer, Barry

    2016-01-01

    Many neurodegenerative diseases are accompanied by metabolic disorders. CCL5/RANTES, and its receptor CCR5 are known to contribute to neuronal function as well as to metabolic disorders such as type 2 diabetes mellitus, obesity, atherosclerosis and metabolic changes after HIV infection. Herein, we found that the lack of CCR5 or CCL5 in mice impaired regulation of energy metabolism in hypothalamus. Immunostaining and co-immunoprecipitation revealed the specific expression of CCR5, associated with insulin receptors, in the hypothalamic arcuate nucleus (ARC). Both ex vivo stimulation and in vitro tissue culture studies demonstrated that the activation of insulin, and PI3K-Akt pathways were impaired in CCR5 and CCL5 deficient hypothalamus. The inhibitory phosphorylation of insulin response substrate-1 at Ser302 (IRS-1S302) but not IRS-2, by insulin was markedly increased in CCR5 and CCL5 deficient animals. Elevating CCR5/CCL5 activity induced GLUT4 membrane translocation and reduced phospho-IRS-1S302 through AMPKα-S6 Kinase. Blocking CCR5 using the antagonist, MetCCL5, abolished the de-phosphorylation of IRS-1S302 and insulin signal activation. In addition, intracerebroventricular delivery of MetCCL5 interrupted hypothalamic insulin signaling and elicited peripheral insulin responsiveness and glucose intolerance. Taken together, our data suggest that CCR5 regulates insulin signaling in hypothalamus which contributes to systemic insulin sensitivity and glucose metabolism. PMID:27898058

  15. CCL5/RANTES contributes to hypothalamic insulin signaling for systemic insulin responsiveness through CCR5.

    PubMed

    Chou, Szu-Yi; Ajoy, Reni; Changou, Chun Austin; Hsieh, Ya-Ting; Wang, Yang-Kao; Hoffer, Barry

    2016-11-29

    Many neurodegenerative diseases are accompanied by metabolic disorders. CCL5/RANTES, and its receptor CCR5 are known to contribute to neuronal function as well as to metabolic disorders such as type 2 diabetes mellitus, obesity, atherosclerosis and metabolic changes after HIV infection. Herein, we found that the lack of CCR5 or CCL5 in mice impaired regulation of energy metabolism in hypothalamus. Immunostaining and co-immunoprecipitation revealed the specific expression of CCR5, associated with insulin receptors, in the hypothalamic arcuate nucleus (ARC). Both ex vivo stimulation and in vitro tissue culture studies demonstrated that the activation of insulin, and PI3K-Akt pathways were impaired in CCR5 and CCL5 deficient hypothalamus. The inhibitory phosphorylation of insulin response substrate-1 at Ser302 (IRS-1(S302)) but not IRS-2, by insulin was markedly increased in CCR5 and CCL5 deficient animals. Elevating CCR5/CCL5 activity induced GLUT4 membrane translocation and reduced phospho-IRS-1(S302) through AMPKα-S6 Kinase. Blocking CCR5 using the antagonist, (Met)CCL5, abolished the de-phosphorylation of IRS-1(S302) and insulin signal activation. In addition, intracerebroventricular delivery of (Met)CCL5 interrupted hypothalamic insulin signaling and elicited peripheral insulin responsiveness and glucose intolerance. Taken together, our data suggest that CCR5 regulates insulin signaling in hypothalamus which contributes to systemic insulin sensitivity and glucose metabolism.

  16. Dynamic localization of glucokinase and its regulatory protein in hypothalamic tanycytes.

    PubMed

    Salgado, Magdiel; Tarifeño-Saldivia, Estefanía; Ordenes, Patricio; Millán, Carola; Yañez, María José; Llanos, Paula; Villagra, Marcos; Elizondo-Vega, Roberto; Martínez, Fernando; Nualart, Francisco; Uribe, Elena; de Los Angeles García-Robles, María

    2014-01-01

    Glucokinase (GK), the hexokinase involved in glucose sensing in pancreatic β cells, is also expressed in hypothalamic tanycytes, which cover the ventricular walls of the basal hypothalamus and are implicated in an indirect control of neuronal activity by glucose. Previously, we demonstrated that GK was preferentially localized in tanycyte nuclei in euglycemic rats, which has been reported in hepatocytes and is suggestive of the presence of the GK regulatory protein, GKRP. In the present study, GK intracellular localization in hypothalamic and hepatic tissues of the same rats under several glycemic conditions was compared using confocal microscopy and Western blot analysis. In the hypothalamus, increased GK nuclear localization was observed in hyperglycemic conditions; however, it was primarily localized in the cytoplasm in hepatic tissue under the same conditions. Both GK and GKRP were next cloned from primary cultures of tanycytes. Expression of GK by Escherichia coli revealed a functional cooperative protein with a S0.5 of 10 mM. GKRP, expressed in Saccharomyces cerevisiae, inhibited GK activity in vitro with a Ki 0.2 µM. We also demonstrated increased nuclear reactivity of both GK and GKRP in response to high glucose concentrations in tanycyte cultures. These data were confirmed using Western blot analysis of nuclear extracts. Results indicate that GK undergoes short-term regulation by nuclear compartmentalization. Thus, in tanycytes, GK can act as a molecular switch to arrest cellular responses to increased glucose.

  17. Corticosterone inhibition of osmotically stimulated vasopressin from hypothalamic-neurohypophysial explants.

    PubMed

    Papanek, P E; Sladek, C D; Raff, H

    1997-01-01

    Glucocorticoids inhibit and glucocorticoid deficiency increases vasopressin (AVP) release in vivo. To determine whether the effect of glucocorticoids is hypothalamic and mediated via a glucocorticoid receptor, explants of the hypothalamic-neurohypophysial system were used to measure AVP release during agonist and antagonist exposure. Explants from adult rats, which contained AVP neurons of the supraoptic nucleus with axonal projections terminating in the neural lobe but excluded the paraventricular nucleus, were perifused with an osmotic stimulus (increase of 5 mosmol/h over 6 h) in the absence or presence of corticosterone (100 micrograms/dl) or with corticosterone (100 micrograms/dl) in the absence or presence of the glucocorticoid antagonist RU-486 (10 microM). AVP release was not increased during osmotic stimulation in the presence of corticosterone (Cort) and was 20-30% lower than osmotically stimulated release observed in the absence of Cort. RU-486 reversed the inhibitory effect of corticosterone on AVP release. No changes in AVP mRNA content were detected. These results suggest that Cort inhibits osmotically stimulated AVP release by a direct effect within the hypothalamus and/or neurohypophysis. This effect is mediated by the glucocorticoid receptor through either genomic or nongenomic mechanisms.

  18. Neuropeptides and the hypothalamic-pituitary-adrenocortical (HPA) system: review of recent research strategies in depression.

    PubMed

    Hatzinger, M

    2000-04-01

    Depressed patients show a variety of alterations in hypothalamic-pituitary-adrenocortical (HPA) system regulation which is reflected by increased pituitary-adrenocortical hormone secretion at baseline and a number of aberrant neuroendocrine function tests. The latter include the combined dexamethasone (DEX) suppression/corticotropin-releasing hormone (CRH) challenge test, in which CRH was able to override DEX induced suppression of ACTH and cortisol secretion. Whereas the abnormal HPA activation in these patients improved in parallel with clinical remission, persistent HPA dysregulation was associated with an increased risk of relapse. Moreover, healthy subjects at high genetic risk for depression also showed this phenomenon as a trait marker. In consequence, it has been concluded that HPA alteration and development as well as course of depression may be causally related. As evidenced from clinical and preclinical studies, underlying mechanisms of these abnormalities involve impairment of central corticosteroid receptor function which leads to enhanced activity of hypothalamic neurons synthesising and releasing vasopressin and CRH. These neuropeptides mediate not only neuroendocrine but also behavioural effects. Recent research provided evidence that CRH can induce depression-like symptoms in animals and that these signs are mediated through the CRH1 receptor subtype. Hence, therapeutical application of new compounds acting more specifically on the HPA system such as CRH1 receptor antagonists appear to be a promising approach for future treatment options of depression. In conclusion, research in neuroendocrinology provided new insights into the underlying pathophysiology of depression and, in consequence, may lead to the development of new therapeutic tools.

  19. Dynamic Localization of Glucokinase and Its Regulatory Protein in Hypothalamic Tanycytes

    PubMed Central

    Ordenes, Patricio; Millán, Carola; Yañez, María José; Llanos, Paula; Villagra, Marcos; Elizondo-Vega, Roberto; Martínez, Fernando; Nualart, Francisco; Uribe, Elena; de los Angeles García-Robles, María

    2014-01-01

    Glucokinase (GK), the hexokinase involved in glucose sensing in pancreatic β cells, is also expressed in hypothalamic tanycytes, which cover the ventricular walls of the basal hypothalamus and are implicated in an indirect control of neuronal activity by glucose. Previously, we demonstrated that GK was preferentially localized in tanycyte nuclei in euglycemic rats, which has been reported in hepatocytes and is suggestive of the presence of the GK regulatory protein, GKRP. In the present study, GK intracellular localization in hypothalamic and hepatic tissues of the same rats under several glycemic conditions was compared using confocal microscopy and Western blot analysis. In the hypothalamus, increased GK nuclear localization was observed in hyperglycemic conditions; however, it was primarily localized in the cytoplasm in hepatic tissue under the same conditions. Both GK and GKRP were next cloned from primary cultures of tanycytes. Expression of GK by Escherichia coli revealed a functional cooperative protein with a S0.5 of 10 mM. GKRP, expressed in Saccharomyces cerevisiae, inhibited GK activity in vitro with a Ki 0.2 µM. We also demonstrated increased nuclear reactivity of both GK and GKRP in response to high glucose concentrations in tanycyte cultures. These data were confirmed using Western blot analysis of nuclear extracts. Results indicate that GK undergoes short-term regulation by nuclear compartmentalization. Thus, in tanycytes, GK can act as a molecular switch to arrest cellular responses to increased glucose. PMID:24739934

  20. Serotonin 2C receptor activates a distinct population of arcuate pro-opiomelanocortin neurons via TRPC channels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serotonin 2C receptors (5-HT2CRs) expressed by pro-opiomelanocortin (POMC) neurons of hypothalamic arcuate nucleus regulate food intake, energy homeostasis ,and glucose metabolism. However, the cellular mechanisms underlying the effects of 5-HT to regulate POMC neuronal activity via 5-HT2CRs have no...

  1. N-Cadherin Mediates Neuronal Cell Survival through Bim Down-Regulation

    PubMed Central

    Boscher, Cécile; Wolff, Emeline; Mège, René-Marc; Birbes, Hélène

    2012-01-01

    N-cadherin is a major adhesion molecule involved in the development and plasticity of the nervous system. N-cadherin-mediated cell adhesion regulates neuroepithelial cell polarity, neuronal precursor migration, growth cone migration and synaptic plasticity. In vitro, it has been involved in signaling events regulating processes such as cell mobility, proliferation and differentiation. N-cadherin has also been implicated in adhesion-dependent protection against apoptosis in non-neuronal cells. In this study, we investigated if the engagement of N-cadherin participates to the control of neuronal cells survival/death balance. We observed that plating either primary mouse spinal cord neurons or primary rat hippocampal neurons on N-cadherin recombinant substrate greatly enhances their survival compared to non-specific adhesion on poly-L-lysine. We show that N-cadherin engagement, in the absence of other survival factors (cell-matrix interactions and serum), protects GT1-7 neuronal cells against apoptosis. Using this cell line, we then searched for the signaling pathways involved in the survival effect of N-cadherin engagement. The PI3-kinase/Akt survival pathway and its downstream effector Bad are not involved, as no phosphorylation of Akt or Bad proteins in response to N-cadherin engagement was observed. In contrast, N-cadherin engagement activated the Erk1/2 MAP kinase pathway. Moreover, N-cadherin ligation mediated a 2-fold decrease in the level of the pro-apoptotic protein Bim-EL whereas the level of the anti-apoptotic protein Bcl-2 was unchanged. Inhibition of Mek1/2 kinases with U0126, and the resulting inhibition of Erk1/2 phosphorylation, induced the increase of both the level of Bim-EL and apoptosis of cells seeded on the N-cadherin substrate, suggesting that Erk phosphorylation is necessary for cell survival. Finally, the overexpression of a phosphorylation defective form of Bim-EL prevented N-cadherin-engagement induced cell survival. In conclusion, our

  2. (/sup 3/H)adrenaline release from hypothalamic synaptosomes and its modulation by clonidine: effects of chronic antidepressant drug regimens

    SciTech Connect

    McWilliam, J.R.; Campbell, I.C.

    1987-07-13

    (/sup 3/H)Adrenaline ((/sup 3/H)ADR, 40nM) was accumulated by rat hypothalamic synaptosomes (P/sub 2/) more rapidly and in significantly greater amounts than by similar preparations from cerebral cortex. There was no significant difference between these two tissues in the rate or amount of (/sup 3/H)noradrenaline ((/sup 3/H)NA, 40nM) accumulation. Talusupram (10..mu..M), maximally inhibited the uptake of (/sup 3/H)ADR into hypothalamic synaptosomes by 60%. Nomifensine further inhibited uptake by 14%. From these observations it was concluded that some (/sup 3/H)ADR was accumulated into non adrenergic neuronal terminals. The effects of desipramine (DMI, 10mg/kg/day and clorgyline (1mg/kg/day) administration for 28 days on K/sup +/-evoked release of (/sup 3/H)ADR was investigated using superfused hypothalamic synaptosomes. After both chronic antidepressant drug regimens, total (/sup 3/H)ADR release (spontaneous + evoked) was significantly reduced. Evoked release of (numberH)ADR (by KCl, 16mM) was significantly reduced after the DMI but not the clorgyline regimens. Presynaptic ..cap alpha../sub 2/-adrenoceptor function in the hypothalamus was assessed during superfusion by measuring the reduction in /sup +/-evoked release of (/sup 3/H)ADR caused by clonidine (1/sup +/M). 30 references, 3 figures, 1 table.

  3. The effect of diet interventions on hypothalamic nutrient sensing pathways in rodents.

    PubMed

    Rijnsburger, Merel; Belegri, Evita; Eggels, Leslie; Unmehopa, Unga A; Boelen, Anita; Serlie, Mireille J; la Fleur, Susanne E

    2016-08-01

    The hypothalamus plays a fundamental role in regulating homeostatic processes including regulation of food intake. Food intake is driven in part by energy balance, which is sensed by specific brain structures through signaling molecules such as nutrients and hormones. Both circulating glucose and fatty acids decrease food intake via a central mechanism involving the hypothalamus and brain stem. Besides playing a role in signaling energy status, glucose and fatty acids serve as fuel for neurons. This review focuses on the effects of glucose and fatty acids on hypothalamic pathways involved in regulation of energy metabolism as well as on the role of the family of peroxisome proliferator activated receptors (PPARs) which are implicated in regulation of central energy homeostasis. We further discuss the effects of different hypercaloric diets on these pathways.

  4. FGF-dependent midline-derived progenitor cells in hypothalamic infundibular development.

    PubMed

    Pearson, Caroline Alayne; Ohyama, Kyoji; Manning, Liz; Aghamohammadzadeh, Soheil; Sang, Helen; Placzek, Marysia

    2011-06-01

    The infundibulum links the nervous and endocrine systems, serving as a crucial integrating centre for body homeostasis. Here we describe that the chick infundibulum derives from two subsets of anterior ventral midline cells. One set remains at the ventral midline and forms the posterior-ventral infundibulum. A second set migrates laterally, forming a collar around the midline. We show that collar cells are composed of Fgf3(+) SOX3(+) proliferating progenitors, the induction of which is SHH dependent, but the maintenance of which requires FGF signalling. Collar cells proliferate late into embryogenesis, can generate neurospheres that passage extensively, and differentiate to distinct fates, including hypothalamic neuronal fates and Fgf10(+) anterior-dorsal infundibular cells. Together, our study shows that a subset of anterior floor plate-like cells gives rise to Fgf3(+) SOX3(+) progenitor cells, demonstrates a dual origin of infundibular cells and reveals a crucial role for FGF signalling in governing extended infundibular growth.

  5. The syndrome gelastic seizures-hypothalamic hamartoma: severe, potentially reversible encephalopathy.

    PubMed

    Striano, Salvatore; Striano, Pasquale; Coppola, Antonietta; Romanelli, Pantaleo

    2009-05-01

    Hypothalamic hamartoma (HH) is the pathologic hallmark of a spectrum of epileptic conditions, ranging from a mild form of epilepsy, whose seizures are an urge to laugh without cognitive defects, to the fully developed syndrome of early onset gelastic seizures (GS) associated with precocious puberty and the evolution to a catastrophic epilepsy syndrome. However, a refractory focal or generalized epilepsy develops during the clinical course in nearly all cases. Neurophysiologic and neuroimaging studies have assessed the role of HH in the generation of the GS as well as in the process of secondary epileptogenesis. Electrophysiologic properties of small gamma-aminobutyric acid (GABA)ergic, spontaneously firing neurons might explain the intrinsic epileptogenicity of HH. Surgical ablation of the HH can reverse both epilepsy and encephalopathy. Gamma-knife radiosurgery and image-guided robotic radiosurgery can be useful and safe approaches for treatment, in particular of small HH.

  6. Effects of spaceflight on hypothalamic peptide systems controlling pituitary growth hormone dynamics

    NASA Technical Reports Server (NTRS)

    Sawchenko, P. E.; Arias, C.; Krasnov, I.; Grindeland, R. E.; Vale, W.

    1992-01-01

    Possible effects of reduced gravity on central hypophysiotropic systems controlling growth hormone (GH) secretion were investigated in rats flown on Cosmos 1887 and 2044 biosatellites. Immunohistochemical (IHC)staining for the growth hormone-releasing factor (GRF), somatostatin (SS), and other hypothalamic hormones was performed on hypothalami obtained from rats. IHC analysis was complemented by quantitative in situ assessments of mRNAs encoding the precursors for these hormones. Data obtained suggest that exposure to microgravity causes a preferential reduction in GRF peptide and mRNA levels in hypophysiotropic neurons, which may contribute to impared GH secretion in animals subjected to spaceflight. Effects of weightlessness are not mimicked by hindlimb suspension in this system.

  7. An Indirect Action Contributes to C-Fos Induction in Paraventricular Hypothalamic Nucleus by Neuropeptide Y

    PubMed Central

    Fan, Shengjie; Dakshinamoorthy, Janani; Kim, Eun Ran; Xu, Yong; Huang, Cheng; Tong, Qingchun

    2016-01-01

    Neuropeptide Y (NPY) is a well-established orexigenic peptide and hypothalamic paraventricular nucleus (PVH) is one major brain site that mediates the orexigenic action of NPY. NPY induces abundant expression of C-Fos, an indicator for neuronal activation, in the PVH, which has been used extensively to examine the underlying NPY orexigenic neural pathways. However, PVH C-Fos induction is in discordance with the abundant expression of NPY receptors, a group of inhibitory Gi protein coupled receptors in the PVH, and with the overall role of PVH neurons in feeding inhibition, suggesting a mechanism of indirect action. Here we showed that the ability of NPY on C-Fos induction in the PVH was blunted in conditions of insulin deficiency and fasting, a condition associated with a high level of NPY and a low level of insulin. Moreover, insulin insufficiency blunted C-Fos induction in the PVH by fasting-induced re-feeding, and insulin and NPY induced c-Fos induction in the same group of PVH neurons. Finally, NPY produced normal C-Fos induction in the PVH with disruption of GABA-A receptors. Thus, our results revealed that PVH C-Fos induction by NPY is mediated by an indirect action, which is at least partially mediated by insulin action, but not GABA-A receptors. PMID:26813148

  8. Glial glucokinase expression in adult and post-natal development of the hypothalamic region.

    PubMed

    Millán, Carola; Martínez, Fernando; Cortés-Campos, Christian; Lizama, Isabel; Yañez, Maria Jose; Llanos, Paula; Reinicke, Karin; Rodríguez, Federico; Peruzzo, Bruno; Nualart, Francisco; García, Maria Angeles

    2010-05-25

    It has recently been proposed that hypothalamic glial cells sense glucose levels and release lactate as a signal to activate adjacent neurons. GK (glucokinase), the hexokinase involved in glucose sensing in pancreatic beta-cells, is also expressed in the hypothalamus. However, it has not been clearly determined if glial and/or neuronal cells express this protein. Interestingly, tanycytes, the glia that cover the ventricular walls of the hypothalamus, are in contact with CSF (cerebrospinal fluid), the capillaries of the arcuate nucleus and adjacent neurons; this would be expected for a system that can detect and communicate changes in glucose concentration. Here, we demonstrated by Western-blot analysis, QRT-PCR [quantitative RT-PCR (reverse transcription-PCR)] and in situ hybridization that GK is expressed in tanycytes. Confocal microscopy and immuno-ultrastructural analysis revealed that GK is localized in the nucleus and cytoplasm of beta1-tanycytes. Furthermore, GK expression increased in these cells during the second week of post-natal development. Based on this evidence, we propose that tanycytes mediate, at least in part, the mechanism by which the hypothalamus detects changes in glucose concentrations.

  9. TALE Homeodomain Proteins Regulate Gonadotropin-releasing Hormone Gene Expression Independently and via Interactions with Oct-1*

    PubMed Central

    Rave-Harel, Naama; Givens, Marjory L.; Nelson, Shelley B.; Duong, Hao A.; Coss, Djurdjica; Clark, Melody E.; Hall, Sara Barth; Kamps, Mark P.; Mellon, Pamela L.

    2010-01-01

    Gonadotropin-releasing hormone (GnRH) is the central regulator of reproductive function. Expression of the GnRH gene is confined to a rare population of neurons scattered throughout the hypothalamus. Restricted expression of the rat GnRH gene is driven by a multicomponent enhancer and an evolutionarily conserved promoter. Oct-1, a ubiquitous POU homeodomain transcription factor, was identified as an essential factor regulating GnRH transcription in the GT1-7 hypothalamic neuronal cell line. In this study, we conducted a two-hybrid interaction screen in yeast using a GT1-7 cDNA library to search for specific Oct-1 cofactors. Using this approach, we isolated Pbx1b, a TALE homeodomain transcription factor that specifically associates with Oct-1. We show that heterodimers containing Pbx/Prep1 or Pbx/Meis1 TALE homeodomain proteins bind to four functional elements within the GnRH regulatory region, each in close proximity to an Oct-1-binding site. Cotransfection experiments indicate that TALE proteins are essential for GnRH promoter activity in the GT1-7 cells. Moreover, Pbx1 and Oct-1, as well as Prep1 and Oct-1, form functional complexes that enhance GnRH gene expression. Finally, Pbx1 is expressed in GnRH neurons in embryonic as well as mature mice, suggesting that the associations between TALE homeodomain proteins and Oct-1 regulate neuron-specific expression of the GnRH gene in vivo. PMID:15138251

  10. Neurons containing hypocretin (orexin) project to multiple neuronal systems.

    PubMed

    Peyron, C; Tighe, D K; van den Pol, A N; de Lecea, L; Heller, H C; Sutcliffe, J G; Kilduff, T S

    1998-12-01

    The novel neuropeptides called hypocretins (orexins) have recently been identified as being localized exclusively in cell bodies in a subregion of the tuberal part of the hypothalamus. The structure of the hypocretins, their accumulation in vesicles of axon terminals, and their excitatory effect on cultured hypothalamic neurons suggest that the hypocretins function in intercellular communication. To characterize these peptides further and to help understand what physiological functions they may serve, we undertook an immunohistochemical study to examine the distribution of preprohypocretin-immunoreactive neurons and fibers in the rat brain. Preprohypocretin-positive neurons were found in the perifornical nucleus and in the dorsal and lateral hypothalamic areas. These cells were distinct from those that express melanin-concentrating hormone. Although they represent a restricted group of cells, their projections were widely distributed in the brain. We observed labeled fibers throughout the hypothalamus. The densest extrahypothalamic projection was found in the locus coeruleus. Fibers were also seen in the septal nuclei, the bed nucleus of the stria terminalis, the paraventricular and reuniens nuclei of the thalamus, the zona incerta, the subthalamic nucleus, the central gray, the substantia nigra, the raphe nuclei, the parabrachial area, the medullary reticular formation, and the nucleus of the solitary tract. Less prominent projections were found in cortical regions, central and anterior amygdaloid nuclei, and the olfactory bulb. These results suggest that hypocretins are likely to have a role in physiological functions in addition to food intake such as regulation of blood pressure, the neuroendocrine system, body temperature, and the sleep-waking cycle.

  11. Hypothalamic integration of body fluid regulation.

    PubMed Central

    Denton, D A; McKinley, M J; Weisinger, R S

    1996-01-01

    The progression of animal life from the paleozoic ocean to rivers and diverse econiches on the planet's surface, as well as the subsequent reinvasion of the ocean, involved many different stresses on ionic pattern, osmotic pressure, and volume of the extracellular fluid bathing body cells. The relatively constant ionic pattern of vertebrates reflects a genetic "set" of many regulatory mechanisms--particularly renal regulation. Renal regulation of ionic pattern when loss of fluid from the body is disproportionate relative to the extracellular fluid composition (e.g., gastric juice with vomiting and pancreatic secretion with diarrhea) makes manifest that a mechanism to produce a biologically relatively inactive extracellular anion HCO3- exists, whereas no comparable mechanism to produce a biologically inactive cation has evolved. Life in the ocean, which has three times the sodium concentration of extracellular fluid, involves quite different osmoregulatory stress to that in freshwater. Terrestrial life involves risk of desiccation and, in large areas of the planet, salt deficiency. Mechanisms integrated in the hypothalamus (the evolutionary ancient midbrain) control water retention and facilitate excretion of sodium, and also control the secretion of renin by the kidney. Over and above the multifactorial processes of excretion, hypothalamic sensors reacting to sodium concentration, as well as circumventricular organs sensors reacting to osmotic pressure and angiotensin II, subserve genesis of sodium hunger and thirst. These behaviors spectacularly augment the adaptive capacities of animals. Instinct (genotypic memory) and learning (phenotypic memory) are melded to give specific behavior apt to the metabolic status of the animal. The sensations, compelling emotions, and intentions generated by these vegetative systems focus the issue of the phylogenetic emergence of consciousness and whether primal awareness initially came from the interoreceptors and vegetative

  12. The hypothalamic supraoptic and paraventricular nuclei of the echidna and platypus.

    PubMed

    Ashwell, Ken W S; Lajevardi, Shahab-Eddin; Cheng, Gang; Paxinos, George

    2006-01-01

    The monotremes are an intriguing group of mammals that have major differences in their reproductive physiology and lactation from therian mammals. Monotreme young hatch from leathery skinned eggs and are nourished by milk secreted onto areolae rather than through nipples. Parturition and lactation are in part controlled through the paraventricular and supraoptic nuclei of the hypothalamus. We have used Nissl staining, enzyme histochemistry, immunohistochemistry for tyrosine hydroxylase, calbindin, oxytocin, neurophysin and non-phosphorylated neurofilament protein, and carbocyanine dye tracing techniques to examine the supraoptic and paraventricular nuclei and the course of the hypothalamo-neurohypophysial tract in two monotremes: the short-beaked echidna (Tachyglossus aculeatus) and the platypus (Ornithorhynchus anatinus). In both monotremes, the supraoptic nucleus consisted of loosely packed neurons, mainly in the retrochiasmatic position. In the echidna, the paraventricular nucleus was quite small, but had similar chemoarchitectural features to therians. In the platypus, the paraventricular nucleus was larger and appeared to be part of a stream of magnocellular neurons extending from the paraventricular nucleus to the retrochiasmatic supraoptic nucleus. Immunohistochemistry for non-phosphorylated neurofilament protein and carbocyanine dye tracing suggested that hypothalamo-neurohypophysial tract neurons in the echidna lie mainly in the retrochiasmatic supraoptic and lateral hypothalamic regions, but most neurophysin and oxytocin immunoreactive neurons in the echidna were found in the paraventricular, lateral hypothalamus and supraoptic nuclei and most oxytocinergic neurons in the platypus were distributed in a band from the paraventricular nucleus to the retrochiasmatic supraoptic nucleus. The small size of the supraoptic nucleus in the two monotremes might reflect functional aspects of monotreme lactation.

  13. Estradiol regulation of hypothalamic astrocyte adenosine 5'-monophosphate-activated protein kinase activity: role of hindbrain catecholamine signaling.

    PubMed

    Tamrakar, Pratistha; Briski, Karen P

    2015-01-01

    Recent work challenges the conventional notion that metabolic monitoring in the brain is the exclusive function of neurons. This study investigated the hypothesis that hypothalamic astrocytes express the ultra-sensitive energy gauge adenosine 5'-monophosphate-activated protein kinase (AMPK), and that the ovarian hormone estradiol (E) controls activation of this sensor by insulin-induced hypoglycemia (IIH). E- or oil (O)-implanted ovariectomized (OVX) rats were pretreated by caudal fourth ventricular administration of the catecholamine neurotoxin 6-hydroxydopamine (6-OHDA) prior to sc insulin or vehicle injection. Individual astrocytes identified in situ by glial fibrillary acidic protein immunolabeling were laser-microdissected from the ventromedial (VMH), arcuate (ARH), and paraventricular (PVH) nuclei and the lateral hypothalamic area (LHA), and pooled within each site for Western blot analysis of AMPK and phosphoAMPK (pAMPK) protein expression. In the VMH, baseline astrocyte AMPK and pAMPK levels were respectively increased or decreased in OVX+E versus OVX+O; these profiles did not differ between E and O rats in other hypothalamic loci. In E animals, astrocyte AMPK protein was reduced [VMH] or augmented [PVH; LHA] in response to either 6-OHDA or IIH. IIH increased astrocyte pAMPK expression in each structure in vehicle-, but not 6-OHDA-pretreated E rats. Results provide novel evidence for hypothalamic astrocyte AMPK expression and hindbrain catecholamine-dependent activation of this cell-specific sensor by hypoglycemia in the presence of estrogen. Further research is needed to determine the role of astrocyte AMPK in reactivity of these glia to metabolic imbalance and contribution to restoration of neuro-metabolic stability.

  14. Molecular diversity of corticotropin-releasing hormone mRNA-containing neurons in the hypothalamus.

    PubMed

    Romanov, Roman A; Alpár, Alán; Hökfelt, Tomas; Harkany, Tibor

    2017-03-01

    Hormonal responses to acute stress rely on the rapid induction of corticotropin-releasing hormone (CRH) production in the mammalian hypothalamus, with subsequent instructive steps culminating in corticosterone release at the periphery. Hypothalamic CRH neurons in the paraventricular nucleus of the hypothalamus are therefore considered as 'stress neurons'. However, significant morphological and functional diversity among neurons that can transiently produce CRH in other hypothalamic nuclei has been proposed, particularly as histochemical and molecular biology evidence associates CRH to both GABA and glutamate neurotransmission. Here, we review recent advances through single-cell RNA sequencing and circuit mapping to suggest that CRH production reflects a state switch in hypothalamic neurons and thus confers functional competence rather than being an identity mark of phenotypically segregated neurons. We show that CRH mRNA transcripts can therefore be seen in GABAergic, glutamatergic and dopaminergic neuronal contingents in the hypothalamus. We then distinguish 'stress neurons' of the paraventricular nucleus that constitutively express secretagogin, a Ca(2+) sensor critical for the stimulus-driven assembly of the molecular machinery underpinning the fast regulated exocytosis of CRH at the median eminence. Cumulatively, we infer that CRH neurons are functionally and molecularly more diverse than previously thought.

  15. Metabolic Context Regulates Distinct Hypothalamic Transcriptional Responses to Antiaging Interventions

    PubMed Central

    Stranahan, Alexis M.; Martin, Bronwen; Chadwick, Wayne; Park, Sung-Soo; Wang, Liyun; Becker, Kevin G.; WoodIII, William H.; Zhang, Yongqing; Maudsley, Stuart

    2012-01-01

    The hypothalamus is an essential relay in the neural circuitry underlying energy metabolism that needs to continually adapt to changes in the energetic environment. The neuroendocrine control of food intake and energy expenditure is associated with, and likely dependent upon, hypothalamic plasticity. Severe disturbances in energy metabolism, such as those that occur in obesity, are therefore likely to be associated with disruption of hypothalamic transcriptomic plasticity. In this paper, we investigated the effects of two well-characterized antiaging interventions, caloric restriction and voluntary wheel running, in two distinct physiological paradigms, that is, diabetic (db/db) and nondiabetic wild-type (C57/Bl/6) animals to investigate the contextual sensitivity of hypothalamic transcriptomic responses. We found that, both quantitatively and qualitatively, caloric restriction and physical exercise were associated with distinct transcriptional signatures that differed significantly between diabetic and non-diabetic mice. This suggests that challenges to metabolic homeostasis regulate distinct hypothalamic gene sets in diabetic and non-diabetic animals. A greater understanding of how genetic background contributes to hypothalamic response mechanisms could pave the way for the development of more nuanced therapeutics for the treatment of metabolic disorders that occur in diverse physiological backgrounds. PMID:22934110

  16. Behavioural responses to hypothalamic cooling and heating in the rat.

    PubMed

    Cabanac, M; Dib, B

    1983-03-28

    Rats with hypothalamic thermodes had their hypothalamus cooled or warmed for short sessions. In a first series of experiments, rats could bar-press to obtain fanning with cool air. Cooling the hypothalamus did not suppress or inhibit this behaviour although rectal temperature was markedly increased. In a second series of experiments, bar-pressing would warm the water flowing in the thermode. The rats thus self suppressed the cooling of their hypothalamus. This behaviour was absent at 10 degrees C ambient temperature, and increased with increasing ambient temperature up to 35 degrees C. The result of this behaviour was a small hyperthermia in warm and hot environment compared to control when the rats could not self-suppress the cooling of hypothalamus. The results of both experiments suggest that no conscious direct sensation is aroused by hypothalamic cooling. Hypothalamic heating increased the rat's bar-pressing for cool air and decreased the rat's rectal temperature. When pressure on the lever would suppress a warm hypothalamic stimulus rats self-cooled their hypothalamus, especially in warm environments. Such behaviour resulted in an increased somatic hyperthermia due to the warm environment and hypothalamic cooling. These results are compatible with the hypothesis of a direct conscious sensation from a warm hypothalamus.

  17. Orexin (hypocretin)/dynorphin neurons control GABAergic inputs to tuberomammillary neurons.

    PubMed

    Eriksson, Krister S; Sergeeva, Olga A; Selbach, Oliver; Haas, Helmut L

    2004-03-01

    High activity of the histaminergic neurons in the tuberomammillary (TM) nucleus increases wakefulness, and their firing rate is highest during waking and lowest during rapid eye movement sleep. The TM neurons receive a prominent innervation from sleep-active gamma-aminobutyric acidergic (GABAergic) neurons in the ventrolateral preoptic nucleus, which inhibits them during sleep. They also receive an excitatory input from the orexin- and dynorphin-containing neurons in the lateral hypothalamus, which are critically involved in sleep regulation and whose dysfunction causes narcolepsy. We have used intracellular recordings and immunohistochemistry to study if orexin neurons exert control over the GABAergic inputs to TM neurons in rat hypothalamic slices. Dynorphin suppressed GABAergic inputs and thus disinhibits the TM neurons, acting in concert with orexin to increase the excitability of these neurons. In contrast, both orexin-A and orexin-B markedly increased the frequency of GABAergic potentials, while co-application of orexin and dynorphin produced responses similar to dynorphin alone. Thus, orexins excite TM neurons directly and by disinhibition, gated by dynorphin. These data might explain some of the neuropathology of narcolepsy.

  18. Hypothalamic Obesity in Craniopharyngioma Patients: Disturbed Energy Homeostasis Related to Extent of Hypothalamic Damage and Its Implication for Obesity Intervention

    PubMed Central

    Roth, Christian L.

    2015-01-01

    Hypothalamic obesity (HO) occurs in patients with tumors and lesions in the medial hypothalamic region. Hypothalamic dysfunction can lead to hyperinsulinemia and leptin resistance. This review is focused on HO caused by craniopharyngiomas (CP), which are the most common childhood brain tumors of nonglial origin. Despite excellent overall survival rates, CP patients have substantially reduced quality of life because of significant long-term sequelae, notably severe obesity in about 50% of patients, leading to a high rate of cardiovascular mortality. Recent studies reported that both hyperphagia and decreased energy expenditure can contribute to severe obesity in HO patients. Recognized risk factors for severe obesity include large hypothalamic tumors or lesions affecting several medial and posterior hypothalamic nuclei that impact satiety signaling pathways. Structural damage in these nuclei often lead to hyperphagia, rapid weight gain, central insulin and leptin resistance, decreased sympathetic activity, low energy expenditure, and increased energy storage in adipose tissue. To date, most efforts to treat HO have shown disappointing long-term success rates. However, treatments based on the distinct pathophysiology of disturbed energy homeostasis related to CP may offer options for successful interventions in the future. PMID:26371051

  19. Hypothalamic AMPK as a Regulator of Energy Homeostasis

    PubMed Central

    Huynh, My Khanh Q.; Kinyua, Ann W.; Yang, Dong Joo

    2016-01-01

    Activated in energy depletion conditions, AMP-activated protein kinase (AMPK) acts as a cellular energy sensor and regulator in both central nervous system and peripheral organs. Hypothalamic AMPK restores energy balance by promoting feeding behavior to increase energy intake, increasing glucose production, and reducing thermogenesis to decrease energy output. Besides energy state, many hormones have been shown to act in concert with AMPK to mediate their anorexigenic and orexigenic central effects as well as thermogenic influences. Here we explore the factors that affect hypothalamic AMPK activity and give the underlying mechanisms for the role of central AMPK in energy homeostasis together with the physiological effects of hypothalamic AMPK on energy balance restoration. PMID:27547453

  20. Gelastic epilepsy without hypothalamic hamartoma: three additional cases.

    PubMed

    Savasta, Salvatore; Budetta, Mauro; Spartà, Maria Valentina; Carpentieri, Maria Luisa; Trasimeni, Guido; Zavras, Niki; Villa, Maria Pia; Parisi, Pasquale

    2014-08-01

    We describe three children with gelastic seizures without hypothalamic hamartoma whose seizures were characterized by typical laughing attacks associated or not with other seizure types. Ictal/interictal EEG and magnetic resonance imaging were performed. All three subjects showed a good response to carbamazepine therapy with complete seizure control in addition to a benign clinical and cognitive outcome. These three cases confirm that gelastic epilepsy without hypothalamic hamartoma, both in cryptogenic or symptomatic patients (one child showed a dysplastic right parietotemporal lesion), usually has a more benign natural history, and carbamazepine seems to be the most efficacious therapy to obtain both immediate and long-term seizure control. These findings need to be confirmed in a larger sample of children affected by gelastic epilepsy without hypothalamic hamartoma.

  1. Optogenetic activation of serotonergic terminals facilitates GABAergic inhibitory input to orexin/hypocretin neurons

    PubMed Central

    Chowdhury, Srikanta; Yamanaka, Akihiro

    2016-01-01

    Orexin/hypocretin neurons play a crucial role in the regulation of sleep/wakefulness, primarily in the maintenance of wakefulness. These neurons innervate wide areas of the brain and receive diverse synaptic inputs including those from serotonergic (5-HT) neurons in the raphe nucleus. Previously we showed that pharmacological application of 5-HT directly inhibited orexin neurons via 5-HT1A receptors. However, it was still unclear how 5-HT neurons regulated orexin neurons since 5-HT neurons contain not only 5-HT but also other neurotransmitters. To reveal this, we generated new triple transgenic mice in which orexin neurons express enhanced green fluorescent protein (EGFP) and 5-HT neurons express channelrhodopsin2 (ChR2). Immunohistochemical studies show that nerve endings of ChR2-expressing 5-HT neurons are in close apposition to EGFP-expressing orexin neurons in the lateral hypothalamic area. Using these mice, we could optogenetically activate 5-HT nerve terminals and record postsynaptic effects from orexin neurons. Activation of nerve terminals of 5-HT neurons directly inhibited orexin neurons via the 5HT1A receptor, and also indirectly inhibited orexin neurons by facilitating GABAergic inhibitory inputs without affecting glutamatergic inputs. Increased GABAergic inhibitory inputs in orexin neurons were confirmed by the pharmacological application of 5-HT. These results suggest that orexin neurons are inhibited by 5-HT neurons, primarily via 5-HT, in both direct and indirect manners. PMID:27824065

  2. Regulation of Blood Glucose by Hypothalamic Pyruvate Metabolism

    NASA Astrophysics Data System (ADS)

    Lam, Tony K. T.; Gutierrez-Juarez, Roger; Pocai, Alessandro; Rossetti, Luciano

    2005-08-01

    The brain keenly depends on glucose for energy, and mammalians have redundant systems to control glucose production. An increase in circulating glucose inhibits glucose production in the liver, but this negative feedback is impaired in type 2 diabetes. Here we report that a primary increase in hypothalamic glucose levels lowers blood glucose through inhibition of glucose production in rats. The effect of glucose requires its conversion to lactate followed by stimulation of pyruvate metabolism, which leads to activation of adenosine triphosphate (ATP)-sensitive potassium channels. Thus, interventions designed to enhance the hypothalamic sensing of glucose may improve glucose homeostasis in diabetes.

  3. TGFβ2 regulates hypothalamic Trh expression through the TGFβ inducible early gene-1 (TIEG1) during fetal development

    PubMed Central

    Martínez-Armenta, Miriam; de León-Guerrero, Sol Díaz; Catalán, Ana; Alvarez-Arellano, Lourdes; Uribe, Rosa Maria; Subramaniam, Malayannan; Charli, Jean-Louis; Pérez-Martínez, Leonor

    2015-01-01

    The hypothalamus regulates the homeostasis of the organism by controlling hormone secretion from the pituitary. The molecular mechanisms that regulate the differentiation of the hypothalamic thyrotropin-releasing hormone (TRH) phenotype are poorly understood. We have previously shown that Klf10 or TGFβ inducible early gene-1 (TIEG1) is enriched in fetal hypothalamic TRH neurons. Here, we show that expression of TGFβ isoforms (1–3) and both TGFβ receptors (TβRI and II) occurs in the hypothalamus concomitantly with the establishment of TRH neurons during late embryonic development. TGFβ2 induces Trh expression via a TIEG1 dependent mechanism. TIEG1 regulates Trh expression through an evolutionary conserved GC rich sequence on the Trh promoter. Finally, in mice deficient in TIEG1, Trh expression is lower than in wild type animals at embryonic day 17. These results indicate that TGFβ signaling, through the upregulation of TIEG1, plays an important role in the establishment of Trh expression in the embryonic hypothalamus. PMID:25448845

  4. TGFβ2 regulates hypothalamic Trh expression through the TGFβ inducible early gene-1 (TIEG1) during fetal development.

    PubMed

    Martínez-Armenta, Miriam; Díaz de León-Guerrero, Sol; Catalán, Ana; Alvarez-Arellano, Lourdes; Uribe, Rosa Maria; Subramaniam, Malayannan; Charli, Jean-Louis; Pérez-Martínez, Leonor

    2015-01-15

    The hypothalamus regulates the homeostasis of the organism by controlling hormone secretion from the pituitary. The molecular mechanisms that regulate the differentiation of the hypothalamic thyrotropin-releasing hormone (TRH) phenotype are poorly understood. We have previously shown that Klf10 or TGFβ inducible early gene-1 (TIEG1) is enriched in fetal hypothalamic TRH neurons. Here, we show that expression of TGFβ isoforms (1-3) and both TGFβ receptors (TβRI and II) occurs in the hypothalamus concomitantly with the establishment of TRH neurons during late embryonic development. TGFβ2 induces Trh expression via a TIEG1 dependent mechanism. TIEG1 regulates Trh expression through an evolutionary conserved GC rich sequence on the Trh promoter. Finally, in mice deficient in TIEG1, Trh expression is lower than in wild type animals at embryonic day 17. These results indicate that TGFβ signaling, through the upregulation of TIEG1, plays an important role in the establishment of Trh expression in the embryonic hypothalamus.

  5. Calretinin Neurons in the Rat Suprachiasmatic Nucleus.

    PubMed

    Moore, Robert Y

    2016-08-01

    The hypothalamic suprachiasmatic nucleus (SCN), a circadian pacemaker, is present in all mammalian brains. It has a complex organization of peptide-containing neurons that is similar among species, but calcium-binding proteins are expressed variably. Neurons containing calretinin have been described in the SCN in a number of species but not with association to circadian function. The objective of the present study is to characterize a calretinin neuron (CAR) group in the rat anterior hypothalamus anatomically and functionally with a detailed description of its location and a quantitative analysis of neuronal calretinin immunoreactivity at 3 times of day, 0600, 1400, and 1900 h, from animals in either light-dark or constant dark conditions. CAR neurons occupy a region in the dorsal and lateral SCN with a circadian rhythm in CAR immunoreactivity with a peak at 0600 h and a rhythm in cytoplasmic CAR distribution with a peak at 1400 h. CAR neurons should be viewed as an anatomical and functional component of the rat SCN that expands the definition from observations with cell stains. CAR neurons are likely to modulate temporal regulation of calcium in synaptic transmission.

  6. Evidence to suggest that gonadotropin-releasing hormone inhibits its own secretion by affecting hypothalamic amino acid neurotransmitter release.

    PubMed

    Feleder, C; Jarry, H; Leonhardt, S; Moguilevsky, J A; Wuttke, W

    1996-10-01

    The mediobasal hypothalamus of rats contains gonadotropin-releasing hormone (GnRH) receptors. These hypothalamic neurons also express the GnRH corresponding gene. Under these circumstances, the possibility exists that these GnRH receptors could be localized in other neurons, which are GnRH-receptive, unknowing the neurotransmitter quality. Therefore, we studied the in vitro effects of the GnRH agonist buserelin on GnRH, glutamate, gamma-amino-butyric acid (GABA) and taurine release from explanted superfused hypothalami of untreated and buserelin-pretreated (down-regulated) male rats. When buserelin was added to the superfusion medium it inhibited promptly the release of GnRH and the excitatory amino acid neurotransmitter glutamate, but stimulated the release of the inhibitory neurotransmitters, GABA and taurine. Hypothalamic release of GnRH from hypothalami collected from buserelin-treated (30 micrograms/100 g b.w. twice daily for 4 days) male rats released significantly less GnRH, glutamate and more GABA and taurine. The inhibitory effect of buserelin was maintained when the superfusion medium continuously contained the GnRH analog. When superfusion of hypothalami from buserelin-pretreated animals was performed in the absence of buserelin, GnRH and glutamate release increased significantly within 45-60 min, whereas GABA and taurine release decreased at this time point. When buserelin was added to the superfusion medium 2 h after buserelin-free superfusion, GnRH and glutamate release decreased whereas GABA and taurine release increased instantaneously. Buserelin-treated rats showed significantly low values of LH and testosterone than the untreated rats. These results suggest that GnRH receptors may not only be present in GnRH axon terminals in the median eminence, but also on glutamatergic, GABAergic and taurinergic neurons by which GnRH may exert an autoinhibitory ultrashort loop feedback on its own secretion. This effect appears to be connected with glutamatergic

  7. Physiology of BDNF: focus on hypothalamic function.

    PubMed

    Tapia-Arancibia, Lucia; Rage, Florence; Givalois, Laurent; Arancibia, Sandor

    2004-07-01

    Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family which interacts with high-affinity protein kinase receptors (Trk) and the unselective p75(NGFR) receptor. The BDNF gene has a complex structure with multiple regulatory elements and four promoters that are differentially expressed in central or peripheral tissue. BDNF expression is regulated by neuronal activity or peripheral hormones. Neurotrophins regulate the survival and differentiation of neurons during development but growing evidence indicates that they are also involved in several functions in adulthood, including plasticity processes. BDNF expression in the central nervous system (CNS) is modified by various kinds of brain insult (stress, ischemia, seizure activity, hypoglycemia, etc.) and alterations in its expression may contribute to some pathologies such as depression, epilepsy, Alzheimer's, and Parkinson's disease. Apart from very traumatic situations, the brain functioning is resilient to stress and capable of adaptive plasticity. Neurotrophins might act as plasticity mediators enhancing this trait which seems to be crucial in adaptive processes. In addition to documenting all of the topics mentioned above in the CNS, we review the state of the art concerning neurotrophins and their receptors, including our personal contribution which is essentially focused on the stress response.

  8. Melanocortin-3 receptors expressed in Nkx2.1(+ve) neurons are sufficient for controlling appetitive responses to hypocaloric conditioning

    PubMed Central

    Girardet, Clémence; Mavrikaki, Maria M.; Stevens, Joseph R.; Miller, Courtney A.; Marks, Daniel L.; Butler, Andrew A.

    2017-01-01

    Melanocortin-3 receptors (MC3R) have a contextual role in appetite control that is amplified with hypocaloric conditioning. C57BL/6J (B6) mice subjected to hypocaloric feeding schedules (HFS) exhibit compulsive behavioral responses involving food anticipatory activity (FAA) and caloric loading following food access. These homeostatic responses to calorie-poor environs are attenuated in B6 mice in which Mc3r transcription is suppressed by a lox-stop-lox sequence in the 5’UTR (Mc3rTB/TB). Here, we report that optimization of caloric loading in B6 mice subject to HFS, characterized by increased meal size and duration, is not observed in Mc3rTB/TB mice. Analysis of hypothalamic and neuroendocrine responses to HFS throughout the light-dark cycle suggests uncoupling of hypothalamic responses involving appetite-stimulating fasting-responsive hypothalamic neurons expressing agouti-related peptide (AgRP) and neuropeptide Y (Npy). Rescuing Mc3rs expression in Nkx2.1(+ve) neurons is sufficient to restore normal hypothalamic responses to negative energy balance. In addition, Mc3rs expressed in Nkx2.1(+ve) neurons are also sufficient to restore FAA and caloric loading of B6 mice subjected to HFS. In summary, MC3Rs expressed in Nkx2.1(+ve) neurons are sufficient to coordinate hypothalamic response and expression of compulsive behavioral responses involving meal anticipation and consumption of large meals during situations of prolonged negative energy balance. PMID:28294152

  9. Adaptive responses of the maternal hypothalamic-pituitary-adrenal axis during pregnancy and lactation.

    PubMed

    Brunton, P J; Russell, J A; Douglas, A J

    2008-06-01

    Over the past 40 years, it has been recognised that the maternal hypothalamic-pituitary-adrenal (HPA) axis undergoes adaptations through pregnancy and lactation that might contribute to avoidance of adverse effects of stress on the mother and offspring. The extent of the global adaptations in the HPA axis has been revealed and the underlying mechanisms investigated within the last 20 years. Both basal, including the circadian rhythm, and stress-induced adrenocorticotrophic hormone and glucocorticoid secretory patterns are altered. Throughout most of pregnancy, and in lactation, these changes predominantly reflect reduced drive by the corticotropin-releasing factor (CRF) neurones in the parvocellular paraventricular nucleus (pPVN). An accompanying profound attenuation of HPA axis responses to a wide variety of psychological and physical stressors emerges after mid-pregnancy and persists until the end of lactation. Central to this suppression of stress responsiveness is reduced activation of the pPVN CRF neurones. This is consequent on the reduced effectiveness of the stimulation of brainstem afferents to these CRF neurones (for physical stressors) and of altered processing by limbic structures (for emotional stressors). The mechanism of reduced CRF neurone responses to physical stressors in pregnancy is the suppression of noradrenaline release in the PVN by an up-regulated endogenous opioid mechanism, which is induced by neuroactive steroid produced from progesterone. By contrast, in lactation suckling the young provides a neural stimulus that dampens the HPA axis circadian rhythm and reduces stress responses. Reduced noradrenergic input activity is involved in reduced stress responses in lactation, although central prolactin action also appears important. Such adaptations limit the adverse effects of excess glucocorticoid exposure on the foetus(es) and facilitate appropriate metabolic and immune responses.

  10. A sex difference in the hypothalamic uncinate nucleus: relationship to gender identity.

    PubMed

    Garcia-Falgueras, Alicia; Swaab, Dick F

    2008-12-01

    Transsexuality is an individual's unshakable conviction of belonging to the opposite sex, resulting in a request for sex-reassignment surgery. We have shown previously that the bed nucleus of the stria terminalis (BSTc) is female in size and neuron number in male-to-female transsexual people. In the present study we investigated the hypothalamic uncinate nucleus, which is composed of two subnuclei, namely interstitial nucleus of the anterior hypothalamus (INAH) 3 and 4. Post-mortem brain material was used from 42 subjects: 14 control males, 11 control females, 11 male-to-female transsexual people, 1 female-to-male transsexual subject and 5 non-transsexual subjects who were castrated because of prostate cancer. To identify and delineate the nuclei and determine their volume and shape we used three different stainings throughout the nuclei in every 15th section, i.e. thionin, neuropeptide Y and synaptophysin, using an image analysis system. The most pronounced differences were found in the INAH3 subnucleus. Its volume in thionin sections was 1.9 times larger in control males than in females (P < 0.013) and contained 2.3 times as many cells (P < 0.002). We showed for the first time that INAH3 volume and number of neurons of male-to-female transsexual people is similar to that of control females. The female-to-male transsexual subject had an INAH3 volume and number of neurons within the male control range, even though the treatment with testosterone had been stopped three years before death. The castrated men had an INAH3 volume and neuron number that was intermediate between males (volume and number of neurons P > 0.117) and females (volume P > 0.245 and number of neurons P > 0.341). There was no difference in INAH3 between pre-and post-menopausal women, either in the volume (P > 0.84) or in the number of neurons (P < 0.439), indicating that the feminization of the INAH3 of male-to-female transsexuals was not due to estrogen treatment. We propose that the sex reversal

  11. Physiological arousal: a role for hypothalamic systems.

    PubMed

    Adamantidis, A; de Lecea, L

    2008-05-01

    The lateral hypothalamus (LH) has long been known as a homeostasis center of the brain that modulates feeding behavior, arousal and reward. The hypocretins (Hcrts, also called orexins) and melanin-concentrating hormone (MCH) are neuropeptides produced in two intermingled populations of a few thousand neurons in the LH. The Hcrts have a prominent role in regulating the stability of arousal, since Hcrt system deficiency leads to narcolepsy. MCH is an important modulator of energy balance, as MCH system deficiency in mice leads to leanness and increased metabolism. Recently, MCH has been proposed to modulate rapid eye movement sleep in rodents. In this review, we propose a working model of the cross-talk between Hcrt and MCH circuits that may provide an arousal balance system to regulate complex goal-oriented behaviors.

  12. Hypothalamic inflammation in the control of metabolic function.

    PubMed

    Valdearcos, Martin; Xu, Allison W; Koliwad, Suneil K

    2015-01-01

    Diet-induced obesity leads to devastating and common chronic diseases, fueling ongoing interest in determining new mechanisms underlying both obesity and its consequences. It is now well known that chronic overnutrition produces a unique form of inflammation in peripheral insulin target tissues, and efforts to limit this inflammation have met with some success in preserving insulin sensitivity in obese individuals. Recently, the activation of inflammatory pathways by dietary excess has also been observed among cells located in the mediobasal hypothalamus, a brain area that exerts central control over peripheral glucose, fat, and energy metabolism. Here we review progress in the field of diet-induced hypothalamic inflammation, drawing key distinctions between metabolic inflammation in the hypothalamus and that occurring in peripheral tissues. We focus on specific stimuli of the inflammatory response, the roles of individual hypothalamic cell types, and the links between hypothalamic inflammation and metabolic function under normal and pathophysiological circumstances. Finally, we explore the concept of controlling hypothalamic inflammation to mitigate metabolic disease.

  13. The effect of spaceflight on retino-hypothalamic tract development

    NASA Technical Reports Server (NTRS)

    Murakami, D. M.; Hoban-Higgins, T. M.; Tang, I. H.; Fuller, C. A.

    1997-01-01

    Researchers examined the effect of late prenatal exposure to microgravity on the development of the retina, retinohypothalamic tract, geniculo-hypothalamic tract, and suprachiasmatic nucleus. Results indicate an effect on c-fos activity in the intergeniculate leaflet between gestational day 20 and postnatal day 8, suggesting a delay in development of the circadian timing system.

  14. Stereotactic radiofrequency thermocoagulation for hypothalamic hamartoma with intractable gelastic seizures.

    PubMed

    Homma, Junpei; Kameyama, Shigeki; Masuda, Hiroshi; Ueno, Takehiko; Fujimoto, Ayataka; Oishi, Makoto; Fukuda, Masafumi

    2007-08-01

    Management of hypothalamic hamartoma with intractable gelastic epilepsy remains controversial. We have used stereotactic thermocoagulation for treatment of hypothalamic hamartoma with intractable gelastic epilepsy since 1997. Herein, we review our experience in five cases to clarify the usefulness of this treatment. A total of five patients with hypothalamic hamartoma were treated by stereotactic thermocoagulation at our hospital during the period October 1997 through February 2004. In all patients, the hamartoma was less than 10mm in diameter and was located on the floor of the third ventricle with sessile attachment to the wall. To identify ictal onset, chronic intracranial electroencephalography was performed in three patients with the use of a depth electrode implanted in the hamartoma. Attempts were made to induce gelastic seizure by electrical stimulation of the hamartoma in three patients. After magnetic resonance imaging-guided targeting, radiofrequency thermocoagulation of the boundary between the hamartoma and normal hypothalamus was performed to achieve disconnection effects. Marked reductions in seizure frequency were obtained in all cases, with three patients becoming seizure-free after the procedure. No intraoperative complications occurred except in one patient who experienced acute and transient panidrosis with hot flushes during coagulation. Our results suggest that stereotactic thermocoagulation of hypothalamic hamartoma is an acceptable treatment option for patients with intractable gelastic seizures.

  15. Ordering spatiotemporal chaos in complex thermosensitive neuron networks

    NASA Astrophysics Data System (ADS)

    Gong, Yubing; Xu, Bo; Xu, Qiang; Yang, Chuanlu; Ren, Tingqi; Hou, Zhonghuai; Xin, Houwen

    2006-04-01

    We have studied the effect of random long-range connections in chaotic thermosensitive neuron networks with each neuron being capable of exhibiting diverse bursting behaviors, and found stochastic synchronization and optimal spatiotemporal patterns. For a given coupling strength, the chaotic burst-firings of the neurons become more and more synchronized as the number of random connections (or randomness) is increased and, rather, the most pronounced spatiotemporal pattern appears for an optimal randomness. As the coupling strength is increased, the optimal randomness shifts towards a smaller strength. This result shows that random long-range connections can tame the chaos in the neural networks and make the neurons more effectively reach synchronization. Since the model studied can be used to account for hypothalamic neurons of dogfish, catfish, etc., this result may reflect the significant role of random connections in transferring biological information.

  16. Endoreplication: a molecular trick during animal neuron evolution.

    PubMed

    Mandrioli, Mauro; Mola, Lucrezia; Cuoghi, Barbara; Sonetti, Dario

    2010-06-01

    The occurrence of endoreplication has been repeatedly reported in many organisms, including protists, plants, worms, arthropods, molluscs, fishes, and mammals. As a general rule, cells possessing endoreplicated genomes are large-sized and highly metabolically active. Endoreplication has not been frequently reported in neuronal cells that are typically considered to be fully differentiated and non-dividing, and which normally contain a diploid genome. Despite this general statement, various papers indicate that giant neurons in molluscs, as well as supramedullary and hypothalamic magnocellular neurons in fishes, contain DNA amounts larger than 2C. In order to study this issue in greater detail here, we review the available data about endoreplication in invertebrate and vertebrate neurons, and discuss its possible functional significance. As a whole, endoreplication seems to be a sort of molecular trick used by neurons in response to the high functional demands that they experience during evolution.

  17. Oxytocin, but not vassopressin, modulates nociceptive responses in dorsal horn neurons.

    PubMed

    Rojas-Piloni, Gerardo; Gerardo, Rojas-Piloni; Mejía-Rodríguez, Rosalinda; Rosalinda, Mejía-Rodríguez; Martínez-Lorenzana, Guadalupe; Guadalupe, Martínez-Lorenzana; Condés-Lara, Miguel; Miguel, Condés-Lara

    2010-05-26

    Oxytocin (OT) and vasopressin (VP) are synthesized and secreted by the paraventricular hypothalamic nucleus (PVN), and both peptides have been implicated in the pain modulatory system. In the spinal cord, activation of OT-containing axons modulates nociceptive neuronal responses in dorsal horn neurons; however, it is not known whether the direct VPergic descending projection participates. Here, we show that both PVN electrical stimulation and topical application of OT in the vicinity of identified and recorded dorsal horn WDR selectively inhibit Adelta and C-fiber responses. In contrast, the topical administration of VP on the same neurons did not affect the nociceptive responses. In addition, the reduction in nociceptive responses caused by PVN stimulation or OT administration was blocked with a selective OT antagonist. The results suggest that the VP descending projection does not modulate the antinociceptive effects mediated by the PVN on dorsal horn neurons; instead, it is the hypothalamic-spinal OT projection that regulates nociceptive information.

  18. Hypothalamic prolyl endopeptidase (PREP) regulates pancreatic insulin and glucagon secretion in mice

    PubMed Central

    Kim, Jung Dae; Toda, Chitoku; D’Agostino, Giuseppe; Zeiss, Caroline J.; DiLeone, Ralph J.; Elsworth, John D.; Kibbey, Richard G.; Chan, Owen; Harvey, Brandon K.; Richie, Christopher T.; Savolainen, Mari; Myöhänen, Timo; Jeong, Jin Kwon; Diano, Sabrina

    2014-01-01

    Prolyl endopeptidase (PREP) has been implicated in neuronal functions. Here we report that hypothalamic PREP is predominantly expressed in the ventromedial nucleus (VMH), where it regulates glucose-induced neuronal activation. PREP knockdown mice (Prepgt/gt) exhibited glucose intolerance, decreased fasting insulin, increased fasting glucagon levels, and reduced glucose-induced insulin secretion compared with wild-type controls. Consistent with this, central infusion of a specific PREP inhibitor, S17092, impaired glucose tolerance and decreased insulin levels in wild-type mice. Arguing further for a central mode of action of PREP, isolated pancreatic islets showed no difference in glucose-induced insulin release between Prepgt/gt and wild-type mice. Furthermore, hyperinsulinemic euglycemic clamp studies showed no difference between Prepgt/gt and wild-type control mice. Central PREP regulation of insulin and glucagon secretion appears to be mediated by the autonomic nervous system because Prepgt/gt mice have elevated sympathetic outflow and norepinephrine levels in the pancreas, and propranolol treatment reversed glucose intolerance in these mice. Finally, re-expression of PREP by bilateral VMH injection of adeno-associated virus–PREP reversed the glucose-intolerant phenotype of the Prepgt/gt mice. Taken together, our results unmask a previously unknown player in central regulation of glucose metabolism and pancreatic function. PMID:25071172

  19. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress

    PubMed Central

    Smith, Sean M.; Vale, Wylie W.

    2006-01-01

    Animals respond to stress by activating a wide array of behavioral and physiological responses that are collectively referred to as the stress response. Corticotropin-releasing factor (CRF) plays a central role in the stress response by regulating the hypothalamic-pituitary-adrenal (HPA) axis. In response to stress, CRF initiates a cascade of events that culminate in the release of glucocorticoids from the adrenal cortex. As a result of the great number of physiological and behavioral effects exerted by glucocorticoids, several mechanisms have evolved to control HPA axis activation and integrate the stress response. Glucocorticoid feedback inhibition plays a prominent role in regulating the magnitude and duration of glucocorticoid release. In addition to glucocorticoid feedback, the HPA axis is regulated at the level of the hypothalamus by a diverse group of afferent projections from limbic, mid-brain, and brain stem nuclei. The stress response is also mediated in part by brain stem noradrenergic neurons, sympathetic andrenornedullary circuits, and parasympathetic systems. In summary, the aim of this review is to discuss the role of the HPA axis in the integration of adaptive responses to stress. We also identify and briefly describe the major neuronal and endocrine systems that contribute to the regulation of the HPA axis and the maintenance of homeostasis in the face of aversive stimuli. PMID:17290797

  20. Hepatic branch vagus nerve plays a critical role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A.

    PubMed

    Harada, Shinichi; Yamazaki, Yui; Koda, Shuichi; Tokuyama, Shogo

    2014-01-01

    Orexin-A (a neuropeptide in the hypothalamus) plays an important role in many physiological functions, including the regulation of glucose metabolism. We have previously found that the development of post-ischemic glucose intolerance is one of the triggers of ischemic neuronal damage, which is suppressed by hypothalamic orexin-A. Other reports have shown that the communication system between brain and peripheral tissues through the autonomic nervous system (sympathetic, parasympathetic and vagus nerve) is important for maintaining glucose and energy metabolism. The aim of this study was to determine the involvement of the hepatic vagus nerve on hypothalamic orexin-A-mediated suppression of post-ischemic glucose intolerance development and ischemic neuronal damage. Male ddY mice were subjected to middle cerebral artery occlusion (MCAO) for 2 h. Intrahypothalamic orexin-A (5 pmol/mouse) administration significantly suppressed the development of post-ischemic glucose intolerance and neuronal damage on day 1 and 3, respectively after MCAO. MCAO-induced decrease of hepatic insulin receptors and increase of hepatic gluconeogenic enzymes on day 1 after was reversed to control levels by orexin-A. This effect was reversed by intramedullary administration of the orexin-1 receptor antagonist, SB334867, or hepatic vagotomy. In the medulla oblongata, orexin-A induced the co-localization of cholin acetyltransferase (cholinergic neuronal marker used for the vagus nerve) with orexin-1 receptor and c-Fos (activated neural cells marker). These results suggest that the hepatic branch vagus nerve projecting from the medulla oblongata plays an important role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A.

  1. Hepatic Branch Vagus Nerve Plays a Critical Role in the Recovery of Post-Ischemic Glucose Intolerance and Mediates a Neuroprotective Effect by Hypothalamic Orexin-A

    PubMed Central

    Harada, Shinichi; Yamazaki, Yui; Koda, Shuichi; Tokuyama, Shogo

    2014-01-01

    Orexin-A (a neuropeptide in the hypothalamus) plays an important role in many physiological functions, including the regulation of glucose metabolism. We have previously found that the development of post-ischemic glucose intolerance is one of the triggers of ischemic neuronal damage, which is suppressed by hypothalamic orexin-A. Other reports have shown that the communication system between brain and peripheral tissues through the autonomic nervous system (sympathetic, parasympathetic and vagus nerve) is important for maintaining glucose and energy metabolism. The aim of this study was to determine the involvement of the hepatic vagus nerve on hypothalamic orexin-A-mediated suppression of post-ischemic glucose intolerance development and ischemic neuronal damage. Male ddY mice were subjected to middle cerebral artery occlusion (MCAO) for 2 h. Intrahypothalamic orexin-A (5 pmol/mouse) administration significantly suppressed the development of post-ischemic glucose intolerance and neuronal damage on day 1 and 3, respectively after MCAO. MCAO-induced decrease of hepatic insulin receptors and increase of hepatic gluconeogenic enzymes on day 1 after was reversed to control levels by orexin-A. This effect was reversed by intramedullary administration of the orexin-1 receptor antagonist, SB334867, or hepatic vagotomy. In the medulla oblongata, orexin-A induced the co-localization of cholin acetyltransferase (cholinergic neuronal marker used for the vagus nerve) with orexin-1 receptor and c-Fos (activated neural cells marker). These results suggest that the hepatic branch vagus nerve projecting from the medulla oblongata plays an important role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A. PMID:24759941

  2. Interleukin-1 Receptor Antagonist Decreases Hypothalamic Oxidative Stress During Experimental Sepsis.

    PubMed

    Wahab, Fazal; Santos-Junior, Nilton N; de Almeida Rodrigues, Rodrigo Pereira; Costa, Luis Henrique A; Catalão, Carlos Henrique R; Rocha, Maria Jose A

    2016-08-01

    In our previous work, we demonstrated that the intracerebroventricular (i.c.v.) injection of an interleukin-1 receptor antagonist (IL-1ra) prevented the impairment in vasopressin secretion and increased survival rate in septic rats. Additionally, we saw a reduction in nitric oxide (NO) levels in cerebroventricular spinal fluid (CSF), suggesting that the IL-1ra prevents apoptosis that seems to occur in vasopressinergic neurons. Here, we investigated the effect of IL-1ra pre-treatment on the sepsis-induced increase in oxidative stress markers in the hypothalamus of rats. The animals were pre-treated by an i.c.v. injection of IL-1ra (9 nmol) or vehicle (0.01 M PBS) before being subjected to cecal ligation and puncture (CLP) or left as control (sham-operation or naive). After 4, 6, and 24 h, the animals were decapitated (n = 9/group) and the brain removed for hypothalamic tissue collection. Transcript and protein levels of IL-1, inducible nitric oxide synthase (iNOS), caspase-3, and hypoxia-inducible factor 1-alpha (HIF-1α) were measured by quantitative polymerase chain reaction (qPCR) and western blot, respectively. Hypothalamic mRNA levels of all these genes were significantly (P < 0.005) increased at 4, 6, and 24 h CLP, as compared to sham-operated animals. IL-1ra pre-treatment in these CLP animals significantly decreased IL-1 gene expression at all time points and also of iNOS, caspase-3, and HIF-1α at 24 h when compared to vehicle-treated CLP animals. The effect of the pre-treatment on protein expression was most clearly seen for IL-1β and iNOS at 24 h. Our results showed that blocking the IL-1-IL-1r signaling pathway by central administration of an IL-1ra decreases hypothalamic oxidative stress markers during sepsis.

  3. Neuroendocrine Function After Hypothalamic Depletion of Glucocorticoid Receptors in Male and Female Mice.

    PubMed

    Solomon, Matia B; Loftspring, Matthew; de Kloet, Annette D; Ghosal, Sriparna; Jankord, Ryan; Flak, Jonathan N; Wulsin, Aynara C; Krause, Eric G; Zhang, Rong; Rice, Taylor; McKlveen, Jessica; Myers, Brent; Tasker, Jeffrey G; Herman, James P

    2015-08-01

    Glucocorticoids act rapidly at the paraventricular nucleus (PVN) to inhibit stress-excitatory neurons and limit excessive glucocorticoid secretion. The signaling mechanism underlying rapid feedback inhibition remains to be determined. The present study was designed to test the hypothesis that the canonical glucocorticoid receptors (GRs) is required for appropriate hypothalamic-pituitary-adrenal (HPA) axis regulation. Local PVN GR knockdown (KD) was achieved by breeding homozygous floxed GR mice with Sim1-cre recombinase transgenic mice. This genetic approach created mice with a KD of GR primarily confined to hypothalamic cell groups, including the PVN, sparing GR expression in other HPA axis limbic regulatory regions, and the pituitary. There were no differences in circadian nadir and peak corticosterone concentrations between male PVN GR KD mice and male littermate controls. However, reduction of PVN GR increased ACTH and corticosterone responses to acute, but not chronic stress, indicating that PVN GR is critical for limiting neuroendocrine responses to acute stress in males. Loss of PVN GR induced an opposite neuroendocrine phenotype in females, characterized by increased circadian nadir corticosterone levels and suppressed ACTH responses to acute restraint stress, without a concomitant change in corticosterone responses under acute or chronic stress conditions. PVN GR deletion had no effect on depression-like behavior in either sex in the forced swim test. Overall, these findings reveal pronounced sex differences in the PVN GR dependence of acute stress feedback regulation of HPA axis function. In addition, these data further indicate that glucocorticoid control of HPA axis responses after chronic stress operates via a PVN-independent mechanism.

  4. Appetitive associative learning recruits a distinct network with cortical, striatal, and hypothalamic regions

    PubMed Central

    Cole, Sindy; Hobin, Michael P.; Petrovich, Gorica D.

    2014-01-01

    The amygdala, prefrontal cortex, striatum and other connected forebrain areas are important for reward-associated learning and subsequent behaviors. How these structurally and functionally dissociable regions are recruited during initial learning, however, is unclear. Recently, we showed amygdalar nuclei were differentially recruited across different stages of cue-food associations in a Pavlovian conditioning paradigm. Here, we systematically examined Fos induction in the forebrain, including areas associated with the amygdala, during early (day 1) and late (day 10) training sessions of cue-food conditioning. During training, rats in the conditioned group received tone-food pairings, while controls received presentations of the tone alone in the conditioning chamber followed by food delivery in their home cage. We found that a small subset of telencephalic and hypothalamic regions were differentially recruited during the early and late stages of training, suggesting evidence of learning induced plasticity. Initial tone-food pairings recruited solely the amygdala, while late tone-food pairings came to induce Fos in distinct areas within the medial and lateral prefrontal cortex, the dorsal striatum, and the hypothalamus (lateral hypothalamus and paraventricular nucleus). Furthermore, within the perifornical lateral hypothalamus, tone-food pairings selectively recruited neurons that produce the orexigenic neuropeptide orexin/hypocretin. These data show a functional map of the forebrain areas recruited by appetitive associative learning and dependent on experience. These selectively activated regions include interconnected prefrontal, striatal, and hypothalamic regions that form a discrete but distributed network that is well placed to simultaneously inform cortical (cognitive) processing and behavioral (motivational) control during cue-food learning. PMID:25463526

  5. Sustained alterations of hypothalamic tanycytes during posttraumatic hypopituitarism in male mice.

    PubMed

    Osterstock, Guillaume; El Yandouzi, Taoufik; Romanò, Nicola; Carmignac, Danielle; Langlet, Fanny; Coutry, Nathalie; Guillou, Anne; Schaeffer, Marie; Chauvet, Norbert; Vanacker, Charlotte; Galibert, Evelyne; Dehouck, Bénédicte; Robinson, Iain C A F; Prévot, Vincent; Mollard, Patrice; Plesnila, Nikolaus; Méry, Pierre-François

    2014-05-01

    Traumatic brain injury is a leading cause of hypopituitarism, which compromises patients' recovery, quality of life, and life span. To date, there are no means other than standardized animal studies to provide insights into the mechanisms of posttraumatic hypopituitarism. We have found that GH levels were impaired after inducing a controlled cortical impact (CCI) in mice. Furthermore, GHRH stimulation enhanced GH to lower level in injured than in control or sham mice. Because many characteristics were unchanged in the pituitary glands of CCI mice, we looked for changes at the hypothalamic level. Hypertrophied astrocytes were seen both within the arcuate nucleus and the median eminence, two pivotal structures of the GH axis, spatially remote to the injury site. In the arcuate nucleus, GHRH neurons were unaltered. In the median eminence, injured mice exhibited unexpected alterations. First, the distributions of claudin-1 and zonula occludens-1 between tanycytes were disorganized, suggesting tight junction disruptions. Second, endogenous IgG was increased in the vicinity of the third ventricle, suggesting abnormal barrier properties after CCI. Third, intracerebroventricular injection of a fluorescent-dextran derivative highly stained the hypothalamic parenchyma only after CCI, demonstrating an increased permeability of the third ventricle edges. This alteration of the third ventricle might jeopardize the communication between the hypothalamus and the pituitary gland. In conclusion, the phenotype of CCI mice had similarities to the posttraumatic hypopituitarism seen in humans with intact pituitary gland and pituitary stalk. It is the first report of a pathological status in which tanycyte dysfunctions appear as a major acquired syndrome.

  6. Neuroendocrine Function After Hypothalamic Depletion of Glucocorticoid Receptors in Male and Female Mice

    PubMed Central

    Loftspring, Matthew; de Kloet, Annette D.; Ghosal, Sriparna; Jankord, Ryan; Flak, Jonathan N.; Wulsin, Aynara C.; Krause, Eric G.; Zhang, Rong; Rice, Taylor; McKlveen, Jessica; Myers, Brent; Tasker, Jeffrey G.; Herman, James P.

    2015-01-01

    Glucocorticoids act rapidly at the paraventricular nucleus (PVN) to inhibit stress-excitatory neurons and limit excessive glucocorticoid secretion. The signaling mechanism underlying rapid feedback inhibition remains to be determined. The present study was designed to test the hypothesis that the canonical glucocorticoid receptors (GRs) is required for appropriate hypothalamic-pituitary-adrenal (HPA) axis regulation. Local PVN GR knockdown (KD) was achieved by breeding homozygous floxed GR mice with Sim1-cre recombinase transgenic mice. This genetic approach created mice with a KD of GR primarily confined to hypothalamic cell groups, including the PVN, sparing GR expression in other HPA axis limbic regulatory regions, and the pituitary. There were no differences in circadian nadir and peak corticosterone concentrations between male PVN GR KD mice and male littermate controls. However, reduction of PVN GR increased ACTH and corticosterone responses to acute, but not chronic stress, indicating that PVN GR is critical for limiting neuroendocrine responses to acute stress in males. Loss of PVN GR induced an opposite neuroendocrine phenotype in females, characterized by increased circadian nadir corticosterone levels and suppressed ACTH responses to acute restraint stress, without a concomitant change in corticosterone responses under acute or chronic stress conditions. PVN GR deletion had no effect on depression-like behavior in either sex in the forced swim test. Overall, these findings reveal pronounced sex differences in the PVN GR dependence of acute stress feedback regulation of HPA axis function. In addition, these data further indicate that glucocorticoid control of HPA axis responses after chronic stress operates via a PVN-independent mechanism. PMID:26046806

  7. Craniopharyngioma and hypothalamic injury: latest insights into consequent eating disorders and obesity

    PubMed Central

    Müller, Hermann L.

    2016-01-01

    Purpose of review Hypothalamic alterations, pathological or treatment induced, have major impact on prognosis in craniopharyngioma patients mainly because of consequent hypothalamic obesity. Recent insight in molecular genetics, treatment strategies, risk factors and outcomes associated with hypothalamic obesity provide novel therapeutic perspectives. This review includes relevant publications since 2013. Recent findings Recent findings confirm that alterations in posterior hypothalamic areas because of tumour location and/or treatment-related injuries are associated with severe hypothalamic obesity, reduced overall survival and impaired quality of life in long-term survivors of childhood-onset craniopharyngioma. However, eating disorders are observed because of hypothalamic obesity without clear disease-specific patterns. Treatment options for hypothalamic obesity are very limited. Treatment with invasive, nonreversible bariatric methods such as Roux-en-Y gastric bypass is most efficient in weight reduction, but controversial in the paediatric population because of medical, ethical, and legal considerations. Accordingly, treatment in craniopharyngioma should focus on prevention of (further) hypothalamic injury. Presurgical imaging for grading of hypothalamic involvement should be the basis for hypothalamus-sparing strategies conducted by experienced multidisciplinary teams. Summary Until a nonsurgical therapeutic option for hypothalamic obesity for paediatric patients is found, prevention of hypothalamic injury should be the preferred treatment strategy, conducted exclusively by experienced multidisciplinary teams. PMID:26574645

  8. Mct8 and trh co-expression throughout the hypothalamic paraventricular nucleus is modified by dehydration-induced anorexia in rats.

    PubMed

    Alvarez-Salas, Elena; Mengod, Guadalupe; García-Luna, Cinthia; Soberanes-Chávez, Paulina; Matamoros-Trejo, Gilberto; de Gortari, Patricia

    2016-04-01

    Thyrotropin-releasing hormone (TRH) is a neuropeptide with endocrine and neuromodulatory effects. TRH from the paraventricular hypothalamic nucleus (PVN) participates in the control of energy homeostasis; as a neuromodulator TRH has anorexigenic effects. Negative energy balance decreases PVN TRH expression and TSH concentration; in contrast, a particular model of anorexia (dehydration) induces in rats a paradoxical increase in TRH expression in hypophysiotropic cells from caudal PVN and high TSH serum levels, despite their apparent hypothalamic hyperthyroidism and low body weight. We compared here the mRNA co-expression pattern of one of the brain thyroid hormones' transporters, the monocarboxylate transporter-8 (MCT8) with that of TRH in PVN subdivisions of dehydration-induced anorexic (DIA) and control rats. Our aim was to identify whether a low MCT8 expression in anorexic rats could contribute to their high TRH mRNA content.We registered daily food intake and body weight of 7-day DIA and control rats and analyzed TRH and MCT8 mRNA co-expression throughout the PVN by double in situ hybridization assays. We found that DIA rats showed increased number of TRHergic cells in caudal PVN, as well as a decreased percentage of TRH-expressing neurons that co-expressed MCT8 mRNA signal. Results suggest that the reduced proportion of double TRH/MCT8 expressing cells may be limiting the entry of hypothalamic triiodothyronine to the greater number of TRH-expressing neurons from caudal PVN and be in part responsible for the high TRH expression in anorexia rats and for the lack of adaptation of their hypothalamic-pituitary-thyroid axis to their low food intake.

  9. Secretory pattern of GH, TSH, thyroid hormones, ACTH, cortisol, FSH, and LH in patients with fibromyalgia syndrome following systemic injection of the relevant hypothalamic-releasing hormones.

    PubMed

    Riedel, W; Layka, H; Neeck, G

    1998-01-01

    To study the hormonal perturbations in FMS patients we injected sixteen FMS patients and seventeen controls a cocktail of the hypothalamic releasing hormones: Corticotropin-releasing hormone (CRH), Thyrotropin-releasing hormone (TRH), Growth hormone-releasing hormone (GHRH), and Luteinizing hormone-releasing hormone (LHRH) and observed the hormonal secretion pattern of the pituitary together with the hormones of the peripheral endocrine glands. We found in FMS patients elevated basal values of ACTH and cortisol, lowered basal values of insulin-like growth factor I (IGF-I) and of triiodothyronine (T3), elevated basal values of follicle-stimulating hormone (FSH) and lowered basal values of estrogen. Following injection of the four releasing-hormones, we found in FMS patients an augmented response of ACTH, a blunted response of TSH, while the prolactin response was exaggerated. The effects of LHRH stimulation were investigated in six FMS patients and six controls and disclosed a significantly blunted response of LH in FMS. We explain the deviations of hormonal secretion in FMS patients as being caused by chronic stress, which, after being perceived and processed by the central nervous system (CNS), activates hypothalamic CRH neurons. CRH, on the one hand, activates the pituitary-adrenal axis, but also stimulates at the hypothalamic level somatostatin secretion which, in turn, causes inhibition of GH and TSH at the pituitary level. The suppression of gonadal function may also be attributed to elevated CRH by its ability to inhibit hypothalamic LHRH release, although it could act also directly on the ovary by inhibiting FSH-stimulated estrogen production. We conclude that the observed pattern of hormonal deviations in FMS patients is a CNS adjustment to chronic pain and stress, constitutes a specific entity of FMS, and is primarily evoked by activated CRH neurons.

  10. Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats.

    PubMed

    Kamegai, J; Tamura, H; Shimizu, T; Ishii, S; Sugihara, H; Wakabayashi, I

    2001-11-01

    Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor (GHS-R), was originally purified from the rat stomach. Like the synthetic growth hormone secretagogues (GHSs), ghrelin specifically releases growth hormone (GH) after intravenous administration. Also consistent with the central actions of GHSs, ghrelin-immunoreactive cells were shown to be located in the hypothalamic arcuate nucleus as well as the stomach. Recently, we showed that a single central administration of ghrelin increased food intake and hypothalamic agouti-related protein (AGRP) gene expression in rodents, and the orexigenic effect of this peptide seems to be independent of its GH-releasing activity. However, the effect of chronic infusion of ghrelin on food consumption and body weight and their possible mechanisms have not been elucidated. In this study, we determined the effects of chronic intracerebroventricular treatment with ghrelin on metabolic factors and on neuropeptide genes that are expressed in hypothalamic neurons that have been previously shown to express the GHS-R and to regulate food consumption. Chronic central administration of rat ghrelin (1 microg/rat every 12 h for 72 h) significantly increased food intake and body weight. However, it did not affect plasma insulin, glucose, leptin, or GH concentrations. We also found that chronic central administration of ghrelin increased both neuropeptide Y (NPY) mRNA levels (151.0 +/- 10.1% of saline-treated controls; P < 0.05) and AGRP mRNA levels (160.0 +/- 22.5% of saline-treated controls; P < 0.05) in the arcuate nucleus. Thus, the primary hypothalamic targets of ghrelin are NPY/AGRP-containing neurons, and ghrelin is a newly discovered orexigenic peptide in the brain and stomach.

  11. Estradiol modulates Kiss1 neuronal response to ghrelin

    PubMed Central

    Frazao, Renata; Lemko, Heather M. Dungan; da Silva, Regina P.; Ratra, Dhirender V.; Lee, Charlotte E.; Williams, Kevin W.; Zigman, Jeffrey M.

    2014-01-01

    Ghrelin is a metabolic signal regulating energy homeostasis. Circulating ghrelin levels rise during starvation and fall after a meal, and therefore, ghrelin may function as a signal of negative energy balance. Ghrelin may also act as a modulator of reproductive physiology, as acute ghrelin administration suppresses gonadotropin secretion and inhibits the neuroendocrine reproductive axis. Interestingly, ghrelin's effect in female metabolism varies according to the estrogen milieu predicting an interaction between ghrelin and estrogens, likely at the hypothalamic level. Here, we show that ghrelin receptor (GHSR) and estrogen receptor-α (ERα) are coexpressed in several hypothalamic sites. Higher levels of circulating estradiol increased the expression of GHSR mRNA and the co-xpression of GHSR mRNA and ERα selectively in the arcuate nucleus (ARC). Subsets of preoptic and ARC Kiss1 neurons coexpressed GHSR. Increased colocalization was observed in ARC Kiss1 neurons of ovariectomized estradiol-treated (OVX + E2; 80%) compared with ovariectomized oil-treated (OVX; 25%) mice. Acute actions of ghrelin on ARC Kiss1 neurons were also modulated by estradiol; 75 and 22% of Kiss1 neurons of OVX + E2 and OVX mice, respectively, depolarized in response to ghrelin. Our findings indicate that ghrelin and estradiol may interact in several hypothalamic sites. In the ARC, high levels of E2 increase GHSR mRNA expression, modifying the colocalization rate with ERα and Kiss1 and the proportion of Kiss1 neurons acutely responding to ghrelin. Our findings indicate that E2 alters the responsiveness of kisspeptin neurons to metabolic signals, potentially acting as a critical player in the metabolic control of the reproductive physiology. PMID:24473434

  12. [Neuronal ageing].

    PubMed

    Piechota, Małgorzata; Sunderland, Piotr

    2014-01-01

    Ageing leads to irreversible alterations in the nervous system, which to various extent impair its functions such as capacity to learn and memory. In old neurons and brain, similarly to what may take place in other cells, there is increased oxidative stress, disturbed energetic homeostasis and metabolism, accumulation of damage in proteins and nucleic acids. Characteristic of old neurons are alterations in plasticity, synaptic transmission, sensitivity to neurotrophic factors and cytoskeletal changes. Some markers of senescence, whose one of them is SA-beta-galactosidase were used to show the process of neuronal ageing both in vitro, and in vivo. Some research suggest that, despite the fact that neurons are postmitotic cells, it is cell cycle proteins which play a certain role in their biology, e.g. differentiation. However, their role in neuronal ageing is not known or explained. Ageing is the serious factor of development of neurodegenerative diseases among others Alzheimer disease.

  13. Optogenetic control of hypocretin (orexin) neurons and arousal circuits.

    PubMed

    de Lecea, Luis

    2015-01-01

    In 1998, our group discovered a cDNA that encoded the precursor of two putative neuropeptides that we called hypocretins for their hypothalamic expression and their similarity to the secretin family of neuropeptides. In the last 16 years, numerous studies have placed the hypocretin system as an integrator of homeostatic functions with a crucial, non-redundant function as arousal stabilizer. We recently applied optogenetic methods to interrogate the role of individual neuronal circuits in sleep-to-wake transitions. The neuronal connections between the hypocretin system and the locus coeruleus (LC) seem to be crucial in establishing the appropriate dynamic of spontaneous awakenings.

  14. Optogenetic Control of Hypocretin (Orexin) Neurons and Arousal Circuits

    PubMed Central

    de Lecea, Luis

    2016-01-01

    In 1998, our group discovered a cDNA that encoded the precursor of two putative neuropeptides that we called hypocretins for their hypothalamic expression and their similarity to the secretin family of neuropeptides. In the last 16 years, numerous studies have placed the hypocretin system as an integrator of homeostatic functions with a crucial, non-redundant function as arousal stabilizer. We recently applied optogenetic methods to interrogate the role of individual neuronal circuits in sleep-to-wake transitions. The neuronal connections between the hypocretin system and the locus coeruleus (LC) seem to be crucial in establishing the appropriate dynamic of spontaneous awakenings. PMID:25502546

  15. fDWI Evaluation of Hypothalamic Appetite Regulation Pathways in Mice Genetically Deficient in Leptin or Neuropeptide Y.

    PubMed

    Lizarbe, Blanca; López-Larrubia, Pilar; Cerdán, Sebastián

    2015-12-01

    We evaluate the contribution of leptin-dependent anorexigenic pathways and neuropeptide Y (NPY)-dependent orexigenic pathways to the changes in hypothalamic water diffusion parameters observed in vivo by functional diffusion weighted MRI (fDWI). Mice genetically deficient in leptin (B6.V-Lep (ob) /J) or NPY (129S-Npy (tm1Rpa) /J) and the corresponding wild-type controls, were subjected to sequential isocaloric feeding, fasting and recovery regimes. Non-invasive fDWI measurements were performed under these conditions, and complemented with parallel determinations of food and water consumption, respiratory exchange ratio (RER), locomotor activity and endocrine profiles. Control mice showed significant increases in hypothalamic water diffusion parameters upon fasting, returning to normal values in the recovery period. Leptin deficient mice depicted permanently increased water diffusion parameters under all feeding conditions as compared to wild type controls, without important changes upon fasting or recovery. These results paralleled sustained increases in food and water intake, significantly augmented body weight, and decreased RER values or locomotor activity, thus configuring an obese phenotype. NPY-deficient mice showed significantly reduced increases (or even slight decreases) in the water diffusion parameters upon fasting as compared to wild type controls, paralleled by decreased food and water intake during the recovery period. In conclusion, leptin deficiency results in sustained orexigenic stimulation, leading to increased water diffusion parameters, while NPY deficiency lead to reduced orexigenic stimulation and water diffusion parameters. Diffusion changes are proposed to reflect net astrocytic volume changes induced by the balance between the orexigenic and anorexigenic firings of AgRP/NPY and POMC/CART neurons, respectively. Together, our results suggest that fDWI provides an adequate tool to investigate hypothalamic appetite disorders.

  16. Kisspeptin cell-specific PI3K signaling regulates hypothalamic kisspeptin expression and participates in the regulation of female fertility

    PubMed Central

    Beymer, Matthew; Negrón, Ariel L.; Yu, Guiqin; Wu, Samuel; Mayer, Christian; Lin, Richard Z.; Boehm, Ulrich

    2014-01-01

    Hypothalamic kisspeptin neurons integrate and translate cues from the internal and external environments that regulate gonadotropin-releasing hormone (GnRH) secretion and maintain fertility in mammals. However, the intracellular signaling pathways utilized to translate such information into changes in kisspeptin expression, release, and ultimately activation of the kisspeptin-receptive GnRH network have not yet been identified. PI3K is an important signaling node common to many peripheral factors known to regulate kisspeptin expression and GnRH release. We investigated whether PI3K signaling regulates hypothalamic kisspeptin expression, pubertal development, and adult fertility in mice. We generated mice with a kisspeptin cell-specific deletion of the PI3K catalytic subunits p110α and p110β (kiss-p110α/β-KO). Using in situ hybridization, we examined Kiss1 mRNA expression in gonad-intact, gonadectomized (Gdx), and Gdx + steroid-replaced mice. Kiss1 cell number in the anteroventral periventricular hypothalamus (AVPV) was significantly reduced in intact females but not in males. In contrast, compared with WT and regardless of steroid hormone status, Kiss1 cell number was lower in the arcuate (ARC) of kiss-p110α/β-KO males, but it was unaffected in females. Both intact Kiss-p110α/β-KO males and females had reduced ARC kisspeptin-immunoreactive (IR) fibers compared with WT animals. Adult kiss-p110α/β-KO males had significantly lower circulating luteinizing hormone (LH) levels, whereas pubertal development and fertility were unaffected in males. Kiss-p110α/β-KO females exhibited a reduction in fertility despite normal pubertal development, LH levels, and estrous cyclicity. Our data show that PI3K signaling is important for the regulation of hypothalamic kisspeptin expression and contributes to normal fertility in females. PMID:25269483

  17. Use of laser-capture microdissection for the identification of marker genes for the ventromedial hypothalamic nucleus.

    PubMed

    Segal, Jeremy P; Stallings, Nancy R; Lee, Charlotte E; Zhao, Liping; Socci, Nicholas; Viale, Agnes; Harris, Thomas M; Soares, Marcelo B; Childs, Geoffrey; Elmquist, Joel K; Parker, Keith L; Friedman, Jeffrey M

    2005-04-20

    The ventromedial hypothalamic nucleus (VMH) plays an important role in the control of feeding and energy homeostasis. In contrast to other hypothalamic nuclei that are also known to regulate energy balance, there is a paucity of nucleus-specific marker genes for the VMH, limiting the application of molecular approaches for analyzing VMH information processing, function, and circuitry. Here, we report the use of laser-capture microdissection to isolate a set of cDNAs that are enriched in the VMH relative to two adjacent hypothalamic nuclei, the arcuate and dorsomedial hypothalamus. The relative expression levels of nine of the 12 most robustly expressed VMH-enriched genes were confirmed by real-time PCR analysis using separate RNAs from these three nuclei. Three of these VMH-enriched genes were further characterized by in situ hybridization histochemistry, including pituitary adenylate cyclase activating polypeptide, cerebellin 1, and an expressed sequence tag named LBH2. Finally, to test whether some of these genes were coordinately regulated, we monitored their expression in steroidogenic factor 1 (SF-1) knock-out mice. SF-1 is a transcription factor that controls the development of the VMH. The RNA levels for four of these genes were reduced in these knock-out animals, further suggesting that they are direct or indirect targets of this orphan nuclear receptor. The VMH-enriched genes identified here provide a basis for a functional analysis of VMH neuronal subpopulations via the use of bacterial artificial chromosome transgenics and related technologies. These results also demonstrate the utility of laser-capture microdissection coupled with microarray technology to identify nucleus-specific transcriptional networks.

  18. Damage to Arousal-Promoting Brainstem Neurons with Traumatic Brain Injury

    PubMed Central

    Valko, Philipp O.; Gavrilov, Yuri V.; Yamamoto, Mihoko; Noaín, Daniela; Reddy, Hasini; Haybaeck, Johannes; Weis, Serge; Baumann, Christian R.; Scammell, Thomas E.

    2016-01-01

    Study Objectives: Coma and chronic sleepiness are common after traumatic brain injury (TBI). Here, we explored whether injury to arousal-promoting brainstem neurons occurs in patients with fatal TBI. Methods: Postmortem examination of 8 TBI patients and 10 controls. Results: Compared to controls, TBI patients had 17% fewer serotonergic neurons in the dorsal raphe nucleus (effect size: 1.25), but the number of serotonergic neurons did not differ in the median raphe nucleus. TBI patients also had 29% fewer noradrenergic neurons in the locus coeruleus (effect size: 0.96). The number of cholinergic neurons in the pedunculopontine and laterodorsal tegmental nuclei (PPT/LDT) was similar in TBI patients and controls. Conclusions: TBI injures arousal-promoting neurons of the mesopontine tegmentum, but this injury is less severe than previously observed in hypothalamic arousal-promoting neurons. Most likely, posttraumatic arousal disturbances are not primarily caused by damage to these brainstem neurons, but arise from an aggregate of injuries, including damage to hypothalamic arousal nuclei and disruption of other arousal-related circuitries. Citation: Valko PO, Gavrilov YV, Yamamoto M, Noain D, Reddy H, Haybaeck J, Weis S, Baumann CR, Scammell TE. Damage to arousal-promoting brainstem neurons with traumatic brain injury. SLEEP 2016;39(6):1249–1252. PMID:27091531

  19. Hypothalamic pituitary disorders expressed by galactorrhea. A dynamic evaluation.

    PubMed

    Perez-Lopez, F R

    1975-11-01

    Physiologic and pathologic production of milk involves complex relations between the mammary glands, hormones, and the central nervous system. In all the galactorrhea syndromes there is a functional or mechanical problem at the pituitary level, with abnormal secretion or reserve of prolactin secretion. Stimulatory agents of prolactin, like thyrotropin releasing hormone (TRH), chlorpromazine, amnio acids, and insulin, can be helpful in the study of the hypothalamic pituitary functional reserve, while the osmotic tests seem to provide a clear distinction between functional and tumoral causes. The inhibitory agents of prolactin secretion, L-dopa and CB 154, permit the study of the negative control of the hormone. In addition, CB 154 appears to be an effective treatment for functional galactorrhea. Hyperprolactinemia appears to exert an inhibitory influence on gonadotropins. Clomiphene, acting on the hypothalamus, and LHRH, acting on the gonadotropes, permit the assessment of the gonadotropic hypothalamic-hypophyseal axis.

  20. Hypothalamic-pituitary-adrenal axis function during perinatal depression.

    PubMed

    Gelman, Phillipe Leff; Flores-Ramos, Mónica; López-Martínez, Margarita; Fuentes, Carlos Cruz; Grajeda, Juan Pablo Reyes

    2015-06-01

    Abnormal function of the hypothalamic-pituitary-adrenal (HPA) axis is an important pathological finding in pregnant women exhibiting major depressive disorder. They show high levels of cortisol pro-inflammatory cytokines, hypothalamic-pituitary peptide hormones and catecholamines, along with low dehydroepiandrosterone levels in plasma. During pregnancy, the TH2 balance together with the immune system and placental factors play crucial roles in the development of the fetal allograft to full term. These factors, when altered, may generate a persistent dysfunction of the HPA axis that may lead to an overt transfer of cortisol and toxicity to the fetus at the expense of reduced activity of placental 11β-hydroxysteroid dehydrogenase type 2. Epigenetic modifications also may contribute to the dysregulation of the HPA axis. Affective disorders in pregnant women should be taken seriously, and therapies focused on preventing the deleterious effects of stressors should be implemented to promote the welfare of both mother and baby.

  1. Differential Sensitivity of Specific Neuronal Populations of the Rat Hypothalamus to Prolactin Action

    PubMed Central

    Sapsford, Tony J.; Kokay, Ilona C.; Östberg, Lovisa; Bridges, Robert S.; Grattan, David R.

    2014-01-01

    Prolactin stimulates dopamine release from neuroendocrine dopaminergic (NEDA) neurons in the hypothalamic arcuate nucleus (ARC) to maintain low levels of serum prolactin. Elevated prolactin levels during pregnancy and lactation may mediate actions in other hypothalamic regions such as the paraventricular nucleus (PVN) and rostral preoptic area (rPOA). We predicted that NEDA neurons would be more sensitive prolactin targets than neurons in other regions because they are required to regulate basal prolactin secretion. Moreover, differences in the accessibility of the ARC to prolactin in blood may influence the responsiveness of this population. Therefore, we compared prolactin-induced signaling in different hypothalamic neuronal populations following either systemic or intracerebroventricular (icv) prolactin administration. Phosphorylation of the signal transduction factor, STAT5 (pSTAT5), was used to identify prolactin-responsive neurons. In response to systemic prolactin, pSTAT5-labeled cells were widely observed in the ARC but absent from the rPOA and PVN. Many of these responsive cells in the ARC were identified as NEDA neurons. The lowest icv prolactin dose (10 ng) induced pSTAT5 in the ARC, but with higher doses (>500 ng) pSTAT5 was detected in numerous regions, including the rPOA and PVN. NEDA neurons were maximally labeled with nuclear pSTAT5 in response to 500 ng prolactin and appeared to be more sensitive than dopaminergic neurons in the rPOA. Subpopulations of oxytocin neurons in the hypothalamus were also found to be differentially sensitive to prolactin. These data suggest that differences in the accessibility of the arcuate nucleus to prolactin, together with intrinsic differences in the NEDA neurons, may facilitate homeostatic feedback regulation of prolactin release. PMID:21953590

  2. Hypothalamic-pituitary-gonadal endocrine system in the hagfish.

    PubMed

    Nozaki, Masumi

    2013-12-30

    The hypothalamic-pituitary system is considered to be a seminal event that emerged prior to or during the differentiation of the ancestral agnathans (jawless vertebrates). Hagfishes as one of the only two extant members of the class of agnathans are considered the most primitive vertebrates known, living or extinct. Accordingly, studies on their reproduction are important for understanding the evolution and phylogenetic aspects of the vertebrate reproductive endocrine system. In gnathostomes (jawed vertebrates), the hormones of the hypothalamus and pituitary have been extensively studied and shown to have well-defined roles in the control of reproduction. In hagfish, it was thought that they did not have the same neuroendocrine control of reproduction as gnathostomes, since it was not clear whether the hagfish pituitary gland contained tropic hormones of any kind. This review highlights the recent findings of the hypothalamic-pituitary-gonadal endocrine system in the hagfish. In contrast to gnathostomes that have two gonadotropins (GTH: luteinizing hormone and follicle-stimulating hormone), only one pituitary GTH has been identified in the hagfish. Immunohistochemical and functional studies confirmed that this hagfish GTH was significantly correlated with the developmental stages of the gonads and showed the presence of a steroid (estradiol) feedback system at the hypothalamic-pituitary levels. Moreover, while the identity of hypothalamic gonadotropin-releasing hormone (GnRH) has not been determined, immunoreactive (ir) GnRH has been shown in the hagfish brain including seasonal changes of ir-GnRH corresponding to gonadal reproductive stages. In addition, a hagfish PQRFamide peptide was identified and shown to stimulate the expression of hagfish GTHβ mRNA in the hagfish pituitary. These findings provide evidence that there are neuroendocrine-pituitary hormones that share common structure and functional features compared to later evolved vertebrates.

  3. Regulation of the Immune System by Hypothalamic Releasing Hormones.

    DTIC Science & Technology

    1987-11-01

    Meyer, W.J. 1987. Decreased mononuclear leukocyte TSH secretion in patients with major depression. Abstr. Society for Neuroscience. 14. Smith, E.M...corticotropin (ACTH). Also, presented are results that the hypothalamic releasing hormones for luteinizing hormone (LH) and thyrotropin ( TSH ) induce...lymphocytes to synthesize immunoreactive LH and TSH , respectively. Finally, we discuss our data that the ACTH receptor on lymphoeytes acts through

  4. Tryptophan availability modulates serotonin release from rat hypothalamic slices

    NASA Technical Reports Server (NTRS)

    Schaechter, Judith D.; Wurtman, Richard J.

    1989-01-01

    The relationship between the tryptophan availability and serononin release from rat hypothalamus was investigated using a new in vitro technique for estimating rates at which endogenous serotonin is released spontaneously or upon electrical depolarization from hypothalamic slices superfused with a solution containing various amounts of tryptophan. It was found that the spontaneous, as well as electrically induced, release of serotonin from the brain slices exhibited a dose-dependent relationship with the tryptophan concentration of the superfusion medium.

  5. Hindbrain medulla catecholamine cell group involvement in lactate-sensitive hypoglycemia-associated patterns of hypothalamic norepinephrine and epinephrine activity.

    PubMed

    Shrestha, P K; Tamrakar, P; Ibrahim, B A; Briski, K P

    2014-10-10

    Cell-type compartmentation of glucose metabolism in the brain involves trafficking of the oxidizable glycolytic end product, l-lactate, by astrocytes to fuel neuronal mitochondrial aerobic respiration. Lactate availability within the hindbrain medulla is a monitored function that regulates systemic glucostasis as insulin-induced hypoglycemia (IIH) is exacerbated by lactate repletion of that brain region. A2 noradrenergic neurons are a plausible source of lactoprivic input to the neural gluco-regulatory circuit as caudal fourth ventricular (CV4) lactate infusion normalizes IIH-associated activation, e.g. phosphorylation of the high-sensitivity energy sensor, adenosine 5'-monophosphate-activated protein kinase (AMPK), in these cells. Here, we investigated the hypothesis that A2 neurons are unique among medullary catecholamine cells in directly screening lactate-derived energy. Adult male rats were injected with insulin or vehicle following initiation of continuous l-lactate infusion into the CV4. Two hours after injections, A1, C1, A2, and C2 neurons were collected by laser-microdissection for Western blot analysis of AMPKα1/2 and phosphoAMPKα1/2 proteins. Results show that AMPK is expressed in each cell group, but only a subset, e.g. A1, C1, and A2 neurons, exhibit increased sensor activity in response to IIH. Moreover, hindbrain lactate repletion reversed hypoglycemic augmentation of pAMPKα1/2 content in A2 and C1 but not A1 cells, and normalized hypothalamic norepinephrine and epinephrine content in a site-specific manner. The present evidence for discriminative reactivity of AMPK-expressing medullary catecholamine neurons to the screened energy substrate lactate implies that that lactoprivation is selectively signaled to the hypothalamus by A2 noradrenergic and C1 adrenergic cells.

  6. Functional Role of Suppressor of Cytokine Signaling 3 Upregulation in Hypothalamic Leptin Resistance and Long-Term Energy Homeostasis

    PubMed Central

    Reed, Alison S.; Unger, Elizabeth K.; Olofsson, Louise E.; Piper, Merisa L.; Myers, Martin G.; Xu, Allison W.

    2010-01-01

    OBJECTIVE Hypothalamic leptin resistance is found in most common forms of obesity, such as diet-induced obesity, and is associated with increased expression of suppressor of cytokine signaling 3 (Socs3) in the hypothalamus of diet-induced obese animals. This study aims to determine the functional consequence of Socs3 upregulation on leptin signaling and obesity, and to investigate whether Socs3 upregulation affects energy balance in a cell type–specific way. RESEARCH DESIGN AND METHODS We generated transgenic mice overexpressing Socs3 in either proopiomelanocortin (POMC) or leptin receptor–expressing neurons, at levels similar to what is observed in diet-induced obesity. RESULTS Upregulation of Socs3 in POMC neurons leads to impairment of STAT3 and mammalian target of rapamycin (mTOR)–S6K-S6 signaling, with subsequent leptin resistance, obesity, and glucose intolerance. Unexpectedly, Socs3 upregulation in leptin receptor neurons results in increased expression of STAT3 protein in mutant hypothalami, but does not lead to obesity. CONCLUSIONS Our study establishes that Socs3 upregulation alone in POMC neurons is sufficient to cause leptin resistance and obesity. Socs3 upregulation impairs both STAT3 and mTOR signaling before the onset of obesity. The lack of obesity in mice with upregulated Socs3 in leptin receptor neurons suggests that Socs3's effect on energy balance could be cell type specific. Our study indicates that POMC neurons are important mediators of Socs3's effect on leptin resistance and obesity, but that other cell types or alteration of other signaling regulators could contribute to the development of obesity. PMID:20068134

  7. Hypothalamic stimulation and baroceptor reflex interaction on renal nerve activity.

    NASA Technical Reports Server (NTRS)

    Wilson, M. F.; Ninomiya, I.; Franz, G. N.; Judy, W. V.

    1971-01-01

    The basal level of mean renal nerve activity (MRNA-0) measured in anesthetized cats was found to be modified by the additive interaction of hypothalamic and baroceptor reflex influences. Data were collected with the four major baroceptor nerves either intact or cut, and with mean aortic pressure (MAP) either clamped with a reservoir or raised with l-epinephrine. With intact baroceptor nerves, MRNA stayed essentially constant at level MRNA-0 for MAP below an initial pressure P1, and fell approximately linearly to zero as MAP was raised to P2. Cutting the baroceptor nerves kept MRNA at MRNA-0 (assumed to represent basal central neural output) independent of MAP. The addition of hypothalamic stimulation produced nearly constant increments in MRNA for all pressure levels up to P2, with complete inhibition at some level above P2. The increments in MRNA depended on frequency and location of the stimulus. A piecewise linear model describes MRNA as a linear combination of hypothalamic, basal central neural, and baroceptor reflex activity.

  8. Early life stress experience may blunt hypothalamic leptin signalling.

    PubMed

    Lee, J H; Yoo, S B; Kim, J Y; Lee, J Y; Kim, B T; Park, K; Jahng, J W

    2017-03-01

    The aim of this study was to investigate whether neonatal maternal separation (MS) - chronic stress experience in early life - affects the anorectic efficacy of leptin in the offspring at adolescence. Sprague-Dawley pups were separated from the dam daily for 3 h during postnatal day 1-14 or left undisturbed as non-handled controls (NH). NH and MS male pups received an intraperitoneal leptin (100 μg/kg) or saline on postnatal day (PND) 28, and then food intake and body weight gain were recorded. The hypothalamic levels of leptin-signalling-related genes, phosphorylated signal transducer and activator of transcription-3 (pSTAT3) and protein-tyrosine phosphatase 1B (PTP1B) were examined at 40 min after a single injection of leptin on PND 39 by immunohistochemistry and Western blot analysis. Leptin-induced suppressions in food intake and weight gain was observed in NH pups, but not in MS. Leptin increased pSTAT3 in the hypothalamic arcuate nucleus of NH pups, but not of MS. Interestingly, basal levels of the hypothalamic PTP1B and pSTAT3 were increased in MS pups compared with NH controls. The results suggest that neonatal MS experience may blunt the anorectic efficacy of leptin later in life, possibly in relation with increased expressions of PTP1B and/or pSTAT3 in the hypothalamus.

  9. Central apelin-13 administration modulates hypothalamic control of feeding.

    PubMed

    Ferrante, C; Orlando, G; Recinella, L; Leone, S; Chiavaroli, A; Di Nisio, C; Shohreh, R; Manippa, F; Ricciuti, A; Vacca, M; Brunetti, L

    2016-01-01

    The 77 amino prepropeptide apelin has been isolated from bovine stomach tissue and several smaller fragments, including apelin-13, showed high affinity for the orphan APJ receptor. The distribution of apelinergic fibers and receptors in the hypothalamus may suggest a role of apelin-13 on energy balance regulation, albeit the studies reporting the acute effects of apelin on feeding control are inconsistent. Considering the possible involvement of apelinergic system on hypothalamic appetite controlling network, in the present study we evaluated in the rat the effects of intrahypothalamic apelin-13 injection on food intake and the involvement of orexigenic and anorexigenic hypothalamic peptides and neurotransmitters. Eighteen rats (6 for each group of treatment) were injected into the ARC with either vehicle or apelin-13 (1-2 μg/rat). Food intake and hypothalamic peptide and neurotransmitter levels were evaluated 2 and 24 h after injection. Compared to vehicle, apelin-13 administration increased food intake both 2 and 24 h following treatment. This effect could be related to inhibited cocaine- and amphetamine-regulated transcript (CART) gene expression and serotonin (5-hydroxytryptamine, 5-HT) synthesis and release, and increased orexin A gene expression in the hypothalamus.

  10. Functional hypothalamic amenorrhoea — diagnostic challenges, monitoring, and treatment.

    PubMed

    Sowińska-Przepiera, Elżbieta; Andrysiak-Mamos, Elżbieta; Jarząbek-Bielecka, Grażyna; Walkowiak, Aleksandra; Osowicz-Korolonek, Lilianna; Syrenicz, Małgorzata; Kędzia, Witold; Syrenicz, Anhelli

    2015-01-01

    Functional hypothalamic amenorrhoea (FHA) is associated with functional inhibition of the hypothalamic-pituitary-ovarian axis. Causes of FHA can be classified into the three groups: 1) stress-related factors, 2) consequences of weight loss and/or underweight, and 3) consequences of physical exercise or practicing sports. Diagnosis of FHA should be based on a history of menstrual disorders. During physical examination, patients with FHA present with secondary and tertiary sex characteristics specific for the pubertal stage preceding development of the condition and with the signs of hypoestrogenism. Laboratory results determine further management of patients with amenorrhea, and thus their correct interpretation is vital for making appropriate therapeutic decisions. Treatment of chronic anovulation, menstrual disorders, and secondary amenorrhea resulting from hypothalamic disorders should be aimed at the elimination of the primary cause, i.e. a decrease in psycho-emotional strain, avoidance of chronic stressors, reduction of physical exercise level, or optimisation of BMI in patients who lose weight. If menses do not resume after a period of six months or primary causative treatment is not possible, neutralisation of hypoestrogenism consequences, especially unfavourable effects on bone metabolism, become the main issue. Previous studies have shown that oestroprogestagen therapy is useful in both the treatment of menstrual disorders and normalisation of bone mineral density. Hormonal preparations should be introduced into therapeutic protocol on an individualised basis.

  11. Effects of sugar solutions on hypothalamic appetite regulation.

    PubMed

    Colley, Danielle L; Castonguay, Thomas W

    2015-02-01

    Several hypotheses for the causes of the obesity epidemic in the US have been proposed. One such hypothesis is that dietary intake patterns have significantly shifted to include unprecedented amounts of refined sugar. We set out to determine if different sugars might promote changes in the hypothalamic mechanisms controlling food intake by measuring several hypothalamic peptides subsequent to overnight access to dilute glucose, sucrose, high fructose corn syrup, or fructose solutions. Rats were given access to food, water and a sugar solution for 24h, after which blood and tissues were collected. Fructose access (as opposed to other sugars that were tested) resulted in a doubling of circulating triglycerides. Glucose consumption resulted in upregulation of 7 satiety-related hypothalamic peptides whereas changes in gene expression were mixed for remaining sugars. Also, following multiple verification assays, 6 satiety related peptides were verified as being affected by sugar intake. These data provide evidence that not all sugars are equally effective in affecting the control of intake.

  12. Hypothalamic leptin action is mediated by histone deacetylase 5

    PubMed Central

    Kabra, Dhiraj G.; Pfuhlmann, Katrin; García-Cáceres, Cristina; Schriever, Sonja C.; Casquero García, Veronica; Kebede, Adam Fiseha; Fuente-Martin, Esther; Trivedi, Chitrang; Heppner, Kristy; Uhlenhaut, N. Henriette; Legutko, Beata; Kabra, Uma D.; Gao, Yuanqing; Yi, Chun-Xia; Quarta, Carmelo; Clemmensen, Christoffer; Finan, Brian; Müller, Timo D.; Meyer, Carola W.; Paez-Pereda, Marcelo; Stemmer, Kerstin; Woods, Stephen C.; Perez-Tilve, Diego; Schneider, Robert; Olson, Eric N.; Tschöp, Matthias H.; Pfluger, Paul T.

    2016-01-01

    Hypothalamic leptin signalling has a key role in food intake and energy-balance control and is often impaired in obese individuals. Here we identify histone deacetylase 5 (HDAC5) as a regulator of leptin signalling and organismal energy balance. Global HDAC5 KO mice have increased food intake and greater diet-induced obesity when fed high-fat diet. Pharmacological and genetic inhibition of HDAC5 activity in the mediobasal hypothalamus increases food intake and modulates pathways implicated in leptin signalling. We show HDAC5 directly regulates STAT3 localization and transcriptional activity via reciprocal STAT3 deacetylation at Lys685 and phosphorylation at Tyr705. In vivo, leptin sensitivity is substantially impaired in HDAC5 loss-of-function mice. Hypothalamic HDAC5 overexpression improves leptin action and partially protects against HFD-induced leptin resistance and obesity. Overall, our data suggest that hypothalamic HDAC5 activity is a regulator of leptin signalling that adapts food intake and body weight to our dietary environment. PMID:26923837

  13. Ethanol injected into the hypothalamic arcuate nucleus induces behavioral stimulation in rats: an effect prevented by catalase inhibition and naltrexone.

    PubMed

    Pastor, Raúl; Aragon, Carlos M G

    2008-10-01

    It is suggested that some of the behavioral effects of ethanol, including its psychomotor properties, are mediated by beta-endorphin and opioid receptors. Ethanol-induced increases in the release of hypothalamic beta-endorphin depend on the catalasemic conversion of ethanol to acetaldehyde. Here, we evaluated the locomotor activity in rats microinjected with ethanol directly into the hypothalamic arcuate nucleus (ArcN), the main site of beta-endorphin synthesis in the brain and a region with high levels of catalase expression. Intra-ArcN ethanol-induced changes in motor activity were also investigated in rats pretreated with the opioid receptor antagonist, naltrexone (0-2 mg/kg) or the catalase inhibitor 3-amino-1,2,4-triazole (AT; 0-1 g/kg). We found that ethanol microinjections of 64 or 128, but not 256 microg, produced locomotor stimulation. Intra-ArcN ethanol (128 microg)-induced activation was prevented by naltrexone and AT, whereas these compounds did not affect spontaneous activity. The present results support earlier evidence indicating that the ArcN and the beta-endorphinic neurons of this nucleus are necessary for ethanol to induce stimulation. In addition, our data suggest that brain structures that, as the ArcN, are rich in catalase may support the formation of ethanol-derived pharmacologically relevant concentrations of acetaldehyde and, thus be of particular importance for the behavioral effects of ethanol.

  14. Effects of short- and long-duration hypothyroidism on function of the rat hypothalamic-pituitary-adrenal axis.

    PubMed

    Johnson, E O; Kamilaris, T C; Calogero, A E; Konstandi, M; Chrousos, G P

    2013-02-01

    The effects of hypothyroidism on the functional integrity of the hypothalamic-pituitary-adrenal (HPA) axis were investigated in adult male rats. HPA axis function was examined in vivo in sham-thyroidectomized male Sprague-Dawley rats or in thyroidectomized rats for 7 (short-term hypothyroidism) or 60 (long-term hypothyroidism) days. Peripheral ACTH and corticosterone responses to insulin-induced hypoglycemia and interleukin (IL)-1α stimulation were used to indirectly assess the hypothalamic CRH neuron. Hypothyroidism resulted in exaggerated ACTH responses to both hypoglycemic stress and IL-1α administration. The adrenal cortex of hypothyroid animals showed a significant reduction in adrenal reserves, as assessed by its response to low-dose ACTH, following suppression of the HPA axis with dexamethasone. Hypothyroid rats were also associated with significant decreases in cerebrospinal fluid corticosterone concentrations and decreased adrenal weights. The findings suggest that experimentally induced hypothyroidism is associated with a mild, yet significant, adrenal insufficiency, which involves abnormalities in all components of the HPA axis.

  15. Effects of hypothalamic microinjection of PGE2 on body temperature and sympathetic nervous activities in the rabbit

    NASA Astrophysics Data System (ADS)

    Huang, Xiao-Chen

    1993-12-01

    The febrile response and sympathetic nervous response to hypothalamic microinjections of prostaglandin E2 (PGE2) were investigated in anesthetized rabbits. Microninjection of PGE2 (500 1000 ng) caused an increase in rectal temperature of more than 0.3°C in 13 of 50 loci in the preoptic and anterior hypothalamic area (PO/AH). At 8 of these 13 loci, PGE2 elicited response patterns in the sympathetic nervous system, such as an increase in cutaneous sympathetic nervous activity and decrease in renal sympathetic nervous activity. This pattern of sympathetic nervous responses was induced with a simultaneous increase in rectal temperature of more than 0.5°C. The 8 loci were distributed in the preoptic area, especially in the vicinity of the supraoptic nucleus. Electrolytic lesions of this region were made bilaterally, and intracerebroventricular injection of PGE2 (8 µg/kg) was found to inhibit fever and sympathetic activity. The results demonstrate that the action of PGE2 is responsible for the response patterns of sympathetic twigs during fever. The preoptic area, especially in the vicinity of the supraoptic nucleus, is most sensitive to PGE2 for the patternized response of sympathetic neurons and fever.

  16. GABA and glycine receptors in the nucleus ambiguus mediate tachycardia elicited by chemical stimulation of the hypothalamic arcuate nucleus.

    PubMed

    Chitravanshi, Vineet C; Kawabe, Kazumi; Sapru, Hreday N

    2015-07-01

    We have previously reported that stimulation of the hypothalamic arcuate nucleus (ARCN) by microinjections of N-methyl-d-aspartic acid (NMDA) elicits tachycardia, which is partially mediated via inhibition of vagal inputs to the heart. The neuronal pools and neurotransmitters in them mediating tachycardia elicited from the ARCN have not been identified. We tested the hypothesis that the tachycardia elicited from the ARCN may be mediated by inhibitory neurotransmitters in the nucleus ambiguus (nAmb). Experiments were done in urethane-anesthetized, artificially ventilated, male Wistar rats. In separate groups of rats, unilateral and bilateral microinjections of muscimol (1 mM), gabazine (0.01 mM), and strychnine (0.5 mM) into the nAmb significantly attenuated tachycardia elicited by unilateral microinjections of NMDA (10 mM) into the ARCN. Histological examination of the brains showed that the microinjections sites were within the targeted nuclei. Retrograde anatomic tracing from the nAmb revealed direct bilateral projections from the ARCN and hypothalamic paraventricular nucleus to the nAmb. The results of the present study suggest that tachycardia elicited by stimulation of the ARCN by microinjections of NMDA is mediated via GABAA and glycine receptors located in the nAmb.

  17. Widespread dispersal of cholera toxin subunit b to brain and spinal cord neurons following systemic delivery.

    PubMed

    Alisky, Joseph M; van de Wetering, Christopher I; Davidson, Beverly L

    2002-11-01

    We have discovered novel transport properties of cholera toxin subunit b beyond well-known anterograde and retrograde axonal transport. Injection of 1500 microg of CTb intraperitoneally or intravenously in young adult mice resulted in generalized enhanced labeling of motor nuclei at all levels of the brain stem and spinal cord (oculomotor, trochlear, abducens, facial, trigeminal, vagal, hypoglossal, cervical, and lumbar). There was also extensive labeling of trigeminal and spinal primary afferent fibers, bulk labeling of the area postrema, and finally numerous labeled neurons in the periventricular and supraoptic hypothalamic nuclei. Generalized labeling of motor, sensory, and hypothalamic neurons could also be produced on a more limited scale from intramuscular injections of 500 microg of CTb in the tongue. Neuronal uptake of peripherally administered CTb may be useful as a research tool, or, when fused to therapeutic peptides, enzymes, growth factors, or gene therapy vectors, may have application in amyotrophic lateral sclerosis, diabetic neuropathy, motor neuronopathic lysosomal storage diseases, and other neurodegenerative disorders.

  18. Identification of Neuronal Enhancers of the Proopiomelanocortin Gene by Transgenic Mouse Analysis and Phylogenetic Footprinting

    PubMed Central

    de Souza, Flávio S. J.; Santangelo, Andrea M.; Bumaschny, Viviana; Avale, María Elena; Smart, James L.; Low, Malcolm J.; Rubinstein, Marcelo

    2005-01-01

    The proopiomelanocortin (POMC) gene is expressed in the pituitary and arcuate neurons of the hypothalamus. POMC arcuate neurons play a central role in the control of energy homeostasis, and rare loss-of-function mutations in POMC cause obesity. Moreover, POMC is the prime candidate gene within a highly significant quantitative trait locus on chromosome 2 associated with obesity traits in several human populations. Here, we identify two phylogenetically conserved neuronal POMC enhancers designated nPE1 (600 bp) and nPE2 (150 bp) located approximately 10 to 12 kb upstream of mammalian POMC transcriptional units. We show that mouse or human genomic regions containing these enhancers are able to direct reporter gene expression to POMC hypothalamic neurons, but not the pituitary of transgenic mice. Conversely, deletion of nPE1 and nPE2 in the context of the entire transcriptional unit of POMC abolishes transgene expression in the hypothalamus without affecting pituitary expression. Our results indicate that the nPEs are necessary and sufficient for hypothalamic POMC expression and that POMC expression in the brain and pituitary is controlled by independent sets of enhancers. Our study advances the understanding of the molecular nature of hypothalamic POMC neurons and will be useful to determine whether polymorphisms in POMC regulatory regions play a role in the predisposition to obesity. PMID:15798195

  19. High-frequency stimulation-induced peptide release synchronizes arcuate kisspeptin neurons and excites GnRH neurons

    PubMed Central

    Qiu, Jian; Nestor, Casey C; Zhang, Chunguang; Padilla, Stephanie L; Palmiter, Richard D

    2016-01-01

    Kisspeptin (Kiss1) and neurokinin B (NKB) neurocircuits are essential for pubertal development and fertility. Kisspeptin neurons in the hypothalamic arcuate nucleus (Kiss1ARH) co-express Kiss1, NKB, dynorphin and glutamate and are postulated to provide an episodic, excitatory drive to gonadotropin-releasing hormone 1 (GnRH) neurons, the synaptic mechanisms of which are unknown. We characterized the cellular basis for synchronized Kiss1ARH neuronal activity using optogenetics, whole-cell electrophysiology, molecular pharmacology and single cell RT-PCR in mice. High-frequency photostimulation of Kiss1ARH neurons evoked local release of excitatory (NKB) and inhibitory (dynorphin) neuropeptides, which were found to synchronize the Kiss1ARH neuronal firing. The light-evoked synchronous activity caused robust excitation of GnRH neurons by a synaptic mechanism that also involved glutamatergic input to preoptic Kiss1 neurons from Kiss1ARH neurons. We propose that Kiss1ARH neurons play a dual role of driving episodic secretion of GnRH through the differential release of peptide and amino acid neurotransmitters to coordinate reproductive function. DOI: http://dx.doi.org/10.7554/eLife.16246.001 PMID:27549338

  20. Inducible neuronal inactivation of Sim1 in adult mice causes hyperphagic obesity.

    PubMed

    Tolson, Kristen P; Gemelli, Terry; Meyer, Donna; Yazdani, Umar; Kozlitina, Julia; Zinn, Andrew R

    2014-07-01

    Germline haploinsufficiency of human or mouse Sim1 is associated with hyperphagic obesity. Sim1 encodes a transcription factor required for proper formation of the paraventricular (PVN), supraoptic, and anterior periventricular hypothalamic nuclei. Sim1 expression persists in these neurons in adult mice, raising the question of whether it plays a physiologic role in regulation of energy balance. We previously showed that Sim1 heterozygous mice had normal numbers of PVN neurons that were hyporesponsive to melanocortin 4 receptor agonism and showed reduced oxytocin expression. Furthermore, conditional postnatal neuronal inactivation of Sim1 also caused hyperphagic obesity and decreased hypothalamic oxytocin expression. PVN projections to the hindbrain, where oxytocin is thought to act to modulate satiety, were anatomically intact in both Sim1 heterozygous and conditional knockout mice. These experiments provided evidence that Sim1 functions in energy balance apart from its role in hypothalamic development but did not rule out effects of Sim1 deficiency on postnatal hypothalamic maturation. To address this possibility, we used a tamoxifen-inducible, neural-specific Cre transgene to conditionally inactivate Sim1 in adult mice with mature hypothalamic circuitry. Induced Sim1 inactivation caused increased food and water intake and decreased expression of PVN neuropeptides, especially oxytocin and vasopressin, with no change in energy expenditure. Sim1 expression was not required for survival of PVN neurons. The results corroborate previous evidence that Sim1 acts physiologically as well as developmentally to regulate body weight. Inducible knockout mice provide a system for studying Sim1's physiologic function in energy balance and identifying its relevant transcriptional targets in the hypothalamus.

  1. Apolipoprotein A-IV inhibits AgRP/NPY neurons and activates POMC neurons in the arcuate nucleus

    PubMed Central

    Xu, Yuanzhong; Shu, Gang; Wang, Chunmei; Yang, Yongjie; Saito, Kenji; Xu, Pingwen; Hinton, Antentor Othrell; Yan, Xiaofeng; Yu, Likai; Wu, Qi; Tso, Patrick; Tong, Qingchun; Xu, Yong

    2015-01-01

    Background/Aims Apolipoprotein A-IV (apoA-IV) in the brain potently suppresses food intake. However the mechanisms underlying its anorexigenic effects remain to be identified. Methods We first examined the effects of apoA-IV on cellular activities in hypothalamic neurons that co-express agouti-related peptide (AgRP) and neuropeptide Y (NPY) and in neurons that express pro-opiomelanocortin (POMC). We then compared anorexigenic effects of apoA-IV in wild type mice and in mutant mice lacking melanocortin 4 receptors (MC4Rs, the receptors of AgRP and the POMC gene product). Finally, we examined expression of apoA-IV in mouse hypothalamus and quantified its protein levels at fed vs. fasted states. Results We demonstrate that apoA-IV inhibited the firing rate of AgRP/NPY neurons. The decreased firing was associated with hyperpolarized membrane potential and decreased miniature excitatory postsynaptic current. We further used c-fos immunoreactivity to show that intracerebroventricular (i.c.v.) injections of apoA-IV abolished the fasting-induced activation of AgRP/NPY neurons in mice. Further, we found that apoA-IV depolarized POMC neurons and increased their firing rate. In addition, genetic deletion of MC4Rs blocked anorexigenic effects of i.c.v. apoA-IV. Finally, we detected endogenous apoA-IV in multiple neural populations in mouse hypothalamus, including AgRP/NPY neurons, and food deprivation suppresses hypothalamic apoA-IV protein levels. Conclusion Our findings support a model where central apoA-IV inhibits AgRP/NPY neurons and activates POMC neurons to activate MC4Rs, which in turn suppresses food intake. PMID:26337236

  2. The hypothalamic NPVF circuit modulates ventral raphe activity during nociception

    PubMed Central

    Madelaine, Romain; Lovett-Barron, Matthew; Halluin, Caroline; Andalman, Aaron S.; Liang, Jin; Skariah, Gemini M.; Leung, Louis C.; Burns, Vanessa M.; Mourrain, Philippe

    2017-01-01

    RFamide neuropeptide VF (NPVF) is expressed by neurons in the hypothalamus and has been implicated in nociception, but the circuit mechanisms remain unexplored. Here, we studied the structural and functional connections from NPVF neurons to downstream targets in the context of nociception, using novel transgenic lines, optogenetics, and calcium imaging in behaving larval zebrafish. We found a specific projection from NPVF neurons to serotonergic neurons in the ventral raphe nucleus (vRN). We showed NPVF neurons and vRN are suppressed and excited by noxious stimuli, respectively. We combined optogenetics with calcium imaging and pharmacology to demonstrate that stimulation of NPVF cells suppresses neuronal activity in vRN. During noxious stimuli, serotonergic neurons activation was due to a suppression of an inhibitory NPVF-ventral raphe peptidergic projection. This study reveals a novel NPVF-vRN functional circuit modulated by noxious stimuli in vertebrates. PMID:28139691

  3. UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals

    PubMed Central

    Andrews, Zane B.; Liu, Zhong-Wu; Walllingford, Nicholas; Erion, Derek M.; Borok, Erzsebet; Friedman, Jeffery M.; Tschöp, Matthias H.; Shanabrough, Marya; Cline, Gary; Shulman, Gerald I.; Coppola, Anna; Gao, Xiao-Bing; Horvath, Tamas L.; Diano, Sabrina

    2014-01-01

    The gut-derived hormone ghrelin exerts its effect on the brain by regulating neuronal activity. Ghrelin-induced feeding behaviour is controlled by arcuate nucleus neurons that co-express neuropeptide Y and agouti-related protein (NPY/AgRP neurons). However, the intracellular mechanisms triggered by ghrelin to alter NPY/AgRP neuronal activity are poorly understood. Here we show that ghrelin initiates robust changes in hypothalamic mitochondrial respiration in mice that are dependent on uncoupling protein 2 (UCP2). Activation of this mitochondrial mechanism is critical for ghrelin-induced mitochondrial proliferation and electric activation of NPY/AgRP neurons, for ghrelin-triggered synaptic plasticity of pro-opiomelanocortin-expressing neurons, and for ghrelin-induced food intake. The UCP2-dependent action of ghrelin on NPY/AgRP neurons is driven by a hypothalamic fatty acid oxidation pathway involving AMPK, CPT1 and free radicals that are scavenged by UCP2. These results reveal a signalling modality connecting mitochondria-mediated effects of G-protein-coupled receptors on neuronal function and associated behaviour. PMID:18668043

  4. Distinct hypothalamic neurons mediate estrogenic effects on energy homeostasis and reproduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogens regulate body weight and reproduction primarily through actions on estrogen receptor-a(ERa). However, ERalpha-expressing cells mediating these effects are not identified. We demonstrate that brain-specific deletion of ERalapha in female mice causes abdominal obesity stemming from both hype...

  5. Temporal changes in nutritional state affect hypothalamic POMC peptide levels independently of leptin in adult male mice.

    PubMed

    Mercer, Aaron J; Stuart, Ronald C; Attard, Courtney A; Otero-Corchon, Veronica; Nillni, Eduardo A; Low, Malcolm J

    2014-04-15

    Hypothalamic proopiomelanocortin (POMC) neurons constitute a critical anorexigenic node in the central nervous system (CNS) for maintaining energy balance. These neurons directly affect energy expenditure and feeding behavior by releasing bioactive neuropeptides but are also subject to signals directly related to nutritional state such as the adipokine leptin. To further investigate the interaction of diet and leptin on hypothalamic POMC peptide levels, we exposed 8- to 10-wk-old male POMC-Discosoma red fluorescent protein (DsRed) transgenic reporter mice to either 24-48 h (acute) or 2 wk (chronic) food restriction, high-fat diet (HFD), or leptin treatment. Using semiquantitative immunofluorescence and radioimmunoassays, we discovered that acute fasting and chronic food restriction decreased the levels of adrenocorticotropic hormone (ACTH), α-melanocyte-stimulating hormone (α-MSH), and β-endorphin in the hypothalamus, together with decreased DsRed fluorescence, compared with control ad libitum-fed mice. Furthermore, acute but not chronic HFD or leptin administration selectively increased α-MSH levels in POMC fibers and increased DsRed fluorescence in POMC cell bodies. HFD and leptin treatments comparably increased circulating leptin levels at both time points, suggesting that transcription of Pomc and synthesis of POMC peptide products are not modified in direct relation to the concentration of plasma leptin. Our findings indicate that negative energy balance persistently downregulated POMC peptide levels, and this phenomenon may be partially explained by decreased leptin levels, since these changes were blocked in fasted mice treated with leptin. In contrast, sustained elevation of plasma leptin by HFD or hormone supplementation did not significantly alter POMC peptide levels, indicating that enhanced leptin signaling does not chronically increase Pomc transcription and peptide synthesis.

  6. Relation of addiction genes to hypothalamic gene changes subserving genesis and gratification of a classic instinct, sodium appetite.

    PubMed

    Liedtke, Wolfgang B; McKinley, Michael J; Walker, Lesley L; Zhang, Hao; Pfenning, Andreas R; Drago, John; Hochendoner, Sarah J; Hilton, Donald L; Lawrence, Andrew J; Denton, Derek A

    2011-07-26

    Sodium appetite is an instinct that involves avid specific intention. It is elicited by sodium deficiency, stress-evoked adrenocorticotropic hormone (ACTH), and reproduction. Genome-wide microarrays in sodium-deficient mice or after ACTH infusion showed up-regulation of hypothalamic genes, including dopamine- and cAMP-regulated neuronal phosphoprotein 32 kDa (DARPP-32), dopamine receptors-1 and -2, α-2C- adrenoceptor, and striatally enriched protein tyrosine phosphatase (STEP). Both DARPP-32 and neural plasticity regulator activity-regulated cytoskeleton associated protein (ARC) were up-regulated in lateral hypothalamic orexinergic neurons by sodium deficiency. Administration of dopamine D1 (SCH23390) and D2 receptor (raclopride) antagonists reduced gratification of sodium appetite triggered by sodium deficiency. SCH23390 was specific, having no effect on osmotic-induced water drinking, whereas raclopride also reduced water intake. D1 receptor KO mice had normal sodium appetite, indicating compensatory regulation. Appetite was insensitive to SCH23390, confirming the absence of off-target effects. Bilateral microinjection of SCH23390 (100 nM in 200 nL) into rats' lateral hypothalamus greatly reduced sodium appetite. Gene set enrichment analysis in hypothalami of mice with sodium appetite showed significant enrichment of gene sets previously linked to addiction (opiates and cocaine). This finding of concerted gene regulation was attenuated on gratification with perplexingly rapid kinetics of only 10 min, anteceding significant absorption of salt from the gut. Salt appetite and hedonic liking of salt taste have evolved over >100 million y (e.g., being present in Metatheria). Drugs causing pleasure and addiction are comparatively recent and likely reflect usurping of evolutionary ancient systems with high survival value by the gratification of contemporary hedonic indulgences. Our findings outline a molecular logic for instinctive behavior encoded by the brain with

  7. Oxytocin reduces anxiety via ERK1/2 activation: local effect within the rat hypothalamic paraventricular nucleus.

    PubMed

    Blume, Annegret; Bosch, Oliver J; Miklos, Sandra; Torner, Luz; Wales, Lynn; Waldherr, Martin; Neumann, Inga D

    2008-04-01

    The neuropeptide oxytocin (OT) modulates social behaviours and is an important anxiolytic substance of the brain. However, sites of action and the intracellular signalling pathways downstream of OT receptors (OTR) within the brain remain largely unknown. In the present studies, we localized the anxiolytic effect of OT by bilateral microinfusion of OT (0.01 nmol/0.5 microL) into the hypothalamic paraventricular nucleus (PVN) in male rats using both the elevated plus-maze and the light-dark box. Moreover, intracerebroventricular administration of OT, but not of the related neuropeptide vasopressin (VP), dose-dependently activated the extracellular signal-regulated kinase 1/2 (ERK1/2) cascade. Specifically, OT induced the phosphorylation of Raf-1, MEK1/2 and ERK1/2 in the hypothalamus in vivo and in hypothalamic H32 neurons via EGF receptors. OT-induced ERK1/2 phosphorylation was immunohistochemically localized within VP neurons of the PVN and the supraoptic nucleus. Importantly, the anxiolytic effect of OT within the PVN was prevented by local inhibition of the MAP kinase cascade with a MEK1/2 inhibitor (U0126, 0.5 nmol/0.5 microL) locally infused prior to OT, indicating the causal involvement of this intracellular signalling cascade in the behavioural effect of OT. OT effects within the hypothalamus may have far-reaching implications for the regulation of emotionality and social behaviours and, consequently, for the development of possible therapeutic strategies to treat affective disorders. Thus, OTR agonism or activation of the ERK1/2 cascade, specifically within the hypothalamus, may provide therapeutically relevant mechanisms.

  8. Hypothalamic plasticity of neuropeptide Y is lacking in brain-type creatine kinase double knockout mice with defective thermoregulation.

    PubMed

    Van der Zee, Catharina E E M

    2013-11-05

    The neural substrate of adaptive thermoregulation in mice lacking both brain-type creatine kinase isoforms is further investigated. The cytosolic brain-type creatine kinase (CK-B) and mitochondrial ubiquitous creatine kinase (UbCKmit) are expressed in neural cells throughout the central and peripheral nervous system, where they have an important role in cellular energy homeostasis. Several integral functions appear altered when creatine kinases are absent in the brain (Jost et al., 2002; Streijger et al., 2004, 2005), which has been explained by inefficient neuronal transmission. The CK--/-- double knockout mice demonstrate every morning a body temperature drop of ~1.0 °C, and they have impaired thermogenesis, as revealed by severe hypothermia upon cold exposure. This defective thermoregulation is not associated with abnormal food intake, decreased locomotive activity, or increased torpor sensitivity. Although white and brown adipose tissue fat pads are diminished in CK--/-- mice, intravenous norepinephrine infusion results in a normal brown adipose tissue response with increasing core body temperatures, indicating that the sympathetic innervation functions correctly (Streijger et al., 2009). This study revealed c-fos changes following a cold challenge, and that neuropeptide Y levels were decreased in the paraventricular nucleus of wildtype, but not CK--/--, mice. A reduction in hypothalamic neuropeptide Y is coupled to increased uncoupling protein 1 expression in brown adipose tissue, resulting in thermogenesis. In CK--/-- mice the neuropeptide Y levels did not change. This lack of hypothalamic plasticity of neuropeptide Y might be the result of inefficient neuronal transmission or can be explained by the previous observation of reduced circulating levels of leptin in CK--/-- mice.

  9. Temporal changes in nutritional state affect hypothalamic POMC peptide levels independently of leptin in adult male mice

    PubMed Central

    Mercer, Aaron J.; Stuart, Ronald C.; Attard, Courtney A.; Otero-Corchon, Veronica; Nillni, Eduardo A.

    2014-01-01

    Hypothalamic proopiomelanocortin (POMC) neurons constitute a critical anorexigenic node in the central nervous system (CNS) for maintaining energy balance. These neurons directly affect energy expenditure and feeding behavior by releasing bioactive neuropeptides but are also subject to signals directly related to nutritional state such as the adipokine leptin. To further investigate the interaction of diet and leptin on hypothalamic POMC peptide levels, we exposed 8- to 10-wk-old male POMC-Discosoma red fluorescent protein (DsRed) transgenic reporter mice to either 24–48 h (acute) or 2 wk (chronic) food restriction, high-fat diet (HFD), or leptin treatment. Using semiquantitative immunofluorescence and radioimmunoassays, we discovered that acute fasting and chronic food restriction decreased the levels of adrenocorticotropic hormone (ACTH), α-melanocyte-stimulating hormone (α-MSH), and β-endorphin in the hypothalamus, together with decreased DsRed fluorescence, compared with control ad libitum-fed mice. Furthermore, acute but not chronic HFD or leptin administration selectively increased α-MSH levels in POMC fibers and increased DsRed fluorescence in POMC cell bodies. HFD and leptin treatments comparably increased circulating leptin levels at both time points, suggesting that transcription of Pomc and synthesis of POMC peptide products are not modified in direct relation to the concentration of plasma leptin. Our findings indicate that negative energy balance persistently downregulated POMC peptide levels, and this phenomenon may be partially explained by decreased leptin levels, since these changes were blocked in fasted mice treated with leptin. In contrast, sustained elevation of plasma leptin by HFD or hormone supplementation did not significantly alter POMC peptide levels, indicating that enhanced leptin signaling does not chronically increase Pomc transcription and peptide synthesis. PMID:24518677

  10. Relation of addiction genes to hypothalamic gene changes subserving genesis and gratification of a classic instinct, sodium appetite

    PubMed Central

    Liedtke, Wolfgang B.; McKinley, Michael J.; Walker, Lesley L.; Zhang, Hao; Pfenning, Andreas R.; Drago, John; Hochendoner, Sarah J.; Hilton, Donald L.; Lawrence, Andrew J.; Denton, Derek A.

    2011-01-01

    Sodium appetite is an instinct that involves avid specific intention. It is elicited by sodium deficiency, stress-evoked adrenocorticotropic hormone (ACTH), and reproduction. Genome-wide microarrays in sodium-deficient mice or after ACTH infusion showed up-regulation of hypothalamic genes, including dopamine- and cAMP-regulated neuronal phosphoprotein 32 kDa (DARPP-32), dopamine receptors-1 and -2, α-2C- adrenoceptor, and striatally enriched protein tyrosine phosphatase (STEP). Both DARPP-32 and neural plasticity regulator activity-regulated cytoskeleton associated protein (ARC) were up-regulated in lateral hypothalamic orexinergic neurons by sodium deficiency. Administration of dopamine D1 (SCH23390) and D2 receptor (raclopride) antagonists reduced gratification of sodium appetite triggered by sodium deficiency. SCH23390 was specific, having no effect on osmotic-induced water drinking, whereas raclopride also reduced water intake. D1 receptor KO mice had normal sodium appetite, indicating compensatory regulation. Appetite was insensitive to SCH23390, confirming the absence of off-target effects. Bilateral microinjection of SCH23390 (100 nM in 200 nL) into rats’ lateral hypothalamus greatly reduced sodium appetite. Gene set enrichment analysis in hypothalami of mice with sodium appetite showed significant enrichment of gene sets previously linked to addiction (opiates and cocaine). This finding of concerted gene regulation was attenuated on gratification with perplexingly rapid kinetics of only 10 min, anteceding significant absorption of salt from the gut. Salt appetite and hedonic liking of salt taste have evolved over >100 million y (e.g., being present in Metatheria). Drugs causing pleasure and addiction are comparatively recent and likely reflect usurping of evolutionary ancient systems with high survival value by the gratification of contemporary hedonic indulgences. Our findings outline a molecular logic for instinctive behavior encoded by the brain with

  11. Mechanisms of intrinsic epileptogenesis in human gelastic seizures with hypothalamic hamartoma.

    PubMed

    Wu, Jie; Gao, Ming; Shen, Jian-Xin; Qiu, Shen-Feng; Kerrigan, John F

    2015-02-01

    Human hypothalamic hamartoma (HH) is a rare developmental malformation often characterized by gelastic seizures, which are refractory to medical therapy. Ictal EEG recordings from the HH have demonstrated that the epileptic source of gelastic seizures lies within the HH lesion itself. Recent advances in surgical techniques targeting HH have led to dramatic improvements in seizure control, which further supports the hypothesis that gelastic seizures originate within the HH. However, the basic cellular and molecular mechanisms of epileptogenesis in this subcortical lesion are poorly understood. Since 2003, Barrow Neurological Institute has maintained a multidisciplinary clinical program to evaluate and treat patients with HH. This program has provided a unique opportunity to investigate the basic mechanisms of epileptogenesis using surgically resected HH tissue. The first report on the electrophysiological properties of HH neurons was published in 2005. Since then, ongoing research has provided additional insights into the mechanisms by which HH generate seizure activity. In this review, we summarize this progress and propose a cellular model that suggests that GABA-mediated excitation contributes to epileptogenesis in HH lesions.

  12. The gelastic seizures-hypothalamic hamartoma syndrome: facts, hypotheses, and perspectives.

    PubMed

    Striano, Salvatore; Santulli, Li