Science.gov

Sample records for gtpases regulate neurite

  1. The Rif GTPase regulates cytoskeletal signaling from plexinA4 to promote neurite retraction.

    PubMed

    Fan, Lifei; Yan, Huijuan; Pellegrin, Stephanie; Morigen; Mellor, Harry

    2015-03-17

    The small GTPase Rif is required for the early stages of dendritic spine formation in neurons, acting through the formin mDia2 to control actin polymerization. Rif is expressed at high levels in the brain, suggesting broader roles in neuronal function. We screened a yeast two-hybrid cDNA library to identify additional binding partners for Rif of potential relevance to neuronal function. We found that Rif interacts with FARP1, a neuronal activator of the RhoA GTPase. We show that Rif has two separate roles in FARP1 regulation-in controlling its association with plexinA4, and in releasing active RhoA from a plexinA4/FARP1 complex. The regulation of FARP1 by Rif promotes neurite retraction in cells stimulated with the semaphorin Sema6A.

  2. Computer vision profiling of neurite outgrowth dynamics reveals spatiotemporal modularity of Rho GTPase signaling

    PubMed Central

    Fusco, Ludovico; Lefort, Riwal; Smith, Kevin; Benmansour, Fethallah; Gonzalez, German; Barillari, Caterina; Rinn, Bernd; Fleuret, Francois; Fua, Pascal

    2016-01-01

    Rho guanosine triphosphatases (GTPases) control the cytoskeletal dynamics that power neurite outgrowth. This process consists of dynamic neurite initiation, elongation, retraction, and branching cycles that are likely to be regulated by specific spatiotemporal signaling networks, which cannot be resolved with static, steady-state assays. We present NeuriteTracker, a computer-vision approach to automatically segment and track neuronal morphodynamics in time-lapse datasets. Feature extraction then quantifies dynamic neurite outgrowth phenotypes. We identify a set of stereotypic neurite outgrowth morphodynamic behaviors in a cultured neuronal cell system. Systematic RNA interference perturbation of a Rho GTPase interactome consisting of 219 proteins reveals a limited set of morphodynamic phenotypes. As proof of concept, we show that loss of function of two distinct RhoA-specific GTPase-activating proteins (GAPs) leads to opposite neurite outgrowth phenotypes. Imaging of RhoA activation dynamics indicates that both GAPs regulate different spatiotemporal Rho GTPase pools, with distinct functions. Our results provide a starting point to dissect spatiotemporal Rho GTPase signaling networks that regulate neurite outgrowth. PMID:26728857

  3. GEFs and Rac GTPases control directional specificity of neurite extension along the anterior–posterior axis

    PubMed Central

    Zheng, Chaogu; Diaz-Cuadros, Margarete; Chalfie, Martin

    2016-01-01

    Although previous studies have identified many extracellular guidance molecules and intracellular signaling proteins that regulate axonal outgrowth and extension, most were conducted in the context of unidirectional neurite growth, in which the guidance cues either attract or repel growth cones. Very few studies addressed how intracellular signaling molecules differentially specify bidirectional outgrowth. Here, using the bipolar PLM neurons in Caenorhabditis elegans, we show that the guanine nucleotide exchange factors (GEFs) UNC-73/Trio and TIAM-1 promote anterior and posterior neurite extension, respectively. The Rac subfamily GTPases act downstream of the GEFs; CED-10/Rac1 is activated by TIAM-1, whereas CED-10 and MIG-2/RhoG act redundantly downstream of UNC-73. Moreover, these two pathways antagonize each other and thus regulate the directional bias of neuritogenesis. Our study suggests that directional specificity of neurite extension is conferred through the intracellular activation of distinct GEFs and Rac GTPases. PMID:27274054

  4. Neurotrophin Promotes Neurite Outgrowth by Inhibiting Rif GTPase Activation Downstream of MAPKs and PI3K Signaling

    PubMed Central

    Tian, Xiaoxia; Yan, Huijuan; Li, Jiayi; Wu, Shuang; Wang, Junyu; Fan, Lifei

    2017-01-01

    Members of the well-known semaphorin family of proteins can induce both repulsive and attractive signaling in neural network formation and their cytoskeletal effects are mediated in part by small guanosine 5’-triphosphatase (GTPases). The aim of this study was to investigate the cellular role of Rif GTPase in the neurotrophin-induced neurite outgrowth. By using PC12 cells which are known to cease dividing and begin to show neurite outgrowth responding to nerve growth factor (NGF), we found that semaphorin 6A was as effective as nerve growth factor at stimulating neurite outgrowth in PC12 cells, and that its neurotrophic effect was transmitted through signaling by mitogen-activated protein kinases (MAPKs) and phosphatidylinositol-3-kinase (PI3K). We further found that neurotrophin-induced neurite formation in PC12 cells could be partially mediated by inhibition of Rif GTPase activity downstream of MAPKs and PI3K signaling. In conclusion, we newly identified Rif as a regulator of the cytoskeletal rearrangement mediated by semaphorins. PMID:28098758

  5. Neurotrophin Promotes Neurite Outgrowth by Inhibiting Rif GTPase Activation Downstream of MAPKs and PI3K Signaling.

    PubMed

    Tian, Xiaoxia; Yan, Huijuan; Li, Jiayi; Wu, Shuang; Wang, Junyu; Fan, Lifei

    2017-01-13

    Members of the well-known semaphorin family of proteins can induce both repulsive and attractive signaling in neural network formation and their cytoskeletal effects are mediated in part by small guanosine 5'-triphosphatase (GTPases). The aim of this study was to investigate the cellular role of Rif GTPase in the neurotrophin-induced neurite outgrowth. By using PC12 cells which are known to cease dividing and begin to show neurite outgrowth responding to nerve growth factor (NGF), we found that semaphorin 6A was as effective as nerve growth factor at stimulating neurite outgrowth in PC12 cells, and that its neurotrophic effect was transmitted through signaling by mitogen-activated protein kinases (MAPKs) and phosphatidylinositol-3-kinase (PI3K). We further found that neurotrophin-induced neurite formation in PC12 cells could be partially mediated by inhibition of Rif GTPase activity downstream of MAPKs and PI3K signaling. In conclusion, we newly identified Rif as a regulator of the cytoskeletal rearrangement mediated by semaphorins.

  6. Tropomodulins are negative regulators of neurite outgrowth

    PubMed Central

    Fath, Thomas; Fischer, Robert S.; Dehmelt, Leif; Halpain, Shelley; Fowler, Velia M.

    2010-01-01

    Regulation of the actin cytoskeleton is critical for neurite formation. Tropomodulins (Tmods) regulate polymerization at actin filament pointed ends. Previous experiments using a mouse model deficient for the neuron specific isoform Tmod2 suggested a role for Tmods in neuronal function by impacting processes underlying learning and memory. However, the role of Tmods in neuronal function on the cellular level remains unknown. Immunofluorescence localization of the neuronal isoforms Tmod1 and Tmod2 in cultured rat primary hippocampal neurons revealed that Tmod1 is enriched along the proximal part of F-actin bundles in lamellipodia of spreading cells and in growth cones of extending neurites, while Tmod2 appears largely cytoplasmic. Functional analysis of these Tmod isoforms in a mouse neuroblastoma N2a cell line showed that knockdown of Tmod2 resulted in a significant increase in number of neurite-forming cells and in neurite length. While N2a cells compensated for Tmod2 knockdown by increasing Tmod1 levels, over-expression of exogenous Tmod1 had no effect on neurite outgrowth. Moreover, knockdown of Tmod1 increased the number of neurites formed per cell, without effect on number of neurite-forming cells or neurite length. Taken together, these results indicate that Tmod1 and Tmod2 have mechanistically distinct inhibitory roles in neurite formation, likely mediated via different effects on F-actin dynamics and via differential localizations during early neuritogenesis. PMID:21146252

  7. Redox regulation of Ran GTPase

    SciTech Connect

    Heo, Jongyun

    2008-11-21

    Ran, a small Ras-like GTP-binding nuclear protein, plays a key role in modulation of various cellular signaling events including the cell cycle. This study shows that a cellular redox agent (nitrogen dioxide) facilitates Ran guanine nucleotide dissociation, and identifies a unique Ran redox architecture involved in that process. Sequence analysis suggests that Dexras1 and Rhes GTPases also possess the Ran redox architecture. As Ran releases an intact nucleotide, the redox regulation mechanism of Ran is likely to differ from the radical-based guanine nucleotide modification mechanism suggested for Ras and Rho GTPases. These results provide a mechanistic reason for the previously observed oxidative stress-induced perturbation of the Ran-mediated nuclear import, and suggest that oxidative stress could be a factor in the regulation of cell signal transduction pathways associated with Ran.

  8. Regulation of Rap GTPases in mammalian neurons.

    PubMed

    Shah, Bhavin; Püschel, Andreas W

    2016-10-01

    Small GTPases are central regulators of many cellular processes. The highly conserved Rap GTPases perform essential functions in the mammalian nervous system during development and in mature neurons. During neocortical development, Rap1 is required to regulate cadherin- and integrin-mediated adhesion. In the adult nervous system Rap1 and Rap2 regulate the maturation and plasticity of dendritic spine and synapses. Although genetic studies have revealed important roles of Rap GTPases in neurons, their regulation by guanine nucleotide exchange factors (GEFs) that activate them and GTPase activating proteins (GAPs) that inactivate them by stimulating their intrinsic GTPase activity is just beginning to be explored in vivo. Here we review how GEFs and GAPs regulate Rap GTPases in the nervous system with a focus on their in vivo function.

  9. Small GTPases as regulators of cell division.

    PubMed

    Militello, Rodrigo; Colombo, María I

    2013-09-01

    The superfamily of small GTPases serves as a signal transducer to regulate a diverse array of cellular functions. The members of this superfamily are structurally and functionally classified into at least 5 groups (Ras, Rho/Rac, Rab, Arf, and Ran) and they are involved in the control of cell proliferation and differentiation, regulation of the actin cytoskeleton, membrane trafficking, and nuclear transport. It is widely reported that members of the Rab family participate in the control of intracellular membrane trafficking through the interaction with specific effector molecules. However, many Rabs and other small GTPases have also been shown to function in cell division. In this review, we discuss current knowledge about Rab proteins regulating different stages of the cell cycle, such as the congregation and segregation of chromosomes (during metaphase) and the final stage of cell division known as cytokinesis, in which a cell is cleaved originating 2 daughter cells.

  10. Small GTPases as regulators of cell division

    PubMed Central

    Militello, Rodrigo; Colombo, María I.

    2013-01-01

    The superfamily of small GTPases serves as a signal transducer to regulate a diverse array of cellular functions. The members of this superfamily are structurally and functionally classified into at least 5 groups (Ras, Rho/Rac, Rab, Arf, and Ran) and they are involved in the control of cell proliferation and differentiation, regulation of the actin cytoskeleton, membrane trafficking, and nuclear transport. It is widely reported that members of the Rab family participate in the control of intracellular membrane trafficking through the interaction with specific effector molecules. However, many Rabs and other small GTPases have also been shown to function in cell division. In this review, we discuss current knowledge about Rab proteins regulating different stages of the cell cycle, such as the congregation and segregation of chromosomes (during metaphase) and the final stage of cell division known as cytokinesis, in which a cell is cleaved originating 2 daughter cells. PMID:24265858

  11. Dual Regulation of RA-RhoGAP Activity by Phosphatidic Acid and Rap1 during Neurite Outgrowth*

    PubMed Central

    Kurooka, Takao; Yamamoto, Yasunori; Takai, Yoshimi; Sakisaka, Toshiaki

    2011-01-01

    During neurite outgrowth, Rho small G protein activity is spatiotemporally regulated to organize the neurite sprouting, extension, and branching. We have previously identified a potent Rho GTPase-activating protein (GAP), RA-RhoGAP, as a direct downstream target of Rap1 small G protein in the neurite outgrowth. In addition to the Ras-associating (RA) domain for Rap1 binding, RA-RhoGAP has the pleckstrin homology (PH) domain for lipid binding. Here, we showed that phosphatidic acid (PA) bound to the PH domain and enhanced GAP activity for Rho. RA-RhoGAP induced extension of neurite in a diacylglycerol kinase-mediated synthesis of the PA-dependent manner. Knockdown of RA-RhoGAP reduced the diacylglycerol kinase-induced neurite extension. In contrast to the effect of the RA domain, the PH domain was specifically involved in the neurite extension, not in the sprouting and branching. These results indicate that PA and Rap1 cooperatively regulate RA-RhoGAP activity for promoting neurite outgrowth. PMID:21169361

  12. BAR domain proteins regulate Rho GTPase signaling

    PubMed Central

    Aspenström, Pontus

    2014-01-01

    BAR proteins comprise a heterogeneous group of multi-domain proteins with diverse biological functions. The common denominator is the Bin-Amphiphysin-Rvs (BAR) domain that not only confers targeting to lipid bilayers, but also provides scaffolding to mold lipid membranes into concave or convex surfaces. This function of BAR proteins is an important determinant in the dynamic reconstruction of membrane vesicles, as well as of the plasma membrane. Several BAR proteins function as linkers between cytoskeletal regulation and membrane dynamics. These links are provided by direct interactions between BAR proteins and actin-nucleation-promoting factors of the Wiskott-Aldrich syndrome protein family and the Diaphanous-related formins. The Rho GTPases are key factors for orchestration of this intricate interplay. This review describes how BAR proteins regulate the activity of Rho GTPases, as well as how Rho GTPases regulate the function of BAR proteins. This mutual collaboration is a central factor in the regulation of vital cellular processes, such as cell migration, cytokinesis, intracellular transport, endocytosis, and exocytosis. PMID:25483303

  13. Small RAB GTPases Regulate Multiple Steps of Mitosis

    PubMed Central

    Miserey-Lenkei, Stéphanie; Colombo, María I.

    2016-01-01

    GTPases of the RAB family are key regulators of multiple steps of membrane trafficking. Several members of the RAB GTPase family have been implicated in mitotic progression. In this review, we will first focus on the function of endosome-associated RAB GTPases reported in early steps of mitosis, spindle pole maturation, and during cytokinesis. Second, we will discuss the role of Golgi-associated RAB GTPases at the metaphase/anaphase transition and during cytokinesis. PMID:26925400

  14. Regulation of cytokinesis by Rho GTPase flux.

    PubMed

    Miller, Ann L; Bement, William M

    2009-01-01

    In animal cells, cytokinesis is powered by a contractile ring of actin filaments (F-actin) and myosin-2. Formation of the contractile ring is dependent on the small GTPase RhoA, which is activated in a precise zone at the cell equator. It has long been assumed that cytokinesis and other Rho-dependent processes are controlled in a sequential manner, whereby Rho activation by guanine nucleotide exchange factors (GEFs) initiates a particular event, and Rho inactivation by GTPase activating proteins (GAPs) terminates that event. MgcRacGAP is a conserved cytokinesis regulator thought to be required only at the end of cytokinesis. Here we show that GAP activity of MgcRacGAP is necessary early during cytokinesis for the formation and maintenance of the Rho activity zone. Disruption of GAP activity by point mutation results in poorly focused Rho activity zones, whereas complete removal of the GAP domain results in unfocused zones that show lateral instability and/or rapid side-to-side oscillations. We propose that the GAP domain of MgcRacGAP has two unexpected roles throughout cytokinesis: first, it transiently anchors active Rho, and second, it promotes local Rho inactivation, resulting in the constant flux of Rho through the GTPase cycle.

  15. Structure-Function Analyses of the Small GTPase Rab35 and Its Effector Protein Centaurin-β2/ACAP2 during Neurite Outgrowth of PC12 Cells*

    PubMed Central

    Etoh, Kan; Fukuda, Mitsunori

    2015-01-01

    The small GTPase Rab35 is a molecular switch for membrane trafficking that regulates a variety of cellular events. We previously showed that Rab35 promotes neurite outgrowth of nerve growth factor-stimulated PC12 cells through interaction with centaurin-β2 (also called ACAP2). Centaurin-β2 is the only Rab35-binding protein reported thus far that exclusively recognizes Rab35 and does not recognize any of the other 59 Rabs identified in mammals, but the molecular basis for the exclusive specificity of centaurin-β2 for Rab35 has remained completely unknown. In this study, we performed deletion and mutation analyses and succeeded in identifying the residues of Rab35 and centaurin-β2 that are crucial for formation of a Rab35·centaurin-β2 complex. We found that two threonine residues (Thr-76 and Thr-81) in the switch II region of Rab35 are responsible for binding centaurin-β2 and that the same residues are dispensable for Rab35 recognition by other Rab35-binding proteins. We also determined the minimal Rab35-binding site of centaurin-β2 and identified two asparagine residues (Asn-610 and Asn-691) in the Rab35-binding site as key residues for its specific Rab35 recognition. We further showed by knockdown-rescue approaches that neither a centaurin-β2 binding-deficient Rab35(T76S/T81A) mutant nor a Rab35 binding-deficient centaurin-β2(N610A/N691A) mutant supported neurite outgrowth of PC12 cells, thereby demonstrating the functional significance of the Rab35/centaurin-β2 interaction during neurite outgrowth of PC12 cells. PMID:25694427

  16. ACAP3 regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons.

    PubMed

    Miura, Yuki; Hongu, Tsunaki; Yamauchi, Yohei; Funakoshi, Yuji; Katagiri, Naohiro; Ohbayashi, Norihiko; Kanaho, Yasunori

    2016-09-01

    ACAP3 (ArfGAP with coiled-coil, ankyrin repeat and pleckstrin homology domains 3) belongs to the ACAP family of GAPs (GTPase-activating proteins) for the small GTPase Arf (ADP-ribosylation factor). However, its specificity to Arf isoforms and physiological functions remain unclear. In the present study, we demonstrate that ACAP3 plays an important role in neurite outgrowth of mouse hippocampal neurons through its GAP activity specific to Arf6. In primary cultured mouse hippocampal neurons, knockdown of ACAP3 abrogated neurite outgrowth, which was rescued by ectopically expressed wild-type ACAP3, but not by its GAP activity-deficient mutant. Ectopically expressed ACAP3 in HEK (human embryonic kidney)-293T cells showed the GAP activity specific to Arf6. In support of this observation, the level of GTP-bound Arf6 was significantly increased by knockdown of ACAP3 in hippocampal neurons. In addition, knockdown and knockout of Arf6 in mouse hippocampal neurons suppressed neurite outgrowth. These results demonstrate that ACAP3 positively regulates neurite outgrowth through its GAP activity specific to Arf6. Furthermore, neurite outgrowth suppressed by ACAP3 knockdown was rescued by expression of a fast cycle mutant of Arf6 that spontaneously exchanges guanine nucleotides on Arf6, but not by that of wild-type, GTP- or GDP-locked mutant Arf6. Thus cycling between active and inactive forms of Arf6, which is precisely regulated by ACAP3 in concert with a guanine-nucleotide-exchange factor(s), seems to be required for neurite outgrowth of hippocampal neurons. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  17. Rho kinase regulates neurite outgrowth of hippocampal neurons via calcium dependent cytoskeleton regulation

    PubMed Central

    Ji, Zhisheng; Cai, Zhenbin; Zhang, Jifeng; Liu, Nannuan; Chen, Jing; Tan, Minghui; Lin, Hongsheng; Guo, Guoqing

    2017-01-01

    Objective: To investigate whether calcium is involved in downstream signal transduction in neurite outgrowth regulated by Rho kinase. Methods: In vitro primary hippocampal neurons were cultured and treated with Rho kinase agonist (LPA) or antagonist (Y-27632). Then, the cytoskeleton and neurite outgrowth were observed. After addition of calcium antagonist BAPTA/AM to reduce intracellular calcium, the cytoskeleton distribution and neurite outgrowth were observed. Results: The activation or inhibition of Rho kinase could significantly alter the number and length of neurites of hippocampal neurons. Rho kinase regulated the cytoskeleton to regulate the neurite outgrowth, and LPA could significantly increase intracellular calcium. After BAPTA/AM treatment, the length and branch number of neurites of neurons reduced markedly. BAPTA/AM was able to reduce intracellular calcium and decrease neuronal cytoskeleton. Treatment with both BAPTA/AM and LPA could stop the retraction of neurites, but the length and branch number of neurites remained unchanged after treatment with Y-27632 and LPA. Conclusion: Calcium may affect the cytoskeleton arrangement to regulate neurite outgrowth, and calcium is involved in the downstream signal transduction of Rho kinase regulated neurite outgrowth of hippocampal neurons. PMID:28337305

  18. CRMP-5 interacts with actin to regulate neurite outgrowth

    PubMed Central

    GONG, XIAOBING; TAN, MINGHUI; GAO, YUAN; CHEN, KEEN; GUO, GUOQING

    2016-01-01

    CRMP family proteins (CRMPs) are abundantly expressed in the developing nervous system mediating growth cone guidance, neuronal polarity and axon elongation. CRMP-5 has been indicated to serve a critical role in neurite outgrowth. However, the detailed mechanisms of how CRMP-5 regulates neurite outgrowth remain unclear. In the current study, co-immunoprecipitation was used to identify the fact that CRMP-5 interacted with the actin and tubulin cytoskeleton networks in the growth cones of developing hippocampal neurons. CRMP-5 exhibited increased affinity towards actin when compared with microtubules. Immunocytochemistry was used to identify the fact that CRMP-5 colocalized with actin predominantly in the C-domain and T-zone in growth cones. In addition, genetic inhibition of CRMP-5 by siRNA suppressed the expression of actin, growth cone development and neurite outgrowth. Overexpression of CRMP-5 promoted the interaction with actin, growth cone development and hippocampal neurite outgrowth. Taken together, these data suggest that CRMP-5 is able to interact with the actin cytoskeleton network in the growth cone and affect growth cone development and neurite outgrowth via this interaction in developing hippocampal neurons. PMID:26677106

  19. Shoc2/Sur8 Protein Regulates Neurite Outgrowth

    PubMed Central

    Leon, Gonzalo; Sanchez-Ruiloba, Lucia; Perez-Rodriguez, Andrea; Gragera, Teresa; Martinez, Natalia; Hernandez, Silvia; Anta, Berta; Calero, Olga; Garcia-Dominguez, Carlota A.; Dura, Lara M.; Peña-Jimenez, Daniel; Castro, Judit; Zarich, Natasha; Sanchez-Gomez, Pilar; Calero, Miguel; Iglesias, Teresa; Oliva, Jose L.; Rojas, Jose M.

    2014-01-01

    The Shoc2 protein has been implicated in the positive regulation of the Ras-ERK pathway by increasing the functional binding interaction between Ras and Raf, leading to increased ERK activity. Here we found that Shoc2 overexpression induced sustained ERK phosphorylation, notably in the case of EGF stimulation, and Shoc2 knockdown inhibited ERK activation. We demonstrate that ectopic overexpression of human Shoc2 in PC12 cells significantly promotes neurite extension in the presence of EGF, a stimulus that induces proliferation rather than differentiation in these cells. Finally, Shoc2 depletion reduces both NGF-induced neurite outgrowth and ERK activation in PC12 cells. Our data indicate that Shoc2 is essential to modulate the Ras-ERK signaling outcome in cell differentiation processes involved in neurite outgrowth. PMID:25514808

  20. Shoc2/Sur8 protein regulates neurite outgrowth.

    PubMed

    Leon, Gonzalo; Sanchez-Ruiloba, Lucia; Perez-Rodriguez, Andrea; Gragera, Teresa; Martinez, Natalia; Hernandez, Silvia; Anta, Berta; Calero, Olga; Garcia-Dominguez, Carlota A; Dura, Lara M; Peña-Jimenez, Daniel; Castro, Judit; Zarich, Natasha; Sanchez-Gomez, Pilar; Calero, Miguel; Iglesias, Teresa; Oliva, Jose L; Rojas, Jose M

    2014-01-01

    The Shoc2 protein has been implicated in the positive regulation of the Ras-ERK pathway by increasing the functional binding interaction between Ras and Raf, leading to increased ERK activity. Here we found that Shoc2 overexpression induced sustained ERK phosphorylation, notably in the case of EGF stimulation, and Shoc2 knockdown inhibited ERK activation. We demonstrate that ectopic overexpression of human Shoc2 in PC12 cells significantly promotes neurite extension in the presence of EGF, a stimulus that induces proliferation rather than differentiation in these cells. Finally, Shoc2 depletion reduces both NGF-induced neurite outgrowth and ERK activation in PC12 cells. Our data indicate that Shoc2 is essential to modulate the Ras-ERK signaling outcome in cell differentiation processes involved in neurite outgrowth.

  1. Timing Is Everything: GTPase Regulation in Phototransduction

    PubMed Central

    Arshavsky, Vadim Y.; Wensel, Theodore G.

    2013-01-01

    As the molecular mechanisms of vertebrate phototransduction became increasingly clear in the 1980s, a persistent problem was the discrepancy between the slow GTP hydrolysis catalyzed by the phototransduction G protein, transducin, and the much more rapid physiological recovery of photoreceptor cells from light stimuli. Beginning with a report published in 1989, a series of studies revealed that transducin GTPase activity could approach the rate needed to explain physiological recovery kinetics in the presence of one or more factors present in rod outer segment membranes. One by one, these factors were identified, beginning with PDEγ, the inhibitory subunit of the cGMP phosphodiesterase activated by transducin. There followed the discovery of the crucial role played by the regulator of G protein signaling, RGS9, a member of a ubiquitous family of GTPase-accelerating proteins, or GAPs, for heterotrimeric G proteins. Soon after, the G protein β isoform Gβ5 was identified as an obligate partner subunit, followed by the discovery or R9AP, a transmembrane protein that anchors the RGS9 GAP complex to the disk membrane, and is essential for the localization, stability, and activity of this complex in vivo. The physiological importance of all of the members of this complex was made clear first by knockout mouse models, and then by the discovery of a human visual defect, bradyopsia, caused by an inherited deficiency in one of the GAP components. Further insights have been gained by high-resolution crystal structures of subcomplexes, and by extensive mechanistic studies both in vitro and in animal models. PMID:24265205

  2. RhoGTPase Regulators Orchestrate Distinct Stages of Synaptic Development

    PubMed Central

    Martin-Vilchez, Samuel; Whitmore, Leanna; Asmussen, Hannelore; Zareno, Jessica; Horwitz, Rick; Newell-Litwa, Karen

    2017-01-01

    Small RhoGTPases regulate changes in post-synaptic spine morphology and density that support learning and memory. They are also major targets of synaptic disorders, including Autism. Here we sought to determine whether upstream RhoGTPase regulators, including GEFs, GAPs, and GDIs, sculpt specific stages of synaptic development. The majority of examined molecules uniquely regulate either early spine precursor formation or later maturation. Specifically, an activator of actin polymerization, the Rac1 GEF β-PIX, drives spine precursor formation, whereas both FRABIN, a Cdc42 GEF, and OLIGOPHRENIN-1, a RhoA GAP, regulate spine precursor elongation. However, in later development, a novel Rac1 GAP, ARHGAP23, and RhoGDIs inactivate actomyosin dynamics to stabilize mature synapses. Our observations demonstrate that specific combinations of RhoGTPase regulatory proteins temporally balance RhoGTPase activity during post-synaptic spine development. PMID:28114311

  3. Androgen regulation of axon growth and neurite extension in motoneurons

    PubMed Central

    Fargo, Keith N.; Galbiati, Mariarita; Foecking, Eileen M.; Poletti, Angelo; Jones, Kathryn J.

    2008-01-01

    Androgens act on the CNS to affect motor function through interaction with a widespread distribution of intracellular androgen receptors (AR). This review highlights our work on androgens and process outgrowth in motoneurons, both in vitro and in vivo. The actions of androgens on motoneurons involve the generation of novel neuronal interactions that are mediated by the induction of androgen-dependent neurite or axonal outgrowth. Here, we summarize the experimental evidence for the androgenic regulation of the extension and regeneration of motoneuron neurites in vitro using cultured immortalized motoneurons, and axons in vivo using the hamster facial nerve crush paradigm. We place particular emphasis on the relevance of these effects to SBMA and peripheral nerve injuries. PMID:18387610

  4. Rit Subfamily Small GTPases: Regulators in Neuronal Differentiation and Survival

    PubMed Central

    Shi, Geng-Xian; Cai, Weikang; Andres, Douglas A.

    2013-01-01

    Ras family small GTPases serve as binary molecular switches to regulate a broad array of cellular signaling cascades, playing essential roles in a vast range of normal physiological processes, with dysregulation of numerous Ras-superfamily G-protein-dependent regulatory cascades underlying the development of human disease. However, the physiological function for many “orphan” Ras-related GTPases remain poorly characterized, including members of the Rit subfamily GTPases. Rit is the founding member of a novel branch of the Ras subfamily, sharing close homology with the neuronally expressed Rin and Drosophila Ric GTPases. Here, we highlight recent studies using transgenic and knockout animal models which have begun to elucidate the physiological roles for the Rit subfamily, including emerging roles in the regulation of neuronal morphology and cellular survival signaling, and discuss new genetic data implicating Rit and Rin signaling in disorders such as cancer, Parkinson’s disease, autism, and schizophrenia. PMID:23770287

  5. Regulation of small GTPase activity by G1 cyclins.

    PubMed

    Pedraza, Neus; Cemeli, Tània; Monserrat, Ma Ventura; Garí, Eloi; Ferrezuelo, Francisco

    2017-01-27

    Together with a cyclin-dependent kinase (CDK) partner G1 cyclins control cell cycle entry by phosphorylating a number of nuclear targets and releasing a transcriptional program at the end of G1 phase. Yeast G1 cyclins also operate on cytoplasmic targets involved in the polarization of the cytoskeleton and vesicle trafficking. These processes are mainly controlled by the small GTPase Cdc42, and G1 cyclins regulate the activity of this and other small GTPases through the modulation of their regulators and effectors. This regulation is key for different developmental outcomes in unicellular organisms. In mammalian cells cytoplasmic G1 cyclin D1 has been shown to promote the activity of Rac1 and Ral GTPases and to block RhoA. Regulation of these small GTPases by G1 cyclins may constitute a mechanism to coordinate proliferation with cell migration and morphogenesis, important processes not only during normal development and organogenesis but also for tumor formation and metastasis. Here we briefly review the evidence supporting a role of G1 cyclins and CDKs as regulators of the activity of small GTPases, emphasizing their functional relevance both in budding yeast and in mammalian cells.

  6. Rho-GTPases as key regulators of T lymphocyte biology.

    PubMed

    Saoudi, Abdelhadi; Kassem, Sahar; Dejean, Anne; Gaud, Guillaume

    2014-01-01

    Rho-GTPases belong to the Ras superfamily and are crucial signal transducing proteins downstream of many receptors. In general, the Rho-GTPases function as molecular switches, cycling between inactive (GDP-bound) and active (GTP-bound) states. The activated GTP bound Rho-GTPases interact with a broad spectrum of effectors to regulate a plethora of biological pathways including cytoskeletal dynamics, motility, cytokinesis, cell growth, apoptosis, transcriptional activity and nuclear signaling. Recently, gene targeting in mice allowed the selective inactivation of different Rho-GTPases and has advanced our understanding of the physiological role of these proteins, particularly in the immune system. Particularly, these proteins are key signaling molecules in T lymphocytes, which are generated in the thymus and are major players in the immune system. The scope of this review is to discuss recent data obtained in Rho-GTPases deficient mice by focusing on the role-played by Rho-GTPases in T-lymphocyte development, migration, activation and differentiation.

  7. Dock6, a Dock-C subfamily guanine nucleotide exchanger, has the dual specificity for Rac1 and Cdc42 and regulates neurite outgrowth.

    PubMed

    Miyamoto, Yuki; Yamauchi, Junji; Sanbe, Atsushi; Tanoue, Akito

    2007-02-15

    Small GTPases of the Rho family, Rho, Rac, and Cdc42, are critical regulators of the changes in the actin cytoskeleton. Rho GTPases are typically activated by Dbl-homology (DH)-domain-containing guanine nucleotide exchange factors (GEFs). Recent genetic and biochemical studies revealed a new type of GEF for the Rho GTPases. This family is composed of 11 genes, designated as Dock1 to Dock11, and is structurally divided into four classes Dock-A, -B, -C, and -D. Dock-A and -B subfamilies are typically GEFs specific for Rac1, while the Dock-D subfamily is specific for Cdc42. Here we show that Dock6, a member of the Dock-C subfamily, exchanges GDP for GTP for Rac1 and Cdc42 in vitro and in vivo. Furthermore, we find that, in mouse N1E-115 neuroblastoma cells, expression of Dock6 is increased following differentiation. Transfection of the catalytic Dock Homology Region-2 (DHR-2) domain of Dock6 promotes neurite outgrowth mediated by Rac1 and Cdc42. Conversely, knockdown of endogenous Dock6 by small interference RNA reduces activation of Rac1 and Cdc42 and neurite outgrowth. Taken together, these results suggest that Dock6 differs from all of the identified Dock180-related proteins, in that it is the GEF specific for both Rac1 and Cdc42 and may be one of physiological regulators of neurite outgrowth.

  8. Nerve injury induces a Gem-GTPase-dependent downregulation of P/Q-type Ca2+ channels contributing to neurite plasticity in dorsal root ganglion neurons.

    PubMed

    Scamps, Frédérique; Sangari, Sina; Bowerman, Melissa; Rousset, Mathieu; Bellis, Michel; Cens, Thierry; Charnet, Pierre

    2015-02-01

    Small RGK GTPases, Rad, Gem, Rem1, and Rem2, are potent inhibitors of high-voltage-activated (HVA) Ca(2+) channels expressed in heterologous expression systems. However, the role of this regulation has never been clearly demonstrated in the nervous system. Using transcriptional analysis, we show that peripheral nerve injury specifically upregulates Gem in mice dorsal root ganglia. Following nerve injury, protein expression was increased in ganglia and peripheral nerve, mostly under its phosphorylated form. This was confirmed in situ and in vitro in dorsal root ganglia sensory neurons. Knockdown of endogenous Gem, using specific small-interfering RNA (siRNA), increased the HVA Ca(2+) current only in the large-somatic-sized neurons. Combining pharmacological analysis of the HVA Ca(2+) currents together with Gem siRNA-transfection of larger sensory neurons, we demonstrate that only the P/Q-type Ca(2+) channels were enhanced. In vitro analysis of Gem affinity to various CaVβx-CaV2.x complexes and immunocytochemical studies of Gem and CaVβ expression in sensory neurons suggest that the specific inhibition of the P/Q channels relies on both the regionalized upregulation of Gem and the higher sensitivity of the endogenous CaV2.1-CaVβ4 pair in a subset of sensory neurons including the proprioceptors. Finally, pharmacological inhibition of P/Q-type Ca(2+) current reduces neurite branching of regenerating axotomized neurons. Taken together, the present results indicate that a Gem-dependent P/Q-type Ca(2+) current inhibition may contribute to general homeostatic mechanisms following a peripheral nerve injury.

  9. Regulation of phagocytosis by Rho GTPases.

    PubMed

    Mao, Yingyu; Finnemann, Silvia C

    2015-01-01

    Phagocytosis is defined as a cellular uptake pathway for particles of greater than 0.5 μm in diameter. Particle clearance by phagocytosis is of critical importance for tissue health and homeostasis. The ultimate goal of anti-pathogen phagocytosis is to destroy engulfed bacteria or fungi and to stimulate cell-cell signaling that mount an efficient immune defense. In contrast, clearance phagocytosis of apoptotic cells and cell debris is anti-inflammatory. High capacity clearance phagocytosis pathways are available to professional phagocytes of the immune system and the retina. Additionally, a low capacity, so-called bystander phagocytic pathway is available to most other cell types. Different phagocytic pathways are stimulated by particle ligation of distinct surface receptors but all forms of phagocytosis require F-actin recruitment beneath tethered particles and F-actin re-arrangement promoting engulfment, which are controlled by Rho family GTPases. The specificity of Rho GTPase activity during the different forms of phagocytosis by mammalian cells is the subject of this review.

  10. Munc18 and Munc13 regulate early neurite outgrowth

    PubMed Central

    Broeke, Jurjen H.P.; Roelandse, Martijn; Luteijn, Maartje J.; Boiko, Tatiana; Matus, Andrew; Toonen, Ruud F.; Verhage, Matthijs

    2010-01-01

    Background information. During development, growth cones of outgrowing neurons express proteins involved in vesicular secretion, such as SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) proteins, Munc13 and Munc18. Vesicles are known to fuse in growth cones prior to synapse formation, which may contribute to outgrowth. Results. We tested this possibility in dissociated cell cultures and organotypic slice cultures of two release-deficient mice (Munc18-1 null and Munc13-1/2 double null). Both types of release-deficient neurons have a decreased outgrowth speed and therefore have a smaller total neurite length during early development [DIV1–4 (day in vitro 1–4)]. In addition, more filopodia per growth cone were observed in Munc18-1 null, but not WT (wild-type) or Munc13-1/2 double null neurons. The smaller total neurite length during early development was no longer observed after synaptogenesis (DIV14–23). Conclusion. These data suggest that the inability of vesicle fusion in the growth cone affects outgrowth during the initial phases when outgrowth speed is high, but not during/after synaptogenesis. Overall, the outgrowth speed is probably not rate-limiting during neuronal network formation, at least in vitro. In addition, Munc18, but not Munc13, regulates growth cone filopodia, potentially via its previously observed effect on filamentous actin. PMID:20497124

  11. Regulation of bacterial cell polarity by small GTPases.

    PubMed

    Keilberg, Daniela; Søgaard-Andersen, Lotte

    2014-04-01

    Bacteria are polarized with many proteins localizing dynamically to specific subcellular sites. Two GTPase families have important functions in the regulation of bacterial cell polarity, FlhF homologues and small GTPases of the Ras superfamily. The latter consist of only a G domain and are widespread in bacteria. The rod-shaped Myxococcus xanthus cells have two motility systems, one for gliding and one that depends on type IV pili. The function of both systems hinges on proteins that localize asymmetrically to the cell poles. During cellular reversals, these asymmetrically localized proteins are released from their respective poles and then bind to the opposite pole, resulting in an inversion of cell polarity. Here, we review genetic, cell biological, and biochemical analyses that identified two modules containing small Ras-like GTPases that regulate the dynamic polarity of motility proteins. The GTPase SofG interacts directly with the bactofilin cytoskeletal protein BacP to ensure polar localization of type IV pili proteins. In the second module, the small GTPase MglA, its cognate GTPase activating protein (GAP) MglB, and the response regulator RomR localize asymmetrically to the poles and sort dynamically localized motility proteins to the poles. During reversals, MglA, MglB, and RomR switch poles, in that way inducing the relocation of dynamically localized motility proteins. Structural analyses have demonstrated that MglB has a Roadblock/LC7 fold, the central β2 strand in MglA undergoes an unusual screw-type movement upon GTP binding, MglA contains an intrinsic Arg finger required for GTP hydrolysis, and MglA and MglB form an unusual G protein/GAP complex with a 1:2 stoichiometry.

  12. Plant GTPases: regulation of morphogenesis by ROPs and ROS.

    PubMed

    Uhrig, Joachim F; Hülskamp, Martin

    2006-03-21

    Polarized cell growth in plants is controlled by Rho-like small GTPases (ROPs), not only through the canonical WAVE/Arp2/3 pathway, but also through newly defined plant-specific pathways involving the regulated release of reactive oxygen species (ROS).

  13. Neuronal Cell Shape and Neurite Initiation Are Regulated by the Ndr Kinase SAX-1, a Member of the Orb6/COT-1/Warts Serine/Threonine Kinase Family

    PubMed Central

    Zallen, Jennifer A.; Peckol, Erin L.; Tobin, David M.; Bargmann, Cornelia I.

    2000-01-01

    The Caenorhabditis elegans sax-1 gene regulates several aspects of neuronal cell shape. sax-1 mutants have expanded cell bodies and ectopic neurites in many classes of neurons, suggesting that SAX-1 functions to restrict cell and neurite growth. The ectopic neurites in sensory neurons of sax-1 mutants resemble the defects caused by decreased sensory activity. However, the activity-dependent pathway, mediated in part by the UNC-43 calcium/calmodulin-dependent kinase II, functions in parallel with SAX-1 to suppress neurite initiation. sax-1 encodes a serine/threonine kinase in the Ndr family that is related to the Orb6 (Schizosaccharomyces pombe), Warts/Lats (Drosophila), and COT-1 (Neurospora) kinases that function in cell shape regulation. These kinases have similarity to Rho kinases but lack consensus Rho-binding domains. Dominant negative mutations in the C. elegans RhoA GTPase cause neuronal cell shape defects similar to those of sax-1 mutants, and genetic interactions between rhoA and sax-1 suggest shared functions. These results suggest that SAX-1/Ndr kinases are endogenous inhibitors of neurite initiation and cell spreading. PMID:10982409

  14. Saccharin enhances neurite extension by regulating organization of the microtubules.

    PubMed

    Yamashita, Hiroo; Muroi, Yoshikage; Ishii, Toshiaki

    2013-11-06

    In the present study, we found that saccharin, an artificial calorie-free sweetener, promotes neurite extension in the cultured neuronal cells. The purposes of this study are to characterize the effect of saccharine on neurite extension and to determine how saccharin enhances neurite extension. The analyses were performed using mouse neuroblastoma N1E-115 cells and rat pheochromocytoma PC12 cells. Neurite extension was evaluated by counting the cells bearing neurites and measuring the length of neurites. Formation, severing and transportation of the microtubules were evaluated by immunostaining and western blotting analysis. Deprivation of glucose increased the number of N1E-115 cells bearing long processes. And the effect was inhibited by addition of glucose. Saccharin increased the number of these cells bearing long processes in a dose-dependent manner and total neurite length and longest neurite length in each cell. Saccharin also had a similar effect on NGF-treated PC12 cells. Saccharin increased the amount of the microtubules reconstructed after treatment with nocodazole, a disruptor of microtubules. The effect of saccharin on microtubule reconstruction was not influenced by dihydrocytochalasin B, an inhibitor of actin polymerization, indicating that saccharin enhances microtubule formation without requiring actin dynamics. In the cells treated with vinblastine, an inhibitor of microtubule polymerization, after microtubule reorganization, filamentous microtubules were observed more distantly from the centrosome in saccharin-treated cells, indicating that saccharin enhances microtubule severing and/or transportation. These results suggest that saccharin enhances neurite extension by promoting microtubule organization. © 2013.

  15. Insulin signaling regulates neurite growth during metamorphic neuronal remodeling

    PubMed Central

    Gu, Tingting; Zhao, Tao; Hewes, Randall S.

    2014-01-01

    Summary Although the growth capacity of mature neurons is often limited, some neurons can shift through largely unknown mechanisms from stable maintenance growth to dynamic, organizational growth (e.g. to repair injury, or during development transitions). During insect metamorphosis, many terminally differentiated larval neurons undergo extensive remodeling, involving elimination of larval neurites and outgrowth and elaboration of adult-specific projections. Here, we show in the fruit fly, Drosophila melanogaster (Meigen), that a metamorphosis-specific increase in insulin signaling promotes neuronal growth and axon branching after prolonged stability during the larval stages. FOXO, a negative effector in the insulin signaling pathway, blocked metamorphic growth of peptidergic neurons that secrete the neuropeptides CCAP and bursicon. RNA interference and CCAP/bursicon cell-targeted expression of dominant-negative constructs for other components of the insulin signaling pathway (InR, Pi3K92E, Akt1, S6K) also partially suppressed the growth of the CCAP/bursicon neuron somata and neurite arbor. In contrast, expression of wild-type or constitutively active forms of InR, Pi3K92E, Akt1, Rheb, and TOR, as well as RNA interference for negative regulators of insulin signaling (PTEN, FOXO), stimulated overgrowth. Interestingly, InR displayed little effect on larval CCAP/bursicon neuron growth, in contrast to its strong effects during metamorphosis. Manipulations of insulin signaling in many other peptidergic neurons revealed generalized growth stimulation during metamorphosis, but not during larval development. These findings reveal a fundamental shift in growth control mechanisms when mature, differentiated neurons enter a new phase of organizational growth. Moreover, they highlight strong evolutionarily conservation of insulin signaling in neuronal growth regulation. PMID:24357229

  16. Molecular Dissection of the Rho-associated Protein Kinase (p160ROCK)-regulated Neurite Remodeling in Neuroblastoma N1E-115 Cells

    PubMed Central

    Hirose, Masaya; Ishizaki, Toshimasa; Watanabe, Naoki; Uehata, Masayoshi; Kranenburg, Onno; Moolenaar, Wouter H.; Matsumura, Fumio; Maekawa, Midori; Bito, Haruhiko; Narumiya, Shuh

    1998-01-01

    A critical role for the small GTPase Rho and one of its targets, p160ROCK (a Rho-associated coiled coil-forming protein kinase), in neurite remodeling was examined in neuroblastoma N1E-115 cells. Using wild-type and a dominant-negative form of p160ROCK and a p160ROCK-specific inhibitor, Y-27632, we show here that p160ROCK activation is necessary and sufficient for the agonist-induced neurite retraction and cell rounding. The neurite retraction was accompanied by elevated phosphorylation of myosin light chain and the disassembly of the intermediate filaments and microtubules. Y-27632 blocked both neurite retraction and the elevation of myosin light chain phosphorylation in a similar concentration-dependent manner. On the other hand, suppression of p160ROCK activity by expression of a dominant-negative form of p160ROCK induced neurites in the presence of serum by inducing the reassembly of the intermediate filaments and microtubules. The neurite outgrowth by the p160ROCK inhibition was blocked by coexpression of dominant-negative forms of Cdc42 and Rac, indicating that p160ROCK constitutively and negatively regulates neurite formation at least in part by inhibiting activation of Cdc42 and Rac. The assembly of microtubules and intermediate filaments to form extended processes by inhibitors of the Rho–ROCK pathway was also observed in Swiss 3T3 cells. These results indicate that Rho/ROCK-dependent tonic inhibition of cell process extension is exerted via activation of the actomysin-based contractility, in conjunction with a suppression of assembly of intermediate filaments and microtubules in many cell types including, but not exclusive to, neuronal cells. PMID:9647654

  17. The 'invisible hand': regulation of RHO GTPases by RHOGDIs.

    PubMed

    Garcia-Mata, Rafael; Boulter, Etienne; Burridge, Keith

    2011-07-22

    The 'invisible hand' is a term originally coined by Adam Smith in The Theory of Moral Sentiments to describe the forces of self-interest, competition and supply and demand that regulate the resources in society. This metaphor continues to be used by economists to describe the self-regulating nature of a market economy. The same metaphor can be used to describe the RHO-specific guanine nucleotide dissociation inhibitor (RHOGDI) family, which operates in the background, as an invisible hand, using similar forces to regulate the RHO GTPase cycle.

  18. SRRM4-dependent neuron-specific alternative splicing of protrudin transcripts regulates neurite outgrowth

    PubMed Central

    Ohnishi, Takafumi; Shirane, Michiko; Nakayama, Keiichi I.

    2017-01-01

    Alternative splicing gives rise to diversity of the proteome, and it is especially prevalent in the mammalian nervous system. Indeed, many factors that control the splicing process govern nervous system development. Among such factors, SRRM4 is an important regulator of aspects of neural differentiation including neurite outgrowth. The mechanism by which SRRM4 regulates neurite outgrowth has remained poorly understood, however. We now show that SRRM4 regulates the splicing of protrudin gene (Zfyve27) transcripts in neuronal cells. SRRM4 was found to promote splicing of protrudin pre-mRNA so as to include a microexon (exon L) encoding seven amino acids in a neuron-specific manner. The resulting protein (protrudin-L) promotes neurite outgrowth during neurogenesis. Depletion of SRRM4 in Neuro2A cells impaired inclusion of exon L in protrudin mRNA, resulting in the generation of a shorter protein isoform (protrudin-S) that is less effective at promoting neurite extension. SRRM4 was found to recognize a UGC motif that is located immediately upstream of exon L and is necessary for inclusion of exon L in the mature transcript. Deletion of exon L in Neuro2A or embryonic stem cells inhibited neurite outgrowth. Our results suggest that SRRM4 controls neurite outgrowth through regulation of alternative splicing of protrudin transcripts. PMID:28106138

  19. Structural mechanisms for regulation of membrane traffic by rab GTPases.

    PubMed

    Lee, Meng-Tse Gabe; Mishra, Ashwini; Lambright, David G

    2009-10-01

    In all eukaryotic organisms, Rab GTPases function as critical regulators of membrane traffic, organelle biogenesis and maturation, and related cellular processes. The numerous Rab proteins have distinctive yet overlapping subcellular distributions throughout the endomembrane system. Intensive investigation has clarified the underlying molecular and structural mechanisms for several ubiquitous Rab proteins that control membrane traffic between tubular-vesicular organelles in the exocytic, endocytic and recycling pathways. In this review, we focus on structural insights that inform our current understanding of the organization of the Rab family as well as the mechanisms for membrane targeting and activation, interaction with effectors, deactivation and specificity determination.

  20. Controlling the switches: Rho GTPase regulation during animal cell mitosis.

    PubMed

    Zuo, Yan; Oh, Wonkyung; Frost, Jeffrey A

    2014-12-01

    Animal cell division is a fundamental process that requires complex changes in cytoskeletal organization and function. Aberrant cell division often has disastrous consequences for the cell and can lead to cell senescence, neoplastic transformation or death. As important regulators of the actin cytoskeleton, Rho GTPases play major roles in regulating many aspects of mitosis and cytokinesis. These include centrosome duplication and separation, generation of cortical rigidity, microtubule-kinetochore stabilization, cleavage furrow formation, contractile ring formation and constriction, and abscission. The ability of Rho proteins to function as regulators of cell division depends on their ability to cycle between their active, GTP-bound and inactive, GDP-bound states. However, Rho proteins are inherently inefficient at fulfilling this cycle and require the actions of regulatory proteins that enhance GTP binding (RhoGEFs), stimulate GTPase activity (RhoGAPs), and sequester inactive Rho proteins in the cytosol (RhoGDIs). The roles of these regulatory proteins in controlling cell division are an area of active investigation. In this review we will delineate the current state of knowledge of how specific RhoGEFs, RhoGAPs and RhoGDIs control mitosis and cytokinesis, and highlight the mechanisms by which their functions are controlled. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Regulators and Effectors of Arf GTPases in Neutrophils

    PubMed Central

    Gamara, Jouda; Chouinard, François; Davis, Lynn; Aoudjit, Fawzi; Bourgoin, Sylvain G.

    2015-01-01

    Polymorphonuclear neutrophils (PMNs) are key innate immune cells that represent the first line of defence against infection. They are the first leukocytes to migrate from the blood to injured or infected sites. This process involves molecular mechanisms that coordinate cell polarization, delivery of receptors, and activation of integrins at the leading edge of migrating PMNs. These phagocytes actively engulf microorganisms or form neutrophil extracellular traps (NETs) to trap and kill pathogens with bactericidal compounds. Association of the NADPH oxidase complex at the phagosomal membrane for production of reactive oxygen species (ROS) and delivery of proteolytic enzymes into the phagosome initiate pathogen killing and removal. G protein-dependent signalling pathways tightly control PMN functions. In this review, we will focus on the small monomeric GTPases of the Arf family and their guanine exchange factors (GEFs) and GTPase activating proteins (GAPs) as components of signalling cascades regulating PMN responses. GEFs and GAPs are multidomain proteins that control cellular events in time and space through interaction with other proteins and lipids inside the cells. The number of Arf GAPs identified in PMNs is expanding, and dissecting their functions will provide important insights into the role of these proteins in PMN physiology. PMID:26609537

  2. Regulators and Effectors of Arf GTPases in Neutrophils.

    PubMed

    Gamara, Jouda; Chouinard, François; Davis, Lynn; Aoudjit, Fawzi; Bourgoin, Sylvain G

    2015-01-01

    Polymorphonuclear neutrophils (PMNs) are key innate immune cells that represent the first line of defence against infection. They are the first leukocytes to migrate from the blood to injured or infected sites. This process involves molecular mechanisms that coordinate cell polarization, delivery of receptors, and activation of integrins at the leading edge of migrating PMNs. These phagocytes actively engulf microorganisms or form neutrophil extracellular traps (NETs) to trap and kill pathogens with bactericidal compounds. Association of the NADPH oxidase complex at the phagosomal membrane for production of reactive oxygen species (ROS) and delivery of proteolytic enzymes into the phagosome initiate pathogen killing and removal. G protein-dependent signalling pathways tightly control PMN functions. In this review, we will focus on the small monomeric GTPases of the Arf family and their guanine exchange factors (GEFs) and GTPase activating proteins (GAPs) as components of signalling cascades regulating PMN responses. GEFs and GAPs are multidomain proteins that control cellular events in time and space through interaction with other proteins and lipids inside the cells. The number of Arf GAPs identified in PMNs is expanding, and dissecting their functions will provide important insights into the role of these proteins in PMN physiology.

  3. Mechanisms for spatiotemporal regulation of Rho-GTPase signaling at synapses

    PubMed Central

    Duman, Joseph G.; Mulherkar, Shalaka; Tu, Yen-Kuei; Cheng, Jinxuan; Tolias, Kimberley F.

    2015-01-01

    Synapses mediate information flow between neurons and undergo plastic changes in response to experience, which is critical for learning and memory. Conversely, synaptic defects impair information processing and underlie many brain pathologies. Rho-family GTPases control synaptogenesis by transducing signals from extracellular stimuli to the cytoskeleton and nucleus. The Rho-GTPases Rac1 and Cdc42 promote synapse development and the growth of axons and dendrites, while RhoA antagonizes these processes. Despite its significance, many aspects of Rho-GTPase signaling remain relatively unknown. Rho-GTPases are activated by guanine nucleotide exchange factors (GEFs) and inhibited by GTPase-activating proteins (GAPs). Though the number of both GEFs and GAPs greatly exceeds that of Rho-GTPases, loss of even a single GEF or GAP often has profound effects on cognition and behavior. Here, we explore how the actions of specific GEFs and GAPs give rise to the precise spatiotemporal activation patterns of Rho-GTPases in neurons. We consider the effects of coupling GEFs and GAPs targeting the same Rho-GTPase and the modular pathways that connect specific cellular stimuli with a given Rho-GTPase via different GEFs. We discuss how the creation of sharp borders between Rho-GTPase activation zones is achieved by pairing a GEF for one Rho-GTPase with a GAP for another and the extensive crosstalk between different Rho-GTPases. Given the importance of synapses for cognition and the fundamental roles that Rho-GTPases play in regulating them, a detailed understanding of Rho-GTPase signaling is essential to the progress of neuroscience. PMID:26003445

  4. Regulation of early neurite morphogenesis by the Na+/H+ exchanger NHE1.

    PubMed

    Sin, Wun-Chey; Moniz, David M; Ozog, Mark A; Tyler, Jessica E; Numata, Masayuki; Church, John

    2009-07-15

    The ubiquitously expressed Na(+)/H(+) exchanger NHE1 plays an important role in regulating polarized membrane protrusion and directional motility in non-neuronal cells. Using NGF-differentiated PC12 cells and murine neocortical neurons in vitro, we now show that NHE1 plays a role in regulating early neurite morphogenesis. NHE1 was expressed in growth cones in which it gave rise to an elevated intracellular pH in actively extending neurites. The NHE1 inhibitor cariporide reversibly reduced growth cone filopodia number and the formation and elongation of neurites, especially branches, whereas the transient overexpression of full-length NHE1, but not NHE1 mutants deficient in either ion translocation activity or actin cytoskeletal anchoring, elicited opposite effects. In addition, compared with neocortical neurons obtained from wild-type littermates, neurons isolated from NHE1-null mice exhibited reductions in early neurite outgrowth, an effect that was rescued by overexpression of full-length NHE1 but not NHE1 mutants. Finally, the growth-promoting effects of netrin-1, but not BDNF or IGF-1, were markedly reduced by cariporide in wild-type neocortical neurons and were not observed in NHE1-null neurons. Although netrin-1 failed to increase growth cone intracellular pH or Na(+)/H(+) exchange activity, netrin-1-induced increases in early neurite outgrowth were restored in NHE1-null neurons transfected with full-length NHE1 but not an ion translocation-deficient mutant. Collectively, the results indicate that NHE1 participates in the regulation of early neurite morphogenesis and identify a novel role for NHE1 in the promotion of early neurite outgrowth by netrin-1.

  5. Coevolution of RAC Small GTPases and their Regulators GEF Proteins

    PubMed Central

    Jiménez-Sánchez, Alejandro

    2016-01-01

    RAC proteins are small GTPases involved in important cellular processes in eukaryotes, and their deregulation may contribute to cancer. Activation of RAC proteins is regulated by DOCK and DBL protein families of guanine nucleotide exchange factors (GEFs). Although DOCK and DBL proteins act as GEFs on RAC proteins, DOCK and DBL family members are evolutionarily unrelated. To understand how DBL and DOCK families perform the same function on RAC proteins despite their unrelated primary structure, phylogenetic analyses of the RAC, DBL, and DOCK families were implemented, and interaction patterns that may suggest a coevolutionary process were searched. Interestingly, while RAC and DOCK proteins are very well conserved in humans and among eukaryotes, DBL proteins are highly divergent. Moreover, correlation analyses of the phylogenetic distances of RAC and GEF proteins and covariation analyses between residues in the interacting domains showed significant coevolution rates for both RAC–DOCK and RAC–DBL interactions. PMID:27226705

  6. Coevolution of RAC Small GTPases and their Regulators GEF Proteins.

    PubMed

    Jiménez-Sánchez, Alejandro

    2016-01-01

    RAC proteins are small GTPases involved in important cellular processes in eukaryotes, and their deregulation may contribute to cancer. Activation of RAC proteins is regulated by DOCK and DBL protein families of guanine nucleotide exchange factors (GEFs). Although DOCK and DBL proteins act as GEFs on RAC proteins, DOCK and DBL family members are evolutionarily unrelated. To understand how DBL and DOCK families perform the same function on RAC proteins despite their unrelated primary structure, phylogenetic analyses of the RAC, DBL, and DOCK families were implemented, and interaction patterns that may suggest a coevolutionary process were searched. Interestingly, while RAC and DOCK proteins are very well conserved in humans and among eukaryotes, DBL proteins are highly divergent. Moreover, correlation analyses of the phylogenetic distances of RAC and GEF proteins and covariation analyses between residues in the interacting domains showed significant coevolution rates for both RAC-DOCK and RAC-DBL interactions.

  7. Rho-GTPase-regulated vesicle trafficking in plant cell polarity.

    PubMed

    Chen, Xu; Friml, Jiří

    2014-02-01

    ROPs (Rho of plants) belong to a large family of plant-specific Rho-like small GTPases that function as essential molecular switches to control diverse cellular processes including cytoskeleton organization, cell polarization, cytokinesis, cell differentiation and vesicle trafficking. Although the machineries of vesicle trafficking and cell polarity in plants have been individually well addressed, how ROPs co-ordinate those processes is still largely unclear. Recent progress has been made towards an understanding of the co-ordination of ROP signalling and trafficking of PIN (PINFORMED) transporters for the plant hormone auxin in both root and leaf pavement cells. PIN transporters constantly shuttle between the endosomal compartments and the polar plasma membrane domains, therefore the modulation of PIN-dependent auxin transport between cells is a main developmental output of ROP-regulated vesicle trafficking. The present review focuses on these cellular mechanisms, especially the integration of ROP-based vesicle trafficking and plant cell polarity.

  8. Phospholipase Cdelta3 regulates RhoA/Rho kinase signaling and neurite outgrowth.

    PubMed

    Kouchi, Zen; Igarashi, Takahiro; Shibayama, Nami; Inanobe, Shunichi; Sakurai, Kazuyuki; Yamaguchi, Hideki; Fukuda, Toshifumi; Yanagi, Shigeru; Nakamura, Yoshikazu; Fukami, Kiyoko

    2011-03-11

    Phospholipase Cδ3 (PLCδ3) is a key enzyme regulating phosphoinositide metabolism; however, its physiological function remains unknown. Because PLCδ3 is highly enriched in the cerebellum and cerebral cortex, we examined the role of PLCδ3 in neuronal migration and outgrowth. PLCδ3 knockdown (KD) inhibits neurite formation of cerebellar granule cells, and application of PLCδ3KD using in utero electroporation in the developing brain results in the retardation of the radial migration of neurons in the cerebral cortex. In addition, PLCδ3KD inhibits axon and dendrite outgrowth in primary cortical neurons. PLCδ3KD also suppresses neurite formation of Neuro2a neuroblastoma cells induced by serum withdrawal or treatment with retinoic acid. This inhibition is released by the reintroduction of wild-type PLCδ3. Interestingly, the H393A mutant lacking phosphatidylinositol 4,5-bisphosphate hydrolyzing activity generates supernumerary protrusions, and a constitutively active mutant promotes extensive neurite outgrowth, indicating that PLC activity is important for normal neurite outgrowth. The introduction of dominant negative RhoA (RhoA-DN) or treatment with Y-27632, a Rho kinase-specific inhibitor, rescues the neurite extension in PLCδ3KD Neuro2a cells. Similar effects were also detected in primary cortical neurons. Furthermore, the RhoA expression level was significantly decreased by serum withdrawal or retinoic acid in control cells, although this decrease was not observed in PLCδ3KD cells. We also found that exogenous expression of PLCδ3 down-regulated RhoA protein, and constitutively active PLCδ3 promotes the RhoA down-regulation more significantly than PLCδ3 upon differentiation. These results indicate that PLCδ3 negatively regulates RhoA expression, inhibits RhoA/Rho kinase signaling, and thereby promotes neurite extension.

  9. Inhibition of Nischarin Expression Promotes Neurite Outgrowth through Regulation of PAK Activity

    PubMed Central

    Ding, Yuemin; Li, Yuying; Lu, Lingchao; Zhang, Ruyi; Zeng, Linghui; Wang, Linlin; Zhang, Xiong

    2015-01-01

    Nischarin is a cytoplasmic protein expressed in various organs that plays an inhibitory role in cell migration and invasion and the carcinogenesis of breast cancer cells. We previously reported that Nischarin is highly expressed in neuronal cell lines and is differentially expressed in the brain tissue of adult rats. However, the physiological function of Nischarin in neural cells remains unknown. Here, we show that Nischarin is expressed in rat primary cortical neurons but not in astrocytes. Nischarin is localized around the nucleus and dendrites. Using shRNA to knockdown the expression of endogenous Nischarin significantly increases the percentage of neurite-bearing cells, remarkably increases neurite length, and accelerates neurite extension in neuronal cells. Silencing Nischarin expression also promotes dendrite elongation in rat cortical neurons where Nischarin interacts with p21-activated kinase 1/2 (PAK1/2) and negatively regulates phosphorylation of both PAK1 and PAK2. The stimulation of neurite growth observed in cells with decreased levels of Nischarin is partially abolished by IPA3-mediated inhibition of PAK1 activity. Our findings indicate that endogenous Nischarin inhibits neurite outgrowth by blocking PAK1 activation in neurons. PMID:26670864

  10. Berberine regulates neurite outgrowth through AMPK-dependent pathways by lowering energy status

    SciTech Connect

    Lu, Jiaqi; Cao, Yuanzhao; Cheng, Kuoyuan; Xu, Bo; Wang, Tianchang; Yang, Qi; Yang, Qin; Feng, Xudong; Xia, Qing

    2015-06-10

    As a widely used anti-bacterial agent and a metabolic inhibitor as well as AMP-activated protein kinase (AMPK) activator, berberine (BBR) has been shown to cross the blood–brain barrier. Its efficacy has been investigated in various disease models of the central nervous system. Neurite outgrowth is critical for nervous system development and is a highly energy-dependent process regulated by AMPK-related pathways. In the present study, we aimed to investigate the effects of BBR on AMPK activation and neurite outgrowth in neurons. The neurite outgrowth of primary rat cortical neurons at different stages of polarization was monitored after exposure of BBR. Intracellular energy level, AMPK activation and polarity-related pathways were also inspected. The results showed that BBR suppressed neurite outgrowth and affected cytoskeleton stability in the early stages of neuronal polarization, which was mediated by lowered energy status and AMPK activation. Liver kinase B1 and PI3K–Akt–GSK3β signaling pathways were also involved. In addition, mitochondrial dysfunction and endoplasmic reticulum stress contributed to the lowered energy status induced by BBR. This study highlighted the knowledge of the complex activities of BBR in neurons and corroborated the significance of energy status during the neuronal polarization. - Highlights: • BBR inhibited neurite outgrowth in early stages of neuronal development. • Lowered neuronal energy status was induced by BBR treatment. • Neuronal energy stress induced by BBR activated AMPK-related pathways. • BBR induced mitochondrial dysfunction and endoplasmic reticulum stress.

  11. Atlastin regulates store-operated calcium entry for nerve growth factor-induced neurite outgrowth

    PubMed Central

    Li, Jing; Yan, Bing; Si, Hongjiang; Peng, Xu; Zhang, Shenyuan L.; Hu, Junjie

    2017-01-01

    Homotypic membrane fusion of the endoplasmic reticulum (ER) is mediated by a class of dynamin-like GTPases known as atlastin (ATL). Depletion of or mutations in ATL cause an unbranched ER morphology and hereditary spastic paraplegia (HSP), a neurodegenerative disease characterized by axon shortening in corticospinal motor neurons and progressive spasticity of the lower limbs. How ER shaping is linked to neuronal defects is poorly understood. Here, we show that dominant-negative mutants of ATL1 in PC-12 cells inhibit nerve growth factor (NGF)-induced neurite outgrowth. Overexpression of wild-type or mutant ATL1 or depletion of ATLs alters ER morphology and affects store-operated calcium entry (SOCE) by decreasing STIM1 puncta formation near the plasma membrane upon calcium depletion of the ER. In addition, blockage of the STIM1-Orai pathway effectively abolishes neurite outgrowth of PC-12 cells stimulated by NGF. These results suggest that SOCE plays an important role in neuronal regeneration, and mutations in ATL1 may cause HSP, partly by undermining SOCE. PMID:28240257

  12. Neurolastin, a dynamin family GTPase, regulates excitatory synapses and spine density

    PubMed Central

    Madan Lomash, Richa; Gu, Xinglong; Youle, Richard J.; Lu, Wei; Roche, Katherine W.

    2015-01-01

    SUMMARY Membrane trafficking and spinogenesis contribute significantly to changes in synaptic strength during development and in various paradigms of synaptic plasticity. GTPases of the dynamin family are key players regulating membrane trafficking. Here, we identify a brain-specific dynamin family GTPase, neurolastin (RNF112/Znf179), with closest homology to atlastin. We demonstrate that neurolastin has functional GTPase and RING domains, making it a unique protein identified with this multi-enzymatic domain organization. We also show that neurolastin is a peripheral membrane protein, which localizes to endosomes and affects endosomal membrane dynamics via its RING domain. In addition, neurolastin knockout mice have fewer dendritic spines, and rescue of the wildtype phenotype requires both the GTPase and RING domains. Furthermore, we find fewer functional synapses and reduced paired pulse facilitation in neurolastin knockout mice. Thus, we identify neurolastin as a dynamin family GTPase that affects endosome size and spine density. PMID:26212327

  13. Signal transduction pathway regulating prostaglandin EP3 receptor-induced neurite retraction: requirement for two different tyrosine kinases.

    PubMed Central

    Aoki, J; Katoh, H; Yasui, H; Yamaguchi, Y; Nakamura, K; Hasegawa, H; Ichikawa, A; Negishi, M

    1999-01-01

    We reported previously that activation of the prostaglandin E receptor EP3 subtype triggered neurite retraction through the small GTPase Rho-, and its target, RhoA-binding kinase alpha (ROKalpha)-, dependent pathway in EP3 receptor-expressing PC12 cells. Here we examined the involvement of tyrosine kinases in this pathway in nerve growth factor-differentiated PC12 cells. Tyrphostin A25, a tyrosine kinase inhibitor, blocked neurite retraction and cell rounding induced by activation of the EP3 receptor, however, it failed to block neurite retraction and cell rounding induced by microinjection of constitutively active RhoA, RhoAV14, indicating that a tyrphostin-sensitive tyrosine kinase was involved in the pathway from the EP3 receptor to Rho activation. On the other hand, genistein, another tyrosine kinase inhibitor, blocked neurite retraction and cell rounding induced by both activation of the EP3 receptor and microinjection of RhoAV14. However, genistein did not block neuronal morphological changes induced by microinjection of a constitutively active mutant of ROKalpha. These results indicate that two different tyrosine kinases, tyrphostin A25-sensitive and genistein-sensitive kinases, are involved in the EP3 receptor-mediated neurite retraction acting upstream and downstream of Rho, respectively. PMID:10333476

  14. Rho GTPases regulate rhabdom morphology in octopus photoreceptors.

    PubMed

    Miller, Aria M; Ramirez, Teresa; Zuniga, Freddi I; Ochoa, Gina H; Gray, Shaunte; Kelly, Shannon D; Matsumoto, Brian; Robles, Laura J

    2005-01-01

    In the cephalopod retina, light/dark adaptation is accompanied by a decrease/increase in rhabdom size and redistribution of rhodopsin and retinochrome. Rearrangements in the actin cytoskeleton probably govern changes in rhabdom size by regulating the degradation/formation of rhabdomere microvilli. Photopigment movements may be directed by microtubules present in the outer segment core cytoplasm. We believe that rhodopsin activation by light stimulates Rho and Rac signaling pathways, affecting these cytoskeletal systems and their possible functions in controlling rhabdom morphology and protein movements. In this study, we localized cytoskeletal and signaling proteins in octopus photoreceptors to determine their concurrence between the lighting conditions. We used toxin B from Clostridium difficile to inhibit the activity of Rho/Rac and observed its effect on the location of signaling proteins and actin and tubulin. In both lighting conditions, we found Rho in specific sets of juxtaposed rhabdomeres in embryonic and adult retinas. In the light, Rho and actin were localized along the length of the rhabdomere, but, in the dark, both proteins were absent from a space beneath the inner limiting membrane. Rac colocalized with tubulin in the outer segment core cytoplasm and, like Rho, the two proteins were also absent beneath the inner limiting membrane in the dark. The distribution of actin and Rho was affected by toxin B and, in dark-adapted retinas, actin and Rho distribution was similar to that observed in the light. Our results suggest that the Rho/Rac GTPases are candidates for the regulation of rhabdomere size and protein movements in light-dark-adapted octopus photoreceptors.

  15. The Regulation of Cellular Responses to Mechanical Cues by Rho GTPases

    PubMed Central

    Hoon, Jing Ling; Tan, Mei Hua; Koh, Cheng-Gee

    2016-01-01

    The Rho GTPases regulate many cellular signaling cascades that modulate cell motility, migration, morphology and cell division. A large body of work has now delineated the biochemical cues and pathways, which stimulate the GTPases and their downstream effectors. However, cells also respond exquisitely to biophysical and mechanical cues such as stiffness and topography of the extracellular matrix that profoundly influence cell migration, proliferation and differentiation. As these cellular responses are mediated by the actin cytoskeleton, an involvement of Rho GTPases in the transduction of such cues is not unexpected. In this review, we discuss an emerging role of Rho GTPase proteins in the regulation of the responses elicited by biophysical and mechanical stimuli. PMID:27058559

  16. Gem GTPase acts upstream Gmip/RhoA to regulate cortical actin remodeling and spindle positioning during early mitosis.

    PubMed

    Andrieu, Guillaume; Quaranta, Muriel; Leprince, Corinne; Cuvillier, Olivier; Hatzoglou, Anastassia

    2014-11-01

    Gem is a small guanosine triphosphate (GTP)-binding protein within the Ras superfamily, involved in the regulation of voltage-gated calcium channel activity and cytoskeleton reorganization. Gem overexpression leads to stress fiber disruption, actin and cell shape remodeling and neurite elongation in interphase cells. In this study, we show that Gem plays a crucial role in the regulation of cortical actin cytoskeleton that undergoes active remodeling during mitosis. Ectopic expression of Gem leads to cortical actin disruption and spindle mispositioning during metaphase. The regulation of spindle positioning by Gem involves its downstream effector Gmip. Knockdown of Gmip rescued Gem-induced spindle phenotype, although both Gem and Gmip accumulated at the cell cortex. In addition, we implicated RhoA GTPase as an important effector of Gem/Gmip signaling. Inactivation of RhoA by overexpressing dominant-negative mutant prevented normal spindle positioning. Introduction of active RhoA rescued the actin and spindle positioning defects caused by Gem or Gmip overexpression. These findings demonstrate a new role of Gem/Gmip/RhoA signaling in cortical actin regulation during early mitotic stages. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. GTPase regulation: getting aRnd Rock and Rho inhibition.

    PubMed

    Chardin, Pierre

    2003-09-16

    Rnd proteins are atypical members of the Rho small G protein family that inhibit the formation of actomyosin contractile fibers via activation of RhoGAPs and inhibition of a Rho effector, the Ser/Thr kinase Rock. These mechanisms might be used to fine-tune Rho GTPase inhibition locally at sites where particular actin structures need to be made.

  18. LINGO-1 interacts with WNK1 to regulate nogo-induced inhibition of neurite extension.

    PubMed

    Zhang, Zhaohuan; Xu, Xiaohui; Zhang, Yong; Zhou, Jianfeng; Yu, Zhongwang; He, Cheng

    2009-06-05

    LINGO-1 is a component of the tripartite receptor complexes, which act as a convergent mediator of the intracellular signaling in response to myelin-associated inhibitors and lead to collapse of growth cone and inhibition of neurite extension. Although the function of LINGO-1 has been intensively studied, its downstream signaling remains elusive. In the present study, a novel interaction between LINGO-1 and a serine-threonine kinase WNK1 was identified by yeast two-hybrid screen. The interaction was further validated by fluorescence resonance energy transfer and co-immunoprecipitation, and this interaction was intensified by Nogo66 treatment. Morphological evidences showed that WNK1 and LINGO-1 were co-localized in cortical neurons. Furthermore, either suppressing WNK1 expression by RNA interference or overexpression of WNK1-(123-510) attenuated Nogo66-induced inhibition of neurite extension and inhibited the activation of RhoA. Moreover, WNK1 was identified to interact with Rho-GDI1, and this interaction was attenuated by Nogo66 treatment, further indicating its regulatory effect on RhoA activation. Taken together, our results suggest that WNK1 is a novel signaling molecule involved in regulation of LINGO-1 mediated inhibition of neurite extension.

  19. Advantages and limitations of cell-based assays for GTPase activation and regulation.

    PubMed

    Casanova, James E

    2012-07-01

    Small GTPases of the Ras superfamily are important regulators of many cellular functions, including signal transduction, cytoskeleton assembly, metabolic regulation, organelle biogenesis and intracellular transport. Most GTPases act as binary switches, being "on" in the active, GTP-bound state and "off" in the inactive, GDP-bound state, and cycle between the two states with the aid of accessory proteins, referred to as guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). This review will focus on the ADP-ribosylation factors (Arfs), a family of G-proteins that are essential regulators of carrier vesicle formation during vesicular transport. As for most other GTPases, the Arfs themselves are vastly outnumbered by the proteins that regulate them, and a major focus in the field has been to define the functional relationships between individual GEFs and GAPs and their substrates at the cellular level. Over the years, a variety of methods have been developed to measure GTPase activation in vitro and in vivo. In vitro analysis will be discussed in the accompanying article by Randazzo and colleagues. Here we will focus on cell- and tissue-based assays and their advantages/disadvantages relative to cell-free systems.

  20. Molecular imaging analysis of Rab GTPases in the regulation of phagocytosis and macropinocytosis.

    PubMed

    Egami, Youhei

    2016-01-01

    Phagocytosis and macropinocytosis, actin-dependent endocytic pathways that mediate the uptake of particles and fluid, respectively, are fundamental routes that enable cells to sample their environment, eliminate pathogens and endogenous cell debris, and contribute to immunoprotection and the maintenance of tissue homeostasis. These processes require a well-organized network of actin cytoskeletal remodeling and membrane transport, which are spatiotemporally regulated by small GTPases. The Rab family of small GTPases, which functions as molecular switches, plays central roles in intracellular membrane trafficking. Although multiple Rab proteins are localized to phagosomes and regulate phagosome maturation, the precise role of each Rab family member in Fcγ receptor (FcγR)-mediated phagocytosis is not fully characterized. Recently, we revealed that Rab35 and Rab20 are important regulators of phagosome formation and maturation, respectively. This review summarizes the functional implication of these Rab GTPases during FcγR-mediated phagocytosis in macrophages. Currently, compared with our knowledge of the regulatory mechanisms of receptor-mediated endocytosis including phagocytosis, the molecular components and signaling cascades of macropinocytosis remain poorly elucidated. Our time-lapse imaging showed that several Rab GTPases are sequentially recruited to the membrane of macropinosomes. Based on our observations, these findings regarding the spatiotemporal localization of Rab GTPases during macropinocytosis are introduced.

  1. Sar1 GTPase Activity Is Regulated by Membrane Curvature.

    PubMed

    Hanna, Michael G; Mela, Ioanna; Wang, Lei; Henderson, Robert M; Chapman, Edwin R; Edwardson, J Michael; Audhya, Anjon

    2016-01-15

    The majority of biosynthetic secretory proteins initiate their journey through the endomembrane system from specific subdomains of the endoplasmic reticulum. At these locations, coated transport carriers are generated, with the Sar1 GTPase playing a critical role in membrane bending, recruitment of coat components, and nascent vesicle formation. How these events are appropriately coordinated remains poorly understood. Here, we demonstrate that Sar1 acts as the curvature-sensing component of the COPII coat complex and highlight the ability of Sar1 to bind more avidly to membranes of high curvature. Additionally, using an atomic force microscopy-based approach, we further show that the intrinsic GTPase activity of Sar1 is necessary for remodeling lipid bilayers. Consistent with this idea, Sar1-mediated membrane remodeling is dramatically accelerated in the presence of its guanine nucleotide-activating protein (GAP), Sec23-Sec24, and blocked upon addition of guanosine-5'-[(β,γ)-imido]triphosphate, a poorly hydrolysable analog of GTP. Our results also indicate that Sar1 GTPase activity is stimulated by membranes that exhibit elevated curvature, potentially enabling Sar1 membrane scission activity to be spatially restricted to highly bent membranes that are characteristic of a bud neck. Taken together, our data support a stepwise model in which the amino-terminal amphipathic helix of GTP-bound Sar1 stably penetrates the endoplasmic reticulum membrane, promoting local membrane deformation. As membrane bending increases, Sar1 membrane binding is elevated, ultimately culminating in GTP hydrolysis, which may destabilize the bilayer sufficiently to facilitate membrane fission. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Regulation of pancreatic cancer cell migration and invasion by RhoC GTPase and Caveolin-1

    PubMed Central

    Lin, Min; DiVito, Melinda M; Merajver, Sofia D; Boyanapalli, Madanamohan; van Golen, Kenneth L

    2005-01-01

    Background In the current study we investigated the role of caveolin-1 (cav-1) in pancreatic adenocarcinoma (PC) cell migration and invasion; initial steps in metastasis. Cav-1 is the major structural protein in caveolae; small Ω-shaped invaginations within the plasma membrane. Caveolae are involved in signal transduction, wherein cav-1 acts as a scaffolding protein to organize multiple molecular complexes regulating a variety of cellular events. Recent evidence suggests a role for cav-1 in promoting cancer cell migration, invasion and metastasis; however, the molecular mechanisms have not been described. The small monomeric GTPases are among several molecules which associate with cav-1. Classically, the Rho GTPases control actin cytoskeletal reorganization during cell migration and invasion. RhoC GTPase is overexpressed in aggressive cancers that metastasize and is the predominant GTPase in PC. Like several GTPases, RhoC contains a putative cav-1 binding motif. Results Analysis of 10 PC cell lines revealed high levels of cav-1 expression in lines derived from primary tumors and low expression in those derived from metastases. Comparison of the BxPC-3 (derived from a primary tumor) and HPAF-II (derived from a metastasis) demonstrates a reciprocal relationship between cav-1 expression and p42/p44 Erk activation with PC cell migration, invasion, RhoC GTPase and p38 MAPK activation. Furthermore, inhibition of RhoC or p38 activity in HPAF-II cells leads to partial restoration of cav-1 expression. Conclusion Cav-1 expression inhibits RhoC GTPase activation and subsequent activation of the p38 MAPK pathway in primary PC cells thus restricting migration and invasion. In contrast, loss of cav-1 expression leads to RhoC-mediated migration and invasion in metastatic PC cells. PMID:15969750

  3. RhoGTPases, actomyosin signaling and regulation of the epithelial Apical Junctional Complex.

    PubMed

    Quiros, Miguel; Nusrat, Asma

    2014-12-01

    Epithelial cells form regulated and selective barriers between distinct tissue compartments. The Apical Junctional Complex (AJC) consisting of the tight junction (TJ) and adherens junction (AJ) control epithelial homeostasis, paracellular permeability and barrier properties. The AJC is composed of mutliprotein complexes consisting of transmembrane proteins that affiliate with an underlying perijunctional F-actin myosin ring through cytoplasmic scaffold proteins. AJC protein associations with the apical actin-myosin cytoskeleton are tightly controlled by a number of signaling proteins including the Rho family of GTPases that orchestrate junctional biology, epithelial homeostasis and barrier function. This review highlights the vital relationship of Rho GTPases and AJCs in controlling the epithelial barrier. The pathophysiologic relationship of Rho GTPases, AJC, apical actomyosin cytoskeleton and epithelial barrier function is discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Sonic Hedgehog Promotes Neurite Outgrowth of Primary Cortical Neurons Through Up-Regulating BDNF Expression.

    PubMed

    He, Weiliang; Cui, Lili; Zhang, Cong; Zhang, Xiangjian; He, Junna; Xie, Yanzhao

    2016-04-01

    Sonic hedgehog (Shh), a secreted glycoprotein factor, can activate the Shh pathway, which has been implicated in neuronal polarization involving neurite outgrowth. However, little evidence is available about the effect of Shh on neurite outgrowth in primary cortical neurons and its potential mechanism. Here, we revealed that Shh increased neurite outgrowth in primary cortical neurons, while the Shh pathway inhibitor (cyclopamine, CPM) partially suppressed Shh-induced neurite outgrowth. Similar results were found for the expressions of Shh and Patched genes in Shh-induced primary cortical neurons. Moreover, Shh increased the levels of brain-derived neurotrophic factor (BDNF) not only in lysates and in culture medium but also in the longest neurites of primary cortical neurons, which was partially blocked by CPM. In addition, blocking of BDNF action suppressed Shh-mediated neurite elongation in primary cortical neurons. In conclusion, these findings suggest that Shh promotes neurite outgrowth in primary cortical neurons at least partially through modulating BDNF expression.

  5. μ2-Dependent endocytosis of N-cadherin is regulated by β-catenin to facilitate neurite outgrowth.

    PubMed

    Chen, Yi-Ting; Tai, Chin-Yin

    2017-02-22

    Circuit formation in the brain requires neurite outgrowth throughout development to establish synaptic contacts with target cells. Active endocytosis of several adhesion molecules facilitates the dynamic exchange of these molecules at the surface and promotes neurite outgrowth in developing neurons. The endocytosis of N-cadherin, a calcium-dependent adhesion molecule, has been implicated in the regulation of neurite outgrowth, but the mechanism remains unclear. Here, we identified that a fraction of N-cadherin internalizes through clathrin-mediated endocytosis (CME). Two tyrosine-based motifs in the cytoplasmic domain of N-cadherin recognized by the μ2 subunit of the AP-2 adaptor complex are responsible for CME of N-cadherin. Moreover, β-catenin, a core component of the N-cadherin adhesion complex, inhibits N-cadherin endocytosis by masking the 2 tyrosine-based motifs. Removal of β-catenin facilitates μ2 binding to N-cadherin, thereby increasing clathrin-mediated N-cadherin endocytosis and neurite outgrowth without affecting the steady-state level of surface N-cadherin. These results identify and characterize the mechanism controlling N-cadherin endocytosis through β-catenin-regulated μ2 binding to modulate neurite outgrowth.

  6. Rho GTPases

    PubMed Central

    Sadok, Amine; Marshall, Chris J

    2014-01-01

    Since their discovery in the late eighties, the role of Rho GTPases in the regulation of cell migration has been extensively studied and has mainly focused on the hallmark family members Rho, Rac, and Cdc42. Recent technological advances in cell biology, such as Rho-family GTPase activity biosensors, studies in 3D, and unbiased RNAi-based screens, have revealed an increasingly complex role for Rho GTPases during cell migration, with many inter-connected functions and a strong dependency on the physical and chemical properties of the surrounding environment. This review aims to give an overview of recent studies on the role of Rho-family GTPase members in the modulation of cell migration in different environments, and discuss future directions. PMID:24978113

  7. Reelin modulates cytoskeletal organization by regulating Rho GTPases

    PubMed Central

    2011-01-01

    The correct positioning of postmitotic neurons in the developing neocortex and other laminated brain structures requires the activation of a Reelin-lipoprotein receptor-Dab1 signaling cascade. The large glycoprotein Reelin is secreted by Cajal-Retzius pioneer neurons and bound by the apolipoprotein E receptor family members Apoer2 and Vldl receptor on responsive neurons and radial glia. This leads to the tyrosine phosphorylation of the cytoplasmic protein Disabled-1 (Dab1) by non-receptor tyrosine kinases of the Src family. Various signaling pathways downstream of Dab1 connect Reelin to the actin and microtubule cytoskeleton. Despite this knowledge, a comprehensive view linking the different cell-biological and biochemical actions of Reelin to its diverse physiological roles not only during neurodevelopment but also in the maintenance and functioning of the adult brain is still lacking. In this review, we discuss our finding that Reelin activates Rho GTPases in neurons in the light of other recent studies, which demonstrate a role of Reelin in Golgi organization, and suggest additional roles of Cdc42 activation by Reelin in radial glial cells of the developing cortex. PMID:21980553

  8. Analysis of a minimal Rho-GTPase circuit regulating cell shape

    NASA Astrophysics Data System (ADS)

    Holmes, William R.; Edelstein-Keshet, Leah

    2016-08-01

    Networks of Rho-family GTPases regulate eukaryotic cell polarization and motility by controlling assembly and contraction of the cytoskeleton. The mutually inhibitory Rac-Rho circuit is emerging as a central, regulatory hub that can affect the shape and motility phenotype of eukaryotic cells. Recent experimental manipulation of the amounts of Rac and Rho or their regulators (guanine nucleotide-exchange factors, GTPase-activating proteins, guanine nucleotide dissociation inhibitors) have been shown to bias the prevalence of these different states and promote transitions between them. Here we show that part of this data can be understood in terms of inherent Rac-Rho mutually inhibitory dynamics. We analyze a spatio-temporal mathematical model of Rac-Rho dynamics to produce a detailed set of predictions of how parameters such as GTPase rates of activation and total amounts affect cell decisions (such as Rho-dominated contraction, Rac-dominated spreading, and spatially segregated Rac-Rho polarization). We find that in some parameter regimes, a cell can take on any of these three fates depending on its environment or stimuli. We also predict how experimental manipulations (corresponding to parameter variations) can affect cell shapes observed. Our methods are based on local perturbation analysis (a kind of nonlinear stability analysis), and an approximation of nonlinear feedback by sharp switches. We compare the Rac-Rho model to an even simpler single-GTPase (‘wave-pinning’) model and demonstrate that the overall behavior is inherent to GTPase properties, rather than stemming solely from network topology.

  9. Regulation of Rap2A by the Ubiquitin Ligase Nedd4-1 Controls Neurite Development

    PubMed Central

    Kawabe, Hiroshi; Neeb, Antje; Dimova, Kalina; Young, Samuel M.; Takeda, Michiko; Katsurabayashi, Shutaro; Mitkovski, Miso; Malakhova, Oxana A.; Zhang, Dong-Er; Umikawa, Masato; Kariya, Ken-ichi; Goebbels, Sandra; Nave, Klaus-Armin; Rosenmund, Christian; Jahn, Olaf; Rhee, JeongSeop; Brose, Nils

    2010-01-01

    Summary Nedd4-1 is a ‘Neuronal Precursor Cell Expressed and Developmentally Downregulated Protein’ and among the most abundant E3 ubiquitin ligases in mammalian neurons. In analyses of conventional and conditional Nedd4-1 deficient mice, we found that Nedd4-1 plays a critical role in dendrite formation. Nedd4-1, the serine/threonine kinase TNIK, and Rap2A form a complex that controls Nedd4-1-mediated ubiquitination of Rap2A. Ubiquitination by Nedd4-1 inhibits Rap2A function, which reduces the activity of Rap2 effector kinases of the TNIK family and promotes dendrite growth. We conclude that a Nedd4-1/Rap2A/TNIK signaling pathway regulates neurite growth and arborization in mammalian neurons. PMID:20159449

  10. Serotonin (5-HT) regulates neurite outgrowth through 5-HT1A and 5-HT7 receptors in cultured hippocampal neurons.

    PubMed

    Rojas, Paulina S; Neira, David; Muñoz, Mauricio; Lavandero, Sergio; Fiedler, Jenny L

    2014-08-01

    Serotonin (5-HT) production and expression of 5-HT receptors (5-HTRs) occur early during prenatal development. Recent evidence suggests that, in addition to its classical role as a neurotransmitter, 5-HT regulates neuronal connectivity during mammalian development by modulating cell migration and neuronal cytoarchitecture. Given the variety of 5-HTRs, researchers have had difficulty clarifying the specific role of each receptor subtype in brain development. Signalling mediated by the G-protein-coupled 5-HT1A R and 5-HT7 R, however, has been associated with neuronal plasticity. Thus, we hypothesized that 5-HT promotes neurite outgrowth through 5-HT1A R and 5-HT7 R. The involvement of 5-HT1A R and 5-HT7 R in the morphology of rat hippocampal neurons was evaluated by treating primary cultures at 2 days in vitro with 5-HT and specific antagonists for 5-HT1A R and 5-HT7 R (WAY-100635 and SB269970, respectively). The stimulation of hippocampal neurons with 100 nM 5-HT for 24 hr produced no effect on either the number or the length of primary neurites. Nonetheless, after 5HT7 R was blocked, the addition of 5-HT increased the number of primary neurites, suggesting that 5HT7 R could inhibit neuritogenesis. In contrast, 5-HT induced secondary neurite outgrowth, an effect inhibited by 1 μM WAY-100635 or SB269970. These results suggest that both serotonergic receptors participate in secondary neurite outgrowth. We conclude that 5-HT1A R and 5-HT7 R regulate neuronal morphology in primary hippocampal cultures by promoting secondary neurite outgrowth.

  11. SNX9 promotes metastasis by enhancing cancer cell invasion via differential regulation of RhoGTPases

    PubMed Central

    Bendris, Nawal; Williams, Karla C.; Reis, Carlos R.; Welf, Erik S.; Chen, Ping-Hung; Lemmers, Bénédicte; Hahne, Michael; Leong, Hon Sing; Schmid, Sandra L.

    2016-01-01

    Despite current advances in cancer research, metastasis remains the leading factor in cancer-related deaths. Here we identify sorting nexin 9 (SNX9) as a new regulator of breast cancer metastasis. We detect an increase in SNX9 expression in human breast cancer metastases compared with primary tumors and demonstrate that SNX9 expression in MDA-MB-231 breast cancer cells is necessary to maintain their ability to metastasize in a chick embryo model. Conversely, SNX9 knockdown impairs this process. In vitro studies using several cancer cell lines derived from a variety of human tumors reveal a role for SNX9 in cell invasion and identify mechanisms responsible for this novel function. We show that SNX9 controls the activation of RhoA and Cdc42 GTPases and also regulates cell motility via the modulation of well-known molecules involved in metastasis, namely RhoA-ROCK and N-WASP. In addition, we find that SNX9 is required for RhoGTPase-dependent, clathrin-independent endocytosis, and in this capacity can functionally substitute to the bona fide Rho GAP, GTPase regulator associated with focal adhesion kinase (GRAF1). Taken together, our data establish novel roles for SNX9 as a multifunctional protein scaffold that regulates, and potentially coordinates, several cellular processes that together can enhance cancer cell metastasis. PMID:26960793

  12. The small GTPase RhoH is an atypical regulator of haematopoietic cells

    PubMed Central

    Fueller, Florian; Kubatzky, Katharina F

    2008-01-01

    Rho GTPases are a distinct subfamily of the superfamily of Ras GTPases. The best-characterised members are RhoA, Rac and Cdc42 that regulate many diverse actions such as actin cytoskeleton reorganisation, adhesion, motility as well as cell proliferation, differentiation and gene transcription. Among the 20 members of that family, only Rac2 and RhoH show an expression restricted to the haematopoietic lineage. RhoH was first discovered in 1995 as a fusion transcript with the transcriptional repressor LAZ3/BCL6. It was therefore initially named translation three four (TTF) but later on renamed RhoH due to its close relationship to the Ras/Rho family of GTPases. Since then, RhoH has been implicated in human cancer as the gene is subject to somatic hypermutation and by the detection of RHOH as a translocation partner for LAZ3/BCL6 or other genes in human lymphomas. Underexpression of RhoH is found in hairy cell leukaemia and acute myeloid leukaemia. Some of the amino acids that are crucial for GTPase activity are mutated in RhoH so that the protein is a GTPase-deficient, so-called atypical Rho GTPase. Therefore other mechanisms of regulating RhoH activity have been described. These include regulation at the mRNA level and tyrosine phosphorylation of the protein's unique ITAM-like motif. The C-terminal CaaX box of RhoH is mainly a target for farnesyl-transferase but can also be modified by geranylgeranyl-transferase. Isoprenylation of RhoH and changes in subcellular localisation may be an additional factor to fine-tune signalling. Little is currently known about its signalling, regulation or interaction partners. Recent studies have shown that RhoH negatively influences the proliferation and homing of murine haematopoietic progenitor cells, presumably by acting as an antagonist for Rac1. In leukocytes, RhoH is needed to keep the cells in a resting, non-adhesive state, but the exact mechanism has yet to be elucidated. RhoH has also been implicated as a regulatory molecule

  13. Tiam1 as a signaling mediator of nerve growth factor-dependent neurite outgrowth.

    PubMed

    Shirazi Fard, Shahrzad; Kele, Julianna; Vilar, Marçal; Paratcha, Gustavo; Ledda, Fernanda

    2010-03-19

    Nerve Growth Factor (NGF)-induced neuronal differentiation requires the activation of members of the Rho family of small GTPases. However, the molecular mechanisms through which NGF regulates cytoskeletal changes and neurite outgrowth are not totally understood. In this work, we identify the Rac1-specific guanine exchange factor (GEF) Tiam1 as a novel mediator of NGF/TrkA-dependent neurite elongation. In particular, we report that knockdown of Tiam1 causes a significant reduction in Rac1 activity and neurite outgrowth induced by NGF. Physical interaction between Tiam1 and active Ras (Ras-GTP), but not tyrosine phosphorylation of Tiam1, plays a central role in Rac1 activation by NGF. In addition, our findings indicate that Ras is required to associate Tiam1 with Rac1 and promote Rac1 activation upon NGF stimulation. Taken together, these findings define a novel molecular mechanism through which Tiam1 mediates TrkA signaling and neurite outgrowth induced by NGF.

  14. The conserved GTPase Gem1 regulates endoplasmic reticulum–mitochondria connections

    PubMed Central

    Kornmann, Benoît; Osman, Christof; Walter, Peter

    2011-01-01

    Mitochondria are connected to the endoplasmic reticulum (ER) through specialized protein complexes. We recently identified the ER–mitochondria encounter structure (ERMES) tethering complex, which plays a role in phospholipid exchange between the two organelles. ERMES also has been implicated in the coordination of mitochondrial protein import, mitochondrial DNA replication, and mitochondrial dynamics, suggesting that these interorganelle contact sites play central regulatory roles in coordinating various aspects of the physiology of the two organelles. Here we purified ERMES complexes and identified the Ca2+-binding Miro GTPase Gem1 as an integral component of ERMES. Gem1 regulates the number and size of the ERMES complexes. In vivo, association of Gem1 to ERMES required the first of Gem1’s two GTPase domains and the first of its two functional Ca2+-binding domains. In contrast, Gem1’s second GTPase domain was required for proper ERMES function in phospholipid exchange. Our results suggest that ERMES is not a passive conduit for interorganellar lipid exchange, but that it can be regulated in response to physiological needs. Furthermore, we provide evidence that the metazoan Gem1 ortholog Miro-1 localizes to sites of ER–mitochondrial contact, suggesting that some of the features ascribed to Gem1 may be evolutionarily conserved. PMID:21825164

  15. Regulation of cerebral cortex development by Rho GTPases: insights from in vivo studies

    PubMed Central

    Azzarelli, Roberta; Kerloch, Thomas; Pacary, Emilie

    2015-01-01

    The cerebral cortex is the site of higher human cognitive and motor functions. Histologically, it is organized into six horizontal layers, each containing unique populations of molecularly and functionally distinct excitatory projection neurons and inhibitory interneurons. The stereotyped cellular distribution of cortical neurons is crucial for the formation of functional neural circuits and it is predominantly established during embryonic development. Cortical neuron development is a multiphasic process characterized by sequential steps of neural progenitor proliferation, cell cycle exit, neuroblast migration and neuronal differentiation. This series of events requires an extensive and dynamic remodeling of the cell cytoskeleton at each step of the process. As major regulators of the cytoskeleton, the family of small Rho GTPases has been shown to play essential functions in cerebral cortex development. Here we review in vivo findings that support the contribution of Rho GTPases to cortical projection neuron development and we address their involvement in the etiology of cerebral cortex malformations. PMID:25610373

  16. Phosphorylation Provides a Negative Mode of Regulation for the Yeast Rab GTPase Sec4p

    PubMed Central

    Heger, Christopher D.; Wrann, Christiane D.; Collins, Ruth N.

    2011-01-01

    The Rab family of Ras-related GTPases are part of a complex signaling circuitry in eukaryotic cells, yet we understand little about the mechanisms that underlie Rab protein participation in such signal transduction networks, or how these networks are integrated at the physiological level. Reversible protein phosphorylation is widely used by cells as a signaling mechanism. Several phospho-Rabs have been identified, however the functional consequences of the modification appear to be diverse and need to be evaluated on an individual basis. In this study we demonstrate a role for phosphorylation as a negative regulatory event for the action of the yeast Rab GTPase Sec4p in regulating polarized growth. Our data suggest that the phosphorylation of the Rab Sec4p prevents interactions with its effector, the exocyst component Sec15p, and that the inhibition may be relieved by a PP2A phosphatase complex containing the regulatory subunit Cdc55p. PMID:21931684

  17. Regulation of podocalyxin trafficking by Rab small GTPases in epithelial cells

    PubMed Central

    Mrozowska, Paulina S.; Fukuda, Mitsunori

    2016-01-01

    ABSTRACT The characteristic feature of polarity establishment in MDCK II cells is transcytosis of apical glycoprotein podocalyxin (PCX) from the outer plasma membrane to the newly formed apical domain. This transcytotic event consists of multiple steps, including internalization from the plasma membrane, transport through early endosomes and Rab11-positive recycling endosomes, and delivery to the apical membrane. These steps are known to be tightly coordinated by Rab small GTPases, which act as molecular switches cycling between active GTP-bound and inactive GDP-bound states. However, our knowledge regarding which sets of Rabs regulate particular steps of PCX trafficking was rather limited. Recently, we have performed a comprehensive analysis of Rab GTPase engagement in the transcytotic pathway of PCX during polarity establishment in 2-dimensional (2D) and 3-dimensional (3D) MDCK II cell cultures. In this Commentary we summarize our findings and set them in the context of previous reports. PMID:27463697

  18. Interactions between Rab and Arf GTPases regulate endosomal phosphatidylinositol-4,5-bisphosphate during endocytic recycling

    PubMed Central

    Shi, Anbing; Grant, Barth D.

    2013-01-01

    After endocytosis, a selective endocytic recycling process returns many endocytosed molecules back to the plasma membrane. The RAB-10/Rab10 GTPase is known to be a key recycling regulator for specific cargo molecules. New evidence, focused on C. elegans RAB-10 in polarized epithelia, points to a key role of RAB-10 in the regulation of endosomal phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) levels. In turn, PI(4,5)P2 levels strongly influence the recruitment of many peripheral membrane proteins, including those important for vesicle budding through their membrane bending activities. Part of the effect of RAB-10 on endosomal PI(4,5)P2 is through its newly identified effector CNT-1, a predicted GTPase activating protein (GAP) of the small GTPase ARF-6/Arf6. In mammals PI(4,5)P2 generating enzymes are known Arf6 effectors. In C. elegans we found that RAB-10, CNT-1 and ARF-6 are present on the same endosomes, that RAB-10 recruits CNT-1 to endosomes, and that loss of CNT-1 or RAB-10 leads to overaccumulation of endosomal PI(4,5)P2, presumably via hyperactivation of endosomal ARF-6. In turn this leads to over-recruitment of PI(4,5)P2-dependent membrane-bending proteins RME-1/Ehd and SDPN-1/Syndapin/PACSIN. Conversely, in arf-6 mutants, endosomal PI(4,5)P2 levels were reduced and endosomal recruitment of RME-1 and SDPN-1 failed. This work makes an unexpected link between distinct classes of small GTPases that control endocytic recycling, and provides insight into how this interaction affects endosome function at the level of lipid phosphorylation. PMID:23392104

  19. Interactions between Rab and Arf GTPases regulate endosomal phosphatidylinositol-4,5-bisphosphate during endocytic recycling.

    PubMed

    Shi, Anbing; Grant, Barth D

    2013-01-01

    After endocytosis, a selective endocytic recycling process returns many endocytosed molecules back to the plasma membrane. The RAB-10/Rab10 GTPase is known to be a key recycling regulator for specific cargo molecules. New evidence, focused on C. elegans RAB-10 in polarized epithelia, points to a key role of RAB-10 in the regulation of endosomal phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) levels. In turn, PI(4,5)P2 levels strongly influence the recruitment of many peripheral membrane proteins, including those important for vesicle budding through their membrane bending activities. Part of the effect of RAB-10 on endosomal PI(4,5)P2 is through its newly identified effector CNT-1, a predicted GTPase activating protein (GAP) of the small GTPase ARF-6/Arf6. In mammals PI(4,5)P2 generating enzymes are known Arf6 effectors. In C. elegans we found that RAB-10, CNT-1 and ARF-6 are present on the same endosomes, that RAB-10 recruits CNT-1 to endosomes, and that loss of CNT-1 or RAB-10 leads to overaccumulation of endosomal PI(4,5)P2, presumably via hyperactivation of endosomal ARF-6. In turn this leads to over-recruitment of PI(4,5)P2-dependent membrane-bending proteins RME-1/Ehd and SDPN-1/Syndapin/PACSIN. Conversely, in arf-6 mutants, endosomal PI(4,5)P2 levels were reduced and endosomal recruitment of RME-1 and SDPN-1 failed. This work makes an unexpected link between distinct classes of small GTPases that control endocytic recycling, and provides insight into how this interaction affects endosome function at the level of lipid phosphorylation.

  20. PAK–PIX interactions regulate adhesion dynamics and membrane protrusion to control neurite outgrowth

    PubMed Central

    Santiago-Medina, Miguel; Gregus, Kelly A.; Gomez, Timothy M.

    2013-01-01

    Summary The roles of P21-activated kinase (PAK) in the regulation of axon outgrowth downstream of extracellular matrix (ECM) proteins are poorly understood. Here we show that PAK1–3 and PIX are expressed in the developing spinal cord and differentially localize to point contacts and filopodial tips within motile growth cones. Using a specific interfering peptide called PAK18, we found that axon outgrowth is robustly stimulated on laminin by partial inhibition of PAK–PIX interactions and PAK function, whereas complete inhibition of PAK function stalls axon outgrowth. Furthermore, modest inhibition of PAK–PIX stimulates the assembly and turnover of growth cone point contacts, whereas strong inhibition over-stabilizes adhesions. Point mutations within PAK confirm the importance of PIX binding. Together our data suggest that regulation of PAK–PIX interactions in growth cones controls neurite outgrowth by influencing the activity of several important mediators of actin filament polymerization and retrograde flow, as well as integrin-dependent adhesion to laminin. PMID:23321640

  1. PAK-PIX interactions regulate adhesion dynamics and membrane protrusion to control neurite outgrowth.

    PubMed

    Santiago-Medina, Miguel; Gregus, Kelly A; Gomez, Timothy M

    2013-03-01

    The roles of P21-activated kinase (PAK) in the regulation of axon outgrowth downstream of extracellular matrix (ECM) proteins are poorly understood. Here we show that PAK1-3 and PIX are expressed in the developing spinal cord and differentially localize to point contacts and filopodial tips within motile growth cones. Using a specific interfering peptide called PAK18, we found that axon outgrowth is robustly stimulated on laminin by partial inhibition of PAK-PIX interactions and PAK function, whereas complete inhibition of PAK function stalls axon outgrowth. Furthermore, modest inhibition of PAK-PIX stimulates the assembly and turnover of growth cone point contacts, whereas strong inhibition over-stabilizes adhesions. Point mutations within PAK confirm the importance of PIX binding. Together our data suggest that regulation of PAK-PIX interactions in growth cones controls neurite outgrowth by influencing the activity of several important mediators of actin filament polymerization and retrograde flow, as well as integrin-dependent adhesion to laminin.

  2. Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination

    PubMed Central

    Tan, Yunhao; Arnold, Randy J.; Luo, Zhao-Qing

    2011-01-01

    Effectors delivered into host cells by the Legionella pneumophila Dot/Icm type IV transporter are essential for the biogenesis of the specialized vacuole that permits its intracellular growth. The biochemical function of most of these effectors is unknown, making it difficult to assign their roles in the establishment of successful infection. We found that several yeast genes involved in membrane trafficking, including the small GTPase Ypt1, strongly suppress the cytotoxicity of Lpg0695(AnkX), a protein known to interfere severely with host vesicle trafficking when overexpressed. Mass spectrometry analysis of Rab1 purified from a yeast strain inducibly expressing AnkX revealed that this small GTPase is modified posttranslationally at Ser76 by a phosphorylcholine moiety. Using cytidine diphosphate-choline as the donor for phosphorylcholine, AnkX catalyzes the transfer of phosphorylcholine to Rab1 in a filamentation-induced by cAMP(Fic) domain-dependent manner. Further, we found that the activity of AnkX is regulated by the Dot/Icm substrate Lpg0696(Lem3), which functions as a dephosphorylcholinase to reverse AnkX-mediated modification on Rab1. Phosphorylcholination interfered with Rab1 activity by making it less accessible to the bacterial GTPase activation protein LepB; this interference can be alleviated fully by Lem3. Our results reveal reversible phosphorylcholination as a mechanism for balanced modulation of host cellular processes by a bacterial pathogen. PMID:22158903

  3. Conserved regulators of Rag GTPases orchestrate amino acid-dependent TORC1 signaling

    PubMed Central

    Powis, Katie; De Virgilio, Claudio

    2016-01-01

    The highly conserved target of rapamycin complex 1 (TORC1) is the central component of a signaling network that couples a vast range of internal and external stimuli to cell growth, proliferation and metabolism. TORC1 deregulation is associated with a number of human pathologies, including many cancers and metabolic disorders, underscoring its importance in cellular and organismal growth control. The activity of TORC1 is modulated by multiple inputs; however, the presence of amino acids is a stimulus that is essential for its activation. Amino acid sufficiency is communicated to TORC1 via the highly conserved family of Rag GTPases, which assemble as heterodimeric complexes on lysosomal/vacuolar membranes and are regulated by their guanine nucleotide loading status. Studies in yeast, fly and mammalian model systems have revealed a multitude of conserved Rag GTPase modulators, which have greatly expanded our understanding of amino acid sensing by TORC1. Here we review the major known modulators of the Rag GTPases, focusing on recent mechanistic insights that highlight the evolutionary conservation and divergence of amino acid signaling to TORC1. PMID:27462445

  4. Rab22 controls NGF signaling and neurite outgrowth in PC12 cells.

    PubMed

    Wang, Liang; Liang, Zhimin; Li, Guangpu

    2011-10-01

    Rab22 is a small GTPase that is localized on early endosomes and regulates early endosomal sorting. This study reports that Rab22 promotes nerve growth factor (NGF) signaling-dependent neurite outgrowth and gene expression in PC12 cells by sorting NGF and the activated/phosphorylated receptor (pTrkA) into signaling endosomes to sustain signal transduction in the cell. NGF binding induces the endocytosis of pTrkA into Rab22-containing endosomes. Knockdown of Rab22 via small hairpin RNA (shRNA) blocks NGF-induced pTrkA endocytosis into the endosomes and gene expression (VGF) and neurite outgrowth. Overexpression of human Rab22 can rescue the inhibitory effects of the Rab22 shRNA, suggesting a specific Rab22 function in NGF signal transduction, rather than off-target effects. Furthermore, the Rab22 effector, Rabex-5, is necessary for NGF-induced neurite outgrowth and gene expression, as evidenced by the inhibitory effect of shRNA-mediated knockdown of Rabex-5. Disruption of the Rab22-Rabex-5 interaction via overexpression of the Rab22-binding domain of Rabex-5 in the cell also blocks NGF-induced neurite outgrowth, suggesting a critical role of Rab22-Rabex-5 interaction in the biogenesis of NGF-signaling endosomes to sustain the signal for neurite outgrowth. These data provide the first evidence for an early endosomal Rab GTPase as a positive regulator of NGF signal transduction and cell differentiation.

  5. A novel role for RhoA GTPase in the regulation of airway smooth muscle contraction.

    PubMed

    Zhang, Wenwu; Huang, Youliang; Wu, Yidi; Gunst, Susan J

    2015-02-01

    Recent studies have demonstrated a novel molecular mechanism for the regulation of airway smooth muscle (ASM) contraction by RhoA GTPase. In ASM tissues, both myosin light chain (MLC) phosphorylation and actin polymerization are required for active tension generation. RhoA inactivation dramatically suppresses agonist-induced tension development and completely inhibits agonist-induced actin polymerization, but only slightly reduces MLC phosphorylation. The inhibition of MLC phosphatase does not reverse the effects of RhoA inactivation on contraction or actin polymerization. Thus, RhoA regulates ASM contraction through its effects on actin polymerization rather than MLC phosphorylation. Contractile stimulation of ASM induces the recruitment and assembly of paxillin, vinculin, and focal adhesion kinase (FAK) into membrane adhesion complexes (adhesomes) that regulate actin polymerization by catalyzing the activation of cdc42 GTPase by the G-protein-coupled receptor kinase-interacting target (GIT) - p21-activated kinase (PAK) - PAK-interacting exchange factor (PIX) complex. Cdc42 is a necessary and specific activator of the actin filament nucleation activator, N-WASp. The recruitment and activation of paxillin, vinculin, and FAK is prevented by RhoA inactivation, thus preventing cdc42 and N-WASp activation. We conclude that RhoA regulates ASM contraction by catalyzing the assembly and activation of membrane adhesome signaling modules that regulate actin polymerization, and that the RhoA-mediated assembly of adhesome complexes is a fundamental step in the signal transduction process in response to a contractile agonist.

  6. MARK2 Rescues Nogo-66-Induced Inhibition of Neurite Outgrowth via Regulating Microtubule-Associated Proteins in Neurons In Vitro.

    PubMed

    Zuo, Yu-Chao; Xiong, Nan-Xiang; Shen, Jian-Ying; Yu, Hua; Huang, Yi-Zhi; Zhao, Hong-Yang

    2016-11-01

    The ability of neurons in the adult mammalian central nervous system (CNS) to regenerate after injury is limited by inhibitors in CNS myelin. Nogo-66 is the most important myelin inhibitor but the mechanisms of Nogo-66 inhibition of neurite outgrowth remain poorly understood. Particularly, the relationship between Nogo-66 and microtubule-affinity regulating kinase 2 (MARK2) has not been examined. This study investigated the role of MARK2 in Nogo-66 inhibition and the function of MARK2 in neurite elongation in neurons in vitro. MARK2 and phosphorylated MARK2 at Ser212 (p-Ser212) alterations in Neuro 2a cells were assessed at different Nogo-66 exposure times; the relationships between MARK2 and microtubule-associated proteins (MAPs) were determined via the overexpression or interference of MARK2. Our study reports that Nogo-66 inhibited the expression of total MARK2 but also reduced Ser212 phosphorylation of MARK2, whereas levels of MAP1-b and tau varied depending on MARK2 overexpression or reduced expression. Furthermore, MARK2 increased the proportion of tyrosinated α-tubulin, thereby disrupting the stability of tubulin, most likely affecting axonal growth. In line with these results, overexpression of MARK2 promoted neurite elongation and therefore is able to rescue the inhibitory effect of Nogo-66 on neurite growth. In conclusion, the intracellular PKB/MARK2/MAPs/α-tubulin pathway appears to be essential for neurite elongation in neurons in vitro. These results suggest a critical role for MARK2 in overcoming Nogo-66-induced inhibition of axon outgrowth in neurons. Pharmacological activators of MARK2 may be applicable to promote successful axonal outgrowth following many types of CNS injuries.

  7. VANG-1 and PRKL-1 Cooperate to Negatively Regulate Neurite Formation in Caenorhabditis elegans

    PubMed Central

    Su, Anna; Imai, Janice H.; Colavita, Antonio

    2011-01-01

    Neuritogenesis is a critical early step in the development and maturation of neurons and neuronal circuits. While extracellular directional cues are known to specify the site and orientation of nascent neurite formation in vivo, little is known about the genetic pathways that block inappropriate neurite emergence in order to maintain proper neuronal polarity. Here we report that the Caenorhabditis elegans orthologues of Van Gogh (vang-1), Prickle (prkl-1), and Dishevelled (dsh-1), core components of planar cell polarity (PCP) signaling, are required in a subset of peripheral motor neurons to restrict neurite emergence to a specific organ axis. In loss-of-function mutants, neurons display supernumerary neurites that extend inappropriately along the orthogonal anteroposterior (A/P) body axis. We show that autonomous and non-autonomous gene activities are required early and persistently to inhibit the formation or consolidation of growth cone protrusions directed away from organ precursor cells. Furthermore, prkl-1 overexpression is sufficient to suppress neurite formation and reorient neuronal polarity in a vang-1– and dsh-1–dependent manner. Our findings suggest a novel role for a PCP–like pathway in maintaining polarized neuronal morphology by inhibiting neuronal responses to extrinsic or intrinsic cues that would otherwise promote extraneous neurite formation. PMID:21912529

  8. Extracellular signals and receptor-like kinases regulating ROP GTPases in plants

    PubMed Central

    Miyawaki, Kaori N.; Yang, Zhenbiao

    2014-01-01

    Rho-like GTPase from plants (ROPs) function as signaling switches that control a wide variety of cellular functions and behaviors including cell morphogenesis, cell division and cell differentiation. The Arabidopsis thaliana genome encodes 11 ROPs that form a distinct single subfamily contrarily to animal or fungal counterparts where multiple subfamilies of Rho GTPases exist. Since Rho proteins bind to their downstream effector proteins only in their GTP-bound “active” state, the activation of ROPs by upstream factor(s) is a critical step in the regulation of ROP signaling. Therefore, it is critical to examine the input signals that lead to the activation of ROPs. Recent findings showed that the plant hormone auxin is an important signal for the activation of ROPs during pavement cell morphogenesis as well as for other developmental processes. In contrast to auxin, another plant hormone, abscisic acid, negatively regulates ROP signaling. Calcium is another emerging signal in the regulation of ROP signaling. Several lines of evidence indicate that plasma membrane localized-receptor like kinases play a critical role in the transmission of the extracellular signals to intracellular ROP signaling pathways. This review focuses on how these signals impinge upon various direct regulators of ROPs to modulate various plant processes. PMID:25295042

  9. Extracellular signals and receptor-like kinases regulating ROP GTPases in plants.

    PubMed

    Miyawaki, Kaori N; Yang, Zhenbiao

    2014-01-01

    Rho-like GTPase from plants (ROPs) function as signaling switches that control a wide variety of cellular functions and behaviors including cell morphogenesis, cell division and cell differentiation. The Arabidopsis thaliana genome encodes 11 ROPs that form a distinct single subfamily contrarily to animal or fungal counterparts where multiple subfamilies of Rho GTPases exist. Since Rho proteins bind to their downstream effector proteins only in their GTP-bound "active" state, the activation of ROPs by upstream factor(s) is a critical step in the regulation of ROP signaling. Therefore, it is critical to examine the input signals that lead to the activation of ROPs. Recent findings showed that the plant hormone auxin is an important signal for the activation of ROPs during pavement cell morphogenesis as well as for other developmental processes. In contrast to auxin, another plant hormone, abscisic acid, negatively regulates ROP signaling. Calcium is another emerging signal in the regulation of ROP signaling. Several lines of evidence indicate that plasma membrane localized-receptor like kinases play a critical role in the transmission of the extracellular signals to intracellular ROP signaling pathways. This review focuses on how these signals impinge upon various direct regulators of ROPs to modulate various plant processes.

  10. Regulation of cargo-selective endocytosis by dynamin 2 GTPase-activating protein girdin.

    PubMed

    Weng, Liang; Enomoto, Atsushi; Miyoshi, Hiroshi; Takahashi, Kiyofumi; Asai, Naoya; Morone, Nobuhiro; Jiang, Ping; An, Jian; Kato, Takuya; Kuroda, Keisuke; Watanabe, Takashi; Asai, Masato; Ishida-Takagishi, Maki; Murakumo, Yoshiki; Nakashima, Hideki; Kaibuchi, Kozo; Takahashi, Masahide

    2014-09-17

    In clathrin-mediated endocytosis (CME), specificity and selectivity for cargoes are thought to be tightly regulated by cargo-specific adaptors for distinct cellular functions. Here, we show that the actin-binding protein girdin is a regulator of cargo-selective CME. Girdin interacts with dynamin 2, a GTPase that excises endocytic vesicles from the plasma membrane, and functions as its GTPase-activating protein. Interestingly, girdin depletion leads to the defect in clathrin-coated pit formation in the center of cells. Also, we find that girdin differentially interacts with some cargoes, which competitively prevents girdin from interacting with dynamin 2 and confers the cargo selectivity for CME. Therefore, girdin regulates transferrin and E-cadherin endocytosis in the center of cells and their subsequent polarized intracellular localization, but has no effect on integrin and epidermal growth factor receptor endocytosis that occurs at the cell periphery. Our results reveal that girdin regulates selective CME via a mechanism involving dynamin 2, but not by operating as a cargo-specific adaptor.

  11. P-cadherin-mediated Rho GTPase regulation during collective cell migration

    PubMed Central

    Plutoni, Cédric; Bazellières, Elsa; Gauthier-Rouvière, Cécile

    2016-01-01

    ABSTRACT This commentary addresses the role of P-cadherin in collective cell migration (CCM), a cooperative and coordinated migration mode, used by cells during normal and pathological migration processes. We discuss how cadherin-mediated cell-cell junctions (CCJs) play a critical role in CCM through their ability to regulate Rho GTPase-dependent pathways and how this leads to the generation and orientation of mechanical forces. We will also highlight the key function of P-cadherin (a poor prognostic marker in several tumors) in promoting collective cell movement in epithelial and mesenchymal cells. PMID:27152729

  12. Small GTPase R-Ras regulates Integrity and Functionality of Tumor Blood Vessels

    PubMed Central

    Sawada, Junko; Urakami, Takeo; Li, Fangfei; Urakami, Akane; Zhu, Weiquan; Fukuda, Minoru; Li, Dean Y.; Ruoslahti, Erkki; Komatsu, Masanobu

    2012-01-01

    Summary We show that R-Ras, a small GTPase of the Ras family, is essential for the establishment of mature, functional blood vessels in tumors. The genetic disruption of R-Ras severely impaired the maturation processes of tumor vessels in mice. Conversely, the gain of function of R-Ras improved vessel structure and blood perfusion and blocked plasma leakage by enhanced endothelial barrier function and pericyte association with nascent blood vessels. Thus, R-Ras promotes normalization of the tumor vasculature. These findings identify R-Ras as a critical regulator of vessel integrity and function during tumor vascularization. PMID:22897853

  13. Small GTPase R-Ras regulates integrity and functionality of tumor blood vessels.

    PubMed

    Sawada, Junko; Urakami, Takeo; Li, Fangfei; Urakami, Akane; Zhu, Weiquan; Fukuda, Minoru; Li, Dean Y; Ruoslahti, Erkki; Komatsu, Masanobu

    2012-08-14

    We show that R-Ras, a small GTPase of the Ras family, is essential for the establishment of mature, functional blood vessels in tumors. The genetic disruption of R-Ras severely impaired the maturation processes of tumor vessels in mice. Conversely, the gain of function of R-Ras improved vessel structure and blood perfusion and blocked plasma leakage by enhanced endothelial barrier function and pericyte association with nascent blood vessels. Thus, R-Ras promotes normalization of the tumor vasculature. These findings identify R-Ras as a critical regulator of vessel integrity and function during tumor vascularization. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. P-cadherin-mediated Rho GTPase regulation during collective cell migration.

    PubMed

    Plutoni, Cédric; Bazellières, Elsa; Gauthier-Rouvière, Cécile

    2016-07-02

    This commentary addresses the role of P-cadherin in collective cell migration (CCM), a cooperative and coordinated migration mode, used by cells during normal and pathological migration processes. We discuss how cadherin-mediated cell-cell junctions (CCJs) play a critical role in CCM through their ability to regulate Rho GTPase-dependent pathways and how this leads to the generation and orientation of mechanical forces. We will also highlight the key function of P-cadherin (a poor prognostic marker in several tumors) in promoting collective cell movement in epithelial and mesenchymal cells.

  15. Nerve Growth Factor Regulates Transient Receptor Potential Vanilloid 2 via Extracellular Signal-Regulated Kinase Signaling To Enhance Neurite Outgrowth in Developing Neurons

    PubMed Central

    Cohen, Matthew R.; Johnson, William M.; Pilat, Jennifer M.; Kiselar, Janna; DeFrancesco-Lisowitz, Alicia; Zigmond, Richard E.

    2015-01-01

    Neurite outgrowth is key to the formation of functional circuits during neuronal development. Neurotrophins, including nerve growth factor (NGF), increase neurite outgrowth in part by altering the function and expression of Ca2+-permeable cation channels. Here we report that transient receptor potential vanilloid 2 (TRPV2) is an intracellular Ca2+-permeable TRPV channel upregulated by NGF via the mitogen-activated protein kinase (MAPK) signaling pathway to augment neurite outgrowth. TRPV2 colocalized with Rab7, a late endosome protein, in addition to TrkA and activated extracellular signal-regulated kinase (ERK) in neurites, indicating that the channel is closely associated with signaling endosomes. In line with these results, we showed that TRPV2 acts as an ERK substrate and identified the motifs necessary for phosphorylation of TRPV2 by ERK. Furthermore, neurite length, TRPV2 expression, and TRPV2-mediated Ca2+ signals were reduced by mutagenesis of these key ERK phosphorylation sites. Based on these findings, we identified a previously uncharacterized mechanism by which ERK controls TRPV2-mediated Ca2+ signals in developing neurons and further establish TRPV2 as a critical intracellular ion channel in neuronal function. PMID:26416880

  16. RAS and RHO Families of GTPases Directly Regulate Distinct Phosphoinositide 3-Kinase Isoforms

    PubMed Central

    Fritsch, Ralph; de Krijger, Inge; Fritsch, Kornelia; George, Roger; Reason, Beth; Kumar, Madhu S.; Diefenbacher, Markus; Stamp, Gordon; Downward, Julian

    2013-01-01

    Summary RAS proteins are important direct activators of p110α, p110γ, and p110δ type I phosphoinositide 3-kinases (PI3Ks), interacting via an amino-terminal RAS-binding domain (RBD). Here, we investigate the regulation of the ubiquitous p110β isoform of PI3K, implicated in G-protein-coupled receptor (GPCR) signaling, PTEN-loss-driven cancers, and thrombocyte function. Unexpectedly, RAS is unable to interact with p110β, but instead RAC1 and CDC42 from the RHO subfamily of small GTPases bind and activate p110β via its RBD. In fibroblasts, GPCRs couple to PI3K through Dock180/Elmo1-mediated RAC activation and subsequent interaction with p110β. Cells from mice carrying mutations in the p110β RBD show reduced PI3K activity and defective chemotaxis, and these mice are resistant to experimental lung fibrosis. These findings revise our understanding of the regulation of type I PI3K by showing that both RAS and RHO family GTPases directly regulate distinct ubiquitous PI3K isoforms and that RAC activates p110β downstream of GPCRs. PMID:23706742

  17. Rho GTPases as regulators of mitosis and cytokinesis in mammalian cells

    PubMed Central

    Chircop, Megan

    2014-01-01

    Rho GTPases regulate a diverse range of cellular functions primarily through their ability to modulate microtubule dynamics and the actin-myosin cytoskeleton. Both of these cytoskeletal structures are crucial for a mitotic cell division. Specifically, their assembly and disassembly is tightly regulated in a temporal manner to ensure that each mitotic stage occurs in the correct sequential order and not prematurely until the previous stage is completed. Thus, it is not surprising that the Rho GTPases, RhoA, and Cdc42, have reported roles in several stages of mitosis: cell cortex stiffening during cell rounding, mitotic spindle formation, and bi-orient attachment of the spindle microtubules to the kinetochore and during cytokinesis play multiple roles in establishing the division plane, assembly, and activation of the contractile ring, membrane ingression, and abscission. Here, I review the molecular mechanisms regulating the spatial and temporal activation of RhoA and Cdc42 during mitosis, and how this is critical for mitotic progression and completion. PMID:24988197

  18. Structural and functional regulation of tight junctions by RhoA and Rac1 small GTPases.

    PubMed

    Jou, T S; Schneeberger, E E; Nelson, W J

    1998-07-13

    Tight junctions (TJ) govern ion and solute diffusion through the paracellular space (gate function), and restrict mixing of membrane proteins and lipids between membrane domains (fence function) of polarized epithelial cells. We examined roles of the RhoA and Rac1 GTPases in regulating TJ structure and function in MDCK cells using the tetracycline repressible transactivator to regulate RhoAV14, RhoAN19, Rac1V12, and Rac1N17 expression. Both constitutively active and dominant negative RhoA or Rac1 perturbed TJ gate function (transepithelial electrical resistance, tracer diffusion) in a dose-dependent and reversible manner. Freeze-fracture EM and immunofluoresence microscopy revealed abnormal TJ strand morphology and protein (occludin, ZO-1) localization in RhoAV14 and Rac1V12 cells. However, TJ strand morphology and protein localization appeared normal in RhoAN19 and Rac1N17 cells. All mutant GTPases disrupted the fence function of the TJ (interdomain diffusion of a fluorescent lipid), but targeting and organization of a membrane protein in the apical membrane were unaffected. Expression levels and protein complexes of occludin and ZO-1 appeared normal in all mutant cells, although ZO-1 was more readily solubilized from RhoAV14-expressing cells with Triton X-100. These results show that RhoA and Rac1 regulate gate and fence functions of the TJ, and play a role in the spatial organization of TJ proteins at the apex of the lateral membrane.

  19. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons

    SciTech Connect

    Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee; Jun, Mi-Hee; Ban, Byung-Kwan; Jang, Deok-Jin; Lee, Jin-A

    2013-08-01

    Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalized to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival.

  20. The small GTPase Rab29 is a common regulator of immune synapse assembly and ciliogenesis

    PubMed Central

    Onnis, A; Finetti, F; Patrussi, L; Gottardo, M; Cassioli, C; Spanò, S; Baldari, C T

    2015-01-01

    Accumulating evidence underscores the T-cell immune synapse (IS) as a site of intense vesicular trafficking, on which productive signaling and cell activation crucially depend. Although the T-cell antigen receptor (TCR) is known to exploit recycling to accumulate to the IS, the specific pathway that controls this process remains to be elucidated. Here we demonstrate that the small GTPase Rab29 is centrally implicated in TCR trafficking and IS assembly. Rab29 colocalized and interacted with Rab8, Rab11 and IFT20, a component of the intraflagellar transport system that regulates ciliogenesis and participates in TCR recycling in the non-ciliated T cell, as assessed by co-immunoprecipitation and immunofluorescence analysis. Rab29 depletion resulted in the inability of TCRs to undergo recycling to the IS, thereby compromizing IS assembly. Under these conditions, recycling TCRs accumulated in Rab11+ endosomes that failed to polarize to the IS due to defective Rab29-dependent recruitment of the dynein microtubule motor. Remarkably, Rab29 participates in a similar pathway in ciliated cells to promote primary cilium growth and ciliary localization of Smoothened. These results provide a function for Rab29 as a regulator of receptor recycling and identify this GTPase as a shared participant in IS and primary cilium assembly. PMID:26021297

  1. CD81 regulates cell migration through its association with Rac GTPase

    PubMed Central

    Tejera, Emilio; Rocha-Perugini, Vera; López-Martín, Soraya; Pérez-Hernández, Daniel; Bachir, Alexia I.; Horwitz, Alan Rick; Vázquez, Jesús; Sánchez-Madrid, Francisco; Yáñez-Mo, María

    2013-01-01

    CD81 is a member of the tetraspanin family that has been described to have a key role in cell migration of tumor and immune cells. To unravel the mechanisms of CD81-regulated cell migration, we performed proteomic analyses that revealed an interaction of the tetraspanin C-terminal domain with the small GTPase Rac. Direct interaction was confirmed biochemically. Moreover, microscopy cross-correlation analysis demonstrated the in situ integration of both molecules into the same molecular complex. Pull-down experiments revealed that CD81-Rac interaction was direct and independent of Rac activation status. Knockdown of CD81 resulted in enhanced protrusion rate, altered focal adhesion formation, and decreased cell migration, correlating with increased active Rac. Reexpression of wild-type CD81, but not its truncated form lacking the C-terminal cytoplasmic domain, rescued these effects. The phenotype of CD81 knockdown cells was mimicked by treatment with a soluble peptide with the C-terminal sequence of the tetraspanin. Our data show that the interaction of Rac with the C-terminal cytoplasmic domain of CD81 is a novel regulatory mechanism of the GTPase activity turnover. Furthermore, they provide a novel mechanism for tetraspanin-dependent regulation of cell motility and open new avenues for tetraspanin-targeted reagents by the use of cell-permeable peptides. PMID:23264468

  2. Distinct roles for the two Rho GDP/GTP exchange factor domains of kalirin in regulation of neurite growth and neuronal morphology.

    PubMed

    Penzes, P; Johnson, R C; Kambampati, V; Mains, R E; Eipper, B A

    2001-11-01

    The actin cytoskeleton, essential for neuronal development, is regulated in part by small GTP binding proteins of the Rho subfamily. Kalirin-9, with two Rho subfamily-specific GDP/GTP exchange factor (GEF) domains, localizes to neurites and growth cones of primary cortical neurons. Kalirin-9 overexpression in cultured cortical neurons induces longer neurites and altered neuronal morphology. Expression of the first GEF domain alone results in drastically shortened axons and excessive growth cones, mediated by Rac1. Expression of the second GEF domain alone induces axonal over-elongation and abundant filopodial neurites, mediated by RhoA. Coordination of the actions of the individual GEF domains through their presence in Kalirin-9, with its Sec14p, spectrin, and Src homology domain 3 motifs, is essential for regulating neurite extension and neuronal morphology.

  3. Two small GTPases act in concert with the bactofilin cytoskeleton to regulate dynamic bacterial cell polarity.

    PubMed

    Bulyha, Iryna; Lindow, Steffi; Lin, Lin; Bolte, Kathrin; Wuichet, Kristin; Kahnt, Jörg; van der Does, Chris; Thanbichler, Martin; Søgaard-Andersen, Lotte

    2013-04-29

    Cell polarity is essential for many bacterial activities, but the mechanisms responsible for its establishment are poorly understood. In Myxococcus xanthus, the type IV pili (T4P) motor ATPases PilB and PilT localize to opposite cell poles and switch poles during cellular reversals. We demonstrate that polar localization of PilB and PilT depends on the small GTPase SofG and BacP, a bactofilin cytoskeletal protein. Polymeric BacP localizes in both subpolar regions. SofG interacts directly with polymeric BacP and associates with one of these patches, forming a cluster that shuttles to the pole to establish localization of PilB and PilT at the same pole. Next, the small GTPase MglA sorts PilB and PilT to opposite poles to establish their correct polarity. During reversals, the Frz chemosensory system induces the inversion of PilB and PilT polarity. Thus, three hierarchically organized systems function in a cascade to regulate dynamic bacterial cell polarity.

  4. Opposing roles for distinct LINC complexes in regulation of the small GTPase RhoA

    PubMed Central

    Thakar, Ketan; May, Christopher K.; Rogers, Anna; Carroll, Christopher W.

    2017-01-01

    Linker of Nucleoskeleton and Cytoskeleton (LINC) complexes span the nuclear envelope and transduce force from dynamic cytoskeletal networks to the nuclear lamina. Here we show that LINC complexes also signal from the nuclear envelope to critical regulators of the actin cytoskeleton. Specifically, we find that LINC complexes that contain the inner nuclear membrane protein Sun2 promote focal adhesion assembly by activating the small GTPase RhoA. A key effector in this process is the transcription factor/coactivator complex composed of SRF/Mkl1. A constitutively active form of SRF/Mkl1 was not sufficient to induce focal adhesion assembly in cells lacking Sun2, however, suggesting that LINC complexes support RhoA activity through a transcription-independent mechanism. Strikingly, we also find that the inner nuclear membrane protein Sun1 antagonizes Sun2 LINC complexes and inhibits RhoA activation and focal adhesion assembly. Thus different LINC complexes have opposing roles in the transcription-independent control of the actin cytoskeleton through the small GTPase RhoA. PMID:28035049

  5. Retinal phospholipase C from squid is a regulator of Gq alpha GTPase activity.

    PubMed

    Mayeenuddin, L H; Bamsey, C; Mitchell, J

    2001-09-01

    The phospholipase C (PLC) pathway is the major signaling mechanism of photoactivation in invertebrate photoreceptors. Here we report the cloning of a cDNA encoding a 140-kDa retinal PLC that is uniquely expressed in squid photoreceptors. This cDNA encodes a protein with multiple distinct modular domains: PH, X and Y catalytic, and C2 domains, as well as G- and P-box motifs and two GTP/ATP binding motifs. The PLC was stimulated by activated squid Gq alpha but not by squid Gq beta gamma or mammalian beta gamma subunits. The PLC was inhibited by monophosphate, diphosphate and triphosphate nucleotides but not cyclic nucleosides. We also tested the ability of PLC-140 to regulate the GTPase activity of Gq alpha in the rhabdomeric membranes. Depletion of PLC-140 from the rhabdomeric membranes decreased the GTP hydrolysis but not GTP gamma S binding to the membranes. Reconstitution of purified PLC-140 with membranes accelerated Gq alpha GTPase activity by fivefold at a concentration of 2.5 microM. Our data suggest that PLC-140 plays an important role in both the activation and inactivation pathways of invertebrate visual transduction.

  6. The ARL2 GTPase regulates mitochondrial fusion from the intermembrane space.

    PubMed

    Newman, Laura E; Schiavon, Cara R; Turn, Rachel E; Kahn, Richard A

    2017-01-01

    Mitochondria are essential, dynamic organelles that regularly undergo both fusion and fission in response to cellular conditions, though mechanisms of the regulation of their dynamics are incompletely understood. We provide evidence that increased activity of the small GTPase ARL2 is strongly correlated with an increase in fusion, while loss of ARL2 activity results in a decreased rate of mitochondrial fusion. Strikingly, expression of activated ARL2 can partially restore the loss of fusion resulting from deletion of either mitofusin 1 (MFN1) or mitofusin 2 (MFN2), but not deletion of both. We only observe the full effects of ARL2 on mitochondrial fusion when it is present in the intermembrane space (IMS), as constructs driven to the matrix or prevented from entering mitochondria are essentially inactive in promoting fusion. Thus, ARL2 is the first regulatory (small) GTPase shown to act inside mitochondria or in the fusion pathway. Finally, using high-resolution, structured illumination microscopy (SIM), we find that ARL2 and mitofusin immunoreactivities present as punctate staining along mitochondria that share a spatial convergence in fluorescence signals. Thus, we propose that ARL2 plays a regulatory role in mitochondrial fusion, acting from the IMS and requiring at least one of the mitofusins in their canonical role in fusion of the outer membranes.

  7. Regulation of neurite outgrowth mediated by neuronal calcium sensor-1 and inositol 1,4,5-trisphosphate receptor in nerve growth cones.

    PubMed

    Iketani, M; Imaizumi, C; Nakamura, F; Jeromin, A; Mikoshiba, K; Goshima, Y; Takei, K

    2009-07-07

    Calcium acts as an important second messenger in the intracellular signal pathways in a variety of cell functions. Strictly controlled intracellular calcium is required for proper neurite outgrowth of developing neurons. However, the molecular mechanisms of this process are still largely unknown. Neuronal calcium sensor-1 (NCS-1) is a high-affinity and low-capacity calcium binding protein, which is specifically expressed in the nervous system. NCS-1 was distributed throughout the entire region of growth cones located at a distal tip of neurite in cultured chick dorsal root ganglion neurons. In the central domain of the growth cone, however, NCS-1 was distributed in a clustered specific pattern and co-localized with the type 1 inositol 1,4,5-trisphosphate receptor (InsP(3)R1). The pharmacological inhibition of InsP(3) receptors decreased the clustered specific distribution of NCS-1 in the growth cones and inhibited neurite outgrowth but did not change the growth cone morphology. The acute and localized loss of NCS-1 function in the growth cone induced by chromophore-assisted laser inactivation (CALI) resulted in the growth arrest of neurites and lamellipodial and filopodial retractions. These findings suggest that NCS-1 is involved in the regulation of both neurite outgrowth and growth cone morphology. In addition, NCS-1 is functionally linked to InsP(3)R1, which may play an important role in the regulation of neurite outgrowth.

  8. The Small GTPase Rap1 Is a Novel Regulator of RPE Cell Barrier Function

    PubMed Central

    Wittchen, Erika S.

    2011-01-01

    Purpose. To determine whether the small GTPase Rap1 regulates the formation and maintenance of the retinal pigment epithelial (RPE) cell junctional barrier. Methods. An in vitro model was used to study RPE barrier properties. To dissect the role of Rap1, two techniques were used to inhibit Rap1 function: overexpression of RapGAP, which acts as a negative regulator of endogenous Rap1 activity, and treatment with engineered, adenovirally-transduced microRNAs to knockdown Rap1 protein expression. Transepithelial electrical resistance (TER) and real-time cellular analysis (RTCA) of impedance were used as readouts for barrier properties. Immunofluorescence microscopy was used to visualize localization of cadherins under steady state conditions and also during junctional reassembly after calcium switch. Finally, choroidal endothelial cell (CEC) migration across RPE monolayers was quantified under conditions of Rap1 inhibition in RPE. Results. Knockdown of Rap1 or inhibition of its activity in RPE reduces TER and electrical impedance of the RPE monolayers. The loss of barrier function is also reflected by the mislocalization of cadherins and formation of gaps within the monolayer. TER measurement and immunofluorescent staining of cadherins after a calcium switch indicate that junctional reassembly kinetics are also impaired. Furthermore, CEC transmigration is significantly higher in Rap1-knockdown RPE monolayers compared with control. Conclusions. Rap1 GTPase is an important regulator of RPE cell junctions, and is required for maintenance of barrier function. This observation that RPE monolayers lacking Rap1 allow greater transmigration of CECs suggests a possible role for potentiating choroidal neovascularization during the pathology of neovascular age-related macular degeneration. PMID:21873678

  9. Structural and Functional Regulation of Tight Junctions by RhoA and Rac1 Small GTPases

    PubMed Central

    Jou, Tzuu-Shuh; Schneeberger, Eveline E.; James Nelson, W.

    1998-01-01

    Tight junctions (TJ) govern ion and solute diffusion through the paracellular space (gate function), and restrict mixing of membrane proteins and lipids between membrane domains (fence function) of polarized epithelial cells. We examined roles of the RhoA and Rac1 GTPases in regulating TJ structure and function in MDCK cells using the tetracycline repressible transactivator to regulate RhoAV14, RhoAN19, Rac1V12, and Rac1N17 expression. Both constitutively active and dominant negative RhoA or Rac1 perturbed TJ gate function (transepithelial electrical resistance, tracer diffusion) in a dose-dependent and reversible manner. Freeze-fracture EM and immunofluoresence microscopy revealed abnormal TJ strand morphology and protein (occludin, ZO-1) localization in RhoAV14 and Rac1V12 cells. However, TJ strand morphology and protein localization appeared normal in RhoAN19 and Rac1N17 cells. All mutant GTPases disrupted the fence function of the TJ (interdomain diffusion of a fluorescent lipid), but targeting and organization of a membrane protein in the apical membrane were unaffected. Expression levels and protein complexes of occludin and ZO-1 appeared normal in all mutant cells, although ZO-1 was more readily solubilized from RhoAV14-expressing cells with Triton X-100. These results show that RhoA and Rac1 regulate gate and fence functions of the TJ, and play a role in the spatial organization of TJ proteins at the apex of the lateral membrane. PMID:9660866

  10. Regulation of cytokinesis by membrane trafficking involving small GTPases and the ESCRT machinery.

    PubMed

    Nakayama, Kazuhisa

    2016-01-01

    During cell division, cells undergo membrane remodeling to achieve changes in their size and shape. In addition, cell division entails local delivery and retrieval of membranes and specific proteins as well as remodeling of cytoskeletons, in particular, upon cytokinetic abscission. Accumulating lines of evidence highlight that endocytic membrane removal from and subsequent membrane delivery to the plasma membrane are crucial for the changes in cell size and shape, and that trafficking of vesicles carrying specific proteins to the abscission site participate in local remodeling of membranes and cytoskeletons. Furthermore, the endosomal sorting complex required for transport (ESCRT) machinery has been shown to play crucial roles in cytokinetic abscission. Here, the author briefly overviews membrane-trafficking events early in cell division, and subsequently focus on regulation and functional significance of membrane trafficking involving Rab11 and Arf6 small GTPases in late cytokinesis phases and assembly of the ESCRT machinery in cytokinetic abscission.

  11. A loss-of-function screen for phosphatases that regulate neurite outgrowth identifies PTPN12 as a negative regulator of TrkB tyrosine phosphorylation.

    PubMed

    Ambjørn, Malene; Dubreuil, Véronique; Miozzo, Federico; Nigon, Fabienne; Møller, Bente; Issazadeh-Navikas, Shohreh; Berg, Jacob; Lees, Michael; Sap, Jan

    2013-01-01

    Alterations in function of the neurotrophin BDNF are associated with neurodegeneration, cognitive decline, and psychiatric disorders. BDNF promotes axonal outgrowth and branching, regulates dendritic tree morphology and is important for axonal regeneration after injury, responses that largely result from activation of its tyrosine kinase receptor TrkB. Although intracellular neurotrophin (NT) signaling presumably reflects the combined action of kinases and phosphatases, little is known about the contributions of the latter to TrkB regulation. The issue is complicated by the fact that phosphatases belong to multiple independently evolved families, which are rarely studied together. We undertook a loss-of-function RNA-interference-based screen of virtually all known (254) human phosphatases to understand their function in BDNF/TrkB-mediated neurite outgrowth in differentiated SH-SY5Y cells. This approach identified phosphatases from diverse families, which either positively or negatively modulate BDNF-TrkB-mediated neurite outgrowth, and most of which have little or no previously established function related to NT signaling. "Classical" protein tyrosine phosphatases (PTPs) accounted for 13% of the candidate regulatory phosphatases. The top classical PTP identified as a negative regulator of BDNF-TrkB-mediated neurite outgrowth was PTPN12 (also called PTP-PEST). Validation and follow-up studies showed that endogenous PTPN12 antagonizes tyrosine phosphorylation of TrkB itself, and the downstream activation of ERK1/2. We also found PTPN12 to negatively regulate phosphorylation of p130cas and FAK, proteins with previously described functions related to cell motility and growth cone behavior. Our data provide the first comprehensive survey of phosphatase function in NT signaling and neurite outgrowth. They reveal the complexity of phosphatase control, with several evolutionarily unrelated phosphatase families cooperating to affect this biological response, and hence the

  12. A Loss-of-Function Screen for Phosphatases that Regulate Neurite Outgrowth Identifies PTPN12 as a Negative Regulator of TrkB Tyrosine Phosphorylation

    PubMed Central

    Ambjørn, Malene; Dubreuil, Véronique; Miozzo, Federico; Nigon, Fabienne; Møller, Bente; Issazadeh-Navikas, Shohreh; Berg, Jacob; Lees, Michael; Sap, Jan

    2013-01-01

    Alterations in function of the neurotrophin BDNF are associated with neurodegeneration, cognitive decline, and psychiatric disorders. BDNF promotes axonal outgrowth and branching, regulates dendritic tree morphology and is important for axonal regeneration after injury, responses that largely result from activation of its tyrosine kinase receptor TrkB. Although intracellular neurotrophin (NT) signaling presumably reflects the combined action of kinases and phosphatases, little is known about the contributions of the latter to TrkB regulation. The issue is complicated by the fact that phosphatases belong to multiple independently evolved families, which are rarely studied together. We undertook a loss-of-function RNA-interference-based screen of virtually all known (254) human phosphatases to understand their function in BDNF/TrkB-mediated neurite outgrowth in differentiated SH-SY5Y cells. This approach identified phosphatases from diverse families, which either positively or negatively modulate BDNF-TrkB-mediated neurite outgrowth, and most of which have little or no previously established function related to NT signaling. “Classical” protein tyrosine phosphatases (PTPs) accounted for 13% of the candidate regulatory phosphatases. The top classical PTP identified as a negative regulator of BDNF-TrkB-mediated neurite outgrowth was PTPN12 (also called PTP-PEST). Validation and follow-up studies showed that endogenous PTPN12 antagonizes tyrosine phosphorylation of TrkB itself, and the downstream activation of ERK1/2. We also found PTPN12 to negatively regulate phosphorylation of p130cas and FAK, proteins with previously described functions related to cell motility and growth cone behavior. Our data provide the first comprehensive survey of phosphatase function in NT signaling and neurite outgrowth. They reveal the complexity of phosphatase control, with several evolutionarily unrelated phosphatase families cooperating to affect this biological response, and hence

  13. A Small GTPase Activator Protein Interacts with Cytoplasmic Phytochromes in Regulating Root Development*

    PubMed Central

    Shin, Dong Ho; Cho, Man-Ho; Kim, Tae-Lim; Yoo, Jihye; Kim, Jeong-Il; Han, Yun-Jeong; Song, Pill-Soon; Jeon, Jong-Seong; Bhoo, Seong Hee; Hahn, Tae-Ryong

    2010-01-01

    Phytochromes enable plants to sense light information and regulate developmental responses. Phytochromes interact with partner proteins to transmit light signals to downstream components for plant development. PIRF1 (phytochrome-interacting ROP guanine-nucleotide exchange factor (RopGEF 1)) functions as a light-signaling switch regulating root development through the activation of ROPs (Rho-like GTPase of plant) in the cytoplasm. In vitro pulldown and yeast two-hybrid assays confirmed the interaction between PIRF1 and phytochromes. PIRF1 interacted with the N-terminal domain of phytochromes through its conserved PRONE (plant-specific ROP nucleotide exchanger) region. PIRF1 also interacted with ROPs and activated them in a phytochrome-dependent manner. The Pr form of phytochrome A enhanced the RopGEF activity of PIRF1, whereas the Pfr form inhibited it. A bimolecular fluorescence complementation analysis demonstrated that PIRF1 was localized in the cytoplasm and bound to the phytochromes in darkness but not in light. PIRF1 loss of function mutants (pirf1) of Arabidopsis thaliana showed a longer root phenotype in the dark. In addition, both PIRF1 overexpression mutants (PIRF1-OX) and phytochrome-null mutants (phyA-211 and phyB-9) showed retarded root elongation and irregular root hair formation, suggesting that PIRF1 is a negative regulator of phytochrome-mediated primary root development. We propose that phytochrome and ROP signaling are interconnected through PIRF1 in regulating the root growth and development in Arabidopsis. PMID:20551316

  14. Rho GTPase controls Drosophila salivary gland lumen size through regulation of the actin cytoskeleton and Moesin

    PubMed Central

    Xu, Na; Bagumian, Gaiana; Galiano, Michael; Myat, Monn Monn

    2011-01-01

    Generation and maintenance of proper lumen size is important for tubular organ function. We report on a novel role for the Drosophila Rho1 GTPase in control of salivary gland lumen size through regulation of cell rearrangement, apical domain elongation and cell shape change. We show that Rho1 controls cell rearrangement and apical domain elongation by promoting actin polymerization and regulating F-actin distribution at the apical and basolateral membranes through Rho kinase. Loss of Rho1 resulted in reduction of F-actin at the basolateral membrane and enrichment of apical F-actin, the latter accompanied by enrichment of apical phosphorylated Moesin. Reducing cofilin levels in Rho1 mutant salivary gland cells restored proper distribution of F-actin and phosphorylated Moesin and rescued the cell rearrangement and apical domain elongation defects of Rho1 mutant glands. In support of a role for Rho1-dependent actin polymerization in regulation of gland lumen size, loss of profilin phenocopied the Rho1 lumen size defects to a large extent. We also show that Ribbon, a BTB domain-containing transcription factor functions with Rho1 in limiting apical phosphorylated Moesin for apical domain elongation. Our studies reveal a novel mechanism for controlling salivary gland lumen size, namely through Rho1-dependent actin polymerization and distribution and downregulation of apical phosphorylated Moesin. PMID:22071107

  15. Functions of Rac GTPases during neuronal development.

    PubMed

    de Curtis, Ivan

    2008-01-01

    The small GTPases of the Rho family are important regulators of the actin cytoskeleton and are critical for several aspects of neuronal development including the establishment of neuronal polarity, extension of axon and dendrites, neurite branching, axonal navigation and synapse formation. The aim of this review is to present evidence supporting the function of Rac and Rac-related proteins in different aspects of neuronal maturation, based on work performed with organisms including nematodes, Drosophila, Xenopus and mice, and with primary cultures of developing neurons. Three of the 4 vertebrate Rac-related genes, namely Rac1, Rac3 and RhoG, are expressed in the nervous system, and several data support an essential role of all 3 GTPases in distinct aspects of neuronal development and function. Two important points emerge from the analysis presented: highly homologous Rac-related proteins may perform different functions in the developing nervous system; on the other hand, the data also indicate that similar GTPases may perform redundant functions in vivo. (c) 2008 S. Karger AG, Basel.

  16. Role of glutamate in the regulation of the outgrowth and motility of neurites from mouse spinal cord neurons in culture

    PubMed Central

    OWEN, ALUN D.; BIRD, MARGARET M.

    1997-01-01

    The excitatory amino acid glutamate has been shown to be toxic to a number of neuronal cell types both in vitro and in vivo. It has also been shown to be capable of controlling the development of neurons grown in vitro. Using time-lapse video microscopy techniques the effects of glutamate on the rate of neurite outgrowth and growth cone motility were examined on cultured mouse spinal cord neurons. Concentrations in the range of 1 to 100 µ M caused a significant inhibition of neurite outgrowth and concentrations of 10 and 100 µ M significantly inhibited growth cone activity. In addition it was shown that the kainate/AMPA receptor antagonist (±)3-(2-carbvoxypiperazin-4-yl)-propyl-l-phosphonic acid, but not the NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione, was capable of blocking the inhibitory actions of glutamate on both outgrowth and motility. These results show that, at least in the culture system employed, glutamate might have a role in regulating neuronal development and function. PMID:9306206

  17. The small GTPase Arl8b regulates assembly of the mammalian HOPS complex on lysosomes

    PubMed Central

    Khatter, Divya; Raina, Vivek B.; Dwivedi, Devashish; Sindhwani, Aastha; Bahl, Surbhi; Sharma, Mahak

    2015-01-01

    The homotypic fusion and protein sorting (HOPS) complex is a multi-subunit complex conserved from yeast to mammals that regulates late endosome and lysosome fusion. However, little is known about how the HOPS complex is recruited to lysosomes in mammalian cells. Here, we report that the small GTPase Arl8b, but not Rab7 (also known as RAB7A), is essential for membrane localization of the human (h)Vps41 subunit of the HOPS complex. Assembly of the core HOPS subunits to Arl8b- and hVps41-positive lysosomes is guided by their subunit–subunit interactions. RNA interference (RNAi)-mediated depletion of hVps41 resulted in the impaired degradation of EGFR that was rescued upon expression of wild-type but not an Arl8b-binding-defective mutant of hVps41, suggesting that Arl8b-dependent lysosomal localization of hVps41 is required for its endocytic function. Furthermore, we have also identified that the Arl8b effector SKIP (also known as PLEKHM2) interacts with and recruits HOPS subunits to Arl8b and kinesin-positive peripheral lysosomes. Accordingly, RNAi-mediated depletion of SKIP impaired lysosomal trafficking and degradation of EGFR. These findings reveal that Arl8b regulates the association of the human HOPS complex with lysosomal membranes, which is crucial for the function of this tethering complex in endocytic degradation. PMID:25908847

  18. A conserved role for atlastin GTPases in regulating lipid droplet size.

    PubMed

    Klemm, Robin W; Norton, Justin P; Cole, Ronald A; Li, Chen S; Park, Seong H; Crane, Matthew M; Li, Liying; Jin, Diana; Boye-Doe, Alexandra; Liu, Tina Y; Shibata, Yoko; Lu, Hang; Rapoport, Tom A; Farese, Robert V; Blackstone, Craig; Guo, Yi; Mak, Ho Yi

    2013-05-30

    Lipid droplets (LDs) are the major fat storage organelles in eukaryotic cells, but how their size is regulated is unknown. Using genetic screens in C. elegans for LD morphology defects in intestinal cells, we found that mutations in atlastin, a GTPase required for homotypic fusion of endoplasmic reticulum (ER) membranes, cause not only ER morphology defects, but also a reduction in LD size. Similar results were obtained after depletion of atlastin or expression of a dominant-negative mutant, whereas overexpression of atlastin had the opposite effect. Atlastin depletion in Drosophila fat bodies also reduced LD size and decreased triglycerides in whole animals, sensitizing them to starvation. In mammalian cells, co-overexpression of atlastin-1 and REEP1, a paralog of the ER tubule-shaping protein DP1/REEP5, generates large LDs. The effect of atlastin-1 on LD size correlates with its activity to promote membrane fusion in vitro. Our results indicate that atlastin-mediated fusion of ER membranes is important for LD size regulation.

  19. The small GTPase Rab33A participates in regulation of amylase release from parotid acinar cells.

    PubMed

    Imai, Akane; Tsujimura, Maiko; Yoshie, Sumio; Fukuda, Mitsunori

    2015-06-05

    Amylase is released from exocrine parotid acinar cells via typical exocytosis. Exocytosis of amylase-containing granules occurs through several steps, including formation, maturation, and transport of granules. These steps are thought to be regulated by members of the small GTPase Rab family. We previously demonstrated that Rab27 and its effectors mediate amylase release from parotid acinar cells, but the functional involvement of other Rab proteins in exocrine granule exocytosis remains largely unknown. Here, we studied isoproterenol (IPR)-induced amylase release from parotid acinar cells to investigate the possible involvement of Rab33A, which was recently suggested to regulate exocytosis in hippocampal neurons and PC12 cells. Rab33A was endogenously expressed in parotid acinar cells and present in secretory granules and the Golgi body. Functional ablation of Rab33A with anti-Rab33A antibody or a dominant-negative Rab33A-T50N mutant significantly reduced IPR-induced amylase release. Our results indicated that Rab33A is a novel component of IPR-stimulated amylase secretion from parotid acinar cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Rho GTPase-independent regulation of mitotic progression by the RhoGEF Net1.

    PubMed

    Menon, Sarita; Oh, Wonkyung; Carr, Heather S; Frost, Jeffrey A

    2013-09-01

    Neuroepithelial transforming gene 1 (Net1) is a RhoA-subfamily-specific guanine nucleotide exchange factor that is overexpressed in multiple human cancers and is required for proliferation. Molecular mechanisms underlying its role in cell proliferation are unknown. Here we show that overexpression or knockdown of Net1 causes mitotic defects. Net1 is required for chromosome congression during metaphase and generation of stable kinetochore microtubule attachments. Accordingly, inhibition of Net1 expression results in spindle assembly checkpoint activation. The ability of Net1 to control mitosis is independent of RhoA or RhoB activation, as knockdown of either GTPase does not phenocopy effects of Net1 knockdown on nuclear morphology, and effects of Net1 knockdown are effectively rescued by expression of catalytically inactive Net1. We also observe that Net1 expression is required for centrosomal activation of p21-activated kinase and its downstream kinase Aurora A, which are critical regulators of centrosome maturation and spindle assembly. These results identify Net1 as a novel regulator of mitosis and indicate that altered expression of Net1, as occurs in human cancers, may adversely affect genomic stability.

  1. Evolution of the Ras-like small GTPases and their regulators

    PubMed Central

    Bos, Johannes L; Snel, Berend

    2011-01-01

    Small GTPases are molecular switches at the hub of many signaling pathways and the expansion of this protein family is interwoven with the origin of unique eukaryotic cell features. We have previously reported on the evolution of CDC25 Homology Domain containing proteins, which act as guanine nucleotide exchange factors (GEFs) for Ras-like proteins. We now report on the evolution of both the Ras-like small GTPases as well as the GTPase activating proteins (GAPs) for Ras-like small GTPases. We performed an in depth phylogenetic analysis in 64 genomes of diverse eukaryotic species. These analyses revealed that multiple ancestral Ras-like GTPases and GAPs were already present in the Last Eukaryotic Common Ancestor (LECA), compatible with the presence of RasGEFs in LECA . Furthermore, we endeavor to reconstruct in which order the different Ras-like GTPases diverged from each other. We identified striking differences between the expansion of the various types of Ras-like GTPases and their respective GAPs and GEFs. Altogether, our analysis forms an extensive evolutionary framework for Ras-like signaling pathways and provides specific predictions for molecular biologists and biochemists. PMID:21686276

  2. Smoothened Regulates Migration of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis via Activation of Rho GTPase Signaling

    PubMed Central

    Peng, Wei-xiang; Zhu, Shang-ling; Zhang, Bai-yu; Shi, Yi-ming; Feng, Xiao-xue; Liu, Fang; Huang, Jian-lin; Zheng, Song Guo

    2017-01-01

    Fibroblast-like synoviocytes (FLSs) acquire aggressive phenotypes characterized with enhanced migration abilities and inherent invasive qualities in rheumatoid arthritis (RA). Smoothened (Smo) is a key component of sonic hedgehog (Shh) signaling and contributes to tumor cell invasion and metastasis. The objective of this study is to investigate the role of Smo in the modulation of cell migration and explore the underlying molecular mechanism(s). FLSs were isolated from RA synovium. Shh levels were regulated by a Smo agonist (purmorphamine), Smo antagonist (KAAD-cyclopamine), or small interfering RNA targeting the Smo gene (Smo-siRNA) in RA-FLSs. Expression of Smo was detected by real-time PCR and western blot analysis. Cell migration was examined by Transwell assay and activation of Rho GTPases was measured by pull-down assays. Incubation with purmorphamine resulted in a significant increase of cell migration and activation of Rho GTPase signaling compared to controls (P < 0.05). However, treatment with KAAD-cyclopamine or transfection with Smo-siRNA suppressed migration of RA-FLSs and showed an inhibitory effect of Rho GTPase signaling. Together, these results suggest that Smo plays an important role in RA-FLSs migration through activation of Rho GTPase signaling and may contribute to progression of RA, thus, targeting Shh signal may have a therapeutic potential in patients with RA. PMID:28261216

  3. Smoothened Regulates Migration of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis via Activation of Rho GTPase Signaling.

    PubMed

    Peng, Wei-Xiang; Zhu, Shang-Ling; Zhang, Bai-Yu; Shi, Yi-Ming; Feng, Xiao-Xue; Liu, Fang; Huang, Jian-Lin; Zheng, Song Guo

    2017-01-01

    Fibroblast-like synoviocytes (FLSs) acquire aggressive phenotypes characterized with enhanced migration abilities and inherent invasive qualities in rheumatoid arthritis (RA). Smoothened (Smo) is a key component of sonic hedgehog (Shh) signaling and contributes to tumor cell invasion and metastasis. The objective of this study is to investigate the role of Smo in the modulation of cell migration and explore the underlying molecular mechanism(s). FLSs were isolated from RA synovium. Shh levels were regulated by a Smo agonist (purmorphamine), Smo antagonist (KAAD-cyclopamine), or small interfering RNA targeting the Smo gene (Smo-siRNA) in RA-FLSs. Expression of Smo was detected by real-time PCR and western blot analysis. Cell migration was examined by Transwell assay and activation of Rho GTPases was measured by pull-down assays. Incubation with purmorphamine resulted in a significant increase of cell migration and activation of Rho GTPase signaling compared to controls (P < 0.05). However, treatment with KAAD-cyclopamine or transfection with Smo-siRNA suppressed migration of RA-FLSs and showed an inhibitory effect of Rho GTPase signaling. Together, these results suggest that Smo plays an important role in RA-FLSs migration through activation of Rho GTPase signaling and may contribute to progression of RA, thus, targeting Shh signal may have a therapeutic potential in patients with RA.

  4. The integrin cytoplasmic domain-associated protein ICAP-1 binds and regulates Rho family GTPases during cell spreading

    PubMed Central

    Degani, Simona; Balzac, Fiorella; Brancaccio, Mara; Guazzone, Simona; Retta, Saverio Francesco; Silengo, Lorenzo; Eva, Alessandra; Tarone, Guido

    2002-01-01

    Using two-hybrid screening, we isolated the integrin cytoplasmic domain-associated protein (ICAP-1), an interactor for the COOH terminal region of the β1A integrin cytoplasmic domain. To investigate the role of ICAP-1 in integrin-mediated adhesive function, we expressed the full-length molecule in NIH3T3 cells. ICAP-1 expression strongly prevents NIH3T3 cell spreading on extracellular matrix. This inhibition is transient and can be counteracted by coexpression of a constitutively activated mutant of Cdc42, suggesting that ICAP-1 acts upstream of this GTPase. In addition, we found that ICAP-1 binds both to Cdc42 and Rac1 in vitro, and its expression markedly inhibits activation of these GTPases during integrin-mediated cell adhesion to fibronectin as detected by PAK binding assay. In the attempt to define the molecular mechanism of this inhibition, we show that ICAP-1 reduces both the intrinsic and the exchange factor–induced dissociation of GDP from Cdc42; moreover, purified ICAP-1 displaces this GTPase from cellular membranes. Together, these data show for the first time that ICAP-1 regulates Rho family GTPases during integrin-mediated cell matrix adhesion, acting as guanine dissociation inhibitor. PMID:11807099

  5. The integrin cytoplasmic domain-associated protein ICAP-1 binds and regulates Rho family GTPases during cell spreading.

    PubMed

    Degani, Simona; Balzac, Fiorella; Brancaccio, Mara; Guazzone, Simona; Retta, Saverio Francesco; Silengo, Lorenzo; Eva, Alessandra; Tarone, Guido

    2002-01-21

    Using two-hybrid screening, we isolated the integrin cytoplasmic domain-associated protein (ICAP-1), an interactor for the COOH terminal region of the beta1A integrin cytoplasmic domain. To investigate the role of ICAP-1 in integrin-mediated adhesive function, we expressed the full-length molecule in NIH3T3 cells. ICAP-1 expression strongly prevents NIH3T3 cell spreading on extracellular matrix. This inhibition is transient and can be counteracted by coexpression of a constitutively activated mutant of Cdc42, suggesting that ICAP-1 acts upstream of this GTPase. In addition, we found that ICAP-1 binds both to Cdc42 and Rac1 in vitro, and its expression markedly inhibits activation of these GTPases during integrin-mediated cell adhesion to fibronectin as detected by PAK binding assay. In the attempt to define the molecular mechanism of this inhibition, we show that ICAP-1 reduces both the intrinsic and the exchange factor-induced dissociation of GDP from Cdc42; moreover, purified ICAP-1 displaces this GTPase from cellular membranes. Together, these data show for the first time that ICAP-1 regulates Rho family GTPases during integrin-mediated cell matrix adhesion, acting as guanine dissociation inhibitor.

  6. BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein regulates neurite development via PI3K-AKT and ERK signaling pathways.

    PubMed

    Zhou, C; Li, C; Li, D; Wang, Y; Shao, W; You, Y; Peng, J; Zhang, X; Lu, L; Shen, X

    2013-12-19

    The elongation of neuron is highly dependent on membrane trafficking. Brefeldin A (BFA)-inhibited guanine nucleotide-exchange protein 1 (BIG1) functions in the membrane trafficking between the Golgi apparatus and the plasma membrane. BFA, an uncompetitive inhibitor of BIG1 can inhibit neurite outgrowth and polarity development. In this study, we aimed to define the possible role of BIG1 in neurite development and to further investigate the potential mechanism. By immunostaining, we found that BIG1 was extensively colocalized with synaptophysin, a marker for synaptic vesicles in soma and partly in neurites. The amount of both protein and mRNA of BIG1 were up-regulated during rat brain development. BIG1 depletion significantly decreased the neurite length and inhibited the phosphorylation of phosphatidylinositide 3-kinase (PI3K) and protein kinase B (AKT). Inhibition of BIG1 guanine nucleotide-exchange factor (GEF) activity by BFA or overexpression of the dominant-negative BIG1 reduced PI3K and AKT phosphorylation, indicating regulatory effects of BIG1 on PI3K-AKT signaling pathway is dependent on its GEF activity. BIG1 siRNA or BFA treatment also significantly reduced extracellular signal-regulated kinase (ERK) phosphorylation. Overexpression of wild-type BIG1 significantly increased ERK phosphorylation, but the dominant-negative BIG1 had no effect on ERK phosphorylation, indicating the involvement of BIG1 in ERK signaling regulation may not be dependent on its GEF activity. Our result identified a novel function of BIG1 in neurite development. The newly recognized function integrates the function of BIG1 in membrane trafficking with the activation of PI3K-AKT and ERK signaling pathways which are critical in neurite development. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. DBZ regulates cortical cell positioning and neurite development by sustaining the anterograde transport of Lis1 and DISC1 through control of Ndel1 dual-phosphorylation.

    PubMed

    Okamoto, Masayuki; Iguchi, Tokuichi; Hattori, Tsuyoshi; Matsuzaki, Shinsuke; Koyama, Yoshihisa; Taniguchi, Manabu; Komada, Munekazu; Xie, Min-Jue; Yagi, Hideshi; Shimizu, Shoko; Konishi, Yoshiyuki; Omi, Minoru; Yoshimi, Tomohiko; Tachibana, Taro; Fujieda, Shigeharu; Katayama, Taiichi; Ito, Akira; Hirotsune, Shinji; Tohyama, Masaya; Sato, Makoto

    2015-02-18

    Cell positioning and neuronal network formation are crucial for proper brain function. Disrupted-in-Schizophrenia 1 (DISC1) is anterogradely transported to the neurite tips, together with Lis1, and functions in neurite extension via suppression of GSK3β activity. Then, transported Lis1 is retrogradely transported and functions in cell migration. Here, we show that DISC1-binding zinc finger protein (DBZ), together with DISC1, regulates mouse cortical cell positioning and neurite development in vivo. DBZ hindered Ndel1 phosphorylation at threonine 219 and serine 251. DBZ depletion or expression of a double-phosphorylated mimetic form of Ndel1 impaired the transport of Lis1 and DISC1 to the neurite tips and hampered microtubule elongation. Moreover, application of DISC1 or a GSK3β inhibitor rescued the impairments caused by DBZ insufficiency or double-phosphorylated Ndel1 expression. We concluded that DBZ controls cell positioning and neurite development by interfering with Ndel1 from disproportionate phosphorylation, which is critical for appropriate anterograde transport of the DISC1-complex.

  8. Cross GTPase-activating protein (CrossGAP)/Vilse links the Roundabout receptor to Rac to regulate midline repulsion.

    PubMed

    Hu, Hailan; Li, Ming; Labrador, Juan-Pablo; McEwen, Jason; Lai, Eric C; Goodman, Corey S; Bashaw, Greg J

    2005-03-22

    The regulators of the Rho-family GTPases, GTPase-activating proteins (GAPs) and guanine exchange factors (GEFs), play important roles in axon guidance. By means of a functional genomic study of the Rho-family GEFs and GAPs in Drosophila, we have identified a Rho-family GAP, CrossGAP (CrGAP), which is involved in Roundabout (Robo) receptor-mediated repulsive axon guidance. CrGAP physically associates with the Robo receptor. Too much or too little CrGAP activity leads to defects in Robo-mediated repulsion at the midline choice point. The CrGAP gain-of-function phenotype mimics the loss-of-function phenotypes of both Robo and Rac. Dosage-sensitive genetic interactions among CrGAP, Robo, and Rac support a model in which CrGAP transduces signals downstream of Robo receptor to regulate Rac-dependent cytoskeletal changes.

  9. GTPases in semaphorin signaling.

    PubMed

    Püschel, Andreas W

    2007-01-01

    A hallmark of semaphorin receptors is their interaction with multiple GTPases. Plexins, the signal transducing component of semaphorin receptors, directly associate with several GTPases. In addition, they not only recruit guaninine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) but also are the only known integral membrane proteins that show a catalytic activity as GAPs for small GTPases. GTPases function upstream of semaphorin receptors and regulate the activity of plexins through an interaction with the cytoplasmic domain. The association of Plexin-Al (Sema3A receptor) or Plexin-B1 (Sema4D receptor) with the GTPase Rnd1 and ligand-dependent receptor clustering are required for their activity as R-Ras GAPs. The GTPases R-Ras and Rho function downstream of plexins and are required for the repulsive effects of semaphorins. In this review, I will focus on the role of GTPases in signaling by two plexins that have been analyzed in most detail, Plexin-A1 and Plexin-B1.

  10. An extracellular-matrix-specific GEF-GAP interaction regulates Rho GTPase crosstalk for 3D collagen migration.

    PubMed

    Kutys, Matthew L; Yamada, Kenneth M

    2014-09-01

    Rho-family GTPases govern distinct types of cell migration on different extracellular matrix proteins in tissue culture or three-dimensional (3D) matrices. We searched for mechanisms selectively regulating 3D cell migration in different matrix environments and discovered a form of Cdc42-RhoA crosstalk governing cell migration through a specific pair of GTPase activator and inhibitor molecules. We first identified βPix, a guanine nucleotide exchange factor (GEF), as a specific regulator of migration in 3D collagen using an affinity-precipitation-based GEF screen. Knockdown of βPix specifically blocks cell migration in fibrillar collagen microenvironments, leading to hyperactive cellular protrusion accompanied by increased collagen matrix contraction. Live FRET imaging and RNAi knockdown linked this βPix knockdown phenotype to loss of polarized Cdc42 but not Rac1 activity, accompanied by enhanced, de-localized RhoA activity. Mechanistically, collagen phospho-regulates βPix, leading to its association with srGAP1, a GTPase-activating protein (GAP), needed to suppress RhoA activity. Our results reveal a matrix-specific pathway controlling migration involving a GEF-GAP interaction of βPix with srGAP1 that is critical for maintaining suppressive crosstalk between Cdc42 and RhoA during 3D collagen migration.

  11. Activating Transcription Factor 4 (ATF4) modulates Rho GTPase levels and function via regulation of RhoGDIα

    PubMed Central

    Pasini, Silvia; Liu, Jin; Corona, Carlo; Peze-Heidsieck, Eugenie; Shelanski, Michael; Greene, Lloyd A.

    2016-01-01

    In earlier studies, we showed that ATF4 down-regulation affects post-synaptic development and dendritic spine morphology in neurons through increased turnover of the Rho GTPase Cell Division Cycle 42 (Cdc42) protein. Here, we find that ATF4 down-regulation in both hippocampal and cortical neuron cultures reduces protein and message levels of RhoGDIα, a stabilizer of the Rho GTPases including Cdc42. This effect is rescued by an shATF4-resistant active form of ATF4, but not by a mutant that lacks transcriptional activity. This is, at least in part, due to the fact that Arhgdia, the gene encoding RhoGDIα, is a direct transcriptional target of ATF4 as is shown in ChIP assays. This pathway is not restricted to neurons. This is seen in an impairment of cell migration on ATF4 reduction in non-neuronal cells. In conclusion, we have identified a new cellular pathway in which ATF4 regulates the expression of RhoGDIα that in turn affects Rho GTPase protein levels, and thereby, controls cellular functions as diverse as memory and cell motility. PMID:27841340

  12. Atypical GTPases as drug targets.

    PubMed

    Soundararajan, Meera; Eswaran, Jeyanthy

    2012-01-01

    The Ras GTPases are the founding members of large Ras superfamily, which constitutes more than 150 of these important class of enzymes. These GTPases function as GDP-GTP-regulated binary switches that control many fundamental cellular processes. There are a number of GTPases that have been identified recently, which do not confine to this prototype termed as "atypical GTPases" but have proved to play a remarkable role in vital cellular functions. In this review, we provide an overview of the crucial physiological functions mediated by RGK and Centaurin class of multi domain atypical GTPases. Moreover, the recently available atypical GTPase structures of the two families, regulation, physiological functions and their critical roles in various diseases will be discussed. In summary, this review will highlight the emerging atypical GTPase family which allows us to understand novel regulatory mechanisms and thus providing new avenues for drug discovery programs.

  13. L-type calcium channels may regulate neurite initiation in cultured chick embryo brain neurons and N1E-115 neuroblastoma cells.

    PubMed

    Audesirk, G; Audesirk, T; Ferguson, C; Lomme, M; Shugarts, D; Rosack, J; Caracciolo, P; Gisi, T; Nichols, P

    1990-08-01

    The intracellular free Ca2+ concentration, [Ca2+]i, plays an important role in regulating neurite growth in cultured neurons. Insofar as [Ca2+]i is partly a function of Ca2+ influx through voltage-sensitive calcium channels (VSCC), Ca2+ entry through VSCC should influence neurite growth. Vertebrate neurons may possess several types of VSCC. The most frequently described VSCC types are usually designated L, T and N. In most preparations, these VSCC types respond differently to certain pharmacological agents, including Cd2+, Ni2+, the dihydropyridines nifedipine and BAY K8644, and the aminoglycoside antibiotics. We used these agents to study the role of Ca2+ influx in regulating neurite initiation and length in cultures of chick embryo brain neurons and N1E-115 mouse neuroblastoma cells. In chick neurons, nifedipine and Cd2+ (less than 50 microM), which have been reported to inhibit L-type channels, reduced neurite initiation, but not mean neurite length. Ni2+ (less than 100 microM), reported to inhibit T-type channels, had no effect on either initiation or length. Low concentrations of most aminoglycosides (less than 300 microM), reported to inhibit N-type channels, had no effect on neurite initiation, but high concentrations of streptomycin (great than 300 microM), reported to inhibit both L- and N-type channels, reduced neurite initiation. BAY K8644, which enhances current flow through L-type channels, had no effect except at high concentration (50 microM), which inhibited initiation. N1E-115 neuroblastoma cells have been reported to contain L-type and T-type channels, but thus far no channel similar to the N-type has been described. In cultured N1E-115 cells, nifedipine (5 microM), Cd2+ (5 microM), and streptomycin (200 microM) reduced neurite initiation, while nickel (50 microM) and neomycin (100 microM) did not affect initiation. None of these agents altered neurite length. In N1E-115 cells, whole-cell voltage clamp recordings showed that nifedipine and Cd2

  14. The adaptor protein SH2B3 (Lnk) negatively regulates neurite outgrowth of PC12 cells and cortical neurons.

    PubMed

    Wang, Tien-Cheng; Chiu, Hsun; Chang, Yu-Jung; Hsu, Tai-Yu; Chiu, Ing-Ming; Chen, Linyi

    2011-01-01

    SH2B adaptor protein family members (SH2B1-3) regulate various physiological responses through affecting signaling, gene expression, and cell adhesion. SH2B1 and SH2B2 were reported to enhance nerve growth factor (NGF)-induced neuronal differentiation in PC12 cells, a well-established neuronal model system. In contrast, SH2B3 was reported to inhibit cell proliferation during the development of immune system. No study so far addresses the role of SH2B3 in the nervous system. In this study, we provide evidence suggesting that SH2B3 is expressed in the cortex of embryonic rat brain. Overexpression of SH2B3 not only inhibits NGF-induced differentiation of PC12 cells but also reduces neurite outgrowth of primary cortical neurons. SH2B3 does so by repressing NGF-induced activation of PLCγ, MEK-ERK1/2 and PI3K-AKT pathways and the expression of Egr-1. SH2B3 is capable of binding to phosphorylated NGF receptor, TrkA, as well as SH2B1β. Our data further demonstrate that overexpression of SH2B3 reduces the interaction between SH2B1β and TrkA. Consistent with this finding, overexpressing the SH2 domain of SH2B3 is sufficient to inhibit NGF-induced neurite outgrowth. Together, our data demonstrate that SH2B3, unlike the other two family members, inhibits neuronal differentiation of PC12 cells and primary cortical neurons. Its inhibitory mechanism is likely through the competition of TrkA binding with the positive-acting SH2B1 and SH2B2.

  15. Arginyltransferase ATE1 is targeted to the neuronal growth cones and regulates neurite outgrowth during brain development.

    PubMed

    Wang, Junling; Pavlyk, Iuliia; Vedula, Pavan; Sterling, Stephanie; Leu, N Adrian; Dong, Dawei W; Kashina, Anna

    2017-10-01

    Arginylation is an emerging protein modification mediated by arginyltransferase ATE1, shown to regulate embryogenesis and actin cytoskeleton, however its functions in different physiological systems are not well understood. Here we analyzed the role of ATE1 in brain development and neuronal growth by producing a conditional mouse knockout with Ate1 deletion in the nervous system driven by Nestin promoter (Nes-Ate1 mice). These mice were weaker than wild type, resulting in low postnatal survival rates, and had abnormalities in the brain that suggested defects in neuronal migration. Cultured Ate1 knockout neurons showed a reduction in the neurite outgrowth and the levels of doublecortin and F-actin in the growth cones. In wild type, ATE1 prominently localized to the growth cones, in addition to the cell bodies. Examination of the Ate1 mRNA sequence reveals the existence of putative zipcode-binding sequences involved in mRNA targeting to the cell periphery and local translation at the growth cones. Fluorescence in situ hybridization showed that Ate1 mRNA localized to the tips of the growth cones, likely due to zipcode-mediated targeting, and this localization coincided with spots of localization of arginylated β-actin, which disappeared in the presence of protein synthesis inhibitors. We propose that zipcode-mediated co-targeting of Ate1 and β-actin mRNA leads to localized co-translational arginylation of β-actin that drives the growth cone migration and neurite outgrowth. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. An Ancient P-Loop GTPase in Rice Is Regulated by a Higher Plant-specific Regulatory Protein*

    PubMed Central

    Cheung, Ming-Yan; Xue, Yan; Zhou, Liang; Li, Man-Wah; Sun, Samuel Sai-Ming; Lam, Hon-Ming

    2010-01-01

    YchF is a subfamily of the Obg family in the TRAFAC class of P-loop GTPases. The wide distribution of YchF homologues in both eukarya and bacteria suggests that they are descendents of an ancient protein, yet their physiological roles remain unclear. Using the OsYchF1-OsGAP1 pair from rice as the prototype, we provide evidence for the regulation of GTPase/ATPase activities and RNA binding capacity of a plant YchF (OsYchF1) by its regulatory protein (OsGAP1). The effects of OsGAP1 on the subcellular localization/cycling and physiological functions of OsYchF1 are also discussed. The finding that OsYchF1 and OsGAP1 are involved in plant defense response might shed light on the functional roles of YchF homologues in plants. This work suggests that during evolution, an ancestral P-loop GTPase/ATPase may acquire new regulation and function(s) by the evolution of a lineage-specific regulatory protein. PMID:20876569

  17. The small GTPase ARF6 regulates protein trafficking to control cellular function during development and in disease.

    PubMed

    Grossmann, Allie H; Zhao, Helong; Jenkins, Noah; Zhu, Weiquan; Richards, Jackson R; Yoo, Jae Hyuk; Winter, Jacob M; Rich, Bianca; Mleynek, Tara M; Li, Dean Y; Odelberg, Shannon J

    2016-12-21

    The activation of the small GTPase ARF6 has been implicated in promoting several pathological processes related to vascular instability and tumor formation, growth, and metastasis. ARF6 also plays a vital role during embryonic development. Recent studies have suggested that ARF6 carries out these disparate functions primarily by controlling protein trafficking within the cell. ARF6 helps direct proteins to intracellular or extracellular locations where they function in normal cellular responses during development and in pathological processes later in life. This transport of proteins is accomplished through a variety of mechanisms, including endocytosis and recycling, microvesicle release, and as yet uncharacterized processes. This Commentary will explore the functions of ARF6, while focusing on the role of this small GTPase in development and postnatal physiology, regulating barrier function and diseases associated with its loss, and tumor formation, growth, and metastasis.

  18. Neuronal PINCH is Regulated by TNF-α and is Required for Neurite Extension

    PubMed Central

    Jatiani, Asavari; Pannizzo, Paola; Gualco, Elisa; Del-Valle, Luis

    2011-01-01

    During HIV infection of the CNS, neurons are damaged by viral proteins, such as Tat and gp120, or by inflammatory factors, such as TNF-α, that are released from infected and/or activated glial cells. Host responses to this damage may include the induction of survival or repair mechanisms. In this context, previous studies report robust expression of a protein called particularly interesting new cysteine histidine-rich protein (PINCH), in the neurons of HIV patients’ brains, compared with nearly undetectable levels in HIV-negative individuals (Rearden et al., J Neurosci Res 86:2535–2542, 2008), suggesting PINCH’s involvement in neuronal signaling during HIV infection of the brain. To address potential triggers for PINCH induction in HIV patients’ brains, an in vitro system mimicking some aspects of HIV infection of the CNS was utilized. We investigated neuronal PINCH expression, subcellular distribution, and biological consequences of PINCH sequestration upon challenge with Tat, gp120, and TNF-α. Our results indicate that in neurons, TNF-α stimulation increases PINCH expression and changes its subcellular localization. Furthermore, PINCH mobility is required to maintain neurite extension upon challenge with TNF-α. PINCH may function as a neuron-specific host-mediated response to challenge by HIV-related factors in the CNS. PMID:20689998

  19. Dynamin GTPase Regulation is Altered by PH Domain Mutations Found in Centronuclear Myopathy Patients

    SciTech Connect

    Kenniston, J.; Lemmon, M

    2010-01-01

    The large GTPase dynamin has an important membrane scission function in receptor-mediated endocytosis and other cellular processes. Self-assembly on phosphoinositide-containing membranes stimulates dynamin GTPase activity, which is crucial for its function. Although the pleckstrin-homology (PH) domain is known to mediate phosphoinositide binding by dynamin, it remains unclear how this promotes activation. Here, we describe studies of dynamin PH domain mutations found in centronuclear myopathy (CNM) that increase dynamin's GTPase activity without altering phosphoinositide binding. CNM mutations in the PH domain C-terminal {alpha}-helix appear to cause conformational changes in dynamin that alter control of the GTP hydrolysis cycle. These mutations either 'sensitize' dynamin to lipid stimulation or elevate basal GTPase rates by promoting self-assembly and thus rendering dynamin no longer lipid responsive. We also describe a low-resolution structure of dimeric dynamin from small-angle X-ray scattering that reveals conformational changes induced by CNM mutations, and defines requirements for domain rearrangement upon dynamin self-assembly at membrane surfaces. Our data suggest that changes in the PH domain may couple lipid binding to dynamin GTPase activation at sites of vesicle invagination.

  20. Regulators of G-protein Signaling accelerate GPCR signaling kinetics and govern sensitivity solely by accelerating GTPase activity

    PubMed Central

    Lambert, Nevin A.; Johnston, Christopher A.; Cappell, Steven D.; Kuravi, Sudhakiranmayi; Kimple, Adam J.; Willard, Francis S.; Siderovski, David P.

    2010-01-01

    G-protein heterotrimers, composed of a guanine nucleotide-binding Gα subunit and an obligate Gβγ dimer, regulate signal transduction pathways by cycling between GDP- and GTP-bound states. Signal deactivation is achieved by Gα-mediated GTP hydrolysis (GTPase activity) which is enhanced by the GTPase-accelerating protein (GAP) activity of “regulator of G-protein signaling” (RGS) proteins. In a cellular context, RGS proteins have also been shown to speed up the onset of signaling, and to accelerate deactivation without changing amplitude or sensitivity of the signal. This latter paradoxical activity has been variably attributed to GAP/enzymatic or non-GAP/scaffolding functions of these proteins. Here, we validated and exploited a Gα switch-region point mutation, known to engender increased GTPase activity, to mimic in cis the GAP function of RGS proteins. While the transition-state, GDP·AlF4 −-bound conformation of the G202A mutant was found to be nearly identical to wild-type, Gαi1(G202A)·GDP assumed a divergent conformation more closely resembling the GDP·AlF4 −-bound state. When placed within Saccharomyces cerevisiae Gα subunit Gpa1, the fast-hydrolysis mutation restored appropriate dose–response behaviors to pheromone signaling in the absence of RGS-mediated GAP activity. A bioluminescence resonance energy transfer (BRET) readout of heterotrimer activation with high temporal resolution revealed that fast intrinsic GTPase activity could recapitulate in cis the kinetic sharpening (increased onset and deactivation rates) and blunting of sensitivity also engendered by RGS protein action in trans. Thus Gα-directed GAP activity, the first biochemical function ascribed to RGS proteins, is sufficient to explain the activation kinetics and agonist sensitivity observed from G-protein–coupled receptor (GPCR) signaling in a cellular context. PMID:20351284

  1. The adhesion molecule KAL-1/anosmin-1 regulates neurite branching through a SAX-7/L1CAM–EGL-15/FGFR receptor complex

    PubMed Central

    Díaz-Balzac, Carlos A.; Lázaro-Peña, María I.; Ramos-Ortiz, Gibram A.; Bülow, Hannes E.

    2015-01-01

    Summary Neurite branching is essential for correct assembly of neural circuits, yet remains a poorly understood process. For example, the neural cell adhesion molecule KAL-1/anosmin-1, which is mutated in Kallmann Syndrome regulates neurite branching through mechanisms largely unknown. Here we show that KAL-1/anosmin-1 mediates neurite branching as an autocrine co-factor with EGL-17/FGF through a receptor complex consisting of the conserved cell adhesion molecule SAX-7/L1CAM and the fibroblast growth factor receptor EGL-15/FGFR. This protein complex, which appears conserved in humans, requires the immunoglobulin (Ig) domains of SAX-7/L1CAM and the FN(III) domains of KAL-1/anosmin-1 for formation in vitro as well as function in vivo. The kinase domain of the EGL-15/FGFR is required for branching, and genetic evidence suggests that ras-mediated signaling downstream of EGL-15/FGFR is necessary to effect branching. Our studies establish a molecular pathway that regulates neurite branching during development of the nervous system. PMID:26004184

  2. Up-regulation of miR-26a promotes neurite outgrowth and ameliorates apoptosis by inhibiting PTEN in bupivacaine injured mouse dorsal root ganglia.

    PubMed

    Cui, Changlei; Xu, Gong; Qiu, Jinpeng; Fan, Xiushuang

    2015-08-01

    Local anesthetic of bupivacaine may inhibit neurite outgrowth and induce apoptosis in mouse dorsal root ganglia (DRG) neurons. In this work, we intended to investigate the functional role of microRNA 26a (miR-26a) in regulating bupivacaine-induced nerve injury in DRG neurons. DRG neurons were extracted from C57BL/6 mice and cultured in vitro. Bupivacaine was applied in vitro and it induced apoptosis, inhibited neurite growth, and significantly down-regulated miR-26a gene in DRG neurons. MiR-26a mimic was then used to up-regulate miR-26a expression in DRG neurons. We found that miR-26a up-regulation promoted neurite outgrowth and reduced apoptosis in bupivacaine-injured DRG neurons. Luciferase assay and Western blot confirmed that Phosphatase and tensin homolog (PTEN) was down-stream target of miR-26a in DRG neurons. Ectopic PTEN up-regulation was then able to reverse the protective effect of miR-26a overexpression on bupivacaine-induced nerve injury in DRG neurons. Overall, this work demonstrated that miR-26a had a functional role in regulating bupivacaine-induced nerve injury in DRG neurons. Up-regulating miR-26a to suppress PTEN signaling pathway may be an effective method to protect local anesthetic-induced nerve injury in spinal cord.

  3. Up-regulation and activation of the P2Y(2) nucleotide receptor mediate neurite extension in IL-1β-treated mouse primary cortical neurons.

    PubMed

    Peterson, Troy S; Thebeau, Christina N; Ajit, Deepa; Camden, Jean M; Woods, Lucas T; Wood, W Gibson; Petris, Michael J; Sun, Grace Y; Erb, Laurie; Weisman, Gary A

    2013-06-01

    The pro-inflammatory cytokine interleukin-1β (IL-1β), whose levels are elevated in the brain in Alzheimer's and other neurodegenerative diseases, has been shown to have both detrimental and beneficial effects on disease progression. In this article, we demonstrate that incubation of mouse primary cortical neurons (mPCNs) with IL-1β increases the expression of the P2Y2 nucleotide receptor (P2Y2R) and that activation of the up-regulated receptor with UTP, a relatively selective agonist of the P2Y2R, increases neurite outgrowth. Consistent with the accepted role of cofilin in the regulation of neurite extension, results indicate that incubation of IL-1β-treated mPCNs with UTP increases the phosphorylation of cofilin, a response absent in PCNs isolated from P2Y2R(-/-) mice. Other findings indicate that function-blocking anti-αv β3/5 integrin antibodies prevent UTP-induced cofilin activation in IL-1β-treated mPCNs, suggesting that established P2Y2R/αv β3/5 interactions that promote G12 -dependent Rho activation lead to cofilin phosphorylation involved in neurite extension. Cofilin phosphorylation induced by UTP in IL-1β-treated mPCNs is also decreased by inhibitors of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), suggesting a role for P2Y2R-mediated and Gq-dependent calcium mobilization in neurite outgrowth. Taken together, these studies indicate that up-regulation of P2Y2Rs in mPCNs under pro-inflammatory conditions can promote cofilin-dependent neurite outgrowth, a neuroprotective response that may be a novel pharmacological target in the treatment of neurodegenerative diseases. © 2013 International Society for Neurochemistry.

  4. Ras GTPase-Activating Protein Regulation of Actin Cytoskeleton and Hyphal Polarity in Aspergillus nidulans▿ †

    PubMed Central

    Harispe, Laura; Portela, Cecilia; Scazzocchio, Claudio; Peñalva, Miguel A.; Gorfinkiel, Lisette

    2008-01-01

    Aspergillus nidulans gapA1, a mutation leading to compact, fluffy colonies and delayed polarity establishment, maps to a gene encoding a Ras GTPase-activating protein. Domain organization and phylogenetic analyses strongly indicate that GapA regulates one or more “true” Ras proteins. A gapAΔ strain is viable. gapA colonies are more compact than gapA1 colonies and show reduced conidiation. gapAΔ strains have abnormal conidiophores, characterized by the absence of one of the two layers of sterigmata seen in the wild type. gapA transcript levels are very low in conidia but increase during germination and reach their maximum at a time coincident with germ tube emergence. Elevated levels persist in hyphae. In germinating conidiospores, gapAΔ disrupts the normal coupling of isotropic growth, polarity establishment, and mitosis, resulting in a highly heterogeneous cell population, including malformed germlings and a class of giant cells with no germ tubes and a multitude of nuclei. Unlike wild-type conidia, gapAΔ conidia germinate without a carbon source. Giant multinucleated spores and carbon source-independent germination have been reported in strains carrying a rasA dominant active allele, indicating that GapA downregulates RasA. gapAΔ cells show a polarity maintenance defect characterized by apical swelling and subapical branching. The strongly polarized wild-type F-actin distribution is lost in gapAΔ cells. As GapA-green fluorescent protein shows cortical localization with strong predominance at the hyphal tips, we propose that GapA-mediated downregulation of Ras signaling at the plasma membrane of these tips is involved in the polarization of the actin cytoskeleton that is required for hyphal growth and, possibly, for asexual morphogenesis. PMID:18039943

  5. Synapse Formation in Monosynaptic Sensory–Motor Connections Is Regulated by Presynaptic Rho GTPase Cdc42

    PubMed Central

    Imai, Fumiyasu; Ladle, David R.; Leslie, Jennifer R.; Duan, Xin; Rizvi, Tilat A.; Ciraolo, Georgianne M.; Zheng, Yi

    2016-01-01

    Spinal reflex circuit development requires the precise regulation of axon trajectories, synaptic specificity, and synapse formation. Of these three crucial steps, the molecular mechanisms underlying synapse formation between group Ia proprioceptive sensory neurons and motor neurons is the least understood. Here, we show that the Rho GTPase Cdc42 controls synapse formation in monosynaptic sensory–motor connections in presynaptic, but not postsynaptic, neurons. In mice lacking Cdc42 in presynaptic sensory neurons, proprioceptive sensory axons appropriately reach the ventral spinal cord, but significantly fewer synapses are formed with motor neurons compared with wild-type mice. Concordantly, electrophysiological analyses show diminished EPSP amplitudes in monosynaptic sensory–motor circuits in these mutants. Temporally targeted deletion of Cdc42 in sensory neurons after sensory–motor circuit establishment reveals that Cdc42 does not affect synaptic transmission. Furthermore, addition of the synaptic organizers, neuroligins, induces presynaptic differentiation of wild-type, but not Cdc42-deficient, proprioceptive sensory neurons in vitro. Together, our findings demonstrate that Cdc42 in presynaptic neurons is required for synapse formation in monosynaptic sensory–motor circuits. SIGNIFICANCE STATEMENT Group Ia proprioceptive sensory neurons form direct synapses with motor neurons, but the molecular mechanisms underlying synapse formation in these monosynaptic sensory–motor connections are unknown. We show that deleting Cdc42 in sensory neurons does not affect proprioceptive sensory axon targeting because axons reach the ventral spinal cord appropriately, but these neurons form significantly fewer presynaptic terminals on motor neurons. Electrophysiological analysis further shows that EPSPs are decreased in these mice. Finally, we demonstrate that Cdc42 is involved in neuroligin-dependent presynaptic differentiation of proprioceptive sensory neurons in vitro

  6. Functional interaction of Parkinson's disease-associated LRRK2 with members of the dynamin GTPase superfamily

    PubMed Central

    Stafa, Klodjan; Tsika, Elpida; Moser, Roger; Musso, Alessandra; Glauser, Liliane; Jones, Amy; Biskup, Saskia; Xiong, Yulan; Bandopadhyay, Rina; Dawson, Valina L.; Dawson, Ted M.; Moore, Darren J.

    2014-01-01

    Mutations in LRRK2 cause autosomal dominant Parkinson's disease (PD). LRRK2 encodes a multi-domain protein containing GTPase and kinase domains, and putative protein–protein interaction domains. Familial PD mutations alter the GTPase and kinase activity of LRRK2 in vitro. LRRK2 is suggested to regulate a number of cellular pathways although the underlying mechanisms are poorly understood. To explore such mechanisms, it has proved informative to identify LRRK2-interacting proteins, some of which serve as LRRK2 kinase substrates. Here, we identify common interactions of LRRK2 with members of the dynamin GTPase superfamily. LRRK2 interacts with dynamin 1–3 that mediate membrane scission in clathrin-mediated endocytosis and with dynamin-related proteins that mediate mitochondrial fission (Drp1) and fusion (mitofusins and OPA1). LRRK2 partially co-localizes with endosomal dynamin-1 or with mitofusins and OPA1 at mitochondrial membranes. The subcellular distribution and oligomeric complexes of dynamin GTPases are not altered by modulating LRRK2 in mouse brain, whereas mature OPA1 levels are reduced in G2019S PD brains. LRRK2 enhances mitofusin-1 GTP binding, whereas dynamin-1 and OPA1 serve as modest substrates of LRRK2-mediated phosphorylation in vitro. While dynamin GTPase orthologs are not required for LRRK2-induced toxicity in yeast, LRRK2 functionally interacts with dynamin-1 and mitofusin-1 in cultured neurons. LRRK2 attenuates neurite shortening induced by dynamin-1 by reducing its levels, whereas LRRK2 rescues impaired neurite outgrowth induced by mitofusin-1 potentially by reversing excessive mitochondrial fusion. Our study elucidates novel functional interactions of LRRK2 with dynamin-superfamily GTPases that implicate LRRK2 in the regulation of membrane dynamics important for endocytosis and mitochondrial morphology. PMID:24282027

  7. RNAi screens for Rho GTPase regulators of cell shape and YAP/TAZ localisation in triple negative breast cancer.

    PubMed

    Pascual-Vargas, Patricia; Cooper, Samuel; Sero, Julia; Bousgouni, Vicky; Arias-Garcia, Mar; Bakal, Chris

    2017-03-01

    In order to metastasise, triple negative breast cancer (TNBC) must make dynamic changes in cell shape. The shape of all eukaryotic cells is regulated by Rho Guanine Nucleotide Exchange Factors (RhoGEFs), which activate Rho-family GTPases in response to mechanical and informational cues. In contrast, Rho GTPase-activating proteins (RhoGAPs) inhibit Rho GTPases. However, which RhoGEFs and RhoGAPS couple TNBC cell shape to changes in their environment is very poorly understood. Moreover, whether the activity of particular RhoGEFs and RhoGAPs become dysregulated as cells evolve the ability to metastasise is not clear. Towards the ultimate goal of identifying RhoGEFs and RhoGAPs that are essential for TNBC metastasis, we performed an RNAi screen to isolate RhoGEFs and RhoGAPs that contribute to the morphogenesis of the highly metastatic TNBC cell line LM2, and its less-metastatic parental cell line MDA-MB-231. For ~6 million cells from each cell line, we measured 127 different features following the depletion of 142 genes. Using a linear classifier scheme we also describe the morphological heterogeneity of each gene-depleted population.

  8. RNAi screens for Rho GTPase regulators of cell shape and YAP/TAZ localisation in triple negative breast cancer

    PubMed Central

    Pascual-Vargas, Patricia; Cooper, Samuel; Sero, Julia; Bousgouni, Vicky; Arias-Garcia, Mar; Bakal, Chris

    2017-01-01

    In order to metastasise, triple negative breast cancer (TNBC) must make dynamic changes in cell shape. The shape of all eukaryotic cells is regulated by Rho Guanine Nucleotide Exchange Factors (RhoGEFs), which activate Rho-family GTPases in response to mechanical and informational cues. In contrast, Rho GTPase-activating proteins (RhoGAPs) inhibit Rho GTPases. However, which RhoGEFs and RhoGAPS couple TNBC cell shape to changes in their environment is very poorly understood. Moreover, whether the activity of particular RhoGEFs and RhoGAPs become dysregulated as cells evolve the ability to metastasise is not clear. Towards the ultimate goal of identifying RhoGEFs and RhoGAPs that are essential for TNBC metastasis, we performed an RNAi screen to isolate RhoGEFs and RhoGAPs that contribute to the morphogenesis of the highly metastatic TNBC cell line LM2, and its less-metastatic parental cell line MDA-MB-231. For ~6 million cells from each cell line, we measured 127 different features following the depletion of 142 genes. Using a linear classifier scheme we also describe the morphological heterogeneity of each gene-depleted population. PMID:28248929

  9. The all-trans retinoic acid (atRA)-regulated gene Calmin (Clmn) regulates cell cycle exit and neurite outgrowth in murine neuroblastoma (Neuro2a) cells

    SciTech Connect

    Marzinke, Mark A.; Clagett-Dame, Margaret

    2012-01-01

    The vitamin A metabolite all-trans retinoic acid (atRA) functions in nervous system development and regulates cell proliferation and differentiation. Neuroblastoma cells (SH-SY5Y and Neuro2a or N2A) exposed to atRA undergo growth inhibition and neuronal differentiation, both of which are preceded by an increase in Clmn mRNA. Treatment of N2A cells with atRA produces a reduction in phosphohistone 3 immunostaining and BrdU incorporation, both indicators of a reduction in cell proliferation. These effects are nearly eliminated in atRA-treated shClmn knockdown cells. Loss of Clmn in the mouse N2A cell line also results in a significant reduction of atRA-mediated neurite outgrowth, a response that can be rescued by reintroduction of the Clmn sequence. In contrast, ectopic overexpression of Clmn produces an increase in the cyclin dependent kinase inhibitor, p21{sup Cip1}, a decrease in cyclin D1 protein and an increase in hypophosphorylated Rb, showing that Clmn participates in G{sub 1}/S arrest. Clmn overexpression alone is sufficient to inhibit N2A cell proliferation, whereas both Clmn and atRA must be present to induce neurite outgrowth. This study shows that the atRA-responsive gene Clmn promotes exit from the cell cycle, a requisite event for neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer Calmin is a retinoic acid-responsive gene. Black-Right-Pointing-Pointer Calmin promotes cell cycle exit in N2A cells. Black-Right-Pointing-Pointer Calmin overexpression increases p21Cip1 and decreases cyclin D1. Black-Right-Pointing-Pointer Calmin is required for RA-induced growth inhibition and neurite outgrowth.

  10. Minocycline Promotes Neurite Outgrowth of PC12 Cells Exposed to Oxygen-Glucose Deprivation and Reoxygenation Through Regulation of MLCP/MLC Signaling Pathways.

    PubMed

    Tao, Tao; Feng, Jin-Zhou; Xu, Guang-Hui; Fu, Jie; Li, Xiao-Gang; Qin, Xin-Yue

    2017-04-01

    Minocycline, a semi-synthetic second-generation derivative of tetracycline, has been reported to exert neuroprotective effects both in animal models and in clinic trials of neurological diseases. In the present study, we first investigated the protective effects of minocycline on oxygen-glucose deprivation and reoxygenation-induced impairment of neurite outgrowth and its potential mechanism in the neuronal cell line, PC12 cells. We found that minocycline significantly increased cell viability, promoted neurite outgrowth and enhanced the expression of growth-associated protein-43 (GAP-43) in PC12 cells exposed to oxygen-glucose deprivation/reoxygenation injury. In addition, immunoblots revealed that minocycline reversed the overexpression of phosphorylated myosin light chain (MLC) and the suppression of activated extracellular signal-regulated kinase 1/2 (ERK1/2) caused by oxygen-glucose deprivation/reoxygenation injury. Moreover, the minocycline-induced neurite outgrowth was significantly blocked by Calyculin A (1 nM), an inhibitor of myosin light chain phosphatase (MLCP), but not by an ERK1/2 inhibitor (U0126; 10 μM). These findings suggested that minocycline activated the MLCP/MLC signaling pathway in PC12 cells after oxygen-glucose deprivation/reoxygenation injury, which resulted in the promotion of neurite outgrowth.

  11. The Jaw of the Worm: GTPase-activating Protein EAT-17 Regulates Grinder Formation in Caenorhabditis elegans

    PubMed Central

    Straud, Sarah; Lee, Inhwan; Song, Bomi; Avery, Leon; You, Young-Jai

    2013-01-01

    Constitutive transport of cellular materials is essential for cell survival. Although multiple small GTPase Rab proteins are required for the process, few regulators of Rabs are known. Here we report that EAT-17, a novel GTPase-activating protein (GAP), regulates RAB-6.2 function in grinder formation in Caenorhabditis elegans. We identified EAT-17 as a novel RabGAP that interacts with RAB-6.2, a protein that presumably regulates vesicle trafficking between Golgi, the endoplasmic reticulum, and plasma membrane to form a functional grinder. EAT-17 has a canonical GAP domain that is critical for its function. RNA interference against 25 confirmed and/or predicted RABs in C. elegans shows that RNAi against rab-6.2 produces a phenotype identical to eat-17. A directed yeast two-hybrid screen using EAT-17 as bait and each of the 25 RAB proteins as prey identifies RAB-6.2 as the interacting partner of EAT-17, confirming that RAB-6.2 is a specific substrate of EAT-17. Additionally, deletion mutants of rab-6.2 show grinder defects identical to those of eat-17 loss-of-function mutants, and both RAB-6.2 and EAT-17 are expressed in the terminal bulb of the pharynx where the grinder is located. Collectively, these results suggest that EAT-17 is a specific GTPase-activating protein for RAB-6.2. Based on the conserved function of Rab6 in vesicular transport, we propose that EAT-17 regulates the turnover rate of RAB-6.2 activity in cargo trafficking for grinder formation. PMID:23792950

  12. The jaw of the worm: GTPase-activating protein EAT-17 regulates grinder formation in Caenorhabditis elegans.

    PubMed

    Straud, Sarah; Lee, Inhwan; Song, Bomi; Avery, Leon; You, Young-Jai

    2013-09-01

    Constitutive transport of cellular materials is essential for cell survival. Although multiple small GTPase Rab proteins are required for the process, few regulators of Rabs are known. Here we report that EAT-17, a novel GTPase-activating protein (GAP), regulates RAB-6.2 function in grinder formation in Caenorhabditis elegans. We identified EAT-17 as a novel RabGAP that interacts with RAB-6.2, a protein that presumably regulates vesicle trafficking between Golgi, the endoplasmic reticulum, and plasma membrane to form a functional grinder. EAT-17 has a canonical GAP domain that is critical for its function. RNA interference against 25 confirmed and/or predicted RABs in C. elegans shows that RNAi against rab-6.2 produces a phenotype identical to eat-17. A directed yeast two-hybrid screen using EAT-17 as bait and each of the 25 RAB proteins as prey identifies RAB-6.2 as the interacting partner of EAT-17, confirming that RAB-6.2 is a specific substrate of EAT-17. Additionally, deletion mutants of rab-6.2 show grinder defects identical to those of eat-17 loss-of-function mutants, and both RAB-6.2 and EAT-17 are expressed in the terminal bulb of the pharynx where the grinder is located. Collectively, these results suggest that EAT-17 is a specific GTPase-activating protein for RAB-6.2. Based on the conserved function of Rab6 in vesicular transport, we propose that EAT-17 regulates the turnover rate of RAB-6.2 activity in cargo trafficking for grinder formation.

  13. Teneurin-4 promotes cellular protrusion formation and neurite outgrowth through focal adhesion kinase signaling

    PubMed Central

    Suzuki, Nobuharu; Numakawa, Tadahiro; Chou, Joshua; de Vega, Susana; Mizuniwa, Chihiro; Sekimoto, Kaori; Adachi, Naoki; Kunugi, Hiroshi; Arikawa-Hirasawa, Eri; Yamada, Yoshihiko; Akazawa, Chihiro

    2014-01-01

    Teneurin-4 (Ten-4), a transmembrane protein, is highly expressed in the central nervous system; however, its cellular and molecular function in neuronal differentiation remains unknown. In this study, we aimed to elucidate the function of Ten-4 in neurite outgrowth. Ten-4 expression was induced during neurite outgrowth of the neuroblastoma cell line Neuro-2a. Ten-4 protein was localized at the neurite growth cones. Knockdown of Ten-4 expression in Neuro-2a cells decreased the formation of the filopodia-like protrusions and the length of individual neurites. Conversely, overexpression of Ten-4 promoted filopodia-like protrusion formation. In addition, knockdown and overexpression of Ten-4 reduced and elevated the activation of focal adhesion kinase (FAK) and Rho-family small GTPases, Cdc42 and Rac1, key molecules for the membranous protrusion formation downstream of FAK, respectively. Inhibition of the activation of FAK and neural Wiskott-Aldrich syndrome protein (N-WASP), which is a downstream regulator of FAK and Cdc42, blocked protrusion formation by Ten-4 overexpression. Further, Ten-4 colocalized with phosphorylated FAK in the filopodia-like protrusion regions. Together, our findings show that Ten-4 is a novel positive regulator of cellular protrusion formation and neurite outgrowth through the FAK signaling pathway.—Suzuki, N., Numakawa, T., Chou, J., de Vega, S., Mizuniwa, C., Sekimoto, K., Adachi, N., Kunugi, H., Arikawa-Hirasawa, E., Yamada, Y., Akazawa, C. Teneurin-4 promotes cellular protrusion formation and neurite outgrowth through focal adhesion kinase signaling. PMID:24344332

  14. The all-trans retinoic acid (atRA)-regulated gene Calmin (Clmn) regulates cell cycle exit and neurite outgrowth in murine neuroblastoma (Neuro2a) cells.

    PubMed

    Marzinke, Mark A; Clagett-Dame, Margaret

    2012-01-01

    The vitamin A metabolite all-trans retinoic acid (atRA) functions in nervous system development and regulates cell proliferation and differentiation. Neuroblastoma cells (SH-SY5Y and Neuro2a or N2A) exposed to atRA undergo growth inhibition and neuronal differentiation, both of which are preceded by an increase in Clmn mRNA. Treatment of N2A cells with atRA produces a reduction in phosphohistone 3 immunostaining and BrdU incorporation, both indicators of a reduction in cell proliferation. These effects are nearly eliminated in atRA-treated shClmn knockdown cells. Loss of Clmn in the mouse N2A cell line also results in a significant reduction of atRA-mediated neurite outgrowth, a response that can be rescued by reintroduction of the Clmn sequence. In contrast, ectopic overexpression of Clmn produces an increase in the cyclin dependent kinase inhibitor, p21(Cip1), a decrease in cyclin D1 protein and an increase in hypophosphorylated Rb, showing that Clmn participates in G(1)/S arrest. Clmn overexpression alone is sufficient to inhibit N2A cell proliferation, whereas both Clmn and atRA must be present to induce neurite outgrowth. This study shows that the atRA-responsive gene Clmn promotes exit from the cell cycle, a requisite event for neuronal differentiation.

  15. Spatial Phosphoprotein Profiling Reveals a Compartmentalized Extracellular Signal-regulated Kinase Switch Governing Neurite Growth and Retraction

    SciTech Connect

    Wang, Yingchun; Yang, Feng; Fu, Yi; Huang, Xiahe; Wang, Wei; Jiang, Xining; Gritsenko, Marina A.; Zhao, Rui; Monroe, Matthew E.; Pertz, Olivier C.; Purvine, Samuel O.; Orton, Daniel J.; Jacobs, Jon M.; Camp, David G.; Smith, Richard D.; Klemke, Richard L.

    2011-05-20

    Abstract - Brain development and spinal cord regeneration require neurite sprouting and growth cone navigation in response to extension and collapsing factors present in the extracellular environment. These external guidance cues control neurite growth cone extension and retraction processes through intracellular protein phosphorylation of numerous cytoskeletal, adhesion, and polarity complex signaling proteins. However, the complex kinase/substrate signaling networks that mediate neuritogenesis have not been investigated. Here, we compare the neurite phosphoproteome under growth and retraction conditions using neurite purification methodology combined with mass spectrometry. More than 4000 non-redundant phosphorylation sites from 1883 proteins have been annotated and mapped to signaling pathways that control kinase/phosphatase networks, cytoskeleton remodeling, and axon/dendrite specification. Comprehensive informatics and functional studies revealed a compartmentalized ERK activation/deactivation cytoskeletal switch that governs neurite growth and retraction, respectively. Our findings provide the first system-wide analysis of the phosphoprotein signaling networks that enable neurite growth and retraction and reveal an important molecular switch that governs neuritogenesis.

  16. Cobalt chloride induces neurite outgrowth in rat pheochromocytoma PC-12 cells through regulation of endothelin-2/vasoactive intestinal contractor.

    PubMed

    Kotake-Nara, Eiichi; Takizawa, Satoshi; Quan, Jiexia; Wang, Hongyu; Saida, Kaname

    2005-08-15

    We investigated whether endothelin-2/vasoactive intestinal contractor (ET-2/VIC) gene expression, upregulated by hypoxia in cancer cells, was associated with differentiation in neuronal cells. RT-PCR analysis, morphological observations, and immunostaining revealed that CoCl2, a hypoxic mimetic agent, at 200 microM increased expression of the ET-2/VIC gene, decreased expression of the ET-1 gene, and induced neurite outgrowth in PC-12 rat pheochromocytoma cells. These effects induced by 200 microM CoCl2 were completely inhibited by the antioxidant N-acetyl cysteine at 20 mM. In addition, CoCl2 increased the level of intracellular reactive oxygen species (ROS) at an early stage. Furthermore, interleukin (IL)-6 gene expression was upregulated upon the differentiation induced by CoCl2. These results suggest that expression of ET-2/VIC and ET-1 mediated by ROS may be associated with neuronal differentiation through the regulation of IL-6. When the cells were treated with 500 microM CoCl2 for 24 hr, however, ET-2/VIC gene expression disappeared, IL-6 gene expression was downregulated, and necrosis was subsequently induced in the PC-12 cells.

  17. Rho GTPase-activating bacterial toxins: from bacterial virulence regulation to eukaryotic cell biology.

    PubMed

    Lemonnier, Marc; Landraud, Luce; Lemichez, Emmanuel

    2007-09-01

    Studies on the interactions of bacterial pathogens with their host have provided an invaluable source of information on the major functions of eukaryotic and prokaryotic cell biology. In addition, this expanding field of research, known as cellular microbiology, has revealed fascinating examples of trans-kingdom functional interplay. Bacterial factors actually exploit eukaryotic cell machineries using refined molecular strategies to promote invasion and proliferation within their host. Here, we review a family of bacterial toxins that modulate their activity in eukaryotic cells by activating Rho GTPases and exploiting the ubiquitin/proteasome machineries. This family, found in human and animal pathogenic Gram-negative bacteria, encompasses the cytotoxic necrotizing factors (CNFs) from Escherichia coli and Yersinia species as well as dermonecrotic toxins from Bordetella species. We survey the genetics, biochemistry, molecular and cellular biology of these bacterial factors from the standpoint of the CNF1 toxin, the paradigm of Rho GTPase-activating toxins produced by urinary tract infections causing pathogenic Escherichia coli. Because it reveals important connections between bacterial invasion and the host inflammatory response, the mode of action of CNF1 and its related Rho GTPase-targetting toxins addresses major issues of basic and medical research and constitutes a privileged experimental model for host-pathogen interaction.

  18. Rho GTPases, oxidation, and cell redox control

    PubMed Central

    Hobbs, G Aaron; Zhou, Bingying; Cox, Adrienne D; Campbell, Sharon L

    2014-01-01

    While numerous studies support regulation of Ras GTPases by reactive oxygen and nitrogen species, the Rho subfamily has received considerably less attention. Over the last few years, increasing evidence is emerging that supports the redox sensitivity of Rho GTPases. Moreover, as Rho GTPases regulate the cellular redox state by controlling enzymes that generate and convert reactive oxygen and nitrogen species, redox feedback loops likely exist. Here, we provide an overview of cellular oxidants, Rho GTPases, and their inter-dependence. PMID:24809833

  19. Extremely Low-Frequency Electromagnetic Fields Promote In Vitro Neuronal Differentiation and Neurite Outgrowth of Embryonic Neural Stem Cells via Up-Regulating TRPC1

    PubMed Central

    Ma, Qinlong; Chen, Chunhai; Deng, Ping; Zhu, Gang; Lin, Min; Zhang, Lei; Xu, Shangcheng; He, Mindi; Lu, Yonghui; Duan, Weixia; Pi, Huifeng; Cao, Zhengwang; Pei, Liping; Li, Min; Liu, Chuan; Zhang, Yanwen; Zhong, Min; Zhou, Zhou; Yu, Zhengping

    2016-01-01

    Exposure to extremely low-frequency electromagnetic fields (ELF-EMFs) can enhance hippocampal neurogenesis in adult mice. However, little is focused on the effects of ELF-EMFs on embryonic neurogenesis. Here, we studied the potential effects of ELF-EMFs on embryonic neural stem cells (eNSCs). We exposed eNSCs to ELF-EMF (50 Hz, 1 mT) for 1, 2, and 3 days with 4 hours per day. We found that eNSC proliferation and maintenance were significantly enhanced after ELF-EMF exposure in proliferation medium. ELF-EMF exposure increased the ratio of differentiated neurons and promoted the neurite outgrowth of eNSC-derived neurons without influencing astrocyes differentiation and the cell apoptosis. In addition, the expression of the proneural genes, NeuroD and Ngn1, which are crucial for neuronal differentiation and neurite outgrowth, was increased after ELF-EMF exposure. Moreover, the expression of transient receptor potential canonical 1 (TRPC1) was significantly up-regulated accompanied by increased the peak amplitude of intracellular calcium level induced by ELF-EMF. Furthermore, silencing TRPC1 expression eliminated the up-regulation of the proneural genes and the promotion of neuronal differentiation and neurite outgrowth induced by ELF-EMF. These results suggest that ELF-EMF exposure promotes the neuronal differentiation and neurite outgrowth of eNSCs via up-regulation the expression of TRPC1 and proneural genes (NeuroD and Ngn1). These findings also provide new insights in understanding the effects of ELF-EMF exposure on embryonic brain development. PMID:26950212

  20. The targeting of the atToc159 preprotein receptor to the chloroplast outer membrane is mediated by its GTPase domain and is regulated by GTP

    PubMed Central

    Smith, Matthew D.; Hiltbrunner, Andreas; Kessler, Felix; Schnell, Danny J.

    2002-01-01

    The multimeric translocon at the outer envelope membrane of chloroplasts (Toc) initiates the recognition and import of nuclear-encoded preproteins into chloroplasts. Two Toc GTPases, Toc159 and Toc33/34, mediate preprotein recognition and regulate preprotein translocation. Although these two proteins account for the requirement of GTP hydrolysis for import, the functional significance of GTP binding and hydrolysis by either GTPase has not been defined. A recent study indicates that Toc159 is equally distributed between a soluble cytoplasmic form and a membrane-inserted form, raising the possibility that it might cycle between the cytoplasm and chloroplast as a soluble preprotein receptor. In the present study, we examined the mechanism of targeting and insertion of the Arabidopsis thaliana orthologue of Toc159, atToc159, to chloroplasts. Targeting of atToc159 to the outer envelope membrane is strictly dependent only on guanine nucleotides. Although GTP is not required for initial binding, the productive insertion and assembly of atToc159 into the Toc complex requires its intrinsic GTPase activity. Targeting is mediated by direct binding between the GTPase domain of atToc159 and the homologous GTPase domain of atToc33, the Arabidopsis Toc33/34 orthologue. Our findings demonstrate a role for the coordinate action of the Toc GTPases in assembly of the functional Toc complex at the chloroplast outer envelope membrane. PMID:12473690

  1. Ethanol impairs Rho GTPase signaling and differentiation of cerebellar granule neurons in a rodent model of fetal alcohol syndrome.

    PubMed

    Joshi, S; Guleria, R S; Pan, J; Bayless, K J; Davis, G E; Dipette, D; Singh, U S

    2006-12-01

    Developmental exposure to ethanol impairs fetal brain development and causes fetal alcohol syndrome. Although the cerebellum is one of the most alcohol-sensitive brain areas, signaling mechanisms underlying the deleterious effects of ethanol on developing cerebellar granule neurons (CGNs) are largely unknown. Here we describe the effects of in vivo ethanol exposure on neurite formation in CGNs and on the activation of Rho GTPases (RhoA and Rac1), regulators of neurite formation. Exposure of 7-day-old rat pups to ethanol for 3 h moderately increased blood alcohol concentration (BAC) ( approximately 40 mM) and inhibited neurite formation and Rac1 activation in CGNs. Longer exposure to ethanol for 5 h resulted in higher BAC ( approximately 80 mM), induced apoptosis, inhibited Rac1, and activated RhoA. Studies demonstrated a regulatory role of Rho GTPases in differentiation of cerebellar neurons, and indicated that ethanol-associated impairment of Rho GTPase signaling might contribute to brain defects observed in fetal alcohol syndrome.

  2. Regulation of cell-cell adhesion of MDCK cells by Cdc42 and Rac1 small GTPases.

    PubMed

    Kuroda, S; Fukata, M; Fujii, K; Nakamura, T; Izawa, I; Kaibuchi, K

    1997-11-17

    Rac1, a member of the Rho small GTPases family, has recently been shown to be involved in the regulation of cell-cell adhesion mediated by cadherin. Here we showed that Cdc42, another member of Rho family, accumulated at cell-cell contact sites. Microinjection of Rho GDI, a negative regulator of the Rho family members, into Madin-Darby canine kidney (MDCK) cells resulted in perturbation of epithelial cell morphology and of cell-cell and cell-substratum adhesions, and comicroinjection of dominant active Cdc42 or Rac1 reversed the action of Rho GDI, suggesting that the active form of Cdc42 or Rac1 is required for maintaining the cell-cell and cell-substratum adhesions. These observations suggest that Cdc42, in addition to Rac1, can regulate the cell-cell adhesion.

  3. Rho GTPases in platelet function.

    PubMed

    Aslan, J E; McCarty, O J T

    2013-01-01

    The Rho family of GTP binding proteins, also commonly referred to as the Rho GTPases, are master regulators of the platelet cytoskeleton and platelet function. These low-molecular-weight or 'small' GTPases act as signaling switches in the spatial and temporal transduction, and amplification of signals from platelet cell surface receptors to the intracellular signaling pathways that drive platelet function. The Rho GTPase family members RhoA, Cdc42 and Rac1 have emerged as key regulators in the dynamics of the actin cytoskeleton in platelets and play key roles in platelet aggregation, secretion, spreading and thrombus formation. Rho GTPase regulators, including GEFs and GAPs and downstream effectors, such as the WASPs, formins and PAKs, may also regulate platelet activation and function. In this review, we provide an overview of Rho GTPase signaling in platelet physiology. Previous studies of Rho GTPases and platelets have had a shared history, as platelets have served as an ideal, non-transformed cellular model to characterize Rho function. Likewise, recent studies of the cell biology of Rho GTPase family members have helped to build an understanding of the molecular regulation of platelet function and will continue to do so through the further characterization of Rho GTPases as well as Rho GAPs, GEFs, RhoGDIs and Rho effectors in actin reorganization and other Rho-driven cellular processes. © 2012 International Society on Thrombosis and Haemostasis.

  4. Mitochondrial association, protein phosphorylation, and degradation regulate the availability of the active Rab GTPase Ypt11 for mitochondrial inheritance.

    PubMed

    Lewandowska, Agnieszka; Macfarlane, Jane; Shaw, Janet M

    2013-04-01

    The Rab GTPase Ypt11 is a Myo2-binding protein implicated in mother-to-bud transport of the cortical endoplasmic reticulum (ER), late Golgi, and mitochondria during yeast division. However, its reported subcellular localization does not reflect all of these functions. Here we show that Ypt11 is normally a low-abundance protein whose ER localization is only detected when the protein is highly overexpressed. Although it has been suggested that ER-localized Ypt11 and ER-mitochondrial contact sites might mediate passive transport of mitochondria into the bud, we found that mitochondrial, but not ER, association is essential for Ypt11 function in mitochondrial inheritance. Our studies also reveal that Ypt11 function is regulated at multiple levels. In addition to membrane targeting and GTPase domain-dependent effector interactions, the abundance of active Ypt11 forms is controlled by phosphorylation status and degradation. We present a model that synthesizes these new features of Ypt11 function and regulation in mitochondrial inheritance.

  5. Regulation of the polarization of T cells toward antigen-presenting cells by Ras-related GTPase CDC42.

    PubMed Central

    Stowers, L; Yelon, D; Berg, L J; Chant, J

    1995-01-01

    The mechanisms by which cells rapidly polarize in the direction of external signals are not understood. Helper T cells, when contacted by an antigen-presenting cell, polarize their cytoskeletons toward the antigen-presenting cell within minutes. Here we show that, in T cells, the mammalian Ras-related GTPase CDC42 (the homologue of yeast CDC42, a protein involved in budding polarity) can regulate the polarization of both actin and microtubules toward antigen-presenting cells but is not involved in other T-cell signaling processes such as those which culminate in interleukin 2 production. Although T-cell polarization appears dispensable for signaling leading to interleukin 2 production, polarization may direct lymphokine secretion towards the correct antigen-presenting cell in a crowded cellular environment. Inhibitor experiments suggest that phosphatidylinositol 3-kinase is required for cytoskeletal polarization but that calcineurin activity, known to be important for other aspects of signaling, is not. Apparent conservation of CDC42 function between yeast and T cells suggests that this GTPase is a general regulator of cytoskeletal polarity in many cell types. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7761442

  6. Tiam1 as a Signaling Mediator of Nerve Growth Factor-Dependent Neurite Outgrowth

    PubMed Central

    Vilar, Marçal; Paratcha, Gustavo; Ledda, Fernanda

    2010-01-01

    Nerve Growth Factor (NGF)-induced neuronal differentiation requires the activation of members of the Rho family of small GTPases. However, the molecular mechanisms through which NGF regulates cytoskeletal changes and neurite outgrowth are not totally understood. In this work, we identify the Rac1-specific guanine exchange factor (GEF) Tiam1 as a novel mediator of NGF/TrkA-dependent neurite elongation. In particular, we report that knockdown of Tiam1 causes a significant reduction in Rac1 activity and neurite outgrowth induced by NGF. Physical interaction between Tiam1 and active Ras (Ras-GTP), but not tyrosine phosphorylation of Tiam1, plays a central role in Rac1 activation by NGF. In addition, our findings indicate that Ras is required to associate Tiam1 with Rac1 and promote Rac1 activation upon NGF stimulation. Taken together, these findings define a novel molecular mechanism through which Tiam1 mediates TrkA signaling and neurite outgrowth induced by NGF. PMID:20333299

  7. Identification and characterization of RBEL1 subfamily of GTPases in the Ras superfamily involved in cell growth regulation.

    PubMed

    Montalbano, JoAnne; Lui, Ki; Sheikh, M Saeed; Huang, Ying

    2009-07-03

    Recently, we reported the identification of a novel gene named RBEL1 (Rab-like protein 1) and characterized its two encoded isoforms, RBEL1A and RBEL1B, that function as novel GTPases of Ras superfamily. Here we report the identification of two additional splice variants of RBEL1 that we have named RBEL1C and -D. All four RBEL1 isoforms (A, B, C, and D) have identical N termini harboring the Rab-like GTPase domains but contain variable C termini. Although all isoforms can be detected in both cytoplasm and nucleus, RBEL1A is predominantly cytoplasmic, whereas RBEL1B is mostly nuclear. RBEL1C and -D, by contrast, are evenly distributed between the cytoplasm and nucleus. Furthermore, all four RBEL1 proteins are also capable of associating with cellular membrane. The RBEL1 proteins also exhibit a unique nucleotide-binding potential and, whereas the larger A and B isoforms are mainly GTP-bound, the smaller C and D variants bind to both GTP and GDP. Furthermore, a regulatory region at amino acid position 236-302 immediately adjacent to the GTP-binding domain is important for GTP-binding potential of RBEL1A, because deletion of this region converts RBEL1A from predominantly GTP-bound to GDP-bound. RBEL1 knockdown via RNA interference results in marked cell growth suppression, which is associated with morphological and biochemical features of apoptosis as well as inhibition of extracellular signal-regulated kinase phosphorylation. Taken together, our results indicate that RBEL1 proteins are linked to cell growth and survival and possess unique biochemical, cellular, and functional characteristics and, therefore, appear to form a novel subfamily of GTPases within the Ras superfamily.

  8. Regulation of neurite growth in immortalized mouse hypothalamic neurons and rat hippocampal primary cultures by teneurin C-terminal-associated peptide-1.

    PubMed

    Al Chawaf, A; St Amant, K; Belsham, D; Lovejoy, D A

    2007-02-23

    Teneurins are a highly conserved family of four type II transmembrane proteins that are expressed in the CNS. The protein possesses several functional domains including a unique bioactive 40-41 amino acid sequence at the extracellular terminus. Synthetic versions of this teneurin C-terminal-associated peptide (TCAP) can modulate cyclic AMP accumulation, cell proliferation and teneurin mRNA levels in vitro. Furthermore, i.c.v. injections of TCAP-1 into rat brain induce major changes in acoustic startle response behavior 3 weeks after administration, suggesting that the peptide may act to alter interneuron communication via changes in neurite and axon outgrowth. Synthetic mouse/rat TCAP-1 was used to treat cultured immortalized mouse hypothalamic cells, to determine if TCAP-1 could directly regulate neurite and axon growth. TCAP-1-treated cells showed a significant increase in the length of neurites accompanied by a marked increase in beta-tubulin transcription and translation as determined by real-time PCR and Western blot analysis, respectively. Changes in alpha-actinin-4 transcription and beta-actin protein expression were also noted. Immunofluorescence confocal microscopy using beta-tubulin antiserum showed enhanced resolution of beta-tubulin cytoskeletal elements throughout the cell. In order to determine if the effects of TCAP-1 could be reproduced in primary neuronal cultures, primary cultures of E18 rat hippocampal cells were treated with 100 nM TCAP-1. The TCAP-1-treated hippocampal cultures showed a significant increase in both the number of cells, dendritic branching and the presence of large and fasciculated beta-tubulin immunoreactive axons. These data suggest that TCAP acts, in part, as a functional region of the teneurins to regulate neurite and axonal growth of neurons.

  9. Bacterial Cytotoxins Target Rho GTPases

    NASA Astrophysics Data System (ADS)

    Schmidt, Gudula; Aktories, Klaus

    1998-06-01

    Low molecular mass GTPases of the Rho family, which are involved in the regulation of the actin cytoskeleton and in various signal transduction processes, are the eukaryotic targets of bacterial protein toxins. The toxins covalently modify Rho proteins by ADP ribosylation, glucosylation, and deamidation, thereby inactivating and activating the GTPases.

  10. Ephrin-A4 inhibits sensory neurite outgrowth and is regulated by neonatal skin wounding.

    PubMed

    Moss, Andrew; Alvares, Debie; Meredith-Middleton, Jacqueta; Robinson, Michelle; Slater, Rebeccah; Hunt, Stephen P; Fitzgerald, Maria

    2005-11-01

    The mechanisms for directing and organising sensory axons within developing skin remain largely unknown. The present study provides the first evidence that signalling occurs between A-ephrins and Eph-A receptors during the development of rat cutaneous sensory innervation both during normal development and following skin injury. Specifically, our data indicate that ephrin-A4 mRNA and protein are expressed in the epidermis during late embryogenesis and the early postnatal period (E16-P3), and expression is significantly down-regulated postnatally. In addition, Eph-A receptors are expressed on dorsal root ganglia (DRG) cells at birth. The pattern of ephrin-A4 expression is mirrored by epidermal innervation, so that sensory terminals are restricted to epidermal regions devoid of ephrin-A4 but increase as ephrin-A4 expression subsides postnatally. Neonatal skin wounding causes sensory hyperinnervation and a differential screen of wounded vs. nonwounded skin revealed down-regulation of epidermal ephrin-A4 following neonatal skin wounding. Expression studies showed that this down-regulation is below the wound and coincides exactly with the onset of hyperinnervation. In vitro experiments show a function for ephrin-A4-Fc in inhibiting rat DRG neuronal growth and guidance when presented as either substratum-bound stripes of ephrin-A4-Fc or as soluble clustered proteins. In conclusion, these observations suggest that the Eph family ligand ephrin-A4 has an inhibitory influence on neonatal cutaneous nerve terminals from DRG sensory neurons in the hindlimb, and may serve to prevent inappropriate innervation of cutaneous regions. In addition, the absence of ephrin-A4 following neonatal skin wounding may play a critical permissive role in the sprouting response.

  11. Regulation of hematopoietic stem cell aging by the small RhoGTPase Cdc42

    PubMed Central

    Geiger, Hartmut; Zheng, Yi

    2015-01-01

    Summary Aging of stem cells might be the underlying cause of tissue aging in tissue that in the adult heavily rely on stem cell activity, like the blood forming system. Hematopoiesis, the generation of blood forming cells, is sustained by hematopoietic stem cells. In this review article, we introduce the canonical set of phenotypes associated with aged HSCs, focus on the novel aging-associated phenotype apolarity caused by elevated activity of the small RhoGTPase in aged HSCs, disuccs the role of Cdc42 in hematopoiesis and describe that pharmacological inhibition of Cdc42 activity in aged HSCs results in functionally young and thus rejuvenated HSCs. PMID:25220425

  12. Adaptor protein Nck1 interacts with p120 Ras GTPase-activating protein and regulates its activity.

    PubMed

    Ger, Marija; Zitkus, Zigmantas; Valius, Mindaugas

    2011-10-01

    Adaptor protein Nck1 binds a number of intracellular proteins and influences various signaling pathways. Here we show that Nck1 directly binds and activates the GTPase-activating protein of Ras (RasGAP), which is responsible for the down-regulation of Ras. The first and the third SH3 domains of Nck1 and the NH(2)-terminal proline-rich sequence of RasGAP contribute most to the complex formation causing direct molecular interaction between the two proteins. Cell adhesion to the substrate is obligatory for the Nck1 and RasGAP association, as cell detachment makes RasGAP incapable of associating with Nck1. This leads to the complex dissipation, decrease of RasGAP activity and the increase of H-Ras-GTP level in the detached cells. Our findings reveal unexpected feature of adaptor protein Nck1 as the regulator of RasGAP activity.

  13. atonal regulates neurite arborization but does not act as a proneural gene in the Drosophila brain

    NASA Technical Reports Server (NTRS)

    Hassan, B. A.; Bermingham, N. A.; He, Y.; Sun, Y.; Jan, Y. N.; Zoghbi, H. Y.; Bellen, H. J.

    2000-01-01

    Drosophila atonal (ato) is the proneural gene of the chordotonal organs (CHOs) in the peripheral nervous system (PNS) and the larval and adult photoreceptor organs. Here, we show that ato is expressed at multiple stages during the development of a lineage of central brain neurons that innervate the optic lobes and are required for eclosion. A novel fate mapping approach shows that ato is expressed in the embryonic precursors of these neurons and that its expression is reactivated in third instar larvae (L3). In contrast to its function in the PNS, ato does not act as a proneural gene in the embryonic brain. Instead, ato performs a novel function, regulating arborization during larval and pupal development by interacting with Notch.

  14. atonal regulates neurite arborization but does not act as a proneural gene in the Drosophila brain

    NASA Technical Reports Server (NTRS)

    Hassan, B. A.; Bermingham, N. A.; He, Y.; Sun, Y.; Jan, Y. N.; Zoghbi, H. Y.; Bellen, H. J.

    2000-01-01

    Drosophila atonal (ato) is the proneural gene of the chordotonal organs (CHOs) in the peripheral nervous system (PNS) and the larval and adult photoreceptor organs. Here, we show that ato is expressed at multiple stages during the development of a lineage of central brain neurons that innervate the optic lobes and are required for eclosion. A novel fate mapping approach shows that ato is expressed in the embryonic precursors of these neurons and that its expression is reactivated in third instar larvae (L3). In contrast to its function in the PNS, ato does not act as a proneural gene in the embryonic brain. Instead, ato performs a novel function, regulating arborization during larval and pupal development by interacting with Notch.

  15. eNOS-derived nitric oxide regulates endothelial barrier function through VE-cadherin and Rho GTPases

    PubMed Central

    Di Lorenzo, Annarita; Lin, Michelle I.; Murata, Takahisa; Landskroner-Eiger, Shira; Schleicher, Michael; Kothiya, Milankumar; Iwakiri, Yasuko; Yu, Jun; Huang, Paul L.; Sessa, William C.

    2013-01-01

    Summary Transient disruption of endothelial adherens junctions and cytoskeletal remodeling are responsible for increases in vascular permeability induced by inflammatory stimuli and vascular endothelial growth factor (VEGF). Nitric oxide (NO) produced by endothelial NO synthase (eNOS) is crucial for VEGF-induced changes in permeability in vivo; however, the molecular mechanism by which endogenous NO modulates endothelial permeability is not clear. Here, we show that the lack of eNOS reduces VEGF-induced permeability, an effect mediated by enhanced activation of the Rac GTPase and stabilization of cortical actin. The loss of NO increased the recruitment of the Rac guanine-nucleotide-exchange factor (GEF) TIAM1 to adherens junctions and VE-cadherin (also known as cadherin 5), and reduced Rho activation and stress fiber formation. In addition, NO deficiency reduced VEGF-induced VE-cadherin phosphorylation and impaired the localization, but not the activation, of c-Src to cell junctions. The physiological role of eNOS activation is clear given that VEGF-, histamine- and inflammation-induced vascular permeability is reduced in mice bearing a non-phosphorylatable knock-in mutation of the key eNOS phosphorylation site S1176. Thus, NO is crucial for Rho GTPase-dependent regulation of cytoskeletal architecture leading to reversible changes in vascular permeability. PMID:24046447

  16. Rit GTPase Regulates a p38 MAPK-Dependent Neuronal Survival Pathway

    PubMed Central

    Cai, Weikang; Rudolph, Jennifer L.; Sengoku, Tomoko; Andres, Douglas A.

    2012-01-01

    Rit, along with Rin and Drosophila Ric, comprises the Rit subfamily of Ras-related small GTPases. Although the cellular functions of many Ras family GTPases are well established, the physiological significance of Rit remains poorly understood. Loss of Rit sensitizes multiple mammalian cell lines and mouse embryonic fibroblasts (MEFs) derived from Rit−/− mice to oxidative stress-mediated apoptosis. However, whether Rit-mediated pro-survival signaling extends to other cell types, particularly neurons, is presently unknown. Here, to examine these issues we generated a transgenic mouse overexpressing constitutively active Rit (RitQ79L) exclusively in neurons, under control of the Synapsin I promoter. Active Rit-expressing hippocampal neurons display a dramatic increase in oxidative stress resistance. Moreover, pharmacological inhibitor studies demonstrate that p38 MAPK, rather than a MEK/ERK signaling cascade, is required for Rit-mediated protection. Together, the present studies identify a critical role for the Rit-p38 MAPK signaling cascade in promoting hippocampal neuron survival following oxidative stress. PMID:23123784

  17. The GTPase Effector Domain Sequence of the Dnm1p GTPase Regulates Self-Assembly and Controls a Rate-limiting Step in Mitochondrial Fission

    PubMed Central

    Fukushima, Noelle H.; Brisch, Ellen; Keegan, Brian R.; Bleazard, William; Shaw, Janet M.

    2001-01-01

    Dnm1p belongs to a family of dynamin-related GTPases required to remodel different cellular membranes. In budding yeast, Dnm1p-containing complexes assemble on the cytoplasmic surface of the outer mitochondrial membrane at sites where mitochondrial tubules divide. Our previous genetic studies suggested that Dnm1p's GTPase activity was required for mitochondrial fission and that Dnm1p interacted with itself. In this study, we show that bacterially expressed Dnm1p can bind and hydrolyze GTP in vitro. Coimmunoprecipitation studies and yeast two-hybrid analysis suggest that Dnm1p oligomerizes in vivo. With the use of the yeast two-hybrid system, we show that this Dnm1p oligomerization is mediated, in part, by a C-terminal sequence related to the GTPase effector domain (GED) in dynamin. The Dnm1p interactions characterized here are similar to those reported for dynamin and dynamin-related proteins that form higher order structures in vivo, suggesting that Dnm1p assembles to form rings or collars that surround mitochondrial tubules. Based on previous findings, a K705A mutation in the Dnm1p GED is predicted to interfere with GTP hydrolysis, stabilize active Dnm1p-GTP, and stimulate a rate-limiting step in fission. Here we show that expression of the Dnm1 K705A protein in yeast enhances mitochondrial fission. Our results provide evidence that the GED region of a dynamin-related protein modulates a rate-limiting step in membrane fission. PMID:11553714

  18. GTPases in intracellular trafficking: an overview.

    PubMed

    Segev, Nava

    2011-02-01

    Small GTPases that belong to the ras sub-families of Rab, Arf, and Rho, and the large GTPase dynamin, regulate intracellular trafficking. This issue of Seminars of Cell and Developmental Biology highlights topics regarding mechanisms by which these GTPases regulate the different steps of vesicular transport: vesicle formation, scission, targeting and fusion. In addition, the emerging roles of GTPases in coordination of individual transport steps as well as coordination of intracellular trafficking with other cellular processes are reviewed. Finally, common structures and mechanisms underlying the function of the ras-like GTPases and the importance of their function to human health and disease are discussed.

  19. The Rap GTPases regulate the migration, invasiveness and in vivo dissemination of B-cell lymphomas.

    PubMed

    Lin, K B L; Tan, P; Freeman, S A; Lam, M; McNagny, K M; Gold, M R

    2010-01-28

    B-cell lymphomas are common malignancies in which transformed B cells enter the circulation, extravasate into tissues and form tumors in multiple organs. Lymphoma cells are thought to exit the vasculature and enter tissues through the same chemokine- and adhesion molecule-dependent mechanisms as normal B cells. We have previously shown that activation of the Rap GTPases, proteins that control cytoskeletal organization and integrin activation, is critical for chemokine-induced migration and adhesion in B-lymphoma cell lines. Using the A20 murine B-lymphoma cell line as a model, we now show that Rap activation is important for circulating lymphoma cells to enter tissues and form tumors in vivo. In vitro assays showed that Rap activation is required for A20 cells to efficiently adhere to vascular endothelial cells and undergo transendothelial migration. These findings suggest that Rap or its effectors could be novel targets for treating B-cell lymphomas.

  20. Regulation of the Cdc42/Cdc24 GTPase Module during Candida albicans Hyphal Growth

    PubMed Central

    Bassilana, Martine; Hopkins, Julie; Arkowitz, Robert A.

    2005-01-01

    The Rho G protein Cdc42 and its exchange factor Cdc24 are required for hyphal growth of the human fungal pathogen Candida albicans. Previously, we reported that strains ectopically expressing Cdc24 or Cdc42 are unable to form hyphae in response to serum. Here we investigated the role of these two proteins in hyphal growth, using quantitative real-time PCR to measure induction of hypha-specific genes together with time lapse microscopy. Expression of the hypha-specific genes examined depends on the cyclic AMP-dependent protein kinase A pathway culminating in the Efg1 and Tec1 transcription factors. We show that strains with reduced levels of CDC24 or CDC42 transcripts induce hypha-specific genes yet cannot maintain their expression in response to serum. Furthermore, in serum these mutants form elongated buds compared to the wild type and mutant budding cells, as observed by time lapse microscopy. Using Cdc24 fused to green fluorescent protein, we also show that Cdc24 is recruited to and persists at the germ tube tip during hyphal growth. Altogether these data demonstrate that the Cdc24/Cdc42 GTPase module is required for maintenance of hyphal growth. In addition, overexpression studies indicate that specific levels of Cdc24 and Cdc42 are important for invasive hyphal growth. In response to serum, CDC24 transcript levels increase transiently in a Tec1-dependent fashion, as do the G-protein RHO3 and the Rho1 GTPase activating protein BEM2 transcript levels. These results suggest that a positive feedback loop between Cdc24 and Tec1 contributes to an increase in active Cdc42 at the tip of the germ tube which is important for hypha formation. PMID:15755921

  1. RhoA GTPase regulates radiation-induced alterations in endothelial cell adhesion and migration

    SciTech Connect

    Rousseau, Matthieu; Gaugler, Marie-Helene; Rodallec, Audrey; Bonnaud, Stephanie; Paris, Francois; Corre, Isabelle

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer We explore the role of RhoA in endothelial cell response to ionizing radiation. Black-Right-Pointing-Pointer RhoA is rapidly activated by single high-dose of radiation. Black-Right-Pointing-Pointer Radiation leads to RhoA/ROCK-dependent actin cytoskeleton remodeling. Black-Right-Pointing-Pointer Radiation-induced apoptosis does not require the RhoA/ROCK pathway. Black-Right-Pointing-Pointer Radiation-induced alteration of endothelial adhesion and migration requires RhoA/ROCK. -- Abstract: Endothelial cells of the microvasculature are major target of ionizing radiation, responsible of the radiation-induced vascular early dysfunctions. Molecular signaling pathways involved in endothelial responses to ionizing radiation, despite being increasingly investigated, still need precise characterization. Small GTPase RhoA and its effector ROCK are crucial signaling molecules involved in many endothelial cellular functions. Recent studies identified implication of RhoA/ROCK in radiation-induced increase in endothelial permeability but other endothelial functions altered by radiation might also require RhoA proteins. Human microvascular endothelial cells HMEC-1, either treated with Y-27632 (inhibitor of ROCK) or invalidated for RhoA by RNA interference were exposed to 15 Gy. We showed a rapid radiation-induced activation of RhoA, leading to a deep reorganisation of actin cytoskeleton with rapid formation of stress fibers. Endothelial early apoptosis induced by ionizing radiation was not affected by Y-27632 pre-treatment or RhoA depletion. Endothelial adhesion to fibronectin and formation of focal adhesions increased in response to radiation in a RhoA/ROCK-dependent manner. Consistent with its pro-adhesive role, ionizing radiation also decreased endothelial cells migration and RhoA was required for this inhibition. These results highlight the role of RhoA GTPase in ionizing radiation-induced deregulation of essential endothelial

  2. Multiprotein Complexes of Retinitis Pigmentosa GTPase Regulator (RPGR), a Ciliary Protein Mutated in X-Linked Retinitis Pigmentosa (XLRP)

    PubMed Central

    Murga-Zamalloa, Carlos; Swaroop, Anand

    2012-01-01

    Mutations in Retinitis Pigmentosa GTPase Regulator (RPGR) are a frequent cause of X-linked Retinitis Pigmentosa (XLRP). The RPGR gene undergoes extensive alternative splicing and encodes for distinct protein isoforms in the retina. Extensive studies using isoform-specific antibodies and mouse mutants have revealed that RPGR predominantly localizes to the transition zone to primary cilia and associates with selected ciliary and microtubule-associated assemblies in photoreceptors. In this chapter, we have summarized recent advances on understanding the role of RPGR in photoreceptor protein trafficking. We also provide new evidence that suggests the existence of discrete RPGR multiprotein complexes in photoreceptors. Piecing together the RPGR-interactome in different subcellular compartments should provide critical insights into the role of alternative RPGR isoforms in associated orphan and syndromic retinal degenerative diseases. PMID:20238008

  3. What vibrations tell us about GTPases.

    PubMed

    Kötting, Carsten; Gerwert, Klaus

    2015-02-01

    In this review, we discuss how time-resolved Fourier transform infrared (FTIR) spectroscopy is used to understand how GTP hydrolysis is catalyzed by small GTPases and their cognate GTPase-activating proteins (GAPs). By interaction with small GTPases, GAPs regulate important signal transduction pathways and transport mechanisms in cells. The GTPase reaction terminates signaling and controls transport. Dysfunctions of GTP hydrolysis in these proteins are linked to serious diseases including cancer. Using FTIR, we resolved both the intrinsic and GAP-catalyzed GTPase reaction of the small GTPase Ras with high spatiotemporal resolution and atomic detail. This provided detailed insight into the order of events and how the active site is completed for catalysis. Comparisons of Ras with other small GTPases revealed conservation and variation in the catalytic mechanisms. The approach was extended to more nearly physiological conditions at a membrane. Interactions of membrane-anchored GTPases and their extraction from the membrane are studied using the attenuated total reflection (ATR) technique.

  4. Enhancement of tubulin polymerization by Cl(-)-induced blockade of intrinsic GTPase.

    PubMed

    Nakajima, Ken-ichi; Niisato, Naomi; Marunaka, Yoshinori

    2012-08-24

    In growing neurite of neuronal cells, it is suggested that α/β-tubulin heterodimers assemble to form microtubule, and assembly of microtubule promotes neurite elongation. On the other hand, recent studies reveal importance of intracellular Cl(-) in regulation of various cellular functions such as cell cycle progression, differentiation, cell migration, and elongation of neurite in neuronal cells. In this study, we investigated effects of Cl(-) on in vitro tubulin polymerization. We found that efficiency of in vitro tubulin polymerization (the number of microtubule) was higher (3 to 5-fold) in Cl(-)-containing solutions than that in Cl(-)-free solutions containing Br(-) or NO(3)(-). On the other hand, GTPase activity of tubulin was lower (2/3-fold) in Cl(-)-containing solutions than that in Cl(-)-free solutions containing Br(-) or NO(3)(-). Efficiency of in vitro tubulin polymerization in solutions containing a non-hydrolyzable analogue of GTP (GpCpp) instead of GTP was much higher than that in the presence of GTP. Effects of replacement of GTP with GpCpp on in vitro tubulin polymerization was weaker in Cl(-) solutions (10-fold increases) than that in Br(-) or NO(3)(-) solutions (20-fold increases), although the efficiency of in vitro tubulin polymerization in Cl(-) solutions containing GpCpp was still higher than that in Br(-) or NO(3)(-) solutions containing GpCpp. Our results suggest that a part of stimulatory effects of Cl(-) on in vitro tubulin polymerization is mediated via an inhibitory effect on GTPase activity of tubulin, although Cl(-) would also regulate in vitro tubulin polymerization by factors other than an inhibitory effect on GTPase activity.

  5. The universally conserved prokaryotic GTPases.

    PubMed

    Verstraeten, Natalie; Fauvart, Maarten; Versées, Wim; Michiels, Jan

    2011-09-01

    Members of the large superclass of P-loop GTPases share a core domain with a conserved three-dimensional structure. In eukaryotes, these proteins are implicated in various crucial cellular processes, including translation, membrane trafficking, cell cycle progression, and membrane signaling. As targets of mutation and toxins, GTPases are involved in the pathogenesis of cancer and infectious diseases. In prokaryotes also, it is hard to overestimate the importance of GTPases in cell physiology. Numerous papers have shed new light on the role of bacterial GTPases in cell cycle regulation, ribosome assembly, the stress response, and other cellular processes. Moreover, bacterial GTPases have been identified as high-potential drug targets. A key paper published over 2 decades ago stated that, "It may never again be possible to capture [GTPases] in a family portrait" (H. R. Bourne, D. A. Sanders, and F. McCormick, Nature 348:125-132, 1990) and indeed, the last 20 years have seen a tremendous increase in publications on the subject. Sequence analysis identified 13 bacterial GTPases that are conserved in at least 75% of all bacterial species. We here provide an overview of these 13 protein subfamilies, covering their cellular functions as well as cellular localization and expression levels, three-dimensional structures, biochemical properties, and gene organization. Conserved roles in eukaryotic homologs will be discussed as well. A comprehensive overview summarizing current knowledge on prokaryotic GTPases will aid in further elucidating the function of these important proteins.

  6. R-Ras and Rac GTPase cross-talk regulates hematopoietic progenitor cell migration, homing, and mobilization.

    PubMed

    Shang, Xun; Cancelas, Jose A; Li, Lina; Guo, Fukun; Liu, Wei; Johnson, James F; Ficker, Ashley; Daria, Deidre; Geiger, Hartmut; Ratner, Nancy; Zheng, Yi

    2011-07-08

    Adult hematopoietic progenitor cells (HPCs) are maintained by highly coordinated signals in the bone marrow. The molecular mechanisms linking intracellular signaling network of HPCs with their microenvironment remain poorly defined. The Rho family GTPase Rac1/Rac2 has previously been implicated in cell functions involved in HPC maintenance, including adhesion, migration, homing, and mobilization. In the present studies we have identified R-Ras, a member of the Ras family, as a key signal mediator required for Rac1/Rac2 activation. We found that whereas Rac1 activity is up-regulated upon stem cell factor, integrin, or CXCL12 stimulation, R-Ras activity is inversely up-regulated. Expression of a constitutively active R-Ras mutant resulted in down-regulation of Rac1-activity whereas deletion of R-Ras led to an increase in Rac1/Rac2 activity and signaling. R-Ras(-/-) HPCs displayed a constitutively assembled cortical actin structure and showed increased directional migration. Rac1/Rac2 inhibition reversed the migration phenotype of R-Ras(-/-) HPCs, similar to that by expressing an R-Ras active mutant. Furthermore, R-Ras(-/-) mice showed enhanced responsiveness to G-CSF for HPC mobilization and exhibited decreased bone marrow homing. Transplantation experiments indicate that the R-Ras deficiency-induced HPC mobilization is a HPC intrinsic property. These results indicate that R-Ras is a critical regulator of Rac signaling required for HPC migration, homing, and mobilization.

  7. A Sonic hedgehog coreceptor, BOC regulates neuronal differentiation and neurite outgrowth via interaction with ABL and JNK activation.

    PubMed

    Vuong, Tuan Anh; Leem, Young-Eun; Kim, Bok-Geon; Cho, Hana; Lee, Sang-Jin; Bae, Gyu-Un; Kang, Jong-Sun

    2017-01-01

    Neurite outgrowth is a critical step for neurogenesis and remodeling synaptic circuitry during neuronal development and regeneration. An immunoglobulin superfamily member, BOC functions as Sonic hedgehog (Shh) coreceptor in canonical and noncanonical Shh signaling in neuronal development and axon outgrowth/guidance. However signaling mechanisms responsible for BOC action during these processes remain unknown. In our previous studies, a multiprotein complex containing BOC and a closely related protein CDO promotes myogenic differentiation through activation of multiple signaling pathways, including non-receptor tyrosine kinase ABL. Given that ABL and Jun. N-terminal kinase (JNK) are implicated in actin cytoskeletal dynamics required for neurogenesis, we investigated the relationship between BOC, ABL and JNK during neuronal differentiation. Here, we demonstrate that BOC and ABL are induced in P19 embryonal carcinoma (EC) cells and cortical neural progenitor cells (NPCs) during neuronal differentiation. BOC-depleted EC cells or Boc(-/-) NPCs exhibit impaired neuronal differentiation with shorter neurite formation. BOC interacts with ABL through its putative SH2 binding domain and seems to be phosphorylated in an ABL activity-dependent manner. Unlike wildtype BOC, ABL-binding defective BOC mutants exhibit impaired JNK activation and neuronal differentiation. Finally, Shh treatment enhances JNK activation which is diminished by BOC depletion. These data suggest that BOC interacts with ABL and activates JNK thereby promoting neuronal differentiation and neurite outgrowth. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. RhoA and Rac1 GTPases Differentially Regulate Agonist-Receptor Mediated Reactive Oxygen Species Generation in Platelets.

    PubMed

    Akbar, Huzoor; Duan, Xin; Saleem, Saima; Davis, Ashley K; Zheng, Yi

    Agonist induced generation of reactive oxygen species (ROS) by NADPH oxidases (NOX) enhances platelet aggregation and hence the risk of thrombosis. RhoA and Rac1 GTPases are involved in ROS generation by NOX in a variety of cells, but their roles in platelet ROS production remain unclear. In this study we used platelets from RhoA and Rac1 conditional knockout mice as well as human platelets treated with Rhosin and NSC23767, rationally designed small molecule inhibitors of RhoA and Rac GTPases, respectively, to better define the contributions of RhoA and Rac1 signaling to ROS generation and platelet activation. Treatment of platelets with Rhosin inhibited: (a) U46619 induced activation of RhoA; (b) phosphorylation of p47phox, a critical component of NOX; (c) U46619 or thrombin induced ROS generation; (d) phosphorylation of myosin light chain (MLC); (e) platelet shape change; (f) platelet spreading on immobilized fibrinogen; and (g) release of P-selectin, secretion of ATP and aggregation. Conditional deletion of RhoA or Rac1 gene inhibited thrombin induced ROS generation in platelets. Addition of Y27632, a RhoA inhibitor, NSC23766 or Phox-I, an inhibitor of Rac1-p67phox interaction, to human platelets blocked thrombin induced ROS generation. These data suggest that: (a) RhoA/ROCK/p47phox signaling axis promotes ROS production that, at least in part, contributes to platelet activation in conjunction with or independent of the RhoA/ROCK mediated phosphorylation of MLC; and (b) RhoA and Rac1 differentially regulate ROS generation by inhibiting phosphorylation of p47phox and Rac1-p67phox interaction, respectively.

  9. RhoA and Rac1 GTPases Differentially Regulate Agonist-Receptor Mediated Reactive Oxygen Species Generation in Platelets

    PubMed Central

    Akbar, Huzoor; Duan, Xin; Saleem, Saima; Davis, Ashley K.; Zheng, Yi

    2016-01-01

    Agonist induced generation of reactive oxygen species (ROS) by NADPH oxidases (NOX) enhances platelet aggregation and hence the risk of thrombosis. RhoA and Rac1 GTPases are involved in ROS generation by NOX in a variety of cells, but their roles in platelet ROS production remain unclear. In this study we used platelets from RhoA and Rac1 conditional knockout mice as well as human platelets treated with Rhosin and NSC23767, rationally designed small molecule inhibitors of RhoA and Rac GTPases, respectively, to better define the contributions of RhoA and Rac1 signaling to ROS generation and platelet activation. Treatment of platelets with Rhosin inhibited: (a) U46619 induced activation of RhoA; (b) phosphorylation of p47phox, a critical component of NOX; (c) U46619 or thrombin induced ROS generation; (d) phosphorylation of myosin light chain (MLC); (e) platelet shape change; (f) platelet spreading on immobilized fibrinogen; and (g) release of P-selectin, secretion of ATP and aggregation. Conditional deletion of RhoA or Rac1 gene inhibited thrombin induced ROS generation in platelets. Addition of Y27632, a RhoA inhibitor, NSC23766 or Phox-I, an inhibitor of Rac1-p67phox interaction, to human platelets blocked thrombin induced ROS generation. These data suggest that: (a) RhoA/ROCK/p47phox signaling axis promotes ROS production that, at least in part, contributes to platelet activation in conjunction with or independent of the RhoA/ROCK mediated phosphorylation of MLC; and (b) RhoA and Rac1 differentially regulate ROS generation by inhibiting phosphorylation of p47phox and Rac1-p67phox interaction, respectively. PMID:27681226

  10. ArfGAP1 is a GTPase Activating Protein for LRRK2: Reciprocal Regulation of ArfGAP1 by LRRK2

    PubMed Central

    Xiong, Yulan; Yuan, Changqing; Chen, Rong; Dawson, Ted M.; Dawson, Valina L.

    2012-01-01

    Both sporadic and autosomal dominant forms of Parkinson’s disease (PD) have been causally linked to mutations in leucine-rich repeat kinase 2 (LRRK2), a large protein with multiple domains. The kinase domain plays an important role in LRRK2 mediated toxicity. While a number of investigations have focused on LRRK2 kinase activity, less is known about the GTPase function of LRRK2. The activity of GTPases is regulated by GTPase activating proteins (GAPs) and GTP exchange factors (GEFs). Here, we identify ArfGAP1 as the first GAP for LRRK2. ArfGAP1 binds LRRK2 predominantly via the WD40 and kinase domain of LRRK2 and it increases LRRK2 GTPase activity and regulates LRRK2 toxicity both in vitro and in vivo in Drosophila melanogaster. Unexpectedly, ArfGAP1 is a LRRK2 kinase substrate whose GAP activity is inhibited by LRRK2, while wild type and G2019S LRRK2 autophosphorylation and kinase activity are significantly reduced in the presence of ArfGAP1. Overexpressed ArfGAP1 exhibits toxicity that is reduced by LRRK2 both in vitro and in vivo. Δ64-ArfGAP1, a dominant negative ArfGAP1, and shRNA knockdown of ArfGAP1 reduce LRRK2 toxicity. Thus, LRRK2 and ArfGAP1 reciprocally regulate the activity of each other. Our results provide insight into the basic pathobiology of LRRK2 and indicate an important role for the GTPase domain and ArfGAP1 in LRRK2 mediated toxicity. These data suggest that agents targeted towards regulation of LRRK2 GTP hydrolysis might be therapeutic agents for the treatment of Parkinson’s disease. PMID:22423108

  11. RHO GTPase in plants

    PubMed Central

    2010-01-01

    Plants possess a single subfamily of Rho GTPases, ROP, which does usual things as do Rho-family GTPases in animal and fungal systems, namely participating in the spatial control of cellular processes by signaling to the cytoskeleton and vesicular trafficking. As one would expect, ROPs are modulated by conserved regulators such as DHR2-type GEFs, RhoGAPs and Rho GDIs. What is surprising is that plants have invented new regulators such as PRONE-type GEFs (known as RopGEFs) and effectors such as RICs and ICRs/RIPs in the regulation of the cytoskeleton and vesicular trafficking. This review will discuss recent work on characterizing ROP regulators and effectors as well as addressing why and how a mixture of conserved and novel Rho signaling mechanisms is utilized to modulate fundamental cellular processes such as cytoskeletal dynamics/reorganization and vesicular trafficking. PMID:21686259

  12. Overexpression of Ran GTPase Components Regulating Nuclear Export, but not Mitotic Spindle Assembly, Marks Chromosome Instability and Poor Prognosis in Breast Cancer.

    PubMed

    Vaidyanathan, Srividya; Thangavelu, Pulari U; Duijf, Pascal H G

    2016-10-01

    Ran GTPase regulates nuclear import, nuclear export, and mitotic spindle assembly. The multifunctional involvement of seventeen Ran GTPase components in these processes has complicated research into how each contributes to cancer development. To assess whether individual and process-specific misexpression of Ran GTPase components contribute to chromosome instability (CIN) and worsen breast cancer patient prognosis. Using publicly available datasets, we studied the degree of misexpression of all Ran GTPase signaling components in breast cancer, assessed their involvement in CIN and used four clinical tests to evaluate whether their misregulation may constitute independent prognostic predictors. A significant majority of Ran GTPase signaling components is overexpressed in breast cancer. Strikingly, spindle assembly components are overexpressed and associated with CIN with only marginal significance and four independent tests indicate that this does not worsen patient outcome. Overexpression of nuclear import components is neither CIN-associated nor clinically significant. In sharp contrast, overexpression of nuclear export components constitutes a strong independent marker for both CIN and poor patient prognosis. We identify Exportin 2/CSE1L, Exportin 3/XPOT, Exportin 5/XPO5, and RANBP1 as novel potential targets. We find that overexpression of Ran GTPase components involved in nuclear export, but not nuclear import or mitotic spindle assembly, is a strong CIN-associated marker for poor breast cancer prognosis. This could mean that increased nuclear export (of, for instance, pRb, p53, p73, BRCA1, p21, p27, E2F4, IκB, survivin), rather than spindle defects, mainly drives CIN and tumorigenesis. Hence, selective inhibitors of nuclear export may be effective for treating the most aggressive and chromosomally unstable breast cancers.

  13. Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases

    PubMed Central

    Steger, Martin; Tonelli, Francesca; Ito, Genta; Davies, Paul; Trost, Matthias; Vetter, Melanie; Wachter, Stefanie; Lorentzen, Esben; Duddy, Graham; Wilson, Stephen; Baptista, Marco AS; Fiske, Brian K; Fell, Matthew J; Morrow, John A; Reith, Alastair D; Alessi, Dario R; Mann, Matthias

    2016-01-01

    Mutations in Park8, encoding for the multidomain Leucine-rich repeat kinase 2 (LRRK2) protein, comprise the predominant genetic cause of Parkinson's disease (PD). G2019S, the most common amino acid substitution activates the kinase two- to threefold. This has motivated the development of LRRK2 kinase inhibitors; however, poor consensus on physiological LRRK2 substrates has hampered clinical development of such therapeutics. We employ a combination of phosphoproteomics, genetics, and pharmacology to unambiguously identify a subset of Rab GTPases as key LRRK2 substrates. LRRK2 directly phosphorylates these both in vivo and in vitro on an evolutionary conserved residue in the switch II domain. Pathogenic LRRK2 variants mapping to different functional domains increase phosphorylation of Rabs and this strongly decreases their affinity to regulatory proteins including Rab GDP dissociation inhibitors (GDIs). Our findings uncover a key class of bona-fide LRRK2 substrates and a novel regulatory mechanism of Rabs that connects them to PD. DOI: http://dx.doi.org/10.7554/eLife.12813.001 PMID:26824392

  14. The ciliary GTPase Arl13b regulates cell migration and cell cycle progression

    PubMed Central

    Pruski, Michal; Rajnicek, Ann; Yang, Zhifu; Clancy, Hannah; Ding, Yu-Qiang; McCaig, Colin D.; Lang, Bing

    2016-01-01

    ABSTRACT The GTPase ARL13B is localized to primary cilia; small cellular protrusions that act as antennae. Its defective ARL13B hennin (HNN) variant is linked causally with Joubert Syndrome, a developmental ciliopathy attributed to poor sensing of extracellular chemical gradients. We tested the hypothesis that impaired detection of extracellular voltage gradients also contributes to the HNN phenotype. In vitro, extracellular electric fields stimulated migration of wild type (WT) and HNN fibroblasts toward the cathode but the field only increased the migration speed of WT cells. Cilia on WT cells did not align to the field vector. HNN cells divided more slowly than WT cells, arresting at the G2/M phase. Mechanistically, HNN cells had reduced phospho-ERK1/2 signaling and elevated levels of Suppressor of Fused protein. These suggest that cells may not be able to read extracellular chemical cues appropriately, resulting in deficits in cell migration and proliferation. Finally, an increase in tubulin stabilization (more detyrosinated tubulin) confirmed the general stagnation of HNN cells, which may further contribute to slower migration and cell cycle progression. We conclude that Arl13b dysfunction resulted in HNN cell stagnation due to poor growth factor signaling and impaired detection of extracellular electrical gradients, and that the role of Arl13b in cell proliferation may be understated. PMID:26963749

  15. Rac-GTPases Regulate Microtubule Stability and Axon Growth of Cortical GABAergic Interneurons.

    PubMed

    Tivodar, Simona; Kalemaki, Katerina; Kounoupa, Zouzana; Vidaki, Marina; Theodorakis, Kostas; Denaxa, Myrto; Kessaris, Nicoletta; de Curtis, Ivan; Pachnis, Vassilis; Karagogeos, Domna

    2015-09-01

    Cortical interneurons are characterized by extraordinary functional and morphological diversity. Although tremendous progress has been made in uncovering molecular and cellular mechanisms implicated in interneuron generation and function, several questions still remain open. Rho-GTPases have been implicated as intracellular mediators of numerous developmental processes such as cytoskeleton organization, vesicle trafficking, transcription, cell cycle progression, and apoptosis. Specifically in cortical interneurons, we have recently shown a cell-autonomous and stage-specific requirement for Rac1 activity within proliferating interneuron precursors. Conditional ablation of Rac1 in the medial ganglionic eminence leads to a 50% reduction of GABAergic interneurons in the postnatal cortex. Here we examine the additional role of Rac3 by analyzing Rac1/Rac3 double-mutant mice. We show that in the absence of both Rac proteins, the embryonic migration of medial ganglionic eminence-derived interneurons is further impaired. Postnatally, double-mutant mice display a dramatic loss of cortical interneurons. In addition, Rac1/Rac3-deficient interneurons show gross cytoskeletal defects in vitro, with the length of their leading processes significantly reduced and a clear multipolar morphology. We propose that in the absence of Rac1/Rac3, cortical interneurons fail to migrate tangentially towards the pallium due to defects in actin and microtubule cytoskeletal dynamics.

  16. The large GTPase dynamin regulates actin comet formation and movement in living cells

    PubMed Central

    Orth, James D.; Krueger, E. W.; Cao, H.; McNiven, Mark A.

    2002-01-01

    The large GTPase dynamin (Dyn2) has been demonstrated by us and others to interact with several different actin-binding proteins. To define how Dyn2 might participate in actin dynamics in livings cells we have expressed green fluorescent protein (GFP)-tagged Dyn2 in cultured cells and observed labeling of comet-like vesicles and macropinosomes. The comet structures progressed with a constant velocity and were reminiscent of actin comets associated with motile vesicles in cells expressing type I phosphatidylinositol phosphate 5-kinases. Based on these observations we sought to determine whether Dyn2 is an integral component of actin comets. Cells expressing type I phosphatidylinositol phosphate 5-kinase and Dyn2-GFP revealed a prominent colocalization of Dyn2 and actin in comet structures. Interestingly, comet formation and motility were normal in cells expressing wild-type Dyn2-GFP but altered markedly in Dyn2 mutant-expressing cells. Dyn2K44A-GFP mutant cells displayed a significant reduction in comet number, length, velocity, and efficiency of movement. In contrast, comets in cells expressing Dyn2ΔPRD-GFP appeared dark and did not incorporate the mutant Dyn2 protein, indicating that the proline-rich domain (PRD) is required for Dyn2 recruitment. Further, these comets were significantly longer and slower than those in control cells. These findings demonstrate a role for Dyn2 in actin-based vesicle motility. PMID:11782546

  17. The Yeast Rab GTPase Ypt1 Modulates Unfolded Protein Response Dynamics by Regulating the Stability of HAC1 RNA

    PubMed Central

    Tsvetanova, Nikoleta G.; Riordan, Daniel P.; Brown, Patrick O.

    2012-01-01

    The unfolded protein response (UPR) is a conserved mechanism that mitigates accumulation of unfolded proteins in the ER. The yeast UPR is subject to intricate post-transcriptional regulation, involving recruitment of the RNA encoding the Hac1 transcription factor to the ER and its unconventional splicing. To investigate the mechanisms underlying regulation of the UPR, we screened the yeast proteome for proteins that specifically interact with HAC1 RNA. Protein microarray experiments revealed that HAC1 interacts specifically with small ras GTPases of the Ypt family. We characterized the interaction of HAC1 RNA with one of these proteins, the yeast Rab1 homolog Ypt1. We found that Ypt1 protein specifically associated in vivo with unspliced HAC1 RNA. This association was disrupted by conditions that impaired protein folding in the ER and induced the UPR. Also, the Ypt1-HAC1 interaction depended on IRE1 and ADA5, the two genes critical for UPR activation. Decreasing expression of the Ypt1 protein resulted in a reduced rate of HAC1 RNA decay, leading to significantly increased levels of both unspliced and spliced HAC1 RNA, and delayed attenuation of the UPR, when ER stress was relieved. Our findings establish that Ypt1 contributes to regulation of UPR signaling dynamics by promoting the decay of HAC1 RNA, suggesting a potential regulatory mechanism for linking vesicle trafficking to the UPR and ER homeostasis. PMID:22844259

  18. Regulation of podocalyxin trafficking by Rab small GTPases in 2D and 3D epithelial cell cultures

    PubMed Central

    Mrozowska, Paulina S.

    2016-01-01

    MDCK II cells, a widely used model of polarized epithelia, develop into different structures depending on culture conditions: two-dimensional (2D) monolayers when grown on synthetic supports or three-dimensional (3D) cysts when surrounded by an extracellular matrix. The establishment of epithelial polarity is accompanied by transcytosis of the apical marker podocalyxin from the outer plasma membrane to the newly formed apical domain, but its exact route and regulation remain poorly understood. Here, through comprehensive colocalization and knockdown screenings, we identified the Rab GTPases mediating podocalyxin transcytosis and showed that different sets of Rabs coordinate its transport during cell polarization in 2D and 3D structures. Moreover, we demonstrated that different Rab35 effectors regulate podocalyxin trafficking in 2D and 3D environments; trafficking is mediated by OCRL in 2D monolayers and ACAP2 in 3D cysts. Our results give substantial insight into regulation of the transcytosis of this apical marker and highlight differences between trafficking mechanisms in 2D and 3D cell cultures. PMID:27138252

  19. Mechanism of regulation of prokaryotic tubulin-like GTPase FtsZ by membrane protein EzrA.

    PubMed

    Chung, Kuei-Min; Hsu, Hsin-Hsien; Yeh, Hsin-Yi; Chang, Ban-Yang

    2007-05-18

    At initiation of cell division, FtsZ, a tubulin-like GTPase, assembles into a so-called Z-ring structure at the site of division. The formation of Z ring is negatively regulated by EzrA, which ensures only one ring at the midcell per cell cycle. The mechanism leading to the negative regulation of Z-ring formation by EzrA has been analyzed. Our data reveal that the interaction between EzrA and FtsZ not only reduces the GTP-binding ability of FtsZ but also accelerates the rate of GTP hydrolysis, both of which are unfavorable for the polymerization of FtsZ. Moreover, the acceleration in rate of GTP hydrolysis by EzrA is attributed to stabilization of the transition state for GTP hydrolysis and reduction in the affinity of GDP for FtsZ. Clearly, EzrA is able to modify the GTP hydrolysis cycle of FtsZ. On the basis of these results, a model for how EzrA acts to negatively regulate Z-ring formation is proposed.

  20. Identification of Dck1 and Lmo1 as upstream regulators of the small GTPase Rho5 in Saccharomyces cerevisiae.

    PubMed

    Schmitz, Hans-Peter; Jendretzki, Arne; Wittland, Janina; Wiechert, Johanna; Heinisch, Jürgen J

    2015-04-01

    The exact function and regulation of the small GTPase Rho5, a putative homolog of mammalian Rac1, in the yeast Saccharomyces cerevisiae have not yet been elucidated. In a genetic screen initially designed to identify novel regulators of cell wall integrity signaling, we identified the homologs of mammalian DOCK1 (Dck1) and ELMO (Lmo1) as upstream components which regulate Rho5. Deletion mutants in any of the encoding genes (DCK1, LMO1, RHO5) showed hyper-resistance to cell wall stress agents, demonstrating a function in cell wall integrity signaling. Live-cell fluorescence microscopy showed that Dck1, Lmo1 and Rho5 quickly relocate to mitochondria under oxidative stress and cell viability assays indicate a role of Dck1/Lmo1/Rho5 signaling in triggering cell death as a response to hydrogen peroxide treatment. A regulatory role in autophagy/mitophagy is suggested by the colocalization of Rho5 with autophagic markers and the decreased mitochondrial turnover observed in dck1, lmo1 and rho5 deletion mutants. Rho5 activation may thus serve as a central hub for the integration of different signaling pathways.

  1. Nuclear-cytoplasmic trafficking of NTF2, the nuclear import receptor for the RanGTPase, is subjected to regulation.

    PubMed

    Chafe, Shawn C; Pierce, Jacqueline B; Mangroo, Dev

    2012-01-01

    NTF2 is a cytosolic protein responsible for nuclear import of Ran, a small Ras-like GTPase involved in a number of critical cellular processes, including cell cycle regulation, chromatin organization during mitosis, reformation of the nuclear envelope following mitosis, and controlling the directionality of nucleocytoplasmic transport. Herein, we provide evidence for the first time that translocation of the mammalian NTF2 from the nucleus to the cytoplasm to collect Ran in the GDP form is subjected to regulation. Treatment of mammalian cells with polysorbitan monolaurate was found to inhibit nuclear export of tRNA and proteins, which are processes dependent on RanGTP in the nucleus, but not nuclear import of proteins. Inhibition of the export processes by polysorbitan monolaurate is specific and reversible, and is caused by accumulation of Ran in the cytoplasm because of a block in translocation of NTF2 to the cytoplasm. Nuclear import of Ran and the nuclear export processes are restored in polysorbitan monolaurate treated cells overproducing NTF2. Moreover, increased phosphorylation of a phospho-tyrosine protein and several phospho-threonine proteins was observed in polysorbitan monolaurate treated cells. Collectively, these findings suggest that nucleocytoplasmic translocation of NTF2 is regulated in mammalian cells, and may involve a tyrosine and/or threonine kinase-dependent signal transduction mechanism(s).

  2. The GTPase-activating protein GIT2 protects against colitis by negatively regulating Toll-like receptor signaling

    PubMed Central

    Wei, Juncheng; Wei, Chao; Wang, Min; Qiu, Xiao; Li, Yang; Yuan, Yanzhi; Jin, Chaozhi; Leng, Ling; Wang, Jian; Yang, Xiaoming; He, Fuchu

    2014-01-01

    G protein-coupled receptor kinase-interactor 2 (GIT2) regulates thymocyte positive selection, neutrophil-direction sensing, and cell motility during immune responses by regulating the activity of the small GTPases ADP ribosylation factors (Arfs) and Ras-related C3 botulinum toxin substrate 1 (Rac1). Here, we show that Git2-deficient mice were more susceptible to dextran sodium sulfate (DSS)-induced colitis, Escherichia coli, or endotoxin-shock challenge, and a dramatic increase in proinflammatory cytokines was observed in Git2 knockout mice and macrophages. GIT2 is a previously unidentified negative regulator of Toll-like receptor (TLR)-induced NF-κB signaling. The ubiquitination of TNF receptor associated factor 6 (TRAF6) is critical for the activation of NF-κB. GIT2 terminates TLR-induced NF-κB and MAPK signaling by recruiting the deubiquitinating enzyme Cylindromatosis to inhibit the ubiquitination of TRAF6. Finally, we show that the susceptibility of Git2-deficient mice to DSS-induced colitis depends on TLR signaling. Thus, we show that GIT2 is an essential terminator of TLR signaling and that loss of GIT2 leads to uncontrolled inflammation and severe organ damage. PMID:24879442

  3. Rac1 and Cdc42 GTPases regulate shear stress-driven β-catenin signaling in osteoblasts

    SciTech Connect

    Wan, Qiaoqiao; Cho, Eunhye; Yokota, Hiroki; Na, Sungsoo

    2013-04-19

    Highlights: •Shear stress increased TCF/LEF activity and stimulated β-catenin nuclear localization. •Rac1, Cdc42, and RhoA displayed distinct dynamic activity patterns under flow. •Rac1 and Cdc42, but not RhoA, regulate shear stress-driven TCF/LEF activation. •Cytoskeleton did not significantly affect shear stress-induced TCF/LEF activation. -- Abstract: Beta-catenin-dependent TCF/LEF (T-cell factor/lymphocyte enhancing factor) is known to be mechanosensitive and an important regulator for promoting bone formation. However, the functional connection between TCF/LEF activity and Rho family GTPases is not well understood in osteoblasts. Herein we investigated the molecular mechanisms underlying oscillatory shear stress-induced TCF/LEF activity in MC3T3-E1 osteoblast cells using live cell imaging. We employed fluorescence resonance energy transfer (FRET)-based and green fluorescent protein (GFP)-based biosensors, which allowed us to monitor signal transduction in living cells in real time. Oscillatory (1 Hz) shear stress (10 dynes/cm{sup 2}) increased TCF/LEF activity and stimulated translocation of β-catenin to the nucleus with the distinct activity patterns of Rac1 and Cdc42. The shear stress-induced TCF/LEF activity was blocked by the inhibition of Rac1 and Cdc42 with their dominant negative mutants or selective drugs, but not by a dominant negative mutant of RhoA. In contrast, constitutively active Rac1 and Cdc42 mutants caused a significant enhancement of TCF/LEF activity. Moreover, activation of Rac1 and Cdc42 increased the basal level of TCF/LEF activity, while their inhibition decreased the basal level. Interestingly, disruption of cytoskeletal structures or inhibition of myosin activity did not significantly affect shear stress-induced TCF/LEF activity. Although Rac1 is reported to be involved in β-catenin in cancer cells, the involvement of Cdc42 in β-catenin signaling in osteoblasts has not been identified. Our findings in this study demonstrate

  4. The Monomeric GTPase Rab35 Regulates Phagocytic Cup Formation and Phagosomal Maturation in Entamoeba histolytica.

    PubMed

    Verma, Kuldeep; Datta, Sunando

    2017-03-24

    One of the hallmarks of amoebic colitis is the detection of Entamoeba histolytica (Eh) trophozoites with ingested erythrocytes. Therefore, erythrophagocytosis is traditionally considered as one of the most important criteria to identify the pathogenic behavior of the amoebic trophozoites. Phagocytosis is an essential process for the proliferation and virulence of this parasite. Phagocytic cargo, upon internalization, follows a defined trafficking route to amoebic lysosomal degradation machinery. Here, we demonstrated the role of EhRab35 in the early and late phases of erythrophagocytosis by the amoeba. EhRab35 showed large vacuolar as well as punctate vesicular localization. The spatiotemporal dynamics of vacuolar EhRab35 and its exchange with soluble cytosolic pool were monitored by fluorescence recovery after photobleaching experiments. Using extensive microscopy and biochemical methods, we demonstrated that upon incubation with RBCs EhRab35 is recruited to the site of phagocytic cups as well as to the nascent phagosomes that harbor Gal/GalNAc lectin and actin. Overexpression of a dominant negative mutant of EhRab35 reduced phagocytic cup formation and thereby reduced RBC internalization, suggesting a potential role of the Rab GTPase in the cup formation. Furthermore, we also performed a phagosomal maturation assay and observed that the activated form of EhRab35 significantly increased the rate of RBC degradation. Interestingly, this mutant also significantly enhanced the number of acidic compartments in the trophozoites. Taken together, our results suggest that EhRab35 is involved in the initial stage of phagocytosis as well as in the phagolysosomal biogenesis in E. histolytica and thus contributes to the pathogenicity of the parasite. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. How prenylation and S-acylation regulate subcellular targeting and function of ROP GTPases.

    PubMed

    Sorek, Nadav; Henis, Yoav I; Yalovsky, Shaul

    2011-07-01

    Rho of Plants (ROP) small G proteins function at discrete domains of the plasma and possibly endo membranes. ROPs are synthesized as soluble proteins and their attachment to membranes and partitioning in membrane microdomains are facilitated by the posttranslational lipid modifications prenylation and/or S-acylation. Based on their amino acid sequences, ROPs can be classified into two major subgroups: type-I ROPs terminate with a canonical CaaX box motif and are prenylated primarily by geranylgeranyltransferase-I (GGT-I) and to a lesser extent by farnesyltransferase (FT). Type-II ROPs terminate with a plant specific GC-CG box domain and are attached to the plasma membrane by stable S-acylation. In addition, type-I and possibly also type-II ROPs undergo activation dependent transient S-acylation in the G-domain and consequent partitioning into lipid rafts. Surprisingly, although geranylgeranylation is required for the membrane attachment of type-I ROPs and the γ subunits of heterotrimeric G proteins, Arabidopsis mutants lacking GGT-I function have a mild phenotype compared to wild type plants. The mild phenotype of the ggt-I mutants suggested that farnesylation by FT may compensate for the loss of GGT-I function and that possibly the prenylated type-I and S-acylated type-II ROPS have some overlapping functions. In a paper recently published in Plant Physiology we examined the role of the prenyl group type in type-I ROP function and membrane interaction dynamics and the functional redundancy between type-I and type-II ROPs. This study complements a second paper in which we examined the role of G-domain transient S-acylation in the membrane interaction dynamics and signaling by type-I ROPs. Together these two studies provide a framework for realizing the role of prenylation and S-acylation in subcellular targeting, membrane interaction dynamics and signaling by ROP GTPases.

  6. C. elegans RPM-1 regulates axon termination and synaptogenesis through the Rab GEF GLO-4 and the Rab GTPase GLO-1.

    PubMed

    Grill, Brock; Bienvenut, Willy V; Brown, Heather M; Ackley, Brian D; Quadroni, Manfredo; Jin, Yishi

    2007-08-16

    C. elegans RPM-1 (for Regulator of Presynaptic Morphology) is a member of a conserved protein family that includes Drosophila Highwire and mammalian Pam and Phr1. These are large proteins recently shown to regulate synaptogenesis through E3 ubiquitin ligase activities. Here, we report the identification of an RCC1-like guanine nucleotide exchange factor, GLO-4, from mass spectrometry analysis of RPM-1-associated proteins. GLO-4 colocalizes with RPM-1 at presynaptic terminals. Loss of function in glo-4 or in its target Rab GTPase, glo-1, causes neuronal defects resembling those in rpm-1 mutants. We show that the glo pathway functions downstream of rpm-1 and acts in parallel to fsn-1, a partner of RPM-1 E3 ligase function. We find that late endosomes are specifically disorganized at the presynaptic terminals of glo-4 mutants. Our data suggest that RPM-1 positively regulates a Rab GTPase pathway to promote vesicular trafficking via late endosomes.

  7. The Rho GTPase effector ROCK regulates cyclin A, cyclin D1, and p27Kip1 levels by distinct mechanisms.

    PubMed

    Croft, Daniel R; Olson, Michael F

    2006-06-01

    The members of the Rho GTPase family are well known for their regulation of actin cytoskeletal structures. In addition, they influence progression through the cell cycle. The RhoA and RhoC proteins regulate numerous effector proteins, with a central and vital signaling role mediated by the ROCK I and ROCK II serine/threonine kinases. The requirement for ROCK function in the proliferation of numerous cell types has been revealed by studies utilizing ROCK-selective inhibitors such as Y-27632. However, the mechanisms by which ROCK signaling promotes cell cycle progression have not been thoroughly characterized. Using a conditionally activated ROCK-estrogen receptor fusion protein, we found that ROCK activation is sufficient to stimulate G1/S cell cycle progression in NIH 3T3 mouse fibroblasts. Further analysis revealed that ROCK acts via independent pathways to alter the levels of cell cycle regulatory proteins: cyclin D1 and p21(Cip1) elevation via Ras and the mitogen-activated protein kinase pathway, increased cyclin A via LIM kinase 2, and reduction of p27(Kip1) protein levels. Therefore, the influence of ROCK on cell cycle regulatory proteins occurs by multiple independent mechanisms.

  8. Jak3 Enables Chemokine-Dependent Actin Cytoskeleton Reorganization by Regulating Cofilin and Rac/Rhoa GTPases Activation

    PubMed Central

    Ambriz-Peña, Xochitl; García-Zepeda, Eduardo Alberto; Meza, Isaura; Soldevila, Gloria

    2014-01-01

    We have previously shown that Jak3 is involved in the signaling pathways of CCR7, CCR9 and CXCR4 in murine T lymphocytes and that Jak3−/− lymphocytes display an intrinsic defect in homing to peripheral lymph nodes. However, the molecular mechanism underlying the defective migration observed in Jak3−/− lymphocytes remains elusive. Here, it is demonstrated for the first time, that Jak3 is required for the actin cytoskeleton reorganization in T lymphocytes responding to chemokines. It was found that Jak3 regulates actin polymerization by controlling cofilin inactivation in response to CCL21 and CXCL12. Interestingly, cofilin inactivation was not precluded in PTX- treated cells despite their impaired actin polymerization. Additionally, Jak3 was required for small GTPases Rac1 and RhoA activation, which are indispensable for acquisition of the migratory cell phenotype and the generation of a functional leading edge and uropod, respectively. This defect correlates with data obtained by time-lapse video-microscopy showing an incompetent uropod formation and impaired motility in Jak3-pharmacologically inhibited T lymphocytes. Our data support a new model in which Jak3 and heterotrimeric G proteins can use independent, but complementary, signaling pathways to regulate actin cytoskeleton dynamics during cell migration in response to chemokines. PMID:24498424

  9. The small GTPase Rap1b negatively regulates neutrophil chemotaxis and transcellular diapedesis by inhibiting Akt activation.

    PubMed

    Kumar, Sachin; Xu, Juying; Kumar, Rupali Sani; Lakshmikanthan, Sribalaji; Kapur, Reuben; Kofron, Matthew; Chrzanowska-Wodnicka, Magdalena; Filippi, Marie-Dominique

    2014-08-25

    Neutrophils are the first line of cellular defense in response to infections and inflammatory injuries. However, neutrophil activation and accumulation into tissues trigger tissue damage due to release of a plethora of toxic oxidants and proteases, a cause of acute lung injury (ALI). Despite its clinical importance, the molecular regulation of neutrophil migration is poorly understood. The small GTPase Rap1b is generally viewed as a positive regulator of immune cell functions by controlling bidirectional integrin signaling. However, we found that Rap1b-deficient mice exhibited enhanced neutrophil recruitment to inflamed lungs and enhanced susceptibility to endotoxin shock. Unexpectedly, Rap1b deficiency promoted the transcellular route of diapedesis through endothelial cell. Increased transcellular migration of Rap1b-deficient neutrophils in vitro was selectively mediated by enhanced PI3K-Akt activation and invadopodia-like protrusions. Akt inhibition in vivo suppressed excessive Rap1b-deficient neutrophil migration and associated endotoxin shock. The inhibitory action of Rap1b on PI3K signaling may be mediated by activation of phosphatase SHP-1. Thus, this study reveals an unexpected role for Rap1b as a key suppressor of neutrophil migration and lung inflammation.

  10. Jak3 enables chemokine-dependent actin cytoskeleton reorganization by regulating cofilin and Rac/Rhoa GTPases activation.

    PubMed

    Ambriz-Peña, Xochitl; García-Zepeda, Eduardo Alberto; Meza, Isaura; Soldevila, Gloria

    2014-01-01

    We have previously shown that Jak3 is involved in the signaling pathways of CCR7, CCR9 and CXCR4 in murine T lymphocytes and that Jak3⁻/⁻ lymphocytes display an intrinsic defect in homing to peripheral lymph nodes. However, the molecular mechanism underlying the defective migration observed in Jak3⁻/⁻ lymphocytes remains elusive. Here, it is demonstrated for the first time, that Jak3 is required for the actin cytoskeleton reorganization in T lymphocytes responding to chemokines. It was found that Jak3 regulates actin polymerization by controlling cofilin inactivation in response to CCL21 and CXCL12. Interestingly, cofilin inactivation was not precluded in PTX- treated cells despite their impaired actin polymerization. Additionally, Jak3 was required for small GTPases Rac1 and RhoA activation, which are indispensable for acquisition of the migratory cell phenotype and the generation of a functional leading edge and uropod, respectively. This defect correlates with data obtained by time-lapse video-microscopy showing an incompetent uropod formation and impaired motility in Jak3-pharmacologically inhibited T lymphocytes. Our data support a new model in which Jak3 and heterotrimeric G proteins can use independent, but complementary, signaling pathways to regulate actin cytoskeleton dynamics during cell migration in response to chemokines.

  11. TaTypA, a Ribosome-Binding GTPase Protein, Positively Regulates Wheat Resistance to the Stripe Rust Fungus

    PubMed Central

    Liu, Peng; Myo, Thwin; Ma, Wei; Lan, Dingyun; Qi, Tuo; Guo, Jia; Song, Ping; Guo, Jun; Kang, Zhensheng

    2016-01-01

    Tyrosine phosphorylation protein A (TypA/BipA) belongs to the ribosome-binding GTPase superfamily. In many bacterial species, TypA acts as a global stress and virulence regulator and also mediates resistance to the antimicrobial peptide bactericidal permeability-increasing protein. However, the function of TypA in plants under biotic stresses is not known. In this study, we isolated and functionally characterized a stress-responsive TypA gene (TaTypA) from wheat, with three copies located on chromosomes 6A, 6B, and 6D, respectively. Transient expression assays indicated chloroplast localization of TaTypA. The transcript levels of TaTypA were up-regulated in response to treatment with methyl viologen, which induces reactive oxygen species (ROS) in chloroplasts through photoreaction, cold stress, and infection by an avirulent strain of the stripe rust pathogen. Knock down of the expression of TaTypA through virus-induced gene silencing decreased the resistance of wheat to stripe rust accompanied by weakened ROS accumulation and hypersensitive response, an increase in TaCAT and TaSOD expression, and an increase in pathogen hyphal growth and branching. Our findings suggest that TaTypA contributes to resistance in an ROS-dependent manner. PMID:27446108

  12. Cdc42 and Rac family GTPases regulate mode and speed but not direction of primary fibroblast migration during platelet-derived growth factor-dependent chemotaxis.

    PubMed

    Monypenny, James; Zicha, Daniel; Higashida, Chiharu; Oceguera-Yanez, Fabian; Narumiya, Shuh; Watanabe, Naoki

    2009-05-01

    Cdc42 and Rac family GTPases are important regulators of morphology, motility, and polarity in a variety of mammalian cell types. However, comprehensive analysis of their roles in the morphological and behavioral aspects of chemotaxis within a single experimental system is still lacking. Here we demonstrate using a direct viewing chemotaxis assay that of all of the Cdc42/Rac1-related GTPases expressed in primary fibroblasts, Cdc42, Rac1, and RhoG are required for efficient migration towards platelet-derived growth factor (PDGF). During migration, Cdc42-, Rac1-, and RhoG-deficient cells show aberrant morphology characterized as cell elongation and cell body rounding, loss of lamellipodia, and formation of thick membrane extensions, respectively. Analysis of individual cell trajectories reveals that cell speed is significantly reduced, as well as persistence, but to a smaller degree, while the directional response to the gradient of PDGF is not affected. Combined knockdown of Cdc42, Rac1, and RhoG results in greater inhibition of cell speed than when each protein is knocked down alone, but the cells are still capable of migrating toward PDGF. We conclude that, Cdc42, Rac1, and RhoG function cooperatively during cell migration and that, while each GTPase is implicated in the control of morphology and cell speed, these and other Cdc42/Rac-related GTPases are not essential for the directional response toward PDGF.

  13. RhoGAP18B Isoforms Act on Distinct Rho-Family GTPases and Regulate Behavioral Responses to Alcohol via Cofilin

    PubMed Central

    Kalahasti, Geetha; Rodan, Aylin R.; Rothenfluh, Adrian

    2015-01-01

    Responses to the effects of ethanol are highly conserved across organisms, with reduced responses to the sedating effects of ethanol being predictive of increased risk for human alcohol dependence. Previously, we described that regulators of actin dynamics, such as the Rho-family GTPases Rac1, Rho1, and Cdc42, alter Drosophila’s sensitivity to ethanol-induced sedation. The GTPase activating protein RhoGAP18B also affects sensitivity to ethanol. To better understand how different RhoGAP18B isoforms affect ethanol sedation, we examined them for their effects on cell shape, GTP-loading of Rho-family GTPase, activation of the actin-severing cofilin, and actin filamentation. Our results suggest that the RhoGAP18B-PA isoform acts on Cdc42, while PC and PD act via Rac1 and Rho1 to activate cofilin. In vivo, a loss-of-function mutation in the cofilin-encoding gene twinstar leads to reduced ethanol-sensitivity and acts in concert with RhoGAP18B. Different RhoGAP18B isoforms, therefore, act on distinct subsets of Rho-family GTPases to modulate cofilin activity, actin dynamics, and ethanol-induced behaviors. PMID:26366560

  14. Regulation of Cdc42 polarization by the Rsr1 GTPase and Rga1, a Cdc42 GTPase-activating protein, in budding yeast

    PubMed Central

    Lee, Mid Eum; Lo, Wing-Cheong; Miller, Kristi E.; Chou, Ching-Shan; Park, Hay-Oak

    2015-01-01

    ABSTRACT Cdc42 plays a central role in establishing polarity in yeast and animals, yet how polarization of Cdc42 is achieved in response to spatial cues is poorly understood. Using live-cell imaging, we found distinct dynamics of Cdc42 polarization in haploid budding yeast in correlation with two temporal steps of the G1 phase. The position at which the Cdc42–GTP cluster develops changes rapidly around the division site during the first step but becomes stabilized in the second step, suggesting that an axis of polarized growth is determined in mid G1. Cdc42 polarization in the first step and its proper positioning depend on Rsr1 and its GTPase-activating protein (GAP) Bud2. Interestingly, Rga1, a Cdc42 GAP, exhibits transient localization to a site near the bud neck and to the division site during cytokinesis and G1, and this temporal change of Rga1 distribution is necessary for determination of a proper growth site. Mathematical modeling suggests that a proper axis of Cdc42 polarization in haploid cells might be established through a biphasic mechanism involving sequential positive feedback and transient negative feedback. PMID:25908844

  15. GTPase Sar1 regulates the trafficking and secretion of the virulence factor gp63 in Leishmania.

    PubMed

    Parashar, Smriti; Mukhopadhyay, Amitabha

    2017-07-21

    Metalloprotease gp63 (Leishmania donovani gp63 (Ldgp63)) is a critical virulence factor secreted by Leishmania However, how newly synthesized Ldgp63 exits the endoplasmic reticulum (ER) and is secreted by this parasite is unknown. Here, we cloned, expressed, and characterized the GTPase LdSar1 and other COPII components like LdSec23, LdSec24, LdSec13, and LdSec31 from Leishmania to understand their role in ER exit of Ldgp63. Using dominant-positive (LdSar1:H74L) and dominant-negative (LdSar1:T34N) mutants of LdSar1, we found that GTP-bound LdSar1 specifically binds to LdSec23, which binds, in turn, with LdSec24(1-702) to form a prebudding complex. Moreover, LdSec13 specifically interacted with His6-LdSec31(1-603), and LdSec31 bound the prebudding complex via LdSec23. Interestingly, dileucine 594/595 and valine 597 residues present in the Ldgp63 C-terminal domain were critical for binding with LdSec24(703-966), and GFP-Ldgp63(L594A/L595A) or GFP-Ldgp63(V597S) mutants failed to exit from the ER. Moreover, Ldgp63-containing COPII vesicle budding from the ER was inhibited by LdSar1:T34N in an in vitro budding assay, indicating that GTP-bound LdSar1 is required for budding of Ldgp63-containing COPII vesicles. To directly demonstrate the function of LdSar1 in Ldgp63 trafficking, we coexpressed RFP-Ldgp63 along with LdSar1:WT-GFP or LdSar1:T34N-GFP and found that LdSar1:T34N overexpression blocks Ldgp63 trafficking and secretion in Leishmania Finally, we noted significantly compromised survival of LdSar1:T34N-GFP-overexpressing transgenic parasites in macrophages. Taken together, these results indicated that Ldgp63 interacts with the COPII complex via LdSec24 for Ldgp63 ER exit and subsequent secretion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. How prenylation and S-acylation regulate subcellular targeting and function of ROP GTPases

    PubMed Central

    Sorek, Nadav; Henis, Yoav I

    2011-01-01

    Rho of Plants (ROP) small G proteins function at discrete domains of the plasma and possibly endo membranes. ROPs are synthesized as soluble proteins and their attachment to membranes and partitioning in membrane microdomains are facilitated by the posttranslational lipid modifications prenylation and/or S-acylation. Based on their amino acid sequences, ROPs can be classified into two major subgroups: type-I ROPs terminate with a canonical CaaX box motif and are prenylated primarily by geranyl-geranyltransferase-I (GGT-I) and to a lesser extent by farnesyltransferase (FT). Type-II ROPs terminate with a plant specific GC-CG box domain and are attached to the plasma membrane by stable S-acylation. In addition, type-I and possibly also type-II ROPs undergo activation dependent transient S-acylation in the G-domain and consequent partitioning into lipid rafts. Surprisingly, although geranylgeranylation is required for the membrane attachment of type-I ROPs and the γ subunits of heterotrimeric G proteins, Arabidopsis mutants lacking GGT-I function have a mild phenotype compared to wild type plants. The mild phenotype of the ggt-I mutants suggested that farnesylation by FT may compensate for the loss of GGT-I function and that possibly the prenylated type-I and S-acylated type-II ROPS have some overlapping functions. In a paper recently published in Plant Physiology1 we examined the role of the prenyl group type in type-I ROP function and membrane interaction dynamics and the functional redundancy between type-I and type-II ROPs. This study complements a second paper in which we examined the role of G-domain transient S-acylation in the membrane interaction dynamics and signaling by type-I ROPs.2 Together these two studies provide a framework for realizing the role of prenylation and S-acylation in subcellular targeting, membrane interaction dynamics and signaling by ROP GTPases. PMID:21694496

  17. Characterization of BASP1-mediated neurite outgrowth.

    PubMed

    Korshunova, Irina; Caroni, Pico; Kolkova, Kateryna; Berezin, Vladimir; Bock, Elisabeth; Walmod, Peter S

    2008-08-01

    The brain acid-soluble protein BASP1 (CAP-23, NAP-22) belongs to the family of growth-associated proteins, which also includes GAP-43, a protein recently shown to regulate neural cell adhesion molecule (NCAM)-mediated neurite outgrowth. Here, the effects of BASP1 overexpression were investigated in PC12E2 cells and primary hippocampal neurons. BASP1 overexpression stimulated neurite outgrowth in both cell types. The effects of BASP1 and trans-homophilic NCAM interactions were additive, and BASP1-induced neurite outgrowth was not inhibited by ectopic expression of cytoplasmic NCAM domains. Furthermore, inhibition of signaling via the fibroblast growth factor receptor, Src-family nonreceptor tyrosine kinases, protein kinase C, or GSK3beta, and expression of constructs of the cytoskeletal proteins spectrin and tau inhibited NCAM- but not BASP1-induced neurite outgrowth. Expression of BASP1 mutated at the serine-5 phosphorylation site stimulated neurite outgrowth to a degree comparable to that observed in response to overexpression of wild-type BASP1, whereas expression of BASP1 mutated at the myristoylation site at glycine-1 completely abrogated the stimulatory effects of the protein on neurite outgrowth. Finally, coexpression experiments with dominant negative and wild-type versions of GAP-43 and BASP1 demonstrated that the two proteins could substitute for each other with respect to induction of NCAM-independent neurite outgrowth, whereas BASP1 was unable to replace the stimulatory effect of GAP-43 on NCAM-mediated neurite outgrowth. These observations demonstrate that BASP1 and GAP-43 have overlapping, but not identical, functions in relation to neurite outgrowth and indicate that the main function of BASP1 is to regulate the organization and morphology of the plasma membrane.

  18. Desmoglein 3 acting as an upstream regulator of Rho GTPases, Rac-1/Cdc42 in the regulation of actin organisation and dynamics

    PubMed Central

    Man Tsang, Siu; Brown, Louise; Gadmor, Hanan; Gammon, Luke; Fortune, Farida; Wheeler, Ann; Wan, Hong

    2012-01-01

    Desmoglein 3 (Dsg3), a member of the desmoglein sub-family, serves as an adhesion molecule in desmosomes. Our previous study showed that overexpression of human Dsg3 in several epithelial lines induces formation of membrane protrusions, a phenotype suggestive of Rho GTPase activation. Here we examined the interaction between Dsg3 and actin in detail and showed that endogenous Dsg3 colocalises and interacts with actin, particularly the junctional actin in a Rac1-dependent manner. Ablation of Rac1 activity by dominant negative Rac1 mutant (N17Rac1) or the Rac1 specific inhibitor (NSC23766) directly disrupts the interaction between Dsg3 and actin. Assembly of the junctional actin at the cell borders is accompanied with enhanced levels of Dsg3, while inhibition of Dsg3 by RNAi results in profound changes in the organisation of actin cytoskeleton. In accordance, overexpression of Dsg3 results in a remarkable increase of Rac1 and Cdc42 activities and to a lesser extent, RhoA. The enhancements in Rho GTPases are accompanied by the pronounced actin-based membrane structures such as lamellipodia and filopodia, enhanced rate of actin turnover and cell polarisation. Together, our results reveal an important novel function for Dsg3 in promoting actin dynamics through regulating Rac1 and Cdc42 activation in epithelial cells. PMID:22796473

  19. Skeletal muscle differentiation and fusion are regulated by the BAR-containing Rho-GTPase-activating protein (Rho-GAP), GRAF1.

    PubMed

    Doherty, Jason T; Lenhart, Kaitlin C; Cameron, Morgan V; Mack, Christopher P; Conlon, Frank L; Taylor, Joan M

    2011-07-22

    Although RhoA activity is necessary for promoting myogenic mesenchymal stem cell fates, recent studies in cultured cells suggest that down-regulation of RhoA activity in specified myoblasts is required for subsequent differentiation and myotube formation. However, whether this phenomenon occurs in vivo and which Rho modifiers control these later events remain unclear. We found that expression of the Rho-GTPase-activating protein, GRAF1, was transiently up-regulated during myogenesis, and studies in C2C12 cells revealed that GRAF1 is necessary and sufficient for mediating RhoA down-regulation and inducing muscle differentiation. Moreover, forced expression of GRAF1 in pre-differentiated myoblasts drives robust muscle fusion by a process that requires GTPase-activating protein-dependent actin remodeling and BAR-dependent membrane binding or sculpting. Moreover, morpholino-based knockdown studies in Xenopus laevis determined that GRAF1 expression is critical for muscle development. GRAF1-depleted embryos exhibited elevated RhoA activity and defective myofibrillogenesis that resulted in progressive muscle degeneration, defective motility, and embryonic lethality. Our results are the first to identify a GTPase-activating protein that regulates muscle maturation and to highlight the functional importance of BAR domains in myotube formation.

  20. The small GTPase Rab5 homologue Ypt5 regulates cell morphology, sexual development, ion-stress response and vacuolar formation in fission yeast

    SciTech Connect

    Tsukamoto, Yuta; Katayama, Chisako; Shinohara, Miki; Shinohara, Akira; Maekawa, Shohei; Miyamoto, Masaaki

    2013-11-29

    Highlights: •Multiple functions of Rab5 GTPase in fission yeast were found. •Roles of Rab5 in fission yeast were discussed. •Relation between Rab5 and actin cytoskeleton were discussed. -- Abstract: Inner-membrane transport is critical to cell function. Rab family GTPases play an important role in vesicle transport. In mammalian cells, Rab5 is reported to be involved in the regulation of endosome formation, phagocytosis and chromosome alignment. Here, we examined the role of the fission yeast Rab5 homologue Ypt5 using a point mutant allele. Mutant cells displayed abnormal cell morphology, mating, sporulation, endocytosis, vacuole fusion and responses to ion stress. Our data strongly suggest that fission yeast Rab5 is involved in the regulation of various types of cellular functions.

  1. Screening of mutations in the additional sex combs like 1, transcriptional regulator, tumor protein p53, and KRAS proto-oncogene, GTPase/NRAS proto-oncogene, GTPase genes of patients with myelodysplastic syndrome.

    PubMed

    Leite, Carolina; Delmonico, Lucas; Alves, Gilda; Gomes, Romario José; Martino, Mariana Rodrigues; da Silva, Aline Rodrigues; Moreira, Aline Dos Santos; Maioli, Maria Christina; Scherrer, Luciano Rios; Bastos, Elenice Ferreira; Irineu, Roberto; Ornellas, Maria Helena

    2017-10-01

    Myelodysplastic syndrome (MDS) is a heterogeneous group of clonal bone marrow disorders characterized by ineffective hematopoiesis, different degrees of cellular dysplasia, and increased risk of progression to acute myeloid leukemia. International Prognostic Scoring System is the gold standard for MDS classification; however, patients exhibiting different clinical behaviors often coexist in the same group, indicating that the currently available scoring systems are insufficient. The genes that have recently been identified as mutated in MDS, including additional sex combs like 1, transcriptional regulator (ASXL1), tumor protein p53 (TP53), and KRAS proto-oncogene and GTPase (KRAS)/NRAS proto-oncogene, GTPase (NRAS), may contribute to a more comprehensive classification, as well as to the prognosis and progression of the disease. In the present study, the mutations in the ASXL1, TP53 and NRAS/KRAS genes in 50 patients were evaluated by sequencing genomic bone marrow DNA. Nine patients (18%) presented with at least one type of mutation. Mutations in TP53 were the most frequent in six patients (12%), followed by ASXL1 in two patients (4%) and NRAS in one patient (2%). The nine mutations were detected in patients with low- and high-risk MDS. The screening of mutations in MDS cases contributes to the application of personalized medicine.

  2. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival.

    PubMed

    Efeyan, Alejo; Zoncu, Roberto; Chang, Steven; Gumper, Iwona; Snitkin, Harriet; Wolfson, Rachel L; Kirak, Oktay; Sabatini, David D; Sabatini, David M

    2013-01-31

    The mechanistic target of rapamycin complex 1 (mTORC1) pathway regulates organismal growth in response to many environmental cues, including nutrients and growth factors. Cell-based studies showed that mTORC1 senses amino acids through the RagA-D family of GTPases (also known as RRAGA, B, C and D), but their importance in mammalian physiology is unknown. Here we generate knock-in mice that express a constitutively active form of RagA (RagA(GTP)) from its endogenous promoter. RagA(GTP/GTP) mice develop normally, but fail to survive postnatal day 1. When delivered by Caesarean section, fasted RagA(GTP/GTP) neonates die almost twice as rapidly as wild-type littermates. Within an hour of birth, wild-type neonates strongly inhibit mTORC1, which coincides with profound hypoglycaemia and a decrease in plasma amino-acid concentrations. In contrast, mTORC1 inhibition does not occur in RagA(GTP/GTP) neonates, despite identical reductions in blood nutrient amounts. With prolonged fasting, wild-type neonates recover their plasma glucose concentrations, but RagA(GTP/GTP) mice remain hypoglycaemic until death, despite using glycogen at a faster rate. The glucose homeostasis defect correlates with the inability of fasted RagA(GTP/GTP) neonates to trigger autophagy and produce amino acids for de novo glucose production. Because profound hypoglycaemia does not inhibit mTORC1 in RagA(GTP/GTP) neonates, we considered the possibility that the Rag pathway signals glucose as well as amino-acid sufficiency to mTORC1. Indeed, mTORC1 is resistant to glucose deprivation in RagA(GTP/GTP) fibroblasts, and glucose, like amino acids, controls its recruitment to the lysosomal surface, the site of mTORC1 activation. Thus, the Rag GTPases signal glucose and amino-acid concentrations to mTORC1, and have an unexpectedly key role in neonates in autophagy induction and thus nutrient homeostasis and viability.

  3. GTPase of the Immune-Associated Nucleotide Protein 5 Regulates the Lysosomal Calcium Compartment in T Lymphocytes

    PubMed Central

    Serrano, Daniel; Ghobadi, Farnaz; Boulay, Guylain; Ilangumaran, Subburaj; Lavoie, Christine; Ramanathan, Sheela

    2017-01-01

    T lymphocytes from Gimap5lyp/lyp rats carrying a recessive mutation in the GTPase of immune-associated protein 5 (Gimap5) gene undergo spontaneous apoptosis. Molecular mechanisms underlying this survival defect are not yet clear. We have shown that Gimap5lyp/lyp T lymphocytes display reduced calcium influx following T cell antigen receptor (TCR) stimulation that was associated with impaired buffering of calcium by mitochondria. Here, we investigated the subcellular localization of GIMAP5 and its influence on Ca2+ response in HEK293T cells and T lymphocytes. The more abundantly expressed GIMAP5v2 localizes to the lysosome and certain endosomal vesicles. Gimap5lyp/lyp T lymphocytes showed increased accumulation of calcium in the lysosomes as evidenced by Gly-Phe β-naphthylamide (GPN) triggered Ca2+ release. As a corollary, GPN-induced Ca2+ flux was decreased in HEK293T cells expressing GIMAP5v2. Strikingly, TCR stimulation of rat, mouse, and human T lymphocytes increased lysosomal calcium content. Overall, our findings show that lysosomes modulate cellular Ca2+ response during T cell activation and that GIMAP5 regulates the lysosomal Ca2+ compartment in T lymphocytes. PMID:28223986

  4. Small G protein Rac GTPases regulate the maintenance of glioblastoma stem-like cells in vitro and in vivo.

    PubMed

    Lai, Yun-Ju; Tsai, Jui-Cheng; Tseng, Ying-Ting; Wu, Meng-Shih; Liu, Wen-Shan; Lam, Hoi-Ian; Yu, Jei-Hwa; Nozell, Susan E; Benveniste, Etty N

    2017-03-14

    Glioblastoma is the most common and aggressive malignant brain tumor in adults. The existence of glioblastoma stem cells (GSCs) or stem-like cells (stemloids) may account for its invasiveness and high recurrence. Rac proteins belong to the Rho small GTPase subfamily which regulates cell movement, proliferation, and survival. To investigate whether Rac proteins can serve as therapeutic targets for glioblastoma, especially for GSCs or stemloids, we examined the potential roles of Rac1, Rac2 and Rac3 on the properties of tumorspheres derived from glioblastoma cell lines. Tumorspheres are thought to be glioblastoma stem-like cells. We showed that Rac proteins promote the STAT3 and ERK activation and enhance cell proliferation and colony formation of glioblastoma stem-like cells. Knockdown of Rac proteins reduces the expression of GSC markers, such as CD133 and Sox2. The in vivo effects of Rac proteins in glioblastoma were further studied in zebrafish and in the mouse xenotransplantation model. Knocking-down Rac proteins abolished the angiogenesis effect induced by the injected tumorspheres in zebrafish model. In the CD133+-U373-tumorsphere xenotransplanted mouse model, suppression of Rac proteins decreased the incidence of tumor formation and inhibited the tumor growth. Moreover, knockdown of Rac proteins reduced the sphere forming efficiency of cells derived from these tumors. In conclusion, not only Rac1 but also Rac2 and 3 are important for glioblastoma tumorigenesis and can serve as the potential therapeutic targets against glioblastoma and its stem-like cells.

  5. Arf3p GTPase is a key regulator of Bud2p activation for invasive growth in Saccharomyces cerevisiae.

    PubMed

    Hsu, Jia-Wei; Lee, Fang-Jen S

    2013-08-01

    The regulation and signaling pathways involved in the invasive growth of yeast have been studied extensively because of their general applicability to fungal pathogenesis. Bud2p, which functions as a GTPase-activating protein (GAP) for Bud1p/Rsr1p, is required for appropriate budding patterns and filamentous growth. The regulatory mechanisms leading to Bud2p activation, however, are poorly understood. In this study, we report that ADP-ribosylation factor 3p (Arf3p) acts as a regulator of Bud2p activation during invasive growth. Arf3p binds directly to the N-terminal region of Bud2p and promotes its GAP activity both in vitro and in vivo. Genetic analysis shows that deletion of BUD1 suppresses the defect of invasive growth in arf3Δ or bud2Δ cells. Lack of Arf3p, like that of Bud2p, causes the intracellular accumulation of Bud1p-GTP. The Arf3p-Bud2p interaction is important for invasive growth and facilitates the Bud2p-Bud1p association in vivo. Finally, we show that under glucose depletion-induced invasion conditions in yeast, more Arf3p is activated to the GTP-bound state, and the activation is independent of Arf3p guanine nucleotide-exchange factor Yel1p. Thus we demonstrate that a novel spatial activation of Arf3p plays a role in regulating Bud2p activation during glucose depletion-induced invasive growth.

  6. [When we have learned about the brain development from a disease-oriented study: DBZ regulates cortical cell positioning and neurite extension by sustaining the anterograde transport of Lis1/DISC1 through control of Ndel1 phosphorylation].

    PubMed

    Sato, Makoto

    2016-04-01

    Cell positioning and neuronal network formation are crucial for proper brain function. Disrupted-In-Schizophrenia 1 (DISC1) is anterogradely transported to the neurite tips, together with Lis1, and functions in neurite extension via suppression of GSK3β activity. Then, transported Lis1 is retrogradely transported and functions in cell migration. Here, we show that DISC1-binding zinc finger protein (DBZ) regulates mouse cortical cell positioning and neurite development in vivo, together with DISC1. DBZ hindered Ndel1 phosphorylation at threonine 219 and serine 251. DBZ depletion or expression of a double-phosphorylated mimetic form of Ndel1 impaired the transport of Lis1 and DISC1 to the neurite tips and hampered microtubule elongation. Moreover, application of DISC1 or a GSK3β inhibitor rescued the impairments caused by DBZ insufficiency or double-phosphorylated Ndel1 expression. We concluded that DBZ controls cell positioning and neurite development by interfering with Ndel1 from disproportionate phosphorylation, which is critical for appropriate anterograde transport of the DISC1-complex.

  7. RabGDIα is a negative regulator of interferon-γ-inducible GTPase-dependent cell-autonomous immunity to Toxoplasma gondii.

    PubMed

    Ohshima, Jun; Sasai, Miwa; Liu, Jianfa; Yamashita, Kazuo; Ma, Ji Su; Lee, Youngae; Bando, Hironori; Howard, Jonathan C; Ebisu, Shigeyuki; Hayashi, Mikako; Takeda, Kiyoshi; Standley, Daron M; Frickel, Eva-Maria; Yamamoto, Masahiro

    2015-08-18

    IFN-γ orchestrates cell-autonomous host defense against various intracellular vacuolar pathogens. IFN-γ-inducible GTPases, such as p47 immunity-related GTPases (IRGs) and p65 guanylate-binding proteins (GBPs), are recruited to pathogen-containing vacuoles, which is important for disruption of the vacuoles, culminating in the cell-autonomous clearance. Although the positive regulation for the proper recruitment of IRGs and GBPs to the vacuoles has been elucidated, the suppressive mechanism is unclear. Here, we show that Rab GDP dissociation inhibitor α (RabGDIα), originally identified as a Rab small GTPase inhibitor, is a negative regulator of IFN-γ-inducible GTPases in cell-autonomous immunity to the intracellular pathogen Toxoplasma gondii. Overexpression of RabGDIα, but not of RabGDIβ, impaired IFN-γ-dependent reduction of T. gondii numbers. Conversely, RabGDIα deletion in macrophages and fibroblasts enhanced the IFN-γ-induced clearance of T. gondii. Furthermore, upon a high dose of infection by T. gondii, RabGDIα-deficient mice exhibited a decreased parasite burden in the brain and increased resistance in the chronic phase than did control mice. Among members of IRGs and GBPs important for the parasite clearance, Irga6 and Gbp2 alone were more frequently recruited to T. gondii-forming parasitophorous vacuoles in RabGDIα-deficient cells. Notably, Gbp2 positively controlled Irga6 recruitment that was inhibited by direct and specific interactions of RabGDIα with Gbp2 through the lipid-binding pocket. Taken together, our results suggest that RabGDIα inhibits host defense against T. gondii by negatively regulating the Gbp2-Irga6 axis of IFN-γ-dependent cell-autonomous immunity.

  8. RabGDIα is a negative regulator of interferon-γ–inducible GTPase-dependent cell-autonomous immunity to Toxoplasma gondii

    PubMed Central

    Ohshima, Jun; Sasai, Miwa; Liu, Jianfa; Yamashita, Kazuo; Ma, Ji Su; Lee, Youngae; Bando, Hironori; Howard, Jonathan C.; Ebisu, Shigeyuki; Hayashi, Mikako; Takeda, Kiyoshi; Standley, Daron M.; Frickel, Eva-Maria; Yamamoto, Masahiro

    2015-01-01

    IFN-γ orchestrates cell-autonomous host defense against various intracellular vacuolar pathogens. IFN-γ–inducible GTPases, such as p47 immunity-related GTPases (IRGs) and p65 guanylate-binding proteins (GBPs), are recruited to pathogen-containing vacuoles, which is important for disruption of the vacuoles, culminating in the cell-autonomous clearance. Although the positive regulation for the proper recruitment of IRGs and GBPs to the vacuoles has been elucidated, the suppressive mechanism is unclear. Here, we show that Rab GDP dissociation inhibitor α (RabGDIα), originally identified as a Rab small GTPase inhibitor, is a negative regulator of IFN-γ–inducible GTPases in cell-autonomous immunity to the intracellular pathogen Toxoplasma gondii. Overexpression of RabGDIα, but not of RabGDIβ, impaired IFN-γ–dependent reduction of T. gondii numbers. Conversely, RabGDIα deletion in macrophages and fibroblasts enhanced the IFN-γ–induced clearance of T. gondii. Furthermore, upon a high dose of infection by T. gondii, RabGDIα-deficient mice exhibited a decreased parasite burden in the brain and increased resistance in the chronic phase than did control mice. Among members of IRGs and GBPs important for the parasite clearance, Irga6 and Gbp2 alone were more frequently recruited to T. gondii-forming parasitophorous vacuoles in RabGDIα-deficient cells. Notably, Gbp2 positively controlled Irga6 recruitment that was inhibited by direct and specific interactions of RabGDIα with Gbp2 through the lipid-binding pocket. Taken together, our results suggest that RabGDIα inhibits host defense against T. gondii by negatively regulating the Gbp2–Irga6 axis of IFN-γ–dependent cell-autonomous immunity. PMID:26240314

  9. TBC1D12 is a novel Rab11-binding protein that modulates neurite outgrowth of PC12 cells

    PubMed Central

    2017-01-01

    Recycling endosomes are generally thought to play a central role in endocytic recycling, but recent evidence has indicated that they also participate in other cellular events, including cytokinesis, autophagy, and neurite outgrowth. Rab small GTPases are key regulators in membrane trafficking, and although several Rab isoforms, e.g., Rab11, have been shown to regulate recycling endosomal trafficking, the precise mechanism by which these Rabs regulate recycling endosomes is not fully understood. In this study, we focused on a Rab-GTPase-activating protein (Rab-GAP), one of the key regulators of Rabs, and comprehensively screened 43 mammalian Tre-2/Bub2/Cdc16 (TBC)/Rab-GAP-domain-containing proteins (TBC proteins) for proteins that specifically localize on recycling endosomes in mouse embryonic fibroblasts (MEFs). Four of the 43 mammalian TBC proteins screened, i.e., TBC1D11, TBC1D12, TBC1D14, and EVI5, were found to colocalize well with transferrin receptor, a well-known recycling endosome marker. We further investigated the biochemical properties of TBC1D12, a previously uncharacterized TBC protein. The results showed that TBC1D12 interacted with active Rab11 through its middle region and that it did not display Rab11-GAP activity in vitro. The recycling endosomal localization of TBC1D12 was found to depend on the expression of Rab11. We also found that TBC1D12 expression had no effect on common Rab11-dependent cellular events, e.g., transferrin recycling, in MEFs and that it promoted neurite outgrowth, a specialized Rab11-dependent cellular event, of PC12 cells independently of its GAP activity. These findings indicated that TBC1D12 is a novel Rab11-binding protein that modulates neurite outgrowth of PC12 cells. PMID:28384198

  10. Nutritional, hormonal, and depot-dependent regulation of the expression of the small GTPase Rab18 in rodent adipose tissue.

    PubMed

    Pulido, Marina R; Rabanal-Ruiz, Yoana; Almabouada, Farid; Díaz-Ruiz, Alberto; Burrell, María A; Vázquez, María J; Castaño, Justo P; Kineman, Rhonda D; Luque, Raúl M; Diéguez, Carlos; Vázquez-Martínez, Rafael; Malagón, María M

    2013-02-01

    There is increasing evidence that proteins associated with lipid droplets (LDs) play a key role in the coordination of lipid storage and mobilization in adipocytes. The small GTPase, RAB18, has been recently identified as a novel component of the protein coat of LDs and proposed to play a role in both β-adrenergic stimulation of lipolysis and insulin-induced lipogenesis in 3T3-L1 adipocytes. In order to better understand the role of Rab18 in the regulation of lipid metabolism in adipocytes, we evaluated the effects of age, fat location, metabolic status, and hormonal milieu on Rab18 expression in rodent white adipose tissue (WAT). Rab18 mRNA was undetectable at postnatal day 15 (P15), but reached adult levels by P45, in both male and female rats. In adult rats, Rab18 immunolocalized around LDs, as well as within the cytoplasm of mature adipocytes. A weak Rab18 signal was also detected in the stromal-vascular fraction of WAT. In mice, fasting significantly increased, though with a distinct time-course pattern, Rab18 mRNA and protein levels in visceral and subcutaneous WAT. The expression of Rab18 was also increased in visceral and subcutaneous WAT of obese mice (diet-induced, ob/ob, and New Zealand obese mice) compared with lean controls. Rab18 expression in rats was unaltered by castration, adrenalectomy, or GH deficiency but was increased by hypophysectomy, as well as hypothyroidism. When viewed together, our results suggest the participation of Rab18 in the regulation of lipid processing in adipose tissue under both normal and pathological conditions.

  11. The Rho GTPase Cdc42 regulates hair cell planar polarity and cellular patterning in the developing cochlea.

    PubMed

    Kirjavainen, Anna; Laos, Maarja; Anttonen, Tommi; Pirvola, Ulla

    2015-03-13

    Hair cells of the organ of Corti (OC) of the cochlea exhibit distinct planar polarity, both at the tissue and cellular level. Planar polarity at tissue level is manifested as uniform orientation of the hair cell stereociliary bundles. Hair cell intrinsic polarity is defined as structural hair bundle asymmetry; positioning of the kinocilium/basal body complex at the vertex of the V-shaped bundle. Consistent with strong apical polarity, the hair cell apex displays prominent actin and microtubule cytoskeletons. The Rho GTPase Cdc42 regulates cytoskeletal dynamics and polarization of various cell types, and, thus, serves as a candidate regulator of hair cell polarity. We have here induced Cdc42 inactivation in the late-embryonic OC. We show the role of Cdc42 in the establishment of planar polarity of hair cells and in cellular patterning. Abnormal planar polarity was displayed as disturbances in hair bundle orientation and morphology and in kinocilium/basal body positioning. These defects were accompanied by a disorganized cell-surface microtubule network. Atypical protein kinase C (aPKC), a putative Cdc42 effector, colocalized with Cdc42 at the hair cell apex, and aPKC expression was altered upon Cdc42 depletion. Our data suggest that Cdc42 together with aPKC is part of the machinery establishing hair cell planar polarity and that Cdc42 acts on polarity through the cell-surface microtubule network. The data also suggest that defects in apical polarization are influenced by disturbed cellular patterning in the OC. In addition, our data demonstrates that Cdc42 is required for stereociliogenesis in the immature cochlea.

  12. Critical and distinct roles of amino- and carboxyl-terminal sequences in regulation of the biological activity of the Chp atypical Rho GTPase.

    PubMed

    Chenette, Emily J; Abo, Arie; Der, Channing J

    2005-04-08

    Chp (Cdc42 homologous protein) shares significant sequence and functional identity with the human Cdc42 small GTPase, and like Cdc42, promotes formation of filopodia and activates the p21-activated kinase serine/threonine kinase. However, unlike Cdc42, Chp contains unique amino- and carboxyl-terminal extensions. Here we determined whether Chp, like Cdc42, can promote growth transformation and evaluated the role of the amino- and carboxyl-terminal sequences in Chp function. Surprisingly, we found that a GTPase-deficient mutant of Chp exhibited low transforming activity but that deletion of the amino terminus of Chp greatly enhanced its transforming activity. Thus, the amino terminus may serve as a negative regulator of Chp function. The carboxyl terminus of Cdc42 contains a CAAX (where C is cysteine, A is aliphatic amino acid, X is terminal amino acid) tetrapeptide sequence that signals for the posttranslational modification critical for Cdc42 membrane association and biological function. Although Chp lacks aCAAXmotif, we found that Chp showed carboxyl terminus-dependent localization to the plasma membrane and to endosomes. Furthermore, an intact carboxyl terminus was required for Chp transforming activity. However, treatment with inhibitors of protein palmitoylation, but not prenylation, caused Chp to mislocalize to the cytoplasm. Thus, Chp depends on palmitoylation, rather than isoprenylation, for membrane association and function. In summary, Chp is implicated in cell transformation, and the unique amino and carboxyl termini of Chp represent atypical mechanisms of regulation of Rho GTPase function.

  13. Regulation of a LATS-homolog by Ras GTPases is important for the control of cell division

    PubMed Central

    2014-01-01

    Background Nuclear Dbf-related/large tumor suppressor (NDR/LATS) kinases have been shown recently to control pathways that regulate mitotic exit, cytokinesis, cell growth, morphological changes and apoptosis. LATS kinases are core components of the Hippo signaling cascade and important tumor suppressors controlling cell proliferation and organ size in flies and mammals, and homologs are also present in yeast and Dictyostelium discoideum. Ras proto-oncogens regulate many biological functions, including differentiation, proliferation and apoptosis. Dysfunctions of LATS kinases or Ras GTPases have been implicated in the development of a variety of cancers in humans. Results In this study we used the model organism Dictyostelium discoideum to analyze the functions of NdrC, a homolog of the mammalian LATS2 protein, and present a novel regulatory mechanism for this kinase. Deletion of the ndrC gene caused impaired cell division and loss of centrosome integrity. A yeast two-hybrid analysis, using activated Ras proteins as bait, revealed NdrC as an interactor and identified its Ras-binding domain. Further in vitro pull-down assays showed that NdrC binds RasG and RasB, and to a lesser extent RasC and Rap1. In cells lacking NdrC, the levels of activated RasB and RasG are up-regulated, suggesting a functional connection between RasB, RasG, and NdrC. Conclusions Dictyostelium discoideum NdrC is a LATS2-homologous kinase that is important for the regulation of cell division. NdrC contains a Ras-binding domain and interacts preferentially with RasB and RasG. Changed levels of both, RasB or RasG, have been shown previously to interfere with cell division. Since a defect in cell division is exhibited by NdrC-null cells, RasG-null cells, and cells overexpressing activated RasB, we propose a model for the regulation of cytokinesis by NdrC that involves the antagonistic control by RasB and RasG. PMID:24986648

  14. Regulation of cell protrusions by small GTPases during fusion of the neural folds.

    PubMed

    Rolo, Ana; Savery, Dawn; Escuin, Sarah; de Castro, Sandra C; Armer, Hannah E J; Munro, Peter M G; Molè, Matteo A; Greene, Nicholas D E; Copp, Andrew J

    2016-04-26

    Epithelial fusion is a crucial process in embryonic development, and its failure underlies several clinically important birth defects. For example, failure of neural fold fusion during neurulation leads to open neural tube defects including spina bifida. Using mouse embryos, we show that cell protrusions emanating from the apposed neural fold tips, at the interface between the neuroepithelium and the surface ectoderm, are required for completion of neural tube closure. By genetically ablating the cytoskeletal regulators Rac1 or Cdc42 in the dorsal neuroepithelium, or in the surface ectoderm, we show that these protrusions originate from surface ectodermal cells and that Rac1 is necessary for the formation of membrane ruffles which typify late closure stages, whereas Cdc42 is required for the predominance of filopodia in early neurulation. This study provides evidence for the essential role and molecular regulation of membrane protrusions prior to fusion of a key organ primordium in mammalian development.

  15. Beta-PIX and Rac1 GTPase mediate trafficking and negative regulation of NOD2.

    PubMed

    Eitel, Julia; Krüll, Matthias; Hocke, Andreas C; N'Guessan, Philippe Dje; Zahlten, Janine; Schmeck, Bernd; Slevogt, Hortense; Hippenstiel, Stefan; Suttorp, Norbert; Opitz, Bastian

    2008-08-15

    The nucleotide-binding domain and leucine-rich repeat containing protein NOD2 serves as a cytoplasmic pattern recognition molecule sensing bacterial muramyl dipeptide (MDP), whereas TLR2 mediates cell surface recognition of bacterial lipopeptides. In this study, we show that NOD2 stimulation activated Rac1 in human THP-1 cells and primary human monocytes. Rac1 inhibition or knock-down, or actin cytoskeleton disruption increased MDP-stimulated IL-8 secretion and NF-kappaB activation, whereas TLR2-dependent cell activation was suppressed by Rac1 inhibition. p21-activated kinase [Pak]-interacting exchange factor (beta-PIX) plays a role in this negative regulation, because knock-down of beta-PIX also led to increased NOD2-mediated but not TLR2-mediated IL-8 secretion, and coimmunoprecipitation experiments demonstrated that NOD2 interacted with beta-PIX as well as Rac1 upon MDP stimulation. Moreover, knock-down of beta-PIX or Rac1 abrogated membrane recruitment of NOD2, and interaction of NOD2 with its negative regulator Erbin. Overall, our data indicate that beta-PIX and Rac1 mediate trafficking and negative regulation of NOD2-dependent signaling which is different from Rac1's positive regulatory role in TLR2 signaling.

  16. GTPases in bacterial cell polarity and signalling.

    PubMed

    Bulyha, Iryna; Hot, Edina; Huntley, Stuart; Søgaard-Andersen, Lotte

    2011-12-01

    In bacteria, large G domain GTPases have well-established functions in translation, protein translocation, tRNA modification and ribosome assembly. In addition, bacteria also contain small Ras-like GTPases consisting of stand-alone G domains. Recent data have revealed that small Ras-like GTPases as well as large G domain GTPases in bacteria function in the regulation of cell polarity, signal transduction and possibly also in cell division. The small Ras-like GTPase MglA together with its cognate GAP MglB regulates cell polarity in Myxococcus xanthus, and the small Ras-like GTPase CvnD9 in Streptomyces coelicolor is involved in signal transduction. Similarly, the large GTPase FlhF together with the ATPase FlhG regulates the localization and number of flagella in polarly flagellated bacteria. Moreover, large dynamin-like GTPases in bacteria may function in cell division. Thus, the function of GTPases in bacteria may be as pervasive as in eukaryotes.

  17. TDP-43 depletion induces neuronal cell damage through dysregulation of Rho family GTPases.

    PubMed

    Iguchi, Yohei; Katsuno, Masahisa; Niwa, Jun-ichi; Yamada, Shin-ichi; Sone, Jun; Waza, Masahiro; Adachi, Hiroaki; Tanaka, Fumiaki; Nagata, Koh-ichi; Arimura, Nariko; Watanabe, Takashi; Kaibuchi, Kozo; Sobue, Gen

    2009-08-14

    The 43-kDa TAR DNA-binding protein (TDP-43) is known to be a major component of the ubiquitinated inclusions characteristic of amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. Although TDP-43 is a nuclear protein, it disappears from the nucleus of affected neurons and glial cells, implicating TDP-43 loss of function in the pathogenesis of neurodegeneration. Here we show that the knockdown of TDP-43 in differentiated Neuro-2a cells inhibited neurite outgrowth and induced cell death. In knockdown cells, the Rho family members RhoA, Rac1, and Cdc42 GTPases were inactivated, and membrane localization of these molecules was reduced. In addition, TDP-43 depletion significantly suppressed protein geranylgeranylation, a key regulating factor of Rho family activity and intracellular localization. In contrast, overexpression of TDP-43 mitigated the cellular damage caused by pharmacological inhibition of geranylgeranylation. Furthermore administration of geranylgeranyl pyrophosphate partially restored cell viability and neurite outgrowth in TDP-43 knockdown cells. In summary, our data suggest that TDP-43 plays a key role in the maintenance of neuronal cell morphology and survival possibly through protein geranylgeranylation of Rho family GTPases.

  18. A response regulator interfaces between the Frz chemosensory system and the MglA/MglB GTPase/GAP module to regulate polarity in Myxococcus xanthus.

    PubMed

    Keilberg, Daniela; Wuichet, Kristin; Drescher, Florian; Søgaard-Andersen, Lotte

    2012-09-01

    How cells establish and dynamically change polarity are general questions in cell biology. Cells of the rod-shaped bacterium Myxococcus xanthus move on surfaces with defined leading and lagging cell poles. Occasionally, cells undergo reversals, which correspond to an inversion of the leading-lagging pole polarity axis. Reversals are induced by the Frz chemosensory system and depend on relocalization of motility proteins between the poles. The Ras-like GTPase MglA localizes to and defines the leading cell pole in the GTP-bound form. MglB, the cognate MglA GTPase activating protein, localizes to and defines the lagging pole. During reversals, MglA-GTP and MglB switch poles and, therefore, dynamically localized motility proteins switch poles. We identified the RomR response regulator, which localizes in a bipolar asymmetric pattern with a large cluster at the lagging pole, as important for motility and reversals. We show that RomR interacts directly with MglA and MglB in vitro. Furthermore, RomR, MglA, and MglB affect the localization of each other in all pair-wise directions, suggesting that RomR stimulates motility by promoting correct localization of MglA and MglB in MglA/RomR and MglB/RomR complexes at opposite poles. Moreover, localization analyses suggest that the two RomR complexes mutually exclude each other from their respective poles. We further show that RomR interfaces with FrzZ, the output response regulator of the Frz chemosensory system, to regulate reversals. Thus, RomR serves at the functional interface to connect a classic bacterial signalling module (Frz) to a classic eukaryotic polarity module (MglA/MglB). This modular design is paralleled by the phylogenetic distribution of the proteins, suggesting an evolutionary scheme in which RomR was incorporated into the MglA/MglB module to regulate cell polarity followed by the addition of the Frz system to dynamically regulate cell polarity.

  19. A Response Regulator Interfaces between the Frz Chemosensory System and the MglA/MglB GTPase/GAP Module to Regulate Polarity in Myxococcus xanthus

    PubMed Central

    Keilberg, Daniela; Wuichet, Kristin; Drescher, Florian; Søgaard-Andersen, Lotte

    2012-01-01

    How cells establish and dynamically change polarity are general questions in cell biology. Cells of the rod-shaped bacterium Myxococcus xanthus move on surfaces with defined leading and lagging cell poles. Occasionally, cells undergo reversals, which correspond to an inversion of the leading-lagging pole polarity axis. Reversals are induced by the Frz chemosensory system and depend on relocalization of motility proteins between the poles. The Ras-like GTPase MglA localizes to and defines the leading cell pole in the GTP-bound form. MglB, the cognate MglA GTPase activating protein, localizes to and defines the lagging pole. During reversals, MglA-GTP and MglB switch poles and, therefore, dynamically localized motility proteins switch poles. We identified the RomR response regulator, which localizes in a bipolar asymmetric pattern with a large cluster at the lagging pole, as important for motility and reversals. We show that RomR interacts directly with MglA and MglB in vitro. Furthermore, RomR, MglA, and MglB affect the localization of each other in all pair-wise directions, suggesting that RomR stimulates motility by promoting correct localization of MglA and MglB in MglA/RomR and MglB/RomR complexes at opposite poles. Moreover, localization analyses suggest that the two RomR complexes mutually exclude each other from their respective poles. We further show that RomR interfaces with FrzZ, the output response regulator of the Frz chemosensory system, to regulate reversals. Thus, RomR serves at the functional interface to connect a classic bacterial signalling module (Frz) to a classic eukaryotic polarity module (MglA/MglB). This modular design is paralleled by the phylogenetic distribution of the proteins, suggesting an evolutionary scheme in which RomR was incorporated into the MglA/MglB module to regulate cell polarity followed by the addition of the Frz system to dynamically regulate cell polarity. PMID:23028358

  20. Regulation of cell protrusions by small GTPases during fusion of the neural folds

    PubMed Central

    Rolo, Ana; Savery, Dawn; Escuin, Sarah; de Castro, Sandra C; Armer, Hannah EJ; Munro, Peter MG; Molè, Matteo A; Greene, Nicholas DE; Copp, Andrew J

    2016-01-01

    Epithelial fusion is a crucial process in embryonic development, and its failure underlies several clinically important birth defects. For example, failure of neural fold fusion during neurulation leads to open neural tube defects including spina bifida. Using mouse embryos, we show that cell protrusions emanating from the apposed neural fold tips, at the interface between the neuroepithelium and the surface ectoderm, are required for completion of neural tube closure. By genetically ablating the cytoskeletal regulators Rac1 or Cdc42 in the dorsal neuroepithelium, or in the surface ectoderm, we show that these protrusions originate from surface ectodermal cells and that Rac1 is necessary for the formation of membrane ruffles which typify late closure stages, whereas Cdc42 is required for the predominance of filopodia in early neurulation. This study provides evidence for the essential role and molecular regulation of membrane protrusions prior to fusion of a key organ primordium in mammalian development. DOI: http://dx.doi.org/10.7554/eLife.13273.001 PMID:27114066

  1. Regulation of Rac1 GTPase activity by quinine through G-protein and bitter taste receptor T2R4.

    PubMed

    Sidhu, Crystal; Jaggupilli, Appalaraju; Chelikani, Prashen; Bhullar, Rajinder P

    2017-02-01

    Rac1 belongs to the Rho family of small GTPases and regulates actin cytoskeleton reorganization. T2R4 is a bitter taste receptor belonging to the G protein-coupled receptor family of proteins. In addition to mediating bitter taste perception from the tongue, T2R4s are found in extra-oral tissues, e.g., nasal epithelium, airways, brain, testis suggesting a much broader physiological function for these receptors. Anti-malarial drug and a bitter tasting compound, quinine, is a known agonist for T2R4, whereas BCML (Nα,Nα-Bis(carboxymethyl)-L-lysine) acts as an inverse agonist. Using western blot and Ca(++) mobilization assays, the effects of quinine on Rac1 activity in HEK293T cells stably expressing T2R4/Gα16/44, T2R4, or Gα16/44 and transiently transfected with HA-Rac1 were investigated. Quinine treatment caused a significant reduction in the amount of active Rac1, whereas in the presence of BCML, quinine failed to cause any significant change in active Rac1. No significant change in Rac1 activity was observed in BAPTA-AM plus quinine-treated Gα16/44 cells, suggesting possibility of a pathway in addition to the canonical Ca(++)-dependent pathway. A noticeable role for Gα16/44 independent of T2R4 is observed in quinine-mediated Rac1 inactivation. Further, a significant difference in quinine-induced Ca(++) response in T2R4/Gα16/44 or T2R4 cells was observed validating the partial role of calcium and importance of Gα16/44. This study is the first to show an inhibitory downstream action of a T2R4 agonist on Rac1 function. Further investigation will help in better understanding the downstream signal transduction network of T2R4 and its extra-oral physiological roles.

  2. A novel mutation in retinitis pigmentosa GTPase regulator gene with a distinctive retinitis pigmentosa phenotype in a Chinese family.

    PubMed

    Sheng, Xunlun; Li, Zili; Zhang, Xinfang; Wang, Jing; Ren, Hongwang; Sun, Yanbo; Meng, Ruihua; Rong, Weining; Zhuang, Wenjuan

    2010-08-15

    To screen the mutation in the retinitis pigmentosa GTPase regulator (RPGR) ORF15 in a large Chinese family with X-linked recessive retinitis pigmentosa and describe the phenotype in affected male and female carriers. Ophthalmic examination was performed on 77 family members to identify affected individuals and to characterize the disease phenotype. PCR and direct sequencing were used for screening mutations in the RPGR gene. Mutation screening demonstrated a novel mutation ORF15+577_578 delAG, which caused an open reading frameshift and resulted in premature truncation of the RPGR protein. The mutation was detected in eight affected male individuals and 14 obligate female carriers of the family and was found to segregate with the phenotype in this family. The mutation led to a severe retinitis pigmentosa (RP) phenotype in male-affected individuals, with some variability in the age of onset of night blindness and visual acuity, but was recessive in female carriers without an RP phenotype. However, the state associated with the carrier was moderate to high myopia with the refractive error ranging from -5.00 D to 22.00 D in 14 female carriers. This novel mutation in RPGR ORF15 causes a serious RP phenotype in males and no RP phenotype in female carriers. Moderate to high myopia was a particular feature for female carriers in this pedigree. Our finding expands the spectrum of RPGR mutations causing X-linked RP and expands phenotypic spectrum of the disease in a Chinese family. This finding will be useful for further genetic consultations and genetic diagnosis.

  3. A novel mutation in retinitis pigmentosa GTPase regulator gene with a distinctive retinitis pigmentosa phenotype in a Chinese family

    PubMed Central

    Zhang, Xinfang; Wang, Jing; Ren, Hongwang; Sun, Yanbo; Meng, Ruihua; Rong, Weining

    2010-01-01

    Purpose To screen the mutation in the retinitis pigmentosa GTPase regulator (RPGR) ORF15 in a large Chinese family with X-linked recessive retinitis pigmentosa and describe the phenotype in affected male and female carriers. Methods Ophthalmic examination was performed on 77 family members to identify affected individuals and to characterize the disease phenotype. PCR and direct sequencing were used for screening mutations in the RPGR gene. Results Mutation screening demonstrated a novel mutation ORF15+577_578 delAG, which caused an open reading frameshift and resulted in premature truncation of the RPGR protein. The mutation was detected in eight affected male individuals and 14 obligate female carriers of the family and was found to segregate with the phenotype in this family. The mutation led to a severe retinitis pigmentosa (RP) phenotype in male-affected individuals, with some variability in the age of onset of night blindness and visual acuity, but was recessive in female carriers without an RP phenotype. However, the state associated with the carrier was moderate to high myopia with the refractive error ranging from −5.00 D to 22.00 D in 14 female carriers. Conclusions This novel mutation in RPGR ORF15 causes a serious RP phenotype in males and no RP phenotype in female carriers. Moderate to high myopia was a particular feature for female carriers in this pedigree. Our finding expands the spectrum of RPGR mutations causing X-linked RP and expands phenotypic spectrum of the disease in a Chinese family. This finding will be useful for further genetic consultations and genetic diagnosis. PMID:20806050

  4. Wisp2/CCN5 up-regulated in the central nervous system of GM3-only mice facilitates neurite formation in Neuro2a cells via integrin-Akt signaling

    SciTech Connect

    Ohkawa, Yuki; Ohmi, Yuhsuke; Tajima, Orie; Yamauchi, Yoshio; Furukawa, Keiko; Furukawa, Koichi

    2011-08-05

    Highlights: {yields} Wisp2/CCN5 was up-regulated in nervous tissues of GM3-only mutant mice. {yields} Wisp2/CCN5 was found in neurons more strongly in the mutant mice. {yields} Wisp2/CCN5 induces Akt phosphorylation via integrins and facilitates neurite formation. {yields} Wisp2/CCN5 conferred resistance to H{sub 2}O{sub 2}-induced apoptosis. {yields} Up-regulation of Wisp2/CCN5 in GM3-only mice seemed for protection of brains from neurodegeneration. -- Abstract: Wisp2/CCN5 belongs to CCN family proteins which are involved in cell proliferation, angiogenesis, tumorigenesis and wound healing. Although a number of studies on the roles of Wisp2/CCN5 in cancers have been reported, no study on the expression and function of Wisp2/CCN5 in the central nervous system has been reported. In this study, we focused on Wisp2/CCN5 that was up-regulated in nervous tissues in GM3-only mice. Over-expression of Wisp2/CCN5 enhanced neurite outgrowth potently after serum withdrawal with increased phosphorylation levels of Akt and ERKs. When cells were cultured with recombinant Wisp2/CCN5 proteins, more and longer neurites were formed than in the controls. Thus, we demonstrated for the first time that Wisp2/CCN5 facilitates neurite formation in a mouse neuroblastoma cell line, Neuro2a. Akt phosphorylation induced by recombinant Wisp2/CCN5 was suppressed after knockdown of integrin {beta}1. Moreover, Wisp2/CCN5-over-expressing cells were resistant to apoptosis induced by H{sub 2}O{sub 2}. These results suggested that secreted Wisp2/CCN5 induces Akt and ERK phosphorylation via integrins, and consequently facilitates neurite formation and conferred resistance to apoptosis. Up-regulation of Wisp2/CCN5 in GM3-only mice should be, therefore, a reaction to protect nervous tissues from neurodegeneration caused by ganglioside deficiency.

  5. Deregulation of Rho GTPases in cancer

    PubMed Central

    Porter, Andrew P.; Papaioannou, Alexandra; Malliri, Angeliki

    2016-01-01

    ABSTRACT In vitro and in vivo studies and evidence from human tumors have long implicated Rho GTPase signaling in the formation and dissemination of a range of cancers. Recently next generation sequencing has identified direct mutations of Rho GTPases in human cancers. Moreover, the effects of ablating genes encoding Rho GTPases and their regulators in mouse models, or through pharmacological inhibition, strongly suggests that targeting Rho GTPase signaling could constitute an effective treatment. In this review we will explore the various ways in which Rho signaling can be deregulated in human cancers. PMID:27104658

  6. RUTBC1 Functions as a GTPase-activating Protein for Rab32/38 and Regulates Melanogenic Enzyme Trafficking in Melanocytes.

    PubMed

    Marubashi, Soujiro; Shimada, Hikaru; Fukuda, Mitsunori; Ohbayashi, Norihiko

    2016-01-15

    Two cell type-specific Rab proteins, Rab32 and Rab38 (Rab32/38), have been proposed as regulating the trafficking of melanogenic enzymes, including tyrosinase and tyrosinase-related protein 1 (Tyrp1), to melanosomes in melanocytes. Like other GTPases, Rab32/38 function as switch molecules that cycle between a GDP-bound inactive form and a GTP-bound active form; the cycle is thought to be regulated by an activating enzyme, guanine nucleotide exchange factor (GEF), and an inactivating enzyme, GTPase-activating protein (GAP), which stimulates the GTPase activity of Rab32/38. Although BLOC-3 has already been identified as a Rab32/38-specific GEF that regulates the trafficking of tyrosinase and Tyrp1, no physiological GAP for Rab32/38 in melanocytes has ever been identified, and it has remained unclear whether Rab32/38 is involved in the trafficking of dopachrome tautomerase, another melanogenic enzyme, in mouse melanocytes. In this study we investigated RUTBC1, which was originally characterized as a Rab9-binding protein and GAP for Rab32 and Rab33B in vitro, and the results demonstrated that RUTBC1 functions as a physiological GAP for Rab32/38 in the trafficking of all three melanogenic enzymes in mouse melanocytes. The results of this study also demonstrated the involvement of Rab9A in the regulation of the RUTBC1 localization and in the trafficking of all three melanogenic enzymes. We discovered that either excess activation or inactivation of Rab32/38 achieved by manipulating RUTBC1 inhibits the trafficking of all three melanogenic enzymes. These results collectively indicate that proper spatiotemporal regulation of Rab32/38 is essential for the trafficking of all three melanogenic enzymes in mouse melanocytes.

  7. RUTBC1 Functions as a GTPase-activating Protein for Rab32/38 and Regulates Melanogenic Enzyme Trafficking in Melanocytes*

    PubMed Central

    Marubashi, Soujiro; Shimada, Hikaru; Fukuda, Mitsunori; Ohbayashi, Norihiko

    2016-01-01

    Two cell type-specific Rab proteins, Rab32 and Rab38 (Rab32/38), have been proposed as regulating the trafficking of melanogenic enzymes, including tyrosinase and tyrosinase-related protein 1 (Tyrp1), to melanosomes in melanocytes. Like other GTPases, Rab32/38 function as switch molecules that cycle between a GDP-bound inactive form and a GTP-bound active form; the cycle is thought to be regulated by an activating enzyme, guanine nucleotide exchange factor (GEF), and an inactivating enzyme, GTPase-activating protein (GAP), which stimulates the GTPase activity of Rab32/38. Although BLOC-3 has already been identified as a Rab32/38-specific GEF that regulates the trafficking of tyrosinase and Tyrp1, no physiological GAP for Rab32/38 in melanocytes has ever been identified, and it has remained unclear whether Rab32/38 is involved in the trafficking of dopachrome tautomerase, another melanogenic enzyme, in mouse melanocytes. In this study we investigated RUTBC1, which was originally characterized as a Rab9-binding protein and GAP for Rab32 and Rab33B in vitro, and the results demonstrated that RUTBC1 functions as a physiological GAP for Rab32/38 in the trafficking of all three melanogenic enzymes in mouse melanocytes. The results of this study also demonstrated the involvement of Rab9A in the regulation of the RUTBC1 localization and in the trafficking of all three melanogenic enzymes. We discovered that either excess activation or inactivation of Rab32/38 achieved by manipulating RUTBC1 inhibits the trafficking of all three melanogenic enzymes. These results collectively indicate that proper spatiotemporal regulation of Rab32/38 is essential for the trafficking of all three melanogenic enzymes in mouse melanocytes. PMID:26620560

  8. Rac1 and Rac3 GTPases Regulate the Development of Hilar Mossy Cells by Affecting the Migration of Their Precursors to the Hilus

    PubMed Central

    Pennucci, Roberta; Tavano, Stefania; Tonoli, Diletta; Gualdoni, Sara; de Curtis, Ivan

    2011-01-01

    We have previously shown that double deletion of the genes for Rac1 and Rac3 GTPases during neuronal development affects late developmental events that perturb the circuitry of the hippocampus, with ensuing epileptic phenotype. These effects include a defect in mossy cells, the major class of excitatory neurons of the hilus. Here, we have addressed the mechanisms that affect the loss of hilar mossy cells in the dorsal hippocampus of mice depleted of the two Rac GTPases. Quantification showed that the loss of mossy cells was evident already at postnatal day 8, soon after these cells become identifiable by a specific marker in the dorsal hilus. Comparative analysis of the hilar region from control and double mutant mice revealed that synaptogenesis was affected in the double mutants, with strongly reduced presynaptic input from dentate granule cells. We found that apoptosis was equally low in the hippocampus of both control and double knockout mice. Labelling with bromodeoxyuridine at embryonic day 12.5 showed no evident difference in the proliferation of neuronal precursors in the hippocampal primordium, while differences in the number of bromodeoxyuridine-labelled cells in the developing hilus revealed a defect in the migration of immature, developing mossy cells in the brain of double knockout mice. Overall, our data show that Rac1 and Rac3 GTPases participate in the normal development of hilar mossy cells, and indicate that they are involved in the regulation of the migration of the mossy cell precursor by preventing their arrival to the dorsal hilus. PMID:21949760

  9. Rem-GTPase regulates cardiac myocyte L-type calcium current

    PubMed Central

    Magyar, Janos; Kiper, Carmen E.; Sievert, Gail; Cai, Weikang; Shi, Geng-Xian; Crump, Shawn M.; Li, Liren; Niederer, Steven; Smith, Nic; Andres, Douglas A.; Satin, Jonathan

    2012-01-01

    Rationale: The L-type calcium channels (LTCC) are critical for maintaining Ca2+-homeostasis. In heterologous expression studies, the RGK-class of Ras-related G-proteins regulates LTCC function; however, the physiological relevance of RGK–LTCC interactions is untested. Objective: In this report we test the hypothesis that the RGK protein, Rem, modulates native Ca2+ current (ICa,L) via LTCC in murine cardiomyocytes. Methods and Results: Rem knockout mice (Rem−/−) were engineered, and ICa,L and Ca2+-handling properties were assessed. Rem−/− ventricular cardiomyocytes displayed increased ICa,L density. ICa,L activation was shifted positive on the voltage axis, and β-adrenergic stimulation normalized this shift compared with wild-type ICa,L. Current kinetics, steady-state inactivation, and facilitation was unaffected by Rem−/−. Cell shortening was not significantly different. Increased ICa,L density in the absence of frank phenotypic differences motivated us to explore putative compensatory mechanisms. Despite the larger ICa,L density, Rem−/− cardiomyocyte Ca2+ twitch transient amplitude was significantly less than that compared with wild type. Computer simulations and immunoblot analysis suggests that relative dephosphorylation of Rem−/− LTCC can account for the paradoxical decrease of Ca2+ transients. Conclusions: This is the first demonstration that loss of an RGK protein influences ICa,L in vivo in cardiac myocytes. PMID:22854599

  10. Regulation of synaptic Rac1 activity, long-term potentiation maintenance, and learning and memory by BCR and ABR Rac GTPase-activating proteins.

    PubMed

    Oh, Daeyoung; Han, Seungnam; Seo, Jinsoo; Lee, Jae-Ran; Choi, Jeonghoon; Groffen, John; Kim, Karam; Cho, Yi Sul; Choi, Han-Saem; Shin, Hyewon; Woo, Jooyeon; Won, Hyejung; Park, Soon Kwon; Kim, Soo-Young; Jo, Jihoon; Whitcomb, Daniel J; Cho, Kwangwook; Kim, Hyun; Bae, Yong Chul; Heisterkamp, Nora; Choi, Se-Young; Kim, Eunjoon

    2010-10-20

    Rho family small GTPases are important regulators of neuronal development. Defective Rho regulation causes nervous system dysfunctions including mental retardation and Alzheimer's disease. Rac1, a member of the Rho family, regulates dendritic spines and excitatory synapses, but relatively little is known about how synaptic Rac1 is negatively regulated. Breakpoint cluster region (BCR) is a Rac GTPase-activating protein known to form a fusion protein with the c-Abl tyrosine kinase in Philadelphia chromosome-positive chronic myelogenous leukemia. Despite the fact that BCR mRNAs are abundantly expressed in the brain, the neural functions of BCR protein have remained obscure. We report here that BCR and its close relative active BCR-related (ABR) localize at excitatory synapses and directly interact with PSD-95, an abundant postsynaptic scaffolding protein. Mice deficient for BCR or ABR show enhanced basal Rac1 activity but only a small increase in spine density. Importantly, mice lacking BCR or ABR exhibit a marked decrease in the maintenance, but not induction, of long-term potentiation, and show impaired spatial and object recognition memory. These results suggest that BCR and ABR have novel roles in the regulation of synaptic Rac1 signaling, synaptic plasticity, and learning and memory, and that excessive Rac1 activity negatively affects synaptic and cognitive functions.

  11. Regulation of Synaptic Rac1 Activity, Long-Term Potentiation Maintenance, and Learning and Memory by BCR and ABR Rac GTPase-Activating Proteins

    PubMed Central

    Oh, Daeyoung; Han, Seungnam; Seo, Jinsoo; Lee, Jae-Ran; Choi, Jeonghoon; Groffen, John; Kim, Karam; Cho, Yi Sul; Choi, Han-Saem; Shin, Hyewon; Woo, Jooyeon; Won, Hyejung; Park, Soon Kwon; Kim, Soo-Young; Jo, Jihoon; Whitcomb, Daniel J.; Cho, Kwangwook; Kim, Hyun; Bae, Yong Chul; Heisterkamp, Nora; Choi, Se-Young; Kim, Eunjoon

    2016-01-01

    Rho family small GTPases are important regulators of neuronal development. Defective Rho regulation causes nervous system dysfunctions including mental retardation and Alzheimer’s disease. Rac1, a member of the Rho family, regulates dendritic spines and excitatory synapses, but relatively little is known about how synaptic Rac1 is negatively regulated. Breakpoint cluster region (BCR) is a Rac GTPase-activating protein known to form a fusion protein with the c-Abl tyrosine kinase in Philadelphia chromosome-positive chronic myelogenous leukemia. Despite the fact that BCR mRNAs are abundantly expressed in the brain, the neural functions of BCR protein have remained obscure. We report here that BCR and its close relative active BCR-related (ABR) localize at excitatory synapses and directly interact with PSD-95, an abundant postsynaptic scaffolding protein. Mice deficient for BCR or ABR show enhanced basal Rac1 activity but only a small increase in spine density. Importantly, mice lacking BCR or ABR exhibit a marked decrease in the maintenance, but not induction, of long-term potentiation, and show impaired spatial and object recognition memory. These results suggest that BCR and ABR have novel roles in the regulation of synaptic Rac1 signaling, synaptic plasticity, and learning and memory, and that excessive Rac1 activity negatively affects synaptic and cognitive functions. PMID:20962234

  12. IMPACT is a developmentally regulated protein in neurons that opposes the eukaryotic initiation factor 2α kinase GCN2 in the modulation of neurite outgrowth.

    PubMed

    Roffé, Martín; Hajj, Glaucia N M; Azevedo, Hátylas F; Alves, Viviane S; Castilho, Beatriz A

    2013-04-12

    The product of the mouse Imprinted and Ancient gene, IMPACT, is preferentially expressed in neurons. We have previously shown that IMPACT overexpression inhibits the activation of the protein kinase GCN2, which signals amino acid starvation. GCN2 phosphorylates the α-subunit of eukaryotic translation initiation factor 2 (eIF2α), resulting in inhibition of general protein synthesis but increased translation of specific messages, such as ATF4. GCN2 is also involved in the regulation of neuronal functions, controlling synaptic plasticity, memory, and feeding behavior. We show here that IMPACT abundance increases during differentiation of neurons and neuron-like N2a cells, whereas GCN2 displays lowered activation levels. Upon differentiation, IMPACT associates with translating ribosomes, enhances translation initiation, and down-regulates the expression of ATF4. We further show that endogenous IMPACT promotes neurite outgrowth whereas GCN2 is a strong inhibitor of spontaneous neuritogenesis. Together, these results uncover the participation of the GCN2-IMPACT module of translational regulation in a highly controlled step in the development of the nervous system.

  13. A distinct mechanism regulating a pollen-specific guanine nucleotide exchange factor for the small GTPase Rop in Arabidopsis thaliana

    USDA-ARS?s Scientific Manuscript database

    Rop/Rac small GTPases are central to diverse developmental and cellular activities in plants, playing an especially important Role in polar growth of pollen tubes. Although it is established that a class of plant-specific RopGEFs promotes the activity of Rop/Rac through the catalytic PRONE (Plant-sp...

  14. A distinct mechanism regulating a pollen-specific guanine nucleotide exchange factor for the small GTPase Rop in Arabidopsis thaliana

    USDA-ARS?s Scientific Manuscript database

    Rop/Rac small GTPases are central to diverse developmental and cellular activities in plants, playing an especially important role in polar growth of pollen tubes. Although it is established that a class of plant-specific RopGEFs promotes the activity of Rop/Rac through the catalytic PRONE (Plant sp...

  15. Rho GTPases, phosphoinositides, and actin

    PubMed Central

    Croisé, Pauline; Estay-Ahumada, Catherine; Gasman, Stéphane; Ory, Stéphane

    2014-01-01

    Rho GTPases are well known regulators of the actin cytoskeleton that act by binding and activating actin nucleators. They are therefore involved in many actin-based processes, including cell migration, cell polarity, and membrane trafficking. With the identification of phosphoinositide kinases and phosphatases as potential binding partners or effectors, Rho GTPases also appear to participate in the regulation of phosphoinositide metabolism. Since both actin dynamics and phosphoinositide turnover affect the efficiency and the fidelity of vesicle transport between cell compartments, Rho GTPases have emerged as critical players in membrane trafficking. Rho GTPase activity, actin remodeling, and phosphoinositide metabolism need to be coordinated in both space and time to ensure the progression of vesicles along membrane trafficking pathways. Although most molecular pathways are still unclear, in this review, we will highlight recent advances made in our understanding of how Rho-dependent signaling pathways organize actin dynamics and phosphoinositides and how phosphoinositides potentially provide negative feedback to Rho GTPases during endocytosis, exocytosis and membrane exchange between intracellular compartments. PMID:24914539

  16. SYD-1C, UNC-40 (DCC) and SAX-3 (Robo) Function Interdependently to Promote Axon Guidance by Regulating the MIG-2 GTPase

    PubMed Central

    Xu, Yan; Taru, Hidenori; Jin, Yishi; Quinn, Christopher C.

    2015-01-01

    During development, axons must integrate directional information encoded by multiple guidance cues and their receptors. Axon guidance receptors, such as UNC-40 (DCC) and SAX-3 (Robo), can function individually or combinatorially with other guidance receptors to regulate downstream effectors. However, little is known about the molecular mechanisms that mediate combinatorial guidance receptor signaling. Here, we show that UNC-40, SAX-3 and the SYD-1 RhoGAP-like protein function interdependently to regulate the MIG-2 (Rac) GTPase in the HSN axon of C. elegans. We find that SYD-1 mediates an UNC-6 (netrin) independent UNC-40 activity to promote ventral axon guidance. Genetic analysis suggests that SYD-1 function in axon guidance requires both UNC-40 and SAX-3 activity. Moreover, the cytoplasmic domains of UNC-40 and SAX-3 bind to SYD-1 and SYD-1 binds to and negatively regulates the MIG-2 (Rac) GTPase. We also find that the function of SYD-1 in axon guidance is mediated by its phylogenetically conserved C isoform, indicating that the role of SYD-1 in guidance is distinct from its previously described roles in synaptogenesis and axonal specification. Our observations reveal a molecular mechanism that can allow two guidance receptors to function interdependently to regulate a common downstream effector, providing a potential means for the integration of guidance signals. PMID:25876065

  17. SYD-1C, UNC-40 (DCC) and SAX-3 (Robo) function interdependently to promote axon guidance by regulating the MIG-2 GTPase.

    PubMed

    Xu, Yan; Taru, Hidenori; Jin, Yishi; Quinn, Christopher C

    2015-04-01

    During development, axons must integrate directional information encoded by multiple guidance cues and their receptors. Axon guidance receptors, such as UNC-40 (DCC) and SAX-3 (Robo), can function individually or combinatorially with other guidance receptors to regulate downstream effectors. However, little is known about the molecular mechanisms that mediate combinatorial guidance receptor signaling. Here, we show that UNC-40, SAX-3 and the SYD-1 RhoGAP-like protein function interdependently to regulate the MIG-2 (Rac) GTPase in the HSN axon of C. elegans. We find that SYD-1 mediates an UNC-6 (netrin) independent UNC-40 activity to promote ventral axon guidance. Genetic analysis suggests that SYD-1 function in axon guidance requires both UNC-40 and SAX-3 activity. Moreover, the cytoplasmic domains of UNC-40 and SAX-3 bind to SYD-1 and SYD-1 binds to and negatively regulates the MIG-2 (Rac) GTPase. We also find that the function of SYD-1 in axon guidance is mediated by its phylogenetically conserved C isoform, indicating that the role of SYD-1 in guidance is distinct from its previously described roles in synaptogenesis and axonal specification. Our observations reveal a molecular mechanism that can allow two guidance receptors to function interdependently to regulate a common downstream effector, providing a potential means for the integration of guidance signals.

  18. Mitogen-activated protein kinases regulate expression of neuronal nitric oxide synthase and neurite outgrowth via non-classical retinoic acid receptor signaling in human neuroblastoma SH-SY5Y cells.

    PubMed

    Fujibayashi, Tatsuya; Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Shudo, Koichi; Katsuki, Hiroshi

    2015-10-01

    We have previously shown that retinoic acid receptor (RAR) stimulation by an agonist Am80 recruits nitric oxide-dependent signaling via increased expression of neuronal nitric oxide synthase (nNOS) in rat midbrain slice cultures. Using neuroblastoma SH-SY5Y cells, here we investigated the mechanisms of RAR-induced nNOS expression, together with relationship between nNOS expression and neurite outgrowth. Am80 promoted neurite outgrowth, which was attenuated by inhibitors of phosphoinositide 3-kinase (PI3K; LY294002), c-Jun N-terminal kinase (JNK; SP600125) and p38 mitogen-activated protein kinase (p38 MAPK; SB203580). A selective nNOS inhibitor 3-bromo-nitroindazole also suppressed Am80-induced neurite outgrowth. Am80-induced increase in nNOS protein expression was attenuated by LY294002, SP600125 and SB203580, whereas increase in nNOS mRNA expression was attenuated only by LY294002. Am80-induced activation of JNK and p38 MAPK was blocked by LY294002, suggesting that these kinases acted downstream of PI3K. We also confirmed that DAX1, a nuclear receptor reported to regulate nNOS expression, was up-regulated in response to Am80. siRNA-mediated knockdown of DAX1 abrogated Am80-induced nNOS expression and neurite outgrowth. These results reveal for the first time that nNOS expression is crucial for RAR-mediated neurite outgrowth, and that non-genomic signaling such as JNK and p38 MAPK is involved in RAR-mediated nNOS expression.

  19. RabGEF1/Rabex-5 Regulates TrkA-Mediated Neurite Outgrowth and NMDA-Induced Signaling Activation in NGF-Differentiated PC12 Cells

    PubMed Central

    Tam, See-Ying; Lilla, Jennifer N.; Chen, Ching-Cheng; Kalesnikoff, Janet; Tsai, Mindy

    2015-01-01

    Nerve growth factor (NGF) binds to its cognate receptor TrkA and induces neuronal differentiation by activating distinct downstream signal transduction events. RabGEF1 (also known as Rabex-5) is a guanine nucleotide exchange factor for Rab5, which regulates early endosome fusion and vesicular trafficking in endocytic pathways. Here, we used the antisense (AS) expression approach to induce an NGF-dependent sustained knockdown of RabGEF1 protein expression in stable PC12 transfectants. We show that RabGEF1 is a negative regulator of NGF-induced neurite outgrowth and modulates other cellular and signaling processes that are activated by the interaction of NGF with TrkA receptors, such as cell cycle progression, cessation of proliferation, and activation of NGF-mediated downstream signaling responses. Moreover, RabGEF1 can bind to Rac1, and the activation of Rac1 upon NGF treatment is significantly enhanced in AS transfectants, suggesting that RabGEF1 is a negative regulator of NGF-induced Rac1 activation in PC12 cells. Furthermore, we show that RabGEF1 can also interact with NMDA receptors by binding to the NR2B subunit and its associated binding partner SynGAP, and negatively regulates activation of nitric oxide synthase activity induced by NMDA receptor stimulation in NGF-differentiated PC12 cells. Our data suggest that RabGEF1 is a negative regulator of TrkA-dependent neuronal differentiation and of NMDA receptor-mediated signaling activation in NGF-differentiated PC12 cells. PMID:26588713

  20. RabGEF1/Rabex-5 Regulates TrkA-Mediated Neurite Outgrowth and NMDA-Induced Signaling Activation in NGF-Differentiated PC12 Cells.

    PubMed

    Tam, See-Ying; Lilla, Jennifer N; Chen, Ching-Cheng; Kalesnikoff, Janet; Tsai, Mindy

    2015-01-01

    Nerve growth factor (NGF) binds to its cognate receptor TrkA and induces neuronal differentiation by activating distinct downstream signal transduction events. RabGEF1 (also known as Rabex-5) is a guanine nucleotide exchange factor for Rab5, which regulates early endosome fusion and vesicular trafficking in endocytic pathways. Here, we used the antisense (AS) expression approach to induce an NGF-dependent sustained knockdown of RabGEF1 protein expression in stable PC12 transfectants. We show that RabGEF1 is a negative regulator of NGF-induced neurite outgrowth and modulates other cellular and signaling processes that are activated by the interaction of NGF with TrkA receptors, such as cell cycle progression, cessation of proliferation, and activation of NGF-mediated downstream signaling responses. Moreover, RabGEF1 can bind to Rac1, and the activation of Rac1 upon NGF treatment is significantly enhanced in AS transfectants, suggesting that RabGEF1 is a negative regulator of NGF-induced Rac1 activation in PC12 cells. Furthermore, we show that RabGEF1 can also interact with NMDA receptors by binding to the NR2B subunit and its associated binding partner SynGAP, and negatively regulates activation of nitric oxide synthase activity induced by NMDA receptor stimulation in NGF-differentiated PC12 cells. Our data suggest that RabGEF1 is a negative regulator of TrkA-dependent neuronal differentiation and of NMDA receptor-mediated signaling activation in NGF-differentiated PC12 cells.

  1. Activation of 5-HT7 receptor stimulates neurite elongation through mTOR, Cdc42 and actin filaments dynamics.

    PubMed

    Speranza, Luisa; Giuliano, Teresa; Volpicelli, Floriana; De Stefano, M Egle; Lombardi, Loredana; Chambery, Angela; Lacivita, Enza; Leopoldo, Marcello; Bellenchi, Gian C; di Porzio, Umberto; Crispino, Marianna; Perrone-Capano, Carla

    2015-01-01

    Recent studies have indicated that the serotonin receptor subtype 7 (5-HT7R) plays a crucial role in shaping neuronal morphology during embryonic and early postnatal life. Here we show that pharmacological stimulation of 5-HT7R using a highly selective agonist, LP-211, enhances neurite outgrowth in neuronal primary cultures from the cortex, hippocampus and striatal complex of embryonic mouse brain, through multiple signal transduction pathways. All these signaling systems, involving mTOR, the Rho GTPase Cdc42, Cdk5, and ERK, are known to converge on the reorganization of cytoskeletal proteins that subserve neurite outgrowth. Indeed, our data indicate that neurite elongation stimulated by 5-HT7R is modulated by drugs affecting actin polymerization. In addition, we show, by 2D Western blot analyses, that treatment of neuronal cultures with LP-211 alters the expression profile of cofilin, an actin binding protein involved in microfilaments dynamics. Furthermore, by using microfluidic chambers that physically separate axons from the soma and dendrites, we demonstrate that agonist-dependent activation of 5-HT7R stimulates axonal elongation. Our results identify for the first time several signal transduction pathways, activated by stimulation of 5-HT7R, that converge to promote cytoskeleton reorganization and consequent modulation of axonal elongation. Therefore, the activation of 5-HT7R might represent one of the key elements regulating CNS connectivity and plasticity during development.

  2. The Wnt Frizzled Receptor MOM-5 Regulates the UNC-5 Netrin Receptor through Small GTPase-Dependent Signaling to Determine the Polarity of Migrating Cells.

    PubMed

    Levy-Strumpf, Naomi; Krizus, Meghan; Zheng, Hong; Brown, Louise; Culotti, Joseph G

    2015-08-01

    Wnt and Netrin signaling regulate diverse essential functions. Using a genetic approach combined with temporal gene expression analysis, we found a regulatory link between the Wnt receptor MOM-5/Frizzled and the UNC-6/Netrin receptor UNC-5. These two receptors play key roles in guiding cell and axon migrations, including the migration of the C. elegans Distal Tip Cells (DTCs). DTCs migrate post-embryonically in three sequential phases: in the first phase along the Antero-Posterior (A/P) axis, in the second, along the Dorso-Ventral (D/V) axis, and in the third, along the A/P axis. Loss of MOM-5/Frizzled function causes third phase A/P polarity reversals of the migrating DTCs. We show that an over-expression of UNC-5 causes similar DTC A/P polarity reversals and that unc-5 deficits markedly suppress the A/P polarity reversals caused by mutations in mom-5/frizzled. This implicates MOM-5/Frizzled as a negative regulator of unc-5. We provide further evidence that small GTPases mediate MOM-5's regulation of unc-5 such that one outcome of impaired function of small GTPases like CED-10/Rac and MIG-2/RhoG is an increase in unc-5 function. The work presented here demonstrates the existence of cross talk between components of the Netrin and Wnt signaling pathways and provides further insights into the way guidance signaling mechanisms are integrated to orchestrate directed cell migration.

  3. The Wnt Frizzled Receptor MOM-5 Regulates the UNC-5 Netrin Receptor through Small GTPase-Dependent Signaling to Determine the Polarity of Migrating Cells

    PubMed Central

    Levy-Strumpf, Naomi; Krizus, Meghan; Zheng, Hong; Brown, Louise; Culotti, Joseph G.

    2015-01-01

    Wnt and Netrin signaling regulate diverse essential functions. Using a genetic approach combined with temporal gene expression analysis, we found a regulatory link between the Wnt receptor MOM-5/Frizzled and the UNC-6/Netrin receptor UNC-5. These two receptors play key roles in guiding cell and axon migrations, including the migration of the C. elegans Distal Tip Cells (DTCs). DTCs migrate post-embryonically in three sequential phases: in the first phase along the Antero-Posterior (A/P) axis, in the second, along the Dorso-Ventral (D/V) axis, and in the third, along the A/P axis. Loss of MOM-5/Frizzled function causes third phase A/P polarity reversals of the migrating DTCs. We show that an over-expression of UNC-5 causes similar DTC A/P polarity reversals and that unc-5 deficits markedly suppress the A/P polarity reversals caused by mutations in mom-5/frizzled. This implicates MOM-5/Frizzled as a negative regulator of unc-5. We provide further evidence that small GTPases mediate MOM-5’s regulation of unc-5 such that one outcome of impaired function of small GTPases like CED-10/Rac and MIG-2/RhoG is an increase in unc-5 function. The work presented here demonstrates the existence of cross talk between components of the Netrin and Wnt signaling pathways and provides further insights into the way guidance signaling mechanisms are integrated to orchestrate directed cell migration. PMID:26292279

  4. Def-6, a novel regulator of small GTPases in podocytes, acts downstream of atypical protein kinase C (aPKC) λ/ι.

    PubMed

    Worthmann, Kirstin; Leitges, Michael; Teng, Beina; Sestu, Marcello; Tossidou, Irini; Samson, Thomas; Haller, Hermann; Huber, Tobias B; Schiffer, Mario

    2013-12-01

    The atypical protein kinase C (aPKC) isotypes PKCλ/ι and PKCζ are both expressed in podocytes; however, little is known about differences in their function. Previous studies in mice have demonstrated that podocyte-specific loss of PKCλ/ι leads to a severe glomerular phenotype, whereas mice deficient in PKCζ develop no renal phenotype. We analyzed various effects caused by PKCλ/ι and PKCζ deficiency in cultured murine podocytes. In contrast to PKCζ-deficient podocytes, PKCλ/ι-deficient podocytes exhibited a severe actin cytoskeletal phenotype, reduced cell size, decreased number of focal adhesions, and increased activation of small GTPases. Comparative microarray analysis revealed that the guanine nucleotide exchange factor Def-6 was specifically up-regulated in PKCλ/ι-deficient podocytes. In vivo Def-6 expression is significantly increased in podocytes of PKCλ/ι-deficient mice. Cultured PKCλ/ι-deficient podocytes exhibited an enhanced membrane association of Def-6, indicating enhanced activation. Overexpression of aPKCλ/ι in PKCλ/ι-deficient podocytes could reduce the membrane-associated expression of Def-6 and rescue the actin phenotype. In the present study, PKCλ/ι was identified as an important factor for actin cytoskeletal regulation in podocytes and Def-6 as a specific downstream target of PKCλ/ι that regulates the activity of small GTPases and subsequently the actin cytoskeleton of podocytes.

  5. Regulation of the Rab5 GTPase-activating protein RN-tre by the dual specificity phosphatase Cdc14A in human cells.

    PubMed

    Lanzetti, Letizia; Margaria, Valentina; Melander, Fredrik; Virgili, Laura; Lee, Myung-Hee; Bartek, Jiri; Jensen, Sanne

    2007-05-18

    The Cdc14 family of dual specificity phosphatases regulates key mitotic events in the eukaryotic cell cycle. Although extensively characterized in yeast, little is known about the function of mammalian Cdc14 family members. Here we report a genetic substrate-trapping system designed to identify substrates of the human Cdc14A (hCdc14A) phosphatase. Using this approach, we identify RN-tre, a GTPase-activating protein for the Rab5 GTPase, as a novel physiological target of hCdc14A. As a Rab5 GTPase-activating protein, RN-tre has previously been implicated in control of intracellular membrane trafficking. We find that RN-tre forms a stable complex with the catalytically inactive hCdc14A C278S mutant but not with the wild type protein in human cells, indicative of a substrate/enzyme interaction. In support, we show that RN-tre is regulated by cell cycle-dependent phosphorylation peaking at mitosis, which can be antagonized by hCdc14A activity in vitro as well as in vivo. Furthermore, we show that RN-tre phosphorylation is critical for efficient hCdc14A association and that RN-tre binding can be displaced by tungstate, a competitive inhibitor that binds to the active site of hCdc14A. Consistent with the preference of hCdc14A for phosphorylations mediated by proline-directed kinases, we find that RN-tre is a direct substrate of cyclin-dependent kinase. Finally, phosphorylation of RN-tre appears to finely modulate its catalytic activity. Our findings reveal a novel connection between the cell cycle machinery and the endocytic pathway.

  6. [GTPases of prokaryotic translational apparatus].

    PubMed

    Hauryliuk, V V

    2006-01-01

    Four protein factors, belonging to the GTPase superfamily, participate in bacterial biosynthesis: IF2, EF-G, EF-Tu and RF3. The exact role and mechanism of action of these proteins was of particular interest over the last several decades. Recent advances in structural methods of ribosomal research, especially application of cryoelectron microscopy, provided powerful experimental tools for the investigation of ribosomal dynamics during translation. Simultaneously, progress in the biochemical investigation of translation allowed us to link structural rearrangements occurring in the ribosome to functional changes in the ribosome-bound translational GTPases--GDP/GTP exchange, GTPase activation and its conformational changes. Accumulated data have lead to formulation of current models of mechanisms of translation. More and more facts testify in favor of the idea that the ribosome plays a prominent role both in the nucleotide exchange and in GTPase activation, thus playing the role both of GAP and GEF for RF3, IF2 and EF-G. In our work we attempted to systematize the most important experimental findings and models for mechanisms of GTPases function and regulation in prokaryotic translation.

  7. Mycobacterium fluoroquinolone resistance protein B, a novel small GTPase, is involved in the regulation of DNA gyrase and drug resistance

    PubMed Central

    Tao, Jun; Han, Jiao; Wu, Hanyu; Hu, Xinling; Deng, Jiaoyu; Fleming, Joy; Maxwell, Anthony; Bi, Lijun; Mi, Kaixia

    2013-01-01

    DNA gyrase plays a vital role in resolving DNA topological problems and is the target of antibiotics such as fluoroquinolones. Mycobacterium fluoroquinolone resistance protein A (MfpA) from Mycobacterium smegmatis is a newly identified DNA gyrase inhibitor that is believed to confer intrinsic resistance to fluoroquinolones. However, MfpA does not prevent drug-induced inhibition of DNA gyrase in vitro, implying the involvement of other as yet unknown factors. Here, we have identified a new factor, named Mycobacterium fluoroquinolone resistance protein B (MfpB), which is involved in the protection of DNA gyrase against drugs both in vivo and in vitro. Genetic results suggest that MfpB is necessary for MfpA protection of DNA gyrase against drugs in vivo; an mfpB knockout mutant showed greater susceptibility to ciprofloxacin than the wild-type, whereas a strain overexpressing MfpA and MfpB showed higher loss of susceptibility. Further biochemical characterization indicated that MfpB is a small GTPase and its GTP bound form interacts directly with MfpA and influences its interaction with DNA gyrase. Mutations in MfpB that decrease its GTPase activity disrupt its protective efficacy. Our studies suggest that MfpB, a small GTPase, is required for MfpA-conferred protection of DNA gyrase. PMID:23275532

  8. Mycobacterium fluoroquinolone resistance protein B, a novel small GTPase, is involved in the regulation of DNA gyrase and drug resistance.

    PubMed

    Tao, Jun; Han, Jiao; Wu, Hanyu; Hu, Xinling; Deng, Jiaoyu; Fleming, Joy; Maxwell, Anthony; Bi, Lijun; Mi, Kaixia

    2013-02-01

    DNA gyrase plays a vital role in resolving DNA topological problems and is the target of antibiotics such as fluoroquinolones. Mycobacterium fluoroquinolone resistance protein A (MfpA) from Mycobacterium smegmatis is a newly identified DNA gyrase inhibitor that is believed to confer intrinsic resistance to fluoroquinolones. However, MfpA does not prevent drug-induced inhibition of DNA gyrase in vitro, implying the involvement of other as yet unknown factors. Here, we have identified a new factor, named Mycobacterium fluoroquinolone resistance protein B (MfpB), which is involved in the protection of DNA gyrase against drugs both in vivo and in vitro. Genetic results suggest that MfpB is necessary for MfpA protection of DNA gyrase against drugs in vivo; an mfpB knockout mutant showed greater susceptibility to ciprofloxacin than the wild-type, whereas a strain overexpressing MfpA and MfpB showed higher loss of susceptibility. Further biochemical characterization indicated that MfpB is a small GTPase and its GTP bound form interacts directly with MfpA and influences its interaction with DNA gyrase. Mutations in MfpB that decrease its GTPase activity disrupt its protective efficacy. Our studies suggest that MfpB, a small GTPase, is required for MfpA-conferred protection of DNA gyrase.

  9. IL1-receptor accessory protein-like 1 (IL1RAPL1), a protein involved in cognitive functions, regulates N-type Ca2+-channel and neurite elongation.

    PubMed

    Gambino, Frédéric; Pavlowsky, Alice; Béglé, Aurélie; Dupont, Jean-Luc; Bahi, Nadia; Courjaret, Raphael; Gardette, Robert; Hadjkacem, Hassen; Skala, Henriette; Poulain, Bernard; Chelly, Jamel; Vitale, Nicolas; Humeau, Yann

    2007-05-22

    Null mutations in the IL1-receptor accessory protein-like 1 gene (IL1RAPL1) are responsible for an inherited X-linked form of cognitive impairment. IL1RAPL1 protein physically interacts with neuronal calcium sensor-1 (NCS-1), but the functional impact of the IL1RAPL1/NCS-1 interaction remains unknown. Here, we demonstrate that stable expression of IL1RAPL1 in PC12 cells induces a specific silencing of N-type voltage-gated calcium channels (N-VGCC) activity that explains a secretion deficit observed in these IL1RAPL1 cells. Importantly, this modulation of VGCC activity is mediated by NCS-1. Indeed, a specific loss-of-function of N-VGCC was observed in PC12 cells overexpressing NCS-1, and a total recovery of N-VGCC activity was obtained by a down-regulation of NCS-1 in IL1RAPL1 cells. The functional relevance of the interaction between IL1RAPL1 and NCS-1 was also suggested by the reduction of neurite elongation observed in nerve growth factor (NGF)-treated IL1RAPL1 cells, a phenotype rescued by NCS-1 inactivation. Because both proteins are highly expressed in neurons, these results suggest that IL1RAPL1-related mental retardation could result from a disruption of N-VGCC and/or NCS-1-dependent synaptic and neuronal activities.

  10. Ect2, an ortholog of Drosophila's pebble, negatively regulates neurite outgrowth in neuroblastoma × glioma hybrid NG108-15 cells.

    PubMed

    Tsuji, Takahiro; Higashida, Chiharu; Yoshida, Yasumasa; Islam, Mohammad Saharul; Dohmoto, Mitsuko; Koizumi, Keita; Higashida, Haruhiro

    2011-07-01

    To identify genes required for brain development, we previously performed in vivo RNA interference (RNAi) screening in Drosophila embryos. We identified pebble as a gene that disrupts development of the Drosophila nervous system. Although pebble has been shown to be involved in neuronal development of Drosophila in several screens, the involvement of Ect2, a mammalian ortholog of pebble, in mammalian neuronal development has not been addressed. To examine the role of Ect2 in neuronal differentiation, we performed Ect2 RNAi in the mouse neuroblastoma × rat glioma NG108-15 cell line. Depletion of Ect2 resulted in an increased proportion of binucleate cells and morphological differentiation of NG108-15 cells characterized by the outgrowth of neurites. These morphological changes were correlated with an increased level of acetylcholine esterase mRNA. In addition, expression of Ect2 was decreased in differentiated NG108-15 cells induced by dibutyryl cyclic AMP. These findings indicate that Ect2 negatively regulates the differentiation of NG108-15 cells and suggest that Ect2 may play a role in neuronal differentiation and brain development in vivo.

  11. Ribosome-associated GTPases: the role of RNA for GTPase activation.

    PubMed

    Clementi, Nina; Polacek, Norbert

    2010-01-01

    The GTPase super-family comprises a variety of G proteins found in all three domains of life. Although they are participating in completely different processes like signal transduction, protein biosynthesis and regulation of cell proliferation, they all share a highly conserved G domain and use a common mechanism for GTP hydrolysis. Exact timing in hydrolyzing the bound GTP serves as a molecular switch to initiate diverse cellular reactions. Classical GTPases depend on external proteins to fire GTP hydrolysis (GAPs), and following the GTPase reaction to exchange GDP for GTP (GEFs), converting the GTPase into the active state again. In recent years it became clear that there are many GTPases that do not follow this classical switch mode scheme. Certain ribosome-associated GTPases are not reliant on other GEF proteins to exchange GDP for GTP. Furthermore many of these G proteins are not activated by external GAPs, but by evolutionarily ancient molecules, namely by RNA.

  12. Gain-of-Function Mutations of ARHGAP31, a Cdc42/Rac1 GTPase Regulator, Cause Syndromic Cutis Aplasia and Limb Anomalies

    PubMed Central

    Southgate, Laura; Machado, Rajiv D.; Snape, Katie M.; Primeau, Martin; Dafou, Dimitra; Ruddy, Deborah M.; Branney, Peter A.; Fisher, Malcolm; Lee, Grace J.; Simpson, Michael A.; He, Yi; Bradshaw, Teisha Y.; Blaumeiser, Bettina; Winship, William S.; Reardon, Willie; Maher, Eamonn R.; FitzPatrick, David R.; Wuyts, Wim; Zenker, Martin; Lamarche-Vane, Nathalie; Trembath, Richard C.

    2011-01-01

    Regulation of cell proliferation and motility is essential for normal development. The Rho family of GTPases plays a critical role in the control of cell polarity and migration by effecting the cytoskeleton, membrane trafficking, and cell adhesion. We investigated a recognized developmental disorder, Adams-Oliver syndrome (AOS), characterized by the combination of aplasia cutis congenita (ACC) and terminal transverse limb defects (TTLD). Through a genome-wide linkage analysis, we detected a locus for autosomal-dominant ACC-TTLD on 3q generating a maximum LOD score of 4.93 at marker rs1464311. Candidate-gene- and exome-based sequencing led to the identification of independent premature truncating mutations in the terminal exon of the Rho GTPase-activating protein 31 gene, ARHGAP31, which encodes a Cdc42/Rac1 regulatory protein. Mutant transcripts are stable and increase ARHGAP31 activity in vitro through a gain-of-function mechanism. Constitutively active ARHGAP31 mutations result in a loss of available active Cdc42 and consequently disrupt actin cytoskeletal structures. Arhgap31 expression in the mouse is substantially restricted to the terminal limb buds and craniofacial processes during early development; these locations closely mirror the sites of impaired organogenesis that characterize this syndrome. These data identify the requirement for regulated Cdc42 and/or Rac1 signaling processes during early human development. PMID:21565291

  13. The Rab GTPase Rab8 as a shared regulator of ciliogenesis and immune synapse assembly: From a conserved pathway to diverse cellular structures

    PubMed Central

    Patrussi, Laura; Baldari, Cosima T.

    2016-01-01

    ABSTRACT Rab GTPases, which form the largest branch of the Ras GTPase superfamily, regulate almost every step of vesicle-mediated trafficking. Among them, Rab8 is an essential participant in primary cilium formation. In a report recently published in the Journal of Cell Science, Finetti and colleagues identify Rab8 as a novel player in vesicular traffic in the non-ciliated T lymphocytes, which contributes to the assembly of the specialized signaling platform known as the immune synapse. By interacting with the v-SNARE VAMP-3, Rab8 is indeed responsible for the final docking/fusion step in T cell receptor (TCR) recycling to the immune synapse. A second important take-home message which comes to light from this work is that VAMP-3 also interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of Smoothened at the plasma membrane. Hence the data presented in this report, in addition to identifying Rab8 as a novel player in vesicular traffic to the immune synapse, reveal how both ciliated and non-ciliated cells take advantage of a conserved pathway to build highly specific cellular structures. PMID:26587735

  14. Regulation of neuronal high-voltage activated Ca(V)2 Ca(2+) channels by the small GTPase RhoA.

    PubMed

    Rousset, Matthieu; Cens, Thierry; Menard, Claudine; Bowerman, Melissa; Bellis, Michel; Brusés, Juan; Raoul, Cedric; Scamps, Frédérique; Charnet, Pierre

    2015-10-01

    High-Voltage-Activated (HVA) Ca(2+) channels are known regulators of synapse formation and transmission and play fundamental roles in neuronal pathophysiology. Small GTPases of Rho and RGK families, via their action on both cytoskeleton and Ca(2+) channels are key molecules for these processes. While the effects of RGK GTPases on neuronal HVA Ca(2+) channels have been widely studied, the effects of RhoA on the HVA channels remains however elusive. Using heterologous expression in Xenopus laevis oocytes, we show that RhoA activity reduces Ba(2+) currents through CaV2.1, CaV2.2 and CaV2.3 Ca(2+) channels independently of CaVβ subunit. This inhibition occurs independently of RGKs activity and without modification of biophysical properties and global level of expression of the channel subunit. Instead, we observed a marked decrease in the number of active channels at the plasma membrane. Pharmacological and expression studies suggest that channel expression at the plasma membrane is impaired via a ROCK-sensitive pathway. Expression of constitutively active RhoA in primary culture of spinal motoneurons also drastically reduced HVA Ca(2+) current amplitude. Altogether our data revealed that HVA Ca(2+) channels regulation by RhoA might govern synaptic transmission during development and potentially contribute to pathophysiological processes when axon regeneration and growth cone kinetics are impaired.

  15. Rho of Plant GTPase Signaling Regulates the Behavior of Arabidopsis Kinesin-13A to Establish Secondary Cell Wall Patterns[W

    PubMed Central

    Oda, Yoshihisa; Fukuda, Hiroo

    2013-01-01

    Plant cortical microtubule arrays determine the cell wall deposition pattern and proper cell shape and function. Although various microtubule-associated proteins regulate the cortical microtubule array, the mechanisms underlying marked rearrangement of cortical microtubules during xylem differentiation are not fully understood. Here, we show that local Rho of Plant (ROP) GTPase signaling targets an Arabidopsis thaliana kinesin-13 protein, Kinesin-13A, to cortical microtubules to establish distinct patterns of secondary cell wall formation in xylem cells. Kinesin-13A was preferentially localized with cortical microtubules in secondary cell wall pits, areas where cortical microtubules are depolymerized to prevent cell wall deposition. This localization of Kinesin-13A required the presence of the activated ROP GTPase, MICROTUBULE DEPLETION DOMAIN1 (MIDD1) protein, and cortical microtubules. Knockdown of Kinesin-13A resulted in the formation of smaller secondary wall pits, while overexpression of Kinesin-13A enlarged their surface area. Kinesin-13A alone could depolymerize microtubules in vitro; however, both MIDD1 and Kinesin-13A were required for the depolymerization of cortical microtubules in vivo. These results indicate that Kinesin-13A regulates the formation of secondary wall pits by promoting cortical microtubule depolymerization via the ROP-MIDD1 pathway. PMID:24280391

  16. The small GTPase RhoA regulates the expression and function of the sodium channel Nav1.5 in breast cancer cells.

    PubMed

    Dulong, C; Fang, Y J; Gest, C; Zhou, M H; Patte-Mensah, C; Mensah-Nyagan, A G; Vannier, J P; Lu, H; Soria, C; Cazin, L; Mei, Y A; Varin, R; Li, H

    2014-02-01

    Voltage-gated Na+ channels (VGSCs) are highly expressed in several types of carcinomas including breast, prostate and lung cancers as well as in mesothelioma and cervical cancers. Although the VGSCs activity is considered crucial for the potentiation of cancer cell migration and invasion, the mechanisms responsible for their functional expression and regulation in cancer cells remain unclear. In the present study, the role of the small GTPase RhoA in the regulation of expression and function of the Nav1.5 channel in the breast cancer cell lines MDA-MB 231 and MCF-7 was investigated. RhoA silencing significantly reduced both Nav1.5 channel expression and sodium current indicating that RhoA exerts a stimulatory effect on the synthesis of an active form of Nav1.5 channel in cancer cells. The inhibition of Nav1.5 expression dramatically reduced both cell invasion and proliferation. In addition, a decrease of RhoA protein levels induced by Nav1.5 silencing was observed. Altogether, these findings revealed: i) the key role of the small GTPase RhoA in upregulation of Nav1.5 channel expression and tumor aggressiveness, and ii) the existence of a positive feedback of Nav1.5 channels on RhoA protein levels.

  17. Rho family and Rap GTPase activation assays.

    PubMed

    Jennings, Richard T; Knaus, Ulla G

    2014-01-01

    The detection of Ras superfamily GTPase activity in innate immune cells is important when studying signaling events elicited by various ligands and cellular processes. The development of high-affinity probes detecting the activated, GTP-bound form of small GTPases has significantly enhanced our understanding of initiation and termination of GTPase-regulated signaling pathways. These probes are created by fusing a high-affinity GTPase-binding domain derived from a specific downstream effector protein to glutathione S-transferase (GST). Such domains bind preferentially to the GTP-bound form of the upstream Rho or Ras GTPase. Coupling these probes to beads enables extraction of the complex and subsequent quantification of the active GTP-binding protein by immunoblotting. Although effector domains that discriminate efficiently between GDP- and GTP-bound states and highly specific antibodies are not yet available for every small GTPase, analysis of certain members of the Rho and Ras GTPase family is now routinely performed. Here, we describe affinity-based pulldown assays for detection of Rho GTPase (Rac1/2, Cdc42, RhoA/B) and Rap1/2 activity in stimulated neutrophils or macrophages.

  18. Colletotrichum orbiculare Regulates Cell Cycle G1/S Progression via a Two-Component GAP and a GTPase to Establish Plant Infection[OPEN

    PubMed Central

    2015-01-01

    Morphogenesis in filamentous fungi depends on appropriate cell cycle progression. Here, we report that cells of the cucumber anthracnose fungus Colletotrichum orbiculare regulate G1/S progression via a two-component GAP, consisting of Budding-uninhibited-by-benomyl-2 (Bub2) and Byr-four-alike-1 (Bfa1) as well as its GTPase Termination-of-M-phase-1 (Tem1) to establish successful infection. In a random insertional mutagenesis screen of infection-related morphogenesis, we isolated a homolog of Saccharomyces cerevisiae, BUB2, which encodes a two-component Rab GAP protein that forms a GAP complex with Bfa1p and negatively regulates mitotic exit. Interestingly, disruption of either Co BUB2 or Co BFA1 resulted in earlier onset of nuclear division and decreased the time of phase progression from G1 to S during appressorium development. S. cerevisiae GTPase Tem1p is the downstream target of the Bub2p/Bfa1p GAP complex. Introducing the dominant-negative form of Co Tem1 into Co bub2Δ or Co bfa1Δ complemented the defect in G1/S progression, indicating that Co Bub2/Co Bfa1 regulates G1/S progression via Co Tem1. Based on a pathogenicity assay, we found that Co bub2Δ and Co bfa1Δ reduced pathogenesis by attenuating infection-related morphogenesis and enhancing the plant defense response. Thus, during appressorium development, C. orbiculare Bub2/Bfa1 regulates G1/S progression via Co Tem1, and this regulation is essential to establish plant infection. PMID:26320225

  19. An in vitro study on the involvement of LINGO-1 and Rho GTPases in Nogo-A regulated differentiation of oligodendrocyte precursor cells.

    PubMed

    Zhao, Xiang-Hui; Jin, Wei-Lin; Ju, Gong

    2007-10-01

    Nogo-A has been considered as one of the most important myelin-associated axonal regeneration inhibitors in the central nervous system. Recent studies have demonstrated various additional physiological roles of Nogo family members. To understand the possible effect of Nogo-A on the differentiation of oligodendrocytes, antibodies against distinct extracellular domains of Nogo-A were applied in cell cultures. Oligodendrocyte precursor cells from P2 rat cortex were grown in the presence of monoclonal antibody against the N-terminal inhibitory domain of Nogo-A or the C-terminal 66 amino acid loop of Nogo-A for 3 days, and the antibody treatment resulted in stunted process extension and inhibited differentiation of oligodendrocytes. Concomitant with morphology changes, Rho GTPases activity was greatly increased upon the antibody treatment and the expression level of LINGO-1, which was recently shown to be a negative regulator for the oligodendrocyte maturation, was upregulated in the process of antibody treatment. These results indicate that endogenous Nogo-A expressed in oligodendrocyte may act though Rho GTPase and LINGO-1 to influence the morphological differentiation of oligodendrocytes and will help us to understand the physiology role of Nogo-A in oligodendrocyte biology.

  20. The Putative GTPase Encoded by MTG3 Functions in a Novel Pathway for Regulating Assembly of the Small Subunit of Yeast Mitochondrial Ribosomes*

    PubMed Central

    Paul, Marie-Françoise; Alushin, Gregory M.; Barros, Mario H.; Rak, Malgorzata; Tzagoloff, Alexander

    2012-01-01

    Very little is known about biogenesis of mitochondrial ribosomes. The GTPases encoded by the nuclear MTG1 and MTG2 genes of Saccharomyces cerevisiae have been reported to play a role in assembly of the ribosomal 54 S subunit. In the present study biochemical screens of a collection of respiratory deficient yeast mutants have enabled us to identify a third gene essential for expression of mitochondrial ribosomes. This gene codes for a member of the YqeH family of GTPases, which we have named MTG3 in keeping with the earlier convention. Mutations in MTG3 cause the accumulation of the 15 S rRNA precursor, previously shown to have an 80-nucleotide 5′ extension. Sucrose gradient sedimentation of mitochondrial ribosomes from temperature-sensitive mtg3 mutants grown at the permissive and restrictive temperatures, combined with immunobloting with subunit-specific antibodies, indicate that Mtg3p is required for assembly of the 30 S but not 54 S ribosomal subunit. The respiratory deficient growth phenotype of an mtg3 null mutant is partially rescued by overexpression of the Mrpl4p constituent located at the peptide exit site of the 54 S subunit. The rescue is accompanied by an increase in processed 15 S rRNA. This suggests that Mtg3p and Mrpl4p jointly regulate assembly of the small subunit by modulating processing of the 15 S rRNA precursor. PMID:22621929

  1. The putative GTPase encoded by MTG3 functions in a novel pathway for regulating assembly of the small subunit of yeast mitochondrial ribosomes.

    PubMed

    Paul, Marie-Françoise; Alushin, Gregory M; Barros, Mario H; Rak, Malgorzata; Tzagoloff, Alexander

    2012-07-13

    Very little is known about biogenesis of mitochondrial ribosomes. The GTPases encoded by the nuclear MTG1 and MTG2 genes of Saccharomyces cerevisiae have been reported to play a role in assembly of the ribosomal 54 S subunit. In the present study biochemical screens of a collection of respiratory deficient yeast mutants have enabled us to identify a third gene essential for expression of mitochondrial ribosomes. This gene codes for a member of the YqeH family of GTPases, which we have named MTG3 in keeping with the earlier convention. Mutations in MTG3 cause the accumulation of the 15 S rRNA precursor, previously shown to have an 80-nucleotide 5' extension. Sucrose gradient sedimentation of mitochondrial ribosomes from temperature-sensitive mtg3 mutants grown at the permissive and restrictive temperatures, combined with immunobloting with subunit-specific antibodies, indicate that Mtg3p is required for assembly of the 30 S but not 54 S ribosomal subunit. The respiratory deficient growth phenotype of an mtg3 null mutant is partially rescued by overexpression of the Mrpl4p constituent located at the peptide exit site of the 54 S subunit. The rescue is accompanied by an increase in processed 15 S rRNA. This suggests that Mtg3p and Mrpl4p jointly regulate assembly of the small subunit by modulating processing of the 15 S rRNA precursor.

  2. A model for neurite growth and neuronal morphogenesis.

    PubMed

    Li, G H; Qin, C D

    1996-02-01

    A model is presented for tensile regulation of neuritic growth. It is proposed that the neurite tension can be determined by Hooke's law and determines the growth rate of neurites. The growth of a neurite is defined as the change in its unstretched length. Neuritic growth rate is assumed to increase in proportion to tension magnitude over a certain threshold [Dennerll et al., J. Cell Biol. 107: 665-674 (1988)]. The movement of branch nodes also contributes to the neuronal morphogenesis. It is supposed that the rate of a branch-node displacement is in proportion to the resultant neuritic tension exerted on this node. To deal with the growth-cone movement, it is further supposed that the environment exerts a traction force on the growth cone and the rate of growth-cone displacement is determined by the vector sum of the neuritic tension and the traction force. A group of differential equations are used to describe the model. The key point of the model is that the traction force and the neuritic tension are in opposition to generate a temporal contrast-enhancing mechanism. Results of a simulation study suggest that the model can explain some phenomena related to neuronal morphogenesis.

  3. Computational Analysis of Rho GTPase Cycling

    PubMed Central

    Falkenberg, Cibele Vieira; Loew, Leslie M.

    2013-01-01

    The Rho family of GTPases control actin organization during diverse cellular responses (migration, cytokinesis and endocytosis). Although the primary members of this family (RhoA, Rac and Cdc42) have different downstream effects on actin remodeling, the basic mechanism involves targeting to the plasma membrane and activation by GTP binding. Our hypothesis is that the details of GTPase cycling between membrane and cytosol are key to the differential upstream regulation of these biochemical switches. Accordingly, we developed a modeling framework to analyze experimental data for these systems. This analysis can reveal details of GDI-mediated cycling and help distinguish between GDI-dependent and -independent mechanisms, including vesicle trafficking and direct association-dissociation of GTPase with membrane molecules. Analysis of experimental data for Rac membrane cycling reveals that the lower apparent affinity of GDI for RacGTP compared to RacGDP can be fully explained by the faster dissociation of the latter from the membrane. Non-dimensional steady-state solutions for membrane fraction of GTPase are presented in multidimensional charts. This methodology is then used to analyze glucose stimulated Rac cycling in pancreatic β-cells. The charts are used to illustrate the effects of GEFs/GAPs and regulated affinities between GTPases and membrane and/or GDI on the amount of membrane bound GTPase. In a similar fashion, the charts can be used as a guide in assessing how targeted modifications may compensate for altered GTPase-GDI balance in disease scenarios. PMID:23326220

  4. A Homogenous Bioluminescent System for Measuring GTPase, GTPase Activating Protein, and Guanine Nucleotide Exchange Factor Activities

    PubMed Central

    Mondal, Subhanjan; Hsiao, Kevin

    2015-01-01

    Abstract GTPases play a major role in various cellular functions such as cell signaling, cell proliferation, cell differentiation, cytoskeleton modulation, and cell motility. Deregulation or mutation of these proteins has considerable consequences resulting in multiple pathological conditions. Targeting GTPases and its regulators has been challenging due to paucity of convenient assays. In this study, we describe a homogenous bioluminescent assay for monitoring the activities of GTPase and its immediate regulators: GTPase activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). Since Mg2+ plays a critical role in influencing the affinity of GTPases with guanosine triphosphate/guanosine diphosphate (GTP/GDP) and the process of nucleotide exchange, manipulating Mg2+ concentrations in the GTPase reaction buffer allows continuous progression of the GTPase cycle and faster hydrolysis of GTP. The assay relies on enzymatic conversion of GTP that remains after the GTPase reaction to ATP and detection of the generated ATP using the luciferin/luciferase combination. The GTPase/GAP/GEF-Glo assay system enables monitoring of GTPase, GAP-stimulated GTPase, GAP, and GEF activities. The system can also be used to analyze these proteins when expressed in cells as fusion proteins by performing the assay in a pulldown format. The assays showed minimal false hits upon testing for compound interference using the library of pharmacologically active compounds and its robustness was demonstrated by a high Z′-factor of 0.93 and CV of 2.2%. The assay system has a high dynamic range, formatted in a convenient add–mix–read, and applicable to high-throughput screening. PMID:26167953

  5. MglC, a Paralog of Myxococcus xanthus GTPase-Activating Protein MglB, Plays a Divergent Role in Motility Regulation

    PubMed Central

    McLoon, Anna L.; Wuichet, Kristin; Häsler, Michael; Keilberg, Daniela; Szadkowski, Dobromir

    2015-01-01

    ABSTRACT In order to optimize interactions with their environment and one another, bacteria regulate their motility. In the case of the rod-shaped cells of Myxococcus xanthus, regulated motility is essential for social behaviors. M. xanthus moves over surfaces using type IV pilus-dependent motility and gliding motility. These two motility systems are coordinated by a protein module that controls cell polarity and consists of three polarly localized proteins, the small G protein MglA, the cognate MglA GTPase-activating protein MglB, and the response regulator RomR. Cellular reversals are induced by the Frz chemosensory system, and the output response regulator of this system, FrzZ, interfaces with the MglA/MglB/RomR module to invert cell polarity. Using a computational approach, we identify a paralog of MglB, MXAN_5770 (MglC). Genetic epistasis experiments demonstrate that MglC functions in the same pathway as MglA, MglB, RomR, and FrzZ and is important for regulating cellular reversals. Like MglB, MglC localizes to the cell poles asymmetrically and with a large cluster at the lagging pole. Correct polar localization of MglC depends on RomR and MglB. Consistently, MglC interacts directly with MglB and the C-terminal output domain of RomR, and we identified a surface of MglC that is necessary for the interaction with MglB and for MglC function. Together, our findings identify an additional member of the M. xanthus polarity module involved in regulating motility and demonstrate how gene duplication followed by functional divergence can add a layer of control to the complex cellular processes of motility and motility regulation. IMPORTANCE Gene duplication and the subsequent divergence of the duplicated genes are important evolutionary mechanisms for increasing both biological complexity and regulation of biological processes. The bacterium Myxococcus xanthus is a soil bacterium with an unusually large genome that carries out several social processes, including

  6. The interaction between cell adhesion molecule L1, matrix metalloproteinase 14, and adenine nucleotide translocator at the plasma membrane regulates L1-mediated neurite outgrowth of murine cerebellar neurons.

    PubMed

    Loers, Gabriele; Makhina, Tatjana; Bork, Ute; Dörner, Andrea; Schachner, Melitta; Kleene, Ralf

    2012-03-14

    We have identified the adenine nucleotide translocator (ANT) isoforms ANT1 and ANT2 that are present in the plasma membrane of mouse cerebellar neurons as novel binding partners of the cell adhesion molecule L1. The direct interaction between ANT and L1 is mediated by sites within the fibronectin type III domains of L1 and the first and third extracellular loops of the ANT proteins. We also show that L1 interacts with the ANT binding partner matrix metalloprotease 14 (MMP14) and that the ANT proteins bind directly to the L1 interaction partner glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Moreover, we provide evidence that the functional interplay between L1, ANT proteins, MMP14, and GAPDH at the plasma membrane mediates L1-induced neurite outgrowth of cerebellar neurons. Disruption of this interplay by ANT inhibitors, ANT-derived synthetic peptides, and/or function-blocking MMP14 and ANT antibodies leads to alterations in L1-dependent neurite outgrowth. Stimulation of L1-mediated signaling in cerebellar neurons triggers transient ATP secretion via ANT proteins and leads to transient src family-dependent tyrosine phosphorylation of L1, ANT1, ANT2, and MMP14. Thus, our results indicate that plasma membrane-localized ANT1 and ANT2 regulate L1-mediated neurite outgrowth in conjunction with MMP14.

  7. FlhG employs diverse intrinsic domains and influences FlhF GTPase activity to numerically regulate polar flagellar biogenesis in Campylobacter jejuni.

    PubMed

    Gulbronson, Connor J; Ribardo, Deborah A; Balaban, Murat; Knauer, Carina; Bange, Gert; Hendrixson, David R

    2016-01-01

    Flagellation in polar flagellates is one of the rare biosynthetic processes known to be numerically regulated in bacteria. Polar flagellates must spatially and numerically regulate flagellar biogenesis to create flagellation patterns for each species that are ideal for motility. FlhG ATPases numerically regulate polar flagellar biogenesis, yet FlhG orthologs are diverse in motif composition. We discovered that Campylobacter jejuni FlhG is at the center of a multipartite mechanism that likely influences a flagellar biosynthetic step to control flagellar number for amphitrichous flagellation, rather than suppressing activators of flagellar gene transcription as in Vibrio and Pseudomonas species. Unlike other FlhG orthologs, the FlhG ATPase domain was not required to regulate flagellar number in C. jejuni. Instead, two regions of C. jejuni FlhG that are absent or significantly altered in FlhG orthologs are involved in numerical regulation of flagellar biogenesis. Additionally, we found that C. jejuni FlhG influences FlhF GTPase activity, which may mechanistically contribute to flagellar number regulation. Our work suggests that FlhG ATPases divergently evolved in each polarly flagellated species to employ different intrinsic domains and extrinsic effectors to ultimately mediate a common output - precise numerical control of polar flagellar biogenesis required to create species-specific flagellation patterns optimal for motility.

  8. Leucine-rich repeat kinase 2 interacts with p21-activated kinase 6 to control neurite complexity in mammalian brain.

    PubMed

    Civiero, Laura; Cirnaru, Maria Daniela; Beilina, Alexandra; Rodella, Umberto; Russo, Isabella; Belluzzi, Elisa; Lobbestael, Evy; Reyniers, Lauran; Hondhamuni, Geshanthi; Lewis, Patrick A; Van den Haute, Chris; Baekelandt, Veerle; Bandopadhyay, Rina; Bubacco, Luigi; Piccoli, Giovanni; Cookson, Mark R; Taymans, Jean-Marc; Greggio, Elisa

    2015-12-01

    Leucine-rich repeat kinase 2 (LRRK2) is a causative gene for Parkinson's disease, but the physiological function and the mechanism(s) by which the cellular activity of LRRK2 is regulated are poorly understood. Here, we identified p21-activated kinase 6 (PAK6) as a novel interactor of the GTPase/ROC domain of LRRK2. p21-activated kinases are serine-threonine kinases that serve as targets for the small GTP binding proteins Cdc42 and Rac1 and have been implicated in different morphogenetic processes through remodeling of the actin cytoskeleton such as synapse formation and neuritogenesis. Using an in vivo neuromorphology assay, we show that PAK6 is a positive regulator of neurite outgrowth and that LRRK2 is required for this function. Analyses of post-mortem brain tissue from idiopathic and LRRK2 G2019S carriers reveal an increase in PAK6 activation state, whereas knock-out LRRK2 mice display reduced PAK6 activation and phosphorylation of PAK6 substrates. Taken together, these results support a critical role of LRRK2 GTPase domain in cytoskeletal dynamics in vivo through the novel interactor PAK6, and provide a valuable platform to unravel the mechanism underlying LRRK2-mediated pathophysiology. We propose p21-activated kinase 6 (PAK6) as a novel interactor of leucine-rich repeat kinase 2 (LRRK2), a kinase involved in Parkinson's disease (PD). In health, PAK6 regulates neurite complexity in the brain and LRRK2 is required for its function, (a) whereas PAK6 is aberrantly activated in LRRK2-linked PD brain (b) suggesting that LRRK2 toxicity is mediated by PAK6.

  9. Novel Roles and Mechanism for Krüppel-like Factor 16 (KLF16) Regulation of Neurite Outgrowth and Ephrin Receptor A5 (EphA5) Expression in Retinal Ganglion Cells.

    PubMed

    Wang, Jianbo; Galvao, Joana; Beach, Krista M; Luo, Weijia; Urrutia, Raul A; Goldberg, Jeffrey L; Otteson, Deborah C

    2016-08-26

    Regenerative medicine holds great promise for the treatment of degenerative retinal disorders. Krüppel-like factors (KLFs) are transcription factors that have recently emerged as key tools in regenerative medicine because some of them can function as epigenetic reprogrammers in stem cell biology. Here, we show that KLF16, one of the least understood members of this family, is a POU4F2 independent transcription factor in retinal ganglion cells (RGCs) as early as embryonic day 15. When overexpressed, KLF16 inhibits RGC neurite outgrowth and enhances RGC growth cone collapse in response to exogenous ephrinA5 ligands. Ephrin/EPH signaling regulates RGC connectivity. The EphA5 promoter contains multiple GC- and GT-rich KLF-binding sites, which, as shown by ChIP-assays, bind KLF16 in vivo In electrophoretic mobility shift assays, KLF16 binds specifically to a single KLF site near the EphA5 transcription start site that is required for KLF16 transactivation. Interestingly, methylation of only six of 98 CpG dinucleotides within the EphA5 promoter blocks its transactivation by KLF16 but enables transactivation by KLF2 and KLF15. These data demonstrate a role for KLF16 in regulation of RGC neurite outgrowth and as a methylation-sensitive transcriptional regulator of EphA5 expression. Together, these data identify differential low level methylation as a novel mechanism for regulating KLF16-mediated EphA5 expression across the retina. Because of the critical role of ephrin/EPH signaling in patterning RGC connectivity, understanding the role of KLFs in regulating neurite outgrowth and Eph receptor expression will be vital for successful restoration of functional vision through optic nerve regenerative therapies.

  10. The rap GTPases regulate B cell morphology, immune-synapse formation, and signaling by particulate B cell receptor ligands.

    PubMed

    Lin, Kevin B L; Freeman, Spencer A; Zabetian, Saba; Brugger, Hayley; Weber, Michele; Lei, Victor; Dang-Lawson, May; Tse, Kathy W K; Santamaria, Rene; Batista, Facundo D; Gold, Michael R

    2008-01-01

    B lymphocytes spread and extend membrane processes when searching for antigens and form immune synapses upon contacting cells that display antigens on their surface. Although these dynamic morphological changes facilitate B cell activation, the signaling pathways underlying these processes are not fully understood. We found that activation of the Rap GTPases was essential for these changes in B cell morphology. Rap activation was important for B cell receptor (BCR)- and lymphocyte-function-associated antigen-1 (LFA-1)-induced spreading, for BCR-induced immune-synapse formation, and for particulate BCR ligands to induce localized F-actin assembly and membrane-process extension. Rap activation and F-actin assembly were also required for optimal BCR signaling in response to particulate antigens but not soluble antigens. Thus by controlling B cell morphology and cytoskeletal organization, Rap might play a key role in the activation of B cells by particulate and cell-associated antigens.

  11. The Ras-related small GTPases RalA and RalB regulate cellular survival after ionizing radiation

    PubMed Central

    Kidd, Ambrose R.; Snider, Jared L.; Martin, Timothy D.; Graboski, Sarah F.; Der, Channing J.; Cox, Adrienne D.

    2010-01-01

    Purpose Oncogenic activation of Ras renders cancer cells resistant to ionizing radiation (IR), but the mechanisms have not been fully characterized. The Ras-like small GTPases, RalA and RalB, are downstream effectors of Ras function and are critical for both tumor growth and survival. The Ral effector RalBP1/RLIP76 mediates survival of mice after whole body irradiation but the role of the Ral GTPases themselves in response to IR is unknown. We have investigated the role of RalA and RalB in cellular responses to IR. Methods and Materials RalA, RalB and their major effectors RalBP1 and Sec5 were knocked down by stable expression of shRNAs in the K-Ras-dependent pancreatic cancer-derived cell line MIA PaCa-2. Radiation responses were measured by standard clonogenic survival assays for reproductive survival, γH2AX expression for double-strand DNA breaks (DSBs) and PARP cleavage for apoptosis. Results Knockdown of K-Ras, RalA or RalB reduced colony-forming ability post-IR and knockdown of either Ral isoform decreased the rate of DSB repair post-IR. However, knockdown of RalB, but not RalA, increased cell death. Surprisingly, neither RalBP1 nor Sec5 suppression affected colony formation post-IR. Conclusions Both RalA and RalB contribute to K-Ras-dependent IR resistance of MIA PaCa-2 cells. Sensitization due to suppressed Ral expression is likely due in part to decreased efficiency of DNA repair (RalA and RalB) and increased susceptibility to apoptosis (RalB). Ral-mediated radioresistance does not depend on either RalBP1 or the exocyst complex, the two best-characterized Ral effectors, and instead may utilize an atypical or novel effector. PMID:20619549

  12. Rho GTPases and cancer cell transendothelial migration.

    PubMed

    Reymond, Nicolas; Riou, Philippe; Ridley, Anne J

    2012-01-01

    Small Rho GTPases are major regulators of actin cytoskeleton dynamics and influence cell shape and migration. The expression of several Rho GTPases is often up-regulated in tumors and this frequently correlates with a poor prognosis for patients. Migration of cancer cells through endothelial cells that line the blood vessels, called transendothelial migration or extravasation, is a critical step during the metastasis process. The use of siRNA technology to target specifically each Rho family member coupled with imaging techniques allows the roles of individual Rho GTPases to be investigated. In this chapter we describe methods to assess how Rho GTPases affect the different steps of cancer cell transendothelial cell migration in vitro.

  13. A Pan-GTPase Inhibitor as a Molecular Probe.

    PubMed

    Hong, Lin; Guo, Yuna; BasuRay, Soumik; Agola, Jacob O; Romero, Elsa; Simpson, Denise S; Schroeder, Chad E; Simons, Peter; Waller, Anna; Garcia, Matthew; Carter, Mark; Ursu, Oleg; Gouveia, Kristine; Golden, Jennifer E; Aubé, Jeffrey; Wandinger-Ness, Angela; Sklar, Larry A

    2015-01-01

    Overactive GTPases have often been linked to human diseases. The available inhibitors are limited and have not progressed far in clinical trials. We report here a first-in-class small molecule pan-GTPase inhibitor discovered from a high throughput screening campaign. The compound CID1067700 inhibits multiple GTPases in biochemical, cellular protein and protein interaction, as well as cellular functional assays. In the biochemical and protein interaction assays, representative GTPases from Rho, Ras, and Rab, the three most generic subfamilies of the GTPases, were probed, while in the functional assays, physiological processes regulated by each of the three subfamilies of the GTPases were examined. The chemical functionalities essential for the activity of the compound were identified through structural derivatization. The compound is validated as a useful molecular probe upon which GTPase-targeting inhibitors with drug potentials might be developed.

  14. Impaired neurogenesis and neurite outgrowth in an HIV-gp120 transgenic model is reversed by exercise via BDNF production and Cdk5 regulation

    PubMed Central

    Lee, Myoung-Hwa; Amin, Niranjana D.; Venkatesan, Arun; Wang, Tongguang; Tyagi, Richa; Pant, Harish C.; Nath, Avindra

    2013-01-01

    Human immunodeficiency virus (HIV) infection associated neurocognitive disorders (HAND) is accompanied with brain atrophy. In these patients, impairment of adult neurogenesis and neurite outgrowth in the hippocampus may contribute to the cognitive dysfunction. Although running exercises can enhance neurogenesis and normalize neurite outgrowth, the underlying molecular mechanisms are not well understood. The HIV envelope protein, gp120, has been shown to impair neurogenesis. Using a gp120 transgenic mouse model, we demonstrate that exercise stimulated neural progenitor cell (NPC) proliferation in the hippocampal dentate gyrus and increased the survival rate and generation of newborn cells. However sustained exercise activity was necessary since the effects were reversed by detraining. Exercise also normalized dendritic outgrowth of neurons. Furthermore, it also increased the expression of hippocampal brainderived neurotrophic factor (BDNF) and normalized hyperactivation of cyclin-dependent kinase 5 (Cdk5). Hyper-activated Cdk5 or gp120 treatment led to aberrant neurite outgrowth and BDNF treatment normalized the neurite outgrowth in NPC cultures. These results suggest that sustained exercise has trophic activity on the neuronal lineage which is mediated by Cdk5 modulation of the BDNF pathway. PMID:23982957

  15. Negative regulation of p120GAP GTPase promoting activity by p210bcr/abl: implication for RAS-dependent Philadelphia chromosome positive cell growth

    PubMed Central

    1994-01-01

    The p210bcr/abl tyrosine kinase appears to be responsible for initiating and maintaining the leukemic phenotype in chronic myelogenous leukemia (CML) patients. p21ras-p120GAP interactions play a central role in transducing mitogenic signals. Therefore, we investigated whether p21ras and p120GAP are regulated by p210bcr/abl, and whether this activation is functionally significant for CML cell proliferation. We report that transient expression of p210bcr/abl in fibroblast-like cells induces simultaneous activation of p21ras and inhibition of GTPase-promoting activity of p120GAP, and confirm these data showing that downregulation of p210bcr/abl expression in CML cells with bcr/abl antisense oligodeoxynucleotides induces both inhibition of p21ras activation and stimulation of GTPase-promoting activity of p120GAP. Tyrosine phosphorylation of two p120GAP-associated proteins, p190 and p62, which may affect p120GAP activity, also depends on p210bcr/abl tyrosine kinase expression. Direct dependence of these effects on the kinase activity is proven in experiments in which expression of c-MYB protein in fibroblast-like cells or downregulation of c-MYB expression resulting in analogous inhibition of CML cell proliferation does not result in the same changes. Use of specific antisense oligodeoxynucleotides to downregulate p21ras expression revealed a requirement for functional p21ras in the proliferation of Philadelphia chromosome-positive CML primary cells. Thus, the p210bcr/abl-dependent regulation of p120GAP activity is responsible, in part, for the maintenance of p21ras in the active GTP-bound form, a crucial requirement for CML cell proliferation. PMID:8195713

  16. Laminin promotes neuritic regeneration from cultured peripheral and central neurons

    PubMed Central

    1983-01-01

    The ability of axons to grow through tissue in vivo during development or regeneration may be regulated by the availability of specific neurite-promoting macromolecules located within the extracellular matrix. We have used tissue culture methods to examine the relative ability of various extracellular matrix components to elicit neurite outgrowth from dissociated chick embryo parasympathetic (ciliary ganglion) neurons in serum-free monolayer culture. Purified laminin from both mouse and rat sources, as well as a partially purified polyornithine-binding neurite promoting factor (PNPF-1) from rat Schwannoma cells all stimulate neurite production from these neurons. Laminin and PNPF-1 are also potent stimulators of neurite growth from cultured neurons obtained from other peripheral as well as central neural tissues, specifically avian sympathetic and sensory ganglia and spinal cord, optic tectum, neural retina, and telencephalon, as well as from sensory ganglia of the neonatal mouse and hippocampal, septal, and striatal tissues of the fetal rat. A quantitative in vitro bioassay method using ciliary neurons was used to (a) measure and compare the specific neurite-promoting activities of these agents, (b) confirm that during the purification of laminin, the neurite-promoting activity co- purifies with the laminin protein, and (c) compare the influences of antilaminin antibodies on the neurite-promoting activity of laminin and PNPF-1. We conclude that laminin and PNPF-1 are distinct macromolecules capable of expressing their neurite-promoting activities even when presented in nanogram amounts. This neurite-promoting bioassay currently represents the most sensitive test for the biological activity of laminin. PMID:6643580

  17. The Coffin-Lowry syndrome-associated protein RSK2 regulates neurite outgrowth through phosphorylation of phospholipase D1 (PLD1) and synthesis of phosphatidic acid.

    PubMed

    Ammar, Mohamed-Raafet; Humeau, Yann; Hanauer, André; Nieswandt, Bernard; Bader, Marie-France; Vitale, Nicolas

    2013-12-11

    More than 80 human X-linked genes have been associated with mental retardation and deficits in learning and memory. However, most of the identified mutations induce limited morphological alterations in brain organization and the molecular bases underlying neuronal clinical features remain elusive. We show here that neurons cultured from mice lacking ribosomal S6 kinase 2 (Rsk2), a model for the Coffin-Lowry syndrome (CLS), exhibit a significant delay in growth in a similar way to that shown by neurons cultured from phospholipase D1 (Pld1) knock-out mice. We found that gene silencing of Pld1 or Rsk2 as well as acute pharmacological inhibition of PLD1 or RSK2 in PC12 cells strongly impaired neuronal growth factor (NGF)-induced neurite outgrowth. Expression of a phosphomimetic PLD1 mutant rescued the inhibition of neurite outgrowth in PC12 cells silenced for RSK2, revealing that PLD1 is a major target for RSK2 in neurite formation. NGF-triggered RSK2-dependent phosphorylation of PLD1 led to its activation and the synthesis of phosphatidic acid at sites of neurite growth. Additionally, total internal reflection fluorescence microscopy experiments revealed that RSK2 and PLD1 positively control fusion of tetanus neurotoxin insensitive vesicle-associated membrane protein (TiVAMP)/VAMP-7 vesicles at sites of neurite outgrowth. We propose that the loss of function mutations in RSK2 that leads to CLS and neuronal deficits are related to defects in neuronal growth due to impaired RSK2-dependent PLD1 activity resulting in a reduced vesicle fusion rate and membrane supply.

  18. Small GTPase Rab4b participates in the gene transcription of 20-hydroxyecdysone and insulin pathways to regulate glycogen level and metamorphosis.

    PubMed

    Hou, Li; Cai, Mei-Juan; Liu, Wen; Song, Qian; Zhao, Xiao-Fan

    2012-11-01

    The insulin and 20-hydroxyecdysone (20E) pathways coordinately regulate insect growth and metamorphosis. However, the molecular mechanism of the interaction of these two pathways in regulating insect development is not well understood. In the present study, we found that a small GTPase Rab4b from a lepidopteran insect Helicoverpa armigera participates in gene transcription in the two pathways. The results show that RNA interference of Rab4b in larvae results in a decrease in glycogen levels, small pupae, abnormal metamorphic transition, or larval death. The molecular mechanisms are demonstrated that knockdown of Rab4b in the larvae suppresses the transcription of glycogen synthase (GS), as well as the metamorphic-initiating factor (Br) and hormone receptor 3 (HR3), but increases the transcription of Forkhead box class O (FOXO). Further studies in the cell line confirm that Rab4b is necessary for gene transcription in the insulin and 20E pathways. Rab4b locates in the cytoplasm and takes part in regulation on FOXO cytoplasmic location by insulin induction, but travels toward the cell membrane upon 20E induction without affecting the FOXO location. The transcription of Rab4b could be upregulated by insulin injection or glucose feeding to the larvae, but not by 20E or juvenile hormone analogy methoprene. Our data suggest that Rab4b takes part in metamorphosis by regulating gene transcription and glycogen level in the insulin and 20E pathways.

  19. Hypoxia/reoxygenation-experienced cancer cell migration and metastasis are regulated by Rap1- and Rac1-GTPase activation via the expression of thymosin beta-4.

    PubMed

    Lee, Jae-Wook; Ryu, Yun-Kyoung; Ji, Young-Hoon; Kang, Joo Hyun; Moon, Eun-Yi

    2015-01-01

    Signaling by small guanosine triphosphatases (GTPase), Rap1/Rac1, is one of the major pathways controlling cancer cell migration and tumor metastasis. Thymosin beta-4 (Tβ4), an actin-sequestering protein, has been shown to increase migration of cancer cells. Episodes of hypoxia and re-oxygenation (H/R) are an important phenomenon in tumor microenvironment (TME). We investigated whether Tβ4 could play as an intermediary to crosstalk between Rac1- and Rap1- GTPase activation under hypoxia/reoxygenation (H/R) conditions. Inhibition of Tβ4 expression using transcription activator-like effector nucleases (TALEN) significantly decreased lung metastasis of B16F10 cells. Rac1 and Rap1 activity, as well as cancer cell migration, increased following induction of Tβ4 expression in normoxia- or H/R-experienced cells, but were barely detectable in Tβ4-depleted cells. Rap1-regulated Rac1 activity was decreased by a dominant negative Rap1 (Rap1N17), and increased by 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (CPT), a Rap1 activator. In contrast, a Rac1-specific inhibitor, NSC23766, and dominant negative Rac1 (Rac1N17) enhanced Tβ4 expression and aberrant Rap1 activity. While NSC23766 and Rac1N17 incompletely inhibited tumor metastasis in vivo, and H/R-experienced cancer cell migration in vitro, more efficient attenuation of cancer cell migration was accomplished by simultaneous inactivation of Rap1 and Rac1 with Rap1N17 and Rac1N17, respectively. These data suggest that a combination therapy targeting both Rap1 and Rac1 activity may be an effective method of inhibiting tumor metastasis.

  20. A tale of two GTPases in cotranslational protein targeting.

    PubMed

    Saraogi, Ishu; Akopian, David; Shan, Shu-Ou

    2011-11-01

    Guanosine triphosphatases (GTPases) comprise a superfamily of proteins that provide molecular switches to regulate numerous cellular processes. The "GTPase switch" paradigm, in which a GTPase acts as a bimodal switch that is turned "on" and "off" by external regulatory factors, has been used to interpret the regulatory mechanism of many GTPases. Recent work on a pair of GTPases in the signal recognition particle (SRP) pathway has revealed a distinct mode of GTPase regulation. Instead of the classical GTPase switch, the two GTPases in the SRP and SRP receptor undergo a series of conformational changes during their dimerization and reciprocal activation. Each conformational rearrangement provides a point at which these GTPases can communicate with and respond to their upstream and downstream biological cues, thus ensuring the spatial and temporal precision of all the molecular events in the SRP pathway. We suggest that the SRP and SRP receptor represent an emerging class of "multistate" regulatory GTPases uniquely suited to provide exquisite control over complex cellular pathways that require multiple molecular events to occur in a highly coordinated fashion.

  1. Ras GTPase-activating protein gap1 of the homobasidiomycete Schizophyllum commune regulates hyphal growth orientation and sexual development.

    PubMed

    Schubert, Daniela; Raudaskoski, Marjatta; Knabe, Nicole; Kothe, Erika

    2006-04-01

    The white rot fungus Schizophyllum commune is used for the analysis of mating and sexual development in homobasidiomycete fungi. In this study, we isolated the gene gap1 encoding a GTPase-activating protein for Ras. Disruption of gap1 should therefore lead to strains accumulating Ras in its activated, GTP-bound state and to constitutive Ras signaling. Haploid Deltagap1 monokaryons of different mating types did not show alterations in mating behavior in the four different mating interactions possible in fungi expressing a tetrapolar mating type system. Instead, the growth rate in Deltagap1 monokaryons was reduced by ca. 25% and ca. 50% in homozygous Deltagap1/Deltagap1 dikaryons. Monokaryons, as well as homozygous dikaryons, carrying the disrupted gap1 alleles exhibited a disorientated growth pattern. Dikaryons showed a strong phenotype during clamp formation since hook cells failed to fuse with the peg beside them. Instead, the dikaryotic character of the hyphae was rescued by fusion of the hooks with nearby developing branches. Deltagap1/Deltagap1 dikaryons formed increased numbers of fruitbody primordia, whereas the amount of fruitbodies was not raised. Mature fruitbodies formed no or abnormal gills. No production of spores could be observed. The results suggest Ras involvement in growth, clamp formation, and fruitbody development.

  2. Locking GTPases covalently in their functional states

    NASA Astrophysics Data System (ADS)

    Wiegandt, David; Vieweg, Sophie; Hofmann, Frank; Koch, Daniel; Li, Fu; Wu, Yao-Wen; Itzen, Aymelt; Müller, Matthias P.; Goody, Roger S.

    2015-07-01

    GTPases act as key regulators of many cellular processes by switching between active (GTP-bound) and inactive (GDP-bound) states. In many cases, understanding their mode of action has been aided by artificially stabilizing one of these states either by designing mutant proteins or by complexation with non-hydrolysable GTP analogues. Because of inherent disadvantages in these approaches, we have developed acryl-bearing GTP and GDP derivatives that can be covalently linked with strategically placed cysteines within the GTPase of interest. Binding studies with GTPase-interacting proteins and X-ray crystallography analysis demonstrate that the molecular properties of the covalent GTPase-acryl-nucleotide adducts are a faithful reflection of those of the corresponding native states and are advantageously permanently locked in a defined nucleotide (that is active or inactive) state. In a first application, in vivo experiments using covalently locked Rab5 variants provide new insights into the mechanism of correct intracellular localization of Rab proteins.

  3. Locking GTPases covalently in their functional states.

    PubMed

    Wiegandt, David; Vieweg, Sophie; Hofmann, Frank; Koch, Daniel; Li, Fu; Wu, Yao-Wen; Itzen, Aymelt; Müller, Matthias P; Goody, Roger S

    2015-07-16

    GTPases act as key regulators of many cellular processes by switching between active (GTP-bound) and inactive (GDP-bound) states. In many cases, understanding their mode of action has been aided by artificially stabilizing one of these states either by designing mutant proteins or by complexation with non-hydrolysable GTP analogues. Because of inherent disadvantages in these approaches, we have developed acryl-bearing GTP and GDP derivatives that can be covalently linked with strategically placed cysteines within the GTPase of interest. Binding studies with GTPase-interacting proteins and X-ray crystallography analysis demonstrate that the molecular properties of the covalent GTPase-acryl-nucleotide adducts are a faithful reflection of those of the corresponding native states and are advantageously permanently locked in a defined nucleotide (that is active or inactive) state. In a first application, in vivo experiments using covalently locked Rab5 variants provide new insights into the mechanism of correct intracellular localization of Rab proteins.

  4. Small GTPases and cilia.

    PubMed

    Li, Yujie; Hu, Jinghua

    2011-01-01

    Small GTPases are key molecular switches that bind and hydrolyze GTP in diverse membrane- and cytoskeleton-related cellular processes. Recently, mounting evidences have highlighted the role of various small GTPases, including the members in Arf/Arl, Rab, and Ran subfamilies, in cilia formation and function. Once overlooked as an evolutionary vestige, the primary cilium has attracted more and more attention in last decade because of its role in sensing various extracellular signals and the association between cilia dysfunction and a wide spectrum of human diseases, now called ciliopathies. Here we review recent advances about the function of small GTPases in the context of cilia, and the correlation between the functional impairment of small GTPases and ciliopathies. Understanding of these cellular processes is of fundamental importance for broadening our view of cilia development and function in normal and pathological states and for providing valuable insights into the role of various small GTPases in disease processes, and their potential as therapeutic targets.

  5. Crosstalk of small GTPases at the Golgi apparatus.

    PubMed

    Baschieri, Francesco; Farhan, Hesso

    2012-01-01

    Small GTPases regulate a wide range of homeostatic processes such as cytoskeletal dynamics, organelle homeostasis, cell migration and vesicle trafficking, as well as in pathologic conditions such as carcinogenesis and metastatic spreading. Therefore, it is important to understand the regulation of small GTPase signaling, but this is complicated by the fact that crosstalk exists between different GTPase families and that we have to understand how they signal in time and space. The Golgi apparatus represents a hub for several signaling molecules and its importance in this field is constantly increasing. In this review we will discuss small GTPases signaling at the Golgi apparatus. Then, we will highlight recent work that contributed to a better understanding of crosstalk between different small GTPase families, with a special emphasis on their crosstalk at the Golgi apparatus. Finally, we will give a brief overview of available methods and tools to investigate spatio-temporal small GTPase crosstalk.

  6. The EF-G-like GTPase Snu114p Regulates Spliceosome Dynamics Mediated by Brr2p, a DExD/H-box ATPase

    PubMed Central

    Small, Eliza C.; Leggett, Stephanie R.; Winans, Adrienne A.; Staley, Jonathan P.

    2012-01-01

    Summary Binding of a pre-mRNA substrate triggers spliceosome activation while the release of the mRNA product triggers spliceosome disassembly. The mechanisms that underlie the regulation of these rearrangements remain unclear. We find evidence that the GTPase Snu114p mediates the regulation of spliceosome activation and disassembly. Specifically, both unwinding of U4/U6, required for spliceosome activation, and disassembly of the post-splicing U2/U6•U5•intron complex are repressed by Snu114p bound to GDP and derepressed by Snu114 bound to GTP or nonhydrolyzable GTP analogs. Further, similar to U4/U6 unwinding, spliceosome disassembly requires the DExD/H-box ATPase Brr2p. Together, our data define a common mechanism for regulating and executing spliceosome activation and disassembly. Although sequence similarity with EF-G suggests Snu114p functions as a molecular motor, our findings indicate that Snu114p functions as a classic regulatory G protein. We propose that Snu114p serves as a signal-dependent switch that transduces signals to Brr2p to control spliceosome dynamics. PMID:16885028

  7. Unfolded protein response regulates yeast small GTPase Arl1p activation at late Golgi via phosphorylation of Arf GEF Syt1p

    PubMed Central

    Hsu, Jia-Wei; Tang, Pei-Hua; Wang, I-Hao; Liu, Chia-Lun; Chen, Wen-Hui; Tsai, Pei-Chin; Chen, Kuan-Yu; Chen, Kuan-Jung; Yu, Chia-Jung

    2016-01-01

    ADP ribosylation factor (Arf) GTPases are key regulators of membrane traffic at the Golgi complex. In yeast, Arf guanine nucleotide-exchange factor (GEF) Syt1p activates Arf-like protein Arl1p, which was accompanied by accumulation of golgin Imh1p at late Golgi, but whether and how this function of Syt1p is regulated remains unclear. Here, we report that the inositol-requiring kinase 1 (Ire1p)-mediated unfolded protein response (UPR) modulated Arl1p activation at late Golgi. Arl1p activation was dependent on both kinase and endo-RNase activities of Ire1p. Moreover, constitutively active transcription factor Hac1p restored the Golgi localization of Arl1p and Imh1p in IRE1-deleted cells. Elucidating the mechanism of Ire1p–Hac1p axis actions, we found that it regulated phosphorylation of Syt1p, which enhances Arl1p activation, recruitment of Imh1p to the Golgi, and Syt1p interaction with Arl1p. Consistent with these findings, the induction of UPR by tunicamycin treatment increases phosphorylation of Syt1p, resulting in Arl1p activation. Thus, these findings clarify how the UPR influences the roles of Syt1p, Arl1p, and Imh1p in Golgi transport. PMID:26966233

  8. Divergent Roles of CAAX Motif-signaled Posttranslational Modifications in the Regulation and Subcellular Localization of Ral GTPases*

    PubMed Central

    Gentry, Leanna R.; Nishimura, Akiyuki; Cox, Adrienne D.; Martin, Timothy D.; Tsygankov, Denis; Nishida, Motohiro; Elston, Timothy C.; Der, Channing J.

    2015-01-01

    The Ras-like small GTPases RalA and RalB are well validated effectors of RAS oncogene-driven human cancer growth, and pharmacologic inhibitors of Ral function may provide an effective anti-Ras therapeutic strategy. Intriguingly, although RalA and RalB share strong overall amino acid sequence identity, exhibit essentially identical structural and biochemical properties, and can utilize the same downstream effectors, they also exhibit divergent and sometimes opposing roles in the tumorigenic and metastatic growth of different cancer types. These distinct biological functions have been attributed largely to sequence divergence in their carboxyl-terminal hypervariable regions. However, the role of posttranslational modifications signaled by the hypervariable region carboxyl-terminal tetrapeptide CAAX motif (C = cysteine, A = aliphatic amino acid, X = terminal residue) in Ral isoform-selective functions has not been addressed. We determined that these modifications have distinct roles and consequences. Both RalA and RalB require Ras converting CAAX endopeptidase 1 (RCE1) for association with the plasma membrane, albeit not with endomembranes, and loss of RCE1 caused mislocalization as well as sustained activation of both RalA and RalB. In contrast, isoprenylcysteine carboxylmethyltransferase (ICMT) deficiency disrupted plasma membrane localization only of RalB, whereas RalA depended on ICMT for efficient endosomal localization. Furthermore, the absence of ICMT increased stability of RalB but not RalA protein. Finally, palmitoylation was critical for subcellular localization of RalB but not RalA. In summary, we have identified striking isoform-specific consequences of distinct CAAX-signaled posttranslational modifications that contribute to the divergent subcellular localization and activity of RalA and RalB. PMID:26216878

  9. The small GTPase Rab8 interacts with VAMP-3 to regulate the delivery of recycling T-cell receptors to the immune synapse.

    PubMed

    Finetti, Francesca; Patrussi, Laura; Galgano, Donatella; Cassioli, Chiara; Perinetti, Giuseppe; Pazour, Gregory J; Baldari, Cosima T

    2015-07-15

    IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, regulates immune synapse assembly in the non-ciliated T-cell by promoting T-cell receptor (TCR) recycling. Here, we have addressed the role of Rab8 (for which there are two isoforms Rab8a and Rab8b), a small GTPase implicated in ciliogenesis, in TCR traffic to the immune synapse. We show that Rab8, which colocalizes with IFT20 in Rab11(+) endosomes, is required for TCR recycling. Interestingly, as opposed to in IFT20-deficient T-cells, TCR(+) endosomes polarized normally beneath the immune synapse membrane in the presence of dominant-negative Rab8, but were unable to undergo the final docking or fusion step. This could be accounted for by the inability of the vesicular (v)-SNARE VAMP-3 to cluster at the immune synapse in the absence of functional Rab8, which is responsible for its recruitment. Of note, and similar to in T-cells, VAMP-3 interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of the protein smoothened. The results identify Rab8 as a new player in vesicular traffic to the immune synapse and provide insight into the pathways co-opted by different cell types for immune synapse assembly and ciliogenesis.

  10. The small GTPase Rab8 interacts with VAMP-3 to regulate the delivery of recycling T-cell receptors to the immune synapse

    PubMed Central

    Finetti, Francesca; Patrussi, Laura; Galgano, Donatella; Cassioli, Chiara; Perinetti, Giuseppe; Pazour, Gregory J.; Baldari, Cosima T.

    2015-01-01

    ABSTRACT IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, regulates immune synapse assembly in the non-ciliated T-cell by promoting T-cell receptor (TCR) recycling. Here, we have addressed the role of Rab8 (for which there are two isoforms Rab8a and Rab8b), a small GTPase implicated in ciliogenesis, in TCR traffic to the immune synapse. We show that Rab8, which colocalizes with IFT20 in Rab11+ endosomes, is required for TCR recycling. Interestingly, as opposed to in IFT20-deficient T-cells, TCR+ endosomes polarized normally beneath the immune synapse membrane in the presence of dominant-negative Rab8, but were unable to undergo the final docking or fusion step. This could be accounted for by the inability of the vesicular (v)-SNARE VAMP-3 to cluster at the immune synapse in the absence of functional Rab8, which is responsible for its recruitment. Of note, and similar to in T-cells, VAMP-3 interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of the protein smoothened. The results identify Rab8 as a new player in vesicular traffic to the immune synapse and provide insight into the pathways co-opted by different cell types for immune synapse assembly and ciliogenesis. PMID:26034069

  11. Na+/Ca2+ exchanger inhibitors inhibit neurite outgrowth in PC12 cells.

    PubMed

    Oda, Toru; Kume, Toshiaki; Izumi, Yasuhiko; Ishihara, Kumatoshi; Sugmimoto, Hachiro; Akaike, Akinori

    2011-01-01

    To elucidate the role of Na(+)/Ca(2+) exchanger (NCX) in neurite outgrowth, we investigated the effects of NCX inhibitors on neurite outgrowth in PC12 cells. KB-R7943 and 3',4'-dichlorobenzamil, NCX inhibitors, inhibited the neurite outgrowth caused by nerve growth factor (NGF). NCX inhibitors inhibited the neurite outgrowth caused by dibutylyl cAMP, which rapidly reorganizes the cytoskeleton. KB-R7943 inhibited the neurite outgrowth caused by Y-27632, an inhibitor of Rho kinase (ROCK) that regulates actin. However, NCX inhibitors did not inhibit NGF-induced phosphorylation of extracellular signal-regulated kinase. These results suggest that NCX inhibitor affects downstream of the Rho-ROCK signal transduction pathways in neurite outgrowth.

  12. Control of Polarized Growth by the Rho Family GTPase Rho4 in Budding Yeast: Requirement of the N-Terminal Extension of Rho4 and Regulation by the Rho GTPase-Activating Protein Bem2

    PubMed Central

    Gong, Ting; Liao, Yuan; He, Fei; Yang, Yang; Yang, Dan-Dan; Chen, Xiang-Dong

    2013-01-01

    In the budding yeast Saccharomyces cerevisiae, Rho4 GTPase partially plays a redundant role with Rho3 in the control of polarized growth, as deletion of RHO4 and RHO3 together, but not RHO4 alone, caused lethality and a loss of cell polarity at 30°C. Here, we show that overexpression of the constitutively active rho4Q131L mutant in an rdi1Δ strain caused a severe growth defect and generated large, round, unbudded cells, suggesting that an excess of Rho4 activity could block bud emergence. We also generated four temperature-sensitive rho4-Ts alleles in a rho3Δ rho4Δ strain. These mutants showed growth and morphological defects at 37°C. Interestingly, two rho4-Ts alleles contain mutations that cause amino acid substitutions in the N-terminal region of Rho4. Rho4 possesses a long N-terminal extension that is unique among the six Rho GTPases in the budding yeast but is common in Rho4 homologs in other yeasts and filamentous fungi. We show that the N-terminal extension plays an important role in Rho4 function since rho3Δ rho4Δ61 cells expressing truncated Rho4 lacking amino acids (aa) 1 to 61 exhibited morphological defects at 24°C and a growth defect at 37°C. Furthermore, we show that Rho4 interacts with Bem2, a Rho GTPase-activating protein (RhoGAP) for Cdc42 and Rho1, by yeast two-hybrid, bimolecular fluorescence complementation (BiFC), and glutathione S-transferase (GST) pulldown assays. Bem2 specifically interacts with the GTP-bound form of Rho4, and the interaction is mediated by its RhoGAP domain. Overexpression of BEM2 aggravates the defects of rho3Δ rho4 mutants. These results suggest that Bem2 might be a novel GAP for Rho4. PMID:23264647

  13. The small GTPase RhoA, but not Rac1, is essential for conditioned aversive memory formation through regulation of actin rearrangements in rat dorsal hippocampus.

    PubMed

    Wang, Jun; Wang, Yu-hua; Hou, Yuan-yuan; Xi, Tao; Liu, Yao; Liu, Jing-gen

    2013-06-01

    Actin rearrangements are induced in the dorsal hippocampus after conditioned morphine withdrawal, and involved in the formation of conditioned place aversion. In the present study, we investigated the mechanisms underlying the actin rearrangements in rat dorsal hippocampus induced by conditioned morphine withdrawal. The RhoA-ROCK pathway inhibitor Y27632 (8.56 μg/1 μL per side) or the Rac1 inhibitor NSC23766 (25 μg/1 μL per side) was microinjected into the dorsal hippocampus of rats. Conditioned place aversion (CPA) induced by naloxone-precipitated morphine withdrawal was assessed. Crude synaptosomal fraction of hippocampus was prepared, and the amount of F-actin and G-actin was measured with an Actin Polymerization Assay Kit. Conditioned morphine withdrawal significantly increased actin polymerization in the dorsal hippocampus at 1 h following the naloxone injection. Preconditioning with microinjection of Y27632, but not NSC23766, attenuated CPA, and blocked the increase in actin polymerization in the dorsal hippocampus. Our results suggest that the small GTPase RhoA, but not Rac1, in the dorsal hippocampus is responsible for CPA formation, mainly through its regulation of actin rearrangements.

  14. The Arf6 GTPase-activating Proteins ARAP2 and ACAP1 Define Distinct Endosomal Compartments That Regulate Integrin α5β1 Traffic*

    PubMed Central

    Chen, Pei-Wen; Luo, Ruibai; Jian, Xiaoying; Randazzo, Paul A.

    2014-01-01

    Arf6 and the Arf6 GTPase-activating protein (GAP) ACAP1 are established regulators of integrin traffic important to cell adhesion and migration. However, the function of Arf6 with ACAP1 cannot explain the range of Arf6 effects on integrin-based structures. We propose that Arf6 has different functions determined, in part, by the associated Arf GAP. We tested this idea by comparing the Arf6 GAPs ARAP2 and ACAP1. We found that ARAP2 and ACAP1 had opposing effects on apparent integrin β1 internalization. ARAP2 knockdown slowed, whereas ACAP1 knockdown accelerated, integrin β1 internalization. Integrin β1 association with adaptor protein containing a pleckstrin homology (PH) domain, phosphotyrosine-binding (PTB) domain, and leucine zipper motif (APPL)-positive endosomes and EEA1-positive endosomes was affected by ARAP2 knockdown and depended on ARAP2 GAP activity. ARAP2 formed a complex with APPL1 and colocalized with Arf6 and APPL in a compartment distinct from the Arf6/ACAP1 tubular recycling endosome. In addition, although ACAP1 and ARAP2 each colocalized with Arf6, they did not colocalize with each other and had opposing effects on focal adhesions (FAs). ARAP2 overexpression promoted large FAs, but ACAP1 overexpression reduced FAs. Taken together, the data support a model in which Arf6 has at least two sites of opposing action defined by distinct Arf6 GAPs. PMID:25225293

  15. The Rho-GTPase effector ROCK regulates meiotic maturation of the bovine oocyte via myosin light chain phosphorylation and cofilin phosphorylation.

    PubMed

    Lee, So-Rim; Xu, Yong-Nan; Jo, Yu-Jin; Namgoong, Suk; Kim, Nam-Hyung

    2015-11-01

    Oocyte meiosis involves a unique asymmetric division involving spindle movement from the central cytoplasm to the cortex, followed by polar body extrusion. ROCK is a Rho-GTPase effector involved in various cellular functions in somatic cells as well as oocyte meiosis. ROCK was previously shown to promote actin organization by phosphorylating several downstream targets, including LIM domain kinase (LIMK), phosphorylated cofilin (p-cofilin), and myosin light chain (MLC). In this study, we investigated the roles of ROCK and MLC during bovine oocyte meiosis. We found that ROCK was localized around the nucleus at the oocyte's germinal-vesicle (GV) stage, but spreads to the rest of the cytoplasm in later developmental stages. On the other hand, phosphorylated MLC (p-MLC) localized at the cortex, and its abundance decreased by the metaphase-II stage. Disrupting ROCK activity, via RNAi or the chemical inhibitor Y-27632, blocked both cell cycle progression and polar body extrusion. ROCK inhibition also resulted in decreased cortical actin, p-cofilin, and p-MLC levels. Similar to the phenotype associated with inhibition of ROCK activity, inhibition of MLC kinase by the chemical inhibitor ML-7 caused defects in polar body extrusion. Collectively, our results suggest that the ROCK/MLC/actomyosin as well as ROCK/LIMK/cofilin pathways regulate meiotic spindle migration and cytokinesis during bovine oocyte maturation. © 2015 Wiley Periodicals, Inc.

  16. Ras-dva1 small GTPase regulates telencephalon development in Xenopus laevis embryos by controlling Fgf8 and Agr signaling at the anterior border of the neural plate.

    PubMed

    Tereshina, Maria B; Ermakova, Galina V; Ivanova, Anastasiya S; Zaraisky, Andrey G

    2014-03-15

    We previously found that the small GTPase Ras-dva1 is essential for the telencephalic development in Xenopus laevis because Ras-dva1 controls the Fgf8-mediated induction of FoxG1 expression, a key telencephalic regulator. In this report, we show, however, that Ras-dva1 and FoxG1 are expressed in different groups of cells; whereas Ras-dva1 is expressed in the outer layer of the anterior neural fold, FoxG1 and Fgf8 are activated in the inner layer from which the telencephalon is derived. We resolve this paradox by demonstrating that Ras-dva1 is involved in the transduction of Fgf8 signal received by cells in the outer layer, which in turn send a feedback signal that stimulates FoxG1 expression in the inner layer. We show that this feedback signal is transmitted by secreted Agr proteins, the expression of which is activated in the outer layer by mediation of Ras-dva1 and the homeodomain transcription factor Otx2. In turn, Agrs are essential for maintaining Fgf8 and FoxG1 expression in cells at the anterior neural plate border. Our finding reveals a novel feedback loop mechanism based on the exchange of Fgf8 and Agr signaling between neural and non-neural compartments at the anterior margin of the neural plate and demonstrates a key role of Ras-dva1 in this mechanism.

  17. The small GTPase HRas shapes local PI3K signals through positive feedback and regulates persistent membrane extension in migrating fibroblasts

    PubMed Central

    Thevathasan, Jervis Vermal; Tan, Elisabeth; Zheng, Hui; Lin, Yu-Chun; Li, Yang; Inoue, Takanari; Fivaz, Marc

    2013-01-01

    Self-amplification of phosphoinositide 3-kinase (PI3K) signaling is believed to regulate asymmetric membrane extension and cell migration, but the molecular organization of the underlying feedback circuit is elusive. Here we use an inducible approach to synthetically activate PI3K and interrogate the feedback circuitry governing self-enhancement of 3′-phosphoinositide (3-PI) signals in NIH3T3 fibroblasts. Synthetic activation of PI3K initially leads to uniform production of 3-PIs at the plasma membrane, followed by the appearance of asymmetric and highly amplified 3-PI signals. A detailed spatiotemporal analysis shows that local self-amplifying 3-PI signals drive rapid membrane extension with remarkable directional persistence and initiate a robust migratory response. This positive feedback loop is critically dependent on the small GTPase HRas. Silencing of HRas abrogates local amplification of 3-PI signals upon synthetic PI3K activation and results in short-lived protrusion events that do not support cell migration. Finally, our data indicate that this feedback circuit is likely to operate during platelet-derived growth factor–induced random cell migration. We conclude that positive feedback between PI3K and HRas is essential for fibroblasts to spontaneously self-organize and generate a productive migratory response in the absence of spatial cues. PMID:23676667

  18. Early-Onset X-Linked Retinitis Pigmentosa in a Heterozygous Female Harboring an Intronic Donor Splice Site Mutation in the Retinitis Pigmentosa GTPase Regulator Gene.

    PubMed

    Shifera, Amde Selassie; Kay, Christine Nichols

    2015-01-01

    To report a heterozygous female presenting with an early-onset and severe form of X-linked retinitis pigmentosa (XLRP). This is a case series presenting the clinical findings in a heterozygous female with XLRP and two of her family members. Fundus photography, fundus autofluorescence, ocular coherence tomography, and visual perimetry are presented. The proband reported here is a heterozygous female who presented at the age of 8 years with an early onset and aggressive form of XLRP. The patient belongs to a four-generation family with a total of three affected females and four affected males. The patient was initially diagnosed with retinitis pigmentosa (RP) at the age of 4 years. Genetic testing identified a heterozygous donor splice site mutation in intron 1 (IVS1 + 1G > A) of the retinitis pigmentosa GTPase regulator gene. The father of the proband was diagnosed with RP when he was a young child. The sister of the proband, evaluated at the age of 6 years, showed macular pigmentary changes. Although carriers of XLRP are usually asymptomatic or have a mild disease of late onset, the proband presented here exhibited an early-onset, aggressive form of the disease. It is not clear why some carrier females manifest a severe phenotype. A better understanding of the genetic processes involved in the penetrance and expressivity of XLRP in heterozygous females could assist in providing the appropriate counseling to affected families.

  19. MERTK signaling in the retinal pigment epithelium regulates the tyrosine phosphorylation of GDP Dissociation Inhibitor alpha from the GDI/CHM family of RAB GTPase effectors

    PubMed Central

    Shelby, Shameka J.; Feathers, Kecia L.; Ganios, Anna M.; Jia, Lin; Miller, Jason M.; Thompson, Debra A.

    2015-01-01

    Photoreceptor outer segments (OS) in the vertebrate retina undergo a process of continual renewal involving shedding of disc membranes that are cleared by phagocytic uptake into the retinal pigment epithelium (RPE). In dystrophic Royal College of Surgeons (RCS) rats, OS phagocytosis is blocked by a mutation in the gene encoding the receptor tyrosine kinase MERTK. To identify proteins tyrosine-phosphorylated downstream of MERTK in the RPE, MALDI-mass spectrometry with peptide-mass fingerprinting was used in comparative studies of RCS congenic and dystrophic rats. At times corresponding to peak phagocytic activity, the RAB GTPase effector GDP dissociation inhibitor alpha (GDI1) was found to undergo tyrosine phosphorylation only in congenic rats. In cryosections of native RPE/choroid, GDI1 colocalized with MERTK and the intracellular tyrosine-kinase SRC. In cultured RPE-J cells, and in transfected heterologous cells, MERTK stimulated SRC-mediated tyrosine phosphorylation of GDI1. In OS-fed RPE-J cells, GDI1 colocalized with MERTK and SRC on apparent phagosomes located near the apical membrane. In addition, both GDI1 and RAB5, a regulator of vesicular transport, colocalized with ingested OS, but exhibited labeling patterns that were coincident in some areas and mutually exclusive in others. Taken together, these findings identify a novel role of MERTK signaling in membrane trafficking in the RPE that is likely to subserve mechanisms of phagosome formation. PMID:26283020

  20. Regulator of G protein signaling 6 (RGS6) induces apoptosis via a mitochondrial-dependent pathway not involving its GTPase-activating protein activity.

    PubMed

    Maity, Biswanath; Yang, Jianqi; Huang, Jie; Askeland, Ryan W; Bera, Soumen; Fisher, Rory A

    2011-01-14

    Regulator of G protein signaling 6 (RGS6) is a member of a family of proteins called RGS proteins, which function as GTPase-activating proteins (GAPs) for Gα subunits. Given the role of RGS6 as a G protein GAP, the link between G protein activation and cancer, and a reduction of cancer risk in humans expressing a RGS6 SNP leading to its increased translation, we hypothesized that RGS6 might function to inhibit growth of cancer cells. Here, we show a marked down-regulation of RGS6 in human mammary ductal epithelial cells that correlates with the progression of their transformation. RGS6 exhibited impressive antiproliferative actions in breast cancer cells, including inhibition of cell growth and colony formation and induction of cell cycle arrest and apoptosis by mechanisms independent of p53. RGS6 activated the intrinsic pathway of apoptosis involving regulation of Bax/Bcl-2, mitochondrial outer membrane permeabilization (MOMP), cytochrome c release, activation of caspases-3 and -9, and poly(ADP-ribose) polymerase cleavage. RGS6 promoted loss of mitochondrial membrane potential (ΔΨ(m)) and increases in reactive oxygen species (ROS). RGS6-induced caspase activation and loss of ΔΨ(m) was mediated by ROS, suggesting an amplification loop in which ROS provided a feed forward signal to induce MOMP, caspase activation, and cell death. Loss of RGS6 in mouse embryonic fibroblasts dramatically impaired doxorubicin-induced growth suppression and apoptosis. Surprisingly, RGS6-induced apoptosis in both breast cancer cells and mouse embryonic fibroblasts does not require its GAP activity toward G proteins. This work demonstrates a novel signaling action of RGS6 in cell death pathways and identifies it as a possible therapeutic target for treatment of breast cancer.

  1. Small GTPase Rab2B and Its Specific Binding Protein Golgi-associated Rab2B Interactor-like 4 (GARI-L4) Regulate Golgi Morphology*

    PubMed Central

    Aizawa, Megumi; Fukuda, Mitsunori

    2015-01-01

    Rab small GTPases are crucial regulators of the membrane traffic that maintains organelle identity and morphology. Several Rab isoforms are present in the Golgi, and it has been suggested that they regulate the compacted morphology of the Golgi in mammalian cells. However, the functional relationships among the Golgi-resident Rabs, e.g. whether they are functionally redundant or different, are poorly understood. In this study, we used specific siRNAs to perform genome-wide screening for human Rabs that are involved in Golgi morphology in HeLa-S3 cells. The results showed that knockdown of any one of the six Rab isoforms (Rab1A/1B/2A/2B/6B/8A) induced fragmentation of the Golgi in HeLa-S3 cells and that its phenotype was rescued by re-expression of their respective siRNA-resistant construct. We then performed systematic knockdown-rescue experiments in relation to each of the six Rabs. Interestingly, with the exception of the Rab8A knockdown, the Golgi fragmentation phenotype induced by knockdown of a single Rab isoform, e.g. Rab2B, was efficiently rescued by re-expression of its siRNA-resistant Rab alone, not by any of the other five Rabs, e.g. Rab2A, which is highly homologous to Rab2B, indicating that these Rab isoforms non-redundantly regulate Golgi morphology possibly through interaction with isoform-specific effector molecules. In addition, we identified Golgi-associated Rab2B interactor-like 4 (GARI-L4) as a novel Golgi-resident Rab2B-specific binding protein whose knockdown also induced fragmentation of the Golgi. Our findings suggest that the compacted Golgi morphology of mammalian cells is finely tuned by multiple sets of Rab (or Rab-effector complexes) that for the most part function independently. PMID:26209634

  2. Regulator of G Protein Signaling 6 (RGS6) Induces Apoptosis via a Mitochondrial-dependent Pathway Not Involving Its GTPase-activating Protein Activity*

    PubMed Central

    Maity, Biswanath; Yang, Jianqi; Huang, Jie; Askeland, Ryan W.; Bera, Soumen; Fisher, Rory A.

    2011-01-01

    Regulator of G protein signaling 6 (RGS6) is a member of a family of proteins called RGS proteins, which function as GTPase-activating proteins (GAPs) for Gα subunits. Given the role of RGS6 as a G protein GAP, the link between G protein activation and cancer, and a reduction of cancer risk in humans expressing a RGS6 SNP leading to its increased translation, we hypothesized that RGS6 might function to inhibit growth of cancer cells. Here, we show a marked down-regulation of RGS6 in human mammary ductal epithelial cells that correlates with the progression of their transformation. RGS6 exhibited impressive antiproliferative actions in breast cancer cells, including inhibition of cell growth and colony formation and induction of cell cycle arrest and apoptosis by mechanisms independent of p53. RGS6 activated the intrinsic pathway of apoptosis involving regulation of Bax/Bcl-2, mitochondrial outer membrane permeabilization (MOMP), cytochrome c release, activation of caspases-3 and -9, and poly(ADP-ribose) polymerase cleavage. RGS6 promoted loss of mitochondrial membrane potential (ΔΨm) and increases in reactive oxygen species (ROS). RGS6-induced caspase activation and loss of ΔΨm was mediated by ROS, suggesting an amplification loop in which ROS provided a feed forward signal to induce MOMP, caspase activation, and cell death. Loss of RGS6 in mouse embryonic fibroblasts dramatically impaired doxorubicin-induced growth suppression and apoptosis. Surprisingly, RGS6-induced apoptosis in both breast cancer cells and mouse embryonic fibroblasts does not require its GAP activity toward G proteins. This work demonstrates a novel signaling action of RGS6 in cell death pathways and identifies it as a possible therapeutic target for treatment of breast cancer. PMID:21041304

  3. Small GTPases in peroxisome dynamics.

    PubMed

    Just, Wilhelm W; Peränen, Johan

    2016-05-01

    In this review article, we summarize current knowledge on peroxisome biogenesis/functions and the role that small GTPases may play in these processes. Precise intracellular distribution of cell organelles requires their regulated association to microtubules and the actin cytoskeleton. In this respect, RhoGDP/RhoGTP favor binding of peroxisomes to microtubules and actin filaments. In its GTP-bound form, RhoA activates a regulatory cascade involving Rho kinaseII and non-muscle myosinIIA. Such interactions frequently depend on phosphoinositides (PIs) of which PI4P, PI(4,5)P2, and PI(3,5)P2 were found to be present in the peroxisomal membrane. PIs are pivotal determinants of intracellular signaling and known to regulate a wide range of cellular functions. In many of these functions, small GTPases are implicated. The small GTPase ADP-ribosylation factor 1 (Arf1), for example, is known to stimulate synthesis of PI4P and PI(4,5)P2 on the Golgi to regulate protein and lipid sorting. In vitro binding assays localized Arf1 and the COPI complex to peroxisomes. In light of the recent discussion of pre-peroxisomal vesicle generation at the ER, peroxisomal Arf1-COPI vesicles may serve retrograde transport of ER-resident components. A mass spectrometric screen localized various Rab proteins to peroxisomes. Overexpression of these proteins in combination with laser-scanning fluorescence microscopy co-localized Rab6, Rab8, Rab10, Rab14, and Rab18 with peroxisomal structures. By analogy to the role these proteins play in other organelle dynamics, we may envisage what the function of these proteins may be in relation to the peroxisomal compartment. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Rac1 and Cdc42 but not RhoA or Rho kinase activities are required for neurite outgrowth induced by the Netrin-1 receptor DCC (deleted in colorectal cancer) in N1E-115 neuroblastoma cells.

    PubMed

    Li, Xiaodong; Saint-Cyr-Proulx, Etienne; Aktories, Klaus; Lamarche-Vane, Nathalie

    2002-04-26

    Netrins are chemotropic guidance cues that attract or repel growing axons during development. DCC (deleted in colorectal cancer), a transmembrane protein that is a receptor for netrin-1, is implicated in mediating both responses. However, the mechanism by which this is achieved remains unclear. Here we report that Rho GTPases are required for embryonic spinal commissural axon outgrowth induced by netrin-1. Using N1E-115 neuroblastoma cells, we found that both Rac1 and Cdc42 activities are required for DCC-induced neurite outgrowth. In contrast, down-regulation of RhoA and its effector Rho kinase stimulates the ability of DCC to induce neurite outgrowth. In Swiss 3T3 fibroblasts, DCC was found to trigger actin reorganization through activation of Rac1 but not Cdc42 or RhoA. We detected that stimulation of DCC receptors with netrin-1 resulted in a 4-fold increase in Rac1 activation. These results implicate the small GTPases Rac1, Cdc42, and RhoA as essential components that participate in signaling the response of axons to netrin-1 during neural development.

  5. Coordinated regulation by two VPS9 domain-containing guanine nucleotide exchange factors in small GTPase Rab5 signaling pathways in fission yeast

    SciTech Connect

    Tsukamoto, Yuta; Kagiwada, Satoshi; Shimazu, Sayuri; Takegawa, Kaoru; Noguchi, Tetsuko; Miyamoto, Masaaki

    2015-03-20

    The small GTPase Rab5 is reported to regulate various cellular functions, such as vesicular transport and endocytosis. VPS9 domain-containing proteins are thought to activate Rab5(s) by their guanine-nucleotide exchange activities. Numerous VPS9 proteins have been identified and are structurally conserved from yeast to mammalian cells. However, the functional relationships among VPS9 proteins in cells remain unclear. Only one Rab5 and two VPS9 proteins were identified in the Schizosaccharomyces pombe genome. Here, we examined the cellular function of two VPS9 proteins and the relationship between these proteins in cellular functions. Vps901-GFP and Vps902-GFP exhibited dotted signals in vegetative and differentiated cells. vps901 deletion mutant (Δvps901) cells exhibited a phenotype deficient in the mating process and responses to high concentrations of ions, such as calcium and metals, and Δvps901Δvps902 double mutant cells exhibited round cell shapes similar to ypt5-909 (Rab5 mutant allele) cells. Deletion of both vps901 and vps902 genes completely abolished the mating process and responses to various stresses. A lack of vacuole formation and aberrant inner cell membrane structures were also observed in Δvps901Δvps902 cells by electron microscopy. These data strongly suggest that Vps901 and Vps902 are cooperatively involved in the regulation of cellular functions, such as cell morphology, sexual development, response to ion stresses, and vacuole formation, via Rab5 signaling pathways in fission yeast cells. - Highlights: • Roles of Rab5 activator VPS9 proteins in cellular functions. • Cooperation between VPS9 proteins in Rab5 signaling pathway. • Roles of each VPS9 protein in Rab5 signaling pathway are discussed.

  6. Juvenile Hormone Regulates the Expression of Drosophila Epac– a Guanine Nucleotide Exchange Factor for Rap1 Small GTPase

    USDA-ARS?s Scientific Manuscript database

    The juvenile hormones (JH) are a key group of insect hormones involved in regulating larval development and adult reproductive processes. Although well-studied from the physiological standpoint, the molecular actions of JH remain unclear. Using cDNA microchip array technology, we previously identifi...

  7. IPP5 inhibits neurite growth in primary sensory neurons by maintaining TGF-β/Smad signaling.

    PubMed

    Han, Qing-Jian; Gao, Nan-Nan; Guo-QiangMa; Zhang, Zhen-Ning; Yu, Wen-Hui; Pan, Jing; Wang, Qiong; Zhang, Xu; Bao, Lan

    2013-01-15

    During nerve regeneration, neurite growth is regulated by both intrinsic molecules and extracellular factors. Here, we found that inhibitor 5 of protein phosphatase 1 (IPP5), a newly identified inhibitory subunit of protein phosphatase 1 (PP1), inhibited neurite growth in primary sensory neurons as an intrinsic regulator. IPP5 was highly expressed in the primary sensory neurons of rat dorsal root ganglion (DRG) and was downregulated after sciatic nerve axotomy. Knocking down IPP5 with specific shRNA increased the length of the longest neurite, the total neurite length and the number of neurite ends in cultured rat DRG neurons. Mutation of the PP1-docking motif K(8)IQF(11) or the PP1-inhibiting motif at Thr(34) eliminated the IPP5-induced inhibition of neurite growth. Furthermore, biochemical experiments showed that IPP5 interacted with type I transforming growth factor-β receptor (TβRI) and PP1 and enhanced transforming growth factor-β (TGF-β)/Smad signaling in a PP1-dependent manner. Overexpressing IPP5 in DRG neurons aggravated TGF-β-induced inhibition of neurite growth, which was abolished by blocking PP1 or IPP5 binding to PP1. Blockage of TGF-β signaling with the TβRI inhibitor SB431542 or Smad2 shRNA attenuated the IPP5-induced inhibition of neurite growth. Thus, these data indicate that selectively expressed IPP5 inhibits neurite growth by maintaining TGF-β signaling in primary sensory neurons.

  8. Estrogen and the Dietary Phytoestrogen Tesveratrol as Regulators of the Rho GTPase Rac in Breast Cancer Research

    DTIC Science & Technology

    2008-06-01

    AD_________________ Award Number: W81XWH-07-1-0330 TITLE: Estrogen and the Dietary Phytoestrogen ...COVERED 7 May 2007 – 6 May 2008 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Estrogen and the Dietary Phytoestrogen Tesveratrol as Regulators of the... estrogen (E2), or resveratrol (Res). PAK-PBD-GST beads were used to pull-down active GTP- bound Rac from the cell lysates. Active and total Rac levels

  9. Rho GTPases in collective cell migration.

    PubMed

    Zegers, Mirjam M; Friedl, Peter

    2014-01-01

    The family of Rho GTPases are intracellular signal transducers that link cell surface signals to multiple intracellular responses. They are best known for their role in regulating actin dynamics required for cell migration, but in addition control cell-cell adhesion, polarization, vesicle trafficking, and the cell cycle. The roles of Rho GTPases in single mesenchymal cell migration are well established and rely on Cdc42- and Rac-dependent cell protrusion of a leading edge, coupled to Rho-dependent contractility required to move the cell body forward. In cells migrating collectively, cell-cell junctions are maintained, and migrating leader cells are mechanically coupled to, and coordinate, migration with follower cells. Recent evidence suggests that Rho GTPases provide multifunctional input to collective cell polarization, cell-cell interaction, and migration. Here, we discuss the role of Rho GTPases in initiating and maintaining front-rear, apical-basal cell polarization, mechanotransduction, and cell-cell junction stability between leader and follower cells, and how these roles are integrated in collective migration. Thereby, spatiotemporal fine-tuning of Rho GTPases within the same cell and among cells in the cell group are crucial in controlling potentially conflicting, divergent cell adhesion and cytoskeletal functions to achieve supracellular coordination and mechanocoupling.

  10. Rho GTPases in collective cell migration

    PubMed Central

    Zegers, Mirjam M; Friedl, Peter

    2014-01-01

    The family of Rho GTPases are intracellular signal transducers that link cell surface signals to multiple intracellular responses. They are best known for their role in regulating actin dynamics required for cell migration, but in addition control cell-cell adhesion, polarization, vesicle trafficking, and the cell cycle. The roles of Rho GTPases in single mesenchymal cell migration are well established and rely on Cdc42- and Rac-dependent cell protrusion of a leading edge, coupled to Rho-dependent contractility required to move the cell body forward. In cells migrating collectively, cell-cell junctions are maintained, and migrating leader cells are mechanically coupled to, and coordinate, migration with follower cells. Recent evidence suggests that Rho GTPases provide multifunctional input to collective cell polarization, cell-cell interaction, and migration. Here, we discuss the role of Rho GTPases in initiating and maintaining front-rear, apical-basal cell polarization, mechanotransduction, and cell-cell junction stability between leader and follower cells, and how these roles are integrated in collective migration. Thereby, spatiotemporal fine-tuning of Rho GTPases within the same cell and among cells in the cell group are crucial in controlling potentially conflicting, divergent cell adhesion and cytoskeletal functions to achieve supracellular coordination and mechanocoupling. PMID:25054920

  11. Co-regulation of root hair tip growth by ROP GTPases and nitrogen source modulated pH fluctuations.

    PubMed

    Bloch, Daria; Monshausen, Gabriele; Gilroy, Simon; Yalovsky, Shaul

    2011-03-01

    Growth of plant cells involves tight regulation of the cytoskeleton and vesicle trafficking by processes including the action of the ROP small G proteins together with pH-modulated cell wall modifications. Yet, little is known on how these systems are coordinated. In a paper recently published in Plant Cell and Environment we show that ROPs/RACs function synergistically with NH4NO3-modulated pH fluctuations to regulate root hair growth. Root hairs expand exclusively at their apical end in a strictly polarized manner by a process known as tip growth. The highly polarized secretion at the apex is maintained by a complex network of factors including the spatial organization of the actin cytoskeleton, tip-focused ion gradients and by small G proteins. Expression of constitutively active ROP mutants disrupts polar growth, inducing the formation of swollen root hairs. Root hairs are also known to elongate in an oscillating manner, which is correlated with oscillatory H(+) fluxes at the tip. Our analysis shows that root hair elongation in wild type plants and swelling in transgenic plants expressing a constitutively active ROP11 (rop11(CA)) is sensitive to the presence of NH4(+) at concentrations higher than 1 mM and on NO3(-). The NH4(+) and NO3(-) ions did not affect the localization of ROP in the membrane but modulated pH fluctuations at the root hair tip. Actin organization and reactive oxygen species distribution were abnormal in rop11CA root hairs but were similar to wild type root hairs when seedlings were grown on medium lacking NH4(+) and / or NO3(-). These observations suggest that the nitrogen source-modulated pH fluctuations may function synergistically with ROP regulated signaling during root hair tip growth. Interestingly, under certain growth conditions, expression of rop11 (CA) suppressed ammonium toxicity, similar to auxin resistant mutants. In this Addendum article we discuss these findings and their implications.

  12. A RHOse by any other name: a comparative analysis of animal and plant Rho GTPases.

    PubMed

    Brembu, Tore; Winge, Per; Bones, Atle Magnar; Yang, Zhenbiao

    2006-05-01

    Rho GTPases are molecular switches that act as key regulators of a many cellular processes, including cell movement, morphogenesis, host defense, cell division and gene expression. Rho GTPases are found in all eukaryotic kingdoms. Plants lack clear homologs to conventional Rho GTPases found in yeast and animals; instead, they have over time developed a unique subfamily, ROPs, also known as RAC. The origin of ROP-like proteins appears to precede the appearance of land plants. This review aims to discuss the evolution of ROP/RAC and to compare plant ROP and animal Rho GTPases, focusing on similarities and differences in regulation of the GTPases and their downstream effectors.

  13. Rho GTPase signalling in cell migration

    PubMed Central

    Ridley, Anne J

    2015-01-01

    Cells migrate in multiple different ways depending on their environment, which includes the extracellular matrix composition, interactions with other cells, and chemical stimuli. For all types of cell migration, Rho GTPases play a central role, although the relative contribution of each Rho GTPase depends on the environment and cell type. Here, I review recent advances in our understanding of how Rho GTPases contribute to different types of migration, comparing lamellipodium-driven versus bleb-driven migration modes. I also describe how cells migrate across the endothelium. In addition to Rho, Rac and Cdc42, which are well known to regulate migration, I discuss the roles of other less-well characterized members of the Rho family. PMID:26363959

  14. IFN-inducible GTPases in Host Defense

    PubMed Central

    Kim, Bae-Hoon; Shenoy, Avinash R.; Kumar, Pradeep; Bradfield, Clinton J.; MacMicking, John D.

    2012-01-01

    From plants to humans, the ability to control infection at the level of an individual cell – a process termed cell-autonomous immunity – equates firmly with survival of the species. Recent work has begun to unravel this programmed cell-intrinsic response and the central roles played by IFN-inducible GTPases in defending the mammalian cell’s interior against a diverse group of invading pathogens. These immune GTPases regulate vesicular traffic and protein complex assembly to stimulate oxidative, autophagic, membranolytic and inflammasome-related antimicrobial activities within the cytosol as well as on pathogen-containing vacuoles. Moreover, human genome-wide association studies (GWAS) and disease-related transcriptional profiling have linked mutations in the Immunity-Related GTPase M (IRGM) locus and altered expression of Guanylate Binding Proteins (GBPs) with tuberculosis susceptibility and Crohn’s colitis. PMID:23084913

  15. Cannabinoid Receptor Type 1 (CB1) Activation Inhibits Small GTPase RhoA Activity and Regulates Motility of Prostate Carcinoma Cells

    PubMed Central

    Gomez-Granados, Ana Doris; Tang, Alan T.; Pfeiffer, Adam W.; Williams, Carol L.; Campbell, William B.

    2012-01-01

    The cannabinoid receptor type 1 (CB1) is a G protein-coupled receptor that is activated in an autocrine fashion by the endocannabinoids (EC), N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG). The CB1 and its endogenous and synthetic agonists are emerging as therapeutic targets in several cancers due to their ability to suppress carcinoma cell invasion and migration. However, the mechanisms that the CB1 regulates cell motility are not well understood. In this study, we examined the molecular mechanisms that diminish cell migration upon the CB1 activation in prostate carcinoma cells. The CB1 activation with the agonist WIN55212 significantly diminishes the small GTPase RhoA activity but modestly increases the Rac1 and Cdc42 activity. The diminished RhoA activity is accompanied by the loss of actin/myosin microfilaments, cell spreading, and cell migration. Interestingly, the CB1 inactivation with the selective CB1 antagonist AM251 significantly increases RhoA activity, enhances microfilament formation and cell spreading, and promotes cell migration. This finding suggests that endogenously produced EC activate the CB1, resulting in chronic repression of RhoA activity and cell migration. Consistent with this possibility, RhoA activity is significantly diminished by the exogenous application of AEA but not by 2-AG in PC-3 cells (cells with very low AEA hydrolysis). Pretreatment of cells with a monoacylglycerol lipase inhibitor, JZL184, which blocks 2-AG hydrolysis, decreases the RhoA activity. These results indicate the unique CB1 signaling and support the model that EC, through their autocrine activation of CB1 and subsequent repression of RhoA activity, suppress migration in prostate carcinoma cells. PMID:22087025

  16. E-cadherin endocytosis regulates the activity of Rap1: a traffic light GTPase at the crossroads between cadherin and integrin function.

    PubMed

    Balzac, Fiorella; Avolio, Maria; Degani, Simona; Kaverina, Irina; Torti, Mauro; Silengo, Lorenzo; Small, J Victor; Retta, Saverio Francesco

    2005-10-15

    The coordinate modulation of cadherin and integrin functions plays an essential role in fundamental physiological and pathological processes, including morphogenesis and cancer. However, the molecular mechanisms underlying the functional crosstalk between cadherins and integrins are still elusive. Here, we demonstrate that the small GTPase Rap1, a crucial regulator of the inside-out activation of integrins, is a target for E-cadherin-mediated outside-in signaling. In particular, we show that a strong activation of Rap1 occurs upon adherens junction disassembly that is triggered by E-cadherin internalization and trafficking along the endocytic pathway. By contrast, Rap1 activity is not influenced by integrin outside-in signaling. Furthermore, we demonstrate that the E-cadherin endocytosis-dependent activation of Rap1 is associated with and controlled by an increased Src kinase activity, and is paralleled by the colocalization of Rap1 and E-cadherin at the perinuclear Rab11-positive recycling endosome compartment, and the association of Rap1 with a subset of E-cadherin-catenin complexes that does not contain p120ctn. Conversely, Rap1 activity is suppressed by the formation of E-cadherin-dependent cell-cell junctions as well as by agents that inhibit either Src activity or E-cadherin internalization and intracellular trafficking. Finally, we demonstrate that the E-cadherin endocytosis-dependent activation of Rap1 is associated with and is required for the formation of integrin-based focal adhesions. Our findings provide the first evidence of an E-cadherin-modulated endosomal signaling pathway involving Rap1, and suggest that cadherins may have a novel modulatory role in integrin adhesive functions by fine-tuning Rap1 activation.

  17. Up-regulation of 8-oxo-dGTPase activity of MTH1 protein in the brain, testes and kidneys of mice exposed to (137)Cs gamma radiation.

    PubMed

    Bialkowski, Karol; Szpila, Anna; Kasprzak, Kazimierz S

    2009-08-01

    Abstract Mammalian MTH1 protein is an antimutagenic (2'-deoxy)ribonucleoside 5'-triphosphate pyrophosphohydrolase that prevents the incorporation of oxidatively modified nucleotides into nucleic acids. It decomposes most specifically the miscoding products of oxidative damage to purine nucleic acid precursors (e.g. 8-oxo-dGTP, 2-oxo-dATP, 2-oxo-ATP, 8-oxo-GTP) that may cause point mutations or transcription errors when incorporated into DNA and RNA, respectively. The increased expression of MTH1 mRNA and MTH1 protein was previously proposed as a molecular marker of oxidative stress. Therefore, we hypothesized that increased 8-oxo-dGTPase activity of MTH1 protein in mouse organs could serve as a dose-dependent marker of exposure to ionizing radiation, which is known to induce oxidative stress. To test our hypothesis, we measured 8-oxo-dGTPase activity in six organs of male BL6 mice after exposure to 0, 10, 25 and 50 cGy and 1 Gy of (137)Cs gamma radiation given as a single whole-body dose (1 Gy/min). The mice were killed 4, 8 and 24 h after irradiation. A statistically significant induction of 8-oxo-dGTPase was found in brains, testes and kidneys but not in lungs, hearts or livers. Brains, which demonstrated the highest (4.3-fold) increase of 8-oxo-dGTPase activity, were shown to express approximately 50% higher levels of MTH1 protein. However, due to the lack of a simple positive correlation between the dose and the observed 8-oxo-dGTPase activity in brain, testes and kidneys, we conclude that measurements of 8-oxo-dGTPase activity in these organs may serve as a rough indicator rather than a quantifiable marker of radiation-induced oxidative stress.

  18. Actin cytoskeleton-dependent Rab GTPase-regulated angiotensin type I receptor lysosomal degradation studied by fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Li, Hewang; Yu, Peiying; Sun, Yuansheng; Felder, Robin A.; Periasamy, Ammasi; Jose, Pedro A.

    2010-09-01

    The dynamic regulation of the cellular trafficking of human angiotensin (Ang) type 1 receptor (AT1R) is not well understood. Therefore, we investigated the cellular trafficking of AT1R-enhanced green fluorescent protein (EGFP) (AT1R-EGFP) heterologously expressed in HEK293 cells by determining the change in donor lifetime (AT1R-EGFP) in the presence or absence of acceptor(s) using fluorescence lifetime imaging-fluorescence resonance energy transfer (FRET) microscopy. The average lifetime of AT1R-EGFP in our donor-alone samples was ~2.33 ns. The basal state lifetime was shortened slightly in the presence of Rab5 (2.01+/-0.10 ns) or Rab7 (2.11+/-0.11 ns) labeled with Alexa 555, as the acceptor fluorophore. A 5-min Ang II treatment markedly shortened the lifetime of AT1R-EGFP in the presence of Rab5-Alexa 555 (1.78+/-0.31 ns) but was affected minimally in the presence of Rab7-Alexa 555 (2.09+/-0.37 ns). A 30-min Ang II treatment further decreased the AT1R-EGFP lifetime in the presence of both Rab5- and Rab7-Alexa 555. Latrunculin A but not nocodazole pretreatment blocked the ability of Ang II to shorten the AT1R-EGFP lifetime. The occurrence of FRET between AT1R-EGFP (donor) and LAMP1-Alexa 555 (acceptor) with Ang II stimulation was impaired by photobleaching the acceptor. These studies demonstrate that Ang II-induced AT1R lysosomal degradation through its association with LAMP1 is regulated by Rab5/7 via mechanisms that are dependent on intact actin cytoskeletons.

  19. Astroglial differentiation is required for support of neurite outgrowth.

    PubMed

    Wang, L C; Baird, D H; Hatten, M E; Mason, C A

    1994-05-01

    Models of astrocyte differentiation stress a lineage program that involves a progressive loss of astroglial support of neuronal differentiation. These models predict that astroglial promotion of neurite extension declines with the "age" of the astrocyte. An alternative view is that astroglial support of neurite growth is regulated by epigenetic factors that induce the cells either to differentiate and support neuronal functions or to undergo cell proliferation and fail to support neurons. To compare the contribution of astroglial cell "age" to astroglial support of neurite extension, mouse cerebellar astroglia were maintained in vitro for 3-90 d, and assayed for their ability to support neurite formation. When cultured in isolation, astroglial support of neurite extension declined with time in vitro, as assayed by quantifying outgrowth from explants of pontine nuclei, falling from a robust level just after the astroglia were harvested to negligible levels 21-90 d later. Since previous studies have shown that neurons can change the state of astroglial cells (Hatten, 1985), we tested the neurite promoting activity of astroglia that were cultured for 21-90 d in vitro and subsequently induced to differentiate by the addition of neurons. When granule neurons were added to aged astroglia and pontine explants plated 2 d later, neurite growth from the explants was exuberant, regardless of the time astroglia spent in vitro prior to the addition of neurons. The state of astroglia that were growth promoting or growth inhibiting was examined by bromodeoxyuridine staining and with antisera to glial filament protein. Aged astroglia cultured alone and thus inhibitory to axon growth, proliferated at high rates and had polygonal shapes. In contrast, aged astroglia to which neurons had been added, proliferated at low rates and developed process-bearing stellate shapes. To test further whether proliferation levels related to the growth-supporting properties of astroglia, astroglia

  20. Laminin receptors for neurite formation

    SciTech Connect

    Kleinman, H.K.; Ogle, R.C.; Cannon, F.B.; Little, C.D.; Sweeney, T.M.; Luckenbill-Edds, L.

    1988-02-01

    Laminin, a basement membrane glycoprotein promotes both cell attachment and neurite outgrowth. Separate domains on laminin elicit these responses, suggesting that distinct receptors occur on the surface of cells. NG108-15 neuroblastoma-glioma cells rapidly extend long processes in the presence of laminin. The authors report here that /sup 125/I-labeled laminin specifically binds to these cells and to three membrane proteins of 67, 110, and 180 kDa. These proteins were isolated by affinity chromatography on laminin-Sepharose. The 67-kDa protein reacted with antibody to the previously characterized receptor for cell attachment to laminin. Antibodies to the 110-kDa and 180-kDa bands demonstrated that the 110-kDa protein was found in a variety of epithelial cell lines and in brain, whereas the 180-kDa protein was neural specific. Antibodies prepared against the 110-kDa and 180-kDa proteins inhibited neurite outgrowth induced by the neurite-promoting domain of laminin, whereas antibodies to the 67-kDa laminin receptor had no effect on neurite outgrowth. They conclude that neuronal cells have multiple cell-surface laminin receptors and that the 110-kDa and 180-kDa proteins are involved in neurite formation.

  1. Phosphorylation-dependent inhibition of Cdc42 GEF Gef1 by 14-3-3 protein Rad24 spatially regulates Cdc42 GTPase activity and oscillatory dynamics during cell morphogenesis.

    PubMed

    Das, Maitreyi; Nuñez, Illyce; Rodriguez, Marbelys; Wiley, David J; Rodriguez, Juan; Sarkeshik, Ali; Yates, John R; Buchwald, Peter; Verde, Fulvia

    2015-10-01

    Active Cdc42 GTPase, a key regulator of cell polarity, displays oscillatory dynamics that are anticorrelated at the two cell tips in fission yeast. Anticorrelation suggests competition for active Cdc42 or for its effectors. Here we show how 14-3-3 protein Rad24 associates with Cdc42 guanine exchange factor (GEF) Gef1, limiting Gef1 availability to promote Cdc42 activation. Phosphorylation of Gef1 by conserved NDR kinase Orb6 promotes Gef1 binding to Rad24. Loss of Rad24-Gef1 interaction increases Gef1 protein localization and Cdc42 activation at the cell tips and reduces the anticorrelation of active Cdc42 oscillations. Increased Cdc42 activation promotes precocious bipolar growth activation, bypassing the normal requirement for an intact microtubule cytoskeleton and for microtubule-dependent polarity landmark Tea4-PP1. Further, increased Cdc42 activation by Gef1 widens cell diameter and alters tip curvature, countering the effects of Cdc42 GTPase-activating protein Rga4. The respective levels of Gef1 and Rga4 proteins at the membrane define dynamically the growing area at each cell tip. Our findings show how the 14-3-3 protein Rad24 modulates the availability of Cdc42 GEF Gef1, a homologue of mammalian Cdc42 GEF DNMBP/TUBA, to spatially control Cdc42 GTPase activity and promote cell polarization and cell shape emergence.

  2. Phosphorylation-dependent inhibition of Cdc42 GEF Gef1 by 14-3-3 protein Rad24 spatially regulates Cdc42 GTPase activity and oscillatory dynamics during cell morphogenesis

    PubMed Central

    Das, Maitreyi; Nuñez, Illyce; Rodriguez, Marbelys; Wiley, David J.; Rodriguez, Juan; Sarkeshik, Ali; Yates, John R.; Buchwald, Peter; Verde, Fulvia

    2015-01-01

    Active Cdc42 GTPase, a key regulator of cell polarity, displays oscillatory dynamics that are anticorrelated at the two cell tips in fission yeast. Anticorrelation suggests competition for active Cdc42 or for its effectors. Here we show how 14-3-3 protein Rad24 associates with Cdc42 guanine exchange factor (GEF) Gef1, limiting Gef1 availability to promote Cdc42 activation. Phosphorylation of Gef1 by conserved NDR kinase Orb6 promotes Gef1 binding to Rad24. Loss of Rad24–Gef1 interaction increases Gef1 protein localization and Cdc42 activation at the cell tips and reduces the anticorrelation of active Cdc42 oscillations. Increased Cdc42 activation promotes precocious bipolar growth activation, bypassing the normal requirement for an intact microtubule cytoskeleton and for microtubule-dependent polarity landmark Tea4-PP1. Further, increased Cdc42 activation by Gef1 widens cell diameter and alters tip curvature, countering the effects of Cdc42 GTPase-activating protein Rga4. The respective levels of Gef1 and Rga4 proteins at the membrane define dynamically the growing area at each cell tip. Our findings show how the 14-3-3 protein Rad24 modulates the availability of Cdc42 GEF Gef1, a homologue of mammalian Cdc42 GEF DNMBP/TUBA, to spatially control Cdc42 GTPase activity and promote cell polarization and cell shape emergence. PMID:26246599

  3. Cofactor dependent conformational switching of GTPases.

    PubMed

    Hauryliuk, Vasili; Hansson, Sebastian; Ehrenberg, Måns

    2008-08-01

    This theoretical work covers structural and biochemical aspects of nucleotide binding and GDP/GTP exchange of GTP hydrolases belonging to the family of small GTPases. Current models of GDP/GTP exchange regulation are often based on two specific assumptions. The first is that the conformation of a GTPase is switched by the exchange of the bound nucleotide from GDP to GTP or vice versa. The second is that GDP/GTP exchange is regulated by a guanine nucleotide exchange factor, which stabilizes a GTPase conformation with low nucleotide affinity. Since, however, recent biochemical and structural data seem to contradict this view, we present a generalized scheme for GTPase action. This novel ansatz accounts for those important cases when conformational switching in addition to guanine nucleotide exchange requires the presence of cofactors, and gives a more nuanced picture of how the nucleotide exchange is regulated. The scheme is also used to discuss some problems of interpretation that may arise when guanine nucleotide exchange mechanisms are inferred from experiments with analogs of GTP, like GDPNP, GDPCP, and GDP gamma S.

  4. Cofactor Dependent Conformational Switching of GTPases

    PubMed Central

    Hauryliuk, Vasili; Hansson, Sebastian; Ehrenberg, Måns

    2008-01-01

    This theoretical work covers structural and biochemical aspects of nucleotide binding and GDP/GTP exchange of GTP hydrolases belonging to the family of small GTPases. Current models of GDP/GTP exchange regulation are often based on two specific assumptions. The first is that the conformation of a GTPase is switched by the exchange of the bound nucleotide from GDP to GTP or vice versa. The second is that GDP/GTP exchange is regulated by a guanine nucleotide exchange factor, which stabilizes a GTPase conformation with low nucleotide affinity. Since, however, recent biochemical and structural data seem to contradict this view, we present a generalized scheme for GTPase action. This novel ansatz accounts for those important cases when conformational switching in addition to guanine nucleotide exchange requires the presence of cofactors, and gives a more nuanced picture of how the nucleotide exchange is regulated. The scheme is also used to discuss some problems of interpretation that may arise when guanine nucleotide exchange mechanisms are inferred from experiments with analogs of GTP, like GDPNP, GDPCP, and GDP \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\gamma}\\end{equation*}\\end{document} S. PMID:18502805

  5. Mechanisms of developmental neurite pruning

    PubMed Central

    Schuldiner, Oren; Yaron, Avraham

    2016-01-01

    The precise wiring of the nervous system is a combined outcome of progressive and regressive events during development. Axon guidance and synapse formation intertwined with cell death and neurite pruning sculpt the mature circuitry. It is now well recognized that pruning of dendrites and axons as means to refine neuronal networks, is a wide spread phenomena required for the normal development of vertebrate and invertebrate nervous systems. Here we will review the arising principles of cellular and molecular mechanisms of neurite pruning. We will discuss these principles in light of studies in multiple neuronal systems, and speculate on potential explanations for the emergence of neurite pruning as a mechanism to sculpt the nervous system. PMID:25213356

  6. Mechanisms regulating the positioning of mouse p47 resistance GTPases LRG-47 and IIGP1 on cellular membranes: retargeting to plasma membrane induced by phagocytosis.

    PubMed

    Martens, Sascha; Sabel, Katja; Lange, Rita; Uthaiah, Revathy; Wolf, Eva; Howard, Jonathan C

    2004-08-15

    The recently identified p47 GTPases are one of the most effective cell-autonomous resistance systems known against intracellular pathogens in the mouse. One member of the family, LRG-47, has been shown to be essential for immune control in vivo of Listeria monocytogenes, Toxoplasma gondii, Mycobacterium tuberculosis, and Mycobacterium avium, possibly by promoting acidification of the phagosome. However, the intracellular localization of LRG-47, and the nature of its association with the phagosomal or any other membrane system is unknown. In this study, we show that LRG-47 is a Golgi-associated protein in the IFN-stimulated cell, which is rapidly recruited to active plasma membrane upon phagocytosis and remains associated with phagosomes as they mature. We show that the Golgi localization of LRG-47 is dependent on the integrity of an amphipathic helix near the C terminus, whereas the plasma membrane localization depends on an unidentified signal associated with the G domain. Unlike LRG-47, but like the published p47 resistance GTPase, IGTP, a further p47 GTPase, IIGP1, is associated with the endoplasmic reticulum. However, unlike IGTP, IIGP1 is associated with the endoplasmic reticulum by an N-terminal myristoylation modification. Thus, the p47 GTPases are a diverse battery of intracellular defense factors dynamically associated with different membrane systems.

  7. Molecular mechanisms of neurite extension.

    PubMed Central

    Valtorta, F; Leoni, C

    1999-01-01

    The extension of neurites is a major task of developing neurons, requiring a significant metabolic effort to sustain the increase in molecular synthesis necessary for plasma membrane expansion. In addition, neurite extension involves changes in the subsets of expressed proteins and reorganization of the cytomatrix. These phenomena are driven by environmental cues which activate signal transduction processes as well as by the intrinsic genetic program of the cell. The present review summarizes some of the most recent progress made in the elucidation of the molecular mechanisms underlying these processes. PMID:10212488

  8. Control of local Rho GTPase crosstalk by Abr

    PubMed Central

    Vaughan, Emily M.; Miller, Ann L.; Yu, Hoi-Ying E.; Bement, William M.

    2011-01-01

    Summary Background The RhoGTPases—Rho, Rac and Cdc42—regulate the dynamics of F-actin (filamentous actin) and myosin-2 with considerable subcellular precision. Consistent with this ability, active Rho and Cdc42 occupy mutually exclusive zones during single cell wound repair and asymmetric cytokinesis, suggesting the existence of mechanisms for local crosstalk, but how local Rho GTPase crosstalk is controlled is unknown. Results Using a candidate screen approach for Rho GTPase activators (Guanine nucleotide exchange factors; GEFs) and Rho GTPase inactivators (GTPase activating proteins; GAPs), we find that Abr, a protein with both GEF and GAP activity, regulates Rho and Cdc42 during single cell wound repair. Abr is targeted to the Rho activity zone via active Rho. Within the Rho zone Abr promotes local Rho activation via its GEF domain and controls local crosstalk via its GAP domain, which limits Cdc42 activity within the Rho zone. Depletion of Abr attenuates Rho activity and wound repair. Conclusions Abr is the first identified Rho GTPase regulator of single cell wound healing. Its novel mode of targeting by interaction with active Rho allows Abr to rapidly amplify local increases in Rho activity using its GEF domain while its ability to inactivate Cdc42 using its GAP domain results in sharp segregation of the Rho and Cdc42 zones. Similar mechanisms of local Rho GTPase activation and segregation enforcement may be employed in other processes that exhibit local Rho GTPase crosstalk. PMID:21295482

  9. Coxiella burnetii Phagocytosis Is Regulated by GTPases of the Rho Family and the RhoA Effectors mDia1 and ROCK

    PubMed Central

    Distel, Jesús S.; Aguilera, Milton O.; Colombo, María I.; Berón, Walter

    2015-01-01

    The GTPases belonging to the Rho family control the actin cytoskeleton rearrangements needed for particle internalization during phagocytosis. ROCK and mDia1 are downstream effectors of RhoA, a GTPase involved in that process. Coxiella burnetii, the etiologic agent of Q fever, is internalized by the host´s cells in an actin-dependent manner. Nevertheless, the molecular mechanism involved in this process has been poorly characterized. This work analyzes the role of different GTPases of the Rho family and some downstream effectors in the internalization of C. burnetii by phagocytic and non-phagocytic cells. The internalization of C. burnetii into HeLa and RAW cells was significantly inhibited when the cells were treated with Clostridium difficile Toxin B which irreversibly inactivates members of the Rho family. In addition, the internalization was reduced in HeLa cells that overexpressed the dominant negative mutants of RhoA, Rac1 or Cdc42 or that were knocked down for the Rho GTPases. The pharmacological inhibition or the knocking down of ROCK diminished bacterium internalization. Moreover, C. burnetii was less efficiently internalized in HeLa cells overexpressing mDia1-N1, a dominant negative mutant of mDia1, while the overexpression of the constitutively active mutant mDia1-ΔN3 increased bacteria uptake. Interestingly, when HeLa and RAW cells were infected, RhoA, Rac1 and mDia1 were recruited to membrane cell fractions. Our results suggest that the GTPases of the Rho family play an important role in C. burnetii phagocytosis in both HeLa and RAW cells. Additionally, we present evidence that ROCK and mDia1, which are downstream effectors of RhoA, are involved in that process. PMID:26674774

  10. Are There Rab GTPases in Archaea?

    PubMed Central

    Surkont, Jaroslaw; Pereira-Leal, Jose B.

    2016-01-01

    A complex endomembrane system is one of the hallmarks of Eukaryotes. Vesicle trafficking between compartments is controlled by a diverse protein repertoire, including Rab GTPases. These small GTP-binding proteins contribute identity and specificity to the system, and by working as molecular switches, trigger multiple events in vesicle budding, transport, and fusion. A diverse collection of Rab GTPases already existed in the ancestral Eukaryote, yet, it is unclear how such elaborate repertoire emerged. A novel archaeal phylum, the Lokiarchaeota, revealed that several eukaryotic-like protein systems, including small GTPases, are present in Archaea. Here, we test the hypothesis that the Rab family of small GTPases predates the origin of Eukaryotes. Our bioinformatic pipeline detected multiple putative Rab-like proteins in several archaeal species. Our analyses revealed the presence and strict conservation of sequence features that distinguish eukaryotic Rabs from other small GTPases (Rab family motifs), mapping to the same regions in the structure as in eukaryotic Rabs. These mediate Rab-specific interactions with regulators of the REP/GDI (Rab Escort Protein/GDP dissociation Inhibitor) family. Sensitive structure-based methods further revealed the existence of REP/GDI-like genes in Archaea, involved in isoprenyl metabolism. Our analysis supports a scenario where Rabs differentiated into an independent family in Archaea, interacting with proteins involved in membrane biogenesis. These results further support the archaeal nature of the eukaryotic ancestor and provide a new insight into the intermediate stages and the evolutionary path toward the complex membrane-associated signaling circuits that characterize the Ras superfamily of small GTPases, and specifically Rab proteins. PMID:27034425

  11. Are There Rab GTPases in Archaea?

    PubMed

    Surkont, Jaroslaw; Pereira-Leal, Jose B

    2016-07-01

    A complex endomembrane system is one of the hallmarks of Eukaryotes. Vesicle trafficking between compartments is controlled by a diverse protein repertoire, including Rab GTPases. These small GTP-binding proteins contribute identity and specificity to the system, and by working as molecular switches, trigger multiple events in vesicle budding, transport, and fusion. A diverse collection of Rab GTPases already existed in the ancestral Eukaryote, yet, it is unclear how such elaborate repertoire emerged. A novel archaeal phylum, the Lokiarchaeota, revealed that several eukaryotic-like protein systems, including small GTPases, are present in Archaea. Here, we test the hypothesis that the Rab family of small GTPases predates the origin of Eukaryotes. Our bioinformatic pipeline detected multiple putative Rab-like proteins in several archaeal species. Our analyses revealed the presence and strict conservation of sequence features that distinguish eukaryotic Rabs from other small GTPases (Rab family motifs), mapping to the same regions in the structure as in eukaryotic Rabs. These mediate Rab-specific interactions with regulators of the REP/GDI (Rab Escort Protein/GDP dissociation Inhibitor) family. Sensitive structure-based methods further revealed the existence of REP/GDI-like genes in Archaea, involved in isoprenyl metabolism. Our analysis supports a scenario where Rabs differentiated into an independent family in Archaea, interacting with proteins involved in membrane biogenesis. These results further support the archaeal nature of the eukaryotic ancestor and provide a new insight into the intermediate stages and the evolutionary path toward the complex membrane-associated signaling circuits that characterize the Ras superfamily of small GTPases, and specifically Rab proteins. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Redox control of GTPases: from molecular mechanisms to functional significance in health and disease.

    PubMed

    Heo, Jongyun

    2011-02-15

    Small GTPases, including the proto-oncoprotein Ras and Rho GTPases, are involved in various cellular signaling events. Some of these small GTPases are redox sensitive, including Ras, Rho, Ran, Dexras1, and Rhes GTPases. Thus, the redox-mediated regulation of these GTPases often determines the course of their cellular signaling cascades. This article takes into consideration the application of Marcus theory to potential redox-based molecular mechanisms in the regulation of these redox-sensitive GTPases and the relevance of such mechanisms to a specific redox-sensitive motif. The discussion also takes into account various diseases, including cancers, heart, and neuronal disorders, that are often linked with the dysregulation of the redox signaling cascades associated with these redox-sensitive GTPases.

  13. Mechanisms controlling neurite outgrowth in a pheochromocytoma cell line: the role of TRPC channels.

    PubMed

    Kumar, Sanjay; Chakraborty, Saikat; Barbosa, Cindy; Brustovetsky, Tatiana; Brustovetsky, Nickolay; Obukhov, Alexander G

    2012-04-01

    Transient Receptor Potential Canonical (TRPC) channels are implicated in modulating neurite outgrowth. The expression pattern of TRPCs changes significantly during brain development, suggesting that fine-tuning TRPC expression may be important for orchestrating neuritogenesis. To study how alterations in the TRPC expression pattern affect neurite outgrowth, we used nerve growth factor (NGF)-differentiated rat pheochromocytoma 12 (PC12) cells, a model system for neuritogenesis. In PC12 cells, NGF markedly up-regulated TRPC1 and TRPC6 expression, but down-regulated TRPC5 expression while promoting neurite outgrowth. Overexpression of TRPC1 augmented, whereas TRPC5 overexpression decelerated NGF-induced neurite outgrowth. Conversely, shRNA-mediated knockdown of TRPC1 decreased, whereas shRNA-mediated knockdown of TRPC5 increased NGF-induced neurite extension. Endogenous TRPC1 attenuated the anti-neuritogenic effect of overexpressed TRPC5 in part by forming the heteromeric TRPC1-TRPC5 channels. Previous reports suggested that TRPC6 may facilitate neurite outgrowth. However, we found that TRPC6 overexpression slowed down neuritogenesis, whereas dominant negative TRPC6 (DN-TRPC6) facilitated neurite outgrowth in NGF-differentiated PC12 cells. Consistent with these findings, hyperforin, a neurite outgrowth promoting factor, decreased TRPC6 expression in NGF-differentiated PC12 cells. Using pharmacological and molecular biological approaches, we determined that NGF up-regulated TRPC1 and TRPC6 expression via a p75(NTR)-IKK(2)-dependent pathway that did not involve TrkA receptor signaling in PC12 cells. Similarly, NGF up-regulated TRPC1 and TRPC6 via an IKK(2) dependent pathway in primary cultured hippocampal neurons. Thus, our data suggest that a balance of TRPC1, TRPC5, and TRPC6 expression determines neurite extension rate in neural cells, with TRPC6 emerging as an NGF-dependent "molecular damper" maintaining a submaximal velocity of neurite extension.

  14. Direct targeting of Rab-GTPase-effector interactions.

    PubMed

    Spiegel, Jochen; Cromm, Philipp M; Itzen, Aymelt; Goody, Roger S; Grossmann, Tom N; Waldmann, Herbert

    2014-02-24

    Small GTPases are molecular switches using GDP/GTP alternation to control numerous vital cellular processes. Although aberrant function and regulation of GTPases are implicated in various human diseases, direct targeting of this class of proteins has proven difficult, as GTPase signaling and regulation is mediated by extensive and shallow protein interfaces. Here we report the development of inhibitors of protein-protein interactions involving Rab proteins, a subfamily of GTPases, which are key regulators of vesicular transport. Hydrocarbon-stapled peptides were designed based on crystal structures of Rab proteins bound to their interaction partners. These modified peptides exhibit significantly increased affinities and include a stapled peptide (StRIP3) that selectively binds to activated Rab8a and inhibits a Rab8a-effector interaction in vitro.

  15. Phylogenetic distribution of translational GTPases in bacteria

    PubMed Central

    Margus, Tõnu; Remm, Maido; Tenson, Tanel

    2007-01-01

    Background Translational GTPases are a family of proteins in which GTPase activity is stimulated by the large ribosomal subunit. Conserved sequence features allow members of this family to be identified. Results To achieve accurate protein identification and grouping we have developed a method combining searches with Hidden Markov Model profiles and tree based grouping. We found all the genes for translational GTPases in 191 fully sequenced bacterial genomes. The protein sequences were grouped into nine subfamilies. Analysis of the results shows that three translational GTPases, the translation factors EF-Tu, EF-G and IF2, are present in all organisms examined. In addition, several copies of the genes encoding EF-Tu and EF-G are present in some genomes. In the case of multiple genes for EF-Tu, the gene copies are nearly identical; in the case of multiple EF-G genes, the gene copies have been considerably diverged. The fourth translational GTPase, LepA, the function of which is currently unknown, is also nearly universally conserved in bacteria, being absent from only one organism out of the 191 analyzed. The translation regulator, TypA, is also present in most of the organisms examined, being absent only from bacteria with small genomes. Surprisingly, some of the well studied translational GTPases are present only in a very small number of bacteria. The translation termination factor RF3 is absent from many groups of bacteria with both small and large genomes. The specialized translation factor for selenocysteine incorporation – SelB – was found in only 39 organisms. Similarly, the tetracycline resistance proteins (Tet) are present only in a small number of species. Proteins of the CysN/NodQ subfamily have acquired functions in sulfur metabolism and production of signaling molecules. The genes coding for CysN/NodQ proteins were found in 74 genomes. This protein subfamily is not confined to Proteobacteria, as suggested previously but present also in many other

  16. Scorpion venom heat-resistant peptide (SVHRP) enhances neurogenesis and neurite outgrowth of immature neurons in adult mice by up-regulating brain-derived neurotrophic factor (BDNF).

    PubMed

    Wang, Tao; Wang, Shi-Wei; Zhang, Yue; Wu, Xue-Fei; Peng, Yan; Cao, Zhen; Ge, Bi-Ying; Wang, Xi; Wu, Qiong; Lin, Jin-Tao; Zhang, Wan-Qin; Li, Shao; Zhao, Jie

    2014-01-01

    Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Although scorpions and their venom have been used in Traditional Chinese Medicine (TCM) to treat chronic neurological disorders, the underlying mechanisms of these treatments remain unknown. We applied SVHRP in vitro and in vivo to understand its effects on the neurogenesis and maturation of adult immature neurons and explore associated molecular mechanisms. SVHRP administration increased the number of 5-bromo-2'-dexoxyuridine (BrdU)-positive cells, BrdU-positive/neuron-specific nuclear protein (NeuN)-positive neurons, and polysialylated-neural cell adhesion molecule (PSA-NCAM)-positive immature neurons in the subventricular zone (SVZ) and subgranular zone (SGZ) of hippocampus. Furthermore immature neurons incubated with SVHRP-pretreated astrocyte-conditioned medium exhibited significantly increased neurite length compared with those incubated with normal astrocyte-conditioned medium. This neurotrophic effect was further confirmed in vivo by detecting an increased average single area and whole area of immature neurons in the SGZ, SVZ and olfactory bulb (OB) in the adult mouse brain. In contrast to normal astrocyte-conditioned medium, higher concentrations of brain-derived neurotrophic factor (BDNF) but not nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF) was detected in the conditioned medium of SVHRP-pretreated astrocytes, and blocking BDNF using anti-BDNF antibodies eliminated these SVHRP-dependent neurotrophic effects. In SVHRP treated mouse brain, more glial fibrillary acidic protein (GFAP)-positive cells were detected. Furthermore, immunohistochemistry revealed increased numbers of GFAP/BDNF double-positive cells, which agrees with the observed changes in the culture system. This paper describes novel effects of scorpion venom-originated peptide on the stem cells and suggests the potential therapeutic values of SVHRP.

  17. Quercetin promotes neurite growth through enhancing intracellular cAMP level and GAP-43 expression.

    PubMed

    Chen, Ming-Ming; Yin, Zhi-Qi; Zhang, Lu-Yong; Liao, Hong

    2015-09-01

    The present study was designed to investigate the role of quercetin on neurite growth in N1E-115 cells and the underlying mechanisms. Quercetin was evaluated for its effects on cell numbers of neurites, neurite length, intracellular cAMP content, and Gap-43 expression in N1E-115 cells in vitro by use of microscopy, LANCE(tm) cAMP 384 kit, and Western blot analysis, respectively. Our results showed that quercetin could increase the neurite length in a concentration-dependent manner, but had no effect on the numbers of cells. Quercetin significantly increased the expression of cellular cAMP in a time- and concentration-dependent manner. The Gap-43 expression was up-regulated in a time-dependent manner. In conclusion, quercetin could promote neurite growth through increasing the intracellular cAMP level and Gap-43 expression.

  18. The Small GTPase MoSec4 Is Involved in Vegetative Development and Pathogenicity by Regulating the Extracellular Protein Secretion in Magnaporthe oryzae

    PubMed Central

    Zheng, Huakun; Chen, Simiao; Chen, Xiaofeng; Liu, Shuyan; Dang, Xie; Yang, Chengdong; Giraldo, Martha C.; Oliveira-Garcia, Ely; Zhou, Jie; Wang, Zonghua; Valent, Barbara

    2016-01-01

    The Rab GTPase proteins play important roles in the membrane trafficking, and consequently protein secretion and development of eukaryotic organisms. However, little is known about the function of Rab GTPases in Magnaporthe oryzae. To further explore the function of Rab GTPases, we deleted the ortholog of the yeast Sec4p protein in M. oryzae, namely MoSEC4. The ΔMosec4 mutant is defective in polarized growth and conidiation, and it displays decreased appressorium turgor pressure and attenuated pathogenicity. Notably, the biotrophic invasive hyphae produced in rice cells are more bulbous and compressed in the ΔMosec4 mutant. Further studies showed that deletion of the MoSEC4 gene resulted in decreased secretion of extracellular enzymes and mislocalization of the cytoplasmic effector PWL2-mCherry-NLS. In accordance with a role in secretion, the GFP-MoSec4 fusion protein mainly accumulates at tips of growing vegetative hyphae. Our results suggest that the MoSec4 protein plays important roles in the secretion of extracellular proteins and consequently hyphal development and pathogenicity in the rice blast fungus. PMID:27729922

  19. BRAF and RAS oncogenes regulate Rho GTPase pathways to mediate migration and invasion properties in human colon cancer cells: a comparative study

    PubMed Central

    2011-01-01

    Background Colorectal cancer is a common disease that involves genetic alterations, such as inactivation of tumour suppressor genes and activation of oncogenes. Among them are RAS and BRAF mutations, which rarely coexist in the same tumour. Individual members of the Rho (Ras homology) GTPases contribute with distinct roles in tumour cell morphology, invasion and metastasis. The aim of this study is to dissect cell migration and invasion pathways that are utilised by BRAFV600E as compared to KRASG12V and HRASG12V oncoproteins. In particular, the role of RhoA (Ras homolog gene family, member A), Rac1 (Ras-related C3 botulinum toxin substrate 1) and Cdc42 (cell division cycle 42) in cancer progression induced by each of the three oncogenes is described. Methods Colon adenocarcinoma cells with endogenous as well as ectopically expressed or silenced oncogenic mutations of BRAFV600E, KRASG12V and HRASG12V were employed. Signalling pathways and Rho GTPases were inhibited with specific kinase inhibitors and siRNAs. Cell motility and invasion properties were correlated with cytoskeletal properties and Rho GTPase activities. Results Evidence presented here indicate that BRAFV600E significantly induces cell migration and invasion properties in vitro in colon cancer cells, at least in part through activation of RhoA GTPase. The relationship established between BRAFV600E and RhoA activation is mediated by the MEK-ERK pathway. In parallel, KRASG12V enhances the ability of colon adenocarcinoma cells Caco-2 to migrate and invade through filopodia formation and PI3K-dependent Cdc42 activation. Ultimately increased cell migration and invasion, mediated by Rac1, along with the mesenchymal morphology obtained through the Epithelial-Mesenchymal Transition (EMT) were the main characteristics rendered by HRASG12V in Caco-2 cells. Moreover, BRAF and KRAS oncogenes are shown to cooperate with the TGFβ-1 pathway to provide cells with additional transforming properties. Conclusion This

  20. Binding of Cdc42 to phospholipase D1 is important in neurite outgrowth of neural stem cells

    SciTech Connect

    Yoon, Mee-Sup; Cho, Chan Ho; Lee, Ki Sung; Han, Joong-Soo . E-mail: jshan@hanyang.ac.kr

    2006-09-01

    We previously demonstrated that phospholipase D (PLD) expression and PLD activity are upregulated during neuronal differentiation. In the present study, employing neural stem cells from the brain cortex of E14 rat embryos, we investigated the role of Rho family GTPases in PLD activation and in neurite outgrowth of neural stem cells during differentiation. As neuronal differentiation progressed, the expression levels of Cdc42 and RhoA increased. Furthermore, Cdc42 and PLD1 were mainly localized in neurite, whereas RhoA was localized in cytosol. Co-immunoprecipitation revealed that Cdc42 was bound to PLD1 during differentiation, whereas RhoA was associated with PLD1 during both proliferation and differentiation. These results indicate that the association between Cdc42 and PLD1 is related to neuronal differentiation. To examine the effect of Cdc42 on PLD activation and neurite outgrowth, we transfected dominant negative Cdc42 (Cdc42N17) and constitutively active Cdc42 (Cdc42V12) into neural stem cells, respectively. Overexpression of Cdc42N17 decreased both PLD activity and neurite outgrowth, whereas co-transfection with Cdc42N17 and PLD1 restored them. On the other hand, Cdc42V12 increased both PLD activity and neurite outgrowth, suggesting that active state of Cdc42 is important in upregulation of PLD activity which is responsible for the increase of neurite outgrowth.

  1. Interferon-Inducible GTPases in Host Resistance, Inflammation and Disease.

    PubMed

    Pilla-Moffett, Danielle; Barber, Matthew F; Taylor, Gregory A; Coers, Jörn

    2016-08-28

    Cell-autonomous immunity is essential for host organisms to defend themselves against invasive microbes. In vertebrates, both the adaptive and the innate branches of the immune system operate cell-autonomous defenses as key effector mechanisms that are induced by pro-inflammatory interferons (IFNs). IFNs can activate cell-intrinsic host defenses in virtually any cell type ranging from professional phagocytes to mucosal epithelial cells. Much of this IFN-induced host resistance program is dependent on four families of IFN-inducible GTPases: the myxovirus resistance proteins, the immunity-related GTPases, the guanylate-binding proteins (GBPs), and the very large IFN-inducible GTPases. These GTPase families provide host resistance to a variety of viral, bacterial, and protozoan pathogens through the sequestration of microbial proteins, manipulation of vesicle trafficking, regulation of antimicrobial autophagy (xenophagy), execution of intracellular membranolytic pathways, and the activation of inflammasomes. This review discusses our current knowledge of the molecular function of IFN-inducible GTPases in providing host resistance, as well as their role in the pathogenesis of autoinflammatory Crohn's disease. While substantial advances were made in the recent past, few of the known functions of IFN-inducible GTPases have been explored in any depth, and new functions await discovery. This review will therefore highlight key areas of future exploration that promise to advance our understanding of the role of IFN-inducible GTPases in human diseases.

  2. Regulation of NGF-driven neurite outgrowth by Ins(1,4,5)P3 kinase is specifically associated with the two isoenzymes Itpka and Itpkb in a model of PC12 cells.

    PubMed

    Koenig, Sandra; Moreau, Colette; Dupont, Geneviève; Scoumanne, Ariane; Erneux, Christophe

    2015-07-01

    Four inositol phosphate kinases catalyze phosphorylation of the second messenger inositol 1,4,5-trisphosphate [Ins(1,4,5)P3 ] to inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4 ]: these enzymes comprise three isoenzymes of inositol 1,4,5-trisphosphate 3-kinase (Itpk), referred to as Itpka, Itpkb and Itpkc, and the inositol polyphosphate multikinase (IPMK). The four enzymes that act on Ins(1,4,5)P3 are all expressed in rat pheochromocytoma PC12 cells, a model that is used to study neurite outgrowth induced by nerve growth factor (NGF). We compared the effect of over-expression of the four GFP-tagged kinases on NGF-induced neurite outgrowth. Our data show that over-expression of the Itpka and Itpkb isoforms inhibits NGF-induced neurite outgrowth, but over-expression of Itpkc and IPMK does not. Surprisingly, over-expression of the N-terminal F-actin binding domain of Itpka, which lacks catalytic activity, was as effective at inhibiting neurite outgrowth as the full-length enzyme. Neurite length was also significantly decreased in cells over-expressing Itpka and Itpkb but not Itpkc or IPMK. This result did not depend on the over-expression level of any of the kinases. PC12 cells over-expressing GFP-tagged kinase-dead mutants Itpka/b have shorter neurites than GFP control cells. The decrease in neurite length was never as pronounced as observed with wild-type GFP-tagged Itpka/b. Finally, the percentage of neurite-bearing cells was increased in cells over-expressing the membranous type I Ins(1,4,5)P3 5-phosphatase. We conclude that Itpka and Itpkb inhibit neurite outgrowth through both F-actin binding and localized Ins(1,4,5)P3 3-kinase activity. Itpkc and IPMK do not influence neurite outgrowth or neurite length in this model.

  3. Nano-encapsulation of a novel anti-Ran-GTPase peptide for blockade of regulator of chromosome condensation 1 (RCC1) function in MDA-MB-231 breast cancer cells.

    PubMed

    Haggag, Yusuf A; Matchett, Kyle B; Dakir, El-Habib; Buchanan, Paul; Osman, Mohammed A; Elgizawy, Sanaa A; El-Tanani, Mohamed; Faheem, Ahmed M; McCarron, Paul A

    2017-02-02

    Ran is a small ras-related GTPase and is highly expressed in aggressive breast carcinoma. Overexpression induces malignant transformation and drives metastatic growth. We have designed a novel series of anti-Ran-GTPase peptides, which prevents Ran hydrolysis and activation, and although they display effectiveness in silico, peptide activity is suboptimal in vitro due to reduced bioavailability and poor delivery. To overcome this drawback, we delivered an anti-Ran-GTPase peptide using encapsulation in PLGA-based nanoparticles (NP). Formulation variables within a double emulsion solvent evaporation technique were controlled to optimise physicochemical properties. NP were spherical and negatively charged with a mean diameter of 182-277nm. Peptide integrity and stability were maintained after encapsulation and release kinetics followed a sustained profile. We were interested in the relationship between cellular uptake and poly(ethylene glycol) (PEG) in the NP matrix, with results showing enhanced in vitro uptake with increasing PEG content. Peptide-loaded, pegylated (10% PEG)-PLGA NP induced significant cytotoxic and apoptotic effects in MDA-MB-231 breast cancer cells, with no evidence of similar effects in cells pulsed with free peptide. Western blot analysis showed that encapsulated peptide interfered with the proposed signal transduction pathway of the Ran gene. Our novel blockade peptide prevented Ran activation by blockage of regulator of chromosome condensation 1 (RCC1) following peptide release directly in the cytoplasm once endocytosis of the peptide-loaded nanoparticle has occurred. RCC1 blockage was effective only when a nanoparticulate delivery approach was adopted.

  4. Effects of DDT and permethrin on neurite growth in cultured neurons of chick embryo brain and Lymnaea stagnalis.

    PubMed

    Ferguson, C A; Audesirk, G

    1990-01-01

    The pesticides permethrin and 1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT), dissolved in either ethanol (EtOH) or dimethylsulphoxide (DMSO), were studied to determine their effect on neurite growth from cultured neurons of Lymnaea stagnalis and embryonic chicks. Both of these toxins decreased the percentage of neurons growing neurites, mean neurite length, and number of neurites/cell in a dose-dependent manner. DMSO increased the toxicity of permethrin and DDT in L. stagnalis neurons. EtOH was not used as a solvent with the embryonic chick cultures. Pre-existing neurites of L. stagnalis neurons exposed to permethrin regressed in a dose- and time-dependent manner. These two toxins may affect neurite outgrowth through interference with intracellular calcium regulation.

  5. In vitro comparative kinetic analysis of the chloroplast Toc GTPases.

    PubMed

    Reddick, L Evan; Vaughn, Michael D; Wright, Sarah J; Campbell, Ian M; Bruce, Barry D

    2007-04-13

    A unique aspect of protein transport into plastids is the coordinate involvement of two GTPases in the translocon of the outer chloroplast membrane (Toc). There are two subfamilies in Arabidopsis, the small GTPases (Toc33 and Toc34) and the large acidic GTPases (Toc90, Toc120, Toc132, and Toc159). In chloroplasts, Toc34 and Toc159 are implicated in precursor binding, yet mechanistic details are poorly understood. How the GTPase cycle is modulated by precursor binding is complex and in need of careful dissection. To this end, we have developed novel in vitro assays to quantitate nucleotide binding and hydrolysis of the Toc GTPases. Here we present the first systematic kinetic characterization of four Toc GTPases (cytosolic domains of atToc33, atToc34, psToc34, and the GTPase domain of atToc159) to permit their direct comparison. We report the KM, Vmax, and Ea values for GTP hydrolysis and the Kd value for nucleotide binding for each protein. We demonstrate that GTP hydrolysis by psToc34 is stimulated by chloroplast transit peptides; however, this activity is not stimulated by homodimerization and is abolished by the R133A mutation. Furthermore, we show peptide stimulation of hydrolytic rates are not because of accelerated nucleotide exchange, indicating that transit peptides function as GTPase-activating proteins and not guanine nucleotide exchange factors in modulating the activity of psToc34. Finally, by using the psToc34 structure, we have developed molecular models for atToc33, atToc34, and atToc159G. By combining these models with the measured enzymatic properties of the Toc GTPases, we provide new insights of how the chloroplast protein import cycle may be regulated.

  6. Study on the chaperone properties of conserved GTPases.

    PubMed

    Wang, Xiang; Xue, Jiaying; Sun, Zhe; Qin, Yan; Gong, Weimin

    2012-01-01

    As a large family of hydrolases, GTPases are widespread in cells and play the very important biological function of hydrolyzing GTP into GDP and inorganic phosphate through binding with it. GTPases are involved in cell cycle regulation, protein synthesis, and protein transportation. Chaperones can facilitate the folding or refolding of nascent peptides and denatured proteins to their native states. However, chaperones do not occur in the native structures in which they can perform their normal biological functions. In the current study, the chaperone activity of the conserved GTPases of Escherichia coli is tested by the chemical denaturation and chaperone-assisted renaturation of citrate synthase and α-glucosidase. The effects of ribosomes and nucleotides on the chaperone activity are also examined. Our data indicate that these conserved GTPases have chaperone properties, and may be ancestral protein folding factors that have appeared before dedicated chaperones.

  7. Analysis of the Small GTPase Gene Superfamily of Arabidopsis1

    PubMed Central

    Vernoud, Vanessa; Horton, Amy C.; Yang, Zhenbiao; Nielsen, Erik

    2003-01-01

    Small GTP-binding proteins regulate diverse processes in eukaryotic cells such as signal transduction, cell proliferation, cytoskeletal organization, and intracellular membrane trafficking. These proteins function as molecular switches that cycle between “active” and “inactive” states, and this cycle is linked to the binding and hydrolysis of GTP. The Arabidopsis genome contains 93 genes that encode small GTP-binding protein homologs. Phylogenetic analysis of these genes shows that plants contain Rab, Rho, Arf, and Ran GTPases, but no Ras GTPases. We have assembled complete lists of these small GTPases families, as well as accessory proteins that control their activity, and review what is known of the functions of individual members of these families in Arabidopsis. We also discuss the possible roles of these GTPases in relation to their similarity to orthologs with known functions and localizations in yeast and/or animal systems. PMID:12644670

  8. Rac GTPases in erythroid biology

    PubMed Central

    Konstantinidis, Diamantis; George, Alex; Kalfa, Theodosia A.

    2015-01-01

    Rac1 and Rac2 GTPases, members of the Rho GTPases family, control actin organization and play distinct and overlapping roles in hematopoietic and mature blood cells of all lineages. Here we review our findings on the role of Rac GTPases in erythroid cells, by using conditional gene-targeting in mice. Rac1 and Rac2 deficiency causes anemia with reticulocytosis, indicating decreased red blood (RBC) survival, altered actin assembly in the erythrocyte membrane skeleton and decreased RBC deformability. On the other hand, Rac1−/−;Rac2−/− megakaryocyte-erythrocyte progenitors demonstrate decreased proliferation in the bone marrow, but increased survival and proliferation in the spleen, indicating that stress erythropoiesis circumvents Rac GTPases deficiency. Further elucidation of the signaling pathways controlled by Rac GTPases in erythroid cells may reveal potential therapeutic targets for diseases characterized by hemolytic anemia and erythropoiesis disorders. PMID:20655266

  9. PKA-mediated phosphorylation of EPEC-Tir at serine residues 434 and 463: A novel pathway in regulating Rac1 GTPase function.

    PubMed

    Backert, Steffen; Kenny, Brendan; Gerhard, Ralf; Tegtmeyer, Nicole; Brandt, Sabine

    2010-03-01

    Type-III or type-IV secretion systems of many Gram-negative bacterial pathogens inject effector proteins into host cells that modulate cellular functions in their favour. A preferred target of these effectors is the actin-cytoskeleton as shown by studies using the gastric pathogens Helicobacter pylori (H. pylori) and enteropathogenic Escherichia coli (EPEC). We recently developed a co-infection approach to study effector protein function and molecular mechanisms by which they highjack cellular signalling cascades. This is exemplified by our observation that EPEC profoundly blocks H. pylori-induced epithelial cell scattering and elongation, a disease-related event requiring the activity of small Rho GTPase Rac1. While this suppressive effect is dependent on the effector protein Tir and the outer-membrane protein Intimin, it unexpectedly revealed evidence for Tir-signalling independent of phosphorylation of Tir at tyrosine residues 454 and 474. Instead, our studies revealed a previously unidentified function for protein kinase A (PKA)-mediated phosphorylation of Tir at serine residues 434 and 463. We demonstrated that EPEC infection activates PKA for Tir phosphorylation. Activated PKA then phosphorylates Rac1 at its serine residue 71 associated with reduced GTP-load and inhibited cell elongation. Phosphorylation of Rho GTPases such as Rac1 might be an interesting novel strategy in microbial pathogenesis.

  10. Rho family GTPases: key players in neuronal development, neuronal survival, and neurodegeneration

    PubMed Central

    Stankiewicz, Trisha R.; Linseman, Daniel A.

    2014-01-01

    The Rho family of GTPases belongs to the Ras superfamily of low molecular weight (∼21 kDa) guanine nucleotide binding proteins. The most extensively studied members are RhoA, Rac1, and Cdc42. In the last few decades, studies have demonstrated that Rho family GTPases are important regulatory molecules that link surface receptors to the organization of the actin and microtubule cytoskeletons. Indeed, Rho GTPases mediate many diverse critical cellular processes, such as gene transcription, cell–cell adhesion, and cell cycle progression. However, Rho GTPases also play an essential role in regulating neuronal morphology. In particular, Rho GTPases regulate dendritic arborization, spine morphogenesis, growth cone development, and axon guidance. In addition, more recent efforts have underscored an important function for Rho GTPases in regulating neuronal survival and death. Interestingly, Rho GTPases can exert either a pro-survival or pro-death signal in neurons depending upon both the cell type and neurotoxic insult involved. This review summarizes key findings delineating the involvement of Rho GTPases and their effectors in the regulation of neuronal survival and death. Collectively, these results suggest that dysregulation of Rho family GTPases may potentially underscore the etiology of some forms of neurodegenerative disease such as amyotrophic lateral sclerosis. PMID:25339865

  11. Mouse Acetylcholinesterase Enhances Neurite Outgrowth of Rat R28 Cells Through Interaction With Laminin-1

    PubMed Central

    Sperling, Laura E.; Klaczinski, Janine; Schütz, Corina; Rudolph, Lydia; Layer, Paul G.

    2012-01-01

    The enzyme acetylcholinesterase (AChE) terminates synaptic transmission at cholinergic synapses by hydrolyzing the neurotransmitter acetylcholine, but can also exert ‘non-classical’, morpho-regulatory effects on developing neurons such as stimulation of neurite outgrowth. Here, we investigated the role of AChE binding to laminin-1 on the regulation of neurite outgrowth by using cell culture, immunocytochemistry, and molecular biological approaches. To explore the role of AChE, we examined fiber growth of cells overexpressing different forms of AChE, and/or during their growth on laminin-1. A significant increase of neuritic growth as compared with controls was observed for neurons over-expressing AChE. Accordingly, addition of globular AChE to the medium increased total length of neurites. Co-transfection with PRIMA, a membrane anchor of AChE, led to an increase in fiber length similar to AChE overexpressing cells. Transfection with an AChE mutant that leads to the retention of AChE within cells had no stimulatory effect on neurite length. Noticeably, the longest neurites were produced by neurons overexpressing AChE and growing on laminin-1, suggesting that the AChE/laminin interaction is involved in regulating neurite outgrowth. Our findings demonstrate that binding of AChE to laminin-1 alters AChE activity and leads to increased neurite growth in culture. A possible mechanism of the AChE effect on neurite outgrowth is proposed due to the interaction of AChE with laminin-1. PMID:22570738

  12. Calsyntenin-3 C-terminal fragment accumulates in dystrophic neurites surrounding aβ plaques in tg2576 mouse and Alzheimer disease brains: its neurotoxic role in mediating dystrophic neurite formation.

    PubMed

    Uchida, Yoko; Gomi, Fujiya; Murayama, Shigeo; Takahashi, Hiroshi

    2013-05-01

    Dystrophic neurites surrounding β-amyloid (Aβ) plaques precede neuronal death in Alzheimer disease. These neuritic alterations may be one of the initial stages for synaptic loss and dysfunction. However, intracellular pathways that cause local disruption of neuronal processes by Aβ remain to be fully elucidated. The identification of Aβ-induced genes that mediate neuritic pathology would provide considerable insight into the mechanisms of Alzheimer's disease. Previously, we reported that selective up-regulation of calsyntenin-3 (Cst-3) by Aβ and accumulation of neurotoxic Cst-3 in dystrophic neurites surrounding Aβ plaques may lead to local disruption of these neurites. Like amyloid precursor protein, Cst-3 undergoes two-step proteolytic processing: the primary cleavage with α-secretase generates an N-terminal ectodomain and a C-terminal fragment (CTF). The CTF is subsequently cleaved into p3 peptide and an intracellular domain via γ-secretase. It would be interesting to know whether accumulated Cst-3 in dystrophic neurites surrounding Aβ plaques is the full-length version or a CTF. Herein, we show that the CTF but not full-length Cst-3 accumulated in dystrophic neurites surrounding Aβ plaques in Tg2576 mouse and Alzheimer disease brains. In vitro experiments with Cst-3 fragments have revealed that only the CTF resulted in acceleration of neuronal death. These results indicate that accumulation of the neurotoxic CTF in neurites surrounding Aβ plaques may lead to local disruption of neuronal processes and development of dystrophic neurites.

  13. Plasminogen activator inhibitor-1 aids survival of neurites on neurons derived from pheochromocytoma (PC-12) cells.

    PubMed

    Soeda, Shinji; Imatoh, Takuya; Ochiai, Takashi; Koyanagi, Satoru; Shimeno, Hiroshi

    2004-04-09

    Plasminogen activator inhibitor-1 is a serpin that regulates the activities of plasminogen activators. However, its physiological roles in the CNS are incompletely understood. We have found that plasminogen activator inhibitor-1 has a novel biological function in the CNS: the contribution to survival of neurites on neurons. PC-12 cells treated with nerve growth factor differentiated into neurons and formed a network of neurites. In a serum-free culture medium, these neurites disappeared within 24 h. The addition of plasminogen activator inhibitor-1 prevented the disintegration of the neuronal networks, while the addition of the serpin inhibitors aprotinin and antipain did not. The plasminogen activator inhibitor-1 maintained or promoted the phosphorylated state of extracellular signal-regulated kinase (ERK), but not of protein kinase B (Akt). These results are the first evidence that plasminogen activator inhibitor-1 in the CNS acts to maintain the morphology of neurites via activation of the ERK-related pathway in the neurons.

  14. Uridine from Pleurotus giganteus and Its Neurite Outgrowth Stimulatory Effects with Underlying Mechanism

    PubMed Central

    Phan, Chia-Wei; David, Pamela; Wong, Kah-Hui; Naidu, Murali; Sabaratnam, Vikineswary

    2015-01-01

    Neurodegenerative diseases are linked to neuronal cell death and impairment of neurite outgrowth. An edible mushroom, Pleurotus giganteus was found to stimulate neurite outgrowth in vitro but the chemical constituents and the underlying mechanism is yet to be elucidated. The chemical constituents of P. giganteus (linoleic acid, oleic acid, cinnamic acid, caffeic acid, p-coumaric acid, succinic acid, benzoic acid, and uridine) were tested for neurite outgrowth activity. Uridine (100 μM) was found to increase the percentage of neurite-bearing cells of differentiating neuroblastoma (N2a) cells by 43.1±0.5%, which was 1.8-fold higher than NGF (50 ng/mL)-treated cells. Uridine which was present in P. giganteus (1.80±0.03 g/100g mushroom extract) increased the phosphorylation of extracellular-signal regulated kinases (ERKs) and protein kinase B (Akt). Further, phosphorylation of the mammalian target of rapamycin (mTOR) was also increased. MEK/ERK and PI3K-Akt-mTOR further induced phosphorylation of cAMP-response element binding protein (CREB) and expression of growth associated protein 43 (GAP43); all of which promoted neurite outgrowth of N2a cells. This study demonstrated that P. giganteus may enhance neurite outgrowth and one of the key bioactive molecules responsible for neurite outgrowth is uridine. PMID:26565787

  15. Uridine from Pleurotus giganteus and Its Neurite Outgrowth Stimulatory Effects with Underlying Mechanism.

    PubMed

    Phan, Chia-Wei; David, Pamela; Wong, Kah-Hui; Naidu, Murali; Sabaratnam, Vikineswary

    2015-01-01

    Neurodegenerative diseases are linked to neuronal cell death and impairment of neurite outgrowth. An edible mushroom, Pleurotus giganteus was found to stimulate neurite outgrowth in vitro but the chemical constituents and the underlying mechanism is yet to be elucidated. The chemical constituents of P. giganteus (linoleic acid, oleic acid, cinnamic acid, caffeic acid, p-coumaric acid, succinic acid, benzoic acid, and uridine) were tested for neurite outgrowth activity. Uridine (100 μM) was found to increase the percentage of neurite-bearing cells of differentiating neuroblastoma (N2a) cells by 43.1 ± 0.5%, which was 1.8-fold higher than NGF (50 ng/mL)-treated cells. Uridine which was present in P. giganteus (1.80 ± 0.03 g/100g mushroom extract) increased the phosphorylation of extracellular-signal regulated kinases (ERKs) and protein kinase B (Akt). Further, phosphorylation of the mammalian target of rapamycin (mTOR) was also increased. MEK/ERK and PI3K-Akt-mTOR further induced phosphorylation of cAMP-response element binding protein (CREB) and expression of growth associated protein 43 (GAP43); all of which promoted neurite outgrowth of N2a cells. This study demonstrated that P. giganteus may enhance neurite outgrowth and one of the key bioactive molecules responsible for neurite outgrowth is uridine.

  16. Triggering of high-speed neurite outgrowth using an optical microheater.

    PubMed

    Oyama, Kotaro; Zeeb, Vadim; Kawamura, Yuki; Arai, Tomomi; Gotoh, Mizuho; Itoh, Hideki; Itabashi, Takeshi; Suzuki, Madoka; Ishiwata, Shin'ichi

    2015-11-16

    Optical microheating is a powerful non-invasive method for manipulating biological functions such as gene expression, muscle contraction, and cell excitation. Here, we demonstrate its potential usage for regulating neurite outgrowth. We found that optical microheating with a water-absorbable 1,455-nm laser beam triggers directional and explosive neurite outgrowth and branching in rat hippocampal neurons. The focused laser beam under a microscope rapidly increases the local temperature from 36 °C to 41 °C (stabilized within 2 s), resulting in the elongation of neurites by more than 10 μm within 1 min. This high-speed, persistent elongation of neurites was suppressed by inhibitors of both microtubule and actin polymerization, indicating that the thermosensitive dynamics of these cytoskeletons play crucial roles in this heat-induced neurite outgrowth. Furthermore, we showed that microheating induced the regrowth of injured neurites and the interconnection of neurites. These results demonstrate the efficacy of optical microheating methods for the construction of arbitrary neural networks.

  17. Cellular Mechanisms of Tissue Fibrosis. 8. Current and future drug targets in fibrosis: focus on Rho GTPase-regulated gene transcription

    PubMed Central

    Tsou, Pei-Suen; Haak, Andrew J.; Khanna, Dinesh

    2014-01-01

    Tissue fibrosis occurs with excessive extracellular matrix deposition from myofibroblasts, resulting in tissue scarring and inflammation. It is driven by multiple mediators, such as the G protein-coupled receptor ligands lysophosphatidic acid and endothelin, as well as signaling by transforming growth factor-β, connective tissue growth factor, and integrins. Fibrosis contributes to 45% of deaths in the developed world. As current therapeutic options for tissue fibrosis are limited and organ transplantation is the only effective treatment for end-stage disease, there is an imminent need for efficacious antifibrotic therapies. This review discusses the various molecular pathways involved in fibrosis. It highlights the Rho GTPase signaling pathway and its downstream gene transcription output through myocardin-related transcription factor and serum response factor as a convergence point for targeting this complex set of diseases. PMID:24740541

  18. Filamin C promotes lymphatic invasion and lymphatic metastasis and increases cell motility by regulating Rho GTPase in esophageal squamous cell carcinoma

    PubMed Central

    Furukawa, Tatsuhiko; Kita, Yoshiaki; Hatanaka, Kazuhito; Minami, Kentaro; Kawahara, Kohichi; Yamamoto, Masatatsu; Baba, Kenji; Mori, Shinichiro; Uchikado, Yasuto; Maemura, Kosei; Tanimoto, Akihide; Natsugoe, Shoji

    2017-01-01

    To establish treatments to improve the prognosis of cancer patients, it is necessary to find new targets to control metastasis. We found that expression of FilaminC (FLNC), a member of the actin binding and cross-linking filamin protein family is correlated with lymphatic invasion and lymphatic metastasis in esophageal squamous cell carcinoma (ESCC) by increasing cell motility through activation of Rho GTPase. Immunohistochemistry analysis showed that FLNC expression in ESCC is associated with lymphatic invasion, metastasis, and prognosis. FLNC knockdown in esophageal cancer cell lines decreased cell migration in wound healing and transwell migration assays, and invasion in transwell migration assays. Furthermore, FLNC knockdown reduced the amount of activated Rac-1 (GTP-Rac1) and activated Cdc42 (GTP-Cdc42). Our results suggest that FLNC expression is a useful biomarker of ESCC metastatic tendency and that inhibiting FLNC function may be useful to control the metastasis of ESCC. PMID:28031525

  19. Small-GTPase-Associated Signaling by the Guanine Nucleotide Exchange Factors CpDock180 and CpCdc24, the GTPase Effector CpSte20, and the Scaffold Protein CpBem1 in Claviceps purpurea

    PubMed Central

    Herrmann, Andrea; Tillmann, Britta A. M.; Schürmann, Janine; Bölker, Michael

    2014-01-01

    Monomeric GTPases of the Rho subfamily are important mediators of polar growth and NADPH (Nox) signaling in a variety of organisms. These pathways influence the ability of Claviceps purpurea to infect host plants. GTPase regulators contribute to the nucleotide loading cycle that is essential for proper functionality of the GTPases. Scaffold proteins gather GTPase complexes to facilitate proper function. The guanine nucleotide exchange factors (GEFs) CpCdc24 and CpDock180 activate GTPase signaling by triggering nucleotide exchange of the GTPases. Here we show that CpCdc24 harbors nucleotide exchange activity for both Rac and Cdc42 homologues. The GEFs partly share the cellular distribution of the GTPases and interact with the putative upstream GTPase CpRas1. Interaction studies show the formation of higher-order protein complexes, mediated by the scaffold protein CpBem1. Besides the GTPases and GEFs, these complexes also contain the GTPase effectors CpSte20 and CpCla4, as well as the regulatory protein CpNoxR. Functional characterizations suggest a role of CpCdc24 mainly in polarity, whereas CpDock180 is involved in stress tolerance mechanisms. These findings indicate the dynamic formation of small GTPase complexes and improve the model for GTPase-associated signaling in C. purpurea. PMID:24489041

  20. Reverse engineering GTPase programming languages with reconstituted signaling networks

    PubMed Central

    Coyle, Scott M.

    2016-01-01

    ABSTRACT The Ras superfamily GTPases represent one of the most prolific signaling currencies used in Eukaryotes. With these remarkable molecules, evolution has built GTPase networks that control diverse cellular processes such as growth, morphology, motility and trafficking.1-4 Our knowledge of the individual players that underlie the function of these networks is deep; decades of biochemical and structural data has provided a mechanistic understanding of the molecules that turn GTPases ON and OFF, as well as how those GTPase states signal by controlling the assembly of downstream effectors. However, we know less about how these different activities work together as a system to specify complex dynamic signaling outcomes. Decoding this molecular “programming language” would help us understand how different species and cell types have used the same GTPase machinery in different ways to accomplish different tasks, and would also provide new insights as to how mutations to these networks can cause disease. We recently developed a bead-based microscopy assay to watch reconstituted H-Ras signaling systems at work under arbitrary configurations of regulators and effectors.5 Here we highlight key observations and insights from this study and propose extensions to our method to further study this and other GTPase signaling systems. PMID:27128855

  1. Reverse engineering GTPase programming languages with reconstituted signaling networks.

    PubMed

    Coyle, Scott M

    2016-07-02

    The Ras superfamily GTPases represent one of the most prolific signaling currencies used in Eukaryotes. With these remarkable molecules, evolution has built GTPase networks that control diverse cellular processes such as growth, morphology, motility and trafficking. (1-4) Our knowledge of the individual players that underlie the function of these networks is deep; decades of biochemical and structural data has provided a mechanistic understanding of the molecules that turn GTPases ON and OFF, as well as how those GTPase states signal by controlling the assembly of downstream effectors. However, we know less about how these different activities work together as a system to specify complex dynamic signaling outcomes. Decoding this molecular "programming language" would help us understand how different species and cell types have used the same GTPase machinery in different ways to accomplish different tasks, and would also provide new insights as to how mutations to these networks can cause disease. We recently developed a bead-based microscopy assay to watch reconstituted H-Ras signaling systems at work under arbitrary configurations of regulators and effectors. (5) Here we highlight key observations and insights from this study and propose extensions to our method to further study this and other GTPase signaling systems.

  2. Rho GTPases, Statins, and Nitric Oxide

    PubMed Central

    Rikitake, Yoshiyuki; Liao, James K.

    2009-01-01

    The lipid-lowering drugs, 3-hydroxy-3-methylgulutaryl-coenzyme A (HMG-CoA) reductase inhibitors or statins, are used in the prevention and treatment of cardiovascular diseases. Recent experimental and clinical studies suggest that statins may exert vascular protective effects beyond cholesterol reduction. For example, statins improve endothelial function by cholesterol-dependent and -independent mechanisms. The cholesterol-independent or “pleiotropic” effects of statins include the upregulation and activation of endothelial NO synthase (eNOS). Because statins inhibit an early step in the cholesterol biosynthetic pathway, they also inhibit the synthesis of isoprenoids such as farnesylpyrophosphate and geranylgeranylpyrophosphate, which are important posttranslational lipid attachments for intracellular signaling molecules such as the Rho GTPases. Indeed, decrease in Rho GTPase responses as a consequence of statin treatment increases the production and bioavailability of endothelium-derived NO. The mechanism involves, in part, Rho/Rho-kinase (ROCK)-mediated changes in the actin cytoskeleton, which leads to decreases in eNOS mRNA stability. The regulation of eNOS by Rho GTPases, therefore, may be an important mechanism underlying the cardiovascular protective effect of statins. PMID:16339495

  3. Locking GTPases covalently in their functional states

    PubMed Central

    Wiegandt, David; Vieweg, Sophie; Hofmann, Frank; Koch, Daniel; Li, Fu; Wu, Yao-Wen; Itzen, Aymelt; Müller, Matthias P.; Goody, Roger S.

    2015-01-01

    GTPases act as key regulators of many cellular processes by switching between active (GTP-bound) and inactive (GDP-bound) states. In many cases, understanding their mode of action has been aided by artificially stabilizing one of these states either by designing mutant proteins or by complexation with non-hydrolysable GTP analogues. Because of inherent disadvantages in these approaches, we have developed acryl-bearing GTP and GDP derivatives that can be covalently linked with strategically placed cysteines within the GTPase of interest. Binding studies with GTPase-interacting proteins and X-ray crystallography analysis demonstrate that the molecular properties of the covalent GTPase–acryl–nucleotide adducts are a faithful reflection of those of the corresponding native states and are advantageously permanently locked in a defined nucleotide (that is active or inactive) state. In a first application, in vivo experiments using covalently locked Rab5 variants provide new insights into the mechanism of correct intracellular localization of Rab proteins. PMID:26178622

  4. [Rho GTPases as therapeutic targets in cancer and other human diseases].

    PubMed

    Lorenzano Menna, Pablo; Cardama, Georgina A; Comin, María J; Alonso, Daniel F; Gómez, Daniel E

    2010-01-01

    Rho GTPases are a key protein family controlling the transduction of external signals to cytoplasmatic and nuclear effectors. In the last few years, the development of genetic and pharmacological tools has allowed a more precise definition of the specific roles of Rho GTPases. The aim of this review is to describe the cellular functions regulated by these proteins with focus on the molecular mechanism involved. We also address the role of Rho GTPases in the development of different human diseases such as cancer. Finally, we describe different experimental therapeutic strategies with Rho GTPases as molecular targets.

  5. Guanine nucleotide exchange factors for RhoGTPases: good therapeutic targets for cancer therapy?

    PubMed

    Lazer, Galit; Katzav, Shulamit

    2011-06-01

    Rho guanosine triphosphatases (GTPases) are a family of small proteins which function as molecular switches in a variety of signaling pathways following stimulation of cell surface receptors. RhoGTPases regulate numerous cellular processes including cytoskeleton organization, gene transcription, cell proliferation, migration, growth and cell survival. Because of their central role in regulating processes that are dysregulated in cancer, it seems reasonable that defects in the RhoGTPase pathway may be involved in the development of cancer. RhoGTPase activity is regulated by a number of protein families: guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs) and guanine nucleotide-dissociation inhibitors (GDIs). This review discusses the participation of RhoGTPases and their regulators, especially GEFs in human cancers. In particular, we focus on the involvement of the RhoGTPase GEF, Vav1, a hematopoietic specific signal transducer which is involved in human neuroblastoma, pancreatic ductal carcinoma and lung cancer. Finally, we summarize recent advances in the design and application of a number of molecules that specifically target individual RhoGTPases or their regulators or effectors, and discuss their potential for cancer therapy.

  6. Microfluidic Gradients Reveal Enhanced Neurite Outgrowth but Impaired Guidance within 3D Matrices with High Integrin Ligand Densities

    PubMed Central

    Romano, Nicole H.; Lampe, Kyle J.; Xu, Hui; Ferreira, Meghaan M.

    2015-01-01

    The density of integrin-binding ligands in an extracellular matrix (ECM) is known to regulate cell migration speed by imposing a balance of traction forces between the leading and trailing edges of the cell, but the effect of cell-adhesive ligands on neurite chemoattraction is not well understood. We present a platform that combines gradient-generating microfluidic devices with three-dimensional (3D) protein-engineered hydrogels to study the effect of RGD ligand density on neurite pathfinding from chick dorsal root ganglia-derived spheroids. Spheroids are encapsulated in elastin-like polypeptide (ELP) hydrogels presenting either 3.2 or 1.6 mM RGD ligands and exposed to a microfluidic gradient of nerve growth factor (NGF). While the higher ligand density matrix enhanced neurite initiation and persistence of neurite outgrowth, the lower ligand density matrix significantly improved neurite pathfinding and increased the frequency of growth cone turning up the NGF gradient. The apparent trade-off between neurite extension and neurite guidance is reminiscent of the well-known parabolic relationship between cell adhesion and migration speed, implying that a similar matrix-mediated balance of forces regulate neurite elongation and growth cone turning. These results have implications in the design of engineered materials for in vitro models of neural tissue and in vivo nerve guidance channels. PMID:25315156

  7. Neurite outgrowth in cultured mouse pelvic ganglia - Effects of neurotrophins and bladder tissue.

    PubMed

    Ekman, Mari; Zhu, Baoyi; Swärd, Karl; Uvelius, Bengt

    2017-07-01

    Neurotrophic factors regulate survival and growth of neurons. The urinary bladder is innervated via both sympathetic and parasympathetic neurons located in the major pelvic ganglion. The aim of the present study was to characterize the effects of the neurotrophins nerve growth factor (NGF), brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3) on the sprouting rate of sympathetic and parasympathetic neurites from the female mouse ganglion. The pelvic ganglion was dissected out and attached to a petri dish and cultured in vitro. All three factors (BDNF, NT-3 and NGF) stimulated neurite outgrowth of both sympathetic and parasympathetic neurites although BDNF and NT-3 had a higher stimulatory effect on parasympathetic ganglion cells. The neurotrophin receptors TrkA, TrkB and TrkC were all expressed in neurons of the ganglia. Co-culture of ganglia with urinary bladder tissue, but not diaphragm tissue, increased the sprouting rate of neurites. Active forms of BDNF and NT-3 were detected in urinary bladder tissue using western blotting whereas tissue from the diaphragm expressed NGF. Neurite outgrowth from the pelvic ganglion was inhibited by a TrkB receptor antagonist. We therefore suggest that the urinary bladder releases trophic factors, including BDNF and NT-3, which regulate neurite outgrowth via activation of neuronal Trk-receptors. These findings could influence future strategies for developing pharmaceuticals to improve re-innervation due to bladder pathologies. Copyright © 2017. Published by Elsevier B.V.

  8. Mammalian Mon2/Ysl2 regulates endosome-to-Golgi trafficking but possesses no guanine nucleotide exchange activity toward Arl1 GTPase

    NASA Astrophysics Data System (ADS)

    Mahajan, Divyanshu; Boh, Boon Kim; Zhou, Yan; Chen, Li; Cornvik, Tobias Carl; Hong, Wanjin; Lu, Lei

    2013-11-01

    Arl1 is a member of Arf family small GTPases that is essential for the organization and function of Golgi complex. Mon2/Ysl2, which shares significant homology with Sec7 family Arf guanine nucleotide exchange factors, was poorly characterized in mammalian cells. Here, we report the first in depth characterization of mammalian Mon2. We found that Mon2 localized to trans-Golgi network which was dependent on both its N and C termini. The depletion of Mon2 did not affect the Golgi localized or cellular active form of Arl1. Furthermore, our in vitro assay demonstrated that recombinant Mon2 did not promote guanine nucleotide exchange of Arl1. Therefore, our results suggest that Mon2 could be neither necessary nor sufficient for the guanine nucleotide exchange of Arl1. We demonstrated that Mon2 was involved in endosome-to-Golgi trafficking as its depletion accelerated the delivery of furin and CI-M6PR to Golgi after endocytosis.

  9. Molecular characterization of CLPT1, a SEC4-like Rab/GTPase of the phytopathogenic fungus Colletotrichum lindemuthianum which is regulated by the carbon source.

    PubMed

    Dumas, B; Borel, C; Herbert, C; Maury, J; Jacquet, C; Balsse, R; Esquerré-Tugayé, M T

    2001-07-11

    The gene CLPT1 (Colletotrichum lindemuthianum Protein Transport 1) encoding a Rab/GTPase was isolated from the filamentous fungus Colletotrichum lindemuthianum, the causal agent of bean anthracnose. At the amino acid level, CLPT1 shows between 54 and 80% identity to SEC4-like proteins, a class of molecules required for intracellular vesicular transport in yeasts. In particular, typical SEC4 domains involved in nucleotide binding and membrane attachment are present in the CLPT1 sequence. Functional identity of CLPT1 with SEC4 was confirmed by complementation of the Saccharomyces cerevisiae sec4-8 mutation. This is the first report of a gene involved in the control of intracellular vesicular trafficking in a phytopathogenic fungus. RNA blot analyses of CLPT1 expression were performed during in vitro growth of the fungus on synthetic media containing glucose or pectin, as single carbon source. The accumulation of CLPT1 mRNA was strongly increased on pectin, a plant cell wall polysaccharide that induces the production of extracellular pectinases, whereas the level of CLPT1 mRNA was below the detection threshold on glucose. These results suggest that CLPT1 is mainly involved in protein secretion and that the production of extracellular enzymes potentially involved in pathogenesis in filamentous fungi is sustained by induction of the genes involved in the secretory machinery.

  10. A Barley ROP GTPase ACTIVATING PROTEIN Associates with Microtubules and Regulates Entry of the Barley Powdery Mildew Fungus into Leaf Epidermal Cells[C][W

    PubMed Central

    Hoefle, Caroline; Huesmann, Christina; Schultheiss, Holger; Börnke, Frederik; Hensel, Götz; Kumlehn, Jochen; Hückelhoven, Ralph

    2011-01-01

    Little is known about the function of host factors involved in disease susceptibility. The barley (Hordeum vulgare) ROP (RHO of plants) G-protein RACB is required for full susceptibility of the leaf epidermis to invasion by the biotrophic fungus Blumeria graminis f. sp hordei. Stable transgenic knockdown of RACB reduced the ability of barley to accommodate haustoria of B. graminis in intact epidermal leaf cells and to form hairs on the root epidermis, suggesting that RACB is a common element of root hair outgrowth and ingrowth of haustoria in leaf epidermal cells. We further identified a barley MICROTUBULE-ASSOCIATED ROP-GTPASE ACTIVATING PROTEIN (MAGAP1) interacting with RACB in yeast and in planta. Fluorescent MAGAP1 decorated cortical microtubules and was recruited by activated RACB to the cell periphery. Under fungal attack, MAGAP1-labeled microtubules built a polarized network at sites of successful defense. By contrast, microtubules loosened where the fungus succeeded in penetration. Genetic evidence suggests a function of MAGAP1 in limiting susceptibility to penetration by B. graminis. Additionally, MAGAP1 influenced the polar organization of cortical microtubules. These results add to our understanding of how intact plant cells accommodate fungal infection structures and suggest that RACB and MAGAP1 might be antagonistic players in cytoskeleton organization for fungal entry. PMID:21685259

  11. CdGAP/ARHGAP31, a Cdc42/Rac1 GTPase regulator, is critical for vascular development and VEGF-mediated angiogenesis

    PubMed Central

    Caron, Christine; DeGeer, Jonathan; Fournier, Patrick; Duquette, Philippe M.; Luangrath, Vilayphone; Ishii, Hidetaka; Karimzadeh, Fereshteh; Lamarche-Vane, Nathalie; Royal, Isabelle

    2016-01-01

    Mutations in the CdGAP/ARHGAP31 gene, which encodes a GTPase-activating protein for Rac1 and Cdc42, have been reported causative in the Adams-Oliver developmental syndrome often associated with vascular defects. However, despite its abundant expression in endothelial cells, CdGAP function in the vasculature remains unknown. Here, we show that vascular development is impaired in CdGAP-deficient mouse embryos at E15.5. This is associated with superficial vessel defects and subcutaneous edema, resulting in 44% embryonic/perinatal lethality. VEGF-driven angiogenesis is defective in CdGAP−/− mice, showing reduced capillary sprouting from aortic ring explants. Similarly, VEGF-dependent endothelial cell migration and capillary formation are inhibited upon CdGAP knockdown. Mechanistically, CdGAP associates with VEGF receptor-2 and controls VEGF-dependent signaling. Consequently, CdGAP depletion results in impaired VEGF-mediated Rac1 activation and reduced phosphorylation of critical intracellular mediators including Gab1, Akt, PLCγ and SHP2. These findings are the first to demonstrate the importance of CdGAP in embryonic vascular development and VEGF-induced signaling, and highlight CdGAP as a potential therapeutic target to treat pathological angiogenesis and vascular dysfunction. PMID:27270835

  12. Plexin B3 promotes neurite outgrowth, interacts homophilically, and interacts with Rin

    PubMed Central

    Hartwig, Christine; Veske, Andres; Krejcova, Sarka; Rosenberger, Georg; Finckh, Ulrich

    2005-01-01

    Background Plexins, known to date as receptors of semaphorins, are implicated in semaphorin-mediated axon repulsion and growth cone collapse. However, subtype-specific functions of the majority of the nine members of the mammalian plexin family are largely unknown. In order to investigate functional properties of B-plexins, we analyzed the expression of human and murine plexin B3 and expressed full-length human plexins B2 (B2) and B3 (B3) in NIH-3T3 cells. Results Unexpectedly, B3 strongly and B2 moderately stimulate neurite outgrowth of primary murine cerebellar neurons. Both plexins mediate Ca2+/Mg2+-dependent cell aggregation due to homophilic trans-interaction, which is strong in the case of B3 and moderate for B2. Using different deletion constructs we show that the sema domain of B3 is essential for homophilic interaction. Using yeast two-hybrid analysis, we identified the neuron-specific and calmodulin-binding Ras-related GTPase Rin as an interaction partner of the intracellular part of B3, but not of B2. Rin, also known for its neurite outgrowth-inducing characteristics, co-localizes and co-immunoprecipitates with B3 in co-transfected COS-7 cells. Conclusion Our data suggest an involvement of homophilic interaction of B3 in semaphorin-independent signaling mechanisms positively influencing neuronal morphogenesis or function. Furthermore the neuron-specific small GTPase Rin is involved in downstream signaling of plexin B3. PMID:16122393

  13. Vesicular trafficking through cortical actin during exocytosis is regulated by the Rab27a effector JFC1/Slp1 and the RhoA-GTPase-activating protein Gem-interacting protein.

    PubMed

    Johnson, Jennifer L; Monfregola, Jlenia; Napolitano, Gennaro; Kiosses, William B; Catz, Sergio D

    2012-05-01

    Cytoskeleton remodeling is important for the regulation of vesicular transport associated with exocytosis, but a direct association between granular secretory proteins and actin-remodeling molecules has not been shown, and this mechanism remains obscure. Using a proteomic approach, we identified the RhoA-GTPase-activating protein Gem-interacting protein (GMIP) as a factor that associates with the Rab27a effector JFC1 and modulates vesicular transport and exocytosis. GMIP down-regulation induced RhoA activation and actin polymerization. Importantly, GMIP-down-regulated cells showed impaired vesicular transport and exocytosis, while inhibition of the RhoA-signaling pathway induced actin depolymerization and facilitated exocytosis. We show that RhoA activity polarizes around JFC1-containing secretory granules, suggesting that it may control directionality of granule movement. Using quantitative live-cell microscopy, we show that JFC1-containing secretory organelles move in areas near the plasma membrane deprived of polymerized actin and that dynamic vesicles maintain an actin-free environment in their surroundings. Supporting a role for JFC1 in RhoA inactivation and actin remodeling during exocytosis, JFC1 knockout neutrophils showed increased RhoA activity, and azurophilic granules were unable to traverse cortical actin in cells lacking JFC1. We propose that during exocytosis, actin depolymerization commences near the secretory organelle, not the plasma membrane, and that secretory granules use a JFC1- and GMIP-dependent molecular mechanism to traverse cortical actin.

  14. “Spatial Mapping of the Neurite and Soma Proteomes Reveals a Functional Cdc42/Rac Regulatory Network”

    SciTech Connect

    Pertz, Olivier C.; Wang, Yingchun; Yang, Feng; Wang, Wei; gay, laurie J.; Gritsenko, Marina A.; Clauss, Therese RW; Anderson, David J.; Liu, Tao; Auberry, Kenneth J.; Camp, David G.; Smith, Richard D.; Klemke, Richard L.

    2008-02-12

    Neurite extension and growth cone navigation are guided by extracellular cues that control cytoskeletal rearrangements. However, understanding the complex signaling mechanisms that mediate neuritogenesis has been limited by the inability to biochemically separate the neurite and soma for spatial proteomic and bioinformatic analyses. Here, we apply global proteome profiling in combination with a novel neurite purification methodology for comparative analysis of the soma and neurite proteomes of neuroblastoma cells. The spatial relationship of 4855 proteins were mapped revealing networks of signaling proteins that control integrins, the actin cytoskeleton, and axonal guidance in the extending neurite. Bioinformatics and functional analyses revealed a spatially compartmentalized Rac/Cdc42 signaling network that operates in conjunction with multiple GEFs and GAPs to control neurite formation. Interestingly, RNA interference experiments revealed that the different GEFs and GAPs regulate specialized functions during neurite formation including neurite growth and retraction kinetics, cytoskeletal organization, and cell polarity. Our findings provide insight into the spatial organization of signaling networks that enable neuritogenesis and provide a comprehensive system-wide profile of proteins that mediate this process including those that control Rac and Cdc42 signaling.

  15. The Rab interacting lysosomal protein (RILP) homology domain functions as a novel effector domain for small GTPase Rab36: Rab36 regulates retrograde melanosome transport in melanocytes.

    PubMed

    Matsui, Takahide; Ohbayashi, Norihiko; Fukuda, Mitsunori

    2012-08-17

    Small GTPase Rab functions as a molecular switch that drives membrane trafficking through specific interaction with its effector molecule. Thus, identification of its specific effector domain is crucial to revealing the molecular mechanism that underlies Rab-mediated membrane trafficking. Because of the large numbers of Rab isoforms in higher eukaryotes, however, the effector domains of most of the vertebrate- or mammalian-specific Rabs have yet to be determined. In this study we screened for effector molecules of Rab36, a previously uncharacterized Rab isoform that is largely conserved in vertebrates, and we succeeded in identifying nine Rab36-binding proteins, including RILP (Rab interacting lysosomal protein) family members. Sequence comparison revealed that five of nine Rab36-binding proteins, i.e. RILP, RILP-L1, RILP-L2, and JIP3/4, contain a conserved coiled-coil domain. We identified the coiled-coil domain as a RILP homology domain (RHD) and characterized it as a common Rab36-binding site. Site-directed mutagenesis of the RHD of RILP revealed the different contributions by amino acids in the RHD to binding activity toward Rab7 and Rab36. Expression of RILP in melanocytes, but not expression of its Rab36 binding-deficient mutants, induced perinuclear aggregation of melanosomes, and this effect was clearly attenuated by knockdown of endogenous Rab36 protein. Moreover, knockdown of Rab36 in Rab27A-deficient melanocytes, which normally exhibit perinuclear melanosome aggregation because of increased retrograde melanosome transport activity, caused dispersion of melanosomes from the perinucleus to the cell periphery, but knockdown of Rab7 did not. Our findings indicated that Rab36 mediates retrograde melanosome transport in melanocytes through interaction with RILP.

  16. Design of Hyaluronic Acid Hydrogels to Promote Neurite Outgrowth in Three Dimensions.

    PubMed

    Tarus, Dominte; Hamard, Lauriane; Caraguel, Flavien; Wion, Didier; Szarpak-Jankowska, Anna; van der Sanden, Boudewijn; Auzély-Velty, Rachel

    2016-09-28

    A hyaluronic acid (HA)-based extracellular matrix (ECM) platform with independently tunable stiffness and density of cell-adhesive peptide (RGD, arginine-glycine-aspartic acid) that mimics key biochemical and mechanical features of brain matrix has been designed. We demonstrated here its utility in elucidating ECM regulation of neural progenitor cell behavior and neurite outgrowth. The analysis of neurite outgrowth in 3-D by two-photon microscopy showed several important results in the development of these hydrogels. First, the ability of neurites to extend deeply into these soft HA-based matrices even in the absence of cell-adhesive ligand further confirms the potential of HA hydrogels for central nervous system (CNS) regeneration. Second, the behavior of hippocampal neural progenitor cells differed markedly between the hydrogels with a storage modulus of 400 Pa and those with a modulus of 800 Pa. We observed an increased outgrowth and density of neurites in the softest hydrogels (G' = 400 Pa). Interestingly, cells seeded on the surface of the hydrogels functionalized with the RGD ligand experienced an optimum in neurite outgrowth as a function of ligand density. Surprinsingly, neurites preferentially progressed inside the gels in a vertical direction, suggesting that outgrowth is directed by the hydrogel structure. This work may provide design principles for the development of hydrogels to facilitate neuronal regeneration in the adult brain.

  17. Oxytocin Increases Neurite Length and Expression of Cytoskeletal Proteins Associated with Neuronal Growth.

    PubMed

    Lestanova, Z; Bacova, Z; Kiss, A; Havranek, T; Strbak, V; Bakos, J

    2016-06-01

    Neuropeptide oxytocin acts as a growth and differentiation factor; however, its effects on neurite growth are poorly understood. The aims of the present study were (1) to evaluate time effects of oxytocin on expression of nestin and MAP2; (2) to measure the effect of oxytocin on gene expression of β-actin, vimentin, cofilin, and drebrin; and (3) to measure changes in neurite length and number in response to oxytocin/oxytocin receptor antagonist L-371,257. Exposure of SH-SY5Y cells to 1 μM oxytocin resulted in a significant increase in gene expression and protein levels of nestin after 12, 24, and 48 h. Oxytocin treatment induced no changes in gene expression of MAP2; however, a decrease of protein levels was observed in all time intervals. Gene expression of β-actin, vimentin, and drebrin increased in response to oxytocin. Oxytocin induced significant elongation of neurites after 12, 24, and 48 h. No change in neurite length was observed in the presence of the combination of retinoic acid and oxytocin receptor antagonist L-371,257. Oxytocin treatment for 12 h increased the number of neurites. Overall, the present data suggest that oxytocin contributes to the regulation of expression of cytoskeletal proteins associated with growth of neuronal cones and induces neurite elongation mediated by oxytocin receptors at least in certain types of neuronal cells.

  18. Tension and compression in the cytoskeleton of PC-12 neurites. II: Quantitative measurements

    PubMed Central

    1988-01-01

    We assessed the mechanical properties of PC-12 neurites by applying a force with calibrated glass needles and measured resulting changes in neurite length and deflection of the needle. We observed a linear relationship between force and length change that was not affected by multiple distensions and were thus able to determine neurite spring constants and initial, nondistended, rest tensions. 81 out of 82 neurites showed positive rest tensions ranging over three orders of magnitude with most values clustering around 30-40 mu dynes. Treatment with cytochalasin D significantly reduced neurite rest tensions to an average compression equal to 14% of the former tension and spring constants to an average of 17% of resting values. Treatment with nocodazole increased neurite rest tensions to an average of 282% of resting values but produced no change in spring constant. These observations suggest a particular type of complementary force interaction underlying axonal shape; the neurite actin network under tension and neurite microtubules under compression. Thermodynamics suggests that microtubule (MT) assembly may be regulated by changes in compressive load. We tested this effect by releasing neurite attachment to a polylysine-coated surface with polyaspartate, thus shifting external compressive support onto internal elements, and measuring the relative change in MT polymerization using quantitative Western blotting. Neurons grown on polylysine or collagen without further treatment had a 1:2 ratio of soluble to polymerized tubulin. When neurites grown on polylysine were treated with 1% polyaspartate for 15- 30 min, 80% of neurites retracted, shifting the soluble: polymerized tubulin ratio to 1:1. Polyaspartate treatment of cells grown on collagen, or grown on polylysine but treated with cytochalasin to reduce tension, caused neither retraction nor a change in the soluble:polymerized tubulin ratio. We suggest that the release of adhesion to the dish shifted the compressive

  19. Stimulation of neuronal neurite outgrowth using functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Matsumoto, K.; Sato, C.; Naka, Y.; Whitby, R.; Shimizu, N.

    2010-03-01

    Low concentrations (0.11-1.7 µg ml - 1) of functionalized carbon nanotubes (CNTs), which are multi-walled CNTs modified by amino groups, when added with nerve growth factor (NGF), promoted outgrowth of neuronal neurites in dorsal root ganglion (DRG) neurons and rat pheochromocytoma cell line PC12h cells in culture media. The quantity of active extracellular signal-regulated kinase (ERK) was higher after the addition of both 0.85 µg ml - 1 CNTs and NGF than that with NGF alone. CNTs increased the number of cells with neurite outgrowth in DRG neurons and PC12h cells after the inhibition of the ERK signaling pathway using a mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) inhibitor. Active ERK proteins were detected in MEK inhibitor-treated neurons after the addition of CNTs to the culture medium. These results demonstrate that CNTs may stimulate neurite outgrowth by activation of the ERK signaling pathway. Thus, CNTs are biocompatible and are promising candidates for biological applications and devices.

  20. Oriented Schwann cell monolayers for directed neurite outgrowth.

    PubMed

    Thompson, Deanna M; Buettner, Helen M

    2004-08-01

    Schwann cells are an important component of the peripheral nervous system and participate in peripheral nerve regeneration. They create a supportive environment for neurite outgrowth by releasing trophic factors and up-regulating permissive molecules on their surface. In addition, Schwann cells are able to self-organize into linear arrays in vitro and in vivo, suggesting a possible role in neurite guidance. Previously, we showed that Schwann cell placement and orientation in subconfluent cultures can be controlled using microlithographically patterned laminin substrates (Thompson, D. M., and H. M. Buettner. Tissue Eng. 7(3):247-266, 2001). In the current study, these substrates were used to create oriented Schwann cell monolayers. Both Schwann cell orientation and coverage were quantified in response to seeding density, culture medium, and micropattern dimensions. In serum-free medium, increasing the seeding density yielded a linear increase in coverage of the substrate area but decreased cell alignment. In an alternate approach, Schwann cells were first seeded in serum-free medium at moderate seeding density, allowed to align, then expanded in serum-containing growth medium. This produced complete coverage without large seeding densities while preserving alignment to the micropattern. Alignment and coverage were unaffected by micropattern dimensions. This work provides a useful methodology for investigating Schwann cell guidance effects on growing neurites.

  1. cAMP-responsive Element-binding Protein (CREB) and cAMP Co-regulate Activator Protein 1 (AP1)-dependent Regeneration-associated Gene Expression and Neurite Growth*

    PubMed Central

    Ma, Thong C.; Barco, Angel; Ratan, Rajiv R.; Willis, Dianna E.

    2014-01-01

    To regenerate damaged axons, neurons must express a cassette of regeneration-associated genes (RAGs) that increases intrinsic growth capacity and confers resistance to extrinsic inhibitory cues. Here we show that dibutyrl-cAMP or forskolin combined with constitutive-active CREB are superior to either agent alone in driving neurite growth on permissive and inhibitory substrates. Of the RAGs examined, only arginase 1 (Arg1) expression correlated with the increased neurite growth induced by the cAMP/CREB combination, both of which were AP1-dependent. This suggests that cAMP-induced AP1 activity is necessary and interacts with CREB to drive expression of RAGs relevant for regeneration and demonstrates that combining a small molecule (cAMP) with an activated transcription factor (CREB) stimulates the gene expression necessary to enhance axonal regeneration. PMID:25296755

  2. Small GTPase Rho signaling is involved in {beta}1 integrin-mediated up-regulation of intercellular adhesion molecule 1 and receptor activator of nuclear factor {kappa}B ligand on osteoblasts and osteoclast maturation

    SciTech Connect

    Hirai, Fumihiko; Nakayamada, Shingo; Okada, Yosuke; Saito, Kazuyoshi; Kurose, Hitoshi; Mogami, Akira; Tanaka, Yoshiya . E-mail: tanaka@med.uoeh-u.ac.jp

    2007-04-27

    We assessed the characteristics of human osteoblasts, focusing on small GTPase Rho signaling. {beta}1 Integrin were highly expressed on osteoblasts. Engagement of {beta}1 integrins by type I collagen augmented expression of intercellular adhesion molecule 1 (ICAM-1) and receptor activator of nuclear factor {kappa}B ligand (RANKL) on osteoblasts. Rho was activated by {beta}1 stimulation in osteoblasts. {beta}1 Integrin-induced up-regulation of ICAM-1 and RANKL was inhibited by transfection with adenoviruses encoding C3 transferase or pretreated with Y-27632, specific Rho and Rho-kinase inhibitors. Engagement of {beta}1 integrin on osteoblasts induced formation of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells (MNC) in a coculture system of osteoblasts and peripheral monocytes, but this action was completely abrogated by transfection of C3 transferase. Our results indicate the direct involvement of Rho-mediated signaling in {beta}1 integrin-induced up-regulation of ICAM-1 and RANKL and RANKL-dependent osteoclast maturation. Thus, Rho-mediated signaling in osteoblasts seems to introduce major biases to bone resorption.

  3. Rabifier2: an improved bioinformatic classifier of Rab GTPases.

    PubMed

    Surkont, Jaroslaw; Diekmann, Yoan; Pereira-Leal, José B

    2016-10-22

    The Rab family of small GTPases regulates and provides specificity to the endomembrane trafficking system; each Rab subfamily is associated with specific pathways. Thus, characterization of Rab repertoires provides functional information about organisms and evolution of the eukaryotic cell. Yet, the complex structure of the Rab family limits the application of existing methods for protein classification. Here, we present a major redesign of the Rabifier, a bioinformatic pipeline for detection and classification of Rab GTPases. It is more accurate, significantly faster than the original version and is now open source, both the code and the data, allowing for community participation.

  4. IFN-inducible GTPases in host cell defense.

    PubMed

    Kim, Bae-Hoon; Shenoy, Avinash R; Kumar, Pradeep; Bradfield, Clinton J; MacMicking, John D

    2012-10-18

    From plants to humans, the ability to control infection at the level of an individual cell-a process termed cell-autonomous immunity-equates firmly with survival of the species. Recent work has begun to unravel this programmed cell-intrinsic response and the central roles played by IFN-inducible GTPases in defending the mammalian cell's interior against a diverse group of invading pathogens. These immune GTPases regulate vesicular traffic and protein complex assembly to stimulate oxidative, autophagic, membranolytic, and inflammasome-related antimicrobial activities within the cytosol, as well as on pathogen-containing vacuoles. Moreover, human genome-wide association studies and disease-related transcriptional profiling have linked mutations in the Immunity-Related GTPase M (IRGM) locus and altered expression of guanylate binding proteins (GBPs) with tuberculosis susceptibility and Crohn's colitis.

  5. Control of cell growth: Rag GTPases in activation of TORC1.

    PubMed

    Yang, Huirong; Gong, Rui; Xu, Yanhui

    2013-08-01

    The target of rapamycin (TOR) is a central regulator controlling cell growth. TOR is highly conserved from yeast to mammals, and is deregulated in human cancers and diabetes. TOR complex 1 (TORC1) integrates signals from growth factors, cellular energy status, stress, and amino acids to control cell growth, mitochondrial metabolism, and lipid biosynthesis. The mechanisms of growth factors and cellular energy status in regulating TORC1 have been well established, whereas the mechanism by which amino acid induces TORC1 remains largely unknown. Recent studies revealed that Rag GTPases play a central role in the regulation of TORC1 activation in response to amino acids. In this review, we will discuss the recent progress in our understanding of Rag GTPase-regulated TORC1 activation in response to amino acids. Particular focus will be given to the function of Rag GTPases in TORC1 activation and how Rag GTPases are regulated by amino acids.

  6. Thrombin enhances NGF-mediated neurite extension via increased and sustained activation of p44/42 MAPK and p38 MAPK.

    PubMed

    Mufti, Rania E; Sarker, Krishna; Jin, Yan; Fu, Songbin; Rosales, Jesusa L; Lee, Ki-Young

    2014-01-01

    Rapid neurite remodeling is fundamental to nervous system development and plasticity. It involves neurite extension that is regulated by NGF through PI3K/AKT, p44/42 MAPK and p38 MAPK. It also involves neurite retraction that is regulated by the serine protease, thrombin. However, the intracellular signaling pathway by which thrombin causes neurite retraction is unknown. Using the PC12 neuronal cell model, we demonstrate that thrombin utilizes the PI3K/AKT pathway for neurite retraction in NGF-differentiated cells. Interestingly, however, we found that thrombin enhances NGF-induced neurite extension in differentiating cells. This is achieved through increased and sustained activation of p44/42 MAPK and p38 MAPK. Thus, thrombin elicits opposing effects in differentiated and differentiating cells through activation of distinct signaling pathways: neurite retraction in differentiated cells via PI3K/AKT, and neurite extension in differentiating cells via p44/42 MAPK and p38 MAPK. These findings, which also point to a novel cooperative role between thrombin and NGF, have significant implications in the development of the nervous system and the disease processes that afflicts it as well as in the potential of combined thrombin and NGF therapy for impaired learning and memory, and spinal cord injury which all require neurite extension and remodeling.

  7. Differential intensity-dependent effects of magnetic stimulation on the longest neurites and shorter dendrites in neuroscreen-1 cells

    NASA Astrophysics Data System (ADS)

    Lin, Ching-Yi; Huang, Whitney J.; Li, Kevin; Swanson, Roy; Cheung, Brian; Lin, Vernon W.; Lee, Yu-Shang

    2015-04-01

    Objective. Magnetic stimulation (MS) is a potential treatment for neuropsychiatric disorders. This study investigates whether MS-regulated neuronal activity can translate to specific changes in neuronal arborization and thus regulate synaptic activity and function. Approach. To test our hypotheses, we examined the effects of MS on neurite growth of neuroscreen-1 (NS-1) cells over the pulse frequencies of 1, 5 and 10 Hz at field intensities controlled via machine output (MO). Cells were treated with either 30% or 40% MO. Due to the nature of circular MS coils, the center region of the gridded coverslip (zone 1) received minimal (∼5%) electromagnetic current density while the remaining area (zone 2) received maximal (∼95%) current density. Plated NS-1 cells were exposed to MS twice per day for three days and then evaluated for length and number of neurites and expression of brain-derived neurotrophic factor (BDNF). Main results. We show that MS dramatically affects the growth of the longest neurites (axon-like) but does not significantly affect the growth of shorter neurites (dendrite-like). Also, MS-induced changes in the longest neurite growth were most evident in zone 1, but not in zone 2. MS effects were intensity-dependent and were most evident in bolstering longest neurite outgrowth, best seen in the 10 Hz MS group. Furthermore, we found that MS-increased BDNF expression and secretion was also frequency-dependent. Taken together, our results show that MS exerts distinct effects when different frequencies and intensities are applied to the neuritic compartments (longest neurite versus shorter dendrite(s)) of NS-1 cells. Significance. These findings support the concept that MS increases BDNF expression and signaling, which sculpts longest neurite arborization and connectivity by which neuronal activity is regulated. Understanding the mechanisms underlying MS is crucial for efficiently incorporating its use into potential therapeutic strategies.

  8. Olfactory ensheathing cell-neurite alignment enhances neurite outgrowth in scar-like cultures

    PubMed Central

    Khankan, Rana R.; Wanner, Ina B.; Phelps, Patricia E.

    2015-01-01

    The regenerative capacity of the adult CNS neurons after injury is strongly inhibited by the spinal cord lesion site environment that is composed primarily of the reactive astroglial scar and invading meningeal fibroblasts. Olfactory ensheathing cell (OEC) transplantation facilitates neuronal survival and functional recovery after a complete spinal cord transection, yet the mechanisms by which this recovery occurs remain unclear. We used a unique multicellular scar-like culture model to test if OECs promote neurite outgrowth in growth inhibitory areas. Astrocytes were mechanically injured and challenged by meningeal fibroblasts to produce key inhibitory elements of a spinal cord lesion. Neurite outgrowth of postnatal cerebral cortical neurons was assessed on three substrates: quiescent astrocyte control cultures, reactive astrocyte scar-like cultures, and scar-like cultures with OECs. Initial results showed that OECs enhanced total neurite outgrowth of cortical neurons in a scar-like environment by 60%. We then asked if the neurite growth-promoting properties of OECs depended on direct alignment between neuronal and OEC processes. Neurites that aligned with OECs were nearly three times longer when they grew on inhibitory meningeal fibroblast areas and twice as long on reactive astrocyte zones compared to neurites not associated with OECs. Our results show that OECs can independently enhance neurite elongation and that direct OEC-neurite cell contact can provide a permissive substrate that overcomes the inhibitory nature of the reactive astrocyte scar border and the fibroblast-rich spinal cord lesion core. PMID:25863021

  9. Isoprenoids, small GTPases and Alzheimer's disease.

    PubMed

    Hooff, Gero P; Wood, W Gibson; Müller, Walter E; Eckert, Gunter P

    2010-08-01

    The mevalonate pathway is a crucial metabolic pathway for most eukaryotic cells. Cholesterol is a highly recognized product of this pathway but growing interest is being given to the synthesis and functions of isoprenoids. Isoprenoids are a complex class of biologically active lipids including for example, dolichol, ubiquinone, farnesylpyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). Early work had shown that the long-chain isoprenoid dolichol is decreased but that dolichyl phosphate and ubiquinone are elevated in brains of Alzheimer's disease (AD) patients. Until recently, levels of their biological active precursors FPP and GGPP were unknown. These short-chain isoprenoids are critical in the post-translational modification of certain proteins which function as molecular switches in numerous signaling pathways. The major protein families belong to the superfamily of small GTPases, consisting of roughly 150 members. Recent experimental evidence indicated that members of the small GTPases are involved in AD pathogenesis and stimulated interest in the role of FPP and GGPP in protein prenylation and cell function. A straightforward prediction derived from those studies was that FPP and GGPP levels would be elevated in AD brains as compared with normal neurological controls. For the first time, recent evidence shows significantly elevated levels of FPP and GGPP in human AD brain tissue. Cholesterol levels did not differ between AD and control samples. One obvious conclusion is that homeostasis of FPP and GGPP but not of cholesterol is specifically targeted in AD. Since prenylation of small GTPases by FPP or GGPP is indispensable for their proper function we are proposing that these two isoprenoids are up-regulated in AD resulting in an over abundance of certain prenylated proteins which contributes to neuronal dysfunction. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Epithelial junctions and Rho family GTPases: the zonular signalosome

    PubMed Central

    Citi, Sandra; Guerrera, Diego; Spadaro, Domenica; Shah, Jimit

    2014-01-01

    The establishment and maintenance of epithelial cell-cell junctions is crucially important to regulate adhesion, apico-basal polarity and motility of epithelial cells, and ultimately controls the architecture and physiology of epithelial organs. Junctions are supported, shaped and regulated by cytoskeletal filaments, whose dynamic organization and contractility are finely tuned by GTPases of the Rho family, primarily RhoA, Rac1 and Cdc42. Recent research has identified new molecular mechanisms underlying the cross-talk between these GTPases and epithelial junctions. Here we briefly summarize the current knowledge about the organization, molecular evolution and cytoskeletal anchoring of cell-cell junctions, and we comment on the most recent advances in the characterization of the interactions between Rho GTPases and junctional proteins, and their consequences with regards to junction assembly and regulation of cell behavior in vertebrate model systems. The concept of “zonular signalosome” is proposed, which highlights the close functional relationship between proteins of zonular junctions (zonulae occludentes and adhaerentes) and the control of cytoskeletal organization and signaling through Rho GTPases, transcription factors, and their effectors. PMID:25483301

  11. High Throughput Flow Cytometry Bead-based Multiplex Assay for Identification of Rho GTPase Inhibitors

    PubMed Central

    Surviladze, Zurab; Young, Susan M; Sklar, Larry A

    2015-01-01

    Summary Rho family GTPases and their effector proteins regulate a wide range of cell signaling pathways. In normal physiological conditions their activity is tightly controlled and it is not surprising that their aberrant activation contributes to tumorigenesis or other diseases. For this reason, the identification of small, cell permeable molecules capable of inhibition of Rho GTPases can be extraordinarily useful, particularly if they are specific and act reversibly. Herein we describe a flow cytometric assay, which allows us to measure the activity of six small GTPases simultaneously. GST-tagged small GTPases are bound to six glutathione bead sets each set having a different intensity of red fluorescence at a fixed wavelength. The coated bead sets were washed, combined, and dispensed into 384-well plates with test compounds, and fluorescent-GTP binding was used as the read-out. This multiplex bead-based assay was successfully used for to identify both general and selective inhibitors of Rho family GTPases. PMID:22144280

  12. The unc-53 gene negatively regulates rac GTPases to inhibit unc-5 activity during Distal tip cell migrations in C. elegans.

    PubMed

    Pandey, Amita; Yadav, Vipul; Sharma, Aditi; Khurana, Jitendra P; Pandey, Girdhar K

    2017-07-05

    The unc-53/NAV2 gene encodes for an adaptor protein required for cell migrations along the anteroposterior (AP) axes of C. elegans. This study identifies unc-53 as a novel component of signaling pathways regulating distal tip cell (DTC) migrations along the AP and dorsoventral (DV) axes. unc-53 negatively regulates and functions downstream of ced-10/Rac pathway genes; ced-10/Rac and mig-2/RhoG, which are required for proper DTC migration. Moreover, unc-53 exhibits genetic interaction with abl-1 and unc-5, the two known negative regulators of ced-10/Rac signaling. Our genetic analysis supports the model, where abl-1 negatively regulates unc-53 during DTC migrations and requirement of unc-53 function during both AP and DV DTC migrations could be due to unc-53 mediated regulation of unc-5 activity.

  13. ADP-ribosylation factor-like GTPase 15 enhances insulin-induced AKT phosphorylation in the IR/IRS1/AKT pathway by interacting with ASAP2 and regulating PDPK1 activity.

    PubMed

    Zhao, Jie; Wang, Min; Deng, Wuquan; Zhong, Daping; Jiang, Youzhao; Liao, Yong; Chen, Bing; Zhang, Xiaoli

    2017-05-13

    Decreased phosphorylation in the insulin signalling pathway is a hallmark of insulin resistance. The causes of this phenomenon are complicated and multifactorial. Recently, genomic analyses have identified ARL15 as a new candidate gene related to diabetes. However, the ARL15 protein function remains unclear. Here, we show that ARL15 is upregulated by insulin stimulation. This effect was impaired in insulin-resistant pathophysiology in TNF-α-treated C2C12 myotubes and in the skeletal muscles of leptin knockout mice. In addition, ARL15 localized to the cytoplasm in the resting state and accumulated in the Golgi apparatus around the nucleus upon insulin stimulation. ARL15 overexpression can enhance the phosphorylation of the key insulin signalling pathway molecules IR, IRS1 and AKT in C2C12 myotubes. Moreover, ARL15 knockdown can also specifically inhibit the phosphorylation of PDPK1 Ser241, thereby reducing PDPK1 activity and its downstream phosphorylation of AKT Thr308. Co-immunoprecipitation assays identified ASAP2 as an ARL15-interacting protein. In conclusion, we have identified that ARL15 acts as an insulin-sensitizing effector molecule to upregulate the phosphorylation of members of the canonical IR/IRS1/PDPK1/AKT insulin pathway by interacting with its GAP ASAP2 and activating PDPK1. This research may provide new insights into GTPase-mediated insulin signalling regulation and facilitate the development of new pharmacotherapeutic targets for insulin sensitization. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Role of GTPases in bacterial ribosome assembly.

    PubMed

    Britton, Robert A

    2009-01-01

    The assembly of the ribosome, a complex molecular machine composed of RNA and protein, is a poorly understood process. Recent work has demonstrated that GTPases are likely to play key roles in the assembly of ribosomes in bacteria and eukaryotes. This review highlights several bacterial ribosome assembly GTPases (RA-GTPases) and discusses possible functions for these proteins in the biogenesis of individual ribosomal subunits and subunit joining. RA-GTPases appear to link various aspects of the cell cycle and metabolism with translation. How these RA-GTPases may coordinate these connections are discussed.

  15. Immunosuppressant FK506 promotes neurite outgrowth in cultures of PC12 cells and sensory ganglia.

    PubMed

    Lyons, W E; George, E B; Dawson, T M; Steiner, J P; Snyder, S H

    1994-04-12

    The immunosuppressant drug FK506 acts by binding to receptor proteins, FK506-binding proteins (FKBPs), which in turn can bind to and regulate a Ca(2+)-dependent phosphatase, calcineurin, and a Ca2+ release channel, the ryanodine receptor. Based on our findings in regeneration models that levels of FKBPs during neural regeneration parallel those of growth-associated protein GAP43, a calcineurin substrate that regulates neurite extension, we examined effects of FK506 in PC12 rat pheochromocytoma cells and in rat sensory ganglia. FK506 enhances neurite outgrowth in both systems by increasing sensitivity to nerve growth factor. Blockade of FK506 actions in sensory ganglia by rapamycin, an FK506 antagonist, establishes that these effects involve FKBPs. Rapamycin itself stimulates neurite outgrowth in PC12 cells. These drug effects are detected at subnanomolar concentrations, suggesting therapeutic application in diseases involving neural degeneration.

  16. The small GTPase RALA controls c-Jun N-terminal kinase-mediated FOXO activation by regulation of a JIP1 scaffold complex.

    PubMed

    van den Berg, Maaike C W; van Gogh, Inkie J A; Smits, Alida M M; van Triest, Miranda; Dansen, Tobias B; Visscher, Marieke; Polderman, Paulien E; Vliem, Marjolein J; Rehmann, Holger; Burgering, Boudewijn M T

    2013-07-26

    FOXO (forkhead box O) transcription factors are tumor suppressors and increase the life spans of model organisms. Cellular stress, in particular oxidative stress caused by an increase in levels of reactive oxygen species (ROS), activates FOXOs through JNK-mediated phosphorylation. Importantly, JNK regulation of FOXO is evolutionarily conserved. Here we identified the pathway that mediates ROS-induced JNK-dependent FOXO regulation. Following increased ROS, RALA is activated by the exchange factor RLF (RalGDS-like factor), which is in complex with JIP1 (C-Jun-amino-terminal-interacting protein 1) and JNK. Active RALA consequently regulates assembly and activation of MLK3, MKK4, and JNK onto the JIP1 scaffold. Furthermore, regulation of FOXO by RALA and JIP1 is conserved in C. elegans, where both ral-1 and jip-1 depletion impairs heat shock-induced nuclear translocation of the FOXO orthologue DAF16.

  17. The Small GTPase RALA Controls c-Jun N-terminal Kinase-mediated FOXO Activation by Regulation of a JIP1 Scaffold Complex*

    PubMed Central

    van den Berg, Maaike C. W.; van Gogh, Inkie J. A.; Smits, Alida M. M.; van Triest, Miranda; Dansen, Tobias B.; Visscher, Marieke; Polderman, Paulien E.; Vliem, Marjolein J.; Rehmann, Holger; Burgering, Boudewijn M. T.

    2013-01-01

    FOXO (forkhead box O) transcription factors are tumor suppressors and increase the life spans of model organisms. Cellular stress, in particular oxidative stress caused by an increase in levels of reactive oxygen species (ROS), activates FOXOs through JNK-mediated phosphorylation. Importantly, JNK regulation of FOXO is evolutionarily conserved. Here we identified the pathway that mediates ROS-induced JNK-dependent FOXO regulation. Following increased ROS, RALA is activated by the exchange factor RLF (RalGDS-like factor), which is in complex with JIP1 (C-Jun-amino-terminal-interacting protein 1) and JNK. Active RALA consequently regulates assembly and activation of MLK3, MKK4, and JNK onto the JIP1 scaffold. Furthermore, regulation of FOXO by RALA and JIP1 is conserved in C. elegans, where both ral-1 and jip-1 depletion impairs heat shock-induced nuclear translocation of the FOXO orthologue DAF16. PMID:23770673

  18. DA-9801 promotes neurite outgrowth via ERK1/2-CREB pathway in PC12 cells.

    PubMed

    Won, Jong Hoon; Ahn, Kyong Hoon; Back, Moon Jung; Ha, Hae Chan; Jang, Ji Min; Kim, Ha Hyung; Choi, Sang-Zin; Son, Miwon; Kim, Dae Kyong

    2015-01-01

    In the present study, we examined the mechanisms underlying the effect of DA-9801 on neurite outgrowth. We found that DA-9801 elicits its effects via the mitogen-activated protein kinase (MEK) extracellular signal-regulated kinase (ERK)1/2-cAMP response element-binding protein (CREB) pathway. DA-9801, an extract from a mixture of Dioscorea japonica and Dioscorea nipponica, was reported to promote neurite outgrowth in PC12 cells. The effects of DA-9801 on cell viability and expression of neuronal markers were evaluated in PC12 cells. To investigate DA-9801 action, specific inhibitors targeting the ERK signaling cascade were used. No cytotoxicity was observed in PC12 cells at DA-9801 concentrations of less than 30 µg/mL. In the presence of nerve growth factor (NGF, 2 ng/mL), DA-9801 promoted neurite outgrowth and increased the relative mRNA levels of neurofilament-L (NF-L), a marker of neuronal differentiation. The Raf-1 inhibitor GW5074 and MEK inhibitor PD98059 significantly attenuated DA-9801-induced neurite outgrowth. Additionally, the MEK1 and MEK2 inhibitor SL327 significantly attenuated the increase in the percentage of neurite-bearing PC12 cells induced by DA-9801 treatment. Conversely, the selective p38 mitogen-activated protein kinase inhibitor SB203580 did not attenuate the DA-9801 treatment-induced increase in the percentage of neurite-bearing PC12 cells. DA-9801 enhanced the phosphorylation of ERK1/2 and CREB in PC12 cells incubated with and without NGF. Pretreatment with PD98059 blocked the DA-9801-induced phosphorylation of ERK1/2 and CREB. In conclusion, DA-9801 induces neurite outgrowth by affecting the ERK1/2-CREB signaling pathway. Insights into the mechanism underlying this effect of DA-9801 may suggest novel potential strategies for the treatment of peripheral neuropathy.

  19. Control of T lymphocyte morphology by the GTPase Rho

    NASA Technical Reports Server (NTRS)

    Woodside, Darren G.; Wooten, David K.; Teague, T. Kent; Miyamoto, Yuko J.; Caudell, Eva G.; Udagawa, Taturo; Andruss, Bernard F.; McIntyre, Bradley W.

    2003-01-01

    BACKGROUND: Rho family GTPase regulation of the actin cytoskeleton governs a variety of cell responses. In this report, we have analyzed the role of the GTPase Rho in maintenance of the T lymphocyte actin cytoskeleton. RESULTS: Inactivation of the GTPase Rho in the human T lymphocytic cell line HPB-ALL does not inhibit constitutively high adhesion to the integrin beta1 substrate fibronectin. It did however result in the aberrant extension of finger-like dendritic processes on the substrates VCAM-1, Fn, and mAb specific to beta1 integrins. Time-lapse video microscopy demonstrated that C3 induced extensions were primarily the result of an altered pseudopod elongation rather than retraction. Once the stellate pseudopodia extended, none retracted, and cells became completely immobile. Filipodial structures were absent and the dendritic-like processes in C3 treated cells were rich in filamentous actin. Immunolocalization of RhoA in untreated HPB-ALL cells spreading on fibronectin demonstrated a diffuse staining pattern within the pseudopodia. In C3 treated cells, clusters of RhoA were pronounced and localized within the altered extensions. CONCLUSIONS: GTPase Rho is actively involved in the regulation of T lymphocyte morphology and motility.

  20. MIRO GTPases in Mitochondrial Transport, Homeostasis and Pathology

    PubMed Central

    Tang, Bor Luen

    2015-01-01

    The evolutionarily-conserved mitochondrial Rho (MIRO) small GTPase is a Ras superfamily member with three unique features. It has two GTPase domains instead of the one found in other small GTPases, and it also has two EF hand calcium binding domains, which allow Ca2+-dependent modulation of its activity and functions. Importantly, it is specifically associated with the mitochondria and via a hydrophobic transmembrane domain, rather than a lipid-based anchor more commonly found in other small GTPases. At the mitochondria, MIRO regulates mitochondrial homeostasis and turnover. In metazoans, MIRO regulates mitochondrial transport and organization at cellular extensions, such as axons, and, in some cases, intercellular transport of the organelle through tunneling nanotubes. Recent findings have revealed a myriad of molecules that are associated with MIRO, particularly the kinesin adaptor Milton/TRAK, mitofusin, PINK1 and Parkin, as well as the endoplasmic reticulum-mitochondria encounter structure (ERMES) complex. The mechanistic aspects of the roles of MIRO and its interactors in mitochondrial homeostasis and transport are gradually being revealed. On the other hand, MIRO is also increasingly associated with neurodegenerative diseases that have roots in mitochondrial dysfunction. In this review, I discuss what is currently known about the cellular physiology and pathophysiology of MIRO functions. PMID:26729171

  1. The interdependence of the Rho GTPases and apicobasal cell polarity

    PubMed Central

    Mack, Natalie Ann; Georgiou, Marios

    2014-01-01

    Signaling via the Rho GTPases provides crucial regulation of numerous cell polarization events, including apicobasal (AB) polarity, polarized cell migration, polarized cell division and neuronal polarity. Here we review the relationships between the Rho family GTPases and epithelial AB polarization events, focusing on the 3 best-characterized members: Rho, Rac and Cdc42. We discuss a multitude of processes that are important for AB polarization, including lumen formation, apical membrane specification, cell-cell junction assembly and maintenance, as well as tissue polarity. Our discussions aim to highlight the immensely complex regulatory mechanisms that encompass Rho GTPase signaling during AB polarization. More specifically, in this review we discuss several emerging common themes, that include: 1) the need for Rho GTPase activities to be carefully balanced in both a spatial and temporal manner through a multitude of mechanisms; 2) the existence of signaling feedback loops and crosstalk to create robust cellular responses; and 3) the frequent multifunctionality that exists among AB polarity regulators. Regarding this latter theme, we provide further discussion of the potential plasticity of the cell polarity machinery and as a result the possible implications for human disease. PMID:25469537

  2. Control of T lymphocyte morphology by the GTPase Rho

    NASA Technical Reports Server (NTRS)

    Woodside, Darren G.; Wooten, David K.; Teague, T. Kent; Miyamoto, Yuko J.; Caudell, Eva G.; Udagawa, Taturo; Andruss, Bernard F.; McIntyre, Bradley W.

    2003-01-01

    BACKGROUND: Rho family GTPase regulation of the actin cytoskeleton governs a variety of cell responses. In this report, we have analyzed the role of the GTPase Rho in maintenance of the T lymphocyte actin cytoskeleton. RESULTS: Inactivation of the GTPase Rho in the human T lymphocytic cell line HPB-ALL does not inhibit constitutively high adhesion to the integrin beta1 substrate fibronectin. It did however result in the aberrant extension of finger-like dendritic processes on the substrates VCAM-1, Fn, and mAb specific to beta1 integrins. Time-lapse video microscopy demonstrated that C3 induced extensions were primarily the result of an altered pseudopod elongation rather than retraction. Once the stellate pseudopodia extended, none retracted, and cells became completely immobile. Filipodial structures were absent and the dendritic-like processes in C3 treated cells were rich in filamentous actin. Immunolocalization of RhoA in untreated HPB-ALL cells spreading on fibronectin demonstrated a diffuse staining pattern within the pseudopodia. In C3 treated cells, clusters of RhoA were pronounced and localized within the altered extensions. CONCLUSIONS: GTPase Rho is actively involved in the regulation of T lymphocyte morphology and motility.

  3. Peripheral Nerve Demyelination Caused by a Mutant Rho GTPase Guanine Nucleotide Exchange Factor, Frabin/FGD4

    PubMed Central

    Stendel, Claudia ; Roos, Andreas ; Deconinck, Tine ; Pereira, Jorge ; Castagner, François ; Niemann, Axel ; Kirschner, Janbernd ; Korinthenberg, Rudolf ; Ketelsen, Uwe-Peter ; Battaloglu, Esra ; Parman, Yesim ; Nicholson, Garth ; Ouvrier, Robert ; Seeger, Jürgen ; Jonghe, Peter De ; Weis, Joachim ; Krüttgen, Alexander ; Rudnik-Schöneborn, Sabine ; Bergmann, Carsten ; Suter, Ueli ; Zerres, Klaus ; Timmerman, Vincent ; Relvas, João B. ; Senderek, Jan 

    2007-01-01

    GTPases of the Rho subfamily are widely involved in the myelination of the vertebrate nervous system. Rho GTPase activity is temporally and spatially regulated by a set of specific guanine nucleotide exchange factors (GEFs). Here, we report that disruption of frabin/FGD4, a GEF for the Rho GTPase cell-division cycle 42 (Cdc42), causes peripheral nerve demyelination in patients with autosomal recessive Charcot-Marie-Tooth (CMT) neuropathy. These data, together with the ability of frabin to induce Cdc42-mediated cell-shape changes in transfected Schwann cells, suggest that Rho GTPase signaling is essential for proper myelination of the peripheral nervous system. PMID:17564972

  4. Peripheral nerve demyelination caused by a mutant Rho GTPase guanine nucleotide exchange factor, frabin/FGD4.

    PubMed

    Stendel, Claudia; Roos, Andreas; Deconinck, Tine; Pereira, Jorge; Castagner, Francois; Niemann, Axel; Kirschner, Janbernd; Korinthenberg, Rudolf; Ketelsen, Uwe-Peter; Battaloglu, Esra; Parman, Yesim; Nicholson, Garth; Ouvrier, Robert; Seeger, Jürgen; De Jonghe, Peter; Weis, Joachim; Krüttgen, Alexander; Rudnik-Schöneborn, Sabine; Bergmann, Carsten; Suter, Ueli; Zerres, Klaus; Timmerman, Vincent; Relvas, João B; Senderek, Jan

    2007-07-01

    GTPases of the Rho subfamily are widely involved in the myelination of the vertebrate nervous system. Rho GTPase activity is temporally and spatially regulated by a set of specific guanine nucleotide exchange factors (GEFs). Here, we report that disruption of frabin/FGD4, a GEF for the Rho GTPase cell-division cycle 42 (Cdc42), causes peripheral nerve demyelination in patients with autosomal recessive Charcot-Marie-Tooth (CMT) neuropathy. These data, together with the ability of frabin to induce Cdc42-mediated cell-shape changes in transfected Schwann cells, suggest that Rho GTPase signaling is essential for proper myelination of the peripheral nervous system.

  5. A functional interplay between the small GTPase Rab11a and mitochondria-shaping proteins regulates mitochondrial positioning and polarization of the actin cytoskeleton downstream of Src family kinases.

    PubMed

    Landry, Marie-Claude; Champagne, Claudia; Boulanger, Marie-Chloé; Jetté, Alexandra; Fuchs, Margit; Dziengelewski, Claire; Lavoie, Josée N

    2014-01-24

    It is believed that mitochondrial dynamics is coordinated with endosomal traffic rates during cytoskeletal remodeling, but the mechanisms involved are largely unknown. The adenovirus early region 4 ORF4 protein (E4orf4) subverts signaling by Src family kinases (SFK) to perturb cellular morphology, membrane traffic, and organellar dynamics and to trigger cell death. Using E4orf4 as a model, we uncovered a functional connection between mitochondria-shaping proteins and the small GTPase Rab11a, a key regulator of polarized transport via recycling endosomes. We found that E4orf4 induced dramatic changes in the morphology of mitochondria along with their mobilization at the vicinity of a polarized actin network typifying E4orf4 action, in a manner controlled by SFK and Rab11a. Mitochondrial remodeling was associated with increased proximity between Rab11a and mitochondrial membranes, changes in fusion-fission dynamics, and mitochondrial relocalization of the fission factor dynamin-related protein 1 (Drp1), which was regulated by the Rab11a effector protein FIP1/RCP. Knockdown of FIP1/RCP or inhibition of Drp1 markedly impaired mitochondrial remodeling and actin assembly, involving Rab11a-mediated mitochondrial dynamics in E4orf4-induced signaling. A similar mobilization of mitochondria near actin-rich structures was mediated by Rab11 and Drp1 in viral Src-transformed cells and contributed to the biogenesis of podosome rosettes. These findings suggest a role for Rab11a in the trafficking of Drp1 to mitochondria upon SFK activation and unravel a novel functional interplay between Rab11a and mitochondria during reshaping of the cell cytoskeleton, which would facilitate mitochondria redistribution near energy-requiring actin-rich structures.

  6. A Functional Interplay between the Small GTPase Rab11a and Mitochondria-shaping Proteins Regulates Mitochondrial Positioning and Polarization of the Actin Cytoskeleton Downstream of Src Family Kinases*

    PubMed Central

    Landry, Marie-Claude; Champagne, Claudia; Boulanger, Marie-Chloé; Jetté, Alexandra; Fuchs, Margit; Dziengelewski, Claire; Lavoie, Josée N.

    2014-01-01

    It is believed that mitochondrial dynamics is coordinated with endosomal traffic rates during cytoskeletal remodeling, but the mechanisms involved are largely unknown. The adenovirus early region 4 ORF4 protein (E4orf4) subverts signaling by Src family kinases (SFK) to perturb cellular morphology, membrane traffic, and organellar dynamics and to trigger cell death. Using E4orf4 as a model, we uncovered a functional connection between mitochondria-shaping proteins and the small GTPase Rab11a, a key regulator of polarized transport via recycling endosomes. We found that E4orf4 induced dramatic changes in the morphology of mitochondria along with their mobilization at the vicinity of a polarized actin network typifying E4orf4 action, in a manner controlled by SFK and Rab11a. Mitochondrial remodeling was associated with increased proximity between Rab11a and mitochondrial membranes, changes in fusion-fission dynamics, and mitochondrial relocalization of the fission factor dynamin-related protein 1 (Drp1), which was regulated by the Rab11a effector protein FIP1/RCP. Knockdown of FIP1/RCP or inhibition of Drp1 markedly impaired mitochondrial remodeling and actin assembly, involving Rab11a-mediated mitochondrial dynamics in E4orf4-induced signaling. A similar mobilization of mitochondria near actin-rich structures was mediated by Rab11 and Drp1 in viral Src-transformed cells and contributed to the biogenesis of podosome rosettes. These findings suggest a role for Rab11a in the trafficking of Drp1 to mitochondria upon SFK activation and unravel a novel functional interplay between Rab11a and mitochondria during reshaping of the cell cytoskeleton, which would facilitate mitochondria redistribution near energy-requiring actin-rich structures. PMID:24302731

  7. Pure neuritic leprosy: Current status and relevance.

    PubMed

    Rao, P Narasimha; Suneetha, Sujai

    2016-01-01

    Pure neuritic leprosy has always been an enigma due to its clinical and management ambiguities. Although only the Indian Association of Leprologist's classification recognizes 'pure neuritic leprosy' as a distinct sub group of leprosy, cases nonetheless are reported from various countries of Asia, Africa, South America and Europe, indicating its global relevance. It is important to maintain pure neuritic leprosy as a subgroup as it constitutes a good percentage of leprosy cases reported from India, which contributes to more than half of global leprosy numbers. Unfortunately, a high proportion of these patients present with Grade 2 disability at the time of initial reporting itself due to the early nerve involvement. Although skin lesions are absent by definition, when skin biopsies were performed from the skin along the distribution of the affected nerve, a proportion of patients demonstrated leprosy pathology, revealing sub-clinical skin involvement. In addition on follow-up, skin lesions are noted to develop in up to 20% of pure neuritic leprosy cases, indicating its progression to manifest cutaneous disease. Over the decades, the confirmation of diagnosis of pure neuritic leprosy has been subjective, however, with the arrival and use of high-resolution ultrasonography (HRUS) for nerve imaging, we have a tool not only to objectively measure and record the nerve thickening but also to assess the morphological alterations in the nerve including echo texture, fascicular pattern and vascularity. Management of pure neuritic leprosy requires multidrug therapy along with appropriate dose of systemic corticosteroids, for both acute and silent neuritis. Measures for pain relief, self-care of limbs and physiotherapy are important to prevent as well as manage disabilities in this group of patients.

  8. Bcl-xL Is Necessary for Neurite Outgrowth in Hippocampal Neurons

    PubMed Central

    Park, Han-A; Licznerski, Pawel; Alavian, Kambiz N.; Shanabrough, Marya

    2015-01-01

    Abstract Aims: B-cell lymphoma-extra large (Bcl-xL) protects survival in dividing cells and developing neurons, but was not known to regulate growth. Growth and synapse formation are indispensable for neuronal survival in development, inextricably linking these processes. We have previously shown that, during synaptic plasticity, Bcl-xL produces changes in synapse number, size, activity, and mitochondrial metabolism. In this study, we determine whether Bcl-xL is required for healthy neurite outgrowth and whether neurite outgrowth is necessary for survival in developing neurons in the presence or absence of stress. Results: Depletion of endogenous Bcl-xL impairs neurite outgrowth in hippocampal neurons followed by delayed cell death which is dependent on upregulation of death receptor 6 (DR6), a molecule that regulates axonal pruning. Under hypoxic conditions, Bcl-xL-depleted neurons demonstrate increased vulnerability to neuronal process loss and to death compared with hypoxic controls. Endogenous DR6 expression and upregulation during hypoxia are associated with worsened neurite damage; depletion of DR6 partially rescues neuronal process loss, placing DR6 downstream of the effects of Bcl-xL on neuronal process outgrowth and protection. In vivo ischemia produces early increases in DR6, suggesting a role for DR6 in brain injury. Innovation: We suggest that DR6 levels are usually suppressed by Bcl-xL; Bcl-xL depletion leads to upregulation of DR6, failure of neuronal outgrowth in nonstressed cells, and exacerbation of hypoxia-induced neuronal injury. Conclusion: Bcl-xL regulates neuronal outgrowth during development and protects neurites from hypoxic insult, as opposed by DR6. Factors that enhance neurite formation may protect neurons against hypoxic injury or neurodegenerative stimuli. Antioxid. Redox Signal. 22, 93–108. PMID:24787232

  9. Synergistic Effects of 3D ECM and Chemogradients on Neurite Outgrowth and Guidance: A Simple Modeling and Microfluidic Framework

    PubMed Central

    Srinivasan, Parthasarathy; Zervantonakis, Ioannis K.; Kothapalli, Chandrasekhar R.

    2014-01-01

    During nervous system development, numerous cues within the extracellular matrix microenvironment (ECM) guide the growing neurites along specific pathways to reach their intended targets. Neurite motility is controlled by extracellular signal sensing through the growth cone at the neurite tip, including chemoattractive and repulsive cues. However, it is difficult to regenerate and restore neurite tracts, lost or degraded due to an injury or disease, in the adult central nervous system. Thus, it is important to evaluate the dynamic interplay between ECM and the concentration gradients of these cues, which would elicit robust neuritogenesis. Such information is critical in understanding the processes involved in developmental biology, and in developing high-fidelity neurite regenerative strategies post-injury, and in drug discovery and targeted therapeutics for neurodegenerative conditions. Here, we quantitatively investigated this relationship using a combination of mathematical modeling and in vitro experiments, and determined the synergistic role of guidance cues and ECM on neurite outgrowth and turning. Using a biomimetic microfluidic system, we have shown that cortical neurite outgrowth and turning under chemogradients (IGF-1 or BDNF) within 3D scaffolds is highly regulated by the source concentration of the guidance cue and the physical characteristics of the scaffold. A mechanistic-driven partial differential equation model of neurite outgrowth has been proposed, which could also be used prospectively as a predictive tool. The parameters for the chemotaxis term in the model are determined from the experimental data using our microfluidic assay. Resulting model simulations demonstrate how neurite outgrowth was critically influenced by the experimental variables, which was further supported by experimental data on cell-surface-receptor expressions. The model results are in excellent agreement with the experimental findings. This integrated approach represents a

  10. Evolution and Diversity of the Ras Superfamily of Small GTPases in Prokaryotes

    PubMed Central

    Wuichet, Kristin; Søgaard-Andersen, Lotte

    2015-01-01

    The Ras superfamily of small GTPases are single domain nucleotide-dependent molecular switches that act as highly tuned regulators of complex signal transduction pathways. Originally identified in eukaryotes for their roles in fundamental cellular processes including proliferation, motility, polarity, nuclear transport, and vesicle transport, recent studies have revealed that single domain GTPases also control complex functions such as cell polarity, motility, predation, development and antibiotic resistance in bacteria. Here, we used a computational genomics approach to understand the abundance, diversity, and evolution of small GTPases in prokaryotes. We collected 520 small GTPase sequences present in 17% of 1,611 prokaryotic genomes analyzed that cover diverse lineages. We identified two discrete families of small GTPases in prokaryotes that show evidence of three distinct catalytic mechanisms. The MglA family includes MglA homologs, which are typically associated with the MglB GTPase activating protein, whereas members of the Rup (Ras superfamily GTPase of unknown function in prokaryotes) family are not predicted to interact with MglB homologs. System classification and genome context analyses support the involvement of small GTPases in diverse prokaryotic signal transduction pathways including two component systems, laying the foundation for future experimental characterization of these proteins. Phylogenetic analysis of prokaryotic and eukaryotic GTPases supports that the last universal common ancestor contained ancestral MglA and Rup family members. We propose that the MglA family was lost from the ancestral eukaryote and that the Ras superfamily members in extant eukaryotes are the result of vertical and horizontal gene transfer events of ancestral Rup GTPases. PMID:25480683

  11. Evolution and diversity of the Ras superfamily of small GTPases in prokaryotes.

    PubMed

    Wuichet, Kristin; Søgaard-Andersen, Lotte

    2014-12-04

    The Ras superfamily of small GTPases are single domain nucleotide-dependent molecular switches that act as highly tuned regulators of complex signal transduction pathways. Originally identified in eukaryotes for their roles in fundamental cellular processes including proliferation, motility, polarity, nuclear transport, and vesicle transport, recent studies have revealed that single domain GTPases also control complex functions such as cell polarity, motility, predation, development and antibiotic resistance in bacteria. Here, we used a computational genomics approach to understand the abundance, diversity, and evolution of small GTPases in prokaryotes. We collected 520 small GTPase sequences present in 17% of 1,611 prokaryotic genomes analyzed that cover diverse lineages. We identified two discrete families of small GTPases in prokaryotes that show evidence of three distinct catalytic mechanisms. The MglA family includes MglA homologs, which are typically associated with the MglB GTPase activating protein, whereas members of the Rup (Ras superfamily GTPase of unknown function in prokaryotes) family are not predicted to interact with MglB homologs. System classification and genome context analyses support the involvement of small GTPases in diverse prokaryotic signal transduction pathways including two component systems, laying the foundation for future experimental characterization of these proteins. Phylogenetic analysis of prokaryotic and eukaryotic GTPases supports that the last universal common ancestor contained ancestral MglA and Rup family members. We propose that the MglA family was lost from the ancestral eukaryote and that the Ras superfamily members in extant eukaryotes are the result of vertical and horizontal gene transfer events of ancestral Rup GTPases. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Essential role of NKCC1 in NGF-induced neurite outgrowth

    SciTech Connect

    Nakajima, Ken-ichi; Miyazaki, Hiroaki; Niisato, Naomi; Marunaka, Yoshinori . E-mail: marunaka@koto.kpu-m.ac.jp

    2007-08-03

    The Na{sup +}/K{sup +}/2Cl{sup -} cotransporter (NKCC) mediates electroneutral transport of 2Cl{sup -} coupled with Na{sup +} and K{sup +} across the plasma membrane, and plays crucial roles in Cl{sup -} uptake into the cells, homeostasis of cellular Cl{sup -}, and cell volume regulation. However, we have very limited information on the roles of ion transporters in neurite outgrowth in neuronal cells. In the present study, we report the role of NKCC1 (an isoform of NKCC) in NGF-induced neurite outgrowth of rat pheochromocytoma PC12D cells. The expression level of NKCC1 protein was increased by NGF treatment. Knock-down of NKCC1 by RNA interference (RNAi) drastically diminished the NGF-induced neurite outgrowth. Transfection of enhanced green fluorescent protein (EGFP)-tagged rat NKCC1 into cells for clarification of intracellular localization of NKCC1 revealed that the EGFP-rNKCC1 was mainly localized in the plasma membrane at growth cone during neurite outgrowth. These observations suggest that NKCC1 plays a fundamental role in NGF-induced neurite outgrowth of PC12D cells.

  13. Rho GTPases in embryonic development

    PubMed Central

    Duquette, Philippe M; Lamarche-Vane, Nathalie

    2014-01-01

    In the last decade, several mouse models for RhoA, Rac1, and Cdc42 have emerged and have contributed a great deal to understanding the precise functions of Rho GTPases at early stages of development. This review summarizes our current knowledge of various mouse models of tissue-specific ablation of Cdc42, Rac1, and RhoA with emphasis on early embryogenesis, epithelial and skin morphogenesis, tubulogenesis, development of the central nervous system, and limb development. PMID:25483305

  14. Structural Mechanisms and Drug Discovery Prospects of Rho GTPases

    PubMed Central

    Smithers, Cameron C.; Overduin, Michael

    2016-01-01

    Rho GTPases regulate cellular morphology and dynamics, and some are key drivers of cancer progression. This superfamily offers attractive potential targets for therapeutic intervention, with RhoA, Rac1 and Cdc42 being prime examples. The challenges in developing agents that act on these signaling enzymes include the lack of obvious druggable pockets and their membrane-bound activities. However, progress in targeting the similar Ras protein is illuminating new strategies for specifically inhibiting oncogenic GTPases. The structures of multiple signaling and regulatory states of Rho proteins have been determined, and the post-translational modifications including acylation and phosphorylation points have been mapped and their functional effects examined. The development of inhibitors to probe the significance of overexpression and mutational hyperactivation of these GTPases underscores their importance in cancer progression. The ability to integrate in silico, in vitro, and in vivo investigations of drug-like molecules indicates the growing tractability of GTPase systems for lead optimization. Although no Rho-targeted drug molecules have yet been clinically approved, this family is clearly showing increasing promise for the development of precision medicine and combination cancer therapies. PMID:27304967

  15. Acetylcholinesterase modulates neurite outgrowth on fibronectin.

    PubMed

    Giordano, C; Poiana, G; Augusti-Tocco, G; Biagioni, S

    2007-05-04

    Acetylcholinesterase (AChE) has been reported to be involved in the modulation of neurite outgrowth. To understand the role played by different domains, we transfected neuroblastoma cells with three constructs containing the invariant region of AChE, differing in the exon encoding the C-terminus and therefore in AChE cellular fate and localization. All isoforms increased neurite extension, suggesting the involvement of the invariant domain [A. De Jaco, G. Augusti-Tocco, S. Biagioni, Alternative AChE molecular forms exhibit similar ability to induce neurite outgrowth, J. Neurosci. Res. 70 (2002) 756-765]. The peripheral anionic site (PAS) is encoded by invariant exons and represents the domain involved in non-cholinergic functions of AChE. Masking of PAS with fasciculin results in a significant decrease of neurite outgrowth in all clones overexpressing AChE. A strong reduction was also observed when clones were cultured on fibronectin. Treatment of clones with fasciculin, therefore masking PAS, abolished the fibronectin-induced reduction. The inhibition of the catalytic site cannot revert the fibronectin effect. Finally, when clones were cultured on fibronectin in the presence of heparin, a ligand of fibronectin, the inhibitory effect was completely reversed. Our results indicate that PAS could directly or indirectly mediate AChE/fibronectin interactions.

  16. Interaction between a Domain of the Negative Regulator of the Ras-ERK Pathway, SPRED1 Protein, and the GTPase-activating Protein-related Domain of Neurofibromin Is Implicated in Legius Syndrome and Neurofibromatosis Type 1*♦

    PubMed Central

    Hirata, Yasuko; Brems, Hilde; Suzuki, Mayu; Kanamori, Mitsuhiro; Okada, Masahiro; Morita, Rimpei; Llano-Rivas, Isabel; Ose, Toyoyuki; Messiaen, Ludwine; Legius, Eric; Yoshimura, Akihiko

    2016-01-01

    Constitutional heterozygous loss-of-function mutations in the SPRED1 gene cause a phenotype known as Legius syndrome, which consists of symptoms of multiple café-au-lait macules, axillary freckling, learning disabilities, and macrocephaly. Legius syndrome resembles a mild neurofibromatosis type 1 (NF1) phenotype. It has been demonstrated that SPRED1 functions as a negative regulator of the Ras-ERK pathway and interacts with neurofibromin, the NF1 gene product. However, the molecular details of this interaction and the effects of the mutations identified in Legius syndrome and NF1 on this interaction have not yet been investigated. In this study, using a yeast two-hybrid system and an immunoprecipitation assay in HEK293 cells, we found that the SPRED1 EVH1 domain interacts with the N-terminal 16 amino acids and the C-terminal 20 amino acids of the GTPase-activating protein (GAP)-related domain (GRD) of neurofibromin, which form two crossing α-helix coils outside the GAP domain. These regions have been shown to be dispensable for GAP activity and are not present in p120GAP. Several mutations in these N- and C-terminal regions of the GRD in NF1 patients and pathogenic missense mutations in the EVH1 domain of SPRED1 in Legius syndrome reduced the binding affinity between the EVH1 domain and the GRD. EVH1 domain mutations with reduced binding to the GRD also disrupted the ERK suppression activity of SPRED1. These data clearly demonstrate that SPRED1 inhibits the Ras-ERK pathway by recruiting neurofibromin to Ras through the EVH1-GRD interaction, and this study also provides molecular basis for the pathogenic mutations of NF1 and Legius syndrome. PMID:26635368

  17. NIF (neurite-inducing factor): a novel peptide inducing neurite formation in PC12 cells.

    PubMed

    Wagner, J A

    1986-01-01

    Neurite-inducing factor (NIF) is a novel protein that has been partially purified from mouse submaxillary glands. NIF induces neurite formation in PC12 pheochromocytoma cells, and the NIF-induced neurites are indistinguishable from NGF-induced neurites in both their morphology and the time course of their formation. Neurite-inducing activity can be recovered at a position corresponding to a molecular weight of 20,000 Da after fractionation of partially purified preparations via SDS-PAGE. Partially purified preparations of NIF are about half as potent as pure beta NGF, and since the neurite-inducing activity does not correspond to any of the major proteins in this fraction, specific activity of purified NIF will probably be significantly greater than the 60 ng/ml found for our partially purified material. NIF is distinct from beta NGF by four criteria: (1) antibodies to beta NGF can block the activity of beta NGF, but not the activity of NIF; (2) beta NGF can induce ornithine decarboxylase (ODC) in PC12 cells at concentrations significantly below those required to induce neurites, while NIF induces ODC only at concentrations greatly in excess of those required to induce neurite formation; (3) by the criterion of SDS-PAGE, there is insufficient beta NGF in our partially purified preparations of NIF to explain the biological activity of this fraction; and (4) the biological activity of NIF has a molecular weight (20,000 Da) that is distinct from beta NGF (13,000 Da). We conclude that NIF is probably a novel peptide that is very active in promoting morphological differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Ras-related GTPases and the cytoskeleton.

    PubMed Central

    Hall, A

    1992-01-01

    Incorporation of the available data on rac in neutrophils, CDC42 in yeast, and rho in fibroblasts suggests a general model for the function of rho-like GTPase (Figure 1). Conversion of an inactive cytoplasmic rho-related p21GDP/GDI complex to active p21. GTP occurs by inhibition of GAP and/or stimulation of exchange factors in response to cell signals. p21.GTP is then able to interact with its target at the plasma membrane. This could result in a conformational change in the target, enabling it to bind cytosolic protein(s). Alternatively, p21.GTP could be actively involved in transporting cytosolic protein(s) to the target. A GAP protein, perhaps intrinsic to the complex, would stimulate GTP hydrolysis allowing p21.GDP to dissociate. Solubilization of p21GDP by interaction with GDI would complete a cycle. What about the nature of the final complex? The rac-regulated NADPH oxidase complex in neutrophils is currently the best understood and most amenable to further biochemical analysis. Two plasma-membrane bound subunits encode the catalytic function necessary for producing superoxide, but the two cytosolic proteins, p47 and p67, are essential for activity. Why the complexity? Production of superoxide is tightly coordinated with phagocytosis, a membrane process driven by rearrangement of cortical actin. This is not unrelated to the membrane ruffling and macropinocytosis that we observe in fibroblasts microinjected with p21rac. It is tempting to speculate, therefore, that in neutrophils rac is involved not only in promoting the assembly of the NADPH oxidase but also in the coordinate reorganization of cortical actin leading to phagocytosis. For CDC42 controlled bud assembly in yeast, the components of the plasma-membrane complex are not so clear. By analogy with rac in neutrophils, it seems likely that CDC42 is involved in promoting the assembly of cytosolic components at the bud site on the plasma membrane. These putative cytosolic proteins have not yet been

  19. Minireview: Mouse Models of Rho GTPase Function in Mammary Gland Development, Tumorigenesis, and Metastasis

    PubMed Central

    Zuo, Yan; Oh, Wonkyung; Ulu, Arzu

    2016-01-01

    Ras homolog (Rho) family small GTPases are critical regulators of actin cytoskeletal organization, cell motility, proliferation, and survival. Surprisingly, the large majority of the studies underlying our knowledge of Rho protein function have been carried out in cultured cells, and it is only recently that researchers have begun to assess Rho GTPase regulation and function in vivo. The purpose of this review is to evaluate our current knowledge of Rho GTPase function in mouse mammary gland development, tumorigenesis and metastasis. Although our knowledge is still incomplete, these studies are already uncovering important themes as to the physiological roles of Rho GTPase signaling in normal mammary gland development and function. Essential contributions of Rho proteins to breast cancer initiation, tumor progression, and metastatic dissemination have also been identified. PMID:26677753

  20. LRRK2 GTPase Dysfunction in the Pathogenesis of Parkinson’s disease

    PubMed Central

    Xiong, Yulan; Dawson, Valina L.; Dawson, Ted M.

    2013-01-01

    Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are the most frequent genetic cause of Parkinson’s disease (PD) and these mutations play important roles in sporadic PD. The LRRK2 protein contains GTPase and kinase domains and several protein-protein interaction domains. The kinase and GTPase activity of LRRK2 seem to be important in regulating LRRK2-dependent cellular signaling pathways. LRRK2’s GTPase and kinase domains may reciprocally regulate each other to direct LRRK2’s ultimate function. While most LRRK2 investigations are centered on LRRK2’s kinase activity, this review focuses on the function of LRRK2’s GTPase in LRRK2 physiology and pathophysiology. PMID:22988868

  1. Neurite outgrowth inhibitors in gliotic tissue.

    PubMed

    Nieto-Sampedro, M

    1999-01-01

    Gliotic tissue is the major obstacle to axon regeneration after CNS injury. We designed tissue culture assays to search for molecules responsible for neurite outgrowth inhibition in gliotic tissue. All the inhibitory activity in injured brain tissue was located in a plasma membrane heparan-sulphate and condroitin-sulphate type-proteoglycan of apparent molecular weight 200 kDalton. The proteoglycan core protein (apparent MW 48,000 kD) was biologically inactive, whereas the glycosamine-glycan (GAG) chains accounted for the inhibitory activity. Because of its cell location and mode of induction, the inhibitor was called injured membrane proteoglycan, IMP. IMP prevented neurite outgrowth initiation when attached to the culture substrate and caused growth cone collapse when added in solution to neurons with already growing neurites. We concluded that IMP was responsible for preventing injured CNS fibre regeneration. Double-staining immunohistochemistry of normal and gliotic tissue with anti-IMP monoclonal antibodies together with glial and neuronal markers, permitted the unequivocal definition of inhibitor presenting cells by confocal microscopy. IMP-immunostaining in normal CNS was observed exclusively on neurons. However, after a lesion, immunostaining occurred primarily on intensely GFAP-positive reactive astrocytes, but not on OX-42 positive microglia. The availability of antibodies permitted rapid affinity-purification of the neurite inhibitor and comparison with similar molecules possibly expressed during development. IMP itself or a highly related form, was expressed in embryonic brain, reaching maximal expression around postnatal day 3 and decreasing strongly in normal adult tissue. Perinatal rat brain proteoglycans inhibited neurite outgrowth similarly, though not identically, to IMP. Our data suggest that perinatal membrane and injured membrane proteoglycans may differ in GAG composition. IMP-like immunoreactivity was also found in developing brain

  2. RhoC GTPase Is a Potent Regulator of Glutamine Metabolism and N-Acetylaspartate Production in Inflammatory Breast Cancer Cells.

    PubMed

    Wynn, Michelle L; Yates, Joel A; Evans, Charles R; Van Wassenhove, Lauren D; Wu, Zhi Fen; Bridges, Sydney; Bao, Liwei; Fournier, Chelsea; Ashrafzadeh, Sepideh; Merrins, Matthew J; Satin, Leslie S; Schnell, Santiago; Burant, Charles F; Merajver, Sofia D

    2016-06-24

    Inflammatory breast cancer (IBC) is an extremely lethal cancer that rapidly metastasizes. Although the molecular attributes of IBC have been described, little is known about the underlying metabolic features of the disease. Using a variety of metabolic assays, including (13)C tracer experiments, we found that SUM149 cells, the primary in vitro model of IBC, exhibit metabolic abnormalities that distinguish them from other breast cancer cells, including elevated levels of N-acetylaspartate, a metabolite primarily associated with neuronal disorders and gliomas. Here we provide the first evidence of N-acetylaspartate in breast cancer. We also report that the oncogene RhoC, a driver of metastatic potential, modulates glutamine and N-acetylaspartate metabolism in IBC cells in vitro, revealing a novel role for RhoC as a regulator of tumor cell metabolism that extends beyond its well known role in cytoskeletal rearrangement.

  3. Hydrogel Design for Supporting Neurite Outgrowth and Promoting Gene Delivery to Maximize Neurite Extension

    PubMed Central

    Shepard, Jaclyn A.; Stevans, Alyson C.; Holland, Samantha; Wang, Christine E.; Shikanov, Ariella; Shea, Lonnie D.

    2012-01-01

    Hydrogels capable of gene delivery provide a combinatorial approach for nerve regeneration, with the hydrogel supporting neurite outgrowth and gene delivery inducing the expression of inductive factors. This report investigates the design of hydrogels that balance the requirements for supporting neurite growth with those requirements for promoting gene delivery. Enzymatically-degradable PEG hydrogels encapsulating dorsal root ganglia explants, fibroblasts, and lipoplexes encoding nerve growth factor were gelled within channels that can physically guide neurite outgrowth. Transfection of fibroblasts increased with increasing concentration of Arg-Gly-Asp (RGD) cell adhesion sites and decreasing PEG content. The neurite length increased with increasing RGD concentration within 10% PEG hydrogels, yet was maximal within 7.5% PEG hydrogels at intermediate RGD levels. Delivering lipoplexes within the gel produced longer neurites than culture in NGF-supplemented media or co-culture with cells exposed to DNA prior to encapsulation. Hydrogels designed to support neurite outgrowth and deliver gene therapy vectors locally may ultimately be employed to address multiple barriers that limit regeneration. PMID:22038654

  4. [Rab GTPases networks in membrane traffic in Saccharomyces cerevisiae].

    PubMed

    Nagano, Makoto; Toshima, Junko Y; Toshima, Jiro

    2015-01-01

    Intracellular membrane trafficking between membranous compartments is essential for organelle biogenesis, structure, and identity. Rab/Ypt GTPases are well-characterized regulators of intracellular membrane trafficking, functioning as molecular switches that alternate between GTP- and GDP-bound forms. In Saccharomyces cerevisiae, 11 Rab/Ypt GTPases have been identified and their functions are known to be conserved in their mammalian counterparts. In yeast, the secretory pathway is regulated by sequential activation and inactivation (the so-called Rab cascade) of three types of yeast Rab protein -Ypt1p, Ypt31p/32p and Sec4p -via specific guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). In addition to these Rabs, we and others have recently demonstrated that Ypt6p is predominantly localized to the early Golgi compartment, and functions as another regulator of anterograde transport for intra-Golgi trafficking in the secretory pathway. On the other hand, the endocytic pathway is known to be regulated by three yeast Rab5s (Vps21p, Ypt52p and Ypt53p) and one Rab7 (Ypt7p). Rab5 and Rab7 are key determinants of endosome identity, and the Rab5-Rab7 cascade is important for the progression from early to late endosome. Our recent study demonstrates that the endocytic pathway branches into two vacuolar targeting pathways, the Rab5-dependent vacuole protein sorting (VPS) pathway and the Rab5-independent pathway. In this review, we focus on recent advances in our understanding of molecular mechanisms that regulate the localization and activity of yeast Rab GTPases in intracellular membrane trafficking.

  5. LRRK2 autophosphorylation enhances its GTPase activity

    PubMed Central

    Liu, Zhiyong; Mobley, James A.; DeLucas, Lawrence J.; Kahn, Richard A.; West, Andrew B.

    2016-01-01

    The leucine-rich repeat kinase (LRRK)-2 protein contains nonoverlapping GTPase and kinase domains, and mutation in either domain can cause Parkinson disease. GTPase proteins are critical upstream modulators of many effector protein kinases. In LRRK2, this paradigm may be reversed, as the kinase domain phosphorylates its own GTPase domain. In this study, we found that the ameba LRRK2 ortholog ROCO4 phosphorylates the GTPase domain [termed Ras-of-complex (ROC) domain in this family] of human LRRK2 on the same residues as the human LRRK2 kinase. Phosphorylation of ROC enhances its rate of GTP hydrolysis [from kcat (catalytic constant) 0.007 to 0.016 min−1], without affecting GTP or GDP dissociation kinetics [koff = 0.093 and 0.148 min−1 for GTP and GDP, respectively). Phosphorylation also promotes the formation of ROC dimers, although GTPase activity appears to be equivalent between purified dimers and monomers. Modeling experiments show that phosphorylation induces conformational changes at the critical p-loop structure. Finally, ROC appears to be one of many GTPases phosphorylated in p-loop residues, as revealed by alignment of LRRK2 autophosphorylation sites with GTPases annotated in the phosphoproteome database. These results provide an example of a novel mechanism for kinase-mediated control of GTPase activity.—Liu, Z., Mobley, J. A., DeLucas, L. J., Kahn, R. A., West, A. B. LRRK2 autophosphorylation enhances its GTPase activity. PMID:26396237

  6. COMMUNICATION BETWEEN 5-HT AND SMALL GTPases

    PubMed Central

    Mercado, Charles P.; Ziu, Endrit; Kilic, Fusun

    2011-01-01

    Advances over the past decade have improved our understanding of the serotonin (5-HT) biology outside the central nervous system specifically the molecular mechanisms of serotonergic signaling in association with small GTPases. It is now recognized that the communication between 5-HT and GTPases plays important roles in peripheral tissues, vascular cells and are involved in coagulation, hypertension, inflammation, healing and protection. Furthermore, 5-HT receptors as heterotrimeric GTP-binding protein-coupled receptors act as effector protein on the small GTPases. Therefore, the antagonists or agonists of the effector proteins of small GTPases could be useful therapeutic agents for the treatment of several diseases and disorders. PMID:21320798

  7. A genome-wide RNAi screen reveals a Trio-regulated Rho GTPase circuitry transducing mitogenic signals initiated by G protein-coupled receptors.

    PubMed

    Vaqué, Jose P; Dorsam, Robert T; Feng, Xiaodong; Iglesias-Bartolome, Ramiro; Forsthoefel, David J; Chen, Qianming; Debant, Anne; Seeger, Mark A; Ksander, Bruce R; Teramoto, Hidemi; Gutkind, J Silvio

    2013-01-10

    Activating mutations in GNAQ and GNA11, encoding members of the Gα(q) family of G protein α subunits, are the driver oncogenes in uveal melanoma, and mutations in Gq-linked G protein-coupled receptors have been identified recently in numerous human malignancies. How Gα(q) and its coupled receptors transduce mitogenic signals is still unclear because of the complexity of signaling events perturbed upon Gq activation. Using a synthetic-biology approach and a genome-wide RNAi screen, we found that a highly conserved guanine nucleotide exchange factor, Trio, is essential for activating Rho- and Rac-regulated signaling pathways acting on JNK and p38, and thereby transducing proliferative signals from Gα(q) to the nucleus independently of phospholipase C-β. Indeed, whereas many biological responses elicited by Gq depend on the transient activation of second-messenger systems, Gq utilizes a hard-wired protein-protein-interaction-based signaling circuitry to achieve the sustained stimulation of proliferative pathways, thereby controlling normal and aberrant cell growth.

  8. Role of Rho GTPases in desmosomal adhesion and pemphigus pathogenesis.

    PubMed

    Spindler, Volker; Waschke, Jens

    2011-05-01

    Desmosomes are distinct intercellular contacts essential to the integrity of epithelial tissues and the heart muscle. This function is impaired in the disease pemphigus, in which patients develop autoantibodies against the cadherin-type desmosomal core proteins desmogleins. Autoantibody binding induces loss of cell-cell adhesion leading to blisters within the epidermis and mucous membranes. Despite the relevance of desmosomes for integrity of such essential organs as the skin, data on the regulation of desmosome assembly and maintenance and desmosome-mediated adhesion are only slowly emerging. Small guanosine triphosphatases (GTPases) of the Rho family have long been established as regulators of other cell junctions such as adherens junctions, but also have been implicated in participating in the formation of desmosomes. In this short review we summarize two papers from our group dealing with the role of Rho family GTPases for desmosomal adhesion and pemphigus and discuss these data integrating novel work recently published.

  9. FlhF, a signal recognition particle-like GTPase, is involved in the regulation of flagellar arrangement, motility behaviour and protein secretion in Bacillus cereus.

    PubMed

    Salvetti, Sara; Ghelardi, Emilia; Celandroni, Francesco; Ceragioli, Mara; Giannessi, Francesco; Senesi, Sonia

    2007-08-01

    Flagellar arrangement is a highly conserved feature within bacterial species. However, only a few genes regulating cell flagellation have been described in polar flagellate bacteria. This report demonstrates that the arrangement of flagella in the peritrichous flagellate Bacillus cereus is controlled by flhF. Disruption of flhF in B. cereus led to a reduction in the number of flagella from 10-12 to 1-3 filaments per cell in the insertion mutant MP06. Moreover, compared to the parental strain, MP06 exhibited: (i) shorter smooth swimming phases, causing reduced swimming motility but not affecting chemotaxis; (ii) complete inhibition of swarming motility, as differentiated swarm cells were never detected; (iii) an increased amount of extracellular proteins; and (iv) differential export of virulence determinants, such as haemolysin BL (HBL), phosphatidylcholine-preferring phospholipase C (PC-PLC) and non-haemolytic enterotoxin (NHE). Introduction of a plasmid harbouring flhF (pDGflhF) into MP06 completely restored the wild-type phenotype in the trans-complemented strain MP07. B. cereus flhF was found to constitute a monocistronic transcriptional unit and its overexpression did not produce abnormal features in the wild-type background. Characterization of a B. cereus mutant (MP05) carrying a partial flhF deletion indicated that the last C-terminal domain of FlhF is involved in protein export while not required for flagellar arrangement and motility behaviour. Taken together, these data suggest that B. cereus FlhF is a promising candidate for connecting diverse cellular functions, such as flagellar arrangement, motility behaviour, pattern of protein secretion and virulence phenotype.

  10. Wnt5a Regulates Midbrain Dopaminergic Axon Growth and Guidance

    PubMed Central

    Blakely, Brette D.; Bye, Christopher R.; Fernando, Chathurini V.; Horne, Malcolm K.; Macheda, Maria L.; Stacker, Steven A.; Arenas, Ernest; Parish, Clare L.

    2011-01-01

    During development, precise temporal and spatial gradients are responsible for guiding axons to their appropriate targets. Within the developing ventral midbrain (VM) the cues that guide dopaminergic (DA) axons to their forebrain targets remain to be fully elucidated. Wnts are morphogens that have been identified as axon guidance molecules. Several Wnts are expressed in the VM where they regulate the birth of DA neurons. Here, we describe that a precise temporo-spatial expression of Wnt5a accompanies the development of nigrostriatal projections by VM DA neurons. In mice at E11.5, Wnt5a is expressed in the VM where it was found to promote DA neurite and axonal growth in VM primary cultures. By E14.5, when DA axons are approaching their striatal target, Wnt5a causes DA neurite retraction in primary cultures. Co-culture of VM explants with Wnt5a-overexpressing cell aggregates revealed that Wnt5a is capable of repelling DA neurites. Antagonism experiments revealed that the effects of Wnt5a are mediated by the Frizzled receptors and by the small GTPase, Rac1 (a component of the non-canonical Wnt planar cell polarity pathway). Moreover, the effects were specific as they could be blocked by Wnt5a antibody, sFRPs and RYK-Fc. The importance of Wnt5a in DA axon morphogenesis was further verified in Wnt5a−/− mice, where fasciculation of the medial forebrain bundle (MFB) as well as the density of DA neurites in the MFB and striatal terminals were disrupted. Thus, our results identify a novel role of Wnt5a in DA axon growth and guidance. PMID:21483795

  11. Orexin A Inhibits Propofol-Induced Neurite Retraction by a Phospholipase D/Protein Kinase Cε-Dependent Mechanism in Neurons

    PubMed Central

    Björnström, Karin; Turina, Dean; Strid, Tobias; Sundqvist, Tommy; Eintrei, Christina

    2014-01-01

    Background The intravenous anaesthetic propofol retracts neurites and reverses the transport of vesicles in rat cortical neurons. Orexin A (OA) is an endogenous neuropeptide regulating wakefulness and may counterbalance anaesthesia. We aim to investigate if OA interacts with anaesthetics by inhibition of the propofol-induced neurite retraction. Methods In primary cortical cell cultures from newborn rats’ brains, live cell light microscopy was used to measure neurite retraction after propofol (2 µM) treatment with or without OA (10 nM) application. The intracellular signalling involved was tested using a protein kinase C (PKC) activator [phorbol 12-myristate 13-acetate (PMA)] and inhibitors of Rho-kinase (HA-1077), phospholipase D (PLD) [5-fluoro-2-indolyl des-chlorohalopemide (FIPI)], PKC (staurosporine), and a PKCε translocation inhibitor peptide. Changes in PKCε Ser729 phosphorylation were detected with Western blot. Results The neurite retraction induced by propofol is blocked by Rho-kinase and PMA. OA blocks neurite retraction induced by propofol, and this inhibitory effect could be prevented by FIPI, staurosporine and PKCε translocation inhibitor peptide. OA increases via PLD and propofol decreases PKCε Ser729 phosphorylation, a crucial step in the activation of PKCε. Conclusions Rho-kinase is essential for propofol-induced neurite retraction in cortical neuronal cells. Activation of PKC inhibits neurite retraction caused by propofol. OA blocks propofol-induced neurite retraction by a PLD/PKCε-mediated pathway, and PKCε maybe the key enzyme where the wakefulness and anaesthesia signal pathways converge. PMID:24828410

  12. Mesenchymal stem cell-derived exosomes from different sources selectively promote neuritic outgrowth.

    PubMed

    Lopez-Verrilli, M A; Caviedes, A; Cabrera, A; Sandoval, S; Wyneken, U; Khoury, M

    2016-04-21

    Mesenchymal stem cells (MSCs) obtained from bone marrow (BM) have been shown to promote neuronal growth and survival. However, the comparative effects of MSCs of different sources, including menstrual MSCs (MenSCs), BM, umbilical cord and chorion stem cells on neurite outgrowth have not yet been explored. Moreover, the modulatory effects of MSCs may be mediated by paracrine mechanisms, i.e. by molecules contained in the MSC secretome that includes soluble factors and extracellular vesicles such as microvesicles and/or exosomes. The biogenesis of microvesicles, characterized by a vesicle diameter of 50 to 1000 nm, involves membrane shedding while exosomes, of 30 to 100 nm in diameter, originate in the multivesicular bodies within cells. Both vesicle types, which can be harvested from the conditioned media of cell cultures by differential centrifugation steps, regulate the function of target cells due to their molecular content of microRNA, mRNA, proteins and lipids. Here, we compared the effect of human menstrual MSCs (MenSCs) mediated by cell-cell contact, by their total secretome or by secretome-derived extracellular vesicles on neuritic outgrowth in primary neuronal cultures. The contact of MenSCs with cortical neurons inhibited neurite outgrowth while their total secretome enhanced it. The extracellular vesicle fractions showed a distinctive effect: while the exosome-enriched fraction enhanced neurite outgrowth, the microvesicle-enriched fraction displayed an inhibitory effect. When we compared exosome fractions of different human MSC sources, MenSC exosomes showed superior effects on the growth of the longest neurite in cortical neurons and had a comparable effect to BM-SC exosomes on neurite outgrowth in dorsal root ganglia neurons. Thus, the growth-stimulating effects of exosomes derived from MenSCs as well as the opposing effects of both extracellular vesicle fractions provide important information regarding the potential use of MenSCs as therapeutic

  13. Arylsulfatase B modulates neurite outgrowth via astrocyte chondroitin-4-sulfate: dysregulation by ethanol.

    PubMed

    Zhang, Xiaolu; Bhattacharyya, Sumit; Kusumo, Handojo; Goodlett, Charles R; Tobacman, Joanne K; Guizzetti, Marina

    2014-02-01

    In utero ethanol exposure causes fetal alcohol spectrum disorders, associated with reduced brain plasticity; the mechanisms of these effects are not well understood, particularly with respect to glial involvement. Astrocytes release factors that modulate neurite outgrowth. We explored the hypothesis that ethanol inhibits neurite outgrowth by increasing the levels of inhibitory chondroitin sulfate proteoglycans (CSPGs) in astrocytes. Astrocyte treatment with ethanol inhibited the activity of arylsulfatase B (ARSB), the enzyme that removes sulfate groups from chondroitin-4-sulfate (C4S) and triggers the degradation of C4S, increased total sulfated glycosaminoglycans (GAGs), C4S, and neurocan core-protein content and inhibited neurite outgrowth in neurons cocultured with ethanol-treated astrocytes in vitro, effects reversed by treatment with recombinant ARSB. Ethanol also inhibited ARSB activity and increased sulfate GAG and neurocan levels in the developing hippocampus after in vivo ethanol exposure. ARSB silencing increased the levels of sulfated GAGs, C4S, and neurocan in astrocytes and inhibited neurite outgrowth in cocultured neurons, indicating that ARSB activity directly regulates C4S and affects neurocan expression. In summary, this study reports two major findings: ARSB modulates sulfated GAG and neurocan levels in astrocytes and astrocyte-mediated neurite outgrowth in cocultured neurons; and ethanol inhibits the activity of ARSB, increases sulfated GAG, C4S, and neurocan levels, and thereby inhibits astrocyte-mediated neurite outgrowth. An unscheduled increase in CSPGs in the developing brain may lead to altered brain c