Science.gov

Sample records for guandu cajanus cajan

  1. Genetic Patterns of Domestication in Pigeonpea (Cajanus cajan (L.) Millsp.) and Wild Cajanus Relatives

    PubMed Central

    Kassa, Mulualem T.; Penmetsa, R. Varma; Carrasquilla-Garcia, Noelia; Sarma, Birinchi K.; Datta, Subhojit; Upadhyaya, Hari D.; Varshney, Rajeev K.; von Wettberg, Eric J. B.; Cook, Douglas R.

    2012-01-01

    Pigeonpea (Cajanus cajan) is an annual or short-lived perennial food legume of acute regional importance, providing significant protein to the human diet in less developed regions of Asia and Africa. Due to its narrow genetic base, pigeonpea improvement is increasingly reliant on introgression of valuable traits from wild forms, a practice that would benefit from knowledge of its domestication history and relationships to wild species. Here we use 752 single nucleotide polymorphisms (SNPs) derived from 670 low copy orthologous genes to clarify the evolutionary history of pigeonpea (79 accessions) and its wild relatives (31 accessions). We identified three well-supported lineages that are geographically clustered and congruent with previous nuclear and plastid sequence-based phylogenies. Among all species analyzed Cajanus cajanifolius is the most probable progenitor of cultivated pigeonpea. Multiple lines of evidence suggest recent gene flow between cultivated and non-cultivated forms, as well as historical gene flow between diverged but sympatric species. Evidence supports that primary domestication occurred in India, with a second and more recent nested population bottleneck focused in tropical regions that is the likely consequence of pigeonpea breeding. We find abundant allelic variation and genetic diversity among the wild relatives, with the exception of wild species from Australia for which we report a third bottleneck unrelated to domestication within India. Domesticated C. cajan possess 75% less allelic diversity than the progenitor clade of wild Indian species, indicating a severe “domestication bottleneck” during pigeonpea domestication. PMID:22745789

  2. Response surface analysis of nano-ureases from Canavalia ensiformis and Cajanus cajan.

    PubMed

    Dwevedi, Alka; Routh, Satya Brata; Yadav, Amit Singh; Singh, Ashwani Kumar; Srivastava, Onkar Nath; Kayastha, Arvind M

    2011-11-01

    Ureases isolated from leguminous sources, Canavalia ensiformis and Cajanus cajan were immobilized onto gold nanoparticles (nano-ureases). Optimization of the urease immobilization was carried using response surface methodology based on Central Composite Design. Immobilization efficiency of nano-urease from C. ensiformis and C. cajan were found to be 215.10% and 255.92%, respectively. The methodology adopted has deviation of 2.56% and 3.01% with respect to experimental values in case of C. ensiformis and C. cajan, respectively. Nano-urease from C. cajan has broad physico-chemical parameters with pH optimum from 7.1 to 7.3 and temperature optimum from 50 to 70°C. Nano-urease from C. ensiformis has sharp pH and temperature optima at 7.3 and 70°C, respectively. Fourier transform infra-red spectroscopy has revealed involvement of groups viz. amino, glycosyl moiety, etc. in urease immobilization onto gold nano-particles. Transmission and scanning electron micrographs revealed that arrangement of urease onto gold nano-particles from C. ensiformis was uniform while it was localized in case of C. cajan. Nano-urease from C. ensiformis has higher specificity and catalysis toward urea as compared to nano-urease from C. cajan. Nano-ureases from both sources are equally stable for 6 months under dried conditions and can be used for 10 washes.

  3. Chloroplast Genome Sequence of Pigeonpea (Cajanus cajan (L.) Millspaugh) and Cajanus scarabaeoides (L.) Thouars: Genome Organization and Comparison with Other Legumes

    PubMed Central

    Kaila, Tanvi; Chaduvla, Pavan K.; Saxena, Swati; Bahadur, Kaushlendra; Gahukar, Santosh J.; Chaudhury, Ashok; Sharma, T. R.; Singh, N. K.; Gaikwad, Kishor

    2016-01-01

    Pigeonpea (Cajanus cajan (L.) Millspaugh), a diploid (2n = 22) legume crop with a genome size of 852 Mbp, serves as an important source of human dietary protein especially in South East Asian and African regions. In this study, the draft chloroplast genomes of Cajanus cajan and Cajanus scarabaeoides (L.) Thouars were generated. Cajanus scarabaeoides is an important species of the Cajanus gene pool and has also been used for developing promising CMS system by different groups. A male sterile genotype harboring the C. scarabaeoides cytoplasm was used for sequencing the plastid genome. The cp genome of C. cajan is 152,242bp long, having a quadripartite structure with LSC of 83,455 bp and SSC of 17,871 bp separated by IRs of 25,398 bp. Similarly, the cp genome of C. scarabaeoides is 152,201bp long, having a quadripartite structure in which IRs of 25,402 bp length separates 83,423 bp of LSC and 17,854 bp of SSC. The pigeonpea cp genome contains 116 unique genes, including 30 tRNA, 4 rRNA, 78 predicted protein coding genes and 5 pseudogenes. A 50 kb inversion was observed in the LSC region of pigeonpea cp genome, consistent with other legumes. Comparison of cp genome with other legumes revealed the contraction of IR boundaries due to the absence of rps19 gene in the IR region. Chloroplast SSRs were mined and a total of 280 and 292 cpSSRs were identified in C. scarabaeoides and C. cajan respectively. RNA editing was observed at 37 sites in both C. scarabaeoides and C. cajan, with maximum occurrence in the ndh genes. The pigeonpea cp genome sequence would be beneficial in providing informative molecular markers which can be utilized for genetic diversity analysis and aid in understanding the plant systematics studies among major grain legumes. PMID:28018385

  4. Chloroplast Genome Sequence of Pigeonpea (Cajanus cajan (L.) Millspaugh) and Cajanus scarabaeoides (L.) Thouars: Genome Organization and Comparison with Other Legumes.

    PubMed

    Kaila, Tanvi; Chaduvla, Pavan K; Saxena, Swati; Bahadur, Kaushlendra; Gahukar, Santosh J; Chaudhury, Ashok; Sharma, T R; Singh, N K; Gaikwad, Kishor

    2016-01-01

    Pigeonpea (Cajanus cajan (L.) Millspaugh), a diploid (2n = 22) legume crop with a genome size of 852 Mbp, serves as an important source of human dietary protein especially in South East Asian and African regions. In this study, the draft chloroplast genomes of Cajanus cajan and Cajanus scarabaeoides (L.) Thouars were generated. Cajanus scarabaeoides is an important species of the Cajanus gene pool and has also been used for developing promising CMS system by different groups. A male sterile genotype harboring the C. scarabaeoides cytoplasm was used for sequencing the plastid genome. The cp genome of C. cajan is 152,242bp long, having a quadripartite structure with LSC of 83,455 bp and SSC of 17,871 bp separated by IRs of 25,398 bp. Similarly, the cp genome of C. scarabaeoides is 152,201bp long, having a quadripartite structure in which IRs of 25,402 bp length separates 83,423 bp of LSC and 17,854 bp of SSC. The pigeonpea cp genome contains 116 unique genes, including 30 tRNA, 4 rRNA, 78 predicted protein coding genes and 5 pseudogenes. A 50 kb inversion was observed in the LSC region of pigeonpea cp genome, consistent with other legumes. Comparison of cp genome with other legumes revealed the contraction of IR boundaries due to the absence of rps19 gene in the IR region. Chloroplast SSRs were mined and a total of 280 and 292 cpSSRs were identified in C. scarabaeoides and C. cajan respectively. RNA editing was observed at 37 sites in both C. scarabaeoides and C. cajan, with maximum occurrence in the ndh genes. The pigeonpea cp genome sequence would be beneficial in providing informative molecular markers which can be utilized for genetic diversity analysis and aid in understanding the plant systematics studies among major grain legumes.

  5. HCH, endosulfan, and fluvalinate residue behavior in pigeonpea (Cajanus cajan L. Millsp)

    SciTech Connect

    Mukherjee, I.; Gopal, M.; Yaduraju, N.T. )

    1992-01-01

    Pigeonpea (Cajanus cajan L. Millsp) is one of the major pulse crop of India. The loss of pigeonpea crop due to pod and foliage pests is significant, the major pests being pod fly, hairy caterpillar, aphids, white fly, plume moth borer, leaf caterpillar and jassids. It is imperative to save every grain by chemical control methods but these toxicants should not leave unusually high residues on the edible parts. In this paper the authors report the residue behavior of three different insecticides namely, hexachlorocyclohexane, endosulfan and fluvalinate on this crop.

  6. Evaluation of Cajanus cajan (pigeon pea) for phytoremediation of landfill leachate containing chromium and lead.

    PubMed

    Jerez Ch, José A; Romero, Rosaura M

    2016-11-01

    Landfill leachates containing heavy metals are important contaminants and a matter of great concern due to the effect that they might have on ecosystems. We evaluated the use of Cajanus cajan to remove chromium and lead from landfill leachates. Eight-week-old plants were submitted to varied tests to select the experimental conditions. Water assays with a solution (pH 6) containing leachate (25% v/v) were selected; the metals were added as potassium dichromate and lead (II) nitrate salts. Soil matrices that contained leachate (30% v/v) up to field capacity were used. For both water and soil assays, the metal concentrations were 10 mg kg(-1). C. cajan proved able to remove 49% of chromium and 36% of lead, both from dilute leachate. The plants also removed 34.7% of chromium from irrigated soil, but were unable to decrease the lead content. Removal of nitrogen from landfill leachate was also tested, resulting in elimination of 85% of ammonia and 70% of combined nitrite/nitrate species. The results indicate that C. cajan might be an effective candidate for the rhizofiltration of leachates containing chromium and lead, and nitrogen in large concentrations.

  7. Morpho-anatomical and growth alterations induced by arsenic in Cajanus cajan (L.) DC (Fabaceae).

    PubMed

    Pita-Barbosa, Alice; Gonçalves, Elton Carvalho; Azevedo, Aristéa Alves

    2015-08-01

    Arsenic (As) is a toxic element to most organisms. Studies investigating anatomic alterations due to As exposure in plants are scarce but of utmost importance to the establishment of environmental biomonitoring techniques. So, this study aimed to investigate the effects of As on the development and initial root growth in Cajanus cajan (Fabaceae), characterize and quantify the possible damages, evaluate genotoxic effects, and identify structural markers to be used in environmental bioindication. Plants were exposed hydroponically to 0.5, 1.0, 1.5, and 2.0 mg As L(-1), as sodium arsenate. Growth parameters were measured, and in the end of the exposure, root samples were analyzed for qualitative and quantitative anatomical alterations. Arsenic genotoxicity was evaluated through analysis of the mitotic index in the root apex. Compared to the control, As-treated seedlings showed an altered architecture, with significantly decreased root length (due to the lower mitotic index in the apical meristem and reduced elongation of parenchyma cells) with darkened color, and abnormal development of the root cap. A significant increase in vascular cylinder/root diameter ratio was also detected, due to the reduction of the cellular spaces in the cortex. The secondary xylem vessel elements were reduced in diameter and had sinuous walls. The severest damage was visible in the ramification zone, where uncommon division planes of phellogen and cambium cells and disintegration of the parenchyma cells adjacent to lateral roots were observed. The high sensibility of C. cajan to As was confirmed, since it caused severe damages in root growth and anatomy. The main structural markers for As toxicity were the altered root architecture, with the reduction of the elongation zone and increase of ramification zone length, and the root primordia retained within the cortex. Our results show a new approach about As toxicity and indicate that C. cajan is a promising species to be used for

  8. Comparative analysis of genome-wide Mlo gene family in Cajanus cajan and Phaseolus vulgaris.

    PubMed

    Deshmukh, Reena; Singh, V K; Singh, B D

    2016-04-01

    The Mlo gene was discovered in barley because the mutant 'mlo' allele conferred broad-spectrum, non-race-specific resistance to powdery mildew caused by Blumeria graminis f. sp. hordei. The Mlo genes also play important roles in growth and development of plants, and in responses to biotic and abiotic stresses. The Mlo gene family has been characterized in several crop species, but only a single legume species, soybean (Glycine max L.), has been investigated so far. The present report describes in silico identification of 18 CcMlo and 20 PvMlo genes in the important legume crops Cajanus cajan (L.) Millsp. and Phaseolus vulgaris L., respectively. In silico analysis of gene organization, protein properties and conserved domains revealed that the C. cajan and P. vulgaris Mlo gene paralogs are more divergent from each other than from their orthologous pairs. The comparative phylogenetic analysis classified CcMlo and PvMlo genes into three major clades. A comparative analysis of CcMlo and PvMlo proteins with the G. max Mlo proteins indicated close association of one CcMlo, one PvMlo with two GmMlo genes, indicating that there was no further expansion of the Mlo gene family after the separation of these species. Thus, most of the diploid species of eudicots might be expected to contain 15-20 Mlo genes. The genes CcMlo12 and 14, and PvMlo11 and 12 are predicted to participate in powdery mildew resistance. If this prediction were verified, these genes could be targeted by TILLING or CRISPR to isolate powdery mildew resistant mutants.

  9. Identification and Validation of Expressed Sequence Tags from Pigeonpea (Cajanus cajan L.) Root

    PubMed Central

    Kumar, Ravi Ranjan; Yadav, Shailesh; Joshi, Shourabh; Bhandare, Prithviraj P.; Patil, Vinod Kumar; Kulkarni, Pramod B.; Sonkawade, Swati; Naik, G. R.

    2014-01-01

    Pigeonpea (Cajanus cajan (L) Millsp.) is an important food legume crop of rain fed agriculture in the arid and semiarid tropics of the world. It has deep and extensive root system which serves a number of important physiological and metabolic functions in plant development and growth. In order to identify genes associated with pigeonpea root, ESTs were generated from the root tissues of pigeonpea (GRG-295 genotype) by normalized cDNA library. A total of 105 high quality ESTs were generated by sequencing of 250 random clones which resulted in 72 unigenes comprising 25 contigs and 47 singlets. The ESTs were assigned to 9 functional categories on the basis of their putative function. In order to validate the possible expression of transcripts, four genes, namely, S-adenosylmethionine synthetase, phosphoglycerate kinase, serine carboxypeptidase, and methionine aminopeptidase, were further analyzed by reverse transcriptase PCR. The possible role of the identified transcripts and their functions associated with root will also be a valuable resource for the functional genomics study in legume crop. PMID:24895494

  10. Laser Induced Chlorophyll Fluorescence Spectra of Cajanus Cajan L Plant Growing Under Cadmium Stress

    NASA Astrophysics Data System (ADS)

    Gopal, Ram; Pandey, J. K.

    2010-06-01

    Laser-induced Chlorophyll fluorescence (LICF) spectra of Cajanus cajan L leaves treated with different concentrations of Cd (0.05, 0.5 and 1 mM) are recorded at 10 and 20 days after first treatment of cadmium. LICF spectra are recorded in the region of 650-780 nm using violet diode laser (405 nm). LICF spectra of plant leaves show two maxima near 685 and 730nm. Fluorescence induction kinetics (FIK) curve are recorded at 685 and 730 nm with red diode laser (635 nm) for excitation. The fluorescence intensity ratios (FIR) F685/F730 are calculated from LICF spectra and vitality index (Rfd) are determined from FIK curve. FIR and Rfd value are good stress indicator of plant health. These parameters along with chlorophyll content are used to analyze the effect of Cd on wheat plants. The result indicates that higher concentrations of Cd hazardous for photosynthetic activity and health of Arhar plants. The lower concentration of 0.05 mM shows stimulatory response up to 10 days while after 20 days this concentration also shows inhibitory response. R. Gopal, K. B. Mishra, M. Zeeshan, S. M. Prasad, and M. M. Joshi Curr. Sci., 83, 880, 2002 K. B. Mishra and R. Gopal Int. J. Rem. Sen., 29, 157, 2008 R. Maurya, S. M. Prasad, and R. Gopal J. Photochem. Photobio. C: Photochem. Rev., 9, 29, 2008

  11. Immobilization of pigeonpea (Cajanus cajan) urease on DEAE-cellulose paper strips for urea estimation.

    PubMed

    Reddy K, Ravi Charan; Srivastava, Punit K; Dey, Prakash M; Kayastha, Arvind M

    2004-06-01

    Pigeonpea ( Cajanus cajan ) urease was immobilized on 1 cmx1 cm DEAE-cellulose paper strips. The optimum immobilization (51% activity) was observed at 4 degrees C, with a protein concentration of 1.0 mg/strip. The apparent optimum pH shifted from 7.3 to 6.8. Immobilized urease showed an optimal stability temperature of 67 degrees C, compared with 47 degrees C for the soluble urease. Time-dependent kinetics of the thermal inactivation of the immobilized urease were examined and found to be monophasic as compared with the soluble enzyme, which was biphasic. The Michaelis constant ( K (m)) for the DEAE-cellulose-immobilized urease was found to be 4.75 mM, 1.5 times higher than the soluble enzyme. Immobilized strips stored at 4 degrees C showed an increased half-life ( t (1/2)=150 days). There was practically no leaching of the enzyme from the immobilized strips over a period of 2 weeks. These strips were used for estimating the urea content of blood samples; the results obtained matched well with those obtained in a clinical laboratory through an Autoanalyzer(R) (Zydus Co., Rome, Italy). The easy availability of pigeonpea urease, the ease of its immobilization on DEAE-cellulose strips and the significantly lower cost of urease described in the present study makes it a suitable product for future applications in diagnostics.

  12. Increased effectiveness of competitive rhizobium strains upon inoculation of Cajanus cajan

    SciTech Connect

    Hernandez, B.S.; Poth, M.; Focht, D.D.

    1987-09-01

    A field study was conducted in lysimeters containing /sup 15/N-enriched soil to determine the effects of four competitive rhizobium strains upon yield parameters of pigeon peas (Cajanus cajan). The greatest differences observed were in seed yields; strain P132 effected the highest seed yield (121 +/- 20 g per plant), and the control strain (indigenous rhizobia) effected the lowest yield (43.9 +/- 8 g per plant). With the exception of seeds and pods, the dry matter weights were not different. Although there appeared to be no effect by inoculum strains on the fractional content of N derived from biological nitrogen fixation when the total plant biomass was considered, strains P132 and 401 partitioned more of the N derived from fixation into seeds and leaves than did the other strains. Because the seeds comprised the major portion of plant N, more total N and more N derived from biological nitrogen fixation (about half of total N) were found in plants inoculated with P132, whereas the smallest amount was found in the uninoculated controls. P132 was also the best competitor with respect to indigenous rhizobia and accounted for all of the nodules found on the plants in which it was inoculated.

  13. Characterization of Five Fungal Endophytes Producing Cajaninstilbene Acid Isolated from Pigeon Pea [Cajanus cajan (L.) Millsp.

    PubMed Central

    Zu, Yuan Gang; Fu, Yu Jie; Wang, Wei; Luo, Meng; Efferth, Thomas

    2011-01-01

    Five fungal endophytes (K4, K5, K6, K9, K14) producing Cajaninstilbene acid (CSA, 3-hydroxy-4-prenyl-5-methoxystilbene-2-carboxylic acid) were isolated from the roots of pigeon pea [Cajanus cajan (L.) Millsp.]. CSA is responsible for the prominent pharmacological activities in pigeon pea. The amount of CSA in culture solution varied among the five fungal endophytes. K4 produced the highest levels of CSA (1037.13 µg/L) among the endophytes tested after incubation for five days. Both morphological characteristics and molecular methods were used for species identification of fungal endophytes. The five endophytic isolates were characterized by analyzing the internal transcribed spacer (ITS) rRNA and β-tubulin genes. The K4, K5, K9 and K14 strains isolated from pigeon pea roots were found to be closely related to the species Fusarium oxysporum. K6 was identified as Neonectria macrodidym. The present study is the first report on the isolation and identification of fungal endophytes producing CSA in pigeon pea. The study also provides a scientific base for large scale production of CSA. PMID:22102911

  14. Influence of cadmium stress and arbuscular mycorrhizal fungi on nodule senescence in Cajanus cajan (L.) Millsp.

    PubMed

    Garg, Neera; Bhandari, Purnima

    2012-01-01

    Cadmium (Cd) causes oxidative damage and affects nodulation and nitrogen fixation process of legumes. Arbuscular mycorrhizal (AM) fungi have been demonstrated to alleviate heavy metal stress of plants. The present study was conducted to assess role of AM in alleviating negative effects of Cd on nodule senescence in Cajanus cajan genotypes differing in their metal tolerance. Fifteen day-old plants were subjected to Cd treatments--25 mg and 50 mg Cd per kg dry soil and were grown with and without Glomus mosseae. Cd treatments led to a decline in mycorrhizal infection (MI), nodule number and dry weights which was accompanied by reductions in leghemoglobin content, nitrogenase activity, organic acid contents. Cd supply caused a marked decrease in nitrogen (N), phosphorus (P), and iron (Fe) contents. Conversely, Cd increased membrane permeability, thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), and Cd contents in nodules. AM inoculations were beneficial in reducing the above mentioned harmful effects of Cd and significantly improved nodule functioning. Activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) increased markedly in nodules of mycorrhizal-stressed plants. The negative effects of Cd were genotype and concentration dependent.

  15. Pigeonpea (Cajanus cajan L.) urease immobilized on glutaraldehyde-activated chitosan beads and its analytical applications.

    PubMed

    Kayastha, A M; Srivastava, P K

    2001-01-01

    Urease from pigeonpea (Cajanus cajan L.) was covalently linked to crab shell chitosan beads using glutaraldehyde. The optimum immobilization (64% activity) was observed at 4 degrees C, with a protein concentration of 0.24 mg/bead and 3% glutaraldehyde. The immobilized enzyme stored in 0.05 M Tris-acetate buffer, pH 7.3, at 4 degrees C had a t(1/2) of 110 d. There was practically no leaching of enzyme (<3%) from the immobilized beads in 30 d. The immobilized urease was used 10 times at an interval of 24 h between each use with 80% residual activity at the end of the period. The chitosan-immobilized urease showed a significantly higher Michaelis constant (8.3 mM) compared to that of the soluble urease (3.0 mM). Its apparent optimum pH also shifted from 7.3 to 8.5. Immobilized urease showed an optimal temperature of 77 degrees C, compared with 47 degrees C for the soluble urease. Time-dependent kinetics of the thermal denaturation of immobilized urease was studied and found to be monophasic in nature compared to biphasic in nature for soluble enzyme. This immobilized urease was used to analyze blood urea of some of the clinical samples from the clinical pathology laboratories. The results compared favorably with those obtained by the various chemical/biochemical methods employed in the clinical pathology laboratories. A column packed with immobilized urease beads was also prepared in a syringe for the regular and continuous monitoring of serum urea concentrations.

  16. Structural and functional characterization of proteinase inhibitors from seeds of Cajanus cajan (cv. ICP 7118).

    PubMed

    Swathi, Marri; Lokya, Vadthya; Swaroop, Vanka; Mallikarjuna, Nalini; Kannan, Monica; Dutta-Gupta, Aparna; Padmasree, Kollipara

    2014-10-01

    Proteinase inhibitors (C11PI) from mature dry seeds of Cajanus cajan (cv. ICP 7118) were purified by chromatography which resulted in 87-fold purification and 7.9% yield. SDS-PAGE, matrix assisted laser desorption ionization time-of-flight (MALDI-TOF/TOF) mass spectrum and two-dimensional (2-D) gel electrophoresis together resolved that C11PI possessed molecular mass of 8385.682 Da and existed as isoinhibitors. However, several of these isoinhibitors exhibited self association tendency to form small oligomers. All the isoinhibitors resolved in Native-PAGE and 2-D gel electrophoresis showed inhibitory activity against bovine pancreatic trypsin and chymotrypsin as well as Achaea janata midgut trypsin-like proteases (AjPs), a devastating pest of castor plant. Partial sequences of isoinhibitor (pI 6.0) obtained from MALDI-TOF/TOF analysis and N-terminal sequencing showed 100% homology to Bowman-Birk Inhibitors (BBIs) of leguminous plants. C11PI showed non-competitive inhibition against trypsin and chymotrypsin. A marginal loss (<15%) in C11PI activity against trypsin at 80 (°)C and basic pH (12.0) was associated with concurrent changes in its far-UV CD spectra. Further, in vitro assays demonstrated that C11PI possessed significant inhibitory potential (IC50 of 78 ng) against AjPs. On the other hand, in vivo leaf coating assays demonstrated that C11PI caused significant mortality rate with concomitant reduction in body weight of both larvae and pupae, prolonged the duration of transition from larva to pupa along with formation of abnormal larval-pupal and pupal-adult intermediates. Being smaller peptides, it is possible to express C11PI in castor to protect them against its devastating pest A. janata.

  17. Growth and Nutrient Utilization in Kids Fed Expander-extruded Complete Feed Pellets Containing Red Gram (Cajanus cajan) Straw.

    PubMed

    Reddy, P B; Reddy, T J; Reddy, Y R

    2012-12-01

    A growth and digestibility study was conducted using Osmanabadi goat male kids by feeding complete diets in the form of mash or expander extruded pellets containing different levels of red gram (Cajanus cajan) straw (RGS). Two iso-nitrogenous complete diets were prepared by incorporating RGS at 35% and 50% levels. Half the quantity of each complete mash feed was then converted into pellets through expander extruder processing. Thirty two kids of 4 to 5 months age were divided into four groups of eight each and were fed for 150 d with four experimental diets (T1: mash with 35% RGS, T2: mash with 50% RGS, T3: pellets with 35% RGS and T4: pellets with 50% RGS). Pelleting of complete diets significantly (p<0.001) increased the voluntary feed intake (671.45 vs 426.28 g/d) at both levels of RGS in the feeds. Average daily gain (ADG, g/d) also increased significantly (p<0.001) from 48.79 in kids fed mash diet to 71.29 in those fed with pelleted diets. Feed conversion efficiency (dry matter (DM) intake: weight gain) was comparable among all the treatment groups. Digestibility of nutrients was not affected by pelleting of the feeds whereas, increasing the level of inclusion of RGS in feeds from 35% to 50% decreased (p<0.05) the digestibility of DM and crude protein (CP) resulting in lower (p<0.001) metabolizable energy (ME) content (MJ/kg DM) in feeds with 50% RGS (7.93 vs 8.75). Daily intake (MJ/kg BW(-0.75)) of ME decreased (p<0.05) in feeds containing 50% RGS while pelleting of feeds increased (p<0.05) the intake of DM, CP, digestible crude protein (DCP) and ME. It is inferred that expander extruder pelleting can efficiently utilize RGS up to 50% level in complete diets for growing goat kids.

  18. Evaluation and Validation of Housekeeping Genes as Reference for Gene Expression Studies in Pigeonpea (Cajanus cajan) Under Drought Stress Conditions

    PubMed Central

    Sinha, Pallavi; Singh, Vikas K.; Suryanarayana, V.; Krishnamurthy, L.; Saxena, Rachit K.; Varshney, Rajeev K.

    2015-01-01

    Gene expression analysis using quantitative real-time PCR (qRT-PCR) is a very sensitive technique and its sensitivity depends on the stable performance of reference gene(s) used in the study. A number of housekeeping genes have been used in various expression studies in many crops however, their expression were found to be inconsistent under different stress conditions. As a result, species specific housekeeping genes have been recommended for different expression studies in several crop species. However, such specific housekeeping genes have not been reported in the case of pigeonpea (Cajanus cajan) despite the fact that genome sequence has become available for the crop. To identify the stable housekeeping genes in pigeonpea for expression analysis under drought stress conditions, the relative expression variations of 10 commonly used housekeeping genes (EF1α, UBQ10, GAPDH, 18SrRNA, 25SrRNA, TUB6, ACT1, IF4α, UBC and HSP90) were studied on root, stem and leaves tissues of Asha (ICPL 87119). Three statistical algorithms geNorm, NormFinder and BestKeeper were used to define the stability of candidate genes. geNorm analysis identified IF4α and TUB6 as the most stable housekeeping genes however, NormFinder analysis determined IF4α and HSP90 as the most stable housekeeping genes under drought stress conditions. Subsequently validation of the identified candidate genes was undertaken in qRT-PCR based gene expression analysis of uspA gene which plays an important role for drought stress conditions in pigeonpea. The relative quantification of the uspA gene varied according to the internal controls (stable and least stable genes), thus highlighting the importance of the choice of as well as validation of internal controls in such experiments. The identified stable and validated housekeeping genes will facilitate gene expression studies in pigeonpea especially under drought stress conditions. PMID:25849964

  19. Evaluation and validation of housekeeping genes as reference for gene expression studies in pigeonpea (Cajanus cajan) under drought stress conditions.

    PubMed

    Sinha, Pallavi; Singh, Vikas K; Suryanarayana, V; Krishnamurthy, L; Saxena, Rachit K; Varshney, Rajeev K

    2015-01-01

    Gene expression analysis using quantitative real-time PCR (qRT-PCR) is a very sensitive technique and its sensitivity depends on the stable performance of reference gene(s) used in the study. A number of housekeeping genes have been used in various expression studies in many crops however, their expression were found to be inconsistent under different stress conditions. As a result, species specific housekeeping genes have been recommended for different expression studies in several crop species. However, such specific housekeeping genes have not been reported in the case of pigeonpea (Cajanus cajan) despite the fact that genome sequence has become available for the crop. To identify the stable housekeeping genes in pigeonpea for expression analysis under drought stress conditions, the relative expression variations of 10 commonly used housekeeping genes (EF1α, UBQ10, GAPDH, 18SrRNA, 25SrRNA, TUB6, ACT1, IF4α, UBC and HSP90) were studied on root, stem and leaves tissues of Asha (ICPL 87119). Three statistical algorithms geNorm, NormFinder and BestKeeper were used to define the stability of candidate genes. geNorm analysis identified IF4α and TUB6 as the most stable housekeeping genes however, NormFinder analysis determined IF4α and HSP90 as the most stable housekeeping genes under drought stress conditions. Subsequently validation of the identified candidate genes was undertaken in qRT-PCR based gene expression analysis of uspA gene which plays an important role for drought stress conditions in pigeonpea. The relative quantification of the uspA gene varied according to the internal controls (stable and least stable genes), thus highlighting the importance of the choice of as well as validation of internal controls in such experiments. The identified stable and validated housekeeping genes will facilitate gene expression studies in pigeonpea especially under drought stress conditions.

  20. Growth and Nutrient Utilization in Kids Fed Expander-extruded Complete Feed Pellets Containing Red Gram (Cajanus cajan) Straw

    PubMed Central

    Reddy, P. B.; Reddy, T. J.; Reddy, Y. R.

    2012-01-01

    A growth and digestibility study was conducted using Osmanabadi goat male kids by feeding complete diets in the form of mash or expander extruded pellets containing different levels of red gram (Cajanus cajan) straw (RGS). Two iso-nitrogenous complete diets were prepared by incorporating RGS at 35% and 50% levels. Half the quantity of each complete mash feed was then converted into pellets through expander extruder processing. Thirty two kids of 4 to 5 months age were divided into four groups of eight each and were fed for 150 d with four experimental diets (T1: mash with 35% RGS, T2: mash with 50% RGS, T3: pellets with 35% RGS and T4: pellets with 50% RGS). Pelleting of complete diets significantly (p<0.001) increased the voluntary feed intake (671.45 vs 426.28 g/d) at both levels of RGS in the feeds. Average daily gain (ADG, g/d) also increased significantly (p<0.001) from 48.79 in kids fed mash diet to 71.29 in those fed with pelleted diets. Feed conversion efficiency (dry matter (DM) intake: weight gain) was comparable among all the treatment groups. Digestibility of nutrients was not affected by pelleting of the feeds whereas, increasing the level of inclusion of RGS in feeds from 35% to 50% decreased (p<0.05) the digestibility of DM and crude protein (CP) resulting in lower (p<0.001) metabolizable energy (ME) content (MJ/kg DM) in feeds with 50% RGS (7.93 vs 8.75). Daily intake (MJ/kg BW−0.75) of ME decreased (p<0.05) in feeds containing 50% RGS while pelleting of feeds increased (p<0.05) the intake of DM, CP, digestible crude protein (DCP) and ME. It is inferred that expander extruder pelleting can efficiently utilize RGS up to 50% level in complete diets for growing goat kids. PMID:25049537

  1. Application of fly ash on the growth performance and translocation of toxic heavy metals within Cajanus cajan L.: implication for safe utilization of fly ash for agricultural production.

    PubMed

    Pandey, Vimal Chandra; Abhilash, P C; Upadhyay, Raj Narayan; Tewari, D D

    2009-07-15

    The present study was undertaken to examine the influence of the application of fly ash (FA) into garden soil for Cajanus cajan L. cultivation and on accumulation and translocation of hazardous metals from FA to edible part. Numerous studies have been reported on the growth and yield of agricultural crops under FA stress; however, there is a dearth of studies recommending the safe utilization of fly ash for crop production. Pot experiments were conducted on C. cajan L., a widely cultivating legume in India for its highly nutritious seeds. C. cajan L. were grown in garden soil and amended with varying concentrations of FA in a weight/weight ratio (0%, 25%, 50% and 100%; w/w). Incorporation of fly ash from 25% to 100% in garden soil increases the levels of pH, particle density, porosity and water holding capacity from 3.47% to 26.39%, 3.98% to 26.14%, 37.50% to 147.92% and 163.16% to 318.42%, respectively, than the control while bulk density decrease respectively from 8.94% to 48.89%. Pot experiment found that accumulation and translocation of heavy metals in tested plant depends on the concentration of FA. Addition of FA at lower concentration (25%) had shown positive results in most of the studied parameters of growth and yield (14.23% than control). The experimental results confirmed that lower concentration of FA (25%) is safe for C. cajan cultivation, which not only enhanced the yield of C. cajan L. significantly but also ensured the translocation of heavy metals to edible parts within the critical limits.

  2. Effect of Agricultural Amendments on Cajanus cajan (Pigeon Pea) and Its Rhizospheric Microbial Communities--A Comparison between Chemical Fertilizers and Bioinoculants.

    PubMed

    Gupta, Rashi; Bisaria, V S; Sharma, Shilpi

    2015-01-01

    Inoculation of leguminous seeds with bioinoculants has been practiced in agriculture for decades to ameliorate grain yield by enhanced growth parameters and soil fertility. However, effective enhancement of plant growth parameters results not only from the direct effects these bioinoculants impose on them but also from their non-target effects. The ability of bioinoculants to reduce the application of chemicals for obtaining optimum yield of legume appears to be of great ecological and economic importance. In the present study, we compared the influence of seed inoculation of Cajanus cajan with a microbial consortium, comprising Bacillus megaterium, Pseudomonas fluorescens and Trichoderma harzianum, with that of application of chemical fertilizers on plant's growth parameters and its rhizospheric microbial communities. Real-time PCR assay was carried out to target the structure (16S rRNA) and function (nitrogen cycle) of rhizospheric microbiota, using both DNA and RNA as markers. The results showed that the microbial consortium was the most efficient in increasing grain yield (2.5-fold), even better than the recommended dose of chemical fertilizers (by 1.2-fold) and showed enhancement in nifH and amoA transcripts by 2.7- and 2.0-fold, respectively. No adverse effects of bioinoculants' application were observed over the rhizospheric microbial community, rendering the consortium to be safe for release in agricultural fields.

  3. Use of Lactobacillus acidophilus and Lactobacillus casei for a potential probiotic legume-based fermented product using pigeon pea (Cajanus cajan).

    PubMed

    Parra, K; Ferrer, M; Piñero, M; Barboza, Y; Medina, L M

    2013-02-01

    The aim of the present study was to evaluate the use of pigeon pea (Cajanus cajan) as an appropriate substrate in the production of a legume-based fermented product with Lactobacillus acidophilus ATCC 314 or Lactobacillus casei ATCC 393 and then to ascertain the effects of the addition of ingredients such as powdered milk and banana or strawberry sauce. The products were analyzed for viable cell counts, pH, and sensory attributes during product manufacture and throughout the refrigerated storage period at 3, 7, 14, 21, and 28 days. Nine types of products were produced. At the end of the storage period, the viability of L. acidophilus was above 7 log CFU/g in the presence of milk and 20% sucrose fruit sauce. For products with L. casei, the lack of ingredients such as milk caused no significant loss in viability; however, a high concentration of sucrose in the fruit sauce was an important factor in maintaining a high L. casei population. L. casei had high viability and good sensory attributes. Both strains could be considered suitable for a pigeon pea-based fermented potential probiotic product and a low-cost protein source.

  4. Chemical composition of the SFE-CO extracts from Cajanus cajan (L.) Huth and their antimicrobial activity in vitro and in vivo.

    PubMed

    Zu, Yuan-gang; Liu, Xiao-lei; Fu, Yu-jie; Wu, Nan; Kong, Yu; Wink, Michael

    2010-12-01

    The in vitro and in vivo antimicrobial activities of SFE-CO₂(supercritical fluid extraction) extracts and ethanol extracts from Cajanus cajan (L.) Huth were investigated. The flavonoid compounds orientin, vitexin, isovitexin, pinostrobin and the stilbene cajaninstilbene acid were detected in SFE-CO₂ extracts by HPLC-DAD. In vitro antimicrobial activities of the extracts were evaluated against eight microbial strains (the bacteria Staphylococcus epidermidis, Staphylococcus aureus, Bacillus subtilis, Proteus vulgaris, Pseudomonas aeruginosa, Escherichia coli; and the fungi Aspergillus niger and Candida albicans). A marked inhibitory effect of the SFE extracts was observed against Staphylococcus epidermidis, Staphylococcus aureus and Bacillus subtilis. The IC(50) of SFE-CO₂ extracts ranged from 0.0557 mg/ml to 0.0689 mg/ml consisting of cancer (MCF-7 (0.0557 mg/ml)) as well as non-cancer (BHK-21 (0.0641 mg/ml), RAW264.7 (0.0689 mg/ml) and Vero (0.0625 mg/ml)) cells. Flow cytometry (FCM) was used to analyze death rate of the most sensitive strain (Staphylococcus aureus) caused by the SFE extracts. Additionally, the whole cell proteins of Staphylococcus aureus were analyzed by SDS-PAGE to detect if there were changes in protein patterns. In vivo antimicrobial activity was studies in mice that had been inoculated with Staphylococcus aureus. The potential mechanism of antimicrobial activity in vivo was studied by histopathology.

  5. Identification and Validation of Selected Universal Stress Protein Domain Containing Drought-Responsive Genes in Pigeonpea (Cajanus cajan L.)

    PubMed Central

    Sinha, Pallavi; Pazhamala, Lekha T.; Singh, Vikas K.; Saxena, Rachit K.; Krishnamurthy, L.; Azam, Sarwar; Khan, Aamir W.; Varshney, Rajeev K.

    2016-01-01

    Pigeonpea is a resilient crop, which is relatively more drought tolerant than many other legume crops. To understand the molecular mechanisms of this unique feature of pigeonpea, 51 genes were selected using the Hidden Markov Models (HMM) those codes for proteins having close similarity to universal stress protein domain. Validation of these genes was conducted on three pigeonpea genotypes (ICPL 151, ICPL 8755, and ICPL 227) having different levels of drought tolerance. Gene expression analysis using qRT-PCR revealed 6, 8, and 18 genes to be ≥2-fold differentially expressed in ICPL 151, ICPL 8755, and ICPL 227, respectively. A total of 10 differentially expressed genes showed ≥2-fold up-regulation in the more drought tolerant genotype, which encoded four different classes of proteins. These include plant U-box protein (four genes), universal stress protein A-like protein (four genes), cation/H(+) antiporter protein (one gene) and an uncharacterized protein (one gene). Genes C.cajan_29830 and C.cajan_33874 belonging to uspA, were found significantly expressed in all the three genotypes with ≥2-fold expression variations. Expression profiling of these two genes on the four other legume crops revealed their specific role in pigeonpea. Therefore, these genes seem to be promising candidates for conferring drought tolerance specifically to pigeonpea. PMID:26779199

  6. Comparative study of antidiabetic activity of Cajanus cajan and Tamarindus indica in alloxan-induced diabetic mice with a reference to in vitro antioxidant activity

    PubMed Central

    Nahar, Laizuman; Nasrin, Fatema; Zahan, Ronok; Haque, Anamul; Haque, Ekramul; Mosaddik, Ashik

    2014-01-01

    Background: Oxidative stress not only develops complications in diabetic (type 1 and type 2) but also contributes to beta cell destruction in type 2 diabetes in insulin resistance hyperglycemia. Glucose control plays an important role in the pro-oxidant/antioxidant balance. Some antidiabetic agents may by themselves have antioxidant properties independently of their role on glucose control. Objective: The present investigation draws a comparison of the protective antioxidant activity, total phenol content and the antihyperglycemic activity of the methanolic extract of Cajanus cajan root (MCC) and Tamarindus indica seeds (MTI). Materials and Methods: Antidiabetic potentials of the plant extracts were evaluated in alloxan-induced diabetic Swiss albino mice. The plant extracts at the doses of 200 and 400 mg/kg body weight was orally administered for glucose tolerance test during 1-hour study and hypoglycemic effect during 5-day study period in comparison with reference drug Metformin HCl (50 mg/kg). In vitro antioxidant potential of MCC and MTI was investigated by using 1, 1- diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity at 517 nm. Total phenolic content, total antioxidant capacity and reducing power activity was also assayed. Results: There was a significant decrease in fasting serum glucose level (P < 0.001), reduction in blood glucose level (P < 0.001) in 5-days study, observed in the alloxan-induced diabetic mice. The reduction efficacy of blood glucose level of both the extracts is proportional to their dose but MCC is more potent than MTI. Antioxidant study and quantification of phenolic compound of both the extracts revealed that they have high antioxidant capacity. Conclusion: These studies showed that MCC and MTI have both hypoglycemic and antioxidant potential but MCC is more potent than MTI. The present study suggests that both MCC and MTI could be used in managing oxidative stress. PMID:24761124

  7. Comparison of N(2) Fixation and Yields in Cajanus cajan between Hydrogenase-Positive and Hydrogenase-Negative Rhizobia by In Situ Acetylene Reduction Assays and Direct N Partitioning.

    PubMed

    La Favre, J S; Focht, D D

    1983-08-01

    Pigeon peas [Cajanus cajan (L.) Millsp.] were grown in soil columns containing (15)N-enriched organic matter. Seasonal N(2) fixation activity was determined by periodically assaying plants for reduction of C(2)H(2). N(2) fixation rose sharply from the first assay period at 51 days after planting to a peak of activity between floral initiation and fruit set. N(2) fixation (acetylene reduction) activity dropped concomitantly with pod maturation but recovered after pod harvests. Analysis of (15)N content of plant shoots revealed that approximately 91 to 94% of plant N was derived from N(2) fixation. The effect of inoculation with hydrogenase-positive and hydrogenase-negative rhizobia was examined. Pigeon peas inoculated with strain P132 (hydrogenase-positive) yielded significantly more total shoot N than other inoculated or uninoculated treatments. However, two other hydrogenase-positive strains did not yield significantly more total shoot N than a hydrogenase-negative strain. The extent of nodulation by inoculum strains compared to indigenous rhizobia was determined by typing nodules according to intrinsic antibiotic resistance of the inoculum strains. The inoculum strains were detected in almost all typed nodules of inoculated plants.Gas samples were taken from soil columns several times during the growth cycle of the plants. H(2) was never detected, even in columns containing pigeon peas inoculated with hydrogenase-negative rhizobia. This was attributed to H(2) consumption by soil bacteria. Estimation of N(2) fixation by acetylene reduction activity was closest to the direct (15)N method when ethylene concentrations in the gas headspace (between the column lid and soil surface) were extrapolated to include the soil pore space as opposed solely to measurement in the headspace. There was an 8-fold difference between the two acetylene reduction assay methods of estimation. Based on a planting density of 15,000 plants per hectare, the direct (15)N fixation rates ranged

  8. Cytoplasmic Male Sterility-Associated Chimeric Open Reading Frames Identified by Mitochondrial Genome Sequencing of Four Cajanus Genotypes

    PubMed Central

    Tuteja, Reetu; Saxena, Rachit K.; Davila, Jaime; Shah, Trushar; Chen, Wenbin; Xiao, Yong-Li; Fan, Guangyi; Saxena, K. B.; Alverson, Andrew J.; Spillane, Charles; Town, Christopher; Varshney, Rajeev K.

    2013-01-01

    The hybrid pigeonpea (Cajanus cajan) breeding technology based on cytoplasmic male sterility (CMS) is currently unique among legumes and displays major potential for yield increase. CMS is defined as a condition in which a plant is unable to produce functional pollen grains. The novel chimeric open reading frames (ORFs) produced as a results of mitochondrial genome rearrangements are considered to be the main cause of CMS. To identify these CMS-related ORFs in pigeonpea, we sequenced the mitochondrial genomes of three C. cajan lines (the male-sterile line ICPA 2039, the maintainer line ICPB 2039, and the hybrid line ICPH 2433) and of the wild relative (Cajanus cajanifolius ICPW 29). A single, circular-mapping molecule of length 545.7 kb was assembled and annotated for the ICPA 2039 line. Sequence annotation predicted 51 genes, including 34 protein-coding and 17 RNA genes. Comparison of the mitochondrial genomes from different Cajanus genotypes identified 31 ORFs, which differ between lines within which CMS is present or absent. Among these chimeric ORFs, 13 were identified by comparison of the related male-sterile and maintainer lines. These ORFs display features that are known to trigger CMS in other plant species and to represent the most promising candidates for CMS-related mitochondrial rearrangements in pigeonpea. PMID:23792890

  9. Bioformulation of Burkholderia sp. MSSP with a multispecies consortium for growth promotion of Cajanus cajan.

    PubMed

    Pandey, Piyush; Maheshwari, D K

    2007-02-01

    The present work was undertaken to formulate an effective bioformulation using Burkholderia sp. strain MSSP, a known plant-growth-promoting rhizobacterium. MSSP was tagged with the reporter gene of green fluorescent protein (gfp) to monitor its population in cost-effective solid carriers, including sugarcane-bagasse, sawdust, cocoa peat, rice husk, wheat bran, charcoal, and rock phosphate, and paneer-whey as liquid carrier. Physical and chemical properties of different low-cost carrier materials were studied. The viability of the green fluorescent tagged variant of MSSP was estimated in different sterile carrier materials. Whey and wheat bran proved to be efficient carrier materials for the bioformulation. Sawdust, rock phosphate, rice husk, and cocoa peat were average, while charcoal and sugarcane-bagasse proved to be inferior carriers. The viability of strain MSSP was also assessed in wheat bran and whey-based consortium, having three other bacterial strains, namely Sinorhizobium meliloti PP3, Rhizobium leguminosarum Pcc, and Bacillus sp. strain B1. Presence of other plant-growth-promoting bacteria did not have any detrimental effect on the viability of MSSP. Efficiency of the wheat-bran-based multispecies consortium was studied on the growth of pigeonpea in field conditions. A considerable increase in plant biomass, nodule number and weight, and number of pods was recorded as compared with individual trials and with the control.

  10. Deciphering Transcriptional Programming during Pod and Seed Development Using RNA-Seq in Pigeonpea (Cajanus cajan)

    PubMed Central

    Pazhamala, Lekha T.; Agarwal, Gaurav; Bajaj, Prasad; Kumar, Vinay; Kulshreshtha, Akanksha; Saxena, Rachit K.; Varshney, Rajeev K.

    2016-01-01

    Seed development is an important event in plant life cycle that has interested humankind since ages, especially in crops of economic importance. Pigeonpea is an important grain legume of the semi-arid tropics, used mainly for its protein rich seeds. In order to understand the transcriptional programming during the pod and seed development, RNA-seq data was generated from embryo sac from the day of anthesis (0 DAA), seed and pod wall (5, 10, 20 and 30 DAA) of pigeonpea variety “Asha” (ICPL 87119) using Illumina HiSeq 2500. About 684 million sequencing reads have been generated from nine samples, which resulted in the identification of 27,441 expressed genes after sequence analysis. These genes have been studied for their differentially expression, co-expression, temporal and spatial gene expression. We have also used the RNA-seq data to identify important seed-specific transcription factors, biological processes and associated pathways during seed development process in pigeonpea. The comprehensive gene expression study from flowering to mature pod development in pigeonpea would be crucial in identifying candidate genes involved in seed traits directly or indirectly related to yield and quality. The dataset will serve as an important resource for gene discovery and deciphering the molecular mechanisms underlying various seed related traits. PMID:27760186

  11. Cultivar preference and sensory evaluation of vegetable pigeon pea (Cajanus cajan) in Eastern Kenya

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Preference and acceptability of twelve vegetable pigeon pea genotypes of medium maturity was evaluated in Eastern Kenya based on six seed cultivar parameters of color, appearance, taste, odor, tenderness and overall seed acceptability. The sensory characteristics were scored by consumers and farmers...

  12. Facile combustion synthesis of ZnO nanoparticles using Cajanus cajan (L.) and its multidisciplinary applications

    SciTech Connect

    Manjunath, K.; Ravishankar, T.N.; Kumar, Dhanith; Priyanka, K.P; Varghese, Thomas; Naika, H.Raja; Nagabhushana, H.; Sharma, S.C.; Dupont, J.; Ramakrishnappa, T.; Nagaraju, G.

    2014-09-15

    Graphical abstract: Facile combustion synthesis of ZnO nanoparticles using Cajanuscajan (L.) and its multidisciplinary applications.Zinc oxide nanoparticles were successfully synthesized by solution combustion method (SCM) using pigeon pea as a combustible fuel for the first time. The as-prepared product shows good photocatalytic, dielectric, antibacterial, electrochemical properties. - Highlights: • ZnO Nps were synthesized via combustion method using pigeon pea as a fuel. • The structure of the product was confirmed by XRD technique. • The morphology was confirmed by SEM and TEM images. • The as-prepared product shown good photocatalytic activity, dielectric property. • It has also shown good antibacterial and electrochemical properties. - Abstract: Zinc oxide nanoparticles (ZnO Nps) were successfully synthesized by solution combustion method (SCM) using pigeon pea as a fuel for the first time. X-Ray diffraction pattern reveals that the product belongs to hexagonal system. FTIR spectrum of ZnO Nps shows the band at 420 cm{sup −1} associated with the characteristic vibration of Zn–O. TEM images show that the nanoparticles are found to be ∼40–80 nm. Furthermore, the as-prepared ZnO Nps exhibits good photocatalytic activity for the photodegradation of methylene blue (MB), indicating that they are indeed a promising photocatalytic semiconductor. The antibacterial properties of ZnO nanopowders were investigated by their bactericidal activity against four bacterial strains.

  13. Phenotypic diversity and amylolytic activity of fast growing rhizobia from pigeonpea [Cajanus cajan (L.) Millsp.

    PubMed Central

    Júnior, Paulo Ivan Fernandes; de Lima, Andréa Aparecida; Passos, Samuel Ribeiro; Tuão Gava, Carlos Alberto; de Oliveira, Paulo Jansen; Rumjanek, Norma Gouvêa; Xavier, Gustavo Ribeiro

    2012-01-01

    This study evaluated 26 pigeonpea rhizobial isolates according to their cultural characteristics, intrinsic antibiotic resistance, salt and temperature tolerance, carbon source utilization and amylolytic activity. The cultural characterization showed that the majority of them presented the ability to acidify the YMA. Among the 27 isolates evaluated, 25 were able to grow when incubated at 42° C and 11 showed tolerance to 3% (w/v) of NaCl in YMA medium. The patterns of carbon sources utilization was very diverse among the isolates. It was observed the capacity of three strains to metabolize all the carbon sources evaluated and a total of 42% of the bacterial isolates was able to grow in the culture medium supplemented with at least, six carbon sources. The carbon sources mannitol (control) and sucrose were metabilized by all isolates evaluated. The profile of intrinsic resistance to antibiotics showed that the isolates were mostly resistant to streptomycin and ampicillin, but susceptible to kanamycin and chloranphenicol. High amylolytic activity of, at least, four isolates was also demonstrated, especially for isolated 47.3b, which showed the highest enzymatic index. These results indicate the metabolic versatility of the pigeonpea rhizobia, and indicates the isolate 47.3b to further studies regarding the amylase production and characterization. PMID:24031992

  14. Purification, crystallization and preliminary X-ray analysis of urease from pigeon pea (Cajanus cajan)

    SciTech Connect

    Balasubramanian, Anuradha; Ponnuraj, Karthe

    2008-07-01

    Urease from pigeon pea was purified and crystallized and X-ray diffraction data were collected at 2.5 Å resolution. Urease is a seed protein that is common to most Leguminosae. It also occurs in many bacteria, fungi and several species of yeast. Urease catalyzes the hydrolysis of urea to ammonia and carbon dioxide, thus allowing organisms to use exogenous and internally generated urea as a nitrogen source. Urease from pigeon pea seeds has been purified to electrophoretic homogeneity using a series of steps involving ammonium sulfate fractionation, acid precipitation, ion-exchange and size-exclusion chromatography techniques. The pigeon pea urease was crystallized and the resulting crystals diffracted to 2.5 Å resolution. The crystals belong to the rhombohedral space group R32, with unit-cell parameters a = b = 176.29, c = 346.44 Å.

  15. Immobilization of urease from pigeonpea (Cajanus cajan L.) in polyacrylamide gels and calcium alginate beads.

    PubMed

    Das, N; Kayastha, A M; Malhotra, O P

    1998-02-01

    Urease from pigeonpea was entrapped in polyacrylamide gel with 50% immobilization at 10% total monomer (containing 5% cross-linker) with high mechanical stability of the gel. Approximately 0.61 mg of protein could be loaded per 5 ml of gel. The immobilized enzyme had a t1/2 of approx. 200 days when stored in 0.1 M Tris/acetate buffer, pH 6.5, at 4 degrees C. The gel strips were used 4-5 times for urea assay over a period of 6 h with less than 2% loss of activity. Approximately 50% immobilization of urease in calcium alginate was observed at 3% alginate with 0.12 mg protein/ml alginate. The resultant enzyme beads showed a t1/2 of approx. 75 days when stored in 0.1 M Tris/acetate buffer, pH 6.5, at 4 degrees C. The beads were used 4-5 times for urea assay over a period of 6 h with about 40% loss of activity. In both cases, the enzyme activity was directly proportional to the amount of immobilized enzyme. There was practically no leaching of the entrapped enzyme over a period of 48 h from either of the polymers. Both the immobilized enzyme preparations were used to analyse the blood urea of some clinical samples from the University hospital. The results obtained compared favourably with those obtained by the usual method employed in the clinical pathology laboratory.

  16. Immobilization of urease from pigeonpea (Cajanus cajan) on agar tablets and its application in urea assay.

    PubMed

    Mulagalapalli, Swati; Kumar, Sandeep; Kalathur, Ravi Charan Reddy; Kayastha, Arvind M

    2007-09-01

    The pigeonpea urease was immobilized on agar, a common gelling substance. The tablet strips were used as moulds to cast agar tablets of uniform shape and size. The time and temperature of solidification of agar was 6 min and 44 degrees C, respectively. The 5 % agar (w/v) and 0.019 mg protein/agar tablet yielded an optimum immobilization of 51.7%. The optimum pH was shifted through 0.2 U (from 7.3 to 7.5) towards basic side upon immobilization. The optimum temperature of soluble and immobilized urease was 30 degrees C and 60 degrees C, respectively, showing the improvement in thermal stability of urease. There was an increase in K m from 3.23 to 5.07 mM after immobilization. The half-lives of soluble and immobilized urease were 21 and 53 days, respectively, at pH 7.3 and 4 degrees C. The urea was estimated in different blood samples with the help of immobilized urease and the results were consistent with those from clinical pathology laboratory through an autoanalyzer (Zydus Co., Rome, Italy).

  17. Genome wide in silico characterization of Dof gene families of pigeonpea (Cajanus cajan (L) Millsp.).

    PubMed

    Malviya, N; Gupta, S; Singh, V K; Yadav, M K; Bisht, N C; Sarangi, B K; Yadav, D

    2015-02-01

    The DNA binding with One Finger (Dof) protein is a plant specific transcription factor involved in the regulation of wide range of processes. The analysis of whole genome sequence of pigeonpea has identified 38 putative Dof genes (CcDof) distributed on 8 chromosomes. A total of 17 out of 38 CcDof genes were found to be intronless. A comprehensive in silico characterization of CcDof gene family including the gene structure, chromosome location, protein motif, phylogeny, gene duplication and functional divergence has been attempted. The phylogenetic analysis resulted in 3 major clusters with closely related members in phylogenetic tree revealed common motif distribution. The in silico cis-regulatory element analysis revealed functional diversity with predominance of light responsive and stress responsive elements indicating the possibility of these CcDof genes to be associated with photoperiodic control and biotic and abiotic stress. The duplication pattern showed that tandem duplication is predominant over segmental duplication events. The comparative phylogenetic analysis of these Dof proteins along with 78 soybean, 36 Arabidopsis and 30 rice Dof proteins revealed 7 major clusters. Several groups of orthologs and paralogs were identified based on phylogenetic tree constructed. Our study provides useful information for functional characterization of CcDof genes.

  18. Water used by grazed pigeon pea [Cajanus cajan(L) Millsp] in Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water use by the warm-season annual pulse pigeon pea must be described to effectively use this legume as forage to support late-summer grazing by stocker cattle in the southern Great Plains (SGP). This study was conducted in central Oklahoma during 2008 to 2010 to quantify water and water use effici...

  19. The Potential of Pigeonpea (Cajanus cajan) for Producing Important Components of Renewable Energy and Agricultural Products

    NASA Astrophysics Data System (ADS)

    Gwata, E.

    2012-04-01

    In agricultural systems, sustainable crop production is critical in meeting both environmental requirements and the limitations of drought imposed by the effects of global warming. The inputs for crop production and end use of the products should determine the choice of a crop particularly in environments prone to droughts. The objective of this paper is to highlight why a multi-purpose grain legume such as pigeonpea is an ideal crop that can be utilized for producing renewable energy. Firstly, it is highly tolerant to drought and does not require additional soil moisture after the seedling growth stage. The deep tape root extracts moisture and nutrients from deep layers of the soil concomitantly allowing for efficient nutrient recycling. The piscidic acid which is exuded from the roots enhances the solubilization of phosphorus in order to make it available for plant uptake. Secondly, the grain of pigeonpea is suitable for both human food and feedstocks. The grain is rich in oil, vitamins, minerals and protein. The grain can also be used for producing biofuel. In many countries particularly in the developing world, the stover is used as fuel wood or building (roofing) material, thus alleviating pressure on forest products. The crop is grown without the application of inorganic fertilizers as it can fix atmospheric nitrogen symbiotically in its root nodules. Pigeonpea is also ratoonable, producing two or more harvests per season. In addition, it is grown in mixed cropping systems thus optimizing land use. In these regards, pigeonpea is sustainable and environmentally friendly choice for agricultural production of food and energy balance.

  20. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers.

    PubMed

    Varshney, Rajeev K; Chen, Wenbin; Li, Yupeng; Bharti, Arvind K; Saxena, Rachit K; Schlueter, Jessica A; Donoghue, Mark T A; Azam, Sarwar; Fan, Guangyi; Whaley, Adam M; Farmer, Andrew D; Sheridan, Jaime; Iwata, Aiko; Tuteja, Reetu; Penmetsa, R Varma; Wu, Wei; Upadhyaya, Hari D; Yang, Shiaw-Pyng; Shah, Trushar; Saxena, K B; Michael, Todd; McCombie, W Richard; Yang, Bicheng; Zhang, Gengyun; Yang, Huanming; Wang, Jun; Spillane, Charles; Cook, Douglas R; May, Gregory D; Xu, Xun; Jackson, Scott A

    2011-11-06

    Pigeonpea is an important legume food crop grown primarily by smallholder farmers in many semi-arid tropical regions of the world. We used the Illumina next-generation sequencing platform to generate 237.2 Gb of sequence, which along with Sanger-based bacterial artificial chromosome end sequences and a genetic map, we assembled into scaffolds representing 72.7% (605.78 Mb) of the 833.07 Mb pigeonpea genome. Genome analysis predicted 48,680 genes for pigeonpea and also showed the potential role that certain gene families, for example, drought tolerance-related genes, have played throughout the domestication of pigeonpea and the evolution of its ancestors. Although we found a few segmental duplication events, we did not observe the recent genome-wide duplication events observed in soybean. This reference genome sequence will facilitate the identification of the genetic basis of agronomically important traits, and accelerate the development of improved pigeonpea varieties that could improve food security in many developing countries.

  1. A Comprehensive Transcriptome Assembly of Pigeonpea (Cajanus cajan L.) using Sanger and Second-Generation Sequencing Platforms

    PubMed Central

    Kudapa, Himabindu; Bharti, Arvind K.; Cannon, Steven B.; Farmer, Andrew D.; Mulaosmanovic, Benjamin; Kramer, Robin; Bohra, Abhishek; Weeks, Nathan T.; Crow, John A.; Tuteja, Reetu; Shah, Trushar; Dutta, Sutapa; Gupta, Deepak K.; Singh, Archana; Gaikwad, Kishor; Sharma, Tilak R.; May, Gregory D.; Singh, Nagendra K.; Varshney, Rajeev K.

    2012-01-01

    A comprehensive transcriptome assembly for pigeonpea has been developed by analyzing 128.9 million short Illumina GA IIx single end reads, 2.19 million single end FLX/454 reads, and 18 353 Sanger expressed sequenced tags from more than 16 genotypes. The resultant transcriptome assembly, referred to as CcTA v2, comprised 21 434 transcript assembly contigs (TACs) with an N50 of 1510 bp, the largest one being ∼8 kb. Of the 21 434 TACs, 16 622 (77.5%) could be mapped on to the soybean genome build 1.0.9 under fairly stringent alignment parameters. Based on knowledge of intron junctions, 10 009 primer pairs were designed from 5033 TACs for amplifying intron spanning regions (ISRs). By using in silico mapping of BAC-end-derived SSR loci of pigeonpea on the soybean genome as a reference, putative mapping positions at the chromosome level were predicted for 6284 ISR markers, covering all 11 pigeonpea chromosomes. A subset of 128 ISR markers were analyzed on a set of eight genotypes. While 116 markers were validated, 70 markers showed one to three alleles, with an average of 0.16 polymorphism information content (PIC) value. In summary, the CcTA v2 transcript assembly and ISR markers will serve as a useful resource to accelerate genetic research and breeding applications in pigeonpea. PMID:22241453

  2. Quality evaluation of stiff porridges prepared from Irish potato (Solanum tuberosum) and pigeon pea (Cajanus cajan) starch blends.

    PubMed

    Abu, Joseph Oneh; Enyinnaya, Chinma Chiemela; James, Samaila; Okeleke, Ezinne

    2012-06-01

    Quality attributes of stiff porridges prepared from Irish potato and pigeon pea starch blends were studied. Starches were extracted from Irish potato and pigeon pea using a wet extraction method. Various ratios of the starches were mixed and analyzed for chemical, functional and pasting properties. The starch blends were then prepared into stiff porridges for sensory evaluation using a 20-man sensory panel. Substitution of Irish potato starch with pigeon pea starch led to increases in protein (0.15 to 1.2%), fat (0.26 to 0.56%) and ash (0.30 to 0.69%) while the amylose content of the starch blends decreased (from 23.8 to 18.4%) respectively. Functional properties such as bulk density (0.75 to 0.60 g/cm(3)), water absorption capacity (3.1 to 2.6 g water/ g sample) and dispersibility (58.6 to 42.7%) decreased significantly (P < 0.05) at the highest concentration (50%) of pigeon pea starch respectively. Pasting properties such as peak, breakdown, final and setback viscosities increased with increasing levels of pigeon pea starch while peak time and pasting temperature decreased. The sensory attributes of stiff porridges were not adversely affected by pigeon pea starch inclusion. Therefore it should be possible to incorporate up to 50% of low digestible pigeon pea starch into Irish potato starch from legumes such as pigeon pea as alternatives to cassava starch in the preparation of stiff porridges. Such porridges made from Irish potato and legume starches could provide additional incentive for individuals requiring decreased and or slow starch digestibility such as diabetics.

  3. Development of a potential functional food prepared with pigeon pea (Cajanus cajan), oats and Lactobacillus reuteri ATCC 55730.

    PubMed

    Barboza, Yasmina; Márquez, Enrique; Parra, Katynna; Piñero, M Patricia; Medina, Luis M

    2012-11-01

    The purpose of this study was to investigate the survival of Lactobacillus reuteri ATCC 55730 in creams, prepared with pigeon peas and oat. Products were analysed to determine their content of protein, fibre, fat, carbohydrates and degree of likeness. Viable numbers of L. reuteri and pH were determined after 1, 7, 14, 21 and 28 days of storage at 4°C. Results showed significant differences (P < 0.05) in protein, fat, fibre and carbohydrate content between creams. No significant differences (P > 0.05) were found on sensory quality between control and creams with L. reuteri. After 28 days, the cell viability was above 7 log cfu/g in all creams. L. reuteri ATCC 55730 had the highest viability in cream with 40% pigeon pea and 20% oat (8.16 log cfu/g). In conclusion, due to its acceptability and highly nutritious value, the product could be used so as to support the growth of L. reuteri.

  4. Molecular cloning and characterization of the light-harvesting chlorophyll a/b gene from the pigeon pea (Cajanus cajan).

    PubMed

    Qiao, Guang; Wen, Xiao-Peng; Zhang, Ting

    2015-12-01

    Light-harvesting chlorophyll a/b-binding proteins (LHCB) have been implicated in the stress response. In this study, a gene encoding LHCB in the pigeon pea was cloned and characterized. Based on the sequence of a previously obtained 327 bp Est, a full-length 793 bp cDNA was cloned using the rapid amplification of cDNA ends (RACE) method. It was designated CcLHCB1 and encoded a 262 amino acid protein. The calculated molecular weight of the CcLHCB1 protein was 27.89 kDa, and the theoretical isoelectric point was 5.29. Homology search and sequence multi-alignment demonstrated that the CcLHCB1 protein sequence shared a high identity with LHCB from other plants. Bioinformatics analysis revealed that CcLHCB1 was a hydrophobic protein with three transmembrane domains. By fluorescent quantitative real-time polymerase chain reaction (PCR), CcLHCB1 mRNA transcripts were detectable in different tissues (leaf, stem, and root), with the highest level found in the leaf. The expression of CcLHCB1 mRNA in the leaves was up-regulated by drought stimulation and AM inoculation. Our results provide the basis for a better understanding of the molecular organization of LCHB and might be useful for understanding the interaction between plants and microbes in the future.

  5. Defining the transcriptome assembly and its use for genome dynamics and transcriptome profiling studies in pigeonpea (Cajanus cajan L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study reports generation of large-scale genomic resources for pigeonpea, a so-called ‘orphan crop species’ of the semi-arid tropic regions. Roche FLX/454 sequencing was carried out on a normalized cDNA pool prepared from 31 tissues produced 494,353 short transcript reads (STRs). Cluster analysi...

  6. A comparative method for protein extraction and 2-D gel electrophoresis from different tissues of Cajanus cajan

    PubMed Central

    Singh, Nisha; Jain, Neha; Kumar, Ram; Jain, Ajay; Singh, Nagendra K.; Rai, Vandna

    2015-01-01

    Pigeonpea is an important legume crop with high protein content. However, it is often subjected to various abiotic and biotic stresses. Proteomics is a state-of-the-art technique used to analyze the protein profiling of a tissue for deciphering the molecular entities that could be manipulated for developing crops resistant to these stresses. In this context, developing a comprehensive proteome profile from different vegetative and reproductive tissues has become mandatory. Although several protein extraction protocols from different tissues of diverse plant species have been reported, there is no report for pigeonpea. Here, we report tissue-specific protein extraction protocols representing vegetative (young leaves), and reproductive (flowers and seeds) organs and their subsequent analysis on 2-dimensional gel electrophoresis. The study explicitly demonstrated that the efficacy of a particular protein extraction protocol is dependent on the different tissues, such as leaves, flowers and seeds that differ in their structure and metabolic constituents. For instance, phenol-based protocol showed an efficacy toward higher protein yield, better spot resolution and a minimal streaking on 2-DE gel for both leaves and flowers. Protein extraction from seeds was best achieved by employing phosphate-TCA-acetone protocol. PMID:26300903

  7. Nitrate reductase and nitrite as additional components of defense system in pigeonpea (Cajanus cajan L.) against Helicoverpa armigera herbivory.

    PubMed

    Kaur, Rimaljeet; Gupta, Anil Kumar; Taggar, Gaurav Kumar

    2014-10-01

    Amylase inhibitors serve as attractive candidates of defense mechanisms against insect attack. Therefore, the impediment of Helicoverpa armigera digestion can be the effective way of controlling this pest population. Nitrite was found to be a potent mixed non-competitive competitive inhibitor of partially purified α-amylase of H. armigera gut. This observation impelled us to determine the response of nitrite and nitrate reductase (NR) towards H. armigera infestation in nine pigeonpea genotypes (four moderately resistant, three intermediate and two moderately susceptible). The significant upregulation of NR in moderately resistant genotypes after pod borer infestation suggested NR as one of the factors that determine their resistance status against insect attack. The pod borer attack caused greater reduction of nitrate and significant accumulation of nitrite in moderately resistant genotypes. The activity of nitrite reductase (NiR) was also enhanced more in moderately resistant genotypes than moderately susceptible genotypes on account of H. armigera herbivory. Expression of resistance to H. armigera was further revealed when significant negative association between NR, NiR, nitrite and percent pod damage was observed. This is the first report that suggests nitrite to be a potent inhibitor of H. armigera α-amylase and also the involvement of nitrite and NR in providing resistance against H. armigera herbivory.

  8. A comparative method for protein extraction and 2-D gel electrophoresis from different tissues of Cajanus cajan.

    PubMed

    Singh, Nisha; Jain, Neha; Kumar, Ram; Jain, Ajay; Singh, Nagendra K; Rai, Vandna

    2015-01-01

    Pigeonpea is an important legume crop with high protein content. However, it is often subjected to various abiotic and biotic stresses. Proteomics is a state-of-the-art technique used to analyze the protein profiling of a tissue for deciphering the molecular entities that could be manipulated for developing crops resistant to these stresses. In this context, developing a comprehensive proteome profile from different vegetative and reproductive tissues has become mandatory. Although several protein extraction protocols from different tissues of diverse plant species have been reported, there is no report for pigeonpea. Here, we report tissue-specific protein extraction protocols representing vegetative (young leaves), and reproductive (flowers and seeds) organs and their subsequent analysis on 2-dimensional gel electrophoresis. The study explicitly demonstrated that the efficacy of a particular protein extraction protocol is dependent on the different tissues, such as leaves, flowers and seeds that differ in their structure and metabolic constituents. For instance, phenol-based protocol showed an efficacy toward higher protein yield, better spot resolution and a minimal streaking on 2-DE gel for both leaves and flowers. Protein extraction from seeds was best achieved by employing phosphate-TCA-acetone protocol.

  9. New Hypervariable SSR Markers for Diversity Analysis, Hybrid Purity Testing and Trait Mapping in Pigeonpea [Cajanus cajan (L.) Millspaugh

    PubMed Central

    Bohra, Abhishek; Jha, Rintu; Pandey, Gaurav; Patil, Prakash G.; Saxena, Rachit K.; Singh, Indra P.; Singh, D.; Mishra, R. K.; Mishra, Ankita; Singh, F.; Varshney, Rajeev K.; Singh, N. P.

    2017-01-01

    Draft genome sequence in pigeonpea offers unprecedented opportunities for genomics assisted crop improvement via enabling access to genome-wide genetic markers. In the present study, 421 hypervariable simple sequence repeat (SSR) markers from the pigeonpea genome were screened on a panel of eight pigeonpea genotypes yielding marker validation and polymorphism percentages of 95.24 and 54.11%, respectively. The SSR marker assay uncovered a total of 570 alleles with three as an average number of alleles per marker. Similarly, the mean values for gene diversity and PIC were 0.44 and 0.37, respectively. The number of polymorphic markers ranged from 39 to 89 for different parental combinations. Further, 60 of these SSRs were assayed on 94 genotypes, and model based clustering using STRUCTURE resulted in the identification of the two subpopulations (K = 2). This remained in close agreement with the clustering patterns inferred from genetic distance (GD)-based approaches i.e., dendrogram, factorial and principal coordinate analysis (PCoA). The AMOVA accounted majority of the genetic variation within groups (89%) in comparison to the variation existing between the groups (11%). A subset of these markers was implicated for hybrid purity testing. We also demonstrated utility of these SSR markers in trait mapping through association and bi-parental linkage analyses. The general linear (GLM) and mixed linear (MLM) models both detected a single SSR marker (CcGM03681) with R2 = 16.4 as associated with the resistance to Fusarium wilt variant 2. Similarly, by using SSR data in a segregating backcross population, the corresponding restorer-of-fertility (Rf) locus was putatively mapped at 39 cM with the marker CcGM08896. However, The marker-trait associations (MTAs) detected here represent a very preliminary type and hence demand deeper investigations for conclusive evidence. Given their ability to reveal polymorphism in simple agarose gels, the hypervariable SSRs are valuable genomic resource for pigeonpea research community, particularly in South Asia and East Africa where pigeonpea is primarily grown.

  10. Changes and induction of aminopeptidase activities in response to pathogen infection during germination of pigeonpea (Cajanas cajan) seeds.

    PubMed

    Lomate, Purushottam R; Hivrale, Vandana K

    2011-10-15

    Aminopeptidases play important role in the mobilization of storage proteins at the cotyledon during seed germination. It is often referred as inducible component of defense against herbivore attack. However the role of aminopeptidase in response to pathogen attack in germinating seeds is remained to be unknown. An attempt was made to analyze change in the aminopeptidase (EC 3.4.11.1) activity during germination of pigeonpea (Cajanus cajan L.) seeds by infecting the seeds with fungi. Two aminopeptidase activity bands (AP1 and AP2) were detected in control as well as infected pigeonpea seeds. During latter stages of germination in control seeds, AP1 activity was replaced by AP2 activity. However AP1 activity was significantly induced in germinating seeds infected with Fusarium oxysporum f.sp. ciceri and Aspergillus niger var. niger. The estimated molecular weights of AP1 and AP2 were ∼97 and 42.8kDa respectively. The induced enzyme was purified up to 30 fold by gel filtration chromatography. The purified enzyme was preferentially cleaved leucine p-nitroanilide than alanine p-nitroanilide. The enzyme was strongly inhibited by bestatin and 1,10-phenanthroline. Almost 50% of enzyme activity was inhibited by ethylene diamine tetra acetate. The purified enzyme showed broad pH optima ranging from pH 6.0 to 9.0 and optimum at pH 8.5. The induction of aminopeptidase activity during pigeonpea seed germination and in response to pathogen attack indicates significant involvement of these enzymes in primary as well as secondary metabolism of the seeds. These findings could be helpful to further dissect defensive role of aminopeptidases in seed germination which is an important event in plant's life.

  11. Microbial Methane Oxidation Rates in Guandu Wetland of northern Taiwan

    NASA Astrophysics Data System (ADS)

    Yu, Zih-Huei; Wang, Pei-Ling; Lin, Li-Hung

    2016-04-01

    Wetland is one of the major sources of atmospheric methane. The exact magnitude of methane emission is essentially controlled by microbial processes. Besides of methanogenesis, methanotrophy oxidizes methane with the reduction of various electron acceptors under oxic or anoxic conditions. The interplay of these microbial activities determines the final methane flux under different circumstances. In a tidal wetland, the cyclic flooding and recession of tide render oxygen and sulfate the dominant electron acceptors for methane oxidation. However, the details have not been fully examined, especially for the linkage between potential methane oxidation rates and in situ condition. In this study, a sub-tropical wetland in northern Taiwan, Guandu, was chosen to examine the tidal effect on microbial methane regulation. Several sediment cores were retrieved during high tide and low tide period and their geochemical profiles were characterized to demonstrate in situ microbial activities. Incubation experiments were conducted to estimate potential aerobic and anaerobic methane oxidation rates in surface and core sediments. Sediment cores collected in high tide and low tide period showed different geochemical characteristics, owning to tidal inundation. Chloride and sulfate concentration were lower during low tide period. A spike of enhanced sulfate at middle depth intervals was sandwiched by two sulfate depleted zones above and underneath. Methane was accumulated significantly with two methane depletion zones nearly mirroring the sulfate spike zone identified. During the high tide period, sulfate decreased slightly with depth with methane production inhibited at shallow depths. However, a methane consumption zone still occurred near the surface. Potential aerobic methane oxidation rates were estimated between 0.7 to 1.1 μmole/g/d, showing no difference between the samples collected at high tide or low tide period. However, a lag phase was widely observed and the lag phase

  12. Induced alkoxyresorufin-O-dealkylases in tilapias (Oreochromis niloticus) from Guandu river, Rio de Janeiro, Brazil.

    PubMed

    Parente, Thiago E M; De-Oliveira, Ana C A X; Silva, Igor B; Araujo, Francisco G; Paumgartten, Francisco J R

    2004-03-01

    The activity of fish monooxygenases has been extensively used as a monitoring tool to detect contamination of water bodies by cytochrome P450-inducing agents. In this study we evaluated the activities of ethoxy- (EROD), methoxy- (MROD) and pentoxy- (PROD) resorufin-O-dealkylases in the liver of Nile tilapias (Oreochromis niloticus) collected at the Guandu river, at a reference clean site (Lake 1) and at two other sampling sites (Lakes 2 and 3) in Rio de Janeiro state, Brazil. Alkoxyresorufin-O-dealkylases were measured fluorimetrically in the hepatic S9 fraction. EROD (17.7-fold), MROD (14.2-fold) as well as PROD activities were considerably higher in tilapias from Guandu river. A moderate increase of EROD (5.0-fold) and MROD (5.4-fold) was also found in tilapias from Lake 3. These findings suggest that Guandu river watershed, the main source of urban drinking water supply in Rio de Janeiro, is polluted with CYP1A-inducing xenobiotics. Furthermore, we also found a good linear relationship between EROD and MROD, a finding that agrees with the hypothesis that the two reactions are catalysed by the same CYP1A isoform in O. niloticus.

  13. Nutrients and certain lipid soluble bioactive components in dehusked whole grains (gota) and dehusked splits (dhal) from pigeon pea (Cajanus cajan) and their cooking characteristics.

    PubMed

    Jayadeep, Padmanabhan A; Sashikala, Vadakkoot B; Pratape, Vishwas M

    2009-01-01

    The nutritional quality of dehusked whole grains (gota) and dehusked splits (dhal) in red and white varieties of pigeon pea regarding proximate composition and certain lipid-soluble bioactive components was investigated. A decrease in fat and crude fiber was noticed when gota was converted to dhal. The lipid profile of gota and dhal from red and white husk pigeon pea types indicated that essential fatty acids were greater in gota than in their respective dhals. Gota from white husk variety contained more tocopherols than the red variety. Dhal contained less tocopherols than gota. A decrease in the content of gamma and alpha tocopherols, vitamin E activity and total antioxidant activity also indicates loss of bioactive components on splitting gota into dhal. Cooking time and dispersed solids on cooking indicated good cooking quality of gotta. The results indicated the nutritional superiority of gota over dhal and its similarity with dhal in cooking characteristics.

  14. Selection and Validation of Housekeeping Genes as Reference for Gene Expression Studies in Pigeonpea (Cajanus cajan) under Heat and Salt Stress Conditions

    PubMed Central

    Sinha, Pallavi; Saxena, Rachit K.; Singh, Vikas K.; Krishnamurthy, L.; Varshney, Rajeev K.

    2015-01-01

    To identify stable housekeeping genes as a reference for expression analysis under heat and salt stress conditions in pigeonpea, the relative expression variation for 10 commonly used housekeeping genes (EF1α, UBQ10, GAPDH, 18Sr RNA, 25Sr RNA, TUB6, ACT1, IF4α, UBC, and HSP90) was studied in root, stem, and leaves tissues of Asha (ICPL 87119), a leading pigeonpea variety. Three statistical algorithms geNorm, NormFinder, and BestKeeper were used to define the stability of candidate genes. Under heat stress, UBC, HSP90, and GAPDH were found to be the most stable reference genes. In the case of salinity stress, GAPDH followed by UBC and HSP90 were identified to be the most stable reference genes. Subsequently, the above identified genes were validated using qRT-PCR based gene expression analysis of two universal stress-resposive genes namely uspA and uspB. The relative quantification of these two genes varied according to the internal controls (most stable, least stable, and combination of most stable and least stable housekeeping genes) and thus confirmed the choice as well as validation of internal controls in such experiments. The identified and validated housekeeping genes will facilitate gene expression studies under heat and salt stress conditions in pigeonpea. PMID:27242803

  15. Assessing and simulating the major pathway and hydrogeochemical transport of arsenic in the Beitou-Guandu area, Taiwan.

    PubMed

    Liu, Chen-Wing; Wang, Chin-Jen; Kao, Yu-Hsiun

    2016-02-01

    This study involved assessing and simulating the probable major pathways (surface and subsurface flow) and hydrogeochemical transport of arsenic (As) in the Beitou-Guandu area, Taiwan. A one-dimensional (1-D) generic, reactive, chemical transport model (PHREEQC) was adopted. The calibrated model showed that As transported to the downstream Guandu plain and Tan Shui river mouth accounted for 50.7 and approximately 100 % of the As in the subsurface flow pathway, respectively, suggesting that subsurface flow constituted a major As pathway. The highest As water concentration occurred near the Beitou geothermal valley because of the low pH and high redox potential in both the surface and subsurface pathways. However, As may be scavenged by aqueous Fe(II) in a reducing environment. The As concentrations in the downstream Guandu plain and Guandu wetland decreased as the simulated time increased, resulting in the adsorption of As on the surface of Fe oxydroxides and limiting the mobility of As in the surface flow pathway. The major retardation mechanism of As mobility in the subsurface flow pathway of the Guandu plain and Guandu wetland was governed by the adsorption reactions of iron-oxide and iron-sulfide minerals. The 1-D transport model was applied to predict the evolution of As in the subsurface flow pathway from 2013 to 2020. The results indicated that the As concentrations in all cells gradually increased. The geochemical redox reactions of As in the subsurface pathway subsequently led to the oxidization of As-bearing sulfides, causing As concentrations to rise substantially in the hillside area.

  16. Hydrochemical, mineralogical and isotopic investigation of arsenic distribution and mobilization in the Guandu wetland of Taiwan

    NASA Astrophysics Data System (ADS)

    Kao, Yu-Hsuan; Wang, Sheng-Wei; Maji, Sanjoy Kumar; Liu, Chen-Wuing; Wang, Pei-Ling; Chang, Fi-John; Liao, Chung-Min

    2013-08-01

    This study explores the distribution and mobilization of As in the ecosystem of the Guandu wetlands, Taiwan. The chemical parameters, chemical sequential extraction, mineralogical compositions, and sulfur isotopic compositions (i.e., δ34S[SO4] and δ18S[SO4]) of porewater and two sediment core samples (S2 and S5, locate in the inner and outer sites of the Guandu wetland) were analyzed to characterize As spatial distribution. The crucial mechanisms of the biogeochemical processes that control As mobility in wetland ecosystems were inferred. Based on factor analysis and cluster analysis, the vertical distributions of the redox zones in S2 and S5 were classified as oxidizing, transitional, and reducing zones, respectively. The mineralogical characteristics showed that adsorption and desorption are the major processes which control As retention in the surface sediment under cyclic aerobic/anaerobic conditions. Aqueous As and Fe were restrained because of oxidation, whereas aqueous Fe precipitated as amorphous metal oxides (i.e., FeO, FeOOH, and Fe2O3). Subsequently, aqueous As was adsorbed onto the surfaces of Fe(hydr)oxides, resulting in a high solid As content in the oxidizing zone. The high aqueous As content in the boundary of the transitional and reducing zones was caused by the reductive dissolution of highly dissolved Fe compounds through the microbial respiration of organic matter (OM). In the reducing zone, As3+ can be constrained by the formation of FeS2 in sediment during bacterial sulfate reduction that is governed by the relative enrichment of the δ34S[SO4] and δ18S[SO4] values. Sulfur disproportionation and the redox of elemental sulfur (S0) are additional reaction paths that cause As cycling. Arsenic mobility in the Guandu wetland is primarily caused by the reductive dissolution of As-containing Fe-oxyhydroxides and the redox cycling of sulfate/sulfide, accompanied by the respiration of OM.

  17. Hydrochemical study of an arsenic-contaminated plain in Guandu, north Taiwan

    NASA Astrophysics Data System (ADS)

    Hsiao, Yu-Hsiang

    2015-04-01

    Arsenic pollution in Guandu Plain, north Taiwan is a critical issue due to highly developed anthropogenic activities. It was considered that arsenic was carried in by surface water system. Two major rivers, Huanggang Creek and South Huang Greek, flow through Guandu Plain. Both creeks originate from Tatung Volcano Group, which is extensively active in post-volcanic activities. In this study, the hydrochemistry along the two major rivers was studied for tracing the source of arsenic pollution in Guandu Plain. The pH values in the upstream water are in the range from 6 to 8 but dramatically decrease down to 2-4.5 in the downstream area. It can be concluded that the creeks are recharged with very low pH geothermal water. In addition, arsenic shows a different spatial distribution. In Huanggang Creek, arsenic concentration is much higher, about 200 ppb to 500 ppb, in the downstream than in the upstream while arsenic concentration is extremely low, below 1 ppb, in the downstream of South Huang Greek. The geochemical results show that rare earth elements (REEs) are depleted in the upstream both in Huanggang creek and South Huang creek, and the NASC-normalized ratios of heavy to light REE (Lu/La) in the upstream are very close to 1. This demonstrates that the upstream water is geochemically dominated by the interaction between water and sedimentary rock. In the downstream, the NASC-normalized REE pattern shows a quit different type which is depleted in light REEs (much higher Lu/La ratio). It is well known that igneous rock is depleted in light REEs; therefore, arsenic is possibly volcanic origin. In this study, PHREEQC, a thermodynamic modeling program, was also utilized to calculate the saturation index (SI) of hydrous ferric oxide (HFO), which can effectively scavenge arsenic in water. The results demonstrate that SI of HFO is mainly controlled by pH in this study. When pH is greater than 3.5, HFO start to precipitate and remove arsenic from water. Therefore, it is

  18. Estimation of genetic variability in locally grown pulses (Cajans cajan (L.) Millsp and Vigna unguiculata (L.) Walp): a panacea for sourcing superior genotypes.

    PubMed

    Udensi, O; Edu, E A; Umana, E J; Ikpeme, E V

    2011-03-15

    The negligence of breeders and farmers to explore and exploit landraces of pulses is worrisome and urgent measures needed to be set in motion to forestall major future crisis, taking into cognizance the high adaptability and nutritive values accredited to them. This study focused on the estimation of genetic variability and heritability of desirable morphological characters in Fiofio (Cajans cajan) and Olaudi and Akidi (Vigna unguiculata) with the aim of conservation. Three landraces of pulses were sown using randomized complete block design. The field experiment was carried out at the University of Calabar Experimental Farm, University of Calabar, Calabar, during 2008-2010 growing season. Phenotypic and genotypic variances and coefficients of variation and genetic advance were estimated on yield and yield-related traits. The results showed that there were considerable variations among the pulses for the traits studied. The result revealed high genetic variability in the number of leaf per plant, leaf area, number of flowers per plant, number of pods per plant and number of seeds per plant. It also showed that genetic variability in pod length and 100-seed weight was low. Heritability estimates obtained in the result were very high though the magnitude of genetic variability in the yield and yield-related traits was not proportional to the heritability estimates. The traits studied also show high genetic advance. These explicitly showed that there are sufficient genetic variations to warrant conservation and improvement in these extinction-threatened pulses studied.

  19. Studies on the accumulation and transformation of arsenic in ecosystem in Guandu Wetland, Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.; Liu, C. W.; Kao, Y. H.

    2012-04-01

    High arsenic (As) is naturally occurred in geothermal areas, it may result in pollution of downstream wetland and estuary ecosystem. Arsenic concentration is up to 4.32 mg/L in geothermal spring water and overly exceeded the drinking water guideline of WHO (0.01 mg/L) that may result in wetland ecosystem damage. The influence of aqueous, solid and plant phase on As mobility in Guandu wetland, Taiwan, is not properly distinguished yet. The mangroves are particularly growing in study area and Kandelia obovata is one of the most dominant plant species. The purpose of this study is to discriminate that integration of aqueous, solid and plant phase is affected by As redox cycling. The chemical compounds (As, Fe, Mn, TOC, SO42-, FeS2) and isotopic compositions (δ34S ) in surface water and soil samples were analyzed, to characterize of As distribution. The sequential extraction of As and total As in plant samples were analyzed, to estimate the bioconcentration factor (BCF) and transfer factor (TF), and understand the accumulation and transformation of As for Kandelia obovata in aqueous and solid phase. The As concentration in plants (23.69 mg/kg) are higher than the surrounding water (0.0028 mg/L) and soils (16.33 mg/kg). Arsenic concentration in various plant tissues at maturity follow the order: roots (19.74 mg/kg) > stems (1.76 mg/kg) > leaves (1.71 mg/kg) > seedlings (0.48 mg/kg), and they are mostly accumulated in the roots. However, the result of As sequential extraction in the sediments indicate uptake of chemical compound in plant from sediments is difficult, depending on low bioavailability in plants. Besides, low transfer factor (TFstems/roots=0.088, TFleaves/roots=0.088 and TFseedlings/roots=0.024) indicate that the transformation of As in various plant tissues is very low. The results show that Kandelia obovata content low As bioavailability and low TF, cause of easy adaption to grow on As contaminated wetland ecosystem. BCFplants/porewater (10742.68) is

  20. Identification of Coupling and Repulsion Phase DNA Marker Associated With an Allele of a Gene Conferring Host Plant Resistance to Pigeonpea sterility mosaic virus (PPSMV) in Pigeonpea (Cajanus cajan L. Millsp.)

    PubMed Central

    Daspute, Abhijit; Fakrudin, B.

    2015-01-01

    Pigeonpea Sterility Mosaic Disease (PSMD) is an important foliar disease caused by Pigeonpea sterility mosaic virus (PPSMV) which is transmitted by eriophyid mites (Aceria cajani Channabasavanna). In present study, a F2 mapping population comprising 325 individuals was developed by crossing PSMD susceptible genotype (Gullyal white) and PSMD resistant genotype (BSMR 736). We identified a set of 32 out of 300 short decamer random DNA markers that showed polymorphism between Gullyal white and BSMR 736 parents. Among them, eleven DNA markers showed polymorphism including coupling and repulsion phase type of polymorphism across the parents. Bulked Segregant Analysis (BSA), revealed that the DNA marker, IABTPPN7, produced a single coupling phase marker (IABTPPN7414) and a repulsion phase marker (IABTPPN7983) co-segregating with PSMD reaction. Screening of 325 F2 population using IABTPPN7 revealed that the repulsion phase marker, IABTPPN7983, was co-segregating with the PSMD responsive SV1 at a distance of 23.9 cM for Bidar PPSMV isolate. On the other hand, the coupling phase marker IABTPPN7414 did not show any linkage with PSMD resistance. Additionally, single marker analysis both IABTPPN7983 (P<0.0001) and IABTPPN 7414 (P<0.0001) recorded a significant association with the PSMD resistance and explained a phenotypic variance of 31 and 36% respectively in F2 population. The repulsion phase marker, IABTPPN7983, could be of use in Marker-Assisted Selection (MAS) in the PPSMV resistance breeding programmes of pigeonpea. PMID:25774108

  1. Four new species of Ligophorus (Monogenea: Dactylogyridae) parasitic on Mugil liza (Actinopterygii: Mugilidae) from Guandu River, southeastern Brazil.

    PubMed

    Abdallah, Vanessa D; de Azevedo, Rodney K; Luque, José L

    2009-08-01

    Four species of Ligophorus (Monogenea: Dactylogyridae), i.e., L. tainhae n. sp., L. brasiliensis n. sp., L. guanduensis n. sp., and L. lizae n. sp., are described. The specimens were collected from the gills of Mugil liza (Mugilidae) from the Guandu River (22 degrees 48'32"S, 43 degrees 37'35"W), State of Rio de Janeiro, Brazil, between January 2008 and March 2008. The male copulatory organ of L. tainhae n. sp. differs from the all known species of this genus in having the largest accessory piece, the length of accessory piece exceeding the length of the copulatory organ tube, and the distal tip of the lower lobe crossing the upper lobe. Ligophorus brasiliensis n. sp. and L. guanduensis n. sp. have a similar shape of the accessory piece, but in L. guanduensis n. sp. the lower lobe is larger than the upper lobe (as opposed to L. brasiliensis n. sp.), the ratio between length of upper lobe and the length of the proximal part of the accessory piece before the bifurcation is shorter and the distal tip of the lower lobe extends to the level of the upper lobe (in L. brasiliensis n. sp. the distal tip of lower lobe crossing the upper lobe). In L. lizae n. sp., the terminal bifurcations of the accessory piece are equal in length and unequal in the other 3 new species. Species of Ligophorus are recorded for the first time from Brazil.

  2. Induced cytochrome P450 1A activity in cichlid fishes from Guandu River and Jacarepaguá Lake, Rio de Janeiro, Brazil.

    PubMed

    Parente, Thiago E M; De-Oliveira, Ana C A X; Paumgartten, Francisco J R

    2008-03-01

    The induction of cytochrome P4501A-mediated activity (e.g. ethoxyresorufin-O-deethylation, EROD) has been used as a biomarker for monitoring fish exposure to AhR-receptor ligands such as polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and polychlorinated dibenzo-dioxins/furans (PCDD/Fs). In this study we found that hepatic EROD is induced in fish ("Nile tilapia", Oreochromis niloticus and "acará", Geophagus brasiliensis) from the Guandu River (7-17-fold) and Jacarepaguá Lake (7-fold), Rio de Janeiro, Brazil. Since both cichlid fish are consumed by the local population and the Guandu River is the main source of the drinking water supply for the greater Rio de Janeiro metropolitan area, pollution by cytochrome P4501A-inducing chemicals is a cause for concern and should be further investigated in sediments, water and biota. We additionally showed that EROD activity in the fish liver post-mitochondrial supernatant-simpler, cheaper and less time consuming to prepare than the microsomal fraction-is sufficiently sensitive for monitoring purposes.

  3. Food Safety and Bioavailability Evaluations of Four Vegetables Grown in the Highly Arsenic-Contaminated Soils on the Guandu Plain of Northern Taiwan

    PubMed Central

    Su, Shaw-Wei; Tsui, Chun-Chih; Lai, Hung-Yu; Chen, Zueng-Sang

    2014-01-01

    Arsenic contamination in a large area of agricultural fields on the Guandu Plain of northern Taiwan was confirmed in a survey conducted in 2006, but research concerning the relationship between bioavailable As concentrations in contaminated soils and crop production in Taiwan is not available. Pot experiments were conducted to examine the growth and accumulation of As in four vegetable crops grown in As-contaminated soils and to assess As intake through consumption. The phytotoxic effects of As in soils were not shown in the pot experiments in which vegetable crops were grown in soils contaminated with different As levels in situ collected from Guandu Plain (120–460 mg/kg) or artificially spiked As-contaminated soils (50–170 mg/kg). Experimental results showed that the bioavailable As extracted with 5 M NaHCO3 from soils can be used to estimate As concentrations in vegetables. The As concentrations in the vegetables were compared with data shown in the literature and As limits calculated from drinking water standards and the provisional tolerance weekly intake (PTWI) of inorganic As established by the Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO). Although the As levels in the vegetables were not high and the bioavailability of As in the soils was quite low, long-term consumption may result in higher As intake in the human body. PMID:24736690

  4. Purification and Partial Characterization of Trypsin-Specific Proteinase Inhibitors from Pigeonpea Wild Relative Cajanus platycarpus L. (Fabaceae) Active against Gut Proteases of Lepidopteran Pest Helicoverpa armigera

    PubMed Central

    Swathi, Marri; Mishra, Prashant K.; Lokya, Vadthya; Swaroop, Vanka; Mallikarjuna, Nalini; Dutta-Gupta, Aparna; Padmasree, Kollipara

    2016-01-01

    Proteinase inhibitors (PIs) are natural defense proteins of plants found to be active against gut proteases of various insects. A pigeonpea wild relative Cajanus platycarpus was identified as a source of resistance against Helicoverpa armigera, a most devastating pest of several crops including pigeonpea. In the light of earlier studies, trypsin-specific PIs (CpPI 63) were purified from mature dry seeds of C. platycarpus (ICPW-63) and characterized their biochemical properties in contributing to H. armigera resistance. CpPI 63 possessed significant H. armigera gut trypsin-like proteinase inhibitor (HGPI) activity than trypsin inhibitor (TI) activity. Analysis of CpPI 63 using two-dimensional (2-D) electrophoresis and matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry revealed that it contained several isoinhibitors and small oligomers with masses ranging between 6 and 58 kDa. The gelatin activity staining studies suggest that these isoinhibitors and oligomers possessed strong inhibitory activity against H. armigera gut trypsin-like proteases (HGPs). The N-terminal sequence of the isoinhibitors (pI 6.6 and pI 5.6) of CpPI 63 exhibited 80% homology with several Kunitz trypsin inhibitors (KTIs) as well as miraculin-like proteins (MLPs). Further, modification of lysine residue(s) lead to 80% loss in both TI and HGPI activities of CpPI 63. In contrast, the TI and HGPI activities of CpPI 63 were stable over a wide range of temperature and pH conditions. The reported results provide a biochemical basis for pod borer resistance in C. platycarpus. PMID:27656149

  5. Detection of Legume Protease Inhibitors by the Gel-X-ray Film Contact Print Technique

    ERIC Educational Resources Information Center

    Mulimani, Veerappa H.; Sudheendra, Kulkarni; Giri, Ashok P.

    2002-01-01

    Redgram (Cajanus cajan L.) extracts have been analyzed for the protease inhibitors using a new, sensitive, simple, and rapid method for detection of electrophoretically separated protease inhibitors. The detection involves equilibrating the gel successively in the protease assay buffer and protease solution, rinsing the gel in assay buffer, and…

  6. Capabilities of four novel warm-season legumes in the southern Great Plains: grain production and quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain legumes could serve as a low cost nitrogen (N) and energy source for animal production in the southern Great Plains (SGP). This study evaluated the yield and nutritive value of grains of tropical annual legumes novel to the SGP. Included were cultivars of pigeon pea ([Cajanus cajan (L.) Millsp...

  7. Pigeon Pea: A versatile, drought-resistant crop for the Sothern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pigeonpea [Cajanus cajan(L.)] is a drought tolerant legume originating in India and ranking sixth in production worldwide, compared to other grain legumes. The objective of this study was to evaluate the production potential of pigeonpea in the alkaline clay soils of the North Texas Blacklands. Four...

  8. Pigeon pea potential for summer grazing in the Southern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stocker cattle production in the southern Great Plains (SGP) faces forage quality gaps during July through September. A study was conducted in 2008 through 2010 to determine if pigeon pea [Cajanus cajan (L.) Millsp.] could fill this deficit period. Six, 0.41 ha experimental paddocks were randomly ...

  9. Capabilities of four novel warm-season legumes in the southern Great Plains: biomass and forage quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain legumes could provide high nitrogen (N), late summer forage for stocker cattle in the southern Great Plains (SGP). This study evaluated the forage yield and nutritive value of tropical annual legumes novel to the SGP. Included were cultivars of pigeon pea ([Cajanus cajan (L.) Millsp.], cv. ‘GA...

  10. Legume genomics: Understanding biology through DNA and RNA sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background. The legume family (Leguminosae) consists of approximately 17,000 species. A few of these species including, but not limited to; Phaseolus vulgaris, Cicer arietinum, and Cajanus cajan, are important dietary components, providing the dietary protein for approximately 300 million people wor...

  11. Efficacy of nanostructured silica as a stored pulse protector against the infestation of bruchid beetle, Callosobruchus maculatus (Coleoptera: Bruchidae)

    NASA Astrophysics Data System (ADS)

    Arumugam, Ganesh; Velayutham, Veeramani; Shanmugavel, Sakthivelkumar; Sundaram, Janarthanan

    2016-03-01

    The treatment of hydrophobic silica nanoparticles (SNPs) with the pulse seeds of Cajanus cajan, Macrotyloma uniflorum, Vigna mungo, Vigna radiata, Cicer arietinum and Vigna unguiculata against the infestation of stored pulse beetle, Callosobruchus maculatus revealed a significant reduction in oviposition, adult emergence and seed damage potential. There was a complete retardation of growth of this beetle in the treated seeds of C. cajan. SNP-treated seeds of these six varieties of pulses revealed no effect on the growth of seeds as revealed by seed germination, growth rate of root and shoot. Similarly, the soil microflora measured in terms of colony forming units was not affected by silica nanoparticles upon its treatment with pulse seeds. The results of this study thus clearly demonstrated the useful nature of silica nanoparticles as seed protecting agent for the control of C. maculatus.

  12. Removal of toluene vapour using agro-waste as biofilter media.

    PubMed

    Singh, R S; Agnihotri, S S; Upadhyay, S N

    2006-12-01

    Biodegradation of toluene vapour was investigated in a laboratory scale biofilter packed with cylindrical pieces of yellow-gram (Cajanus cajan) stalk. Inlet concentrations and volumetric flow rates of toluene were varied from 2.56 to 34.73 g/m3 and 0.18 to 0.24 m3/h, respectively. The steady state was achieved within seven days and the degradation of toluene followed an exponential behaviour with time. Elimination capacity increased and tended towards a constant value but removal efficiency decreased with increase in inlet toluene loading. Depending upon loading rate, the process was either mass transfer or reaction-controlled.

  13. Gene expression atlas of pigeonpea and its application to gain insights into genes associated with pollen fertility implicated in seed formation.

    PubMed

    Pazhamala, Lekha T; Purohit, Shilp; Saxena, Rachit K; Garg, Vanika; Krishnamurthy, L; Verdier, Jerome; Varshney, Rajeev K

    2017-02-23

    Pigeonpea (Cajanus cajan) is an important grain legume of the semi-arid tropics, mainly used for its protein rich seeds. To link the genome sequence information with agronomic traits resulting from specific developmental processes, a Cajanus cajan gene expression atlas (CcGEA) was developed using the Asha genotype. Thirty tissues/organs representing developmental stages from germination to senescence were used to generate 590.84 million paired-end RNA-Seq data. The CcGEA revealed a compendium of 28 793 genes with differential, specific, spatio-temporal and constitutive expression during various stages of development in different tissues. As an example to demonstrate the application of the CcGEA, a network of 28 flower-related genes analysed for cis-regulatory elements and splicing variants has been identified. In addition, expression analysis of these candidate genes in male sterile and male fertile genotypes suggested their critical role in normal pollen development leading to seed formation. Gene network analysis also identified two regulatory genes, a pollen-specific SF3 and a sucrose-proton symporter, that could have implications for improvement of agronomic traits such as seed production and yield. In conclusion, the CcGEA provides a valuable resource for pigeonpea to identify candidate genes involved in specific developmental processes and to understand the well-orchestrated growth and developmental process in this resilient crop.

  14. Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes.

    PubMed

    Lin, Yongxiang; Cheng, Ying; Jin, Jing; Jin, Xiaolei; Jiang, Haiyang; Yan, Hanwei; Cheng, Beijiu

    2014-01-01

    Whole-genome duplication events (polyploidy events) and gene loss events have played important roles in the evolution of legumes. Here we show that the vast majority of Hsf gene duplications resulted from whole genome duplication events rather than tandem duplication, and significant differences in gene retention exist between species. By searching for intraspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found that genome duplications accounted for 42 of 46 Hsf-containing segments in Glycine max, while paired segments were rarely identified in Lotus japonicas, Medicago truncatula and Cajanus cajan. However, by comparing interspecies microsynteny, we determined that the great majority of Hsf-containing segments in Lotus japonicas, Medicago truncatula and Cajanus cajan show extensive conservation with the duplicated regions of Glycine max. These segments formed 17 groups of orthologous segments. These results suggest that these regions shared ancient genome duplication with Hsf genes in Glycine max, but more than half of the copies of these genes were lost. On the other hand, the Glycine max Hsf gene family retained approximately 75% and 84% of duplicated genes produced from the ancient genome duplication and recent Glycine-specific genome duplication, respectively. Continuous purifying selection has played a key role in the maintenance of Hsf genes in Glycine max. Expression analysis of the Hsf genes in Lotus japonicus revealed their putative involvement in multiple tissue-/developmental stages and responses to various abiotic stimuli. This study traces the evolution of Hsf genes in legume species and demonstrates that the rates of gene gain and loss are far from equilibrium in different species.

  15. Structural quality of on Oxisol in recovery for 18 years

    NASA Astrophysics Data System (ADS)

    dos Santos Batista Bonini, C.; Alves, M. C.; Marchini, D. C.; Garcia de Arruda, O.; Nilce Souto Filho, S.

    2012-04-01

    Incorrect use of soil and large buildings construction in rural areas are causing changes to it, making them less productive and thus increasing the degraded areas. Techniques aimed at ecological restoration of degraded soils have been investigated. In this sense we investigated the positive changes in the structural quality of a soil that was beheaded in human intervention techniques for recovery for 18 years, having been used green manures, gypsum and pasture. The studied area is located in Mato Grosso do Sul, Brazil. The experimental design was a completely randomized with seven treatments and four replications. The treatments were: control (tilled soil without culture); Stizolobium aterrium; Cajanus cajan; lime+S. aterrimum; lime+C. cajan; lime+gypsum+S. aterrimum; lime+gypsum+C. cajan. In 1994, all treatments with C. cajan were replaced by Canavalia ensiformis and in 1999, Brachiaria decumbens was implanted in all treatments. Data from vegetated treatments were compared with the control bare soil and native vegetation (savannah). We evaluated the distribution and aggregate stability in water, soil samples were collected in 2010 in the depths: 0.00-0.10; 0.10-0.20 and 0,20-0.40 m. The results were analyzed by analysis of variance, following Scott-Knott test (5%) of probability to compare averages. Evaluating the results is noted that in the depth of 0.00-0.10 m, the control bare soil and savannah soil had lower and higher DMP, respectively. All recovery treatments were DMP greater than found for the bare soil control. Treatments: S. aterrimum, lime + gypsum + C. cajan and lime + gypsum + S. aterrimum and the savannah control were similar in the depth of 0.00-0.10 m. All of the recovery treatment in the depth from 0.00-0.10 m with values is close to the native vegetation of the savannah. Depths of 0.10-0.20 and 0.20-0.40 m results obtained for DMP treatments in recovery are similar to the bare soil, except for treatments with S. aterrimum and lime + gypsum + S

  16. Pore size distribution of a deeply excavated Oxisol after 19 years reclamation

    NASA Astrophysics Data System (ADS)

    dos Santos Batista Bonini, Carolina; de Cássia Marchini, Débora; Alves, Marlene Cristina; García de Arruda, Otton; Paz-Ferreiro, Jorge

    2013-04-01

    Digging of the local soil and using it as a raw material for construction purposes has been identified as a non-negligible source of land degradation. Techniques aimed at soil profile reconstruction and ecological restoration of soils truncated by mechanical excavation using heavy machinery have been investigated Both, total soil porosity and pore size distribution are important properties for soil management as well as for assessing the recovery of soil function after land degradation. In this way, macropores are responsible for aeration, whereas water storage depends on soil meso- and micropores in the soil and the optimal pore-size distribution is also an indicator of soil quality. We investigated the changes in the pore size distribution of a soil that was beheaded to extract raw materials after a 19 year period of reclamation, which involved the use of green manures, gypsum and pasture for the purpose of profile recovery. The studied area is located in Mato Grosso do Sul State, Brzil. A field trial was performed following a completely randomized experimental design with seven treatments and four replications. Starting 1992, the initial treatments were: 1) control (tilled bare soil), 2)Stizolobium aterrium, 3)Cajanus cajan, 4)lime+S. aterrimum, 5) lime+C. cajan, 6) lime + gypsum + S. aterrimum, 7) lime + gypsum+C. cajan. In 1994, all treatments with C. cajan were replaced by Canavalia ensiformis and in 1999, Brachiaria decumbens was implanted in all the experimental plots. Data from vegetated treatments were compared with bare soil (control) and native vegetation (Savannah). Soil samples were collected in 2011 at the 0.00-0.10, 0.10-0.20, and 0.20-0.40 m depths. Treatment differences were assessed by analysis of variance, following the Scott-Knott test (5%) of probability to compare averages. Macroporosity of the 0.00-0.10 m top layer was above the 0.10 m3m-3 threshold considered as critical for plant growth. On the 0.10-0.20 m layer only treatments with C

  17. Production of L-asparaginase, an anticancer agent, from Aspergillus niger using agricultural waste in solid state fermentation.

    PubMed

    Mishra, Abha

    2006-10-01

    This article reports the production of high levels of L-asparaginase from a new isolate of Aspergillus niger in solid state fermentation (SSF) using agro-wastes from three leguminous crops (bran of Cajanus cajan, Phaseolus mungo, and Glycine max). When used as the sole source for growth in SSF, bran of G. max showed maximum enzyme production followed by that of P. mungo and C. cajan. A 96-h fermentation time under aerobic condition with moisture content of 70%, 30 min of cooking time and 1205-1405 micro range of particle size in SSF appeared optimal for enzyme production. Enzyme yield was maximum (40.9 +/- 3.35 U/g of dry substrate) at pH 6.5 and temperature 30 +/- 2 degrees C. The optimum temperature and pH for enzyme activity were 40 degrees C and 6.5, respectively. The study suggests that choosing an appropriate substrate when coupled with process level optimization improves enzyme production markedly. Developing an asparaginase production process based on bran of G. max as a substrate in SSF is economically attractive as it is a cheap and readily available raw material in agriculture-based countries.

  18. Two Major Clades of Bradyrhizobia Dominate Symbiotic Interactions with Pigeonpea in Fields of Côte d'Ivoire

    PubMed Central

    Fossou, Romain K.; Ziegler, Dominik; Zézé, Adolphe; Barja, François; Perret, Xavier

    2016-01-01

    In smallholder farms of Côte d'Ivoire, particularly in the northeast of the country, Cajanus cajan (pigeonpea) has become an important crop because of its multiple beneficial facets. Pigeonpea seeds provide food to make ends meet, are sold on local markets, and aerial parts serve as forage for animals. Since it fixes atmospheric nitrogen in symbiosis with soil bacteria collectively known as rhizobia, C. cajan also improves soil fertility and reduces fallow time. Yet, seed yields remain low mostly because farmers cannot afford chemical fertilizers. To identify local rhizobial strains susceptible to be used as bio-inoculants to foster pigeonpea growth, root nodules were collected in six fields of three geographically distant regions of Côte d'Ivoire. Nodule bacteria were isolated and characterized using various molecular techniques including matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry (MS) and DNA sequencing. These molecular analyses showed that 63 out of 85 nodule isolates belonged to two major clades of bradyrhizobia, one of which is known as the Bradyrhizobium elkanii super clade. Phylogenies of housekeeping (16S-ITS-23S, rpoB) and symbiotic (nifH) genes were not always congruent suggesting that lateral transfer of nitrogen fixation genes also contributed to define the genome of these bradyrhizobial isolates. Interestingly, no field-, plant-, or cultivar-specific effect was found to shape the profiles of symbiotic strains. In addition, nodule isolates CI-1B, CI-36E, and CI-41A that belong to distinct species, showed similar symbiotic efficiencies suggesting that any of these strains might serve as a proficient inoculant for C. cajan. PMID:27891120

  19. Identification of lipoxygenase (LOX) genes from legumes and their responses in wild type and cultivated peanut upon Aspergillus flavus infection

    PubMed Central

    Song, Hui; Wang, Pengfei; Li, Changsheng; Han, Suoyi; Lopez-Baltazar, Javier; Zhang, Xinyou; Wang, Xingjun

    2016-01-01

    Lipoxygenase (LOX) genes are widely distributed in plants and play crucial roles in resistance to biotic and abiotic stress. Although they have been characterized in various plants, little is known about the evolution of legume LOX genes. In this study, we identified 122 full-length LOX genes in Arachis duranensis, Arachis ipaënsis, Cajanus cajan, Cicer arietinum, Glycine max, Lotus japonicus and Medicago truncatula. In total, 64 orthologous and 36 paralogous genes were identified. The full-length, polycystin-1, lipoxygenase, alpha-toxin (PLAT) and lipoxygenase domain sequences from orthologous and paralogous genes exhibited a signature of purifying selection. However, purifying selection influenced orthologues more than paralogues, indicating greater functional conservation of orthologues than paralogues. Neutrality and effective number of codons plot results showed that natural selection primarily shapes codon usage, except for C. arietinum, L. japonicas and M. truncatula LOX genes. GCG, ACG, UCG, CGG and CCG codons exhibited low relative synonymous codon usage (RSCU) values, while CCA, GGA, GCU, CUU and GUU had high RSCU values, indicating that the latter codons are strongly preferred. LOX expression patterns differed significantly between wild-type peanut and cultivated peanut infected with Aspergillus flavus, which could explain the divergent disease resistance of wild progenitor and cultivars. PMID:27731413

  20. Late Embryogenesis Abundant (LEA) proteins in legumes.

    PubMed

    Battaglia, Marina; Covarrubias, Alejandra A

    2013-01-01

    Plants are exposed to different external conditions that affect growth, development, and productivity. Water deficit is one of these adverse conditions caused by drought, salinity, and extreme temperatures. Plants have developed different responses to prevent, ameliorate or repair the damage inflicted by these stressful environments. One of these responses is the activation of a set of genes encoding a group of hydrophilic proteins that typically accumulate to high levels during seed dehydration, at the last stage of embryogenesis, hence named Late Embryogenesis Abundant (LEA) proteins. LEA proteins also accumulate in response to water limitation in vegetative tissues, and have been classified in seven groups based on their amino acid sequence similarity and on the presence of distinctive conserved motifs. These proteins are widely distributed in the plant kingdom, from ferns to angiosperms, suggesting a relevant role in the plant response to this unfavorable environmental condition. In this review, we analyzed the LEA proteins from those legumes whose complete genomes have been sequenced such as Phaseolus vulgaris, Glycine max, Medicago truncatula, Lotus japonicus, Cajanus cajan, and Cicer arietinum. Considering their distinctive motifs, LEA proteins from the different groups were identified, and their sequence analysis allowed the recognition of novel legume specific motifs. Moreover, we compile their transcript accumulation patterns based on publicly available data. In spite of the limited information on these proteins in legumes, the analysis and data compiled here confirm the high correlation between their accumulation and water deficit, reinforcing their functional relevance under this detrimental conditions.

  1. Two rhizobacterial strains, individually and in interactions with Rhizobium sp., enhance fusarial wilt control, growth, and yield in pigeon pea.

    PubMed

    Dutta, Swarnalee; Morang, Pranjal; Kumar S, Nishanth; Dileep Kumar, B S

    2014-09-01

    A Pseudomonas aeruginosa strain, RRLJ 04, and a Bacillus cereus strain, BS 03, were tested both individually and in combination with a Rhizobium strain, RH 2, for their ability to enhance plant growth and nodulation in pigeon pea (Cajanus cajan L.) under gnotobiotic, greenhouse and field conditions. Both of the rhizobacterial strains exhibited a positive effect on growth in terms of shoot height, root length, fresh and dry weight, nodulation and yield over the non-treated control. Co-inoculation of seeds with these strains and Rhizobium RH 2 also reduced the number of wilted plants, when grown in soil infested with Fusarium udum. Gnotobiotic studies confirmed that the suppression of wilt disease was due to the presence of the respective PGPR strains. Seed bacterization with drug-marked mutants of RRLJ 04 and BS 03 confirmed their ability to colonize and multiply along the roots. The results suggest that co-inoculation of these strains with Rhizobium strain RH 2 can be further exploited for enhanced growth, nodulation and yield in addition to control of fusarial wilt in pigeon pea.

  2. Feeding and oviposition preference of Phyllophaga cuyabana (Moser) (Coleoptera: Melolonthidae) on several crops.

    PubMed

    Oliveira, Lenita J; Garcia, Maria A; Hoffmann-Campo, Clara B; do Amaral, Maria L B

    2007-01-01

    Laboratory and greenhouse experiments were carried out to study food and oviposition preference by Phyllophaga cuyabana (Moser) on different plant species as Cajanus cajan L. (pigeon pea), Crotalaria juncea L. (sun hemp), Crotalaria spectabilis Roth (showy crotalaria), Crotalaria ochroleuca G. Don (slenderleaf rattlebox), Glycine max [L.] Merrill (soybean), Gossypium hirsutum L. (cotton), Helianthus annuus L. (sunflower), Stizolobium aterrimum [Mucuna aterrima] Piper Tracey (velvetbean) and Zea mays L. (mayze). In no-choice experiments, the number of eggs layed in sunflower, C. juncea and soybean was larger compared to cotton. Despite the fact that the adults did not discriminate among plants, in dual-choice test, the proportion of eggs layed and leaf consumption by P. cuyabana adults in soybean were significantly higher than in C. spectabilis. The larval distribution in the soil was at random in multiple-choice, without any trend of preference, but in dual-choice, when soybean was the control, larvae always preferred to feed on its roots. P. cuyabana adults had preference for more suitable hosts and that could stand their offspring survival. This behaviour can be usefully exploited in an integrated management program for this pest.

  3. Integrated Consensus Map of Cultivated Peanut and Wild Relatives Reveals Structures of the A and B Genomes of Arachis and Divergence of the Legume Genomes

    PubMed Central

    Shirasawa, Kenta; Bertioli, David J.; Varshney, Rajeev K.; Moretzsohn, Marcio C.; Leal-Bertioli, Soraya C. M.; Thudi, Mahendar; Pandey, Manish K.; Rami, Jean-Francois; Foncéka, Daniel; Gowda, Makanahally V. C.; Qin, Hongde; Guo, Baozhu; Hong, Yanbin; Liang, Xuanqiang; Hirakawa, Hideki; Tabata, Satoshi; Isobe, Sachiko

    2013-01-01

    The complex, tetraploid genome structure of peanut (Arachis hypogaea) has obstructed advances in genetics and genomics in the species. The aim of this study is to understand the genome structure of Arachis by developing a high-density integrated consensus map. Three recombinant inbred line populations derived from crosses between the A genome diploid species, Arachis duranensis and Arachis stenosperma; the B genome diploid species, Arachis ipaënsis and Arachis magna; and between the AB genome tetraploids, A. hypogaea and an artificial amphidiploid (A. ipaënsis × A. duranensis)4×, were used to construct genetic linkage maps: 10 linkage groups (LGs) of 544 cM with 597 loci for the A genome; 10 LGs of 461 cM with 798 loci for the B genome; and 20 LGs of 1442 cM with 1469 loci for the AB genome. The resultant maps plus 13 published maps were integrated into a consensus map covering 2651 cM with 3693 marker loci which was anchored to 20 consensus LGs corresponding to the A and B genomes. The comparative genomics with genome sequences of Cajanus cajan, Glycine max, Lotus japonicus, and Medicago truncatula revealed that the Arachis genome has segmented synteny relationship to the other legumes. The comparative maps in legumes, integrated tetraploid consensus maps, and genome-specific diploid maps will increase the genetic and genomic understanding of Arachis and should facilitate molecular breeding. PMID:23315685

  4. Ethnomedical study and iron content of some medicinal herbs used in traditional medicine in Cote d'Ivoire for the treatment of anaemia.

    PubMed

    Koné, W Mamidou; Koffi, A G; Bomisso, E L; Tra Bi, F H

    2012-01-01

    Medicinal plants have been a source of succour in the control of many diseases in developing countries and anaemia is no exception. In this study, ethnomedical survey was carried out for recording medicinal plants used in Northern and South-Eastern Côte d'Ivoire against anaemia. Also iron content was determined for some of the recorded plants using phenanthroline method. Thirty (30) medicinal plants, covering 28 genera and 22 families were recorded. These plants were used to prepare 30 receipts for the treatment of anaemia and aggravating factors such as malaria and gastro-intestinal helminthes. Eleven (11) of these medicinal plants showed presence of iron in various quantities. The most promising were Tectona grandis, Amaranthus spinosus and Stylosanthes erecta which contained the highest iron contents viz; 266.6, 236.6 and 206.6 mg/100 g respectively. They were followed by Hoslundia opposita, Imperata cylindrica, Cajanus cajan, Thalia geniculata and Milicia excelsa. These results lend credence to the traditional use of these plants in Cote d'Ivoire's ethnomedicine for the treatment of anaemia.

  5. Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes.

    PubMed

    Shirasawa, Kenta; Bertioli, David J; Varshney, Rajeev K; Moretzsohn, Marcio C; Leal-Bertioli, Soraya C M; Thudi, Mahendar; Pandey, Manish K; Rami, Jean-Francois; Foncéka, Daniel; Gowda, Makanahally V C; Qin, Hongde; Guo, Baozhu; Hong, Yanbin; Liang, Xuanqiang; Hirakawa, Hideki; Tabata, Satoshi; Isobe, Sachiko

    2013-04-01

    The complex, tetraploid genome structure of peanut (Arachis hypogaea) has obstructed advances in genetics and genomics in the species. The aim of this study is to understand the genome structure of Arachis by developing a high-density integrated consensus map. Three recombinant inbred line populations derived from crosses between the A genome diploid species, Arachis duranensis and Arachis stenosperma; the B genome diploid species, Arachis ipaënsis and Arachis magna; and between the AB genome tetraploids, A. hypogaea and an artificial amphidiploid (A. ipaënsis × A. duranensis)(4×), were used to construct genetic linkage maps: 10 linkage groups (LGs) of 544 cM with 597 loci for the A genome; 10 LGs of 461 cM with 798 loci for the B genome; and 20 LGs of 1442 cM with 1469 loci for the AB genome. The resultant maps plus 13 published maps were integrated into a consensus map covering 2651 cM with 3693 marker loci which was anchored to 20 consensus LGs corresponding to the A and B genomes. The comparative genomics with genome sequences of Cajanus cajan, Glycine max, Lotus japonicus, and Medicago truncatula revealed that the Arachis genome has segmented synteny relationship to the other legumes. The comparative maps in legumes, integrated tetraploid consensus maps, and genome-specific diploid maps will increase the genetic and genomic understanding of Arachis and should facilitate molecular breeding.

  6. LegumeIP 2.0--a platform for the study of gene function and genome evolution in legumes.

    PubMed

    Li, Jun; Dai, Xinbin; Zhuang, Zhaohong; Zhao, Patrick X

    2016-01-04

    The LegumeIP 2.0 database hosts large-scale genomics and transcriptomics data and provides integrative bioinformatics tools for the study of gene function and evolution in legumes. Our recent updates in LegumeIP 2.0 include gene and protein sequences, gene models and annotations, syntenic regions, protein families and phylogenetic trees for six legume species: Medicago truncatula, Glycine max (soybean), Lotus japonicus, Phaseolus vulgaris (common bean), Cicer arietinum (chickpea) and Cajanus cajan (pigeon pea) and two outgroup reference species: Arabidopsis thaliana and Poplar trichocarpa. Moreover, the LegumeIP 2.0 features the following new data resources and bioinformatics tools: (i) an integrative gene expression atlas for four model legumes that include 550 array hybridizations from M. truncatula, 962 gene expression profiles of G. max, 276 array hybridizations from L. japonicas and 56 RNA-Seq-based gene expression profiles for C. arietinum. These datasets were manually curated and hierarchically organized based on Experimental Ontology and Plant Ontology so that users can browse, search, and retrieve data for their selected experiments. (ii) New functions/analytical tools to query, mine and visualize large-scale gene sequences, annotations and transcriptome profiles. Users may select a subset of expression experiments and visualize and compare expression profiles for multiple genes. The LegumeIP 2.0 database is freely available to the public at http://plantgrn.noble.org/LegumeIP/.

  7. Biofortification of mungbean (Vigna radiata) as a whole food to enhance human health.

    PubMed

    Nair, Ramakrishnan M; Yang, Ray-Yu; Easdown, Warwick J; Thavarajah, Dil; Thavarajah, Pushparajah; Hughes, Jacqueline d'A; Keatinge, J D H Dyno

    2013-06-01

    Mungbean (Vigna radiata (L.) R. Wilczek var. radiata) is one of the most important pulse crops grown in South, East and Southeast Asia. It provides significant amounts of protein (240 g kg(-1)) and carbohydrate (630 g kg(-1)) and a range of micronutrients in diets. Mungbean protein and carbohydrate are easily digestible and create less flatulence than proteins derived from other legumes. In addition, mungbean is lower in phytic acid (72% of total phosphorus content) than pigeonpea (Cajanus cajan L. Millsp.), soybean (Glycine max L.) and cereals; phytic acid is commonly found in cereal and legume crops and has a negative impact on iron and zinc bioavailability in plant-based diets. Owing to its palatable taste and nutritional quality, mungbean has been used as an iron-rich whole food source for baby food. The wide genetic variability of mineral concentrations (e.g. 0.03-0.06 g Fe kg(-1), 0.02-0.04 g Zn kg(-1)) in mungbean indicates possibilities to improve its micronutrient content through biofortification. Therefore biofortification of existing mungbean varieties has great potential for enhancing the nutritional quality of diets in South and Southeast Asia, where protein and micronutrient malnutrition are among the highest in the world. This review paper discusses the importance of mungbean in agricultural production and traditional diets and the potential of enhancing the nutritional quality of mungbean through breeding and other means, including agronomic practices.

  8. Emaravirus: a novel genus of multipartite, negative strand RNA plant viruses.

    PubMed

    Mielke-Ehret, Nicole; Mühlbach, Hans-Peter

    2012-09-01

    Ringspot symptoms in European mountain ash (Sorbus aucuparia L.), fig mosaic, rose rosette, raspberry leaf blotch, pigeonpea sterility mosaic (Cajanus cajan) and High Plains disease of maize and wheat were found to be associated with viruses that share several characteristics. They all have single-stranded multipartite RNA genomes of negative orientation. In some cases, double membrane-bound virus-like particles of 80 to 200 nm in diameter were found in infected tissue. Furthermore, at least five of these viruses were shown to be vectored by eriophyid mites. Sequences of European mountain ash ringspot-associated virus (EMARaV), Fig mosaic virus (FMV), rose rosette virus (RRV), raspberry leaf blotch virus (RLBV), pigeonpea sterility mosaic virus and High Plains virus strongly support their potential phylogenetic relationship. Therefore, after characterization of EMARaV, the novel genus Emaravirus was established, and FMV was the second virus species assigned to this genus. The recently sequenced RRV and RLBV are supposed to be additional members of this new group of plant RNA viruses.

  9. Characterization of the bioactive metabolites from a plant growth-promoting rhizobacteria and their exploitation as antimicrobial and plant growth-promoting agents.

    PubMed

    George, Emrin; Kumar, S Nishanth; Jacob, Jubi; Bommasani, Bhaskara; Lankalapalli, Ravi S; Morang, P; Kumar, B S Dileep

    2015-05-01

    A plant growth-promoting bacterial strain, PM 105, isolated from a tea plantation soil from the North Eastern region of India was identified as Pseudomonas aeruginosa through classical and 16S ribosomal DNA (rDNA) gene sequencing. Further studies with this strain confirmed broad spectrum antifungal activity against ten human and plant pathogenic fungal pathogens viz. Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus tubingensis, Candida albicans, Colletotrichum gloeosporioides, Fusarium oxysporum, Pencillium expansum, Rhizoctonia solani, Trichophyton rubrum besides growth-promoting property in cowpea (Vigna unguiculata) and pigeon pea (Cajanus cajan). However, no antibacterial property was exhibited by this strain against the four test bacterial pathogens tested in agar overlay method. The crude bioactive metabolites produced by this strain were isolated with three different solvents that exhibited significant antimicrobial and plant growth-promoting activity. Chloroform extract recorded significant antimicrobial and plant growth-promoting activity. Three major compounds viz. 1-hydroxyphenazine, pyocyanin, and phenazine-1-carboxamide were purified and characterized from crude extracts of this strain by various spectral data. The purified compounds recorded prominent antimicrobial activity but failed to establish the plant growth promotion activity in test crop plants under gnotobiotic conditions. Pyocyanin recorded significant antimicrobial activity, and best activity was recorded against T. rubrum (29 mm), followed by P. expansum (28 mm). These results suggest the use of PM 105 as plant growth-promoting agent in crop plants after successful field trials.

  10. Study the effect of insecticide dimethoate on photosynthetic pigments and photosynthetic activity of pigeon pea: Laser-induced chlorophyll fluorescence spectroscopy.

    PubMed

    Pandey, Jitendra Kumar; Dubey, Gunjan; Gopal, R

    2015-10-01

    Pigeon pea is one of the most important legume crops in India and dimethoate is a widely used insecticide in various crop plants. We studied the effect of dimethoate on growth and photosynthetic activity of pigeon pea plants over a short and long term exposure. Plant growth parameters, photosynthetic pigment content and chlorophyll fluorescence response of pigeon pea (Cajanus cajan L.) plants treated with various concentrations of the insecticide dimethoate (10, 20, 40 and 80 ppm) have been compared for 30 days at regular intervals of 10 days each. Laser induced chlorophyll fluorescence spectra and fluorescence-induction kinetics (FIK) curve of dimethoate treated pigeon pea plants were recorded after 10, 20 and 30 days of treatment. Fluorescence intensity ratio at the two fluorescence maxima (F685/F730) was calculated by evaluating curve-fitted parameters. The variable chlorophyll fluorescence decrease ratio (Rfd) was determined from the FIK curves. Our study revealed that after 10 days of treatment, 10 ppm of dimethoate showed stimulatory response whereas 20, 40 and 80 ppm of dimethoate showed inhibitory response for growth and photosynthetic activity of pigeon pea plants, but after 20 and 30 days of treatment all the tested concentrations of dimethoate became inhibitory. This study clearly shows that dimethoate is highly toxic to the pigeon pea plant, even at very low concentration (10 ppm), if used for a prolonged duration. Our study may thus be helpful in determining the optimal dose of dimethoate in agricultural practices.

  11. Soil Organic Matter Quality of an Oxisol Affected by Plant Residues and Crop Sequence under No-Tillage

    NASA Astrophysics Data System (ADS)

    Cora, Jose; Marcelo, Adolfo

    2013-04-01

    Plant residues are considered the primarily resource for soil organic matter (SOM) formation and the amounts and properties of plant litter are important controlling factors for the SOM quality. We determined the amounts, quality and decomposition rate of plant residues and the effects of summer and winter crop sequences on soil organic C (TOC) content, both particulate organic C (POC) and mineral-associated organic C (MOC) pools and humic substances in a Brazilian Rhodic Eutrudox soil under a no-tillage system. The organic C analysis in specifics pools used in this study was effective and should be adopted in tropical climates to evaluate the soil quality and the sustainability of various cropping systems. Continuous growth of soybean (Glycine max L. Merrill) on summer provided higher contents of soil POC and continuous growth of maize (Zea mays L.) provided higher soil humic acid and MOC contents. Summer soybean-maize rotation provided the higher plant diversity, which likely improved the soil microbial activity and the soil organic C consumption. The winter sunn hemp (Crotalaria juncea L.), pigeon pea (Cajanus cajan (L.) Millsp), oilseed radish (Raphanus sativus L.) and pearl millet (Pennisetum americanum (L.) Leeke) enhanced the soil MOC, a finding that is attributable to the higher N content of the crop residue. Sunn hemp and pigeon pea provided the higher soil POC content. Sunn hemp showed better performance and positive effects on the SOM quality, making it a suitable winter crop choice for tropical conditions with a warm and dry winter.

  12. Siderophore as a potential plant growth-promoting agent produced by Pseudomonas aeruginosa JAS-25.

    PubMed

    Sulochana, M B; Jayachandra, S Y; Kumar, S Anil; Parameshwar, A B; Reddy, K Mohan; Dayanand, A

    2014-09-01

    Siderophores scavenges Fe(+3) from the vicinity of the roots of plants, and thus limit the amount of iron required for the growth of pathogens such as Fusarium oxysporum, Pythium ultimum, and Fusarium udum, which cause wilt and root rot disease in crops. The ability of Pseudomonas to grow and to produce siderophore depends upon the iron content, pH, and temperature. Maximum yield of siderophore of 130 μM was observed at pH 7.0 ± 0.2 and temperature of 30 °C at 30 h. The threshold level of iron was 50 μM, which increases up to 150 μM, favoring growth but drastically affecting the production of siderophore by Pseudomonas aeruginosa JAS-25. The seeds of agricultural crops like Cicer arietinum (chick pea), Cajanus cajan (pigeon pea), and Arachis hypogaea (ground nut) were treated with P. aeruginosa JAS-25, which enhanced the seed germination, root length, shoot length, and dry weight of chick pea, pigeon pea, and ground nut plants under pot studies. The efficient growth of the plants was not only due to the biocontrol activity of the siderophore produced by P. aeruginosa JAS-25 but also may be by the production of indole acetic acid (IAA), which influences the growth of the plants as phytohormones.

  13. Pigeonpea Hybrid-Proline-Rich Protein (CcHyPRP) Confers Biotic and Abiotic Stress Tolerance in Transgenic Rice

    PubMed Central

    Mellacheruvu, Sunitha; Tamirisa, Srinath; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao

    2016-01-01

    In this study, we report the overexpression of Cajanus cajan hybrid-proline-rich protein encoding gene (CcHyPRP) in rice which resulted in increased tolerance to both abiotic and biotic stresses. Compared to the control plants, the transgenic rice lines, expressing CcHyPRP, exhibited high-level tolerance against major abiotic stresses, viz., drought, salinity, and heat, as evidenced by increased biomass, chlorophyll content, survival rate, root, and shoot growth. Further, transgenic rice lines showed increased panicle size and grain number compared to the control plants under different stress conditions. The CcHyPRP transgenics, as compared to the control, revealed enhanced activities of catalase and superoxide dismutase (SOD) enzymes and reduced malondialdehyde (MDA) levels. Expression pattern of CcHyPRP::GFP fusion-protein confirmed its predominant localization in cell walls. Moreover, the CcHyPRP transgenics, as compared to the control, exhibited increased resistance to the fungal pathogen Magnaporthe grisea which causes blast disease in rice. Higher levels of bZIP and endochitinase transcripts as well as endochitinase activity were observed in transgenic rice compared to the control plants. The overall results demonstrate the intrinsic role of CcHyPRP in conferring multiple stress tolerance at the whole-plant level. The multipotent CcHyPRP seems promising as a prime candidate gene to fortify crop plants for enhanced tolerance/resistance to different stress factors. PMID:26834756

  14. [Soil microbial diversity in typical Karst peak-cluster depression under effects of different de-farming patterns].

    PubMed

    He, Xun-Yang; Su, Yi-Rong; Liang, Yue-Ming; Yang, Shan; Wang, Ke-Lin

    2010-02-01

    By using denaturing gradient gel electrophoresis (DGGE) and Biolog_Eco micro-plate technique, this paper studied the soil microbial genetic taxonomic and bacterial metabolic functional diversities under four de-farming patterns, i. e., natural restoration (NT, dominant plant species Neyraudia reynaudiana and Miscanthus floridulus), economic plantation (CM, Cajanus cajan and Castanea mollissima), zero-tillage (PI, Pennisetum purpureum and Zenia insign), and conventional tillage (MB, maize-soybean intercropping), in a typical Karst peak-cluster depression. All test de-farming patterns had significant effects on the soil microbial community structure and bacterial metabolic pattern. The community structure of soil fungi was more affected by the de-farming patterns than that of soil bacteria, while the later was more affected by seasonal variation. After 6-7 years of de-farming, soil bacterial taxonomic Shannon diversity indices had no significant differences under the four de-farming patterns, while soil fungal taxonomic Shannon diversity indices were significantly higher under CM and PI than under NT and MB. The soil bacterial metabolic functional diversity under PI was obviously lower than those under other de-farming patterns. Therefore, soil fungal genetic and bacterial metabolic diversities were more sensitive to de-farming patterns than soil bacterial genetic diversity did. Among the four de-farming patterns, economic plantation had the superiority in maintaining soil microbial genetic and bacterial metabolic functional diversities, being a better de-farming pattern.

  15. Effect of various domestic processing and cooking methods on phytic acid and HCl-extractability of calcium, phosphorus and iron of pigeon pea.

    PubMed

    Duhan, A; Khetarpaul, N; Bishnoi, S

    1999-01-01

    Manak, the high yielding cultivator of pigeon pea (Cajanus cajan) released by (International Crop Research Institute for Semi-Arid Tropics) ICRISAT, India was subjected to various domestic processing and cooking methods viz., soaking (6, 12 and 18 h, 30 degrees C), soaking and dehulling, ordinary cooking, pressure cooking and germination (24, 36 and 48 h, 30 degrees C). The unprocessed seeds of this variety contained considerable amounts of phytic acid i.e. 917 mg per 100 g. This antinutrient was reduced significantly (P < 0.05) to varying extents (4-37%) in the processed samples. Except soaking and dehulling, the remaining processing and cooking methods did not lower the contents of total calcium, phosphorus and iron. That HCl-extractability of these dietary essential minerals, an index of their bioavailability, enhanced significantly when the pigeon pea seeds were processed and cooked, may be due to reduction in phytate content, which is known to chelate the minerals. A significant and negative correlation between the phytic acid and HCl-extractability of minerals further strengthens our findings.

  16. Cajanol inhibits the growth of Escherichia coli and Staphylococcus aureus by acting on membrane and DNA damage.

    PubMed

    Liu, Xiao-lei; Zhang, Xin-jian; Fu, Yu-jie; Zu, Yuan-gang; Wu, Nan; Liang, Lu; Efferth, Thomas

    2011-01-01

    In the present study, the mechanism of antibacterial activity of cajanol extracted from the roots of Cajanus cajan (L.) Millsp. towards Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was investigated. The antibacterial activity of cajanol was evaluated towards six bacterial strains (Staphylococcus epidermidis, Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Proteus vulgaris, and Pseudomonas aeruginosa) by the broth microdilution method. It showed strong antibacterial activity towards all bacteria tested with minimal inhibition concentration (MIC) values ranging from 98.90 µM to 197.8 µM. Cajanol-induced death rates in the most sensitive strains ( E.COLI, 96.55 % and S. AUREUS, 97.25 %) were analyzed by flow cytometry. Furthermore, the activity of cajanol on the membranes of E. coli and S. aureus was investigated by using lecithin, phosphate groups, and fluorescence microscopy. Cajanol-induced DNA damage was observed by agarose gel electrophoresis. In summary, cajanol inhibited E. coli only by DNA damage, whereas S. aureus was inhibited by affecting both, the lecithin and phosphate groups on the cellular membrane and DNA. The present study shows that cajanol possesses antibacterial activity in vitro towards both gram-negative and gram-positive bacteria and therefore may be a promising candidate as an antibacterial agent for the therapy of microbial infections.

  17. Late Embryogenesis Abundant (LEA) proteins in legumes

    PubMed Central

    Battaglia, Marina; Covarrubias, Alejandra A.

    2013-01-01

    Plants are exposed to different external conditions that affect growth, development, and productivity. Water deficit is one of these adverse conditions caused by drought, salinity, and extreme temperatures. Plants have developed different responses to prevent, ameliorate or repair the damage inflicted by these stressful environments. One of these responses is the activation of a set of genes encoding a group of hydrophilic proteins that typically accumulate to high levels during seed dehydration, at the last stage of embryogenesis, hence named Late Embryogenesis Abundant (LEA) proteins. LEA proteins also accumulate in response to water limitation in vegetative tissues, and have been classified in seven groups based on their amino acid sequence similarity and on the presence of distinctive conserved motifs. These proteins are widely distributed in the plant kingdom, from ferns to angiosperms, suggesting a relevant role in the plant response to this unfavorable environmental condition. In this review, we analyzed the LEA proteins from those legumes whose complete genomes have been sequenced such as Phaseolus vulgaris, Glycine max, Medicago truncatula, Lotus japonicus, Cajanus cajan, and Cicer arietinum. Considering their distinctive motifs, LEA proteins from the different groups were identified, and their sequence analysis allowed the recognition of novel legume specific motifs. Moreover, we compile their transcript accumulation patterns based on publicly available data. In spite of the limited information on these proteins in legumes, the analysis and data compiled here confirm the high correlation between their accumulation and water deficit, reinforcing their functional relevance under this detrimental conditions. PMID:23805145

  18. Induction of leucine aminopeptidase (LAP) like activity with wounding and methyl jasmonate in pigeonpea (Cajanas cajan) suggests the role of these enzymes in plant defense in leguminosae.

    PubMed

    Lomate, Purushottam R; Hivrale, Vandana K

    2011-06-01

    Aminopeptidases are ubiquitous in nature and their activities have been identified in several plant species. Leucine aminopeptidases (LAPs) are predominantly studied in solanaceous plants and are induced in response to wounding, herbivory and methyl jasmonate (MeJA). The functions of plant aminopeptidases are still under discussion and it is likely that the different classes play various roles. In the present study we report the local and systemic induction of LAP-like activity upon mechanical wounding and MeJA treatment. Two proteins with LAP-like activity were detected in pigeonpea leaves. They were designated as AP1 and AP2. AP1 activity was significantly induced upon wounding and application of MeJA. The estimated molecular masses of AP1 and AP2 were ∼ 60 and 41 kDa respectively in SDS-PAGE. The pH optimum for LAP-like activity in control leaf extracts was found to be neutral (pH 7.0) however the enzymes showed highest activity at alkaline pH (pH 9.0) in the leaf extracts of treated plants. The temperature optimum for LAP-like activity was around 40-50 °C. The enzymes were strongly inhibited by 1, 10 phenanthroline and bestatin. Heavy metal ions and EDTA inhibited LAP-like activities, whereas Mn(+2) and Mg(+2) activated the enzyme activities. Beside LpNA (33.5 U/mg/min) pigeonpea LAP-like enzymes also cleaved ApNA (15 U/mg/min) but were unable to cleave VpNA. Total proteolytic activity was also observed to be induced in treated plants. LAP-like activity was increased upto 19.5 fold after gel filtration chromatography. Results suggest that these enzymes may have functional defensive role in pigeonpea.

  19. Environmental Influences on Pigeonpea-Fusarium udum Interactions and Stability of Genotypes to Fusarium Wilt

    PubMed Central

    Sharma, Mamta; Ghosh, Raju; Telangre, Rameshwar; Rathore, Abhishek; Saifulla, Muhammad; Mahalinga, Dayananda M.; Saxena, Deep R.; Jain, Yogendra K.

    2016-01-01

    Fusarium wilt (Fusarium udum Butler) is an important biotic constraint to pigeonpea (Cajanus cajan L.) production worldwide. Breeding for fusarium wilt resistance continues to be an integral part of genetic improvement of pigeonpea. Therefore, the study was aimed at identifying and validating resistant genotypes to fusarium wilt and determining the magnitude of genotype × environment (G × E) interactions through multi-environment and multi-year screening. A total of 976 genotypes including germplasm and breeding lines were screened against wilt using wilt sick plot at Patancheru, India. Ninety two genotypes resistant to wilt were tested for a further two years using wilt sick plot at Patancheru. A Pigeonpea Wilt Nursery (PWN) comprising of 29 genotypes was then established. PWN was evaluated at nine locations representing different agro-climatic zones of India for wilt resistance during two crop seasons 2007/08 and 2008/09. Genotypes (G), environment (E), and G × E interactions were examined by biplot which partitioned the main effect into G, E, and G × E interactions with significant levels (p ≤ 0.001) being obtained for wilt incidence. The genotype contributed 36.51% of resistance variation followed by the environment (29.32%). A GGE biplot integrated with a boxplot and multiple comparison tests enabled us to identify seven stable genotypes (ICPL 20109, ICPL 20096, ICPL 20115, ICPL 20116, ICPL 20102, ICPL 20106, and ICPL 20094) based on their performance across diverse environments. These genotypes have broad based resistance and can be exploited in pigeonpea breeding programs. PMID:27014287

  20. Remnants of the Legume Ancestral Genome Preserved in Gene-Rich Regions: Insights from Lupinus angustifolius Physical, Genetic, and Comparative Mapping.

    PubMed

    Książkiewicz, Michał; Zielezinski, Andrzej; Wyrwa, Katarzyna; Szczepaniak, Anna; Rychel, Sandra; Karlowski, Wojciech; Wolko, Bogdan; Naganowska, Barbara

    The narrow-leafed lupin (Lupinus angustifolius) was recently considered as a legume reference species. Genetic resources have been developed, including a draft genome sequence, linkage maps, nuclear DNA libraries, and cytogenetic chromosome-specific landmarks. Here, we used a complex approach, involving DNA fingerprinting, sequencing, genetic mapping, and molecular cytogenetics, to localize and analyze L. angustifolius gene-rich regions (GRRs). A L. angustifolius genomic bacterial artificial chromosome (BAC) library was screened with short sequence repeat (SSR)-based probes. Selected BACs were fingerprinted and assembled into contigs. BAC-end sequence (BES) annotation allowed us to choose clones for sequencing, targeting GRRs. Additionally, BESs were aligned to the scaffolds of the genome sequence. The genetic map was supplemented with 35 BES-derived markers, distributed in 14 linkage groups and tagging 37 scaffolds. The identified GRRs had an average gene density of 19.6 genes/100 kb and physical-to-genetic distance ratios of 11 to 109 kb/cM. Physical and genetic mapping was supported by multi-BAC-fluorescence in situ hybridization (FISH), and five new linkage groups were assigned to the chromosomes. Syntenic links to the genome sequences of five legume species (Medicago truncatula, Glycine max, Lotus japonicus, Phaseolus vulgaris, and Cajanus cajan) were identified. The comparative mapping of the two largest lupin GRRs provides novel evidence for ancient duplications in all of the studied species. These regions are conserved among representatives of the main clades of Papilionoideae. Furthermore, despite the complex evolution of legumes, some segments of the nuclear genome were not substantially modified and retained their quasi-ancestral structures. Cytogenetic markers anchored in these regions constitute a platform for heterologous mapping of legume genomes.

  1. Environmental Influences on Pigeonpea-Fusarium udum Interactions and Stability of Genotypes to Fusarium Wilt.

    PubMed

    Sharma, Mamta; Ghosh, Raju; Telangre, Rameshwar; Rathore, Abhishek; Saifulla, Muhammad; Mahalinga, Dayananda M; Saxena, Deep R; Jain, Yogendra K

    2016-01-01

    Fusarium wilt (Fusarium udum Butler) is an important biotic constraint to pigeonpea (Cajanus cajan L.) production worldwide. Breeding for fusarium wilt resistance continues to be an integral part of genetic improvement of pigeonpea. Therefore, the study was aimed at identifying and validating resistant genotypes to fusarium wilt and determining the magnitude of genotype × environment (G × E) interactions through multi-environment and multi-year screening. A total of 976 genotypes including germplasm and breeding lines were screened against wilt using wilt sick plot at Patancheru, India. Ninety two genotypes resistant to wilt were tested for a further two years using wilt sick plot at Patancheru. A Pigeonpea Wilt Nursery (PWN) comprising of 29 genotypes was then established. PWN was evaluated at nine locations representing different agro-climatic zones of India for wilt resistance during two crop seasons 2007/08 and 2008/09. Genotypes (G), environment (E), and G × E interactions were examined by biplot which partitioned the main effect into G, E, and G × E interactions with significant levels (p ≤ 0.001) being obtained for wilt incidence. The genotype contributed 36.51% of resistance variation followed by the environment (29.32%). A GGE biplot integrated with a boxplot and multiple comparison tests enabled us to identify seven stable genotypes (ICPL 20109, ICPL 20096, ICPL 20115, ICPL 20116, ICPL 20102, ICPL 20106, and ICPL 20094) based on their performance across diverse environments. These genotypes have broad based resistance and can be exploited in pigeonpea breeding programs.

  2. Legume genomics: understanding biology through DNA and RNA sequencing

    PubMed Central

    O'Rourke, Jamie A.; Bolon, Yung-Tsi; Bucciarelli, Bruna; Vance, Carroll P.

    2014-01-01

    Background The legume family (Leguminosae) consists of approx. 17 000 species. A few of these species, including, but not limited to, Phaseolus vulgaris, Cicer arietinum and Cajanus cajan, are important dietary components, providing protein for approx. 300 million people worldwide. Additional species, including soybean (Glycine max) and alfalfa (Medicago sativa), are important crops utilized mainly in animal feed. In addition, legumes are important contributors to biological nitrogen, forming symbiotic relationships with rhizobia to fix atmospheric N2 and providing up to 30 % of available nitrogen for the next season of crops. The application of high-throughput genomic technologies including genome sequencing projects, genome re-sequencing (DNA-seq) and transcriptome sequencing (RNA-seq) by the legume research community has provided major insights into genome evolution, genomic architecture and domestication. Scope and Conclusions This review presents an overview of the current state of legume genomics and explores the role that next-generation sequencing technologies play in advancing legume genomics. The adoption of next-generation sequencing and implementation of associated bioinformatic tools has allowed researchers to turn each species of interest into their own model organism. To illustrate the power of next-generation sequencing, an in-depth overview of the transcriptomes of both soybean and white lupin (Lupinus albus) is provided. The soybean transcriptome focuses on analysing seed development in two near-isogenic lines, examining the role of transporters, oil biosynthesis and nitrogen utilization. The white lupin transcriptome analysis examines how phosphate deficiency alters gene expression patterns, inducing the formation of cluster roots. Such studies illustrate the power of next-generation sequencing and bioinformatic analyses in elucidating the gene networks underlying biological processes. PMID:24769535

  3. Influence of heat processing on the bioaccessibility of zinc and iron from cereals and pulses consumed in India.

    PubMed

    Hemalatha, Sreeramaiah; Platel, Kalpana; Srinivasan, Krishnapura

    2007-01-01

    Influence of heat processing on the bioaccessibility of zinc and iron from food grains consumed in India was evaluated. Cereals - rice (Oryza sativa), finger millet (Eleusine coracana), sorghum (Sorghum vulgare), wheat (Triticum aestivum), and maize (Zea mays), and pulses - chickpea (Cicer arietinum) - whole and decorticated, green gram (Phaseolus aureus) - whole and decorticated, decorticated black gram (Phaseolus mungo), decorticated red gram (Cajanus cajan), cowpea (Vigna catjang), and French bean (Phaseolus vulgaris) were examined for zinc and iron bioaccessibility by employing an in vitro dialysability procedure. Both pressure-cooking and microwave heating were tested for their influence on mineral bioaccessibility. Zinc bioaccessibility from food grains was considerably reduced upon pressure-cooking, especially in pulses. Among cereals, pressure-cooking decreased zinc bioaccessibility by 63% and 57% in finger millet and rice, respectively. All the pressure-cooked cereals showed similar percent zinc bioaccessibility with the exception of finger millet. Bioaccessibility of zinc from pulses was generally lower as a result of pressure-cooking or microwave heating. The decrease in bioaccessibility of zinc caused by microwave heating ranged from 11.4% in chickpea (whole) to 63% in cowpea. Decrease in zinc bioaccessibility was 48% in pressure-cooked whole chickpea, 45% and 55% in pressure-cooked or microwave-heated whole green gram, 32% and 22% in pressure-cooked or microwave-heated decorticated green gram, and 45% in microwave-heated black gram. Iron bioaccessibility, on the other hand, was significantly enhanced generally from all the food grains studied upon heat treatment. Thus, heat treatment of grains produced contrasting effect on zinc and iron bioaccessibility.

  4. Global Synthesis of Drought Effects on Food Legume Production.

    PubMed

    Daryanto, Stefani; Wang, Lixin; Jacinthe, Pierre-André

    2015-01-01

    Food legume crops play important roles in conservation farming systems and contribute to food security in the developing world. However, in many regions of the world, their production has been adversely affected by drought. Although water scarcity is a severe abiotic constraint of legume crops productivity, it remains unclear how the effects of drought co-vary with legume species, soil texture, agroclimatic region, and drought timing. To address these uncertainties, we collected literature data between 1980 and 2014 that reported monoculture legume yield responses to drought under field conditions, and analyzed this data set using meta-analysis techniques. Our results showed that the amount of water reduction was positively related with yield reduction, but the extent of the impact varied with legume species and the phenological state during which drought occurred. Overall, lentil (Lens culinaris), groundnut (Arachis hypogaea), and pigeon pea (Cajanus cajan) were found to experience lower drought-induced yield reduction compared to legumes such as cowpea (Vigna unguiculata) and green gram (Vigna radiate). Yield reduction was generally greater when legumes experienced drought during their reproductive stage compared to during their vegetative stage. Legumes grown in soil with medium texture also exhibited greater yield reduction compared to those planted on soil of either coarse or fine texture. In contrast, regions and their associated climatic factors did not significantly affect legume yield reduction. In the face of changing climate, our study provides useful information for agricultural planning and research directions for development of drought-resistant legume species to improve adaptation and resilience of agricultural systems in the drought-prone regions of the world.

  5. Nutritive value, fermentation characteristics, and in situ disappearance kinetics of ensiled warm-season legumes and bahiagrass.

    PubMed

    Foster, J L; Carter, J N; Sollenberger, L E; Blount, A R; Myer, R O; Maddox, M K; Phatak, S C; Adesogan, A T

    2011-04-01

    This study determined the nutritive value, ensiling characteristics, and in situ disappearance kinetics of bahiagrass (Paspalum notatum Flügge 'Tifton 9'), perennial peanut (Arachis glabrata Benth. 'Florigraze'), annual peanut [Arachis hypogaea (L.) 'FL MDR 98'], cowpea [Vigna unguiculata (L.) Walp. 'Iron clay'], and pigeonpea [Cajanus cajan (L.) Millsp. 'GA-2']. All forages were harvested at maturity stages that optimized dry matter (DM) yield and nutritive value. After harvest, forages were wilted to 45% DM, and 4 replicate bales of each legume and 8 bales of bahiagrass were wrapped in polyethylene and ensiled for 180 d. After each bale was opened, the forage was thoroughly mixed, and representative subsamples were taken for laboratory analysis and in situ incubation. Wilting and ensiling decreased the rumen-undegradable protein, water-soluble carbohydrate, crude protein (CP), and in vitro true digestibility (IVTD) of bahiagrass, perennial peanut, and cowpea, and increased their neutral detergent fiber (NDF) concentrations. Among haylages, CP concentration was greatest for annual peanut, followed by perennial peanut and cowpea, and least for bahiagrass. In contrast, NDF concentration was greater in bahiagrass than in legumes. Pigeonpea had the greatest NDF concentration among legumes and lowest IVTD of all haylages. All haylages were aerobically stable for at least 84 h, but pH was lower in perennial peanut and cowpea than in pigeonpea. Ammonia-N concentrations tended to be greater in legume haylages than in bahiagrass haylage. Butyrate concentration was greater in annual and perennial peanut than in bahiagrass. Total VFA concentration was greater in annual and perennial peanut and cowpea haylages than in bahiagrass haylage. Undegradable DM fractions were greater and extent of DM degradation was lower in bahiagrass and pigeonpea than in other haylages but lag time and degradation rates did not differ. Annual and perennial peanut and cowpea haylages were as

  6. Methane Production of Different Forages in In vitro Ruminal Fermentation

    PubMed Central

    Meale, S. J.; Chaves, A. V.; Baah, J.; McAllister, T. A.

    2012-01-01

    An in vitro rumen batch culture study was completed to compare effects of common grasses, leguminous shrubs and non-leguminous shrubs used for livestock grazing in Australia and Ghana on CH4 production and fermentation characteristics. Grass species included Andropodon gayanus, Brachiaria ruziziensis and Pennisetum purpureum. Leguminous shrub species included Cajanus cajan, Cratylia argentea, Gliricidia sepium, Leucaena leucocephala and Stylosanthes guianensis and non-leguminous shrub species included Annona senegalensis, Moringa oleifera, Securinega virosa and Vitellaria paradoxa. Leaves were harvested, dried at 55°C and ground through a 1 mm screen. Serum bottles containing 500 mg of forage, modified McDougall’s buffer and rumen fluid were incubated under anaerobic conditions at 39°C for 24 h. Samples of each forage type were removed after 0, 2, 6, 12 and 24 h of incubation for determination of cumulative gas production. Methane production, ammonia concentration and proportions of VFA were measured at 24 h. Concentration of aNDF (g/kg DM) ranged from 671 to 713 (grasses), 377 to 590 (leguminous shrubs) and 288 to 517 (non-leguminous shrubs). After 24 h of in vitro incubation, cumulative gas, CH4 production, ammonia concentration, proportion of propionate in VFA and IVDMD differed (p<0.05) within each forage type. B. ruziziensis and G. sepium produced the highest cumulative gas, IVDMD, total VFA, proportion of propionate in VFA and the lowest A:P ratios within their forage types. Consequently, these two species produced moderate CH4 emissions without compromising digestion. Grazing of these two species may be a strategy to reduce CH4 emissions however further assessment in in vivo trials and at different stages of maturity is recommended. PMID:25049482

  7. Comparative sequence analysis of nitrogen fixation-related genes in six legumes

    PubMed Central

    Kim, Dong Hyun; Parupalli, Swathi; Azam, Sarwar; Lee, Suk-Ha; Varshney, Rajeev K.

    2013-01-01

    Legumes play an important role as food and forage crops in international agriculture especially in developing countries. Legumes have a unique biological process called nitrogen fixation (NF) by which they convert atmospheric nitrogen to ammonia. Although legume genomes have undergone polyploidization, duplication and divergence, NF-related genes, because of their essential functional role for legumes, might have remained conserved. To understand the relationship of divergence and evolutionary processes in legumes, this study analyzes orthologs and paralogs for selected 20 NF-related genes by using comparative genomic approaches in six legumes i.e., Medicago truncatula (Mt), Cicer arietinum, Lotus japonicus, Cajanus cajan (Cc), Phaseolus vulgaris (Pv), and Glycine max (Gm). Subsequently, sequence distances, numbers of synonymous substitutions per synonymous site (Ks) and non-synonymous substitutions per non-synonymous site (Ka) between orthologs and paralogs were calculated and compared across legumes. These analyses suggest the closest relationship between Gm and Cc and the highest distance between Mt and Pv in six legumes. Ks proportional plots clearly showed ancient genome duplication in all legumes, whole genome duplication event in Gm and also speciation pattern in different legumes. This study also reports some interesting observations e.g., no peak at Ks 0.4 in Gm-Gm, location of two independent genes next to each other in Mt and low Ks values for outparalogs for three genes as compared to other 12 genes. In summary, this study underlines the importance of NF-related genes and provides important insights in genome organization and evolutionary aspects of six legume species analyzed. PMID:23986765

  8. Genotypic variability in physiological, biomass and yield response to drought stress in pigeonpea.

    PubMed

    Vanaja, M; Maheswari, M; Sathish, P; Vagheera, P; Jyothi Lakshmi, N; Vijay Kumar, G; Yadav, S K; Razzaq, Abdul; Singh, Jainender; Sarkar, B

    2015-10-01

    Three pigeonpea (Cajanus cajan L. Millsp.) genotypes- GT-1, AKP-1 and PRG-158 with varying crop duration, growth habit and flowering pattern were evaluated for variability in their response for drought stress. Drought stress was imposed at initiation of flowering and the observations on biomass and seed yield parameters were recorded at harvest. The magnitude of response of individual component to drought stress was found to be genotype specific. Drought stress significantly decreased photosynthetic rate (PN), transpiration rate (Tr) and relative water content (RWC) in all the genotypes, however the magnitude of reduction differed with genotype. With drought stress, the reduction of PN was highest in GT-1 while reduction in Tr was highest in PRG-158. The genotype AKP-1, accumulated significantly higher concentrations of osmotic solutes especially proline under water deficit stress, this facilitated it to maintain higher relative water content (RWC) and lower malondialdehyde (MDA) content as compared to other genotypes. Drought stress also impacted biomass production and their partitioning to vegetative and reproductive components at harvest. There was significant variability between the genotypes for seed yield under drought stress while it was non-significant under well-watered condition. Drought stress enhanced flower drop and decreased flower to pod conversion resulting in reduced pod number and seed number in PRG-158 and GT-1. The genotype AKP-1 recorded superior performance for seed yield under stress environment due to its ability in maintaining pod and seed number as well as improved test weight (100 seed weight). Under drought stress, significant positive association of seed yield with proline, seed number, pod number and test weight clearly indicating their role in drought tolerance.

  9. Global Synthesis of Drought Effects on Food Legume Production

    PubMed Central

    Daryanto, Stefani; Wang, Lixin; Jacinthe, Pierre-André

    2015-01-01

    Food legume crops play important roles in conservation farming systems and contribute to food security in the developing world. However, in many regions of the world, their production has been adversely affected by drought. Although water scarcity is a severe abiotic constraint of legume crops productivity, it remains unclear how the effects of drought co-vary with legume species, soil texture, agroclimatic region, and drought timing. To address these uncertainties, we collected literature data between 1980 and 2014 that reported monoculture legume yield responses to drought under field conditions, and analyzed this data set using meta-analysis techniques. Our results showed that the amount of water reduction was positively related with yield reduction, but the extent of the impact varied with legume species and the phenological state during which drought occurred. Overall, lentil (Lens culinaris), groundnut (Arachis hypogaea), and pigeon pea (Cajanus cajan) were found to experience lower drought-induced yield reduction compared to legumes such as cowpea (Vigna unguiculata) and green gram (Vigna radiate). Yield reduction was generally greater when legumes experienced drought during their reproductive stage compared to during their vegetative stage. Legumes grown in soil with medium texture also exhibited greater yield reduction compared to those planted on soil of either coarse or fine texture. In contrast, regions and their associated climatic factors did not significantly affect legume yield reduction. In the face of changing climate, our study provides useful information for agricultural planning and research directions for development of drought-resistant legume species to improve adaptation and resilience of agricultural systems in the drought-prone regions of the world. PMID:26061704

  10. Medicinal plants used for dogs in Trinidad and Tobago.

    PubMed

    Lans, C; Harper, T; Georges, K; Bridgewater, E

    2000-06-12

    This paper documents ethnoveterinary medicines used to treat dogs in Trinidad and Tobago. In 1995, a 4-stage process was used to conduct the research and document the ethnoveterinary practices. Twenty-eight ethnoveterinary respondents were identified using the school-essay method, which is a modified rapid rural appraisal (RRA) technique. Semi-structured interviews were held with these respondents as well as with 30 veterinarians, 27 extension officers and 19 animal-health assistants and/or agricultural officers, and the seven key respondents that they identified. The final step involved hosting four participatory workshops with 55 of the respondents interviewed to discuss the ethnoveterinary data generated from the interviews and to determine dosages for some of the plants mentioned. Supplementary interviews were conducted in 1997 and 1998. Seeds of Carica papaya, and leaves of Cassia alata, Azadirachta indica, Gossypium spp., Cajanus cajan and Chenopodium ambrosiodes are used as anthelmintics. The anthelmintics Gossypium spp. and Chenopodium ambrosiodes are the most frequently used species. Crescentia cujete pulp, Musa spp. stem exudate, the inside of the pods of Bixa orellana, leaves of Cordia curassavica and Eclipta alba plant tops are used for skin diseases. Musa spp. stem exudate, seeds of Manilkara zapota, Pouteria sapota and Mammea americana and leaves of Cordia curassavica, Scoparia dulcis and Nicotiana tabacum are used to control ectoparasites. Dogs are groomed with the leaves of Cordia curassavica, Bambusa vulgaris and Scoparia dulcis. Psidium guajava buds and leaves and the bark of Anacardium occidentale are used for diarrhoea. Owners attempt to achieve milk let-down with a decoction of the leaves of Stachytarpheta jamaicensis. The plant uses parallel those practised in human folk medicine in other Caribbean countries and in other tropical countries.

  11. Preliminary evaluation of hepatoprotective potential of the polyherbal formulation

    PubMed Central

    Arka, Ghosh; Anindita, Kundu; Ankit, Seth; Kumar, Singh Anil; Kumar, Maurya Santosh

    2015-01-01

    Aim: The aim of this study was to investigate the antioxidant and hepatoprotective effects of the polyherbal formulation (PHF)containing Cajanus cajan (L.)Millsp., Lawsonia inermis L. Linn, Mimosa pudica L., Uraria picta (Jacq.)DC. and Operculina turpethum (L.)Silva Manso on carbon tetrachloride (CCl4)induced acute liver damage in albino rats. Materials and Methods: The groups of animals were administered with PHF at the doses 100, 200 and 400 mg/kg b.w. (per oral [p.o.])once in a day for 7 days and at day 6th and 7th the animals were administrated with Carbon tetrachloride (1.0 mL/kg b.w. 50% v/v with olive oil,; p.o.). The effect of PHF on serum glutamine pyruvate transaminase (SGPT), serum glutamine oxaloacetate transaminase, alkaline phosphatase (ALP)and total bilirubin were determined in CCl4 - induced hepatotoxicity in rats. Further, the effects of PHF on glutathione (GSH), superoxide dismutase (SOD)level and lipid peroxidation (LPO)activity were also investigated. Results: The results demonstrated that PHF (400 mg/kg b.w.)significantly reduces the CCl4 induced increase in level of serum SGPT, serum ALP and total bilirubin. PHF (400 mg/kg b.w.)prevents the depletion level of GSH and decrease in the activity of SOD in CCl4 -induced liver injury in rats. In addition, PHF also showed a significant decrease in the LPO levels signifying the potent antioxidant activity. Conclusion: All our findings suggest that PHF could protect the liver cells from CCl4 - induced liver damages and the mechanism may be through the anti-oxidative effect of PHF. PMID:26401397

  12. Declination of copper toxicity in pigeon pea and soil system by growth-promoting Proteus vulgaris KNP3 strain.

    PubMed

    Rani, Anju; Shouche, Yogesh S; Goel, Reeta

    2008-07-01

    The copper-resistant (1318 microM CuSO(4).5H(2)O) strain KNP3 of Proteus vulgaris was isolated from soil near the Panki power plant, Kanpur, India, and was used to inoculate pigeon pea (Cajanus cajan var. UPS-120) seeds grown in soil for 60 days in the presence of 600 microM CuSO(4).5H(2)O. A study of siderophore production (126.34 +/- 0.52 microg ml(-1)) and its subsequent effects on plant growth promotion under in situ conditions was conducted. The parameters that were monitored included the plants' wet weight, dry weight, shoot length, chlorophyll content, and concentration of copper in plant roots and shoots. The results showed that the strain caused a significant (p < 0.05) increase in wet weight, dry weight, root length, shoot growth, and chlorophyll content (57.8%, 60%, 19.7%, 47.8%, and 36.3%, respectively) in the presence of copper. Furthermore, the strain reduced accumulation of Cu in the roots and shoots to 36.8% and 60.5%, respectively. Apart from this, copper concentration in the soil was measured on 0, 7, 15, 30, and 45 days consecutively and the results indicated that the bioinoculant KNP3 causes a significant decrease in Cu concentration in soil (55.6%), which was unlikely in the control (10.5%) treatment. The data suggested that the bacterial strain has the ability to protect plants against the inhibitory effects of copper besides reducing the copper load of the soil.

  13. Intake, digestibility, and nitrogen retention by sheep supplemented with warm-season legume haylages or soybean meal.

    PubMed

    Foster, J L; Adesogan, A T; Carter, J N; Blount, A R; Myer, R O; Phatak, S C

    2009-09-01

    The high cost of commercial supplements necessitates evaluation of alternatives for ruminant livestock fed poor quality warm-season grasses. This study determined how supplementing bahiagrass haylage (Paspalum notatum Flügge cv. Tifton 9) with soybean [Glycine max (L.) Merr.] meal or warm-season legume haylages affected the performance of lambs. Forty-two Dorper x Katadhin lambs (27.5 +/- 5 kg) were fed for ad libitum intake of bahiagrass haylage (67.8% NDF, 9.6% CP) alone (control) or supplemented with soybean meal (18.8% NDF, 51.4% CP) or haylages of annual peanut [Arachis hypogaea (L.) cv. Florida MDR98; 39.6% NDF, 18.7% CP], cowpea [Vigna unguiculata (L.) Walp. cv. Iron clay; 44.1% NDF, 16.0% CP], perennial peanut (Arachis glabrata Benth. cv. Florigraze; 40.0% NDF, 15.8% CP), or pigeonpea [Cajanus cajan (L.) Millsp. cv. GA-2; 65.0% NDF, 13.7% CP]. Haylages were harvested at the optimal maturity for maximizing yield and nutritive value, wilted to 45% DM, baled, wrapped in polyethylene plastic, and ensiled for 180 d. Legumes were fed at 50% of the dietary DM, and soybean meal was fed at 8% of the dietary DM to match the average CP concentration (12.8%) of legume haylage-supplemented diets. Lambs were fed each diet for a 14-d adaptation period and a 7-d data collection period. Each diet was fed to 7 lambs in period 1 and 4 lambs in period 2. Pigeonpea haylage supplementation decreased (P < 0.01) DM and OM intake and digestibility vs. controls. Other legume haylages increased (P < 0.05) DM and OM intake vs. controls; however, only soybean meal supplementation increased (P = 0.01) DM digestibility. All supplements decreased (P = 0.05) NDF digestibility. Except for pigeonpea haylage, all supplements increased (P < 0.01) N intake, digestibility, and retention, and the responses were greatest (P = 0.04) with soybean meal supplementation. Microbial N synthesis was reduced (P = 0.02) by pigeonpea haylage supplementation, but unaffected (P = 0.05) by other supplements

  14. Intake, digestibility, and nitrogen retention by sheep supplemented with warm-season legume hays or soybean meal.

    PubMed

    Foster, J L; Adesogan, A T; Carter, J N; Blount, A R; Myer, R O; Phatak, S C

    2009-09-01

    The increasing cost of feed supplements necessitates evaluation of alternatives for ruminant livestock grazing poor quality warm-season grasses. This study determined how supplementing bahiagrass hay (Paspalum notatum Flügge cv. Pensacola) with soybean [Glycine max (L.) Merr.] meal or warm-season legume hays affected intake, digestibility, and N utilization by lambs. Dorper x Katadhin crossbred lambs (30.6 +/- 5.5 kg; n = 42) were fed bahiagrass hay (73.8% NDF, 8.1% CP) for ad libitum intake and supplemented with nothing (control), soybean meal, or hays of annual peanut [Arachis hypogaea (L.) cv. Florida MDR98; 46.2% NDF, 14.7% CP], cowpea [Vigna unguiculata (L.) Walp. cv. Iron clay; 62.2% NDF, 11.7% CP], perennial peanut (Arachis glabrata Benth. cv. Florigraze; 43.3% NDF, 15.2% CP), pigeonpea [Cajanus cajan (L.) Millsp. cv. GA-2; 78.6% NDF, 12.2% CP], or soybean (cv. Pioneer 97B52; 59.0% NDF, 13.5% CP). Legume hays were supplemented at 50% of total diet DM, and soybean meal was supplemented at a level (4.25% of diet DM) that matched the average dietary CP content (10.8%) of the legume hay-supplemented diets. The cowpea, pigeonpea, and soybean were harvested at respective maturities that maximized DM yield and nutritive value, and the peanuts were first cuttings. Diets were fed to 6 lambs per treatment for 2 consecutive 21-d periods. Supplementation with hays of annual and perennial peanut, cowpea, and soybean increased (P < 0.01) DMI vs. control, but apparent DM digestibility was only increased (P = 0.03) by supplementation with annual or perennial peanut hay. Compared with the control, N intake, digestibility, and retention were increased (P < 0.01) by supplementation with legume hay or soybean meal. Responses were greatest when annual or perennial peanut hays were fed. Ruminal ammonia concentration was increased (P < 0.01) by all legume hay supplements vs. the control. Microbial N synthesis and ruminally degraded OM were increased (P = 0.03) by perennial and

  15. SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.)

    PubMed Central

    2013-01-01

    Background Field pea (Pisum sativum L.) is a self-pollinating, diploid, cool-season food legume. Crop production is constrained by multiple biotic and abiotic stress factors, including salinity, that cause reduced growth and yield. Recent advances in genomics have permitted the development of low-cost high-throughput genotyping systems, allowing the construction of saturated genetic linkage maps for identification of quantitative trait loci (QTLs) associated with traits of interest. Genetic markers in close linkage with the relevant genomic regions may then be implemented in varietal improvement programs. Results In this study, single nucleotide polymorphism (SNP) markers associated with expressed sequence tags (ESTs) were developed and used to generate comprehensive linkage maps for field pea. From a set of 36,188 variant nucleotide positions detected through in silico analysis, 768 were selected for genotyping of a recombinant inbred line (RIL) population. A total of 705 SNPs (91.7%) successfully detected segregating polymorphisms. In addition to SNPs, genomic and EST-derived simple sequence repeats (SSRs) were assigned to the genetic map in order to obtain an evenly distributed genome-wide coverage. Sequences associated with the mapped molecular markers were used for comparative genomic analysis with other legume species. Higher levels of conserved synteny were observed with the genomes of Medicago truncatula Gaertn. and chickpea (Cicer arietinum L.) than with soybean (Glycine max [L.] Merr.), Lotus japonicus L. and pigeon pea (Cajanus cajan [L.] Millsp.). Parents and RIL progeny were screened at the seedling growth stage for responses to salinity stress, imposed by addition of NaCl in the watering solution at a concentration of 18 dS m-1. Salinity-induced symptoms showed normal distribution, and the severity of the symptoms increased over time. QTLs for salinity tolerance were identified on linkage groups Ps III and VII, with flanking SNP markers suitable for

  16. Influence of host origin on host choice of the parasitoid Dinarmus basalis: does upbringing influence choices later in life?

    PubMed

    Sankara, F; Dabiré, L C B; Ilboudo, Z; Dugravot, S; Cortesero, A M; Sanon, A

    2014-02-26

    The aim of this study was to investigate the influence of volatile compounds from four secondary host plants on the ability of Dinarmus basalis Rond. (Hymenoptera: Pteromalidae) to locate, recognize, and parasitize its host, 4(th)instar larvae or pupae of Callosobruchus maculatus F. (Coleoptera: Chrysomelidae). To examine this, strains of D. basalis were transferred from cow-pea seeds (Vigna unguiculata (L.) Walp. (Fabales: Fabaceae)) to pigeon pea (Cajanus cajan (L.) Millsp.) and two varieties of Bambara groundnut (Vigna subterranea (L.) Verdc.) seeds. The ability of D. basalis females to recognize the volatile compounds emanating from their complex host plant was tested by using a Y-tube olfactometer and a three-dimensional device. The results suggest that when females have a choice between pure air and the air emanating from their complex host of origin, they are attracted to the air tainted by the volatile compounds they have become accustomed to. They spent significantly more time (p < 0.0001) in the branch of the tube leading to the odorous air than in the tube leading to the pure air. When females from pigeon pea seed hosts were offered a choice between cowpea and pigeon pea seeds, all containing 4(th)instar larvae, the familiar odor of pigeon pea seeds were most attractive. When females from Bambara groundnut (white and striped) seed hosts were offered a choice between cowpea and pigeon pea seeds, all containing 4(th)instar larvae, they were significantly attracted to the odour of cowpea seeds. In the three-dimensional system, the females from the four strains did not appear to have any preference for a given type of seed containing 4(th)instar larvae or pupae. The parasitism rate remained high on all four types of seeds used. These results show that the use of D. basalis as a biological control agent is possible in host changing situations where C. maculatus starts to attack other legumes. The results of this study also provide information supporting the

  17. Effects of pigeon pea and plantain starches on the compressional, mechanical, and disintegration properties of paracetamol tablets.

    PubMed

    Dare, Kunle; Akin-Ajani, Dorothy O; Odeku, Oluwatoyin A; Itiola, Oludele A; Odusote, Omotunde M

    2006-03-01

    A study has been made of the effects of pigeon pea starch obtained from the plant Cajanus cajan (L) Millisp. (family Fabaceae) and plantain starch obtained from the unripe fruit of Musa paradisiaca L. (family Musaceae) on the compressional, mechanical, and disintegration properties of paracetamol tablets in comparison with official corn starch BP. Analysis of compressional properties was done by using density measurements, and the Heckel and Kawakita equations, whereas the mechanical properties of the tablets were evaluated by using tensile strength (T--a measure of bond strength) and brittle fracture index (BFI--a measure of lamination tendency). The ranking for the mean yield pressure, P(y), for the formulations containing the different starches was generally corn < pigeon pea < plantain starch while the ranking for P(k), an inverse measure of the amount of plasticity, was pigeon pea < plantain < corn starch, which indicated that formulations containing corn starch generally exhibited the fastest onset of plastic deformation, whereas those formulations containing pigeon pea starch exhibited the highest amount of plastic deformation during tableting. The tensile strength of the tablets increased with increase in concentration of the starches while the Brittle Fracture Index decreased. The ranking for T was pigeon pea > plantain > corn starch while the ranking for BFI was corn > plantain > pigeon pea starch. The bonding capacity of the formulations was in general agreement with the tensile strength results. The disintegration time (DT) of the formulation increased with concentration of plantain and corn starches but decreased with concentration of pigeon pea starch. The general ranking of DT values was plantain < pigeon pea < corn starch. Notably, formulations containing pigeon pea starch exhibited the highest bond strength and lowest brittleness, suggesting the usefulness of pigeon pea starch in producing strong tablets with minimal lamination tendency. Plantain

  18. Potential of carbon accumulation in no-till soils with intensive use and cover crops in southern Brazil.

    PubMed

    Amado, Telmo Jorge Carneiro; Bayer, Cimélio; Conceição, Paulo Cesar; Spagnollo, Evandro; de Campos, Ben-Hur Costa; da Veiga, Milton

    2006-01-01

    The area under no-till (NT) in Brazil reached 22 million ha in 2004-2005, of which approximately 45% was located in the southern states. From the 1970s to the mid-1980s, this region was a source of carbon dioxide to the atmosphere due to decrease of soil carbon (C) stocks and high consumption of fuel by intensive tillage. Since then, NT has partially restored the soil C lost and reduced the consumption of fossil fuels. To assess the potential of C accumulation in NT soils, four long-term experiments (7-19 yr) in subtropical soils (Paleudult, Paleudalf, and Hapludox) varying in soil texture (87-760 g kg(-1) of clay) in agroecologic southern Brazil zones (central region, northwest basaltic plateau in Rio Grande Sul, and west basaltic plateau in Santa Catarina) and with different cropping systems (soybean and maize) were investigated. The lability of soil organic matter (SOM) was calculated as the ratio of total organic carbon (TOC) to particulate organic carbon (POC), and the role of physical protection on stability of SOM was evaluated. In general, TOC and POC stocks in native grass correlated closely with clay content. Conversely, there was no clear effect of soil texture on C accumulation rates in NT soils, which ranged from 0.12 to 0.59 Mg ha(-1) yr(-1). The C accumulation was higher in NT than in conventional-till (CT) soils. The legume cover crops pigeon pea [Cajanus cajan (L.) Millsp] and velvet beans (Stizolobium cinereum Piper & Tracy) in NT maize cropping systems had the highest C accumulation rates (0.38-0.59 Mg ha(-1) yr(-1)). The intensive cropping systems also were effective in increasing the C accumulation rates in NT soils (0.25-0.34 Mg ha(-1) yr(-1)) when compared to the double-crop system used by farmers. These results stress the role of N fixation in improving the tropical and subtropical cropping systems. The physical protection of SOM within soil aggregates was an important mechanism of C accumulation in the sandy clay loam Paleudult under NT

  19. Yield potential of pigeon pea cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yield potential of twelve vegetable pigeon pea (Cajanus cajun) cultivars was evaluated at two locations in eastern Kenya during 2012 and 2013 cropping years. Pigeon pea pod numbers, seeds per pod, seed mass, grain yield and shelling percentage were quantified in three replicated plots, arranged in a...

  20. Genome-wide dissection of AP2/ERF and HSP90 gene families in five legumes and expression profiles in chickpea and pigeonpea.

    PubMed

    Agarwal, Gaurav; Garg, Vanika; Kudapa, Himabindu; Doddamani, Dadakhalandar; Pazhamala, Lekha T; Khan, Aamir W; Thudi, Mahendar; Lee, Suk-Ha; Varshney, Rajeev K

    2016-07-01

    APETALA2/ethylene response factor (AP2/ERF) and heat-shock protein 90 (HSP90) are two significant classes of transcription factor and molecular chaperone proteins which are known to be implicated under abiotic and biotic stresses. Comprehensive survey identified a total of 147 AP2/ERF genes in chickpea, 176 in pigeonpea, 131 in Medicago, 179 in common bean and 140 in Lotus, whereas the number of HSP90 genes ranged from 5 to 7 in five legumes. Sequence alignment and phylogenetic analyses distinguished AP2, ERF, DREB, RAV and soloist proteins, while HSP90 proteins segregated on the basis of their cellular localization. Deeper insights into the gene structure allowed ERF proteins to be classified into AP2s based on DNA-binding domains, intron arrangements and phylogenetic grouping. RNA-seq and quantitative real-time PCR (qRT-PCR) analyses in heat-stressed chickpea as well as Fusarium wilt (FW)- and sterility mosaic disease (SMD)-stressed pigeonpea provided insights into the modus operandi of AP2/ERF and HSP90 genes. This study identified potential candidate genes in response to heat stress in chickpea while for FW and SMD stresses in pigeonpea. For instance, two DREB genes (Ca_02170 and Ca_16631) and three HSP90 genes (Ca_23016, Ca_09743 and Ca_25602) in chickpea can be targeted as potential candidate genes. Similarly, in pigeonpea, a HSP90 gene, C.cajan_27949, was highly responsive to SMD in the resistant genotype ICPL 20096, can be recommended for further functional validation. Also, two DREB genes, C.cajan_41905 and C.cajan_41951, were identified as leads for further investigation in response to FW stress in pigeonpea.

  1. Distribution of nitrogenous nutrients and denitrifiers strains in estuarine sediment profiles of the Tanshui River, northern Taiwan

    NASA Astrophysics Data System (ADS)

    Fan, L. F.; Shieh, W. Y.; Wu, W. F.; Chen, C.-P.

    2006-09-01

    Chemical profiles of both oxidized (nitrate and sulfate) and reduced (ammonium, sulfide, acid-volatile sulfide [AVS], and pyrite) materials and the corresponding distribution of denitrifier microbial communities were measured at low tide in sediments at Guandu in the estuary of the Tanshui River, northern Taiwan in August 2002. Denitrifier strains were isolated for physiological and phylogenic analyses. Based on the distribution of nitrogenous compounds and denitrifier abundances, the vertical profile of Guandu sediments could be separated into four layers: a mixed layer (the top 1 cm of depth, respectively containing 0.82-2.37 and 535.9-475.0 μM of nitrate and ammonium), a nitrate-concentrated layer (1-5 cm in depth, 2.37-0.53 and 475.0-1192.1 μM, respectively), a denitrifier-aggregation layer (5-7 cm in depth, 0.53-0.72 and 1192.1-1430.1 μM, respectively), and an ammonium-enriched layer (7-12 cm in depth, 0.72-0.78 and 1430.1-2196.6 μM, respectively). Denitrifier strains were detected in all layers except for the mixed layer. A variety of metabolic processes by these strains may occur in different layers. Bacillus jeotgali-, Bacillus sphaericus-, and Bacillus firmus-related strains isolated from the nitrate-concentrated layer may be involved in the nitrification-denitrification coupling process due to the relatively low nitrate concentrations (maximum = 2.37 μM), and may contribute to denitrification not nitrification. Bacillus bataviensis- and B. jeotgali-related strains isolated from the denitrifier-aggregation layer comprised the predominant denitrifier population (3.64 × 10 4 cells/g of denitrifier abundance). They possess the ability of dissimilatory nitrate reduction to ammonium (DNRA). Bacillus jeotgali-related strains and two newly identified strains of GD0705 and GD0706 isolated from the ammonium-enriched layer possibly use fermentative processes as the main metabolic pathway instead of denitrification when nitrate is scarce, and this further

  2. A protocol for high-quality genomic DNA extraction from legumes.

    PubMed

    Agbagwa, I O; Datta, S; Patil, P G; Singh, P; Nadarajan, N

    2012-12-19

    Current DNA extraction protocols, which require liquid nitrogen, lyophilization and considerable infrastructure in terms of instrumentation, often impede the application of biotechnological tools in less researched crops in laboratories in developing countries. We modified and optimized the existing CTAB method for plant genomic DNA extraction by avoiding liquid nitrogen usage and lyophilization. DNA was extracted directly from freshly harvested leaves ground in pre-heated CTAB buffer. Chloroform:isoamyl alcohol (24:1) and RNase treatments followed by single-purification step decontaminated the samples thereby paving way for selective extraction of DNA. High molecular weight DNA yield in the range of 328 to 4776 ng/μL with an average of 1459 ng/μL was obtained from 45 samples of cultivated and wild Cajanus species. With an absorbance ratio at 260 to 280 nm, a range of 1.66 to 2.20, and a mean of 1.85, very low levels of protein and polysaccharide contamination were recorded. Forty samples can be extracted daily at a cost between 1.8 and US$2.0 per plant sample. This modified method is suitable for most plants especially members of the Leguminosae. Apart from Cajanus, it has been extensively applied in DNA extraction from Cicer and Vigna species.

  3. Tylenchida associated with different crops in Sennar State (Sudan).

    PubMed

    Elbadri, G A; Bert, W; Geraert, E

    2001-01-01

    A study was done on the taxonomy and morphology of plant parasitic nematodes (Tylenchida) found in Sennar State (Sudan). Sixty samples of different crops were collected in the sugarcane area. Thirty samples originated from soil around the roots of Saccharum officinarum (sugarcane) from different ratoons and thirty samples were collected from other crops (Mangifera indica; Citrus limon; Citrus aurantifolia; Citrus paradisi; Citrus sinensis, Phoenix dactylifera, Musa sapentium; Cassia italica, Capsicum annuum, Sorghum bicolor, Sorghum sudanensis, Gossypium barbadense, Ficus nitida, Khaya senegalensis, Eucalyptus microtheca, Acacia nilotica, Acacia seyal, Azardichta indica, Cajanus cajana, Caltropsis spp. and Liguster ovalifolium). Seven species belonging to seven different genera of Tylenchida were identified: Paratrophurus lobatus, Scutellonema clathricaudatum, Hoplolaimus aegypti and Filenchus cylindricus. Helicotylenchus plumariae, Pratylenchus thornei and Malenchus andrassyi are new records for Sudan. These seven species were compared with the descriptions given in the literature and differences and variations were discussed. Additional morphological data were described by means of SEM microscopy.

  4. [Giantism. A historical and medical view].

    PubMed

    de Herder, W W

    2004-12-25

    Patients with giantism were displayed as curiosities to large audiences in the past. The (medical) histories of famous giants like Daniel Cajanus (born in 1702 or 1703, Finland), Charles Byrne (1761, Ireland), Edouard Beaupré (1881, Canada) and Robert Wadlow (1918, Illinois, USA) are well described in the international medical literature. Extensive data from the entertainment world and/or medical data exist on famous Dutch giants like Klaas van Kyeten (end of 13th century), Gerrit Bastiaansz. de Hals (1620), Albert Johan Kramer (1897) and Rigardus Rijnhout (1922). Famous Dutch giantesses are Trijntje Kornelisse Keever (1614) and Kaatje van Dijk (1904). In most giants, excessive growth was caused by a somatotroph pituitary adenoma, sometimes in combination with hypogonadotrophic hypogonadism. In the western world, it is unlikely that there will be many more people with fully developed giantism due to the current high level of medical care.

  5. The patterns of organisation and structure of interactions in a fish-parasite network of a neotropical river.

    PubMed

    Bellay, Sybelle; Oliveira, Edson F de; Almeida-Neto, Mário; Abdallah, Vanessa D; Azevedo, Rodney K de; Takemoto, Ricardo M; Luque, José L

    2015-07-01

    The use of the complex network approach to study host-parasite interactions has helped to improve the understanding of the structure and dynamics of ecological communities. In this study, this network approach is applied to evaluate the patterns of organisation and structure of interactions in a fish-parasite network of a neotropical Atlantic Forest river. The network includes 20 fish species and 73 metazoan parasite species collected from the Guandu River, Rio de Janeiro State, Brazil. According to the usual measures in studies of networks, the organisation of the network was evaluated using measures of host susceptibility, parasite dependence, interaction asymmetry, species strength and complementary specialisation of each species as well as the network. The network structure was evaluated using connectance, nestedness and modularity measures. Host susceptibility typically presented low values, whereas parasite dependence was high. The asymmetry and species strength were correlated with host taxonomy but not with parasite taxonomy. Differences among parasite taxonomic groups in the complementary specialisation of each species on hosts were also observed. However, the complementary specialisation and species strength values were not correlated. The network had a high complementary specialisation, low connectance and nestedness, and high modularity, thus indicating variability in the roles of species in the network organisation and the expected presence of many specialist species.

  6. Organic micropollutants on river sediments from Rio de Janeiro State, Southeast Brazil.

    PubMed

    Torres, João Paulo Machado; Malm, Olaf; Vieira, Elisa Diniz Reis; Japenga, Jan; Koopmans, Gerwin Ferdinand

    2002-01-01

    The paper is a contribution for the knowledge upon concentrations and fate of different kinds of organic micropollutants in Tropical River system from a very industrialized region in Brazil. The presented data was obtained during three years of an International Research Project between Brazilian and Dutch institutions. The sediments were sampled at the Paraiba do Sul-Guandu river watershed, the most important watercourse of Rio de Janeiro state, where up 90% of the population depends on its water for domestic uses. After extraction with non-polar solvents in a hot sohxlet device and clean up using chromatographic columns, three classes of organic micropollutants were analyzed: organochlorine insecticides (OCs), polychlorinated biphenyls (PCBs) and polynuclear aromatic hydrocarbons (PAHs). The organochlorines, including the PCBs were scarcely present in the collected samples probably reflecting the restrictions of use of this class of compounds in the Brazilian market. However, the PAHs levels were high at the vicinity of a huge steelworks located in the city of Volta Redonda. This contamination is probably due to the massive use of coal in the above-cited metallurgical plant.

  7. Evaluation of three manually operated weeding devices.

    PubMed

    Tewari, V K; Datta, R K; Murthy, A S

    1991-04-01

    Performance of three manually operated weeders was evaluated from ergonomics and mechanical considerations. Three operators were selected for laboratory and field trials; they represented the 5th, 50th and 95th percentiles of the operator population. Laboratory tests were conducted in a psychometric chamber to study physiological response under varying load and environmental conditions. From the data, relationships between energy expenditure rate and oxygen consumption rate vs heart rate were established. Field tests were carried out with the three weeders in a farm with Arhar crop (Cajannus Cajan L.) during August-September, when the average ambient temperature and relative humidity were 36 degrees C and 82% respectively. The results of this investigation indicated that weeding with the indigenous tools of a 'khurpi' and a spade and with the improved tool (3-tine hoe) could be rated as 'moderately heavy' work. However, a 'khurpi' demanded less energy expenditure than a 3-tine hoe followed by a spade. The squatting posture with a 'khurpi' appeared to be more comfortable than the standing posture with about 145 degrees erect position for the 3-tine hoe, followed by the standing posture with about 108 degrees erect position with the spade. For consideration of higher output, the order was spade, 3-tine hoe and 'khurpi', For weeding efficiency the trend was, however, just the reverse.

  8. Acid Volatile Sulfides (avs) and the Bioavailability of Trace Metals in the Channel of the SÃO Francisco River, Sepetiba Bay - de Janeiro-Brazil

    NASA Astrophysics Data System (ADS)

    Monte, Christiane; Rodrigues, Ana Paula; Marinho, Matheus; Quaresma, Tássia; Machado, Wilson

    2014-05-01

    Sepetiba Bay has 430 Km2 of internal and 2,500 Km2 area of the drainage basin (Lacerda et al., 2007), located 60 km west of the city of Rio de Janeiro. Sepetiba Bay has 430 Km2 of internal and 2,500 Km2 area of the drainage basin (Lacerda et al., 2007), located 60 km west of the city of Rio de Janeiro.The San Francisco channel comes from the Guandu River and empties into Sepetiba Bay and is the main contributor of freshwater to the estuarine system. The Guandu River system/channel of San Francisco receives contribution of domestic and industrial effluents, which go largely to Sepetiba Bay. This work aimed to evaluate the .This work aimed to evaluate the ratio SEM/AVS as a way of predicting bioavailability trace metals from industrial sewage, mainly, in the estuarine system of Sepetiba. This model is based on the property of some Divalent metal cations (Cd, Cu, Ni, Pb and Zn), by presenting a low solubility constant, are removed from the soluble fraction by precipitation, forming secondary metal sulfides. Were held four transects, made up of three points each, the coast line to the center of the Bay. The surface sediment was collected with a van Veen sampler type ,packed in glass jars and kept frozen until analysis.The determination of SEM/AVS followed the methodology described by Allen et al. (1991). The variation between sulfide 159.88 ± 0.05 µmol/g on 12 points. The metals that entered the sum of simultaneous extraction were: Cd, Cu, Ni, Pb and Zn ranging from: 6.47 ± 0.11 µmol/g on sum.The means (± standard deviation) ratio SEM/AVS per transect were: 1.04 ± 1.20 (transect 1); 0.48 ± 0.53 (transect 2); 1.26 ± 1.32 (transect 3) and 0.18 ± 0.14 (transect 4). Only transects 1 and 3 had higher results than 1 , meaning that there are more divalent metal sulfides in the environment. This means that only the sulfides would not be capable of complex and may reflect the potential bioavailability of these in the aquatic environment. There is no statistical

  9. Lignin phenols used to infer organic matter sources to Sepetiba Bay - RJ, Brasil

    NASA Astrophysics Data System (ADS)

    Rezende, C. E.; Pfeiffer, W. C.; Martinelli, L. A.; Tsamakis, E.; Hedges, J. I.; Keil, R. G.

    2010-04-01

    Lignin phenols were measured in the sediments of Sepitiba Bay, Rio de Janeiro, Brazil and in bedload sediments and suspended sediments of the four major fluvial inputs to the bay; São Francisco and Guandu Channels and the Guarda and Cação Rivers. Fluvial suspended lignin yields (Σ8 3.5-14.6 mgC 10 g dw -1) vary little between the wet and dry seasons and are poorly correlated with fluvial chlorophyll concentrations (0.8-50.2 μgC L -1). Despite current land use practices that favor grassland agriculture or industrial uses, fluvial lignin compositions are dominated by a degraded leaf-sourced material. The exception is the Guarda River, which has a slight influence from grasses. The Lignin Phenol Vegetation Index, coupled with acid/aldehyde and 3.5 Db/V ratios, indicate that degraded leaf-derived phenols are also the primary preserved lignin component in the bay. The presence of fringe Typha sp. and Spartina sp. grass beds surrounding portions of the Bay are not reflected in the lignin signature. Instead, lignin entering the bay appears to reflect the erosion of soils containing a degraded signature from the former Atlantic rain forest that once dominated the watershed, instead of containing a significant signature derived from current agricultural uses. A three-component mixing model using the LPVI, atomic N:C ratios, and stable carbon isotopes (which range between -26.8 and -21.8‰) supports the hypothesis that fluvial inputs to the bay are dominated by planktonic matter (78% of the input), with lignin dominated by leaf (14% of the input) over grass (6%). Sediments are composed of a roughly 50-50 mixture of autochthonous material and terrigenous material, with lignin being primarily sourced from leaf.

  10. Sublethal exposure from microcystins to renal insufficiency patients in Rio de Janeiro, Brazil.

    PubMed

    Soares, Raquel M; Yuan, Moucun; Servaites, Jerome C; Delgado, Alvimar; Magalhães, Valéria F; Hilborn, Elizabeth D; Carmichael, Wayne W; Azevedo, Sandra M F O

    2006-04-01

    In November 2001, a cyanobacterial bloom dominated by Microcystis and Anabaena occurred in the Funil Reservoir and the Guandu River, both of which supply drinking water to Rio de Janeiro, Brazil. Using ELISA, microcystins were detected at a concentration of 0.4 microg/L in the drinking water, whereas a concentration of 0.32 microg/L was detected in activated carbon column-treated water for use at the renal dialysis center of Clementino Fraga Filho Hospital (HUCFF) at the Federal University of Rio de Janeiro. A total of 44 hemodialysis patients who received care at this center were believed to be exposed. Initial ELISA analyses confirmed the presence of serum microcystin concentrations > or = 0.16 ng/mL in 90% of serum samples collected from these patients. Twelve patients were selected for continued monitoring over the following 2-month period. Serum microcystin concentrations ranged from < 0.16 to 0.96 ng/mL during the 57 days after documented exposure. ELISA-positive samples were found throughout the monitoring period, with the highest values detected 1 month after initial exposure. ESI LC/MS analyses indicated microcystins in the serum; however, MS/MS fragmentation patterns typical of microcystins were not identified. LC/MS analyses of MMPB for control serum spiked with MCYST-LR. and patient sera revealed a peak at retention time of 8.4 min and a mass of 207 m/z. These peaks are equivalent to the peak observed in the MMPB standard analysis. Taken together ELISA, LC/MS, and MMPB results indicate that these renal dialysis patients were exposed to microcystins. This documents another incident of human microcystin exposure during hemodialysis treatment.

  11. Carbon dioxide and light responses of photosynthesis in cowpea and pigeonpea during water deficit and recovery

    SciTech Connect

    Lopez, F.B.; Setter, T.L.; McDavid, C.R.

    1987-10-01

    Greenhouse-grown pigeonpea (Cajunus cajan, (L.)) and cowpea (Vigna unguiculata, (L.)) were well-watered or subjected to low water potential by withholding water to compare their modes of adaptation to water-limited conditions. Leaf CO/sub 2/ exchange rate (CER), leaf diffusive conductance to CO/sub 2/ (g/sub L/), and CO/sub 2/ concentration in the leaf intercellular air space (C/sub i/) were determined at various CO/sub 2/ concentrations and photon flux densities (PFD) of photosynthetically active radiation. In cowpea, g/sub L/ declined to less than 15% of controls and total water potential (Psi/sub w/) at midafternoon declined to -0.8 megapascal after 5 days of withholding water, whereas g/sub L/ in pigeonpea was about 40% of controls even though midafternoon Psi/sub w/ was -1.9 megapascal. After 8 days of withholding water, Psi/sub w/ at midafternoon decline to -0.9 and -2.4 megapascals in cowpea and pigeonpea, respectively. The solute component of water potential (Psi/sub s/) decreased substantially less in cowpea than pigeonpea. Photosynthetic CER at saturation photon flux density (PFD) and ambient external CO/sub 2/ concentration on day 5 of withholding decreased by 83 and 55% in cowpea and pigeonpea, respectively. When measured at external, CO/sub 2/ concentration in bulk air of 360 microliters per liter, the CER of cowpea had fully recovered to control levels 3 days after rewatering; however, at 970 microliters per liter the PFD-saturated CERS of both species were substantially lower than in controls, indicating residual impairment.

  12. Comparison of field and airborne laser scanning based crown cover estimates across land cover types in Kenya

    NASA Astrophysics Data System (ADS)

    Heiskanen, J.; Korhonen, L.; Hietanen, J.; Heikinheimo, V.; Schafer, E.; Pellikka, P. K. E.

    2015-04-01

    Tree crown cover (CC) provides means for the continuous land cover characterization of complex tropical landscapes with multiple land uses and variable degrees of degradation. It is also a key parameter in the international forest definitions that are basis for monitoring global forest cover changes. Recently, airborne laser scanning (ALS) has emerged as a practical method for accurate CC mapping, but ALS derived CC estimates have rarely been assessed with field data in the tropics. Here, our objective was to compare the various field and ALS based CC estimates across multiple land cover types in the Taita Hills, Kenya. The field data was measured from a total of 178 sample plots (0.1 ha) in 2013 and 2014. The most accurate field measurement method, line intersect sampling using Cajanus tube, was used in 37 plots. Other methods included CC estimate based on the tree inventory data (144 plots), crown relascope (43 plots) and hemispherical photography (30 plots). Three ALS data sets, including two scanners and flying heights, were acquired concurrently with the field data collection. According to the results, the first echo cover index (FCI) from ALS data had good agreement with the most accurate field based CC estimates (RMSD 7.1% and 2.7% depending on the area and scan). The agreement with other field based methods was considerably worse. Furthermore, we observed that ALS cover indices were robust between the different scans in the overlapping area. In conclusion, our results suggest that ALS provides a reliable method for continuous CC mapping across tropical land cover types although dense shrub layer and tree-like herbaceous plants can cause overestimation of CC.

  13. N-P-K balance in a milk production system on a C. nlemfuensis grassland and a biomass bank of P. purpureum CT-115 clone

    NASA Astrophysics Data System (ADS)

    Crespo, G.; Rodriguez, I.; Martinez, O.

    2009-04-01

    In very intensive milk production systems in Europe and America with the use of high amounts of chemical fertilizers, the nutrient recycling models consider the losses by leaching and N volatilization, as well as the hydro physical characteristics of the soil affecting the performance of this element (10; 6). However, in more extensive milk production systems, low input agriculture forming the natural cycle occurring within each farm, is of vital importance to potentate nutrient recycling for a stable animal production. The objective is the determination of the values of N, P and K inputs and outputs in a dairy farm with a sward composed by 60% of C. nlemfuensis and 40% of P. purpureum CT-115, associated with legumes in 28% of the area and the balance of these nutrients in the system using the "Recycling" software proposed by Crespo et al (2007). The grassland covered an area of 53.4 ha, composed by C. nlemfuensis (60%), P. purpureum CT-115 (40%) and L. leucocephala and C. cajan legumes intercropped in 28% of the area. The dairy herd consisted of 114 cows, 35 replacement heifers and 24 calves. There was a milk yield of 100 000 litters and the animals consumed 825 t DM from pastures and 75.1 t DM from other supplementary feeds. Nutrients extracted by pastures, nutrients intake by animals from pastures, symbiotically N fixation by legumes and N, P and K determinations outside the system due to animal production were determined (3-11). Volatilized ammonia, nutrient input and litter accumulated in the paddocks were measured once each season of the year. In the whole system the balance indicates negative values of N, P and K. Out of the total amount of nutrients consumed, animals used only 16 kg N, 5 Kg P and 4 Kg K for milk production, LW gain and calf production, the remainder returned to the system through excretions. Hence, more than 90% of the N and K, and approximately 81% of the P consumed by the animals were recycled to the system through the excretions. These

  14. The Ediacaran Rio Doce magmatic arc revisited (Araçuaí-Ribeira orogenic system, SE Brazil)

    NASA Astrophysics Data System (ADS)

    Tedeschi, Mahyra; Novo, Tiago; Pedrosa-Soares, Antônio; Dussin, Ivo; Tassinari, Colombo; Silva, Luiz Carlos; Gonçalves, Leonardo; Alkmim, Fernando; Lana, Cristiano; Figueiredo, Célia; Dantas, Elton; Medeiros, Sílvia; De Campos, Cristina; Corrales, Felipe; Heilbron, Mônica

    2016-07-01

    Described half a century ago, the Galiléia tonalite represents a milestone in the discovery of plate margin magmatic arcs in the Araçuaí-Ribeira orogenic system (southeastern Brazil). In the 1990's, analytical studies on the Galiléia tonalite finally revealed the existence of a Late Neoproterozoic calc-alkaline magmatic arc in the Araçuaí orogen. Meanwhile, the name Rio Doce magmatic arc was applied to calc-alkaline plutons found in the Araçuaí-Ribeira boundary. After those pioneer studies, the calc-alkaline plutons showing a pre-collisional volcanic arc signature and age between 630 Ma and 585 Ma have been grouped in the G1 supersuite, corresponding to the Rio Doce arc infrastructure. Here, we revisit the Rio Doce arc with our solid field knowledge of the region and a robust analytical database (277 lithochemical analyses, and 47 U-Pb, 53 Sm-Nd, 25 87Sr/86Sr and 7 Lu-Hf datasets). The G1 supersuite consists of regionally deformed, tonalitic to granodioritic batholiths and stocks, generally rich in melanocratic to mesocratic enclaves and minor gabbroic to dioritic plutons. Gabbroic to dioritic enclaves show evidence of magma mixing processes. The lithochemical and isotopic signatures clearly reveal a volcanic arc formed on a continental margin setting. Melts from a Rhyacian basement form the bulk of the magma produced, whilst gabbroic plutons and enclaves record involvement of mantle magmas in the arc development. Tonalitic stocks (U-Pb age: 618-575 Ma, εNd(t): -5.7 to -7.8, Nd TDM ages: 1.28-1.68 Ga, 87Sr/86Sr(t): 0.7059-0.7118, and εHf(t): -5.2 to -11.7) form the northernmost segment of the Rio Doce arc, which dies out in the ensialic sector of the Araçuaí orogen. At arc eastern and central zones, several batholiths (e.g., Alto Capim, Baixo Guandu, Galiléia, Muniz Freire, São Vítor) record a long-lasting magmatic history (632-580 Ma; εNd(t): -5.6 to -13.3; Nd TDM age: 1.35-1.80 Ga; 87Sr/86Sr(t): 0.7091-0.7123). At arc western border, the magmatic