Science.gov

Sample records for guehomyces pullulans 17-1

  1. Pectinolytic yeasts from cold environments: novel findings of Guehomyces pullulans, Cystofilobasidium infirmominiatum and Cryptococcus adeliensis producing pectinases.

    PubMed

    Cavello, Ivana; Albanesi, Agustín; Fratebianchi, Dante; Garmedia, Gabriela; Vero, Silvana; Cavalitto, Sebastián

    2017-03-01

    One hundred and three yeasts isolated from soil samples from King George Island and Tierra del Fuego province were screened in relation with their capability to produce pectinolytic enzymes. Although all the yeasts showed well-developed colonies at 20 °C, only eight showed a clear halo around the colony, indicative of pectin degradation. A secondary screening demonstrated that only four yeasts were capable to produce pectinases at low temperatures (8 °C). It could be seen that the selected yeasts were able to grow and produce high levels of polygalacturonase activity when submerged fermentations were performed using pectin-containing fruit wastes as substrates. None of the strains produced neither lyase nor rhamnogalacturonan hydrolase activities. Regarding pectin esterase activity, it was only produced in lower amounts by G. pullulans 8E (0.022 U ml(-1)). A TLC analysis of the substrate cleavage pattern of the pectinolytic systems was consistent with an endo-type activity. The clarification of apple juice was only accomplished by G. pullulans pectinolytic system, with a clarification of 80% (%T650) using 4 U/ml of enzyme at 20 °C. As far as we concern this work describes for the first time the production of pectinases by the cold-adapted yeasts species Cystofilobasidium infirmominiatum, Cryptococcus adeliensis and G. pullulans.

  2. Laccases from Aureobasidium pullulans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laccases are polyphenol oxidases (EC 1.10.3.2) that have numerous industrial and bioremediation applications. Laccases are well known as lignin-degrading enzymes, but these enzymes can play numerous other roles in fungi. In this study, 41 strains of the fungus Aureobasidium pullulans were examined f...

  3. Intraspecific diversity of Aureobasidium pullulans strains from different marine environments

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Liu, Zhiqiang; Chi, Zhenming; Zhang, Liang; Zhang, Dechao

    2009-09-01

    Totally more than 500 yeast strains were isolated from seawater, sea sediments, mud of sea salterns, marine fish guts and marine algae. The results of routine and molecular biology identification methods show that nine strains among these marine yeasts belong to Aureobasidium pullulans, although the morphologies of their colonies are very different. The marine yeasts isolated from different marine environments indicate that A. pullulans is widely distributed in different environmental conditions. These Aureobasidium pullulans strains include A. pullulans 4#2, A. pullulans N13d, A. pullulans HN3-11, A. pullulans HN2-3, A. pullulans JHSc, A. pullulans HN4.7, A. pullulans HN5.3, A. pullulans HN6.2 and A. pullulans W13a. A. pullulans 4#2 could produce cellulase and single cell protein. A. pullulans N13d could produce protease, lipase, amylase and cellulase. Both A. pullulans HN3-11 and A. pullulans HN2-3 were able to produce protease, lipase and cellulase. A. pullulans JHSc could secrete cellulase and killer toxin. Both A. pullulans HN4.7 and A. pullulans HN5.3 could yield lipase and cellulase. A. pullulans W13a was able to secrete extracellular amylase and cellulase while A. pullulans HN4.7 and A. pullulans N13d could produce siderophores. This means that different A. pullulans strains from different marine environments have different physiological characteristics, which may be applied in many different biotechnological industries.

  4. Efficient production of pullulan by Aureobasidium pullulans grown on mixtures of potato starch hydrolysate and sucrose.

    PubMed

    An, Chao; Ma, Sai-Jian; Chang, Fan; Xue, Wen-Jiao

    Pullulan is a natural exopolysaccharide with many useful characteristics. However, pullulan is more costly than other exopolysaccharides, which limits its effective application. The purpose of this study was to adopt a novel mixed-sugar strategy for maximizing pullulan production, mainly using potato starch hydrolysate as a low-cost substrate for liquid-state fermentation by Aureobasidium pullulans. Based on fermentation kinetics evaluation of pullulan production by A. pullulans 201253, the pullulan production rate of A. pullulans with mixtures of potato starch hydrolysate and sucrose (potato starch hydrolysate:sucrose=80:20) was 0.212h(-1), which was significantly higher than those of potato starch hydrolysate alone (0.146h(-1)) and mixtures of potato starch hydrolysate, glucose, and fructose (potato starch hydrolysate:glucose:fructose=80:10:10, 0.166h(-1)) with 100gL(-1) total carbon source. The results suggest that mixtures of potato starch hydrolysate and sucrose could promote pullulan synthesis and possibly that a small amount of sucrose stimulated the enzyme responsible for pullulan synthesis and promoted effective potato starch hydrolysate conversion effectively. Thus, mixed sugars in potato starch hydrolysate and sucrose fermentation might be a promising alternative for the economical production of pullulan.

  5. HLC/pullulan and pullulan hydrogels: their microstructure, engineering process and biocompatibility.

    PubMed

    Li, Xian; Xue, Wenjiao; Liu, Yannan; Li, Weina; Fan, Daidi; Zhu, Chenhui; Wang, Yaoyu

    2016-01-01

    New locally injectable biomaterials that are suitable for use as soft tissue fillers are needed to address a significant unmet medical need. In this study, we used pullulan and human-like collagen (HLC) based hydrogels with various molecular weights (MWs) in combination therapy against tissue defects. Briefly, pullulan was crosslinked with NaIO4 to form a pullulan hydrogel and then may coupled with HLC using the reaction between the -NH2 end-group of HLC and the -CHO group present on the aldehyde pullulan to form the HLC/pullulan hydrogel, wherein the NaIO4 acted as the crosslinking and oxidizing agent. The good miscibility of pullulan and HLC in the hydrogels was confirmed via Fourier transform infrared spectroscopy, scanning electron microscopy, compression testing, enzyme degradation testing, cell adhesions, live/dead staining and subcutaneous filling assays. Here, pullulan hydrogels with various MWs were fabricated and physicochemically characterized. Limitations of the pullulan hydrogels included inflammation, poor mechanical strength, and degradation. By contrast, the properties of the HLC/pullulan hydrogels strongly enhanced. The efficacy of these hydrogels was evaluated both in vitro and in vivo. Our results indicate that HLC/pullulan hydrogels may have therapeutic value as efficient soft tissue fillers, with reduced inflammation, improved cell adhesion and delayed hydrogel degradation.

  6. Central metabolic pathways of Aureobasidium pullulans CGMCC1234 for pullulan production.

    PubMed

    Sheng, Long; Liu, Chang; Tong, Qunyi; Ma, Meihu

    2015-12-10

    With the purpose of understanding the metabolic network of Aureobasidium pullulans, the central metabolic pathways were confirmed by the activities of the key enzymes involved in different pathways. The effect of different iodoacetic acid concentrations on pullulan fermentation was also investigated in this paper. The activities of phosphofructokinases and glucose-6-phosphate dehydrogenase existed in A. pullulans CGMCC1234, whereas 2-keto-3-deoxy-6-phosphogluconate aldolase activity was not detected. We proposed that the central metabolic pathways of A. pullulans CGMCC1234 included EMP and PPP, but no ED. Pullulan production declined fast as the iodoacetic acid increased, while cell growth offered upgrade firstly than descending latter tendency. Compared to the control group, the ratio of ATP/ADP of 0.60 mM iodoacetic acid group was lower at different stages of pullulan fermentation. The findings revealed that low concentration of iodoacetic acid might impel carbon flux flow toward the PPP, but reduce the flux of the EMP.

  7. Efficient pullulan production by bioconversion using Aureobasidium pullulans as the whole-cell catalyst.

    PubMed

    Ju, Xiao-Min; Wang, Da-Hui; Zhang, Gao-Chuan; Cao, Dan; Wei, Gong-Yuan

    2015-01-01

    In this study, pullulan production was achieved by whole-cell bioconversion with Aureobasidium pullulans CCTCC M 2012259. Response surface methodology was applied to optimize the seed medium for incubating cells with high capability of pullulan bioconversion. Three medium components, namely, yeast extract, MgSO4·7H2O, and glucose were identified by Plackett-Berman design as significant factors affecting the cells' pullulan bioconversion capability. A three-level Box-Behnken design was then employed to determine the optimal levels of the three components. A mathematical model was developed to show the influence of each medium component and its effects on the cells' pullulan bioconversion capability. The model predicted a maximum pullulan bioconversion capability of 32.28 mg/g/h at the optimal yeast extract, MgSO4·7H2O, and glucose concentrations of 3.57, 0.18, and 63.97 g/l, respectively. The validation experiments showed that the cells' pullulan bioconversion capability was improved by 23.1% when the optimal medium was used, as compared with that obtained with the basic medium. Subsequently, the gene expression and activities of the key enzymes involved in pullulan biosynthesis were evaluated. When the optimal medium was employed, the transcriptional levels of pgm1 and fks were up-regulated by 2.5- and 1.2-fold, respectively, and the α-phosphoglucose mutase and glucosyltransferase activities were increased by 17 and 19%, respectively, when compared with those achieved using the basic medium. These results indicated that pullulan bioconversion using A. pullulans CCTCC M 2012259 as the whole-cell catalyst is an attractive approach for efficient pullulan production and can be applied for the production of other polysaccharides.

  8. Aureobasidium pullulans xylanase, gene and signal sequence

    DOEpatents

    Xin-Liang, Li; Ljungdahl, Lars G.

    1997-01-01

    A xylanase from Aureobasidium pullulans having a high specific activity is provided as well as a signal protein for controlling excretion into cell culture medium of proteins to which it is attached. DNA encoding these proteins is also provided.

  9. Understanding the influence of Tween 80 on pullulan fermentation by Aureobasidium pullulans CGMCC1234.

    PubMed

    Sheng, Long; Tang, Guiyue; Su, Peng; Zhang, Jinling; Xiao, Qian; Tong, Qunyi; Ma, Meihu

    2016-01-20

    In this paper, several new perspectives concerned with the effect of Tween 80 promoting pullulan production were presented. With the presence of Tween 80, the maximum pullulan yield increased by 41% (53.04 g/L). Meanwhile, the carbon source was consumed faster and the broth viscosity was higher. The lower final pH suggested that Tween 80 could protect the integrity of the mycelia. The dispersed filaments were not easily entangled with each other and less pellets were formed in the Tween 80 culture broth. FT-IR spectrum analysis indicated that the evaluated sample structure was coincided with commercial pullulan. The molecular weight of sample significantly dropped comparing with the control. The above findings indicated that Tween 80 facilitated the uptake of nutrient from surroundings to the microorganism and the release of pullulan into the extracellular fluid. These results were useful in better understanding the regulation and optimization of efficient pullulan fermentation.

  10. Optimization of high molecular weight pullulan production by Aureobasidium pullulans in batch fermentations.

    PubMed

    Gibson, Larry H; Coughlin, Robert W

    2002-01-01

    Of five strains of Aureobasidium pullulans studied, NRRL Y-2311-1 yielded the highest titer (26.2 g/L) of pullulan and formed the lowest amount of melanin-like pigment. Sucrose was superior to glucose as the carbon and energy source on the basis of yield and titer of pullulan produced. Pullulan titer was higher (26.2 vs 5.1 g/L), biomass concentration was lower (6.9 vs 12.7 g/L), and DO was lower (0 vs 60% of saturation) when the fermenter was agitated by a marine propeller compared to Rushton impellers. Pullulan produced by strain NRRL Y-2311-1 ranged in weight-average molar mass (M(w)) from 486 KDa and number-average molar mass (M(n)) from 220 Da on day 1 of growth to 390 KDa and 690 Da on day 6; M(w) declined by about 35% from day 1 to day 3, the day of maximum pullulan titer. For the other strains, the ranges of molar mass on the day of maximum pullulan titer were 338-614 KDa (M(w)) and 100-6820 Da (M(n)).

  11. Production of Pullulan, Poly(beta-L-malic acid), and Heavy Oil by Fungus Aureobasidium pullulans Isolated from Thailand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungus Aureobasidium pullulans is the main source of a polysaccharide, pullulan, in industrial production. Moreover, it can produce many bioproducts, e.g. xylanase, poly(ß-L-malic acid) (PMA), and heavy oil. In this study, we isolated 15 A. pullulans isolates from various sources and habitats in T...

  12. Self-Assembly Behavior of Pullulan Abietate

    NASA Astrophysics Data System (ADS)

    Gradwell, Sheila; Esker, Alan; Glasser, Wolgang; Heinze, Thomas

    2003-03-01

    Wood is one of nature's most fascinating biological composites due to its toughness and resistance to fracture properties. These properties stem from the self-assembly of cellulose microfibrils in an amorphous matrix of hemicellulose and lignin. In recent years, science has looked to nature for guidance in preparing synthetic materials with desirable physical properties. In order to study the self-assembly process in wood, a model system composed of a polysaccharide, pullulan abietate, and a biomimetic cellulose substrate prepared by the Langmuir-Blodgett technique has been developed. Interfacial tension and surface plasmon resonance measurements used to study the self-assembly process will be discussed for different pullulan derivatives.

  13. Mechanism study of Tween 80 enhancing the pullulan production by Aureobasidium pullulans.

    PubMed

    Sheng, Long; Zhu, Guilan; Tong, Qunyi

    2013-08-14

    The influences of Tween 80 on the pullulan production, cell growth, glucosyltransferase activity and fatty acid composition of the cells were studied. The addition of Tween 80 to the culture medium significantly enhanced the pullulan production, but had no impact to biomass accumulation. Glucosyltransferase activity involved in pullulan synthesis was remarkable promoted with an increase of Tween 80 content. The ratio of unsaturated/saturated fatty acids contained in the cells was significantly higher in 0.5% Tween 80 in comparison with the absence of Tween 80. Results indicated that the increase of pullulan yield brought by Tween 80 was highly correlated with glucosyltransferase activity and fatty acid composition. Tween 80 was not degraded to serve as extra carbon source.

  14. Production of pullulan from raw potato starch hydrolysates by a new strain of Auerobasidium pullulans.

    PubMed

    Wu, Shengjun; Lu, Mingsheng; Chen, Jing; Fang, Yaowei; Wu, Leilei; Xu, Yan; Wang, Shujun

    2016-01-01

    In the present study, hydrolysis of potato starch with marine cold-adapted α-amylase and pullulan production from the hydrolysates by a new strain of Auerobasidium pullulans isolated from sea mud were conducted. The hydrolysis conditions were optimized as follows: reaction time 2h, pH 6.5, temperature 20°C, and α-amylase amount 12 U/g. Under these optimum hydrolysis conditions, the DE value of the potato starch hydrolysates reached to 49.56. The potato starch hydrolysates consist of glucose, maltose, isomaltose, maltotriose, and trace of other maltooligosaccharides with degree of polymerization ranged 4-7. The maximum production of pullulan at 96 h from the hydrolysate of potato starch was 36.17 g/L, which was higher than those obtained from glucose (22.07 g/L, p<0.05) and sucrose (31.42 g/L, p<0.05). Analysis of the high performance liquid chromatography of the hydrolysates of the pullulan product with pullulanase indicated that the main composition is maltotriose, thus confirming the pullulan structure of this pullulan product.

  15. Biotechnology of Aureobasidium pullulans: A phylogenetic perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aureobasidium pullulans is a fungus historically included among the "black yeasts." Although many strains are predominantly yeast-like, the species is actually polymorphic, exhibiting complex forms ranging from blastic conidia and swollen cells to pseudophyphae, hyphae, and chlamydospores. A. pull...

  16. Aureobasidium pullulans xylanase, gene and signal sequence

    DOEpatents

    Li Xinliang; Ljungdahl, L.G.

    1997-01-07

    A xylanase from Aureobasidium pullulans having a high specific activity is provided, as well as a signal protein for controlling excretion into cell culture medium of proteins to which it is attached. DNA encoding these proteins is also provided. 4 figs.

  17. Heavy Oils Produced by Aureobasidium pullulans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    From a survey of more than 50 diverse strains of Aureobasidium pullulans, 21 strains were observed to produce extracellular heavy oils. These strains represented at least 6 phylogenetic clades, although more than half fell into clades 9 and 11. Oil colors ranged from bright yellow to malachite. M...

  18. Tubular cationized pullulan hydrogels as local reservoirs for plasmid DNA.

    PubMed

    San Juan, Aurélie; Ducrocq, Grégory; Hlawaty, Hanna; Bataille, Isabelle; Guénin, Erwann; Letourneur, Didier; Feldman, Laurent J

    2007-12-01

    In the present study, we measured the ability of various cationized pullulan tubular hydrogels to retain plasmid DNA, and tested the ability of retained plasmid DNA to transfect vascular smooth muscle cells (VSMCs). Cationized pullulans were obtained by grafting at different charge densities ethylamine (EA) or diethylaminoethylamine (DEAE) on the pullulan backbone. Polymers were characterized by elemental analysis, acid-base titration, size exclusion chromatography, Fourier-transform infrared spectroscopy, and proton nuclear magnetic resonance. The complexation of cationized pullulans in solution with plasmid DNA was evidenced by fluorescence quenching with PicoGreen. Cationized pullulans were then chemically crosslinked with phosphorus oxychloride to obtain tubular cationized pullulan hydrogels. Native pullulan tubes did not retain loaded plasmid DNA. In contrast, the ability of cationized pullulan tubes to retain plasmid DNA was dependent on both the amine content and the type of amine. The functional integrity of plasmid DNA in cationized pullulan tubes was demonstrated by in vitro transfection of VSMCs. Hence, cationized pullulan hydrogels can be designed as tubular structures with high affinity for plasmid DNA, which may provide new biomaterials to enhance the efficiency of local arterial gene transfer strategies.

  19. Redefinition of Aureobasidium pullulans and its varieties

    PubMed Central

    Zalar, P.; Gostinčar, C.; de Hoog, G.S.; Uršič, V.; Sudhadham, M.; Gunde-Cimerman, N.

    2008-01-01

    Using media with low water activity, a large numbers of aureobasidium-like black yeasts were isolated from glacial and subglacial ice of three polythermal glaciers from the coastal Arctic environment of Kongsfjorden (Svalbard, Spitsbergen), as well as from adjacent sea water, sea ice and glacial meltwaters. To characterise the genetic variability of Aureobasidium pullulans strains originating from the Arctic and strains originating pan-globally, a multilocus molecular analysis was performed, through rDNA (internal transcribed spacers, partial 28 S rDNA), and partial introns and exons of genes encoding β-tubulin (TUB), translation elongation factor (EF1α) and elongase (ELO). Two globally ubiquitous varieties were distinguished: var. pullulans, occurring particularly in slightly osmotic substrates and in the phyllosphere; and var. melanogenum, mainly isolated from watery habitats. Both varieties were commonly isolated from the sampled Arctic habitats. However, some aureobasidium-like strains from subglacial ice from three different glaciers in Kongsfjorden (Svalbard, Spitsbergen), appeared to represent a new variety of A. pullulans. A strain from dolomitic marble in Namibia was found to belong to yet another variety. No molecular support has as yet been found for the previously described var. aubasidani. A partial elongase-encoding gene was successfully used as a phylogenetic marker at the (infra-)specific level. PMID:19287524

  20. Population biology of Aureobasidium pullulans on apple leaf surfaces.

    PubMed

    Andrews, John H; Spear, Russell N; Nordheim, Erik V

    2002-06-01

    Colonization of apple leaves by the yeast-like fungus Aureobasidium pullulans was studied in the field on eight dates over 2 years. Population densities from adaxial leaf surfaces were approximately log10 0.5-2.6 U higher when enumerated directly along line transects as microscopic counts of A. pullulans cells specifically identified by fluorescence in situ hybridization (FISH) than indirectly as CFU obtained by plating leaf washings from comparable surfaces onto nutrient media. Site-specific mapping of the leaf landscape colonized by A. pullulans was facilitated by use of geographic information system (GIS) software. Colonization was plotted and analyzed both qualitatively (as occupancy) and quantitatively (as density). Overall, when expressed as mean occupancy per date, 22-42% of the microscope fields (each 0.196 mm2) contained > or = 1 A. pullulans cell. Occupancy on a microscope field basis was greater over the midvein (47-89%) or smaller veins (49-65%) than over interveinal regions (11-21%). Intensity of colonization, whether expressed as percentage of total A. pullulans cells associated with a particular leaf feature or as cell density per unit area, was also significantly greater (P < 0.05) over the veinal areas compared with the interveinal areas. The primary fungal morphotypes involved in colonization were blastospores, swollen cells, and chlamydospores; only infrequently were hyphae or pseudohyphae seen. Numbers of microcolonies (> or = 10 clustered cells) and percentage of total A. pullulans cells that occurred as microcolonies increased over the growing season and were significantly greater (P < 0.05) over veinal regions compared with interveinal regions. Locally high concentrations of A. pullulans were associated with naturally occurring micro-wounds in interveinal areas. We conclude that A. pullulans colonizes the phylloplane predominantly as single cells and groups thereof in a highly heterogeneous fashion and that sites exist that are relatively

  1. [Phosphate solubilization of Aureobasidium pullulan F4 and its mechanism].

    PubMed

    Wang, Dan; Zhan, Jing; Sun, Qing-Ye

    2014-07-01

    The Aureobasidium pullulans F4 was isolated from the rhizosphere of Hippochaete ramosissimum in Tongguanshan mine wasteland in Tongling City, Anhui Province. Liquid culture was conducted with four kinds of phosphorus sources, calcium phosphate, aluminum phosphate, ferric phosphate and rock phosphate to determine the pH, dissolved phosphorus, phosphorus in the bacteria and organic acid in the solution. The results showed that the phosphate solubilization by A. pullulans F4 varied with phosphorus sources, which decreased in order of aluminum phosphate > ferric phosphate, calcium phosphate > rock phosphate. The amounts of dissolved phosphorus in the different treatments were all higher than 200 mg x L(-1). The pH of the medium dropped immediately in 48 h, and the aluminum phosphate and ferric phosphate treatments showed a greater decrease in pH than the calcium phosphate and rock phosphate treatments. The organic acid synthesized by A. pullulans F4 included oxalic acid, citric acid and tartaric acid, and oxalic acid, among which oxalic acid was the dominated component. The phosphate dissolving capacity of A. pullulans F4 showed no significant correlation with organic acid, but significantly correlated with the pH. The available phosphorus was significantly improved with the combined application of A. pullulans F4 and glucose, suggesting A. pullulans F4 was a potent candidate for remediation of copper mine wastelands.

  2. The effect of Tween 80 on the polymalic acid and pullulan production by Aureobasidium pullulans CCTCC M2012223.

    PubMed

    Tu, Guangwei; Wang, Yongkang; Ji, Yunchao; Zou, Xiang

    2015-01-01

    The effect of Tween 80 on the fermentative production of polymalic acid (PMA) and pullulan using Aureobasidium pullulans CCTCC M2012223 was investigated. Tween 80 is beneficial for the biosynthesis of PMA and pullulan, and can regulate the ratio of PMA to pullulan in a dose-dependent manner. After adding 0.05 % Tween 80 to the media, the maximal PMA and pullulan production was 46.45 and 28.8 g/L at 60 h in a 5 L fermenter, with an increase of 75.08 and 27.21 % when compared to the control. Tween 80 could regulate and enhance oxygen uptake rate and carbon dioxide evolution rate in the early phase of fermentation, and change the cell morphology. The transcription levels of mitochondrial dicarboxylate transporter and transmembrane transporter were also dramatically upregulated. The present work will be helpful in deeply understanding the mechanism of Tween 80 on the effect of PMA and pullulan production.

  3. Bioconversion of industrial solid waste--cassava bagasse for pullulan production in solid state fermentation.

    PubMed

    Sugumaran, K R; Jothi, P; Ponnusami, V

    2014-01-01

    The purpose of the work was to produce commercially important pullulan using industrial solid waste namely cassava bagasse in solid state fermentation and minimize the solid waste disposal problem. First, influence of initial pH on cell morphology and pullulan yield was studied. Effect of various factors like fermentation time, moisture ratio, nitrogen sources and particle size on pullulan yield was investigated. Various supplementary carbon sources (3%, w/w) namely glucose, sucrose, fructose, maltose, mannose and xylose with cassava bagasse was also studied to improve the pullulan yield. After screening the suitable supplement, effect of supplement concentration on pullulan production was investigated. The pullulan from cassava bagasse was characterized by FTIR, (1)H-NMR and (13)C-NMR. Molecular weight of pullulan from cassava bagasse was determined by gel permeation chromatography. Thus, cassava bagasse emerged to be a cheap and novel substrate for pullulan production.

  4. 43 CFR 17.1 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Purpose. 17.1 Section 17.1 Public Lands... DEPARTMENT OF THE INTERIOR Nondiscrimination on the Basis of Race, Color, or National Origin § 17.1 Purpose. The purpose of this part is to effectuate the provisions of title VI of the Civil Rights Act of...

  5. 28 CFR 17.1 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Purpose. 17.1 Section 17.1 Judicial Administration DEPARTMENT OF JUSTICE CLASSIFIED NATIONAL SECURITY INFORMATION AND ACCESS TO CLASSIFIED INFORMATION § 17.1 Purpose. The purpose of this part is to ensure that information within the Department...

  6. 46 CFR 76.17-1 - Application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Application. 76.17-1 Section 76.17-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 76.17-1 Application. (a) Where a foam extinguishing system is installed,...

  7. 46 CFR 95.17-1 - Application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Application. 95.17-1 Section 95.17-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-1 Application. (a) Where a foam extinguishing...

  8. Maturation of dendritic cells by pullulan promotes anti-cancer effect

    PubMed Central

    Xu, Li; Zhang, LiJun; Yu, Qing; Jin, Jun-O

    2016-01-01

    Previous studies have demonstrated that pullulan, a polysaccharide purified from Aureobasidium pullulans, has immune-stimulatory effects on T and B cells. Moreover, pullulan has been used as a carrier in the delivery of the antigen (Ag) peptide to lymphoid tissues. However, the in vivo effect of pullulan on dendritic cells (DC) has not been well characterized. In this study, we assessed the effect of pullulan on DC activation and anti-cancer immunity. The results showed that the pullulan treatment up-regulated co-stimulatory molecule expression and enhanced pro-inflammatory cytokine production in bone marrow-derived DCs (BMDC) in vitro and in spleen DCs in vivo. Moreover, the combination of ovalbumin (OVA) and pullulan induced OVA antigen-specific T cell activations in vivo. In tumor-bearing mice, pullulan induced the maturation of DCs in spleen and tumor draining lymph node (drLN), and promoted the OVA-specific T cell activation and migration of the T cells into the tumor. In addition, the combination of OVA and pullulan inhibited B16-OVA tumor growth and liver metastasis. The combination of tyrosinase-related protein 2 (TRP2) peptide and pullulan treatment also suppressed B16 melanoma growth. Thus, the results demonstrated that pullulan enhanced DC maturation and function, and it acted as an adjuvant in promoting Ag-specific immune responses in mice. Thus, pullulan could be a new and useful adjuvant for use in therapeutic cancer vaccines. PMID:27341129

  9. Cationized pullulan 3D matrices as new materials for gene transfer.

    PubMed

    San Juan, Aurélie; Hlawaty, Hanna; Chaubet, Frédéric; Letourneur, Didier; Feldman, Laurent J

    2007-08-01

    This study deals with the development of a novel biocompatible cationized pullulan three-dimensional matrix for gene delivery. A water-soluble cationic polysaccharide, diethylaminoethyl-pullulan (DEAE-pullulan), was first synthesized and characterized. Fluorescence quenching and gel retardation assays evidenced the complexation in solution of DNA with DEAE-pullulan, but not with neutral pullulan. On cultured smooth muscle cells (SMCs) incubated with DEAE-pullulan and a plasmid vector expressing a secreted form of alkaline phosphatase (pSEAP), SEAP activity was 150-fold higher than with pSEAP alone or pSEAP with neutral pullulan. DEAE-pullulan was then chemically crosslinked using phosphorus oxychloride. The resulting matrices were obtained in less than a minute and molded as discs of 12 mm diameter and 2 mm thickness. Such DEAE-pullulan 3D matrices were loaded with up to 50 microg of plasmid DNA, with a homogeneous plasmid loading observed with YOYO-1 fluorescence staining. Moreover, the DEAE-pullulan matrix was shown to protect pSEAP from DNase I degradation. Incubation of cultured SMCs with pSEAP-loaded DEAE-pullulan matrices resulted in significant gene transfer without cell toxicity. This study suggests that these cationized pullulan 3D matrices could be useful biomaterials for local gene transfer.

  10. Liamocins from Aureobasidium pullulans: New and highly selective anti-streptococcal agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitous, black yeast Aureobasidium pullulans, which is used commercially to produce pullulan polysaccharide, also produces several polyol-lipids that we have named liamocins. A survey of >50 strains of A. pullulans identified 21 diverse strains that produce liamocins. Typically the liamocins ...

  11. Diterpenes and phenolic compounds from Sideritis pullulans.

    PubMed

    Faiella, Laura; Piaz, Fabrizio Dal; Bader, Ammar; Braca, Alessandra

    2014-10-01

    Phytochemical investigation of Sideritis pullulans aerial part and root extracts allowed to isolate six ent-kaurane diterpenes, two phenylpropanoids, and one coumarin, identified as 1α,3α,7β,18-tetrahydroxy-ent-kaur-16-ene (sideripullol A) (1), 3α,11α,18-trihydroxy-ent-kaur-16-ene (sideripullol B) (2), 3α,7β,18-trihydroxy-17-nor-ent-kauran-16-one (sideritone A) (3), 3α,7β-dihydroxy-18-acetyloxy-17-nor-ent-kauran-16-one (sideritone B) (4), 3α,7β,16α,17-tetrahydroxy-18-acetyloxy-ent-kaurane (sideripullol C) (5), 7β,16α,17,18-tetrahydroxy-ent-kaurane (sideripullol D) (6), β-(3-methoxy-4-hydroxyphenyl)-ethyl-O-α-l-arabinopiranosyl-(1→2)-α-l-rhamnopyranosyl-(1→3)-6-O-t-feruloyl-β-d-glucopyranoside (sideritiside A) (7), β-(3,4-dihydroxyphenyl)-ethyl-O-α-l-arabinopiranosyl-(1→2)-α-l-rhamnopyranosyl-(1→3)-6-O-t-feruloyl-β-d-glucopyranoside (sideritiside B) (8), and 7-demethyl-8-methoxycoumarsabin (9), respectively. Twenty known compounds, including phenolics, flavonol glycosides, iridoids, diterpenes, sesquiterpenes, lignans, coumarins, and phenylpropanoids were also isolated and characterized. All diterpenes were evaluated for their cytotoxic activity.

  12. RNA Protection is Effectively Achieved by Pullulan Film Formation.

    PubMed

    Hsieh, Ping-Yao; Monsur Ali, M; Tram, Kha; Jahanshahi-Anbuhi, Sana; Brown, Christine L; Brennan, John D; Filipe, Carlos D M; Li, Yingfu

    2017-03-16

    RNA is a functionally versatile polymer but suffers from susceptibility to spontaneous and RNase-catalyzed degradation. This vulnerability makes it difficult to preserve RNA for extended periods of time, thus limiting its use in various contexts, including practical applications as functional nucleic acids. Here we present a simple method to preserve RNA by pullulan (a complex sugar produced by Aureobasidium pullulans fungus) film formation. This strategy can markedly suppress both spontaneous and RNase degradation. Importantly, the pullulan film readily dissolves in aqueous solution, thus allowing retrieval of fully functional RNA species. In order to illustrate the advantage of this protective method in a practical application, we engineered a simple paper sensor containing a bacteria-detecting RNA-cleaving DNAzyme. This detection capability of the device was unchanged after storage at room temperature for six months.

  13. Pasting investigation, SEM observation and the possible interaction study on rice starch-pullulan combination.

    PubMed

    Chen, Long; Ren, Fei; Yu, Xueping; Zhang, Zipei; Xu, Dejun; Tong, Qunyi

    2015-02-01

    The pasting properties of rice starch (RS) with high concentration (10%, w/w) were investigated in the presence or absence of pullulan (PUL) using a rapid visco-analyzer (RVA). Addition of pullulan resulted in the reduction of peak viscosity, trough viscosity, final viscosity, and setback value of RS. Furthermore, an interesting phenomenon, i.e. a small viscosity peak appeared in the RVA curves of RS-PUL mixtures, was observed. It indicated that addition of pullulan might suppress the gelatinization of starch granules by maintaining the integration of some granules. The scanning electron microscope (SEM) observation of samples suggested that starch granules could be wrapped by a thin membrane composed of pullulan and/or pullulan-amylose associations. The coating ability of pullulan and/or the possible molecular interactions between pullulan and amylose could be responsible for these results.

  14. 45 CFR 17.1 - Definition.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Definition. 17.1 Section 17.1 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION RELEASE OF ADVERSE INFORMATION TO NEWS MEDIA... Department or any principal operating component made to the news media inviting public attention to an...

  15. 45 CFR 17.1 - Definition.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Definition. 17.1 Section 17.1 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION RELEASE OF ADVERSE INFORMATION TO NEWS MEDIA... Department or any principal operating component made to the news media inviting public attention to an...

  16. 45 CFR 17.1 - Definition.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Definition. 17.1 Section 17.1 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION RELEASE OF ADVERSE INFORMATION TO NEWS MEDIA... Department or any principal operating component made to the news media inviting public attention to an...

  17. 45 CFR 17.1 - Definition.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Definition. 17.1 Section 17.1 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION RELEASE OF ADVERSE INFORMATION TO NEWS MEDIA... Department or any principal operating component made to the news media inviting public attention to an...

  18. 45 CFR 17.1 - Definition.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Definition. 17.1 Section 17.1 Public Welfare Department of Health and Human Services GENERAL ADMINISTRATION RELEASE OF ADVERSE INFORMATION TO NEWS MEDIA... Department or any principal operating component made to the news media inviting public attention to an...

  19. Isolation and Identification of Trehalase from Pullularia pullulans

    PubMed Central

    Merdinger, Emanuel; Lange, Charles F.; Booker, Ben F.

    1971-01-01

    Trehalase has been isolated from Pullularia pullulans. The enzyme, which is specific for trehalose, was purified approximately 800-fold. The optimal pH was found to be 4.0 and the Michaelis dissociation constant, Km, was determined to be 3.2 × 10−3m. PMID:5104982

  20. Fabrication of pullulan and pectin submicron fibers by electrospinning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pullulan (PUL), a food grade polysaccharide, was fabricated into fibrous mats from fibers of submicron size by electrospinning. The effects of inorganic salts and polyanions present in the electrospinning solution on the properties of the resultant fibers was investigated. The inclusion of exogenous...

  1. Production of novel antibacterial liamocins by strains of Aureobasidium pullulans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Certain strains of Aureobasidium pullulans produce liamocins, heavier-than-water “oils” that accumulate in liquid cultures. Liamocins are surface active, and inhibit mammalian cancer cell lines. Recently, we discovered that liamocins have antibacterial activity with specificity against Streptococcus...

  2. Characterization of Pullulan/Chitosan Oligosaccharide/Montmorillonite Nanofibers Prepared by Electrospinning Technique.

    PubMed

    Rabbani, Mohammad Mahbub; Yang, Seong Baek; Park, Soo-Jin; Oh, Weontae; Yeum, Jeong Hyun

    2016-06-01

    Pullulan/Chitosan oligosaccharide (COS)/Montmorillonite (MMT) hybrid nanofibers were electrospun from their aqueous solution using different Pullulan/COS mass ratios and variable amounts of MMT. The effects of Pullulan/COS mass ratios and MMT contents on the morphologies and properties of PulluIan/COS/MMT hybrid nanofibers were investigated. The obtained nanofibers were characterized with field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermo gravimetric analysis (TGA), and tensile strength measurement. The Pullulan/COS mass ratio and MMT contents significantly influence the morphologies and properties of the Pullulan/COS/MMT hybrid nanofibers. Higher Pullulan contents than COS contents forms uniform and bead free nanofibers. The addition of COS to Pullulan improves the thermal stability of Pullulan/COS blend nanofibers. The incorporation of MMT to the Pullulan/COS/MMT hybrid nanofibers increase their fiber diameter, improves their thermal stability and tensile strength. These morphological changes and property enhancement depend on the amount of MMT added. The XRD and TEM results suggest the coexistence of Pullulan, COS and MMT within polymer matrix through intercalation of polymer chain between silicate layers forming well-ordered multiplayer morphology with alternating polymeric and silicate layers.

  3. Cholesterol-Modified Amino-Pullulan Nanoparticles as a Drug Carrier: Comparative Study of Cholesterol-Modified Carboxyethyl Pullulan and Pullulan Nanoparticles

    PubMed Central

    Tao, Xiaojun; Xie, Yongchao; Zhang, Qiufang; Qiu, Ximin; Yuan, Liming; Wen, Yi; Li, Min; Yang, Xiaoping; Tao, Ting; Xie, Minghui; Lv, Yanwei; Wang, Qinyi; Feng, Xing

    2016-01-01

    To search for nano-drug preparations with high efficiency in tumor treatment, we evaluated the drug-loading capacity and cell-uptake toxicity of three kinds of nanoparticles (NPs). Pullulan was grafted with ethylenediamine and hydrophobic groups to form hydrophobic cholesterol-modified amino-pullulan (CHAP) conjugates. Fourier transform infrared spectroscopy and nuclear magnetic resonance were used to identify the CHAP structure and calculate the degree of substitution of the cholesterol group. We compared three types of NPs with close cholesterol hydrophobic properties: CHAP, cholesterol-modified pullulan (CHP), and cholesterol-modified carboxylethylpullulan (CHCP), with the degree of substitution of cholesterol of 2.92%, 3.11%, and 3.46%, respectively. As compared with the two other NPs, CHAP NPs were larger, 263.9 nm, and had a positive surface charge of 7.22 mV by dynamic light-scattering measurement. CHAP NPs showed low drug-loading capacity, 12.3%, and encapsulation efficiency of 70.8%, which depended on NP hydrophobicity and was affected by surface charge. The drug release amounts of all NPs increased in the acid media, with CHAP NPs showing drug-release sensitivity with acid change. Cytotoxicity of HeLa cells was highest with mitoxantrone-loaded CHAP NPs on MTT assay. CHAP NPs may have potential as a high-efficiency drug carrier for tumor treatment. PMID:28335293

  4. Low-melanin containing pullulan production from sugarcane bagasse hydrolysate by Aureobasidium pullulans in fermentations assisted by light-emitting diode.

    PubMed

    Terán Hilares, Ruly; Orsi, Camila Ayres; Ahmed, Muhammad Ajaz; Marcelino, Paulo Franco; Menegatti, Carlos Renato; da Silva, Silvio Silvério; Dos Santos, Júlio César

    2017-04-01

    Pullulan is a polymer produced by Aureobasidium pullulans and the main bottleneck for its industrial production is the presence of melanin pigment. In this study, light-emitting diodes (LEDs) of different wavelengths were used to assist the fermentation process aiming to produce low-melanin containing pullulan by wild strain of A. pullulans LB83 with different carbon sources. Under white light using glucose-based medium, 11.75g.L(-1) of pullulan with high melanin content (45.70UA540nm.g(-1)) was obtained, this production improved in process assisted by blue LED light, that resulted in 15.77g.L(-1) of pullulan with reduced content of melanin (4.46UA540nm.g(-1)). By using sugarcane bagasse (SCB) hydrolysate as carbon source, similar concentration of pullulan (about 20g.L(-1)) was achieved using white and blue LED lights, with lower melanin contents in last. Use of LED light was found as a promising approach to assist biotechnological process for low-melanin containing pullulan production.

  5. Pasting and rheological properties of rice starch as affected by pullulan.

    PubMed

    Chen, Long; Tong, Qunyi; Ren, Fei; Zhu, Guilan

    2014-05-01

    Effect of pullulan (PUL) on the pasting, rheological properties of rice starch (RS) was investigated. The swelling power, amylose leaching, and confocal laser scanning microscopy (CLSM) observation of the samples were also conducted to explore the possible interaction between starch and pullulan. Rapid visco-analysis (RVA) showed that PUL significantly changed viscosity parameters of rice starch-pullulan (RS-PUL) mixtures. Dynamic rheological measurements revealed that the modulus (G', G″) of the mixtures increased with the increase of pullulan concentration from 0.01% to 0.07%, but then decreased with the increase of pullulan concentration from 0.07% to 0.50%. The pasting and rheological properties of samples indicated that pullulan could blend well with rice starch and promote the gelatinization of starch granules at low concentration of pullulan, but suppress the gelatinization of starch granules at high concentration of pullulan. The results of swelling power, leached amylose and CLSM observation of samples further suggest that the interaction between starch and pullulan occurred in the RS-PUL system and the interaction was hypothesized to be responsible for these results.

  6. Media optimization for elevated molecular weight and mass production of pigment-free pullulan.

    PubMed

    Yu, Xiaoliu; Wang, Yulei; Wei, Gongyuan; Dong, Yingying

    2012-07-01

    In this study, an Aureobasidium pullulans SZU 1001 mutant, deficient in pigment production, was screened by complex UV and γ-ray mutagenesis. Medium composition optimization for increased pullulan molecular weight and production was conducted using this mutant. Six nutrients: yeast extract, (NH4)2SO4, K2HPO4, NaCl, MgSO4·7H2O and CaCl2 were detected within pullulan production in flasks. It is shown that NaCl and K2HPO4 have significant influences on molecular weight of pullulan, while yeast extract and (NH4)2SO4 significantly affect pullulan yield. To achieve a higher molecular weight and more efficient pullulan production, a response surface methodology approach was introduced to predict an optimal nutrient combination. A molecular weight of 5.74 × 10(6) and pullulan yield on glucose of 51.30% were obtained under batch pullulan fermentation with the optimized media, which increased molecular weight and pullulan production by 97.25% and 11.04%, respectively compared with the control media.

  7. Production of novel types of antibacterial liamocins by diverse strains of Aureobasidium pullulans grown on different culture media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: The objective was to compare production of antibacterial liamocins by diverse strains of A. pullulans grown on different culture media. Results: Liamocins produced by strains of A. pullulans have potential agricultural and pharmaceutical applications as antibacterials with specificity aga...

  8. Surface plasmon resonance studies of pullulan and pullulan cinnamate adsorption onto cellulose.

    PubMed

    Kaya, Abdulaziz; Du, Xiaosong; Liu, Zelin; Lu, Jessica W; Morris, John R; Glasser, Wolfgang G; Heinze, Thomas; Esker, Alan R

    2009-09-14

    Surface plasmon resonance studies showed pullulan cinnamates (PCs) with varying degrees of substitution (DS) adsorbed onto regenerated cellulose surfaces from aqueous solutions below their critical aggregation concentrations. Results on cellulose were compared to PC adsorption onto hydrophilic and hydrophobic self-assembled thiol monolayers (SAMs) on gold to probe how different interactions affected PC adsorption. PC adsorbed onto methyl-terminated SAMs (SAM-CH(3)) > cellulose > hydroxyl-terminated SAMs (SAM-OH) for high DS and increased with DS for each surface. Data for PC adsorption onto cellulose and SAM-OH surfaces were effectively fit by Langmuir isotherms; however, Freundlich isotherms were required to fit PC adsorption isotherms for SAM-CH(3) surfaces. Atomic force microscopy images from the solid/liquid interfaces revealed PC coatings were uniform with surface roughnesses <2 nm for all surfaces. This study revealed hydrogen bonding alone could not explain PC adsorption onto cellulose and hydrophobic modification of water-soluble polysaccharides was a facile strategy for their conversion into surface modifying agents.

  9. Adsorption of phospholipid bilayers onto pullulan-modified cellulose surfaces

    NASA Astrophysics Data System (ADS)

    Choi, Heejun; Liu, Zelin; Esker, Alan

    2009-03-01

    1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) vesicle adsorption onto regenerated cellulose and pullulan 4-bromocinnamate (P4BC) modified cellulose surfaces was investigated via surface plasmon resonance (SPR) spectroscopy and quartz crystal microbalance with dissipation monitoring (QCM-D). P4BC with a degree of substitution (DS) of 0.061 ± 0.002 from UV measurements and 0.058 from ^1H NMR was synthesized from pullulan and 4-bromocinnamic acid to yield P4BC. The deduced thicknesses from SPR for DMPC layers were ˜3.7 nm (bilayer) on regenerated cellulose surfaces and ˜2.1 nm (monolayer) on P4BC modified cellulose surfaces. Qualitative analysis of the QCM-D data also indicated that the DMPC layers on P4BC modified cellulose surfaces were thinner than on regenerated cellulose surfaces.

  10. 15 CFR 17.1 - Licensing rules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... THE CUSTODY OF THE DEPARTMENT OF COMMERCE Licensing of Rights in Domestic Patents and Patent Applications § 17.1 Licensing rules. (a) The Government-wide rules for the licensing of rights in domestic... applicable to all such licensing activities of the Department of Commerce, subject to the following...

  11. Poly (beta-L-malic acid) production by diverse phylogenetic clades of Aureobasidium pullulans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poly (beta-L-malic acid) (PMA) is a natural biopolyester that has pharmaceutical applications and other potential uses. Here we examine PMA production by genetically diverse phylogenetic clades of the fungus A. pullulans. Thirty-six strains of A. pullulans were isolated for this study from various...

  12. Effect of rice wax on water vapor permeability and sorption properties of edible pullulan films

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Edible pullulan films were prepared by substituting the pullulan with various ratios of rice wax. Freestanding composite films were obtained with up to 50% rice wax. Water vapor barrier properties of the film were improved with increased addition of the rice wax. Moisture sorption isotherms were ...

  13. Aureobasidium pullulans as a biocontrol agent of postharvest pathogens of apples in Uruguay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The yeast, Aureobasidium pullulans, was the microorganism most frequently recovered from the surface of apple fruit (cv. Red Delicious) stored in commercial cold chambers for six months. In the present work, ten isolates of Aureobasidium pullulans were assayed to determine if they could control blu...

  14. Aureobasidium pullulans as a source of liamocins (heavy oils) with anticancer activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Liamocins are structurally unique, heavier-than-water “oils” produced by certain strains of Aureobasidium pullulans. Nine strains of A. pullulans from phylogenetic clades 8, 9, and 11 were examined for the first time for production of liamocins. Strains in these clades have only been isolated from t...

  15. Phylogenetic classification of Aureobasidium pullulans strains for production of feruloyl esterase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to phylogenetically classify diverse strains of A. pullulans and determine their production of feruloyl esterase. Seventeen strains from the A. pullulans literature were phylogenetically classified. Phenotypic traits of color variation and endo-ß-1,4-xylanase overproduction were as...

  16. Production of anti-streptococcal liamocins from agricultural biomass by Aureobasidium pullulans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Liamocins are unique heavier-than-water “oils” produced by certain strains of the fungus Aureobasidium pullulans. Liamocins have antibacterial activity with specificity for Streptococcus sp. Previous studies reported that liamocin yields were highest from strains of A. pullulans belonging to phylog...

  17. A new pullulan-producing yeast and medium optimization for its exopolysaccharide production

    NASA Astrophysics Data System (ADS)

    Shuangzhi, Zhao; Zhenming, Chi

    2003-04-01

    Yeast strain Y68 producing high level of pullulan was isolated from the phyton collected in Toulouse, France. This strain was identified to be Rhodotorula bacarum by BIOLOG analysis. This is the first report that pullulan was produced by Rhodotorula bacarum. The optimal medium (g L-1) for pullulan production by this strain was 80 glucose, 20 soybean cake hydrolysate, 5 K2HPO4, 1 NaCl, 0.2 MgSO4·7H2O, 0.6 (NH4)2SO4, pH 7.0. Under this condition, 54 gL-1 pullulan was produced within 60 h at 30°C. Pullulan is a better starting material for producing marine prodrugs.

  18. Single-Leaf Resolution of the Temporal Population Dynamics of Aureobasidium pullulans on Apple Leaves

    PubMed Central

    Woody, Scott T.; Spear, Russell N.; Nordheim, Erik V.; Ives, Anthony R.; Andrews, John H.

    2003-01-01

    The abundance of phylloplane microorganisms typically varies over several orders of magnitude among leaves sampled concurrently. Because the methods traditionally used to sample leaves are destructive, it has remained unclear whether this high variability is due to fixed differences in habitat quality among leaves or to asynchronous temporal variation in the microbial population density on individual leaves. We developed a novel semidestructive assay to repeatedly sample the same apple leaves from orchard trees over time by removing progressively more proximal ∼1-cm-wide transverse segments. Aureobasidium pullulans densities were determined by standard leaf homogenization and plating procedures and were expressed as CFU per square centimeter of segment. The A. pullulans population densities among leaves were lognormally distributed. The variability in A. pullulans population densities among subsections of a given leaf was one-third to one-ninth the variability among whole leaves harvested concurrently. Sequential harvesting of leaf segments did not result in detectable changes in A. pullulans density on residual leaf surfaces. These findings implied that we could infer whole-leaf A. pullulans densities over time by using partial leaves. When this successive sampling regimen was applied over the course of multiple 7- to 8-day experiments, the among-leaf effects were virtually always the predominant source of variance in A. pullulans density estimates. Changes in A. pullulans density tended to be synchronous among leaves, such that the rank order of leaves arrayed with respect to A. pullulans density was largely maintained through time. Occasional periods of asynchrony were observed, but idiosyncratic changes in A. pullulans density did not contribute appreciably to variation in the distribution of populations among leaves. This suggests that persistent differences in habitat (leaf) quality are primarily responsible for the variation in A. pullulans density among

  19. Effect of pullulan on the water distribution, microstructure and textural properties of rice starch gels during cold storage.

    PubMed

    Chen, Long; Tian, Yaoqi; Tong, Qunyi; Zhang, Zipei; Jin, Zhengyu

    2017-01-01

    The effects of pullulan on the water distribution, microstructure and textural properties of rice starch gels during cold storage were investigated by low field-nuclear magnetic resonance (LF-NMR), scanning electron microscope (SEM), and texture profile analysis (TPA). The addition of pullulan reduced the transversal relaxation time of rice starch gels during cold storage. The microstructure of rice starch gel with 0.5% pullulan was denser and more uniform compared with that of rice starch without pullulan in each period of storage time. With regard to textural properties, 0.01% pullulan addition did not significantly change the texture of rice starch gels, while 0.5% pullulan addition appeared to reduce the hardness and retain the springiness of rice starch gels (P⩽0.05). The restriction effects of pullulan on water mobility and starch retrogradation were hypothesized to be mainly responsible for the water retention, gel structure maintenance, and modification of the textural attributes of rice starch gels.

  20. Production, Purification, and Properties of a Thermostable beta-Glucosidase from a Color Variant Strain of Aureobasidium pullulans.

    PubMed

    Saha, B C; Freer, S N; Bothast, R J

    1994-10-01

    A color variant strain of Aureobasidium pullulans (NRRL Y-12974) produced beta-glucosidase activity when grown in liquid culture on a variety of carbon sources, such as cellobiose, xylose, arabinose, lactose, sucrose, maltose, glucose, xylitol, xylan, cellulose, starch, and pullulan. An extracellular beta-glucosidase was purified 129-fold to homogeneity from the cell-free culture broth of the organism grown on corn bran. The purification protocol included ammonium sulfate treatment, CM Bio-Gel A agarose column chromatography, and gel filtrations on Bio-Gel A-0.5m and Sephacryl S-200. The beta-glucosidase was a glycoprotein with native molecular weight of 340,000 and was composed of two subunits with molecular weights of about 165,000. The enzyme displayed optimal activity at 75 degrees C and pH 4.5 and had a specific activity of 315 mumol . min . mg of protein under these conditions. The purified beta-glucosidase was active against p-nitrophenyl-beta-d-glucoside, cellobiose, cellotriose, cellotetraose, cellopentaose, cellohexaose, and celloheptaose, with K(m) values of 1.17, 1.00, 0.34, 0.36, 0.64, 0.68, and 1.65 mM, respectively. The enzyme activity was competitively inhibited by glucose (K(i) = 5.65 mM), while fructose, arabinose, galactose, mannose, and xylose (each at 56 mM) and sucrose and lactose (each at 29 mM) were not inhibitory. The enzyme did not require a metal ion for activity, and its activity was not affected by p-chloromercuribenzoate (0.2 mM), EDTA (10 mM), or dithiothreitol (10 mM). Ethanol (7.5%, vol/vol) stimulated the initial enzyme activity by 15%. Glucose production was enhanced by 7.9% when microcrystalline cellulose (2%, wt/vol) was treated for 48 h with a commercial cellulase preparation (5 U/ml) that was supplemented with the purified beta-glucosidase (0.21 U/ml) from A. pullulans.

  1. New improved method for fructooligosaccharides production by Aureobasidium pullulans.

    PubMed

    Dominguez, Ana; Nobre, Clarisse; Rodrigues, Lígia R; Peres, António M; Torres, Duarte; Rocha, Isabel; Lima, Nelson; Teixeira, José

    2012-08-01

    Fructooligosaccharides are prebiotics with numerous health benefits within which the improvement of gut microbiota balance can be highlighted, playing a key role in individual health. In this study, an integrated one-stage method for FOS production via sucrose fermentation by Aureobasidium pullulans was developed and optimized using experimental design tools. Optimization of temperature and agitation speed for maximizing the FOS production was performed using response surface methodology. Temperature was found to be the most significant parameter. The optimum fermentation conditions were found to be 32 °C and 385 rpm. Under these conditions, the model predicted a total FOS production yield of 64.7 gFOS/gsucrose. The model was validated at optimal conditions in order to check its adequacy and accuracy and an experimental yield of 64.1 (±0.0) gFOS/gsucrose was obtained. A significant improvement of the total FOS production yields by A. pullulans using a one-stage process was obtained.

  2. Effects of plastic composite support and pH profiles on pullulan production in a biofilm reactor.

    PubMed

    Cheng, Kuan-Chen; Demirci, Ali; Catchmark, Jeffrey M

    2010-04-01

    Pullulan is a linear homopolysaccharide which is composed of glucose units and often described as alpha-1, 6-linked maltotriose. The applications of pullulan range from usage as blood plasma substitutes to environmental pollution control agents. In this study, a biofilm reactor with plastic composite support (PCS) was evaluated for pullulan production using Aureobasidium pullulans. In test tube fermentations, PCS with soybean hulls, defatted soy bean flour, yeast extract, dried bovine red blood cells, and mineral salts was selected for biofilm reactor fermentation (due to its high nitrogen content, moderate nitrogen leaching rate, and high biomass attachment). Three pH profiles were later applied to evaluate their effects on pullulan production in a PCS biofilm reactor. The results demonstrated that when a constant pH at 5.0 was applied, the time course of pullulan production was advanced and the concentration of pullulan reached 32.9 g/L after 7-day cultivation, which is 1.8-fold higher than its respective suspension culture. The quality analysis demonstrated that the purity of produced pullulan was 95.8% and its viscosity was 2.4 centipoise. Fourier transform infrared spectroscopy spectra also supported the supposition that the produced exopolysaccharide was mostly pullulan. Overall, this study demonstrated that a biofilm reactor can be successfully implemented to enhance pullulan production and maintain its high purity.

  3. POLYSACCHARIDES FROM CELL WALLS OF AUREOBASIDIUM (PULLULARIA) PULLULANS. PART I. GLUCANS,

    DTIC Science & Technology

    The cell wall of Aureobasidium (Pullularia) pullulans contains three types of beta - glucan . One, extracted with dilute alkali, has a linear backbone...insoluble in dilute alkali contains a highly crystalline, essentially linear linked glucan and an amorphous glucan . (Author)

  4. Protection of Lactobacillus acidophilus NRRL-B 4495 under in vitro gastrointestinal conditions with whey protein/pullulan microcapsules.

    PubMed

    Çabuk, Burcu; Tellioğlu Harsa, Şebnem

    2015-12-01

    In this research, whey protein/pullulan (WP/pullulan) microcapsules were developed in order to assess its protective effect on the viability of Lactobacillus acidophilus NRRL-B 4495 under in vitro gastrointestinal conditions. Results demonstrated that WP/pullulan microencapsulated cells exhibited significantly (p ≤ 0.05) higher resistance to simulated gastric acid and bile salt. Pullulan incorporation into protein wall matrix resulted in improved survival as compared to free cells after 3 h incubation in simulated gastric solution. Moreover WP/pullulan microcapsules were found to release over 70% of encapsulated L. acidophilus NRRL-B 4495 cells within 1 h. The effect of encapsulation during refrigerated storage was also studied. Free bacteria exhibited 3.96 log reduction while, WP/pullulan encapsulated bacteria showed 1.64 log reduction after 4 weeks of storage.

  5. Utilization of corn steep liquor for biosynthesis of pullulan, an important exopolysaccharide.

    PubMed

    Sharma, Nishat; Prasad, G S; Choudhury, Anirban Roy

    2013-03-01

    Five different agricultural wastes viz. rice bran oil cake, soya bean oil cake, cotton seed oil cake, mustard seed oil cake and corn steep liquor (CSL) were evaluated for their use as nutrient along with 15% (w/v) glucose as carbon source for biosynthesis of pullulan using Aureobasidium pullulans RBF 4A3. Among the selected agricultural wastes, CSL was found to be the best and supported production of 77.92gL(-1) pullulan under un-optimized conditions. Single point optimization technique resulted in increase in 18% pullulan (88.59gL(-1)) production. The process was successfully validated in a 7-L fermenter and a process economic analysis has suggested that use of CSL as nutrient may result in 3-fold reduction of cost of raw materials for pullulan production as compared to a process where conventional nitrogen sources were used. These observations may be helpful in development of a cost effective process for pullulan production.

  6. Deterioration of expanded polystyrene caused by Aureobasidium pullulans var. melanogenum.

    PubMed

    Castiglia, Valeria C; Kuhar, Francisco

    2015-01-01

    An expanded-polystyrene factory located in northern Buenos Aires reported unusual dark spots causing esthetic damage in their production. A fungal strain forming black-olive colonies on extract malt agar medium was isolated from the damaged material and identified as Aureobasidium pullullans var. melanogenum. This fungus is particularly known for its capacity to produce hydrolytic enzymes and a biodegradable extracellular polysaccharide known as pullulan, which is used in the manufacture of packaging material for food and medicine. Laboratory tests were conducted to characterize its growth parameters. It was found that the organism was resistant to a wide range of pHs but did not survive at temperatures over 65°C. The proposed action plan includes drying of the material prior to packaging and disinfection of the machinery used in the manufacturing process and of the silos used for raw material storage.

  7. Cellularized Bilayer Pullulan-Gelatin Hydrogel for Skin Regeneration.

    PubMed

    Nicholas, Mathew N; Jeschke, Marc G; Amini-Nik, Saeid

    2016-05-01

    Skin substitutes significantly reduce the morbidity and mortality of patients with burn injuries and chronic wounds. However, current skin substitutes have disadvantages related to high costs and inadequate skin regeneration due to highly inflammatory wounds. Thus, new skin substitutes are needed. By combining two polymers, pullulan, an inexpensive polysaccharide with antioxidant properties, and gelatin, a derivative of collagen with high water absorbency, we created a novel inexpensive hydrogel-named PG-1 for "pullulan-gelatin first generation hydrogel"-suitable for skin substitutes. After incorporating human fibroblasts and keratinocytes onto PG-1 using centrifugation over 5 days, we created a cellularized bilayer skin substitute. Cellularized PG-1 was compared to acellular PG-1 and no hydrogel (control) in vivo in a mouse excisional skin biopsy model using newly developed dome inserts to house the skin substitutes and prevent mouse skin contraction during wound healing. PG-1 had an average pore size of 61.69 μm with an ideal elastic modulus, swelling behavior, and biodegradability for use as a hydrogel for skin substitutes. Excellent skin cell viability, proliferation, differentiation, and morphology were visualized through live/dead assays, 5-bromo-2'-deoxyuridine proliferation assays, and confocal microscopy. Trichrome and immunohistochemical staining of excisional wounds treated with the cellularized skin substitute revealed thicker newly formed skin with a higher proportion of actively proliferating cells and incorporation of human cells compared to acellular PG-1 or control. Excisional wounds treated with acellular or cellularized hydrogels showed significantly less macrophage infiltration and increased angiogenesis 14 days post skin biopsy compared to control. These results show that PG-1 has ideal mechanical characteristics and allows ideal cellular characteristics. In vivo evidence suggests that cellularized PG-1 promotes skin regeneration and may

  8. 46 CFR 34.17-1 - Application-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Application-T/ALL. 34.17-1 Section 34.17-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Fixed Foam Extinguishing Systems, Details § 34.17-1 Application—T/ALL. (a) Where a fixed foam extinguishing system...

  9. Modification of the mannitol biosynthetic pathway in Aureobasidium pullulans to alter the structure of the polyol lipid liamocin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aureobasidium pullulans is an important industrial organism that is utilized for the production of numerous bioproducts, such as pullulan, ß-glucan, aureobasidin, and polymalic acid. Our laboratory is also interested in production of the extracellular polyol lipids, called liamocins, produced by cer...

  10. Properties of edible films based on pullulan-chitosan blended film-forming solutions at different pH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Influences of solution pH on the properties of pullulan-chitosan blended (Pul-Chi) films and the rheological properties of film-forming solutions were investigated. The extended conformation of chitosan in pH 4.0 solution increased intermolecular interactions with pullulan compared to the more compa...

  11. Polyols, not sugars, determine the structural diversity of anti-streptococcal liamocins produced by Aureobasidium pullulans strain NRRL 50380

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Liamocins are polyol-lipids produced by the fungus Aureobasidium pullulans, and have selective antibacterial activity against Streptococcus species. Liamocins produced by A. pullulans strain NRRL 50380 on sucrose medium have a D-mannitol head-group ester linked to 3,5-dihydroxydecanoate acyl chains,...

  12. Ketoprofen-loaded pomegranate seed oil nanoemulsion stabilized by pullulan: Selective antiglioma formulation for intravenous administration.

    PubMed

    Ferreira, Luana M; Cervi, Verônica F; Gehrcke, Mailine; da Silveira, Elita F; Azambuja, Juliana H; Braganhol, Elizandra; Sari, Marcel H M; Zborowski, Vanessa A; Nogueira, Cristina W; Cruz, Letícia

    2015-06-01

    This study aimed to prepare pomegranate seed oil nanoemulsions containing ketoprofen using pullulan as a polymeric stabilizer, and to evaluate antitumor activity against in vitro glioma cells. Formulations were prepared by the spontaneous emulsification method and different concentrations of pullulan were tested. Nanoemulsions presented adequate droplet size, polydispersity index, zeta potential, pH, ketoprofen content and encapsulation efficiency. Nanoemulsions were able to delay the photodegradation profile of ketoprofen under UVC radiation, regardless of the concentration of pullulan. In vitro release study indicates that nanoemulsions were able to release approximately 95.0% of ketoprofen in 5h. Free ketoprofen and formulations were considered hemocompatible at 1 μg/mL, in a hemolysis study, for intravenous administration. In addition, a formulation containing the highest concentration of pullulan was tested against C6 cell line and demonstrated significant activity, and did not reduce fibroblasts viability. Thus, pullulan can be considered an interesting excipient to prepare nanostructured systems and nanoemulsion formulations can be considered promising alternatives for the treatment of glioma.

  13. Improvement on Physical Properties of Pullulan Films by Novel Cross-Linking Strategy.

    PubMed

    Chen, Chieh-Ting; Chen, Kuan-I; Chiang, Hsin-Han; Chen, Yu-Kuo; Cheng, Kuan-Chen

    2017-01-01

    Pullulan based films possess several advantages, including high transparency, low toxicity, good biodegradability, good mechanical properties, and low oxygen permeability, are preferable for food packaging. The application of pullulan films on food packaging, however, has inherent disadvantage of high water solubility. In this study, glutaraldehyde and glycerol were used as the cross-linking reagent and the plasticizer respectively to improve water resistance and physical properties of the pullulan films. Effects of cross-linking degree on physical properties, including water absorptions, swelling behaviors, water vapor permeability and tensile strengths of films were evaluated. FTIR results demonstrated that the pullulan films were successfully cross-linked by glutaraldehyde. The tensile strength of pullulan films could be enhanced significantly (P < 0.05) when glutaraldehyde was between 1% and 5% (w/w); nevertheless, the amount of glutaraldehyde above 20% (w/w) led to films brittleness. With the addition of glycerol as a plasticizer enhanced the extensibility of films as well as the hydrophilicity, resulting in higher water vapor permeability.

  14. Pullulan-based coatings for preservation of razor clam Sinonovacula constricta.

    PubMed

    Jiang, Longfa

    2016-11-01

    Glutathione has antioxidant activity, and citric acid exhibits acidity. Potassium sorbate displays antibacterial activity. Effects of pullulan-based coatings with 0.05% glutathione, 0.5% citric acid and 0.2% potassium sorbate on the preservation of razor clam Sinonovacula constricta meats (SCMs) during refrigerated storage (∼2°C) were investigated. The glutathione-, citric acid- and potassium sorbate-incorporated pullulan-based coatings inhibited bacterial growth. Moreover, results showed reduced increase in pH, decreased total volatile basic nitrogen and enhanced overall acceptability score of SCMs during refrigerated storage (∼2°C). These results indicated that treatment with pullulan-based coatings with glutathione, citric acid and potassium sorbate could prolong the shelf life of SCM for up to 10 days.

  15. Synthesis of some new antianemics I. Iron pullulan complexes of pharmaceutical interest.

    PubMed

    Nikolic, G; Cakic, M; Ilic, Lj; Ristic, S; Cakic, Z

    2002-03-01

    First experiments were performed in order to obtain a polynuclear iron(III) complex with pullulan, which could be applied in therapy of sideropenic anemia. Complete synthesis of the complex can be realized with oligomers of depolymerized pullulan at an average molar mass 8000-10,000 g.mol-1. Maximum iron contents of 51.4 mg.cm-3 is effected by pullulan depolymerizates (Mw approximately 9000 g.mol-1, [eta] = 0.085 dl.g-1) at 130 degrees C for 240 min, at pH = 10.5 and at an initial mass ratio Fe/ligand of 1:3. The effected concentrations and complex stability respond to requirements of pharmacological application of parenteral antianemic preparations.

  16. Exceptional oxygen barrier performance of pullulan nanocomposites with ultra-low loading of graphene oxide

    NASA Astrophysics Data System (ADS)

    Uysal Unalan, Ilke; Wan, Chaoying; Figiel, Łukasz; Olsson, Richard T.; Trabattoni, Silvia; Farris, Stefano

    2015-07-01

    Polymer nanocomposites are increasingly important in food packaging sectors. Biopolymer pullulan is promising in manufacturing packaging films or coatings due to its excellent optical clarity, mechanical strength, and high water-solubility as compared to other biopolymers. This work aims to enhance its oxygen barrier properties and overcome its intrinsic brittleness by utilizing two-dimensional planar graphene oxide (GO) nanoplatelets. It has been found that the addition of only 0.2 wt% of GO enhanced the tensile strength, Young’s modulus, and elongation at break of pullulan films by about 40, 44 and 52%, respectively. The light transmittance at 550 nm of the pullulan/GO films was 92.3% and haze values were within 3.0% threshold, which meets the general requirement for food packaging materials. In particular, the oxygen permeability coefficient of pullulan was reduced from 6337 to 2614 mL μm m-2 (24 h-1) atm-1 with as low as 0.05 wt% of GO loading and further to 1357 mL μm m-2 (24 h-1) atm-1 when GO concentration reached 0.3 wt%. The simultaneous improvement of the mechanical and oxygen barrier properties of pullulan was ascribed to the homogeneous distribution and prevalent unidirectional alignment of GO nanosheets, as determined from the characterization and theoretical modelling results. The exceptional oxygen barrier properties of pullulan/GO nanocomposites with enhanced mechanical flexibility and good optical clarity will add new values to high performance food packaging materials.

  17. 1 CFR 17.1 - Receipt and processing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1 General Provisions 1 2010-01-01 2010-01-01 false Receipt and processing. 17.1 Section 17.1 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER PREPARATION, TRANSMITTAL, AND PROCESSING OF DOCUMENTS FILING FOR PUBLIC INSPECTION AND PUBLICATION SCHEDULES Receipt and Processing §...

  18. 1 CFR 17.1 - Receipt and processing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 1 General Provisions 1 2011-01-01 2011-01-01 false Receipt and processing. 17.1 Section 17.1 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER PREPARATION, TRANSMITTAL, AND PROCESSING OF DOCUMENTS FILING FOR PUBLIC INSPECTION AND PUBLICATION SCHEDULES Receipt and Processing §...

  19. 38 CFR 17.1 - Incorporation by reference.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reference. 17.1 Section 17.1 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS MEDICAL....archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. Copies may be obtained from... Reference (IBR) approved for §§ 17.63 and 17.81. (2) NFPA 101, Life Safety Code (2009 edition), IBR...

  20. Influence of polysaccharide composition on the biocompatibility of pullulan/dextran-based hydrogels.

    PubMed

    Abed, Aicha; Assoul, Nabila; Ba, Maguette; Derkaoui, Sidi Mohamed; Portes, Patrick; Louedec, Liliane; Flaud, Patrice; Bataille, Isabelle; Letourneur, Didier; Meddahi-Pellé, Anne

    2011-03-01

    The implantation of a biomaterial for tissue engineering requires the presence of a suitable scaffold on which the tissue repair and regeneration will take place. Polymers have been frequently used for that purpose because they show similar properties to that of the natural extracellular matrix. Scaffold properties and biocompatibility are modulated by the composition of the polymers used. In this work four polysaccharide-based hydrogels (PSH) made of dextran and pullulan were synthesized. Their in vitro properties were determined and then tested in vivo in a rat model. As pullulan concentration increased in dextran hydrogels, the glass transition temperature and the maximum modulus decreased. In vitro degradation studies for 30 days demonstrated no significant degradation of PSH except for 100% pullulan hydrogel. In vivo tissue response evaluated 30 days after PSH subcutaneous implantation in rats indicated that all PSH were surrounded by a fibrous capsule. Adding pullulan to dextran induced an increased inflammatory reaction compared to PSH-D(100% dextran) or PSH-D(75)P(25)(75% dextran). This in vitro and in vivo data can be used in the design of hydrogels appropriate for tissue engineering applications.

  1. Production of poly(beta-L-malic acid) (PMA) from agricultural biomass substrates by Aureobasidium pullulans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report here for the first time the production of poly(beta-L-malic acid) (PMA) from agricultural biomass substrates by the yeastlike fungus Aureobasidium pullulans. Strains NRRL Y 2311-1, NRRL 50382, NRRL 50383, and NRRL 50384, representing diverse isolation sources and phylogenetic clades, prod...

  2. Water vapor barrier and sorption properties of edible films from pullulan and rice wax.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Edible films were prepared by using various ratios of pullulan and rice wax. Freestanding composite films were obtained with up to 46.4% rice wax. Water vapor barrier properties of the film were improved with increased addition of rice wax. Moisture sorption isotherms were also studied to examine...

  3. Bioproducts and morphological features of diverse isolates of the fungus Aureobasidium pullulans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aureobasidium pullulans is a fungus included among the “black yeasts.” Although many strains are predominantly yeast-like, the species is actually polymorphic, exhibiting a variety of complex forms. The fungus is ubiquitous, routinely found on the surface of leaves, wood, painted walls, etc. We rece...

  4. Poly(beta-L-malic acid) from agricultural substrates by Aureobasidium pullulans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report here for the first time the production of poly(beta-L-malic acid) (PMA) from agricultural substrates by the yeastlike fungus Aureobasidium pullulans. PMA is a natural biopolyester that has primarily been studied for biomedical uses as a drug carrier. However, PMA also has potential as a ...

  5. Genome sequence of Aureobasidium pullulans AY4, an emerging opportunistic fungal pathogen with diverse biotechnological potential.

    PubMed

    Chan, Giek Far; Bamadhaj, Hasima Mustafa; Gan, Han Ming; Rashid, Noor Aini Abdul

    2012-11-01

    Aureobasidium pullulans AY4 is an opportunistic pathogen that was isolated from the skin of an immunocompromised patient. We present here the draft genome of strain AY4, which reveals an abundance of genes relevant to bioindustrial applications, including biocontrol and biodegradation. Putative genes responsible for the pathogenicity of strain AY4 were also identified.

  6. Liamocin oil from Aureobasidium pullulans has antibacterial activity with specificity for species of Streptococcus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Liamocin oil from Aureobasidium pullulans NRRL 50380 was tested for antibacterial activity. Liamocins inhibited growth of Streptococcus agalactiae, S. uberis, S. mitis, S. infantarius, and S. mutans, with minimum inhibitory concentrations from 20 'g/ml to 78 'g/ml. Enterococcus faecalis was less sus...

  7. Antibacterial activity of liamocins oil from Aureobasidium pullulans is specific for species of Streptococcus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Liamocins are a heterogeneous mixture of denser-than-water oils produced by the fungus Aureobasidium pullulans. Liamocins have unique chemical structures with a mannitol head group linked to long chain polyester tails consisting of multiple 3,5-dihydroxydecanoic acid ester groups, some of which are ...

  8. Liamocin oil from Aureobasidium pullulans has antibacterial activity with specificity for species of Streptococcus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Aureobasidium pullulans produces denser-than-water oils called liamocins. Liamocins have unique chemical structures with a mannitol head group linked to long chain polyester tails consisting of three, four or five 3,5-dihydroxydecanoic acid esters, some of which are O-acetylated. Broth di...

  9. Characteristics, protein engineering and applications of microbial thermostable pullulanases and pullulan hydrolases.

    PubMed

    Nisha, M; Satyanarayana, T

    2016-07-01

    Pullulan hydrolyzing enzymes are endoacting, classified based on the substrate specificity and hydrolysis products as pullulanases (type I and II) and pullulan hydrolases (type I, II and III). Pullulanases and pullulan hydrolase type I are produced by bacteria and archaea. Among bacteria, many mesophilic, thermophilic and hyperthermophilic bacteria produce pullulanases and neopullulanases. While pullulan hydrolase type II and type III are produced by fungi and archaea, respectively. These are multi-domain proteins with three conserved catalytic acidic residues of the glycosyl hydrolases. The recent advances in molecular biology and protein engineering via mutagenesis and truncation led to improvement in thermostability, catalytic activity and substrate specificity. Pullulanases are debranching enzymes, which are widely employed in starch saccharification that minimizes the use of glucoamylase (approx. 50 %) and reduces the total reaction time of the industrial starch conversion process. The thermostable amylopullulanases are useful in one-step starch liquefaction and saccharification, which replaces amylolytic enzymes like α-amylase and glucoamylase, thus resulting in the reduction in the cost of sugar production. The enzymes also find application in making resistant starches and as an antistale in bread making. Panose and isopanose containing syrups are useful as prebiotics, while panose has also been reported to display anticarcinogenic activity. This review focuses on the distinguishing features of these enzymes based on the analysis of amino acid sequences and domain structure, besides highlighting recent advances in the molecular biology and protein engineering for enhancing their thermostability, catalytic activity and substrate specificity. This review also briefly summarizes the potential applications of pullulanases and pullulan hydrolases.

  10. Aureobasidium pullulans as a source of liamocins (heavy oils) with anticancer activity.

    PubMed

    Manitchotpisit, Pennapa; Watanapokasin, Ramida; Watanapoksin, Ramida; Price, Neil P J; Bischoff, Kenneth M; Tayeh, Malatee; Teeraworawit, Sudarat; Kriwong, Saranya; Leathers, Timothy D

    2014-08-01

    Liamocins are structurally unique, heavier-than-water “oils” produced by certain strains of Aureobasidium pullulans. The aim of the current study is to identify new sources of liamocins and evaluate their potential as anticancer agents. Nine strains of A. pullulans from phylogenetic clades 8, 9, and 11 were examined for the first time for production of liamocins. Strains in these clades have only been isolated from tropical environments, and all strains tested here were from various locations in Thailand. Strains RSU 9, RSU 21, and RSU 29, all from clade 11, produced from 7.0 to 8.6 g liamocins/l from medium containing 5 % sucrose. These are the highest yields of liamocins that we have found thus far. These strains also produced from 9.4 to 17 g pullulan/l. The structural identity of liamocins was confirmed by matrix-assisted laser desorption/ionization mass spectrometry; differential spectra were obtained in which the dominant ion was either at about m/z 805.5 or m/z 949.6, consistent with the structure of liamocins. Liamocins from A. pullulans strains RSU 9 and RSU 21 inhibited two human breast cancer cell lines and a human cervical cancer cell line (IC50 values of 32.2 ± 1.4 to 63.1 ± 2.4 μg liamocins/ml) but were not toxic to a normal cell line. Liamocins weakly inhibited a strain of Enterococcus faecalis, but did not inhibit strains of Lactobacillus fermentum, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Thus, A. pullulans phylogenetic clade 11 is a promising source of liamocins, and these compounds merit further examination as potential anticancer agents.

  11. FTIR spectroscopic characterization of Cu(II) coordination compounds with exopolysaccharide pullulan and its derivatives

    NASA Astrophysics Data System (ADS)

    Mitić, Ž.; Nikolić, G. S.; Cakić, M.; Premović, P.; Ilić, Lj.

    2009-04-01

    Pullulan is a water-soluble, extracellular neutral polysaccharide with a linear flexible chain of α-(1 → 6)-linked maltotriose units, the structure of which is intermediate between pullulan and amylose structures because of the co-existence of both α-(1 → 6) and α-(1 → 4)-glycosidic linkages in single compounds. In alkali solutions Cu(II) ion forms complexes with reduced low-molar pullulan (RLMP). The metal content and the solution composition depends on pH. The complexing process begins in a weak alkali solution (pH > 7), and involves OH groups in C(2) and C(3) or C(6) pullulan monomer units (α- D-glucopyranose). Complexes of Cu(II) ion with reduced low-molar pullulan were synthesized in the water solutions, at the boiling temperature and at different pH values (7.512). Fourier-Transform Infrared (FTIR) spectroscopic data of synthesized complexes are rare in literature. FTIR spectroscopic characterization (FTIR, LNT-FTIR, ATR-FTIR, and FTIR microspectroscopy) of Cu(II) ion complexes with RLMP ( M w 6000 g mol -1) was carried out in this work. The similarities of the γ(C sbnd H) range in a part of FTIR spectra indicate that there is no difference in the conformation of the C 1 glucopyranose (Glc) unit in the RLMP and synthesized Cu(II) complexes. The complexing Cu(II) ion with RLMP in the dependence from the pH form different types of complex (pH 7-8: Cu(II)(Glc) 2(H 2O) 2, pH 8-10: Cu(II)(Glc) 2(H 2O)(OH), pH 10-12: Cu(II)(Glc) 2(OH) 2).

  12. Efficacy of antimicrobial pullulan-based coating to improve internal quality and shelf-life of chicken eggs during storage.

    PubMed

    Morsy, Mohamed K; Sharoba, Ashraf M; Khalaf, Hassan H; El-Tanahy, Hassan H; Cutter, Catherine N

    2015-05-01

    There has been a growing interest in the use of natural materials as a delivery mechanism for antimicrobials and coatings in foods. The aim of the present study was to evaluate the effectiveness of pullulan coatings to improve internal quality and shelf-life of fresh eggs during 10 wk of storage at 25 and 4 °C. Three treatments of eggs were evaluated as follows; non-coated (control; C), coated with pullulan (P), and coated with pullulan containing nisin (N). The effects of the pullulan coatings on microbiological qualities, physical properties, and freshness parameters were investigated and compared with non-coated eggs. For non-coated eggs, as storage time increased, yolk index, albumen index, and Haugh unit value decreased and weight loss increased. However, pullulan coatings (P or N) minimized weight loss (<1.5%) and preserved the albumen and yolk quality of eggs (with a final B grade) 3 wk longer than non-coated eggs at 25 °C. At 4 °C, both P- and N-coated eggs went from AA to A grade after 9 wk and maintained the grade for 10 wk (4 wk longer than that of non-coated eggs). This study is the first to demonstrate that pullulan coatings can preserve the internal quality, prolong the shelf-life, and minimize weight loss of fresh eggs.

  13. 46 CFR 195.17-1 - When required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MISCELLANEOUS SYSTEMS AND EQUIPMENT Radar § 195.17-1 When required. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar readings must be provided on the bridge....

  14. 46 CFR 195.17-1 - When required.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MISCELLANEOUS SYSTEMS AND EQUIPMENT Radar § 195.17-1 When required. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar readings must be provided on the bridge....

  15. 46 CFR 195.17-1 - When required.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MISCELLANEOUS SYSTEMS AND EQUIPMENT Radar § 195.17-1 When required. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar readings must be provided on the bridge....

  16. 46 CFR 195.17-1 - When required.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MISCELLANEOUS SYSTEMS AND EQUIPMENT Radar § 195.17-1 When required. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar readings must be provided on the bridge....

  17. 46 CFR 195.17-1 - When required.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MISCELLANEOUS SYSTEMS AND EQUIPMENT Radar § 195.17-1 When required. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar readings must be provided on the bridge....

  18. 46 CFR 96.17-1 - When required.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MISCELLANEOUS SYSTEMS AND EQUIPMENT Magnetic Compass and Gyrocompass § 96.17-1 When required. (a) All mechanically propelled vessels in ocean or coastwise service must be fitted with a magnetic compass. (b) All... gyrocompass in addition to the magnetic compass. (c) Each vessel must have an illuminated repeater for...

  19. 46 CFR 96.17-1 - When required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MISCELLANEOUS SYSTEMS AND EQUIPMENT Magnetic Compass and Gyrocompass § 96.17-1 When required. (a) All mechanically propelled vessels in ocean or coastwise service must be fitted with a magnetic compass. (b) All... gyrocompass in addition to the magnetic compass. (c) Each vessel must have an illuminated repeater for...

  20. 46 CFR 96.17-1 - When required.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MISCELLANEOUS SYSTEMS AND EQUIPMENT Magnetic Compass and Gyrocompass § 96.17-1 When required. (a) All mechanically propelled vessels in ocean or coastwise service must be fitted with a magnetic compass. (b) All... gyrocompass in addition to the magnetic compass. (c) Each vessel must have an illuminated repeater for...

  1. 46 CFR 96.17-1 - When required.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MISCELLANEOUS SYSTEMS AND EQUIPMENT Magnetic Compass and Gyrocompass § 96.17-1 When required. (a) All mechanically propelled vessels in ocean or coastwise service must be fitted with a magnetic compass. (b) All... gyrocompass in addition to the magnetic compass. (c) Each vessel must have an illuminated repeater for...

  2. 46 CFR 96.17-1 - When required.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MISCELLANEOUS SYSTEMS AND EQUIPMENT Magnetic Compass and Gyrocompass § 96.17-1 When required. (a) All mechanically propelled vessels in ocean or coastwise service must be fitted with a magnetic compass. (b) All... gyrocompass in addition to the magnetic compass. (c) Each vessel must have an illuminated repeater for...

  3. 50 CFR 17.1 - Purpose of regulations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... PLANTS (CONTINUED) ENDANGERED AND THREATENED WILDLIFE AND PLANTS Introduction and General Provisions § 17.1 Purpose of regulations. (a) The regulations in this part implement the Endangered Species Act of... Convention on International Trade in Endangered Species of Wild Fauna and Flora, for which regulations...

  4. 50 CFR 17.1 - Purpose of regulations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... PLANTS (CONTINUED) ENDANGERED AND THREATENED WILDLIFE AND PLANTS Introduction and General Provisions § 17.1 Purpose of regulations. (a) The regulations in this part implement the Endangered Species Act of... Convention on International Trade in Endangered Species of Wild Fauna and Flora, for which regulations...

  5. 50 CFR 17.1 - Purpose of regulations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PLANTS (CONTINUED) ENDANGERED AND THREATENED WILDLIFE AND PLANTS Introduction and General Provisions § 17.1 Purpose of regulations. (a) The regulations in this part implement the Endangered Species Act of... Convention on International Trade in Endangered Species of Wild Fauna and Flora, for which regulations...

  6. 50 CFR 17.1 - Purpose of regulations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PLANTS (CONTINUED) ENDANGERED AND THREATENED WILDLIFE AND PLANTS Introduction and General Provisions § 17.1 Purpose of regulations. (a) The regulations in this part implement the Endangered Species Act of... Convention on International Trade in Endangered Species of Wild Fauna and Flora, for which regulations...

  7. 50 CFR 17.1 - Purpose of regulations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PLANTS (CONTINUED) ENDANGERED AND THREATENED WILDLIFE AND PLANTS Introduction and General Provisions § 17.1 Purpose of regulations. (a) The regulations in this part implement the Endangered Species Act of... Convention on International Trade in Endangered Species of Wild Fauna and Flora, for which regulations...

  8. Charged pullulan derivatives for the development of nanocarriers by polyelectrolyte complexation.

    PubMed

    Dionísio, M; Braz, L; Corvo, M; Lourenço, J P; Grenha, A; Rosa da Costa, A M

    2016-05-01

    Pullulan, a neutral polysaccharide, was chemically modified in order to obtain two charged derivatives: reaction with SO3(.)DMF complex afforded a sulfate derivative (SP), while reaction with glycidyltrimethylammonium chloride gave a quaternary ammonium salt (AP). The presence of the charged groups was confirmed by FTIR. Assessment of the positions where the reaction took place was based on (1)H- and (13)C NMR (COSY, HSQC-TOCSY, HSQC-DEPT, and HMBC) experiments. Estimation of the degree of substitution (DS) was made from elemental analysis data, and further confirmed by NMR peak areas in the case of AP. These new derivatives showed the capability to condense with each other, forming nanoparticles with the ability to associate a model protein (BSA) and displaying adequate size for drug delivery applications, therefore making them good candidates for the production of pullulan-based nanocarriers by polyelectrolyte complexation.

  9. PAMAM-pullulan conjugates as targeted gene carriers for liver cell.

    PubMed

    Askarian, Saeedeh; Abnous, Khalil; Ayatollahi, Sara; Farzad, Sara Amel; Oskuee, Reza Kazemi; Ramezani, Mohammad

    2017-02-10

    Targeted nano-carriers are highly needed to promote nucleic acid delivery into the specific cell for therapeutic approaches. Pullulan as a linear carbohydrate has an intrinsic liver targeting property interacting with asialoglycoprotein receptor (ASGPR) found on liver cells. In the present study, we developed polyamidoamine (PAMAM)-pullulan conjugates and investigated their targeting activity in delivering gene into liver cells. The particle size, zeta potential, buffering capacity and ethidium bromide exclusion assays of the conjugates were evaluated. The cytotoxicity and transfection efficiency of new derivatives were assessed following in vitro transfection of HepG2 (receptor positive) and N2A (receptor negative) cell lines. Size of conjugated polymers ranged between 118 and 184 nanometers and their cytotoxicity were similar to PAMAM. Among six produced nanocarriers, G4PU4 and G5PU4 enhanced transfection efficiency in HepG2 cells compared to unmodified PAMAM. Therefore, the PAMAM-pullulan derivatives seem to improve delivery of nucleic acids into the liver cells expressing asialoglycoprotein receptor with minimal transfection in non-targeted cells.

  10. Synthesis and characterization of pullulan-polycaprolactone core-shell nanospheres encapsulated with ciprofloxacin.

    PubMed

    Shady, Sally Fouad; Gaines, Peter; Garhwal, Rahul; Leahy, Charles; Ellis, Edward; Crawford, Kathryn; Schmidt, Daniel F; McCarthy, Stephen P

    2013-09-01

    Nanosphere-encapsulated drugs offer a means to overcome many drug delivery limitations by localizing the site of delivery and providing controlled release. This research details the synthesis and encapsulation of ciprofloxacin in pullulan-polycaprolactone (PCL) core shell nanospheres and the characterization of these materials by 1H-NMR, UV spectroscopy, dynamic light scattering (DLS) and scanning electron microscopy (SEM).1H-NMR results confirm that the pullulan-PCL grafted copolymer was successfully synthesized. UV spectroscopy showed that the ciprofloxacin loaded nanospheres contain 35-40% ciprofloxacin by weight. DLS and SEM results indicate that the loaded nanospheres are spherical in shape and approximately 142+/-12 nm in size. Under in vitro test conditions, approximately 20% of the ciprofloxacin is released in the first 4 hours, with additional release over 10 days. The nanoparticles demonstrate bioactivity against Escheria coli and do not affect the proliferation of two human cell lines. These results demonstrate the potential of pullulan-PCL core-shell nanospheres as delivery vehicles of hydrophobic drugs, including antibiotics for localized treatments applicable to a wide-range of human bacterial infections.

  11. Printed paper sensors for serum lactate dehydrogenase using pullulan-based inks to immobilize reagents.

    PubMed

    Kannan, Balamurali; Jahanshahi-Anbuhi, Sana; Pelton, Robert H; Li, Yingfu; Filipe, Carlos D M; Brennan, John D

    2015-09-15

    In this study, a paper-based point-of-care (POC) colorimetric biosensor was developed for the detection of lactate dehydrogenase in serum using a nonporous, oxygen impermeable reversibly gelling polysaccharide material based on pullulan. The pullulan could be printed onto paper surfaces along with all required assay reagents, providing a means for high-stability immobilization of all reagents on paper. Serum containing lactate dehydrogenase (LDH) was directly spotted on to the pullulan-coated bioactive paper and provided quantitative colorimetric data that was comparable to that obtained with a conventional plate-reader method. The paper strip was found to be highly stable and could be stored at 4 °C for at least 10 weeks with no loss in performance, as compared to a complete loss in performance within 1 day when the reagents were printed without the stabilizing polysaccharide. The ease of fabrication coupled with the high stability of the printed reagents provides a facile platform for easily manufactured POC sensors.

  12. LX-17-1 Stockpile Returned Material Lot Comparison

    SciTech Connect

    Gagliardi, F.; Pease, S.; Willey, T.

    2015-02-18

    Many different lots of LX-17 have been produced over the years. Two varieties of LX-17, LX-17-0 and LX-17-1, have at one point or another been a part of the Livermore stockpile systems. LX-17-0 was made with dry-aminated TATB whereas LX-17-1 was made with wet-aminated TATB. Both versions have the same TATB to Kel-F 800 mass ratio of 92.5%/7.5%. Both kinds of LX-17 were formulated at Holston during the late 1970s or early to mid-1980s and were certified to have met the necessary specifications that cover the purity, particle size range, explosive to binder ratio, etc. In recent years, Trevor Willy and others have performed a detailed evaluation of solid parts made from each of the LX-17 lots manufactured at Holston. Using the Advanced Light Source at LBNL, Willey and his colleagues radiographed many samples from isostatic pressings using the same scanning conditions. In their investigation they identified that even though the bulk composition can be the same, there may exist a large spread in how smoothly the TATB and binder were distributed within the radiographed volume of different lots of material.1 Overall, the dry-aminated TATB-based material, LX-17-0, had a smooth TATB and binder distribution, whereas the wet-aminated TATB-based LX-17-1 showed a wide range of binder distributions. The results for five different LX-17-1 lots are shown in Figure 1. The wide variation in material distribution has raised the question about whether or not this sort variability will cause significant differences in mechanical behavior.

  13. Functional Biomaterials: Solution Electrospinning and Gelation of Whey Protein and Pullulan

    NASA Astrophysics Data System (ADS)

    Sullivan, Stephanie Tolstedt

    Utilizing biomaterials that are biodegradable, biocompatible and edible serve well for food products as well as biomedical applications. Biomaterials whey protein and pullulan both have these characteristics. Whey proteins (WP) have been used in food products for many years and more recently in pharmaceutical products. They have the ability to form both gels and stable foams. Pullulan (PULL) has also been used in both food and pharmaceutical products, and is a highly water soluble, non-gelling polysaccharide and has been used primarily as a film former. Herein, we investigate the ability of whey protein and pullulan to form nanofibers and gels. Combining their distinct properties allows the ability to uniquely manipulate nanofiber and gel characteristics and behavior for a variety of applications, from food to even tissue scaffolding. First, we determined the electrospinnability of aqueous whey protein solutions. Both whey protein isolate (WPI) and one of its major components beta--lactoglobulin (BLG), either in native or denatured form, yielded interesting micro and nanostructures when electrosprayed; while nanofiber production required blending with a spinnable polymer, poly(ethylene oxide) (PEO). WP:PEO solutions were also successfully electrospun at acidic pH (2≤pH≤3), which could improve shelf life. Fourier Transform Infrared Reflectance (FTIR) analysis of WP:PEO fiber mat indicated some variation in WP secondary structure with varying WPI concentration (as WPI increased, % alpha-helix increased and beta-turn decreased) and pH (as pH decreased from neutral (7.5) to acidic (2), % beta-sheet decreased and alpha-helix increased). X-ray Photoelectron Spectroscopy (XPS) also confirmed the presence of WP on the surface of the blend fibers, augmenting the FTIR analysis. Interestingly, WP:PEO composite nanofibers maintained its fibrous morphology at temperatures as high as 100 °C, above the 60 °C PEO melting point. Further, we show that the blend mats retained a

  14. Genetic Modification of the Marine-Isolated Yeast Aureobasidium melanogenum P16 for Efficient Pullulan Production from Inulin.

    PubMed

    Ma, Zai-Chao; Liu, Nan-Nan; Chi, Zhe; Liu, Guang-Lei; Chi, Zhen-Ming

    2015-08-01

    In this study, in order to directly and efficiently convert inulin into pullulan, the INU1 gene from Kluyveromyces maximum KM was integrated into the genomic DNA and actively expressed in the high pullulan producer Aureobasidium melanogenum P16 isolated from the mangrove ecosystem. After the ability to produce pullulan from inulin by different transformants was examined, it was found that the recombinant strain EI36, one of the transformants, produced 40.92 U/ml of inulinase activity while its wild-type strain P16 only yielded 7.57 U/ml of inulinase activity. Most (99.27 %) of the inulinase produced by the recombinant strain EI36 was secreted into the culture. During the 10-l fermentation, 70.57 ± 1.3 g/l of pullulan in the fermented medium was attained from inulin (138.0 g/l) within 108 h, high inulinase activity (42.03 U/ml) was produced within 60 h, the added inulin was actively hydrolyzed by the secreted inulinase, and most of the reducing sugars were used by the recombinant strain EI36. This confirmed that the genetically engineered yeast of A. melanogenum strain P16 was suitable for direct pullulan production from inulin.

  15. Preparation and characterization of fast dissolving pullulan films containing BCS class II drug nanoparticles for bioavailability enhancement.

    PubMed

    Krull, Scott M; Ma, Zhelun; Li, Meng; Davé, Rajesh N; Bilgili, Ecevit

    2016-01-01

    The aim of this study is to assess pullulan as a novel steric stabilizer during the wet-stirred media milling (WSMM) of griseofulvin, a model poorly water-soluble drug, and as a film-former in the preparation of strip films via casting-drying the wet-milled drug suspensions for dissolution and bioavailability enhancement. To this end, pullulan films, with xanthan gum (XG) as thickening agent and glycerin as plasticizer, were loaded with griseofulvin nanoparticles prepared by WSMM using pullulan in combination with sodium dodecyl sulfate (SDS) as an ionic stabilizer. The effects of drug loading and milling time on the particle size and suspension stability were investigated, as well as XG concentration and casting thickness on film properties and dissolution rate. The nanosuspensions prepared with pullulan-SDS combination were relatively stable over 7 days; hence, this combination was used for the film preparation. All pullulan-based strip films exhibited excellent content uniformity (most <3% RSD) despite containing only 0.3-1.3 mg drug, which was ensured by the use of precursor suspensions with >5000 cP viscosity. USP IV dissolution tests revealed fast/immediate drug release (t80 < 30 min) from films <120 μm thick. Thinner films, films with lower XG loading, or smaller drug particles led to faster drug dissolution, while drug loading had no discernible effect. Overall, these results suggest that pullulan may serve as an acceptable stabilizer for media milling in combination with surfactant as well as a fast-dissolving film former for the fast release of poorly water-soluble drug nanoparticles.

  16. Plasticizers Increase Adhesion of the Deteriogenic Fungus Aureobasidium pullulans to Polyvinyl Chloride

    PubMed Central

    Webb, Jeremy S.; Van der Mei, Henny C.; Nixon, Marianne; Eastwood, Ian M.; Greenhalgh, Malcolm; Read, Simon J.; Robson, Geoffrey D.; Handley, Pauline S.

    1999-01-01

    Initial adhesion of fungi to plasticized polyvinyl chloride (pPVC) may determine subsequent colonization and biodeterioration processes. The deteriogenic fungus Aureobasidium pullulans was used to investigate the physicochemical nature of adhesion to both unplasticized PVC (uPVC) and pPVC containing the plasticizers dioctyl phthalate (DOP) and dioctyl adipate (DOA). A quantitative adhesion assay using image analysis identified fundamental differences in the mechanism of adhesion of A. pullulans blastospores to these substrata. Adhesion to pPVC was greater than that to uPVC by a maximum of 280% after a 4-h incubation with 108 blastospores ml−1. That plasticizers enhance adhesion to PVC was confirmed by incorporating a dispersion of both DOA and DOP into the blastospore suspension. Adhesion to uPVC was increased by up to 308% in the presence of the dispersed plasticizers. Hydrophobic interactions were found to dominate adhesion to uPVC because (i) a strong positive correlation was observed between substratum hydrophobicity (measured by using a dynamic contact angle analyzer) and adhesion to a range of unplasticized polymers including uPVC, and (ii) neither the pH nor the electrolyte concentration of the suspension buffer, both of which influence electrostatic interactions, affected adhesion to uPVC. In contrast, adhesion to pPVC is principally controlled by electrostatic interactions. Enhanced adhesion to pPVC occurred despite a relative reduction of 13° in the water contact angle of pPVC compared to that of uPVC. Furthermore, adhesion to pPVC was strongly dependent on both the pH and electrolyte concentration of the suspension medium, reaching maximum levels at pH 8 and with an electrolyte concentration of 10 mM NaCl. Plasticization with DOP and DOA therefore increases adhesion of A. pullulans blastospores to pPVC through an interaction mediated by electrostatic forces. PMID:10427051

  17. Facile and rapid thermo-regulated biomineralization of gold by pullulan and study of its thermodynamic parameters.

    PubMed

    Choudhury, Anirban Roy; Malhotra, Ankit; Bhattacharjee, Paramita; Prasad, G S

    2014-06-15

    A novel method for the production of gold nanoparticles (AuNPs) using pullulan as reducing and stabilizing agent has been developed. Quasi-spherical shaped AuNPs in the range of 50-100 nm were produced at three different temperature regimes 80°C, 90°C and 100°C as characterized using UV-vis spectrophotometer, TEM and DLS. Study of reaction kinetics and thermodynamic parameters indicated that the reaction between pullulan and chloroauric acid for AuNPs formation followed first order reaction kinetics and higher temperature was favorable for the synthesis of smaller sized AuNPs. FT-IR data analyses, provided an insight towards the mechanism of gold nanoparticle formation which suggested that, the free CH2OH groups of pullulan molecule were oxidized to carboxylate ions resulted in formation of AuNPs whereas the basic skeletal structure of pullulan remained unaltered. This study may open up new avenues for synthesis of tailor made biogenic AuNPs with possible application in biomedical field.

  18. Composite pullulan-dextran polysaccharide scaffold with interfacial polyelectrolyte complexation fibers: a platform with enhanced cell interaction and spatial distribution.

    PubMed

    Cutiongco, Marie Francene Arnobit; Tan, Ming Hao; Ng, Martin Yoke Kuang; Le Visage, Catherine; Yim, Evelyn King Fai

    2014-10-01

    Hydrogels are highly preferred in soft tissue engineering because they recapitulate the hydrated extracellular matrix. Naturally derived polysaccharides, like pullulan and dextran, are attractive materials with which to form hydrophilic polymeric networks due to their non-immunogenic and non-antigenic properties. However, their inherent hydrophilicity prevents adherent cell growth. In this study, we modified pullulan-dextran scaffolds with interfacial polyelectrolyte complexation (IPC) fibers to improve their ability to support adherent cell growth. We showed that the pullulan-dextran-IPC fiber composite scaffold laden with extracellular matrix protein has improved cell adhesion and proliferation compared to the plain polysaccharide scaffold. We also demonstrated the zero-order release kinetics of the biologics bovine serum albumin and vascular endothelial growth factor (VEGF) incorporated in the composite scaffold. Lastly, we showed that the VEGF released from the composite scaffold retained its capacity to stimulate endothelial cell growth. The incorporation of IPC fibers in the pullulan-dextran hydrogel scaffold improved its functionality and biological activity, thus enhancing its potential in tissue engineering applications.

  19. An Injectable Enzymatically Crosslinked Carboxymethylated Pullulan/Chondroitin Sulfate Hydrogel for Cartilage Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Yu, Songrui; Liu, Bing; Ni, Yunzhou; Yu, Chunyang; Su, Yue; Zhu, Xinyuan; Yu, Xiaowei; Zhou, Yongfeng; Yan, Deyue

    2016-01-01

    In this study, an enzymatically cross-linked injectable and biodegradable hydrogel system comprising carboxymethyl pullulan-tyramine (CMP-TA) and chondroitin sulfate-tyramine (CS-TA) conjugates was successfully developed under physiological conditions in the presence of both horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) for cartilage tissue engineering (CTTE). The HRP crosslinking method makes this injectable system feasible, minimally invasive and easily translatable for regenerative medicine applications. The physicochemical properties of the mechanically stable hydrogel system can be modulated by varying the weight ratio and concentration of polymer as well as the concentrations of crosslinking reagents. Additionally, the cellular behaviour of porcine auricular chondrocytes encapsulated into CMP-TA/CS-TA hydrogels demonstrates that the hydrogel system has a good cyto-compatibility. Specifically, compared to the CMP-TA hydrogel, these CMP-TA/CS-TA composite hydrogels have enhanced cell proliferation and increased cartilaginous ECM deposition, which significantly facilitate chondrogenesis. Furthermore, histological analysis indicates that the hydrogel system exhibits acceptable tissue compatibility by using a mouse subcutaneous implantation model. Overall, the novel injectable pullulan/chondroitin sulfate composite hydrogels presented here are expected to be useful biomaterial scaffold for regenerating cartilage tissue.

  20. Microwave-assisted rapid synthesis, characterization and application of poly (D,L-lactide)-graft-pullulan.

    PubMed

    Tang, Xiao-Jiao; Huang, Jun; Xu, Liang-Yu; Li, Yang; Song, Juan; Ma, Yue; Yang, Li; Yuan, Dan; Wu, Hai-Yang

    2014-07-17

    A novel microwave-assisted method was developed to synthetize amphiphilic copolymer poly (d,l-lactide)-graft-pullulan (PL) in a monomode microwave reactor. The effects of microwave power, ratio of catalyst/lactide, ratio of lactide/hydroxyl group of pullulan (lactide/OH-P) and solvent on the synthesis were further investigated. Three samples (designated as PL 8, 9, and 6), characterized by FT-IR and NMR, were applied to form nanoparticles and microparticles investigated by dynamic light scattering, fluorescence spectroscopy and transmission electron microscopy. PL9 and PL6 were used for loading model drug curcumin. The results indicated that microwave-assisted synthesis shortened the copolymerization of PL, with higher yield and lactide conversion, from 24h to 5 min and showed some specific microwave effects compared with conventional oil heating. PL with a relative higher substitution degree gave nanoparticles with smaller sizes and critical aggregation concentrations. The solubility of curcumin was increased to 1.97 mg mL(-1) as the forms of nanoparticles.

  1. An Injectable Enzymatically Crosslinked Carboxymethylated Pullulan/Chondroitin Sulfate Hydrogel for Cartilage Tissue Engineering

    PubMed Central

    Chen, Feng; Yu, Songrui; Liu, Bing; Ni, Yunzhou; Yu, Chunyang; Su, Yue; Zhu, Xinyuan; Yu, Xiaowei; Zhou, Yongfeng; Yan, Deyue

    2016-01-01

    In this study, an enzymatically cross-linked injectable and biodegradable hydrogel system comprising carboxymethyl pullulan-tyramine (CMP-TA) and chondroitin sulfate-tyramine (CS-TA) conjugates was successfully developed under physiological conditions in the presence of both horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) for cartilage tissue engineering (CTTE). The HRP crosslinking method makes this injectable system feasible, minimally invasive and easily translatable for regenerative medicine applications. The physicochemical properties of the mechanically stable hydrogel system can be modulated by varying the weight ratio and concentration of polymer as well as the concentrations of crosslinking reagents. Additionally, the cellular behaviour of porcine auricular chondrocytes encapsulated into CMP-TA/CS-TA hydrogels demonstrates that the hydrogel system has a good cyto-compatibility. Specifically, compared to the CMP-TA hydrogel, these CMP-TA/CS-TA composite hydrogels have enhanced cell proliferation and increased cartilaginous ECM deposition, which significantly facilitate chondrogenesis. Furthermore, histological analysis indicates that the hydrogel system exhibits acceptable tissue compatibility by using a mouse subcutaneous implantation model. Overall, the novel injectable pullulan/chondroitin sulfate composite hydrogels presented here are expected to be useful biomaterial scaffold for regenerating cartilage tissue. PMID:26817622

  2. Superabsorbent polysaccharide hydrogels based on pullulan derivate as antibacterial release wound dressing.

    PubMed

    Li, Huanan; Yang, Jing; Hu, Xiaona; Liang, Jie; Fan, Yujiang; Zhang, Xingdong

    2011-07-01

    To accomplish ideal wound dressing, hydrogels based on a natural polysaccharide, pullulan were synthesized by chemical cross-linking. The tensile strengths of the hydrogel films (1 mm thick) were determined to range from 0.663 to 1.097 MPa in proportion to cross-linking degrees and water contents. The swelling study of the hydrogels in water showed remarkable water absorption property with swelling ratio up to 4000%, which provided the hydrogel with quick hemostatic ability and prevent the wound bed from accumulation of exudates. The water vapor transmission rate and water retention of the hydrogels were found to be in the range of 2213-3498 g/m²/day and 34.74-45.81% (after 6 days), indicating that the hydrogel can maintain a moist environment over wound bed, which could prevent the dehydration of the wound bed and prevent the scab formation. Biocompatibility test revealed that the hydrogels were not cytotoxic. The hydrogel could load antimicrobial agents and effectively suppress bacterial proliferation to protect the wound from bacterial invasion. These results suggest that the pullulan hydrogels prepared in this study may have high potential as new ideal wound-dressing materials.

  3. Production of anti-streptococcal liamocins from agricultural biomass by Aureobasidium pullulans.

    PubMed

    Leathers, Timothy D; Price, Neil P J; Manitchotpisit, Pennapa; Bischoff, Kenneth M

    2016-12-01

    Liamocins are unique heavier-than-water "oils" produced by certain strains of the fungus Aureobasidium pullulans. Liamocins have antibacterial activity with specificity for Streptococcus sp. Previous studies reported that liamocin yields were highest from strains of A. pullulans belonging to phylogenetic clades 8, 9, and 11, cultured on medium containing sucrose. In this study, 27 strains from these clades were examined for the first time for production of liamocins from agricultural biomass substrates. Liamocin yields were highest from strains in phylogenetic clade 11, and yields were higher from cultures grown on sucrose than from those grown on pretreated wheat straw. However, when supplementary enzymes (cellulase, β-glucosidase, and xylanase) were added, liamocin production on pretreated wheat straw was equivalent to that on sucrose. Liamocins produced from wheat straw were free of the melanin contamination common in sucrose-grown cultures. Furthermore, MALDI-TOF MS analysis showed that liamocins produced from wheat straw were under-acetylated, resulting in higher proportions of the mannitol A1 and B1 species of liamocin, the latter of which has the highest biological activity against Streptococcus sp.

  4. An Injectable Enzymatically Crosslinked Carboxymethylated Pullulan/Chondroitin Sulfate Hydrogel for Cartilage Tissue Engineering.

    PubMed

    Chen, Feng; Yu, Songrui; Liu, Bing; Ni, Yunzhou; Yu, Chunyang; Su, Yue; Zhu, Xinyuan; Yu, Xiaowei; Zhou, Yongfeng; Yan, Deyue

    2016-01-28

    In this study, an enzymatically cross-linked injectable and biodegradable hydrogel system comprising carboxymethyl pullulan-tyramine (CMP-TA) and chondroitin sulfate-tyramine (CS-TA) conjugates was successfully developed under physiological conditions in the presence of both horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) for cartilage tissue engineering (CTTE). The HRP crosslinking method makes this injectable system feasible, minimally invasive and easily translatable for regenerative medicine applications. The physicochemical properties of the mechanically stable hydrogel system can be modulated by varying the weight ratio and concentration of polymer as well as the concentrations of crosslinking reagents. Additionally, the cellular behaviour of porcine auricular chondrocytes encapsulated into CMP-TA/CS-TA hydrogels demonstrates that the hydrogel system has a good cyto-compatibility. Specifically, compared to the CMP-TA hydrogel, these CMP-TA/CS-TA composite hydrogels have enhanced cell proliferation and increased cartilaginous ECM deposition, which significantly facilitate chondrogenesis. Furthermore, histological analysis indicates that the hydrogel system exhibits acceptable tissue compatibility by using a mouse subcutaneous implantation model. Overall, the novel injectable pullulan/chondroitin sulfate composite hydrogels presented here are expected to be useful biomaterial scaffold for regenerating cartilage tissue.

  5. Cloning, sequencing, and regulation of a xylanase gene from the fungus Aureobasidium pullulans Y-2311-1

    SciTech Connect

    Li, Xin-Liang; Ljungdahl, L.G.

    1994-09-01

    Aureobasidium pullulans Y-2311-1 growing on xylan secretes four major xylanases with different masses and isoelectric points. Two of these enzymes, named APX-I and APX-II, have been purified previously. Their N-terminal amino acid sequences are identical except that APX-I has Asp and APX-II has Asn at position 7. An 83-bp DNA region was amplified by PCR and used as a probe for the xylanase gene cloning. The longest cDNA (xynA) obtained by cDNA cloning and PCR amplification consisted of 895 bp. A. pullulans xynA had an open reading frame encoding a polypeptide of 221 amino acids with a calculated mass of 23,531 Da and contained a putative 34-amino-acid signal peptide in front of the amino terminus of the mature enzyme. Strong homology was found between the deduced amino acid sequence of XynA and some xylanases from bacterial and fungal sources. It is suggested that A. pullulans XynA belongs to the family G glycanases. Northern (RNA blot) analysis revealed that only one transcript of 900 bases was present in cultures grown in medium containing D-xylose or oat spelt xylan. Transcription was completely repressed in the presence of glucose in the medium. Southern blot analysis indicated that A. pullulans xynA was present as a single copy in the genome. Comparison between the genomic and cDNA sequences revealed that one intron of 59 bp was present in the coding region. The data presented suggest that the highly active xylanases, APX-I and APX-II, secreted by A. pullulans are encoded by the same gene. 36 refs., 7 figs., 3 tabs.

  6. Synthesis, characterization, and cytotoxicity of the plasmid EGFP-p53 loaded on pullulan-spermine magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Eslaminejad, Touba; Nematollahi-Mahani, Seyed Noureddin; Ansari, Mehdi

    2016-03-01

    Magnetic nanoparticles have been used as effective vehicles for the targeted delivery of therapeutic agents that can be controlled in their concentration and distribution to a desired part of the body by using externally driven magnets. This study focuses on the synthesis, characterization, and functionalization of pullulan-spermine (PS) magnetic nanoparticles for medical applications. Magnetite nanopowder was produced by thermal decomposition of goethite (FeOOH) in oleic acid and 1-octadecene; pullulan-spermine was deposited on the magnetite nanoparticles in the form of pullulan-spermine clusters. EGFP-p53 plasmid was loaded on functionalized iron oleate to transfer into cells. Synthesized nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), vibrating sample magnetometry (VSM), and transmission electron microscopy (TEM). The encapsulation efficiency and drug loading efficiency of the nanocomplexes were tested. FTIR studies showed the presence of oleic acid and 1-octadecene in the iron oleate nanopowder and verified the interaction between spermine and pullulan. The characteristic bands of PS in the spectrum of the pullulan-spermine-coated iron oleate (PSCFO) confirmed that PS covered the surface of the iron oleate particles. TEM studies showed the average size of the iron oleate nanopowder, the PSCFO, and the plasmid-carrying PSCFO (PSCFO/pEGFP-p53) to be 34±12 nm, 100±50 nm and 172±3 nm, respectively. Magnetic measurements revealed that magnetic saturation of the PSCFO was lower in comparison with the iron oleate nanopowder due to the presence of organic compounds in the former. In cytotoxicity tests performed using U87 cells as glioblastoma cells, a 92% survival rate was observed at 50 μg/μl of the plasmid-carrying PSCFO, with an IC50 value of 189 μg/μl.

  7. Coating with spermine-pullulan polymer enhances adenoviral transduction of mesenchymal stem cells

    PubMed Central

    Wan, Li; Yao, Xinglei; Faiola, Francesco; Liu, Bojun; Zhang, Tianyuan; Tabata, Yasuhiko; Mizuguchi, Hiroyuki; Nakagawa, Shinsaku; Gao, Jian-Qing; Zhao, Robert Chunhua

    2016-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with multilineage potential, which makes them attractive tools for regenerative medicine applications. Efficient gene transfer into MSCs is essential not only for basic research in developmental biology but also for therapeutic applications involving gene-modification in regenerative medicine. Adenovirus vectors (Advs) can efficiently and transiently introduce an exogenous gene into many cell types via their primary receptors, the coxsackievirus and adenovirus receptors, but not into MSCs, which are deficient in coxsackievirus and adenovirus receptors expression. To overcome this problem, we developed an Adv coated with a spermine-pullulan (SP) cationic polymer and investigated its physicochemical properties and internalization mechanisms. We demonstrated that the SP coating could enhance adenoviral transduction of MSCs without detectable cytotoxicity or effects on differentiation. Our results argue in favor of the potentiality of the SP-coated Adv as a prototype vector for efficient and safe transduction of MSCs. PMID:28008251

  8. [Effect of conditions od Trichosporon pullulans culturing on the synthesis of immunomodulating glycoprotein].

    PubMed

    Eroshin, V K; Dediukhina, E G; Vagabov, V M; Kulaev, I S

    1999-01-01

    An extracellular glycoprotein (GP) exhibiting immunomodulating activity produced by the yeast Trichosporon pullulans grown in a defined ethanol-containing medium differed substantially in its composition from that of the yeast cell walls: therefore, it cannot be considered a structural component of the cell walls. In batch culture, the greatest GP production (40 mg/l) occurred in the exponential phase of the yeast growth. Under continuous cultivation, in both chemostat and pH-auxostat regimes, the specific rate of GP synthesis (qGP) increased with the increasing specific growth rate (mu) and reached 1.55 mg/(g h) at mumax. Under limitation of the yeast growth by zinc qGP was three times lower than under nitrogen or iron limitation. The rate of GP production depended inversely on the oxygen concentration.

  9. Nontoxic Genetic Engineering of Mesenchymal Stem Cells Using Serum-Compatible Pullulan-Spermine/DNA Anioplexes

    PubMed Central

    Thakor, Devang K.; Obata, Hideaki; Nagane, Kentaro; Saito, Shigeru

    2011-01-01

    Genetic modification of stem cells could be applied to initiate/enhance their secretion of therapeutic molecules, alter their biological properties, or label them for in vivo tracking. We recently developed a negatively charged gene carrier (“anioplex”) based on pullulan-spermine, a conjugate prepared from a natural polysaccharide and polyamine. In rat mesenchymal stem cells (MSCs), anioplex-derived reporter gene activity was comparable to or exceeded that obtained using a commercial cationic lipid reagent. Transfection in the growth medium with 15% serum and antibiotics was approximately sevenfold more effective than in serum-free conditions. Cytotoxicity was essentially indiscernible after 24 h of anioplex transfection with 20 μg/mL DNA, in contrast to cationic lipid transfection that resulted in 40%–60% death of target MSCs. Anioplex-derived reporter gene activity persisted throughout the entire 3-week study, with post-transfection MSCs appearing to maintain osteogenic, adipogenic, and chondrogenic multipotency. In particular, chondrogenic pellet formation of differentiating human MSCs was significantly inhibited after lipofection but not after aniofection, which further indicates the biological inertness of pullulan-spermine/DNA anioplexes. Collectively, these data introduce a straightforward technology for genetic engineering of adult stem/progenitor cells under physiological niche-like conditions. Moreover, reporter gene activity was observed in rat spinal cords after minimally invasive intrathecal implantation, suggesting effective engraftment of donor MSCs. It is therefore plausible that anioplex-transfected MSCs or other stem/progenitor cells with autologous potential could be applied to disorders such as neurotrauma or neuropathic pain that involve the spinal cord and brain. PMID:20698746

  10. Biocontrol of Monilinia laxa by Aureobasidium pullulans strains: Insights on competition for nutrients and space.

    PubMed

    Di Francesco, Alessandra; Ugolini, Luisa; D'Aquino, Salvatore; Pagnotta, Eleonora; Mari, Marta

    2017-02-17

    Two Aureobasidium pullulans strains (L1 and L8), able to prevent postharvest fruit decay, were evaluated in order to elucidate how the competition for nutrients and space was involved in their activity against Monilinia laxa, the causal agent of peach brown rot. The competition for nutrients was studied by co-culturing pathogen conidia and antagonists in different conditions of nutrient availability and avoiding contact between them. Both antagonists prevented the germination of conidia of M. laxa in water, reducing germination rate by >35%. However, L1 and L8 showed the lowest inhibition of conidial germination in peach juice at 5%, with a reduction of 12.6% and 13.9% respectively. HPLC amino acid analysis of peach juice revealed that the addition of the yeast suspension greatly modified their composition: asparagine was completely depleted soon after 12h of incubation and was probably hydrolyzed to aspartic acid by the yeasts, as aspartic acid content markedly increased. Pure asparagine and aspartic acid were tested by in vitro trials at the concentrations found in peach juice: both influenced M. laxa growth, but in opposite ways. Asparagine stimulated pathogen growth; conversely, amended medium with aspartic acid significantly inhibited the conidia germination and mycelial development of M. laxa. Scanning Electron Microscopy revealed that both strains showed a great capability to compete with M. laxa for space (starting 8h after treatment), colonizing the wound surface and inhibiting pathogen growth. This study clearly showed that A. pullulans L1 and L8 strains could compete with M. laxa for nutrients and space; this mode of action may play an important role in the antagonistic activity, especially in the first hours of tritrophic host-pathogen-antagonist interaction, although several other mechanisms can interact each other.

  11. Microfibrillated cellulose and borax as mechanical, O₂-barrier, and surface-modulating agents of pullulan biocomposite coatings on BOPP.

    PubMed

    Cozzolino, Carlo A; Campanella, Gaetano; Türe, Hasan; Olsson, Richard T; Farris, Stefano

    2016-06-05

    Multifunctional composite coatings on bi-oriented polypropylene (BOPP) films were obtained using borax and microfibrillated cellulose (MFC) added to the main pullulan coating polymer. Spectroscopy analyses suggested that a first type of interaction occurred via hydrogen bonding between the C6OH group of pullulan and the hydroxyl groups of boric acid, while monodiol and didiol complexation represented a second mechanism. The deposition of the coatings yielded an increase in the elastic modulus of the entire plastic substrate (from ∼2GPa of the neat BOPP to ∼3.1GPa of the P/B+/MFC-coated BOPP). The addition of MFC yielded a decrease of both static and kinetic coefficients of friction of approximately 22% and 25%, respectively, as compared to the neat BOPP. All composite coatings dramatically increased the oxygen barrier performance of BOPP, especially under dry conditions. The deposition of the high hydrophilic coatings allowed to obtain highly wettable surfaces (water contact angle of ∼18°).

  12. [Agrobacterium tumefaciens-mediated transformation of Aureobasidium pullulans and high-efficient screening for polymalic acid producing strain].

    PubMed

    Tu, Guangwei; Wang, Yongkang; Feng, Jun; Li, Xiaorong; Guo, Meijin; Zou, Xiang

    2015-07-01

    To develop a genetic transformation method of Aureobasidium pullulans and T-DNA insertion for high-efficient screening of polymalic acid (PMA) producing strain. Agrobacterium tumefaciens-AGL1, containing the selection genes encoding hygromycin B phosphotase or phosphinothricin acetyltranferase, was used to transform Aureobasidium pullulans CCTCC M2012223 and transformants were confirmed by colony PCR method. Transferred DNA (T-DNA) insertional mutants were cultured in microwell plate, and screened for high-titer PMA producing strain according to the pH response model. DNA walking was used to detect the insertion sites in the mutant. Results show that the selection markers could stably generated in the transformants, and 80 to 120 transformants could be found per 10(7) single cells. A high-titer PMA mutant H27 was obtained, giving a good PMA production caused by the disruption of phosphoglycerate mutase, that increased by 24.5% compared with the control. Agrobacterium tumefaciens-mediated transformation and high-efficient screening method were successfully developed, which will be helpful for genetic transformation of Aureobasidium pullulans and its functional genes discovery.

  13. Effect of meadowsweet flower extract-pullulan coatings on rhizopus rot development and postharvest quality of cold-stored red peppers.

    PubMed

    Synowiec, Alicja; Gniewosz, Małgorzata; Kraśniewska, Karolina; Chlebowska-Śmigiel, Anna; Przybył, Jarosław L; Bączek, Katarzyna; Węglarz, Zenon

    2014-08-25

    The study involved an examination of the antifungal activity on red peppers of pullulan coating (P) and pullulan coating containing either water-ethanol (P + eEMF) or ethanol extract of meadowsweet flowers (P + eEMF). Pullulan was obtained from a culture of Aureobasidium pullulans B-1 mutant. Both non-inoculated peppers and those artificially inoculated with Rhizopus arrhizus were coated and incubated at 24 °C for 5 days. The intensity of the decay caused by Rhizopus arrhizus in the peppers with P and P + eEMF coatings was nearly 3-fold lower, and in the case of P + weEMF 5-fold lower, than that observed in the control peppers. Additionally, the P + weEMF coating decreased, almost two-fold the severity of pepper decay compared to other samples. The influence of coating of pepper postharvest quality was examined after 30 days of storage at 6 °C and 70%-75% RH. All coatings formed a thin and well-attached additional layer of an intensified gloss. During storage, color, total soluble solid content and weight loss of coated peppers were subject to lower changes in comparison with uncoated ones. The results indicate the possibility of the application of pullulan coatings containing MFEs as an alternative to the chemical fungicides used to combat pepper postharvest diseases.

  14. 26 CFR 31.3121(b)(17)-1 - Services in employ of Communist organization.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 15 2010-04-01 2010-04-01 false Services in employ of Communist organization. 31.3121(b)(17)-1 Section 31.3121(b)(17)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF... COLLECTION OF INCOME TAX AT SOURCE Federal Insurance Contributions Act (Chapter 21, Internal Revenue Code...

  15. Development of ecofriendly bionanocomposite: Whey protein isolate/pullulan films with nano-SiO2.

    PubMed

    Hassannia-Kolaee, Mahbobeh; Khodaiyan, Faramarz; Pourahmad, Rezvan; Shahabi-Ghahfarrokhi, Iman

    2016-05-01

    During the past decade, the limitation of petroleum based polymers, the high price of oil, and the environmental concern were attracted the attention of researchers to develop biobased polymers. The composition of different biopolymers and the reinforcement with nano filler are common methods to improve the drawbacks of biopolymers. In this study whey protein isolate/pullulan (WPI/PUL) films contain 1%, 3%, and 5% (w/w) nano-SiO2 (NS) were prepared by a casting method. Tensile strength of nanocomposite films increased after increasing NS content, but elongation at break decreased, simultaneously. Water absorption, moisture content, solubility in water improved in the wake of increasing NS content because NS increase the cohesiveness of the polymer matrix and improved the barrier and water resistance properties of the films. water vapor permeability of film specimens decreased by increasing NS content. Uniform distribution of NS into polymer matrix was confirmed by scanning electron microscopy (SEM). XRD pattern and thermal analysis revealed increasing crystallinity and increasing Tg of film specimens with increasing NS content, respectively. According to our result WPI/PUL/NS films possess potential to be used as environment friendly packaging films to improve shelf life of food and can be used as promising alternative to petroleum based packaging films.

  16. Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis.

    PubMed

    Zou, Xiang; Zhou, Yipin; Yang, Shang-Tian

    2013-08-01

    Malic acid is a dicarboxylic acid widely used in the food industry and also a potential C4 platform chemical that can be produced from biomass. However, microbial fermentation for direct malic acid production is limited by low product yield, titer, and productivity due to end-product inhibition. In this work, a novel process for malic acid production from polymalic acid (PMA) fermentation followed by acid hydrolysis was developed. First, a PMA-producing Aureobasidium pullulans strain ZX-10 was screened and isolated. This microbe produced PMA as the major fermentation product at a high-titer equivalent to 87.6 g/L of malic acid and high-productivity of 0.61 g/L h in free-cell fermentation in a stirred-tank bioreactor. Fed-batch fermentations with cells immobilized in a fibrous-bed bioreactor (FBB) achieved the highest product titer of 144.2 g/L and productivity of 0.74 g/L h. The fermentation produced PMA was purified by adsorption with IRA-900 anion-exchange resins, achieving a ∼100% purity and a high recovery rate of 84%. Pure malic acid was then produced from PMA by hydrolysis with 2 M sulfuric acid at 85°C, which followed the first-order reaction kinetics. This process provides an efficient and economical way for PMA and malic acid production, and is promising for industrial application.

  17. Green synthesis of pullulan stabilized gold nanoparticles for cancer targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Ganeshkumar, Moorthy; Ponrasu, Thangavel; Raja, Modhugoor Devendiran; Subamekala, Muthaiya Kannappan; Suguna, Lonchin

    2014-09-01

    The aim of this study was to synthesize green chemistry based gold nanoparticles using liver specific biopolymer and to develop a liver cancer targeted drug delivery system with enhanced efficacy and minimal side effects. Pullulan stabilized gold nanoparticles (PAuNPs) were coupled with 5-Fluorouracil (5-Fu) and folic acid (Fa) which could be used as a tool for targeted drug delivery and imaging of cancer. The toxicity of 5-Fu, 5-Fu adsorbed gold nanoparticles (5-Fu@AuNPs), Fa-coupled 5-Fu adsorbed gold nanoparticles (5-Fu@AuNPs-Fa), was studied using zebrafish embryo as an in vivo model. The in vitro cytotoxicity of free 5-Fu, 5-Fu@AuNPs, 5-Fu@AuNPs-Fa against HepG2 cells was studied and found that the amount of 5-Fu required to achieve 50% of growth of inhibition (Ic50) was much lower in 5-Fu@AuNP-Fa than in free 5-Fu, 5-Fu@AuNPs. The in vivo biodistribution of PAuNPs showed that higher amount of gold had been accumulated in liver (54.42 ± 5.96 μg) than in other organs.

  18. Green synthesis of pullulan stabilized gold nanoparticles for cancer targeted drug delivery.

    PubMed

    Ganeshkumar, Moorthy; Ponrasu, Thangavel; Raja, Modhugoor Devendiran; Subamekala, Muthaiya Kannappan; Suguna, Lonchin

    2014-09-15

    The aim of this study was to synthesize green chemistry based gold nanoparticles using liver specific biopolymer and to develop a liver cancer targeted drug delivery system with enhanced efficacy and minimal side effects. Pullulan stabilized gold nanoparticles (PAuNPs) were coupled with 5-Fluorouracil (5-Fu) and folic acid (Fa) which could be used as a tool for targeted drug delivery and imaging of cancer. The toxicity of 5-Fu, 5-Fu adsorbed gold nanoparticles (5-Fu@AuNPs), Fa-coupled 5-Fu adsorbed gold nanoparticles (5-Fu@AuNPs-Fa), was studied using zebrafish embryo as an in vivo model. The in vitro cytotoxicity of free 5-Fu, 5-Fu@AuNPs, 5-Fu@AuNPs-Fa against HepG2 cells was studied and found that the amount of 5-Fu required to achieve 50% of growth of inhibition (Ic50) was much lower in 5-Fu@AuNP-Fa than in free 5-Fu, 5-Fu@AuNPs. The in vivo biodistribution of PAuNPs showed that higher amount of gold had been accumulated in liver (54.42±5.96 μg) than in other organs.

  19. Activities of Aureobasidium pullulans cell filtrates against Monilinia laxa of peaches.

    PubMed

    Di Francesco, Alessandra; Roberti, Roberta; Martini, Camilla; Baraldi, Elena; Mari, Marta

    2015-12-01

    The Aureobasidium pullulans L1 and L8 strains are known as efficient biocontrol agents against several postharvest fungal pathogens. In order to better understand the mechanism of action underneath the antifungal activity of L1 and L8 strains, yeast cell filtrates grown at different times were evaluated in vivo against Monilinia laxa on peach. Lesion diameters on peach fruit were reduced by L1 and L8 culture filtrates of 42.5% and 67% respectively. The ability of these filtrates to inhibit M. laxa conidia germination and germ tube elongation was studied by in vitro assays. The results showed a 70% reduction of conidia germination for both strains while for germ tube elongation, it was 52% and 41% for L1 and L8 culture filtrates respectively. Finally, the activity of cell wall hydrolytic enzymes such as chitinase and glucanase in cell filtrates was analysed and the expression of genes encoding these activities was quantified during yeast growth. From 24h onward, both culture filtrates contained β,1-3,glucanase and. chitinase activities, the most pronounced of which was N-β-acetylglucosaminidase. Gene expression level encoding for these enzymes in L1 and L8 varied according to the strain. These results indicate that L1 and L8 strains culture filtrates retain the yeast antagonistic activity and suggest that the production of hydrolytic enzymes plays an important role in this activity.

  20. Hydrophobicity, thermal and micro-structural properties of whey protein concentrate-pullulan-beeswax films.

    PubMed

    Jafari, Seid Mahdi; Khanzadi, Mehrdad; Mirzaei, Habibollah; Dehnad, Danial; Chegini, Faramarz Khodaian; Maghsoudlou, Yayha

    2015-09-01

    In this research, effects of beeswax (BW) on functional properties of whey protein concentrates (WPC):pullulan (PUL) films were investigated. For this purpose, 0, 10, 20 and 30w/w(glycerol)% BW rates and 30:70, 50:50 and 70:30w/w% WPC:PUL ratios were applied. Films containing 70% WPC:30% PUL (WPC70) and 30% BW (BW30) justified the highest contact angle (92.4°) among all films; SEM micrographs indicated that BW could come toward the surface of films during drying stage and resulted in a higher hydrophobic behavior of bilayer films compared with blend films. WPC70 supplied the lowest T(g) values (36-48 °C) among different proportions of WPC-PUL; the highest melting points were just assured in the absence of BW regardless of combination ratio for WPI:PUL. BW30 films deserved lower roughness rates than BW20 (and even BW10) films, indicating more advantageous microstructure and higher hydrogen connections in BW30 films and justifying similar melting points attained for BW30 films to BW20 or 10 ones. Overall, application of WPC70 and BW30 was recommended to obtain optimum combination of final properties for WPC-PUL-BW bilayer films as SEM exhibited flexible and elastic structures of such films.

  1. Antimicrobial activity of a pullulan-caraway essential oil coating on reduction of food microorganisms and quality in fresh baby carrot.

    PubMed

    Gniewosz, Małgorzata; Kraśniewska, Karolina; Woreta, Marcin; Kosakowska, Olga

    2013-08-01

    This research evaluated the antimicrobial efficacy of pullulan films containing caraway essential oil (CEO). The films were prepared from a 10% of pullulan, containing from 0.12% to 10.0% of CEO. The composition of the CEO was analyzed with the use of gas chromatography. The antimicrobial activity of the CEO was evaluated with the method of serial microdilutions, and the films containing CEO-with the agar diffusion method against selected Gram-negative, Gram-positive bacteria, and fungi. The structure of the film surface and its cross-section were analyzed using a scanning electron microscope (SEM). Analyses were also carried out to determine the efficacy of a pullulan coating with 10% CEO on baby carrots experimentally inoculated with Salmonella enteritidis, Staphylococcus aureus, Saccharomyces cerevisiae, or Aspergillus niger and stored at a room temperature for 7 d. At a concentration of 0.12%, CEO inhibited the growth of all the tested microorganisms. Pullulan films containing 8% to 10% of CEO were active against all tested microorganisms. Populations of S. aureus on carrot samples were reduced by approximately 3 log CFU/g, while those of A. niger and S. cerevisiae by, respectively, 5 and 4 log CFU/g, after 7 d of storage. S. enteritidis was the most resistant among the tested species, since it was not significantly reduced after 7 d of storage. At the end of storage, samples treated with pullulan-caraway oil coating maintained better visual acceptability than control samples. Results of this study suggest the feasibility of applying a pullulan film with incorporated CEO to extend the microbiological stability of minimally processed foods.

  2. A carboxymethyl cellulase from a marine yeast ( Aureobasidium pullulans 98): Its purification, characterization, gene cloning and carboxymethyl cellulose digestion

    NASA Astrophysics Data System (ADS)

    Rong, Yanjun; Zhang, Liang; Chi, Zhenming; Wang, Xianghong

    2015-10-01

    We have reported that A. pullulans 98 produces a high yield of cellulase. In this study, a carboxymethyl cellulase (CMCase) in the supernatant of the culture of A. pullulans 98 was purified to homogeneity, and the maximum production of CMCase was 4.51 U (mg protein)-1. The SDS-PAGE analysis showed that the molecular mass of the purified CMCase was 67.0 kDa. The optimal temperature of the purified enzyme with considerable thermosensitivity was 40°C, much lower than that of the CMCases from other fungi. The optimal pH of the enzyme was 5.6, and the activity profile was stable in a range of acidity (pH 5.0-6.0). The enzyme was activated by Na+, Mg2+, Ca2+, K+, Fe2+ and Cu2+, however, it was inhibited by Fe3+, Ba2+, Zn2+, Mn2+ and Ag+. K m and V max values of the purified enzyme were 4.7 mg mL-1 and 0.57 µmol L-1 min-1 (mg protein)-1, respectively. Only oligosaccharides with different sizes were released from carboxymethylcellulose (CMC) after hydrolysis with the purified CMCase. The putative gene encoding CMCase was cloned from A. pullulans 98, which contained an open reading frame of 954 bp (EU978473). The protein deduced contained the conserved domain of cellulase superfamily (glucosyl hydrolase family 5). The N-terminal amino acid sequence of the purified CMCase was M-A-P-H-A-E-P-Q-S-Q-T-T-E-Q-T-S-S-G-Q-F, which was consistent with that deduced from the cloned gene. This suggested that the purified CMCase was indeed encoded by the cloned CMCase gene in this yeast.

  3. CAM 17.1--a new diagnostic marker in pancreatic cancer.

    PubMed Central

    Gansauge, F.; Gansauge, S.; Parker, N.; Beger, M. I.; Poch, B.; Link, K. H.; Safi, F.; Beger, H. G.

    1996-01-01

    CAM 17.1-Ab is a recently described monoclonal antibody that detects a mucus glycoprotein with high specificity for intestinal mucus, particularly in the colon, small intestine, biliary tract and pancreas. We investigated the expression and release of CAM 17.1 in pancreatic carcinoma cell lines and tissue specimens of normal pancreas, chronic pancreatitis and pancreatic cancer. CAM 17.1 was weakly expressed on normal ductal cells and chronic pancreatitis, whereas it was overexpressed in pancreatic cancer. Serum analysis using a new enzyme-linked antibody sandwich assay (CAM 17.1/WGA) of patients with chronic pancreatitis, pancreatic cancer or other gastrointestinal cancer and of healthy blood donors revealed a high sensitivity (67%) and excellent specificity (90%) of CAM 17.1/WGA assay in pancreatic cancer. In comparison with the tumour marker CA19-9, the sensitivity of the CAM 17.1/WGA assay was similar to the sensitivity of CA 19-9 (67% and 76%, P = 0.22), whereas the specificity of CAM 17.1/WGA assay was higher than in CA 19-9 (90% compared with 78% in chronic pancreatitis, P > 0.05). Images Figure 2 PMID:8980403

  4. Bone engineering by phosphorylated-pullulan and β-TCP composite.

    PubMed

    Takahata, Tomohiro; Okihara, Takumi; Yoshida, Yasuhiro; Yoshihara, Kumiko; Shiozaki, Yasuyuki; Yoshida, Aki; Yamane, Kentaro; Watanabe, Noriyuki; Yoshimura, Masahide; Nakamura, Mariko; Irie, Masao; Van Meerbeek, Bart; Tanaka, Masato; Ozaki, Toshifumi; Matsukawa, Akihiro

    2015-11-20

    A multifunctional biomaterial with the capacity bond to hard tissues, such as bones and teeth, is a real need for medical and dental applications in tissue engineering and regenerative medicine. Recently, we created phosphorylated-pullulan (PPL), capable of binding to hydroxyapatite in bones and teeth. In the present study, we employed PPL as a novel biocompatible material for bone engineering. First, an in vitro evaluation of the mechanical properties of PPL demonstrated both PPL and PPL/β-TCP composites have higher shear bond strength than materials in current clinical use, including polymethylmethacrylate (PMMA) cement and α-tricalcium phosphate (TCP) cement, Biopex-R. Further, the compressive strength of PPL/β-TCP composite was significantly higher than Biopex-R. Next, in vivo osteoconductivity of PPL/β-TCP composite was investigated in a murine intramedular injection model. Bone formation was observed 5 weeks after injection of PPL/β-TCP composite, which was even more evident at 8 weeks; whereas, no bone formation was detected after injection of PPL alone. We then applied PPL/β-TCP composite to a rabbit ulnar bone defect model and observed bone formation comparable to that induced by Biopex-R. Implantation of PPL/β-TCP composite induced new bone formation at 4 weeks, which was remarkably evident at 8 weeks. In contrast, Biopex-R remained isolated from the surrounding bone at 8 weeks. In a pig vertebral bone defect model, defects treated with PPL/β-TCP composite were almost completely replaced by new bone; whereas, PPL alone failed to induce bone formation. Collectively, our results suggest PPL/β-TCP composite may be useful for bone engineering.

  5. Crosslinked pullulan/cellulose acetate fibrous scaffolds for bone tissue engineering.

    PubMed

    Atila, Deniz; Keskin, Dilek; Tezcaner, Ayşen

    2016-12-01

    Natural polymer based fibrous scaffolds have been explored for bone tissue engineering applications; however, their inadequate 3-dimensionality and poor mechanical properties are among the concerns for their use as bone substitutes. In this study, pullulan (P) and cellulose acetate (CA), two polysaccharides, were electrospun at various P/CA ratios (P80/CA20, P50/CA50, and P20/CA80%) to develop 3D fibrous network. The scaffolds were then crosslinked with trisodium trimetaphosphate (STMP) to improve the mechanical properties and to delay fast weight loss. The lowest weight loss was observed for the groups that were crosslinked with P/STMP 2/1 for 10min. Fiber morphologies of P50/CA50 were more uniform without phase separation and this group was crosslinked most efficiently among groups. It was found that mechanical properties of P20/CA80 and P50/CA50 were higher than that of P80/CA20. After crosslinking strain values of P50/CA50 scaffolds were improved and these scaffolds became more stable. Unlike P80/CA20, uncrosslinked P50/CA50 and P20/CA80 were not lost in PBS. Among all groups, crosslinked P50/CA50 scaffolds had more uniform pores; therefore this group was used for bioactivity and cell culture studies. Apatite-like structures were observed on fibers after SBF incubation. Human Osteogenic Sarcoma Cell Line (Saos-2) seeded onto crosslinked P50/CA50 scaffolds adhered and proliferated. The functionality of cells was tested by measuring ALP activity of the cells and the results indicated their osteoblastic differentiation. In vitro tests showed that scaffolds were cytocompatible. To sum up, crosslinked P50/CA50 scaffolds were proposed as candidate cell carriers for bone tissue engineering applications.

  6. Synthesis, physicochemical and spectroscopic characterization of copper(II)-polysaccharide pullulan complexes by UV-vis, ATR-FTIR, and EPR.

    PubMed

    Mitić, Zarko; Cakić, Milorad; Nikolić, Goran M; Nikolić, Ružica; Nikolić, Goran S; Pavlović, Radmila; Santaniello, Enzo

    2011-02-15

    Bioactive copper(II) complexes with polysaccharides, like pullulan and dextran, are important in both veterinary and human medicine for the treatment of hypochromic microcitary anemia and hypocupremia. In aqueous alkaline solutions, Cu(II) ion forms complexes with the exopolysaccharide pullulan and its reduced low-molecular derivative. The metal content and the solution composition depend on pH, temperature, and time of the reaction. The complexing process begins in a weak alkali solution (pH >7) and involves OH groups of pullulan monomer (glucopyranose) units. Complexes of Cu(II) ion with reduced low-molecular pullulan (RLMP, M(w) 6000 g mol(-1)) were synthesized in water solutions, at the boiling temperature and at different pH values ranging from 7.5 to 12. The Cu(II) complex formation with RLMP was analyzed by UV-vis spectrophotometry and other physicochemical methods. Spectroscopic characterizations (ATR-FTIR, FT-IRIS, and EPR) and spectra-structure correlation of Cu(II)-RLMP complexes were also carried out.

  7. Edible Active Coatings Based on Pectin, Pullulan, and Chitosan Increase Quality and Shelf Life of Strawberries (Fragaria ananassa).

    PubMed

    Treviño-Garza, Mayra Z; García, Santos; del Socorro Flores-González, Ma; Arévalo-Niño, Katiushka

    2015-08-01

    Edible active coatings (EACs) based on pectin, pullulan, and chitosan incorporated with sodium benzoate and potassium sorbate were employed to improve the quality and shelf life of strawberries. Fruits were washed, disinfected, coated by dipping, packed, and stored at 4 °C for 15 d. Application of EACs reduced (P < 0.05) weight loss and fruit softening and delayed alteration of color (redness) and total soluble solids content. In contrast, pH and titratable acidity were not affected (P > 0.05) throughout storage, and ascorbic acid content was maintained in pectin-EAC coated strawberries. Microbiological analyses showed that application of EACs reduced (P < 0.05) microbial growth (total aerobic counts, molds, and yeasts) on strawberries. Chitosan-EAC coated strawberries presented the best results in microbial growth assays. Sensory quality (color, flavor, texture, and acceptance) improved and decay rate decreased (P < 0.05) in pectin-EAC, pullulan-EAC, and chitosan-EAC coated strawberries. In conclusion, EACs based on polysaccharides improved the physicochemical, microbiological, and sensory characteristics, increasing the shelf life of strawberries from 6 (control) to 15 d (coated fruits).

  8. Blending of soluble corn fiber with pullulan, sorbitol, or fructose attenuates glycemic and insulinemic responses in the dog and affects hydrolytic digestion in vitro.

    PubMed

    de Godoy, M R C; Knapp, B K; Bauer, L L; Swanson, K S; Fahey, G C

    2013-08-01

    The objective of these experiments was to measure in vitro hydrolytic digestion and glycemic and insulinemic responses of select carbohydrate blends, all containing the novel carbohydrate soluble corn fiber (SCF). Two SCF that varied in their method of production were used to formulate the carbohydrate blends. One set of blends contained a SCF that was spray dried (SCFsd) and then blended with different amounts of either pullulan, sorbitol, or fructose. The other set of blends contained a SCF produced using longer evaporation time (SCF) and then blended with different ratios of pullulan, sorbitol, and fructose. Free sugar concentrations found in the individual SCFsd and SCF substrates were low but varied. Spray-dried soluble corn fiber had a reduced free sugar concentration compared with SCF (2.8 vs. 14.2%). Glucose was the main free sugar found in both SCFsd and SCF but at different concentrations (2.7 vs. 12.7%, respectively). The majority of the SCFsd blends were completely hydrolyzed to their monosaccharide components. Glucose accounted for most of the hydrolyzed monosaccharides for SCFsd and all the SCFsd blends. Hydrolyzed monosaccharide concentrations for the SCF:pullulan:sorbitol:fructose blends followed similar trends to the SCFsd blends where greater percentages of fructose and sorbitol resulted in decreased (P < 0.05) hydrolyzed monosaccharide concentrations. The SCFsd blends had intermediate to high amounts of monosaccharides released as a result of in vitro hydrolytic digestion. The SCFsd:pullulan blends were more digestible in vitro (approximately 91%; P < 0.05) than SCFsd:fructose or SCFsd:sorbitol. Total released monosaccharides were high in SCFsd blends containing either 50% fructose or sorbitol, but the combination resulted in reduced concentrations of glucose released (P < 0.05). The SCF:pullulan:sorbitol:fructose blends also had intermediate to high released monosaccharides as a result of in vitro hydrolytic digestion. All SCF blends resulted in

  9. Effects of Particle Hydrophobicity, Surface Charge, Media pH Value and Complexation with Human Serum Albumin on Drug Release Behavior of Mitoxantrone-Loaded Pullulan Nanoparticles

    PubMed Central

    Tao, Xiaojun; Jin, Shu; Wu, Dehong; Ling, Kai; Yuan, Liming; Lin, Pingfa; Xie, Yongchao; Yang, Xiaoping

    2015-01-01

    We prepared two types of cholesterol hydrophobically modified pullulan nanoparticles (CHP) and carboxyethyl hydrophobically modified pullulan nanoparticles (CHCP) substituted with various degrees of cholesterol, including 3.11, 6.03, 6.91 and 3.46 per polymer, and named CHP−3.11, CHP−6.03, CHP−6.91 and CHCP−3.46. Dynamic laser light scattering (DLS) showed that the pullulan nanoparticles were 80–120 nm depending on the degree of cholesterol substitution. The mean size of CHCP nanoparticles was about 160 nm, with zeta potential −19.9 mV, larger than CHP because of the carboxyethyl group. A greater degree of cholesterol substitution conferred greater nanoparticle hydrophobicity. Drug-loading efficiency depended on nanoparticle hydrophobicity, that is, nanoparticles with the greatest degree of cholesterol substitution (6.91) showed the most drug encapsulation efficiency (90.2%). The amount of drug loading increased and that of drug release decreased with enhanced nanoparticle hydrophobicity. Nanoparticle surface-negative charge disturbed the amount of drug loading and drug release, for an opposite effect relative to nanoparticle hydrophobicity. The drug release in pullulan nanoparticles was higher pH 4.0 than pH 6.8 media. However, the changed drug release amount was not larger for negative-surface nanoparticles than CHP nanoparticles in the acid release media. Drug release of pullulan nanoparticles was further slowed with human serum albumin complexation and was little affected by nanoparticle hydrophobicity and surface negative charge. PMID:28344259

  10. Short communication: Electrospinning of casein/pullulan blends for food-grade applications.

    PubMed

    Tomasula, P M; Sousa, A M M; Liou, S-C; Li, R; Bonnaillie, L M; Liu, L S

    2016-03-01

    Electrospinning is a complex process that produces fibers with diameters on the micrometer or nano-scale from an electrified jet of a polymer solution. The objective of this study was to create electrospun fibers for food use from aqueous solutions of calcium (CaCAS) or sodium caseinate (NaCAS). Fibers were not formed from electrospinning of solutions of either caseinate (CAS) at 50 °C, but were formed from blends of either CAS solution with aqueous solutions of the food-grade polysaccharide, pullulan (PUL), when using mass ratios from 2:1 to 1:4 of PUL/CAS. The CAS in the spinning solutions ranged from 3 to 15% (wt/wt) and the PUL ranged from 5 to 15% (wt/wt). The PUL/CaCAS 1:2 fibers showed the lowest fiber diameter sizes (FDS) of 172 ± 43 nm, as determined by scanning electron microscopy, and were smaller in size than fibers electrospun from 15% (wt/wt) PUL solution. The PUL/NaCAS solutions were more viscous and formed fibers with occasional branching and less uniform FDS at higher NaCAS contents. Reductions in NaCAS in these solutions reduced viscosity and improved jet stabilities with consequent improvement in fiber morphology leading to more uniform FDS. Fibers with less defects and more homogeneous FDS were formed from PUL/CaCAS blends with more CaCAS, showing that each CAS interacted differently with PUL and formed the best fibers at different solution conditions. Calcium bridging may also underlie the anomalous behavior of the PUL/CaCAS blends by forming crosslinks with the phosphoserine residues, further enabling chain entanglements for fiber formation. The PUL/NaCAS fibers tended to be larger than the PUL/CaCAS fibers, which may also be due to other factors such as solution surface tension and conductivity, which also affect fiber quality and size. The shear viscosities at 100 s(-1) of the solutions producing fibers were within the range of 0.07 to 0.16 Pa/s, with the smallest standard deviations in FDS noted for solutions with viscosities within about

  11. 26 CFR 17.1 - Industrial development bonds used to provide solid waste disposal facilities; temporary rules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 14 2010-04-01 2010-04-01 false Industrial development bonds used to provide solid waste disposal facilities; temporary rules. 17.1 Section 17.1 Internal Revenue INTERNAL REVENUE... UNDER 26 U.S.C. 103(c) § 17.1 Industrial development bonds used to provide solid waste...

  12. 26 CFR 17.1 - Industrial development bonds used to provide solid waste disposal facilities; temporary rules.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 14 2011-04-01 2010-04-01 true Industrial development bonds used to provide solid waste disposal facilities; temporary rules. 17.1 Section 17.1 Internal Revenue INTERNAL REVENUE... UNDER 26 U.S.C. 103(c) § 17.1 Industrial development bonds used to provide solid waste...

  13. Cyanoethylation of the glucans dextran and pullulan: Substitution pattern and formation of nanostructures and entrapment of magnetic nanoparticles

    PubMed Central

    Fiege, Kathrin; Lünsdorf, Heinrich; Atarijabarzadeh, Sevil

    2012-01-01

    Summary Cyanoethylglucans with a degree of substitution in the range of 0.74 to 2.40 for dextran and 0.84 to 2.42 for pullulan were obtained by Michael addition of acrylonitrile to the glucans under various conditions. Products were thoroughly characterized, comprising elementary analysis, NMR and ATR–IR spectroscopy, and analysis of the substituent distribution in the glucosyl units by GC–FID and GC–MS of the constituting monosaccharide derivatives. Nanostructuring of the highly substituted cyanoethylpolysaccharides was performed by dialysis against a non-solvent. In the presence of ferromagnetic iron-oxide nanoparticles, multicore cyanoethylglucan-coated ferromagnetic nanoparticles were formed by selective entrapment. The specific interaction between cyano groups and iron could be proven. The size distribution and morphology of the nanoparticles were analyzed by dynamic light scattering (DLS), scanning electron microscopy (SEM) and energy-filtered transmission electron microscopy (EF–TEM) with parallel electron energy loss spectroscopy (PEELS). PMID:22563354

  14. Assessment of the physical, mechanical, and moisture-retention properties of pullulan-based ternary co-blended films.

    PubMed

    Pan, Hongyang; Jiang, Bo; Chen, Jie; Jin, Zhengyu

    2014-11-04

    Multi-component substances made through direct blending or blending with co-drying can form films on the surfaces of intermediate moisture foods (IMFs), which help retain moisture and protect food texture and flavor. An IMF film system based on pullulan, with glycerol serving as the plasticizer, was studied using alginate and four different types of polysaccharides (propyleneglycol alginate, pectin, carrageenan, and aloe polysaccharide) as the blend-modified substances. The physical, mechanical, color, transparency, and moisture-retention properties of the co-blended films with the polysaccharides were assessed. A new formula was established for the average moisture retention property, water barrier, tensile strength, elongation at break, and oxygen barrier property of the ternary co-blended films using the Design Expert software. The new model established for moisture content measurement used an indirect method of film formation on food surfaces by humectants, which should expedite model validation and allow a better comprehension of moisture transfer through edible films.

  15. Development of tannic acid/chitosan/pullulan composite nanofibers from aqueous solution for potential applications as wound dressing.

    PubMed

    Xu, Fenghua; Weng, Baicheng; Gilkerson, Robert; Materon, Luis Alberto; Lozano, Karen

    2015-01-22

    This study presents the successful development of biocompatible tannic acid (TA)/chitosan (CS)/pullulan (PL) composite nanofibers (NFs) with synergistic antibacterial activity against the Gram-negative bacteria Escherichia coli. The NFs were developed utilizing the forcespinning(®) (FS) technique from CS-CA aqueous solutions to avoid the usage of toxic organic solvents. The ternary nanofibrous membranes were crosslinked to become water stable for potential applications as wound dressing. The morphology, structure, water solubility, water absorption capability and thermal properties of the NFs were characterized. The ternary composite membrane exhibits good water absorption ability with rapid uptake rate. This novel membrane favors fibroblast cell attachment and growth by providing a 3D environment which mimics the extracellular matrix (ECM) in skin and allows cells to move through the fibrous structure resulting in interlayer growth throughout the membrane, thus favoring potential for deep and intricate wound healing.

  16. 26 CFR 1.401(a)(17)-1 - Limitation on annual compensation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 5 2014-04-01 2014-04-01 false Limitation on annual compensation. 1.401(a)(17.... § 1.401(a)(17)-1 Limitation on annual compensation. (a) Compensation limit requirement—(1) In general... an annual compensation limit for each employee under a qualified plan. This limit applies to...

  17. Adaptation and transcriptome analysis of Aureobasidium pullulans in corncob hydrolysate for increased inhibitor tolerance to malic acid production.

    PubMed

    Zou, Xiang; Wang, Yongkang; Tu, Guangwei; Zan, Zhanquan; Wu, Xiaoyan

    2015-01-01

    Malic acid is a dicarboxylic acid widely used in the food industry, and is also a potential C4 platform chemical. Corncob is a low-cost renewable feedstock from agricultural industry. However, side-reaction products (furfural, 5-hydroxymethylfurfural (HMF), formic acid, and acetic acid) that severely hinder fermentation are formed during corncob pretreatment. The process for producing malic acid from a hydrolysate of corncob was investigated with a polymalic acid (PMA)-producing Aureobasidium pullulans strain. Under the optimal hydrolysate sugar concentration 110 g/L, A. pullulans was further adapted in an aerobic fibrous bed bioreactor (AFBB) by gradually increasing the sugar concentration of hydrolysate. After nine batches of fermentation, the production and productivity of malic acid reached 38.6 g/L and 0.4 g/L h, respectively, which was higher than that in the first batch (27.6 g/L and 0.29 g/L h, respectively). The adapted strain could grow under the stress of 0.5 g/L furfural, 3 g/L HMF, 2g/L acetic acid, and 0.5 g/L formic acid, whereas the wild type did not. Transcriptome analysis revealed that the differentially expressed genes were related to carbohydrate transport and metabolism, lipid transport and metabolism, signal transduction mechanism, redox metabolism, and energy production and conversion under 0.5 g/L furfural and 3 g/L HMF stress conditions. In total, 42 genes in the adapted strain were upregulated by 15-fold or more, and qRT-PCR also confirmed that the expression levels of key genes (i.e. SIR, GSS, CYS, and GSR) involved in sulfur assimilation pathway were upregulated by over 10-fold in adapted strain for cellular protection against oxidative stress.

  18. Adaptation and Transcriptome Analysis of Aureobasidium pullulans in Corncob Hydrolysate for Increased Inhibitor Tolerance to Malic Acid Production

    PubMed Central

    Zou, Xiang; Wang, Yongkang; Tu, Guangwei; Zan, Zhanquan; Wu, Xiaoyan

    2015-01-01

    Malic acid is a dicarboxylic acid widely used in the food industry, and is also a potential C4 platform chemical. Corncob is a low-cost renewable feedstock from agricultural industry. However, side-reaction products (furfural, 5-hydroxymethylfurfural (HMF), formic acid, and acetic acid) that severely hinder fermentation are formed during corncob pretreatment. The process for producing malic acid from a hydrolysate of corncob was investigated with a polymalic acid (PMA)-producing Aureobasidium pullulans strain. Under the optimal hydrolysate sugar concentration 110 g/L, A. pullulans was further adapted in an aerobic fibrous bed bioreactor (AFBB) by gradually increasing the sugar concentration of hydrolysate. After nine batches of fermentation, the production and productivity of malic acid reached 38.6 g/L and 0.4 g/L h, respectively, which was higher than that in the first batch (27.6 g/L and 0.29 g/L h, respectively). The adapted strain could grow under the stress of 0.5 g/L furfural, 3 g/L HMF, 2g/L acetic acid, and 0.5 g/L formic acid, whereas the wild type did not. Transcriptome analysis revealed that the differentially expressed genes were related to carbohydrate transport and metabolism, lipid transport and metabolism, signal transduction mechanism, redox metabolism, and energy production and conversion under 0.5 g/L furfural and 3 g/L HMF stress conditions. In total, 42 genes in the adapted strain were upregulated by 15-fold or more, and qRT-PCR also confirmed that the expression levels of key genes (i.e. SIR, GSS, CYS, and GSR) involved in sulfur assimilation pathway were upregulated by over 10-fold in adapted strain for cellular protection against oxidative stress. PMID:25793624

  19. Expression of fatty-acid-modifying enzymes in the halotolerant black yeast Aureobasidium pullulans (de Bary) G. Arnaud under salt stress.

    PubMed

    Gostincar, C; Turk, M; Trbuha, T; Vaupotic, T; Plemenitas, A; Gunde-Cimerman, N

    2008-01-01

    Multiple tolerance to stressful environmental conditions of the black, yeast-like fungus Aureobasidium pullulans is achieved through different adaptations, among which there is the restructuring of the lipid composition of their membranes. Here, we describe three novel genes encoding fatty-acid-modifying enzymes in A. pullulans, along with the levels of their mRNAs under different salinity conditions. High levels of Delta(9)-desaturase and Delta(12)-desaturase mRNAs were seen at high salinities, which were consistent with an increased desaturation of the fatty acids in the cell membranes. Elevated levels of elongase mRNA were also detected. Surprisingly, increases in the levels of these mRNAs were also seen following hypo-osmotic shock, while hyperosmotic shock had exactly the opposite effect, demonstrating that data that are obtained from up-shift and down-shift salinity studies should be interpreted with caution.

  20. Expression of fatty-acid-modifying enzymes in the halotolerant black yeast Aureobasidium pullulans (de Bary) G. Arnaud under salt stress

    PubMed Central

    Gostinčar, C.; Turk, M.; Trbuha, T.; Vaupotič, T.; Plemenitaš, A.; Gunde-Cimerman, N.

    2008-01-01

    Multiple tolerance to stressful environmental conditions of the black, yeast-like fungus Aureobasidium pullulans is achieved through different adaptations, among which there is the restructuring of the lipid composition of their membranes. Here, we describe three novel genes encoding fatty-acid-modifying enzymes in A. pullulans, along with the levels of their mRNAs under different salinity conditions. High levels of Δ9-desaturase and Δ12-desaturase mRNAs were seen at high salinities, which were consistent with an increased desaturation of the fatty acids in the cell membranes. Elevated levels of elongase mRNA were also detected. Surprisingly, increases in the levels of these mRNAs were also seen following hypo-osmotic shock, while hyperosmotic shock had exactly the opposite effect, demonstrating that data that are obtained from up-shift and down-shift salinity studies should be interpreted with caution. PMID:19287526

  1. A new pullulan and a branched (1-->3)-, (1-->6)-linked beta-glucan from the lichenised ascomycete Teloschistes flavicans.

    PubMed

    Reis, Rodrigo A; Tischer, Cesar A; Gorin, Philip A J; Iacomini, Marcello

    2002-04-23

    The polysaccharides formed on hot alkaline extraction of the ascomycetous lichen Teloschistes flavicans were fractionated to give two glucans, which were characterised by methylation analysis and 1D and 2D NMR spectroscopy. One was a branched beta-glucan containing (1-->3) and (1-->6) linkages, a structure which is more typical of basidiomycetes rather than ascomycetes, which have linear glucans. The other was an alpha-glucan with alternating (1-->4) and (1-->6) linkages, found for the first time in Nature. This structure can be classified as a pullulan, which has been isolated from the fungi Aureobasidium pullulans, Tremella mesenterica, and Cyttaria harioti, but has different ratios of the component glycosidic linkages. The significance of the presence of the isolated alpha- and beta-glucans is discussed.

  2. Variations in grain lipophilic phytochemicals, proteins and resistance to Fusarium spp. growth during grain storage as affected by biological plant protection with Aureobasidium pullulans (de Bary).

    PubMed

    Wachowska, Urszula; Tańska, Małgorzata; Konopka, Iwona

    2016-06-16

    Modern agriculture relies on an integrated approach, where chemical treatment is reduced to a minimum and replaced by biological control that involves the use of active microorganisms. The effect of the antagonistic yeast-like fungus Aureobasidium pullulans on proteins and bioactive compounds (alkylresorcinols, sterols, tocols and carotenoids) in winter wheat grain and on the colonization of wheat kernels by fungal microbiota, mainly Fusarium spp. pathogens, was investigated. Biological treatment contributed to a slight increase contents of tocols, alkylresorcinols and sterols in grain. At the same time, the variation of wheat grain proteins was low and not significant. Application of A. pullulans enhanced the natural yeast colonization after six months of grain storage and inhibited growth of F. culmorum pathogens penetrating wheat kernel. This study demonstrated that an integrated approach of wheat grain protection with the use of the yeast-like fungus A. pullulans reduced kernel colonization by Fusarium spp. pathogens and increased the content of nutritionally beneficial phytochemicals in wheat grain without a loss of gluten proteins responsible for baking value.

  3. Induction of stilbene phytoalexins in grapevine (Vitis vinifera) and transgenic stilbene synthase-apple plants (Malus domestica) by a culture filtrate of Aureobasidium pullulans.

    PubMed

    Rühmann, Susanne; Pfeiffer, Judith; Brunner, Philipp; Szankowski, Iris; Fischer, Thilo C; Forkmann, Gert; Treutter, Dieter

    2013-11-01

    Products containing the epiphytic yeast Aureobasidium pullulans are commercially available and applied by fruit growers to prevent several fungal and bacterial diseases of fruit trees. The proposed beneficial mechanisms relate to limitations of space and nutrients for the pathogens in presence of the rapidly proliferating yeast cells. These explanations ignore the potential of yeasts to elicit the plant's defense. Our experiments aim at clarifying if an autoclaved and centrifuged suspension of A. pullulans may induce defense mechanisms. As a model system, the biosynthesis and accumulation of stilbene phytoalexins in callus and shoots of grapevine Vitis vinifera grown in vitro was used. Yeast application to the plant tissue stimulated stilbene biosynthesis, sometimes at the cost of flavonoids. The expression of the gene encoding stilbene synthase was enhanced and the enzyme showed higher activity while chalcone synthase activity and expression was reduced in some cases. An accumulation of stilbenes was also found in transgenic apple trees (Malus domestica cv. Holsteiner Cox) harboring the stilbene synthase-gene under control of its own promoter. These results clearly show that the application of A. pullulans may induce defense mechanisms of the treated plants.

  4. 26 CFR 31.3401(a)(17)-1 - Remuneration for services performed on a boat engaged in catching fish.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... engaged in catching fish. 31.3401(a)(17)-1 Section 31.3401(a)(17)-1 Internal Revenue INTERNAL REVENUE... Remuneration for services performed on a boat engaged in catching fish. (a) Remuneration for services performed on or after December 31, 1954, by an individual on a boat engaged in catching fish or other forms...

  5. 26 CFR 31.3401(a)(17)-1 - Remuneration for services performed on a boat engaged in catching fish.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... engaged in catching fish. 31.3401(a)(17)-1 Section 31.3401(a)(17)-1 Internal Revenue INTERNAL REVENUE... Remuneration for services performed on a boat engaged in catching fish. (a) Remuneration for services performed on or after December 31, 1954, by an individual on a boat engaged in catching fish or other forms...

  6. Physical and mechanical properties in biodegradable films of whey protein concentrate-pullulan by application of beeswax.

    PubMed

    Khanzadi, Mehrdad; Jafari, Seid Mahdi; Mirzaei, Habibollah; Chegini, Faramarz Khodaian; Maghsoudlou, Yayha; Dehnad, Danial

    2015-03-15

    Different ratios of whey protein concentrate (WPC):pullulan (PUL) (70:30, 50:50, 30:70%w/w) and various rates of beeswax (BW) (0, 10, 20, and 30%w/wglycerol) were applied to prepare biodegradable WPC-PUL films containing glycerol as a plasticizer, for the first time. Thickness, moisture content, water solubility, water vapour permeability, colour, and mechanical properties of prepared films were measured. Higher ratios of WPC:PUL led to more desirable physical and mechanical properties; in other words, lower rates of thickness, moisture content, water solubility and water vapour permeability, and higher elongations were achieved. Application of BW (especially in higher contents) could successfully improve colour indices, diminish water solubility (nearly 12%) and water vapour permeability (approximately 3×10(-11)gm(-1)s(-1)Pa(-1)), and increase tensile strength (by about 7MPa) of WPC-PUL blend films. Our edible films enjoyed great whiteness and ignorable yellowness indices, making it a suitable alternative for application in food products. Overall, WPC70-PUL30 containing 30% BW resulted in the best performance of physical and mechanical aspects as an optimum film.

  7. Polycan, a β-glucan from Aureobasidium pullulans SM-2001, mitigates ovariectomy-induced osteoporosis in rats

    PubMed Central

    Jung, Mi Young; Kim, Joo Wan; Kim, Ki Young; Choi, Seong Hun; Ku, Sae Kwang

    2016-01-01

    The present study aimed to investigate the protective effects of Polycan, a β-glucan from Aureobasidium pullulans SM-2001, in a rat model of ovariectomy-induced osteoporosis. Ovariectomized (OVX) rats were orally administered 31.25, 62.5 or 125 mg/kg/day Polycan for 126 days, and alterations in body weight, bone mineral content, bone mineral density, failure load, histological profiles and histomorphometric indices were analyzed. In particular, serum levels of osteocalcin, bone-specific alkaline phosphatase (bALP), calcium and phosphorus, and the urine deoxypyridinoline/creatinine ratio, were measured. Furthermore, the femur, tibia and lumbar vertebrae were harvested from all rats, and histomorphometrical analyses were conducted in order to assess the mass and structure of the bones, and the rates of bone resorption and formation. One group of rats was treated with alendronate, which served as the reference drug. The results of the present study suggested that Polycan treatment was able to inhibit ovariectomy-induced alterations in bone resorption and turnover in a dose-dependent manner. In addition, the serum expression levels of bALP and all histomorphometrical indices for bone formation were markedly increased in the Polycan-treated groups. These results indicated that Polycan was able to preserve bone mass and strength, and increase the rate of bone formation in OVX rats; thus suggesting that Polycan may be considered a potential effective anti-osteoporosis agent. PMID:27588046

  8. Production of poly(malic acid) from sugarcane juice in fermentation by Aureobasidium pullulans: Kinetics and process economics.

    PubMed

    Wei, Peilian; Cheng, Chi; Lin, Meng; Zhou, Yipin; Yang, Shang-Tian

    2017-01-01

    Poly(β-l-malic acid) (PMA) is a biodegradable polymer with many potential biomedical applications. PMA can be readily hydrolyzed to malic acid (MA), which is widely used as an acidulant in foods and pharmaceuticals. PMA production from sucrose and sugarcane juice by Aureobasidium pullulans ZX-10 was studied in shake-flasks and bioreactors, confirming that sugarcane juice can be used as an economical substrate without any pretreatment or nutrients supplementation. A high PMA titer of 116.3g/L and yield of 0.41g/g were achieved in fed-batch fermentation. A high productivity of 0.66g/L·h was achieved in repeated-batch fermentation with cell recycle. These results compared favorably with those obtained from glucose and other biomass feedstocks. A process economic analysis showed that PMA could be produced from sugarcane juice at a cost of $1.33/kg, offering a cost-competitive bio-based PMA for industrial applications.

  9. A Novel Biosurfactant Produced by Aureobasidium pullulans L3-GPY from a Tiger Lily Wild Flower, Lilium lancifolium Thunb.

    PubMed Central

    Kim, Jong Shik; Lee, In Kyoung; Yun, Bong Sik

    2015-01-01

    Yeast biosurfactants are important biotechnological products in the food industry, and they have medical and cosmeceutical applications owing to their specific modes of action, low toxicity, and applicability. Thus, we have isolated and examined biosurfactant-producing yeast for various industrial and medical applications. A rapid and simple method was developed to screen biosurfactant-producing yeasts for high production of eco-friendly biosurfactants. Using this method, several potential niches of biosurfactant-producing yeasts, such as wild flowers, were investigated. We successfully selected a yeast strain, L3-GPY, with potent surfactant activity from a tiger lily, Lilium lancifolium Thunb. Here, we report the first identification of strain L3-GPY as the black yeast Aureobasidium pullulans. In addition, we isolated a new low-surface-tension chemical, designated glycerol-liamocin, from the culture supernatant of strain L3-GPY through consecutive chromatography steps, involving an ODS column, solvent partition, silica gel, Sephadex LH-20, and an ODS Sep-Pak cartridge column. The chemical structure of glycerol-liamocin, determined by mass spectrometry and nuclear magnetic resonance spectroscopy, indicates that it is a novel compound with the molecular formula C33H62O12. Furthermore, glycerol-liamocin exhibited potent biosurfactant activity (31 mN/m). These results suggest that glycerol-liamocin is a potential novel biosurfactantfor use in various industrial applications. PMID:25849549

  10. High-level production of poly (β-L: -malic acid) with a new isolated Aureobasidium pullulans strain.

    PubMed

    Zhang, Huili; Cai, Jin; Dong, Jiaqi; Zhang, Danping; Huang, Lei; Xu, Zhinan; Cen, Peilin

    2011-10-01

    Poly (β-L: -malic acid) (PMLA) is a water-soluble polyester with many attractive properties in chemical industry and medicine development. However, the low titer of PMLA in the available producer strains limits further industrialization efforts and restricts its many potential applications. In order to solve this problem, a new strain with the distinguished high productivity of PMLA was isolated from fresh plants samples. It was characterized as the candidate of Aureobasidium pullulans based on the morphology and phylogenetic analyses of the internal transcribed spacer sequences. After the optimization of culture conditions, the highest PMLA concentration (62.27 g l(-1)) could be achieved in the shake flask scale. In addition, the contribution of the carbon flux to exopolysaccharide (EPS) and PMLA could be regulated by the addition of CaCO₃ in the medium. This high-level fermentation process was further scaled up in the 10 l benchtop fermentor with a high PMLA concentration (57.2 g l(-1)) and productivity (0.35 g l(-1) h(-1)), which are the highest level in all the literature. Finally, the suitable acid hydrolysis conditions of PMLA were also investigated with regard to the production of L: -malic acid, and the kinetics of PMLA acid hydrolysis was modeled to simulate the whole degradation process. The present work paved the road to produce this multifunctional biomaterial (PMLA) at industrial scale and promised one alternative method to produce L: -malic acid in the future.

  11. Intensification of β-poly(L: -malic acid) production by Aureobasidium pullulans ipe-1 in the late exponential growth phase.

    PubMed

    Cao, Weifeng; Luo, Jianquan; Zhao, Juan; Qiao, Changsheng; Ding, Luhui; Qi, Benkun; Su, Yi; Wan, Yinhua

    2012-07-01

    β-Poly(malic acid) (PMLA) has attracted industrial interest because this polyester can be used as a prodrug or for drug delivery systems. In PMLA production by Aureobasidium pullulans ipe-1, it was found that PLMA production was associated with cell growth in the early exponential growth phase and dissociated from cell growth in the late exponential growth phase. To enhance PMLA production in the late phase, different fermentation modes and strategies for controlling culture redox potential (CRP) were studied. The results showed that high concentrations of produced PMLA (above 40 g/l) not only inhibited PMLA production, but also was detrimental to cell growth. Moreover, when CRP increased from 57 to 100 mV in the late exponential growth phase, the lack of reducing power in the broth also decreased PMLA productivity. PMLA productivity could be enhanced by repeated-batch culture to maintain cell growth in the exponential growth phase, or by cell-recycle culture with membrane to remove the produced PMLA, or by maintaining CRP below 70 mV no matter which kind of fermentation mode was adopted. Repeated-batch culture afforded a high PMLA concentration (up to 63.2 g/l) with a productivity of 1.15 g l(-1) h(-1). Cell-recycle culture also confirmed that PMLA production by the strain ipe-1 was associated with cell growth.

  12. Self-assembled nanocomplexes of anionic pullulan and polyallylamine for DNA and pH-sensitive intracellular drug delivery

    NASA Astrophysics Data System (ADS)

    Vora, Lalit; Tyagi, Monica; Patel, Ketan; Gupta, Sanjay; Vavia, Pradeep

    2014-12-01

    The amalgamation of chemotherapy and gene therapy is promising treatment option for cancer. In this study, novel biocompatible self-assembled nanocomplexes (NCs) between carboxylmethylated pullulan t335 (CMP) with polyallylamine (CMP-PAA NCs) were developed for plasmid DNA (pDNA) and pH-sensitive doxorubicin (DOX) delivery. DOX was conjugated to CMP (DOX-CMP) via hydrazone and confirmed by FTIR and 1H-NMR. In vitro release studies of pH-sensitive DOX-CMP conjugate showed 23 and 85 % release after 48 h at pH 7.4 (physiological pH) and pH 5 (intracellular/tumoral pH), respectively. The CMP-PAA NCs or DOX-CMP-PAA NCs self-assembled into a nanosized (<250 nm) spherical shape as confirmed by DLS and TEM. The hemolysis and cytotoxicity study indicated that the CMP-PAA NCs did not show cytotoxicity in comparison with plain polyallylamine. Gel retardation assay showed complete binding of pDNA with CMP-PAA NCs at 1:2 weight ratio. CMP-PAA NCs/pDNA showed significantly higher transfection in HEK293 cells compared to PAA/pDNA complexes. Confocal imaging demonstrated successful cellular uptake of DOX-CMP-PAA NCs in HEK293 cells. Thus, NCs hold great potential for targeted pDNA and pH-sensitive intratumoral drug delivery.

  13. Resistant starch and pullulan reduce postprandial glucose, insulin, and GLP-1, but have no effect on satiety in healthy humans.

    PubMed

    Klosterbuer, Abby S; Thomas, William; Slavin, Joanne L

    2012-12-05

    The aim of this study was to determine the effects of three novel fibers on satiety and serum parameters. In a randomized, double-blind, crossover design, fasted subjects (n=20) consumed a low-fiber control breakfast or one of four breakfasts containing 25 g of fiber from soluble corn fiber (SCF) or resistant starch (RS), alone or in combination with pullulan (SCF+P and RS+P). Visual analog scales assessed appetite, and blood samples were collected to measure glucose, insulin, ghrelin, and glucagon-like peptide-1 (GLP-1). The fiber treatments did not influence satiety or energy intake compared to control. RS+P significantly reduced glucose, insulin, and GLP-1, but neither SCF treatment differed from control. To conclude, these fibers have little impact on satiety when provided as a mixed meal matched for calories and macronutrients. Additional research regarding the physiological effects of these novel fibers is needed to guide their use as functional ingredients in food products.

  14. Cloning, characterization, expression and antifungal activity of an alkaline serine protease of Aureobasidium pullulans PL5 involved in the biological control of postharvest pathogens.

    PubMed

    Zhang, Dianpeng; Spadaro, Davide; Valente, Silvia; Garibaldi, Angelo; Gullino, Maria Lodovica

    2012-02-15

    An alkaline protease gene was amplified from genomic DNA and cDNA of the antagonistic yeast-like fungus Aureobasidium pullulans PL5, a biocontrol agent effective against Monilinia laxa on stone fruit and Botrytis cinerea and Penicillium expansum on pome fruits. An open reading frame of 1248 bp encoding a 415-amino acid (aa) protein with a calculated molecular weight (M(r)) of 42.9 kDa and an isoelectric point (pI) of 4.5 was characterized. The cDNAALP5 gene had an 18-amino acid signal peptide, one N-gylcosylation, one histidine active site, and one serine active site. The ALP5 gene with a M(r) of 1351 bp contained two introns. One intron was of 54 bp, while the other was of 50 bp. Protein BLAST and phylogenetic tree analysis of the deduced amino sequences from the cDNAALP5 gene showed that the encoded protein had 100% homology to a protease enzyme (ALP2) of a sea strain of A. pullulans, suggesting that the protein ALP5 was an alkaline serine protease. Expression of ALP5 in Escherichia coli BL21 (DE3), followed by identification with Western-blotting, purification with Ni-NTA and analysis of enzymatic activity, yielded an homogeneous recombinant ALP5 which hydrolysed the substrate casein and inhibited the mycelial growth of the pathogens. At its optimal pH of 10.0 and reaction temperature of 50°C, the recombinant protease exhibited the highest activity towards the substrate casein, though the highest stability was at lower temperatures and pH between 7.0 and 9.0. This study provided the direct evidence that extracellular proteases secreted by the antagonist A. pullulans PL5 played a role in the biocontrol activities against some postharvest pathogens of apple and peach.

  15. Experimental high gradient testing of a 17.1 GHz photonic band-gap accelerator structure

    NASA Astrophysics Data System (ADS)

    Munroe, Brian J.; Zhang, JieXi; Xu, Haoran; Shapiro, Michael A.; Temkin, Richard J.

    2016-03-01

    We report the design, fabrication, and high gradient testing of a 17.1 GHz photonic band-gap (PBG) accelerator structure. Photonic band-gap (PBG) structures are promising candidates for electron accelerators capable of high-gradient operation because they have the inherent damping of high order modes required to avoid beam breakup instabilities. The 17.1 GHz PBG structure tested was a single cell structure composed of a triangular array of round copper rods of radius 1.45 mm spaced by 8.05 mm. The test assembly consisted of the test PBG cell located between conventional (pillbox) input and output cells, with input power of up to 4 MW from a klystron supplied via a TM01 mode launcher. Breakdown at high gradient was observed by diagnostics including reflected power, downstream and upstream current monitors and visible light emission. The testing procedure was first benchmarked with a conventional disc-loaded waveguide structure, which reached a gradient of 87 MV /m at a breakdown probability of 1.19 ×10-1 per pulse per meter. The PBG structure was tested with 100 ns pulses at gradient levels of less than 90 MV /m in order to limit the surface temperature rise to 120 K. The PBG structure reached up to 89 MV /m at a breakdown probability of 1.09 ×10-1 per pulse per meter. These test results show that a PBG structure can simultaneously operate at high gradients and low breakdown probability, while also providing wakefield damping.

  16. Inhibition of UVB-induced skin damage by exopolymers from Aureobasidium pullulans SM-2001 in hairless mice.

    PubMed

    Kim, Kyung Hu; Park, Soo Jin; Lee, Young Joon; Lee, Ji Eun; Song, Chang Hyun; Choi, Seong Hun; Ku, Sae Kwang; Kang, Su Jin

    2015-02-01

    Because antioxidants from natural sources may be an effective approach to the treatment and prevention of UV radiation-induced skin damage, the effects of purified exopolymers from Aureobasidium pullulans SM-2001 ('E-AP-SM2001') were evaluated in UVB-induced hairless mice. E-AP-SM2001 consists of 1.7% β-1,3/1,6-glucan, fibrous polysaccharides and other organic materials, such as amino acids, and mono- and di-unsaturated fatty acids (linoleic and linolenic acids) and shows anti-osteoporotic and immunomodulatory effects, through antioxidant and anti-inflammatory mechanisms. Hairless mice were treated topically with vehicle, E-AP-SM2001 stock and two and four times diluted solutions once per day for 15 weeks against UVB irradiation (three times per week at 0.18 J/cm(2) ). The following parameters were evaluated in skin samples: myeloperoxidase (MPO) activity, cytokine levels [interleukin (IL)-1β and IL-10], endogenous antioxidant content (glutathione, GSH), malondialdehyde (MDA) levels, superoxide anion production; matrix metalloproteases (MMP-1, -9 and -13), GSH reductase and Nox2 (gp91phox) mRNA levels, and immunoreactivity for nitrotyrosine (NT), 4-hydroxynonenal (HNE), caspase-3, and cleaved poly(ADP-ribose) polymerase (PARP). Photoageing was induced by UVB irradiation through ROS-mediated inflammation, which was related to the depletion of endogenous antioxidants, activation of MMPs and keratinocyte apoptosis. Topical treatment with all three doses of E-AP-SM2001 and 5 nm myricetin attenuated the UV-induced depletion of GSH, activation of MMPs, production of IL-1β, the decrease in IL-10 and keratinocyte apoptosis. In this study, E-AP-SM2001 showed potent inhibitory effects against UVB-induced skin photoageing. Thus, E-AP-SM2001 may be useful as a functional ingredient in cosmetics, especially as a protective agent against UVB-induced skin photoageing.

  17. Incorporation of nisin Z and lauric arginate into pullulan films to inhibit foodborne pathogens associated with fresh and ready-to-eat muscle foods.

    PubMed

    Pattanayaiying, Rinrada; H-Kittikun, Aran; Cutter, Catherine N

    2015-08-17

    A combination of food grade compounds with edible films, used to inhibit foodborne pathogens associated with fresh or further processed muscle foods, is receiving considerable attention. In this study, pullulan films containing lauric arginate (LAE) and nisin Z (produced by Lactococcus lactis subsp. lactis I8-7-3 and isolated from catfish gut), alone or in combination, were investigated for controlling foodborne pathogens on fresh and further processed muscle foods after long-term refrigerated storage. Salmonella Typhimurium and Salmonella Enteritidis on raw turkey breast slices wrapped with a film containing LAE or the combination of LAE with nisin Z were reduced throughout the experiment, 2.5 to 4.5 log10 CFU/cm(2) and 3.5 to 5.1 log10 CFU/cm(2), respectively. Film containing a combination of LAE with nisin Z reduced Staphylococcus aureus and Listeria monocytogenes Scott A inoculated onto ham surfaces by approximately 5.53 and 5.62 log10 CFU/cm(2), respectively during refrigerated storage. Escherichia coli O157:H7, O111, and O26 also were reduced by >4 log 10CFU/cm(2) on raw beef slices after treatment with the combination film and refrigerated storage. The results obtained from this study indicate the LAE- and LAE-nisin Z-containing pullulan films displayed excellent inhibition against foodborne pathogens on fresh and further processed muscle foods.

  18. 17.1%-Efficient Multi-Scale-Textured Black Silicon Solar Cells without Dielectric Antireflection Coating

    SciTech Connect

    Toor, F.; Page, M. R.; Branz, H. M.; Yuan, H. C.

    2011-01-01

    In this work we present 17.1%-efficient p-type single crystal Si solar cells with a multi-scale-textured surface and no dielectric antireflection coating. Multi-scale texturing is achieved by a gold-nanoparticle-assisted nanoporous etch after conventional micron scale KOH-based pyramid texturing (pyramid black etching). By incorporating geometric enhancement of antireflection, this multi-scale texturing reduces the nanoporosity depth required to make silicon `black' compared to nanoporous planar surfaces. As a result, it improves short-wavelength spectral response (blue response), previously one of the major limiting factors in `black-Si' solar cells. With multi-scale texturing, the spectrum-weighted average reflectance from 350- to 1000-nm wavelength is below 2% with a 100-nm deep nanoporous layer. In comparison, roughly 250-nm deep nanopores are needed to achieve similar reflectance on planar surface. Here, we characterize surface morphology, reflectivity and solar cell performance of the multi-scale textured solar cells.

  19. A novel multicompartimental system based on aminated poly(vinyl alcohol) microspheres/succinoylated pullulan microspheres for oral delivery of anionic drugs.

    PubMed

    Constantin, M; Fundueanu, G; Bortolotti, F; Cortesi, R; Ascenzi, P; Menegatti, E

    2007-02-07

    Poly(vinyl alcohol) (PVA) microspheres were prepared by dispersion reticulation with glutaraldehyde and further aminated. These microspheres were firstly loaded with diclofenac (DF) and then entrapped in cellulose acetate butyrate (CAB) microcapsules by an o/w solvent evaporation technique for intestinal delivery of drug. The encapsulated PVA microspheres due to their low swelling degree in intestinal fluids, do not have enough force to produce the disruption of CAB shell, therefore different amounts of succinoylated pullulan microspheres (SP-Ms) (exchange capacity up to 5.2 meq/g) were co-encapsulated. The SP-Ms do not swell in acidic pH, but swell up to 20-times in intestinal fluids causing the rupture of CAB shell and facilitating the escape of loaded PVA microspheres.

  20. Production and Properties of a Thermostable, pH—Stable Exo-Polygalacturonase Using Aureobasidium pullulans Isolated from Saharan Soil of Algeria Grown on Tomato Pomace

    PubMed Central

    Bennamoun, Leila; Hiligsmann, Serge; Dakhmouche, Scheherazad; Ait-Kaki, Amel; Labbani, Fatima-Zohra Kenza; Nouadri, Tahar; Meraihi, Zahia; Turchetti, Benedetta; Buzzini, Pietro; Thonart, Philippe

    2016-01-01

    Polygalacturonase is a valuable biocatalyst for several industrial applications. Production of polygalacturonase using the Aureobasidium pullulans stain isolated from Saharan soil of Algeria was investigated. Its capacity to produce polygalacturonase was assessed under submerged culture using tomato pomace as an abundant agro-industrial substrate. Optimization of the medium components, which enhance polygalacturonase activity of the strain Aureobasidium pullulans, was achieved with the aid of response surface methodology. The composition of the optimized medium was as follows: tomato pomace 40 g/L, lactose 1.84 g/L, CaCl20.09 g/L and pH 5.16. Practical validation of the optimum medium provided polygalacturonase activity of 22.05 U/mL, which was 5-fold higher than in unoptimized conditions. Batch cultivation in a 20 L bioreactor performed with the optimal nutrients and conditions resulted in a high polygalacturonase content (25.75 U/mL). The enzyme showed stability over a range of temperature (5–90 °C) with an optimum temperature of 60 °C with pH 5.0, exhibiting 100% residual activity after 1h at 60 °C. This enzyme was stable at a broad pH range (5.0–10). The enzyme proved to be an exo-polygalacturonase, releasing galacturonic acid by hydrolysis of polygalacturonic acid. Moreover, the exo-polygalacturonase was able to enhance the clarification of both apple and citrus juice. As a result, an economical polygalacturonase production process was defined and proposed using an industrial food by-product. PMID:28231166

  1. Efficient Delivery of DOX to Nuclei of Hepatic Carcinoma Cells in the Subcutaneous Tumor Model Using pH-Sensitive Pullulan-DOX Conjugates.

    PubMed

    Li, Huanan; Cui, Yani; Sui, Junhui; Bian, Shaoquan; Sun, Yong; Liang, Jie; Fan, Yujiang; Zhang, Xingdong

    2015-07-29

    A series of pullulan-doxorubicin conjugates (Pu-DOXs) were investigated for effectively delivering DOX to nuclei of hepatic carcinoma cells in subcutaneous tumor model. These Pu-DOXs were prepared by conjugating DOX onto pullulan molecule via pH-responsive hydrazone bond using spacers with different alkane chain length. The highest drug loading content of Pu-DOXs went up to nearly 50%, and the diameter of Pu-DOX nanoparticles ranged from 50 to 170 nm, as measured by DLS and TEM. These Pu-DOX nanoparticles could rapidly release DOX in the acidic environment at pH = 5.0 while being kept relatively stable in neural conditions. The in vitro cell coculture experiments revealed that these Pu-DOX nanoparticles were selectively internalized by hepatic carcinoma cells through receptor-mediated endocytosis via asialoglycoprotein receptor on the hepatic carcinoma cell surface. DOX was rapidly released from Pu-DOX nanoparticles in acidic endosome/lysosome, diffused into cell nuclei due to its strong affinity to nucleic acid, inhibited the cell proliferation, and accelerated the cell apoptosis. In the nude mice subcutaneous hepatic carcinoma model, Pu-DOX nanoparticles efficiently accumulated in the tumor site through the enhanced permeation and retention effect. Then DOX was specifically internalized by hepatic carcinoma cells and rapidly diffused into the nuclei of cells. Compared with the control group in in vivo experiments, these Pu-DOX nanoparticles effectively inhibited solid tumor growth, prolonging the lifetime of the experimental animal. These pH sensitive nanoparticles might provide an important clinical implication for targeted hepatic carcinoma therapy with high efficiency and low systematic toxicity.

  2. Production and Properties of a Thermostable, pH-Stable Exo-Polygalacturonase Using Aureobasidium pullulans Isolated from Saharan Soil of Algeria Grown on Tomato Pomace.

    PubMed

    Bennamoun, Leila; Hiligsmann, Serge; Dakhmouche, Scheherazad; Ait-Kaki, Amel; Labbani, Fatima-Zohra Kenza; Nouadri, Tahar; Meraihi, Zahia; Turchetti, Benedetta; Buzzini, Pietro; Thonart, Philippe

    2016-10-29

    Polygalacturonase is a valuable biocatalyst for several industrial applications. Production of polygalacturonase using the Aureobasidium pullulans stain isolated from Saharan soil of Algeria was investigated. Its capacity to produce polygalacturonase was assessed under submerged culture using tomato pomace as an abundant agro-industrial substrate. Optimization of the medium components, which enhance polygalacturonase activity of the strain Aureobasidium pullulans, was achieved with the aid of response surface methodology. The composition of the optimized medium was as follows: tomato pomace 40 g/L, lactose 1.84 g/L, CaCl₂0.09 g/L and pH 5.16. Practical validation of the optimum medium provided polygalacturonase activity of 22.05 U/mL, which was 5-fold higher than in unoptimized conditions. Batch cultivation in a 20 L bioreactor performed with the optimal nutrients and conditions resulted in a high polygalacturonase content (25.75 U/mL). The enzyme showed stability over a range of temperature (5-90 °C) with an optimum temperature of 60 °C with pH 5.0, exhibiting 100% residual activity after 1h at 60 °C. This enzyme was stable at a broad pH range (5.0-10). The enzyme proved to be an exo-polygalacturonase, releasing galacturonic acid by hydrolysis of polygalacturonic acid. Moreover, the exo-polygalacturonase was able to enhance the clarification of both apple and citrus juice. As a result, an economical polygalacturonase production process was defined and proposed using an industrial food by-product.

  3. Biocompatible cationic pullulan-g-desoxycholic acid-g-PEI micelles used to co-deliver drug and gene for cancer therapy.

    PubMed

    Chen, Lili; Ji, Fangling; Bao, Yongming; Xia, Jing; Guo, Lianying; Wang, Jingyun; Li, Yachen

    2017-01-01

    The greatest crux in the combination of chemotherapy and gene therapy is the construction of a feasible and biocompatible carrier for loading the therapeutic drug and gene simultaneously. Here, a new amphiphilic bifunctional pullulan derivative (named as PDP) synthesized by grafting lipophilic desoxycholic acid and low-molecular weight (1kDa) branched polyethylenimine onto the backbone of pullulan was evaluated as a nano-carrier for the co-delivery of drug and gene for potential cancer therapy. PDP exhibited good blood compatibility and low cytotoxicity in the hemolysis and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, respectively. By self-assembly process, the amphiphilic PDP polymer formed cationic core-shell nanomicelles in aqueous solution with an average diameter of 160.8nm and a zeta potential of approximate 28mV. The PDP micelles had relative higher drug encapsulation efficiency (84.05%) and loading capacity (7.64%) for doxorubicin (DOX), an effective anti-tumor drug, demonstrating sustained drug release profile and good DNA-binding ability. The flow cytometry and confocal laser scanning microscopy showed that PDP/DOX micelles could be successfully internalized by MCF-7 cells, and presenting higher cytotoxicity against MCF-7 cells than that of free DOX. Furthermore, PDP micelles could efficiently transport tumor suppressor gene p53 into MCF-7 cells, and the expressed exogenous p53 protein induced MCF-7 cells to die. More excitedly, in comparison with single DOX or p53 delivery, the co-delivery of DOX and gene p53 using PDP micelles displayed higher cytotoxicity, induced higher apoptosis rate of tumor cells and blocked more effectively the migration of cancer cells in vitro. In tumor-bearing mice, co-delivery of DOX and p53 also exhibited enhanced antitumor efficacy as compared with single delivery of DOX or p53 alone. In summary, these results demonstrated that it is highly promising to use cationic PDP micelles for effectively

  4. Crystal structure of Thermoactinomyces vulgaris R-47 alpha-amylase II (TVAII) hydrolyzing cyclodextrins and pullulan at 2.6 A resolution.

    PubMed

    Kamitori, S; Kondo, S; Okuyama, K; Yokota, T; Shimura, Y; Tonozuka, T; Sakano, Y

    1999-04-16

    The crystal structure of Thermoactinomyces vulgaris R-47 alpha-Amylase II (TVAII) has been determined by multiple isomorphous replacement at 2.6 A resolution. TVAII was crystallized in an orthorhombic system with the space group P212121 and the cell dimensions a=118.5 A, b=119.5 A, c=114.5 A. There are two molecules in an asymmetric unit, related by the non-crystallographic 2-fold symmetry. Diffraction data were collected at 113 K and the cell dimensions reduced to a=114.6 A, b=117.9 A, c=114.2 A, and the model was refined against 7.0-2.6 A resolution data giving an R-factor of 0.204 (Rfree=0.272). The final model consists of 1170 amino acid residues (two molecules) and 478 water molecules with good chemical geometry. TVAII has three domains, A, B, and C, like other alpha-amylases. Domain A with a (beta/alpha)8 barrel structure and domain C with a beta-sandwich structure are very similar to those found in other alpha-amylases. Additionally, TVAII has an extra domain N composed of 121 amino acid residues at the N-terminal site, which has a beta-barrel-like structure consisting of seven antiparallel beta-strands. Domain N is one of the driving forces in the formation of the dimer structure of TVAII, but its role in the enzyme activity is still not clear. TVAII does not have the Ca2+ binding site that connects domains A and B in other alpha-amylases, rather the NZ atom of Lys299 of TVAII serves as the connector between these domains. TVAII can hydrolyze cyclodextrins and pullulan as well as starch. Based on a structural comparison with the complex between a mutant cyclodextrin glucanotransferase and a beta-cyclodextrin derivative, Phe286 located at domain B is considered the residue most likely to recognize the hydrophobic cavity of cyclodextrins. The active-site cleft of TVAII is wider and shallower than that of other alpha-amylases, and seems to be suitable for the binding of pullulan which is expected not to adopt the helical structure of amylose.

  5. Novel hydrogels based on carboxyl pullulan and collagen crosslinking with 1, 4-butanediol diglycidylether for use as a dermal filler: initial in vitro and in vivo investigations.

    PubMed

    Li, Xian; Xue, Wenjiao; Zhu, Chenhui; Fan, Daidi; Liu, Yannan; XiaoxuanMa

    2015-12-01

    Novel hydrogels based on carboxyl pullulan (PC) and human-like collagen (HLC) crosslinking with 1,4-butanediol diglycidyl ether (BDDE) are promising soft fillers for tissue engineering due to their highly tunable properties. Recent studies, however, have shown that incorporating hyaluronic acid and BDDE results in hydrogels with a microporous structure, a large pore size and high porosity, which reduce cell adhesion and enhance degradation in vivo. To improve biocompatibility and prevent biodegradation, the use of PC to replace hyaluronic acid in the fabrication of PC/BDDE (PCB) and PC/BDDE/HLC (PCBH) hydrogels was investigated. Preparation of gels with PC is a promising strategy due to the high reactivity, superb selectivity, and mild reaction conditions of PC. In particular, the Schiff base reaction of HLC and PC produces the novel functional group -RCONHR' in PCBH hydrogels. Twenty-four weeks after subcutaneous injection of either PCB or PCBH hydrogel in mice, the surrounding tissue inflammation, enzymatic response and cell attachment were better compared to hyaluronic acid-based hydrogels. However, the biocompatibility, cytocompatibility and non-biodegradability of PCBH were milder than those of the PCB hydrogels both in vivo and in vitro. These results show that the proposed use of PC and HLC for the fabrication of hydrogels is a promising strategy for generating soft filler for tissue engineering.

  6. β-(1 → 3)-Glucanolytic yeasts from Brazilian grape microbiota: production and characterization of β-glucanolytic enzymes by Aureobasidium pullulans 1WA1 cultivated on fungal Mycelium.

    PubMed

    Bauermeister, Anelize; Amador, Ismael R; Pretti, Carla P; Giese, Ellen C; Oliveira, André L M

    2015-01-14

    A total of 95 yeast strains were isolated from the microbiota of different grapes collected at vineyards in southern Brazil. The yeasts were screened for β-(1 → 3)-glucanases using a newly developed zymogram method that relies upon the appearance of clearance zones around growing colonies cultured on agar–botryosphaeran medium and also by submerged fermentation on nutrient medium containing botryosphaeran, a (1 → 3),(1 → 6)-β-d-glucan. Among 14 β-(1 → 3)-glucanase-positive yeasts identified, four strains produced the highest β-glucanolytic activities and were evaluated for enzyme production on cellobiose, botryosphaeran, and mycelial biomass from Botryosphaeria rhodina (MAMB-05). Yeast strain 1WA1 produced the highest β-(1 → 3)-glucanase and β-glucosidase activities and was identified by molecular characterization as Aureobasidium pullulans. The physicochemical properties of the crude β-glucanolytic enzyme preparation were characterized, and the preparation was used to hydrolyze several β-d-glucans (laminarin, botryosphaeran, lasiodiplodan, pustulan, and curdlan). The production and physicochemical properties of the β-glucanolytic preparation enable its potential applications in wine enology and production of prebiotics through hydrolysis of β-d-glucans.

  7. Polymalic acid fermentation by Aureobasidium pullulans for malic acid production from soybean hull and soy molasses: Fermentation kinetics and economic analysis.

    PubMed

    Cheng, Chi; Zhou, Yipin; Lin, Meng; Wei, Peilian; Yang, Shang-Tian

    2017-01-01

    Polymalic acid (PMA) production by Aureobasidium pullulans ZX-10 from soybean hull hydrolysate supplemented with corn steep liquor (CSL) gave a malic acid yield of ∼0.4g/g at a productivity of ∼0.5g/L·h. ZX-10 can also ferment soy molasses, converting all carbohydrates including the raffinose family oligosaccharides to PMA, giving a high titer (71.9g/L) and yield (0.69g/g) at a productivity of 0.29g/L·h in fed-batch fermentation under nitrogen limitation. A higher productivity of 0.64g/L·h was obtained in repeated batch fermentation with cell recycle and CSL supplementation. Cost analysis for a 5000 MT plant shows that malic acid can be produced at $1.10/kg from soy molasses, $1.37/kg from corn, and $1.74/kg from soybean hull. At the market price of $1.75/kg, malic acid production from soy molasses via PMA fermentation offers an economically competitive process for industrial production of bio-based malic acid.

  8. Oral administration of the Aureobasidium pullulans-derived β-glucan effectively prevents the development of high fat diet-induced fatty liver in mice

    PubMed Central

    Aoki, Shiho; Iwai, Atsushi; Kawata, Koji; Muramatsu, Daisuke; Uchiyama, Hirofumi; Okabe, Mitsuyasu; Ikesue, Masahiro; Maeda, Naoyoshi; Uede, Toshimitsu

    2015-01-01

    Aureobasidium pullulans-derived β-glucan (AP-PG) consisting of a β-(1,3)-linked glucose main chain and β-(1,6)-linked glucose branches is taken as a supplement to improve health. This study demonstrates that oral administration of AP-PG is effective to prevent the development of high-fat diet (HFD)-induced fatty liver in mice. Here, C57BL/6N mice were fed with a normal diet or HFD, and AP-PG diluted in drinking water was administered orally. After 16 weeks, the serological analysis showed that HFD-induced high blood cholesterol and triglyceride levels were reduced by the oral administration of AP-PG. Further, HFD induced-fatty liver was significantly reduced by the oral administration of AP-PG. The triglyceride accumulation in the liver was also significantly reduced in mice administered AP-PG. Liver injury as indicated by an increase in serum alanine aminotransferase (ALT) in the HFD-fed mice was significantly reduced in the mice administered AP-PG orally, and the gene expression of cholesterol 7 alpha-hydroxylase (CYP7A1) which is known to be involved in cholesterol degradation in the liver was significantly increased in the AP-PG administered mice. These results suggest the possibility that the oral administration of AP-PG is effective to prevent the development of non-alcoholic fatty liver disease (NAFLD). PMID:26179949

  9. Effect of whey protein isolate-pullulan edible coatings on the quality and shelf life of freshly roasted and freeze-dried Chinese chestnut.

    PubMed

    Gounga, M E; Xu, S-Y; Wang, Z; Yang, W G

    2008-05-01

    Harvested chestnut is characterized by a short shelf life, exposing many Chinese producers to a storage problem as product losses are very high. The objective of this study was to develop a suitable technology to extend the shelf life of harvested chestnut fruits for commercial use. The effect of whey protein isolate-pullulan (WPI-Pul) coating on fresh-roasted chestnuts (FRC) and roasted freeze-dried chestnut (RFDC) quality and shelf life was studied under 2 different storage temperature (4 and 20 degrees C) conditions. Coatings were formed directly onto the surface of the fruits by dipping them into a film solution. SEM micrographs showed homogeneous WPI-Pul to cover the whole surface of chestnut with good adherence and perfect integrity. Moisture loss or gain, fruit quality, and shelf life were evaluated by weight loss or gain, surface color development, and visible decay during the storage period of 15 to 120 d at 4 and 20 degrees C, respectively. WPI-Pul coating had a low, yet significant effect on reducing moisture loss and decay incidence of FRC, hence delaying changes in their external color. The results were satisfactory when the coating was done with freeze-drying at low temperature storage, thus improving the quality and increasing the shelf life. This provides an alternative strategy to minimize the significant losses in harvested chestnut.

  10. The mitochondrial protein import component, TRANSLOCASE OF THE INNER MEMBRANE17-1, plays a role in defining the timing of germination in Arabidopsis.

    PubMed

    Wang, Yan; Law, Simon R; Ivanova, Aneta; van Aken, Olivier; Kubiszewski-Jakubiak, Szymon; Uggalla, Vindya; van der Merwe, Margaretha; Duncan, Owen; Narsai, Reena; Whelan, James; Murcha, Monika W

    2014-11-01

    In Arabidopsis (Arabidopsis thaliana), small gene families encode multiple isoforms for many of the components of the mitochondrial protein import apparatus. There are three isoforms of the TRANSLOCASE OF THE INNER MEMBRANE17 (Tim17). Transcriptome analysis indicates that AtTim17-1 is only detectable in dry seed. In this study, two independent transfer DNA insertional mutant lines of tim17-1 exhibited a germination-specific phenotype, showing a significant increase in the rate of germination. Microarray analyses revealed that Attim17-1 displayed alterations in the temporal sequence of transcriptomic events during germination, peaking earlier compared with the wild type. Promoter analysis of AtTim17-1 further identified an abscisic acid (ABA)-responsive element, which binds ABA-responsive transcription factors, acting to repress the expression of AtTim17-1. Attim17-1 dry seeds contained significantly increased levels of ABA and gibberellin, 2- and 5-fold, respectively. These results support the model that mitochondrial biogenesis is regulated in a tight temporal sequence of events during germination and that altering mitochondrial biogenesis feeds back to alter the germination rate, as evidenced by the altered levels of the master regulatory hormones that define germination.

  11. Effects of co-fermented Pleurotus eryngii stalk residues and soybean hulls by Aureobasidium pullulans on performance and intestinal morphology in broiler chickens.

    PubMed

    Lai, L P; Lee, M T; Chen, C S; Yu, B; Lee, T T

    2015-12-01

    Soybean hulls are a by-product of soybean processing for oil and meal production; Pleurotus eryngii stalk residues (PESR) are by-products of the edible portion of the fruiting body enriched in bioactive metabolites. This study evaluated the effects of co-fermented PESR and soybean hulls with Aureobasidium pullulans on performance and intestinal morphology in broiler chickens. The in vitro experimental results showed that xylananse and mannanase activity of solid-state fermented soybean hulls (100% SBH) and soybean hulls partially replaced with PESR (75:25, SHP) reached peak at day 12; solid-state fermentation (SSF) enhanced the total phenolic content and trolox equivalency in both products as well. Additionally, FSHP had higher xylotriose and mannobiose levels than fermented FSBH did. A total of 400 broilers (Ross 308) were assigned randomly into four groups receiving the basal diet (control) or the basal diet supplemented with 0.5% fermented SBH (0.5% FSBH), 0.5% fermented SBHP (0.5% FSHP) and 1.0% fermented SBHP (1.0% FSHP) until 35 d of age, respectively. Results demonstrated that 0.5% FSHP addition increased body weight gain as compared with corresponding normal diet fed control in birds during entire experimental period. Compared with the control group, 0.5% FSHP group significantly increased the ratio of lactic acid bacteria to Clostridium perfringens in ceca as well as ileum villus height and jejunum villus height/crypt depth ratio of 35 d old birds. In conclusion, 0.5% FSHP supplementation in the diet could obtain not only improved body weight gain, but optimal intestinal morphology by exerting its bioactive metabolite properties when fed to broilers.

  12. 17.1%-Efficient Multi-Scale-Textured Black Silicon Solar Cells without Dielectric Antireflection Coating: Preprint

    SciTech Connect

    Toor, F.; Page, M. R.; Branz, H. M.; Yuan, H. C.

    2011-07-01

    In this work we present 17.1%-efficient p-type single crystal Si solar cells with a multi-scale-textured surface and no dielectric antireflection coating. Multi-scale texturing is achieved by a gold-nanoparticle-assisted nanoporous etch after conventional micron scale KOH-based pyramid texturing (pyramid black etching). By incorporating geometric enhancement of antireflection, this multi-scale texturing reduces the nanoporosity depth required to make silicon 'black' compared to nanoporous planar surfaces. As a result, it improves short-wavelength spectral response (blue response), previously one of the major limiting factors in 'black-Si' solar cells. With multi-scale texturing, the spectrum-weighted average reflectance from 350- to 1000-nm wavelength is below 2% with a 100-nm deep nanoporous layer. In comparison, roughly 250-nm deep nanopores are needed to achieve similar reflectance on planar surface. Here, we characterize surface morphology, reflectivity and solar cell performance of the multi-scale textured solar cells.

  13. Characterization of N-glycan structures and biofunction of anti-colorectal cancer monoclonal antibody CO17-1A produced in baculovirus-insect cell expression system.

    PubMed

    Song, Mira; Park, Da-Young; Kim, Youngkwan; Lee, Kyung-Jin; Lu, Zhe; Ko, Kinarm; Choo, Young Kug; Han, Yeon Soo; Ahn, Mi-Hyun; Oh, Doo-Byoung; Ko, Kisung

    2010-08-01

    Advantages of the baculovirus insect cell expression system for production of recombinant proteins include high capacity, flexibility, and glycosylation capability. In this study, this expression system was exploited to produce anti-cancer monoclonal antibody (mAb) CO17-1A, which recognizes the antigen GA733. The heavy chain (HC) and light chain (LC) genes of mAb CO17-1A were cloned under the control of P(10) and Polyhedrin promoters in the pFastBac dual vector, respectively. Gene expression cassettes carrying the HC and LC genes were transposed into a bacmid in Escherichia coli (DH10Bac). The transposed bacmid was transfected to Sf9 insect cells to generate baculovirus expressing mAb CO17-1A. Confocal immunofluorescence and Western blot analyses confirmed expression of mAb CO17-1A in baculovirus-infected insect cells. The optimum conditions for mAb expression were evaluated at 24, 48, and 72 h after the virus infection at an optimum virus multiplicity of infection of 1. Expression of mAb CO17-1A in insect cells significantly increased at 72 h after infection. HPLC analysis of glycosylation status revealed that the insect-derived mAb (mAb(I)) CO17-1A had insect specific glycan structures. ELISA showed that the purified mAb(I) from cell culture supernatant specifically bound to SW948 human colorectal cancer cells. Fluorescence-activated cell sorting analysis showed that, although mAb(I) had insect specific glycan structures that differed from their mammalian counterparts, mAb(I) similarly interacted with CD64 (FcgammaRI) and Fc of IgG, compared to the interactions of mammalian-derived mAb. These results suggest that the baculovirus insect cell expression system is able to express, assemble, and secrete biofunctional full size mAb.

  14. Time-dependent transition of the immunoglobulin G subclass and immunoglobulin E response in cancer patients vaccinated with cholesteryl pullulan-melanoma antigen gene-A4 nanogel

    PubMed Central

    Kyogoku, Noriaki; Ikeda, Hiroaki; Tsuchikawa, Takahiro; Abiko, Takehiro; Fujiwara, Aki; Maki, Takehiro; Yamamura, Yoshiyuki; Ichinokawa, Masaomi; Tanaka, Kimitaka; Imai, Naoko; Miyahara, Yoshihiro; Kageyama, Shinichi; Shiku, Hiroshi; Hirano, Satoshi

    2016-01-01

    A phase I+II clinical trial of vaccination with MAGE-A4 protein complexed with cholesteryl pullulan melanoma antigen gene-A4 nanogel (CHP-MAGE-A4) is currently underway in patients with MAGE-A4-expressing cancer. In the present study, the primary phase I endpoint was to test the safety of the administration of 300 µg CHP-MAGE-A4 with and without OK-432. Another aim of the study was to clarify the details of the specific humoral immune response to vaccination. The 9 patients enrolled for phase I were vaccinated 6 times, once every 2 weeks: 3 patients with 100 µg and 3 patients with 300 µg CHP-MAGE-A4, and 3 patients with 300 µg CHP-MAGE-A4 plus 0.5 clinical units of OK-432. Toxicities were assessed using Common Terminology Criteria for Adverse Events v3.0. Clinical response was evaluated by modified Response Evaluation Criteria in Solid Tumours. Immunological monitoring of anti-MAGE-A4-specific antibodies was performed by ELISA of pre- and post-vaccination patient sera. The 6 vaccinations produced no severe adverse events. Stable disease was assessed in 4/9 patients. Anti-MAGE-A4 total immunoglobulin (Ig)G titers increased in 7/9 patients. Efficacious anti-MAGE-A4 IgG1, 2 and 3 antibody responses were observed in 7/9 patients. Among them, positive conversions to T helper 2 (Th2)-type antibody responses (IgG4 and IgE) were observed after frequent vaccination in 4/7 patients. The Th2 conversion was possibly associated with undesirable clinical observations, including progressive disease and the appearance of a new relapse lesion. The present study suggested that frequent vaccinations activated a Th2-dominant status in the cancer patients. The identification of a time-dependent IgG subclass and IgE antibody production during vaccination protocols may be a useful surrogate marker indicating a potentially undesirable change of the immunological environment for an effective antitumor immune response in cancer patients. PMID:28105158

  15. Characterization of a glycoside hydrolase family-51 α-l-arabinofuranosidase gene from Aureobasidium pullulans ATCC 20524 and its encoded product.

    PubMed

    Ohta, Kazuyoshi; Fujii, Shinya; Higashida, Chihiro

    2013-09-01

    The genomic DNA and cDNA encoding α-l-arabinofuranosidase were cloned from the dimorphic fungus Aureobasidium pullulans ATCC 20524 and sequenced. The open reading frame (2097 bp) of the α-l-arabinofuranosidase gene abfB was interrupted by five introns of 49, 49, 50, 65, and 49 bp. The gene encoded a presumed signal peptide of 17 residues and a mature protein of 682 residues with a calculated Mr of 74,230 Da and a theoretical isoelectric point of 4.95. Glu-362 and Glu-440 residues are likely involved in catalytic reactions as an acid/base and a nucleophile, respectively. The protein possessed 15 potential N-glycosylation sites. The deduced amino acid sequence of the abfB gene product was 58% identical to the Penicillium purpurogenum ABF 2, which belongs to the glycoside hydrolase family-51 α-l-arabinofuranosidase. The abfB cDNA was functionally expressed in the yeast Pichia pastoris. The recombinant enzyme, AbfB, was purified from the culture filtrate, and it appeared as a single band on SDS-PAGE with an apparent Mr of 110 kDa. AbfB showed α-l-arabinofuranosidase activity of 56.6 U/mg of protein toward p-nitrophenyl (pNP) α-l-arabinofuranoside at optimal pH 4.5 and 75°C. The enzyme exhibited apparent Km and Vmax values of 6.27 mM and 78.1 μmol/mg/min, respectively, for pNP α-l-arabinofuranoside. The enzyme was highly active on rye arabinoxylan as well as pNP α-l-arabinofuranoside, but it showed weak activity toward α-(1→5)-l-arabinobiose, α-(1→5)-l-arabinotriose, branched l-arabinan, linear α-(1→5)-l-arabinan, and arabinogalactan.

  16. A small scale study on the effects of oral administration of the β-glucan produced by Aureobasidium pullulans on milk quality and cytokine expressions of Holstein cows, and on bacterial flora in the intestines of Japanese black calves

    PubMed Central

    2012-01-01

    Background The β–(1 → 3),(1 → 6)-D-glucan extracellularly produced by Aureobasidium pullulans exhibits immunomodulatory activity, and is used for health supplements. To examine the effects of oral administration of the β–(1 → 3),(1 → 6)-D-glucan to domestic animals, a small scale study was conducted using Holstein cows and newborn Japanese Black calves. Findings Holstein cows of which somatic cell count was less than 3 x 105/ml were orally administered with or without the β-(1 → 3),(1 → 6)-D-glucan-enriched A. pullulans cultured fluid (AP-CF) for 3 months, and the properties of milk and serum cytokine expression were monitored. Somatic cell counts were not significantly changed by oral administration of AP-CF, whereas the concentration of solid non fat in the milk tended to increase in the AP-CF administered cows. The results of cytokine expression analysis in the serum using ELISA indicate that the expressions of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 in all cows which were orally administered with AP-CF became slightly lower than that of control cows after the two-month treatment. On the other hand, IL-8 expression tended to indicate a moderately higher level in all treated cows after the three-month administration of AP-CF in comparison with that of the control cows. Peripartum Japanese Black beef cows and their newborn calves were orally administered with AP-CF, and bacterial flora in the intestines of the calves were analyzed by T-RFLP (terminal restriction fragment length polymorphism). The results suggest that bacterial flora are tendentiously changed by oral administration of AP-CF. Conclusions Our data indicated the possibility that oral administration of the β–(1 → 3),(1 → 6)-D- glucan produced by A. pullulans affects cytokine expressions in the serum of Holstein cows, and influences bacterial flora in the intestines of Japanese Black calves. The findings may be helpful for

  17. Genome sequence of "Candidatus Microthrix parvicella" Bio17-1, a long-chain-fatty-acid-accumulating filamentous actinobacterium from a biological wastewater treatment plant.

    PubMed

    Muller, Emilie E L; Pinel, Nicolás; Gillece, John D; Schupp, James M; Price, Lance B; Engelthaler, David M; Levantesi, Caterina; Tandoi, Valter; Luong, Khai; Baliga, Nitin S; Korlach, Jonas; Keim, Paul S; Wilmes, Paul

    2012-12-01

    "Candidatus Microthrix" bacteria are deeply branching filamentous actinobacteria which occur at the water-air interface of biological wastewater treatment plants, where they are often responsible for foaming and bulking. Here, we report the first draft genome sequence of a strain from this genus: "Candidatus Microthrix parvicella" strain Bio17-1.

  18. Micrometastatic cancer cells in bone marrow: in vitro detection with anti-cytokeratin and in vivo labeling with anti-17-1A monoclonal antibodies

    SciTech Connect

    Schlimok, G.; Funke, I.; Holzmann, B.; Goettlinger, G.; Schmidt, G.; Haeser, H.; Swierkot, S.; Warnecke, H.H.; Schneider, B.; Koprowski, H.; Riethmueller, G.

    1987-12-01

    The detection of early micrometastasis or disseminated single tumor cells poses a problem for conventional diagnosis procedures. Using a panel of monoclonal antibodies against cytokeratin and the 17-1A epithelial antigen the authors identified immunocytochemically tumor cells in bone marrow of patients with breast cancer and colorectal cancer at the time of surgery of the primary tumor. Monoclonal antibody CK2, recognizing the human cytokeratin component 18 in simple epithelia, appeared to be the most suitable reagent because of its negative reaction with bone marrow samples of the noncarcinoma patients. Its specificity was further demonstrated in a double-marker staining procedure using an anti-leukocyte common antigen monoclonal antibody (T200) as counterstain. A comparative analysis showed that immunocytology was clearly superior to conventional cytology and histology. In 9.5-20.5% of patients without distant metastasis, tumor cells could be detected in bone marrow. They found a significant correlation between tumor cells in bone marrow and conventional risk factors, such as distant metastasis or lymph node involvement. In a first approach toward immunotherapy they demonstrated in 3 patients that infused monoclonal antibody 17-1A can label single tumor cells in bone marrow in vivo. They then used this single approach to follow up on 7 patients undergoing 17-1A therapy in an adjuvant clinical trial.

  19. Selective chromosomal damage and cytotoxicity of sup 125 I-labeled monoclonal antibody 17-1a in human cancer cells

    SciTech Connect

    Woo, D.V.; Li, D.; Mattis, J.A.; Steplewski, Z. )

    1989-06-01

    A monoclonal antibody, 17-1a, which reacts with antigen expressed in human colon cancers was radiolabeled in high specific activity with {sup 125}I. The combination of the antibody and this radionuclide was observed to elicit specific cellular damage after being internalized into cells of the SW1116 human colon cancer cell line. The degree of internalization was quantitatively measured and found to increase over time to 49% after a 48-h incubation period. During this period, significant chromosome aberrations were observed in the SW1116 cell line due to the Auger electrons of {sup 125}I. This damage was not observed using Na{sup 125}I, a nonimmunoreactive radiolabeled antibody, or cells which did not contain the requisite antigen. The number of chromosomal aberrations increased with increasing radioactive concentration of {sup 125}I-17-1a. The nuclear damage resulted in specific cellular cytotoxicity and decreased cell survival of SW1116 cells exposed to various concentrations of {sup 125}I-17-1a.

  20. 77 FR 8731 - Aureobasidium pullulans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... throughout the study except for edema or slight erythema at the injection site. Samples of the following... severe edema or slight erythema at the injection site. Samples of the following tissues were negative...

  1. Correlation of maple sap composition with bacterial and fungal communities determined by multiplex automated ribosomal intergenic spacer analysis (MARISA).

    PubMed

    Filteau, Marie; Lagacé, Luc; LaPointe, Gisèle; Roy, Denis

    2011-08-01

    During collection, maple sap is contaminated by bacteria and fungi that subsequently colonize the tubing system. The bacterial microbiota has been more characterized than the fungal microbiota, but the impact of both components on maple sap quality remains unclear. This study focused on identifying bacterial and fungal members of maple sap and correlating microbiota composition with maple sap properties. A multiplex automated ribosomal intergenic spacer analysis (MARISA) method was developed to presumptively identify bacterial and fungal members of maple sap samples collected from 19 production sites during the tapping period. Results indicate that the fungal community of maple sap is mainly composed of yeast related to Mrakia sp., Mrakiella sp., Guehomyces pullulans, Cryptococcus victoriae and Williopsis saturnus. Mrakia, Mrakiella and Guehomyces peaks were identified in samples of all production sites and can be considered dominant and stable members of the fungal microbiota of maple sap. A multivariate analysis based on MARISA profiles and maple sap chemical composition data showed correlations between Candida sake, Janthinobacterium lividum, Williopsis sp., Leuconostoc mesenteroides, Mrakia sp., Rhodococcus sp., Pseudomonas tolaasii, G. pullulans and maple sap composition at different flow periods. This study provides new insights on the relationship between microbial community and maple sap quality.

  2. Effect of monoclonal antibody 17-1A and GM-CSF in patients with advanced colorectal carcinoma--long-lasting, complete remissions can be induced.

    PubMed

    Ragnhammar, P; Fagerberg, J; Frödin, J E; Hjelm, A L; Lindemalm, C; Magnusson, I; Masucci, G; Mellstedt, H

    1993-03-12

    Antibody-dependent cellular cytotoxicity (ADCC) is considered to be one of the effector functions of unconjugated monoclonal antibodies (MAbs) in tumor therapy. The antitumor activity of MAbs might therefore be augmented if the cytotoxic capability of the effector cells could be increased. In an in vitro system, the killing capacity of MAb was significantly enhanced by pre-treatment of the effector cells with granulocyte-macrophage colony-stimulating factor (GM-CSF). Based on these findings, the therapeutic effect of the combination of mouse MAb 17-1A (IgG2a) and GM-CSF was evaluated in 20 patients with metastatic colorectal carcinoma (CRC). The patients received GM-CSF for 10 days and a single i.v. infusion of MAb 17-1A on day 3 of the cycle. Four cycles were given at 1-monthly intervals. There was a continuous increase in blood monocytes and lymphocytes during all 4 GM-CSF cycles. Neutrophils and eosinophils were also significantly augmented but in a biphasic manner and the cell counts on day 10 of cycle IV were significantly lower than in cycles I and II. GM-CSF-related side-effects were of no major clinical importance. During the third cycle, an immediate-type allergic reaction (ITAR) against MAb 17-1A occurred in most patients, necessitating reduction of the MAb dose as well as of the infusion rate. Two patients achieved complete remission. One patient had a minor response, and 3 other patients were considered to have stable disease > 3 months.

  3. Single-step purification and characterization of an extreme halophilic, ethanol tolerant and acidophilic xylanase from Aureobasidium pullulans NRRL Y-2311-1 with application potential in the food industry.

    PubMed

    Yegin, Sirma

    2017-04-15

    An extracellular xylanase from Aureobasidium pullulans NRRL Y-2311-1 produced on wheat bran was purified by a single-step chromatographic procedure. The enzyme had a molecular weight of 21.6kDa. The optimum pH and temperature for xylanase activity were 4.0 and 30-50°C, respectively. The enzyme was stable in the pH range of 3.0-8.0. The inactivation energy of the enzyme was calculated as 218kJmol(-1). The xylanase was ethanol tolerant and kept complete activity in the presence of 10% ethanol. Likewise, it retained almost complete activity at a concentration range of 0-20% NaCl. In general, the enzyme was resistant to several metal ions and reagents. Mg(2+), Zn(2+), Cu(2+), K(1+), EDTA and β-mercaptoethanol resulted in enhanced xylanase activity. The Km and Vmax values on beechwood xylan were determined to be 19.43mgml(-1) and 848.4Uml(-1), respectively. The enzyme exhibits excellent characteristics and could, therefore, be a promising candidate for application in food and bio-industries.

  4. Growth Suppression of Colorectal Cancer by Plant-Derived Multiple mAb CO17-1A × BR55 via Inhibition of ERK1/2 Phosphorylation

    PubMed Central

    Kwak, Dong Hoon; Moussavou, Ghislain; Lee, Ju Hyoung; Heo, Sung Youn; Ko, Kisung; Hwang, Kyung-A; Jekal, Seung-Joo; Choo, Young-Kug

    2014-01-01

    We have generated the transgenic Tabaco plants expressing multiple monoclonal antibody (mAb) CO7-1A × BR55 by cross-pollinating with mAb CO17-1A and mAb BR55. We have demonstrated the anti-cancer effect of plant-derived multiple mAb CO17-1A × BR55. We find that co-treatment of colorectal mAbs (anti-epithelial cellular adhesion molecule (EpCAM), plant-derived monoclonal antibody (mAbP) CO17-1A and mAbP CO17-1A × BR55) with RAW264.7 cells significantly inhibited the cell growth in SW620 cancer cells. In particular, multi mAbP CO17-1A × BR55 significantly and efficiently suppressed the growth of SW620 cancer cells compared to another mAbs. Apoptotic death-positive cells were significantly increased in the mAbP CO17-1A × BR55-treated. The mAbP CO17-1A × BR55 treatment significantly decreased the expression of B-Cell lymphoma-2 (BCl-2), but the expression of Bcl-2-associated X protein (Bax), and cleaved caspase-3 were markedly increased. In vivo, the mAbP CO17-1A × BR55 significantly and efficiently inhibited the growth of colon tumors compared to another mAbs. The apoptotic cell death and inhibition of pro-apoptotic proteins expression were highest by treatment with mAbP CO17-1A × BR55. In addition, the mAbP CO17-1A × BR55 significantly inhibited the extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation in cancer cells and tumors. Therefore, this study results suggest that multiple mAbP CO17-1A × BR55 has a significant effect on apoptosis-mediated anticancer by suppression of ERK1/2 phosphorylation in colon cancer compared to another mAbs. In light of these results, further clinical investigation should be conducted on mAbP CO17-1A × BR55 to determine its possible chemopreventive and/or therapeutic efficacy against human colon cancer. PMID:25405740

  5. Comparison of monoclonal antibodies 17-1A and 323/A3: the influence of the affinity on tumour uptake and efficacy of radioimmunotherapy in human ovarian cancer xenografts.

    PubMed Central

    Kievit, E.; Pinedo, H. M.; Schlüper, H. M.; Haisma, H. J.; Boven, E.

    1996-01-01

    The low-affinity monoclonal antibody (MAb) chimeric 17-1A(c-17-1A) and the high-affinity MAb mouse 323/A3 (m-323/A3) were used to study the effect of the MAb affinity on the tumour uptake and efficacy of radioimmunotherapy in nude mice bearing subcutaneously the human ovarian cancer xenografts FMa, OVCAR-3 and Ov.Pe. Both MAbs are directed against the same pancarcinoma glycoprotein. In vitro, the number of binding sites on tumour cells at 4 degrees C was similar for both MAbs, but m-323/A3 had an approximately 5-fold higher affinity (1.3-3.0x10(9) M-1) than c-17-1A (3.0-5.4x10(8) M-1). This difference in affinity was more extreme at 37 degrees C, when no binding of c-17-1A could be observed. MAb m-323/A3 completely blocked binding of c-17-1A to tumour cells, whereas the reverse was not observed. Immunohistochemistry showed a similar but more intense staining pattern of m-323/A3 in human ovarian cancer xenografts than of c-17-1A. In vivo, the blood clearance in non-tumour-bearing nude mice was similar for both MAbs with terminal half-lives of 71.4 h for m-323/A3 and 62.7 h for c-17-1A. MAb m-323/A3 targeted better to tumour tissue, but was more heterogeneously distributed than c-17-1A. The cumulative absorbed radiation dose delivered by m-323/A3 to tumour tissue was 2.5- to 4.7-fold higher than that delivered by c-17-1A. When mice were treated with equivalent radiation doses of 131(I)m-323/A3 and 131(I)c-17-1A, based on a correction for the immunoreactivity of the radiolabelled MAbs, m-323/A3 induced a better growth inhibition in two of the three xenografts. When the radiation doses were adjusted to obtain a similar amount of radiation in the tumour c-17-1A was more effective in tumour growth inhibition in all three xenografts. Images Figure 3 Figure 4 PMID:8595159

  6. Anti-EpCAM monoclonal antibody (MAb17-1A) based treatment combined with alpha-interferon, 5-fluorouracil and granulocyte-macrophage colony-stimulating factor in patients with metastatic colorectal carcinoma.

    PubMed

    Liljefors, Maria; Ragnhammar, Peter; Nilsson, Bo; Ullenhag, Gustav; Mellstedt, Håkan; Frödin, Jan-Erik

    2004-09-01

    Monoclonal antibodies (MAbs) have different modes of action and toxicity profile compared to chemotherapeutics, which makes it interesting to combine these drugs. Addition of cytokines to MAb therapy may also augment immune effector functions utilized by MAb. In an effort to improve the therapeutic effect of a MAb-based regimen in colorectal carcinoma (CRC) patients, the effects of a combination of alpha-interferon (alpha-IFN), 5-fluorouracil (5-FU), granulocyte-macrophage colony-stimulating factor (GM-CSF) and mouse MAb17-1A was evaluated in 27 patients with metastatic disease. alpha-IFN was given s.c. once daily for 5 consecutive days and at days 4 and 5, 5-FU was administered as a daily i.v. bolus injection. After 2 days rest, GM-CSF was given s.c. once daily, days 8-14 and on day 10, MAb17-1A was given i.v. The treatment cycle was repeated every 4th week. One patient achieved a partial remission and 13 patients showed a minor response or stable disease >3 months, inducing an overall response rate of 54%. Responding patients survived significantly longer than non-responding patients (p=0.021). Median overall survival time for all patients was 75 weeks and progression-free survival time 15 weeks. Adverse events related to alpha-IFN, GM-CSF and 5-FU were as expected. The frequency of patients with an immediate-type allergic reaction (ITAR) against MAb17-1A at the 1st, 2nd, 3rd and 4th treatment cycles was 11%, 52%, 62% and 64% respectively. The planned MAb17-1A dose had to be reduced by repeated infusions. No patient received full dose of MAb17-1A from the 3rd cycle and onward. Compared to historical control patients treated with MAb17-1A alone, the present combination regimen seemed to improve the response rate (54% vs 15%) as well as progression-free survival (15 vs 7 weeks; p<0.05).

  7. The influence of Aster x salignus Willd. Invasion on the diversity of soil yeast communities

    NASA Astrophysics Data System (ADS)

    Glushakova, A. M.; Kachalkin, A. V.; Chernov, I. Yu.

    2016-07-01

    The annual dynamics of yeast communities were studied in the soddy-podzolic soil under the thickets of Aster x salignus Willd., one of the widespread invasive plant species in central Russia. Yeast groups in the soils under continuous aster thickets were found to differ greatly from the yeast communities in the soils under the adjacent indigenous meadow vegetation. In both biotopes the same species ( Candida vartiovaarae, Candida sake, and Cryptococcus terreus) are dominants. However, in the soils under indigenous grasses, eurybiontic yeasts Rhodotorula mucilaginosa, which almost never occur in the soil under aster, are widespread. In the soil under aster, the shares of other typical epiphytic and pedobiontic yeast fungi (ascomycetic species Wickerhamomyces aniomalus, Barnettozyma californica and basidiomycetic species Cystofilobasidium macerans, Guehomyces pullulans) significantly increase. Thus, the invasion of Aster x salignus has a clear effect on soil yeast complexes reducing their taxonomic and ecological diversity.

  8. 7 CFR 17.1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., as amended (hereinafter called “the Act”). (b) Agricultural commodities agreements. (1) Under the Act, the Government of the United States enters into Agricultural Commodities Agreements with...

  9. 21 CFR 17.1 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... act that relate to prescription drug marketing practices. (b) Section 303(f)(1) of the act authorizing... mitigation strategies for drugs. (d) Section 303(g)(1) of the act authorizing civil money penalties...

  10. 21 CFR 17.1 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... act that relate to prescription drug marketing practices. (b) Section 303(f)(1) of the act authorizing... mitigation strategies for drugs. (d) Section 303(g)(1) of the act authorizing civil money penalties...

  11. 21 CFR 17.1 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... act that relate to prescription drug marketing practices. (b) Section 303(f)(1) of the act authorizing... mitigation strategies for drugs. (d) Section 303(g)(1) of the act authorizing civil money penalties...

  12. 21 CFR 17.1 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... act that relate to prescription drug marketing practices. (b) Section 303(f)(1) of the act authorizing... mitigation strategies for drugs. (d) Section 303(g)(1) of the act authorizing civil money penalties...

  13. 21 CFR 17.1 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... act that relate to prescription drug marketing practices. (b) Section 303(f)(1) of the act authorizing... mitigation strategies for drugs. (d) Section 303(g)(1) of the act authorizing civil money penalties...

  14. Control of Molecular Weight Distribution of the Biopolymer Pullulan Produced by the Fungus Aureobasidium Pullulans

    DTIC Science & Technology

    1987-10-01

    Black 57 2.1 6272 5.3 6.39 - - - - ATCC 12535 5.3 5.86 - Viscousb - - 12536 5.3 3.26 Viscous" aCulture Conditions: R & GA Medium, 5 % Sucrose, 28°Cf...7b,c 60 1200 209 20.9 1663 1.6 8C 150 1200 - - 2399 * 1.5 aCulture Conditions: Kato & Shiosaka Medium; 10% Sucrose; Temperature 26°C ±1°C, Two

  15. Maple sap predominant microbial contaminants are correlated with the physicochemical and sensorial properties of maple syrup.

    PubMed

    Filteau, Marie; Lagacé, Luc; Lapointe, Gisèle; Roy, Denis

    2012-03-01

    Maple sap processing and microbial contamination are significant aspects that affect maple syrup quality. In this study, two sample sets from 2005 and 2008 were used to assess the maple syrup quality variation and its relationship to microbial populations, with respect to processing, production site and harvesting period. The abundance of maple sap predominant bacteria (Pseudomonas fluorescens group and two subgroups, Rahnella spp., Janthinobacterium spp., Leuconostoc mesenteroides) and yeast (Mrakia spp., Mrakiella spp.,Guehomyces pullulans) was assessed by quantitative PCR. Maple syrup properties were analyzed by physicochemical and sensorial methods. Results indicate that P. fluorescens, Mrakia spp., Mrakiella spp. G. pullulans and Rahnella spp. are stable contaminants of maple sap, as they were found for every production site throughout the flow period. Multiple factor analysis reports a link between the relative abundance of P. fluorescens group and Mrakia spp. in maple sap with maple and vanilla odor as well as flavor of maple syrup. This evidence supports the contribution of these microorganisms or a consortium of predominant microbial contaminants to the characteristic properties of maple syrup.

  16. Cyclostratigraphy and eccentricity tuning of the early Oligocene through early Miocene (30.1-17.1 Ma): Cibicides mundulus stable oxygen and carbon isotope records from Walvis Ridge Site 1264

    NASA Astrophysics Data System (ADS)

    Liebrand, Diederik; Beddow, Helen M.; Lourens, Lucas J.; Pälike, Heiko; Raffi, Isabella; Bohaty, Steven M.; Hilgen, Frederik J.; Saes, Mischa J. M.; Wilson, Paul A.; van Dijk, Arnold E.; Hodell, David A.; Kroon, Dick; Huck, Claire E.; Batenburg, Sietske J.

    2016-09-01

    Few astronomically calibrated high-resolution (≤5 kyr) climate records exist that span the Oligocene-Miocene time interval. Notably, available proxy records show responses varying in amplitude at frequencies related to astronomical forcing, and the main pacemakers of global change on astronomical time-scales remain debated. Here we present newly generated X-ray fluorescence core scanning and benthic foraminiferal stable oxygen and carbon isotope records from Ocean Drilling Program Site 1264 (Walvis Ridge, southeastern Atlantic Ocean). Complemented by data from nearby Site 1265, the Site 1264 benthic stable isotope records span a continuous ∼13-Myr interval of the Oligo-Miocene (30.1-17.1 Ma) at high resolution (∼3.0 kyr). Spectral analyses in the stratigraphic depth domain indicate that the largest amplitude variability of all proxy records is associated with periods of ∼ 3.4 m and ∼ 0.9 m, which correspond to 405- and ∼110-kyr eccentricity, using a magnetobiostratigraphic age model. Maxima in CaCO3 content, δ18O and δ13C are interpreted to coincide with ∼110 kyr eccentricity minima. The strong expression of these cycles in combination with the weakness of the precession- and obliquity-related signals allow construction of an astronomical age model that is solely based on tuning the CaCO3 content to the nominal (La2011_ecc3L) eccentricity solution. Very long-period eccentricity maxima (∼2.4-Myr) are marked by recurrent episodes of high-amplitude ∼110-kyr δ18O cycles at Walvis Ridge, indicating greater sensitivity of the climate/cryosphere system to short eccentricity modulation of climatic precession. In contrast, the responses of the global (high-latitude) climate system, cryosphere, and carbon cycle to the 405-kyr cycle, as expressed in benthic δ18O and especially δ13C signals, are more pronounced during ∼2.4-Myr minima. The relationship between the recurrent episodes of high-amplitude ∼110-kyr δ18O cycles and the ∼1.2-Myr amplitude

  17. Bioprospection of cold-adapted yeasts with biotechnological potential from Antarctica.

    PubMed

    Martorell, María Martha; Ruberto, Lucas Adolfo Mauro; Fernández, Pablo Marcelo; Castellanos de Figueroa, Lucía Inés; Mac Cormack, Walter Patricio

    2017-03-08

    The aim of this study was to investigate the ability to produce extracellular hydrolytic enzymes at low temperature of yeasts isolated from 25 de Mayo island, Antarctica, and to identify those exhibiting one or more of the evaluated enzymatic activities. A total of 105 yeast isolates were obtained from different samples and 66 were identified. They belonged to 12 basidiomycetous and four ascomycetous genera. Most of the isolates were ascribed to the genera Cryptococcus, Mrakia, Cystobasidium, Rhodotorula, Gueomyces, Phenoliferia, Leucosporidium, and Pichia. Results from enzymes production at low temperatures revealed that the Antarctic environment contains metabolically diverse cultivable yeasts, which represent potential tools for biotechnological applications. While most the isolates proved to produce 2-4 of the investigated exoenzymes, two of them evidenced the six evaluated enzymatic activities: Pichia caribbica and Guehomyces pullulans, which were characterized as psycrotolerant and psycrophilic, respectively. In addition, P. caribbica could assimilate several n-alkanes and diesel fuel. The enzyme production profile and hydrocarbons assimilation capacity, combined with its high level of biomass production and the extended exponential growth phase make P. caribbica a promising tool for cold environments biotechnological purposes in the field of cold-enzymes production and oil spills bioremediation as well.

  18. Yeast and yeast-like diversity in the southernmost glacier of Europe (Calderone Glacier, Apennines, Italy).

    PubMed

    Branda, Eva; Turchetti, Benedetta; Diolaiuti, Guglielmina; Pecci, Massimo; Smiraglia, Claudio; Buzzini, Pietro

    2010-06-01

    The present study reports the characterization of psychrophilic yeast and yeast-like diversity in cold habitats (superficial and deep sediments, ice cores and meltwaters) of the Calderone Glacier (Italy), which is the southernmost glacier in Europe. After incubation at 4 and 20 degrees C, sediments contained about 10(2)-10(3) CFU of yeasts g(-1). The number of viable yeast cells in ice and meltwaters was several orders of magnitude lower. The concomitant presence of viable bacteria and filamentous fungi has also been observed. In all, 257 yeast strains were isolated and identified by 26S rRNA gene D1/D2 and internal transcribed spacers (1 and 2) sequencing as belonging to 28 ascomycetous and basidiomycetous species of 11 genera (Candida, Cystofilobasidium, Cryptococcus, Dioszegia, Erythrobasidium, Guehomyces, Mastigobasidium, Mrakia, Mrakiella, Rhodotorula and Sporobolomyces). Among them, the species Cryptococcus gastricus accounted for almost 40% of the total isolates. In addition, 12 strains were identified as belonging to the yeast-like species Aureobasidium pullulans and Exophiala dermatitidis, whereas 15 strains, presumably belonging to new species, yet to be described, were also isolated. Results herein reported indicate that the Calderone Glacier, although currently considered a vanishing ice body due to the ongoing global-warming phenomenon, still harbors viable psychrophilic yeast populations. Differences of yeast and yeast-like diversity between the glacier under study and other worldwide cold habitats are also discussed.

  19. 38 CFR 17.1 - Incorporation by reference.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Department of Veterans Affairs, Office of Regulation Policy and Management (02REG), 810 Vermont Avenue, NW... the National Fire Protection Association, 1 Batterymarch Park, Quincy, MA 02269. (For ordering... this part. (1) NFPA 10, Standard for Portable Fire Extinguishers (2010 edition), Incorporation...

  20. 38 CFR 17.1 - Incorporation by reference.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Department of Veterans Affairs, Office of Regulation Policy and Management (02REG), 810 Vermont Avenue, NW... the National Fire Protection Association, 1 Batterymarch Park, Quincy, MA 02269. (For ordering... this part. (1) NFPA 10, Standard for Portable Fire Extinguishers (2010 edition), Incorporation...

  1. China Report, Red Flag, No. 17, 1 September 1983.

    DTIC Science & Technology

    2007-11-02

    for protecting them during periods, pregnancy, and postpartum and nursing periods. Such a state of affairs, which has adversely affected society and...and demand of materials and goods. It is conducted on the prerequisite of keeping the overall scale of our capital construction within the scope...and finally, using what is left for capital construction. The arrangement of the capital construction scale in the Sixth 5-Year Plan was fixed

  2. 40 CFR 17.1 - Purpose of these rules.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... special circumstances make an award unjust. The purpose of these rules is to establish procedures for the submission and consideration of applications for awards against EPA when the underlying decision is...

  3. 38 CFR 17.1 - Incorporation by reference.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... this part. (1) NFPA 10, Standard for Portable Fire Extinguishers (2010 edition), Incorporation by..., Standard for the Installation of Sprinkler Systems (2010 edition), IBR approved for § 17.74. (5) NFPA 13D... (2010 edition), IBR approved for § 17.74. (6) NFPA 13R, Standard for the Installation of...

  4. Ecology and Oil Spills, 17-1. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Army Quartermaster School, Ft. Lee, VA.

    This single-lesson course in ecology and oil spills for the secondary/postsecondary level comprises one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. The purpose stated for the 2-hour course is to provide students with an understanding of…

  5. 26 CFR 1.401(a)(17)-1 - Limitation on annual compensation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... other business or is a common-law employee in any business. For the 1994 calendar year, Employee C has... beginning on or after January 1, 1996, of the governing body with authority to amend the plan, if that body does not meet continuously. For purposes of this paragraph (d)(4), the term governing body...

  6. 26 CFR 1.501(c)(17)-1 - Supplemental unemployment benefit trusts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 7 2014-04-01 2013-04-01 true Supplemental unemployment benefit trusts. 1.501(c... Supplemental unemployment benefit trusts. (a) Requirements for qualification. (1) A supplemental unemployment... the purpose of providing supplemental unemployment compensation benefits (as defined in section...

  7. 26 CFR 1.501(c)(17)-1 - Supplemental unemployment benefit trusts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 7 2010-04-01 2010-04-01 true Supplemental unemployment benefit trusts. 1.501(c... Supplemental unemployment benefit trusts. (a) Requirements for qualification. (1) A supplemental unemployment... the purpose of providing supplemental unemployment compensation benefits (as defined in section...

  8. 26 CFR 1.501(c)(17)-1 - Supplemental unemployment benefit trusts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 7 2011-04-01 2009-04-01 true Supplemental unemployment benefit trusts. 1.501(c... Supplemental unemployment benefit trusts. (a) Requirements for qualification. (1) A supplemental unemployment... the purpose of providing supplemental unemployment compensation benefits (as defined in section...

  9. 26 CFR 1.501(c)(17)-1 - Supplemental unemployment benefit trusts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 7 2012-04-01 2012-04-01 false Supplemental unemployment benefit trusts. 1.501... Supplemental unemployment benefit trusts. (a) Requirements for qualification. (1) A supplemental unemployment... the purpose of providing supplemental unemployment compensation benefits (as defined in section...

  10. 26 CFR 1.501(c)(17)-1 - Supplemental unemployment benefit trusts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 7 2013-04-01 2013-04-01 false Supplemental unemployment benefit trusts. 1.501... Supplemental unemployment benefit trusts. (a) Requirements for qualification. (1) A supplemental unemployment... the purpose of providing supplemental unemployment compensation benefits (as defined in section...

  11. 26 CFR 31.3306(c)(17)-1 - Fishing services.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Salmon and halibut fishing. Services performed in connection with the catching or taking of salmon or... taking of salmon or halibut, for commercial purposes, nor the services of any other individual...

  12. 26 CFR 31.3306(c)(17)-1 - Fishing services.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Salmon and halibut fishing. Services performed in connection with the catching or taking of salmon or... taking of salmon or halibut, for commercial purposes, nor the services of any other individual...

  13. 26 CFR 31.3306(c)(17)-1 - Fishing services.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Salmon and halibut fishing. Services performed in connection with the catching or taking of salmon or... taking of salmon or halibut, for commercial purposes, nor the services of any other individual...

  14. 26 CFR 31.3306(c)(17)-1 - Fishing services.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Salmon and halibut fishing. Services performed in connection with the catching or taking of salmon or... taking of salmon or halibut, for commercial purposes, nor the services of any other individual...

  15. METRO-APEX Volume 17.1: Industrialist's Manual No. 7, Shick Cannery. Revised.

    ERIC Educational Resources Information Center

    University of Southern California, Los Angeles. COMEX Research Project.

    The Industrialist's Manual No. 7 (Shick Cannery) is one of a set of twenty-one manuals used in METRO-APEX 1974, a computerized college and professional level, computer-supported, role-play, simulation exercise of a community with "normal" problems. Stress is placed on environmental quality considerations. APEX 1974 is an expansion of…

  16. Millwright Apprenticeship. Related Training Modules. 17.1-17.13 Hydraulics.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This packet of 13 learning modules on hydraulics is 1 of 6 such packets developed for apprenticeship training for millwrights. Introductory materials are a complete listing of all available modules and a supplementary reference list. Each module contains some or all of these components: goal, performance indicators, study guide (a check list of…

  17. Laboratory for Computer Science Progress Report 17, 1 July 1979-30 June 1980

    DTIC Science & Technology

    1980-12-11

    acknowledged here. Reproduction of this report, in whole or In part, is permitted for any purpose of the United States Government. Distribution of this...Dept., September 1976. TR-168 Pratt, Vaughan R. Semantical Considerations on Floyd-Hoare Logic, September 1976. TR-169 Safran , Charles, James F

  18. 26 CFR 1.381(c)(17)-1 - Deficiency dividend of personal holding company.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Deficiency dividend of personal holding company... Deficiency dividend of personal holding company. (a) Carryover requirement. If a determination (as defined in... 381(a) applies is liable for personal holding company tax imposed by section 541 (or by...

  19. Enhanced poly(L-malic acid) production from pretreated cane molasses by Aureobasidium pullulans in fed-batch fermentation.

    PubMed

    Xia, Jun; Xu, Jiaxing; Hu, Lei; Liu, Xiaoyan

    2016-11-16

    Poly(L-malic acid) (PMA) is a natural polyester with many attractive properties for biomedical application. However, the cost of PMA production is high when glucose is used as a carbon source. To solve this problem, cane molasses as a low-cost feedstock was applied for the production of PMA. Six pretreatment methods were applied to cane molasses before fermentation. Pretreatment with combined tricalcium phosphate, potassium ferrocyanide, and sulfuric acid (TPFSA) removed significant amounts of metal ions from cane molasses. The PMA concentration increased from 5.4 g/L (untreated molasses) to 36.9 g/L (TPFSA-pretreated molasses) after fermentation in shake flasks. A fed-batch fermentation strategy was then developed. In this method, TPFSA-pretreated cane molasses solution was continuously fed into the fermentor to maintain the total sugar concentration at 20 g/L. This technique generated approximately 95.4 g/L PMA with a productivity of 0.57 g/L/hr. The present study indicated that fed-batch fermentation using pretreated cane molasses is a feasible technique for producing high amounts of PMA.

  20. 26 CFR 31.3401(a)(17)-1 - Remuneration for services performed on a boat engaged in catching fish.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 15 2014-04-01 2014-04-01 false Remuneration for services performed on a boat... Remuneration for services performed on a boat engaged in catching fish. (a) Remuneration for services performed on or after December 31, 1954, by an individual on a boat engaged in catching fish or other forms...

  1. 26 CFR 31.3401(a)(17)-1 - Remuneration for services performed on a boat engaged in catching fish.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 15 2013-04-01 2013-04-01 false Remuneration for services performed on a boat... Remuneration for services performed on a boat engaged in catching fish. (a) Remuneration for services performed on or after December 31, 1954, by an individual on a boat engaged in catching fish or other forms...

  2. 26 CFR 31.3401(a)(17)-1 - Remuneration for services performed on a boat engaged in catching fish.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 15 2012-04-01 2012-04-01 false Remuneration for services performed on a boat... Remuneration for services performed on a boat engaged in catching fish. (a) Remuneration for services performed on or after December 31, 1954, by an individual on a boat engaged in catching fish or other forms...

  3. High molecular weight β-poly(L-malic acid) produced by A. pullulans with Ca²⁺ added repeated batch culture.

    PubMed

    Cao, Weifeng; Chen, Xiangrong; Luo, Jianquan; Yin, Junxiang; Qiao, Changsheng; Wan, Yinhua

    2016-04-01

    β-Poly(malic acid) (PMLA) has attracted increasing attentions because of its potential application in medicine and other industries. In this study, the variation of PMLA molecular weight (Mw) in the batch culture and the strategies to enhance PMLA Mw were studied. Adding exogenous Ca(2+) (0.1g/L CaCl2) to the medium caused a significant increase in both PMLA concentration and Mw (11.38% and 26.3%, respectively) when Na2CO3 was used as the neutralizer. The Mw of PMLA during the process of batch culture, which associated with the specific PMLA production per unit cell mass (Yp/x) before glucose was depleted, increased from 12.522 KDa to its maximum 18.693 KDa and then kept decreasing until the end of the culture. Compared with the results in batch culture, Mw increased by 84.4% (up to 19.51 kDa) with a productivity of 1.1 gh(-1)L(-1) when the cells were maintained in exponential growth phase during Ca(2+) added repeated batch culture. The present work provides an efficient approach to obtain superior quality PMLA product with high Mw.

  4. Covalent Immobilization and Characterization of a Novel Pullulanase from Fontibacillus sp. Strain DSHK 107 onto Florisil® and Nano-silica for Pullulan Hydrolysis.

    PubMed

    Alagöz, Dilek; Yildirim, Deniz; Güvenmez, Hatice Korkmaz; Sihay, Damla; Tükel, S Seyhan

    2016-08-01

    A novel pullulanase partially purified from Fontibacillus sp. was covalently immobilized on Florisil® and nano-silica through both glutaraldehyde and (3-glycidyloxypropyl)trimethoxysilane spacer arms. The pullulanase immobilized on Florisil® and nano-silica through glutaraldehyde spacer arm showed 85 and 190 % activity of its free form, respectively, whereas no activity was observed when it was immobilized on the same supports through (3-glycidyloxypropyl)trimethoxysilane spacer arm. The maximum working pHs of both the immobilized pullulanases on Florisil® and nano-silica through glutaraldehyde spacer arm were determined as 5.0; however, the maximum working pH of the free pullulanase was pH 6.0. The maximum temperatures of all the pullulanase preparations were determined as 35 °C. The apparent K m values were 1.49, 1.54, and 0.59 mg/mL pullunan, respectively, for the free and immobilized pullulanases on Florisil® and nano-silica. The corresponding apparent V max values were 0.59, 1.53, and 1.57 U mg prot.(-1) min.(-1). Thermal stability of pullulanases immobilized on Florisil® and nano-silica was enhanced 6.5- and 15.6-folds, respectively at 35 °C and 6.6- and 16.0-folds, respectively, at 50 °C. The pullulanases immobilized on Florisil® and nano-silica protected 71 and 90 % of their initial activities after 10 reuses.

  5. SY 17-1 DYNAMIC REGULATION OF REDOX REGULATING FACTOR APE1/REF-1 ON THE OXIDATIVE STRESS AND VASCULAR INFLAMMATION.

    PubMed

    Jeon, Byeong Hwa

    2016-09-01

    Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein that plays a central role in the cellular response to DNA damage and redox regulation against oxidative stress. APE1/Ref-1 is essential for cellular survival and embryonic lethal in knockout mouse models. Heterozygous APE1/Ref-1 mice showed impaired endothelium-dependent vasorelaxation, reduced vascular NO levels, and are hypertensive. APE1/Ref-1 reduces intracellular reactive oxygen species production by negatively regulating the activity of the NADPH oxidase. APE1/Ref-1 is predominantly localized in the nucleus; however, its subcellular localization is dynamically regulated. Recently, it was shown that APE1/Ref-1 is secreted in response to hyperacetylation at specific lysine residues. We investigated the functions of extracellular APE1/Ref-1 with respect to leading anti-inflammatory signaling in TNF-α-stimulated endothelial cells in response to acetylation. Trichostatin A (TSA), an inhibitor of histone deacetylase, considerably suppressed vascular cell adhesion molecule-1 (VCAM-1) in TNF-α-stimulated endothelial cells. During TSA-mediated acetylation in culture, a time-dependent increase in secreted APE1/Ref-1 was confirmed. Recombinant human APE1/Ref-1 with reducing activity induced a conformational change in TNFR1 by thiol-disulfide exchange. Following treatment with the neutralizing anti-APE1/Ref-1 antibody, inflammatory signals via the binding of TNF-α to TNFR1 were remarkably recovered. Furthermore, rhAPE1/Ref-1 inhibited IL-1β-induced VCAM-1 expression in endothelial cells, and it inhibited iNOS or COX-2 expression in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. These results strongly indicate that anti-inflammatory effects of secreted APE1/Ref-1 and its property of secreted APE1/Ref-1 may be useful as a therapeutic biomolecule in cardiovascular disease.

  6. Biopolymer production from wastewater sludges for encapsulation and other applications. Final report

    SciTech Connect

    Baker, F.R.

    1988-01-01

    The main purpose of the research is to determine the feasibility of producing biopolymers from waste sludges by growing suitable microorganisms on the sludge hydrolysate. Primary and secondary municipal sludges and a bakery waste sludge were used in the study. Enzymatic hydrolysis was found to be ineffective in producing a substrate suitable for the growth of Aureobasidium pullulans (A. pullulans). High pressure acid hydrolysis of municipal sludge tended to yield a better substrate in terms of pullulan yield than low pressure acid hydrolysis. Acid hydrolysis of the bakery waste sludge resulted in a fermentation medium that was highly conductive to the growth of A. pullulans and pullulan elaboration. The feasibility of employing pullulan as a carrier material in the controlled-release of pesticides on stored grains was examined by determining the effect of pullulan-chlorpyrifos-methyl encapsulates on the mortality rate of flour beetles (Tribolilum castaneum).

  7. Design Rules for Fluorocarbon-Free Omniphobic Solvent Barriers in Paper-Based Devices.

    PubMed

    Jahanshahi-Anbuhi, Sana; Pennings, Kevin; Leung, Vincent; Kannan, Balamurali; Brennan, John D; Filipe, Carlos D M; Pelton, Robert H

    2015-11-18

    The utility of hydrophobic wax barriers in paper-based lateral flow and multiwell devices for containment of aqueous solvents was extended to organic solvents and challenging aqueous surfactant solutions by preparation of a three layer barrier, consisting of internal pullulan impregnated paper barriers surrounded by external wax barriers. When paper impregnated with pullulan solution dries, the polymer forms solvent blocking lenses in the paper structure. Lens formation was illustrated by forming pullulan lenses in glass capillaries. The lens shapes were less curved compared to the predictions of a model based upon minimizing surface area. For barriers on Whatman # 1 filter paper, the pullulan molecular weight must be greater than ∼70 kDa, the mass fraction of pullulan in the barrier zone must be at least 32%, and there are restrictions on the minimum width of the pullulan impregnated zone.

  8. Picky, hungry eaters in the cold: persistent substrate selectivity among polar pelagic microbial communities

    PubMed Central

    Steen, Andrew D.; Arnosti, Carol

    2014-01-01

    Polar pelagic microbial communities access a narrower range of polysaccharide substrates than communities at lower latitudes. For example, the glucose-containing polysaccharide pullulan is typically not hydrolyzed in fjord waters of Svalbard, even though pullulan is rapidly hydrolyzed in sediments from Svalbard fjords, other polysaccharides are hydrolyzed rapidly in Svalbard waters, and pullulan is hydrolyzed rapidly in temperate waters. The purpose of this study was to investigate potential factors preventing hydrolysis of pullulan in Svalbard fjord waters. To this end, in two separate years, water from Isfjorden, Svalbard, was amended with different carbon sources and/or additional nutrients in order to determine whether increasing the concentration of these potentially-limiting factors would lead to measurable enzymatic activity. Addition of nitrate, phosphate, glucose, or amino acids did not yield detectable pullulan hydrolysis. The only treatment that led to detectable pullulan hydrolysis was extended incubation after the addition of maltotriose (a subunit of pullulan, and potential inducer of pullulanase). In these fjords, the ability to enzymatically access pullulan is likely confined to numerically minor members of the pelagic microbial community. These results are consistent with the hypothesis that pelagic microbial communities at high latitudes exhibit streamlined functionality, focused on a narrower range of substrates, than their temperate counterparts. PMID:25339946

  9. Production of novel antistreptococcal liamocins by fermentation of agricultural biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Liamocins are unique heavier-than-water “oils” produced by certain strains of the fungus Aureobasidium pullulans. Liamocins have antibacterial activity with specificity for Streptococcus sp. Previous studies reported that liamocin yields were highest from strains of A. pullulans belonging to phyloge...

  10. Efficient access to novel androsteno-17-(1',3',4')-oxadiazoles and 17β-(1',3',4')-thiadiazoles via N-substituted hydrazone and N,N'-disubstituted hydrazine intermediates, and their pharmacological evaluation in vitro.

    PubMed

    Kovács, Dóra; Wölfling, János; Szabó, Nikoletta; Szécsi, Mihály; Minorics, Renáta; Zupkó, István; Frank, Éva

    2015-06-15

    A series of novel 17-exo-oxadiazoles and -thiadiazoles in the Δ(5) androstene series were efficiently synthesized from pregnenolone acetate and pregnadienolone acetate via multistep pathways. 17β-(1',3',4')-Oxadiazoles were obtained in high yields by the phenyliodonium diacetate-induced oxidative ring closure of semicarbazone and N-acylhydrazones derived from 3β-acetoxy- and 3β-hydroxyandrost-5-ene-17β-carbaldehydes. For the synthesis of analogous Δ(16)-17-oxadiazolyl derivatives, N,N'-disubstituted hydrazine intermediates were prepared from 3β-acetoxyandrosta-5,16-diene-17-carboxylic acid, which then underwent cyclodehydration in the presence of POCl3. The cyclization of steroidal N,N'-diacylhydrazines containing a saturated ring D with the Lawesson reagent afforded 17β-(1',3',4')-thiadiazoles in good yields. Most of the products were subjected to deacetylation in basic media in order to enlarge the compound library available for pharmacological studies. All of these derivatives were screened in vitro for their antiproliferative effects against four malignant human adherent cell lines (HeLa, A2780, MCF7 and A431) by means of the MTT assay. The 3β-hydroxy derivatives of the newly-synthesized 17-exo-heterocycles were tested in vitro to investigate their inhibitory effects on rat testicular C17,20-lyase. One of the 1,3,4-oxadiazolyl derivatives proved to exert noteworthy enzyme-inhibitory action, with an IC50 (0.065 μM) of the same order of magnitude as that of abiraterone.

  11. Surface Plasmon Resonance Studies of Polysaccharide Self-Assembly on Cellulose

    NASA Astrophysics Data System (ADS)

    Kaya, Abdulaziz; Esker, Alan R.; Glasser, Wolfgang G.

    2006-03-01

    Wood is a multiphase material consisting of cellulose crystals embedded within a non-crystalline hetereopolysaccharide (hemicellulose) and lignin rich phase. The hierarchial arrangement of these three chief components in wood produces excellent properties like resistance to fracture and toughness. Through the study of polysaccharide self-assembly onto a model cellulose surface, further insight into the interactions between hemicelluloses and cellulose can be gained. In our study, we synthesized pullulan cinnamates with different degrees of substitution of cinnamoyl groups as a model for a hemicellulose with lignin-like moieties. Surface plasmon resonance measurements probe the self-assembly behavior of pullulan and pullulan cinnamate onto a cellulose coated gold surface. Our results suggest that pullulan does not adsorb onto the model cellulose surface, whereas pullulan cinnamate does. These preliminary results signify the important role that lignin-like substituents play on hemicellulose self-assembly onto cellulose surfaces.

  12. Preparation of cationized polysaccharides as gene transfection carrier for bone marrow-derived mesenchymal stem cells.

    PubMed

    Jo, Jun-ichiro; Okazaki, Arimichi; Nagane, Kentaro; Yamamoto, Masaya; Tabata, Yasuhiko

    2010-01-01

    The objective of this study is to prepare a non-viral carrier of gene transfection from various polysaccharides and evaluate the feasibility in gene expression for mesenchymal stem cells (MSCs). Various amounts of spermine were chemically introduced into pullulan, dextran and mannan with a molecular weight of around 40 000 or pullulan with different molecular weights to prepare cationized polysaccharides with different extents of spermine introduced (spermine-polysaccharide). Each cationized polysaccharide was complexed with a plasmid DNA at various ratios and in vitro gene transfection was investigated for rat bone marrow-derived MSCs. The level of gene expression depended on the type of cationized polysaccharide. The highest level was observed for the complex of spermine-pullulan and plasmid DNA. Additionally, the level also depended on the molecular weight of pullulan and the extent of spermine introduced to pullulan. Suppression of gene expression with chlorpromazine and methyl-beta-cyclodextrin of endocytosis inhibitors demonstrated that the cellular uptake of spermine-pullulan-plasmid DNA complexes was mediated by clathrin- and raft/caveolae-dependent endocytic pathways. The cationized pullulan is a promising non-viral carrier of plasmid DNA for MSCs.

  13. Influence of abiotic variables on culturable yeast diversity in two distinct Alpine glaciers.

    PubMed

    Turchetti, Benedetta; Goretti, Marta; Branda, Eva; Diolaiuti, Guglielmina; D'Agata, Carlo; Smiraglia, Claudio; Onofri, Andrea; Buzzini, Pietro

    2013-11-01

    The influence of some abiotic variables (pH, dry weight, organic carbon, nitrogen and phosphorous) on culturable yeast diversity in two distinct, but adjacent Alpine glaciers (Glacier du Géant, France, and Miage Glacier, Italy) was investigated. In all, 682 yeast strains were isolated and identified by D1/D2 and ITS sequencing as belonging to species of the genera Aureobasidium, Candida, Bulleromyces, Cryptococcus, Cystofilobasidium, Dioszegia, Guehomyces, Holtermanniella, Leucosporidiella, Mrakia, Mrakiella, Rhodotorula, Sporidiobolus, Sporobolomyces and Udenyomyces. Overall, the most represented genera were Cryptococcus (55% of isolates), Rhodotorula (17%) and Mrakia (10%). About 10% of strains, presumably belonging to new species (yet to be described), were preliminarily identified at the genus level. Principal component analysis (PCA) revealed that organic carbon, nitrogen and phosphorous are apparently mostly related to culturable yeast abundance and diversity. In this context, the hypothesis that the frequency of isolation of certain species may be correlated with some organic nutrients (with special emphasis for phosphorous) is discussed.

  14. Earthworms modify microbial community structure and accelerate maize stover decomposition during vermicomposting.

    PubMed

    Chen, Yuxiang; Zhang, Yufen; Zhang, Quanguo; Xu, Lixin; Li, Ran; Luo, Xiaopei; Zhang, Xin; Tong, Jin

    2015-11-01

    In the present study, maize stover was vermicomposted with the epigeic earthworm Eisenia fetida. The results showed that, during vermicomposting process, the earthworms promoted decomposition of maize stover. Analysis of microbial communities of the vermicompost by high-throughput pyrosequencing showed more complex bacterial community structure in the substrate treated by the earthworms than that in the control group. The dominant microbial genera in the treatment with the earthworms were Pseudoxanthomonas, Pseudomonas, Arthrobacter, Streptomyces, Cryptococcus, Guehomyces, and Mucor. Compared to the control group, the relative abundance of lignocellulose degradation microorganisms increased. The results indicated that the earthworms modified the structure of microbial communities during vermicomposting process, activated the growth of lignocellulose degradation microorganisms, and triggered the lignocellulose decomposition.

  15. A reverse transfection technology to genetically engineer adult stem cells.

    PubMed

    Okazaki, Arimichi; Jo, Jun-Ichiro; Tabata, Yasuhiko

    2007-02-01

    A new non-viral method of gene transfection was designed to enhance the level of gene expression for rat mesenchymal stem cells (MSCs). Pullulan was cationized using chemical introduction of spermine to prepare cationized pullulan of non-viral carrier (spermine-pullulan). The spermine-pullulan was complexed with a plasmid deoxyribonucleic acid (DNA) of luciferase and coated on the surface of culture substrate together with Pronectin of artificial cell adhesion protein. MSCs were cultured and transfected on the complex-coated substrate (reverse transfection), and the level and duration of gene expression were compared with those of MSCs transfected by culturing in the medium containing the plasmid DNA-spermine-pullulan complex (conventional method). The reverse transfection method enhanced and prolonged gene expression significantly more than did the conventional method. The reverse method permitted the transfection culture of MSCs in the presence of serum, in contrast to the conventional method, which gave cells a good culture condition to lower cytotoxicity. The reverse transfection was carried out for a non-woven fabric of polyethylene terephthalate (PET) coated with the complex and Pronectin using agitation and stirring culture methods. The two methods enhanced the level and duration of gene expression for MSCs significantly more than did the static method. It is possible that medium circulation improves the culture conditions of cells in terms of oxygen and nutrition supply and waste excretion, resulting in enhanced gene expression.

  16. An alternative anionic bio-sustainable anti-fungal agent: Investigation of its mode of action on the fungal cell membrane.

    PubMed

    Stenbæk, Jonas; Löf, David; Falkman, Peter; Jensen, Bo; Cárdenas, Marité

    2017-07-01

    The potential of a lactylate (the sodium caproyl lactylate or C10 lactylate), a typical food grade emulsifier, as an anionic environmental friendly anti-fungal additive was tested in growth medium and formulated in a protective coating for exterior wood. Different laboratory growth tests on the blue stain fungus Aureobasidium pullulans were performed and its interactions on a model fungal cell membrane were studied. Promising short term anti-fungal effects in growth tests were observed, although significant but less dramatic effects took place in coating test on wood panels. Scanning electron microscope analysis shows clear differences in the amount of fungal slime on the mycelium of Aureobasidium pullulans when the fungus was exposed of C10 lactylate. This could indicate an effect on the pullulan and melanin production by the fungus. Moreover, the interaction studies on model fungal cell membranes show that C10 lactylate affects the phospholipid bilayer in a similar manner to other negative charged detergents.

  17. Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the alpha-amylase family.

    PubMed

    Park, K H; Kim, T J; Cheong, T K; Kim, J W; Oh, B H; Svensson, B

    2000-05-23

    Cyclomaltodextrinase (CDase, EC 3.2.1.54), maltogenic amylase (EC 3. 2.1.133), and neopullulanase (EC 3.2.1.135) are reported to be capable of hydrolyzing all or two of the following three types of substrates: cyclomaltodextrins (CDs); pullulan; and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. The present review surveys the biochemical, enzymatic, and structural properties of three types of such enzymes as defined based on the substrate specificity toward the CDs: type I, cyclomaltodextrinase and maltogenic amylase that hydrolyze CDs much faster than pullulan and starch; type II, Thermoactinomyces vulgaris amylase II (TVA II) that hydrolyzes CDs much less efficiently than pullulan; and type III, neopullulanase that hydrolyzes pullulan efficiently, but remains to be reported to hydrolyze CDs. These three types of enzymes exhibit 40-60% amino acid sequence identity. They occur in the cytoplasm of bacteria and have molecular masses from 62 to 90 kDa which are slightly larger than those of most alpha-amylases. Multiple amino acid sequence alignment and crystal structures of maltogenic amylase and TVA II reveal the presence of an N-terminal extension of approximately 130 residues not found in alpha-amylases. This unique N-terminal domain as seen in the crystal structures apparently contributes to the active site structure leading to the distinct substrate specificity through a dimer formation. In aqueous solution, most of these enzymes show a monomer-dimer equilibrium. The present review discusses the multiple specificity in the light of the oligomerization and the molecular structures arriving at a clarified enzyme classification. Finally, a physiological role of the enzymes is proposed.

  18. Fungitoxicity of chemical analogs with heartwood toxins.

    PubMed

    Grohs, B M; Kunz, B

    1998-07-01

    Trans-stilbene and tropolone as chemical analogs with naturally occurring fungitoxic heartwood compounds were studied with respect to their fungitoxic potency. While stilbene showed no fungitoxic activity towards the fungi Aureobasidium pullulans var. melanogenum, Penicillium glabrum, and Trichoderma harzianum in the concentrations tested, the minimal inhibiting concentration of tropolone was 10(-3) M for Penicillium glabrum and Trichoderma harzianum, and 10(-5) M for Aureobasidium pullulans var. melanogenum. In all cases, the effect of tropolone was a fungistatic one. Using chemical analogs for assessing the chemical basis of the fungitoxicity of tropolone, this substance proved to be the only compound tested which possesses fungitoxic properties.

  19. Pulsed Laser Processing of Functionalized Polysaccharides for Controlled Release Drug Delivery Systems

    NASA Astrophysics Data System (ADS)

    Cristescu, R.; Popescu, C.; Popescu, A. C.; Socol, G.; Mihailescu, I.; Caraene, G.; Albulescu, R.; Buruiana, T.; Chrisey, D.

    We report on the deposition of triacetate-pullulan polysaccharide thin films on drug pellets (diclofenac sodium) by matrix assisted pulsed laser evaporation method. The radiation generated by a pulsed excimer KrF* laser source (λ = 248 nm, τ = 20 ns) operated at 2 Hz repetition rate was used for ice targets evaporation. The timed - controlled drug delivery was proved by spectroscopic in vitro studies and in vivo anti-inflammatory investigations on rabbits. We showed that the coating of drug pellets with triacetate-pullulan thin films resulted in the delayed delivery of the drug for up to 30 min.

  20. Preliminary Reports, Memoranda and Technical Notes of the Materials Research Council Summer Conference, La Jolla, CA

    DTIC Science & Technology

    1975-07-01

    similar set of criteria are given by the workers at John Hopkins University.28. Donor molecules such as N-Methyl phenazine (NMP) and...involve the following principal causative agents: A. pullulans, Cladosporium sp. , Pseudomonas sp. , and Flavobacterium sp. He stated, each of

  1. Recovery of melanized yeasts from Eastern Mediterranean beach sand associated with the prevailing geochemical and marine flora patterns.

    PubMed

    Efstratiou, Maria A; Velegraki, Aristea

    2010-03-01

    The melanized opportunistic pathogens Exophiala dermatitidis (Chaetothyriales) and Aureobasidium pullulans (Dothideales) were sporadically isolated from beach sand. This is the first time they are reported from bathing beach sand, thus providing updates on the conditions influencing the in situ black yeast community structure and raising public health concerns.

  2. Use of Edible Laminate Layers in Intermediate Moisture Food Rations to Inhibit Moisture Migration

    DTIC Science & Technology

    2016-04-29

    2 Pullulan*, white beeswax, glycerin, propylene glycol, polysorbate 80, modified starch Water soluble Watson, Inc. Alginate BWMB film Sodium ...cheese 5.75 Salt 1.28 Olive oil 4.00 Sodium stearyl lactylate 0.75 Sugar 2.00 Sugar 0.35 Garlic powder 2.10 Starplex 90 0.35 Onion (dehyd/chopped

  3. The yeast flora of the coast redwood, Sequoia sempervirens.

    PubMed

    Middelhoven, W J

    2003-01-01

    Only four yeast species could be isolated from young and perannual shoots of the coast redwood tree, Sequoia sempervirens, and from soil beneath the trees, viz. both varieties of Debaryomyces hansenii, Trichosporon pullulans, T. porosum and an unidentified red basidiomycetous yeast.

  4. Sweet substrate: a polysaccharide nanocomposite for conformal electronic decals.

    PubMed

    Daniele, Michael A; Knight, Adrian J; Roberts, Steven A; Radom, Kathryn; Erickson, Jeffrey S

    2015-03-04

    A conformal electronic decal based on a polysaccharide circuit board (PCB) is fabricated and characterized. The PCBs are laminates composed of bioderived sugars - nanocellulose and pullulan. The PCB and decal transfer are a bioactive material system for supporting electronic devices capable of conforming to bio-logical surfaces.

  5. Functional and Structural Microbial Diversity in Organic and Conventional Viticulture: Organic Farming Benefits Natural Biocontrol Agents ▿ †

    PubMed Central

    Schmid, Florian; Moser, Gerit; Müller, Henry; Berg, Gabriele

    2011-01-01

    Statistically significant differences in the structure and function of above-ground grapevine-associated microorganisms from organically and conventionally managed vineyards were found. Aureobasidium pullulans, a copper-detoxifying fungus and biocontrol agent, plays a key role in explaining these differences. The black fungus was strongly enriched in the communities of organically managed plants and yielded a higher indigenous antiphytopathogenic potential. PMID:21278278

  6. Functional and structural microbial diversity in organic and conventional viticulture: organic farming benefits natural biocontrol agents.

    PubMed

    Schmid, Florian; Moser, Gerit; Müller, Henry; Berg, Gabriele

    2011-03-01

    Statistically significant differences in the structure and function of above-ground grapevine-associated microorganisms from organically and conventionally managed vineyards were found. Aureobasidium pullulans, a copper-detoxifying fungus and biocontrol agent, plays a key role in explaining these differences. The black fungus was strongly enriched in the communities of organically managed plants and yielded a higher indigenous antiphytopathogenic potential.

  7. TGF-β1 gene-engineered mesenchymal stem cells induce rat cartilage regeneration using nonviral gene vector.

    PubMed

    He, Cai-Xia; Zhang, Tian-Yuan; Miao, Pei-Hong; Hu, Zhong-Jie; Han, Min; Tabata, Yasuhiko; Hu, Yu-Lan; Gao, Jian-Qing

    2012-01-01

    This study evaluated the potential of utilizing transfected pTGFβ-1 gene-engineered rat mesenchymal stem cells (MSCs) using nonviral vector to promote cartilage regeneration. Pullulan-spermine was used as the nonviral gene vector and gelatin sponge was used as the scaffold. MSCs were engineered with TGF-β1 gene with either the three-dimensional (3D) reverse transfection system or the two-dimensional (2D) conventional transfection system. For the 3D reverse transfection system, pullulan-spermine/pTGF-β1 gene complexes were immobilized to the gelatin sponge, followed by the seeding of MSCs. Pullulan-spermine/pTGF-β1 gene complexes were delivered to MSCs cultured in the plate to perform the 2D conventional transfection system, and then MSCs were seeded to the gelatin sponge. Then, TGF-β1 gene-transfected MSC seeded gelatin sponge was implanted to the full-thickness cartilage defect. Compared with the control group, both groups of TGF-β1 gene-engineered MSCs improved cartilage regeneration through optical observation and histology staining. So, with pullulan-spermine as the nonviral vector, TGF-β1-gene engineered MSCs can induce cartilage regeneration in vivo.

  8. Fungal Colonization and Biodeterioration of Plasticized Polyvinyl Chloride

    PubMed Central

    Webb, Jeremy S.; Nixon, Marianne; Eastwood, Ian M.; Greenhalgh, Malcolm; Robson, Geoffrey D.; Handley, Pauline S.

    2000-01-01

    Significant substratum damage can occur when plasticized PVC (pPVC) is colonized by microorganisms. We investigated microbial colonization of pPVC in an in situ, longitudinal study. Pieces of pPVC containing the plasticizers dioctyl phthalate and dioctyl adipate (DOA) were exposed to the atmosphere for up to 2 years. Fungal and bacterial populations were quantified, and colonizing fungi were identified by rRNA gene sequencing and morphological characteristics. Aureobasidium pullulans was the principal colonizing fungus, establishing itself on the pPVC between 25 and 40 weeks of exposure. A group of yeasts and yeast-like fungi, including Rhodotorula aurantiaca and Kluyveromyces spp., established themselves on the pPVC much later (after 80 weeks of exposure). Numerically, these organisms dominated A. pullulans after 95 weeks, with a mean viable count ± standard error of 1,000 ± 200 yeast CFU cm−2, compared to 390 ± 50 A. pullulans CFU cm−2. No bacterial colonization was observed. We also used in vitro tests to characterize the deteriogenic properties of fungi isolated from the pPVC. All strains of A. pullulans tested could grow with the intact pPVC formulation as the sole source of carbon, degrade the plasticizer DOA, produce extracellular esterase, and cause weight loss of the substratum during growth in vitro. In contrast, several yeast isolates could not grow on pPVC or degrade DOA. These results suggest that microbial succession may occur during the colonization of pPVC and that A. pullulans is critical to the establishment of a microbial community on pPVC. PMID:10919769

  9. Identification of medically relevant species of arthroconidial yeasts by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Kolecka, Anna; Khayhan, Kantarawee; Groenewald, Marizeth; Theelen, Bart; Arabatzis, Michael; Velegraki, Aristea; Kostrzewa, Markus; Mares, Mihai; Taj-Aldeen, Saad J; Boekhout, Teun

    2013-08-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was used for an extensive identification study of arthroconidial yeasts, using 85 reference strains from the CBS-KNAW yeast collection and 134 clinical isolates collected from medical centers in Qatar, Greece, and Romania. The test set included 72 strains of ascomycetous yeasts (Galactomyces, Geotrichum, Saprochaete, and Magnusiomyces spp.) and 147 strains of basidiomycetous yeasts (Trichosporon and Guehomyces spp.). With minimal preparation time, MALDI-TOF MS proved to be an excellent diagnostic tool that provided reliable identification of most (98%) of the tested strains to the species level, with good discriminatory power. The majority of strains were correctly identified at the species level with good scores (>2.0) and seven of the tested strains with log score values between 1.7 and 2.0. The MALDI-TOF MS results obtained were consistent with validated internal transcribed spacer (ITS) and/or large subunit (LSU) ribosomal DNA sequencing results. Expanding the mass spectrum database by increasing the number of reference strains for closely related species, including those of nonclinical origin, should enhance the usefulness of MALDI-TOF MS-based diagnostic analysis of these arthroconidial fungi in medical and other laboratories.

  10. Molecular entanglement and electrospinnability of biopolymers.

    PubMed

    Kong, Lingyan; Ziegler, Gregory R

    2014-09-03

    Electrospinning is a fascinating technique to fabricate micro- to nano-scale fibers from a wide variety of materials. For biopolymers, molecular entanglement of the constituent polymers in the spinning dope was found to be an essential prerequisite for successful electrospinning. Rheology is a powerful tool to probe the molecular conformation and interaction of biopolymers. In this report, we demonstrate the protocol for utilizing rheology to evaluate the electrospinnability of two biopolymers, starch and pullulan, from their dimethyl sulfoxide (DMSO)/water dispersions. Well-formed starch and pullulan fibers with average diameters in the submicron to micron range were obtained. Electrospinnability was evaluated by visual and microscopic observation of the fibers formed. By correlating the rheological properties of the dispersions to their electrospinnability, we demonstrate that molecular conformation, molecular entanglement, and shear viscosity all affect electrospinning. Rheology is not only useful in solvent system selection and process optimization, but also in understanding the mechanism of fiber formation on a molecular level.

  11. Childhood hypersensitivity pneumonitis associated with fungal contamination of indoor hydroponics.

    PubMed

    Engelhart, Steffen; Rietschel, Ernst; Exner, Martin; Lange, Lars

    2009-01-01

    Childhood hypersensitivity pneumonitis (HP) is often associated with exposure to antigens in the home environment. We describe a case of HP associated with indoor hydroponics in a 14-year-old girl. Water samples from hydroponics revealed Aureobasidium pullulans as the dominant fungal micro-organism (10(4)CFU/ml). The diagnosis is supported by the existence of serum precipitating antibodies against A. pullulans, lymphocytic alveolitis on bronchoalveolar lavage (BAL) fluid, a corresponding reaction on a lung biopsy, and the sustained absence of clinical symptoms following the removal of hydroponics from the home. We conclude that hydroponics should be considered as potential sources of fungal contaminants when checking for indoor health complaints.

  12. Characterization of starch-debranching enzymes in pea embryos

    PubMed

    Zhu; Hylton; Rossner; Smith

    1998-10-01

    Two distinct types of debranching enzymes have been identified in developing pea (Pisum sativum L.) embryos using native gel analysis and tests of substrate preference on purified or partially purified activities. An isoamylase-like activity capable of hydrolyzing amylopectin and glycogen but not pullulan is present throughout development and is largely or entirely confined to the plastid. Activities capable of hydrolyzing pullulan are present both inside and outside of the plastid, and extraplastidial activity increases relative to the plastidial activity during development. Both types of debranching enzyme are also present in germinating embryos. We argue that debranching enzymes are likely to have a role in starch metabolism in the plastid of the developing embryo and in starch degradation during germination.

  13. Characterization of Starch-Debranching Enzymes in Pea Embryos1

    PubMed Central

    Zhu, Zhi-Ping; Hylton, Christopher M.; Rössner, Ute; Smith, Alison M.

    1998-01-01

    Two distinct types of debranching enzymes have been identified in developing pea (Pisum sativum L.) embryos using native gel analysis and tests of substrate preference on purified or partially purified activities. An isoamylase-like activity capable of hydrolyzing amylopectin and glycogen but not pullulan is present throughout development and is largely or entirely confined to the plastid. Activities capable of hydrolyzing pullulan are present both inside and outside of the plastid, and extraplastidial activity increases relative to the plastidial activity during development. Both types of debranching enzyme are also present in germinating embryos. We argue that debranching enzymes are likely to have a role in starch metabolism in the plastid of the developing embryo and in starch degradation during germination. PMID:9765544

  14. The influence of different polymers on viability of Bifidobacterium lactis 300b during encapsulation, freeze-drying and storage.

    PubMed

    Pop, Oana Lelia; Brandau, Thorsten; Schwinn, Jens; Vodnar, Dan Cristian; Socaciu, Carmen

    2015-07-01

    Seven different types of natural polymers namely hydroxypropyl methylcellulose (HPMC), sodium-carboxymethyl cellulose (Na-CMC), microcrystalline cellulose (MCC), starch BR-07, starch BR-08, dextrin and pullulan were used in order to develop the optimal formula for the entrapment of Bifidobacterium lactis 300B in Ca-alginate based granules. Laminar flow drip casting with Brace-Encapsulator was used in order to prepare the granules. The results showed that alginate/pullulan and alginate/HPMC formulation provide high protection for the bacterial strain used for encapsulation. These two formulations were further used to obtain freeze dried granules, for which the viability in time and at different temperatures was tested. The final results showed a higher viability than the level of the therapeutic minimum (>10(7) CFU/g) after 15 days of storage. Other parameters like entrapment efficiency, production rate, sphericity, flowability were also discussed.

  15. Yeasts from native Brazilian Cerrado plants: Occurrence, diversity and use in the biocontrol of citrus green mould.

    PubMed

    Sperandio, Eugenio Miranda; do Vale, Helson Mario Martins; Moreira, Geisianny Augusta Monteiro

    2015-11-01

    Yeasts are some of the most important postharvest biocontrol agents. Postharvest oranges frequently deteriorate due to green mould (Penicillium digitatum), which causes significant losses. The aims of this study were to determine the composition and diversity of yeasts on plants of the Brazilian Cerrado and to explore their potential for inhibiting citrus green mould. Leaves and fruit of Byrsonima crassifolia and Eugenia dysenterica were collected from Cerrado conservation areas, and thirty-five yeasts were isolated and identified by sequencing the D1-D2 domain of the rDNA large subunit (26S). The isolates represented the Aureobasidium, Meyerozyma, Candida, and Pichia genera. Three isolates identified as Aureobasidium pullulans exhibited potential for the control of P. digitatum in both in vitro and in vivo tests; these isolates reduced the incidence of disease and increased the storage time of fruit. Aureobasidium. pullulans has immense potential for the biological control of filamentous fungi.

  16. Volatile emissions from an epiphytic fungus are semiochemicals for eusocial wasps.

    PubMed

    Davis, Thomas Seth; Boundy-Mills, Kyria; Landolt, Peter J

    2012-11-01

    Microbes are ubiquitous on plant surfaces. However, interactions between epiphytic microbes and arthropods are rarely considered as a factor that affects arthropod behaviors. Here, volatile emissions from an epiphytic fungus were investigated as semiochemical attractants for two eusocial wasps. The fungus Aureobasidium pullulans was isolated from apples, and the volatile compounds emitted by fungal colonies were quantified. The attractiveness of fungal colonies and fungal volatiles to social wasps (Vespula spp.) were experimentally tested in the field. Three important findings emerged: (1) traps baited with A. pullulans caught 2750 % more wasps on average than unbaited control traps; (2) the major headspace volatiles emitted by A. pullulans were 2-methyl-1-butanol, 3-methyl-1-butanol, and 2-phenylethyl alcohol; and (3) a synthetic blend of fungal volatiles attracted 4,933 % more wasps on average than unbaited controls. Wasps were most attracted to 2-methyl-1-butanol. The primary wasp species attracted to fungal volatiles were the western yellowjacket (Vespula pensylvanica) and the German yellowjacket (V. germanica), and both species externally vectored A. pullulans. This is the first study to link microbial volatile emissions with eusocial wasp behaviors, and these experiments indicate that volatile compounds emitted by an epiphytic fungus can be responsible for wasp attraction. This work implicates epiphytic microbes as important components in the community ecology of some eusocial hymenopterans, and fungal emissions may signal suitable nutrient sources to foraging wasps. Our experiments are suggestive of a potential symbiosis, but additional studies are needed to determine if eusocial wasp-fungal associations are widespread, and whether these associations are incidental, facultative, or obligate.

  17. A survey of insect assemblages responding to volatiles from a ubiquitous fungus in an agricultural landscape.

    PubMed

    Davis, Thomas Seth; Landolt, Peter J

    2013-07-01

    We report here a first survey of insect orientation to fungal cultures and fungal volatiles from a community ecology perspective. We tested whether volatiles from a ubiquitous yeast-like fungus (Aureobasidium pullulans) are broadly attractive to insects in an agricultural landscape. We evaluated insect attraction to fungal cultures and synthetic compounds identified in fungal headspace (2-methyl-1-butanol, 3-methyl-1-butanol, 2-phenylethanol) in a spearmint (Mentha spicata L.) plantation. Three findings emerged: (1) 1,315 insects representing seven orders and 39 species oriented to traps, but 65 % of trapped insects were Dipterans, of which 80 % were hoverflies (Diptera: Syrphidae); (2) traps baited with A. pullulans caught 481 % more insects than unbaited control traps on average, and contained more diverse (Shannon's H index) and species rich assemblages than control traps, traps baited with Penicillium expansum, or uninoculated media; and (3) insects oriented in greatest abundance to a 1:1:1 blend of A. pullulans volatiles, but mean diversity scores were highest for traps baited with only 2-phenylethanol or 2-methyl-1-butanol. Our results show that individual components of fungal headspace are not equivalent in terms of the abundance and diversity of insects that orient to them. The low abundance of insects captured with P. expansum suggests that insect assemblages do not haphazardly orient to fungal volatiles. We conclude that volatiles from a common fungal species (A. pullulans) are attractive to a variety of insect taxa in an agricultural system, and that insect orientation to fungal volatiles may be a common ecological phenomenon.

  18. Extracellular Proteinases of Yeasts and Yeastlike Fungi1

    PubMed Central

    Ahearn, D. G.; Meyers, S. P.; Nichols, R. A.

    1968-01-01

    Approximately 800 yeasts and other fungi, representing over 70 species, were tested for extracellular caseinolysis. Isolates of a variety of genera, including Aureobasidium, Cephalosporium, Endomycopsis, Kluyveromyces, and numerous sporobolomycetes, demonstrated significant proteolytic activity. Caseinolysis was not necessarily correlated with gelatin liquefaction or with albuminolysis. Numerous fungi showed significant proteolysis at 5 C. The most active organisms were isolates of Candida lipolytica, Aureobasidium pullulans, Candida punicea, and species of Cephalosporium. Taxonomic and ecological implications of proteolytic activity are discussed. Images Fig. 1 PMID:5692110

  19. Pullulanase from rice endosperm.

    PubMed

    Yamasaki, Yoshiki; Nakashima, Susumu; Konno, Haruyoshi

    2008-01-01

    Pullulanase (EC 3.2.1.41) in non-germinating seeds was compared with that in germinating seeds. Moreover, pullulanase from the endosperm of rice (Oryza sativa L., cv. Hinohikari) seeds was isolated and its properties investigated. The pI value of pullulanase from seeds after 8 days of germination was almost equal to that from non-germinating seeds, which shows that these two enzymes are the same protein. Therefore, the same pullulanase may play roles in both starch synthesis during ripening and starch degradation during germination in rice seeds. The enzyme was isolated by a procedure that included ammonium sulfate fractionation, DEAE-cellulofine column chromatography, preparative isoelectric focusing, and preparative disc gel electrophoresis. The enzyme was homogeneous by SDS/PAGE. The molecular weight of the enzyme was estimated to be 100 000 based on its mobility on SDS/PAGE and 105 000 based on gel filtration with TSKgel super SW 3000, which showed that it was composed of a single unit. The isoelectric point of the enzyme was 4.7. The enzyme was strongly inhibited by beta-cyclodextrin. The enzyme was not activated by thiol reagents such as dithiothreitol, 2-mercaptoethanol or glutathione. The enzyme most preferably hydrolyzed pullulan and liberated only maltotriose. The pullulan hydrolysis was strongly inhibited by the substrate at a concentration higher than 0.1%. The degree of inhibition increased with an increase in the concentration of pullulan. However, the enzyme hydrolyzed amylopectin, soluble starch and beta-limit dextrin more rapidly as their concentrations increased. The enzyme exhibited alpha-glucosyltransfer activity and produced an alpha-1,6-linked compound of two maltotriose molecules from pullulan.

  20. Relief hologram replication using a dental composite as an embossing tool

    NASA Astrophysics Data System (ADS)

    Savić Šević, Svetlana; Pantelić, Dejan

    2005-04-01

    A simplified method for holographic embossing tool production is presented. Surface relief diffraction gratings are holographically recorded in pullulan sensitized with ammonium dichromate (DCP). The surface structure is copied into dental photopolymer composite by direct contact and subsequent photo-polymerization. It was found that arbitrary surface micropattern can be replicated. Due to its excellent mechanical and thermal properties, micro-patterned dental composite can be further used as an embossing tool for mass production of holograms.

  1. Relief hologram replication using a dental composite as an embossing tool.

    PubMed

    Savić Sević, Svetlana; Pantelić, Dejan

    2005-04-04

    A simplified method for holographic embossing tool production is presented. Surface relief diffraction gratings are holographically recorded in pullulan sensitized with ammonium dichromate (DCP). The surface structure is copied into dental photopolymer composite by direct contact and subsequent photo-polymerization. It was found that arbitrary surface micropattern can be replicated. Due to its excellent mechanical and thermal properties, micro-patterned dental composite can be further used as an embossing tool for mass production of holograms.

  2. Development of a biodegradable iron oxide nanoparticle gel for tumor bed therapy

    NASA Astrophysics Data System (ADS)

    Cunkelman, B. P.; Chen, E. Y.; Petryk, A. A.; Tate, J. A.; Thappa, S. G.; Collier, R. J.; Hoopes, P. J.

    2013-02-01

    Treatments of the post-operative surgical bed have proven appealing as the majority of cancer recurrence following tumor resection occurs at the tumor margin. A novel, biodegradable pullulan-based gel infused with magnetic iron oxide nanoparticles (IONP) is presented here for surgical bed administration followed by hyperthermia therapy via alternating magnetic field (AMF) activation. Pullulan is a water soluble, film-forming starch polymer that degrades at the postoperative wound site to deliver the IONP payload, targeting the remaining cancer cells. Different gel formulations containing various % wt of pullulan were tested for IONP elution. Elution levels and amount of gel degradation were measured by immersing the gel in de-ionized water for one hour then measuring particle concentrations in the supernatant and the mass of the remaining gel formulation. The most promising gel formulations will be tested in a murine model of surgical bed resection to assess in vivo gel dissolution, IONP cell uptake kinetics via histology and TEM analysis, and heating capability of the gel with AMF exposure.

  3. Isolation and characterization of a novel thermostable neopullulanase-like enzyme from a hot spring in Thailand.

    PubMed

    Tang, Kittapong; Kobayashi, Rutchadaporn Sriprang; Champreda, Verawat; Eurwilaichitr, Lily; Tanapongpipat, Sutipa

    2008-06-01

    A gene encoding a thermostable pullulan-hydrolyzing enzyme was isolated from environmental genomic DNA extracted from soil sediments of Bor Khleung hot spring in Thailand. Sequence comparison with related enzymes suggested that the isolated enzyme, designated Env Npu193A, was most likely a neopullulanase-like enzyme. Env Npu193A was expressed in Pichia pastoris as a monomeric recombinant protein. The purified Env Npu193A exhibited pH stability ranging from 3 to 9. More than 60% of enzyme activity was retained after incubation at 60 degrees C for 1 h. Env Npu193A was found to hydrolyze various substrates, including pullulan, starch, and gamma-cyclodextrin. The optimal working condition for Env Npu193A was at pH 7 at 75 degrees C with K(m) and V(max) toward pullulan of 1.22+/-0.3% and 23.24+/-1.7 U/mg respectively. Env Npu193A exhibited distinct biochemical characteristics as compared with the previously isolated enzyme from the same source. Thus, a culture-independent approach with sequence-basing was found to be an effective way to discover novel enzymes displaying unique substrate specificity and high thermostability from natural bioresources.

  4. An acetylated polysaccharide-PTFE membrane-covered stent for the delivery of gemcitabine for treatment of gastrointestinal cancer and related stenosis.

    PubMed

    Moon, Sumi; Yang, Su-Geun; Na, Kun

    2011-05-01

    Gemcitabine (Gem) eluting metal stents were prepared for potential application as drug delivery systems for localized treatment of malignant tumors. Pullulan, a natural polysaccharide, was chemically acetylated (pullulan acetate; PA) by different degrees (1.18, 1.71, and 2.10 acetyl groups per glucose unit of pullulan), layered on polytetrafluoroethylene (PTFE), and applied as part of a Gem-loaded controlled-release membrane for drug-eluting non-vascular stents. PA with a higher degree of acetylation had greater drug-loading capacity with more extended release of Gem over 30 days. The released Gem accumulated in CT-26 colon cancer without systemic exposure inducing total regression of tumors. The long-term biological activity of the released Gem and apoptosis of tumor tissues following localized delivery were confirmed by annexin V binding assays and histology. The controlled release of Gem from PA-PTFE covered drug-eluting stents (DES) may increase the patency of these stents for the treatment of malignant gastrointestinal cancer as well as cancer-related stenosis.

  5. An innovative polysaccharide nanobased nail formulation for improvement of onychomycosis treatment.

    PubMed

    Flores, Fernanda C; Rosso, Roberta S; Cruz, Letícia; Beck, Ruy C R; Silva, Cristiane B

    2017-03-30

    Tioconazole-loaded nanocapsule suspensions and its coating with a cationic polymer were developed for nail drug delivery. The colloidal systems presented a nanometric size around 155nm for uncoated nanoparticles and 162nm for those with the cationic coating, with negative and positive zeta potential values, respectively. Both nanosuspensions showed drug content close to theoretical values (1mgmL(-1)), association efficiency close to 100% (HPLC) and were able to control tioconazol release. The developed formulations showed in vitro antifungal activity (agar diffusion method) against C. albicans. The cationic nanocapsules were considered bioadhesive, showed higher viscosity and were chosen to be incorporated into an ungueal formulation. Pullulan nanobased nail formulation showed adequate viscosity for nail application and drug content close to the theoretical values. It was equivalent to the commercial formulation Trosid(®) in preventing nail infection by T. rubrum in an in vitro onychomycosis model. The nanocapsule suspensions and Pullulan nanobased nail formulation showed lower irritant potential than the commercial formulation and than free drug in an in vitro evaluation. Pullulan nanobased nail formulation is promising for the treatment of onychomycosis.

  6. Performance evaluation of volatile organic compounds by antagonistic yeasts immobilized on hydrogel spheres against gray, green and blue postharvest decays.

    PubMed

    Parafati, Lucia; Vitale, Alessandro; Restuccia, Cristina; Cirvilleri, Gabriella

    2017-05-01

    Wickerhamomyces anomalus, Metschnikowia pulcherrima, Aureobasidium pullulans and Saccharomyces cerevisiae yeasts were tested for their ability to survive and synthesize antifungal volatile organic compounds (VOCs) both in vitro and in vivo conditions when immobilized on commercial hydrogel spheres. The results showed a good survival of all yeasts on hydrogel spheres up to 10 days of incubation. Moreover, VOCs produced in vitro by tested yeasts inhibited Botrytis cinerea, Penicillium digitatum and P. italicum radial growth and conidial germination, with the highest antagonistic activity reported for W. anomalus and A. pullulans strains. Experimental in vivo trials performed on strawberry and mandarin fruits proved the ability of VOCs to reduce significantly postharvest decays on artificially wounded tissues. Comprehensively, the best efficacy was detected for W. anomalus, which totally inhibited gray mold decay on strawberry fruits and significantly reduced green mold infections on mandarin fruits. On the other hand, blue mold decay on mandarin fruits was more effectively managed by A. pullulans VOCs. Accordingly, hydrogel spheres used as a support for VOC-generating yeasts could open a new way for the employment of this polymeric material as a bio-emitter in postharvest packaging.

  7. Multiple rare opportunistic and pathogenic fungi in persistent foot skin infection.

    PubMed

    Chan, Giek Far; Sinniah, Sivaranjini; Idris, Tengku Idzzan Nadzirah Tengku; Puad, Mohamad Safwan Ahmad; Abd Rahman, Ahmad Zuhairi

    2013-03-01

    Persistent superficial skin infection caused by multiple fungi is rarely reported. Recently, a number of fungi, both opportunistic and persistent in nature were isolated from the foot skin of a 24-year old male in Malaysia. The fungi were identified as Candida parapsilosis, Rhodotorula mucilaginosa, Phoma spp., Debaryomyces hansenii, Acremonium spp., Aureobasidium pullulans and Aspergillus spp., This is the first report on these opportunistic strains were co-isolated from a healthy individual who suffered from persistent foot skin infection which was diagnosed as athlete's foot for more than 12 years. Among the isolated fungi, C. parapsilosis has been an increasingly common cause of skin infections. R. mucilaginosa and D. hansenii were rarely reported in cases of skin infection. A. pullulans, an emerging fungal pathogen was also being isolated in this case. Interestingly, it was noted that C. parapsilosis, R. mucilaginosa, D. hansenii and A. pullulans are among the common halophiles and this suggests the association of halotolerant fungi in causing persistent superficial skin infection. This discovery will shed light on future research to explore on effective treatment for inhibition of pathogenic halophiles as well as to understand the interaction of multiple fungi in the progress of skin infection.

  8. Target-Induced and Equipment-Free DNA Amplification with a Simple Paper Device.

    PubMed

    Liu, Meng; Hui, Christy Y; Zhang, Qiang; Gu, Jimmy; Kannan, Balamurali; Jahanshahi-Anbuhi, Sana; Filipe, Carlos D M; Brennan, John D; Li, Yingfu

    2016-02-18

    We report on a paper device capable of carrying out target-induced rolling circle amplification (RCA) to produce massive DNA amplicons that can be easily visualized. Interestingly, we observed that RCA was more proficient on paper than in solution, which we attribute to a significantly higher localized concentration of immobilized DNA. Furthermore, we have successfully engineered a fully functional paper device for sensitive DNA or microRNA detection via printing of all RCA-enabling molecules within a polymeric sugar film formed from pullulan, which was integrated with the paper device. This encapsulation not only stabilizes the entrapped reagents at room temperature but also enables colorimetric bioassays with minimal steps.

  9. Nanogel-quantum dot hybrid nanoparticles for live cell imaging

    SciTech Connect

    Hasegawa, Urara; Nomura, Shin-ichiro M.; Kaul, Sunil C.; Hirano, Takashi; Akiyoshi, Kazunari; E-mail: akiyoshi.org@tmd.ac.jp

    2005-06-17

    We report here a novel carrier of quantum dots (QDs) for intracellular labeling. Monodisperse hybrid nanoparticles (38 nm in diameter) of QDs were prepared by simple mixing with nanogels of cholesterol-bearing pullulan (CHP) modified with amino groups (CHPNH{sub 2}). The CHPNH{sub 2}-QD nanoparticles were effectively internalized into the various human cells examined. The efficiency of cellular uptake was much higher than that of a conventional carrier, cationic liposome. These hybrid nanoparticles could be a promising fluorescent probe for bioimaging.

  10. Fungi Associated with Softening of Bisulfite-Brined Cherries.

    PubMed

    Lewis, J C; Pierson, C F; Powers, M J

    1963-03-01

    Softening of sound, calcium bisulfite-brined cherries was induced fairly quickly by brining them with cherries rotted by Aspergillus niger, Cytospora leucostoma, and Penicillium expansum, but not with cherries rotted by a variety of other microorganisms, including Alternaria sp., Aspergillus oryzae, Aureobasidium pullulans, Botrytis cinerea, Cladosporium sp., Mucor racemosus, Rhizopus stolonifer, and Sclerotinia fructicola. Rapid softening was correlated with the presence of a bisulfite-stable polygalacturonase, as demonstrated by a cup-plate test. A survey of naturally rotted cherries suggests the involvement of a bark-canker fungus, C. leucostoma, in softening of commercially brined cherries in the Pacific Northwest.

  11. Changes in IR spectra of polysaccharides induced by CW CO2-laser radiation

    NASA Astrophysics Data System (ADS)

    Dlugunovich, Viacheslav A.; Zhbankov, R. G.; Zhdanovskii, Vladimir A.; Nasennik, L. N.; Puhnarevich, S. A.; Firsov, S. P.

    2003-04-01

    By IR spectroscopy methods the structural changes of high molecular polymers irradiated by CW CO2-laser radiation was investigated. Some changes in the structural sensitive regions at 1250 - 950 and 950 - 850 cm-1 of the IR spectra of the investigated polysaccharides [pullulan (molecular mass of 14500) and microcrystalline cellulose (structural modifications I and II)] were exhibit. These changes indicated that the degree of conformational order of polysaccharide molecules increases under the laser irradiation, while its structural order always decreases as a result of heating by traditional thermal sources.

  12. Screening of micro-organisms for decolorization of melanins produced by bluestain fungi.

    PubMed

    Rättö, M; Chatani, M; Ritschkoff, A C; Viikari, L

    2001-03-01

    A total of 17 fungi and four bacteria were screened for their ability to decolorize melanin, using isolated extracellular melanin of the bluestain fungus Aureobasidium pullulans as substrate. On agar media, decolorization was observed by four fungal strains: Bjerkandera adusta VTT-D-99746, Galactomyces geotrichum VTT-D-84228, Trametes hirsuta VTT-D-95443 and Trametes versicolor VTT-D-99747. The four fungi were more efficient on nitrogen-limited medium than on complete medium. The melanin-decolorizing activity of G. geotrichum appeared to be located on the mycelium and could be liberated into the medium enzymatically.

  13. Determination of molecular weight of heparin by size exclusion chromatography with universal calibration.

    PubMed

    Guo, X; Condra, M; Kimura, K; Berth, G; Dautzenberg, H; Dubin, P L

    2003-01-01

    The molecular weight (MW) of heparin can be accurately determined by size exclusion chromatography using "universal calibration." A universal calibration curve was constructed for Superose 12 with standard pullulan samples and verified using characterized ficoll fractions. This calibration yielded the correct MW of heparin as determined by light scattering, when the ionic strength of the mobile phase was maintained over 1.0M. Sodium poly(styrenesulfonate) samples were not suitable standards because of adsorption at high salt concentration and repulsion from the packing material at low ionic strength. The extraordinarily high charge density of heparin leads to the need for high salt concentration to screen such repulsions.

  14. Breathing silicon anodes for durable high-power operations.

    PubMed

    Hwang, Chihyun; Joo, Sehun; Kang, Na-Ri; Lee, Ungju; Kim, Tae-Hee; Jeon, Yuju; Kim, Jieun; Kim, Young-Jin; Kim, Ju-Young; Kwak, Sang-Kyu; Song, Hyun-Kon

    2015-09-23

    Silicon anode materials have been developed to achieve high capacity lithium ion batteries for operating smart phones and driving electric vehicles for longer time. Serious volume expansion induced by lithiation, which is the main drawback of silicon, has been challenged by multi-faceted approaches. Mechanically rigid and stiff polymers (e.g. alginate and carboxymethyl cellulose) were considered as the good choices of binders for silicon because they grab silicon particles in a tight and rigid way so that pulverization and then break-away of the active mass from electric pathways are suppressed. Contrary to the public wisdom, in this work, we demonstrate that electrochemical performances are secured better by letting silicon electrodes breathe in and out lithium ions with volume change rather than by fixing their dimensions. The breathing electrodes were achieved by using a polysaccharide (pullulan), the conformation of which is modulated from chair to boat during elongation. The conformational transition of pullulan was originated from its α glycosidic linkages while the conventional rigid polysaccharide binders have β linkages.

  15. Breathing silicon anodes for durable high-power operations

    NASA Astrophysics Data System (ADS)

    Hwang, Chihyun; Joo, Sehun; Kang, Na-Ri; Lee, Ungju; Kim, Tae-Hee; Jeon, Yuju; Kim, Jieun; Kim, Young-Jin; Kim, Ju-Young; Kwak, Sang-Kyu; Song, Hyun-Kon

    2015-09-01

    Silicon anode materials have been developed to achieve high capacity lithium ion batteries for operating smart phones and driving electric vehicles for longer time. Serious volume expansion induced by lithiation, which is the main drawback of silicon, has been challenged by multi-faceted approaches. Mechanically rigid and stiff polymers (e.g. alginate and carboxymethyl cellulose) were considered as the good choices of binders for silicon because they grab silicon particles in a tight and rigid way so that pulverization and then break-away of the active mass from electric pathways are suppressed. Contrary to the public wisdom, in this work, we demonstrate that electrochemical performances are secured better by letting silicon electrodes breathe in and out lithium ions with volume change rather than by fixing their dimensions. The breathing electrodes were achieved by using a polysaccharide (pullulan), the conformation of which is modulated from chair to boat during elongation. The conformational transition of pullulan was originated from its α glycosidic linkages while the conventional rigid polysaccharide binders have β linkages.

  16. The effect of locust bean gum (LBG)-based edible coatings carrying biocontrol yeasts against Penicillium digitatum and Penicillium italicum causal agents of postharvest decay of mandarin fruit.

    PubMed

    Parafati, Lucia; Vitale, Alessandro; Restuccia, Cristina; Cirvilleri, Gabriella

    2016-09-01

    Strains belonging to Wickerhamomyces anomalus, Metschnikowia pulcherrima and Aureobasidium pullulans species were tested in vitro as biocontrol agents (BCAs) against the post-harvest pathogenic molds Penicillium digitatum and Penicillium italicum. Moreover, studies aimed at screening the antifungal activity of selected yeast strains in vivo conditions against P. digitatum and P. italicum, and investigated the efficacy of a polysaccharidic matrix, locust bean gum (LBG), enriched with the tested BCAs, in controlling postharvest decays in artificially inoculated mandarins. The population dynamics of BCAs on wounds and the magnitude of peroxidase (POD) and superoxide dismutase (SOD) in fruit tissues were also investigated after treatments of mandarins with antagonistic yeasts. W. anomalus BS91, M. pulcherrima MPR3 and A. pullulans PI1 provided excellent control of postharvest decays caused by P. digitatum and P. italicum on mandarins, both when the yeasts were used alone and in combination with LBG, which enhanced the yeast cell viability over time. Finally, the increased activity of POD and lower decrease in SOD activity in response to BCAs application in mandarin fruits confirmed their involvement in the biocontrol mechanism.

  17. Remote detection of laser-induced autofluorescence on pure cultures of fungal and bacterial strains and their analysis with multivariate techniques

    NASA Astrophysics Data System (ADS)

    Raimondi, Valentina; Palombi, Lorenzo; Cecchi, Giovanna; Lognoli, David; Trambusti, Massimo; Gomoiu, Ioana

    2007-05-01

    Remotely sensed laser-induced autofluorescence spectra of pure cultures of fungal strains ( Aureobasidium pullulans, Verticillium sp.) and of bacterial strains ( Bacillus sp., Pseudomonas sp.) are presented. The strains were isolated from samples collected in a Roman archaeological site ( Tropaeum Traiani) near Constanta, Romania. The fluorescence spectra were detected in vivo from a distance of 25 m in the outdoor, using a high spectral resolution fluorescence LIDAR featuring a UV laser (XeCl@308 nm) as an excitation source. All the examined strains, except for the A. pullulans, showed fluorescence features such to allow their characterisation by processing data with multivariate techniques. Both Principal Component Analysis and Cluster Analysis were applied to the data set and compared to discriminate between the examined strains. Results demonstrate the feasibility of fluorescence-based detection and characterisation of fungi and bacteria in the outdoor with a high spectral resolution fluorescence LIDAR. In addition, they show that the proposed processing methods offer a means to discriminate between the fluorescence features due to the investigated samples and that of a fluorescence background of a known spectral shape, as that of the culture medium. This can be exploited for the remote fluorescence mapping of heterotrophic organisms on stone surfaces when the latter show a typical broad fluorescence band.

  18. Gene cloning, functional expression and characterisation of a novel type I pullulanase from Paenibacillus barengoltzii and its application in resistant starch production.

    PubMed

    Liu, Jingjing; Liu, Yu; Yan, Feng; Jiang, Zhengqiang; Yang, Shaoqing; Yan, Qiaojuan

    2016-05-01

    A novel pullulanase gene (PbPulA) from Paenibacillus barengoltzii was cloned. PbPulA has an open reading frame of 2028 bp encoding 675 amino acids. It was heterologously expressed in Escherichia coli as an intracellular soluble protein. The recombinant pullulanase (PbPulA) was purified to homogeneity with a molecular mass of about 75 kDa on SDS-PAGE. PbPulA was optimally active at pH 5.5 and 50 °C. It was stable within pH 5.5-10.5. The enzyme exhibited strict substrate specificity towards pullulan, but showed relatively low activity towards amylopectin and no activity towards other tested polysaccharides. The Km and Vmax values of the enzyme on pullulan were 2.94 mg/mL and 280.5 μmol/min/mg, respectively. The addition of PbPulA in gelatinized rice and maize starches significantly increased the resistant starch type 3 (RS3) yields. Final yields from rice and maize starches were 10.82 g/100 g and 11.41 g/100 g, respectively. These properties make PbPulA useful in starch industries.

  19. Graphene Oxide Bionanocomposite Coatings with High Oxygen Barrier Properties

    PubMed Central

    Uysal Unalan, Ilke; Boyacı, Derya; Ghaani, Masoud; Trabattoni, Silvia; Farris, Stefano

    2016-01-01

    In this work, we present the development of bionanocomposite coatings on poly(ethylene terephthalate) (PET) with outstanding oxygen barrier properties. Pullulan and graphene oxide (GO) were used as main polymer phase and nanobuilding block (NBB), respectively. The oxygen barrier performance was investigated at different filler volume fractions (ϕ) and as a function of different relative humidity (RH) values. Noticeably, the impermeable nature of GO was reflected under dry conditions, in which an oxygen transmission rate (OTR, mL·m−2·24 h−1) value below the detection limit of the instrument (0.01 mL·m−2·24 h−1) was recorded, even for ϕ as low as 0.0004. A dramatic increase of the OTR values occurred in humid conditions, such that the barrier performance was totally lost at 90% RH (the OTR of coated PET films was equal to the OTR of bare PET films). Modelling of the experimental OTR data by Cussler’s model suggested that the spatial ordering of GO sheets within the main pullulan phase was perturbed because of RH fluctuations. In spite of the presence of the filler, all the formulations allowed the obtainment of final materials with haze values below 3%, the only exception being the formulation with the highest loading of GO (ϕ ≈ 0.03). The mechanisms underlying the experimental observations are discussed. PMID:28335372

  20. Pullulanase: role in starch hydrolysis and potential industrial applications.

    PubMed

    Hii, Siew Ling; Tan, Joo Shun; Ling, Tau Chuan; Ariff, Arbakariya Bin

    2012-01-01

    The use of pullulanase (EC 3.2.1.41) has recently been the subject of increased applications in starch-based industries especially those aimed for glucose production. Pullulanase, an important debranching enzyme, has been widely utilised to hydrolyse the α-1,6 glucosidic linkages in starch, amylopectin, pullulan, and related oligosaccharides, which enables a complete and efficient conversion of the branched polysaccharides into small fermentable sugars during saccharification process. The industrial manufacturing of glucose involves two successive enzymatic steps: liquefaction, carried out after gelatinisation by the action of α-amylase; saccharification, which results in further transformation of maltodextrins into glucose. During saccharification process, pullulanase has been used to increase the final glucose concentration with reduced amount of glucoamylase. Therefore, the reversion reaction that involves resynthesis of saccharides from glucose molecules is prevented. To date, five groups of pullulanase enzymes have been reported, that is, (i) pullulanase type I, (ii) amylopullulanase, (iii) neopullulanase, (iv) isopullulanase, and (v) pullulan hydrolase type III. The current paper extensively reviews each category of pullulanase, properties of pullulanase, merits of applying pullulanase during starch bioprocessing, current genetic engineering works related to pullulanase genes, and possible industrial applications of pullulanase.

  1. Temperature-responsive size-exclusion chromatography using poly(N-isopropylacrylamide) grafted silica.

    PubMed

    Lakhiari, H; Okano, T; Nurdin, N; Luthi, C; Descouts, P; Muller, D; Jozefonvicz, J

    1998-03-02

    Silica-based packing materials induce non-specific interactions with proteins in aqueous media because of the nature of their surface, mainly silanol groups. Therefore, the silica surface has to be modified in order to be used as stationary phase for the High Performance Size-Exclusion Chromatography (HPSEC) of proteins. For this purpose, porous silica beads were coated with hydrophilic polymer gels (dextrans of different molecular weights) carrying a calculated amount of diethyl-aminoethyl groups (DEAE). Actually, as shown by HPSEC, these dextran modified supports minimize non-specific adsorption for proteins and pullulans in aqueous solution. Then, in order to change the pore size in response to temperature, temperature responsive polymer of poly(N-isopropylacrylamide) (PIPAAm) was introduced into the surface of dextran-DEAE on porous silica beads. The structure of these supports before and after modification was alternately studied by Scanning Electronic Microscopy (SEM) and Scanning Force Microscopy (SFM). An adsorption of radiolabelled albumin was performed to complete our study. Silica modifications by dextran-DEAE and PIPAAm improve the neutrality of the support and minimize the non-specific interactions between the solid support and proteins in solution. At low temperature, the support having PIPAAm exhibits a high resolution domain in HPSEC and finally permits a better resolution of proteins and pullulans. At higher temperature, hydrophobic properties of PIPAAm produce interactions with some proteins and trigger off a slight delay of their elution time.

  2. Molecular Entanglement and Electrospinnability of Biopolymers

    PubMed Central

    Kong, Lingyan; Ziegler, Gregory R.

    2014-01-01

    Electrospinning is a fascinating technique to fabricate micro- to nano-scale fibers from a wide variety of materials. For biopolymers, molecular entanglement of the constituent polymers in the spinning dope was found to be an essential prerequisite for successful electrospinning. Rheology is a powerful tool to probe the molecular conformation and interaction of biopolymers. In this report, we demonstrate the protocol for utilizing rheology to evaluate the electrospinnability of two biopolymers, starch and pullulan, from their dimethyl sulfoxide (DMSO)/water dispersions. Well-formed starch and pullulan fibers with average diameters in the submicron to micron range were obtained. Electrospinnability was evaluated by visual and microscopic observation of the fibers formed. By correlating the rheological properties of the dispersions to their electrospinnability, we demonstrate that molecular conformation, molecular entanglement, and shear viscosity all affect electrospinning. Rheology is not only useful in solvent system selection and process optimization, but also in understanding the mechanism of fiber formation on a molecular level. PMID:25226274

  3. Rye grains and the soil derived from under the organic and conventional rye crops as a potential source of biological agents causing respiratory diseases in farmers

    PubMed Central

    Cholewa, Grażyna; Krasowska, Ewelina; Chmielewska-Badora, Jolanta; Zwoliński, Jacek; Sobczak, Paweł

    2013-01-01

    Introduction Introduction: Due to the specific work environment, farmers are exposed to various biological occupational hazard. Among these factors significant are fungi present in the grain and also in the soil. The fungi may be the cause of human diseases including skin infections, asthma, allergic rhinitis and many others. Aim The aim of this study was to quantify and identify species of fungi colonizing rye grain samples and the soil under cultivation. Material and methods The material consisted of grain and soil samples from two agricultural systems: organic and conventional. To determine the concentration and composition of fungi in collected samples, two media: Malt Agar (MA, Becton, Dickinson and Company) and Potato Dextrose Agar (PDA, Becton, Dickinson and Company) were used. The composition of species in fungal flora was determined using macroscopic and microscopic methods. The isolates of fungi were ranked in the appropriate classes of biosafety BSL. Results The most frequently isolated fungi from organic rye grain, regardless of the media used, were species: Aureobasidium pullulans and Alternaria alternata. In conventional farms, most species isolated from rye grain were: Aureobasidium pullulans, Cladosporium oxysporum, Alternaria alternata and yeast-like fungi. Most often species isolated from the soil was Penicillium citreo-viride. Conclusions All the results of the research demonstrate the potential hazard to the health of people working in agriculture. Significant exposure of this professional group is associated with the presence of harmful biological agents present in the grain and soil from its cultivation. PMID:24494000

  4. Yeasts colonizing the leaf surfaces.

    PubMed

    Sláviková, Elena; Vadkertiová, Renata; Vránová, Dana

    2007-08-01

    The yeasts were isolated from the leaf surfaces of ten species of trees. The study site was a forest park (Zelezná Studnicka) of the Small Carpathians mountain range. One hundred and thirty seven yeast strains belonging to 13 genera were isolated from 320 samples of leaves and needles. Seventeen yeast species were isolated, but only seven occurred regularly: Aureobasidium pullulans, Cryptococcus laurentii, Pichia anomala, Metschnikowia pulcherrima, Saccharomyces sp., Lachancea thermotolerans, and Rhodotorula glutinis. The remaining species were isolated from the leaves and needles of three or less tree species. A. pullulans, Cr. laurentii, and P. anomala were the most frequently found species and they occurred on leaves and needles of all ten tree species. Saccharomyces sp. occurred in leaf samples collected from eight kinds of trees. M. pulcherrima and L. thermotolerans were found in samples collected from six species of trees. Both these species occurred almost always on the leaves of deciduous trees. Rh. glutinis was the most frequently isolated carotenoids producing species. We have found out that the ascomycetous and basidiomycetous species were present in the leaf samples in approximately equal frequency, contrary to the soil samples taken from this forest park, where the ascomycetous species were found rarely.

  5. Occurrence and infection of Cladosporium, Fusarium, Epicoccum and Aureobasidium in withered rotten grapes during post-harvest dehydration.

    PubMed

    Lorenzini, Marilinda; Zapparoli, Giacomo

    2015-11-01

    Fungi like Cladosporium, Fusarium, Epicoccum and Aureobasidium can occur on withered grapes causing spoilage of passito wine. There is little or no information on the pathogenic role of these fungi. This study describes the isolation, incidence and identification of several isolates from different withered rotten grapes. Representative isolates grouped in several phenotypes were identified by phylogenetic analysis of internal transcribed spacer, actin or elongation factor gene sequences. Isolates of Cladosporium and Fusarium were ascribed to different species, of these C. ramotenellum, C. halotolerans and F. graminearum were isolated from Vitis vinifera for the first time. All Epicoccum and Aureobasidium isolates belonged to E. nigrum and A. pullulans, respectively. Random amplified DNA polymorphism analysis showed high level of heterogenicity among Epicoccum and Fusarium isolates. Infection assays were carried out to evaluate infectivity in some strains under different withering conditions. Fusarium spp. strains had similar infectivity, while significant variability was observed among Cladosporium spp. and E. nigrum strains. A. pullulans resulted particularly infective. This study provided insights into the occurrence and infection of these fungi in fruit-drying rooms with important implications towards control management during the withering.

  6. Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees.

    PubMed

    Vadkertiová, Renáta; Molnárová, Jana; Vránová, Dana; Sláviková, Elena

    2012-12-01

    Yeasts are common inhabitants of the phyllosphere, but our knowledge of their diversity in various plant organs is still limited. This study focused on the diversity of yeasts and yeast-like organisms associated with matured fruits and fully open blossoms of apple, plum, and pear trees, during 2 consecutive years at 3 localities in southwest Slovakia. The occurrence of yeasts and yeast-like organisms in fruit samples was 2½ times higher and the yeast community more diverse than that in blossom samples. Only 2 species (Aureobasidium pullulans and Metschnikowia pulcherrima) occurred regularly in the blossom samples, whereas Galactomyces candidus, Hanseniaspora guilliermondii, Hanseniaspora uvarum, M. pulcherrima, Pichia kluyveri, Pichia kudriavzevii, and Saccharomyces cerevisiae were the most frequently isolated species from the fruit samples. The ratio of the number of samples where only individual species were present to the number of samples where 2 or more species were found (consortium) was counted. The occurrence of individual species in comparison with consortia was much higher in blossom samples than in fruit samples. In the latter, consortia predominated. Aureobasidium pullulans, M. pulcherrima, and S. cerevisiae, isolated from both the fruits and blossoms, can be considered as resident yeast species of various fruit tree species cultivated in southwest Slovakia localities.

  7. The effect of application of micromycetes on plant growth, as well as soybean and barley yields.

    PubMed

    Ignatova, Lyudmila; Brazhnikova, Yelena; Berzhanova, Ramza; Mukasheva, Togzhan

    2015-01-01

    The possibility of application of micromycetes (strains Penicillium bilaiae Pb14, Aureobasidium pullulans YA05 and Rhodotorula mucilaginosa YR07) to increase yields of soybean (Glycine max cv Almaty) and barley (Hordeum vulgare cv Arna) was estimated. It was shown that the most positive effect on germination energy and seed germination after seed treatment with liquid culture, supernatant and filtrate, is achieved at 1:5 dilution. In studying the influence of cell-associated and extracellular biologically active compounds of micromycetes (liquid culture and supernatant) on biometric parameters of seedlings, the maximum stimulating effect was observed in the variants with liquid culture. These strains of micromycetes were used as a bases for various compositions of preparations - application of each strain separately and application of micromycetes mixes. In microfield experiments, the increase of soybean yield ranged from 4.5 to 9.4 quintal/ha, barley - from 2.9 to 5.9 quintal/ha. A significant increase in various parameters of structure of the yield was shown in all experimental variants when compared to the control. It was found that an increase in soybean and barley yields and yield components was higher in the variant with a mix of micromycetes when compared to the separate application of each strain. The most efficient mixture was based on the mix of fungal strains (culture filtrate of P. bilaiae Pb14 diluted 1:5 + liquid cultures of A. pullulans YA05 and Rh. mucilaginosa YR07 in a 1:5 dilution).

  8. Recombinant bacterial amylopullulanases

    PubMed Central

    Nisha, M; Satyanarayana, T

    2013-01-01

    Pullulanases are endo-acting enzymes capable of hydrolyzing α-1, 6-glycosidic linkages in starch, pullulan, amylopectin, and related oligosaccharides, while amylopullulanases are bifunctional enzymes with an active site capable of cleaving both α-1, 4 and α-1, 6 linkages in starch, amylose and other oligosaccharides, and α-1, 6 linkages in pullulan. The amylopullulanases are classified in GH13 and GH57 family enzymes based on the architecture of catalytic domain and number of conserved sequences. The enzymes with two active sites, one for the hydrolysis of α-1, 4- glycosidic bond and the other for α-1, 6-glycosidic bond, are called α-amylase-pullulanases, while amylopullulanases have only one active site for cleaving both α-1, 4- and α-1, 6-glycosidic bonds. The amylopullulanases produced by bacteria find applications in the starch and baking industries as a catalyst for one step starch liquefaction-saccharification for making various sugar syrups, as antistaling agent in bread and as a detergent additive. PMID:23645215

  9. Pullulanase: Role in Starch Hydrolysis and Potential Industrial Applications

    PubMed Central

    Hii, Siew Ling; Tan, Joo Shun; Ling, Tau Chuan; Ariff, Arbakariya Bin

    2012-01-01

    The use of pullulanase (EC 3.2.1.41) has recently been the subject of increased applications in starch-based industries especially those aimed for glucose production. Pullulanase, an important debranching enzyme, has been widely utilised to hydrolyse the α-1,6 glucosidic linkages in starch, amylopectin, pullulan, and related oligosaccharides, which enables a complete and efficient conversion of the branched polysaccharides into small fermentable sugars during saccharification process. The industrial manufacturing of glucose involves two successive enzymatic steps: liquefaction, carried out after gelatinisation by the action of α-amylase; saccharification, which results in further transformation of maltodextrins into glucose. During saccharification process, pullulanase has been used to increase the final glucose concentration with reduced amount of glucoamylase. Therefore, the reversion reaction that involves resynthesis of saccharides from glucose molecules is prevented. To date, five groups of pullulanase enzymes have been reported, that is, (i) pullulanase type I, (ii) amylopullulanase, (iii) neopullulanase, (iv) isopullulanase, and (v) pullulan hydrolase type III. The current paper extensively reviews each category of pullulanase, properties of pullulanase, merits of applying pullulanase during starch bioprocessing, current genetic engineering works related to pullulanase genes, and possible industrial applications of pullulanase. PMID:22991654

  10. Automating multi-step paper-based assays using integrated layering of reagents.

    PubMed

    Jahanshahi-Anbuhi, Sana; Kannan, Balamurali; Pennings, Kevin; Monsur Ali, M; Leung, Vincent; Giang, Karen; Wang, Jingyun; White, Dawn; Li, Yingfu; Pelton, Robert H; Brennan, John D; Filipe, Carlos D M

    2017-02-28

    We describe a versatile and simple method to perform sequential reactions on paper analytical devices by stacking dry pullulan films on paper, where each film contains one or more reagents or acts as a delay layer. Exposing the films to an aqueous solution of the analyte leads to sequential dissolution of the films in a temporally controlled manner followed by diffusive mixing of the reagents, so that sequential reactions can be performed. The films can be easily arranged for lateral flow assays or for spot tests (reactions take place sequentially in the z-direction). We have tested the general feasibility of the approach using three different model systems to demonstrate different capabilities: 1) pH ramping from low to high and high to low to demonstrate timing control; 2) rapid ready-to-use two-step Simon's assays on paper for detection of drugs of abuse utilizing a 2-layer stack containing two different reagents to demonstrate the ability to perform assays in the z-direction; and 3) sequential cell lysing and colorimetric detection of an intracellular bacterial enzyme, to demonstrate the ability of the method to perform sample preparation and analysis in the form of a spot assay. Overall, these studies demonstrate the potential of stacked pullulan films as useful components to enable multi-step assays on simple paper-based devices.

  11. Xylo-oligosaccharides and lactitol promote the growth of Bifidobacterium lactis and Lactobacillus species in pure cultures.

    PubMed

    Mäkeläinen, H; Saarinen, M; Stowell, J; Rautonen, N; Ouwehand, A C

    2010-06-01

    The current screening study aimed at identifying promising prebiotic and synbiotic candidates. The fermentation of xylo-oligosaccharides, xylan, galacto-oligosaccharide, fructo-oligosaccharide, polydextrose, lactitol, gentiobiose and pullulan was investigated in vitro. The ability of these established and potential prebiotic candidates to function as a sole carbon source for probiotic (Bifidobacterium and Lactobacillus), intestinal and potential pathogenic microbes (Eubacterium, Bacteroides, Clostridium, Escherichia coli, Salmonella, and Staphylococcus) was assessed in pure cultures. Xylo-oligosaccharides were fermented with high specificity by the tested Bifidobacterium lactis strains and lactitol by lactobacilli, whereas galacto-oligosaccharides, fructo-oligosaccharides and gentiobiose were utilised by a larger group of microbes. Xylan, polydextrose and pullulan were utilised to a limited extent by only a few of the tested microbes. The results of this screening study indicate that xylo-oligosaccharides and lactitol support the growth of a limited number of beneficial microbes in pure cultures. Such a high degree of specificity has not been previously reported for established prebiotics. Based on these results, the most promising prebiotics and synbiotic combinations can be selected for further testing.

  12. Inactivation of bacteria and yeast using high-frequency ultrasound treatment.

    PubMed

    Gao, Shengpu; Hemar, Yacine; Ashokkumar, Muthupandian; Paturel, Sara; Lewis, Gillian D

    2014-09-01

    High-frequency (850 kHz) ultrasound was used to inactivate bacteria and yeast at different growth phases under controlled temperature conditions. Three species of bacteria, Enterobacter aerogenes, Bacillus subtilis and Staphylococcus epidermidis as well as a yeast, Aureobasidium pullulans were considered. The study shows that high-frequency ultrasound is highly efficient in inactivating the bacteria in both their exponential and stationary growth phases, and inactivation rates of more than 99% were achieved. TEM observation suggests that the mechanism of bacteria inactivation is mainly due to acoustic cavitation generated free radicals and H2O2. The rod-shaped bacterium B. subtilis was also found to be sensitive to the mechanical effects of acoustic cavitation. The study showed that the inactivation process continued even after ultrasonic processing cessed due to the presence of H2O2, generated during acoustic cavitation. Compared to bacteria, the yeast A. pullulans was found to be more resistant to high-frequency ultrasound treatment.

  13. Stabilization of membranes upon interaction of amphipathic polymers with membrane proteins

    PubMed Central

    Picard, Martin; Duval-Terrié, Caroline; Dé, Emmanuelle; Champeil, Philippe

    2004-01-01

    Amphipathic polymers derived from polysaccharides, namely hydrophobically modified pullulans, were previously suggested to be useful as polymeric substitutes of ordinary surfactants for efficient and structure-conserving solubilization of membrane proteins, and one such polymer, 18C10, was optimized for solubilization of proteins derived from bacterial outer membranes (Duval-Terrié et al. 2003). We asked whether a similar ability to solubilize proteins could also be demonstrated in eukaryotic membranes, namely sarcoplasmic reticulum (SR) fragments, the major protein of which is SERCA1a, an integral membrane protein with Ca2+-dependent ATPase and Ca2+-pumping activity. We found that 18C10-mediated solubilization of these SR membranes did not occur. Simultaneously, however, we found that low amounts of this hydrophobically modified pullulan were very efficient at preventing long-term aggregation of these SR membranes. This presumably occurred because the negatively charged polymer coated the membranous vesicles with a hydrophilic corona (a property shared by many other amphipathic polymers), and thus minimized their flocculation. Reminiscent of the old Arabic gum, which stabilizes Indian ink by coating charcoal particles, the newly designed amphipathic polymers might therefore unintentionally prove useful also for stabilization of membrane suspensions. PMID:15459343

  14. Photomediated Reactive Oxygen Species-Generable Nanoparticles for Triggered Release and Endo/Lysosomal Escape of Drug upon Attenuated Single Light Irradiation.

    PubMed

    Seo, Eun Ha; Lee, Chung-Sung; Na, Kun

    2015-12-30

    Nanoparticles with "smart" stimuli-responsive materials and multiple therapeutic strategies in a single delivery platform have emerged for highly efficient cancer therapy. Here, photomediated reactive oxygen species (ROS)-generable nanoparticles are designed that can trigger drug release and endo/lysosomal escape upon attenuated single light irradiation, simultaneously, for synergistic chemo-photodynamic ablation. In this study, the self-ROS-generable nanoparticles (SRNs) are prepared from the polymer based on polysaccharide, chlorin e6 as ROS generator and lipoic acid as ROS scavenger covalently conjugated pullulan with anticancer drug (doxorubicin, DOX) through self-assembly, and can disassemble via the ROS-mediated reduction of lipoyl group in response to low level exogenous single light switch. After cellular internalization in hepatic cancer through asialoglycoprotein receptor (ASGPR, as pullulan receptor)-mediated endocytosis, once irradiated, SRNs are able to produce ROS that can simultaneously induce drug release triggering and endo/lysosomal escape of DOX into cytoplasm as well as directly photodynamic therapy for highly efficient chemo-photodynamic cancer therapy. This promising delivery system, which has huge potential in biomedical applications, may be optimal for smart delivery platform.

  15. Thermostable amylolytic enzymes from a new Clostridium isolate

    SciTech Connect

    Madi, E.; Antranikian, G.; Ohmiya, K.; Gottschalk, G.

    1987-07-01

    A new Clostridium strain was isolated on starch at 60 degrees C. Starch, pullulan, maltotriose, and maltose induced the synthesis of alpha-amylase and pullulanase, while glucose, ribose, fructose, and lactose did not. The formation of the amylolytic enzymes was dependent on growth and occurred predominantly in the exponential phase. The enzymes were largely cell bound during growth of the organism with 0.5% starch, but an increase of the starch concentration in the growth medium was accompanied by the excretion of alpha-amylase and pullulanase into the culture broth; but also by a decrease of total activity. Alpha-amylase, pullulanase, and alpha-glucosidase were active in a broad temperature range (40 to 85 degrees C) and displayed temperature optima for activity at 60 to 70 degrees C. During incubation with starch under aerobic conditions at 75 degrees C for 2 hours, the activity of both enzymes decreased to only 90 or 80%. The apparent Km values of alpha-amylase, pullulanase, and alpha-glucosidase for their corresponding substrates, starch, pullulan, and maltose were 0.35 mg/ml, 0.63 mg/ml, and 25 mM, respectively. (Refs. 31).

  16. Isolation and characterization of Schwanniomyces alluvius amylolytic enzymes

    SciTech Connect

    Wilson, J.J.; Ingledew, W.M.

    1982-08-01

    The extracellular amylolytic enzymes of Schwanniomyces alluvius were studied to determine future optimization of this yeast for the production of industrial ethanol from starch. Both alpha-amylase and glucoamylase were isolated and purified. Alpha-amylase has an optimum pH of 6.3 and was stable from pH 4.5 to 7.5. The optimum temperature for the enzyme was 40 degrees C, but it was quickly inactivated at temperatures above 40 degrees C. The Km for soluble starch was 0.364 mg/ml. The molecular weight was calculated to be 61,900 + or - 700. Alpha-amylase was capable of releasing glucose from starch, but not from pullulan. Glucoamylase had an optimum pH of 5.0 and was stable from pH 4.0 to more than 8.0. The optimum temperature for the enzyme was 50 degrees C, and although less heat sensitive than alpha-amylase, it was quickly inactivated at 60 degrees C. Km values were 12.67 mg/ml for soluble starch and 0.72 mM for maltose. The molecular weight was calculated to be 155,000 + or - 3,000. Glucoamylase released only glucose from both soluble starch and pullulan. Schwanniomyces alluvius is one of the very few yeasts to possess both alpha-amylase and glucoamylase as well as some fermentative capacity to produce ethanol. (Refs. 9).

  17. Carbohydrate Availability Regulates Virulence Gene Expression in Streptococcus suis

    PubMed Central

    Ferrando, M. Laura; van Baarlen, Peter; Orrù, Germano; Piga, Rosaria; Bongers, Roger S.; Wels, Michiel; De Greeff, Astrid; Smith, Hilde E.; Wells, Jerry M.

    2014-01-01

    Streptococcus suis is a major bacterial pathogen of young pigs causing worldwide economic problems for the pig industry. S. suis is also an emerging pathogen of humans. Colonization of porcine oropharynx by S. suis is considered to be a high risk factor for invasive disease. In the oropharyngeal cavity, where glucose is rapidly absorbed but dietary α-glucans persist, there is a profound effect of carbohydrate availability on the expression of virulence genes. Nineteen predicted or confirmed S. suis virulence genes that promote adhesion to and invasion of epithelial cells were expressed at higher levels when S. suis was supplied with the α-glucan starch/pullulan compared to glucose as the single carbon source. Additionally the production of suilysin, a toxin that damages epithelial cells, was increased more than ten-fold when glucose levels were low and S. suis was growing on pullulan. Based on biochemical, bioinformatics and in vitro and in vivo gene expression studies, we developed a biological model that postulates the effect of carbon catabolite repression on expression of virulence genes in the mucosa, organs and blood. This research increases our understanding of S. suis virulence mechanisms and has important implications for the design of future control strategies including the development of anti-infective strategies by modulating animal feed composition. PMID:24642967

  18. Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape.

    PubMed

    Parafati, Lucia; Vitale, Alessandro; Restuccia, Cristina; Cirvilleri, Gabriella

    2015-05-01

    Strains belonging to the species Saccharomyces cerevisiae, Wickerhamomyces anomalus, Metschnikowia pulcherrima and Aureobasidium pullulans, isolated from different food sources, were tested in vitro as biocontrol agents (BCAs) against the post-harvest pathogenic mold Botrytis cinerea. All yeast strains demonstrated antifungal activity at different levels depending on species and medium. Killer strains of W. anomalus and S. cerevisiae showed the highest biocontrol in vitro activity, as demonstrated by largest inhibition halos. The competition for iron and the ability to form biofilm and to colonize fruit wounds were hypothesized as the main action mechanisms for M. pulcherrima. The production of hydrolytic enzymes and the ability to colonize the wounds were the most important mechanisms for biocontrol activity in A. pullulans and W. anomalus, which also showed high ability to form biofilm. The production of volatile organic compounds (VOCs) with in vitro and in vivo inhibitory effect on pathogen growth was observed for the species W. anomalus, S. cerevisiae and M. pulcherrima. Our study clearly indicates that multiple modes of action may explain as M. pulcherrima provide excellent control of postharvest botrytis bunch rot of grape.

  19. Development of taste masked fast disintegrating films of levocetirizine dihydrochloride for oral use.

    PubMed

    Mahesh, A; Shastri, Nalini; Sadanandam, M

    2010-01-01

    Fast disintegrating films of levocetirizine dihydrochloride useful for the treatment of acute allergic rhinitis and chronic urticaria have been developed by using the taste masking ability of cyclodextrins. The fast disintegrating films were prepared by solvent casting method. The films contained water-soluble polymers such as Kollicoat IR or pullulan, aspartame and sucralose as sweeteners and pre-gelatinized starch as disintegrant. Levocetirizine dihydrochloride was incorporated into these films by in-situ complex formation with hydroxy propyl beta-cyclodextrin. The optimized films were evaluated for weight variation, film thickness, folding endurance, tackiness, tensile strength, assay, content uniformity, in vitro disintegration and dissolution, in vivo disintegration and taste masking ability by human gustatory sensation test. Results revealed that the organoleptic properties of levocetirizine dihydrochloride were improved by complexation with hydroxy propyl beta-cyclodextrin and the complex could be successfully formulated into a fast disintegrating film.

  20. Endophytic fungi associated with cacti in Arizona.

    PubMed

    Suryanarayanan, Trichur S; Wittlinger, Sally K; Faeth, Stanley H

    2005-05-01

    21 cactus species occurring in various localities within Arizona were screened for the presence of fungal endophytes. 900 endophyte isolates belonging to 22 fungal species were isolated. Cylindropuntia fulgida had the maximum endophyte species diversity, while C. ramosissima harboured the maximum number of endophyte isolates. Alternaria sp., Aureobasidium pullulans, and Phoma spp. were isolated from several cactus species. The diversity of the endophyte assemblages was low and no host specificity among endophytes was observed. However, the frequencies of colonization of the few endophyte species recovered were high and comparable to those reported for tropical plant hosts. Species of Colletotrichum, Phomopsis, and Phyllosticta, which are commonly isolated as endophytes from plants of more mesic habitats, were absent from these cacti.

  1. Optimised method for the analysis of phenolic compounds from caper (Capparis spinosa L.) berries and monitoring of their changes during fermentation.

    PubMed

    Francesca, Nicola; Barbera, Marcella; Martorana, Alessandra; Saiano, Filippo; Gaglio, Raimondo; Aponte, Maria; Moschetti, Giancarlo; Settanni, Luca

    2016-04-01

    In this work, an ad hoc method to identify and quantify polyphenols from caper berries was developed on high-performance liquid chromatography/electrospray ionisation source/mass spectrometry (HPLC-ESI-MS). The method was applied during fermentation carried out with Lactobacillus pentosus OM13 (Trial S) and without starter (Trial C). A total of five polyphenols were identified. All samples contained high concentrations of rutin. Epicatechin was found in untreated fruits, on the contrary quercetin was detected during fermentation. Trial S was characterised by a more rapid acidification and lower levels of spoilage microorganisms than Trial C. L. pentosus dominated among the microbial community of both trials and the highest biodiversity, in terms of strains, was displayed by Trial C. Aureobasidium pullulans was the only yeast species found. The analytical method proposed allowed a high polyphenolic compound recovery from untreated and processed caper berries in short time. The starter culture reduced the bitter taste of the final product.

  2. Fungal endophytes in germinated seeds of the common bean, Phaseolus vulgaris

    PubMed Central

    Parsa, Soroush; García-Lemos, Adriana M.; Castillo, Katherine; Ortiz, Viviana; López-Lavalle, Luis Augusto Becerra; Braun, Jerome; Vega, Fernando E.

    2016-01-01

    We conducted a survey of fungal endophytes in 582 germinated seeds belonging to 11 Colombian cultivars of the common bean (Phaseolus vulgaris). The survey yielded 394 endophytic isolates belonging to 42 taxa, as identified by sequence analysis of the ribosomal DNA internal transcribed spacer (ITS) region. Aureobasidium pullulans was the dominant endophyte, isolated from 46.7 % of the samples. Also common were Fusarium oxysporum, Xylaria sp., and Cladosporium cladosporioides, but found in only 13.4 %, 11.7 %, and 7.6 % of seedlings, respectively. Endophytic colonization differed significantly among common bean cultivars and seedling parts, with the highest colonization occurring in the first true leaves of the seedlings. PMID:27109374

  3. Extracellular Polysaccharides Produced by Yeasts and Yeast-Like Fungi

    NASA Astrophysics Data System (ADS)

    van Bogaert, Inge N. A.; de Maeseneire, Sofie L.; Vandamme, Erick J.

    Several yeasts and yeast-like fungi are known to produce extracellular polysaccharides. Most of these contain D-mannose, either alone or in combination with other sugars or phosphate. A large chemical and structural variability is found between yeast species and even among different strains. The types of polymers that are synthesized can be chemically characterized as mannans, glucans, phosphoman-nans, galactomannans, glucomannans and glucuronoxylomannans. Despite these differences, almost all of the yeast exopolysaccharides display some sort of biological activity. Some of them have already applications in chemistry, pharmacy, cosmetics or as probiotic. Furthermore, some yeast exopolysaccharides, such as pullulan, exhibit specific physico-chemical and rheological properties, making them useful in a wide range of technical applications. A survey is given here of the production, the characteristics and the application potential of currently well studied yeast extracellular polysaccharides.

  4. Expression of multiple complex polysaccharide-degrading enzyme systems by marine bacterium strain 2-40.

    PubMed

    Ensor; Stosz; Weiner

    1999-08-01

    Saprophytic marine bacterium strain 2-40 (2-40) can degrade numerous complex polysaccharides (CP) including agar, alginic acid, carrageenan, carboxymethylcellulose, chitin, beta-glucan, laminarin, pectin, pullulan, starch, and xylan. The growth of 2-40 was assessed in minimal media containing one of 16 CP or simple carbohydrates, with the result that all supported growth. Each of the carbohydrase systems was elicited at highest levels by the homologous substrate. Each, excluding amylase, was repressed when 2-40 was cultured in glucose minimal synthetic media. Cyclic adenosine monophosphate alleviated the repression. Agarose as sole carbon source supported the synthesis of the most heterologous complex carbohydrase systems, although, generally, at a lower level of activity than the homologous CP.

  5. Purification of extrachloroplastic. beta. -amylase from leaves of starchless and wild type Arabidopsis

    SciTech Connect

    Somerville, C.; Monroe, J.; Preiss, J. )

    1989-04-01

    Amylase activity in crude leaf extracts from starchless mutants of Arabidopsis thaliana is 5 to 10 fold higher than in the wild type (WT) when plants are grown under a 12 h photoperiod. Visualized on native PAGE, the increased activity is attributed primarily to a previously characterized extrachloroplastic {beta}-(exo)amylase. The {beta}-amylases from phosoglucomutase deficient (starchless) and WT leaves were purified to homogeneity in two steps utilizing polyethylene glycol fractionation, and cyclohexaamylose affinity chromatography. The enzyme from both mutant and WT leaves had negligible activity toward either {beta}-limit dextrin or pullulan. The specific activities of both purified enzymes were similar indicating that the protein is over-expressed in the mutant. Preliminary antibody neutralization experiments suggest that the two {beta}-amylases are not different.

  6. Sugarbeet as a renewable resource

    SciTech Connect

    Edye, L.A.; Clarke, M.A.

    1995-12-01

    Sugarbeet (Beta vulgaris) is produced annually on the order of 400 million tonnes, in temperate climates. The primary product is sugar (sucrose); other products include feeds (molasses and beet pulp), and raffinose, pectin and arabinan. Recently, production of paper from sugarbeet pulp has begun. A wide range of non-food products is available through microbial and chemical reactions on sugarbeet juices, molasses and sugars. Products of microbial processes (chemical transformations are discussed in the companion presentation on sugarcane) include polymers to use as biodegradable plastics (pullulans, polyhydroxyalkanoates, polylactide) and others for food and non food use (levan, dextran). Basic chemicals, including citric acid and lactic acid, and amino acids, notably lysine, are produced from sugarbeet sources. The production of ethanol, as fuel or as beverage, is well known. Products and processes are outlined, and recent developments are emphasized.

  7. Bacillus stearothermophilus Neopullulanase Selective Hydrolysis of Amylose to Maltose in the Presence of Amylopectin

    PubMed Central

    Kamasaka, Hiroshi; Sugimoto, Kazuhisa; Takata, Hiroki; Nishimura, Takahisa; Kuriki, Takashi

    2002-01-01

    The specificity of Bacillus stearothermophilus TRS40 neopullulanase toward amylose and amylopectin was analyzed. Although this neopullulanase completely hydrolyzed amylose to produce maltose as the main product, it scarcely hydrolyzed amylopectin. The molecular mass of amylopectin was decreased by only one order of magnitude, from approximately 108 to 107 Da. Furthermore, this neopullulanase selectively hydrolyzed amylose when starch was used as a substrate. This phenomenon, efficient hydrolysis of amylose but not amylopectin, was also observed with cyclomaltodextrinase from alkaliphilic Bacillus sp. strain A2-5a and maltogenic amylase from Bacillus licheniformis ATCC 27811. These three enzymes hydrolyzed cyclomaltodextrins and amylose much faster than pullulan. Other amylolytic enzymes, such as bacterial saccharifying α-amylase, bacterial liquefying α-amylase, β-amylase, and neopullulanase from Bacillus megaterium, did not exhibit this distinct substrate specificity at all, i.e., the preference of amylose to amylopectin. PMID:11916682

  8. Effect of soluble polysaccharides addition on rheological properties and microstructure of chitin nanocrystal aqueous dispersions.

    PubMed

    Tzoumaki, Maria V; Moschakis, Thomas; Biliaderis, Costas G

    2013-06-05

    Mixtures of chitin nanocrystal aqueous dispersions (at pH 3.0) with soluble polysaccharides of varying molecular features were examined rheologically and microscopically, under different conditions of biopolymer concentration, ionic strength, pH and temperature. The addition of non-adsorbing polysaccharides (guar gum, locust bean gum and xanthan) as well as oppositely charged (κ-carrageenan) to a chitin nanocrystal dispersion, resulted in a network formation and the gel strength increased with the chitin nanocrystal concentration. In contrast, the chitin nanocrystal - chitosan or - pullulan mixed dispersions did not show any network formation (tanδ>1) at the concentration range examined. An increase in ionic strength and pH also resulted in an enhanced elasticity of the chitin nanocrystal-guar gum dispersions. Furthermore, an increase in the elastic modulus, which was irreversible upon cooling, was observed upon heating the chitin nanocrystal-polysaccharide mixed dispersions.

  9. Formation of polyelectrolyte complexes with diethylaminoethyl dextran: charge ratio and molar mass effect.

    PubMed

    Le Cerf, Didier; Pepin, Anne Sophie; Niang, Pape Momar; Cristea, Mariana; Karakasyan-Dia, Carole; Picton, Luc

    2014-11-26

    The formation of polyelectrolyte complexes (PECs) between carboxymethyl pullulan and DEAE Dextran, was investigated, in dilute solution, with emphasis on the effect of charge density (molar ratio or pH) and molar masses. Electrophoretic mobility measurements have evidenced that insoluble PECs (neutral electrophoretic mobility) occurs for charge ratio between 0.6 (excess of polycation) and 1 (stoichiometry usual value) according to the pH. This atypical result is explained by the inaccessibility of some permanent cationic charge when screened by pH dependant cationic ones (due to the Hoffman alkylation). Isothermal titration calorimetry (ITC) indicates an endothermic formation of PEC with a binding constant around 10(5) L mol(-1). Finally asymmetrical flow field flow fractionation coupled on line with static multi angle light scattering (AF4/MALS) evidences soluble PECs with very large average molar masses and size around 100 nm, in agreement with scrambled eggs multi-association between various polyelectrolyte chains.

  10. Fungal exopolysaccharide: production, composition and applications.

    PubMed

    Mahapatra, Subhadip; Banerjee, Debdulal

    2013-01-01

    Fungal exopolysaccharides (EPSs) have been recognized as high value biomacromolecules for the last two decades. These products, including pullulan, scleroglucan, and botryosphaeran, have several applications in industries, pharmaceuticals, medicine, foods etc. Although fungal EPSs are highly relevant, to date information concerning fungal biosynthesis is scarce and an extensive search for new fugal species that can produce novel EPSs is still needed. In most cases, the molecular weight variations and sugar compositions of fungal EPSs are dependent to culture medium composition and different physical conditions provided during fermentation. An inclusive and illustrative review on fungal EPS is presented here. The general outline of the present work includes fungal EPS production, their compositions and applications. An emphasis is also given to listing out different fungal strains that can produce EPSs.

  11. Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review.

    PubMed

    Tabasum, Shazia; Noreen, Aqdas; Kanwal, Arooj; Zuber, Mohammad; Anjum, Muhammad Naveed; Zia, Khalid Mahmood

    2017-05-01

    Glycoproteins have multidimensional properties such as biodegradability, biocompatibility, non-toxicity, antimicrobial and adsorption properties; therefore, they have wide range of applications. They are blended with different polymers such as chitosan, carboxymethyl cellulose (CMC), polyvinyl pyrrolidone (PVP), polycaprolactone (PCL), heparin, polystyrene fluorescent nanoparticles (PS-NPs) and carboxyl pullulan (PC) to improve their properties like thermal stability, mechanical properties, resistance to pH, chemical stability and toughness. Considering the versatile charateristics of glycoprotein based polymers, this review sheds light on synthesis and characterization of blends and composites of glycoproteins, with natural and synthetic polymers and their potential applications in biomedical field such as drug delivery system, insulin delivery, antimicrobial wound dressing uses, targeting of cancer cells, development of anticancer vaccines, development of new biopolymers, glycoproteome research, food product and detection of dengue glycoproteins. All the technical scientific issues have been addressed; highlighting the recent advancement.

  12. Production of Cellulolytic and Hemicellulolytic Enzymes From Aureobasidium pulluans on Solid State Fermentation

    NASA Astrophysics Data System (ADS)

    Leite, Rodrigo Simões Ribeiro; Bocchini, Daniela Alonso; da Silva Martins, Eduardo; Silva, Dênis; Gomes, Eleni; da Silva, Roberto

    This article investigates a strain of the yeast Aureobasidium pullulans for cellulase and hemicellulase production in solid state fermentation. Among the substrates analyzed, the wheat bran culture presented the highest enzymatic production (1.05 U/mL endoglucanase, 1.3 U/mL β-glucosidase, and 5.0 U/mL xylanase). Avicelase activity was not detected. The optimum pH and temperature for xylanase, endoglucanase and β-glucosidase were 5.0 and 50, 4.5 and 60, 4.0 and 75°C, respectively. These enzymes remained stable between a wide range of pH. The β-glucosidase was the most thermostable enzyme remaining 100% active when incubated at 75°C for 1 h.

  13. A glycoside hydrolase family 31 dextranase with high transglucosylation activity from Flavobacterium johnsoniae.

    PubMed

    Gozu, Yoshifumi; Ishizaki, Yuichi; Hosoyama, Yuhei; Miyazaki, Takatsugu; Nishikawa, Atsushi; Tonozuka, Takashi

    2016-08-01

    Glycoside hydrolase family (GH) 31 enzymes exhibit various substrate specificities, although the majority of members are α-glucosidases. Here, we constructed a heterologous expression system of a GH31 enzyme, Fjoh_4430, from Flavobacterium johnsoniae NBRC 14942, using Escherichia coli, and characterized its enzymatic properties. The enzyme hydrolyzed dextran and pullulan to produce isomaltooligosaccharides and isopanose, respectively. When isomaltose was used as a substrate, the enzyme catalyzed disproportionation to form isomaltooligosaccharides. The enzyme also acted, albeit inefficiently, on p-nitrophenyl α-D-glucopyranoside, and p-nitrophenyl α-isomaltoside was the main product of the reaction. In contrast, Fjoh_4430 did not act on trehalose, kojibiose, nigerose, maltose, maltotriose, or soluble starch. The optimal pH and temperature were pH 6.0 and 60 °C, respectively. Our results indicate that Fjoh_4430 is a novel GH31 dextranase with high transglucosylation activity.

  14. Action of Azotobacter vinelandii poly-beta-D-mannuronic acid C-5-epimerase on synthetic D-glucuronans.

    PubMed

    Chang, P S; Mukerjea, R; Fulton, D B; Robyt, J F

    2000-12-01

    Eleven different glucans (wheat starch, potato amylopectin, potato amylose, pullulan, alternan, regular comb dextran, alpha-cellulose, microcrystalline cellulose, CM-cellulose, chitin, and chitosan) that had their C-6 primary alcohol groups oxidized to carboxyl groups by reaction with 2,2,6,6-tetramethyl-1-piperidine oxoammonium ion (TEMPO), were reacted with Azotobacter vinelandii poly-beta-(1-->4)-D-mannuronic acid C-5-epimerase. All of the oxidized polysaccharides reacted with the C-5-epimerase, as evidenced by comparing: (1) differences in the relative viscosities; (2) differences in the carbazole reaction; (3) differences in their susceptibility to acid hydrolysis, and (4) differences in their ability to form calcium gels, before and after reaction. We further show the formation of L-iduronic acid from D-glucuronic acid for oxidized and epimerized amylose by 2D NOESY and COSY + 1H NMR.

  15. Pressate from peat dewatering as a substrate for bacterial growth. [Rhizopus arrhizus; Xanthomonas campestris; Aureobasidium

    SciTech Connect

    Mulligan, C.N.; Cooper, D.G.

    1985-07-01

    This study considered the possibility of using water expressed during the drying of fuel-grade peat as a substrate for microbial growth. Highly humified peat pressed for 2.5 min at 1.96 MPa produced water with a chemical oxygen demand of 690 mg/liter. Several biological compounds could be produced by using the organic matter inexpressed peat water as a substrate. These included polymers such as chitosan, contained in the cell wall of Rhizopus arrhizus, and two extracellular polysaccharides, xanthan gum and pullulan, produced by Bacillus subtilis grown in the expressed water. Small additions of nutrients to the peat pressate were necessary to obtain substantial yields of products. The addition of peptone, yeast extract, and glucose improved production of the various compounds. Biological treatment improved the quality of the expressed water to the extent that in an industrial process it could be returned to the environment.

  16. Fungal Exopolysaccharide: Production, Composition and Applications

    PubMed Central

    Mahapatra, Subhadip; Banerjee, Debdulal

    2013-01-01

    Fungal exopolysaccharides (EPSs) have been recognized as high value biomacromolecules for the last two decades. These products, including pullulan, scleroglucan, and botryosphaeran, have several applications in industries, pharmaceuticals, medicine, foods etc. Although fungal EPSs are highly relevant, to date information concerning fungal biosynthesis is scarce and an extensive search for new fugal species that can produce novel EPSs is still needed. In most cases, the molecular weight variations and sugar compositions of fungal EPSs are dependent to culture medium composition and different physical conditions provided during fermentation. An inclusive and illustrative review on fungal EPS is presented here. The general outline of the present work includes fungal EPS production, their compositions and applications. An emphasis is also given to listing out different fungal strains that can produce EPSs. PMID:24826070

  17. Fighting Narcotraffic in Latin America: Mexico and El Salvador - A Comparative Approach

    DTIC Science & Technology

    2015-03-01

    QUESTION ......................................................................1 B . SIGNIFICANCE OF THE COMPARATIVE ANALYSIS BETWEEN MEXICO AND EL...15 B . MEXICO .........................................................................................................17 1. The...Relations ..................................................47 B . EL SALVADOR

  18. Specific Antibodies for the Detection of Alternaria Allergens and the Identification of Cross-Reactive Antigens in Other Fungi

    PubMed Central

    Twaroch, Teresa E.; Curin, Mirela; Sterflinger, Katja; Focke-Tejkl, Margit; Swoboda, Ines; Valenta, Rudolf

    2017-01-01

    Background The mould Alternaria alternata is an important source of respiratory allergens. A. alternata extracts show great variations regarding allergenic potency. The aim of this study was to generate antibody probes specific for important Alternaria allergens and to use them to study allergen expression, depending on different culture conditions, as well as to search for cross-reactive allergens in other mould species. Methods Synthetic peptides from antigenic regions of A. alternata allergens (Alt a 1, Alt a 2, Alt a 3, Alt a 6 and Alt a 8) were used to raise highly specific rabbit antibodies. These antibodies and IgE from allergic patients were used to detect allergens by immunoblotting in extracts of 4 A. alternata strains grown under varying culturing conditions, in commercial skin-prick extracts and in closely (Cladosporium herbarum and Aureobasidium pullulans) or distantly related (Aspergillus niger and Penicillium chrysogenum) mould species. Results There was a wide variation of expression of the individual A. Alternata allergens, depending on the strain and culture conditions, but the antibody probes allowed us to distinguish strains and culture conditions with low and high allergen expression. In the commercial skin-prick solutions, varying levels of Alt a 1 were found, but no other allergens were detectable. Alt a 1 was identified as species-specific A. Alternata allergen, whereas Alt a 3, 6- and Alt a 8-cross-reactive antigens were found in C. herbarum and/or A. pullulans. Conclusions and Clinical Relevance Peptide-specific antibodies are useful to analyze diagnostic and therapeutic mould extracts, to study the presence of A. Alternata allergens in biological samples and to search for cross-reactive allergens in other mould species. PMID:27780168

  19. House Fly (Musca domestica L.) Attraction to Insect Honeydew

    PubMed Central

    Hung, Kim Y.; Michailides, Themis J.; Millar, Jocelyn G.; Wayadande, Astri; Gerry, Alec C.

    2015-01-01

    House flies are of major concern as vectors of food-borne pathogens to food crops. House flies are common pests on cattle feedlots and dairies, where they develop in and feed on animal waste. By contacting animal waste, house flies can acquire human pathogenic bacteria such as Escherichia coli and Salmonella spp., in addition to other bacteria, viruses, or parasites that may infect humans and animals. The subsequent dispersal of house flies from animal facilities to nearby agricultural fields containing food crops may lead to pre-harvest food contamination with these pathogens. We hypothesized that odors from honeydew, the sugary excreta produced by sucking insects feeding on crops, or molds and fungi growing on honeydew, may attract house flies, thereby increasing the risk of food crop contamination. House fly attraction to honeydew-contaminated plant material was evaluated using a laboratory bioassay. House flies were attracted to the following plant-pest-honeydew combinations: citrus mealybug on squash fruit, pea aphid on faba bean plants, whitefly on navel orange and grapefruit leaves, and combined citrus mealybug and cottony cushion scale on mandarin orange leaves. House flies were not attracted to field-collected samples of lerp psyllids on eucalyptus plants or aphids on crepe myrtle leaves. Fungi associated with field-collected honeydews were isolated and identified for further study as possible emitters of volatiles attractive to house flies. Two fungal species, Aureobasidium pullulans and Cladosporium cladosporioides, were repeatedly isolated from field-collected honeydew samples. Both fungal species were grown in potato dextrose enrichment broth and house fly attraction to volatiles from these fungal cultures was evaluated. House flies were attracted to odors from A. pullulans cultures but not to those of C. cladosporioides. Identification of specific honeydew odors that are attractive to house flies could be valuable for the development of improved house

  20. Size and shape of soil humic acids estimated by viscosity and molecular weight.

    PubMed

    Kawahigashi, Masayuki; Sumida, Hiroaki; Yamamoto, Kazuhiko

    2005-04-15

    Ultrafiltration fractions of three soil humic acids were characterized by viscometry and high performance size-exclusion chromatography (HPSEC) in order to estimate shapes and hydrodynamic sizes. Intrinsic viscosities under given solute/solvent/temperature conditions were obtained by extrapolating the concentration dependence of reduced viscosities to zero concentration. Molecular mass (weight average molecular weight (M (w)) and number average molecular weight (M (n))) and hydrodynamic radius (R(H)) were determined by HPSEC using pullulan as calibrant. Values of M (w) and M (n) ranged from 15 to 118 x 10(3) and from 9 to 50 x 10(3) (g mol(-1)), respectively. Polydispersity, as indicated by M (w)/M (n), increased with increasing filter size from 1.5 to 2.4. The hydrodynamic radii (R(H)) ranged between 2.2 and 6.4 nm. For each humic acid, M (w) and [eta] were related. Mark-Houwink coefficients calculated on the basis of the M (w)-[eta] relationships suggested restricted flexible chains for two of the humic acids and a branched structure for the third humic acid. Those structures probably behave as hydrated sphere colloids in a good solvent. Hydrodynamic radii of fractions calculated from [eta] using Einstein's equation, which is applicable to hydrated sphere colloids, ranged from 2.2 to 7.1 nm. These dimensions are fit to the size of nanospaces on and between clay minerals and micropores in soil particle aggregates. On the other hand, the good agreement of R(H) values obtained by applying Einstein's equation with those directly determined by HPSEC suggests that pullulan is a suitable calibrant for estimation of molecular mass and size of humic acids by HPSEC.

  1. Yeast biocontrol of fungal spoilage of pears stored at low temperature.

    PubMed

    Robiglio, Andrea; Sosa, M Cristina; Lutz, M Cecilia; Lopes, Christian A; Sangorrín, Marcela P

    2011-06-30

    To reduce the use of fungicides, biological control with yeasts has been proposed in postharvest pears. Most studies of antagonists selection have been carried out at room temperature. However, in regions like North Patagonia where fruits are stored at -1/0 °C during 5-7 months the selection of potential antagonist agents must be carried out at low temperature. In this study, 75 yeast cultures were isolated from healthy pears from two Patagonian cold-storage packinghouses. Aureobasidium pullulans, Cryptococcus albidus, Cryptococcus difluens, Pichia membranifaciens, Pichia philogaea, Rhodotorula mucilaginosa and Saccharomyces cerevisiae yeast species were identified. Additionally, 13 indigenous isolates of Penicillium expansum and 10 isolates of Botrytis cinerea were obtained from diseased pears, characterized by aggressiveness and tested for sensitivity to postharvest fungicides. The yeasts were pre-selected for their ability to grow at low temperature. In a first biocontrol assay using the most aggressive and the most sensitive isolate of each pathogen, two epiphytic isolates of A. pullulans and R. mucilaginosa were the most promising isolates to be used as biocontrol agents. They reduced the decay incidence by P. expansum to 33% and the lesion diameter in 88% after 60 days of incubation in cold. Foreign commercial yeast used as a reference in assays, only reduced 30% of lesion diameter in the same conditions. Yeasts were not able to reduce the incidence of B. cinerea decay. The control activity of the best two yeasts was compared with the control caused by the fungicides in a second bioassay, obtaining higher levels of protection against P. expansum by the yeasts. These two regional yeasts isolates could be promising tools for the future development of commercial products for biological control.

  2. Selection and use of pectinolytic yeasts for improving clarification and phenolic extraction in winemaking.

    PubMed

    Belda, Ignacio; Conchillo, Lorena B; Ruiz, Javier; Navascués, Eva; Marquina, Domingo; Santos, Antonio

    2016-04-16

    Pectinase enzymes have shown a considerable influence in both, sensitive and technological properties of wines. They can help to improve clarification process, releasing more color and flavor compounds entrapped in grape skin, facilitating the liberation of phenolic compounds. This work aims to find yeasts that, because of their native pectinases, can be applied on combined fermentations with Saccharomyces cerevisiae obtaining significant benefits over single-inoculated traditional fermentations. 462 yeast strains isolated from wineries were identified and tested for several enzymatic activities of recognized interest for enology industry. Considering the 7 identified species, only Aureobasidium pullulans, Metschnikowia pulcherrima and Metschnikowia fructicola showed polygalacturonase activity. Because of its interest in winemaking, due to its reported incidence in wine flavor, the impact of M. pulcherrima as a source of pectinolytic enzymes was analyzed by measuring its influence in filterability, turbidity and the increase on color, anthocyanin and polyphenol content of wines fermented in combination with S. cerevisiae. Among the strains screened, M. pulcherrima NS-EM-34 was selected, due to its polygalacturonase activity, for further characterization in both, laboratory and semi-industrial scale assays. The kinetics concerning several metabolites of enological concern were followed during the entire fermentation process at microvinification scale. Improved results were obtained in the expected parameters when M. pulcherrima NS-EM-34 was used, in comparison to wines fermented with S. cerevisiae alone and combined with other pectinolytic and non-pectinolytic yeasts (A. pullulans and Lachancea thermotolerans, respectively), even working better than commercial enzymes preparations in most parameters. Additionally, M. pulcherrima NS-EM-34 was used at a semi-industrial scale combined with three different S. cerevisiae strains, confirming its potential application for

  3. The effect of surface properties on the strength of attachment of fungal spores using AFM perpendicular force measurements.

    PubMed

    Whitehead, Kathryn A; Deisenroth, Ted; Preuss, Andrea; Liauw, Christopher M; Verran, Joanna

    2011-02-01

    Polymeric substrata may be biodegraded by fungal species resulting in damaged, weakened and unsightly materials. This process typically begins with fungal spore attachment to the surface. In order to better understand the processes that precedes a biofouling event, fungal spore attachment to a range of surfaces, was determined using perpendicular force measurements. This was carried out using atomic force microscope cantilevers modified with fungal spores from Aspergillus niger 1957 (5μm diameter, non-wettable, spherical), Aspergillus niger 1988 (5μm diameter non-wettable, spikey) or Aureobasidium pullulans (5μm-10μm sized, wettable, ellipsoidal). The strength of attachment of the spores was determined in combination with seven surfaces (nitric acid cleaned glass, cast poly(methylmethacrylate) sheet [c-PMMA], polytetrafluoroethylene [PTFE], silicon wafers spin coated with poly(3-methacryloxypropyltrimethoxy silane (γ-MPS)-co-methylmethacrylate (MMA)) [p(γ-MPS-co-MMA)], poly (γ-MPS-co-lauryl methacrylate) [p(γ-MPS-co-LMA)] [both in a ratio of 10-90], PMMA dissolved in a solvent [PMMAsc] and silicon wafers). Perpendicular force measurements could not be related to the R(a) values of the surfaces, but surface wettability was shown to have an effect. All three spore types interacted comparably with the surfaces. All spores attached strongly to c-PMMA and glass (wettable surfaces), and weakly to PTFE, (p(γ- MPS-co-LMA)) (non-wettable) and (p(γ-MPS-co-MMA)). Spore shape also affected the strength of attachment. Aureobasidium pullulans spores attached with the widest range of forces whilst A. niger 1957 attached with the smallest. Findings will inform the selection of surfaces for use in environments where biofouling is an important consideration.

  4. Novel symbiotic protoplasts formed by endophytic fungi explain their hidden existence, lifestyle switching, and diversity within the plant kingdom.

    PubMed

    Atsatt, Peter R; Whiteside, Matthew D

    2014-01-01

    Diverse fungi live all or part of their life cycle inside plants as asymptomatic endophytes. While endophytic fungi are increasingly recognized as significant components of plant fitness, it is unclear how they interact with plant cells; why they occur throughout the fungal kingdom; and why they are associated with most fungal lifestyles. Here we evaluate the diversity of endophytic fungi that are able to form novel protoplasts called mycosomes. We found that mycosomes cultured from plants and phylogenetically diverse endophytic fungi have common morphological characteristics, express similar developmental patterns, and can revert back to the free-living walled state. Observed with electron microscopy, mycosome ontogeny within Aureobasidium pullulans may involve two organelles: double membrane-bounded promycosome organelles (PMOs) that form mycosomes, and multivesicular bodies that may form plastid-infecting vesicles. Cultured mycosomes also contain a double membrane-bounded organelle, which may be homologous to the A. pullulans PMO. The mycosome PMO is often expressed as a vacuole-like organelle, which alternatively may contain a lipoid body or a starch grain. Mycosome reversion to walled cells occurs within the PMO, and by budding from lipid or starch-containing mycosomes. Mycosomes discovered in chicken egg yolk provided a plant-independent source for analysis: they formed typical protoplast stages, contained fungal ITS sequences and reverted to walled cells, suggesting mycosome symbiosis with animals as well as plants. Our results suggest that diverse endophytic fungi express a novel protoplast phase that can explain their hidden existence, lifestyle switching, and diversity within the plant kingdom. Importantly, our findings outline "what, where, when and how", opening the way for cell and organelle-specific tests using in situ DNA hybridization and fluorescent labels. We discuss developmental, ecological and evolutionary contexts that provide a robust

  5. Enzyme activities in the Delaware Estuary affected by elevated suspended sediment load

    NASA Astrophysics Data System (ADS)

    Ziervogel, K.; Arnosti, C.

    2009-09-01

    Extracellular enzyme activities were compared among surface water, bottom water, and sediments of the Delaware Estuary using six fluorescently labeled, structurally distinct polysaccharides to determine the effects of suspended sediment transport on water column hydrolytic activities. Potential hydrolysis rates in surface waters were also measured for the nearby shelf. Samples were taken in December 2006, 6 months after a major flood event in the Delaware Basin that was followed by high freshwater run-off throughout the fall of 2006. All substrates were hydrolyzed in sediments and in the water column, including two (pullulan and fucoidan) that previously were not hydrolyzed in surface waters of the Delaware estuary. At the time of sampling, total particulate matter (TPM) in surface waters at the lower bay, bay mouth, and shelf ranged between 31 mg l -1 and 48 mg l -1 and were 2 to 20 times higher than previously reported. The presence of easily resuspended sediments at the lower bay and bay mouth indicated enhanced suspended sediment transport in the estuary prior to our sampling. Bottom water hydrolysis rates at the two sites affected by sediment resuspension were generally higher than those in surface waters from the same site. Most notably, fucoidan and pullulan hydrolysis rates in bay mouth bottom waters were 22.6 and 6.2 nM monomer h -1, respectively, and thus three and five times higher than surface water rates. Our data suggest that enhanced mixing processes between the sediment and the overlying water broadened the spectrum of water column hydrolases activity, improving the efficiency of enzymatic degradation of high molecular weight organic matter in the water with consequences for organic matter cycling in the Delaware estuary.

  6. Genome Sequence of Microbulbifer mangrovi DD-13(T) Reveals Its Versatility to Degrade Multiple Polysaccharides.

    PubMed

    Imran, Md; Pant, Poonam; Shanbhag, Yogini P; Sawant, Samir V; Ghadi, Sanjeev C

    2017-02-01

    Microbulbifer mangrovi strain DD-13(T) is a novel-type species isolated from the mangroves of Goa, India. The draft genome sequence of strain DD-13 comprised 4,528,106 bp with G+C content of 57.15%. Out of 3479 open reading frames, functions for 3488 protein coding sequences were predicted on the basis of similarity with the cluster of orthologous groups. In addition to protein coding sequences, 34 tRNA genes and 3 rRNA genes were detected. Analysis of nucleotide sequence of predicted gene using a Carbohydrate-Active Enzymes (CAZymes) Analysis Toolkit indicates that strain DD-13 encodes a large set of CAZymes including 255 glycoside hydrolases, 76 carbohydrate esterases, 17 polysaccharide lyases, and 113 carbohydrate-binding modules (CBMs). Many genes from strain DD-13 were annotated as carbohydrases specific for degradation of agar, alginate, carrageenan, chitin, xylan, pullulan, cellulose, starch, β-glucan, pectin, etc. Some of polysaccharide-degrading genes were highly modular and were appended at least with one CBM indicating the versatility of strain DD-13 to degrade complex polysaccharides. The cell growth of strain DD-13 was validated using pure polysaccharides such as agarose or alginate as carbon source as well as by using red and brown seaweed powder as substrate. The homologous carbohydrase produced by strain DD-13 during growth degraded the polysaccharide, ensuring the production of metabolizable reducing sugars. Additionally, several other polysaccharides such as carrageenan, xylan, pullulan, pectin, starch, and carboxymethyl cellulose were also corroborated as growth substrate for strain DD-13 and were associated with concomitant production of homologous carbohydrase.

  7. Novel Symbiotic Protoplasts Formed by Endophytic Fungi Explain Their Hidden Existence, Lifestyle Switching, and Diversity within the Plant Kingdom

    PubMed Central

    Atsatt, Peter R.; Whiteside, Matthew D.

    2014-01-01

    Diverse fungi live all or part of their life cycle inside plants as asymptomatic endophytes. While endophytic fungi are increasingly recognized as significant components of plant fitness, it is unclear how they interact with plant cells; why they occur throughout the fungal kingdom; and why they are associated with most fungal lifestyles. Here we evaluate the diversity of endophytic fungi that are able to form novel protoplasts called mycosomes. We found that mycosomes cultured from plants and phylogenetically diverse endophytic fungi have common morphological characteristics, express similar developmental patterns, and can revert back to the free-living walled state. Observed with electron microscopy, mycosome ontogeny within Aureobasidium pullulans may involve two organelles: double membrane-bounded promycosome organelles (PMOs) that form mycosomes, and multivesicular bodies that may form plastid-infecting vesicles. Cultured mycosomes also contain a double membrane-bounded organelle, which may be homologous to the A. pullulans PMO. The mycosome PMO is often expressed as a vacuole-like organelle, which alternatively may contain a lipoid body or a starch grain. Mycosome reversion to walled cells occurs within the PMO, and by budding from lipid or starch-containing mycosomes. Mycosomes discovered in chicken egg yolk provided a plant-independent source for analysis: they formed typical protoplast stages, contained fungal ITS sequences and reverted to walled cells, suggesting mycosome symbiosis with animals as well as plants. Our results suggest that diverse endophytic fungi express a novel protoplast phase that can explain their hidden existence, lifestyle switching, and diversity within the plant kingdom. Importantly, our findings outline “what, where, when and how”, opening the way for cell and organelle-specific tests using in situ DNA hybridization and fluorescent labels. We discuss developmental, ecological and evolutionary contexts that provide a robust

  8. Application of exopolysaccharides to improve the performance of ceramic bodies in the unidirectional dry pressing process

    NASA Astrophysics Data System (ADS)

    Caneira, Inês; Machado-Moreira, Bernardino; Dionísio, Amélia; Godinho, Vasco; Neves, Orquídia; Dias, Diamantino; Saiz-Jimenez, Cesareo; Miller, Ana Z.

    2015-04-01

    Ceramic industry represents an important sector of economic activity in the European countries and involves complex and numerous manufacturing processes. The unidirectional dry pressing process includes milling and stirring of raw materials (mainly clay and talc minerals) in aqueous suspensions, followed by spray drying to remove excess water obtaining spray-dried powders further subjected to dry pressing process (conformation). However, spray-dried ceramic powders exhibit an important variability in their performance when subjected to the dry pressing process, particularly in the adhesion to the mold and mechanical strength, affecting the quality of the final conformed ceramic products. Therefore, several synthetic additives (deflocculants, antifoams, binders, lubricants and plasticizers) are introduced in the ceramic slips to achieve uniform and homogeneous pastes, conditioning their rheological properties. However, an important variability associated with the performance of the conformed products is still reported. Exopolysaccharides or Extracellular Polymeric Substances (EPS) are polymers excreted by living organisms, such as bacteria, fungi and algae, which may confer unique and potentially interesting properties with potential industrial uses, such as viscosity control, gelation, and flocculation. Polysaccharides, such as pullulan, gellan, carrageenan and xanthan have found a wide range of applications in food, pharmaceutical, petroleum, and in other industries. The aim of this study was the assessment of exopolysaccharides as natural additives to optimize the performance of spray-dried ceramic powders during the unidirectional dry pressing process, replacing the synthetic additives used in the ceramic production process. Six exopolysaccharides, namely pullulan, gellan, xanthan gum, κappa- and iota-carrageenan, and guar gum were tested in steatite-based spray-dried ceramic powders at different concentrations. Subsequently, these ceramic powders were

  9. A Test for Measuring Gustatory Function

    PubMed Central

    Smutzer, Gregory; Lam, Si; Hastings, Lloyd; Desai, Hetvi; Abarintos, Ray A.; Sobel, Marc; Sayed, Nabil

    2010-01-01

    Objectives The purpose of this study is to determine the usefulness of edible taste strips for measuring human gustatory function. Research Design The physical properties of edible taste strips were examined in order to determine their potential for delivering threshold and suprathreshold amounts of taste stimuli to the oral cavity. Taste strips were then assayed by fluorescence to analyze the uniformity and distribution of bitter tastant in the strips. Finally, taste recognition thresholds for sweet taste were examined in order to determine whether or not taste strips would produce recognition thresholds that were equal to or better than those obtained from aqueous tests. Methodology Edible strips were prepared from pullulan-hydroxypropyl methylcellulose solutions that were dried to a thin film. The maximal amount of a tastant that could be incorporated in a 2.54 × 2.54 cm taste strip was identified by including representative taste stimuli for each class of tastant (sweet, sour, salty, bitter, and umami) during strip formation. Distribution of the bitter tastant quinine hydrochloride in taste strips was assayed by fluorescence emission spectroscopy. The efficacy of taste strips for evaluating human gustatory function was examined by using a single series ascending method of limits protocol. Sucrose taste recognition threshold data from edible strips was then compared to results that were obtained from a standard “sip and spit” recognition threshold test. Results Edible films that formed from a pullulan-hydroxypropyl methylcellulose polymer mixture can be used to prepare clear, thin strips that have essentially no background taste and leave no physical presence after release of tastant. Edible taste strips could uniformly incorporate up to five percent of their composition as tastant. Taste recognition thresholds for sweet taste were over one order of magnitude lower with edible taste strips when compared to an aqueous taste test. Conclusion Edible taste

  10. (Genetic engineering with a gene encoding a soybean storage protein). Progress report

    SciTech Connect

    Beachy, R.N.

    1985-01-01

    Progress is reported on research directed toward introducing a gene (Gmg 17.1) encoding the ..cap alpha..'-subunit of ..beta..-conglycinin, a soybean seed protein, into petunia plants using gene transfer mechanisms. (ACR)

  11. Composition/Property Relationships for the Phase 1 Am/Cm Glass Variability Study

    SciTech Connect

    Peeler, D.

    1999-07-14

    The objective of this research was to evaluate the effect of compositional uncertainties on the primary processing and product performance criteria for potential glasses to stabilize the Tank 17.1 Am-Cm solution.

  12. Air Weapon Systems in the Third World: A Combat Potential Assessment Technique.

    DTIC Science & Technology

    1986-06-01

    Detectability Attibute......................... .... ................... 91 Target Acqui sIti6n S\\ stems...C: Aircrew Survey and Relative Utility Variables .......................... 171 A ircrew Survey ...17 1 Survey Derived Relative Utility Values ............................................ 174 Appendix D: Middle East

  13. 50 CFR 665.269 - Quotas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Beds Au'au Channel Black: 5,000 2 Makapu'u Pink: 2,000 2 Gold: 0 (zero) Bamboo: 500 2 Conditional Beds 180 Fathom Bank Pink: 222 1 Gold: 67 1 Bamboo: 56 1 Brooks Bank Pink: 444 1 Gold: 133 1 Bamboo: 111 1 Kaena Point Pink: 67 1 Gold: 20 1 Bamboo: 17 1 Keahole Point Pink: 67 1 Gold: 20 1 Bamboo: 17 1...

  14. 50 CFR 665.269 - Quotas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Beds Au'au Channel Black: 5,000 2 Makapu'u Pink: 2,000 2 Gold: 0 (zero) Bamboo: 500 2 Conditional Beds 180 Fathom Bank Pink: 222 1 Gold: 67 1 Bamboo: 56 1 Brooks Bank Pink: 444 1 Gold: 133 1 Bamboo: 111 1 Kaena Point Pink: 67 1 Gold: 20 1 Bamboo: 17 1 Keahole Point Pink: 67 1 Gold: 20 1 Bamboo: 17 1...

  15. 50 CFR 665.269 - Quotas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Beds Au'au Channel Black: 5,000 2 Makapu'u Pink: 2,000 2 Gold: 0 (zero) Bamboo: 500 2 Conditional Beds 180 Fathom Bank Pink: 222 1 Gold: 67 1 Bamboo: 56 1 Brooks Bank Pink: 444 1 Gold: 133 1 Bamboo: 111 1 Kaena Point Pink: 67 1 Gold: 20 1 Bamboo: 17 1 Keahole Point Pink: 67 1 Gold: 20 1 Bamboo: 17 1...

  16. 50 CFR 665.269 - Quotas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Beds Au'au Channel Black: 5,000 2 Makapu'u Pink: 2,000 2 Gold: 0 (zero) Bamboo: 500 2 Conditional Beds 180 Fathom Bank Pink: 222 1 Gold: 67 1 Bamboo: 56 1 Brooks Bank Pink: 444 1 Gold: 133 1 Bamboo: 111 1 Kaena Point Pink: 67 1 Gold: 20 1 Bamboo: 17 1 Keahole Point Pink: 67 1 Gold: 20 1 Bamboo: 17 1...

  17. 50 CFR 665.269 - Quotas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Beds Au'au Channel Black: 5,000 2 Makapu'u Pink: 2,000 2 Gold: 0 (zero) Bamboo: 500 2 Conditional Beds 180 Fathom Bank Pink: 222 1 Gold: 67 1 Bamboo: 56 1 Brooks Bank Pink: 444 1 Gold: 133 1 Bamboo: 111 1 Kaena Point Pink: 67 1 Gold: 20 1 Bamboo: 17 1 Keahole Point Pink: 67 1 Gold: 20 1 Bamboo: 17 1...

  18. Exploring the Fundamental of Fatigue in Composites: Opportunities using X-Ray Computed Tomography Imaging

    DTIC Science & Technology

    2012-10-01

    Environment, Materials Science University Road Southampton, United Kingdom SO17 1BJ EOARD Grant 11-3040 Report Date: October 2012...Environment, Materials Science University Road Southampton, United Kingdom SO17 1BJ European Office of Aerospace Research and Development Unit 4515 Box 14 APO...emerges from the need to understand damage mechanisms in composite materials , in terms of onset, growth and propagation, and assess fatigue life behavior

  19. 46 CFR 175.600 - Incorporation by reference.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Pumps Operating Under 50 Volts (“ABYC H-22”) 182.130; 182.500. H-24-93—Gasoline Fuel Systems (“ABYC H-24... A 17.1-1984, including supplements A 17.1a and B-1985—Safety Code for Elevators and Escalators... Bilge Pumps (Dec. 15, 1990) (“ISO 8849”) 182.500. International Maritime Organization...

  20. 46 CFR 175.600 - Incorporation by reference.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Pumps Operating Under 50 Volts (“ABYC H-22”) 182.130; 182.500. H-24-93—Gasoline Fuel Systems (“ABYC H-24... A 17.1-1984, including supplements A 17.1a and B-1985—Safety Code for Elevators and Escalators... Bilge Pumps (Dec. 15, 1990) (“ISO 8849”) 182.500. International Maritime Organization...

  1. The Effect of Optional Summer Transition to High School Program Participation and Required School Year Long Placement on a Core Content Team on Ninth-Grade Students At-Risk Measured Achievement, Engagement, and Behavior Outcomes

    ERIC Educational Resources Information Center

    Pokorski, Frances K.

    2011-01-01

    No significant difference in beginning ninth-grade pretest compared to ending ninth-grade posttest comparisons of American History t(17) = 0.34, p = 0.37 (one-tailed), d = 0.09, English t(17) = 1.40, p = 0.09 (one-tailed), d = 0.34, and Biology (t(17) = -1.58, p = 0.07 (one-tailed), d = -0.22, course grade scores were observed for students…

  2. Different utilization of alginate and other algal polysaccharides by marine Alteromonas macleodii ecotypes.

    PubMed

    Neumann, Anna M; Balmonte, John P; Berger, Martine; Giebel, Helge-Ansgar; Arnosti, Carol; Voget, Sonja; Simon, Meinhard; Brinkhoff, Thorsten; Wietz, Matthias

    2015-10-01

    The marine bacterium Alteromonas macleodii is a copiotrophic r-strategist, but little is known about its potential to degrade polysaccharides. Here, we studied the degradation of alginate and other algal polysaccharides by A. macleodii strain 83-1 in comparison to other A. macleodii strains. Cell densities of strain 83-1 with alginate as sole carbon source were comparable to those with glucose, but the exponential phase was delayed. The genome of 83-1 was found to harbour an alginolytic system comprising five alginate lyases, whose expression was induced by alginate. The alginolytic system contains additional CAZymes, including two TonB-dependent receptors, and is part of a 24 kb genomic island unique to the A. macleodii 'surface clade' ecotype. In contrast, strains of the 'deep clade' ecotype contain only a single alginate lyase in a separate 7 kb island. This difference was reflected in an eightfold greater efficiency of surface clade strains to grow on alginate. Strain 83-1 furthermore hydrolysed laminarin, pullulan and xylan, and corresponding polysaccharide utilization loci were detected in the genome. Alteromonas macleodii alginate lyases were predominantly detected in Atlantic Ocean metagenomes. The demonstrated hydrolytic capacities are likely of ecological relevance and represent another level of adaptation among A. macleodii ecotypes.

  3. Filling the gap: Calibration of the low molar-mass range of cellulose in size exclusion chromatography with cello-oligomers.

    PubMed

    Oberlerchner, J T; Vejdovszky, P; Zweckmair, T; Kindler, A; Koch, S; Rosenau, T; Potthast, A

    2016-11-04

    Degraded celluloses are becoming increasingly important as part of product streams coming from various biorefinery scenarios. Analysis of the molar mass distribution of such fractions is a challenge, since neither established methods for mono- or disaccharides nor common methods for polysaccharide characterization cover the intermediate oligomer range appropriately. Size exclusion chromatography (SEC) with multi-angle laser light scattering (MALLS), the standard approach for celluloses, suffers from decreased scattering intensities in the lower-molar mass range. The limitation in the low-molecular range can, in principle, be overcome by calibration, but calibration standards for such "short" celluloses are either not readily available or structurally remote and thus questionable. In this paper, we present the calibration of a SEC system- for the first time - with monodisperse cellooligomer standards up to about 3400gmol(-1). These cellooligomers are "short-chain celluloses" and can be seen as the "true" standard compounds, by contrast to commonly used standards that are chemically different from cellulose, such as pullulan, dextran, polystyrene, or poly(methyl methacrylate). The calibration is compared against those commercial standards and correction factors are calculated. Calibrations with non-cellulose standards can now be adjusted to yield better fitting results, and data already available can be corrected retrospectively.

  4. Application of mathematical modeling for the development and optimization formulation with bioactive copper complex.

    PubMed

    Savic, Ivana M; Nikolic, Katarina; Nikolic, Goran; Savic, Ivan; Agbaba, Danica; Cakic, Milorad

    2013-07-01

    New formulation for treatment a copper deficiency in human organism was developed and optimized by application of mathematical modeling. This formulation contained copper (II) complex with polysaccharide pullulan, as active substance. The binder concentration [polyvinyl pyrrolidone (PVP %)], the disintegrant concentration (corn starch %) and the resistance to crushing (hardness) were taken as independent variables. In vitro measured drug release characteristics of the tablets at pH 1.20 and 7.56 were studied as response variables. Initially, the created full factorial 2(3) model showed that the resistance to crushing has the most significant effect on copper (II) complex release from the formulation. Optimal tablet formulation F2, with lower Hardness (50 N), lower Starch (20.0%) and higher PVP (2.7%) concentrations, is selected using the partial least squares (PLS) regression modeling. The selected formulation F2 has expressed the best drug release profile at both pH (98.66% pH = 1.20; 93.35% pH = 7.56), and the lowest variation of tablets weight. The presented theoretical approach and created PLS model can be readily applied in future copper complexes studies and formulation design.

  5. Development and optimization of formulation for treatment of copper deficiency in human organism.

    PubMed

    Savic, Ivana M; Nikolic, Goran S; Savic, Ivan M; Katarina, Nikolic; Agbaba, Danica

    2012-01-01

    The aim of this study was to design and optimize a new tablet formulation for treatment of copper deficiency in human organism by using an experimental design. The new no-veneered tablets, prepared by a wet granulation technique, are containg active substance, a copper(II) complex with polysaccharide pullulan. The binder concentration, the disintegrant concentration and the resistance to crushing were used as independent variables in the formulation, while in vitro measured drug release characteristics of the tablets was response variable in a full factorial design 2(3) modeling. A cubic model for data fitted was used to examine the obtained results. They showed that the resistance to crushing has the most significant effect on copper(II) complex release from the formulation, while the disintegrant concentration has smaller influence on dissolution profile of copper(II) complex and the binder concentration had minor impact in this study. Lower value of resistance to crushing has influence on better dissolution profile. Furthermore, physical characteristics of the tablets were evaluated, viz., drug content, hardness, thickness, friability, disintegration time, mass variation, particle size and size distribution.

  6. Purification and characterisation of a malto-oligosaccharide-forming amylase active at high pH from Bacillus clausii BT-21.

    PubMed

    Duedahl-Olesen, L; Kragh, K M; Zimmermann, W

    2000-10-20

    Bacillus clausii BT-21 produced an extracellular malto-oligosaccharide-forming amylase active at high pH when grown on starch substrates. The enzyme was purified to homogeneity by affinity and anion-exchange chromatography. The molecular weight of the enzyme estimated by sodium dodecyl sulfate polyacrylamide electrophoresis was 101 kDa. The enzyme showed an optimum of activity at pH 9.5 and 55 degrees C. Maltohexaose was detected as the main initially formed starch hydrolysis product. Maltotetraose and maltose were the main products obtained after hydrolysis of starch by the enzyme for an extended period of time and were not further degraded. The enzyme readily hydrolysed soluble starch, amylopectin and amylose, while cyclodextrins, pullulan or dextran were not degraded. The mode of action during hydrolysis of starch indicated an exo-acting type of amylolytic enzyme mainly producing maltohexaose and maltotetraose. Amino acid sequencing of the enzyme revealed high homology with the maltohexaose-forming amylase from Bacillus sp. H-167.

  7. Purification and characterization of camel (Camelus dromedarius) milk amylase.

    PubMed

    El-Fakharany, Esmail M; Serour, Ehab A; Abdelrahman, Aref M; Haroun, Bakry M; Redwan, El-Rashdy M

    2009-01-01

    Skimmed camel milk contains 59,900 U/L amylase, which is 39,363 times less than serum and plasma amylase. Camel milk beta-amylase was purified as a 61 KDa band using DEAE-Sepharose and Sephadex G-100 and yielded 561 U/mg. The optimum working pH, Km and temperature were 7.0, 13.6 mg/Lstarch, 30-40 degrees C, respectively. The enzyme has been shown higher affinity toward amylose and soluble starch than glycogen, amylopectin, dextrin, or pullulan. Magnesium chloride, CaCl(2) and NaCl activated the amylase, while EDTA and EGTA decreased its activity. While its activity was increased in the presence of Triton X-100 and Triton X-114. Phenylmethanesulfonyl fluoride did not show any effect on enzyme activity. However, the enzyme activity was inhibited by urea, SDS, DTNB, iodoacetamide, N-ethylmalimide, aprotinin, and trypsin inhibitor. It worked on starch to yield a maltose. Scanning electron microscope images demonstrated a nano-degrading ability on starch granules from various sources (potato, corn, cassava, and rice).

  8. Biodiversity and safety aspects of yeast strains characterized from vineyards and spontaneous fermentations in the Apulia Region, Italy.

    PubMed

    Tristezza, Mariana; Vetrano, Cosimo; Bleve, Gianluca; Spano, Giuseppe; Capozzi, Vittorio; Logrieco, Antonio; Mita, Giovanni; Grieco, Francesco

    2013-12-01

    This work is the first large-scale study on vineyard-associated yeast strains from Apulia (Southern Italy). Yeasts were identified by Internal Transcribed Spacer (ITS) ribotyping and bioinformatic analysis. The polymorphism of interdelta elements was used to differentiate Saccharomyces cerevisiae strains. Twenty different species belonging to 9 genera were identified. Predominant on the grape surface were Metschnikowia pulcherrima, Hanseniaspora uvarum and Aureobasidium pullulans, whereas M. pulcherrima and H. uvarum were dominant in the early fermentation stage. A total of 692 S. cerevisiae isolates were identified and a number of S. cerevisiae strains, ranging from 26 to 55, was detected in each of the eight fermentations. The strains were tested for biogenic amines (BAs) production, either in synthetic media or grape must. Two Pichia manshurica, an Issatchenkia terricola and a M. pulcherrima strains were able to produce histamine and cadaverine, during must fermentation. The production of BAs in wine must was different than that observed in the synthetic medium. This feature indicate the importance of an "in grape must" assessment of BAs producing yeast. Overall, our results suggest the importance of microbiological control during wine-making to reduce the potential health risk for consumer represented by these spoilage yeasts.

  9. Combining mutualistic yeast and pathogenic virus--a novel method for codling moth control.

    PubMed

    Knight, Alan L; Witzgall, Peter

    2013-07-01

    The combination of a pathogenic virus and mutualistic yeasts isolated from larvae of codling moth Cydia pomonella is proposed as a novel insect control technique. Apples were treated with codling moth granulovirus (CpGV) and either one of three yeasts, Metschnikowia pulcherrima, Cryptococcus tephrensis, or Aureobasidium pullulans. The combination of yeasts with CpGV significantly increased mortality of neonate codling moth larvae, compared with CpGV alone. The three yeasts were equally efficient in enhancing the activity of CpGV. The addition of brown cane sugar to yeast further increased larval mortality and the protection of fruit against larvae. In comparison, without yeast, the addition of sugar to CpGV did not produce a significant effect. A field trial confirmed that fruit injury and larval survival were significantly reduced when apple trees were sprayed with CpGV, M. pulcherrima, and sugar. We have shown earlier that mutualistic yeasts are an essential part of codling moth larval diet. The finding that yeast also enhances larval ingestion of an insect-pathogenic virus is an opportunity for the development of a novel plant protection technique. We expect the combination of yeasts and insect pathogens to essentially contribute to future insect management.

  10. Evaluation of fungal and yeast diversity in Slovakian wine-related microbial communities.

    PubMed

    Brežná, Barbara; Zenišová, Katarína; Chovanová, Katarína; Chebeňová, Viera; Kraková, Lucia; Kuchta, Tomáš; Pangallo, Domenico

    2010-11-01

    Since the yeast flora of Slovakian enology has not previously been investigated by culture-independent methods, this approach was applied to two most common cultivars Frankovka (red wine) and Veltlin (white wine), and complemented by cultivation. Model samples included grapes, initial must, middle fermenting must and must in the end-fermentation phase. The cultured isolates were characterized by length polymorphism of rDNA spacer two region using fluorescence PCR and capillary electrophoresis (f-ITS PCR), and some were identified by sequencing. The microbial DNA extracted directly from the samples without cultivation was analysed by f-ITS PCR, amplicons were cloned and sequenced. The use of universal fungal primers led to detection of both yeasts and filamentous fungi. The amplicon of highest intensity and present in all the samples corresponded to Hanseniaspora uvarum. Other species demonstrated by both approaches included Saccharomyces sp., Metschnikowia pulcherrima or M. chrysoperlae, Candida zemplinina, Cladosporium cladosporioides, Botryotinia fuckeliana, Pichia anomala, Candida railenensis, Cryptococcus magnus, Metschnikowia viticola or Candida kofuensis, Pichia kluyveri or Pichia fermentas, Pichia membranifaciens, Aureobasidium pullulans, Alternaria alternata, Erysiphe necator, Rhodotorula glutinis, Issatchenkia terricola and Debaryomyces hansenii. Endemism of Slovakian enological yeasts was suggested on the level of minor genetic variations of the known species and probably not accounting for novel species. The prevalence of H. uvarum over Saccharomyces sp. in the samples was indicated. This is the first culture-independent study of Slovakian enology and the first time f-ITS PCR profiling was used on wine-related microbial communities.

  11. Psychrophilic yeasts in glacial environments of Alpine glaciers.

    PubMed

    Turchetti, Benedetta; Buzzini, Pietro; Goretti, Marta; Branda, Eva; Diolaiuti, Guglielmina; D'Agata, Carlo; Smiraglia, Claudio; Vaughan-Martini, Ann

    2008-01-01

    The presence of psychrophilic yeasts in supra- and subglacial sediments, ice and meltwater collected from two glaciers of the Italian Alps (Forni and Sforzellina-Ortles-Cevedale group) was investigated. After incubation at 4 degrees C, subglacial sediments contained from 1.3 x 10(3) to 9.6 x 10(3) CFU of yeasts g(-1). The number of yeast cells in supraglacial sediments was c. 10-100-fold lower. A significant proportion of isolated yeasts exhibited one or more extracellular enzymatic activities (starch-degrading, lipolytic, esterolytic, proteolytic and pectinolytic activity) at 4 degrees C. Selected isolates were able to grow at 2 degrees C under laboratory-simulated in situ conditions. In all, 106 isolated yeasts were identified by MSP-PCR fingerprinting and 26S rRNA gene sequencing of the D1/D2 region as belonging to 10 species: Aureobasidium pullulans, Cryptococcus gilvescens (over 50% of the total), Cryptococcus terricolus, Mrakia gelida, Naganishia globosa, Rhodotorula glacialis, Rhodotorula psychrophenolica, Rhodotorula bacarum, Rhodotorula creatinivora and Rhodotorula laryngis. Four strains, all belonging to a new yeast species, yet to be described, were also isolated.

  12. Three novel NY-ESO-1 epitopes bound to DRB1*0803, DQB1*0401 and DRB1*0901 recognized by CD4 T cells from CHP-NY-ESO-1-vaccinated patients.

    PubMed

    Mizote, Yu; Taniguchi, Taku; Tanaka, Kei; Isobe, Midori; Wada, Hisashi; Saika, Takashi; Kita, Shoichi; Koide, Yukari; Uenaka, Akiko; Nakayama, Eiichi

    2010-07-19

    Three novel NY-ESO-1 CD4 T cell epitopes were identified using PBMC obtained from patients who were vaccinated with a complex of cholesterol-bearing hydrophobized pullulan (CHP) and NY-ESO-1 protein (CHP-NY-ESO-1). The restriction molecules were determined by antibody blocking and using various EBV-B cells with different HLA alleles as APC to present peptides to CD4 T cells. The minimal epitope peptides were determined using various N- and C-termini truncated peptides deduced from 18-mer overlapping peptides originally identified for recognition. Those epitopes were DRB1*0901-restricted NY-ESO-1 87-100, DQB1*0401-restricted NY-ESO-1 95-107 and DRB1*0803-restricted NY-ESO-1 124-134. CD4 T cells used to determine those epitope peptides recognized EBV-B cells or DC that were treated with recombinant NY-ESO-1 protein or NY-ESO-1-expressing tumor cell lysate, suggesting that the epitope peptides are naturally processed. These CD4 T cells showed a cytokine profile with Th1 characteristics. Furthermore, NY-ESO-1 87-100 peptide/HLA-DRB1*0901 tetramer staining was observed. Multiple Th1-type CD4 T cell responses are beneficial for inducing effective anti-tumor responses after NY-ESO-1 protein vaccination.

  13. Heat stable antimicrobial activity of Allium ascalonicum against bacteria and fungi.

    PubMed

    Amin, M; Kapadnis, B P

    2005-08-01

    To study antimicrobial activity of shallot in comparison with that of garlic and onion against 23 strains of fungi and bacteria, water extracts of garlic, shallot and onion bulbs were prepared. Each extract was studied in different forms for their antimicrobial activity viz., fresh extract, dry extract and autoclaved extract. Minimal inhibitory concentration and minimal lethal concentrations of these extracts were determined against all organisms by broth dilution susceptibility test. Fresh extract of garlic showed greater antimicrobial activity as compared to similar extracts of onion and shallot. However, dried and autoclaved extracts of shallot showed more activity than similar extracts of onion and garlic. Fungi were more sensitive to shallot extract than bacteria. Amongst bacteria, B. cereus was most sensitive (MIC=5 mg ml(-1)). The lowest minimum bactericidal concentration of shallot extract amongst bacteria tested was 5 mg ml(-1) for B. cereus. Amongst fungi, Aureobasidium pullulans and Microsporum gypseum were most sensitive (MIC= 0.15 mg ml(-1)). The lowest minimum lethal concentration was 2.5 mg ml(-1) for Microsporum gypseum and Trichophyton mentagrophytes. It was therefore, expected that the antimicrobial principle of shallot was different than the antimicrobial compounds of onion and garlic. In addition, the antimicrobial component of the shallot extract was stable at 121 degrees C.

  14. Carbohydrate Polymers for Nonviral Nucleic Acid Delivery

    PubMed Central

    Sizovs, Antons; McLendon, Patrick M.; Srinivasachari, Sathya

    2014-01-01

    Carbohydrates have been investigated and developed as delivery vehicles for shuttling nucleic acids into cells. In this review, we present the state of the art in carbohydrate-based polymeric vehicles for nucleic acid delivery, with the focus on the recent successes in preclinical models, both in vitro and in vivo. Polymeric scaffolds based on the natural polysaccharides chitosan, hyaluronan, pullulan, dextran, and schizophyllan each have unique properties and potential for modification, and these results are discussed with the focus on facile synthetic routes and favorable performance in biological systems. Many of these carbohydrates have been used to develop alternative types of biomaterials for nucleic acid delivery to typical polyplexes, and these novel materials are discussed. Also presented are polymeric vehicles that incorporate copolymerized carbohydrates into polymer backbones based on polyethylenimine and polylysine and their effect on transfection and biocompatibility. Unique scaffolds, such as clusters and polymers based on cyclodextrin (CD), are also discussed, with the focus on recent successes in vivo and in the clinic. These results are presented with the emphasis on the role of carbohydrate and charge on transfection. Use of carbohydrates as molecular recognition ligands for cell-type specific delivery is also briefly reviewed. We contend that carbohydrates have contributed significantly to progress in the field of non-viral DNA delivery, and these new discoveries are impactful for developing new vehicles and materials for treatment of human disease. PMID:21504102

  15. Biopolymer-Based Nanoparticles for Drug/Gene Delivery and Tissue Engineering

    PubMed Central

    Nitta, Sachiko Kaihara; Numata, Keiji

    2013-01-01

    There has been a great interest in application of nanoparticles as biomaterials for delivery of therapeutic molecules such as drugs and genes, and for tissue engineering. In particular, biopolymers are suitable materials as nanoparticles for clinical application due to their versatile traits, including biocompatibility, biodegradability and low immunogenicity. Biopolymers are polymers that are produced from living organisms, which are classified in three groups: polysaccharides, proteins and nucleic acids. It is important to control particle size, charge, morphology of surface and release rate of loaded molecules to use biopolymer-based nanoparticles as drug/gene delivery carriers. To obtain a nano-carrier for therapeutic purposes, a variety of materials and preparation process has been attempted. This review focuses on fabrication of biocompatible nanoparticles consisting of biopolymers such as protein (silk, collagen, gelatin, β-casein, zein and albumin), protein-mimicked polypeptides and polysaccharides (chitosan, alginate, pullulan, starch and heparin). The effects of the nature of the materials and the fabrication process on the characteristics of the nanoparticles are described. In addition, their application as delivery carriers of therapeutic drugs and genes and biomaterials for tissue engineering are also reviewed. PMID:23344060

  16. Fabrication and statistical optimization of a polysaccharide-based sublingual film of buprenorphine hydrochloride for breakthrough pain management: in vitro and in vivo performance.

    PubMed

    Yeola, Gaurav Subhash; Darandale, Sharad; Khire, Achyut; Vavia, Pradeep R

    2014-04-01

    A typical breakthrough pain episode is severe, categorized by a fast onset, typically reaches peak intensity instantly, and lasts for an average duration of about 30 min. The research work includes the use of opioid for the treatment of breakthrough pain with special emphasis on the development of rapidly dissolving sublingual film formulation of buprenorphine hydrochloride (BPH). BPH is an opioid analgesic with low oral bioavailability due to less absorption and first-pass metabolism. The clear and transparent sublingual films were prepared using a film-forming polymer (pullulan) with a plasticizer (PEG 400). The formulation was optimized statistically using 3(2) randomized full factorial design. The optimized film formulation showed desired mechanical properties (tensile strength of 25 N/m(2)) and a minimum disintegration time of 16 s. Differential scanning calorimetry and X-ray diffraction studies confirmed the uniform distribution of the drug in polymeric matrices. Morphological study showed the absence of drug crystals on polymeric surface. The relative bioavailability of the film formulation was increased by 10 % with respect to tablet formulation due to rapid T max (0.08 h for film while 0.15 h for tablet), which was confirmed by in vivo studies performed on rabbits. The present technology could be a promising alternative to conventional drug delivery systems and traditional routes of administration for breakthrough pain management.

  17. "Real-time" disintegration analysis and D-optimal experimental design for the optimization of diclofenac sodium fast-dissolving films.

    PubMed

    El-Malah, Yasser; Nazzal, Sami

    2013-01-01

    The objective of this work was to study the dissolution and mechanical properties of fast-dissolving films prepared from a tertiary mixture of pullulan, polyvinylpyrrolidone and hypromellose. Disintegration studies were performed in real-time by probe spectroscopy to detect the onset of film disintegration. Tensile strength and elastic modulus of the films were measured by texture analysis. Disintegration time of the films ranged from 21 to 105 seconds whereas their mechanical properties ranged from approximately 2 to 49 MPa for tensile strength and 1 to 21 MPa% for young's modulus. After generating polynomial models correlating the variables using a D-Optimal mixture design, an optimal formulation with desired responses was proposed by the statistical package. For validation, a new film formulation loaded with diclofenac sodium based on the optimized composition was prepared and tested for dissolution and tensile strength. Dissolution of the optimized film was found to commence almost immediately with 50% of the drug released within one minute. Tensile strength and young's modulus of the film were 11.21 MPa and 6, 78 MPa%, respectively. Real-time spectroscopy in conjunction with statistical design were shown to be very efficient for the optimization and development of non-conventional intraoral delivery system such as fast dissolving films.

  18. Development of a buccal mucoadhesive film for fast dissolution: mathematical rationale, production and physicochemical characterization.

    PubMed

    Vila, Marta M D C; Tardelli, Edgard R; Chaud, Marco V; Tubino, Matthieu; Balcão, Victor M

    2014-11-01

    The validity of a mathematical rationale for preparation of a fast-dissolving buccal mucoadhesive was tested. A buccal mucoadhesive biopolymeric formulation has been developed having pullulan as the main component. The formulation was duly evaluated physicochemically, via assays for intrinsic viscosity (resulting in 71.61 cm3 g(-1)), differential scanning calorimetry analysis (resulting in a Tg = 63 °C), thermogravimetric analysis (244-341 °C), moisture content determinations (14%, w/w), dissolution timeframe (41.6 s), mucoadhesion force (40 kg/cm2), scanning electron microscopy analyses (critical ray under 1.0 μm), mechanic strength (tensile strength = 58 N/mm2, deformation = 4.4%). The mucoadhesive formulation exhibited important characteristics for a drug carrier, that is, a 6 cm2 area, a fast dissolution timeframe, an adequate mucoadhesivity, resistance to both oxygen and water vapor penetration, increased viscosity in solution (ranging from 33.2 cm3/g to 71.61 cm3/g), easy molding, suitable water solubility and transparency.

  19. The diversity and antifungal susceptibility of the yeasts isolated from coconut water and reconstituted fruit juices in Brazil.

    PubMed

    Maciel, Natália O P; Piló, Fernanda B; Freitas, Larissa F D; Gomes, Fátima C O; Johann, Susana; Nardi, Regina M D; Lachance, Marc-André; Rosa, Carlos A

    2013-01-01

    The aims of this study were to characterise the yeasts present in the reconstituted fruit juices and coconut water extracted with "coconut machines", both collected from commercial outlets in a Brazilian city, and to investigate the antifungal resistance of isolates from these beverages that were able to grow at 37°C. The yeast population counts in the coconut water samples ranged from 1.7 to >6.5logcfu/ml, and in the reconstituted fruit juices, the counts ranged from 1.5 to >5.5logcfu/ml. Aureobasidium pullulans, Candida boidinii, Candidaintermedia, Candidaoleophila, Candidaparapsilosis, Candidasantamariae, Candidatropicalis, Clavispora lusitaniae, Kloeckera apis, Lachancea fermentati, Pichia fermentans and Rhodotorula mucilaginosa were the most frequent species isolated from these beverages. At least 18 yeast species isolated from these beverages have been reported as opportunistic pathogens. Eight yeast isolates were resistant to fluconazole, seven were resistant to itraconazole, and 26 to amphotericin B. Some yeast species were resistant to more than one of the antifungal drugs tested. Two isolates of C. tropicalis from the reconstituted fruit juices exhibited resistance to all three drugs. The presence of yeast strains that are resistant to commonly used antifungal drugs suggests a potential risk, at least to immunocompromised individuals who consume these beverages.

  20. Rhizopus microsporus var. rhizopodiformis: a thermotolerant fungus with potential for production of thermostable amylases.

    PubMed

    Peixoto, Simone C; Jorge, João A; Terenzi, Héctor F; Polizeli, Maria de Lourdes T M

    2003-12-01

    The effect of several nutritional and environmental parameters on growth and amylase production from Rhizopus microsporus var. rhizopodiformis was analysed. This fungus was isolated from soil of the Brazilian "cerrado" and produced high levels of amylolytic activity at 45 degrees C in liquid medium supplemented with starch, sugar cane bagasse, oat meal or cassava flour. Glucose in the culture medium drastically repressed the amylolytic activity. The products of hydrolysis were analysed by thin layer chromatography, and glucose was detected as the main component. The amylolytic activity hydrolysed several substrates, such as amylopectin, amylase, glycogen, pullulan, starch, and maltose. Glucose was always the main end product detected by high-pressure liquid chromatography analysis. These results indicated that the amylolytic activity studied is a glucoamylase, but there were also low levels of alpha-amylase. As compared to other fungi, R. microsporus var. rhizopodiformis can be considered an efficient producer of thermostable amylases, using raw residues of low cost as substrates. This information is of technological value, considering the importance of amylases for industrial hydrolysis.

  1. Yeasts and coliform bacteria of water accumulated in bromeliads of mangrove and sand dune ecosystems of southeast Brazil.

    PubMed

    Hagler, A N; Rosa, C A; Morais, P B; Mendonça-Hagler, L C; Franco, G M; Araujo, F V; Soares, C A

    1993-10-01

    Yeasts and coliform bacteria were isolated from water that accumulated in the central cups and adjacent leaf axilae of two bromeliads, Neoregelia cruenta of a coastal sand dune and Quesnelia quesneliana of a mangrove ecosystem near the city of Rio de Janeiro, Brazil. The mean total coliform counts were above 10,000 per 100 mL for waters of both plants, but the mean fecal coliform counts were only 74 per 100 mL for Q. quesneliana and mostly undetected in water from N. cruenta. Of 90 fecal coliform isolates, 51 were typical of Escherichia coli in colony morphology and indol, methyl red, Volges-Proskauer, and citrate (IMViC) tests. Seven representatives of the typical E. coli cultures were identified as this species, but the identifications of nine other coliform bacteria were mostly dubious. The yeast community of N. cruenta was typical of plant surfaces with basidiomycetous yeasts anamorphs, and the black yeast Aureobasidium pullulans was prevalent. Quesnelia quesneliana had a substantial proportion of ascomycetous yeasts and their anamorphs, including a probable new biotype of Saccharomyces unisporus. Our results suggested that the microbial communities in bromeliad waters are typically autochtonous and not contaminants.

  2. Water quality and diversity of yeasts from tropical lakes and rivers from the Rio Doce basin in Southeastern Brazil

    PubMed Central

    Medeiros, Adriana O.; Missagia, Beatriz S.; Brandão, Luciana R.; Callisto, Marcos; Barbosa, Francisco A. R.; Rosa, Carlos A.

    2012-01-01

    Yeast communities were assessed in 14 rivers and four lakes from the Doce River basin in Brazil, during the rainy and dry seasons of the years 2000 and 2001. Water samples were collected at the subsurface in all sites. The following physical and chemical parameters were measured: temperature, dissolved oxygen, pH, electrical conductivity, total phosphorus, ortho-phosphate, ammonium, nitrate, nitrite and total nitrogen and the counts of faecal coliforms and heterotrophic bacteria were carried out to characterize the aquatic environmental sampled. The yeast counts were higher in aquatic environments with the highest counts of coliform and heterotrophic bacteria. These environments receive a high influx of domestic and industrial waste. A total of 317 isolates identified in forty eight yeast species were recorded in the sites sampled and the specie Aureobasidium pullulans were found in eleven out of eighteen sites sampled and some opportunistic pathogens such as the yeast species Candida krusei were isolated only in the polluted rivers with a positive correlation with the biotic and abiotic parameters that indicate sewage contamination. PMID:24031990

  3. The crosslinking of polysaccharides with polyamines and dextran-polyallylamine antibacterial hydrogels.

    PubMed

    O'Connor, Naphtali A; Abugharbieh, Ahmad; Yasmeen, Farzana; Buabeng, Emmanuel; Mathew, Steve; Samaroo, Diana; Cheng, Hai-Ping

    2015-01-01

    A facile modular approach to rapidly prepare pH-responsive hydrogels by crosslinking polysaccharides with polyamines is demonstrated. Hydrogels are prepared by first reacting the less reactive polysaccharides with the cross-linker epichlorohydrin and completed by the addition of polyamines. The crosslinking of polysaccharides with polyamines provides a facile method for incorporating functionality into polysaccharide based hydrogels. This process is demonstrated with the polysaccharides dextran, pullulan and carboxymethyl cellulose and with the polyamines polyallylamine and polyethylene imine. The hydrogels were characterized by FTIR and swelling studies, which showed pH-dependent swelling due to the presence of the polyamine. The hydrogels can also be tailored by varying the mass ratio between the polysaccharide and polyamine. Absorption studies of organic analytes showed the polyamine content affecting the uptake of a charged substrate (methylene blue) and no effect on a neutral substrate (6-methyl coumarin). This synthetic method was also used to prepare hydrogels with antibacterial activity against E. coli and S. aureus by utilizing an amphiphilic polyallylamine.

  4. Fungal diversity in grape must and wine fermentation assessed by massive sequencing, quantitative PCR and DGGE

    PubMed Central

    Wang, Chunxiao; García-Fernández, David; Mas, Albert; Esteve-Zarzoso, Braulio

    2015-01-01

    The diversity of fungi in grape must and during wine fermentation was investigated in this study by culture-dependent and culture-independent techniques. Carignan and Grenache grapes were harvested from three vineyards in the Priorat region (Spain) in 2012, and nine samples were selected from the grape must after crushing and during wine fermentation. From culture-dependent techniques, 362 isolates were randomly selected and identified by 5.8S-ITS-RFLP and 26S-D1/D2 sequencing. Meanwhile, genomic DNA was extracted directly from the nine samples and analyzed by qPCR, DGGE and massive sequencing. The results indicated that grape must after crushing harbored a high species richness of fungi with Aspergillus tubingensis, Aureobasidium pullulans, or Starmerella bacillaris as the dominant species. As fermentation proceeded, the species richness decreased, and yeasts such as Hanseniaspora uvarum, Starmerella bacillaris and Saccharomyces cerevisiae successively occupied the must samples. The “terroir” characteristics of the fungus population are more related to the location of the vineyard than to grape variety. Sulfur dioxide treatment caused a low effect on yeast diversity by similarity analysis. Because of the existence of large population of fungi on grape berries, massive sequencing was more appropriate to understand the fungal community in grape must after crushing than the other techniques used in this study. Suitable target sequences and databases were necessary for accurate evaluation of the community and the identification of species by the 454 pyrosequencing of amplicons. PMID:26557110

  5. Electrospun novel super-absorbent based on polysaccharide-polyvinyl alcohol-montmorillonite clay nanocomposites.

    PubMed

    Islam, Md Shahidul; Rahaman, Md Saifur; Yeum, Jeong Hyun

    2015-01-22

    A novel super-absorbent material was fabricated by electrospinning the natural polysaccharide pullulan (PULL) with polyvinyl alcohol (PVA) and montmorillonite (MMT) clay to form nonwoven webs, which were then heat treated. Transmission electron microscopy (TEM) micrographs, X-ray diffraction (XRD) patterns, and Fourier transform infrared (FTIR) analysis of the novel super-absorbent nanofibers suggest the coexistence of PULL, PVA, and MMT through the exfoliation of MMT layers in the super-absorbent nanofiber composite. The heat-treated PULL/PVA/MMT webs loaded with 5 wt% MMT electrospun nanofibers exhibited a water absorbency of 143.42 g g(-1) in distilled water and a water absorbency of 39.75 g g(-1) in a 0.9 wt% NaCl solution. Under extremely dry conditions, the PULL/PVA/MMT webs exhibited the ability to retain 43% distilled water and 38% saline water after being exposed to the atmosphere for one week. The heat treatment improved the crystallinity of the electrospun PULL/PVA/MMT super-absorbent webs and thus made the webs highly stable in aqueous environments. Overall, the addition of MMT resulted in improved thermal stability and mechanical properties and increased the water absorbency of the PULL/PVA/MMT composite.

  6. Identification of indigenous yeast flora isolated from the five winegrape varieties harvested in Xiangning, China.

    PubMed

    Sun, Yue; Guo, Jingjing; Liu, Fubing; Liu, Yanlin

    2014-03-01

    Inoculated fermentation by selected indigenous yeast strains from a specific location could provide the wine with unique regional sensory characteristics. The identification and differentiation of local yeasts are the first step to understand the function of yeasts and develop a better strain-selection program for winemaking. The indigenous yeasts in five grape varieties, Chardonnay, Cabernet Franc, Cabernet Sauvignon, Marselan, and Merlot cultivated in Xiangning, Shanxi, China were investigated. Eight species of seven genera including Aureobasidium pullulans, Candida zemplinina, Hanseniaspora uvarum, Hanseniaspora occidentalis, Issatchenkia terricola, Metschnikowia pulcherrima, Pichia kluyveri, and Saccharomyces cerevisiae were identified using Wallerstein Laboratory Nutrient medium with sequencing of the 26S rDNA D1/D2 domain. H. uvarum and S. cerevisiae were the predominant species, while most non-Saccharomyces species were present in the whole fermentation process at different levels among the grape varieties. The genotypes of S. cerevisiae from each microvinification were determined by using interdelta sequence analysis. The 102 isolates showed eight different genotypes, and genotype III was the predominant genotype found. The distribution of S. cerevisiae strains during the fermentation of Marselan was also studied. Six genotypes were observed among the 92 strains with different genotypes of competitiveness at different sampling stages. Genotype V demonstrated the potential for organizing starter strains and avoiding inefficient fermentation. In general, this study explored the yeast species in the grapes grown in Xiangning County and provided important information of relationship of local yeast diversity and its regional wine sensory characteristics.

  7. Bioconversions of maize residues to value-added coproducts using yeast-like fungi.

    PubMed

    Leathers, Timothy D

    2003-04-01

    Agricultural residues are abundant potential feedstocks for bioconversions to industrial fuels and chemicals. Every bushel of maize (approximately 25 kg) processed for sweeteners, oil, or ethanol generates nearly 7 kg of protein- and fiber-rich residues. Currently these materials are sold for very low returns as animal feed ingredients. Yeast-like fungi are promising biocatalysts for conversions of agricultural residues. Although corn fiber (pericarp) arabinoxylan is resistant to digestion by commercially available enzymes, a crude mixture of enzymes from the yeast-like fungus Aureobasidium partially saccharifies corn fiber without chemical pretreatment. Sugars derived from corn fiber can be converted to ethanol or other valuable products using a variety of naturally occurring or recombinant yeasts. Examples are presented of Pichia guilliermondii strains for the conversion of corn fiber hydrolysates to the alternative sweetener xylitol. Corn-based fuel ethanol production also generates enormous volumes of low-value stillage residues. These nutritionally rich materials are prospective substrates for numerous yeast fermentations. Strains of Aureobasidium and the red yeast Phaffia rhodozyma utilize stillage residues for production of the polysaccharide pullulan and the carotenoid astaxanthin, respectively.

  8. Reversal of diabetes by βTC3 cells encapsulated in alginate beads generated by emulsion and internal gelation.

    PubMed

    Hoesli, Corinne A; Kiang, Roger L J; Mocinecová, Dušana; Speck, Madeleine; Mošková, Daniela Jochec; Donald-Hague, Christine; Lacík, Igor; Kieffer, Timothy J; Piret, James M

    2012-05-01

    Encapsulation of insulin-producing cells in alginate beads could improve the treatment of type 1 diabetes by reducing or eliminating the need for immunosuppression. We have recently adapted an emulsion and internal gelation process to β-cell encapsulation. This process has the advantages of being well suited for m(3)/h production rates and allowing the use of increased alginate concentrations. Compared with 1.5% alginate beads generated by a standard extrusion process, 5% alginate emulsion-generated beads demonstrated greater in vitro stability and greater volumetric exclusion of antibody-sized pullulan. When βTC3 cells were transplanted into streptozotocin-induced allogeneic diabetic mice, a significant decrease in the blood glucose levels was seen within 2 days with the 5% emulsion-generated beads but not until >16 days with the 1.5% extrusion-generated beads. This was correlated with higher cell survival and lower graft-specific plasma immunoglobulin levels. These results suggest that higher-concentration alginate beads generated by emulsion and internal gelation have improved graft immunoprotection. The emulsion process is a promising and scalable technology for cellular therapies requiring immune isolation.

  9. Characteristics of Yeasts Isolated from Pacific Crab Meat

    PubMed Central

    Eklund, M. W.; Spinelli, J.; Miyauchi, D.; Groninger, H.

    1965-01-01

    A total of 202 cultures of yeasts were isolated and characterized from king crab and Dungeness crab meat. A yeastlike organism, resembling Aureobasidium pullulans, and 15 different species distributed among the genera Rhodotorula, Cryptococcus, Torulopsis, Candida, and Trichosporon were represented. Nine of the species grew at 5 C or lower. Although two of the species grew at 37 C, none of the isolates had the characteristics of pathogenic species. Members of the Cryptococcus and Candida failed to grow at 37 C. Furthermore, species of the former genus were not pathogenic to mice. The pigmentation of the Rhodotorula cultures decreased in intensity as the incubation temperature was decreased. Biochemical activities of the different species were studied by use of triglycerides, lecithin, and proteins (casein, gelatin, and crab-meat protein) as substrates. Eight of the species could attack triglycerides; eight, lecithin; five, gelatin; one, casein; and one, crab protein. An organism, tentatively identified as Trichosporon sp., was very active in attacking each of the substrates tested and grew well at 0.5 C. PMID:5866045

  10. Extracellular enzymatic activities and physiological profiles of yeasts colonizing fruit trees.

    PubMed

    Molnárová, Jana; Vadkertiová, Renáta; Stratilová, Eva

    2014-07-01

    Yeasts form a significant and diverse part of the phyllosphere microbiota. Some yeasts that inhabit plants have been found to exhibit extracellular enzymatic activities. The aim of the present study was to investigate the ability of yeasts isolated from leaves, fruits, and blossoms of fruit trees cultivated in Southwest Slovakia to produce extracellular enzymes, and to discover whether the yeasts originating from these plant organs differ from each other in their physiological properties. In total, 92 strains belonging to 29 different species were tested for: extracellular protease, β-glucosidase, lipase, and polygalacturonase activities; fermentation abilities; the assimilation of xylose, saccharose and alcohols (methanol, ethanol, glycerol); and for growth in a medium with 33% glucose. The black yeast Aureobasidium pullulans showed the largest spectrum of activities of all the species tested. Almost 70% of the strains tested demonstrated some enzymatic activity, and more than 90% utilized one of the carbon compounds tested. Intraspecies variations were found for the species of the genera Cryptococcus and Pseudozyma. Interspecies differences of strains exhibiting some enzymatic activities and utilizing alcohols were also noted. The largest proportion of the yeasts exhibited β-glucosidase activity and assimilated alcohols independently of their origin. The highest number of strains positive for all activities tested was found among the yeasts associated with leaves. Yeasts isolated from blossoms assimilated saccharose and D-xylose the most frequently of all the yeasts tested. The majority of the fruit-inhabiting yeasts grew in the medium with higher osmotic pressure.

  11. Evaluation of certain food additives and contaminants.

    PubMed

    2011-01-01

    This report represents the conclusions of a Joint FAO/WHO Expert Committee convened to evaluate the safety of various food additives, with a view to recommending acceptable daily intakes (ADIs) and to preparing specifications for identity and purity. The Committee also evaluated the risk posed by two food contaminants, with the aim of deriving tolerable intakes where appropriate and advising on risk management options for the purpose of public health protection. The first part of the report contains a general discussion of the principles governing the toxicological evaluation of and assessment of dietary exposure to food additives and contaminants. A summary follows of the Committee's evaluations of technical, toxicological and dietary exposure data for certain food additives (aluminium-containing food additives, Benzoe Tonkinensis, glycerol ester of gum rosin, glycerol ester of tall oil rosin, glycerol ester of wood rosin, octenyl succinic acid modified gum arabic, polydimethyl siloxane, Ponceau 4R, pullulan, pullulanase from Bacillus deromificans expressed in Bacillus licheniformis, Quinoline Yellow and Sunset Yellow FCF) and two food contaminants (cyanogenic glycosides and fumonisins). Specifications for the following food additives were revised: aluminium lakes of colouring matters; beta-apo-8'-carotenal; beta-apo-8'-carotenoic acid ethyl ester; beta-carotene, synthetic; hydroxypropyl methyl cellulose; magnesium silicate, synthetic; modified starches; nitrous oxide; sodium carboxymethyl cellulose; and sucrose monoesters of lauric, palmitic or stearic acid. Annexed to the report are tables summarizing the Committee's recommendations for dietary exposures to and toxicological evaluations of the food additives and contaminants considered.

  12. Different drying technologies and alternation of mycobiots in the raw material of Hyssopus officinalis L.

    PubMed

    Raila, Algirdas; Lugauskas, Albinas; Kemzūraite, Aurelija; Zvicevicius, Egidijus; Ragazinskiene, Ona; Railiene, Marija

    2009-01-01

    Contamination of medicinal plant mass with mycobiots is one of the negative factors deteriorating the quality of raw material. In order to evaluate the impact of the yield processing technologies upon the changes of mycobiots in raw material, the mycobiotic conditions of herb hyssop (Hyssopus officinalis L.) raw material were evaluated under various regimes of active ventilation and optimization of the drying parameters. The impact of ventilation intensity and temperature of drying agent upon the changes and abundance of mycobiota species in medicinal raw material was determined. Irrespective of the temperature of the airflow, the strongest suppressive effect upon the mycobiotic contamination in Hyssopi herba was produced by the 5,000 m3 x (t x h)(-1) airflow. Analysis of the isolated fungi revealed the prevalence of Penicillium, Aspergillus, Alternaria, Cladosporium, Mucor, Rhizopus species in the raw material. In separate samples Botrytis cinerea, Sclerotinia sclerotiorum, Aureobasidium pullulans, Chrysosporium merdarium, Cladorrhinum foecundissimum, Ulocladium consortiale, Trichoderma hamatum, T. harzianum, Gilmaniella humicola, Talaromyces flavus, Rhizomucor pusillus, Hansfordia ovalispora, Verticicladium trifi dum, Trichosporiella cerebriformis micromycetes were also rather abundant. Detection of the above-mentioned micromycetes in herb hyssop samples differed, and partially depended upon the medium used for their isolation.

  13. Influence of scaffold design on 3D printed cell constructs.

    PubMed

    Souness, Auryn; Zamboni, Fernanda; Walker, Gavin M; Collins, Maurice N

    2017-02-14

    Additive manufacturing is currently receiving significant attention in the field of tissue engineering and biomaterial science. The development of precise, affordable 3D printing technologies has provided a new platform for novel research to be undertaken in 3D scaffold design and fabrication. In the past, a number of 3D scaffold designs have been fabricated to investigate the potential of a 3D printed scaffold as a construct which could support cellular life. These studies have shown promising results; however, few studies have utilized a low-cost desktop 3D printing technology as a potential rapid manufacturing route for different scaffold designs. Here six scaffold designs were manufactured using a Fused deposition modeling, a "bottom-up" solid freeform fabrication approach, to determine optimal scaffold architecture for three-dimensional cell growth. The scaffolds, produced from PLA, are coated using pullulan and hyaluronic acid to assess the coating influence on cell proliferation and metabolic rate. Scaffolds are characterized both pre- and postprocessing using water uptake analysis, mechanical testing, and morphological evaluation to study the inter-relationships between the printing process, scaffold design, and scaffold properties. It was found that there were key differences between each scaffold design in terms of porosity, diffusivity, swellability, and compressive strength. An optimal design was chosen based on these physical measurements which were then weighted in accordance to design importance based on literature and utilizing a design matrix technique. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017.

  14. Nonclinical evaluation of novel cationically modified polysaccharide antidotes for unfractionated heparin.

    PubMed

    Kalaska, Bartlomiej; Kaminski, Kamil; Sokolowska, Emilia; Czaplicki, Dominik; Kujdowicz, Monika; Stalinska, Krystyna; Bereta, Joanna; Szczubialka, Krzysztof; Pawlak, Dariusz; Nowakowska, Maria; Mogielnicki, Andrzej

    2015-01-01

    Protamine, the only registered antidote of unfractionated heparin (UFH), may produce a number of adverse effects, such as anaphylactic shock or serious hypotension. We aimed to develop an alternative UFH antidote as efficient as protamine, but safer and easier to produce. As a starting material, we have chosen generally non-toxic, biocompatible, widely available, inexpensive, and easy to functionalize polysaccharides. Our approach was to synthesize, purify and characterize cationic derivatives of dextran, hydroxypropylcellulose, pullulan and γ-cyclodextrin, then to screen them for potential heparin-reversal activity using an in vitro assay and finally examine efficacy and safety of the most active polymers in Wistar rat and BALB/c mouse models of experimentally induced arterial and venous thrombosis. Efficacy studies included the measurement of thrombus formation, activated partial thromboplastin time, bleeding time, and anti-factor Xa activity; safety studies included the measurement of hemodynamic, hematologic and immunologic parameters. Linear, high molecular weight dextran substituted with glycidyltrimethylammonium chloride groups at a ratio of 0.65 per glucose unit (Dex40-GTMAC3) is the most potent and the safest UFH inhibitor showing activity comparable to that of protamine while possessing lower immunogenicity. Cationic polysaccharides of various structures neutralize UFH. Dex40-GTMAC3 is a promising and potentially better UFH antidote than protamine.

  15. Nonclinical Evaluation of Novel Cationically Modified Polysaccharide Antidotes for Unfractionated Heparin

    PubMed Central

    Kalaska, Bartlomiej; Kaminski, Kamil; Sokolowska, Emilia; Czaplicki, Dominik; Kujdowicz, Monika; Stalinska, Krystyna; Bereta, Joanna; Szczubialka, Krzysztof; Pawlak, Dariusz; Nowakowska, Maria; Mogielnicki, Andrzej

    2015-01-01

    Protamine, the only registered antidote of unfractionated heparin (UFH), may produce a number of adverse effects, such as anaphylactic shock or serious hypotension. We aimed to develop an alternative UFH antidote as efficient as protamine, but safer and easier to produce. As a starting material, we have chosen generally non-toxic, biocompatible, widely available, inexpensive, and easy to functionalize polysaccharides. Our approach was to synthesize, purify and characterize cationic derivatives of dextran, hydroxypropylcellulose, pullulan and γ-cyclodextrin, then to screen them for potential heparin-reversal activity using an in vitro assay and finally examine efficacy and safety of the most active polymers in Wistar rat and BALB/c mouse models of experimentally induced arterial and venous thrombosis. Efficacy studies included the measurement of thrombus formation, activated partial thromboplastin time, bleeding time, and anti-factor Xa activity; safety studies included the measurement of hemodynamic, hematologic and immunologic parameters. Linear, high molecular weight dextran substituted with glycidyltrimethylammonium chloride groups at a ratio of 0.65 per glucose unit (Dex40-GTMAC3) is the most potent and the safest UFH inhibitor showing activity comparable to that of protamine while possessing lower immunogenicity. Cationic polysaccharides of various structures neutralize UFH. Dex40-GTMAC3 is a promising and potentially better UFH antidote than protamine. PMID:25781030

  16. Characterization of pectinase activity for enology from yeasts occurring in Argentine Bonarda grape

    PubMed Central

    Merín, María Gabriela; Martín, María Carolina; Rantsiou, Kalliopi; Cocolin, Luca; de Ambrosini, Vilma Inés Morata

    2015-01-01

    Pectinolytic enzymes are greatly important in winemaking due to their ability to degrade pectic polymers from grape, contributing to enhance process efficiency and wine quality. This study aimed to analyze the occurrence of pectinolytic yeasts during spontaneous fermentation of Argentine Bonarda grape, to select yeasts that produce extracellular pectinases and to characterize their pectinolytic activity under wine-like conditions. Isolated yeasts were grouped using PCR-DGGE and identified by partial sequencing of 26S rRNA gene. Isolates comprised 7 genera, with Aureobasidium pullulans as the most predominant pectinolytic species, followed by Rhodotorula dairenensis and Cryptococcus saitoi. No pectinolytic activity was detected among ascomycetous yeasts isolated on grapes and during fermentation, suggesting a low occurrence of pectinolytic yeast species in wine fermentation ecosystem. This is the first study reporting R. dairenensis and Cr. saitoi species with pectinolytic activity. R. dairenensis GM-15 produced pectinases that proved to be highly active at grape pH, at 12 °C, and under ethanol and SO2 concentrations usually found in vinifications (pectinase activity around 1.1 U/mL). This strain also produced cellulase activity at 12 °C and pH 3.5, but did not produce β-glucosidase activity under these conditions. The strain showed encouraging enological properties for its potential use in low-temperature winemaking. PMID:26413065

  17. A Single Limit Dextrinase Gene Is Expressed Both in the Developing Endosperm and in Germinated Grains of Barley1

    PubMed Central

    Burton, Rachel A.; Zhang, Xiao-Qi; Hrmova, Maria; Fincher, Geoffrey B.

    1999-01-01

    The single gene encoding limit dextrinase (pullulan 6-glucanohydrolase; EC 3.2.1.41) in barley (Hordeum vulgare) has 26 introns that range in size from 93 to 822 base pairs. The mature polypeptide encoded by the gene has 884 amino acid residues and a calculated molecular mass of 97,417 D. Limit dextrinase mRNA is abundant in gibberellic acid-treated aleurone layers and in germinated grain. Gibberellic acid response elements were found in the promoter region of the gene. These observations suggest that the enzyme participates in starch hydrolysis during endosperm mobilization in germinated grain. The mRNA encoding the enzyme is present at lower levels in the developing endosperm of immature grain, a location consistent with a role for limit dextrinase in starch synthesis. Enzyme activity was also detected in developing grain. The limit dextrinase has a presequence typical of transit peptides that target nascent polypeptides to amyloplasts, but this would not be expected to direct secretion of the mature enzyme from aleurone cells in germinated grain. It remains to be discovered how the enzyme is released from the aleurone and whether another enzyme, possibly of the isoamylase group, might be equally important for starch hydrolysis in germinated grain. PMID:10069825

  18. Proniosomal powders of natural canthaxanthin: Preparation and characterization.

    PubMed

    Ravaghi, Maryam; Sinico, Chiara; Razavi, Seyed Hadi; Mousavi, Seyed Mohammad; Pini, Elena; Fadda, Anna Maria

    2017-04-01

    In this study, canthaxanthin (CTX) was produced by Dietzia natronolimnaea HS-1 using beetroot molasses as substrate and used for encapsulation in proniosome powders after extraction, with the aim of improving its stability. Proniosome powders were prepared with an equimolar ratio of span 60/cholesterol and four different carriers, namely maltodextrin, mannitol, lactose and pullulan. The properties of these formulations as both proniosomal powders and resulted niosomal dispersions were evaluated. The type of carriers had significant effects on the micrometric properties of proniosome powders which were further confirmed by the results of SEM analysis. Although light and high temperatures affected the stability of CTX drastically, but encapsulation in proniosomes retarded its degradation. Among these samples, mannitol based proniosome powder (MAPP) produced small vesicles (mean diameter=175±3nmand polydispersity index=0.28±0.02) with the highest entrapment efficiency (74.1±2.7%). MAPP provided a promising formulation to increase CTX stability especially upon storage at high temperatures (45°C).

  19. Nanogel-based pneumococcal surface protein A nasal vaccine induces microRNA-associated Th17 cell responses with neutralizing antibodies against Streptococcus pneumoniae in macaques

    PubMed Central

    Fukuyama, Y; Yuki, Y; Katakai, Y; Harada, N; Takahashi, H; Takeda, S; Mejima, M; Joo, S; Kurokawa, S; Sawada, S; Shibata, H; Park, E J; Fujihashi, K; Briles, D E; Yasutomi, Y; Tsukada, H; Akiyoshi, K; Kiyono, H

    2015-01-01

    We previously established a nanosized nasal vaccine delivery system by using a cationic cholesteryl group-bearing pullulan nanogel (cCHP nanogel), which is a universal protein-based antigen-delivery vehicle for adjuvant-free nasal vaccination. In the present study, we examined the central nervous system safety and efficacy of nasal vaccination with our developed cCHP nanogel containing pneumococcal surface protein A (PspA-nanogel) against pneumococcal infection in nonhuman primates. When [18F]-labeled PspA-nanogel was nasally administered to a rhesus macaque (Macaca mulatta), longer-term retention of PspA was noted in the nasal cavity when compared with administration of PspA alone. Of importance, no deposition of [18F]-PspA was seen in the olfactory bulbs or brain. Nasal PspA-nanogel vaccination effectively induced PspA-specific serum IgG with protective activity and mucosal secretory IgA (SIgA) Ab responses in cynomolgus macaques (Macaca fascicularis). Nasal PspA-nanogel-induced immune responses were mediated through T-helper (Th) 2 and Th17 cytokine responses concomitantly with marked increases in the levels of miR-181a and miR-326 in the serum and respiratory tract tissues, respectively, of the macaques. These results demonstrate that nasal PspA-nanogel vaccination is a safe and effective strategy for the development of a nasal vaccine for the prevention of pneumonia in humans. PMID:25669148

  20. Endophytic fungi from Vitis labrusca L. ('Niagara Rosada') and its potential for the biological control of Fusarium oxysporum.

    PubMed

    Brum, M C P; Araújo, W L; Maki, C S; Azevedo, J L

    2012-12-06

    We investigated the diversity of endophytic fungi found on grape (Vitis labrusca cv. Niagara Rosada) leaves collected from Salesópolis, SP, Brazil. The fungi were isolated and characterized by amplified ribosomal DNA restriction analysis, followed by sequencing of the ITS1-5.8S-ITS2 rDNA. In addition, the ability of these endophytic fungi to inhibit the grapevine pathogen Fusarium oxysporum f. sp herbemontis was determined in vitro. We also observed that the climatic factors, such as temperature and rainfall, have no effect on the frequency of infection by endophytic fungi. The endophytic fungal community that was identified included Aporospora terricola, Aureobasidium pullulans, Bjerkandera adusta, Colletotrichum boninense, C. gloeosporioides, Diaporthe helianthi, D. phaseolorum, Epicoccum nigrum, Flavodon flavus, Fusarium subglutinans, F. sacchari, Guignardia mangiferae, Lenzites elegans, Paraphaeosphaeria pilleata, Phanerochaete sordida, Phyllosticta sp, Pleurotus nebrodensis, Preussia africana, Tinctoporellus epiniltinus, and Xylaria berteri. Among these isolates, two, C. gloeosporioides and F. flavus, showed potential antagonistic activity against F. oxysporum f. sp herbemontis. We suggest the involvement of the fungal endophyte community of V. labrusca in protecting the host plant against pathogenic Fusarium species. Possibly, some endophytic isolates could be selected for the development of biological control agents for grape fungal disease; alternatively, management strategies could be tailored to increase these beneficial fungi.

  1. Fungi associated with black mould on baobab trees in southern Africa.

    PubMed

    Cruywagen, Elsie M; Crous, Pedro W; Roux, Jolanda; Slippers, Bernard; Wingfield, Michael J

    2015-07-01

    There have been numerous reports in the scientific and popular literature suggesting that African baobab (Adansonia digitata) trees are dying, with symptoms including a black mould on their bark. The aim of this study was to determine the identity of the fungi causing this black mould and to consider whether they might be affecting the health of trees. The fungi were identified by sequencing directly from mycelium on the infected tissue as well as from cultures on agar. Sequence data for the ITS region of the rDNA resulted in the identification of four fungi including Aureobasidium pullulans, Toxicocladosporium irritans and a new species of Rachicladosporium described here as Rachicladosporium africanum. A single isolate of an unknown Cladosporium sp. was also found. These fungi, referred to here as black mould, are not true sooty mould fungi and they were shown to penetrate below the bark of infected tissue, causing a distinct host reaction. Although infections can lead to dieback of small twigs on severely infected branches, the mould was not found to kill trees.

  2. Screening wild yeast strains for alcohol fermentation from various fruits.

    PubMed

    Lee, Yeon-Ju; Choi, Yu-Ri; Lee, So-Young; Park, Jong-Tae; Shim, Jae-Hoon; Park, Kwan-Hwa; Kim, Jung-Wan

    2011-03-01

    Wild yeasts on the surface of various fruits including grapes were surveyed to obtain yeast strains suitable for fermenting a novel wine with higher alcohol content and supplemented with rice starch. We considered selected characteristics, such as tolerance to alcohol and osmotic pressure, capability of utilizing maltose, and starch hydrolysis. Among 637 putative yeast isolates, 115 strains exhibiting better growth in yeast-peptone-dextrose broth containing 30% dextrose, 7% alcohol, or 2% maltose were selected, as well as five α-amylase producers. Nucleotide sequence analysis of the 26S rDNA gene classified the strains into 13 species belonging to five genera; Pichia anomala was the most prevalent (41.7%), followed by Wickerhamomyces anomalus (19.2%), P. guilliermondii (15%), Candida spp. (5.8%), Kodamaea ohmeri (2.5%), and Metschnikowia spp. (2.5%). All of the α-amylase producers were Aureobasidium pullulans. Only one isolate (NK28) was identified as Saccharomyces cerevisiae. NK28 had all of the desired properties for the purpose of this study, except α-amylase production, and fermented alcohol better than commercial wine yeasts.

  3. Screening Wild Yeast Strains for Alcohol Fermentation from Various Fruits

    PubMed Central

    Lee, Yeon-Ju; Choi, Yu-Ri; Lee, So-Young; Park, Jong-Tae; Shim, Jae-Hoon; Park, Kwan-Hwa

    2011-01-01

    Wild yeasts on the surface of various fruits including grapes were surveyed to obtain yeast strains suitable for fermenting a novel wine with higher alcohol content and supplemented with rice starch. We considered selected characteristics, such as tolerance to alcohol and osmotic pressure, capability of utilizing maltose, and starch hydrolysis. Among 637 putative yeast isolates, 115 strains exhibiting better growth in yeast-peptone-dextrose broth containing 30% dextrose, 7% alcohol, or 2% maltose were selected, as well as five α-amylase producers. Nucleotide sequence analysis of the 26S rDNA gene classified the strains into 13 species belonging to five genera; Pichia anomala was the most prevalent (41.7%), followed by Wickerhamomyces anomalus (19.2%), P. guilliermondii (15%), Candida spp. (5.8%), Kodamaea ohmeri (2.5%), and Metschnikowia spp. (2.5%). All of the α-amylase producers were Aureobasidium pullulans. Only one isolate (NK28) was identified as Saccharomyces cerevisiae. NK28 had all of the desired properties for the purpose of this study, except α-amylase production, and fermented alcohol better than commercial wine yeasts. PMID:22783070

  4. Hybrid model building methodology using unsupervised fuzzy clustering and supervised neural networks.

    PubMed

    Ronen, M; Shabtai, Y; Guterman, H

    2002-02-15

    This paper suggests a model building methodology for dealing with new processes. The methodology, called Hybrid Fuzzy Neural Networks (HFNN), combines unsupervised fuzzy clustering and supervised neural networks in order to create simple and flexible models. Fuzzy clustering was used to define relevant domains on the input space. Then, sets of multilayer perceptrons (MLP) were trained (one for each domain) to map input-output relations, creating, in the process, a set of specified sub-models. The estimated output of the model was obtained by fusing the different sub-model outputs weighted by their predicted possibilities. On-line reinforcement learning enabled improvement of the model. The determination of the optimal number of clusters is fundamental to the success of the HFNN approach. The effectiveness of several validity measures was compared to the generalization capability of the model and information criteria. The validity measures were tested with fermentation simulations and real fermentations of a yeast-like fungus, Aureobasidium pullulans. The results outline the criteria limitations. The learning capability of the HFNN was tested with the fermentation data. The results underline the advantages of HFNN over a single neural network.

  5. Stable nisin food-grade electrospun fibers.

    PubMed

    Soto, Karen M; Hernández-Iturriaga, Montserrat; Loarca-Piña, Guadalupe; Luna-Bárcenas, Gabriel; Gómez-Aldapa, Carlos A; Mendoza, Sandra

    2016-10-01

    Most of antimicrobial peptides interact with food components decreasing their activity, which limit their successful incorporation into packaging material, functional foods and edible films. The aim of this work was to develop a nisin carrier. Nanofibers of amaranth protein and pullulan (50:50) loaded with nisin were obtained by electrospinning. The nanofibers morphology was determined by scanning electron microscopy and fluorescent microscopy. The molecular interactions were characterized by infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. The nisin loading efficiency as well as the antimicrobial activity against Leuconostoc mesenteroides were evaluated. The micrographs of the obtained materials exhibited smooth and continuous fibers with no defects characterized by diameters between 124 and 173 nm. The FTIR analysis showed intermolecular interactions mainly by hydrogen bonding. The electrospinning process improved the thermal properties of the polymeric mixture displacing the Tm peak to higher temperatures and increasing crystallinity. The antimicrobial activity of nisin in broth and agar against L. mesenteroides was maintained after incorporation into fibers. The results presented an outlook for the potential use of protein amaranth nanofibers when incorporating antimicrobials as a food preservation strategy.

  6. Gluconic acid production.

    PubMed

    Anastassiadis, Savas; Morgunov, Igor G

    2007-01-01

    Gluconic acid, the oxidation product of glucose, is a mild neither caustic nor corrosive, non toxic and readily biodegradable organic acid of great interest for many applications. As a multifunctional carbonic acid belonging to the bulk chemicals and due to its physiological and chemical characteristics, gluconic acid itself, its salts (e.g. alkali metal salts, in especially sodium gluconate) and the gluconolactone form have found extensively versatile uses in the chemical, pharmaceutical, food, construction and other industries. Present review article presents the comprehensive information of patent bibliography for the production of gluconic acid and compares the advantages and disadvantages of known processes. Numerous manufacturing processes are described in the international bibliography and patent literature of the last 100 years for the production of gluconic acid from glucose, including chemical and electrochemical catalysis, enzymatic biocatalysis by free or immobilized enzymes in specialized enzyme bioreactors as well as discontinuous and continuous fermentation processes using free growing or immobilized cells of various microorganisms, including bacteria, yeast-like fungi and fungi. Alternatively, new superior fermentation processes have been developed and extensively described for the continuous and discontinuous production of gluconic acid by isolated strains of yeast-like mold Aureobasidium pullulans, offering numerous advantages over the traditional discontinuous fungi processes.

  7. Structural diversity requires individual optimization of ethanol concentration in polysaccharide precipitation.

    PubMed

    Xu, Jun; Yue, Rui-Qi; Liu, Jing; Ho, Hing-Man; Yi, Tao; Chen, Hu-Biao; Han, Quan-Bin

    2014-06-01

    Ethanol precipitation is one of the most widely used methods for preparing natural polysaccharides, in which ethanol concentration significantly affects the precipitate yield, however, is usually set at 70-80%. Whether the standardization of ethanol concentration is appropriate has not been investigated. In the present study, the precipitation yields produced in varied ethanol concentrations (10-90%) were qualitatively and quantitatively evaluated by HPGPC (high-performance gel-permeation chromatography), using two series of standard glucans, namely dextrans and pullulans, as reference samples, and then eight natural samples. The results indicated that the response of a polysaccharide's chemical structure, with diversity in structural features and molecular sizes, to ethanol concentration is the decisive factor in precipitation of these glucans. Polysaccharides with different structural features, even though they have similar molecular weights, exhibit significantly different precipitation behaviors. For a specific glucan, the lower its molecular size, the higher the ethanol concentration needed for complete precipitation. The precipitate yield varied from 10% to 100% in 80% ethanol as the molecular size increased from 1kDa to 270kDa. This paper aims to draw scientists' attention to the fact that, in extracting natural polysaccharides by ethanol precipitation, the ethanol concentration must be individually optimized for each type of material.

  8. Design, Synthesis, and Photophysical Properties of Pyrroloquinoline-Based Compounds Showing Strong Blue Fluorescence as Potential Dyes for Biomedical Applications.

    PubMed

    Carta, Davide; Balasso, Anna; Caliceti, Paolo; Ferlin, Maria Grazia

    2015-11-01

    A small library of 3-ethylpyrrolo[3,2-f]quinoline derivatives was synthesized to identify a novel class of dyes for use in biological studies. According to the spectroscopic analyses performed to evaluate the fluorimetric parameters of quantum yield and brightness, 7-methyl- and 6,7-dimethylpyrroloquinolin(9)one derivatives were found to be the best blue luminescent dyes for biological applications. To enhance the luminescence profiles and to obtain probes that could be conjugated to functional groups of supramolecular drug delivery systems, these compounds were further modified at position 3 to obtain 3-heptanoic acid and 3-aminohexylpyrroloquinolin(9)one methylated derivatives. The most brilliant 6,7-dimethyl-3-aminohexylpyrroloquinolinone hydrochloride was conjugated to pullulan, a biocompatible polysaccharide used to produce colloidal systems for drug delivery. Comparative studies showed that this compound can be properly exploited as a blue fluorescent label in biological investigations, namely cell trafficking and pharmacokinetics/biodistribution studies. These molecules possess higher fluorescence efficiency than commercial dyes in biological media, making them suitable alternatives to commercially available products in current use.

  9. Ultrasound-Assisted Extraction May Not Be a Better Alternative Approach than Conventional Boiling for Extracting Polysaccharides from Herbal Medicines.

    PubMed

    Yip, Ka-Man; Xu, Jun; Tong, Wing-Sum; Zhou, Shan-Shan; Yi, Tao; Zhao, Zhong-Zhen; Chen, Hu-Biao

    2016-11-18

    In clinical practice polysaccharides from herbal medicines are conventionally prepared by boiling water extraction (BWE), while ultrasound-assisted extraction (UAE) has often been used instead employed in laboratory research due to its strong extraction ability and efficiency. However, if and how the polysaccharides obtained by UAE and BWE are comparable, and hence whether the UAE-based research is instructive for the actual usage of herbal polysaccharides still requires further evaluation. To address this issue, here we chemically analyzed and compared the UAE- and BWE-obtained polysaccharides from three herbal medicines, i.e., Ginseng Radix, Astragali Radix and Dendrobii Officinalis Caulis. Then, the spike recovery of two series of standard dextran and pullulan by UAE and BWE was tested. The results showed that the polysaccharides from the herbal medicines by UAE were quantitatively and qualitatively different with those by BWE. The powerful extraction ability and polysaccharide degradation caused by ultrasound collectively contributed to these differences. It was then revealed that not only the UAE conditions but also the polysaccharide structures could affect the extraction ability and polysaccharide degradation. Given these, we highly recommended that the effects of UAE on polysaccharides from herbal medicines should be first carefully considered before employing it in relevant chemical and pharmacological analysis.

  10. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines

    NASA Astrophysics Data System (ADS)

    Nochi, Tomonori; Yuki, Yoshikazu; Takahashi, Haruko; Sawada, Shin-Ichi; Mejima, Mio; Kohda, Tomoko; Harada, Norihiro; Kong, Il Gyu; Sato, Ayuko; Kataoka, Nobuhiro; Tokuhara, Daisuke; Kurokawa, Shiho; Takahashi, Yuko; Tsukada, Hideo; Kozaki, Shunji; Akiyoshi, Kazunari; Kiyono, Hiroshi

    2010-07-01

    Nanotechnology is an innovative method of freely controlling nanometre-sized materials. Recent outbreaks of mucosal infectious diseases have increased the demands for development of mucosal vaccines because they induce both systemic and mucosal antigen-specific immune responses. Here we developed an intranasal vaccine-delivery system with a nanometre-sized hydrogel (`nanogel') consisting of a cationic type of cholesteryl-group-bearing pullulan (cCHP). A non-toxic subunit fragment of Clostridium botulinum type-A neurotoxin BoHc/A administered intranasally with cCHP nanogel (cCHP-BoHc/A) continuously adhered to the nasal epithelium and was effectively taken up by mucosal dendritic cells after its release from the cCHP nanogel. Vigorous botulinum-neurotoxin-A-neutralizing serum IgG and secretory IgA antibody responses were induced without co-administration of mucosal adjuvant. Importantly, intranasally administered cCHP-BoHc/A did not accumulate in the olfactory bulbs or brain. Moreover, intranasally immunized tetanus toxoid with cCHP nanogel induced strong tetanus-toxoid-specific systemic and mucosal immune responses. These results indicate that cCHP nanogel can be used as a universal protein-based antigen-delivery vehicle for adjuvant-free intranasal vaccination.

  11. Carbohydrate binding properties of banana (Musa acuminata) lectin I. Novel recognition of internal alpha1,3-linked glucosyl residues.

    PubMed

    Mo, H; Winter, H C; Van Damme, E J; Peumans, W J; Misaki, A; Goldstein, I J

    2001-05-01

    Examination of lectins of banana (Musa acuminata) and the closely related plantain (Musa spp.) by the techniques of quantitative precipitation, hapten inhibition of precipitation, and isothermal titration calorimetry showed that they are mannose/glucose binding proteins with a preference for the alpha-anomeric form of these sugars. Both generate precipitin curves with branched chain alpha-mannans (yeast mannans) and alpha-glucans (glycogens, dextrans, and starches), but not with linear alpha-glucans containing only alpha1,4- and alpha1,6-glucosidic bonds (isolichenan and pullulan). The novel observation was made that banana and plantain lectins recognize internal alpha1,3-linked glucosyl residues, which occur in the linear polysaccharides elsinan and nigeran. Concanavalin A and lectins from pea and lentil, also mannose/glucose binding lectins, did not precipitate with any of these linear alpha-glucans. This is, the authors believe, the first report of the recognition of internal alpha1,3-glucosidic bonds by a plant lectin. It is possible that these lectins are present in the pulp of their respective fruit, complexed with starch.

  12. Polysaccharides as cell carriers for tissue engineering: the use of cellulose in vascular wall reconstruction.

    PubMed

    Bačáková, L; Novotná, K; Pařízek, M

    2014-01-01

    Polysaccharides are long carbohydrate molecules of monosaccharide units joined together by glycosidic bonds. These biological polymers have emerged as promising materials for tissue engineering due to their biocompatibility, mostly good availability and tailorable properties. This complex group of biomolecules can be classified using several criteria, such as chemical composition (homo- and heteropolysaccharides), structure (linear and branched), function in the organism (structural, storage and secreted polysaccharides), or source (animals, plants, microorganisms). Polysaccharides most widely used in tissue engineering include starch, cellulose, chitosan, pectins, alginate, agar, dextran, pullulan, gellan, xanthan and glycosaminoglycans. Polysaccharides have been applied for engineering and regeneration of practically all tissues, though mostly at the experimental level. Polysaccharides have been tested for engineering of blood vessels, myocardium, heart valves, bone, articular and tracheal cartilage, intervertebral discs, menisci, skin, liver, skeletal muscle, neural tissue, urinary bladder, and also for encapsulation and delivery of pancreatic islets and ovarian follicles. For these purposes, polysaccharides have been applied in various forms, such as injectable hydrogels or porous and fibrous scaffolds, and often in combination with other natural or synthetic polymers or inorganic nanoparticles. The immune response evoked by polysaccharides is usually mild, and can be reduced by purifying the material or by choosing appropriate crosslinking agents.

  13. Structure and function of α-glucan debranching enzymes.

    PubMed

    Møller, Marie Sofie; Henriksen, Anette; Svensson, Birte

    2016-07-01

    α-Glucan debranching enzymes hydrolyse α-1,6-linkages in starch/glycogen, thereby, playing a central role in energy metabolism in all living organisms. They belong to glycoside hydrolase families GH13 and GH57 and several of these enzymes are industrially important. Nine GH13 subfamilies include α-glucan debranching enzymes; isoamylase and glycogen debranching enzymes (GH13_11); pullulanase type I/limit dextrinase (GH13_12-14); pullulan hydrolase (GH13_20); bifunctional glycogen debranching enzyme (GH13_25); oligo-1 and glucan-1,6-α-glucosidases (GH13_31); pullulanase type II (GH13_39); and α-amylase domains (GH13_41) in two-domain amylase-pullulanases. GH57 harbours type II pullulanases. Specificity differences, domain organisation, carbohydrate binding modules, sequence motifs, three-dimensional structures and specificity determinants are discussed. The phylogenetic analysis indicated that GH13_39 enzymes could represent a "missing link" between the strictly α-1,6-specific debranching enzymes and the enzymes with dual specificity and α-1,4-linkage preference.

  14. Membrane-bound amylopullulanase is essential for starch metabolism of Sulfolobus acidocaldarius DSM639.

    PubMed

    Choi, Kyoung-Hwa; Cha, Jaeho

    2015-09-01

    Sulfolobus acidocaldarius DSM639 produced an acid-resistant membrane-bound amylopullulanase (Apu) during growth on starch as a sole carbon and energy source. The physiological role of Apu in starch metabolism was investigated by the growth and starch degradation pattern of apu disruption mutant as well as biochemical properties of recombinant Apu. The Δapu mutant lost the ability to grow in minimal medium in the presence of starch, and the amylolytic activity observed in the membrane fraction of the wild-type strain was not detected in the Δapu mutant when the cells were grown in YT medium. The purified membrane-bound Apu initially hydrolyzed starch, amylopectin, and pullulan into various sizes of maltooligosaccharides, and then produced glucose, maltose, and maltotriose in the end, indicating Apu is a typical endo-acting glycoside hydrolase family 57 (GH57) amylopullulanase. The maltose and maltotriose observed in the culture medium during the exponential and stationary phase growth indicates that Apu is the essential enzyme to initially hydrolyze the starch into small maltooligosaccharides to be transported into the cell.

  15. Thermo-controlled rheology of electro-assembled polyanionic polysaccharide (alginate) and polycationic thermo-sensitive polymers.

    PubMed

    Niang, Pape Momar; Huang, Zhiwei; Dulong, Virginie; Souguir, Zied; Le Cerf, Didier; Picton, Luc

    2016-03-30

    Several thermo-sensitive polyelectrolyte complexes were prepared by ionic self-association between an anionic polysaccharide (alginate) and a monocationic copolymer (polyether amine, Jeffamine®-M2005) with a 'Low Critical Solubility Temperature' (LCST). We show that electro-association must be established below the aggregation temperature of the free Jeffamine®, after which the organization of the system is controlled by the thermo-association of Jeffamine® that was previously electro-associated with the alginate. Evidence for this comes primarily from the rheology in the semi-dilute region. Electro- and thermo-associative behaviours are optimal at a pH corresponding to maximum ionization of both compounds (around pH 7). High ionic strength could prevent the electro-association. The reversibility of the transition is possible only at temperatures lower than the LCST of Jeffamine®. Similar behaviour has been obtained with carboxymethyl cellulose (CMC), which suggests that this behaviour can be observed using a range of anionic polyelectrolytes. In contrast, no specific properties have been found for pullulan, which is a neutral polysaccharide.

  16. Biotechnological Applications of Dimorphic Yeasts

    NASA Astrophysics Data System (ADS)

    Doiphode, N.; Joshi, C.; Ghormade, V.; Deshpande, M. V.

    The dimorphic yeasts have the equilibrium between spherical growth (budding) and polarized (hyphal or pseudohyphal tip elongation) which can be triggered by change in the environmental conditions. The reversible growth phenomenon has made dimorphic yeasts as an useful model to understand fungal evolution and fungal differentiation, in general. In nature dimorphism is clearly evident in plant and animal fungal pathogens, which survive and most importantly proliferate in the respective hosts. However, number of organisms with no known pathogenic behaviour also show such a transition, which can be exploited for the technological applications due to their different biochemical make up under different morphologies. For instance, chitin and chitosan production using dimorphic Saccharomyces, Mucor, Rhizopus and Benjaminiella, oil degradation and biotransformation with yeast-form of Yarrowia species, bioremediation of organic pollutants, exopolysac-charide production by yeast-phase of Aureobasidium pullulans, to name a few. Myrothecium verrucaria can be used for seed dressing in its yeast form and it produces a mycolytic enzyme complex in its hyphal-form for the biocontrol of fungal pathogens, while Beauveria bassiana and other entomopathogens kill the insect pest by producing yeast- like cells in the insect body. The form-specific expression of protease, chitinase, lipase, ornithine decarboxylase, glutamate dehydrogenases, etc. make Benjaminiella poitrasii, Basidiobolus sp., and Mucor rouxii strains important in bioremediation, nanobiotechnology, fungal evolution and other areas.

  17. Using the polymeric ouzo effect for the preparation of polysaccharide-based nanoparticles.

    PubMed

    Aschenbrenner, Eugen; Bley, Karina; Koynov, Kaloian; Makowski, Marcin; Kappl, Michael; Landfester, Katharina; Weiss, Clemens K

    2013-07-16

    The polymeric ouzo effect, a nanoprecipitation process, is used for the preparation of polysaccharide-based nanoparticles. Dextran, pullulan, and starch were esterified with hydrophobic carboxylic acid anhydrides to obtain hydrophobic polysaccharides, which are insoluble in water. The additional introduction of methacroyl residues offers the possibility to cross-link the generated nanostructures, which become insoluble in organic solvents. To make use of the ouzo effect for the formation of nanoparticles, the polymer has to be soluble in an organic solvent, which is miscible with water. Here, acetone and THF were used. Immediately after the organic polymer solution is added to water, nanoparticles are generated. The size of the nanoparticles can be adjusted between 50 and 200 nm by changing the concentration of the initial polysaccharide solution. The degree of hydrophobic substitution was shown to have a very minor effect on the particle size. Dispersions with solids contents of up to 2% were obtained. Furthermore, the mechanical properties of the nanoparticles were investigated with force microscopy, and it was shown by fluorescence correlation spectroscopy that a fluorescent dye could be encapsulated in the nanoparticles by the applied nanoprecipitation procedure.

  18. Characterization of pectinase activity for enology from yeasts occurring in Argentine Bonarda grape.

    PubMed

    Merín, María Gabriela; Martín, María Carolina; Rantsiou, Kalliopi; Cocolin, Luca; de Ambrosini, Vilma Inés Morata

    2015-01-01

    Pectinolytic enzymes are greatly important in winemaking due to their ability to degrade pectic polymers from grape, contributing to enhance process efficiency and wine quality. This study aimed to analyze the occurrence of pectinolytic yeasts during spontaneous fermentation of Argentine Bonarda grape, to select yeasts that produce extracellular pectinases and to characterize their pectinolytic activity under wine-like conditions. Isolated yeasts were grouped using PCR-DGGE and identified by partial sequencing of 26S rRNA gene. Isolates comprised 7 genera, with Aureobasidium pullulans as the most predominant pectinolytic species, followed by Rhodotorula dairenensis and Cryptococcus saitoi. No pectinolytic activity was detected among ascomycetous yeasts isolated on grapes and during fermentation, suggesting a low occurrence of pectinolytic yeast species in wine fermentation ecosystem. This is the first study reporting R. dairenensis and Cr. saitoi species with pectinolytic activity. R. dairenensis GM-15 produced pectinases that proved to be highly active at grape pH, at 12 °C, and under ethanol and SO2 concentrations usually found in vinifications (pectinase activity around 1.1 U/mL). This strain also produced cellulase activity at 12 °C and pH 3.5, but did not produce β-glucosidase activity under these conditions. The strain showed encouraging enological properties for its potential use in low-temperature winemaking.

  19. A novel multifunctional α-amylase from the thermophilic fungus Malbranchea cinnamomea: biochemical characterization and three-dimensional structure.

    PubMed

    Han, Peng; Zhou, Peng; Hu, Songqing; Yang, Shaoqing; Yan, Qiaojuan; Jiang, Zhengqiang

    2013-05-01

    A novel α-amylase (McAmyA) from the thermophilic fungus, Malbranchea cinnamomea was purified, characterized and crystallized in the present study. McAmyA was purified to apparent homogeneity with a molecular mass of 60.3 kDa on SDS-PAGE. The enzyme exhibited maximal activity at pH 6.5 and was stable within pH 5.0-10.0. It was most active at 65 °C and was stable up to 50 °C. McAmyA was capable of hydrolyzing amylose, starch, amylopectin, pullulan, cyclodextrins and maltooligosaccharides. The full-length cDNA of an α-amylase gene (McAmyA) from the strain was cloned. McAmyA consisted of a 1,476-bp open reading frame encoding 492 amino acids. It displayed the highest amino acid sequence homology (less than 60 %) with the reported α-amylases. The crystal structure of McAmyA was solved at a resolution of 2.25 Å (PDB code 3VM7). The overall structure of McAmyA reveals three domains with ten α helices and 14 β strands, and the putative catalytic residues are positioned at domain A with somewhat different secondary structural circumstances compared with typical α-amylases.

  20. A novel domain arrangement in a monomeric cyclodextrin-hydrolyzing enzyme from the hyperthermophile Pyrococcus furiosus.

    PubMed

    Park, Jong-Tae; Song, Hyung-Nam; Jung, Tae-Yang; Lee, Myoung-Hee; Park, Sung-Goo; Woo, Eui-Jeon; Park, Kwan-Hwa

    2013-01-01

    PFTA (Pyrococcus furiosus thermostable amylase) is a hyperthermophilic amylase isolated from the archaeon Pyrococcus furiosus. This enzyme possesses characteristics of both α-amylase- and cyclodextrin (CD)-hydrolyzing enzymes, allowing it to degrade pullulan, CD and acarbose-activities that are absent in most α-amylases-without the transferring activity that is common in CD-hydrolyzing enzymes. The crystal structure of PFTA revealed a unique monomeric subunit with an extended N-terminal region and an N'-domain folded into its own active site-a significantly altered domain configuration relative to that of the conventional dimeric CD-hydrolyzing amylases in glycoside hydrolase family 13. The active site is formed by the interface of the N'-domain and the catalytic domain and exhibits a broad and wide-open geometry without the concave pocket that is commonly found in the active sites of maltogenic amylases. The mutation of a residue (Gly415 to Glu) located at the domain interface between the N'- and catalytic domains yielded an enzyme that produced a significantly higher purity maltoheptaose (G7) from β-CD, supporting the involvement of this interface in substrate recognition and indicating that this mutant enzyme is a suitable candidate for the production of pure G7. The unique configuration of the active site distinguishes this archaic monomeric enzyme from classical bacterial CD-hydrolyzing amylases and provides a molecular basis for its enzymatic characteristics and for its potential use in industrial applications.

  1. Preparation of linear maltodextrins using a hyperthermophilic amylopullulanase with cyclodextrin- and starch-hydrolysing activities.

    PubMed

    Li, Xiaolei; Li, Dan

    2015-03-30

    A novel method for the preparation of linear maltodextrins from cyclodextrins and starch was proposed. To accomplish this process, an amylopullulanase from hyperthermophilic archaeon Caldivirga maquilingensis (CMApu) was characterized and used. CMApu with an estimated molecular mass of 62.7 kDa by SDS-PAGE had a maximal pullulan-hydrolysing activity at 100°C and pH 5.0. It could also hydrolyse amylopectin (AP), starch, β-CD and amylose (AM), in a decreasing order of relative activities from 88.96% to 57.17%. TLC and HPAEC analysis revealed that CMApu catalyzed the debranching and degrading reactions to produce linear malto-oligosaccharides (≤ G8-G1) from G8-β-CD and/or normal CDs, amylodextrins (DP6-96) from AM, and amylodextrins (DP1-76) from AP and potato starch. Our results showed that CMApu had a great potential for the industrial preparation of linear maltodextrins from normal starch instead of waxy starch, malto-oligosaccharides or sucrose. And the high optimal temperature of CMApu facilitated the simultaneous gelatinization and hydrolysis of cereal starch.

  2. Pullulanibacillus uraniitolerans sp. nov., an acidophilic, U(VI)-resistant species isolated from an acid uranium mill tailing effluent and emended description of the genus Pullulanibacillus.

    PubMed

    Pereira, Sónia G; Albuquerque, Luciana; Nobre, M Fernanda; Tiago, Igor; Veríssimo, António; Pereira, Alcides; da Costa, Milton S

    2013-01-01

    Two Gram-positive-staining, rod-shaped, endospore-forming isolates (UG-2(T) and UG-3), with an optimum growth temperature of around 37 °C and an optimum pH for growth of about 4, were recovered from an acidic effluent of the uranium mill tailing at Urgeiriça in Central Portugal. On the basis of 16S rRNA gene sequence similarity, the strains belonged to the family Sporolactobacillaceae and were closely related to Pullulanibacillus naganoensis ATCC 53909(T) (97.9 %). Unlike P. naganoensis, strains UG-2(T) and UG-3 grew in medium containing up to 5000 p.p.m. U(VI) but did not hydrolyse pullulan. Chemotaxonomic data also supported the affiliation of strains UG-2(T) and UG-3 to the genus Pullulanibacillus. Physiological and biochemical tests along with fatty acid composition allowed differentiation of strains UG-2(T) and UG-3 from P. naganoensis. It is suggested that strains UG-2(T) and UG-3 represent a novel species, for which the name Pullulanibacillus uraniitolerans is proposed; the type strain is UG-2(T) (=DSM 19429(T) = LMG 24205(T)). An emended description of the genus Pullulanibacillus is also proposed.

  3. The Structural Basis of Alpha-Glucan Recognition by a Family 41 Carbohydrate-Binding Module from Therotoga Maritima

    SciTech Connect

    van Bueren,A.; Boraston, A.

    2006-01-01

    Starch recognition by carbohydrate-binding modules (CBMs) is important for the activity of starch-degrading enzymes. The N-terminal family 41 CBM, TmCBM41 (from pullulanase PulA secreted by Thermotoga maritima) was shown to have {alpha}-glucan binding activity with specificity for {alpha}-1, 4-glucans but was able to tolerate the {alpha}-1, 6-linkages found roughly every three or four glucose units in pullulan. Using X-ray crystallography, the structures were solved for TmCBM41 in an uncomplexed form and in complex with maltotetraose and 63-{alpha}-d-glucosyl-maltotriose (GM3). Ligand binding was facilitated by stacking interactions between the {alpha}-faces of the glucose residues and two tryptophan side-chains in the two main subsites of the carbohydrate-binding site. Overall, this mode of starch binding is quite well conserved by other starch-binding modules. The structure in complex with GM3 revealed a third binding subsite with the flexibility to accommodate an {alpha}-1, 4- or an {alpha}-1, 6-linked glucose.

  4. Asialoglycoprotein receptor mediated hepatocyte targeting - strategies and applications.

    PubMed

    D'Souza, Anisha A; Devarajan, Padma V

    2015-04-10

    Hepatocyte resident afflictions continue to affect the human population unabated. The asialoglycoprotein receptor (ASGPR) is primarily expressed on hepatocytes and minimally on extra-hepatic cells. This makes it specifically attractive for receptor-mediated drug delivery with minimum concerns of toxicity. ASGPR facilitates internalization by clathrin-mediated endocytosis and exhibits high affinity for carbohydrates specifically galactose, N-acetylgalactosamine and glucose. Isomeric forms of sugar, galactose density and branching, spatial geometry and galactose linkages are key factors influencing ligand-receptor binding. Popular ligands for ASGPR mediated targeting are carbohydrate polymers, arabinogalactan and pullulan. Other ligands include galactose-bearing glycoproteins, glycopeptides and galactose modified polymers and lipids. Drug-ligand conjugates provide a viable strategy; nevertheless ligand-anchored nanocarriers provide an attractive option for ASGPR targeted delivery and are widely explored. The present review details various ligands and nanocarriers exploited for ASGPR mediated delivery of drugs to hepatocytes. Nanocarrier properties affecting ASGPR mediated uptake are discussed at length. The review also highlights the clinical relevance of ASGPR mediated targeting and applications in diagnostics. ASGPR mediated hepatocyte targeting provides great promise for improved therapy of hepatic afflictions.

  5. Encapsulation of volatiles in nanofibrous polysaccharide membranes for humidity-triggered release.

    PubMed

    Mascheroni, Erika; Fuenmayor, Carlos Alberto; Cosio, Maria Stella; Di Silvestro, Giuseppe; Piergiovanni, Luciano; Mannino, Saverio; Schiraldi, Alberto

    2013-10-15

    A single-step electrospinning process will be applied to a blend of edible carbohydrate polymers (pullulan and β-cyclodextrin) to encapsulate bioactive aroma compounds and allow a humidity-triggered release. The encapsulation is rapid and efficient and the final product is an active nanofibrous membrane that can be directly used for food or active packaging applications. The membrane hosts small and homogeneously dispersed crystals of cyclodextrin-aroma complexes which are formed during the electrospinning. With this type of structure, the release of aroma compound is negligible at ambient conditions (23 °C and 55% UR) even at high temperature (up to 230 °C), and it occurs beyond a given relative humidity threshold (90%), useful for food packaging applications. The mass fraction of free aroma released is directly related to the water activity of the system, namely, φ=aW(n)/(aW(n)+Kapp) explaining the observed key role played by the relative humidity on the release of the aroma compounds.

  6. Effects of heavy metal pollution on oak leaf microorganisms.

    PubMed

    Bewley, R J

    1980-12-01

    During the growing season, comparisons were made of the leaf surface microflora of (i) two groups of mature oak trees, one in the vicinity of a smelting complex contaminated by heavy metals and the other at a relatively uncontaminated site, and (ii) two groups of oak saplings at the uncontaminated site, one of which was sprayed with zinc, lead, and cadmium to simulate the heavy metal pollution from the smelter without the complicating effects of other pollutants. Total viable counts of bacteria, yeasts, and filamentous fungi (isolated by leaf washing) were generally little affected by the spraying treatment, whereas polluted leaves of mature trees supported fewer bacteria compared with leaves of mature trees at the uncontaminated site. Numbers of pigmented yeasts were lower on polluted oaks and on metal-dosed saplings compared with their respective controls. Polluted leaves of mature trees supported both greater numbers of Aureobasidium pullulans and Cladosporium spp. and a greater percentage of metal-tolerant fungi compared with oak leaves at the uncontaminated site. There were no significant overall differences in the degree of mycelial growth between the two groups of saplings or the mature trees.

  7. Macrophage mannose receptor-specific gene delivery vehicle for macrophage engineering.

    PubMed

    Ruan, Gui-Xin; Chen, Yu-Zhe; Yao, Xing-Lei; Du, Anariwa; Tang, Gu-Ping; Shen, You-Qing; Tabata, Yasuhiko; Gao, Jian-Qing

    2014-05-01

    Macrophages are the most plastic cells in the hematopoietic system and they exhibit great functional diversity. They have been extensively applied in anti-inflammatory, anti-fibrotic and anti-cancer therapies. However, the application of macrophages is limited by the efficiency of their engineering. The macrophage mannose receptor (MMR, CD206), a C-type lectin receptor, is ubiquitously expressed on macrophages and has a high affinity for mannose oligosaccharides. In the present study, we developed a novel non-viral vehicle with specific affinity for MMR. Mannan was cationized with spermine at a grafted ratio of ∼12% to deliver DNA and was characterized as a stable system for delivery. This spermine-mannan (SM)-based delivery system was evaluated as a biocompatible vehicle with superior transfection efficiency on murine macrophages, up to 28.5-fold higher than spermine-pullulan, 11.5-fold higher than polyethylenimine and 3.0-fold higher than Lipofectamine™ 2000. We confirmed that the SM-based delivery system for macrophages transfection was MMR-specific and we described the intracellular transport of the delivery system. To our knowledge, this is the first study using SM to demonstrate a mannose receptor-specific gene delivery system, thereby highlighting the potential of a novel specific non-viral delivery vehicle for macrophage engineering.

  8. Cellulose acetate based 3-dimensional electrospun scaffolds for skin tissue engineering applications.

    PubMed

    Atila, Deniz; Keskin, Dilek; Tezcaner, Ayşen

    2015-11-20

    Skin defects that are not able to regenerate by themselves are among the major problems faced. Tissue engineering approach holds promise for treating such defects. Development of tissue-mimicking-scaffolds that can promote healing process receives an increasing interest in recent years. In this study, 3-dimensional electrospun cellulose acetate (CA) pullulan (PULL) scaffolds were developed for the first time. PULL was intentionally used to obtain 3D structures with adjustable height. It was removed from the electrospun mesh to increase the porosity and biostability. Different ratios of the polymers were electrospun and analyzed with respect to degradation, porosity, and mechanical properties. It has been observed that fiber diameter, thickness and porosity of scaffolds increased with increased PULL content, on the other hand this resulted with higher degradation of scaffolds. Mechanical strength of scaffolds was improved after PULL removal suggesting their suitability as cell carriers. Cell culture studies were performed with the selected scaffold group (CA/PULL: 50/50) using mouse fibroblastic cell line (L929). In vitro cell culture tests showed that cells adhered, proliferated and populated CA/PULL (50/50) scaffolds showing that they are cytocompatible. Results suggest that uncrosslinked CA/PULL (50/50) electrospun scaffolds hold potential for skin tissue engineering applications.

  9. Cross-reactivity among antigens of different air-borne fungi detected by ELISA using five monoclonal antibodies against Penicillium notatum.

    PubMed

    Shen, H D; Lin, W L; Chen, R J; Han, S H

    1990-10-01

    Cross-reactivity among antigens of 12 genera of air-borne fungi, 13 species of Penicillium, and 5 species of Aspergillus was studied by ELISA using five monoclonal antibodies (MoAbs) against Penicillium notatum. Epitopes recognized by all the five MoAbs were susceptible to treatment of mild periodate oxidation and may therefore be associated with carbohydrates. Furthermore, our results showed that there is cross-reactivity among antigens of Penicillium, Aspergillus, and Eurotium species. By using these MoAbs, cross reactivity was not detected between antigens of Penicillium notatum and antigens of Fusarium solani, Alternaria porri, Cladosporium cladosporoides, Curvularia species, Nigrospora species, Aureobasidium pullulans, Wallemia species, Rhizopus arrhizus, and Candida albicans. Cross-reactivity among antigens of 11 species of Penicillium and 5 species of Aspergillus could be detected by ELISA using one of the five MoAbs (MoAb P15). The fact that there may be cross-reactivity among antigens of closely related fungi species should be considered in the diagnosis and treatment of mold allergic diseases.

  10. Inhibitory activity of phosphates on molds isolated from foods and food processing plants.

    PubMed

    Suárez, V B; Frisón, L; de Basílico, M Z; Rivera, M; Reinheimer, J A

    2005-11-01

    Six commercial phosphates were evaluated for inhibition of the growth of 17 molds isolated from food sources. The assays were performed at neutral and natural (without pH adjustment) pH values, and the molds were streaked on plate count agar with added phosphates. Phosphate concentrations of 0.1, 0.3, 0.5, 1.0, and 1.5% (wt/vol) were used, and the MIC was determined. The resistance of molds to phosphates depended on the species. At a neutral pH, Aspergillus ochraceus and Fusarium proliferatum were resistant to all phosphates at all concentrations assayed, and Byssochlamys nivea, Aureobasidium pullulans, and Penicillium glabrum were most sensitive. The most inhibitory phosphates were those with chain lengths greater than 15 phosphate units and the highest sequestering power. At natural pH values (resulting from dissolving the phosphate in the medium), inhibitory activity changed dramatically for phosphates that produced alkaline or acidic pH in the medium. Phosphates with alkaline pH values (sodium tripolyphosphate of high solubility, sodium tripolyphosphate, and sodium neutral pyrophosphate) were much more inhibitory than phosphates at a neutral pH, but sodium acid pyrophosphate (acidic pH) had decreased inhibitory activity. The results indicate that some phosphates could be used in the food industry to inhibit molds linked to food spoilage.

  11. Identification of volatile components of liverwort (Porella cordaeana) extracts using GC/MS-SPME and their antimicrobial activity.

    PubMed

    Bukvicki, Danka; Gottardi, Davide; Veljic, Milan; Marin, Petar D; Vannini, Lucia; Guerzoni, Maria Elisabetta

    2012-06-06

    Chemical constituents of liverwort (Porella cordaeana) extracts have been identified using solid-phase microextraction-gas chromatography mass spectrometry (SPME-GC/MS). The methanol, ethanol and ethyl acetate extracts were rich in terpenoids such as sesquiterpene hydrocarbons (53.12%, 51.68%, 23.16%), and monoterpene hydrocarbons (22.83%, 18.90%, 23.36%), respectively. The dominant compounds in the extracts were β-phellandrene (15.54%, 13.66%, 12.10%) and β-caryophyllene (10.72%, 8.29%, 7.79%, respectively). The antimicrobial activity of the extracts was evaluated against eleven food microorganisms using the microdilution and disc diffusion methods. The minimum inhibitory concentration (MIC) varied from 0.50 to 2.00 mg/mL for yeast strains (Saccharomyces cerevisiae 635, Zygosacharomyces bailii 45, Aerobasidium pullulans L6F, Pichia membranaefaciens OC 71, Pichia membranaefaciens OC 70, Pichia anomala CBS 5759, Pichia anomala DBVPG 3003 and Yarrowia lipolytica RO13), and from 1.00 to 3.00 mg/mL for bacterial strains (Salmonella enteritidis 155, Escherichia coli 555 and Listeria monocytogenes 56Ly). Methanol extract showed better activity in comparison with ethanol and ethyl acetate extracts. High percentages of monoterpene and sesquiterpene hydrocarbons could be responsible for the better antimicrobial activity.

  12. Status, Antimicrobial Mechanism, and Regulation of Natural Preservatives in Livestock Food Systems

    PubMed Central

    Lee, Na-Kyoung; Paik, Hyun-Dong

    2016-01-01

    This review discusses the status, antimicrobial mechanisms, application, and regulation of natural preservatives in livestock food systems. Conventional preservatives are synthetic chemical substances including nitrates/nitrites, sulfites, sodium benzoate, propyl gallate, and potassium sorbate. The use of artificial preservatives is being reconsidered because of concerns relating to headache, allergies, and cancer. As the demand for biopreservation in food systems has increased, new natural antimicrobial compounds of various origins are being developed, including plant-derived products (polyphenolics, essential oils, plant antimicrobial peptides (pAMPs)), animal-derived products (lysozymes, lactoperoxidase, lactoferrin, ovotransferrin, antimicrobial peptide (AMP), chitosan and others), and microbial metabolites (nisin, natamycin, pullulan, ε-polylysine, organic acid, and others). These natural preservatives act by inhibiting microbial cell walls/membranes, DNA/RNA replication and transcription, protein synthesis, and metabolism. Natural preservatives have been recognized for their safety; however, these substances can influence color, smell, and toxicity in large amounts while being effective as a food preservative. Therefore, to evaluate the safety and toxicity of natural preservatives, various trials including combinations of other substances or different food preservation systems, and capsulation have been performed. Natamycin and nisin are currently the only natural preservatives being regulated, and other natural preservatives will have to be legally regulated before their widespread use. PMID:27621697

  13. Molecular Phylogenetics of the Genus Trichosporon Inferred from Mitochondrial Cytochrome b Gene Sequences

    PubMed Central

    Biswas, Swarajit Kumar; Wang, Li; Yokoyama, Koji; Nishimura, Kazuko

    2005-01-01

    Mitochondrial cytochrome b (cyt b) genes of 42 strains representing 23 species of the genus Trichosporon were partially sequenced to determine their molecular phylogenetic relationships. Almost half of the 22 strains investigated (from 11 different species) contained introns in their sequences. Analysis of a 396-bp coding sequence from each strain of Trichosporon under investigation showed a total of 141 (35.6%) variable nucleotide sites. A phylogenetic tree based on the cyt b gene sequences revealed that all species of Trichosporon except Trichosporon domesticum and Trichosporon montevideense had species-specific cyt b genes. Trichosporon sp. strain CBS 5581 was identified as Trichosporon pullulans, and one clinical isolate, IFM 48794, was identified as Trichosporon faecale. Analysis of 132-bp deduced amino acid sequences showed a total of 34 (25.75%) variable amino acid sites. T. domesticum and T. montevideense, Trichosporon asahii and Trichosporon asteroides, and Trichosporon gracile and Trichosporon guehoae had identical amino acid sequences. A phylogenetic tree constructed with the ascomycetes Saccharomyces douglasii and Candida glabrata taken as outgroup species and including representative species from closely related genera species of Trichosporon clustered with other basidiomycetous yeasts that contain xylose in their cell wall compositions. These results indicate the effectiveness of mitochondrial cyt b gene sequences for both species identification and the phylogenetic analysis of Trichosporon species. PMID:16207980

  14. Characterization of Amylolytic Enzymes, Having Both α-1,4 and α-1,6 Hydrolytic Activity, from the Thermophilic Archaea Pyrococcus furiosus and Thermococcus litoralis

    PubMed Central

    Brown, Stephen H.; Kelly, Robert M.

    1993-01-01

    Extracellular pullulanases were purified from cell-free culture supernatants of the marine thermophilic archaea Thermococcus litoralis (optimal growth temperature, 90°C) and Pyrococcus furiosus (optimal growth temperature, 98°C). The molecular mass of the T. litoralis enzyme was estimated at 119,000 Da by electrophoresis, while the P. furiosus enzyme exhibited a molecular mass of 110,000 Da under the same conditions. Both enzymes tested positive for bound sugar by the periodic acid-Schiff technique and are therefore glycoproteins. The thermoactivity and thermostability of both enzymes were enhanced in the presence of 5 mM Ca2+, and under these conditions, enzyme activity could be measured at temperatures of up to 130 to 140°C. The addition of Ca2+ also affected substrate binding, as evidenced by a decrease in Km for both enzymes when assayed in the presence of this metal. Each of these enzymes was able to hydrolyze, in addition to the α-1,6 linkages in pullulan, α-1,4 linkages in amylose and soluble starch. Neither enzyme possessed activity against maltohexaose or other smaller α-1,4-linked oligosaccharides. The enzymes from T. litoralis and P. furiosus appear to represent highly thermostable amylopullulanases, versions of which have been isolated from less-thermophilic organisms. The identification of these enzymes further defines the saccharide-metabolizing systems possessed by these two organisms. PMID:16349019

  15. Power and Efficiency Scaling of Fiber OPO Around 700 to 850 nm and Power-scaling of High Coherence Fiber Raman Amplifiers

    DTIC Science & Technology

    2013-10-01

    jn@orc.soton.ac.uk www.orc.soton.ac.uk Phone +44 23 8059 3101 Fax +44 23 8059 3142 Mobile +44 795 753 6468 Final report, EOARD award...Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, United Kingdom Phone (JN) +44 23 8059 3101 (office), +44 795 753...University of Southampton Southampton SO17 1BJ, England jn@orc.soton.ac.uk www.orc.soton.ac.uk Phone +44 23 8059 3101 Fax +44 23 8059 3142

  16. US Army Armor Reference Data in Three Volumes. Volume III. Division 86 Organizations.

    DTIC Science & Technology

    1981-01-01

    AD-AIIS 857 ARMY ARMOR SCHOOL FORT KNOX KY F/G 19/ 3 US ARMY ARMOR REFERENCE DATA IN THREE VOLUMES. VOLUME 11. DrVi--ETC(U) 1981UNCLASSIFIED ST-17-1...VOL- 3 S@I-AOD-250 004 NL3illlllllllll mlllllllllllll mIIIIIIIIIIII IIIIIIIIIIIhI IIIIIIIIIIIhI IIIIIIIIIIIhI ST 17-1 -1 US ARMY ,~ ARMOR REFERENCE...DCUMNTATON AGEREAD INSTRUCTIONSREPRT OCUENATIN PGEBEFORE COMPLETING FORM 1. REPORT NUMBER 2. GOVT ACCESSION No. 3 . RECIPIENT’S CATALOG NUMBER 4. TITLE

  17. A Case Study: The Effects of the British Army against the Irish Republican Army

    DTIC Science & Technology

    1989-09-01

    the esc,’alated violi ce caused 17.1 flea t hs compared to 25 deaths in 1970 (,1:107;50: 172). ’I’ll It(. rea e t rie𔃻 t the. [I,- Ire as f, ta . It...18:1). When the bus rea .-ched Lungannon, 5e) miles west of Belfast, a 200-pound IRA bomb planted in a parked car exploded (16:1;17:1). The explosion...95: 463-5 (February 18, 1972). 32. Iacono, Daniela . Story 0174929, Dialog File 260, United Press International (March 4, 1S,5). 33. --.... Story

  18. 40 CFR 461.75 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 1.97 Mercury 2.82 1.19 Silver 4.55 1.97 Zinc 0.87 0.39 Manganese 6.50 4.98 (2) Subpart G... of silver applied Chromium 4.17 1.81 Mercury 2.58 1.09 Silver 4.17 1.81 Zinc 0.79 0.36 Manganese 5.96 4.57 (5) Subpart G—Silver Peroxide Cathodes—PSNS. Pollutant or pollutant property Maximum for any...

  19. Proceedings of the International Symposium on Frozen Soil Impacts on Agricultural, Range, and Forest Lands Held at Spokane, Washington on March 21-22, 1990

    DTIC Science & Technology

    1990-03-01

    montmorillonitic, mesic Typic Argiudoll) from Lincoln, NE; a Portneuf silt loam (coarse silty, mixed, mesic Xerollic Calciorthid) from Kimberly, ID...Loam 49 34 17 1.25 2:1 7.1 3.41 Cecil sandy loam 67 16 17 1.69 1:1 4.6 1.24 Palouse silt loam 10 70 20 1.15 2:1 4.5 3.03 Portneuf silt loam 22 66 12...contents of 3% or more) decreased twice as much from 20 to 30% than from 10 to 20% water content. The stability of the Portneuf silt loam, with nearly

  20. Maintenance Resources by Building Use for U.S. Army Installations. Volume 3. Appendices I through P

    DTIC Science & Technology

    1991-05-01

    1.01 dry____ _ Finned radiator , 0943300 _ 18 1.01 wall 10 ft Infrared 1272300 2 13.39 suspended, commercial heater Transformer, 1114100 4 4.89 liquid...0415F20 17 1.33 exterior finish, 2nd floor Exhaust fan 09C1130 1° 1.31 10,000 CFM Unit heater 4,000 09A1D30 20 1.21 CFM HID metal halide 1131420 22...recip Vinyl asbestos tile 062A200 17 1.02 flooring Baseboard radiator , 0943200 6 3.06 loft Wire mesh wall 0616400 1 9 2.58 250 BTU boiler 0981110 10

  1. Effect of the nanocrystallization of a soft magnetic amorphous Fe-P-Mo alloy on its corrosion resistance in a damp industrial SO2-contaminated atmosphere

    NASA Astrophysics Data System (ADS)

    Vavilova, V. V.; Korneev, V. P.; Anosova, M. O.

    2016-09-01

    The study of the electrochemical behavior of a soft magnetic amorphous Fe-P-Mo alloy in a 0.1M Na2SO4 solution, which simulates a damp SO2-contaminated atmosphere, shows that the corrosion resistance of the nanocrystalline Fe80.2P17.1Mo2.7 alloy is comparable to that of a FINEMET alloy. No molybdenum is required for manufacturing the Fe80.2P17.1Mo2.7 alloy, because it can be prepared using natural alloy ferrophosphorus containing molybdenum.

  2. PCR-SSCP-based reconstruction of the original fungal flora of heat-processed meat products.

    PubMed

    Dorn-In, Samart; Hölzel, Christina S; Janke, Tobias; Schwaiger, Karin; Balsliemke, Joachim; Bauer, Johann

    2013-03-01

    Food processing of spoiled meat is prohibited by law, since it is a deception and does not comply with food safety aspects. In general, spoilage of meat is mostly caused by bacteria. However, a high contamination level of fungi could be also found in some meat or meat products with certain preserving conditions. In case that unhygienic meat is used to produce heat processed products, the microorganisms will be deactivated by heat, so that they cannot be detected by a standard cultivation method. Therefore, this study aimed to develop and apply a molecular biological method--polymerase chain reaction and single strand conformation polymorphism (PCR-SSCP)--to reconstruct the original fungal flora of heat processed meat. Twenty primer pairs were tested for their specificity for fungal DNA. Since none of them fully complied with all study criteria (such as high specificity and sensitivity for fungal DNA; suitability of the products for PCR-SSCP) in the matrix "meat", we designed a new reverse primer, ITS5.8R. The primer pair ITS1/ITS5.8R amplified DNA from all tested fungal species, but not DNA from meat-producing animals or from ingredients of plant origin (spices). For the final test, 32 DNA bands in acrylamide gel from 15 meat products and 1 soy sauce were sequenced-all originating from fungal species, which were, in other studies, reported to contaminate meat e.g. Alternaria alternata, Aureobasidium pullulans, Candida rugosa, C. tropicalis, C. zeylanoides, Eurotium amstelodami and Pichia membranifaciens, and/or spices such as Botrytis aclada, Guignardia mangiferae, Itersonilia perplexans, Lasiodiplodia theobromae, Lewia infectoria, Neofusicoccum parvum and Pleospora herbarum. This confirms the suitability of PCR-SSCP to specifically detect fungal DNA in heat processed meat products, and thus provides an overview of fungal species contaminating raw material such as meat and spices.

  3. Development and Characterization of Pharmacokinetic Parameters of Fast-Dissolving Films Containing Levocetirizine

    PubMed Central

    Choudhary, Dhagla R.; Patel, Vishnu A.; Chhalotiya, Usmangani K.; Patel, Harsha V.; Kundawala, Aliasgar J.

    2012-01-01

    A fast-dissolving film containing levocetirizine, a non-sedative antihistamine drug, was developed using pullulan, xanthan gum, propylene glycol, and tween 80 as the base materials. The drug content of the prepared films was within an acceptable limit as prescribed by the USP. The film exhibited excellent stability for four months when stored at 40 °C and 75% humidity. In vitro dissolution studies suggested a rapid disintegration, in which most of levocetirizine (93.54 ± 3.9%) dissolved within 90 seconds after insertion into the medium. Subsequently, Sprague–Dawley rats were used to compare the pharmacokinetic properties of the film preparation administered to the oral cavity, to those with oral administration of the pure drug solution. The pharmacokinetic parameters were similar between the two groups in which AUC0–t (ng h/ml), AUC0–∞ (ng h/ml) Cmax (ng/ml), Tmax (min), Kel (h−1), and t1/2 (h) of the reference were 452.033 ± 43.68, 465.78 ± 48.16, 237.16 ± 19.87, 30, 0.453 ± 0.051, and 1.536 ± 0.118, respectively, for the film formulation 447.233 ± 46.24, 458.22 ± 46.74, 233.32 ± 17.19, 30, 0.464 ± 0.060, and 1.496 ± 0.293, respectively. These results suggest that the present levocetirizine containing fast-dissolving film is likely to become one of the choices to treat different allergic conditions. PMID:23008821

  4. Present and future medical applications of microbial exopolysaccharides

    PubMed Central

    Moscovici, Misu

    2015-01-01

    Microbial exopolysaccharides (EPS) have found outstanding medical applications since the mid-20th century, with the first clinical trials on dextran solutions as plasma expanders. Other EPS entered medicine firstly as conventional pharmaceutical excipients (e.g., xanthan – as suspension stabilizer, or pullulan – in capsules and oral care products). Polysaccharides, initially obtained from plant or animal sources, became easily available for a wide range of applications, especially when they were commercially produced by microbial fermentation. Alginates are used as anti-reflux, dental impressions, or as matrix for tablets. Hyaluronic acid and derivatives are used in surgery, arthritis treatment, or wound healing. Bacterial cellulose is applied in wound dressings or scaffolds for tissue engineering. The development of drug controlled-release systems and of micro- and nanoparticulated ones, has opened a new era of medical applications for biopolymers. EPS and their derivatives are well-suited potentially non-toxic, biodegradable drug carriers. Such systems concern rating and targeting of controlled release. Their large area of applications is explained by the available manifold series of derivatives, whose useful properties can be thereby controlled. From matrix inclusion to conjugates, different systems have been designed to solubilize, and to assure stable transport in the body, target accumulation and variable rate-release of a drug substance. From controlled drug delivery, EPS potential applications expanded to vaccine adjuvants and diagnostic imaging systems. Other potential applications are related to the bioactive (immunomodulator, antitumor, antiviral) characteristics of EPS. The numerous potential applications still wait to be developed into commercial pharmaceuticals and medical devices. Based on previous and recent results in important medical-pharmaceutical domains, one can undoubtedly state that EPS medical applications have a broad future ahead

  5. Sequence-based Analysis of the Vitis vinifera L. cv Cabernet Sauvignon Grape Must Mycobiome in Three South African Vineyards Employing Distinct Agronomic Systems.

    PubMed

    Setati, Mathabatha E; Jacobson, Daniel; Bauer, Florian F

    2015-01-01

    Recent microbiomic research of agricultural habitats has highlighted tremendous microbial biodiversity associated with such ecosystems. Data generated in vineyards have furthermore highlighted significant regional differences in vineyard biodiversity, hinting at the possibility that such differences might be responsible for regional differences in wine style and character, a hypothesis referred to as "microbial terroir." The current study further contributes to this body of work by comparing the mycobiome associated with South African (SA) Cabernet Sauvignon grapes in three neighboring vineyards that employ different agronomic approaches, and comparing the outcome with similar data sets from Californian vineyards. The aim of this study was to fully characterize the mycobiomes associated with the grapes from these vineyards. The data revealed approximately 10 times more fungal diversity than what is typically retrieved from culture-based studies. The Biodynamic vineyard was found to harbor a more diverse fungal community (H = 2.6) than the conventional (H = 2.1) and integrated (H = 1.8) vineyards. The data show that ascomycota are the most abundant phylum in the three vineyards, with Aureobasidium pullulans and its close relative Kabatiella microsticta being the most dominant fungi. This is the first report to reveal a high incidence of K. microsticta in the grape/wine ecosystem. Different common wine yeast species, such as Metschnikowia pulcherrima and Starmerella bacillaris dominated the mycobiome in the three vineyards. The data show that the filamentous fungi are the most abundant community in grape must although they are not regarded as relevant during wine fermentation. Comparison of metagenomic datasets from the three SA vineyards and previously published data from Californian vineyards revealed only 25% of the fungi in the SA dataset was also present in the Californian dataset, with greater variation evident amongst ubiquitous epiphytic fungi.

  6. Heteroclitic serological response in esophageal and prostate cancer patients after NY-ESO-1 protein vaccination.

    PubMed

    Kawada, Junji; Wada, Hisashi; Isobe, Midori; Gnjatic, Sacha; Nishikawa, Hiroyoshi; Jungbluth, Achim A; Okazaki, Nami; Uenaka, Akiko; Nakamura, Yurika; Fujiwara, Shinichi; Mizuno, Naoaki; Saika, Takashi; Ritter, Erika; Yamasaki, Makoto; Miyata, Hiroshi; Ritter, Gerd; Murphy, Roger; Venhaus, Ralph; Pan, Linda; Old, Lloyd J; Doki, Yuichiro; Nakayama, Eiichi

    2012-02-01

    NY-ESO-1 is a prototypic cancer/testis antigen. In a recent phase I clinical trial, we vaccinated 13 patients bearing NY-ESO-1-expressing tumors with a complex of cholesterol-bearing hydrophobized pullulan (CHP) and NY-ESO-1 protein (CHP-NY-ESO-1) and showed efficient induction of NY-ESO-1 antibody, and CD4 and CD8 T cell responses using peripheral blood from the patients. In our study, we analyzed heteroclitic serological responses in those patients after vaccination. Serological response against 11 tumor antigens including MAGE-A1, MAGE-A3, MAGE-A4, CT7/MAGEC1, CT10/MAGEC2, CT45, CT46/HORMAD1, SOX2, SSX2, XAGE1B and p53 was examined by enzyme-linked immunosorbent assay (ELISA) using sera from ten vaccinated patients. Expression of tumor antigens was determined by reverse transcription-polymerase chain reaction or immunohistochemistry. Eight of nine patients who showed antibody responses against NY-ESO-1 also showed an antibody response against at least 1 of these 11 tumor antigens after vaccination. In one patient, seven tumor antigens were recognized. Specificity analysis of the antibody response by ELISA using control recombinant proteins and synthetic peptides and by Western blot showed that the response was not against His6-tag and/or bacterial products included in a preparation of CHP-NY-ESO-1 used for vaccination. Thus, heteroclitic serological responses appear to be indicative of the overall immune response against the tumor, and their analysis could be useful for immune monitoring in cancer vaccine.

  7. Development and characterization of pharmacokinetic parameters of fast-dissolving films containing levocetirizine.

    PubMed

    Choudhary, Dhagla R; Patel, Vishnu A; Chhalotiya, Usmangani K; Patel, Harsha V; Kundawala, Aliasgar J

    2012-01-01

    A fast-dissolving film containing levocetirizine, a non-sedative antihistamine drug, was developed using pullulan, xanthan gum, propylene glycol, and tween 80 as the base materials. The drug content of the prepared films was within an acceptable limit as prescribed by the USP. The film exhibited excellent stability for four months when stored at 40 °C and 75% humidity. In vitro dissolution studies suggested a rapid disintegration, in which most of levocetirizine (93.54 ± 3.9%) dissolved within 90 seconds after insertion into the medium. Subsequently, Sprague-Dawley rats were used to compare the pharmacokinetic properties of the film preparation administered to the oral cavity, to those with oral administration of the pure drug solution. The pharmacokinetic parameters were similar between the two groups in which AUC(0-t) (ng h/ml), AUC(0-∞) (ng h/ml) C(max) (ng/ml), T(max) (min), K(el) (h(-1)), and t(1/2) (h) of the reference were 452.033 ± 43.68, 465.78 ± 48.16, 237.16 ± 19.87, 30, 0.453 ± 0.051, and 1.536 ± 0.118, respectively, for the film formulation 447.233 ± 46.24, 458.22 ± 46.74, 233.32 ± 17.19, 30, 0.464 ± 0.060, and 1.496 ± 0.293, respectively. These results suggest that the present levocetirizine containing fast-dissolving film is likely to become one of the choices to treat different allergic conditions.

  8. Extracellular enzymes produced by microorganisms isolated from maritime Antarctica.

    PubMed

    Loperena, Lyliam; Soria, Verónica; Varela, Hermosinda; Lupo, Sandra; Bergalli, Alejandro; Guigou, Mairan; Pellegrino, Andrés; Bernardo, Angela; Calviño, Ana; Rivas, Federico; Batista, Silvia

    2012-05-01

    Antarctic environments can sustain a great diversity of well-adapted microorganisms known as psychrophiles or psychrotrophs. The potential of these microorganisms as a resource of enzymes able to maintain their activity and stability at low temperature for technological applications has stimulated interest in exploration and isolation of microbes from this extreme environment. Enzymes produced by these organisms have a considerable potential for technological applications because they are known to have higher enzymatic activities at lower temperatures than their mesophilic and thermophilic counterparts. A total of 518 Antarctic microorganisms, were isolated during Antarctic expeditions organized by the Instituto Antártico Uruguayo. Samples of particules suspended in air, ice, sea and freshwater, soil, sediment, bird and marine animal faeces, dead animals, algae, plants, rocks and microbial mats were collected from different sites in maritime Antarctica. We report enzymatic activities present in 161 microorganisms (120 bacteria, 31 yeasts and 10 filamentous fungi) isolated from these locations. Enzymatic performance was evaluated at 4 and 20°C. Most of yeasts and bacteria grew better at 20°C than at 4°C, however the opposite was observed with the fungi. Amylase, lipase and protease activities were frequently found in bacterial strains. Yeasts and fungal isolates typically exhibited lipase, celullase and gelatinase activities. Bacterial isolates with highest enzymatic activities were identified by 16S rDNA sequence analysis as Pseudomonas spp., Psychrobacter sp., Arthrobacter spp., Bacillus sp. and Carnobacterium sp. Yeasts and fungal strains, with multiple enzymatic activities, belonged to Cryptococcus victoriae, Trichosporon pullulans and Geomyces pannorum.

  9. Polysaccharide characterization by hollow-fiber flow field-flow fractionation with on-line multi-angle static light scattering and differential refractometry.

    PubMed

    Pitkänen, Leena; Striegel, André M

    2015-02-06

    Accurate characterization of the molar mass and size of polysaccharides is an ongoing challenge, oftentimes due to architectural diversity but also to the broad molar mass (M) range over which a single polysaccharide can exist and to the ultra-high M of many polysaccharides. Because of the latter, many of these biomacromolecules experience on-column, flow-induced degradation during analysis by size-exclusion and, even, hydrodynamic chromatography (SEC and HDC, respectively). The necessity for gentler fractionation methods has, to date, been addressed employing asymmetric flow field-flow fractionation (AF4). Here, we introduce the coupling of hollow-fiber flow field-flow fractionation (HF5) to multi-angle static light scattering (MALS) and differential refractometry (DRI) detection for the analysis of polysaccharides. In HF5, less stresses are placed on the macromolecules during separation than in SEC or HDC, and HF5 can offer a higher sensitivity, with less propensity for system overloading and analyte aggregation, than generally found in AF4. The coupling to MALS and DRI affords the determination of absolute, calibration-curve-independent molar mass averages and dispersities. Results from the present HF5/MALS/DRI experiments with dextrans, pullulans, and larch arabinogalactan were augmented with hydrodynamic radius (RH) measurements from off-line quasi-elastic light scattering (QELS) and by RH distribution calculations and fractogram simulations obtained via a finite element analysis implementation of field-flow fractionation theory by commercially available software. As part of this study, we have investigated analyte recovery in HF5 and also possible reasons for discrepancies between calculated and simulated results vis-à-vis experimentally determined data.

  10. Microbulbifer mangrovi sp. nov., a polysaccharide-degrading bacterium isolated from an Indian mangrove.

    PubMed

    Vashist, Poonam; Nogi, Yuichi; Ghadi, Sanjeev C; Verma, Pankaj; Shouche, Yogesh S

    2013-07-01

    A rod-shaped, Gram-negative, non-motile, aerobic and non-endospore forming bacterium, designated strain DD-13(T), was isolated from the mangrove ecosystem of Goa, India. Strain DD-13(T) degraded polysaccharides such as agar, alginate, chitin, cellulose, laminarin, pectin, pullulan, starch, carrageenan, xylan and β-glucan. The optimum pH and temperature for growth was 7 and 36 °C, respectively. The strain grew optimally in the presence of 3 % NaCl (w/v). The DNA G+C content was 61.4 mol%. The predominant fatty acid of strain DD-13(T) was iso-C15 : 0. Ubiquinone-8 was detected as the major respiratory lipoquinone. Phylogenetic studies based on 16S rRNA gene sequence analysis demonstrated that strain DD-13(T) formed a coherent cluster with species of the genus Microbulbifer. Strain DD-13(T) exhibited 16S rRNA gene sequence similarity levels of 98.9-97.1 % with Microbulbifer hydrolyticus IRE-31(T), Microbulbifer salipaludis JCM 11542(T), Microbulbifer agarilyticus JAMB A3(T), Microbulbifer celer KCTC 12973(T) and Microbulbifer elongatus DSM 6810(T). However, the level of DNA-DNA relatedness between strain DD-13(T) and the five type strains of these species of the genus Microbulbifer were in the range of 26-33 %. Additionally, strain DD-13(T) demonstrates several phenotypic differences from these type strains of species of the genus Microbulbifer. Thus strain DD-13(T) represents a novel species of the genus Microbulbifer, for which the name Microbulbifer mangrovi sp. nov. is proposed with the type strain DD-13(T) ( = KCTC 23483(T) = JCM 17729(T)).

  11. Physical and chemical aspects of long-term biodeterioration of some polymers and composites.

    PubMed

    Lugauskas, A; Prosychevas, I; Levinskaite, L; Jaskelevicius, B

    2004-08-01

    A biodeterioration study was performed on synthetic polymeric materials including homogenous film made from poly(tetrafluorine ethylene), copolymer film made from tetrafluorine ethylene and perfluoromethyl vinyl ether, vulcanized rubber containing natural caoutchouc, and vulcanized rubber, the main component of which was synthetic butadiene nitrile caoutchouc. The materials were exposed for 12 years to the open air, in mycological containers, and in a cellar in maritime climate conditions: air humidity 72%-90% and seasonal average temperature of 17 degrees C in summer and -2.5 degrees C in winter. The studies of optical and electron microscopy revealed that microorganisms were able to develop not only on the surface of the materials but also to penetrate inside into deeper layers. The fungi that produced the most intensive deterioration in the fluorine polymers and vulcanized rubbers belonged to the Alternaria, Aspergillus, Aureobasidium, Cladosporium, Penicillium, Oidiodendron and Trichoderma genera. The fungi Aspergillus fumigatus, A. niger, Aureobasidium pullulans, and Trichoderma viride produced the most intensive deterioration in the fluorine films, whereas Alternaria tenuissima, Cladosporium herbarum, C. sphaerospermum, and fungi of the Oidiodendron genus were widespread on vulcanized rubbers. Fungi of the Aspergillus and Penicillium genera prevailed on both fluorine films and rubbers exposed in a cellar. Infrared spectroscopy indicated that the structures of poly(tetrafluorine ethylene) and the copolymer of tetrafluorine ethylene and perfluoromethyl vinyl ether did not change after the 12-year exposure; only insignificant changes in surface morphology were observed by optical microscopy. Vulcanized rubber made both from natural and from synthetic caoutchouc exposed for the same length of time showed rather evident changes in appearance and structure. X-ray graphical analysis revealed that new crystallization of the caoutchouc and a possible change in

  12. Associations between Fungal Species and Water-Damaged Building Materials ▿

    PubMed Central

    Andersen, Birgitte; Frisvad, Jens C.; Søndergaard, Ib; Rasmussen, Ib S.; Larsen, Lisbeth S.

    2011-01-01

    Fungal growth in damp or water-damaged buildings worldwide is an increasing problem, which has adverse effects on both the occupants and the buildings. Air sampling alone in moldy buildings does not reveal the full diversity of fungal species growing on building materials. One aim of this study was to estimate the qualitative and quantitative diversity of fungi growing on damp or water-damaged building materials. Another was to determine if associations exist between the most commonly found fungal species and different types of materials. More than 5,300 surface samples were taken by means of V8 contact plates from materials with visible fungal growth. Fungal identifications and information on building material components were analyzed using multivariate statistic methods to determine associations between fungi and material components. The results confirmed that Penicillium chrysogenum and Aspergillus versicolor are the most common fungal species in water-damaged buildings. The results also showed Chaetomium spp., Acremonium spp., and Ulocladium spp. to be very common on damp building materials. Analyses show that associated mycobiotas exist on different building materials. Associations were found between (i) Acremonium spp., Penicillium chrysogenum, Stachybotrys spp., Ulocladium spp., and gypsum and wallpaper, (ii) Arthrinium phaeospermum, Aureobasidium pullulans, Cladosporium herbarum, Trichoderma spp., yeasts, and different types of wood and plywood, and (iii) Aspergillus fumigatus, Aspergillus melleus, Aspergillus niger, Aspergillus ochraceus, Chaetomium spp., Mucor racemosus, Mucor spinosus, and concrete and other floor-related materials. These results can be used to develop new and resistant building materials and relevant allergen extracts and to help focus research on relevant mycotoxins, microbial volatile organic compounds (MVOCs), and microparticles released into the indoor environment. PMID:21531835

  13. Stability of lactobacilli encapsulated in various microbial polymers.

    PubMed

    Jiménez-Pranteda, María Luján; Poncelet, Denis; Náder-Macías, María Elena; Arcos, Antonio; Aguilera, Margarita; Monteoliva-Sánchez, Mercedes; Ramos-Cormenzana, Alberto

    2012-02-01

    Various microbial polymers, namely xanthan gum, gellan gum, pullulan gum and jamilan, were tested as a suitable encapsulating material for Lactobacillus plantarum CRL 1815 and Lactobacillus rhamnosus ATCC 53103. Resulting capsules were also studied for their pH and simulated gastrointestinal conditions tolerance. The morphology of the microcapsules was studied using scanning electron microscopy. pH tolerance was tested at pH 2.0, 3.5, 5.0 and 6.5 over a 6h incubation period. Simulated gastrointestinal conditions were assayed with simulated gastric and pancreatic juices and simulated bile over a 24h incubation period. Suspensions of probiotic organisms were used as a control. The results from encapsulation with microbial polymers indicate that mixtures of 1% xanthan gum with 0.75% gellan gum and 1% jamilan with 1% gellan gum were the most suitable for microencapsulation. Results for the pH tolerance tests showed no improvement in the viability of cells in relation to the control, except for pH 2.0 where lactobacilli encapsulated in xanthan:gellan gum (1%:0.75%) prolonged their viability by 6h exposure. Xanthan:gellan gum (1%:0.75%) was the most effective of the encapsulating materials tested in protecting L. plantarum and L. rhamnosus against simulated bile, improving its viability in 1-2 logCFU when compared with control. The results of this study suggest that microbial polymers are an interesting source of encapsulating material that should be taken into account for prospective studies of probiotic encapsulation for oral delivery applications.

  14. Dispersal, density dependence, and population dynamics of a fungal microbe on leaf surfaces.

    PubMed

    Woody, Scott T; Ives, Anthony R; Nordheim, Erik V; Andrews, John H

    2007-06-01

    Despite the ubiquity and importance of microbes in nature, little is known about their natural population dynamics, especially for those that occupy terrestrial habitats. Here we investigate the dynamics of the yeast-like fungus Aureobasidium pullulans (Ap) on apple leaves in an orchard. We asked three questions. (1) Is variation in fungal population density among leaves caused by variation in leaf carrying capacities and strong density-dependent population growth that maintains densities near carrying capacity? (2) Do resident populations have competitive advantages over immigrant cells? (3) Do Ap dynamics differ at different times during the growing season? To address these questions, we performed two experiments at different times in the growing season. Both experiments used a 2 x 2 factorial design: treatment 1 removed fungal cells from leaves to reveal density-dependent population growth, and treatment 2 inoculated leaves with an Ap strain engineered to express green fluorescent protein (GFP), which made it possible to track the fate of immigrant cells. The experiments showed that natural populations of Ap vary greatly in density due to sustained differences in carrying capacities among leaves. The maintenance of populations close to carrying capacities indicates strong density-dependent processes. Furthermore, resident populations are strongly competitive against immigrants, while immigrants have little impact on residents. Finally, statistical models showed high population growth rates of resident cells in one experiment but not in the other, suggesting that Ap experiences relatively "good" and "bad" periods for population growth. This picture of Ap dynamics conforms to commonly held, but rarely demonstrated, expectations of microbe dynamics in nature. It also highlights the importance of local processes, as opposed to immigration, in determining the abundance and dynamics of microbes on surfaces in terrestrial systems.

  15. Are Epiphytic Microbial Communities in the Carposphere of Ripening Grape Clusters (Vitis vinifera L.) Different between Conventional, Organic, and Biodynamic Grapes?

    PubMed

    Kecskeméti, Elizabeth; Berkelmann-Löhnertz, Beate; Reineke, Annette

    2016-01-01

    Using barcoded pyrosequencing fungal and bacterial communities associated with grape berry clusters (Vitis vinifera L.) obtained from conventional, organic and biodynamic vineyard plots were investigated in two subsequent years at different stages during berry ripening. The four most abundant operational taxonomic units (OTUs) based on fungal ITS data were Botrytis cinerea, Cladosporium spp., Aureobasidium pullulans and Alternaria alternata which represented 57% and 47% of the total reads in 2010 and 2011, respectively. Members of the genera Sphingomonas, Gluconobacter, Pseudomonas, Erwinia, and Massilia constituted 67% of the total number of bacterial 16S DNA reads in 2010 samples and 78% in 2011 samples. Viticultural management system had no significant effect on abundance of fungi or bacteria in both years and at all three sampling dates. Exceptions were A. alternata and Pseudomonas spp. which were more abundant in the carposphere of conventional compared to biodynamic berries, as well as Sphingomonas spp. which was significantly less abundant on conventional compared to organic berries at an early ripening stage in 2011. In general, there were no significant differences in fungal and bacterial diversity indices or richness evident between management systems. No distinct fungal or bacterial communities were associated with the different maturation stages or management systems, respectively. An exception was the last stage of berry maturation in 2011, where the Simpson diversity index was significantly higher for fungal communities on biodynamic compared to conventional grapes. Our study highlights the existence of complex and dynamic microbial communities in the grape cluster carposphere including both phytopathogenic and potentially antagonistic microorganisms that can have a significant impact on grape production. Such knowledge is particularly relevant for development, selection and application of effective control measures against economically important

  16. Environmental factors and interactions with mycobiota of grain and grapes: effects on growth, deoxynivalenol and ochratoxin production by Fusarium culmorum and Aspergillus carbonarius.

    PubMed

    Magan, Naresh; Aldred, David; Hope, Russell; Mitchell, David

    2010-03-01

    Mycotoxigenic fungi colonizing food matrices are inevitably competing with a wide range of other resident fungi. The outcomes of these interactions are influenced by the prevailing environmental conditions and the competing species. We have evaluated the competitiveness of F. culmorum and A. carbonarius in the grain and grape food chain for their in vitro and in situ dominance in the presence of other fungi, and the effect that such interactions have on colony interactions, growth and deoxynivalenol (DON) and ochratoxin A (OTA) production. The Index of Dominance shows that changes in water activity (a(w)) and temperature affect the competitiveness of F. culmorum and A. carbonarius against up to nine different fungi. Growth of both mycotoxigenic species was sometimes inhibited by the presence of other competing fungi. For example, A. niger uniseriate and biseriate species decreased growth of A. carbonarius, while Aureobasidium pullulans and Cladosporium species stimulated growth. Similar changes were observed when F. graminearum was interacting with other grain fungi such as Alternaria alternata, Cladopsorium herbarum and Epicoccum nigrum. The impact on DON and OTA production was very different. For F. culmorum, the presence of other species often inhibited DON production over a range of environmental conditions. For A. carbonarius, on a grape-based medium, the presence of certain species resulted in a significant stimulation of OTA production. However, this was influenced by both temperature and a(w) level. This suggests that the final mycotoxin concentrations observed in food matrices may be due to complex interactions between species and the environmental history of the samples analyzed.

  17. Diversity and antifungal activity of the endophytic fungi associated with the native medicinal cactus Opuntia humifusa (Cactaceae) from the United States.

    PubMed

    Silva-Hughes, Alice F; Wedge, David E; Cantrell, Charles L; Carvalho, Camila R; Pan, Zhiqiang; Moraes, Rita M; Madoxx, Victor L; Rosa, Luiz H

    2015-06-01

    The endophytic fungal community associated with the native cactus Opuntia humifusa in the United States was investigated and its potential for providing antifungal compounds. A hundred-eight endophytic fungal isolates were obtained and identified by molecular methods into 17 different taxa of the genera Alternaria, Aureobasidium, Biscogniauxia, Cladosporium, Cryptococcus, Curvularia, Diaporthe, Epicoccum, Paraconiothyrium, Pestalotiopsis and Phoma. The most frequent species associated with O. humifusa were Alternaria sp. 3, Aureobasidium pullulans and Diaporthe sp. The fungal community of O. humifusa had a high richness and diversity; additionally, the species richness obtained indicates that the sample effort was enough to recover the diversity pattern obtained. Six extracts of endophytes showed antifungal properties and (1)H NMR analyses of the extracts of Alternaria sp. 5 Ohu 8B2, Alternaria sp. 3 Ohu 30A, Cladosporium funiculosum Ohu 17C1 and Paraconiothyrium sp. Ohu 17A indicated the presence of functional groups associated with unsaturated fatty-acid olefinic protons and fatty acid methylene and methyl protons. GC-FID analysis of these extracts confirmed the presence of a mixture of different fatty acids. The (1)H NMR analyses of Biscogniauxia mediterranea Ohu 19B extracts showed the presence of aromatic compounds. From the extract of B. mediterranea we isolated the compound 5-methylmellein that displayed moderate antifungal activity against the phytopathogenic fungi Phomopsis obscurans. Our results suggest that native medicinal cacti of the United States can live symbiotically with rich and diverse endophytic communities and may be a source of bioactive molecules, including those able to inhibit or control plant disease pathogens.

  18. Aerosolized liposome-based delivery of amphotericin B to alveolar macrophages.

    PubMed

    Vyas, Suresh P; Quraishi, Shama; Gupta, Swati; Jaganathan, K S

    2005-05-30

    The present study was aimed at preparation, characterization, and performance evaluation of amphotericin B (Amp B)-loaded aerosolized liposomes for their selective presentation to lungs (alveolar macrophages), that being the densest site of Aspergillosis infection. Egg phosphatidylcholine (PC)- and cholesterol (Chol)-based liposomes were modified by coating them with alveolar macrophage-specific ligands (O-palmitoyl mannan, OPM, and O-polmitoyl pullulan, OPP). The prepared formulations were characterized in vitro for vesicle morphology, mean vesicle size, vesicle size distribution and percent drug entrapment. Pressurized packed systems based on preformed liposomal formulations in chlorofluorocarbon aerosol propellants were prepared. In vitro airways penetration efficiency of the liposomal aerosols was determined by percent dose reaching the peripheral airways, it was recorded 1.4-1.6 times lower as compared to plain drug solution-based aerosol. In vivo tissue distribution studies on albino rats suggested the preferential accumulation of OPM- and OPP-coated formulations in the lung macrophages. Higher lung drug concentration was recorded in case of ligand-anchored liposomal aerosols as compared to plain drug solution and plain liposome-based aerosols. The drug was estimated in the lung in high concentration even after 24 h. The drug-localization index calculated after 6 h was nearly 1.42-, 4.47-, and 4.16-fold, respectively, for plain, OPM-, and OPP-coated liposomal aerosols as compared to plain drug solution-based aerosols. These results suggest that the ligand anchored liposomal aerosols are not only effective in rapid attainment of high-drug concentration in lungs with high population of alveolar macrophages but also maintain the same over prolonged period of time. The significance of targeting potential of the developed systems was established.

  19. Plant growth-promoting and antifungal activity of yeasts from dark chestnut soil.

    PubMed

    Ignatova, Lyudmila V; Brazhnikova, Yelena V; Berzhanova, Ramza Z; Mukasheva, Togzhan D

    2015-06-01

    538 yeast strains were isolated from dark chestnut soil collected from under the plants of the legume family (Fabaceae). The greatest number of microorganisms is found at soil depth 10-20 cm. Among the 538 strains of yeast 77 (14.3%) strains demonstrated the ability to synthesize IAA. 15 strains were attributed to high IAA-producing yeasts (above 10 μg/ml). The most active strains were YA05 with 51.7 ± 2.1 μg/ml of IAA and YR07 with 45.3 ± 1.5 μg/ml. In the study of effect of incubation time on IAA production the maximum accumulation of IAA coincided with maximum rates of biomass: at 120 h for YR07 and at 144 h for strain YA05. IAA production increased when medium was supplemented with the L-tryptophan. 400 μg/ml of L-tryptophan showed maximum IAA production. 10 strains demonstrated the ability to inhibit the growth and development of phytopathogenic fungi. YA05 and YR07 strains formed the largest zones of inhibition compared to the other strains--from 21.6 ± 0.3 to 30.6 ± 0.5 mm. Maximum zone of inhibition was observed for YA05 against Phytophtora infestans and YR07 strains against Fusarium graminearum. YA05 and YR07 strains were identified as Aureobasidium pullulans YA05 (GenBank accession No JF160955) and Rhodotorula mucilaginosa YR07 (GenBank accession No JF160956).

  20. Microbial colonization of copepod body surfaces and chitin degradation in the sea

    NASA Astrophysics Data System (ADS)

    Kirchner, M.

    1995-03-01

    Next to cellulose, chitin (composed of N-acetyl-D-glucosamine sugar units) is the most frequently occurring biopolymer in nature. Among the most common sources of chitin in the marine environment are copepods and the casings of their fecal pellets. During the mineralization of chitin by microorganisms, which occurs chiefly by means of exoenzymes, nitrogen and carbon are returned to the nutrient cycle. In this study, the microbial colonization of the moults (exuviae), carcasses and fecal pellets of Tisbe holothuriae Humes (Copepoda: Harpacticoida) was examined in the laboratory. Results obtained with DAPI staining indicated that a succession of microorganisms from rodshaped bacteria and cocci to starlike aggregates took place, followed by the yeastlike fungus Aureobasidium pullulans (de Bary) Arnaud. No differences were noted between moults from various developmental stages, from nauplius to adult. The ventral sides and extremities of exuviae and carcasses were more rapidly colonized than other parts of the bodies. The casings of fecal pellets were frequently surrounded by bacteria with fimbriae or slime threads. In situ studies of chitin degradation (practical grade chitin from crustacean shells) with the mesh bag technique showed that about 90% of the original substance was lost after 3 months exposure in seawater at temperatures between 10 and 18°C. Chitinase activity was measured in the water at two stations near Helgoland, an island in the North Sea. A higher exoenzymatic activity was found in the rocky intertidal zone, compared to the Station Cable Buoy located between the main and Düne island. These values correspond to the higher bacteria numbers (cfu ml-1) found in the rocky intertidal: 10 to 100× greater than those found at the Cable Buoy Station.

  1. Wetting of biopolymer coatings: contact angle kinetics and image analysis investigation.

    PubMed

    Farris, Stefano; Introzzi, Laura; Biagioni, Paolo; Holz, Torsten; Schiraldi, Alberto; Piergiovanni, Luciano

    2011-06-21

    The surface wetting of five biopolymers, used as coating materials for a plastic film, was monitored over a span of 8 min by means of the optical contact angle technique. Because most of the total variation was observed to occur during the first 60 s, we decided to focus on this curtailed temporal window. Initial contact angle values (θ(0)) ranged from ∼91° for chitosan to ∼30° for pullulan. However, the water drop profile began to change immediately following drop deposition for all biocoatings, confirming that the concept of water contact angle equilibrium is not applicable to most biopolymers. First, a three-parameter decay equation [θ(t) = θ(0) exp(kt(n))] was fit to the experimental contact angle data to describe the kinetics of the contact angle change for each biocoating. Interestingly, the k constant correlated well with the contact angle evolution rate and the n exponent seemed to be somehow linked to the physicochemical phenomena underlying the overall kinetics process. Second, to achieve a reliable description of droplet evolution, the contact angle (CA) analysis was coupled with image analysis (IA) through a combined geometric/trigonometric approach. Absorption and spreading were the key factors governing the overall mechanism of surface wetting during the 60 s analysis, although the individual quantification of both phenomena demonstrated that spreading provided the largest contribution for all biopolymers, with the only exception of gelatin, which showed two quasi-equivalent and counterbalancing effects. The possible correlation between these two phenomena and the topography of the biopolymer surfaces are then discussed on the basis of atomic force microscopy analyses.

  2. Yeast identification in floral nectar of Mimulus aurantiacus (Invited)

    NASA Astrophysics Data System (ADS)

    Kyauk, C.; Belisle, M.; Fukami, T.

    2009-12-01

    Nectar is such a sugar-rich resource that serves as a natural habitat in which microbes thrive. As a result, yeasts arrive to nectar on the bodies of pollinators such as hummingbirds and bees. Yeasts use the sugar in nectar for their own needs when introduced. This research focuses on the identification of different types of yeast that are found in the nectar of Mimulus aurantiacus (commonly known as sticky monkey-flower). Unopened Mimulus aurantiacus flower buds were tagged at Jasper Ridge and bagged three days later. Floral nectar was then extracted and plated on potato dextrose agar. Colonies on the plates were isolated and DNA was extracted from each sample using QIAGEN DNeasy Plant Mini Kit. The DNA was amplified through PCR and ran through gel electrophoresis. The PCR product was used to clone the nectar samples into an E.coli vector. Finally, a phylogenetic tree was created by BLAST searching sequences in GenBank using the Internal Transcribed Space (ITS) locus. It was found that 18 of the 50 identified species were Candida magnifica, 14 was Candida rancensis, 6 were Crytococcus albidus and there were 3 or less of the following: Starmella bombicola, Candida floricola, Aureobasidium pullulans, Pichia kluyvera, Metschnikowa cibodaserisis, Rhodotorua colostri, and Malassezia globosa. The low diversity of the yeast could have been due to several factors: time of collection, demographics of Jasper Ridge, low variety of pollinators, and sugar concentration of the nectar. The results of this study serve as a necessary first step for a recently started research project on ecological interactions between plants, pollinators, and nectar-living yeast. More generally, this research studies the use of the nectar-living yeast community as a natural microcosm for addressing basic questions about the role of dispersal and competitive and facilitative interactions in ecological succession.

  3. Synthesis of t-Butyl (2R)-Hydroxyisovalerate, A Precursor of Aureobasidin B

    NASA Astrophysics Data System (ADS)

    Maharani, R.; Puspitasari, D.; Taufiqqurahman; Huspa, D. H. P.; Hidayat, A. T.; Sumiarsa, D.; Hidayat, I. W.

    2017-02-01

    Aureobasidins are a family of cyclodepsipeptides have antifungal properties. They were isolated from the black yeast Aureobasidium pullulans R106 and over 30 derivatives have been successfully characterized. There are few publications reporting the total synthesis of aureobasidins. The limited reports of the synthesis of the aureobasidin derivatives are due to the difficult access to the preparations of precursors. The aim of this research is to synthesise a precursor of aureobasidin B, t-butyl (2R)-hydroxyisovalerate (t-Bu-Hiv), that is prepared for the total synthesis of aureobasidin B. The synthesis of AbB is planned to be undertaken by using a solid phase method, so the ester formation between t-Bu-Hiv and the Fmoc-β-hydroxymethylvaline will be carried out in solution phase to form depsidipeptide. The t-butyl group was used as protecting agent that is due to the straightforward elimination of the protecting group from the Fmoc-depsidipeptide. The t-Bu-Hiv acid was prepared from D-valine through diazotisation to form (2R)-acetyloxyisovaleric acid in 62.7% yield. Product of the first step was then protected by t-butyl group by using Boc-anhydride in t-butanol to give t-butil (2R)-acetyloxyisovalerate in 44% yield. In the last step, the acetyloxy group was eliminated by using potassium carbonate in methanol/water to give the desired product, t-Bu-Hiv in 33.5% yield. The t-Bu-Hiv is ready to be combined with Fmoc-β-hydroxymethylvaline to result in depsidipeptide that will be attached to the resin in the total synthesis of AbB. Each stage of this synthesis was controlled by thin layer chromatography and all products were purified by open column chromatography. All the synthesized products were characterized by various spectroscopic techniques, including infrared spectrophotometer, mass spectroscopy (ESI-MS), 1H-NMR and 13C-NMR.

  4. Effects of copper-plasma deposition on weathering properties of wood surfaces

    NASA Astrophysics Data System (ADS)

    Gascón-Garrido, P.; Mainusch, N.; Militz, H.; Viöl, W.; Mai, C.

    2016-03-01

    Thin layers of copper micro-particles were deposited on the surfaces of Scots pine (Pinus sylvestris L.) micro-veneers using atmospheric pressure plasma to improve the resistance of the surfaces to weathering. Three different loadings of copper were established. Micro-veneers were exposed to artificial weathering in a QUV weathering tester for 0, 24, 48, 96 and 144 h following the standard EN 927-6 [1]. Mass losses after each exposure showed significant differences between copper coated and untreated micro-veneers. Tensile strength was assessed at zero span (z-strength) and finite span (f-strength) under dry conditions (20 °C, 65% RH). During 48 h, micro-veneers lost their z-strength progressively. In contrast, copper coating at highest loading imparts a photo-protective effect to wood micro-veneers during 144 h exhibiting z-strength retention of 95%. F-strength losses were similar in all copper treated and untreated micro-veneers up to 96 h. However, after 144 h, copper coated micro-veneers at highest loading showed significantly greater strength retention of 56%, while untreated micro-veneers exhibited only 38%. Infrared spectroscopy suggested that copper coating does not stabilize lignin. Inductively Coupled Plasma revealed that micro-veneers coated with the highest loading exhibited the lowest percentage of copper loss. Blue stain resistance of copper coated Scots pine following the guidelines of EN 152 [2] was performed. Additional test with different position of the coated surface was also assessed. Copper coating reduced fungal growth when coated surface is exposed in contact with vermiculite. Spores of Aureobasidium pullulans were not able to germinate on the copper coated surface positioned uppermost.

  5. Present and future medical applications of microbial exopolysaccharides.

    PubMed

    Moscovici, Misu

    2015-01-01

    Microbial exopolysaccharides (EPS) have found outstanding medical applications since the mid-20th century, with the first clinical trials on dextran solutions as plasma expanders. Other EPS entered medicine firstly as conventional pharmaceutical excipients (e.g., xanthan - as suspension stabilizer, or pullulan - in capsules and oral care products). Polysaccharides, initially obtained from plant or animal sources, became easily available for a wide range of applications, especially when they were commercially produced by microbial fermentation. Alginates are used as anti-reflux, dental impressions, or as matrix for tablets. Hyaluronic acid and derivatives are used in surgery, arthritis treatment, or wound healing. Bacterial cellulose is applied in wound dressings or scaffolds for tissue engineering. The development of drug controlled-release systems and of micro- and nanoparticulated ones, has opened a new era of medical applications for biopolymers. EPS and their derivatives are well-suited potentially non-toxic, biodegradable drug carriers. Such systems concern rating and targeting of controlled release. Their large area of applications is explained by the available manifold series of derivatives, whose useful properties can be thereby controlled. From matrix inclusion to conjugates, different systems have been designed to solubilize, and to assure stable transport in the body, target accumulation and variable rate-release of a drug substance. From controlled drug delivery, EPS potential applications expanded to vaccine adjuvants and diagnostic imaging systems. Other potential applications are related to the bioactive (immunomodulator, antitumor, antiviral) characteristics of EPS. The numerous potential applications still wait to be developed into commercial pharmaceuticals and medical devices. Based on previous and recent results in important medical-pharmaceutical domains, one can undoubtedly state that EPS medical applications have a broad future ahead.

  6. Cationic dye-sensitized degradation of sodium hyaluronate through photoinduced electron transfer in the upper excited state.

    PubMed

    Kojima, M; Takahashi, K; Nakamura, K

    2001-09-01

    The formation of ground-state complexes of methylene blue (MB) and thionine (TN) with sodium hyaluronate (NaHA) was clearly observed by means of absorption spectra in aqueous solution. Irradiation of the complexes using 313 nm light caused significant degradation of NaHA under oxygen and argon. However, the use of visible light over 400 nm, which gives the lowest excited singlet state of the cationic dyes, caused no degradation. MB and TN were more efficient sensitizers for the degradation of NaHA than rose bengal (RB), although RB is a more efficient singlet oxygen (1O2) sensitizer than the cationic dyes. Under similar conditions the polysaccharides with carboxyl groups, such as alginic acid and polygalacturonic acid, also photodecomposed. However, the polysaccharides without carboxyl groups, such as pullulan and methyl cellulose, did not. The irradiation of the polysaccharides in the presence of powdered titanium dioxide as a photocatalyst to generate the hydroxyl radical (.OH) in aerated aqueous solution caused the fragmentation of all the polymers. It was confirmed that methyl viologen, an electron-accepting sensitizer, formed a charge-transfer complex with NaHA, the irradiation of which caused the efficient degradation of NaHA. In the presence of beta- and gamma-cyclodextrins the MB- and TN-sensitized photodegradation of NaHA was markedly suppressed. This was probably due to the formation of the inclusion complexes comprising the cationic dyes and the cyclodextrins. On the basis of the results obtained we propose that the cationic dye-sensitized degradation of NaHA involves a photoinduced electron-transfer process between the upper excited dyes and the ground-state NaHA and that .OH and 1O2 do not participate in the degradation.

  7. Secretory expression of functional barley limit dextrinase by Pichia pastoris using high cell-density fermentation.

    PubMed

    Vester-Christensen, Malene Bech; Hachem, Maher Abou; Naested, Henrik; Svensson, Birte

    2010-01-01

    Heterologous production of large multidomain proteins from higher plants is often cumbersome. Barley limit dextrinase (LD), a 98kDa multidomain starch and alpha-limit dextrin debranching enzyme, plays a major role in starch mobilization during seed germination and is possibly involved in starch biosynthesis by trimming of intermediate branched alpha-glucan structures. Highly active barley LD is obtained by secretory expression during high cell-density fermentation of Pichia pastoris. The LD encoding gene fragment without signal peptide was subcloned in-frame with the Saccharomyces cerevisiae alpha-factor secretion signal of the P. pastoris vector pPIC9K under control of the alcohol oxidase 1 promoter. Optimization of a fed-batch fermentation procedure enabled efficient production of LD in a 5-L bioreactor, which combined with affinity chromatography on beta-cyclodextrin-Sepharose followed by Hiload Superdex 200 gel filtration yielded 34 mg homogenous LD (84% recovery). The identity of the recombinant LD was verified by N-terminal sequencing and by mass spectrometric peptide mapping. A molecular mass of 98kDa was estimated by SDS-PAGE in excellent agreement with the theoretical value of 97419Da. Kinetic constants of LD catalyzed pullulan hydrolysis were found to K(m,app)=0.16+/-0.02 mg/mL and k(cat,app)=79+/-10s(-1) by fitting the uncompetitive substrate inhibition Michaelis-Menten equation, which reflects significant substrate inhibition and/or transglycosylation. The resulting catalytic coefficient, k(cat,app)/K(m,app)=488+/-23mL/(mgs) is 3.5-fold higher than for barley malt LD. Surface plasmon resonance analysis showed alpha-, beta-, and gamma-cyclodextrin binding to LD with K(d) of 27.2, 0.70, and 34.7 microM, respectively.

  8. Sequence-based analysis of the Vitis vinifera L. cv Cabernet Sauvignon grape must mycobiome in three South African vineyards employing distinct agronomic systems

    DOE PAGES

    Setati, Mathabatha E.; Jacobson, Daniel; Bauer, Florian F.

    2015-11-30

    Recent microbiomic research of agricultural habitats has highlighted tremendous microbial biodiversity associated with such ecosystems. In addition, data generated in vineyards have furthermore highlighted significant regional differences in vineyard biodiversity, hinting at the possibility that such differences might be responsible for regional differences in wine style and character, a hypothesis referred to as "microbial terroir." The current study further contributes to this body of work by comparing the mycobiome associated with South African (SA) Cabernet Sauvignon grapes in three neighboring vineyards that employ different agronomic approaches, and comparing the outcome with similar data sets from Californian vineyards. The aim ofmore » this study was to fully characterize the mycobiomes associated with the grapes from these vineyards. The data revealed approximately 10 times more fungal diversity than what is typically retrieved from culture-based studies. The Biodynamic vineyard was found to harbor a more diverse fungal community (H = 2.6) than the conventional (H = 2.1) and integrated (H = 1.8) vineyards. The data show that ascomycota are the most abundant phylum in the three vineyards, with Aureobasidium pullulans and its close relative Kabatiella microsticta being the most dominant fungi. This is the first report to reveal a high incidence of K. microsticta in the grape/wine ecosystem. Different common wine yeast species, such as Metschnikowia pulcherrima and Starmerella bacillaris dominated the mycobiome in the three vineyards. The data show that the filamentous fungi are the most abundant community in grape must although they are not regarded as relevant during wine fermentation. Comparison of metagenomic datasets from the three SA vineyards and previously published data from Californian vineyards revealed only 25% of the fungi in the SA dataset was also present in the Californian dataset, with greater variation evident amongst ubiquitous epiphytic

  9. Metabarcoding Analysis of Fungal Diversity in the Phyllosphere and Carposphere of Olive (Olea europaea).

    PubMed

    Abdelfattah, Ahmed; Li Destri Nicosia, Maria Giulia; Cacciola, Santa Olga; Droby, Samir; Schena, Leonardo

    2015-01-01

    The fungal diversity associated with leaves, flowers and fruits of olive (Olea europaea) was investigated in different phenological stages (May, June, October and December) using an implemented metabarcoding approach. It consisted of the 454 pyrosequencing of the fungal ITS2 region and the subsequent phylogenetic analysis of relevant genera along with validated reference sequences. Most sequences were identified up to the species level or were associated with a restricted number of related taxa enabling supported speculations regarding their biological role. Analyses revealed a rich fungal community with 195 different OTUs. Ascomycota was the dominating phyla representing 93.6% of the total number of detected sequences followed by unidentified fungi (3.6%) and Basidiomycota (2.8%). A higher level of diversity was revealed for leaves compared to flowers and fruits. Among plant pathogens the genus Colletotrichum represented by three species (C. godetiae syn. C. clavatum, C. acutatum s.s and C. karstii) was the most abundant on ripe fruits but it was also detected in other organs. Pseudocercospora cladosporioides was detected with a high frequency in all leaf samples and to a less extent in ripe fruits. A much lower relative frequency was revealed for Spilocaea oleagina and for other putative pathogens including Fusarium spp., Neofusicoccum spp., and Alternaria spp. Among non-pathogen taxa, Aureobasidium pullulans, the species complex of Cladosporium cladosporioides and Devriesia spp. were the most represented. This study highlights the existence of a complex fungal consortium including both phytopathogenic and potentially antagonistic microorganisms that can have a significant impact on olive productions.

  10. Terbinafine hydrochloride loaded liposome film formulation for treatment of onychomycosis: in vitro and in vivo evaluation.

    PubMed

    Tanrıverdi, Sakine Tuncay; Hilmioğlu Polat, Süleyha; Yeşim Metin, Dilek; Kandiloğlu, Gülşen; Özer, Özgen

    2016-01-01

    Onychomycosis is a fungal infection of nail unit that is caused by dermatophytes. Oral Terbinafine hydrochloride (TBF-HCl) is being used for the treatment of onychomycosis since 24 years. The side effects caused by the systemic application and limitations of topical administration of this drug regarding the diffusion through nail lead to the development of a new formulation based on, TBF-HCl-loaded liposome. The newly obtained film formulations were prepared and characterized via several parameters, such as physical appearance, drug content, thickness, bioadhesive properties and tensile strength. In vitro and ex vivo permeation studies were performed to select an optimum film formulation for antifungal activity to show the efficiency of formulations regarding the treatment of onychomycosis. The in vitro release percentages of drug were found 71.6 ± 3.28, 54.4 ± 4.26, 56.1 ± 7.48 and 46.0 ± 2.43 for liposome loaded pullulan films (LI-P, LII-P) and liposome loaded Eudragit films (LI-E, LII-E), respectively. The accumulated drug in the nail plates were found 31.16 ± 4.22, 24.81 ± 5.35, 8.17 ± 1.81 and 8.92 ± 3.37 for LI-P, LII-P, LI-E and LII-E, respectively, which within therapeutic range for all film formulations. The accumulated drug in the nail plate was found within therapeutic range for all film formulations. The efficacy of the selected TBF-HCl-loaded liposome film formulation was compared with TBF-HCl-loaded liposome, ethosome, liposome poloxamer gel and ethosome chitosan gel formulations. It was found that TBF-HCl-loaded liposome film formulation had better antifungal activity on fungal nails which make this liposome film formulation promising for ungual therapy of fungal nail infection.

  11. Sequence-based analysis of the Vitis vinifera L. cv Cabernet Sauvignon grape must mycobiome in three South African vineyards employing distinct agronomic systems

    SciTech Connect

    Setati, Mathabatha E.; Jacobson, Daniel; Bauer, Florian F.

    2015-11-30

    Recent microbiomic research of agricultural habitats has highlighted tremendous microbial biodiversity associated with such ecosystems. In addition, data generated in vineyards have furthermore highlighted significant regional differences in vineyard biodiversity, hinting at the possibility that such differences might be responsible for regional differences in wine style and character, a hypothesis referred to as "microbial terroir." The current study further contributes to this body of work by comparing the mycobiome associated with South African (SA) Cabernet Sauvignon grapes in three neighboring vineyards that employ different agronomic approaches, and comparing the outcome with similar data sets from Californian vineyards. The aim of this study was to fully characterize the mycobiomes associated with the grapes from these vineyards. The data revealed approximately 10 times more fungal diversity than what is typically retrieved from culture-based studies. The Biodynamic vineyard was found to harbor a more diverse fungal community (H = 2.6) than the conventional (H = 2.1) and integrated (H = 1.8) vineyards. The data show that ascomycota are the most abundant phylum in the three vineyards, with Aureobasidium pullulans and its close relative Kabatiella microsticta being the most dominant fungi. This is the first report to reveal a high incidence of K. microsticta in the grape/wine ecosystem. Different common wine yeast species, such as Metschnikowia pulcherrima and Starmerella bacillaris dominated the mycobiome in the three vineyards. The data show that the filamentous fungi are the most abundant community in grape must although they are not regarded as relevant during wine fermentation. Comparison of metagenomic datasets from the three SA vineyards and previously published data from Californian vineyards revealed only 25% of the fungi in the SA dataset was also present in the Californian dataset, with greater variation evident amongst

  12. Are Epiphytic Microbial Communities in the Carposphere of Ripening Grape Clusters (Vitis vinifera L.) Different between Conventional, Organic, and Biodynamic Grapes?

    PubMed Central

    Kecskeméti, Elizabeth; Berkelmann-Löhnertz, Beate; Reineke, Annette

    2016-01-01

    Using barcoded pyrosequencing fungal and bacterial communities associated with grape berry clusters (Vitis vinifera L.) obtained from conventional, organic and biodynamic vineyard plots were investigated in two subsequent years at different stages during berry ripening. The four most abundant operational taxonomic units (OTUs) based on fungal ITS data were Botrytis cinerea, Cladosporium spp., Aureobasidium pullulans and Alternaria alternata which represented 57% and 47% of the total reads in 2010 and 2011, respectively. Members of the genera Sphingomonas, Gluconobacter, Pseudomonas, Erwinia, and Massilia constituted 67% of the total number of bacterial 16S DNA reads in 2010 samples and 78% in 2011 samples. Viticultural management system had no significant effect on abundance of fungi or bacteria in both years and at all three sampling dates. Exceptions were A. alternata and Pseudomonas spp. which were more abundant in the carposphere of conventional compared to biodynamic berries, as well as Sphingomonas spp. which was significantly less abundant on conventional compared to organic berries at an early ripening stage in 2011. In general, there were no significant differences in fungal and bacterial diversity indices or richness evident between management systems. No distinct fungal or bacterial communities were associated with the different maturation stages or management systems, respectively. An exception was the last stage of berry maturation in 2011, where the Simpson diversity index was significantly higher for fungal communities on biodynamic compared to conventional grapes. Our study highlights the existence of complex and dynamic microbial communities in the grape cluster carposphere including both phytopathogenic and potentially antagonistic microorganisms that can have a significant impact on grape production. Such knowledge is particularly relevant for development, selection and application of effective control measures against economically important

  13. The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica

    PubMed Central

    Vaz, Aline B. M.; Rosa, Luiz H.; Vieira, Mariana L. A.; de Garcia, Virginia; Brandão, Luciana R.; Teixeira, Lia C. R. S.; Moliné, Martin; Libkind, Diego; van Broock, Maria; Rosa, Carlos A.

    2011-01-01

    The diversity of yeasts collected from different sites in Antarctica (Admiralty Bay, King George Island and Port Foster Bay and Deception Island) and their ability to produce extracellular enzymes and mycosporines were studied. Samples were collected during the austral summer season, between November 2006 and January 2007, from the rhizosphere of Deschampsia antarctica, ornithogenic (penguin guano) soil, soil, marine and lake sediments, marine water and freshwater from lakes. A total of 89 isolates belonging to the following genera were recovered: Bensingtonia, Candida, Cryptococcus, Debaryomyces, Dioszegia, Exophiala, Filobasidium, Issatchenkia (Pichia), Kodamaea, Leucosporidium, Leucosporidiella, Metschnikowia, Nadsonia, Pichia, Rhodotorula, and Sporidiobolus, and the yeast-like fungi Aureobasidium, Leuconeurospora and Microglossum. Cryptococcus victoriae was the most frequently identified species. Several species isolated in our study have been previously reported to be Antarctic psychophilic yeasts, including Cr. antarcticus, Cr. victoriae, Dioszegia hungarica and Leucosporidium scottii. The cosmopolitan yeast species A. pullulans, C. zeylanoides, D. hansenii, I. orientalis, K. ohmeri, P. guilliermondii, Rh. mucilaginosa, and S. salmonicolor were also isolated. Five possible new species were identified. Sixty percent of the yeasts had at least one detectable extracellular enzymatic activity. Cryptococcus antarcticus, D. aurantiaca, D. crocea, D. hungarica, Dioszegia sp., E. xenobiotica, Rh. glaciales, Rh. laryngis, Microglossum sp. 1 and Microglossum sp. 2 produced mycosporines. Of the yeast isolates, 41.7% produced pigments and/or mycosporines and could be considered adapted to survive in Antarctica. Most of the yeasts had extracellular enzymatic activities at 4°C and 20°C, indicating that they could be metabolically active in the sampled substrates. PMID:24031709

  14. A thermophilic alkalophilic α-amylase from Bacillus sp. AAH-31 shows a novel domain organization among glycoside hydrolase family 13 enzymes.

    PubMed

    Saburi, Wataru; Morimoto, Naoki; Mukai, Atsushi; Kim, Dae Hoon; Takehana, Toshihiko; Koike, Seiji; Matsui, Hirokazu; Mori, Haruhide

    2013-01-01

    α-Amylases (EC 3.2.1.1) hydrolyze internal α-1,4-glucosidic linkages of starch and related glucans. Bacillus sp. AAH-31 produces an alkalophilic thermophilic α-amylase (AmyL) of higher molecular mass, 91 kDa, than typical bacterial α-amylases. In this study, the AmyL gene was cloned to determine its primary structure, and the recombinant enzyme, produced in Escherichia coli, was characterized. AmyL shows no hydrolytic activity towards pullulan, but the central region of AmyL (Gly395-Asp684) was similar to neopullulanase-like α-amylases. In contrast to known neopullulanase-like α-amylases, the N-terminal region (Gln29-Phe102) of AmyL was similar to carbohydrate-binding module family 20 (CBM20), which is involved in the binding of enzymes to starch granules. Recombinant AmyL showed more than 95% of its maximum activity in a pH range of 8.2-10.5, and was stable below 65 °C and from pH 6.4 to 11.9. The kcat values for soluble starch, γ-cyclodextrin, and maltotriose were 103 s(-1), 67.6 s(-1), and 5.33 s(-1), respectively, and the Km values were 0.100 mg/mL, 0.348 mM, and 2.06 mM, respectively. Recombinant AmyL did not bind to starch granules. But the substitution of Trp45 and Trp84, conserved in site 1 of CBM20, with Ala reduced affinity to soluble starch, while the mutations did not affect affinity for oligosaccharides. Substitution of Trp61, conserved in site 2 of CBM20, with Ala enhanced hydrolytic activity towards soluble starch, indicating that site 2 of AmyL does not contribute to binding to soluble long-chain substrates.

  15. Purification and characterization of the extracellular. alpha. -amylase from Clostridium acetobutylicum ATCC 824

    SciTech Connect

    Paquet, V.; Croux, C.; Goma, G.; Soucaille, P. )

    1991-01-01

    The extracellular {alpha}-amylase (1,4-{alpha}-D-glucanglucanohydrolase; EC 3.2.1.1) from Clostridium acetobutylicum ATCC 824 was purified to homogeneity by anion-exchange chromatography (Mono Q) and gel filtration (Superose 12). The enzyme had an isoelectric point of 4.7 and a molecular weight of 84,000, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was a monomeric protein, the 19-amino-acid N terminus of which displayed 42% homology with the Bacillus subtilis saccharifying {alpha}-amylase. The amino acid composition of the enzyme showed a high number of acidic and hydrophobic residues and only one cysteine residue per mole. The activity of the {alpha}-amylase was not stimulated by calcium ions (or other metal ions) or inhibited by EDTA, although the enzyme contained seven calcium atoms per molecule. {alpha}-Amylase activity on soluble starch was optimal at pH 5.6 and 45{degree}C. The {alpha}-amylase was stable at an acidic pH but very sensitive to thermal inactivation. It hydrolyzed soluble starch, with a K{sub m} of 3.6 g {center dot} liter{sup {minus}1} and a K{sub cat} of 122 mol of reducing sugars {center dot} s{sup {minus}1} {center dot} mol{sup {minus}1}. The {alpha}-amylase showed greater activity with high-molecular-weight substrates than with low-molecular-weight maltooligosaccharides, hydrolyzed glycogen and pullulan slowly, but did not hydrolyze dextran or cyclodextrins. The major end products of maltohexaose degradation were glucose, maltose, and maltotriose; maltotetraose and maltopentaose were formed as intermediate products. Twenty seven percent of the glucoamylase activity generally detected in the culture supernatant of C. acetobutylicum can be attributed to the {alpha}-amylase.

  16. Yeast β-1,6-glucan is a primary target for the Saccharomyces cerevisiae K2 toxin.

    PubMed

    Lukša, Juliana; Podoliankaitė, Monika; Vepštaitė, Iglė; Strazdaitė-Žielienė, Živilė; Urbonavičius, Jaunius; Servienė, Elena

    2015-04-01

    Certain Saccharomyces cerevisiae strains secrete different killer proteins of double-stranded-RNA origin. These proteins confer a growth advantage to their host by increasing its survival. K2 toxin affects the target cell by binding to the cell surface, disrupting the plasma membrane integrity, and inducing ion leakage. In this study, we determined that K2 toxin saturates the yeast cell surface receptors in 10 min. The apparent amount of K2 toxin, bound to a single cell of wild type yeast under saturating conditions, was estimated to be 435 to 460 molecules. It was found that an increased level of β-1,6-glucan directly correlates with the number of toxin molecules bound, thereby impacting the morphology and determining the fate of the yeast cell. We observed that the binding of K2 toxin to the yeast surface receptors proceeds in a similar manner as in case of the related K1 killer protein. It was demonstrated that the externally supplied pustulan, a poly-β-1,6-glucan, but not the glucans bearing other linkage types (such as laminarin, chitin, and pullulan) efficiently inhibits the K2 toxin killing activity. In addition, the analysis of toxin binding to the intact cells and spheroplasts confirmed that majority of K2 protein molecules attach to the β-1,6-glucan, rather than the plasma membrane-localized receptors. Taken together, our results reveal that β-1,6-glucan is a primary target of K2 toxin and is important for the execution of its killing property.

  17. The diversity and extracellular enzymatic activities of yeasts isolated from water tanks of Vriesea minarum, an endangered bromeliad species in Brazil, and the description of Occultifur brasiliensis f.a., sp. nov.

    PubMed

    Gomes, Fátima C O; Safar, Silvana V B; Marques, Andrea R; Medeiros, Adriana O; Santos, Ana Raquel O; Carvalho, Cláudia; Lachance, Marc-André; Sampaio, José Paulo; Rosa, Carlos A

    2015-02-01

    The diversity of yeast species collected from the bromeliad tanks of Vriesea minarum, an endangered bromeliad species, and their ability to produce extracellular enzymes were studied. Water samples were collected from 30 tanks of bromeliads living in a rupestrian field site located at Serrada Piedade, Minas Gerais state, Brazil, during both the dry and rainy seasons. Thirty-six species were isolated, representing 22 basidiomycetous and 14 ascomycetous species. Occultifur sp., Cryptococcus podzolicus and Cryptococcus sp. 1 were the prevalent basidiomycetous species. The yeast-like fungus from the order Myriangiales, Candida silvae and Aureobasidium pullulans were the most frequent ascomycetous species. The diversity of the yeast communities obtained between seasons was not significantly different, but the yeast composition per bromeliad was different between seasons. These results suggest that there is significant spatial heterogeneity in the composition of populations of the yeast communities within bromeliad tanks, independent of the season. Among the 352 yeast isolates tested, 282 showed at least one enzymatic activity. Protease activity was the most widely expressed extracellular enzymatic activity, followed by xylanase, amylase, pectinase and cellulase activities. These enzymes may increase the carbon and nitrogen availability for the microbial food web in the bromeliad tank of V. minarum. Sequence analyses revealed the existence of 10 new species, indicating that bromeliad tanks are important sources of new yeasts. The novel species Occultifur brasiliensis, f.a., sp. nov., is proposed to accommodate the most frequently isolated yeast associated with V. minarum. The type strain of O. brasiliensis, f.a., sp. nov. is UFMG-CM-Y375(T) (= CBS 12687(T)). The Mycobank number is MB 809816.

  18. Solution processable high dielectric constant nanocomposites based on ZrO2 nanoparticles for flexible organic transistors.

    PubMed

    Beaulieu, Michael R; Baral, Jayanta K; Hendricks, Nicholas R; Tang, Yuying; Briseño, Alejandro L; Watkins, James J

    2013-12-26

    A solution-based strategy for fabrication of high dielectric constant (κ) nanocomposites for flexible organic field effect transistors (OFETs) has been developed. The nanocomposite was composed of a high-κ polymer, cyanoethyl pullulan (CYELP), and a high-κ nanoparticle, zirconium dioxide (ZrO2). Organic field effect transistors (OFETs) based on neat CYELP exhibited anomalous behavior during device operation, such as large hysteresis and variable threshold voltages, which yielded inconsistent devices and poor electrical characteristics. To improve the stability of the OFET, we introduced ZrO2 nanoparticles that bind with residual functional groups on the high-κ polymer, which reduces the number of charge trapping sites. The nanoparticles, which serve as physical cross-links, reduce the hysteresis without decreasing the dielectric constant. The dielectric constant of the nanocomposites was tuned over the range of 15.6-21 by varying the ratio of the two components in the composite dielectrics, resulting in a high areal capacitance between 51 and 74 nF cm(-2) at 100 kHz and good insulating properties of a low leakage current of 1.8 × 10(-6) A cm(-2) at an applied voltage of -3.5 V (0.25 MV cm(-1)). Bottom-gate, top-contact (BGTC) low operating voltage p-channel OFETs using these solution processable high-κ nanocomposites were fabricated by a contact film transfer (CFT) technique with poly(3-hexylthiophene) (P3HT) as the charge transport layer. Field effect mobilities as high as 0.08 cm(2) V(-1) s(-1) and on/off current ratio of 1.2 × 10(3) for P3HT were measured for devices using the high-κ dielectric ZrO2 nanocomposite. These materials are promising for generating solution coatable dielectrics for low cost, large area, low operating voltage flexible transistors.

  19. Systems Biology of Microbial Exopolysaccharides Production

    PubMed Central

    Ates, Ozlem

    2015-01-01

    Exopolysaccharides (EPSs) produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture, and medicine. EPSs are mainly associated with high-value applications, and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However, only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover, a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore, a systems-based approach constitutes an important step toward understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism, and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan, and dextran. PMID:26734603

  20. Maltose-forming α-amylase from the hyperthermophilic archaeon Pyrococcus sp. ST04.

    PubMed

    Jung, Jong-Hyun; Seo, Dong-Ho; Holden, James F; Park, Cheon-Seok

    2014-03-01

    The deduced amino acid sequence from a gene of the hyperthermophilic archaeon Pyrococcus sp. ST04 (Py04_0872) contained a conserved glycoside hydrolase family 57 (GH57) motif, but showed <13% sequence identity with other known Pyrococcus GH57 enzymes, such as 4-α-glucanotransferase (EC 2.4.1.25), amylopullulanase (EC 3.2.1.41), and branching enzyme (EC 2.4.1.18). This gene was cloned and expressed in Escherichia coli, and the recombinant product (Pyrococcus sp. ST04 maltose-forming α-amylase, PSMA) was a novel 70-kDa maltose-forming α-amylase. PSMA only recognized maltose (G2) units with α-1,4 and α-1,6 linkages in polysaccharides (e.g., starch, amylopectin, and glycogen) and hydrolyzed pullulan very poorly. G2 was the primary end product of hydrolysis. Branched cyclodextrin (CD) was only hydrolyzed along its branched maltooligosaccharides. 6-O-glucosyl-β-cyclodextrin (G1-β-CD) and β-cyclodextrin (β-CD) were resistant to PSMA suggesting that PSMA is an exo-type glucan hydrolase with α-1,4- and α-1,6-glucan hydrolytic activities. The half-saturation value (Km) for the α-1,4 linkage of maltotriose (G3) was 8.4 mM while that of the α-1,6 linkage of 6-O-maltosyl-β-cyclodextrin (G2-β-CD) was 0.3 mM. The kcat values were 381.0 min(-1) for G3 and 1,545.0 min(-1) for G2-β-CD. The enzyme was inhibited competitively by the reaction product G2, and the Ki constant was 0.7 mM. PSMA bridges the gap between amylases that hydrolyze larger maltodextrins and α-glucosidase that feeds G2 into glycolysis by hydrolyzing smaller glucans into G2 units.

  1. Sequence-based Analysis of the Vitis vinifera L. cv Cabernet Sauvignon Grape Must Mycobiome in Three South African Vineyards Employing Distinct Agronomic Systems

    PubMed Central

    Setati, Mathabatha E.; Jacobson, Daniel; Bauer, Florian F.

    2015-01-01

    Recent microbiomic research of agricultural habitats has highlighted tremendous microbial biodiversity associated with such ecosystems. Data generated in vineyards have furthermore highlighted significant regional differences in vineyard biodiversity, hinting at the possibility that such differences might be responsible for regional differences in wine style and character, a hypothesis referred to as “microbial terroir.” The current study further contributes to this body of work by comparing the mycobiome associated with South African (SA) Cabernet Sauvignon grapes in three neighboring vineyards that employ different agronomic approaches, and comparing the outcome with similar data sets from Californian vineyards. The aim of this study was to fully characterize the mycobiomes associated with the grapes from these vineyards. The data revealed approximately 10 times more fungal diversity than what is typically retrieved from culture-based studies. The Biodynamic vineyard was found to harbor a more diverse fungal community (H = 2.6) than the conventional (H = 2.1) and integrated (H = 1.8) vineyards. The data show that ascomycota are the most abundant phylum in the three vineyards, with Aureobasidium pullulans and its close relative Kabatiella microsticta being the most dominant fungi. This is the first report to reveal a high incidence of K. microsticta in the grape/wine ecosystem. Different common wine yeast species, such as Metschnikowia pulcherrima and Starmerella bacillaris dominated the mycobiome in the three vineyards. The data show that the filamentous fungi are the most abundant community in grape must although they are not regarded as relevant during wine fermentation. Comparison of metagenomic datasets from the three SA vineyards and previously published data from Californian vineyards revealed only 25% of the fungi in the SA dataset was also present in the Californian dataset, with greater variation evident amongst ubiquitous epiphytic fungi. PMID

  2. 75 FR 43996 - Agency Information Collection Activities: Proposed Collection; Comment Request, OMB No. 1660-0029...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ...-0029; FEMA Form 119-17-1, Request for Housing Accommodations; FEMA Form 119-17-2, Request for Use of NETC Facilities. SUMMARY: The Federal Emergency Management Agency, as part of its continuing effort to... Training Center (NETC), located in Emmitsburg, Maryland. The NETC site has facilities and housing...

  3. 75 FR 68614 - Agency Information Collection Activities: Submission for OMB Review; Comment Request, OMB No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ... Housing Accommodations; and FEMA Form 119-17-2 (formerly 75-11), Request for Use of NETC Facilities...-0029; FEMA Form 119-17-1 (formerly 75-10), Request for Housing Accommodations; and FEMA Form 119-17-2 (formerly 75-11), Request for Use of NETC Facilities. SUMMARY: The Federal Emergency Management Agency...

  4. Employing a Secure Virtual Private Network (VPN) Infrastructure as a Global Command and Control Gateway to Dynamically Connect and Disconnect Diverse Forces an a Task-Force-By-Task-Force Basis

    DTIC Science & Technology

    2009-09-01

    DIFFIE-HELLMAN KEY EXCHANGE .......................14 III. GHOSTNET SETUP .........................................15 A. INSTALLATION OF OPENVPN FOR...16 3. Verifying the Secure Connection ..............16 B. RUNNING OPENVPN AS A SERVER ON WINDOWS ............17 1. Creating...Generating Server and Client Keys ............20 5. Keys to Transfer to the Client ...............21 6. Configuring OpenVPN to Use Certificates

  5. HER4 Cyt1 and Cyt2 Isoforms Regulate Transcription Through Differential Interactions with a Transcriptional Regulator, Yap

    DTIC Science & Technology

    2011-10-01

    Cancer Cell Growth. Mol. Biol. Cell, 2006. 17(1): p. 67-79. 12. Aqeilan , R.I., et al., Association of Wwox with ErbB4 in Breast Cancer. Cancer Res...Ubiquitylation and Cell Signaling. The EMBO Journal, 2005. 24(19): p. 3353-3359. 25. Aqeilan , R.I., et al., WW Domain-Containing Proteins, WWOX

  6. 77 FR 71633 - Notice of Lodging of Proposed Consent Decree Under the Clean Water Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-03

    ... Sections 301, 309, and 402 of the Clean Water Act, 33 U.S.C. 1251, et seq. and under the Mississippi Air and Water Pollution Control Law (``MAWPCL'') (Miss. Code Ann. Sec. Sec. 49-17-1 through 49-17-45... of Lodging of Proposed Consent Decree Under the Clean Water Act On November 20, 2012, the...

  7. JPRS Report, Science & Technology, Japan. Goto Quantum Magneto-Flux Logic Project.

    DTIC Science & Technology

    2007-11-02

    Overseas Publications ...................................................................................................... 17 (1) P atent L ist...When a quantum flux is used as a logic unit, the device keeps expanding, and supercomputers are now essential must always be operated in a...speed supercomputer device by .104CMOS developing appropriate evaluation techniques . This includes measuring the basic operational characteristics

  8. A Stereospecific Vapor Detector.

    DTIC Science & Technology

    1984-03-26

    p-fluorophenol - + Av ., Ces 14 2,6-dichlorophenol + + 15 1-adamantanol + + L Sp nd 16 1-adamantanethanol + + 17 1-adamantyl azide + + We believe that...One manuscript under preparation. (3) One patent application. Scientific Personnel Supported: Dr. Claudlo Puebla Mr. JUrgen Axelsen Dr. Jerzy M. Gebicki Dr. Ewa Kirkor-Kaminska Mr. Dennis R. Phillips

  9. Returning Home: The Interstate Transportation of Human Remains.

    ERIC Educational Resources Information Center

    Rowles, Graham D.; Comeaux, Malcolm L.

    1987-01-01

    Many people who die in the United States are transported across state boundaries for burial. Analysis of data from death certificates in 1983 demonstrated 17.1 percent of Arizonans who died were shipped out of state, predominantly back to their state of birth or to their most recent previous residence. (Author/KS)

  10. 78 FR 66671 - Oklahoma Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-06

    ..., assignment, or sale of permit rights; certifying and updating existing permit application information... balance--siltation structures; cessation orders; alternative enforcement--general provisions; criminal... Rights Oklahoma proposes to revoke section 460:20-17-1. Scope and purpose; and replace it with...

  11. 75 FR 80685 - Contract Reporting Requirements of Intrastate Natural Gas Companies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... contract end dates and per-customer revenue, extends the filing deadlines from 30 days to 60 days after... Reporting Requirement....... 17. 1. Interruptible Contract End-Dates 17. 2. Customer Revenues 20. 3... revised form is being submitted to the Office of Management and Budget (OMB) for review and approval....

  12. Wavelet Analysis of Bioacoustic Scattering and Marine Mammal Vocalizations

    DTIC Science & Technology

    2005-09-01

    17 B. DISCRETE WAVELET TRANSFORM .....................................................17 1. Mother Wavelet ...LEFT BLANK 11 III. WAVELET THEORY There are two distinct classes of wavelet transforms : the continuous wavelet transform (CWT) and the discrete ... wavelet transform (DWT). The discrete wavelet transform is a compact representation of the data and is particularly useful for noise reduction and

  13. 28 CFR 2.78 - Geriatric parole.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., YOUTH OFFENDERS, AND JUVENILE DELINQUENTS District of Columbia Code: Prisoners and Parolees § 2.78... staff, who shall forward the application, accompanied by a medical report and any recommendations... following factors (D.C. Code 24-465(c)(1)-(7)): (1) Age of the prisoner; (2) Severity of illness,...

  14. Shopping Survey of the Military Consumer at Whiteman Air Force Base

    DTIC Science & Technology

    1991-02-21

    during the week (12) 1 No place for brunch on Sunday (13) 1 Poor Quality (15) 1 Poor Service (16) 1 Base facilities are handy (17) 1 Enjoys shopping...1 Umited amount of facilities (7) 1 Need more parking (8) 1 No place for brunch on Sunday B. Auto Hobby Shop (Whiteman AFB) (1) 1 Need to improve

  15. Navy Advertising: Targeting Generation Z

    DTIC Science & Technology

    2015-12-01

    17 1. Navy Recruiting and Advertising Budget ..................................18 H. JOINT ADVERTISING, MARKET RESEARCH AND STUDIES...7 Figure 3. Projected Continued Increase of Online Marketing and Advertising Spending from 2014 to 2019...thousand DOD Department of Defense DON Department of the Navy JAMRS Joint Advertising, Market Research and Studies NALTS National Lead Tracking

  16. 76 FR 22924 - Records Schedules; Availability and Request for Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... lists the organizational unit(s) accumulating the records or indicates agency- wide applicability in the... retention are snapshots of the master files. 2. Department of Justice, Federal Bureau of Investigation (N1... Justice, Federal Bureau of Investigation (N1-65- 10-17, 1 item, 1 temporary item). Master files...

  17. Design of Scalable Receivers for Low Probability of Detection Communications Systems

    DTIC Science & Technology

    2009-09-01

    15 B. MODELING THE REFERENCE RECEIVER ...................17 1. Simulation Results ...........................18 2. Transmitter Simulation ...RECEIVER ..............31 1. Simulation Results ...........................32 2. Transmitter Simulation Design ................33 3. Cyclic PN Code...the Cyclic PN Code Model ...........52 2. Improving LPI and Data Rate Performance ......53 APPENDIX A. REFERENCE RECEIVER SIMULATION CODE

  18. The Many Faces of the Still-Face Paradigm: A Review and Meta-Analysis

    ERIC Educational Resources Information Center

    Mesman, Judi; van IJzendoorn, Marinus H.; Bakermans-Kranenburg, Marian J.

    2009-01-01

    The Still-Face Paradigm (SFP) designed by Tronick, Als, Adamson, Wise, and Brazelton (Tronick, E., Als, H., Adamson, L., Wise, S., & Brazelton, T. B. (1978). Infants response to entrapment between contradictory messages in face-to-face interaction. "Journal of the American Academy of Child and Adolescent Psychiatry, 17", 1-13) has been used for…

  19. Red River Depot Operations Center Design Simulation Analysis

    DTIC Science & Technology

    1993-07-01

    prcepallets) (pilfts) (second) in i (21) 99.8% 1.4 25.2 itdal Acaumulating Cnvyr (17) 1.2 palets 0.0 0.0 P&P/Stow Accumulating... dispensed early in the pickers’ 8-hour shift. Similarly, most material from outside the DOC arrives early in each work day. 48 Defense Depot Red River

  20. Integrated Multi-Aperture Sensor and Navigation Fusion

    DTIC Science & Technology

    2010-02-01

    Figure 11. Simulation results for the stereo -vision/INS integrated case ...................................... 17 1 ABSTRACT The integration...monocular camera case, as well as for stereo cases with a limited baseline, where direct measurements of the range value are not possible or...10) Essentially, the image depth is initialized using synthetic stereo -vision: camera motion is applied to synthesize a stereo -vision baseline