Sample records for guide dragonfly migration

  1. Optimal strategies for insects migrating in the flight boundary layer: mechanisms and consequences.

    PubMed

    Srygley, Robert B; Dudley, Robert

    2008-07-01

    Directed aerial displacement requires that a volant organism's airspeed exceeds ambient wind speed. For biologically relevant altitudes, wind speed increases exponentially with increased height above the ground. Thus, dispersal of most insects is influenced by atmospheric conditions. However, insects that fly close to the Earth's surface displace within the flight boundary layer where insect airspeeds are relatively high. Over the past 17 years, we have studied boundary-layer insects by following individuals as they migrate across the Caribbean Sea and the Panama Canal. Although most migrants evade either drought or cold, nymphalid and pierid butterflies migrate across Panama near the onset of the rainy season. Dragonflies of the genus Pantala migrate in October concurrently with frontal weather systems. Migrating the furthest and thereby being the most difficult to study, the diurnal moth Urania fulgens migrates between Central and South America. Migratory butterflies and dragonflies are capable of directed movement towards a preferred compass direction in variable winds, whereas the moths drift with winds over water. Butterflies orient using both global and local cues. Consistent with optimal migration theory, butterflies and dragonflies adjust their flight speeds in ways that maximize migratory distance traveled per unit fuel, whereas the moths do not. Moreover, only butterflies adjust their flight speed in relation to endogenous fat reserves. It is likely that these insects use optic flow to gauge their speed and drift, and thus must migrate where sufficient detail in the Earth's surface is visible to them. The abilities of butterflies and dragonflies to adjust their airspeed over water indicate sophisticated control and guidance systems pertaining to migration.

  2. Viability of long range dragonfly migration across the Indian Ocean: An energetics perspective

    NASA Astrophysics Data System (ADS)

    Saha, Sandeep; Nirwal, Satvik

    2016-11-01

    Recently Pantala flavescens (dragonflies) have been reported to migrate in millions from India to Eastern Africa on a multigenerational migratory circuit of length 14000-18000 kms. We attempt to understand the ability of dragonflies to perform long range migration by examining the energetics using computer simulations. In absence of a theory for long range insect migrations, we resort to the extensive literature on long range bird migration from the energetics perspective. The flight energetics depends upon instantaneous power and velocity. The mechanical flight power is computed from the power curve which is then converted to mass depletion using Brequet's equation. However, the mechanical flight power itself depends upon the instantaneous velocity which can vary depending upon the current mass. In order to predict the range in our simulations, we assume that the insect progressively tries to achieve the maximum range velocity. The results indicate that the migration range is approximately 1260 kms in 70 hours based on the true airspeed. However, our analysis is restricted by the lack of data and certain caveats in drag prediction and basal metabolism rate.

  3. Estimating Aquatic Insect Populations. Introduction to Sampling.

    ERIC Educational Resources Information Center

    Chihuahuan Desert Research Inst., Alpine, TX.

    This booklet introduces high school and junior high school students to the major groups of aquatic insects and to population sampling techniques. Chapter 1 consists of a short field guide which can be used to identify five separate orders of aquatic insects: odonata (dragonflies and damselflies); ephemeroptera (mayflies); diptera (true flies);…

  4. Comparing the aerodynamic forces produced by dragonfly forewings during inverted and non-inverted flight

    NASA Astrophysics Data System (ADS)

    Shumway, Nathan; Gabryszuk, Mateusz; Laurence, Stuart

    2017-11-01

    Experiments were conducted with live dragonflies to determine their wing kinematics during free flight. The motion of one forewing in two different tests, one where the dragonfly is inverted, is described using piecewise functions and simulated using the OVERTURNS Reynolds-averaged Navier-Stokes solver that has been used in previous work to determine trim conditions for a fruit fly model. For the inverted dragonfly the upstrokes were significantly longer than the downstrokes, pitching amplitude is lower than that for the right-side up flight and the flap amplitude is larger. Simulations of dragonfly kinematics of a single forewing are presented to determine how the forces differ for a dragonfly flying inverted and a dragonfly flying right-side up. This work was supported by the United States Army Research Laboratory's Micro Autonomous Systems and Technology Collaborative Technology Alliance Project MCE-16-17 1.2.

  5. Emerging dragonfly diversity at small Rhode Island (U.S.A.) wetlands along an urbanization gradient

    USGS Publications Warehouse

    Aliberti Lubertazzi, Maria A.; Ginsberg, Howard S.

    2010-01-01

    Natal habitat use by dragonflies was assessed on an urban to rural land-use gradient at a set of 21 wetlands, during two emergence seasons (2004, 2005). The wetlands were characterized for urbanization level by using the first factor from a principal components analysis combining chloride concentration in the wetland and percent forest in the surrounding buffer zone. Measurements of species diversity and its components (species richness and evenness) were analyzed and compared along the urbanization gradient, as were distributions of individual species. Dragonfly diversity, species richness, and evenness did not change along the urbanization gradient, so urban wetlands served as natal habitat for numerous dragonfly species. However, several individual species displayed strong relationships to the degree of urbanization, and most were more commonly found at urban sites and at sites with fish. In contrast, relatively rare species were generally found at the rural end of the gradient. These results suggest that urban wetlands can play important roles as dragonfly habitat and in dragonfly conservation efforts, but that conservation of rural wetlands is also important for some dragonfly species.

  6. Visual control of prey-capture flight in dragonflies.

    PubMed

    Olberg, Robert M

    2012-04-01

    Interacting with a moving object poses a computational problem for an animal's nervous system. This problem has been elegantly solved by the dragonfly, a formidable visual predator on flying insects. The dragonfly computes an interception flight trajectory and steers to maintain it during its prey-pursuit flight. This review summarizes current knowledge about pursuit behavior and neurons thought to control interception in the dragonfly. When understood, this system has the potential for explaining how a small group of neurons can control complex interactions with moving objects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Home Range, Movement, and Distribution Patterns of the Threatened Dragonfly Sympetrum depressiusculum (Odonata: Libellulidae): A Thousand Times Greater Territory to Protect?

    PubMed Central

    Dolný, Aleš; Harabiš, Filip; Mižičová, Hana

    2014-01-01

    Dragonflies are good indicators of environmental health and biodiversity. Most studies addressing dragonfly ecology have focused on the importance of aquatic habitats, while the value of surrounding terrestrial habitats has often been overlooked. However, species associated with temporary aquatic habitats must persist in terrestrial environments for long periods. Little is known about the importance of terrestrial habitat patches for dragonflies, or about other factors that initiate or influence dispersal behaviour. The aim of this study was to reveal the relationship between population dynamics of the threatened dragonfly species Sympetrum depressiusculum at its natal site and its dispersal behaviour or routine movements within its terrestrial home range. We used a mark–release–recapture method (marking 2,881 adults) and exuviae collection with the Jolly–Seber model and generalized linear models to analyse seasonal and spatial patterns of routine movement in a heterogeneous Central European landscape. Our results show that utilisation of terrestrial habitat patches by adult dragonflies is not random and may be relatively long term (approximately 3 mo). Adult dragonflies were present only in areas with dense vegetation that provided sufficient resources; the insects were absent from active agricultural patches (p = 0.019). These findings demonstrate that even a species tightly linked to its natal site utilises an area that is several orders of magnitude larger than the natal site. Therefore, negative trends in the occurrence of various dragonfly species may be associated not only with disturbances to their aquatic habitats, but also with changes in the surrounding terrestrial landscape. PMID:25006671

  8. Recovery methods of the dragonfly from irregular initial conditions

    NASA Astrophysics Data System (ADS)

    Melfi, James; Leonardo, Anthony; Wang, Jane

    We release dragonflies from a magnetic tether in a wide range of initial orientations, which results in them utilizing multiple methods to regain their typical flight orientation. Special focus is placed on dropping them while upside down, as the recovery method used is a purely rolling motion. Filming this stereotypical motion with a trio of high speed cameras at 4000 fps, we capture detailed body and wing kinematics data to determine how the dragonfly generates this motion. By replaying the flights within a computer simulation, we can isolate the significant changes to wing kinematics, and find that it is an asymmetry in the wing pitch which generates the roll. Further investigation demonstrates that this choice is highly dependent upon the state of the dragonfly, and as such our results indicate the dragonfly both tracks its current state, and changes its mid-flight control mechanisms accordingly.

  9. Recovery of endemic dragonflies after removal of invasive alien trees.

    PubMed

    Samways, Michael J; Sharratt, Norma J

    2010-02-01

    Because dragonflies are very sensitive to alien trees, we assessed their response to large-scale restoration of riparian corridors. We compared three types of disturbance regime--alien invaded, cleared of alien vegetation, and natural vegetation (control)--and recorded data on 22 environmental variables. The most significant variables in determining dragonfly assemblages were percentage of bank cover and tree canopy cover, which indicates the importance of vegetation architecture for these dragonflies. This finding suggests that it is important to restore appropriate marginal vegetation and sunlight conditions. Recovery of dragonfly assemblages after the clearing of alien trees was substantial. Species richness and abundance at restored sites matched those at control sites. Dragonfly assemblage patterns reflected vegetation succession. Thus, initially eurytopic, widespread species were the main beneficiaries of the removal of alien trees, and stenotopic, endemic species appeared after indigenous vegetation recovered over time. Important indicator species were the two national endemics (Allocnemis leucosticta and Pseudagrion furcigerum), which, along with vegetation type, can be used to monitor return of overall integrity of riparian ecology and to make management decisions. Endemic species as a whole responded positively to restoration, which suggests that indigenous vegetation recovery has major benefits for irreplaceable and widespread generalist species.

  10. How do dragonflies recover from falling upside down?

    NASA Astrophysics Data System (ADS)

    Wang, Z. Jane; Melfi, James, Jr.; Leonardo, Anthony

    2014-11-01

    We release dragonflies from a magnetic tether so that they fall from an initially upside down orientation. To recover, the dragonflies roll their body 180 degrees every time. This set up offers an effective method for eliciting a stereotypical turn so that we can collect a large amount of data on the same turn. From the wing and body kinematics, we can tease out the strategy dragonflies use to roll their body. We record these flights with three zoomed in high-speed video cameras. By filming at 4000 to 8000fps, we measure the wing twist along each of the four wings as a part of the 3D wing kinematics. The shape of the wing twist depends on the interaction between the aerodynamic torque and the torque exerted by muscles, therefore providing clues on which of their four wings actively participate in creating the turn. By applying dynamic calculations to the measured kinematics, we further deduce the amount of torques dragonflies exert in order to turn.

  11. Dragonfly: Investigating the Surface Composition of Titan

    NASA Technical Reports Server (NTRS)

    Brinckerhoff, W. B.; Lawrence, D. J.; Barnes, J. W.; Lorenz, R. D.; Horst, S. M.; Zacny, K.; Freissinet, C.; Parsons, A. M.; Turtle, E. P.; Trainer, M. G.; hide

    2018-01-01

    Dragonfly is a rotorcraft lander mission, selected as a finalist in NASA's New Frontiers Program, that is designed to sample materials and determine the surface composition in different geologic settings on Titan. This revolutionary mission concept would explore diverse locations to characterize the habitability of Titan's environment, to investigate how far prebiotic chemistry has progressed, and to search for chemical signatures that could be indicative of water-based and/or hydrocarbon-based life. Here we describe Dragonfly's capabilities to determine the composition of a variety of surface units on Titan, from elemental components to complex organic molecules. The compositional investigation ncludes characterization of local surface environments and finely sampled materials. The Dragonfly flexible sampling approach can robustly accommodate materials from Titan's most intriguing surface environments.

  12. Structure analysis of the wing of a dragonfly

    NASA Astrophysics Data System (ADS)

    Machida, Kenji; Shimanuki, J.

    2005-04-01

    It is considered that wing corrugation increases not only the warping rigidity but also the flexibility. The wing of a dragonfly has some characteristic structures, such as "Nodus", "Stigma". Nodus is located in the center of the leading edge, and stigma like a mark is located near the end of the wing. It is considered that these structures not only increase the flexibility of the wing, but also prevent fatigue fracture of wings. Therefore, to investigate the mechanism of dragonfly's wing, the configuration of wing used for analyses was measured using an optical coordinate profile measuring machine and a laser microscope. Moreover, several 3-D models of the dragonfly's wing were made, and calculated by the 3-D finite element method.

  13. Exploring the extremely low surface brightness sky: distances to 23 newly discovered objects in Dragonfly fields

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter

    2016-10-01

    We are obtaining deep, wide field images of nearby galaxies with the Dragonfly Telephoto Array. This telescope is optimized for low surface brightness imaging, and we are finding many low surface brightness objects in the Dragonfly fields. In Cycle 22 we obtained ACS imaging for 7 galaxies that we had discovered in a Dragonfly image of the galaxy M101. Unexpectedly, the ACS data show that only 3 of the galaxies are members of the M101 group, and the other 4 are very large Ultra Diffuse Galaxies (UDGs) at much greater distance. Building on our Cycle 22 program, here we request ACS imaging for 23 newly discovered low surface brightness objects in four Dragonfly fields centered on the galaxies NGC 1052, NGC 1084, NGC 3384, and NGC 4258. The immediate goals are to construct the satellite luminosity functions in these four fields and to constrain the number density of UDGs that are not in rich clusters. More generally, this complete sample of extremely low surface brightness objects provides the first systematic insight into galaxies whose brightness peaks at >25 mag/arcsec^2.

  14. Dragonflies and Fireflies

    ERIC Educational Resources Information Center

    Mannlein, Sally

    2009-01-01

    Most first-graders are interested in insects. In this article, the author describes a lesson, "Dragonflies and Fireflies," which is a first-grade lesson showing drawing, symmetry, neighboring colors (analogous) and watercolor techniques.

  15. Azimuth orientation of the dragonfly (Sympetrum)

    NASA Technical Reports Server (NTRS)

    Hisada, M.

    1972-01-01

    Evidence is presented of directional orientation by an alighting dragonfly relative to the azimuth of the sun. The effects of wind direction on this orientation are analyzed. It was concluded that wind does not play a major role in orientation but may have some secondary function in helping greater numbers of dragonflies face windward more often than leeward. A search was made to find the principle sensory receptor for orientation. Two possibilities, the large compound eye and the frontal ocelli, were noted; however, no conclusive evidence could be found.

  16. Capture success and efficiency of dragonflies pursuing different types of prey.

    PubMed

    Combes, S A; Salcedo, M K; Pandit, M M; Iwasaki, J M

    2013-11-01

    The dynamics of predator-prey interactions vary enormously, due both to the heterogeneity of natural environments and to wide variability in the sensorimotor systems of predator and prey. In addition, most predators pursue a range of different types of prey, and most organisms are preyed upon by a variety of predators. We do not yet know whether predators employ a general kinematic and behavioral strategy, or whether they tailor their pursuits to each type of prey; nor do we know how widely prey differ in their survival strategies and sensorimotor capabilities. To gain insight into these questions, we compared aerial predation in 4 species of libelluid dragonflies pursuing 4 types of dipteran prey, spanning a range of sizes. We quantified the proportion of predation attempts that were successful (capture success), as well as the total time spent and the distance flown in pursuit of prey (capture efficiency). Our results show that dragonfly prey-capture success and efficiency both decrease with increasing size of prey, and that average prey velocity generally increases with size. However, it is not clear that the greater distances and times required for capturing larger prey are due solely to the flight performance (e.g., speed or evasiveness) of the prey, as predicted. Dragonflies initiated pursuits of large prey when they were located farther away, on average, as compared to small prey, and the total distance flown in pursuit was correlated with initial distance to the prey. The greater initial distances observed during pursuits of larger prey may arise from constraints on dragonflies' visual perception; dragonflies typically pursued prey subtending a visual angle of 1°, and rarely pursued prey at visual angles greater than 3°. Thus, dragonflies may be unable to perceive large prey flying very close to their perch (subtending a visual angle greater than 3-4°) as a distinct target. In comparing the performance of different dragonfly species that co-occur in the same habitat, we found significant differences that are not explained by body size, suggesting that some dragonflies may be specialized for pursuing particular types of prey. Our results underscore the importance of performing comparative studies of predator-prey interactions with freely behaving subjects in natural settings, to provide insight into how the behavior of both participants influences the dynamics of the interaction. In addition, it is clear that gaining a full understanding of predator-prey interactions requires detailed knowledge not only of locomotory mechanics and behavior, but also of the sensory capabilities and constraints of both predator and prey.

  17. Nano-mechanical properties and structural of a 3D-printed biodegradable biomimetic micro air vehicle wing

    NASA Astrophysics Data System (ADS)

    Salami, E.; Montazer, E.; Ward, T. A.; Ganesan, P. B.

    2017-06-01

    The biomimetic micro air vehicles (BMAV) are unmanned, micro-scaled aircraft that are bio-inspired from flying organisms to achieve the lift and thrust by flapping their wings. The main objectives of this study are to design a BMAV wing (inspired from the dragonfly) and analyse its nano-mechanical properties. In order to gain insights into the flight mechanics of dragonfly, reverse engineering methods were used to establish three-dimensional geometrical models of the dragonfly wings, so we can make a comparative analysis. Then mechanical test of the real dragonfly wings was performed to provide experimental parameter values for mechanical models in terms of nano-hardness and elastic modulus. The mechanical properties of wings were measured by nanoindentre. Finally, a simplified model was designed and the dragonfly-like wing frame structure was bio-mimicked and fabricated using a 3D printer. Then mechanical test of the BMAV wings was performed to analyse and compare the wings under a variety of simplified load regimes that are concentrated force, uniform line-load and a torque. This work opened up the possibility towards developing an engineering basis for the biomimetic design of BMAV wings.

  18. Multiple Contaminant and Predatory Stressors in Experimental Pond Communities

    NASA Astrophysics Data System (ADS)

    Keeley, K.; Crumrine, P. W.; Barlow, P. F.

    2005-05-01

    Anthropogenic contaminants, such as agricultural pesticides found in aquatic systems, have the potential to negatively impact organisms via direct and indirect pathways. The magnitude of these indirect effects depends on the strength of the interactions through which they are propagated. We sought to determine how environmentally realistic levels of the insecticides endosulfan and malathion and the herbicide atrazine impact pond communities. We investigated the effects of these pesticides in mesocosm communities containing larval dragonflies (Anax junius), adult water bugs (Belostoma flumineum), and snails (Planorbella trivolvis). Dragonflies presented a moderate predatory threat to snails, as they affected snail behavior but not survival. Direct effects of pesticides on snails were limited, and pesticides only induced modest changes in snail behavior. All pesticides negatively influenced dragonfly survival and this was most pronounced in treatments with endosulfan. However, the reduction in dragonfly survival did not transmit benefits to snails that were detectable as changes in behavior or survival, as would be expected if dragonflies represented a stronger predatory threat. These results show that individuals in communities can be differentially impacted by contaminants, and indicate that strong indirect effects depend on the strength of underlying trophic interactions.

  19. Extraordinary diversity of visual opsin genes in dragonflies

    PubMed Central

    Futahashi, Ryo; Kawahara-Miki, Ryouka; Kinoshita, Michiyo; Yoshitake, Kazutoshi; Yajima, Shunsuke; Arikawa, Kentaro; Fukatsu, Takema

    2015-01-01

    Dragonflies are colorful and large-eyed animals strongly dependent on color vision. Here we report an extraordinary large number of opsin genes in dragonflies and their characteristic spatiotemporal expression patterns. Exhaustive transcriptomic and genomic surveys of three dragonflies of the family Libellulidae consistently identified 20 opsin genes, consisting of 4 nonvisual opsin genes and 16 visual opsin genes of 1 UV, 5 short-wavelength (SW), and 10 long-wavelength (LW) type. Comprehensive transcriptomic survey of the other dragonflies representing an additional 10 families also identified as many as 15–33 opsin genes. Molecular phylogenetic analysis revealed dynamic multiplications and losses of the opsin genes in the course of evolution. In contrast to many SW and LW genes expressed in adults, only one SW gene and several LW genes were expressed in larvae, reflecting less visual dependence and LW-skewed light conditions for their lifestyle under water. In this context, notably, the sand-burrowing or pit-dwelling species tended to lack SW gene expression in larvae. In adult visual organs: (i) many SW genes and a few LW genes were expressed in the dorsal region of compound eyes, presumably for processing SW-skewed light from the sky; (ii) a few SW genes and many LW genes were expressed in the ventral region of compound eyes, probably for perceiving terrestrial objects; and (iii) expression of a specific LW gene was associated with ocelli. Our findings suggest that the stage- and region-specific expressions of the diverse opsin genes underlie the behavior, ecology, and adaptation of dragonflies. PMID:25713365

  20. Predation risk suppresses the positive feedback between size structure and cannibalism.

    PubMed

    Kishida, Osamu; Trussell, Geoffrey C; Ohno, Ayaka; Kuwano, Shinya; Ikawa, Takuya; Nishimura, Kinya

    2011-11-01

    1. Cannibalism can play a prominent role in the structuring and dynamics of ecological communities. Previous studies have emphasized the importance of size structure and density of cannibalistic species in shaping short- and long-term cannibalism dynamics, but our understanding of how predators influence cannibalism dynamics is limited. This is despite widespread evidence that many prey species exhibit behavioural and morphological adaptations in response to predation risk. 2. This study examined how the presence and absence of predation risk from larval dragonflies Aeshna nigroflava affected cannibalism dynamics in its prey larval salamanders Hynobius retardatus. 3. We found that feedback dynamics between size structure and cannibalism depended on whether dragonfly predation risk was present. In the absence of dragonfly risk cues, a positive feedback between salamander size structure and cannibalism through time occurred because most of the replicates in this treatment contained at least one salamander larvae having an enlarged gape (i.e. cannibal). In contrast, this feedback and the emergence of cannibalism were rarely observed in the presence of the dragonfly risk cues. Once salamander size divergence occurred, experimental reversals of the presence or absence of dragonfly risk cues did not alter existing cannibalism dynamics as the experiment progressed. Thus, the effects of risk on the mechanisms driving cannibalism dynamics likely operated during the early developmental period of the salamander larvae. 4. The effects of dragonfly predation risk on behavioural aspects of cannibalistic interactions among hatchlings may prohibit the initiation of dynamics between size structure and cannibalism. Our predation trials clearly showed that encounter rates among hatchlings and biting and ingestion rates of prospective prey by prospective cannibals were significantly lower in the presence vs. absence of dragonfly predation risk even though the size asymmetry between cannibals and victims was similar in both risk treatments. These results suggest that dragonfly risk cues first suppress cannibalism among hatchlings and then prevent size variation from increasing through time. 5. We suggest that the positive feedback dynamics between size structure and cannibalism and their modification by predation risk may also operate in other systems to shape the population dynamics of cannibalistic prey species as well as overall community dynamics. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  1. Aeshnid dragonfly larvae as bioindicators of methylmercury contamination in aquatic systems impacted by elevated sulfate loading

    USGS Publications Warehouse

    Jeremiason, Jeffrey D.; Reiser, T. K.; Weitz, R. A.; Berndt, M.E.; Aiken, George R.

    2016-01-01

    Methylmercury (MeHg) levels in dragonfly larvae and water were measured over two years in aquatic systems impacted to varying degrees by sulfate releases related to iron mining activity. This study examined the impact of elevated sulfate loads on MeHg concentrations and tested the use of MeHg in dragonfly larvae as an indicator of MeHg levels in a range of aquatic systems including 16 river/stream sites and two lakes. MeHg concentrations in aeshnid dragonfly larvae were positively correlated (R2 = 0.46, p < 0.01) to peak MeHg concentrations in the dissolved phase for the combined years of 2012 and 2013. This relation was strong in 2012 (R2 = 0.85, p < 0.01), but showed no correlation in 2013 (R2 = 0.02, p > 0.05). MeHg in dragonfly larvae were not elevated at the highest sulfate sites, but rather the reverse was generally observed. Record rainfall events in 2012 and above average rainfall in 2013 likely delivered the majority of Hg and MeHg to these systems via interflow and activated groundwater flow through reduced sediments. As a result, the impacts of elevated sulfate releases due to mining activities were not apparent in these systems where little of the sulfate is reduced. Lower bioaccumulation factors for MeHg in aeshnid dragonfly larvae were observed with increasing dissolved organic carbon (DOC) concentrations. This finding is consistent with previous studies showing that MeHg in high DOC systems is less bioavailable; an equilibrium model shows that more MeHg being associated with DOC rather than algae at the base of the food chain readily explains the lower bioaccumulation factors.

  2. Discovery of a novel mastrevirus and alphasatellite-like circular DNA in dragonflies (Epiprocta) from Puerto Rico.

    PubMed

    Rosario, Karyna; Padilla-Rodriguez, Marco; Kraberger, Simona; Stainton, Daisy; Martin, Darren P; Breitbart, Mya; Varsani, Arvind

    2013-01-01

    Geminiviruses have emerged as serious agricultural pathogens. Despite all the species that have been already catalogued, new molecular techniques continue to expand the diversity and geographical ranges of these single-stranded DNA viruses and their associated satellite molecules. Since all geminiviruses are insect-transmitted, examination of insect vector populations through vector-enabled metagenomics (VEM) has been recently used to investigate the diversity of geminiviruses transmitted by a specific vector in a given region. Here we used a more comprehensive adaptation of the VEM approach by surveying small circular DNA viruses found within top insect predators, specifically dragonflies (Epiprocta). This 'predator-enabled' approach is not limited to viral groups transmitted by specific vectors since dragonflies can accumulate the wide range of viruses transmitted by their diverse insect prey. Analysis of six dragonflies collected from an agricultural field in Puerto Rico culminated in the discovery of the first mastrevirus (Dragonfly-associated mastrevirus; DfasMV) and alphasatellite molecule (Dragonfly-associated alphasatellite; Dfas-alphasatellite) from the Caribbean. Since DfasMV and Dfas-alphasatellite are divergent from the limited number of sequences that have been reported from the Americas, this study unequivocally demonstrates that there have been at least two independent past introductions of both mastreviruses and alphasatellites to the New World. Overall, the use of predacious insects as sampling tools can profoundly alter our views of natural plant virus diversity and biogeography by allowing the discovery of novel geminiviruses and associated satellite molecules without a priori knowledge of the types of viruses or insect vectors in a given area. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Replication of surface nano-structure of the wing of dragonfly ( Pantala Flavescens) using nano-molding and UV nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Cho, Joong-Yeon; Kim, Gyutae; Kim, Sungwook; Lee, Heon

    2013-07-01

    The hydrophobicity of a dragonfly's wing originates from the naturally occurring nano-structure on its surface. The nano-structure on a dragonfly's wing consists of an array of nano-sized pillars, 100 nm in diameter. We re-create this hydrophobicity on various substrates, such as Si, glass, curved acrylic polymer, and flexible PET film, by replicating the nano-structure using UV curable nano-imprint lithography (NIL) and PDMS molding. The success of the nano-structure duplication was confirmed using scanning electron microscopy (SEM). The hydrophobicity was measured by water-based contact angle measurements. The water contact angle of the replica made of UV cured polymer was 135° ± 2°, which was slightly lower than that of the original dragonfly's wing (145° ± 2°), but much higher than that of the UV cured polymer surface without any nano-sized pillars (80°). The hydrophobicity was further improved by applying a coating of Teflon-like material.

  4. Diet shift of lentic dragonfly larvae in response to reduced terrestrial prey subsidies

    USGS Publications Warehouse

    Kraus, Johanna M.

    2010-01-01

    Inputs of terrestrial plant detritus and nutrients play an important role in aquatic food webs, but the importance of terrestrial prey inputs in determining aquatic predator distribution and abundance has been appreciated only recently. I examined the numerical, biomass, and diet responses of a common predator, dragonfly larvae, to experimental reduction of terrestrial arthropod input into ponds. I distributed paired enclosures (n  =  7), one with a screen between the land and water (reduced subsidy) and one without a screen (ambient subsidy), near the shoreline of 2 small fishless ponds and sampled each month during the growing season in the southern Appalachian Mountains, Virginia (USA). Screens between water and land reduced the number of terrestrial arthropods that fell into screened enclosures relative to the number that fell into unscreened enclosures and open reference plots by 36%. The δ13C isotopic signatures of dragonfly larvae shifted towards those of aquatic prey in reduced-subsidy enclosures, a result suggesting that dragonflies consumed fewer terrestrial prey when fewer were available (ambient subsidy: 30%, reduced subsidy: 19% of diet). Overall abundance and biomass of dragonfly larvae did not change in response to reduced terrestrial arthropod inputs, despite the fact that enclosures permitted immigration/emigration. These results suggest that terrestrial arthropods can provide resources to aquatic predators in lentic systems, but that their effects on abundance and distribution might be subtle and confounded by in situ factors.

  5. Dragonflies are biocontrol agents in Wisconsin cranberry marshes

    USDA-ARS?s Scientific Manuscript database

    Dragonflies (Order Odonata) are abundant predators that emerge in large hatch events each summer in Wisconsin cranberry marshes. They seem to be a potential group of biocontrol agents for pest management that may be influenced by the diversity found on the marsh. In fact, our evidence shows that dra...

  6. Effect of wing flexibility in dragonfly hovering flight

    NASA Astrophysics Data System (ADS)

    Naidu, Vishal; Young, John; Lai, Joseph

    2011-11-01

    Dragonflies have two pairs of tandem wings, which can be operated independently. Most studies on tandem wings are based on rigid wings, which is in strong contradiction to the natural, flexible dragonfly wings. The effect of wing flexibility in tandem wings is little known. We carry out a comparative, computational study between rigid and flexible, dragonfly shaped wings for hovering flight. In rigid wings during downstroke, a leading edge vortex (LEV) is formed on the upper surface, which forms a low pressure zone. This conical LEV joins the tip vortex and shortly after the mid downstroke when the wing starts to rotate, these vortices are gradually shed resulting in a drop in lift. The vortex system creates a net downwards momentum in the form of a jet. The flexible wings while in motion deform due to aerodynamic and inertial forces. Since there is a strong interaction between wing deformation and air flow around the deformed wings, flexible wing simulations are carried out using a two way fluid structure interaction. The effect of wing flexibility on the flow structure and the subsequent effect on the aerodynamic forces will be studied and presented.

  7. Mosquito larvae can detect water vibration patterns from a nearby predator.

    PubMed

    Roberts, D

    2017-08-01

    Mosquito larvae have been shown to respond to water-borne kairomones from nearby predators by reducing their activity, and thus visibility. If they can identify the predator, they can then alter their response depending upon the associated predation risk. No studies have shown that mosquito larva may also detect water-borne vibrations from the predator. Final instar larvae of three mosquitoes: Culiseta longiareolata, Culex perexiguus and C. quinquefasciatus, were exposed to recorded vibrations from feeding dragonfly nymphs, to dragonfly kairomones and the combined effect of both. Predator vibrations caused C. longiareolata to significantly reduce bottom feeding and instead increased the more passive surface filter feeding. The larvae also significantly increased escape swimming activity. These behavioural changes were not significantly different from the effect of dragonfly kairomones, and there was no synergistic or additional effect of the two. C. perexiguus gave a smaller (but still significant) response to both dragonfly vibrations and to kairomones, probably due to a different feeding behaviour: when lying on the bottom, it was an inactive filter feeder. C. quinquefasciatus did not respond to either vibrations or kairomones and during these experiments was entirely an inactive surface filter feeder. Both C. longiareolata and C. perexiguus were thus able to detect and identify vibrations from feeding dragonfly nymphs as an anti-predator strategy. The lack of response in C. quinquefasciatus is probably a result of living in water that is highly polluted with organic material, where few predators can survive.

  8. Dragonflies as Flagships for Sustainable Use of Water Resources in Environmental Education

    ERIC Educational Resources Information Center

    Clausnitzer, Viola; Simaika, John P.; Samways, Michael J.; Daniel, B. A.

    2017-01-01

    Sustainable use of freshwater is globally important. Yet implementation of changes in water management is poor, especially in developing countries. This is an indication that, despite our dependence on freshwater, we lack awareness of the need to protect these systems. Here we promote dragonflies as an easy-to-learn tool in environmental education…

  9. Dispersal, niche breadth and population extinction: colonization ratios predict range size in North American dragonflies.

    PubMed

    McCauley, Shannon J; Davis, Christopher J; Werner, Earl E; Robeson, Michael S

    2014-07-01

    Species' range sizes are shaped by fundamental differences in species' ecological and evolutionary characteristics, and understanding the mechanisms determining range size can shed light on the factors responsible for generating and structuring biological diversity. Moreover, because geographic range size is associated with a species' risk of extinction and their ability to respond to global changes in climate and land use, understanding these mechanisms has important conservation implications. Despite the hypotheses that dispersal behaviour is a strong determinant of species range areas, few data are available to directly compare the relationship between dispersal behaviour and range size. Here, we overcome this limitation by combining data from a multispecies dispersal experiment with additional species-level trait data that are commonly hypothesized to affect range size (e.g. niche breadth, local abundance and body size.). This enables us to examine the relationship between these species-level traits and range size across North America for fifteen dragonfly species. Ten models based on a priori predictions about the relationship between species traits and range size were evaluated and two models were identified as good predictors of species range size. These models indicated that only two species' level traits, dispersal behaviour and niche breadth were strongly related to range size. The evidence from these two models indicated that dragonfly species that disperse more often and further had larger North American ranges. Extinction and colonization dynamics are expected to be a key linkage between dispersal behaviour and range size in dragonflies. To evaluate how extinction and colonization dynamics among dragonflies were related to range size we used an independent data set of extinction and colonization rates for eleven dragonfly species and assessed the relationship between these populations rates and North American range areas for these species. We found a negative relationship between North American range size and species' extinction-to-colonization ratios. Our results indicate that metapopulation dynamics act to shape the extent of species' continental distributions. These population dynamics are likely to interact with dispersal behaviour, particularly at species range margins, to determine range limits and ultimately species range sizes. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  10. Selections from 2016: A Very Dark Galaxy

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-12-01

    Editors note:In these last two weeks of 2016, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume after the AAS winter meeting.A High Stellar Velocity Dispersion and 100 Globular Clusters for the Ultra-Diffuse Galaxy Dragonfly 44Published August2016Main takeaway:Using the Keck Observatory and the Gemini North telescope in Hawaii, a team led by Pieter van Dokkum (Yale University) discovered the very dim galaxy Dragonfly 44, located in the Coma cluster. The team estimated the center of this galaxys disk to be a whopping 98% dark matter.Why its interesting:Dragonfly 44, though dim, was discovered to host around 100 globular clusters. Measuring the dynamics of these clusters allowed van Dokkum and collaborators to estimate the mass of Dragonfly 44: roughly a trillion times the mass of the Sun. This is similar to the mass of the Milky Way, and yet the Milky Way has over a hundred times more stars than this intriguing galaxy. Its very unexpected to find a galaxy this massive that has a dark-matter fraction this high.What we can learn from this:How do ultra-faint galaxies like these form? One theory is that theyre failed normal galaxies: they have the sizes, dark-matter content, and globular cluster systems of much more luminous galaxies, but they were prevented from building up a normal stellar population. So far, Dragonfly 44s properties seem consistent with this picture.CitationPieter van Dokkum et al 2016 ApJL 828 L6. doi:10.3847/2041-8205/828/1/L6

  11. Adaptive evolution to novel predators facilitates the evolution of damselfly species range shifts.

    PubMed

    Siepielski, Adam M; Beaulieu, Jeremy M

    2017-04-01

    Most species have evolved adaptations to reduce the chances of predation. In many cases, adaptations to coexist with one predator generate tradeoffs in the ability to live with other predators. Consequently, the ability to live with one predator may limit the geographic distributions of species, such that adaptive evolution to coexist with novel predators may facilitate range shifts. In a case study with Enallagma damselflies, we used a comparative phylogenetic approach to test the hypothesis that adaptive evolution to live with a novel predator facilitates range size shifts. Our results suggest that the evolution of Enallagma shifting from living in ancestral lakes with fish as top predators, to living in lakes with dragonflies as predators, may have facilitated an increase in their range sizes. This increased range size likely arose because lakes with dragonflies were widespread, but unavailable as a habitat throughout much of the evolutionary history of Enallagma because they were historically maladapted to coexist with dragonfly predators. Additionally, the traits that have evolved as defenses against dragonflies also likely enhanced damselfly dispersal abilities. While many factors underlie the evolutionary history of species ranges, these results suggest a role for the evolution of predator-prey interactions. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  12. Predator-Prey Interactions Shape Thermal Patch Use in a Newt Larvae-Dragonfly Nymph Model

    PubMed Central

    Gvoždík, Lumír; Černická, Eva; Van Damme, Raoul

    2013-01-01

    Thermal quality and predation risk are considered important factors influencing habitat patch use in ectothermic prey. However, how the predator’s food requirement and the prey’s necessity to avoid predation interact with their respective thermoregulatory strategies remains poorly understood. The recently developed ‘thermal game model’ predicts that in the face of imminent predation, prey should divide their time equally among a range of thermal patches. In contrast, predators should concentrate their hunting activities towards warmer patches. In this study, we test these predictions in a laboratory setup and an artificial environment that mimics more natural conditions. In both cases, we scored thermal patch use of newt larvae (prey) and free-ranging dragonfly nymphs (predators). Similar effects were seen in both settings. The newt larvae spent less time in the warm patch if dragonfly nymphs were present. The patch use of the dragonfly nymphs did not change as a function of prey availability, even when the nymphs were starved prior to the experiment. Our behavioral observations partially corroborate predictions of the thermal game model. In line with asymmetric fitness pay-offs in predator-prey interactions (the ‘life-dinner’ principle), the prey’s thermal strategy is more sensitive to the presence of predators than vice versa. PMID:23755175

  13. Deformation behavior of dragonfly-inspired nodus structured wing in gliding flight through experimental visualization approach.

    PubMed

    Zhang, Sheng; Sunami, Yuta; Hashimoto, Hiromu

    2018-04-10

    Dragonfly has excellent flight performance and maneuverability due to the complex vein structure of wing. In this research, nodus as an important structural element of the dragonfly wing is investigated through an experimental visualization approach. Three vein structures were fabricated as, open-nodus structure, closed-nodus structure (with a flex-limiter) and rigid wing. The samples were conducted in a wind tunnel with a high speed camera to visualize the deformation of wing structure in order to study the function of nodus structured wing in gliding flight. According to the experimental results, nodus has a great influence on the flexibility of the wing structure. Moreover, the closed-nodus wing (with a flex-limiter) enables the vein structure to be flexible without losing the strength and rigidity of the joint. These findings enhance the knowledge of insect-inspired nodus structured wing and facilitate the application of Micro Air Vehicle (MAV) in gliding flight.

  14. In-situ mechanical test of dragonfly wing veins and their crack arrest behavior.

    PubMed

    Zhang, Zhihui; Zhang, Lan; Yu, Zhenglei; Liu, Jingjing; Li, Xiujuan; Liang, Yunhong

    2018-07-01

    In natural biological systems, many insects in complex environments exhibit exemplary mechanical properties. Dragonfly wings are light and strong enough to withstand wind loading. Their rigid veins play supporting and strengthening roles to enhance resistance to fatigue. To explore the effect of veins on arresting cracking in the wing, the costa, subcosta, radius R1, and two areas of dragonfly hind wings were samples for in situ tensile tests. The fracture process of the samples was observed with a high-speed camera and a scanning electron microscope. The mechanical properties of the veins and the results of nanomechanical tests on the wings were analyzed. The costa was stiffer and more resistant to deformation than the subcosta and radius, but it was less tough. The results of this study may provide inspiration for the design of mechanical structures and materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Dynamics of animal movement in an ecological context: dragonfly wing damage reduces flight performance and predation success.

    PubMed

    Combes, S A; Crall, J D; Mukherjee, S

    2010-06-23

    Much of our understanding of the control and dynamics of animal movement derives from controlled laboratory experiments. While many aspects of animal movement can be probed only in these settings, a more complete understanding of animal locomotion may be gained by linking experiments on relatively simple motions in the laboratory to studies of more complex behaviours in natural settings. To demonstrate the utility of this approach, we examined the effects of wing damage on dragonfly flight performance in both a laboratory drop-escape response and the more natural context of aerial predation. The laboratory experiment shows that hindwing area loss reduces vertical acceleration and average flight velocity, and the predation experiment demonstrates that this type of wing damage results in a significant decline in capture success. Taken together, these results suggest that wing damage may take a serious toll on wild dragonflies, potentially reducing both reproductive success and survival.

  16. The Neuronal Control of Flying Prey Interception in Dragonflies

    DTIC Science & Technology

    2014-08-19

    Gonzalez-Bellido’s fluorescent dye ( Lucifer -yellow) injections illuminated for the first time the anatomy of the output regions of the TSDNs...out in Cape Cod (MA) to test the effect of bead size(C), and in the Olberg Laboratory (Union College, NY) to test the effect of bead speed by...AFRL-OSR-VA-TR-2014-0193 THE NEURONAL CONTROL OF FLYING PREY INTERCEPTION IN DRAGONFLIES Robert Olberg TRUSTEES OF UNION COLLEGE IN THE TOWN OF

  17. WAVE2-Abi2 complex controls growth cone activity and regulates the multipolar-bipolar transition as well as the initiation of glia-guided migration.

    PubMed

    Xie, Min-Jue; Yagi, Hideshi; Kuroda, Kazuki; Wang, Chen-Chi; Komada, Munekazu; Zhao, Hong; Sakakibara, Akira; Miyata, Takaki; Nagata, Koh-Ichi; Oka, Yuichiro; Iguchi, Tokuichi; Sato, Makoto

    2013-06-01

    Glia-guided migration (glia-guided locomotion) during radial migration is a characteristic yet unique mode of migration. In this process, the directionality of migration is predetermined by glial processes and not by growth cones. Prior to the initiation of glia-guided migration, migrating neurons transform from multipolar to bipolar, but the molecular mechanisms underlying this multipolar-bipolar transition and the commencement of glia-guided migration are not fully understood. Here, we demonstrate that the multipolar-bipolar transition is not solely a cell autonomous event; instead, the interaction of growth cones with glial processes plays an essential role. Time-lapse imaging with lattice assays reveals the importance of vigorously active growth cones in searching for appropriate glial scaffolds, completing the transition, and initiating glia-guided migration. These growth cone activities are regulated by Abl kinase and Cdk5 via WAVE2-Abi2 through the phosphorylation of tyrosine 150 and serine 137 of WAVE2. Neurons that do not display such growth cone activities are mispositioned in a more superficial location in the neocortex, suggesting the significance of growth cones for the final location of the neurons. This process occurs in spite of the "inside-out" principle in which later-born neurons are situated more superficially.

  18. A Biomimetic Algorithm for Flight Stabilization in Airborne Vehicles, Based on Dragonfly Ocellar Vision

    DTIC Science & Technology

    2006-07-27

    9 10 Technical horizon sensors Over the past few years, a remarkable proliferation of designs for micro-aerial vehicles (MAVs) has occurred... photodiode Fig. 15 Fig. 14 Sky scans with a GaP UV pho to dio de a lo ng three vert ical paths. A ngle o f v iew 30 degrees, 50% clo ud co ver, sun at...Australia Email: gert.stange@anu.edu.au A biomimetic algorithm for flight stabilization in airborne vehicles , based on dragonfly ocellar vision

  19. Dynamics of animal movement in an ecological context: dragonfly wing damage reduces flight performance and predation success

    PubMed Central

    Combes, S. A.; Crall, J. D.; Mukherjee, S.

    2010-01-01

    Much of our understanding of the control and dynamics of animal movement derives from controlled laboratory experiments. While many aspects of animal movement can be probed only in these settings, a more complete understanding of animal locomotion may be gained by linking experiments on relatively simple motions in the laboratory to studies of more complex behaviours in natural settings. To demonstrate the utility of this approach, we examined the effects of wing damage on dragonfly flight performance in both a laboratory drop–escape response and the more natural context of aerial predation. The laboratory experiment shows that hindwing area loss reduces vertical acceleration and average flight velocity, and the predation experiment demonstrates that this type of wing damage results in a significant decline in capture success. Taken together, these results suggest that wing damage may take a serious toll on wild dragonflies, potentially reducing both reproductive success and survival. PMID:20236968

  20. Characterization of Ventilatory Modes in Dragonfly Nymph

    NASA Astrophysics Data System (ADS)

    Roh, Chris; Saxton-Fox, Theresa; Gharib, Morteza

    2013-11-01

    A dragonfly nymph's highly modified hindgut has multiple ventilatory modes: hyperventilation (i.e. jet propulsion), gulping ventilation (extended expiratory phase) and normal ventilation. Each mode involves dynamic manipulation of the exit diameter and pressure. To study the different fluid dynamics associated with the three modes, Anisopteran larvae of the family Aeshnidae were tethered onto a rod for flow visualization. The result showed distinct flow structures. The hyperventilation showed a highly turbulent and powerful jet that occurred at high frequency. The gulping ventilation produced a single vortex at a moderate frequency. The normal ventilation showed two distinct vortices, a low-Reynolds number vortex, followed by a high-Reynolds number vortex. Furthermore, a correlation of the formation of the vortices with the movement of the sternum showed that the dragonfly is actively controlling the timing and the speed of the vortices to have them at equal distance from the jet exit at the onset of inspiration. This behavior prevents inspiration of the oxygen deficient expirated water, resulting in the maximization of the oxygen intake. Supported by NSF GRFP.

  1. Application of dragonfly algorithm for optimal performance analysis of process parameters in turn-mill operations- A case study

    NASA Astrophysics Data System (ADS)

    Vikram, K. Arun; Ratnam, Ch; Lakshmi, VVK; Kumar, A. Sunny; Ramakanth, RT

    2018-02-01

    Meta-heuristic multi-response optimization methods are widely in use to solve multi-objective problems to obtain Pareto optimal solutions during optimization. This work focuses on optimal multi-response evaluation of process parameters in generating responses like surface roughness (Ra), surface hardness (H) and tool vibration displacement amplitude (Vib) while performing operations like tangential and orthogonal turn-mill processes on A-axis Computer Numerical Control vertical milling center. Process parameters like tool speed, feed rate and depth of cut are considered as process parameters machined over brass material under dry condition with high speed steel end milling cutters using Taguchi design of experiments (DOE). Meta-heuristic like Dragonfly algorithm is used to optimize the multi-objectives like ‘Ra’, ‘H’ and ‘Vib’ to identify the optimal multi-response process parameters combination. Later, the results thus obtained from multi-objective dragonfly algorithm (MODA) are compared with another multi-response optimization technique Viz. Grey relational analysis (GRA).

  2. Keystone nonconsumptive effects within a diverse predator community.

    PubMed

    Meadows, Amanda J; Owen, Jeb P; Snyder, William E

    2017-12-01

    The number of prey killed by diverse predator communities is determined by complementarity and interference among predators, and by traits of particular predator species. However, it is less clear how predators' nonconsumptive effects (NCEs) scale with increasing predator biodiversity. We examined NCEs exerted on Culex mosquitoes by a diverse community of aquatic predators. In the field, mosquito larvae co-occurred with differing densities and species compositions of mesopredator insects; top predator dragonfly naiads were present in roughly half of surveyed water bodies. We reproduced these predator community features in artificial ponds, exposing mosquito larvae to predator cues and measuring resulting effects on mosquito traits throughout development. Nonconsumptive effects of various combinations of mesopredator species reduced the survival of mosquito larvae to pupation, and reduced the size and longevity of adult mosquitoes that later emerged from the water. Intriguingly, adding single dragonfly naiads to ponds restored survivorship of larval mosquitoes to levels seen in the absence of predators, and further decreased adult mosquito longevity compared with mosquitoes emerging from mesopredator treatments. Behavioral observations revealed that mosquito larvae regularly deployed "diving" escape behavior in the presence of the mesopredators, but not when a dragonfly naiad was also present. This suggests that dragonflies may have relaxed NCEs of the mesopredators by causing mosquitoes to abandon energetically costly diving. Our study demonstrates that adding one individual of a functionally unique species can substantially alter community-wide NCEs of predators on prey. For pathogen vectors like mosquitoes, this could in turn influence disease dynamics.

  3. The effects of chlorpyrifos on cholinesterase activity and foraging behavior in the dragonfly, Anax junius (Odonata)

    USGS Publications Warehouse

    Brewer, S.K.; Atchison, G.J.

    1999-01-01

    We examined head capsule cholinesterase (ChE) and foraging behavior in nymphs of the dragonfly, Anax junius, exposed for 24 h to 0.2, 0.6 and 1.0 ??g l-1 of the organophosphorus (OP) insecticide, chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate]. The invertebrate community is an important component of the structure and function of wetland ecosystems, yet the potential effects of insecticides on wetland ecosystems are largely unknown. Our objectives were to determine if exposure to environmentally realistic concentrations of chlorpyrifos affected foraging behavior and ChE activity in head capsules of dragonfly nymphs. Nymphs were exposed to different concentrations of chlorpyrifos and different prey densities in a factorial design. ChE activities and foraging behaviors of treated nymphs were not statistically different (p ??? 0.05) from control groups. Prey density effects exerted a greater effect on dragonfly foraging than toxicant exposures. Nymphs offered higher prey densities exhibited more foraging behaviors but also missed their prey more often. High variability in ChE activities within the control group and across treated groups precluded determination of relationships between ChE and foraging behaviors. It appears that A. junius is relatively tolerant of chlorpyrifos, although the concentrations we tested have been shown in other work to adversely affect the prey base; therefore the introduction of this insecticide may have indirect adverse affects on top invertebrate predators such as Odonata.

  4. A low-cost simulation platform for flapping wing MAVs

    NASA Astrophysics Data System (ADS)

    Kok, J. M.; Chahl, J. S.

    2015-03-01

    This paper describes the design of a flight simulator for analysing the systems level performance of a Dragonfly-Inspired Micro Air Vehicle (DIMAV). A quasi-steady blade element model is used to analyse the aerodynamic forces. Aerodynamic and environmental forces are then incorporated into a real world flight dynamics model to determine the dynamics of the DIMAV system. The paper also discusses the implementation of the flight simulator for analysing the manoeuvrability of a DIMAV, specifically several modes of flight commonly found in dragonflies. This includes take-off, roll turns and yaw turns. Our findings with the simulator are consistent with results from wind tunnel studies and slow motion cinematography of dragonflies. In the take-off mode of flight, we see a strong dependence of take-off accelerations with flapping frequency. An increase in wing-beat frequency of 10% causes the maximum vertical acceleration to increase by 2g which is similar to that of dragonflies in nature. For the roll and yaw modes of manoeuvring, asymmetrical inputs are applied between the left and right set of wings. The flapping amplitude is increased on the left pair of wings which causes a time averaged roll rate to the right of 1.76rad/s within two wing beats. In the yaw mode, the stroke plane angle is reduced in the left pair of wings to initiate the yaw manoeuvre. In two wing beats, the time averaged yaw rate is 2.54rad/s.

  5. Commercial mode-locked vertical external cavity surface emitting lasers

    NASA Astrophysics Data System (ADS)

    Lubeigt, Walter; Bialkowski, Bartlomiej; Lin, Jipeng; Head, C. Robin; Hempler, Nils; Maker, Gareth T.; Malcolm, Graeme P. A.

    2017-02-01

    In recent years, M Squared Lasers have successfully commercialized a range of mode-locked vertical external cavity surface emitting lasers (VECSELs) operating between 920-1050nm and producing picosecond-range pulses with average powers above 1W at pulse repetition frequencies (PRF) of 200MHz. These laser products offer a low-cost, easy-to-use and maintenance-free tool for the growing market of nonlinear microscopy. However, in order to present a credible alternative to ultrafast Ti-sapphire lasers, pulse durations below 200fs are required. In the last year, efforts have been directed to reduce the pulse duration of the Dragonfly laser system to below 200fs with a target average power above 1W at a PRF of 200MHz. This paper will describe and discuss the latest efforts undertaken to approach these targets in a laser system operating at 990nm. The relatively low PRF operation of Dragonfly lasers represents a challenging requirement for mode-locked VECSELs due to the very short upper state carrier lifetime, on the order of a few nanoseconds, which can lead to double pulsing behavior in longer cavities as the time between consecutive pulses is increased. Most notably, the design of the Dragonfly VECSEL cavity was considerably modified and the laser system extended with a nonlinear pulse stretcher and an additional compression stage. The improved Dragonfly laser system achieved pulse duration as short as 130fs with an average power of 0.85W.

  6. New Eocene damselflies and first Cenozoic damsel-dragonfly of the isophlebiopteran lineage (Insecta: Odonata).

    PubMed

    Garrouste, Romain; Nel, André

    2015-10-09

    The study of a new specimen of Petrolestes hendersoni from the Eocene Green Formation allows a more precise description of the enigmatic damselfly and the diagnosis of the Petrolestini. Petrolestes messelensis sp. nov. is described from the Eocene Messel Formation in Germany, extending the distribution of the Petrolestini to the European Eocene. The new damsel-dragonfly family Pseudostenolestidae is described for the new genus and species Pseudostenolestes bechlyi, from the Eocene Messel Formation. It is the first Cenozoic representative of the Mesozoic clade Isophlebioptera.

  7. KSC-05PD-1016

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. A dragonfly rests atop the highest stalk in foliage on the Merritt Island National Wildlife Refuge before resuming its daily activity. Large predatory insects with wingspans up to 5.5 inches, dragonflies snatch smaller insects from the air by means of their basket-like arrangement of legs. The refuge was established in 1963 on Kennedy Space Center land and water not used by NASA for the space program. It encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles.

  8. Effects of a dragonfly (Anax i.) homeopathic remedy on learning, memory and cell morphology in mice.

    PubMed

    Mutlu, Oguz; Ulak, Guner; Kokturk, Sibel; Komsuoglu Celikyurt, Ipek; Tanyeri, Pelin; Akar, Furuzan; Erden, Faruk

    2016-02-01

    Homeopathy is a form of alternative medicine in which uses highly diluted preparations that are believed to cause healthy people to exhibit symptoms similar to those exhibited by patients. The aim of this study was to investigate the effects of dragonfly (Anax imperator, Anax i.) on learning and memory in naive mice using the Morris water maze (MWM) test; moreover, the effects of dragonfly on MK-801-induced cognitive dysfunction were evaluated. Male balb-c mice were treated with dragonfly (30C and 200C) or MK-801 (0.2 mg/kg) alone or concurrently (n = 10). Dragonfly (D) and MK-801 were administered subchronically for 6 days intraperitoneally 60 min and 30 min, respectively, before the daily performance of the MWM test. This study revealed that in the familiarization session and first session of the MWM test, Anax i. D30 significantly decreased escape latency compared to the control group, although MK-801, D30 and D200 significantly increased escape latency at the end of five acquisition sessions. Anax i. combined with dizocilpine maleate (MK-801) also significantly decreased escape latency in the familiarization session and first session of the MWM test, although this combination increased escape latency compared to the MK-801 alone group at the end of the test. Time spent in escape platform's quadrant in the probe trial significantly decreased while mean distance to platform significantly increased in MK-801, D30 and D200 groups. In the MWM test, Anax i. combined with MK-801 significantly decreased speed of the animals compared to the MK-801 alone group. General cell morphology was disturbed in the MK-801 group while D30 and D200 seemed to improve cell damage in the MK-801 group. These results suggest that the homeopathic Anax i. can impair learning acquisition and reference memory, and it has beneficial effects on disturbed cell morphology. Copyright © 2015 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  9. Italian Americans: A Study Guide and Source Book.

    ERIC Educational Resources Information Center

    Meloni, Alberto

    Aspects of Italian immigration to the United States outlined in this guide include: (1) historical precedents for the Italian migration to North and South America; (2) economic reasons for the migration; (3) costs and resulting permanence of the migration; (4) characteristics of the family and individuals who migrated; (5) assimilation of these…

  10. Wing-wake interaction reduces power consumption in insect tandem wings

    NASA Astrophysics Data System (ADS)

    Lehmann, Fritz-Olaf

    Insects are capable of a remarkable diversity of flight techniques. Dragonflies, in particular, are notable for their powerful aerial manoeuvres and endurance during prey catching or territory flights. While most insects such as flies, bees and wasps either reduced their hinds wings or mechanically coupled fore and hind wings, dragonflies have maintained two independent-controlled pairs of wings throughout their evolution. An extraordinary feature of dragonfly wing kinematics is wing phasing, the shift in flapping phase between the fore and hind wing periods. Wing phasing has previously been associated with an increase in thrust production, readiness for manoeuvrability and hunting performance. Recent studies have shown that wing phasing in tandem wings produces a twofold modulation in hind wing lift, but slightly reduces the maximum combined lift of fore and hind wings, compared to two wings flapping in isolation. Despite this disadvantage, however, wing phasing is effective in improving aerodynamic efficiency during flight by the removal of kinetic energy from the wake. Computational analyses demonstrate that this increase in flight efficiency may save up to 22% aerodynamic power expenditure compared to insects flapping only two wings. In terms of engineering, energetic benefits in four-wing flapping are of substantial interest in the field of biomimetic aircraft design, because the performance of man-made air vehicles is often limited by high-power expenditure rather than by lift production. This manuscript provides a summary on power expenditures and aerodynamic efficiency in flapping tandem wings by investigating wing phasing in a dynamically scaled robotic model of a hovering dragonfly.

  11. Wing-wake interaction reduces power consumption in insect tandem wings

    NASA Astrophysics Data System (ADS)

    Lehmann, Fritz-Olaf

    2009-05-01

    Insects are capable of a remarkable diversity of flight techniques. Dragonflies, in particular, are notable for their powerful aerial manoeuvres and endurance during prey catching or territory flights. While most insects such as flies, bees and wasps either reduced their hinds wings or mechanically coupled fore and hind wings, dragonflies have maintained two independent-controlled pairs of wings throughout their evolution. An extraordinary feature of dragonfly wing kinematics is wing phasing, the shift in flapping phase between the fore and hind wing periods. Wing phasing has previously been associated with an increase in thrust production, readiness for manoeuvrability and hunting performance. Recent studies have shown that wing phasing in tandem wings produces a twofold modulation in hind wing lift, but slightly reduces the maximum combined lift of fore and hind wings, compared to two wings flapping in isolation. Despite this disadvantage, however, wing phasing is effective in improving aerodynamic efficiency during flight by the removal of kinetic energy from the wake. Computational analyses demonstrate that this increase in flight efficiency may save up to 22% aerodynamic power expenditure compared to insects flapping only two wings. In terms of engineering, energetic benefits in four-wing flapping are of substantial interest in the field of biomimetic aircraft design, because the performance of man-made air vehicles is often limited by high-power expenditure rather than by lift production. This manuscript provides a summary on power expenditures and aerodynamic efficiency in flapping tandem wings by investigating wing phasing in a dynamically scaled robotic model of a hovering dragonfly.

  12. Fipronil application on rice paddy fields reduces densities of common skimmer and scarlet skimmer

    PubMed Central

    Kasai, Atsushi; Hayashi, Takehiko I.; Ohnishi, Hitoshi; Suzuki, Kazutaka; Hayasaka, Daisuke; Goka, Koichi

    2016-01-01

    Several reports suggested that rice seedling nursery-box application of some systemic insecticides (neonicotinoids and fipronil) is the cause of the decline in dragonfly species noted since the 1990s in Japan. We conducted paddy mesocosm experiments to investigate the effect of the systemic insecticides clothianidin, fipronil and chlorantraniliprole on rice paddy field biological communities. Concentrations of all insecticides in the paddy water were reduced to the limit of detection within 3 months after application. However, residuals of these insecticides in the paddy soil were detected throughout the experimental period. Plankton species were affected by clothianidin and chlorantraniliprole right after the applications, but they recovered after the concentrations decreased. On the other hand, the effects of fipronil treatment, especially on Odonata, were larger than those of any other treatment. The number of adult dragonflies completing eclosion was severely decreased in the fipronil treatment. These results suggest that the accumulation of these insecticides in paddy soil reduces biodiversity by eliminating dragonfly nymphs, which occupy a high trophic level in paddy fields. PMID:26979488

  13. Dragonfly: strengthening programming skills by building a game engine from scratch

    NASA Astrophysics Data System (ADS)

    Claypool, Mark

    2013-06-01

    Computer game development has been shown to be an effective hook for motivating students to learn both introductory and advanced computer science topics. While games can be made from scratch, to simplify the programming required game development often uses game engines that handle complicated or frequently used components of the game. These game engines present the opportunity to strengthen programming skills and expose students to a range of fundamental computer science topics. While educational efforts have been effective in using game engines to improve computer science education, there have been no published papers describing and evaluating students building a game engine from scratch as part of their course work. This paper presents the Dragonfly-approach in which students build a fully functional game engine from scratch and make a game using their engine as part of a junior-level course. Details on the programming projects are presented, as well as an evaluation of the results from two offerings that used Dragonfly. Student performance on the projects as well as student assessments demonstrates the efficacy of having students build a game engine from scratch in strengthening their programming skills.

  14. Synthesis of concentric circular antenna arrays using dragonfly algorithm

    NASA Astrophysics Data System (ADS)

    Babayigit, B.

    2018-05-01

    Due to the strong non-linear relationship between the array factor and the array elements, concentric circular antenna array (CCAA) synthesis problem is challenging. Nature-inspired optimisation techniques have been playing an important role in solving array synthesis problems. Dragonfly algorithm (DA) is a novel nature-inspired optimisation technique which is based on the static and dynamic swarming behaviours of dragonflies in nature. This paper presents the design of CCAAs to get low sidelobes using DA. The effectiveness of the proposed DA is investigated in two different (with and without centre element) cases of two three-ring (having 4-, 6-, 8-element or 8-, 10-, 12-element) CCAA design. The radiation pattern of each design cases is obtained by finding optimal excitation weights of the array elements using DA. Simulation results show that the proposed algorithm outperforms the other state-of-the-art techniques (symbiotic organisms search, biogeography-based optimisation, sequential quadratic programming, opposition-based gravitational search algorithm, cat swarm optimisation, firefly algorithm, evolutionary programming) for all design cases. DA can be a promising technique for electromagnetic problems.

  15. Resilin microjoints: a smart design strategy to avoid failure in dragonfly wings.

    PubMed

    Rajabi, H; Shafiei, A; Darvizeh, A; Gorb, S N

    2016-12-14

    Dragonflies are fast and manoeuvrable fliers and this ability is reflected in their unique wing morphology. Due to the specific lightweight structure, with the crossing veins joined by rubber-like resilin patches, wings possess strong deformability but can resist high forces and large deformations during aerial collisions. The computational results demonstrate the strong influence of resilin-containing vein joints on the stress distribution within the wing. The presence of flexible resilin in the contact region of the veins prevents excessive bending of the cross veins and significantly reduces the stress concentration in the joint.

  16. Rapid biosynthesis of silver nanoparticles using Crotalaria verrucosa leaves against the dengue vector Aedes aegypti: what happens around? An analysis of dragonfly predatory behaviour after exposure at ultra-low doses.

    PubMed

    Murugan, Kadarkarai; Sanoopa, C P; Madhiyazhagan, Pari; Dinesh, Devakumar; Subramaniam, Jayapal; Panneerselvam, Chellasamy; Roni, Mathath; Suresh, Udaiyan; Nicoletti, Marcello; Alarfaj, Abdullah A; Munusamy, Murugan A; Higuchi, Akon; Kumar, Suresh; Perumalsamy, Haribalan; Ahn, Young-Joon; Benelli, Giovanni

    2016-01-01

    Aedes aegypti is a primary vector of dengue, a mosquito-borne viral disease infecting 50-100 million people every year. Here, we biosynthesised mosquitocidal silver nanoparticles (AgNP) using the aqueous leaf extract of Crotalaria verrucosa. The green synthesis of AgNP was studied by UV-vis spectroscopy, SEM, EDX and FTIR. C. verrucosa-synthesised AgNPs were toxic against A. aegypti larvae and pupae. LC50 of AgNP ranged from 3.496 ppm (I instar larvae) to 17.700 ppm (pupae). Furthermore, we evaluated the predatory efficiency of dragonfly nymphs, Brachydiplax sobrina, against II and III instar larvae of A. aegypti in an aquatic environment contaminated with ultra-low doses of AgNP. Under standard laboratory conditions, predation after 24 h was 87.5% (II) and 54.7% (III). In an AgNP-contaminated environment, predation was 91 and 75.5%, respectively. Overall, C. verrucosa-synthesised AgNP could be employed at ultra-low doses to reduce larval population of dengue vectors enhancing predation rates of dragonfly nymphs.

  17. Nanotopography guides and directs cell migration in amoeboid and epithelial cells

    NASA Astrophysics Data System (ADS)

    Lee, Rachel; Das, Satarupa; Hourwitz, Matthew; Sun, Xiaoyu; Parent, Carole; Fourkas, John; Losert, Wolfgang

    Cell migration plays a critical role in development, angiogenesis, immune response, wound healing, and cancer metastasis. In many cases, cells also move in the context of a matrix of collagen fibers, and the alignment of these fibers can both affect the migration phenotype and guide cells. Here we show that both fast and slow migrating cells - amoeboid HL-60 and epithelial MCF10A - are affected in similar ways by micro/nanostructures with dimensions similar to those of collagen fibers. Cell alignment enhances the efficiency of migration by increasing directional persistence.

  18. AMEM-ADL Polymer Migration Estimation Model User's Guide

    EPA Pesticide Factsheets

    The user's guide of the Arthur D. Little Polymer Migration Estimation Model (AMEM) provides the information on how the model estimates the fraction of a chemical additive that diffuses through polymeric matrices.

  19. Migration: a concept analysis from a nursing perspective.

    PubMed

    Freeman, Michelle; Baumann, Andrea; Blythe, Jennifer; Fisher, Anita; Akhtar-Danesh, Noori

    2012-05-01

      This article is a report of a concept analysis of nurse migration.   International migration is increasing and nurse migrants are active participants in this movement. Migration is a complex term and can be examined from a range of perspectives. Analysis of nurse migration is needed to guide policy, practice and research.   A literature search was undertaken using electronic literature indexes, specific journals and websites, internet search engines and hand searches. No timeframe was placed on the search. Most literature found was published between 2001 and 2009. A sample of 80 documents met the inclusion criteria.   Walker and Avant's approach guided the analysis.   Nurse migration can be defined by five attributes: the motivation and decisions of individuals; external barriers and facilitators; freedom of choice to migrate; freedom to migrate as a human right, and dynamic movement. Antecedents of migration include the political, social, economic, legal, historical and educational forces that comprise the push and pull framework. The consequences of migration are positive or negative depending on the viewpoint and its affect on the individual and other stakeholders such as the source country, destination country, healthcare systems and the nursing profession.   This concept analysis clarified the complexities surrounding nurse migration. A nursing-specific middle-range theory was proposed to guide the understanding and study of nurse migration. © 2011 Blackwell Publishing Ltd.

  20. Flight of the dragonflies and damselflies.

    PubMed

    Bomphrey, Richard J; Nakata, Toshiyuki; Henningsson, Per; Lin, Huai-Ti

    2016-09-26

    This work is a synthesis of our current understanding of the mechanics, aerodynamics and visually mediated control of dragonfly and damselfly flight, with the addition of new experimental and computational data in several key areas. These are: the diversity of dragonfly wing morphologies, the aerodynamics of gliding flight, force generation in flapping flight, aerodynamic efficiency, comparative flight performance and pursuit strategies during predatory and territorial flights. New data are set in context by brief reviews covering anatomy at several scales, insect aerodynamics, neuromechanics and behaviour. We achieve a new perspective by means of a diverse range of techniques, including laser-line mapping of wing topographies, computational fluid dynamics simulations of finely detailed wing geometries, quantitative imaging using particle image velocimetry of on-wing and wake flow patterns, classical aerodynamic theory, photography in the field, infrared motion capture and multi-camera optical tracking of free flight trajectories in laboratory environments. Our comprehensive approach enables a novel synthesis of datasets and subfields that integrates many aspects of flight from the neurobiology of the compound eye, through the aeromechanical interface with the surrounding fluid, to flight performance under cruising and higher-energy behavioural modes.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. © 2016 The Authors.

  1. Effects of prey density, temperature and predator diversity on nonconsumptive predator-driven mortality in a freshwater food web.

    PubMed

    Veselý, Lukáš; Boukal, David S; Buřič, Miloš; Kozák, Pavel; Kouba, Antonín; Sentis, Arnaud

    2017-12-22

    Nonconsumptive predator-driven mortality (NCM), defined as prey mortality due to predation that does not result in prey consumption, is an underestimated component of predator-prey interactions with possible implications for population dynamics and ecosystem functioning. However, the biotic and abiotic factors influencing this mortality component remain largely unexplored, leaving a gap in our understanding of the impacts of environmental change on ecological communities. We investigated the effects of temperature, prey density, and predator diversity and density on NCM in an aquatic food web module composed of dragonfly larvae (Aeshna cyanea) and marbled crayfish (Procambarus fallax f. virginalis) preying on common carp (Cyprinus carpio) fry. We found that NCM increased with prey density and depended on the functional diversity and density of the predator community. Warming significantly reduced NCM only in the dragonfly larvae but the magnitude depended on dragonfly larvae density. Our results indicate that energy transfer across trophic levels is more efficient due to lower NCM in functionally diverse predator communities, at lower resource densities and at higher temperatures. This suggests that environmental changes such as climate warming and reduced resource availability could increase the efficiency of energy transfer in food webs only if functionally diverse predator communities are conserved.

  2. Flight of the dragonflies and damselflies

    PubMed Central

    Nakata, Toshiyuki; Henningsson, Per; Lin, Huai-Ti

    2016-01-01

    This work is a synthesis of our current understanding of the mechanics, aerodynamics and visually mediated control of dragonfly and damselfly flight, with the addition of new experimental and computational data in several key areas. These are: the diversity of dragonfly wing morphologies, the aerodynamics of gliding flight, force generation in flapping flight, aerodynamic efficiency, comparative flight performance and pursuit strategies during predatory and territorial flights. New data are set in context by brief reviews covering anatomy at several scales, insect aerodynamics, neuromechanics and behaviour. We achieve a new perspective by means of a diverse range of techniques, including laser-line mapping of wing topographies, computational fluid dynamics simulations of finely detailed wing geometries, quantitative imaging using particle image velocimetry of on-wing and wake flow patterns, classical aerodynamic theory, photography in the field, infrared motion capture and multi-camera optical tracking of free flight trajectories in laboratory environments. Our comprehensive approach enables a novel synthesis of datasets and subfields that integrates many aspects of flight from the neurobiology of the compound eye, through the aeromechanical interface with the surrounding fluid, to flight performance under cruising and higher-energy behavioural modes. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’. PMID:27528779

  3. Optical Observations of Psr J2021+3651 in the Dragonfly Nebula With the GTC

    NASA Astrophysics Data System (ADS)

    Kirichenko, Aida; Danilenko, Andrey; Shternin, Peter; Shibanov, Yuriy; Ryspaeva, Elizaveta; Zyuzin, Dima; Durant, Martin; Kargaltsev, Oleg; Pavlov, George; Cabrera-Lavers, Antonio

    2015-03-01

    PSR J2021+3651 is a 17 kyr old rotation powered pulsar detected in the radio, X-rays, and γ-rays. It powers a torus-like pulsar wind nebula with jets, dubbed the Dragonfly, which is very similar to that of the Vela pulsar. The Dragonfly is likely associated with the extended TeV source VER J2019+368 and extended radio emission. We conducted first deep optical observations with the Gran Telescopio Canarias in the Sloan r‧ band to search for optical counterparts of the pulsar and its nebula. No counterparts were detected down to r‧ ≳ 27.2 and ≳24.8 for the point-like pulsar and the compact X-ray nebula, respectively. We also reanalyzed Chandra archival X-ray data taking into account an interstellar extinction-distance relation, constructed by us for the Dragonfly line of sight using the red-clump stars as standard candles. This allowed us to constrain the distance to the pulsar, D=1.8-1.4+1.7 kpc at 90% confidence. It is much smaller than the dispersion measure distance of ˜12 kpc but compatible with a γ-ray “pseudo-distance” of 1 kpc. Based on that and the optical upper limits, we conclude that PSR J2021+3651, similar to the Vela pulsar, is a very inefficient nonthermal emitter in the optical and X-rays, while its γ-ray efficiency is consistent with an average efficiency for γ-pulsars of similar age. Our optical flux upper limit for the pulsar is consistent with the long-wavelength extrapolation of its X-ray spectrum while the nebula flux upper limit does not constrain the respective extrapolation. Based on observations made with the Gran Telescopio Canarias (GTC), instaled in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofsica de Canarias, in the island of La Palma, programme GTC3-11B.

  4. Commercial mode-locked vertical external cavity surface emitting lasers

    NASA Astrophysics Data System (ADS)

    Head, C. Robin; Paboeuf, David; Ortega, Tiago; Lubeigt, Walter; Bialkowski, Bartlomiej; Lin, Jipeng; Hempler, Nils; Maker, Gareth T.; Malcolm, Graeme P. A.

    2018-02-01

    This paper presents the latest efforts in the development of commercial optically-pumped semiconductor disk lasers (SDLs) at M Squared Lasers. Two types of SDLs are currently being developed: an ultrafast system and a continuous wave single frequency system under the names of Dragonfly and Infinite, respectively. Both offer a compact, low-cost, easy-to-use and maintenance-free tool for a range of growing markets including nonlinear microscopy and quantum technology. To facilitate consumer uptake of the SDL technology, the performance specifications aim to closely match the currently employed systems. An extended Dragonfly system is being developed targeting the nonlinear microscopy market, which typically requires 1-W average power pulse trains with pulse durations below 200 fs. The pulse repetition frequency (PRF) of the commonly used laser systems, typically Titanium-sapphire lasers, is 80 MHz. This property is particularly challenging for mode-locked SDLs which tend to operate at GHz repetition rates, due to their short upper state carrier lifetime. Dragonfly has found a compromise at 200 MHz to balance mode-locking instabilities with a low PRF. In the ongoing development of Dragonfly, additional pulse compression and nonlinear spectral broadening stages are used to obtain pulse durations as short as 130 fs with an average power of 0.85 W, approaching the required performance. A variant of the Infinite system was adapted to provide a laser source suitable for the first stage of Sr atom cooling at 461 nm. Such a source requires average powers of approximately 1 W with a sub-MHz linewidth. As direct emission in the blue is not a viable approach at this stage, an SDL emitting at 922 nm followed by an M Squared Lasers SolTiS ECD-X doubler is currently under development. The SDL oscillator delivered >1 W of single frequency (RMS frequency noise <150kHz) light at 922 nm.

  5. Limiting hydrophobic behavior and reflectance response of dragonfly and damselfly wings

    NASA Astrophysics Data System (ADS)

    Aideo, Swati Nawami; Mohanta, Dambarudhar

    2016-11-01

    In this work, through water contact angle (CA) measurements, we explore hydrophobic behavior of different parts of the hind wings of a dragonfly, Gynacantha Dravida and of a damselfly, Pseudagrion Microcephalum. As we move from the basal to distal region, the contact angle (θ) was found to vary in the range of 120-136° for both the species. Moreover, the wing of the dragonfly was seen to be more hydrophobic than that of the damselfly one. An attempt has also been made to link roughness factor (rφ) and solid-water fraction (φ) through the simplified Wenzel and Cassie-Baxter models. We noticed that, rφ and φ tend to follow a linear relation that gives rφ = 1.47 in the limit, Δθ < 10.1°, latter being recognized as the difference in angle between the measured CA over a surface to that of the CA (∼105°) known for a smooth surface. Our experimental data, however, revealed empirical relations which predicted higher rφ values, particularly when Δθ is large. While the overall reflectance response of the distal segment was believed to be stronger than that of the basal part, the edge parts of the dragonfly and damselfly wings exhibited exponential associated growing trends with increasing wavelength. The relative reflectance response, corresponding to ∼494 nm and 370 nm peaks, gets nearly doubled for the edge specimen as compared to the distal and basal parts. The edge- specimen, which comprises of rectangular shaped, periodic microstructures, displayed carotenoid based two broad peak maxima at ∼422 nm and ∼494 nm. The surface roughness which arises through the distribution of oblate-shaped nano-fibrils is believed to be the basis of sub-surface volume scattering. Interrelating nanostructure surface roughness based wettability and reflectance characteristics would provide new insights on structure-property relationship in naturally available soft matter systems including templates of biological origin.

  6. Effectiveness of birds, butterflies, dragonflies, damselflies and invertebrates as indicators of freshwater ecological integrity

    NASA Astrophysics Data System (ADS)

    Chama, Lackson; Siachoono, Stanford

    2015-04-01

    Human activities such as mining and agriculture are among the major threats to biodiversity globally. Discharges from these activities have been shown to negatively affect ecological processes, leading to ecosystem degradation and species loss across biomes. Freshwater systems have been shown to be particularly vulnerable, as discharges tend to spread rapidly here than in other ecosystems. Hence, there is need to routinely monitor the quality of these systems if impacts of discharges from human activities are to be minimised. Besides the use of conventional laboratory techniques, several studies have recently shown that organisms such as birds, butterflies, dragonflies, damselflies and invertebrates are also good indicators of ecological integrity and should therefore be used as alternatives to monitoring the quality of various ecosystems. However, most of these studies have only studied one or two of these organisms against ecosystem health, and it remains unclear whether all of them respond similarly to changes in different drivers of environmental change. We investigated the response of the diversity of birds, butterflies, dragonflies, damselflies and invertebrates to changing water quality along the Kafue River in Zambia. Sampling was done at 13 different sampling points stretching over a distance of 60Km along the river. At each point, both the diversity of each organism and the water quality were assessed. Water quality was determined by testing its temperature, pH, redox, electrical conductivity, turbidity and copper parameters. We then tested how the diversity of each organism responded to changes in these water parameters. All water parameters varied significantly across sampling points. The diversity of birds and damselflies remained unaffected by any of the water parameters used. However, the diversity of butterflies reduced with increasing pH, turbidity and copper, albeit it remained unaffected by other water parameters. The diversity of dragonflies reduced with increasing redox, electrical conductivity and turbidity, but remained unaffected by other water parameters. The diversity of invertebrates reduced with increasing redox and copper, but remained unaffected by other water parameters. Generally, these results suggest that these organisms, especially butterflies, dragonflies and invertebrates can indeed be used as indicators of changing water quality and ecological integrity in particular. However, their use is limited to specific, rather than, all water parameters. Therefore, the decision as to which organisms to use should largely depend on which water quality parameters are to be tested. Key words: temperature; pH; redox; electrical conductivity; turbidity; copper

  7. Guiding out-migrating juvenile sea lamprey (Petromyzon marinus) with pulsed direct current

    USGS Publications Warehouse

    Johnson, Nicholas S.; Miehls, Scott M.

    2014-01-01

    Non-physical stimuli can deter or guide fish without affecting water flow or navigation and therefore have been investigated to improve fish passage at anthropogenic barriers and to control movement of invasive fish. Upstream fish migration can be blocked or guided without physical structure by electrifying the water, but directional downstream fish guidance with electricity has received little attention. We tested two non-uniform pulsed direct current electric systems, each having different electrode orientations (vertical versus horizontal), to determine their ability to guide out-migrating juvenile sea lamprey (Petromyzon marinus) and rainbow trout (Oncorhynchus mykiss). Both systems guided significantly more juvenile sea lamprey to a specific location in our experimental raceway when activated than when deactivated, but guidance efficiency decreased at the highest water velocities tested. At the electric field setting that effectively guided sea lamprey, rainbow trout were guided by the vertical electrode system, but most were blocked by the horizontal electrode system. Additional research should characterize the response of other species to non-uniform fields of pulsed DC and develop electrode configurations that guide fish over a range of water velocity.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mubarak, Misbah; Ross, Robert B.

    This technical report describes the experiments performed to validate the MPI performance measurements reported by the CODES dragonfly network simulation with the Theta Cray XC system at the Argonne Leadership Computing Facility (ALCF).

  9. Predicted molecular signaling guiding photoreceptor cell migration following transplantation into damaged retina

    NASA Astrophysics Data System (ADS)

    Unachukwu, Uchenna John; Warren, Alice; Li, Ze; Mishra, Shawn; Zhou, Jing; Sauane, Moira; Lim, Hyungsik; Vazquez, Maribel; Redenti, Stephen

    2016-03-01

    To replace photoreceptors lost to disease or trauma and restore vision, laboratories around the world are investigating photoreceptor replacement strategies using subretinal transplantation of photoreceptor precursor cells (PPCs) and retinal progenitor cells (RPCs). Significant obstacles to advancement of photoreceptor cell-replacement include low migration rates of transplanted cells into host retina and an absence of data describing chemotactic signaling guiding migration of transplanted cells in the damaged retinal microenvironment. To elucidate chemotactic signaling guiding transplanted cell migration, bioinformatics modeling of PPC transplantation into light-damaged retina was performed. The bioinformatics modeling analyzed whole-genome expression data and matched PPC chemotactic cell-surface receptors to cognate ligands expressed in the light-damaged retinal microenvironment. A library of significantly predicted chemotactic ligand-receptor pairs, as well as downstream signaling networks was generated. PPC and RPC migration in microfluidic ligand gradients were analyzed using a highly predicted ligand-receptor pair, SDF-1α - CXCR4, and both PPCs and RPCs exhibited significant chemotaxis. This work present a systems level model and begins to elucidate molecular mechanisms involved in PPC and RPC migration within the damaged retinal microenvironment.

  10. Wing kinematics measurement and aerodynamics of a dragonfly in turning flight.

    PubMed

    Li, Chengyu; Dong, Haibo

    2017-02-03

    This study integrates high-speed photogrammetry, 3D surface reconstruction, and computational fluid dynamics to explore a dragonfly (Erythemis Simplicicollis) in free flight. Asymmetric wing kinematics and the associated aerodynamic characteristics of a turning dragonfly are analyzed in detail. Quantitative measurements of wing kinematics show that compared to the outer wings, the inner wings sweep more slowly with a higher angle of attack during the downstroke, whereas they flap faster with a lower angle of attack during the upstroke. The inner-outer asymmetries of wing deviations result in an oval wingtip trajectory for the inner wings and a figure-eight wingtip trajectory for the outer wings. Unsteady aerodynamics calculations indicate significantly asymmetrical force production between the inner and outer wings, especially for the forewings. Specifically, the magnitude of the drag force on the inner forewing is approximately 2.8 times greater than that on the outer forewing during the downstroke. In the upstroke, the outer forewing generates approximately 1.9 times greater peak thrust than the inner forewing. To keep the body aloft, the forewings contribute approximately 64% of the total lift, whereas the hindwings provide 36%. The effect of forewing-hindwing interaction on the aerodynamic performance is also examined. It is found that the hindwings can benefit from this interaction by decreasing power consumption by 13% without sacrificing force generation.

  11. Flow around a corrugated wing over the range of dragonfly flight

    NASA Astrophysics Data System (ADS)

    Padinjattayil, Sooraj; Agrawal, Amit

    2017-11-01

    The dragonfly flight is very much affected by the corrugations on their wings. A PIV based study is conducted on a rigid corrugated wing for a range of Reynolds number 300-12000 and three different angles of attack (5°-15°) to understand the mechanism of dragonfly flight better. The study revealed that the shape of the corrugation plays a key role in generating vortices. The vortices trapped in the valleys of corrugation dictates the shape of a virtual airfoil around the corrugated wing. A fluid roller bearing effect is created over the virtual airfoil when the trapped vortices merge with each other. A travelling wave produced by the moving virtual boundary around the fluid roller bearings avoids the formation of boundary layer on the virtual surface, thereby leading to high aerodynamic performance. It is found that the lift coefficient increases as the number of vortices increases on the suction surface. Also, it is shown that the partially merged co- rotating vortices give higher lift as compared to fully merged vortices. Further, the virtual airfoil formed around the corrugated wing is compared with a superhydrophobic airfoil which exhibits slip on its surface; several similarities in their flow characteristics are observed. The corrugated airfoil performs superior to the superhydrophobic airfoil in the aerodynamic efficiency due to the virtual slip caused by the travelling wave.

  12. Changes in the number of eggs loaded in Pantala flavescens females with age from mass flights (Odonata: Libellulidae).

    PubMed

    Ichikawa, Yuta; Watanabe, Mamoru

    2014-11-01

    The wandering glider dragonfly Pantala flavescens migrates to Japan every spring, where the population increases until autumn, in which mass flights often occur, followed by death in the winter. There have been no reports to date on the maturation process of this species throughout its lifespan in Japan. We collected females from mass flights when the flight height was low, and classified them into seven age stages by examining their wing condition. Very few females of the older stage were collected from the mass flights. The wing condition corresponded with the change in body color and with the egg production process in the ovaries. While pre-reproductive-stage females did not release eggs when treated with our artificial oviposition technique, each reproductive-stage female released about 640 eggs. Nearly all eggs released were fertilized. The ovaries developed with the stage, and reproductive-stage females had about 1100 ovarioles. The estimated maximum fecundity was about 29,000 eggs. The lifetime number of eggs laid of P. flavescens should be revealed by dissection.

  13. A novel insect defensin mediates the inducible antibacterial activity in larvae of the dragonfly Aeschna cyanea (Paleoptera, Odonata).

    PubMed

    Bulet, P; Cociancich, S; Reuland, M; Sauber, F; Bischoff, R; Hegy, G; Van Dorsselaer, A; Hetru, C; Hoffmann, J A

    1992-11-01

    The injection of low doses of bacteria into the aquatic larvae of dragonflies (Aeschna cyanea, Odonata, Paleoptera) induces the appearance in their hemolymph of a potent antibacterial activity. We have isolated a 38-residue peptide from this hemolymph which is strongly active against Gram-positive bacteria and also shows activity against one of the Gram-negative bacteria which was tested. The peptide is a novel member of the insect defensin family of inducible antibacterial peptides, which had so far only been reported from the higher insect orders believed to have evolved 100 million years after the Paleoptera. Aeschna defensin is more potent than defensin from the dipteran Phormia, from which its structure differs in several interesting aspects, which are discussed in the paper.

  14. Parameter study of simplified dragonfly airfoil geometry at Reynolds number of 6000.

    PubMed

    Levy, David-Elie; Seifert, Avraham

    2010-10-21

    Aerodynamic study of a simplified Dragonfly airfoil in gliding flight at Reynolds numbers below 10,000 is motivated by both pure scientific interest and technological applications. At these Reynolds numbers, the natural insect flight could provide inspiration for technology development of Micro UAV's and more. Insect wings are typically characterized by corrugated airfoils. The present study follows a fundamental flow physics study (Levy and Seifert, 2009), that revealed the importance of flow separation from the first corrugation, the roll-up of the separated shear layer to discrete vortices and their role in promoting flow reattachment to the aft arc, as the leading mechanism enabling high-lift, low drag performance of the Dragonfly gliding flight. This paper describes the effect of systematic airfoil geometry variations on the aerodynamic properties of a simplified Dragonfly airfoil at Reynolds number of 6000. The parameter study includes a detailed analysis of small variations of the nominal geometry, such as corrugation placement or height, rear arc and trailing edge shape. Numerical simulations using the 2D laminar Navier-Stokes equations revealed that the flow accelerating over the first corrugation slope is followed by an unsteady pressure recovery, combined with vortex shedding. The latter allows the reattachment of the flow over the rear arc. Also, the drag values are directly linked to the vortices' magnitude. This parametric study shows that geometric variations which reduce the vortices' amplitude, as reduction of the rear cavity depth or the reduction of the rear arc and trailing edge curvature, will reduce the drag values. Other changes will extend the flow reattachment over the rear arc for a larger mean lift coefficients range; such as the negative deflection of the forward flat plate. These changes consequently reduce the drag values at higher mean lift coefficients. The detailed geometry study enabled the definition of a corrugated airfoil geometry with enhanced aerodynamic properties, such as range and endurance factors, as compared to the nominal airfoil studied in the literature. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Migration in the shearing sheet and estimates for young open cluster migration

    NASA Astrophysics Data System (ADS)

    Quillen, Alice C.; Nolting, Eric; Minchev, Ivan; De Silva, Gayandhi; Chiappini, Cristina

    2018-04-01

    Using tracer particles embedded in self-gravitating shearing sheet N-body simulations, we investigate the distance in guiding centre radius that stars or star clusters can migrate in a few orbital periods. The standard deviations of guiding centre distributions and maximum migration distances depend on the Toomre or critical wavelength and the contrast in mass surface density caused by spiral structure. Comparison between our simulations and estimated guiding radii for a few young supersolar metallicity open clusters, including NGC 6583, suggests that the contrast in mass surface density in the solar neighbourhood has standard deviation (in the surface density distribution) divided by mean of about 1/4 and larger than measured using COBE data by Drimmel and Spergel. Our estimate is consistent with a standard deviation of ˜0.07 dex in the metallicities measured from high-quality spectroscopic data for 38 young open clusters (<1 Gyr) with mean galactocentric radius 7-9 kpc.

  16. Nanofiber Nerve Guide for Peripheral Nerve Repair and Regeneration

    DTIC Science & Technology

    2014-01-01

    observing cell migration using live - cell imaging microscopy, and analyzing cell migration with our MATLAB-based programs. Our studies...are then pipetted into the chamber and their path of migration is observed using a live - cell imaging microscope (Fig. 6d). Utilizing this migration

  17. Dragonfly: an implementation of the expand-maximize-compress algorithm for single-particle imaging.

    PubMed

    Ayyer, Kartik; Lan, Ti-Yen; Elser, Veit; Loh, N Duane

    2016-08-01

    Single-particle imaging (SPI) with X-ray free-electron lasers has the potential to change fundamentally how biomacromolecules are imaged. The structure would be derived from millions of diffraction patterns, each from a different copy of the macromolecule before it is torn apart by radiation damage. The challenges posed by the resultant data stream are staggering: millions of incomplete, noisy and un-oriented patterns have to be computationally assembled into a three-dimensional intensity map and then phase reconstructed. In this paper, the Dragonfly software package is described, based on a parallel implementation of the expand-maximize-compress reconstruction algorithm that is well suited for this task. Auxiliary modules to simulate SPI data streams are also included to assess the feasibility of proposed SPI experiments at the Linac Coherent Light Source, Stanford, California, USA.

  18. Environmental Constraints Guide Migration of Malaria Parasites during Transmission

    PubMed Central

    Hellmann, Janina Kristin; Münter, Sylvia; Kudryashev, Mikhail; Schulz, Simon; Heiss, Kirsten; Müller, Ann-Kristin; Matuschewski, Kai; Spatz, Joachim P.; Schwarz, Ulrich S.; Frischknecht, Friedrich

    2011-01-01

    Migrating cells are guided in complex environments mainly by chemotaxis or structural cues presented by the surrounding tissue. During transmission of malaria, parasite motility in the skin is important for Plasmodium sporozoites to reach the blood circulation. Here we show that sporozoite migration varies in different skin environments the parasite encounters at the arbitrary sites of the mosquito bite. In order to systematically examine how sporozoite migration depends on the structure of the environment, we studied it in micro-fabricated obstacle arrays. The trajectories observed in vivo and in vitro closely resemble each other suggesting that structural constraints can be sufficient to guide Plasmodium sporozoites in complex environments. Sporozoite speed in different environments is optimized for migration and correlates with persistence length and dispersal. However, this correlation breaks down in mutant sporozoites that show adhesion impairment due to the lack of TRAP-like protein (TLP) on their surfaces. This may explain their delay in infecting the host. The flexibility of sporozoite adaption to different environments and a favorable speed for optimal dispersal ensures efficient host switching during malaria transmission. PMID:21698220

  19. Riding the glial monorail: a common mechanism for glial-guided neuronal migration in different regions of the developing mammalian brain.

    PubMed

    Hatten, M E

    1990-05-01

    In vitro studies from our laboratory indicate that granule neurons, purified from early postnatal mouse cerebellum, migrate on astroglial fibers by forming a 'migration junction' with the glial fiber along the length of the neuronal soma and extending a motile 'leading process' in the direction of migration. Similar dynamics are seen for hippocampal neurons migrating along hippocampal astroglial fibers in vitro. In heterotypic recombinations of neurons and glia from mouse cerebellum and rat hippocampus, neurons migrate on astroglial processes with a cytology and neuron-glia relationship identical to that of homotypic neuronal migration in vitro. In all four cases, the migrating neuron presents a stereotyped posture, speed and mode of movement, suggesting that glial fibers provide a generic pathway for neuronal migration in developing brain. Studies on the molecular basis of glial-guided migration suggest that astrotactin, a neuronal antigen that functions as a neuron-glia ligand, is likely to play a crucial role in the locomotion of the neuron along glial fibers. The navigation of neurons from glial fibers into cortical layers, in turn, is likely to involve neuron-neuron adhesion ligands.

  20. Migrations and swimming capabilities of endangered pallid sturgeon (Scaphirhynchus albus) to guide passage designs in the fragmented Yellowstone River

    USGS Publications Warehouse

    Braaten, P. J.; Elliott, Caroline M.; Rhoten, Jason C.; Fuller, D. B.; McElroy, Brandon J.

    2015-01-01

    Fragmentation of the Yellowstone River is hypothesized to preclude recruitment of endangered Scaphirhynchus albus (pallid sturgeon) by impeding upstream spawning migrations and access to upstream spawning areas, thereby limiting the length of free-flowing river required for survival of early life stages. Building on this hypothesis, the reach of the Yellowstone River affected by Intake Diversion Dam (IDD) is targeted for modification. Structures including a rock ramp and by-pass channel have been proposed as restoration alternatives to facilitate passage. Limited information on migrations and swimming capabilities of pallid sturgeon is available to guide engineering design specifications for the proposed structures. Migration behavior, pathways (channel routes used during migrations), and swimming capabilities of free-ranging wild adult pallid sturgeon were examined using radiotelemetry, and complemented with hydraulic data obtained along the migration pathways. Migrations of 12–26% of the telemetered pallid sturgeon population persisted to IDD, but upstream passage over the dam was not detected. Observed migration pathways occurred primarily through main channel habitats; however, migrations through side channels up to 3.9 km in length were documented. The majority of pallid sturgeon used depths of 2.2–3.4 m and mean water velocities of 0.89–1.83 m/s while migrating. Results provide inferences on depths, velocities, and habitat heterogeneity of reaches successfully negotiated by pallid sturgeon that may be used to guide designs for structures facilitating passage at IDD. Passage will provide connectivity to potential upstream spawning areas on the Yellowstone River, thereby increasing the likelihood of recruitment for this endangered species.

  1. Endogenous electric fields as guiding cue for cell migration

    PubMed Central

    Funk, Richard H. W.

    2015-01-01

    This review covers two topics: (1) “membrane potential of low magnitude and related electric fields (bioelectricity)” and (2) “cell migration under the guiding cue of electric fields (EF).”Membrane potentials for this “bioelectricity” arise from the segregation of charges by special molecular machines (pumps, transporters, ion channels) situated within the plasma membrane of each cell type (including eukaryotic non-neural animal cells). The arising patterns of ion gradients direct many cell- and molecular biological processes such as embryogenesis, wound healing, regeneration. Furthermore, EF are important as guiding cues for cell migration and are often overriding chemical or topographic cues. In osteoblasts, for instance, the directional information of EF is captured by charged transporters on the cell membrane and transferred into signaling mechanisms that modulate the cytoskeleton and motor proteins. This results in a persistent directional migration along an EF guiding cue. As an outlook, we discuss questions concerning the fluctuation of EF and the frequencies and mapping of the “electric” interior of the cell. Another exciting topic for further research is the modeling of field concepts for such distant, non-chemical cellular interactions. PMID:26029113

  2. Development of an Interview Guide Identifying the Rehabilitation Needs of Women from the Middle East Living with Chronic Pain.

    PubMed

    Zander, Viktoria; Eriksson, Henrik; Christensson, Kyllike; Müllersdorf, Maria

    2015-09-25

    The purpose of this study was to develop an interview guide for use by primary healthcare professionals to support them in identifying the rehabilitation needs of forced resettled women from the Middle East living with chronic pain. Previous findings together with the existing literature were used as the basis for developing the interview guide in three steps: item generation, cognitive interviews, and a pilot study. The study resulted in a 16-item interview guide focusing on patients' concerns and expectations, with consideration of pre-migration, migration, and post-migration factors that might affect their health. With the help of the guide, patients were also invited to identify difficulties in their daily activities and to take part in setting goals and planning their rehabilitation. The current interview guide provides professional guidance to caretakers, taking a person-centered participative point of departure when meeting and planning care, for and together, with representatives from dispersed ethnic populations in Sweden. It can be used together with the patient by all staff members working in primary healthcare, with the aim of contributing to continuity of care and multi-professional collaboration.

  3. Development of an Interview Guide Identifying the Rehabilitation Needs of Women from the Middle East Living with Chronic Pain

    PubMed Central

    Zander, Viktoria; Eriksson, Henrik; Christensson, Kyllike; Müllersdorf, Maria

    2015-01-01

    The purpose of this study was to develop an interview guide for use by primary healthcare professionals to support them in identifying the rehabilitation needs of forced resettled women from the Middle East living with chronic pain. Previous findings together with the existing literature were used as the basis for developing the interview guide in three steps: item generation, cognitive interviews, and a pilot study. The study resulted in a 16-item interview guide focusing on patients’ concerns and expectations, with consideration of pre-migration, migration, and post-migration factors that might affect their health. With the help of the guide, patients were also invited to identify difficulties in their daily activities and to take part in setting goals and planning their rehabilitation. The current interview guide provides professional guidance to caretakers, taking a person-centered participative point of departure when meeting and planning care, for and together, with representatives from dispersed ethnic populations in Sweden. It can be used together with the patient by all staff members working in primary healthcare, with the aim of contributing to continuity of care and multi-professional collaboration. PMID:26404332

  4. Shp2 Acts Downstream of SDF-1α/CXCR4 in Guiding Granule Cell Migration During Cerebellar Development

    PubMed Central

    Hagihara, Kazuki; Zhang, Eric E.; Ke, Yue-Hai; Liu, Guofa; Liu, Jan-Jan; Rao, Yi; Feng, Gen-Sheng

    2009-01-01

    Shp2 is a non-receptor protein tyrosine phosphatase containing two Src homology 2 (SH2) domains that is implicated in intracellular signaling events controlling cell proliferation, differentiation and migration. To examine the role of Shp2 in brain development, we created mice with Shp2 selectively deleted in neural stem/progenitor cells. Homozygous mutant mice exhibited early postnatal lethality with defects in neural stem cell self-renewal and neuronal/glial cell fate specification. Here we report a critical role of Shp2 in guiding neuronal cell migration in the cerebellum. In homozygous mutants, we observed reduced and less foliated cerebellum, ectopic presence of external granule cells and mispositioned Purkinje cells, a phenotype very similar to that of mutant mice lacking either SDF-1α or CXCR4. Consistently, Shp2-deficient granule cells failed to migrate toward SDF-1α in an in vitro cell migration assay, and SDF-1α treatment triggered a robust induction of tyrosyl phosphorylation on Shp2. Together, these results suggest that although Shp2 is involved in multiple signaling events during brain development, a prominent role of the phosphatase is to mediate SDF-1α/CXCR4 signal in guiding cerebellar granule cell migration. PMID:19635473

  5. Memory, not just perception, plays an important role in terrestrial mammalian migration

    PubMed Central

    Mueller, Thomas

    2017-01-01

    One of the key questions regarding the underlying mechanisms of mammalian land migrations is how animals select where to go. Most studies assume perception of resources as the navigational mechanism. The possible role of memory that would allow forecasting conditions at distant locations and times based on information about environmental conditions from previous years has been little studied. We study migrating zebra in Botswana using an individual-based simulation model, where perceptually guided individuals use currently sensed resources at different perceptual ranges, while memory-guided individuals use long-term averages of past resources to forecast future conditions. We compare simulated individuals guided by perception or memory on resource landscapes of remotely sensed vegetation data to trajectories of GPS-tagged zebras. Our results show that memory provides a clear signal that best directs migrants to their destination compared to perception at even the largest perceptual ranges. Zebras modelled with memory arrived two to four times, or up to 100 km, closer to the migration destination than those using perception. We suggest that memory in addition to perception is important for directing ungulate migration. Furthermore, our findings are important for the conservation of migratory mammals, as memory informing direction suggests migration routes could be relatively inflexible. PMID:28539516

  6. Memory, not just perception, plays an important role in terrestrial mammalian migration.

    PubMed

    Bracis, Chloe; Mueller, Thomas

    2017-05-31

    One of the key questions regarding the underlying mechanisms of mammalian land migrations is how animals select where to go. Most studies assume perception of resources as the navigational mechanism. The possible role of memory that would allow forecasting conditions at distant locations and times based on information about environmental conditions from previous years has been little studied. We study migrating zebra in Botswana using an individual-based simulation model, where perceptually guided individuals use currently sensed resources at different perceptual ranges, while memory-guided individuals use long-term averages of past resources to forecast future conditions. We compare simulated individuals guided by perception or memory on resource landscapes of remotely sensed vegetation data to trajectories of GPS-tagged zebras. Our results show that memory provides a clear signal that best directs migrants to their destination compared to perception at even the largest perceptual ranges. Zebras modelled with memory arrived two to four times, or up to 100 km, closer to the migration destination than those using perception. We suggest that memory in addition to perception is important for directing ungulate migration. Furthermore, our findings are important for the conservation of migratory mammals, as memory informing direction suggests migration routes could be relatively inflexible. © 2017 The Author(s).

  7. Myosin II Motors and F-Actin Dynamics Drive the Coordinated Movement of the Centrosome and Soma during CNS Glial-Guided Neuronal Migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solecki, Dr. David; Trivedi, Dr. Niraj; Govek, Eve-Ellen

    2009-01-01

    Lamination of cortical regions of the vertebrate brain depends on glial-guided neuronal migration. The conserved polarity protein Par6{alpha} localizes to the centrosome and coordinates forward movement of the centrosome and soma in migrating neurons. The cytoskeletal components that produce this unique form of cell polarity and their relationship to polarity signaling cascades are unknown. We show that F-actin and Myosin II motors are enriched in the neuronal leading process and that Myosin II activity is necessary for leading process actin dynamics. Inhibition of Myosin II decreased the speed of centrosome and somal movement, whereas Myosin II activation increased coordinated movement.more » Ectopic expression or silencing of Par6{alpha} inhibited Myosin II motors by decreasing Myosin light-chain phosphorylation. These findings suggest leading-process Myosin II may function to 'pull' the centrosome and soma forward during glial-guided migration by a mechanism involving the conserved polarity protein Par6{alpha}.« less

  8. The Role of Direct Current Electric Field-Guided Stem Cell Migration in Neural Regeneration.

    PubMed

    Yao, Li; Li, Yongchao

    2016-06-01

    Effective directional axonal growth and neural cell migration are crucial in the neural regeneration of the central nervous system (CNS). Endogenous currents have been detected in many developing nervous systems. Experiments have demonstrated that applied direct current (DC) electric fields (EFs) can guide axonal growth in vitro, and attempts have been made to enhance the regrowth of damaged spinal cord axons using DC EFs in in vivo experiments. Recent work has revealed that the migration of stem cells and stem cell-derived neural cells can be guided by DC EFs. These studies have raised the possibility that endogenous and applied DC EFs can be used to direct neural tissue regeneration. Although the mechanism of EF-directed axonal growth and cell migration has not been fully understood, studies have shown that the polarization of cell membrane proteins and the activation of intracellular signaling molecules are involved in the process. The application of EFs is a promising biotechnology for regeneration of the CNS.

  9. Three Species of odonata Observed at TA-3 in September 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foy, Bernard R.; Hathcock, Charles Dean

    2016-04-14

    The spatial distribution of odonates (dragonflies and damselflies) in northern New Mexico is only partly known. Information about the occurrence of species is currently being accumulated by professional and amateur biologists. Los Alamos National Laboratory has a considerable amount of suitable habitat for odonates. With effort, it is likely that many species will be discovered in Los Alamos County that have yet to be documented, which would aid in general knowledge about odonate distribution and habitat needs. We report the occurrence of three species of odonates at Los Alamos National Laboratory in the autumn season of 2015. Foy visited themore » location on 2 September 2015 and discovered two Black Meadowhawk dragonflies (Sympetrum danae). The authors returned on 10 September 2015 and photographed one individual. We also photographed a Striped Meadowhawk (Sympetrum pallipes) and a Black-fronted Forktail (Ischnura denticollis), the latter being a damselfly.« less

  10. Odonata (dragonflies and damselflies) as a bridge between ecology and evolutionary genomics.

    PubMed

    Bybee, Seth; Córdoba-Aguilar, Alex; Duryea, M Catherine; Futahashi, Ryo; Hansson, Bengt; Lorenzo-Carballa, M Olalla; Schilder, Ruud; Stoks, Robby; Suvorov, Anton; Svensson, Erik I; Swaegers, Janne; Takahashi, Yuma; Watts, Phillip C; Wellenreuther, Maren

    2016-01-01

    Odonata (dragonflies and damselflies) present an unparalleled insect model to integrate evolutionary genomics with ecology for the study of insect evolution. Key features of Odonata include their ancient phylogenetic position, extensive phenotypic and ecological diversity, several unique evolutionary innovations, ease of study in the wild and usefulness as bioindicators for freshwater ecosystems worldwide. In this review, we synthesize studies on the evolution, ecology and physiology of odonates, highlighting those areas where the integration of ecology with genomics would yield significant insights into the evolutionary processes that would not be gained easily by working on other animal groups. We argue that the unique features of this group combined with their complex life cycle, flight behaviour, diversity in ecological niches and their sensitivity to anthropogenic change make odonates a promising and fruitful taxon for genomics focused research. Future areas of research that deserve increased attention are also briefly outlined.

  11. Spontaneous Formation of Nanopatterns in Velocity-Dependent Dip-Coated Organic Films: From Dragonflies to Stripes

    NASA Astrophysics Data System (ADS)

    Huber, P.; Bai, M.; Del Campo, V.; Homm, P.; Ferrari, P.; Diama, A.; Wagner, C.; Taub, H.; Knorr, K.; Deutsch, M.; Retamal, M.; Volkmann, U.; Corrales, T.

    2015-11-01

    We present the structure of thin, n-alkane films on the oxide layer of a silicon surface, prepared by dip-coating in a n-C32H66/n-heptane solution. Electron micrographs reveal two adsorption morphologies depending on the substrate withdrawal speed v. For small v, dragonfly-shaped molecular islands are observed. For a large v, stripes parallel to the withdrawal direction are observed. These have a few hundred micrometer lengths and a few-micrometer lateral separation. With increasing v, the surface coverage first decreases, then increases for v >vcr ~ 0 . 15 mm/s. The critical vcr marks a transition between the evaporation regime and the entrainment regime. The stripes' strong crystalline texture and the well defined separation are due to an anisotropic 2D crystallization in narrow liquid fingers, which presumably results from a Marangoni-flow-driven hydrodynamic instability in the evaporating dip-coated films.

  12. Distribution of odonates (dragonflies and damselflies) in the Indiana Dunes National Lakeshore and nearby lands

    USGS Publications Warehouse

    Smolka, George E.; Stewart, Paul M.; Swinford, Thomas O.

    1999-01-01

    From 1993 to 1997, 60 species of Anisoptera (dragonflies) and Zygoptera (damselflies) were found in Lake and Porter Counties, Indiana, including Indiana Dunes National Lakeshore, in contrast to 34 species that were recorded historically from this region. We added 17 new species to Lake County's odonate records and 39 new species to the 5 previously recorded in Porter County. Several regionally rare species were collected: Aeshna clepsydra, Enallagma cyathigerum, and Leucorrhina frigida. Nine species listed in the historical records were missing from our collections: Hetaerina americana, Calopteryx aequabilis, Nehalennia irene, Arigomphus furcifer, Argia fumipennis violacea, Gomphus spicatus, Epitheca princeps, Libellula exusta, and Sympetrum semicinctum. These nine species have either declined in the area or they may be found in other habitats after further study. Because few odonate surveys were conducted in northwest Indiana in the past, a poor baseline exists for comparisons of temporal trends in odonate diversity.

  13. Local extinction of dragonfly and damselfly populations in low- and high-quality habitat patches.

    PubMed

    Suhonen, Jukka; Hilli-Lukkarinen, Milla; Korkeamäki, Esa; Kuitunen, Markku; Kullas, Johanna; Penttinen, Jouni; Salmela, Jukka

    2010-08-01

    Understanding the risk of extinction of a single population is an important problem in both theoretical and applied ecology. Local extinction risk depends on several factors, including population size, demographic or environmental stochasticity, natural catastrophe, or the loss of genetic diversity. The probability of local extinction may also be higher in low-quality sink habitats than in high-quality source habitats. We tested this hypothesis by comparing local extinction rates of 15 species of Odonata (dragonflies and damselflies) between 1930-1975 and 1995-2003 in central Finland. Local extinction rates were higher in low-quality than in high-quality habitats. Nevertheless, for the three most common species there were no differences in extinction rates between low- and high-quality habitats. Our results suggest that a good understanding of habitat quality is crucial for the conservation of species in heterogeneous landscapes.

  14. Late migration of a metal stent after EUS-drainage of a pancreatic pseudocyst abscess.

    PubMed

    Maldonado Pérez, Belén; Guerra Veloz, María Fernanda; Romero Castro, Rafael

    2018-04-01

    Endoscopic ultrasound (EUS)-guided drainage of pancreatic collections has replaced surgery as the first line of treatment due its accuracy and safety profile. A higher success rate and fewer adverse events has been observed using fully covered metal stent for the drainage. However, complications of EUS-guided drainage can appear. We present a case of late migration of the stent.

  15. Adding Bite to the Bark: Using LibGuides2 Migration as Impetus to Introduce Strong Content Standards

    ERIC Educational Resources Information Center

    Fritch, Melia; Pitts, Joelle E.

    2016-01-01

    The authors discuss the long-term accumulation of unstandardized and inaccessible content within the Libguides system and the decision-making process to create and implement a set of standards using the migration to the LibGuides2 platform as a vehicle for change. Included in the discussion are strategies for the creation of standards and…

  16. Body size, swimming speed, or thermal sensitivity? Predator-imposed selection on amphibian larvae.

    PubMed

    Gvoždík, Lumír; Smolinský, Radovan

    2015-11-02

    Many animals rely on their escape performance during predator encounters. Because of its dependence on body size and temperature, escape velocity is fully characterized by three measures, absolute value, size-corrected value, and its response to temperature (thermal sensitivity). The primary target of the selection imposed by predators is poorly understood. We examined predator (dragonfly larva)-imposed selection on prey (newt larvae) body size and characteristics of escape velocity using replicated and controlled predation experiments under seminatural conditions. Specifically, because these species experience a wide range of temperatures throughout their larval phases, we predict that larvae achieving high swimming velocities across temperatures will have a selective advantage over more thermally sensitive individuals. Nonzero selection differentials indicated that predators selected for prey body size and both absolute and size-corrected maximum swimming velocity. Comparison of selection differentials with control confirmed selection only on body size, i.e., dragonfly larvae preferably preyed on small newt larvae. Maximum swimming velocity and its thermal sensitivity showed low group repeatability, which contributed to non-detectable selection on both characteristics of escape performance. In the newt-dragonfly larvae interaction, body size plays a more important role than maximum values and thermal sensitivity of swimming velocity during predator escape. This corroborates the general importance of body size in predator-prey interactions. The absence of an appropriate control in predation experiments may lead to potentially misleading conclusions about the primary target of predator-imposed selection. Insights from predation experiments contribute to our understanding of the link between performance and fitness, and further improve mechanistic models of predator-prey interactions and food web dynamics.

  17. 3D reconstruction and analysis of wing deformation in free-flying dragonflies.

    PubMed

    Koehler, Christopher; Liang, Zongxian; Gaston, Zachary; Wan, Hui; Dong, Haibo

    2012-09-01

    Insect wings demonstrate elaborate three-dimensional deformations and kinematics. These deformations are key to understanding many aspects of insect flight including aerodynamics, structural dynamics and control. In this paper, we propose a template-based subdivision surface reconstruction method that is capable of reconstructing the wing deformations and kinematics of free-flying insects based on the output of a high-speed camera system. The reconstruction method makes no rigid wing assumptions and allows for an arbitrary arrangement of marker points on the interior and edges of each wing. The resulting wing surfaces are projected back into image space and compared with expert segmentations to validate reconstruction accuracy. A least squares plane is then proposed as a universal reference to aid in making repeatable measurements of the reconstructed wing deformations. Using an Eastern pondhawk (Erythimus simplicicollis) dragonfly for demonstration, we quantify and visualize the wing twist and camber in both the chord-wise and span-wise directions, and discuss the implications of the results. In particular, a detailed analysis of the subtle deformation in the dragonfly's right hindwing suggests that the muscles near the wing root could be used to induce chord-wise camber in the portion of the wing nearest the specimen's body. We conclude by proposing a novel technique for modeling wing corrugation in the reconstructed flapping wings. In this method, displacement mapping is used to combine wing surface details measured from static wings with the reconstructed flapping wings, while not requiring any additional information be tracked in the high speed camera output.

  18. Degrees of polarization of reflected light eliciting polarotaxis in dragonflies (Odonata), mayflies (Ephemeroptera) and tabanid flies (Tabanidae).

    PubMed

    Kriska, György; Bernáth, Balázs; Farkas, Róbert; Horváth, Gábor

    2009-12-01

    With few exceptions insects whose larvae develop in freshwater possess positive polarotaxis, i.e., are attracted to sources of horizontally polarized light, because they detect water by means of the horizontal polarization of light reflected from the water surface. These insects can be deceived by artificial surfaces (e.g. oil lakes, asphalt roads, black plastic sheets, dark-coloured cars, black gravestones, dark glass surfaces, solar panels) reflecting highly and horizontally polarized light. Apart from the surface characteristics, the extent of such a 'polarized light pollution' depends on the illumination conditions, direction of view, and the threshold p* of polarization sensitivity of a given aquatic insect species. p* means the minimum degree of linear polarization p of reflected light that can elicit positive polarotaxis from a given insect species. Earlier there were no quantitative data on p* in aquatic insects. The aim of this work is to provide such data. Using imaging polarimetry in the red, green and blue parts of the spectrum, in multiple-choice field experiments we measured the threshold p* of ventral polarization sensitivity in mayflies, dragonflies and tabanid flies, the positive polarotaxis of which has been shown earlier. In the blue (450nm) spectral range, for example, we obtained the following thresholds: dragonflies: Enallagma cyathigerum (0%

  19. Project Dragonfly: A feasibility study of interstellar travel using laser-powered light sail propulsion

    NASA Astrophysics Data System (ADS)

    Perakis, Nikolaos; Schrenk, Lukas E.; Gutsmiedl, Johannes; Koop, Artur; Losekamm, Martin J.

    2016-12-01

    Light sail-based propulsion systems are a candidate technology for interplanetary and interstellar missions due to their flexibility and the fact that no fuel has to be carried along. In 2014, the Initiative for Interstellar Studies (i4is) hosted the Project Dragonfly Design Competition, which aimed at assessing the feasibility of sending an interstellar probe propelled by a laser-powered light sail to another star system. We analyzed and designed a mission to the Alpha Centauri system, with the objective to carry out science operations at the destination. Based on a comprehensive evaluation of currently available technologies and possible locations, we selected a lunar architecture for the laser system. It combines the advantages of surface- and space-based systems, as it requires no station keeping and suffers no atmospheric losses. We chose a graphene-based sandwich material for the light sail because of its low density. Deceleration of the spacecraft sufficient for science operations at the target system is achieved using both magnetic and electric sails. Applying these assumptions in a simulation leads to the conclusion that 250 kg of scientific payload can be sent to Alpha Centauri within the Project Dragonfly Design Competition's constraints of 100 year travel duration and 100 GW laser beam power. This is only sufficient to fulfill parts of the identified scientific objectives, and therefore renders the usefulness of such a mission questionable. A better sail material or higher laser power would improve the acceleration behavior, an increase in the mission time would allow for larger spacecraft masses.

  20. Ultrastructure of dragonfly wing veins: composite structure of fibrous material supplemented by resilin

    PubMed Central

    Appel, Esther; Heepe, Lars; Lin, Chung-Ping; Gorb, Stanislav N

    2015-01-01

    Dragonflies count among the most skilful of the flying insects. Their exceptional aerodynamic performance has been the subject of various studies. Morphological and kinematic investigations have showed that dragonfly wings, though being rather stiff, are able to undergo passive deformation during flight, thereby improving the aerodynamic performance. Resilin, a rubber-like protein, has been suggested to be a key component in insect wing flexibility and deformation in response to aerodynamic loads, and has been reported in various arthropod locomotor systems. It has already been found in wing vein joints, connecting longitudinal veins to cross veins, and was shown to endow the dragonfly wing with chordwise flexibility, thereby most likely influencing the dragonfly’s flight performance. The present study revealed that resilin is not only present in wing vein joints, but also in the internal cuticle layers of veins in wings of Sympetrum vulgatum (SV) and Matrona basilaris basilaris (MBB). Combined with other structural features of wing veins, such as number and thickness of cuticle layers, material composition, and cross-sectional shape, resilin most probably has an effect on the vein′s material properties and the degree of elastic deformations. In order to elucidate the wing vein ultrastructure and the exact localisation of resilin in the internal layers of the vein cuticle, the approaches of bright-field light microscopy, wide-field fluorescence microscopy, confocal laser-scanning microscopy, scanning electron microscopy and transmission electron microscopy were combined. Wing veins were shown to consist of up to six different cuticle layers and a single row of underlying epidermal cells. In wing veins of MBB, the latter are densely packed with light-scattering spheres, previously shown to produce structural colours in the form of quasiordered arrays. Longitudinal and cross veins differ significantly in relative thickness of exo- and endocuticle, with cross veins showing a much thicker exocuticle. The presence of resilin in the unsclerotised endocuticle suggests its contribution to an increased energy storage and material flexibility, thus to the prevention of vein damage. This is especially important in the highly stressed longitudinal veins, which have much lower possibility to yield to applied loads with the aid of vein joints, as the cross veins do. These results may be relevant not only for biologists, but may also contribute to optimise the design of micro-air vehicles. PMID:26352411

  1. Transmission of Microsporidian Parasites of Mosquitoes.

    DTIC Science & Technology

    1983-03-01

    spiders, beetle larvae, and phantom midges. 2) Feeding spores to crayfish, dragonfly larvae, damselfly larvae, water scorpions, beetles , Anopheles...use of an indirect enzyme-linked immunosorbent assay to detect baculovirus in larvae and adults of Oryctes rhinoceros from Tonga J. Gen. Virol., 47

  2. Phylogenetic relationships of North American Gomphidae and their close relatives

    EPA Science Inventory

    Intrafamilial relationships among clubtail dragonflies (Gomphidae) have been the subject of many morphological studies, but have not yet been systematically evaluated using molecular data. Here we present the first molecular phylogeny of Gomphidae. We include six of the eight sub...

  3. Keeping the golden mean: plant stiffness and anatomy as proximal factors driving endophytic oviposition site selection in a dragonfly.

    PubMed

    Matushkina, Natalia; Lambret, Philippe; Gorb, Stanislav

    2016-12-01

    Oviposition site selection is a crucial component of habitat selection in dragonflies. The presence of appropriate oviposition plants at breeding waters is considered to be one of the key habitat determinants for species laying eggs endophytically. Thus, Lestes macrostigma, a species which is regarded as threatened in Europe because of its highly disjunct distribution, typically prefers to lay eggs in the sea club rush Bolboschoenus maritimus. However, little is known about how the anatomical and mechanical properties of plant tissues determine the choice of L. macrostigma females. We examined green shoots of six plant species used by L. macrostigma for oviposition, either in the field (actual oviposition plants) or under experimental conditions (potential oviposition plants), to analyse anatomical and mechanical properties of shoots in a framework of known preferences regarding plant substrates for oviposition. As expected, the anatomy of shoots differed between representatives of two plant families, Cyperaceae and Juncaceae, most essentially in the distribution of supporting bundles and the presence of large aeriferous cavities that may affect egg placing within a shoot. The force necessary to puncture the tested plant samples ranged from 360 to 3298 mN, and their local stiffness ranged from 777 to 3363N/m. We show that the shoots of B. maritimus, the plant most preferred by L. macrostigma, have intermediate characteristics regarding both the stiffness and specific anatomical characteristics. The bending stiffness of the ovipositor in L. macrostigma was estimated as 1414N/m, one of the highest values recorded for zygopteran dragonflies so far. The ecological and behavioural implications of plant choice mechanisms in L. macrostigma are discussed in the context of the disjunct distribution of this species. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Simplified dragonfly airfoil aerodynamics at Reynolds numbers below 8000

    NASA Astrophysics Data System (ADS)

    Levy, David-Elie; Seifert, Avraham

    2009-07-01

    Effective aerodynamics at Reynolds numbers lower than 10 000 is of great technological interest and a fundamental scientific challenge. The current study covers a Reynolds number range of 2000-8000. At these Reynolds numbers, natural insect flight could provide inspiration for technology development. Insect wings are commonly characterized by corrugated airfoils. In particular, the airfoil of the dragonfly, which is able to glide, can be used for two-dimensional aerodynamic study of fixed rigid wings. In this study, a simplified dragonfly airfoil is numerically analyzed in a steady free-stream flow. The aerodynamic performance (such as mean and fluctuating lift and drag), are first compared to a "traditional" low Reynolds number airfoil: the Eppler-E61. The numerical results demonstrate superior performances of the corrugated airfoil. A series of low-speed wind and water tunnel experiments were performed on the corrugated airfoil, to validate the numerical results. The findings indicate quantitative agreement with the mean wake velocity profiles and shedding frequencies while validating the two dimensionality of the flow. A flow physics numerical study was performed in order to understand the underlying mechanism of corrugated airfoils at these Reynolds numbers. Airfoil shapes based on the flow field characteristics of the corrugated airfoil were built and analyzed. Their performances were compared to those of the corrugated airfoil, stressing the advantages of the latter. It was found that the flow which separates from the corrugations and forms spanwise vortices intermittently reattaches to the aft-upper arc region of the airfoil. This mechanism is responsible for the relatively low intensity of the vortices in the airfoil wake, reducing the drag and increasing the flight performances of this kind of corrugated airfoil as compared to traditional low Reynolds number airfoils such as the Eppler E-61.

  5. Age-related variation in body temperature, thermoregulation and activity in a thermally polymorphic dragonfly

    PubMed

    Marden; Kramer; Frisch

    1996-01-01

    Thoracic temperatures (Tth) of Libellula pulchella dragonflies during activity in the field were compared between age classes and with laboratory measures of optimal thoracic temperature for flight performance (Tth,opt; a trait that varies during adult maturation in this species). Newly emerged adults (tenerals) had mean Tth values during flight (34.5 °C; range 29-40 °C) that did not differ from their mean Tth,opt (34.6 °C; range 28.5-43.8 °C). Mature adults had higher and more precisely regulated thoracic temperatures (mean Tth 41.7 °C; range 37.5-45.2 °C), which were somewhat lower than their mean Tth,opt (43.6 °C; range 38.7-49.9 °C). Among matures, behaviors requiring the highest levels of flight exertion (aerial copulation; mate guarding; escalated territorial contests) caused an elevation of Tth above that of concurrently sampled individuals engaged in routine flight (mean Tth difference 1.3 °C), which raised mean Tth to a level that was not significantly different from Tth,opt (42.5 versus 43.5 °C). Compared with tenerals, matures spent more time flying, made longer-duration flights and showed a more restricted pattern of daily activity. Sympatric Anax junius dragonflies that regulate Tth endothermically had a uniform pattern of activity across the entire day, i.e. occupied a broader ecological niche than that of L. pulchella. These results support the hypotheses that optimal body temperature evolves to match the elevated body temperatures that occur during exercise and that the ecological benefits of an expanded niche are a secondary benefit rather than a primary selective force during the evolution of homeothermy and high body temperatures.

  6. Electrical Guidance of Human Stem Cells in the Rat Brain.

    PubMed

    Feng, Jun-Feng; Liu, Jing; Zhang, Lei; Jiang, Ji-Yao; Russell, Michael; Lyeth, Bruce G; Nolta, Jan A; Zhao, Min

    2017-07-11

    Limited migration of neural stem cells in adult brain is a roadblock for the use of stem cell therapies to treat brain diseases and injuries. Here, we report a strategy that mobilizes and guides migration of stem cells in the brain in vivo. We developed a safe stimulation paradigm to deliver directional currents in the brain. Tracking cells expressing GFP demonstrated electrical mobilization and guidance of migration of human neural stem cells, even against co-existing intrinsic cues in the rostral migration stream. Transplanted cells were observed at 3 weeks and 4 months after stimulation in areas guided by the stimulation currents, and with indications of differentiation. Electrical stimulation thus may provide a potential approach to facilitate brain stem cell therapies. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. A general method for large-scale fabrication of Cu nanoislands/dragonfly wing SERS flexible substrates

    NASA Astrophysics Data System (ADS)

    Wang, Yuhong; Wang, Mingli; Shen, Lin; Zhu, Yanying; Sun, Xin; Shi, Guochao; Xu, Xiaona; Li, Ruifeng; Ma, Wanli

    2018-01-01

    Not Available Project supported by the Youth Fund Project of University Science and Technology Plan of Hebei Provincial Department of Education, China (Grant No. QN2015004) and the Doctoral Fund of Yanshan University, China (Grant No. B924).

  8. Advances in flexible optrode hardware for use in cybernetic insects

    NASA Astrophysics Data System (ADS)

    Register, Joseph; Callahan, Dennis M.; Segura, Carlos; LeBlanc, John; Lissandrello, Charles; Kumar, Parshant; Salthouse, Christopher; Wheeler, Jesse

    2017-08-01

    Optogenetic manipulation is widely used to selectively excite and silence neurons in laboratory experiments. Recent efforts to miniaturize the components of optogenetic systems have enabled experiments on freely moving animals, but further miniaturization is required for freely flying insects. In particular, miniaturization of high channel-count optical waveguides are needed for high-resolution interfaces. Thin flexible waveguide arrays are needed to bend light around tight turns to access small anatomical targets. We present the design of lightweight miniaturized optogentic hardware and supporting electronics for the untethered steering of dragonfly flight. The system is designed to enable autonomous flight and includes processing, guidance sensors, solar power, and light stimulators. The system will weigh less than 200mg and be worn by the dragonfly as a backpack. The flexible implant has been designed to provide stimuli around nerves through micron scale apertures of adjacent neural tissue without the use of heavy hardware. We address the challenges of lightweight optogenetics and the development of high contrast polymer waveguides for this purpose.

  9. Wrinkles enhance the diffuse reflection from the dragonfly Rhyothemis resplendens

    PubMed Central

    Nixon, M. R.; Orr, A. G.; Vukusic, P.

    2015-01-01

    The dorsal surfaces of the hindwings of the dragonfly Rhyothemis resplendens (Odonata: Libellulidae) reflect a deep blue from the multilayer structure in its wing membrane. The layers within this structure are not flat, but distinctly ‘wrinkled’, with a thickness of several hundred nanometres and interwrinkle crest distances of 5 µm and greater. A comparison between the backscattered light from R. resplendens and a similar, but un-‘wrinkled’ multilayer in the damselfly Matronoides cyaneipennis (Odonata: Calopterygidae) shows that the angle over which incident light is backscattered is increased by the wrinkling in the R. resplendens structure. Whereas the reflection from the flat multilayer of M. cyaneipennis is effectively specular, the reflection from the wrinkled R. resplendens multilayer spans 1.47 steradians (equivalent to ±40° for all azimuthal angles). This property enhances the visibility of the static wing over a broader angle range than is normally associated with a smooth multilayer, thereby markedly increasing its conspicuousness. PMID:25540236

  10. β1 integrin signaling promotes neuronal migration along vascular scaffolds in the post-stroke brain.

    PubMed

    Fujioka, Teppei; Kaneko, Naoko; Ajioka, Itsuki; Nakaguchi, Kanako; Omata, Taichi; Ohba, Honoka; Fässler, Reinhard; García-Verdugo, José Manuel; Sekiguchi, Kiyotoshi; Matsukawa, Noriyuki; Sawamoto, Kazunobu

    2017-02-01

    Cerebral ischemic stroke is a main cause of chronic disability. However, there is currently no effective treatment to promote recovery from stroke-induced neurological symptoms. Recent studies suggest that after stroke, immature neurons, referred to as neuroblasts, generated in a neurogenic niche, the ventricular-subventricular zone, migrate toward the injured area, where they differentiate into mature neurons. Interventions that increase the number of neuroblasts distributed at and around the lesion facilitate neuronal repair in rodent models for ischemic stroke, suggesting that promoting neuroblast migration in the post-stroke brain could improve efficient neuronal regeneration. To move toward the lesion, neuroblasts form chain-like aggregates and migrate along blood vessels, which are thought to increase their migration efficiency. However, the molecular mechanisms regulating these migration processes are largely unknown. Here we studied the role of β1-class integrins, transmembrane receptors for extracellular matrix proteins, in these migrating neuroblasts. We found that the neuroblast chain formation and blood vessel-guided migration critically depend on β1 integrin signaling. β1 integrin facilitated the adhesion of neuroblasts to laminin and the efficient translocation of their soma during migration. Moreover, artificial laminin-containing scaffolds promoted neuroblast chain formation and migration toward the injured area. These data suggest that laminin signaling via β1 integrin supports vasculature-guided neuronal migration to efficiently supply neuroblasts to injured areas. This study also highlights the importance of vascular scaffolds for cell migration in development and regeneration. Copyright © 2017 3-V Biosciences. Published by Elsevier B.V. All rights reserved.

  11. Expedition 32 Soyuz Rocket Rollout

    NASA Image and Video Library

    2012-07-12

    A dragonfly lights on a tree branch near the launch pad after the Soyuz TMA-05M is rolled to its launch pad at the Baikonur Cosmodrome, Thursday, July 12, 2012 in Kazakhstan. The launch of the Soyuz rocket is scheduled for the morning of July 15 local time. Photo Credit: (NASA/Carla Cioffi)

  12. Using Dragonflies as Common, Flexible & Charismatic Subjects for Teaching the Scientific Process

    ERIC Educational Resources Information Center

    Switzer, Paul V.

    2007-01-01

    Biology laboratories are usually designed around convenient and available subjects. For example, for animal laboratories "Daphnia magna," "Drosophila melanogaster," frogs, rats, and mice are common animals that are relatively easy to obtain, relatively cheap, and consequently lend themselves well to laboratory experimentation. On many campuses, …

  13. DragonflyTV: "Investigating the Nanoworld". Summative Evaluation Report

    ERIC Educational Resources Information Center

    Robles, Dawn; Helms, Jenifer; Phillips, Michelle

    2009-01-01

    In recent years academic, engineering, business, and other fields, have launched major research and development efforts into the study and application of nanoscale science, engineering, and technology. In spite of all these efforts and the investment of millions of dollars, the general public has had little access to research findings and…

  14. Photographic Documentation of Emerald Spreadwing at TA-3, LANL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foy, Bernard R.

    2017-06-20

    Los Alamos National Laboratory has a considerable amount of suitable habitat for odonates, or dragonflies and damselflies. Few of these have been properly documented, however. With photographic documentation, the quality and size of odonate habitat on land owned by the Department of Energy will become more apparent to land managers.

  15. COMBINING DNA SEQUENCES AND MORPHOLOGY IN SYSTEMATICS: TESTING THE VALIDITY OF THE DRAGONFLY SPECIES CORDULEGASTER BILINEATA. (R826599)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  16. Turbulence investigation and reproduction for assisting downstream migrating juvenile salmonids, Part II of II: Effects of induced turbulence on behavior of juvenile salmon, 2001-2005 final report

    USGS Publications Warehouse

    Perry, R.; Farley , M.; Hansen, G.; Morse , J.; Rondorf, D.

    2005-01-01

    Passage through dams is a major source of mortality of anadromous juvenile salmonids because some populations must negotiate up to eight dams in Columbia and Snake rivers. Dams cause direct mortality when fish pass through turbines, but dams may also cause indirect mortality by altering migration conditions in rivers. Forebays immediately upstream of dams have decreased the water velocity of rivers and may contribute substantially to the total migration delay of juvenile salmonids. Recently, Coutant (2001a) suggested that in addition to low water velocities, lack of natural turbulence may contribute to migration delay by causing fish to lose directional cues. Coutant (2001a) further hypothesized that restoring turbulence in dam forebays may reduce migration delay by providing directional cues that allow fish to find passage routes more quickly (Coutant 2001a). Although field experiments have yielded proof of the concept of using induced turbulence to guide fish to safe passage routes, little is known about mechanisms actually causing behavioral changes. To test hypotheses about how turbulence influences movement and behavior of migrating juvenile salmonids, we conducted two types of controlled experiments at Cowlitz Falls Dam, Washington. A common measure of migration delay is the elapsed time between arrival at, and passage through, a dam. Therefore, for the first set of experiments, we tested the effect of induced turbulence on the elapsed time needed for fish to traverse through a raceway and pass over a weir at its downstream end (time trial experiment). If turbulence helps guide fish to passage routes, then fish should pass through the raceway quicker in the presence of appropriately scaled and directed turbulent cues. Second, little is known about how the physical properties of water movement provide directional cues to migrating juvenile salmonids. To examine the feasibility of guiding fish with turbulence, we tested whether directed turbulence could guide fish into one of two channels in the raceway, and subsequently cause them to pass disproportionately over the weir where turbulent cues were aimed (guidance experiment). Last, we measured and mapped water velocity and turbulence during the experiments to understand water movement patterns and the spatial distribution of turbulence in the raceways.

  17. Leg deformation during imaginal ecdysis in the downy emerald, Cordulia aenea (Odonata, Corduliidae).

    PubMed

    Frantsevich, Leonid; Frantsevich, Ludmilla

    2018-04-01

    A dragonfly larva migrates from the water to the shore, perches on a plant stem and grasps it with strongly flexed legs. Adult legs inside the larval exoskeleton fit to the larval legs joint-to-joint. The adult emerges with stretched legs. During the molt, an imaginal leg must follow all the angles in exuvial joints. In turn, larval apodemes are withdrawn from imaginal legs. We visualized transient shapes of the imaginal legs by the instant fixation of insects at different moments of the molt, photographed isolated exuvial legs with the imaginal legs inside and then removed the exuvial sheath. Instant shapes of the imaginal tibia show sharp intrapodomere bends copying the angle in the larval femoro-tibial joint. The site of bending shifts distad during the molt. This is possible if the imaginal leg is pliable. The same problem of leg squeezing is also common in hemimetabolous insects as well as in other arthropods, whereas holometabolous insects overcome problems of a tight confinement either by using leg pliability in other ways but not squeezing (cyclorrhaphan flies, mosquitoes) or by pulling hardened legs out without change of their pupal zigzag configuration (moths, ants, honey bees). The pupal legs are not intended to grasp any external substrate. Copyright © 2018 Elsevier GmbH. All rights reserved.

  18. Guide wire entrapment by inferior vena cava filters: an experimental study.

    PubMed

    Rosen, Michael J; Burns, Justin M; Cobb, William S; Jacobs, David G; Heniford, B Todd; Sing, Ronald F

    2005-09-01

    In situ vena cava filters are at risk for complications with the use of J-tipped guide wires. The purpose of this study was to evaluate the impact of two commonly used J-tipped guide wires on the stability of the four most recently released vena cava filters in an in vitro flow model. Four filters (OptEase [F1], Günther Tulip [F2], Vena Tech LP [F3], and Recovery [F4]) were inserted into an in vitro flow model. Two J-tipped guide wires (0.032-inch [GW-1], 0.035-inch [GW-2]) were passed through each filter (n = 50 passes per wire) for a distance of 10 cm. The inserter was blind as to the effects of the wire. The filters were monitored by an independent observer for adverse events occurring between the filters and the guide wires. These were defined as: migrations (>1 cm), change of position (tilt>10 degrees), and entrapment of the wire (unable to remove wire). Descriptive statistics, chi-square, and Fisher's exact test were used (p < 0.05 considered significant). GW-1 resulted in a lower incidence of entrapment, migration, and tilt for all filters compared with GW-2 (F1, p = 0.003; F2, p < 0.0001; F3, p < 0.0001; F4, p = 0.0004). GW-1 resulted in entrapment in 0%, migration in 7.5%, and tilt in 10.5% of insertions. GW-2 resulted in entrapment in 1%, migration in 26.5%, and tilt in 5.5% of insertions. The incidence of adverse events for GW-1 was significantly different compared with all filters (F1, 0%; F2, 46%; F3, 4%; and F4, 22%; p < 0.0001). Similarly, the incidence of adverse events for GW-2 was significantly different when evaluating all filters (F1, 12%; F2, 48%; F3, 22%; F4 60%; p < 0.0001). The smaller-diameter guide wire resulted in a decreased incidence of adverse events for all filters, but there is still risk for complications. Knowledge of potential complications associated with vena cava filters and the postinsertion use of guide wires are essential to avoid potential mishaps.

  19. Regulating the migration of smooth muscle cells by a vertically distributed poly(2-hydroxyethyl methacrylate) gradient on polymer brushes covalently immobilized with RGD peptides.

    PubMed

    Wu, Sai; Du, Wang; Duan, Yiyuan; Zhang, Deteng; Liu, Yixiao; Wu, Bingbing; Zou, Xiaohui; Ouyang, Hongwei; Gao, Changyou

    2018-05-30

    The gradient localization of biological cues is of paramount importance to guide directional migration of cells. In this study, poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate)-block- poly(2-hydroxyethyl methacrylate) (P(HEMA-co-GMA)-b-PHEMA) brushes with a uniform underneath P(HEMA-co-GMA) layer and a gradient thickness of PHEMA blocks were prepared by using surface-initiated atom-transfer radical polymerization and a dynamically controlled polymerization process. The polymer chains were subsequently functionalized with the cell-adhesive arginine-glycine-aspartic acid (RGD) peptides by reaction with the glycidyl groups, and their structures and properties were characterized by X-ray photoelectron spectrometry (XPS), quartz crystal microbalance with dissipation (QCM-D) and air contact angle. Adhesion and migration processes of smooth muscle cells (SMCs) were then studied. Compared with those on the sufficiently exposed RGD surface, the cell adhesion and mobility were well maintained when the RGD peptides were localized at 18.9 nm depth, whereas the adhesion, spreading and migration rate of SMCs were significantly impaired when the RGD peptides were localized at a depth of 38.4 nm. On the RGD depth gradient surface, the SMCs exhibited preferential orientation and enhanced directional migration toward the direction of reduced thickness of the second PHEMA brushes. Half of the cells were oriented within ± 30° to the x-axis direction, and 72% of the cells moved directionally at the optimal conditions. Cell adhesion strength, arrangement of cytoskeleton, and gene and protein expression levels of adhesion-related proteins were studied to corroborate the mechanisms, demonstrating that the cell mobility is regulated by the complex and synergetic intracellular signals resulted from the difference in surface properties. Cell migration is of paramount importance for the processes of tissue repair and regeneration. So far, the gradient localization of biological cues perpendicular to the substrate, which is the usual case for the biological signaling molecules to locate in ECM in vivo, has been scarcely studied, and has not been used to guide the directional migration of cells. In this study, we prepare a depth gradient of RGD peptides along the polymer chains, which is used to guide the directional migration of SMCs after a second hydrophilic bock is prepared in a gradient manner. For the first time the directional migration of SMCs is achieved under the guidance of a depth gradient of RGD ligands. The mechanisms of different cell migration abilities are further discussed based on the results of cell adhesion, cell adhesion force, cytoskeleton alignment and expression of relative proteins and genes. This work paves a new strategy by fabricating a gradient polymer brushes with immobilized bioactive molecules to dominate the directional cell migration, and elucidates the mechanisms underlining the biased migration along RGD depth localization gradients, shedding a light for the design of novel biomaterials to control and guide cell migration and invasion. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Bioinspired engineering of exploration systems: a horizon sensor/attitude reference system based on the dragonfly Ocelli for Mars exploration applications

    NASA Technical Reports Server (NTRS)

    Thakoor, S.; Zornetzer, S.; Hine, B.; Chahl, J.; Stange, G.

    2002-01-01

    The intent of Bio-inspired Engineering of Exploration Systems (BEES) is to distill the principles found in successful, nature-tested mechanisms of specific crucial functions that are hard to accomplish by conventional methods, but accomplished rather deftly in nature by biological oganisms.

  1. Swainson's hawk predation on dragonflies in Argentina

    Treesearch

    D. Craig Rudolph; Charles D. Fisher

    1993-01-01

    Swainson’s Hawks (Buteo swainsoni) have a diverse diet consisting of mammals, birds, reptiles, amphibians, and a wide array of invertebrates (Bent 1937, Dunkle 1977, Schmutz et al. 1980, Bednatz 1988, Steenhof and Kochert 1985). A number of observations document extensive feeding on invertebrates, including crayfish (White 1966), crickets (White 1966...

  2. Organizing for the Future Requires the Non-Aristotelian Lens of a Dragonfly.

    ERIC Educational Resources Information Center

    Collins, Marla Del

    To organize for the future requires non-Aristotelian thinking...a multifaceted wide-angle lens revealing hidden information. A multifaceted lens includes at least three general systems of evaluation, all of which promote complex thinking. The three systems are general semantics, postmodern feminist philosophy, and the unifying principle of…

  3. Infection of aquatic insects with trematode metacercariae carrying Ehrlichia risticii, the cause of Potomac horse fever.

    PubMed

    Chae, J S; Pusterla, N; Johnson, E; Derock, E; Lawler, S P; Madigan, J E

    2000-07-01

    We provide evidence of Ehrlichia risticii Holland, the agent of Potomac horse fever, in trematode stages found in aquatic insects collected from a pasture stream in northern California, using nested polymerase chain reaction (PCR) amplification and sequence analyses of the 16S rRNA, 51 kDa major antigen and groEL heat shock protein genes. E. risticii was detected in metacercariae found in the immatures and adults of the following insects: caddisflies (Trichoptera), mayflies (Ephemeroptera), damselflies (Odonata, Zygoptera), dragonflies (Odonata, Anisoptera), and stoneflies (Plecoptera). The prevalence of E. risticii was 31.9% (n = 454 individuals) in aquatic insects (13 of 17 species were positive). Prevalence within orders was as follows: 43.5% (n = 207) in caddisflies, 15.2% (n = 92) in mayflies, 13.9% (n = 115) in damselflies, 10.0% (n = 10) in dragonflies, and 80.0% (n = 30) in stoneflies. This study demonstrates a broad intermediate host range for trematodes that act as vector for E. risticii. Insects are likely to play an important role in the epidemiology of this disease.

  4. Dragonfly: Exploring Titan's Surface with a New Frontiers Relocatable Lander

    NASA Astrophysics Data System (ADS)

    Barnes, Jason W.; Turtle, Elizabeth P.; Trainer, Melissa G.; Lorenz, Ralph

    2017-10-01

    We proposed to the NASA New Frontiers 4 mission call a lander to assess Titan's prebiotic chemistry, evaluate its habitability, and search for biosignatures on its surface. Titan as an Ocean World is ideal for the study of prebiotic chemical processes and the habitability of an extraterrestrial environment due to its abundant complex carbon-rich chemistry and because both liquid water and liquid hydrocarbons can occur on its surface. Transient liquid water surface environments can be created by both impacts and cryovolcanic processes. In both cases, the water could mix with surface organics to form a primordial soup. The mission would sample both organic sediments and water ice to measure surface composition, achieving surface mobility by using rotors to take off, fly, and land at new sites. The Dragonfly rotorcraft lander can thus convey a single capable instrument suite to multiple locations providing the capability to explore diverse locations 10s to 100s of kilometers apart to characterize the habitability of Titan's environment, investigate how far prebiotic chemistry has progressed, and search for chemical signatures indicative of water- and/or hydrocarbon-based life.

  5. High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing

    NASA Astrophysics Data System (ADS)

    Wang, Yuhong; Wang, Mingli; Shen, Lin; Sun, Xin; Shi, Guochao; Ma, Wanli; Yan, Xiaoya

    2018-04-01

    Natural dragonfly wing (DW), as a template, was deposited on noble metal sliver (Ag) nanoislands by magnetron sputtering to fabricate a flexible, low-cost, large-scale and environment-friendly surface-enhanced Raman scattering (SERS) substrate (Ag/DW substrate). Generally, materials with regular surface nanostructures are chosen for the templates, the selection of our new material with irregular surface nanostructures for substrates provides a new idea for the preparation of high-performance SERS-active substrates and many biomimetic materials. The optimum sputtering time of metal Ag was also investigated at which the prepared SERS-active substrates revealed remarkable SERS activities to 4-aminothiophenol (4-ATP) and crystal violet (CV). Even more surprisingly, the Ag/DW substrate with such an irregular template had reached the enhancement factor (EF) of ∼1.05 × 105 and the detection limit of 10-10 M to 4-ATP. The 3D finite-different time-domain (3D-FDTD) simulation illustrated that the "hot spots" between neighbouring Ag nanoislands at the top of pillars played a most important role in generating electromagnetic (EM) enhancement and strengthening Raman signals.

  6. FIRST RESULTS FROM THE DRAGONFLY TELEPHOTO ARRAY: THE APPARENT LACK OF A STELLAR HALO IN THE MASSIVE SPIRAL GALAXY M101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Dokkum, Pieter G.; Merritt, Allison; Abraham, Roberto

    2014-02-20

    We use a new telescope concept, the Dragonfly Telephoto Array, to study the low surface brightness outskirts of the spiral galaxy M101. The radial surface brightness profile is measured down to μ {sub g} ∼ 32 mag arcsec{sup –2}, a depth that approaches the sensitivity of star count studies in the Local Group. We convert surface brightness to surface mass density using the radial g – r color profile. The mass density profile shows no significant upturn at large radius and is well-approximated by a simple bulge + disk model out to R = 70 kpc, corresponding to 18 diskmore » scale lengths. Fitting a bulge + disk + halo model we find that the best-fitting halo mass M{sub halo}=1.7{sub −1.7}{sup +3.4}×10{sup 8} M {sub ☉}. The total stellar mass of M101 is M{sub tot,∗}=5.3{sub −1.3}{sup +1.7}×10{sup 10} M {sub ☉}, and we infer that the halo mass fraction f{sub halo}=M{sub halo}/M{sub tot,∗}=0.003{sub −0.003}{sup +0.006}. This mass fraction is lower than that of the Milky Way (f {sub halo} ∼ 0.02) and M31 (f {sub halo} ∼ 0.04). All three galaxies fall below the f {sub halo}-M {sub tot,} {sub *} relation predicted by recent cosmological simulations that trace the light of disrupted satellites, with M101's halo mass a factor of ∼10 below the median expectation. However, the predicted scatter in this relation is large, and more galaxies are needed to better quantify this possible tension with galaxy formation models. Dragonfly is well suited for this project: as integrated-light surface brightness is independent of distance, large numbers of galaxies can be studied in a uniform way.« less

  7. Dragonfly: In Situ Exploration of Titan's Organic Chemistry and Habitability

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; Barnes, J. W.; Trainer, M. G.; Lorenz, R. D.

    2017-12-01

    Titan's abundant complex carbon-rich chemistry, interior ocean, and past presence of liquid water on the surface make it an ideal destination to study prebiotic chemical processes and document the habitability of an extraterrestrial environment. Titan exploration is a high science priority due to the level of organic synthesis that it supports. Moreover, opportunities for organics to have interacted with liquid water at the surface (e.g., in impact melt sheets) increase the potential for chemical processes to progress further, providing an unparalleled opportunity to investigate prebiotic chemistry, as well as to search for signatures of potential water-based or even hydrocarbon-based life. The diversity of Titan's surface materials and environments drives the scientific need to be able to sample a variety of locations, thus mobility is key for in situ measurements. Titan's atmosphere is 4 times denser than Earth's reducing the wing/rotor area required to generate a given amount of lift, and the low gravity reduces the required magnitude of lift, making heavier-than-air mobility highly efficient. Dragonfly is a rotorcraft lander mission proposed to NASA's New Frontiers Program to take advantage of Titan's unique natural laboratory to understand how far chemistry can progress in environments that provide key ingredients for life. Measuring the compositions of materials in different environments will reveal how far organic chemistry has progressed. Surface material can be sampled into a mass spectrometer to identify the chemical components available and processes at work to produce biologically relevant compounds. Bulk elemental surface composition can be determined by a neutron-activated gamma-ray spectrometer. Meteorology measurements can characterize Titan's atmosphere and diurnal and spatial variations therein. Geologic features can be characterized via remote-sensing observations, which also provide context for samples. Seismic sensing can probe subsurface structure and activity. In addition to surface investigations, Dragonfly can perform measurements during flight, including atmospheric profiles and aerial observations of surface geology, which also provide sampling context and scouting for landing sites.

  8. Mercury in the National Parks: Current Status and Effects

    NASA Astrophysics Data System (ADS)

    Flanagan, C.; Blett, T. F.; Morris, K.

    2012-12-01

    Mercury is a globally distributed contaminant that can harm human and wildlife health, and threaten resources the National Park Service (NPS) is charged with protecting. Due in part to emissions and long-range transport from coal burning power plants, even remote national park environments receive mercury deposition from the atmosphere. Given the concern regarding mercury, there are and have been many mercury monitoring initiatives in national parks to determine the risk from mercury contamination. This includes the study of litter fall at Acadia National Park (Maine), snow at Mount Rainier National Park (Washington), heron eggs at Indiana Dunes National Lakeshore (Indiana), bat hair at Mammoth Cave National Park (Kentucky), and panthers at Everglades National Park (Florida). Wet deposition is also measured at 16 national parks as part of the National Atmospheric Deposition Network / Mercury Deposition Network. Results from these studies indicate that mercury deposition is increasing or is elevated in many national parks, and fish and other biota have been found to contain levels of mercury above toxicity thresholds for impacts to both humans and wildlife. Current research coordinated by the NPS Air Resources Division (ARD) in Denver, Colorado, on the effects of mercury includes broad-scale assessments of mercury in fish, dragonfly larvae, and songbirds across 30+ national parks. Fish provide the trophic link to human and wildlife health, dragonfly larvae can describe fine-scale differences in mercury levels, and songbirds shed light on the risk to terrestrial ecosystems. External project partners include the U.S. Geological Survey, University of Maine, and the Biodiversity Research Institute. In addition, the dragonfly project engages citizen scientists in the collection of dragonfly larvae, supporting the NPS Centennial Initiative by connecting people to parks and advancing the educational mission, and increasing public awareness about mercury impacts. Much of the current, large scale work on mercury in national parks is conducted in western and Alaskan parks and will be incorporated into the Western Mercury Synthesis project, a multi-agency/multi-organizational landscape scale synthesis linking large, spatiotemporal datasets about mercury cycling, bioaccumulation, and risk across western North America. Mercury findings in national parks are also communicated to other outlets, including public comment on EPA's Mercury and Air Toxics Standards and in video podcasts (e.g., http://www.nature.nps.gov/air/Multimedia/podcast/acadia_mercury/acadia_mercury.cfm). The NPS Organic Act states that national park resources are to remain unimpaired, and the toxic effects of mercury challenge that legal mandate. National park ecosystems are already experiencing multiple stressors (e.g., nitrogen deposition) and mercury impacts may push vulnerable species too far. This talk will give an overview of NPS-ARD mercury initiatives, and contribute to the overall understanding of mercury in the science, policy, and outreach arenas.

  9. Texture sensing of cytoskeletal dynamics in cell migration

    NASA Astrophysics Data System (ADS)

    Das, Satarupa; Lee, Rachel; Hourwitz, Matthew J.; Sun, Xiaoyu; Parent, Carole; Fourkas, John T.; Losert, Wolfgang

    Migrating cells can be directed towards a target by gradients in properties such as chemical concentration or mechanical properties of the surrounding microenvironment. In previous studies we have shown that micro/nanotopographical features on scales comparable to those of natural collagen fibers can guide fast migrating amoeboid cells by aligning actin polymerization waves to such nanostructures. We find that actin microfilaments and microtubules are aligned along the nanoridge topographies, modulating overall cell polarity and directional migration in epithelial cells. This work shows that topographic features on a biologically relevant length scale can modulate migration outcomes by affecting the texture sensing property of the cytoskeleton.

  10. The influence of predator threat on the timing of a life-history switch point: predator-induced hatching in the southern leopard frog (Rana sphenocephala)

    Treesearch

    James B. Johnson; Daniel Saenz; Cory K. Adams; Richard N. Conner

    2003-01-01

    Abstract: We tested the hypotheses that potential egg predators, crayfish Procambarus nigrocinctus and dytiscid Cybister sp. larvae, would accelerate the timing of hatching and that a larval predator, dragonfly naiad Anax junius, would delay hatching in the southern leopard frog (Rana...

  11. 78 FR 15374 - Notice of Availability of Draft Habitat Conservation Plan; Receipt of Application for Incidental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-11

    ... is 0.97 acres within the HCP boundary. Surveys have not been conducted for Hine's Emerald Dragonfly... pipeline maintenance to document the extent of actual excavation and site restoration. No surveys are... application, HCP, EAS) may be obtained on the Internet at the following address: http://www.fws.gov/midwest...

  12. Preliminary assessment of biogeographic affinities of selected insect taxa of the state of Sonora, Mexico

    Treesearch

    Robert W. Jones; Alejandro Obregon-Zuniga; Sandra Guzman-Rodriguez

    2013-01-01

    The biogeographic affinites of butterflies (Lepidoptera: Papilionoidea and Hesperidae), damsel and dragonflies (Odonata), and ants (Hymenoptera: Formicidae) reported from the State of Sonora, Mexico were analyzed using published species lists. The combined distribution of these taxa was proportionally greater (47.4%) for those species within the Mega-Mexico3...

  13. Minneapolis Multi-Ethnic Curriculum Development Teacher's Guide.

    ERIC Educational Resources Information Center

    Tipple, Bruce E.; Whitehead, Pamela

    The teacher's guide describes learning activities and teaching methods for the Minneapolis Multi-Ethnic Curriculum Project for secondary schools. It is divided into eight sections. Section I lists knowledge generalizations and important concepts for each section. The remaining seven sections are entitled ethnicity, migration, acculturation, ethnic…

  14. Migratory Birds. Issue Pac.

    ERIC Educational Resources Information Center

    Fish and Wildlife Service (Dept. of Interior), Washington, DC.

    The materials in this educational packet are designed for use with students in grades 4 through 7. They consist of an overview, teaching guides and student data sheets for three activities, and a poster. The overview discusses why, how, where, and when birds migrate as well as problems birds encounter while migrating; the importance of research…

  15. Biogeographical profiles of shorebird migration in midcontinental North America

    USGS Publications Warehouse

    Skagen, Susan K.; Sharpe, Peter B.; Waltermire, Robert G.; Dillon, M. Beth

    1999-01-01

    The biogeographic information described here will help identify the uniqueness of different regions of the plains to migrating shorebirds. Although shorebirds migrating along Atlantic and Pacific coastal areas are capable of long jumps between refueling stops, there is evidence that some species move short rather than long distances between refueling sites. Maps of distribution patterns and chronology accounts can lend insight towards understanding migration strategies of the different shorebird species.This report focuses on the distribution patterns of enroute migrants that refuel in interior wetlands during migration. We provide information on the spatial and temporal occurrence and habitat requirements for individual species and groups of species with the intent that this information be used in guiding management efforts.

  16. UPLC-PDA-QTOFMS-guided isolation of prenylated xanthones and benzoylphloroglucinols from the leaves of Garcinia oblongifolia and their migration-inhibitory activity

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Dan, Zheng; Ding, Zhi-Jie; Lao, Yuan-Zhi; Tan, Hong-Sheng; Xu, Hong-Xi

    2016-10-01

    A UPLC-PDA-QTOFMS-guided isolation strategy was employed to screen and track potentially new compounds from Garcinia oblongifolia. As a result, two new prenylated xanthones, oblongixanthones D and E (1-2), six new prenylated benzoylphloroglucinol derivatives, oblongifolins V-Z (3-7) and oblongifolin AA (8), as well as a known compound oblongifolin L (9), were isolated from the EtOAc-soluble fraction of an acetone extract of the leaves of Garcinia oblongifolia guided by UPLC-PDA-QTOFMS analysis. The structures of the new compounds were elucidated by 1D- and 2D-NMR spectroscopic analysis and mass spectrometry. Experimental and calculated ECD spectra were used to determine the absolute configurations. The results of wound healing and transwell migration assay showed that oblongixanthones D (1), E (2), and oblongifolin L (9) have the ability to inhibit cancer cell migration in lower cytotoxic concentrations. Western blotting results showed that these compounds exhibited an anti-metastasis effect mainly through downregulating RAF protein levels. In addition, 2 and 9 could inhibit phospho-MEK and phospho-ERK at downstream. Moreover, 1, 2, and 9 could inhibit snail protein level, suggesting that they could regulate the EMT pathway.

  17. Transcriptome profiling with focus on potential key genes for wing development and evolution in Megaloprepus caerulatus, the damselfly species with the world´s largest wings

    USDA-ARS?s Scientific Manuscript database

    The arrival of the term Eco-Evo-Devo highlights the need to incorporate ecology and development into modern evolutionary research to better understand processes such as adaptation and speciation as well as the effect of environmental changes a species. As basal winged insects (pterygotes), dragonfli...

  18. Hovering and targeting flight simulations of a dragonfly-like flapping wing-body model by the immersed boundary-lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Hirohashi, Kensuke; Inamuro, Takaji

    2017-08-01

    Hovering and targeting flights of the dragonfly-like flapping wing-body model are numerically investigated by using the immersed boundary-lattice Boltzmann method. The governing parameters of the problem are the Reynolds number Re, the Froude number Fr, and the non-dimensional mass m. We set the parameters at Re = 200, Fr = 15 and m = 51. First, we simulate free flights of the model for various values of the phase difference angle ϕ between the forewing and the hindwing motions and for various values of the stroke angle β between the stroke plane and the horizontal plane. We find that the vertical motion of the model depends on the phase difference angle ϕ, and the horizontal motion of the model depends on the stroke angle β. Secondly, using the above results we try to simulate the hovering flight by dynamically changing the phase difference angle ϕ and the stroke angle β. The hovering flight can be successfully simulated by a simple proportional controller of the phase difference angle and the stroke angle. Finally, we simulate a targeting flight by dynamically changing the stroke angle β.

  19. Phylogenetic relationships of North American Gomphidae and ...

    EPA Pesticide Factsheets

    Intrafamilial relationships among clubtail dragonflies (Gomphidae) have been the subject of many morphological studies, but have not yet been systematically evaluated using molecular data. Here we present the first molecular phylogeny of Gomphidae. We include six of the eight subfamilies previously suggested to be valid, and evaluate generic relationships within them. We have included examples of all genera reported from the Nearctic except Phyllocycla. This sample includes all North American species of Ophiogomphus, which has allowed us to explore intrageneric relationships in that genus. Our particular focus is on the closest relatives of the genus Gomphus, especially those North American species groups that have been commonly treated as subgenera of Gomphus. The Gomphus complex is split into additional genera, supported by molecular and morphological evidence: Phanogomphus, Stenogomphurus, Gomphurus and Hylogomphus are here considered to be valid genera. The genus Gomphus, in our restricted sense, does not occur in the western hemisphere; in addition, G. flavipes is transferred to Stylurus. Provide a robust phylogeny of the dragonflies of North America in the family Gomphidae, with implications on number of genera found in North America. This work splits one genus into 3 genera, which may have implications for bioassessment based on macroinvertebrate diversity.

  20. Selective attention in an insect visual neuron.

    PubMed

    Wiederman, Steven D; O'Carroll, David C

    2013-01-21

    Animals need attention to focus on one target amid alternative distracters. Dragonflies, for example, capture flies in swarms comprising prey and conspecifics, a feat that requires neurons to select one moving target from competing alternatives. Diverse evidence, from functional imaging and physiology to psychophysics, highlights the importance of such "competitive selection" in attention for vertebrates. Analogous mechanisms have been proposed in artificial intelligence and even in invertebrates, yet direct neural correlates of attention are scarce from all animal groups. Here, we demonstrate responses from an identified dragonfly visual neuron that perfectly match a model for competitive selection within limits of neuronal variability (r(2) = 0.83). Responses to individual targets moving at different locations within the receptive field differ in both magnitude and time course. However, responses to two simultaneous targets exclusively track those for one target alone rather than any combination of the pair. Irrespective of target size, contrast, or separation, this neuron selects one target from the pair and perfectly preserves the response, regardless of whether the "winner" is the stronger stimulus if presented alone. This neuron is amenable to electrophysiological recordings, providing neuroscientists with a new model system for studying selective attention. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Design and mechanical analysis of a 3D-printed biodegradable biomimetic micro air vehicle wing

    NASA Astrophysics Data System (ADS)

    Salami, E.; Ganesan, P. B.; Ward, T. A.; Viyapuri, R.; Romli, F. I.

    2016-10-01

    The biomimetic micro air vehicles (BMAV) are unmanned, micro-scaled aircraft that are bio-inspired from flying organisms to achieve the lift and thrust by flapping their wings. There are still many technological challenges involved with designing the BMAV. One of these is designing the ultra-lightweight materials and structures for the wings that have enough mechanical strength to withstand continuous flapping at high frequencies. Insects achieve this by having chitin-based, wing frame structures that encompass a thin, film membrane. The main objectives of this study are to design a biodegradable BMAV wing (inspired from the dragonfly) and analyze its mechanical properties. The dragonfly-like wing frame structure was bio-mimicked and fabricated using a 3D printer. A chitosan nanocomposite film membrane was applied to the BMAV wing frames through casting method. Its mechanical performance was analyzed using universal testing machine (UTM). This analysis indicates that the tensile strength and Young's modulus of the wing with a membrane is nearly double that of the wing without a membrane, which allow higher wing beat frequencies and deflections that in turn enable a greater lifting performance.

  2. A Dragonfly-Shaped Crater

    NASA Image and Video Library

    2017-02-10

    The broader scene for this image is the fluidized ejecta from Bakhuysen Crater to the southwest, but there's something very interesting going on here on a much smaller scale. A small impact crater, about 25 meters in diameter, with a gouged-out trench extends to the south. The ejecta (rocky material ejected from the crater) mostly extends to the east and west of the crater. This "butterfly" ejecta is very common for craters formed at low impact angles. Taken together, these observations suggest that the crater-forming impactor came in at a low angle from the north, hit the ground and ejected material to the sides. The top of the impactor may have sheared off ("decapitating" the impactor) and continued downrange, forming the trench. We can't prove that's what happened, but this explanation is consistent with the observations. Regardless of how it formed, it's quite an interesting-looking "dragonfly" crater. The map is projected here at a scale of 50 centimeters (19.69 inches) per pixel. [The original image scale is 55.7 centimeters (21.92 inches) per pixel (with 2 x 2 binning); objects on the order of 167 centimeters (65.7 inches) across are resolved.] North is up. http://photojournal.jpl.nasa.gov/catalog/PIA21454

  3. CCR7 guides migration of mesenchymal stem cell to secondary lymphoid organs: a novel approach to separate GvHD from GvL effect.

    PubMed

    Li, Hong; Jiang, YanMing; Jiang, XiaoXia; Guo, XiMin; Ning, HongMei; Li, YuHang; Liao, Li; Yao, HuiYu; Wang, XiaoYan; Liu, YuanLin; Zhang, Yi; Chen, Hu; Mao, Ning

    2014-07-01

    Inefficient homing of systemically infused mesenchymal stem cells (MSCs) limits the efficacy of existing MSC-based clinical graft-versus-host disease (GvHD) therapies. Secondary lymphoid organs (SLOs) are the major niches for generating immune responses or tolerance. MSCs home to a wide range of organs, but rarely to SLOs after intravenous infusion. Thus, we hypothesized that targeted migration of MSCs into SLOs may significantly improve their immunomodulatory effect. Here, chemokine receptor 7 (CCR7) gene, encoding a receptor that specifically guides migration of immune cells into SLOs, was engineered into a murine MSC line C3H10T1/2 by retrovirus transfection system (MSCs/CCR7). We found that infusion of MSCs/CCR7 potently prolonged the survival of GvHD mouse model. The infused MSCs/CCR7 migrate to SLOs, relocate in proximity with T lymphocytes, therefore, potently inhibited their proliferation, activation, and cytotoxicity. Natural killer (NK) cells contribute to the early control of leukemia relapse. Although MSCs/CCR7 inhibited NK cell activity in vitro coculture, they did not impact on the proportion and cytotoxic capacities of NK cells in the peripheral blood of GvHD mice. In an EL4 leukemia cell loaded GvHD model, MSCs/CCR7 infusion preserved the graft-versus-leukemia (GvL) effect. In conclusion, this study demonstrates that CCR7 guides migration of MSCs to SLOs and thus highly intensify their in vivo immunomodulatory effect while preserving the GvL activity. This exciting therapeutic strategy may improve the clinical efficacy of MSC based therapy for immune diseases. © 2014 AlphaMed Press.

  4. Comparative morphology of the thorax musculature of adult Anisoptera (Insecta: Odonata): Functional aspects of the flight apparatus.

    PubMed

    Bäumler, Fabian; Gorb, Stanislav N; Büsse, Sebastian

    2018-05-02

    Due to their unique flight mechanism including a direct flight musculature, Odonata show impressive flight skills. Several publications addressed the details of this flight apparatus like: sclerites, wings, musculature, and flight aerodynamics. However, 3D-analysis of the thorax musculature of adult dragonflies was not studied before and this paper allows for a detailed insight. We, therefore, focused on the thorax musculature of adult Anisoptera using micro-computed tomography. Herewith, we present a comparative morphological approach to identify differences within Anisoptera: Aeshnidae, Corduliidae, Gomphidae, and Libellulidae. In total, 54 muscles were identified: 16 prothoracic, 19 mesothoracic, and 19 metathoracic. Recorded differences were for example, the reduction of muscle Idlm4 and an additional muscle IIIdlm1 in Aeshna cyanea, previously described as rudimentary or missing. Muscle Iscm1, which was previously reported missing in all Odonata, was found in all investigated species. The attachment of muscle IIpcm2 in Pantala flavescens is interpreted as a probable adaption to its long-distance migration behaviour. Furthermore, we present a review of functions of the odonatan flight muscles, considering previous publications. The data herein set a basis for functional and biomechanical studies of the flight apparatus and will therefore lay the foundation for a better understanding of the odonatan flight. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Computer Vision Evidence Supporting Craniometric Alignment of Rat Brain Atlases to Streamline Expert-Guided, First-Order Migration of Hypothalamic Spatial Datasets Related to Behavioral Control

    PubMed Central

    Khan, Arshad M.; Perez, Jose G.; Wells, Claire E.; Fuentes, Olac

    2018-01-01

    The rat has arguably the most widely studied brain among all animals, with numerous reference atlases for rat brain having been published since 1946. For example, many neuroscientists have used the atlases of Paxinos and Watson (PW, first published in 1982) or Swanson (S, first published in 1992) as guides to probe or map specific rat brain structures and their connections. Despite nearly three decades of contemporaneous publication, no independent attempt has been made to establish a basic framework that allows data mapped in PW to be placed in register with S, or vice versa. Such data migration would allow scientists to accurately contextualize neuroanatomical data mapped exclusively in only one atlas with data mapped in the other. Here, we provide a tool that allows levels from any of the seven published editions of atlases comprising three distinct PW reference spaces to be aligned to atlas levels from any of the four published editions representing S reference space. This alignment is based on registration of the anteroposterior stereotaxic coordinate (z) measured from the skull landmark, Bregma (β). Atlas level alignments performed along the z axis using one-dimensional Cleveland dot plots were in general agreement with alignments obtained independently using a custom-made computer vision application that utilized the scale-invariant feature transform (SIFT) and Random Sample Consensus (RANSAC) operation to compare regions of interest in photomicrographs of Nissl-stained tissue sections from the PW and S reference spaces. We show that z-aligned point source data (unpublished hypothalamic microinjection sites) can be migrated from PW to S space to a first-order approximation in the mediolateral and dorsoventral dimensions using anisotropic scaling of the vector-formatted atlas templates, together with expert-guided relocation of obvious outliers in the migrated datasets. The migrated data can be contextualized with other datasets mapped in S space, including neuronal cell bodies, axons, and chemoarchitecture; to generate data-constrained hypotheses difficult to formulate otherwise. The alignment strategies provided in this study constitute a basic starting point for first-order, user-guided data migration between PW and S reference spaces along three dimensions that is potentially extensible to other spatial reference systems for the rat brain. PMID:29765309

  6. Strategies for prevention of iatrogenic inferior vena cava filter entrapment and dislodgement during central venous catheter placement.

    PubMed

    Wu, Alex; Helo, Naseem; Moon, Eunice; Tam, Matthew; Kapoor, Baljendra; Wang, Weiping

    2014-01-01

    Iatrogenic migration of inferior vena cava (IVC) filters is a potentially life-threatening complication that can arise during blind insertion of central venous catheters when the guide wire becomes entangled with the filter. In this study, we reviewed the occurrence of iatrogenic migration of IVC filters in the literature and assessed methods for preventing this complication. A literature search was conducted to identify reports of filter/wire entrapment and subsequent IVC filter migration. Clinical outcomes and complications were identified. A total of 38 cases of filter/wire entrapment were identified. All of these cases involved J-tip guide wires. Filters included 23 Greenfield filters, 14 VenaTech filters, and one TrapEase filter. In 18 cases of filter/wire entrapment, there was migration of the filter to the heart and other central venous structures. Retrieval of the migrated filter was successful in only four of the 18 cases, and all of these cases were complicated by strut fracture and distant embolization of fragments. One patient required resuscitation during retrieval. Successful disengagement was possible in 20 cases without filter migration. Iatrogenic migration of an IVC filter is an uncommon complication related to wire/filter entrapment. This complication can be prevented with knowledge of the patient's history, use of proper techniques when placing a central venous catheter, identification of wire entrapment at an early stage, and use of an appropriate technique to disengage an entrapped wire. Copyright © 2014 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  7. Exploring the Climate Change, Migration and Conflict Nexus.

    PubMed

    Burrows, Kate; Kinney, Patrick L

    2016-04-22

    The potential link between climate change, migration, and conflict has been widely discussed and is increasingly viewed by policy makers as a security issue. However, considerable uncertainty remains regarding the role that climate variability and change play among the many drivers of migration and conflict. The overall objective of this paper is to explore the potential pathways linking climate change, migration and increased risk of conflict. We review the existing literature surrounding this issue and break the problem into two components: the links between climate change and migration, and those between migration and conflict. We found a large range of views regarding the importance of climate change as a driver for increasing rates of migration and subsequently of conflict. We argue that future research should focus not only on the climate-migration-conflict pathway but also work to understand the other pathways by which climate variability and change might exacerbate conflict. We conclude by proposing five questions to help guide future research on the link between climate change, migration, and conflict.

  8. Exploring the Climate Change, Migration and Conflict Nexus

    PubMed Central

    Burrows, Kate; Kinney, Patrick L.

    2016-01-01

    The potential link between climate change, migration, and conflict has been widely discussed and is increasingly viewed by policy makers as a security issue. However, considerable uncertainty remains regarding the role that climate variability and change play among the many drivers of migration and conflict. The overall objective of this paper is to explore the potential pathways linking climate change, migration and increased risk of conflict. We review the existing literature surrounding this issue and break the problem into two components: the links between climate change and migration, and those between migration and conflict. We found a large range of views regarding the importance of climate change as a driver for increasing rates of migration and subsequently of conflict. We argue that future research should focus not only on the climate-migration-conflict pathway but also work to understand the other pathways by which climate variability and change might exacerbate conflict. We conclude by proposing five questions to help guide future research on the link between climate change, migration, and conflict. PMID:27110806

  9. DIY guide-needle-assisted conjunctivodacryocystorhinostomy (CDCR).

    PubMed

    Paik, Ji-Sun; Kim, Su-Ah; Doh, Sang-Hee

    2013-01-01

    In this study, we introduce DIY guide-needle-assisted conjunctivodacryocystorhinostomy (CDCR), in which a guide needle helps in measuring the initial Jones tube length for insertion and reduces unnecessary handling for tube changes. Three CDCR procedures were conducted in which the length of the Jones tube was calculated using a 22-gauge DIY guide needle, and a prospective study of tube position change and migration, (a major cause of CDCR failure) was done. Wound healing was almost complete within 4 weeks postoperatively in the osteotomy site, but in cases of partial middle turbinectomy, a little more time was necessary. There was a slight change in Jones tube position in the nasal cavity compared with the expected position of original tube tip, but no tube migration from the caruncle fixation position had occurred by the final follow-up time. This guide-needle-assisted CDCR has multiple advantages, such as easy measurement of the proper initial tube size, utilization of the initial needle path, and easy replacement of tubes. Finally, this approach to CDCR can be readily applied because it uses materials ordinarily found in hospitals to create the devices needed for the procedure, so there is no additional cost.

  10. Differential regulation of microtubule severing by APC underlies distinct patterns of projection neuron and interneuron migration

    PubMed Central

    Eom, Tae-Yeon; Stanco, Amelia; Guo, Jiami; Wilkins, Gary; Deslauriers, Danielle; Yan, Jessica; Monckton, Chase; Blair, Josh; Oon, Eesim; Perez, Abby; Salas, Eduardo; Oh, Adrianna; Ghukasyan, Vladimir; Snider, William D.; Rubenstein, John L. R.; Anton, E. S.

    2014-01-01

    Coordinated migration of distinct classes of neurons to appropriate positions leads to the formation of functional neuronal circuitry in the cerebral cortex. Two major classes of cortical neurons, interneurons and projection neurons, utilize distinctly different modes (radial vs. tangential) and routes of migration to arrive at their final positions in the cerebral cortex. Here, we show that adenomatous polyposis coli (APC) modulates microtubule (MT) severing in interneurons to facilitate tangential mode of interneuron migration, but not the glial-guided, radial migration of projection neurons. APC regulates the stability and activity of the MT severing protein p60-katanin in interneurons to promote the rapid remodeling of neuronal processes necessary for interneuron migration. These findings reveal how severing and restructuring of MTs facilitate distinct modes of neuronal migration necessary for laminar organization of neurons in the developing cerebral cortex. PMID:25535916

  11. Towards a Low-Cost Quadrotor Research Platform

    DTIC Science & Technology

    2010-03-01

    FIGURES Figure 1. Quadrotor schematic showing rotor direction of rotation (From [2])................3 Figure 2. Toy quadrotor: Walkera UFO (from...Some examples are the Walkera UFO #5, Walkera UFO #8, Dragonfly, and Alien Air Jump Jet. Figure 2. Toy quadrotor: Walkera UFO (from Walkera...the X- UFO made by Silverlit Electronics used small mechanical gyros. These were relatively cheap due to low-cost labor, but suffered from mechanical

  12. Transmission of Microsporidian Parasites of Mosquitoes.

    DTIC Science & Technology

    1983-06-01

    aquatic animals in a 19. spore suspension, including ostracods, amphipods, spiders, beetle larvae, and phantom midges, 2) Feeding spores to crayfish...dragonfly larvae, damselfly larvae, water scorpions, beetles , Anopheles larvae, snails, and sosquitofish. In experiment 1, no germination was seen. In... rhinoceros from Tonga. J. Gen. Virol. 47, 431-438. Ohtaki, T. and C.M. Williams. 1970. Inactivation of -- ecdysone and cyas- terone by larvae of the flesh fly

  13. Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes.

    PubMed

    Park, Hyungmin; Choi, Haecheon

    2012-03-01

    In the present study, we conduct an experiment using a one-paired dynamically scaled model of an insect wing, to investigate how asymmetric strokes with different wing kinematic parameters are used to control the aerodynamics of a dragonfly-like inclined flapping wing in still fluid. The kinematic parameters considered are the angles of attack during the mid-downstroke (α(md)) and mid-upstroke (α(mu)), and the duration (Δτ) and time of initiation (τ(p)) of the pitching rotation. The present dragonfly-like inclined flapping wing has the aerodynamic mechanism of unsteady force generation similar to those of other insect wings in a horizontal stroke plane, but the detailed effect of the wing kinematics on the force control is different due to the asymmetric use of the angle of attack during the up- and downstrokes. For example, high α(md) and low α(mu) produces larger vertical force with less aerodynamic power, and low α(md) and high α(mu) is recommended for horizontal force (thrust) production. The pitching rotation also affects the aerodynamics of a flapping wing, but its dynamic rotational effect is much weaker than the effect from the kinematic change in the angle of attack caused by the pitching rotation. Thus, the influences of the duration and timing of pitching rotation for the present inclined flapping wing are found to be very different from those for a horizontal flapping wing. That is, for the inclined flapping motion, the advanced and delayed rotations produce smaller vertical forces than the symmetric one and the effect of pitching duration is very small. On the other hand, for a specific range of pitching rotation timing, delayed rotation requires less aerodynamic power than the symmetric rotation. As for the horizontal force, delayed rotation with low α(md) and high α(mu) is recommended for long-duration flight owing to its high efficiency, and advanced rotation should be employed for hovering flight for nearly zero horizontal force. The present study suggests that manipulating the angle of attack during a flapping cycle is the most effective way to control the aerodynamic forces and corresponding power expenditure for a dragonfly-like inclined flapping wing.

  14. Book review of Dragonfly Genera of the New World. An Illustrated and Annotated Key to the Anisoptera. Garrison, R.W., N. Von Ellenrieder and J.A. Louton, Johns Hopkins Univ. Press, Baltimore, MD. xi+368 pp. Hardback, ISBN 0-8018-8446-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannings, R.A.

    2007-03-15

    This superb book is the most important reference on the Order Odonata to appear since the 1999 publication of Philip Corbet's monumental work on the behavior and ecology of Odonata. In the context of specimen identification and faunistics, it is the most significant contribution in decades, for it opens a new door to the most diverse and least known dragonfly fauna on Earth, that of the Neotropical Region. The book treats the genera of all the New World dragonflies, but while the Nearctic Anisoptera (at least north of the Mexican border) is extensively summarized in many taxonomic and identification manualsmore » (e.g., Needham et al. 2000), the Neotropical fauna remains rather poorly known. Much of it still is undescribed and taxonomic syntheses are few and far between. This is partly because of its huge diversity, the remoteness of much of the region, and the relative scarcity of specimens in collections. As T. W. Donnelly (2006) noted in a recent review of this book, the New World tropics have always been a challenge to biologists in many disciplines because the region was first colonized by the Spanish and Portuguese who largely lacked the tradition of natural history studies characteristic of the British, French, Dutch and Germans in Africa, India or Southeast Asia. In South America there simply was no F. C. Fraser to write an equivalent to his three volumes on the Odonata in The Fauna of British India. Borror (1945) was an early and wonderful resource for deciphering the genera of the large family Libellulidae in the Americas. Calvert's hard-to-find contributions on the Odonata (1902-1908) in the Biologia Centrali-Americana helped students of the Central American fauna; the updated equivalent by Foerster (2001) for Mesoamerican genera is also important. But as far as syntheses and overviews, that's about all there was - until now.« less

  15. New effects of Roundup on amphibians: predators reduce herbicide mortality; herbicides induce antipredator morphology.

    PubMed

    Relyea, Rick A

    2012-03-01

    The use of pesticides is important for growing crops and protecting human health by reducing the prevalence of targeted pest species. However, less attention is given to the potential unintended effects on nontarget species, including taxonomic groups that are of current conservation concern. One issue raised in recent years is the potential for pesticides to become more lethal in the presence of predatory cues, a phenomenon observed thus far only in the laboratory. A second issue is whether pesticides can induce unintended trait changes in nontarget species, particularly trait changes that might mimic adaptive responses to natural environmental stressors. Using outdoor mesocosms, I created simple wetland communities containing leaf litter, algae, zooplankton, and three species of tadpoles (wood frogs [Rana sylvatica or Lithobates sylvaticus], leopard frogs [R. pipiens or L. pipiens], and American toads [Bufo americanus or Anaxyrus americanus]). I exposed the communities to a factorial combination of environmentally relevant herbicide concentrations (0, 1, 2, or 3 mg acid equivalents [a.e.]/L of Roundup Original MAX) crossed with three predator-cue treatments (no predators, adult newts [Notophthalmus viridescens], or larval dragonflies [Anax junius]). Without predator cues, mortality rates from Roundup were consistent with past studies. Combined with cues from the most risky predator (i.e., dragonflies), Roundup became less lethal (in direct contrast to past laboratory studies). This reduction in mortality was likely caused by the herbicide stratifying in the water column and predator cues scaring the tadpoles down to the benthos where herbicide concentrations were lower. Even more striking was the discovery that Roundup induced morphological changes in the tadpoles. In wood frog and leopard frog tadpoles, Roundup induced relatively deeper tails in the same direction and of the same magnitude as the adaptive changes induced by dragonfly cues. To my knowledge, this is the first study to show that a pesticide can induce morphological changes in a vertebrate. Moreover, the data suggest that the herbicide might be activating the tadpoles' developmental pathways used for antipredator responses. Collectively, these discoveries suggest that the world's most widely applied herbicide may have much further-reaching effects on nontarget species than previous considered.

  16. Differentiating the effects of climate and land use change on European biodiversity: A scenario analysis.

    PubMed

    Vermaat, Jan E; Hellmann, Fritz A; van Teeffelen, Astrid J A; van Minnen, Jelle; Alkemade, Rob; Billeter, Regula; Beierkuhnlein, Carl; Boitani, Luigi; Cabeza, Mar; Feld, Christian K; Huntley, Brian; Paterson, James; WallisDeVries, Michiel F

    2017-04-01

    Current observed as well as projected changes in biodiversity are the result of multiple interacting factors, with land use and climate change often marked as most important drivers. We aimed to disentangle the separate impacts of these two for sets of vascular plant, bird, butterfly and dragonfly species listed as characteristic for European dry grasslands and wetlands, two habitats of high and threatened biodiversity. We combined articulations of the four frequently used SRES climate scenarios and associated land use change projections for 2030, and assessed their impact on population trends in species (i.e. whether they would probably be declining, stable or increasing). We used the BIOSCORE database tool, which allows assessment of the effects of a range of environmental pressures including climate change as well as land use change. We updated the species lists included in this tool for our two habitat types. We projected species change for two spatial scales: the EU27 covering most of Europe, and the more restricted biogeographic region of 'Continental Europe'. Other environmental pressures modelled for the four scenarios than land use and climate change generally did not explain a significant part of the variance in species richness change. Changes in characteristic bird and dragonfly species were least pronounced. Land use change was the most important driver for vascular plants in both habitats and spatial scales, leading to a decline in 50-100% of the species included, whereas climate change was more important for wetland dragonflies and birds (40-50 %). Patterns of species decline were similar in continental Europe and the EU27 for wetlands but differed for dry grasslands, where a substantially lower proportion of butterflies and birds declined in continental Europe, and 50 % of bird species increased, probably linked to a projected increase in semi-natural vegetation. In line with the literature using climate envelope models, we found little divergence among the four scenarios. Our findings suggest targeted policies depending on habitat and species group. These are, for dry grasslands, to reduce land use change or its effects and to enhance connectivity, and for wetlands to mitigate climate change effects.

  17. The Mechanics of Single Cell and Collective Migration of Tumor Cells

    PubMed Central

    Lintz, Marianne; Muñoz, Adam; Reinhart-King, Cynthia A.

    2017-01-01

    Metastasis is a dynamic process in which cancer cells navigate the tumor microenvironment, largely guided by external chemical and mechanical cues. Our current understanding of metastatic cell migration has relied primarily on studies of single cell migration, most of which have been performed using two-dimensional (2D) cell culture techniques and, more recently, using three-dimensional (3D) scaffolds. However, the current paradigm focused on single cell movements is shifting toward the idea that collective migration is likely one of the primary modes of migration during metastasis of many solid tumors. Not surprisingly, the mechanics of collective migration differ significantly from single cell movements. As such, techniques must be developed that enable in-depth analysis of collective migration, and those for examining single cell migration should be adopted and modified to study collective migration to allow for accurate comparison of the two. In this review, we will describe engineering approaches for studying metastatic migration, both single cell and collective, and how these approaches have yielded significant insight into the mechanics governing each process. PMID:27814431

  18. In vitro evaluation of the human gingival fibroblast/gingival mesenchymal stem cell dynamics through perforated guided tissue membranes: cell migration, proliferation and membrane stiffness assay.

    PubMed

    Gamal, A Y; Al-Berry, N N; Hassan, A A; Rashed, L A; Iacono, V J

    2017-06-01

    Migration of gingival fibroblasts/gingival mesenchymal stem cells through macro-perforated barrier membranes may allow them to participate positively in periodontal regeneration. The optimal guided tissue membrane perforation diameter that could favor maximum cell migration into the defect area and at the same time act as an occlusive barrier for gingival epithelium and its associated gingival extracellular matrix component is not yet identified. Cultured human gingival fibroblasts/gingival mesenchymal stem cells were placed in the upper chambers of 12-well collagen-coated polytetrafluoroethylene transwells, which were manually perforated with 0.2, 0.4 and 0.7 mm sized pores. The lower chambers of the transwells received blood clot as an attraction medium. The number of cells that have migrated to the lower chambers was calculated. Proliferation of these cells was evaluated using MTT assay. Scanning electron microscopy images were obtained for the lower surfaces of the transwell membranes. Perforated bovine collagen membranes (Tutopatch ® ) were subjected to mechanical testing to determine the tensile strength and modulus of elasticity. Group 3 (0.7 mm) showed significantly higher values for cell migration and proliferation. All groups showed a small degree of extracellular matrix migration through membrane perforations. Scanning electron microscopy evaluation revealed variable numbers of cells in fibrin matrices located mainly around the pore edges. There were non-significant differences between groups regarding mechanical properties. The present study demonstrated that macro-membrane perforations of 0.2, 0.4 and 0.7 mm are suitable pore diameters that could maintain membrane stiffness and allow for cellular migration. However, these membrane perforation diameters did not allow for total gingival connective tissue isolation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Invite wildlife to your backyard

    Treesearch

    Jack Ward Thomas; Robert O. Brush; Richard M. DeGraaf

    1973-01-01

    Go out in your backyard and look around. Watch the fish weaving among the water lilies, the dragonflies moving in glittering arcs above the little pool. Don't move – the robins are busy feeding their youngsters in that nest above your head; squirrels are edging down the beech trunks behind you and darting into the shrubbery. The wisteria on your stone wall is...

  20. Thermal acclimation modulates the impacts of temperature and enrichment on trophic interaction strengths and population dynamics.

    PubMed

    Sentis, Arnaud; Morisson, Julie; Boukal, David S

    2015-09-01

    Global change affects individual phenotypes and biotic interactions, which can have cascading effects up to the ecosystem level. However, the role of environmentally induced phenotypic plasticity in species interactions is poorly understood, leaving a substantial gap in our knowledge of the impacts of global change on ecosystems. Using a cladoceran-dragonfly system, we experimentally investigated the effects of thermal acclimation, acute temperature change and enrichment on predator functional response and metabolic rate. Using our experimental data, we next parameterized a population dynamics model to determine the consequences of these effects on trophic interaction strength and food-chain stability. We found that (1) predation and metabolic rates of the dragonfly larvae increase with acute warming, (2) warm-acclimated larvae have a higher maximum predation rate than cold-acclimated ones, and (3) long-term interaction strength increases with enrichment but decreases with both acclimation and acute temperatures. Overall, our experimental results show that thermal acclimation can buffer negative impacts of environmental change on predators and increase food-web stability and persistence. We conclude that the effect of acclimation and, more generally, phenotypic plasticity on trophic interactions should not be overlooked if we aim to understand the effects of climate change and enrichment on species interaction strength and food-web stability. © 2015 John Wiley & Sons Ltd.

  1. Dragonfly Mercury Project—A citizen science driven approach to linking surface-water chemistry and landscape characteristics to biosentinels on a national scale

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Nelson, Sarah J.; Willacker,, James J.; Flanagan Pritz, Colleen M.; Krabbenhoft, David P.

    2016-02-29

    Mercury is a globally distributed pollutant that threatens human and ecosystem health. Even protected areas, such as national parks, are subjected to mercury contamination because it is delivered through atmospheric deposition, often after long-range transport. In aquatic ecosystems, certain environmental conditions can promote microbial processes that convert inorganic mercury to an organic form (methylmercury). Methylmercury biomagnifies through food webs and is a potent neurotoxicant and endocrine disruptor. The U.S. Geological Survey (USGS), the University of Maine, and the National Park Service (NPS) Air Resources Division are working in partnership at more than 50 national parks across the United States, and with citizen scientists as key participants in data collection, to develop dragonfly nymphs as biosentinels for mercury in aquatic food webs. To validate the use of these biosentinels, and gain a better understanding of the connection between biotic and abiotic pools of mercury, this project also includes collection of landscape data and surface-water chemistry including mercury, methylmercury, pH, sulfate, and dissolved organic carbon and sediment mercury concentration. Because of the wide geographic scope of the research, the project also provides a nationwide “snapshot” of mercury in primarily undeveloped watersheds.

  2. Effects of multiple vein microjoints on the mechanical behaviour of dragonfly wings: numerical modelling

    PubMed Central

    Rajabi, H.; Ghoroubi, N.; Darvizeh, A.; Appel, E.; Gorb, S. N.

    2016-01-01

    Dragonfly wings are known as biological composites with high morphological complexity. They mainly consist of a network of rigid veins and flexible membranes, and enable insects to perform various flight manoeuvres. Although several studies have been done on the aerodynamic performance of Odonata wings and the mechanisms involved in their deformations, little is known about the influence of vein joints on the passive deformability of the wings in flight. In this article, we present the first three-dimensional finite-element models of five different vein joint combinations observed in Odonata wings. The results from the analysis of the models subjected to uniform pressures on their dorsal and ventral surfaces indicate the influence of spike-associated vein joints on the dorsoventral asymmetry of wing deformation. Our study also supports the idea that a single vein joint may result in different angular deformations when it is surrounded by different joint types. The developed numerical models also enabled us to simulate the camber formation and stress distribution in the models. The computational data further provide deeper insights into the functional role of resilin patches and spikes in vein joint structures. This study might help to more realistically model the complex structure of insect wings in order to design more efficient bioinspired micro-air vehicles in future. PMID:27069649

  3. Computational biomechanics changes our view on insect head evolution.

    PubMed

    Blanke, Alexander; Watson, Peter J; Holbrey, Richard; Fagan, Michael J

    2017-02-08

    Despite large-scale molecular attempts, the relationships of the basal winged insect lineages dragonflies, mayflies and neopterans, are still unresolved. Other data sources, such as morphology, suffer from unclear functional dependencies of the structures considered, which might mislead phylogenetic inference. Here, we assess this problem by combining for the first time biomechanics with phylogenetics using two advanced engineering techniques, multibody dynamics analysis and finite-element analysis, to objectively identify functional linkages in insect head structures which have been used traditionally to argue basal winged insect relationships. With a biomechanical model of unprecedented detail, we are able to investigate the mechanics of morphological characters under biologically realistic load, i.e. biting. We show that a range of head characters, mainly ridges, endoskeletal elements and joints, are indeed mechanically linked to each other. An analysis of character state correlation in a morphological data matrix focused on head characters shows highly significant correlation of these mechanically linked structures. Phylogenetic tree reconstruction under different data exclusion schemes based on the correlation analysis unambiguously supports a sistergroup relationship of dragonflies and mayflies. The combination of biomechanics and phylogenetics as it is proposed here could be a promising approach to assess functional dependencies in many organisms to increase our understanding of phenotypic evolution. © 2017 The Author(s).

  4. Electric Signals Regulate the Directional Migration of Oligodendrocyte Progenitor Cells (OPCs) via β1 Integrin.

    PubMed

    Zhu, Bangfu; Nicholls, Matthew; Gu, Yu; Zhang, Gaofeng; Zhao, Chao; Franklin, Robin J M; Song, Bing

    2016-11-22

    The guided migration of neural cells is essential for repair in the central nervous system (CNS). Oligodendrocyte progenitor cells (OPCs) will normally migrate towards an injury site to re-sheath demyelinated axons; however the mechanisms underlying this process are not well understood. Endogenous electric fields (EFs) are known to influence cell migration in vivo, and have been utilised in this study to direct the migration of OPCs isolated from neonatal Sprague-Dawley rats. The OPCs were exposed to physiological levels of electrical stimulation, and displayed a marked electrotactic response that was dependent on β1 integrin, one of the key subunits of integrin receptors. We also observed that F-actin, an important component of the cytoskeleton, was re-distributed towards the leading edge of the migrating cells, and that this asymmetric rearrangement was associated with β1 integrin function.

  5. People of the Prairies: A Norwegian and German-Russian Curriculum Guide.

    ERIC Educational Resources Information Center

    Tabbert, Jon Charles, Ed.; Peterson, Fredrick E., Ed.

    The guide presents secondary level units designed to promote understanding of the two largest ethnic groups in North Dakota, the Norwegians and the German-Russians. The book is presented in five parts. Part I provides an historical overview of the Norwegian and German-Russian migration to North Dakota. Part II presents three Norwegian units on…

  6. The Caenorhabditis elegans Q neuroblasts: A powerful system to study cell migration at single-cell resolution in vivo.

    PubMed

    Rella, Lorenzo; Fernandes Póvoa, Euclides E; Korswagen, Hendrik C

    2016-04-01

    During development, cell migration plays a central role in the formation of tissues and organs. Understanding the molecular mechanisms that drive and control these migrations is a key challenge in developmental biology that will provide important insights into disease processes, including cancer cell metastasis. In this article, we discuss the Caenorhabditis elegans Q neuroblasts and their descendants as a tool to study cell migration at single-cell resolution in vivo. The highly stereotypical migration of these cells provides a powerful system to study the dynamic cytoskeletal processes that drive migration as well as the evolutionarily conserved signaling pathways (including different Wnt signaling cascades) that guide the cells along their specific trajectories. Here, we provide an overview of what is currently known about Q neuroblast migration and highlight the live-cell imaging, genome editing, and quantitative gene expression techniques that have been developed to study this process. © 2016 Wiley Periodicals, Inc.

  7. Changing the West Through Migration, Episode V. Resource Material Development: Population Dynamics in Eighth Grade American History.

    ERIC Educational Resources Information Center

    Massialas, Byron G.; And Others

    This is the fifth unit in a series that introduces population concepts into the eighth grade American history curriculum. (See SO 013 782 for an overview of the guide.) In Episode V, the history topic is westward movement, Civil War, and Reconstruction. Objectives are to help the student to (1) examine the westward migration in terms of its effect…

  8. Qualifying Work Activities in Louisiana: A Recruiter's Guide To Documenting Eligibility for Migrant Education. Louisiana Migrant Education Program.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge. Bureau of Migrant Education.

    This manual was written as a guide for state migrant education recruiters who need to be familiar with the nature of seasonal and temporary work performed by Louisiana's migrating agricultural workers and fishing industry laborers. It is intended to teach recruiters about the agricultural and fishing activities necessary for raising and harvesting…

  9. Reviewing the relevance of fluorescence in biological systems.

    PubMed

    Lagorio, M Gabriela; Cordon, Gabriela B; Iriel, Analia

    2015-09-26

    Fluorescence is emitted by diverse living organisms. The analysis and interpretation of these signals may give information about their physiological state, ways of communication among species and the presence of specific chemicals. In this manuscript we review the state of the art in the research on the fluorescence emitted by plant leaves, fruits, flowers, avians, butterflies, beetles, dragonflies, millipedes, cockroaches, bees, spiders, scorpions and sea organisms and discuss its relevance in nature.

  10. C-5M Super Galaxy Utilization with Joint Precision Airdrop System

    DTIC Science & Technology

    2012-03-22

    System Notes FireFly 900-2,200 Steerable Parafoil Screamer 500-2,200 Steerable Parafoil w/additional chutes to slow touchdown Dragonfly...setting . This initial feasible solution provides the Nonlinear Program algorithm a starting point to continue its calculations. The model continues...provides the NLP with a starting point of 1. This provides the NLP algorithm a point within the feasible region to begin its calculations in an attempt

  11. Neuronal cell migration in C. elegans: regulation of Hox gene expression and cell position.

    PubMed

    Harris, J; Honigberg, L; Robinson, N; Kenyon, C

    1996-10-01

    In C. elegans, the Hox gene mab-5, which specifies the fates of cells in the posterior body region, has been shown to direct the migrations of certain cells within its domain of function. mab-5 expression switches on in the neuroblast QL as it migrates into the posterior body region. mab-5 activity is then required for the descendants of QL to migrate to posterior rather than anterior positions. What information activates Hox gene expression during this cell migration? How are these cells subsequently guided to their final positions? We address these questions by describing four genes, egl-20, mig-14, mig-1 and lin-17, that are required to activate expression of mab-5 during migration of the QL neuroblast. We find that two of these genes, egl-20 and mig-14, also act in a mab-5-independent way to determine the final stopping points of the migrating Q descendants. The Q descendants do not migrate toward any obvious physical targets in wild-type or mutant animals. Therefore, these genes appear to be part of a system that positions the migrating Q descendants along the anteroposterior axis.

  12. Long-term outcomes of a newly developed hybrid metal stent for EUS-guided biliary drainage (with videos).

    PubMed

    Cho, Dong Hui; Lee, Sang Soo; Oh, Dongwook; Song, Tae Jun; Park, Do Hyun; Seo, Dong Wan; Lee, Sung Koo; Kim, Myung-Hwan

    2017-05-01

    Although fully covered self-expandable metal stents (FCSEMSs) have been commonly used for EUS-guided biliary drainage (EUS-BD), FCSEMS migration is a main limitation of this procedure. In the present study we evaluated the technical and clinical success rates, adverse events, and long-term outcomes of a newly developed hybrid stent that has been customized for EUS-BD. From September 2011 to May 2015, 54 consecutive patients with biliary obstruction were enrolled in this prospective, observational study. These patients were candidates for alternative BD techniques because of failed ERCP. The hybrid metal stent used for EUS-BD in this study was partially covered, had anchoring flaps, and is commercially available in Korea. EUS-guided hepaticogastrostomy (EUS-HGS) was performed in 21 patients and EUS-guided choledochoduodenostomy (EUS-CDS) in 33 patients. The technical and clinical success rates of EUS-BD were 100% (54/54) and 94.4% (51/54), respectively. Immediate adverse events developed after EUS-BD in 9 patients (16.6%; cholangitis in 3, bleeding in 2, self-limited pneumoperitoneum in 3, and abdominal pain in 1). Proximal or distal stent migration was not observed during the follow-up period (median, 148.5 days; IQR, 79.7-244), and the mean stent patency duration was 166.3 days and 329.1 days in the EUS-HGS and EUS-CDS groups, respectively. EUS-BD with the hybrid metal stent is technically feasible and can effectively treat biliary obstruction after failed ERCP. EUS-BD with the hybrid metal stent can reduce stent-related adverse events, especially stent migration. Copyright © 2017 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  13. [Retrieval of a migrated plastic stent in a 51-year-old man].

    PubMed

    Poszler, A; Klare, P; Weber, A; Abdelhafez, M; Holzapfel, K; Schmid, R M; von Delius, S

    2018-04-16

    Endosonographically guided transgastric drainage is the first-line interventional therapy of walled-off necrosis and symptomatic pancreatic pseudocysts in necrotizing pancreatitis. Plastic stents or lumen apposing metal stents are commonly used. A possible complication of endoscopic therapy is stent migration. We report upon a 51-year-old man who presented with acute necrotizing pancreatitis. Transgastric necrosectomy was performed and 5 transmural double-pigtail stents (DPS) were left in situ to drain the residual retroperitoneal cavity. The patient recovered and 4 stents were endoscopically removed 5 weeks later on an outpatient basis, whereas the fifth stent was suspected to have passed spontaneously via the natural route. The asymptomatic patient presented 3 months later for follow-up computed tomography. The necrosis had healed but one DPS was seen beyond the gastric wall near the kidney. Transmural access to the stent could be achieved by an endosonographically guided puncture toward the proximal portion of the stent followed by placement of a hydrophilic guidewire alongside the stent. A new gastrostomy was created by using a 6F cystotome followed by wire-guided dilation with a 12 mm balloon. The stent could then be grasped with transmurally inserted rat-tooth forceps and repositioned across the gastrostomy site. The patient was given prophylactic antibiotics. After removal of the stent, the patient could be discharged. Herein, we present the successful endosonographically guided transmural removal of a retroperitoneally migrated plastic stent. Of note, in our patient we had to rely completely on endosonography and radiography for localization and targeting of the stent, since the former necrotic cavity had meanwhile completely healed.

  14. Silk Film Topography Directs Collective Epithelial Cell Migration

    PubMed Central

    Rosenblatt, Mark I.

    2012-01-01

    The following study provides new insight into how surface topography dictates directed collective epithelial cell sheet growth through the guidance of individual cell movement. Collective cell behavior of migrating human corneal limbal-epithelial cell sheets were studied on highly biocompatible flat and micro-patterned silk film surfaces. The silk film edge topography guided the migratory direction of individual cells making up the collective epithelial sheet, which resulted in a 75% increase in total culture elongation. This was due to a 3-fold decrease in cell sheet migration rate efficiency for movement perpendicular to the topography edge. Individual cell migration direction is preferred in the parallel approach to the edge topography where localization of cytoskeletal proteins to the topography’s edge region is reduced, which results in the directed growth of the collective epithelial sheet. Findings indicate customized biomaterial surfaces may be created to direct both the migration rate and direction of tissue epithelialization. PMID:23185573

  15. Glial cell migration in the eye disc.

    PubMed

    Silies, Marion; Yuva, Yeliz; Engelen, Daniel; Aho, Annukka; Stork, Tobias; Klämbt, Christian

    2007-11-28

    Any complex nervous system is made out of two major cell types, neurons and glial cells. A hallmark of glial cells is their pronounced ability to migrate. En route to their final destinations, glial cells are generally guided by neuronal signals. Here we show that in the developing visual system of Drosophila glial cell migration is largely controlled by glial-glial interactions and occurs independently of axonal contact. Differentiation into wrapping glia is initiated close to the morphogenetic furrow. Using single cell labeling experiments we identified six distinct glial cell types in the eye disc. The migratory glial population is separated from the wrapping glial cells by the so-called carpet cells, extraordinary large glial cells, each covering a surface area of approximately 10,000 epithelial cells. Subsequent cell ablation experiments demonstrate that the carpet glia regulates glial migration in the eye disc epithelium and suggest a new model underlying glial migration and differentiation in the developing visual system.

  16. Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin.

    PubMed

    Erdogan, Begum; Ao, Mingfang; White, Lauren M; Means, Anna L; Brewer, Bryson M; Yang, Lijie; Washington, M Kay; Shi, Chanjuan; Franco, Omar E; Weaver, Alissa M; Hayward, Simon W; Li, Deyu; Webb, Donna J

    2017-11-06

    Cancer-associated fibroblasts (CAFs) are major components of the carcinoma microenvironment that promote tumor progression. However, the mechanisms by which CAFs regulate cancer cell migration are poorly understood. In this study, we show that fibronectin (Fn) assembled by CAFs mediates CAF-cancer cell association and directional migration. Compared with normal fibroblasts, CAFs produce an Fn-rich extracellular matrix with anisotropic fiber orientation, which guides the cancer cells to migrate directionally. CAFs align the Fn matrix by increasing nonmuscle myosin II- and platelet-derived growth factor receptor α-mediated contractility and traction forces, which are transduced to Fn through α5β1 integrin. We further show that prostate cancer cells use αv integrin to migrate efficiently and directionally on CAF-derived matrices. We demonstrate that aligned Fn is a prominent feature of invasion sites in human prostatic and pancreatic carcinoma samples. Collectively, we present a new mechanism by which CAFs organize the Fn matrix and promote directional cancer cell migration. © 2017 Erdogan et al.

  17. Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin

    PubMed Central

    Ao, Mingfang; White, Lauren M.; Means, Anna L.; Yang, Lijie; Washington, M. Kay; Franco, Omar E.; Li, Deyu; Webb, Donna J.

    2017-01-01

    Cancer-associated fibroblasts (CAFs) are major components of the carcinoma microenvironment that promote tumor progression. However, the mechanisms by which CAFs regulate cancer cell migration are poorly understood. In this study, we show that fibronectin (Fn) assembled by CAFs mediates CAF–cancer cell association and directional migration. Compared with normal fibroblasts, CAFs produce an Fn-rich extracellular matrix with anisotropic fiber orientation, which guides the cancer cells to migrate directionally. CAFs align the Fn matrix by increasing nonmuscle myosin II- and platelet-derived growth factor receptor α–mediated contractility and traction forces, which are transduced to Fn through α5β1 integrin. We further show that prostate cancer cells use αv integrin to migrate efficiently and directionally on CAF-derived matrices. We demonstrate that aligned Fn is a prominent feature of invasion sites in human prostatic and pancreatic carcinoma samples. Collectively, we present a new mechanism by which CAFs organize the Fn matrix and promote directional cancer cell migration. PMID:29021221

  18. Simple Microfluidic Device For Studying Chemotaxis In Response To Dual Gradients

    PubMed Central

    Moussavi-Haramic, S. F.; Pezzi, H. M.; Huttenlocher, A.; Beebe, D. J.

    2016-01-01

    Chemotaxis is a fundamental biological process where complex chemotactic gradients are integrated and prioritized to guide cell migration toward specific locations. To understand the mechanisms of gradient dependent cell migration, it is important to develop in vitro models that recapitulate key attributes of the chemotactic cues present in vivo. Current in vitro tools for studying cell migration are not amenable to easily study the response of neutrophils to dual gradients. Many of these systems require external pumps and complex setups to establish and maintain the gradients. Here we report a simple yet innovative microfluidic device for studying cell migration in the presence of dual chemotactic gradients through a 3-dimensional substrate. The device is tested and validated by studying the migration of the neutrophil-like cell line PLB-985 to gradients of fMLP. Furthermore, the device is expanded and used with heparinised whole blood, whereupon neutrophils were observed to migrate from whole blood towards gradients of fMLP eliminating the need for any neutrophil purification or capture steps. PMID:25893484

  19. Birds and Wetlands of Alaska. Alaska Sea Week Curriculum Series. Alaska Sea Grant Report 88-1.

    ERIC Educational Resources Information Center

    King, James G.; King, Mary Lou

    This curriculum guide is the fourth (Series V) in a six-volume set that comprises the Sea Week Curriculum Series developed in Alaska. Twelve units contain 45 activities with worksheets that cover the following topics: (1) bird lists and field guides; (2) definitions of a bird; (3) parts of a bird; (4) bird watching; (5) bird migration; (6) wetland…

  20. The Algonquin World: Seasons, Cycles, Change. A Guide to the Exhibition (Geneseo, New York, October 18-November 2, 1991).

    ERIC Educational Resources Information Center

    Roark-Calnek, Sue

    This exhibit guide summarizes interpretive texts from the exhibition of Algonquin arts and craftwork assembled by the Folk Arts Program of the BOCES Geneseo Migrant Center in western New York. The Algonquin people migrate to fur farms near East Bloomfield and Holcomb, New York for fall pelting from late October through December. The image of the…

  1. First-Time Migration in Juvenile Common Cuckoos Documented by Satellite Tracking

    PubMed Central

    Willemoes, Mikkel; Thomson, Robert L.; Tolvanen, Jere; Rutila, Jarkko; Samaš, Peter; Strandberg, Roine; Grim, Tomáš; Fossøy, Frode; Stokke, Bård Gunnar; Thorup, Kasper

    2016-01-01

    Being an obligate parasite, juvenile common cuckoos Cuculus canorus are thought to reach their African wintering grounds from Palearctic breeding grounds without guidance from experienced conspecifics but this has not been documented. We used satellite tracking to study naïve migrating common cuckoos. Juvenile cuckoos left breeding sites in Finland moving slowly and less consistently directed than adult cuckoos. Migration of the juveniles (N = 5) was initiated later than adults (N = 20), was directed toward the southwest–significantly different from the initial southeast direction of adults–and included strikingly long Baltic Sea crossings (N = 3). After initial migration of juvenile cuckoos toward Poland, the migration direction changed and proceeded due south, directly toward the winter grounds, as revealed by a single tag transmitting until arrival in Northwest Angola where northern adult cuckoos regularly winter. Compared to adults, the juvenile travelled straighter and faster, potentially correcting for wind drift along the route. That both migration route and timing differed from adults indicates that juvenile cuckoos are able to reach proper wintering grounds independently, guided only by their innate migration programme. PMID:28005960

  2. Dual role for DOCK7 in tangential migration of interneuron precursors in the postnatal forebrain.

    PubMed

    Nakamuta, Shinichi; Yang, Yu-Ting; Wang, Chia-Lin; Gallo, Nicholas B; Yu, Jia-Ray; Tai, Yilin; Van Aelst, Linda

    2017-12-04

    Throughout life, stem cells in the ventricular-subventricular zone generate neuroblasts that migrate via the rostral migratory stream (RMS) to the olfactory bulb, where they differentiate into local interneurons. Although progress has been made toward identifying extracellular factors that guide the migration of these cells, little is known about the intracellular mechanisms that govern the dynamic reshaping of the neuroblasts' morphology required for their migration along the RMS. In this study, we identify DOCK7, a member of the DOCK180-family, as a molecule essential for tangential neuroblast migration in the postnatal mouse forebrain. DOCK7 regulates the migration of these cells by controlling both leading process (LP) extension and somal translocation via distinct pathways. It controls LP stability/growth via a Rac-dependent pathway, likely by modulating microtubule networks while also regulating F-actin remodeling at the cell rear to promote somal translocation via a previously unrecognized myosin phosphatase-RhoA-interacting protein-dependent pathway. The coordinated action of both pathways is required to ensure efficient neuroblast migration along the RMS. © 2017 Nakamuta et al.

  3. Dual role for DOCK7 in tangential migration of interneuron precursors in the postnatal forebrain

    PubMed Central

    Yang, Yu-Ting; Yu, Jia-Ray; Tai, Yilin

    2017-01-01

    Throughout life, stem cells in the ventricular–subventricular zone generate neuroblasts that migrate via the rostral migratory stream (RMS) to the olfactory bulb, where they differentiate into local interneurons. Although progress has been made toward identifying extracellular factors that guide the migration of these cells, little is known about the intracellular mechanisms that govern the dynamic reshaping of the neuroblasts’ morphology required for their migration along the RMS. In this study, we identify DOCK7, a member of the DOCK180-family, as a molecule essential for tangential neuroblast migration in the postnatal mouse forebrain. DOCK7 regulates the migration of these cells by controlling both leading process (LP) extension and somal translocation via distinct pathways. It controls LP stability/growth via a Rac-dependent pathway, likely by modulating microtubule networks while also regulating F-actin remodeling at the cell rear to promote somal translocation via a previously unrecognized myosin phosphatase–RhoA–interacting protein-dependent pathway. The coordinated action of both pathways is required to ensure efficient neuroblast migration along the RMS. PMID:29089377

  4. Innate control of actin nucleation determines two distinct migration behaviours in dendritic cells

    PubMed Central

    Vargas, Pablo; Maiuri, Paolo; Bretou, Marine; Sáez, Pablo J.; Pierobon, Paolo; Maurin, Mathieu; Chabaud, Mélanie; Lankar, Danielle; Obino, Dorian; Terriac, Emmanuel; Raab, Matthew; Thiam, Hawa-Racine; Brocker, Thomas; Kitchen-Goosen, Susan M.; Alberts, Arthur S.; Sunareni, Praveen; Xia, Sheng; Li, Rong; Voituriez, Raphael; Piel, Matthieu; Lennon-Duménil, Ana-Maria

    2018-01-01

    Dendritic cell (DC) migration in peripheral tissues serves two main functions: antigen sampling by immature DCs, and chemokine-guided migration towards lymphatic vessels (LVs) on maturation. These migratory events determine the efficiency of the adaptive immune response. Their regulation by the core cell locomotion machinery has not been determined. Here, we show that the migration of immature DCs depends on two main actin pools: a RhoA–mDia1-dependent actin pool located at their rear, which facilitates forward locomotion; and a Cdc42–Arp2/3-dependent actin pool present at their front, which limits migration but promotes antigen capture. Following TLR4–MyD88-induced maturation, Arp2/3-dependent actin enrichment at the cell front is markedly reduced. Consequently, mature DCs switch to a faster and more persistent mDia1-dependent locomotion mode that facilitates chemotactic migration to LVs and lymph nodes. Thus, the differential use of actin-nucleating machineries optimizes the migration of immature and mature DCs according to their specific function. PMID:26641718

  5. Flow Modulation and Force Control in Insect Fast Maneuver

    NASA Astrophysics Data System (ADS)

    Li, Chengyu; Dong, Haibo; Zhang, Wen; Gai, Kuo

    2012-11-01

    In this work, an integrated study combining high-speed photogrammetry and direct numerical simulation (DNS) is used to study free flying insects in fast maneuver. Quantitative measurement has shown the significant differences between quad-winged flyers such as dragonfly and damselfly and two-winged flyers such as cicada. Comparisons of unsteady 3D vortex formation and associated aerodynamic force production reveal the different mechanisms used by insects in fast turn. This work is supported by NSF CBET-1055949.

  6. The Temporal Resolution of Flight Attitude Control in Dragonflies and Locusts: Lessons for the Design of Flapping-Wing MAVs

    DTIC Science & Technology

    2007-12-04

    central nevous system , consisting of a self- excited neuronal network. Even in the absence of any sensory inputs this network will 4 produce, in two...is not necessary in smaller systems . Introduction Conventional aircraft can be designed such that steady-state aerodynamics apply. Thus, it is...active damping by visual inputs, whereas the same is not necessary in smaller systems . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17

  7. A secondary copulatory structure in a female insect: a clasp for a nuptial meal?

    NASA Astrophysics Data System (ADS)

    Gwynne, Darryl T.

    2002-03-01

    Secondary copulatory structures are well-known in male dragonflies and spiders. Here I report a secondary copulatory organ in female ground weta, Hemiandrus pallitarsis (Ensifera, Orthoptera - crickets and allies). The organ, located on the underside of the abdomen, appears to secure the male's genitalia during the transfer of a spermatophylax nuptial meal to this location, an area quite separate from the female's primary copulatory structures, where the sperm ampulla is attached.

  8. Testing Dragonflies as Species Richness Indicators in a Fragmented Subtropical Atlantic Forest Environment.

    PubMed

    Renner, S; Sahlén, G; Périco, E

    2016-06-01

    We surveyed 15 bodies of water among remnants of the Atlantic Forest biome in southern Brazil for adult dragonflies and damselflies to test whether an empirical selection method for diversity indicators could be applied in a subtropical ecosystem, where limited ecological knowledge on species level is available. We found a regional species pool of 34 species distributed in a nested subset pattern with a mean of 11.2 species per locality. There was a pronounced difference in species composition between spring, summer, and autumn, but no differences in species numbers between seasons. Two species, Homeoura chelifera (Selys) and Ischnura capreolus (Hagen), were the strongest candidates for regional diversity indicators, being found only at species-rich localities in our surveyed area and likewise in an undisturbed national forest reserve, serving as a reference site for the Atlantic Forest. Using our selection method, we found it possible to obtain a tentative list of diversity indicators without having detailed ecological information of each species, providing a reference site is available for comparison. The method thus allows for indicator species to be selected in blanco from taxonomic groups that are little known. We hence argue that Odonata can already be incorporated in ongoing assessment programs in the Neotropics, which would also increase the ecological knowledge of the group and allow extrapolation to other taxa.

  9. Rapid habituation by mosquito larvae to predator kairomones.

    PubMed

    Roberts, Derek

    2014-12-01

    Larvae of some species of mosquitoes have been shown to respond to water-borne kairomones from predators by reducing bottom-feeding and replacing it with surface filter-feeding, which uses less movement and is thus less likely to attract a predator. However, if no predator attack takes place, then it would be more efficient to use a risk allocation strategy of habituating their response depending on the predator and the overall risk. The larvae of Culiseta longiareolata Macquart live in temporary rain-filled pools, where they are exposed to a high level of predation. Within one hour, they responded to kairomones from dragonfly or damselfly nymphs, or to the fish Aphanius, by significantly reducing bottom-feeding activity. Continued exposure to the predator kairomones resulted in habituation of their response to damselflies, a slower habituation to fish, but no habituation to dragonflies even after 30 h. In contrast, the larvae of Culex quinquefasciatus Say normally live in highly polluted and thus anaerobic water, where the predation risk will be much lower. They also showed a significant reduction in bottom-feeding after 1 h of exposure to predator kairomones but had completely habituated this response within 6 h of continuous exposure. Some species of mosquito larvae can thus show a very rapid habituation to predator kairomones, while others only habituate slowly depending on the predator and overall predation risk. © 2014 The Society for Vector Ecology.

  10. The Dragonfly Nearby Galaxies Survey. II. Ultra-Diffuse Galaxies near the Elliptical Galaxy NGC 5485

    NASA Astrophysics Data System (ADS)

    Merritt, Allison; van Dokkum, Pieter; Danieli, Shany; Abraham, Roberto; Zhang, Jielai; Karachentsev, I. D.; Makarova, L. N.

    2016-12-01

    We present the unexpected discovery of four ultra-diffuse galaxies (UDGs) in a group environment. We recently identified seven extremely low surface brightness galaxies in the vicinity of the spiral galaxy M101, using data from the Dragonfly Telephoto Array. The galaxies have effective radii of 10″-38″ and central surface brightnesses of 25.6-27.7 mag arcsec-2 in the g-band. We subsequently obtained follow-up observations with HST to constrain the distances to these galaxies. Four remain persistently unresolved even with the spatial resolution of HST/ACS, which implies distances of D\\gt 17.5 Mpc. We show that the galaxies are most likely associated with a background group at ˜27 Mpc containing the massive ellipticals NGC 5485 and NGC 5473. At this distance, the galaxies have sizes of 2.6-4.9 kpc, and are classified as UDGs, similar to the populations that have been revealed in clusters such as Coma, Virgo, and Fornax, yet even more diffuse. The discovery of four UDGs in a galaxy group demonstrates that the UDG phenomenon is not exclusive to cluster environments. Furthermore, their morphologies seem less regular than those of the cluster populations, which may suggest a different formation mechanism or be indicative of a threshold in surface density below which UDGs are unable to maintain stability.

  11. Genetic and ecological studies of animals in Chernobyl and Fukushima.

    PubMed

    Mousseau, Timothy A; Møller, Anders P

    2014-01-01

    Recent advances in genetic and ecological studies of wild animal populations in Chernobyl and Fukushima have demonstrated significant genetic, physiological, developmental, and fitness effects stemming from exposure to radioactive contaminants. The few genetic studies that have been conducted in Chernobyl generally show elevated rates of genetic damage and mutation rates. All major taxonomic groups investigated (i.e., birds, bees, butterflies, grasshoppers, dragonflies, spiders, mammals) displayed reduced population sizes in highly radioactive parts of the Chernobyl Exclusion Zone. In Fukushima, population censuses of birds, butterflies, and cicadas suggested that abundances were negatively impacted by exposure to radioactive contaminants, while other groups (e.g., dragonflies, grasshoppers, bees, spiders) showed no significant declines, at least during the first summer following the disaster. Insufficient information exists for groups other than insects and birds to assess effects on life history at this time. The differences observed between Fukushima and Chernobyl may reflect the different times of exposure and the significance of multigenerational mutation accumulation in Chernobyl compared to Fukushima. There was considerable variation among taxa in their apparent sensitivity to radiation and this reflects in part life history, physiology, behavior, and evolutionary history. Interestingly, for birds, population declines in Chernobyl can be predicted by historical mitochondrial DNA base-pair substitution rates that may reflect intrinsic DNA repair ability. © The American Genetic Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Comparative ecotoxicity of imidacloprid and dinotefuran to aquatic insects in rice mesocosms.

    PubMed

    Kobashi, Koji; Harada, Takaaki; Adachi, Yoshihiro; Mori, Miho; Ihara, Makoto; Hayasaka, Daisuke

    2017-04-01

    There are growing concerns about the impacts of neonicotinoid insecticides on ecosystems worldwide, and yet ecotoxicity of many of these chemicals at community or ecosystem levels have not been evaluated under realistic conditions. In this study, effects of two neonicotinoid insecticides, imidacloprid and dinotefuran, on aquatic insect assemblages were evaluated in experimental rice mesocosms. During the 5-month period of the rice-growing season, residual concentrations of imidacloprid were 5-10 times higher than those of dinotefuran in both soil and water. Imidacloprid treatment (10kg/ha) reduced significantly the populations of, Crocothemis servilia mariannae and Lyriothemis pachygastra nymphs, whereas those of Orthetrum albistylum speciosum increased slightly throughout the experimental period. However, Notonecta triguttata, which numbers were high from the start, later declined, indicating possible delayed chronic toxicity, while Guignotus japonicus disappeared. In contrast, dinotefuran (10kg/ha) did not decrease the populations of any species, but rather increased the abundance of some insects, particularly Chironominae spp. larvae and C. servilia mariannae nymphs, with the latter being 1.7x higher than those of controls. This was an indirect effect resulting from increased prey (e.g., chironomid larvae) and lack of competition with other dragonfly species. The susceptibilities of dragonfly nymphs to neonicotinoids, particularly imidacloprid, were consistent with those reported elsewhere. In general, imidacloprid had higher impacts on aquatic insects compared to dinotefuran. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Downstream fish passage guide walls: A hydraulic scale model analysis

    USGS Publications Warehouse

    Mulligan, Kevin; Towler, Brett; Haro, Alexander J.; Ahlfeld, David P.

    2018-01-01

    Partial-depth guide walls are used to improve passage efficiency and reduce the delay of out-migrating anadromous fish species by guiding fish to a bypass route (i.e. weir, pipe, sluice gate) that circumvents the turbine intakes, where survival is usually lower. Evaluation and monitoring studies, however, indicate a high propensity for some fish to pass underneath, rather than along, the guide walls, compromising their effectiveness. In the present study we evaluated a range of guide wall structures to identify where/if the flow field shifts from sweeping (i.e. flow direction primarily along the wall and towards the bypass) to downward-dominant. Many migratory fish species, particularly juveniles, are known to drift with the flow and/or exhibit rheotactic behaviour during their migration. When these behaviours are present, fish follow the path of the flow field. Hence, maintaining a strong sweeping velocity in relation to the downward velocity along a guide wall is essential to successful fish guidance. Nine experiments were conducted to measure the three-dimensional velocity components upstream of a scale model guide wall set at a wide range of depths and angles to flow. Results demonstrated how each guide wall configuration affected the three-dimensional velocity components, and hence the downward and sweeping velocity, along the full length of the guide wall. In general, the velocities produced in the scale model were sweeping dominant near the water surface and either downward dominant or close to the transitional depth near the bottom of the guide wall. The primary exception to this shift from sweeping do downward flow was for the minimum guide wall angle tested in this study (15°). At 15° the flow pattern was fully sweeping dominant for every cross-section, indicating that a guide wall with a relatively small angle may be more likely to produce conditions favorable to efficient guidance. A critical next step is to evaluate the behaviour of migratory fish as they approach and swim along a guide wall in a controlled laboratory environment.

  14. Landbird migration in the American West: Recent progress and future research directions

    USGS Publications Warehouse

    Carlisle, J.D.; Skagen, S.K.; Kus, B.E.; van Riper, Charles; Paxton, K.L.; Kelly, J.F.

    2009-01-01

    Our knowledge of avian behaviors during the nonbreeding period still lags behind that of the breeding season, but the last decade has witnessed a proliferation in research that has yielded significant progress in understanding migration patterns of North American birds. And, although historically the great majority of migration research has been conducted in the eastern half of the continent, there has been much recent progress on aspects of avian migration in the West. In particular, expanded use of techniques such as radar, plasma metabolites, mist-netting, count surveys, stable isotopes, genetic data, and animal tracking, coupled with an increase in multi-investigator collaborations, have all contributed to this growth of knowledge. There is increasing recognition that migration is likely the most limiting time of year for migratory birds, increasing the importance of continuing to decipher patterns of stopover ecology, identifying critical stopover habitats, and documenting migration routes in the diverse and changing landscapes of the American West. Here, we review and briefly synthesize the latest findings and advances in avian migration and consider research needs to guide future research on migration in the West. ?? 2009 by The Cooper Ornithological Society. All rights reserved.

  15. Entrapment of guide-wire during oesophageal dilation.

    PubMed

    Misra, S P; Dwivedi, M

    1997-01-01

    We report a patient who developed oesophageal stricture after accidental ingestion of acid. During one of the oesophageal dilation sessions, a Savary-Gillard guide-wire got entrapped in the stomach and had to be removed surgically. A Foley catheter, placed for feeding purposes, migrated into the proximal small intestine causing acute intestinal obstruction. The balloon of the Foley catheter had to be punctured using a sclerotherapy needle and the catheter withdrawn.

  16. Cell movement is guided by the rigidity of the substrate

    NASA Technical Reports Server (NTRS)

    Lo, C. M.; Wang, H. B.; Dembo, M.; Wang, Y. L.

    2000-01-01

    Directional cell locomotion is critical in many physiological processes, including morphogenesis, the immune response, and wound healing. It is well known that in these processes cell movements can be guided by gradients of various chemical signals. In this study, we demonstrate that cell movement can also be guided by purely physical interactions at the cell-substrate interface. We cultured National Institutes of Health 3T3 fibroblasts on flexible polyacrylamide sheets coated with type I collagen. A transition in rigidity was introduced in the central region of the sheet by a discontinuity in the concentration of the bis-acrylamide cross-linker. Cells approaching the transition region from the soft side could easily migrate across the boundary, with a concurrent increase in spreading area and traction forces. In contrast, cells migrating from the stiff side turned around or retracted as they reached the boundary. We call this apparent preference for a stiff substrate "durotaxis." In addition to substrate rigidity, we discovered that cell movement could also be guided by manipulating the flexible substrate to produce mechanical strains in the front or rear of a polarized cell. We conclude that changes in tissue rigidity and strain could play an important controlling role in a number of normal and pathological processes involving cell locomotion.

  17. Plant a tree in cyberspace: metaphor and analogy as design elements in Web-based learning environments.

    PubMed

    Wolfe, C R

    2001-02-01

    Analogy and metaphor are figurative forms of communication that help people integrate new information with prior knowledge to facilitate comprehension and appropriate inferences. The novelty and versatility of the Web place cognitive burdens on learners that can be overcome through the use of analogies and metaphors. This paper explores three uses of figurative communication as design elements in Web-based learning environments, and provides empirical illustrations of each. First, extended analogies can be used as the basis of cover stories that create an analogy between the learner's position and a hypothetical situation. The Dragonfly Web pages make extensive use of analogous cover stories in the design of interactive decision-making games. Feedback from visitors, patterns of usage, and external reviews provide evidence of effectiveness. A second approach is visual analogies based on the principles of ecological psychology. An empirical example suggests that visual analogies are most effective when there is a one-to-one correspondence between the base and visual target analogs. The use of learner-generated analogies is a third approach. Data from an offline study with undergraduate science students are presented indicating that generating analogies are associated with significant improvements in the ability to place events in natural history on a time line. It is concluded that cyberspace itself might form the basis of the next guiding metaphor of mind.

  18. The First Great Migration: The Underground Railroad.

    ERIC Educational Resources Information Center

    Goodstein, Carol

    1990-01-01

    Describes the Underground Railroad, a loosely organized system used by runaway Southern slaves to reach freedom in the North. Discusses the role of "conductors," who acted as guides and offered shelter along the route. (FMW)

  19. Quantitative Analysis of Dendritic Cell Haptotaxis.

    PubMed

    Schwarz, Jan; Sixt, Michael

    2016-01-01

    Chemokines are the main guidance cues directing leukocyte migration. Opposed to early assumptions, chemokines do not necessarily act as soluble cues but are often immobilized within tissues, e.g., dendritic cell migration toward lymphatic vessels is guided by a haptotactic gradient of the chemokine CCL21. Controlled assay systems to quantitatively study haptotaxis in vitro are still missing. In this chapter, we describe an in vitro haptotaxis assay optimized for the unique properties of dendritic cells. The chemokine CCL21 is immobilized in a bioactive state, using laser-assisted protein adsorption by photobleaching. The cells follow this immobilized CCL21 gradient in a haptotaxis chamber, which provides three dimensionally confined migration conditions. © 2016 Elsevier Inc. All rights reserved.

  20. Conflicting evidence about long-distance animal navigation.

    PubMed

    Alerstam, Thomas

    2006-08-11

    Because of conflicting evidence about several fundamental issues, long-distance animal navigation has yet to be satisfactorily explained. Among the unsolved problems are the nature of genetic spatial control of migration and the relationships between celestial and magnetic compass mechanisms and between different map-related cues in orientation and homing, respectively. In addition, navigation is expected to differ between animal groups depending on sensory capabilities and ecological conditions. Evaluations based on modern long-term tracking techniques of the geometry of migration routes and individual migration history, combined with behavioral experiments and exploration of the sensory and genetic mechanisms, will be crucial for understanding the spatial principles that guide animals on their global journeys.

  1. The Three Roots and Papa's Advice. A Puerto Rican Migration Story. A Learner-Centered Model Guide for Teachers.

    ERIC Educational Resources Information Center

    Herendeen, Noemi Carrera; Mitchell, Alaire; Dinos, Carmen

    This document is part of a series of guides for teachers in which the Division of Bilingual Education of the New York City Board of Education presents a learner-centered model in which the learner sees himself or herself in the story. Learners are able to relive their own experiences or those of their parents or grandparents as they left their own…

  2. Are migrating raptors guided by a geomagnetic compass?

    USGS Publications Warehouse

    Thorup, Kasper; Fuller, Mark R.; Alerstam, T.; Hake, M.; Kjellen, N.; Standberg, R.

    2006-01-01

    We tested whether routes of raptors migrating over areas with homogeneous topography follow constant geomagnetic courses more or less closely than constant geographical courses. We analysed the routes taken over land of 45 individual raptors tracked by satellite-based radiotelemetry: 25 peregrine falcons, Falco peregrinus, on autumn migration between North and South America, and seven honey buzzards, Pernis apivorus, and 13 ospreys, Pandion haliaetus, on autumn migration between Europe and Africa. Overall, migration directions showed a better agreement with constant geographical than constant geomagnetic courses. Tracks deviated significantly from constant geomagnetic courses, but were not significantly different from geographical courses. After we removed movements directed far from the mean direction, which may not be migratory movements, migration directions still showed a better agreement with constant geographical than constant geomagnetic courses, but the directions of honey buzzards and ospreys were not significantly different from constant geomagnetic courses either. That migration routes of raptors followed by satellite telemetry are in closer accordance with constant geographical compass courses than with constant geomagnetic compass courses may indicate that geographical (e.g. based on celestial cues) rather than magnetic compass mechanisms are of dominating importance for the birds' long-distance orientation.

  3. Transmembrane protein MIG-13 links the Wnt signaling and Hox genes to the cell polarity in neuronal migration

    PubMed Central

    Wang, Xiangming; Zhou, Fanli; Lv, Sijing; Yi, Peishan; Zhu, Zhiwen; Yang, Yihong; Feng, Guoxin; Li, Wei; Ou, Guangshuo

    2013-01-01

    Directional cell migration is a fundamental process in neural development. In Caenorhabditis elegans, Q neuroblasts on the left (QL) and right (QR) sides of the animal generate cells that migrate in opposite directions along the anteroposterior body axis. The homeobox (Hox) gene lin-39 promotes the anterior migration of QR descendants (QR.x), whereas the canonical Wnt signaling pathway activates another Hox gene, mab-5, to ensure the QL descendants’ (QL.x) posterior migration. However, the regulatory targets of LIN-39 and MAB-5 remain elusive. Here, we showed that MIG-13, an evolutionarily conserved transmembrane protein, cell-autonomously regulates the asymmetric distribution of the actin cytoskeleton in the leading migratory edge. We identified mig-13 as a cellular target of LIN-39 and MAB-5. LIN-39 establishes QR.x anterior polarity by binding to the mig-13 promoter and promoting mig-13 expression, whereas MAB-5 inhibits QL.x anterior polarity by associating with the lin-39 promoter and downregulating lin-39 and mig-13 expression. Thus, MIG-13 links the Wnt signaling and Hox genes that guide migrations, to the actin cytoskeleton, which executes the motility response in neuronal migration. PMID:23784779

  4. The heparan sulfate-modifying enzyme glucuronyl C5-epimerase HSE-5 controls Caenorhabditis elegans Q neuroblast polarization during migration.

    PubMed

    Wang, Xiangming; Liu, Jianhong; Zhu, Zhiwen; Ou, Guangshuo

    2015-03-15

    Directional cell migration is fundamental for neural development, and extracellular factors are pivotal for this process. Heparan sulfate proteoglycans (HSPGs) that carry long chains of differentially modified sugar residues contribute to extracellular matrix; however, the functions of HSPG in guiding cell migration remain elusive. Here, we used the Caenorhabditis elegans mutant pool from the Million Mutation Project and isolated a mutant allele of the heparan sulfate-modifying enzyme glucuronyl C5-epimerase HSE-5. Loss-of-function of this enzyme resulted in defective Q neuroblast migration. We showed that hse-5 controlled Q cell migration in a cell non-autonomous manner. By performing live cell imaging in hse-5 mutant animals, we found that hse-5 controlled initial polarization during Q neuroblast migration. Furthermore, our genetic epistasis analysis demonstrated that lon-2 might act downstream of hse-5. Finally, rescue of the hse-5 mutant phenotype by expression of human and mouse hse-5 homologs suggested a conserved function for this gene in neural development. Taken together, our results indicated that proper HSPG modification in the extracellular matrix by HSE-5 is essential for neuroblast polarity during migration. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. The Dragonfly Nearby Galaxies Survey. IV. A Giant Stellar Disk in NGC 2841

    NASA Astrophysics Data System (ADS)

    Zhang, Jielai; Abraham, Roberto; van Dokkum, Pieter; Merritt, Allison; Janssens, Steven

    2018-03-01

    Neutral gas is commonly believed to dominate over stars in the outskirts of galaxies, and investigations of the disk-halo interface are generally considered to be in the domain of radio astronomy. This may simply be a consequence of the fact that deep H I observations typically probe to a lower-mass surface density than visible wavelength data. This paper presents low-surface-brightness, optimized visible wavelength observations of the extreme outskirts of the nearby spiral galaxy NGC 2841. We report the discovery of an enormous low-surface brightness stellar disk in this object. When azimuthally averaged, the stellar disk can be traced out to a radius of ∼70 kpc (5 R 25 or 23 inner disk scale lengths). The structure in the stellar disk traces the morphology of H I emission and extended UV emission. Contrary to expectations, the stellar mass surface density does not fall below that of the gas mass surface density at any radius. In fact, at all radii greater than ∼20 kpc, the ratio of the stellar mass to gas mass surface density is a constant 3:1. Beyond ∼30 kpc, the low-surface-brightness stellar disk begins to warp, which may be an indication of a physical connection between the outskirts of the galaxy and infall from the circumgalactic medium. A combination of stellar migration, accretion, and in situ star formation might be responsible for building up the outer stellar disk, but whatever mechanisms formed the outer disk must also explain the constant ratio between stellar and gas mass in the outskirts of this galaxy.

  6. Emsoft User's Guide and Modeling Software (1997)

    EPA Science Inventory

    Chemicals that readily vaporize at relatively low temperatures can migrate from contaminated soils into the atmosphere via a process called volatilization. Volatilization represents a potentially significant exposure pathway because humans can come in contact with volatilized com...

  7. Emsoft User's Guide and Modeling Software (2002 Update)

    EPA Science Inventory

    Chemicals that readily vaporize at relatively low temperatures can migrate from contaminated soils into the atmosphere via a process called volatilization. Volatilization represents a potentially significant exposure pathway because humans can come in contact with volatilized com...

  8. Neutrophil trails guide influenza-specific CD8+ T cells in the airways

    PubMed Central

    Lim, Kihong; Hyun, Young-Min; Lambert-Emo, Kris; Capece, Tara; Bae, Seyeon; Miller, Richard; Topham, David J.; Kim, Minsoo

    2016-01-01

    During viral infections, chemokines guide activated effector T cells to infection sites. However, the cells responsible for producing these chemokines and how such chemokines recruit T cells is unknown. Here, we show that the early recruitment of neutrophils into influenza-infected trachea is essential for CD8+ T cell-mediated immune protection in mice. We observed that migrating neutrophils leave behind long-lasting trails that are enriched in the chemokine CXCL12. Experiments with granulocyte-specific CXCL12 conditional knock-out mice and a CXCR4 antagonist revealed that CXCL12 derived from neutrophil trails is critical for virus-specific CD8+ T cell recruitment and effector functions. Collectively, these results suggest neutrophils deposit long-lasting, chemokine-containing trails, which may provide both chemotactic and haptotactic cues for efficient CD8+ T cell migration and localization in influenza-infected tissues. PMID:26339033

  9. Neutrophil trails guide influenza-specific CD8⁺ T cells in the airways.

    PubMed

    Lim, Kihong; Hyun, Young-Min; Lambert-Emo, Kris; Capece, Tara; Bae, Seyeon; Miller, Richard; Topham, David J; Kim, Minsoo

    2015-09-04

    During viral infections, chemokines guide activated effector T cells to infection sites. However, the cells responsible for producing these chemokines and how such chemokines recruit T cells are unknown. Here, we show that the early recruitment of neutrophils into influenza-infected trachea is essential for CD8(+) T cell-mediated immune protection in mice. We observed that migrating neutrophils leave behind long-lasting trails that are enriched in the chemokine CXCL12. Experiments with granulocyte-specific CXCL12 conditionally depleted mice and a CXCR4 antagonist revealed that CXCL12 derived from neutrophil trails is critical for virus-specific CD8(+) T cell recruitment and effector functions. Collectively, these results suggest that neutrophils deposit long-lasting, chemokine-containing trails, which may provide both chemotactic and haptotactic cues for efficient CD8(+) T cell migration and localization in influenza-infected tissues. Copyright © 2015, American Association for the Advancement of Science.

  10. Biomagnification of higher brominated PBDE congeners in an urban terrestrial food web in north China based on field observation of prey deliveries.

    PubMed

    Yu, Le-Huan; Luo, Xiao-Jun; Wu, Jiang-Ping; Liu, Li-Yu; Song, Jie; Sun, Quan-Hui; Zhang, Xiu-Lan; Chen, Da; Mai, Bi-Xian

    2011-06-15

    As an important group of brominated flame retardants, polybrominated diphenyl ethers (PBDEs) persist in the wildlife food webs. However, the biomagnification of PBDEs has not been adequately studied in the terrestrial food webs. In this study, a terrestrial food web composed of common kestrels, sparrows, rats, grasshoppers, and dragonflies in the urban environment from northern China was obtained. A field prey delivery study, reinforced by δ¹³C and δ¹⁵N analyses, indicates that sparrows are the primary prey items of common kestrels. Concentrations of PBDEs were in the following order: common kestrel > sparrow > rat > grasshopper and dragonfly with BDE-209 as the dominant congener. Biomagnification factors (BMFs) were calculated as the ratio between the lipid normalized concentrations in the predator and prey. The highest BMF (6.9) was determined for BDE-153 in sparrow/common kestrel food chain. Other higher brominated congeners, such as BDE-202, -203, -154, -183, -197, and -209, were also biomagnified in this terrestrial food chain with BMF of 1.3-4.7. BDE-47, -99, and -100 were found to be biodiluted from sparrow to common kestrel (BMFs < 1). Measured BMF values for BDE-153, -47, -99, and -100 were consistent with predicted values from a nonsteady-state model in American kestrels from another study. Retention factors and metabolism of BDE congeners may be confounding factors influencing the measured BMFs in this current study.

  11. Low levels of chemical anthropogenic pollution may threaten amphibians by impairing predator recognition.

    PubMed

    Polo-Cavia, Nuria; Burraco, Pablo; Gomez-Mestre, Ivan

    2016-03-01

    Recent studies suggest that direct mortality and physiological effects caused by pollutants are major contributing factors to global amphibian decline. However, even sublethal concentrations of pollutants could be harmful if they combined with other factors to cause high mortality in amphibians. Here we show that sublethal concentrations of pollutants can disrupt the ability of amphibian larvae to recognize predators, hence increasing their risk of predation. This effect is indeed much more important since very low amounts of pollutants are ubiquitous, and environmental efforts are mostly directed towards preventing lethal spills. We analyzed the effects of two common contaminants (humic acid and ammonium nitrate) on the ability of tadpoles of the western spadefoot toad (Pelobates cultripes) to recognize chemical cues from a common predator, nymphs of the dragonfly Anax imperator. We compared the swimming activity of tadpoles in the presence and absence of water-borne chemical cues from dragonflies at different concentrations of humic acid and ammonium nitrate. Tadpoles reduced swimming activity in response to predator cues in the absence of pollutants, whereas they remained unresponsive to these cues when either humic acid or ammonium nitrate was added to the water, even at low concentrations. Moreover, changes in tadpole activity associated with the pollutants themselves were non-significant, indicating no toxic effect. Alteration of the natural chemical environment of aquatic systems by pollutants may be an important contributing cause for declines in amphibian populations, even at sublethal concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Trade-offs between larval survival and adult ornament development depend on predator regime in a territorial dragonfly.

    PubMed

    Moore, Michael P; Martin, Ryan A

    2018-05-28

    Trade-offs between juvenile survival and the development of sexually selected traits can cause ontogenetic conflict between life stages that constrains adaptive evolution. However, the potential for ecological interactions to alter the presence or strength of these trade-offs remains largely unexplored. Antagonistic selection over the accumulation and storage of resources could be one common cause of environment-specific trade-offs between life stages: higher condition may simultaneously enhance adult ornament development and increase juvenile vulnerability to predators. We tested this hypothesis in an ornamented dragonfly (Pachydiplax longipennis). Higher larval body condition indeed enhanced the initial development of its intrasexually selected wing coloration, but was opposed by viability selection in the presence of large aeshnid predators. In contrast, viability selection did not oppose larval body condition in pools when aeshnids were absent, and was not affected when we manipulated cannibalism risk. Trade-offs between larval survival and ornament development, mediated through the conflicting effects of body condition, therefore occurred only under high predation risk. We additionally characterized how body condition influences several traits associated with predator avoidance. Although body condition did not affect burst distance, it did increase larval abdomen size, potentially making larvae easier targets for aeshnid predators. As high body condition similarly increases vulnerability to predators in many other animals, predator-mediated costs of juvenile resource accumulation could be a common, environment-specific limitation on the elaboration of sexually selected traits.

  13. Molecular Markers in Patients with Chronic Wounds to Guide Surgical Debridement

    PubMed Central

    Brem, Harold; Stojadinovic, Olivera; Diegelmann, Robert F; Entero, Hyacinth; Lee, Brian; Pastar, Irena; Golinko, Michael; Rosenberg, Harvey; Tomic-Canic, Marjana

    2007-01-01

    Chronic wounds, such as venous ulcers, are characterized by physiological impairments manifested by delays in healing, resulting in severe morbidity. Surgical debridement is routinely performed on chronic wounds because it stimulates healing. However, procedures are repeated many times on the same patient because, in contrast to tumor excision, there are no objective biological/molecular markers to guide the extent of debridement. To develop bioassays that can potentially guide surgical debridement, we assessed the pathogenesis of the patients’ wound tissue before and after wound debridement. We obtained biopsies from three patients at two locations, the nonhealing edge (prior to debridement) and the adjacent, nonulcerated skin of the venous ulcers (post debridement), and evaluated their histology, biological response to wounding (migration) and gene expression profile. We found that biopsies from the nonhealing edges exhibit distinct pathogenic morphology (hyperproliferative/hyperkeratotic epidermis; dermal fibrosis; increased procollagen synthesis). Fibroblasts deriving from this location exhibit impaired migration in comparison to the cells from adjacent nonulcerated biopsies, which exhibit normalization of morphology and normal migration capacity. The nonhealing edges have a specific, identifiable, and reproducible gene expression profile. The adjacent nonulcerated biopsies have their own distinctive reproducible gene expression profile, signifying that particular wound areas can be identified by gene expression profiling. We conclude that chronic ulcers contain distinct subpopulations of cells with different capacity to heal and that gene expression profiling can be utilized to identify them. In the future, molecular markers will be developed to identify the nonimpaired tissue, thereby making surgical debridement more accurate and more efficacious. PMID:17515955

  14. Conformational Dynamics Guides Coherent Exciton Migration in Conjugated Polymer Materials: First-Principles Quantum Dynamical Study

    NASA Astrophysics Data System (ADS)

    Binder, Robert; Lauvergnat, David; Burghardt, Irene

    2018-06-01

    We report on high-dimensional quantum dynamical simulations of photoinduced exciton migration in a single-chain oligothiophene segment, in view of elucidating the controversial nature of the elementary exciton transport steps in semiconducting polymers. A novel first-principles parametrized Frenkel J aggregate Hamiltonian is employed that goes significantly beyond the standard Frenkel-Holstein Hamiltonian. Departing from a nonequilibrium state created by photoexcitation, these simulations provide evidence of an ultrafast two-timescale process at low temperatures, involving exciton-polaron formation within tens of femtoseconds (fs), followed by torsional relaxation on an ˜400 fs timescale. The second step is the driving force for exciton migration, as initial conjugation breaks are removed by dynamical planarization. The quantum coherent nature of the elementary exciton migration step is consistent with experimental observations highlighting the correlated and vibrationally coherent nature of the dynamics on ultrafast timescales.

  15. Conformational Dynamics Guides Coherent Exciton Migration in Conjugated Polymer Materials: First-Principles Quantum Dynamical Study.

    PubMed

    Binder, Robert; Lauvergnat, David; Burghardt, Irene

    2018-06-01

    We report on high-dimensional quantum dynamical simulations of photoinduced exciton migration in a single-chain oligothiophene segment, in view of elucidating the controversial nature of the elementary exciton transport steps in semiconducting polymers. A novel first-principles parametrized Frenkel J aggregate Hamiltonian is employed that goes significantly beyond the standard Frenkel-Holstein Hamiltonian. Departing from a nonequilibrium state created by photoexcitation, these simulations provide evidence of an ultrafast two-timescale process at low temperatures, involving exciton-polaron formation within tens of femtoseconds (fs), followed by torsional relaxation on an ∼400  fs timescale. The second step is the driving force for exciton migration, as initial conjugation breaks are removed by dynamical planarization. The quantum coherent nature of the elementary exciton migration step is consistent with experimental observations highlighting the correlated and vibrationally coherent nature of the dynamics on ultrafast timescales.

  16. The FGF8-related signals Pyramus and Thisbe promote pathfinding, substrate adhesion, and survival of migrating longitudinal gut muscle founder cells

    PubMed Central

    Reim, Ingolf; Hollfelder, Dominik; Ismat, Afshan; Frasch, Manfred

    2013-01-01

    Fibroblast growth factors (FGFs) frequently fulfill prominent roles in the regulation of cell migration in various contexts. In Drosophila, the FGF8-like ligands Pyramus (Pyr) and Thisbe (Ths), which signal through their receptor Heartless (Htl), are known to regulate early mesodermal cell migration after gastrulation as well as glial cell migration during eye development. Herein, we show that Pyr and Ths also exert key roles during the long-distance migration of a specific sub-population of mesodermal cells that migrate from the caudal visceral mesoderm within stereotypic bilateral paths along the trunk visceral mesoderm toward the anterior. These cells constitute the founder myoblasts of the longitudinal midgut muscles. In a forward genetic screen for regulators of this morphogenetic process we identified loss of function alleles for pyr. We show that pyr and ths are expressed along the paths of migration in the trunk visceral mesoderm and endoderm and act largely redundantly to help guide the founder myoblasts reliably onto and along their substrate of migration. Ectopically-provided Pyr and Ths signals can efficiently re-rout the migrating cells, both in the presence and absence of endogenous signals. Our data indicate that the guidance functions of these FGFs must act in concert with other important attractive or adhesive activities of the trunk visceral mesoderm. Apart from their guidance functions, the Pyr and Ths signals play an obligatory role for the survival of the migrating cells. Without these signals, essentially all of these cells enter cell death and detach from the migration substrate during early migration. We present experiments that allowed us to dissect the roles of these FGFs as guidance cues versus trophic activities during the migration of the longitudinal visceral muscle founders. PMID:22609944

  17. Brief Report: Robo1 Regulates the Migration of Human Subventricular Zone Neural Progenitor Cells During Development.

    PubMed

    Guerrero-Cazares, Hugo; Lavell, Emily; Chen, Linda; Schiapparelli, Paula; Lara-Velazquez, Montserrat; Capilla-Gonzalez, Vivian; Clements, Anna Christina; Drummond, Gabrielle; Noiman, Liron; Thaler, Katrina; Burke, Anne; Quiñones-Hinojosa, Alfredo

    2017-07-01

    Human neural progenitor cell (NPC) migration within the subventricular zone (SVZ) of the lateral ganglionic eminence is an active process throughout early brain development. The migration of human NPCs from the SVZ to the olfactory bulb during fetal stages resembles what occurs in adult rodents. As the human brain develops during infancy, this migratory stream is drastically reduced in cell number and becomes barely evident in adults. The mechanisms regulating human NPC migration are unknown. The Slit-Robo signaling pathway has been defined as a chemorepulsive cue involved in axon guidance and neuroblast migration in rodents. Slit and Robo proteins expressed in the rodent brain help guide neuroblast migration from the SVZ through the rostral migratory stream to the olfactory bulb. Here, we present the first study on the role that Slit and Robo proteins play in human-derived fetal neural progenitor cell migration (hfNPC). We describe that Robo1 and Robo2 isoforms are expressed in the human fetal SVZ. Furthermore, we demonstrate that Slit2 is able to induce a chemorepellent effect on the migration of hfNPCs derived from the human fetal SVZ. In addition, when Robo1 expression is inhibited, hfNPCs are unable to migrate to the olfactory bulb of mice when injected in the anterior SVZ. Our findings indicate that the migration of human NPCs from the SVZ is partially regulated by the Slit-Robo axis. This pathway could be regulated to direct the migration of NPCs in human endogenous neural cell therapy. Stem Cells 2017;35:1860-1865. © 2017 AlphaMed Press.

  18. Actin dynamics in cells on nanotopographical surfaces in competition with chemotaxis and electrotaxis

    NASA Astrophysics Data System (ADS)

    Schmidt, Sebastian

    Directed cell migration can be guided by different types of gradients, for example chemotaxis. We use surfaces with nanotopographical ridges to examine a type of guidance called esotaxis on migration in the well-studied amoeba Dictyostelium Discoideum. In this work we compare chemotaxis with esotaxis on ridges as well as the influence of electrotaxis on the formation of the actin cytoskeleton on these nanotopographies. These esotactic surfaces have more guidance cues for cells than planar 2D cultures and can disrupt other guidance types like chemotaxis.

  19. Preparation of an Arg-Glu-Asp-Val Peptide Density Gradient on Hyaluronic Acid-Coated Poly(ε-caprolactone) Film and Its Influence on the Selective Adhesion and Directional Migration of Endothelial Cells.

    PubMed

    Yu, Shan; Gao, Ying; Mei, Xu; Ren, Tanchen; Liang, Su; Mao, Zhengwei; Gao, Changyou

    2016-11-02

    Selective adhesion and migration of endothelial cells (ECs) over smooth muscle cells (SMCs) is very important in the rapid endothelialization of blood-contacting implants to prevent vascular restenosis. In this study, a uniform cell-resistant layer of methacrylate-functionalized hyaluronic acid (HA) was first immobilized on a poly(ε-caprolactone) (PCL) film via polydopamine coupling. Then, a density gradient of thiol-functionalized Arg-Glu-Asp-Val (REDV) peptide was prepared on the HA layer via thiol-ene click chemistry and the continuous injection method. The REDV gradient selectively enhanced EC adhesion and preferential directional migration toward the region of higher REDV density, reaching 86% directionality in the middle of the gradient. The migration rate of ECs was also significantly enhanced twofold compared with that on tissue culture polystyrene (TCPS). In contrast, the gradient significantly weakened the adhesion of SMCs to 25% of that on TCPS but had no obvious impact on the migration rate and directionality. Successful modulation of the selective adhesion and directional migration of ECs over SMCs on biodegradable polymers serves as an important step toward practical applications for guided tissue regeneration.

  20. Constrained Adherable Area of Nanotopographic Surfaces Promotes Cell Migration through the Regulation of Focal Adhesion via Focal Adhesion Kinase/Rac1 Activation.

    PubMed

    Lim, Jiwon; Choi, Andrew; Kim, Hyung Woo; Yoon, Hyungjun; Park, Sang Min; Tsai, Chia-Hung Dylan; Kaneko, Makoto; Kim, Dong Sung

    2018-05-02

    Cell migration is crucial in physiological and pathological processes such as embryonic development and wound healing; such migration is strongly guided by the surrounding nanostructured extracellular matrix. Previous studies have extensively studied the cell migration on anisotropic nanotopographic surfaces; however, only a few studies have reported cell migration on isotropic nanotopographic surfaces. We herein, for the first time, propose a novel concept of adherable area on cell migration using isotropic nanopore surfaces with sufficient nanopore depth by adopting a high aspect ratio. As the pore size of the nanopore surface was controlled to 200, 300, and 400 nm in a fixed center-to-center distance of 480 nm, it produced 86, 68, and 36% of adherable area, respectively, on the fabricated surface. A meticulous investigation of the cell migration in response to changes in the constrained adherable area of the nanotopographic surface showed 1.4-, 1.5-, and 1.6-fold increase in migration speeds and a 1.4-, 2-, and 2.5-fold decrease in the number of focal adhesions as the adherable area was decreased to 86, 68, and 36%, respectively. Furthermore, a strong activation of FAK/Rac1 signaling was observed to be involved in the promoted cell migration. These results suggest that the reduced adherable area promotes cell migration through decreasing the FA formation, which in turn upregulates FAK/Rac1 activation. The findings in this study can be utilized to control the cell migration behaviors, which is a powerful tool in the research fields involving cell migration such as promoting wound healing and tissue repair.

  1. Embolectomy of a Bird's Nest Vena Caval Filter.

    PubMed

    Chitwood, W R; Chiang, K S; Williams, J M; Zeri, R S; Semer, D A

    1994-12-01

    In this case report we describe a successful embolectomy of a partially migrated Bird's Nest Caval Filter with attached embolic material. We used transesophageal echocardiography to guide the surgical approach. The patient recovered uneventfully from both the embolectomy and the subsequent pelvic operation.

  2. Approaches to Legacy System Evolution.

    DTIC Science & Technology

    1997-12-01

    such as migrating legacy systems, to more distributed open environments. This framework draws out the important global issues early in the planning...ongoing system evolution initiatives, for drawing out important global issues early in the planning cycle using the checklists as a guide, and for

  3. Leading-process actomyosin coordinates organelle positioning and adhesion receptor dynamics in radially migrating cerebellar granule neurons

    DOE PAGES

    Trivedi, Niraj; Ramahi, Joseph S.; Karakaya, Mahmut; ...

    2014-12-02

    During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. Our results show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia aremore » motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. In conclusion, we propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.« less

  4. Leading-process actomyosin coordinates organelle positioning and adhesion receptor dynamics in radially migrating cerebellar granule neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trivedi, Niraj; Ramahi, Joseph S.; Karakaya, Mahmut

    During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. Our results show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia aremore » motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. In conclusion, we propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.« less

  5. Physical biology in cancer. 4. Physical cues guide tumor cell adhesion and migration.

    PubMed

    Stroka, Kimberly M; Konstantopoulos, Konstantinos

    2014-01-15

    As tumor cells metastasize from the primary tumor location to a distant secondary site, they encounter an array of biologically and physically heterogeneous microenvironments. While it is well established that biochemical signals guide all stages of the metastatic cascade, mounting evidence indicates that physical cues also direct tumor cell behavior, including adhesion and migration phenotypes. Physical cues acting on tumor cells in vivo include extracellular matrix mechanical properties, dimensionality, and topography, as well as interstitial flow, hydrodynamic shear stresses, and local forces due to neighboring cells. State-of-the-art technologies have recently enabled us and other researchers to engineer cell microenvironments that mimic specific physical properties of the cellular milieu. Through integration of these engineering strategies, along with physics, molecular biology, and imaging techniques, we have acquired new insights into tumor cell adhesion and migration mechanisms. In this review, we focus on the extravasation and invasion stages of the metastatic cascade. We first discuss the physical role of the endothelium during tumor cell extravasation and invasion and how contractility of endothelial and tumor cells contributes to the ability of tumor cells to exit the vasculature. Next, we examine how matrix dimensionality and stiffness coregulate tumor cell adhesion and migration beyond the vasculature. Finally, we summarize how tumor cells translate and respond to physical cues through mechanotransduction. Because of the critical role of tumor cell mechanotransduction at various stages of the metastatic cascade, targeting signaling pathways involved in tumor cell mechanosensing of physical stimuli may prove to be an effective therapeutic strategy for cancer patients.

  6. Migration and Tissue Tropism of Innate Lymphoid Cells

    PubMed Central

    Kim, Chang H.; Hashimoto-Hill, Seika; Kim, Myunghoo

    2016-01-01

    Innate lymphoid cell (ILCs) subsets differentially populate various barrier and non-barrier tissues, where they play important roles in tissue homeostasis and tissue-specific responses to pathogen attack. Recent findings have provided insight into the molecular mechanisms that guide ILC migration into peripheral tissues, revealing common features among different ILC subsets as well as important distinctions. Recent studies have also highlighted the impact of tissue-specific cues on ILC migration, and the importance of the local immunological milieu. We review these findings here and discuss how the migratory patterns and tissue tropism of different ILC subsets relate to the development and differentiation of these cells, and to ILC-mediated tissue-specific regulation of innate and adaptive immune responses. In this context we outline open questions and important areas of future research. PMID:26708278

  7. Donor life stage influences juvenile American eel Anguilla rostrata attraction to conspecific chemical cues

    USGS Publications Warehouse

    Galbraith, Heather S.; Blakeslee, Carrie J.; Schmucker, Andrew K.; Johnson, Nicholas; Hansen, Michael J.; Li, Weiming

    2017-01-01

    The present study investigated the potential role of conspecific chemical cues in inland juvenile American eel Anguilla rostrata migrations by assessing glass eel and 1 year old elver affinities to elver washings, and elver affinity to adult yellow eel washings. In two-choice maze assays, glass eels were attracted to elver washings, but elvers were neither attracted to nor repulsed by multiple concentrations of elver washings or to yellow eel washings. These results suggest that A. rostrata responses to chemical cues may be life-stage dependent and that glass eels moving inland may use the odour of the previous year class as information to guide migration. The role of chemical cues and olfaction in eel migrations warrants further investigation as a potential restoration tool.

  8. The magnetic map of hatchling loggerhead sea turtles.

    PubMed

    Lohmann, Kenneth J; Putman, Nathan F; Lohmann, Catherine M F

    2012-04-01

    Young loggerhead sea turtles (Caretta caretta) from eastern Florida, U.S.A., undertake a transoceanic migration in which they gradually circle the North Atlantic Ocean before returning to the North American coast. Hatchlings in the open sea are guided at least partly by a 'magnetic map' in which regional magnetic fields function as navigational markers and elicit changes in swimming direction at crucial locations along the migratory route. The magnetic map exists in turtles that have never migrated and thus appears to be inherited. Turtles derive both longitudinal and latitudinal information from the Earth's field, most likely by exploiting unique combinations of field inclination and intensity that occur in different geographic areas. Similar mechanisms may function in the migrations of diverse animals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Lymphatic exosomes promote dendritic cell migration along guidance cues

    PubMed Central

    Brown, Markus; Johnson, Louise A.; Leone, Dario A.; Majek, Peter; Senfter, Daniel; Bukosza, Nora; Asfour, Gabriele; Langer, Brigitte; Parapatics, Katja; Hong, Young-Kwon; Bennett, Keiryn L.; Sixt, Michael

    2018-01-01

    Lymphatic endothelial cells (LECs) release extracellular chemokines to guide the migration of dendritic cells. In this study, we report that LECs also release basolateral exosome-rich endothelial vesicles (EEVs) that are secreted in greater numbers in the presence of inflammatory cytokines and accumulate in the perivascular stroma of small lymphatic vessels in human chronic inflammatory diseases. Proteomic analyses of EEV fractions identified >1,700 cargo proteins and revealed a dominant motility-promoting protein signature. In vitro and ex vivo EEV fractions augmented cellular protrusion formation in a CX3CL1/fractalkine-dependent fashion and enhanced the directional migratory response of human dendritic cells along guidance cues. We conclude that perilymphatic LEC exosomes enhance exploratory behavior and thus promote directional migration of CX3CR1-expressing cells in complex tissue environments. PMID:29650776

  10. Environmental Guide to the Virginia Capes Operating Area

    DTIC Science & Technology

    1973-03-01

    invertebrates occupy the waters over the shelf. Among fishes found here are croakers, sea robins, sea bass, sharks, rays, bluefish , alewives, and...pelagic forms such as tuna, billfish, and bluefish migrate seasonally, occurring in greatest abun- dance along the Gulf Stream boundary in spring and

  11. Data Architecture in an Open Systems Environment.

    ERIC Educational Resources Information Center

    Bernbom, Gerald; Cromwell, Dennis

    1993-01-01

    The conceptual basis for structured data architecture, and its integration with open systems technology at Indiana University, are described. Key strategic goals guiding these efforts are discussed: commitment to improved data access; migration to relational database technology, and deployment of a high-speed, multiprotocol network; and…

  12. Guiding intracortical brain tumour cells to an extracortical cytotoxic hydrogel using aligned polymeric nanofibres

    NASA Astrophysics Data System (ADS)

    Jain, Anjana; Betancur, Martha; Patel, Gaurangkumar D.; Valmikinathan, Chandra M.; Mukhatyar, Vivek J.; Vakharia, Ajit; Pai, S. Balakrishna; Brahma, Barunashish; MacDonald, Tobey J.; Bellamkonda, Ravi V.

    2014-03-01

    Glioblastoma multiforme is an aggressive, invasive brain tumour with a poor survival rate. Available treatments are ineffective and some tumours remain inoperable because of their size or location. The tumours are known to invade and migrate along white matter tracts and blood vessels. Here, we exploit this characteristic of glioblastoma multiforme by engineering aligned polycaprolactone (PCL)-based nanofibres for tumour cells to invade and, hence, guide cells away from the primary tumour site to an extracortical location. This extracortial sink is a cyclopamine drug-conjugated, collagen-based hydrogel. When aligned PCL-nanofibre films in a PCL/polyurethane carrier conduit were inserted in the vicinity of an intracortical human U87MG glioblastoma xenograft, a significant number of human glioblastoma cells migrated along the aligned nanofibre films and underwent apoptosis in the extracortical hydrogel. Tumour volume in the brain was significantly lower following insertion of aligned nanofibre implants compared with the application of smooth fibres or no implants.

  13. Do predators cause frog deformities? The need for an eco-epidemiological approach.

    PubMed

    Johnson, Pieter T J; Bowerman, Jay

    2010-11-15

    Renewed controversy has emerged over the likely causes and consequences of deformed amphibians, particularly those with missing limbs. The results of a series of experiments by Ballengée and Sessions (2009) implicate aquatic predators (i.e. dragonfly larvae) in causing such abnormalities. Skelly and Benard (2010), however, argued that the small scale of these experiments and the absence of a correlation between predator abundance and deformity frequencies in natural amphibian populations undermine such a conclusion. Drawing upon our experiences with frog malformations, we suggest that the study of amphibian deformities has been hindered by two, interrelated problems. First, empirical studies often fail to critically define the expected baseline level of abnormalities and differentiate between "epidemic" and "endemic" frequencies of malformations. Second, recognizing the likelihood of multiple causes in driving amphibian malformations, continued research needs to embrace a "multiple lines of evidence" approach that allows for complex etiologies by integrating field surveys, diagnostic pathology, comparative modeling, and experiments across a range of ecological scales. We conclude by highlighting the results of a recent study that uses this approach to identify the role of aquatic predators (i.e., fishes and dragonflies) in causing high frequencies of deformed frogs in Oregon. By combining long-term data, comparative data and mechanistic experiments, this study provides compelling evidence that certain predators do cause deformities under ecologically relevant conditions. In light of continuing concerns about amphibian deformities and population declines, we emphasize the need to integrate ecological, epidemiological, and developmental tools in addressing such environmental enigmas. Copyright © 2010 Wiley-Liss, Inc., A Wiley Company.

  14. You can't run but you can hide: refuge use in frog tadpoles elicits density-dependent predation by dragonfly larvae.

    PubMed

    Hossie, Thomas John; Murray, Dennis L

    2010-06-01

    The potential role of prey refuges in stabilizing predator-prey interactions is of longstanding interest to ecologists, but mechanisms underlying a sigmoidal predator functional response remain to be fully elucidated. Authors have disagreed on whether the stabilizing effect of prey refuges is driven by prey- versus predator-centric mechanisms, but to date few studies have married predator and prey behavioural observations to distinguish between these possibilities. We used a dragonfly nymph-tadpole system to study the effect of a structural refuge (leaf litter) on the predator's functional response, and paired this with behavioural observations of both predator and prey. Our study confirmed that hyperbolic (type II) functional responses were characteristic of foraging predators when structural cover was low or absent, whereas the functional response was sigmoidal (type III) when prey were provided with sufficient refuge. Prey activity and refuge use were density independent across cover treatments, thereby eliminating a prey-centric mechanism as being the genesis for density-dependent predation. In contrast, the predator's pursuit length, capture success, and handling time were altered by the amount of structure implying that observed shifts in density-dependent predation likely were related to predator hunting efficiency. Our study advances current theory by revealing that despite fixed-proportion refuge use by prey, presence of a prey refuge can induce density-dependent predation through its effect on predator hunting strategy. Ultimately, responses of predator foraging decisions in response to changes in prey availability and search efficiency may be more important in producing density-dependent predation than the form of prey refuge use.

  15. California dragonfly and damselfly (Odonata) database: temporal and spatial distribution of species records collected over the past century

    PubMed Central

    Ball-Damerow, Joan E.; Oboyski, Peter T.; Resh, Vincent H.

    2015-01-01

    Abstract The recently completed Odonata database for California consists of specimen records from the major entomology collections of the state, large Odonata collections outside of the state, previous literature, historical and recent field surveys, and from enthusiast group observations. The database includes 32,025 total records and 19,000 unique records for 106 species of dragonflies and damselflies, with records spanning 1879–2013. Records have been geographically referenced using the point-radius method to assign coordinates and an uncertainty radius to specimen locations. In addition to describing techniques used in data acquisition, georeferencing, and quality control, we present assessments of the temporal, spatial, and taxonomic distribution of records. We use this information to identify biases in the data, and to determine changes in species prevalence, latitudinal ranges, and elevation ranges when comparing records before 1976 and after 1979. The average latitude of where records occurred increased by 78 km over these time periods. While average elevation did not change significantly, the average minimum elevation across species declined by 108 m. Odonata distribution may be generally shifting northwards as temperature warms and to lower minimum elevations in response to increased summer water availability in low-elevation agricultural regions. The unexpected decline in elevation may also be partially the result of bias in recent collections towards centers of human population, which tend to occur at lower elevations. This study emphasizes the need to address temporal, spatial, and taxonomic biases in museum and observational records in order to produce reliable conclusions from such data. PMID:25709531

  16. Bio-mimetic Flow Control

    NASA Astrophysics Data System (ADS)

    Choi, Haecheon

    2009-11-01

    Bio-mimetic engineering or bio-mimetics is the application of biological methods and systems found in nature to the study and design of engineering systems and modern technology (from Wikipedia). The concept itself is old, but successful developments have been made recently, especially in the research field of flow control. The objective of flow control based on the bio-mimetic approach is to develop novel concepts for reducing drag, increasing lift and enhancing aerodynamic performance. For skin friction reduction, a few ideas have been suggested such as the riblet from shark, compliant surface from dolphin, microbubble injection and multiple front-body curvature from penguin, and V-shaped protrusion from sailfish. For form drag reduction, several new attempts have been also made recently. Examples include the V-shaped spanwise grooves from saguaro cactus, overall shape of box fish, longitudinal grooves on scallop shell, bill of swordfish, hooked comb on owl wing, trailing-edge protrusion on dragonfly wing, and fillet. For the enhancement of aerodynamic performance, focuses have been made on the birds, fish and insects: e.g., double layered feather of landing bird, leading-edge serration of humpback-whale flipper, pectoral fin of flying fish, long tail on swallowtail-butterfly wing, wing flapping motion of dragonfly, and alula in birds. Living animals adapt their bodies to better performance in multi purposes, but engineering requires single purpose in most cases. Therefore, bio-mimetic approaches often produce excellent results more than expected. However, they are sometimes based on people's wrong understanding of nature and produce unwanted results. Successes and failures from bio-mimetic approaches in flow control will be discussed in the presentation.

  17. Effects of experimental warming on survival, phenology and morphology of an aquatic insect (Odonata)

    PubMed Central

    McCauley, Shannon J.; Hammond, John I.; Frances, Dachin N.; Mabry, Karen E.

    2014-01-01

    1. Organisms can respond to changing climatic conditions in multiple ways including changes in phenology, body size or morphology, and range shifts. Understanding how developmental temperatures affect insect life-history timing and morphology is crucial because body size and morphology affect multiple aspects of life history, including dispersal ability, while phenology can shape population performance and community interactions. 2. We experimentally assessed how developmental temperatures experienced by aquatic larvae affected survival, phenology, and adult morphology of dragonflies (Pachydiplax longipennis). Larvae were reared under 3 environmental temperatures: ambient, +2.5 °C, and +5 °C, corresponding to temperature projections for our study area 50 and 100 years in the future, respectively. Experimental temperature treatments tracked naturally-occurring variation. 3. We found clear effects of temperature in the rearing environment on survival and phenology: dragonflies reared at the highest temperatures had the lowest survival rates, and emerged from the larval stage approximately 3 weeks earlier than animals reared at ambient temperatures. There was no effect of rearing temperature on overall body size. Although neither the relative wing nor thorax size was affected by warming, a non-significant trend towards an interaction between sex and warming in relative thorax size suggests that males may be more sensitive to warming than females, a pattern that should be investigated further. 4. Warming strongly affected survival in the larval stage and the phenology of adult emergence. Understanding how warming in the developmental environment affects later life-history stages is critical to interpreting the consequences of warming for organismal performance. PMID:26028806

  18. First report of perfluoroalkyl substances in South African Odonata.

    PubMed

    Lesch, Velesia; Bouwman, Hindrik; Kinoshita, Ayako; Shibata, Yasuyuki

    2017-05-01

    Perfluorinated substances are global and ubiquitous pollutants. However, very little is known about these substances in invertebrates, and even less in terrestrial invertebrates in particular. We analysed adult male dragonflies from six sites in South Africa for perfluoroalkyl substances (PFASs), including perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluro-n-undecanoic acid (PFUnA), perfluoro-n-dodecanoic acid (PFDoA), perfluorohexanoic acid (PFHxA), and perfluorohexane sulfonic acid (PFHxS). PFOS was detected in all individuals, with less quantifiable occurrences of the other substances. The dragonflies from the three northern sites located in farming areas had significantly lower ΣPFASs concentrations than the southern sites located closer to industrial areas (median ΣPFASs of 0.32 ng/g wm (wet mass) for North, and 9.3 ng/g wm for South). All substances except PFOS occurred at similar concentrations at all six sites when quantifiable, but PFOS dominated in the Southern sites. The highest median concentration was from Bloemhof Dam (ΣPFASs = 21 ng/g wm), which is known to be polluted by PFOS. Perfluorinated substances are not known to be manufactured in South Africa, therefore the residues detected are likely to have been derived from imported products. Odonata play a significant role in freshwater ecology. Any impacts on these aquatic and aerial predators are likely to have effects on aquatic and associated ecosystems. Further studies are required over a much larger geographic region and to investigate sources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Habitat variation and wing coloration affect wing shape evolution in dragonflies.

    PubMed

    Outomuro, D; Dijkstra, K-D B; Johansson, F

    2013-09-01

    Habitats are spatially and temporally variable, and organisms must be able to track these changes. One potential mechanism for this is dispersal by flight. Therefore, we would expect flying animals to show adaptations in wing shape related to habitat variation. In this work, we explored variation in wing shape in relation to preferred water body (flowing water or standing water with tolerance for temporary conditions) and landscape (forested to open) using 32 species of dragonflies of the genus Trithemis (80% of the known species). We included a potential source of variation linked to sexual selection: the extent of wing coloration on hindwings. We used geometric morphometric methods for studying wing shape. We also explored the phenotypic correlation of wing shape between the sexes. We found that wing shape showed a phylogenetic structure and therefore also ran phylogenetic independent contrasts. After correcting for the phylogenetic effects, we found (i) no significant effect of water body on wing shape; (ii) male forewings and female hindwings differed with regard to landscape, being progressively broader from forested to open habitats; (iii) hindwings showed a wider base in wings with more coloration, especially in males; and (iv) evidence for phenotypic correlation of wing shape between the sexes across species. Hence, our results suggest that natural and sexual selection are acting partially independently on fore- and hindwings and with differences between the sexes, despite evidence for phenotypic correlation of wing shape between males and females. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  20. Contralateral migration of oculomotor neurons is regulated by Slit/Robo signaling.

    PubMed

    Bjorke, Brielle; Shoja-Taheri, Farnaz; Kim, Minkyung; Robinson, G Eric; Fontelonga, Tatiana; Kim, Kyung-Tai; Song, Mi-Ryoung; Mastick, Grant S

    2016-10-22

    Oculomotor neurons develop initially like typical motor neurons, projecting axons out of the ventral midbrain to their ipsilateral targets, the extraocular muscles. However, in all vertebrates, after the oculomotor nerve (nIII) has reached the extraocular muscle primordia, the cell bodies that innervate the superior rectus migrate to join the contralateral nucleus. This motor neuron migration represents a unique strategy to form a contralateral motor projection. Whether migration is guided by diffusible cues remains unknown. We examined the role of Slit chemorepellent signals in contralateral oculomotor migration by analyzing mutant mouse embryos. We found that the ventral midbrain expresses high levels of both Slit1 and 2, and that oculomotor neurons express the repellent Slit receptors Robo1 and Robo2. Therefore, Slit signals are in a position to influence the migration of oculomotor neurons. In Slit 1/2 or Robo1/2 double mutant embryos, motor neuron cell bodies migrated into the ventral midbrain on E10.5, three days prior to normal migration. These early migrating neurons had leading projections into and across the floor plate. In contrast to the double mutants, embryos which were mutant for single Slit or Robo genes did not have premature migration or outgrowth on E10.5, demonstrating a cooperative requirement of Slit1 and 2, as well as Robo1 and 2. To test how Slit/Robo midline repulsion is modulated, we found that the normal migration did not require the receptors Robo3 and CXCR4, or the chemoattractant, Netrin 1. The signal to initiate contralateral migration is likely autonomous to the midbrain because oculomotor neurons migrate in embryos that lack either nerve outgrowth or extraocular muscles, or in cultured midbrains that lacked peripheral tissue. Overall, our results demonstrate that a migratory subset of motor neurons respond to floor plate-derived Slit repulsion to properly control the timing of contralateral migration.

  1. Cell density and actomyosin contractility control the organization of migrating collectives within an epithelium

    PubMed Central

    Loza, Andrew J.; Koride, Sarita; Schimizzi, Gregory V.; Li, Bo; Sun, Sean X.; Longmore, Gregory D.

    2016-01-01

    The mechanisms underlying collective migration are important for understanding development, wound healing, and tumor invasion. Here we focus on cell density to determine its role in collective migration. Our findings show that increasing cell density, as might be seen in cancer, transforms groups from broad collectives to small, narrow streams. Conversely, diminishing cell density, as might occur at a wound front, leads to large, broad collectives with a distinct leader–follower structure. Simulations identify force-sensitive contractility as a mediator of how density affects collectives, and guided by this prediction, we find that the baseline state of contractility can enhance or reduce organization. Finally, we test predictions from these data in an in vivo epithelium by using genetic manipulations to drive collective motion between predicted migratory phases. This work demonstrates how commonly altered cellular properties can prime groups of cells to adopt migration patterns that may be harnessed in health or exploited in disease. PMID:27605707

  2. Cell directional migration and oriented division on three-dimensional laser-induced periodic surface structures on polystyrene.

    PubMed

    Wang, Xuefeng; Ohlin, Christian A; Lu, Qinghua; Hu, Jun

    2008-05-01

    The extracellular matrix in animal tissues usually provides a three-dimensional structural support to cells in addition to performing various other important functions. In the present study, wavy submicrometer laser-irradiated periodic surface structures (LIPSS) were produced on a smooth polystyrene film by polarized laser irradiation with a wavelength of 266 nm. Rat C6 glioma cells exhibited directional migration and oriented division on laser-irradiated polystyrene, which was parallel to the direction of LIPSS. However, rat C6 glioma cells on smooth polystyrene moved in a three-step invasion cycle, with faster migration speed than that on laser-irradiated polystyrene. In addition, focal adhesions examined by immunostaining focal adhesion kinase in human epithelial carcinoma HeLa cells were punctuated on smooth polystyrene, whereas dash-like on laser-irradiated polystyrene. We hypothesized that LIPSS on laser-irradiated polystyrene acted as an anisotropic and persistent mechanical stimulus to guide cell anisotropic spreading, migration and division through focal adhesions.

  3. Medical Tourism, Medical Migration, and Global Justice: Implications for Biosecurity in a Globalized World.

    PubMed

    Cohen, I Glenn

    2017-05-01

    We live in the age of globalization. In medicine, that globalization has brought many benefits such as the diffusion of technology and the spread of health care training, but it has also brought threats to biosecurity. This article examines how medical tourism and medical migration pose risks to biosecurity. It also argues that designing legal responses to these risks requires not only technical competence but also a theory of global justice to guide that design. © The Author 2017. Published by Oxford University Press; all rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Narrow-Front Loop Migration in a Population of the Common Cuckoo Cuculus canorus, as Revealed by Satellite Telemetry

    PubMed Central

    Willemoes, Mikkel; Strandberg, Roine; Klaassen, Raymond H. G.; Tøttrup, Anders P.; Vardanis, Yannis; Howey, Paul W.; Thorup, Kasper; Wikelski, Martin; Alerstam, Thomas

    2014-01-01

    Narrow migration corridors known in diurnal, social migrants such as raptors, storks and geese are thought to be caused by topographical leading line effects in combination with learning detailed routes across generations. Here, we document narrow-front migration in a nocturnal, solitary migrant, the common cuckoo Cuculus canorus, using satellite telemetry. We tracked the migration of adult cuckoos from the breeding grounds in southern Scandinavia (n = 8), to wintering sites in south-western Central Africa (n = 6) and back to the breeding grounds (n = 3). Migration patterns were very complex; in addition to the breeding and wintering sites, six different stopover sites were identified during the 16,000 km annual route that formed a large-scale clockwise loop. Despite this complexity, individuals showed surprisingly similar migration patterns, with very little variation between routes. We compared observed tracks with simulated routes based on vector orientation (with and without effects of barriers on orientation and survival). Observed distances between routes were often significantly smaller than expected if the routes were established on the basis of an innate vector orientation programme. Average distance between individuals in eastern Sahel after having migrated more than 5,000 km for example, was merely 164 km. This implies that more sophisticated inherent guiding mechanisms, possibly involving elements of intermediate goal area navigation or more elaborate external cues, are necessary to explain the complex narrow-front migration pattern observed for the cuckoos in this study. PMID:24421890

  5. PDGF controls contact inhibition of locomotion by regulating N-cadherin during neural crest migration.

    PubMed

    Bahm, Isabel; Barriga, Elias H; Frolov, Antonina; Theveneau, Eric; Frankel, Paul; Mayor, Roberto

    2017-07-01

    A fundamental property of neural crest (NC) migration is contact inhibition of locomotion (CIL), a process by which cells change their direction of migration upon cell contact. CIL has been proven to be essential for NC migration in amphibians and zebrafish by controlling cell polarity in a cell contact-dependent manner. Cell contact during CIL requires the participation of the cell adhesion molecule N-cadherin, which starts to be expressed by NC cells as a consequence of the switch between E- and N-cadherins during epithelial-to-mesenchymal transition (EMT). However, the mechanism that controls the upregulation of N-cadherin remains unknown. Here, we show that platelet-derived growth factor receptor alpha (PDGFRα) and its ligand platelet-derived growth factor A (PDGF-A) are co-expressed in migrating cranial NC. Inhibition of PDGF-A/PDGFRα blocks NC migration by inhibiting N-cadherin and, consequently, impairing CIL. Moreover, we identify phosphatidylinositol-3-kinase (PI3K)/AKT as a downstream effector of the PDGFRα cellular response during CIL. Our results lead us to propose PDGF-A/PDGFRα signalling as a tissue-autonomous regulator of CIL by controlling N-cadherin upregulation during EMT. Finally, we show that once NC cells have undergone EMT, the same PDGF-A/PDGFRα works as an NC chemoattractant, guiding their directional migration. © 2017. Published by The Company of Biologists Ltd.

  6. Globular Clusters for Faint Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-07-01

    The origin of ultra-diffuse galaxies (UDGs) has posed a long-standing mystery for astronomers. New observations of several of these faint giants with the Hubble Space Telescope are now lending support to one theory.Faint-Galaxy MysteryHubble images of Dragonfly 44 (top) and DFX1 (bottom). The right panels show the data with greater contrast and extended objects masked. [van Dokkum et al. 2017]UDGs large, extremely faint spheroidal objects were first discovered in the Virgo galaxy cluster roughly three decades ago. Modern telescope capabilities have resulted in many more discoveries of similar faint galaxies in recent years, suggesting that they are a much more common phenomenon than we originally thought.Despite the many observations, UDGs still pose a number of unanswered questions. Chief among them: what are UDGs? Why are these objects the size of normal galaxies, yet so dim? There are two primary models that explain UDGs:UDGs were originally small galaxies, hence their low luminosity. Tidal interactions then puffed them up to the large size we observe today.UDGs are effectively failed galaxies. They formed the same way as normal galaxies of their large size, but something truncated their star formation early, preventing them from gaining the brightness that we would expect for galaxies of their size.Now a team of scientists led by Pieter van Dokkum (Yale University) has made some intriguing observations with Hubble that lend weight to one of these models.Globulars observed in 16 Coma-cluster UDGs by Hubble. The top right panel shows the galaxy identifications. The top left panel shows the derived number of globular clusters in each galaxy. [van Dokkum et al. 2017]Globulars GaloreVan Dokkum and collaborators imaged two UDGs with Hubble: Dragonfly 44 and DFX1, both located in the Coma galaxy cluster. These faint galaxies are both smooth and elongated, with no obvious irregular features, spiral arms, star-forming regions, or other indications of tidal interactions.The most striking feature of these galaxies, however, is that they are surrounded by a large number of compact objects that appear to be globular clusters. From the observations, Van Dokkum and collaborators estimate that Dragonfly 44 and DFX1 have approximately 74 and 62 globulars, respectively significantly more than the low numbers expected for galaxies of this luminosity.Armed with this knowledge, the authors went back and looked at archival observations of 14 other UDGs also located in the Coma cluster. They found that these smaller and fainter galaxies dont host quite as many globular clusters as Dragonfly 44 and DFX1, but more than half also show significant overdensities of globulars.Main panel: relation between the number of globular clusters and total absolute magnitude for Coma UDGs (solid symbols) compared to normal galaxies (open symbols). Top panel: relation between effective radius and absolute magnitude. The UDGs are significantly larger and have more globular clusters than normal galaxies of the same luminosity. [van Dokkum et al. 2017]Evidence of FailureIn general, UDGs appear to have more globular clusters than other galaxies of the same total luminosity, by a factor of nearly 7. These results are consistent with the scenario in which UDGs are failed galaxies: they likely have the halo mass to have formed a large number of globular clusters, but they were quenched before they formed a disk and bulge. Because star formation never got going in UDGs, they are now much dimmer than other galaxies of the same size.The authors suggest that the next step is to obtain dynamical measurements of the UDGs to determine whether these faint galaxies really do have the halo mass suggested by their large numbers of globulars. Future observations will continue to help us pin down the origin of these dim giants.CitationPieter van Dokkum et al 2017 ApJL 844 L11. doi:10.3847/2041-8213/aa7ca2

  7. A 2-year RSA study of the Vanguard CR total knee system: A randomized controlled trial comparing patient-specific positioning guides with conventional technique.

    PubMed

    Øhrn, Frank-David; Van Leeuwen, Justin; Tsukanaka, Masako; Röhrl, Stephan M

    2018-05-09

    Background and purpose - There is some concern regarding the revision rate of the Vanguard CR TKA in 1 registry, and the literature is ambiguous about the efficacy of patient-specific positioning guides (PSPGs). The objective of this study was to investigate the stability of the cemented Vanguard CR Total Knee using 2 different surgical techniques. Our hypothesis was that there is no difference in migration when implanting the Vanguard CR with either PSPGs or conventional technique. We hereby present a randomized controlled trial of 2-year follow-up with radiostereometric analysis (RSA). Patients and methods - 40 TKAs were performed between 2011 and 2013 with either PSPGs or the conventional technique and 22 of these were investigated with RSA. Results - The PSPG (8 knees) and the conventional (14 knees) groups had a mean maximum total point motion (MTPM) (95% CI) of 0.83 (0.48-1.18) vs. 0.70 (0.43-0.97) mm, 1.03 (0.60-1.43) vs. 0.86 (0.53-1.19), and 1.46 (1.07-1.85) vs. 0.80 (0.52-1.43) at 3, 12, and 24 months respectively (p = 0.1). 5 implants had either an MTPM >1.6 mm at 12 months and/or a migration of more than 0.2 mm between 1- and 2-year follow-ups. 2 of these also had a peripheral subsidence of more than 0.6 mm at 2 years. Interpretation - 5 implants (3 in the PSPG group) were found to be at risk of later aseptic loosening. The PSPG group continuously migrated between 12 and 24 months. The conventional group had an initial high migration between postoperative and 3 months, but seemed more stable after 1 year. Although the difference was not statistically significant, we think the migration in the PSPG group is of some concern.

  8. Leading Process Branch Instability in Lis1+/− Nonradially Migrating Interneurons

    PubMed Central

    Gopal, Pallavi P.; Simonet, Jacqueline C.; Shapiro, William

    2010-01-01

    Mammalian forebrain development requires extensive migration, yet the mechanisms through which migrating neurons sense and respond to guidance cues are not well understood. Similar to the axon growth cone, the leading process and branches of neurons may guide migration, but the cytoskeletal events that regulate branching are unknown. We have previously shown that loss of microtubule-associated protein Lis1 reduces branching during migration compared with wild-type neurons. Using time-lapse imaging of Lis1+/− and Lis1+/+ cells migrating from medial ganglionic eminence explant cultures, we show that the branching defect is not due to a failure to initiate branches but a defect in the stabilization of new branches. The leading processes of Lis1+/− neurons have reduced expression of stabilized, acetylated microtubules compared with Lis1+/+ neurons. To determine whether Lis1 modulates branch stability through its role as the noncatalytic β regulatory subunit of platelet-activating factor (PAF) acetylhydrolase 1b, exogenous PAF was applied to wild-type cells. Excess PAF added to wild-type neurons phenocopies the branch instability observed in Lis1+/− neurons, and a PAF antagonist rescues leading process branching in Lis1+/− neurons. These data highlight a role for Lis1, acting through the PAF pathway, in leading process branching and microtubule stabilization. PMID:19861636

  9. Spring migration routes and chronology of surf scoters (Melanitta perspicillata): a synthesis of Pacific coast studies

    USGS Publications Warehouse

    de la Cruz, S.E.W.; Takekawa, John Y.; Wilson, M.T.; Nysewander, D.R.; Evenson, J.R.; Esler, Daniel N.; Boyd, W.S.; Ward, D.H.

    2009-01-01

    Understanding interconnectivity among wintering, stopover, and breeding areas of migratory birds is pivotal to discerning how events occurring in each might have a cross-seasonal effect on another. Such information can guide the location and timing of conservation efforts. Thus, we examined spring migration routes, chronology, and stopover use of 85 surf scoters (Melanitta perspicillata (L., 1758)) marked with satellite transmitters at four Pacific Flyway wintering sites: San Quintin Bay, Baja California; San Francisco Bay, California; Puget Sound, Washington; and Strait of Georgia, British Columbia. Eighty-three percent of marked scoters followed two main routes to the breeding area: a Southern Inland route involving staging in Puget Sound and Strait of Georgia and protracted inland migration, or a Northern Coastal route characterized by short movements along the Pacific coast of British Columbia and southeast Alaska with inland migration initiating from Lynn Canal and surrounding areas. Route choice was related to nesting site latitude in the Canadian Northern Boreal Forest. Data from birds tracked over 2 years indicated strong migration route fidelity, but altered chronology and stopover locations between years. Departure date varied by wintering site, but arrival and apparent settling dates were synchronous, suggesting individuals adjusted migration timing to meet an optimized reproductive schedule.

  10. Optimization of electrospun TSF nanofiber alignment and diameter to promote growth and migration of mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Qu, Jing; Zhou, Dandan; Xu, Xiaojing; Zhang, Feng; He, Lihong; Ye, Rong; Zhu, Ziyu; Zuo, Baoqi; Zhang, Huanxiang

    2012-11-01

    Silk fibroin scaffolds are a naturally derived biocompatible matrix with the potential for reconstructive surgical applications. In this study, tussah silk fibroin (TSF) nanofiber with different diameters (400 nm, 800 nm and 1200 nm) and alignment (random and aligned) were prepared by electrospinning, then the growth and migration of mesenchymal stem cells (MSCs) on these materials were further evaluated. CD90 immunofluorescence staining showed that fiber alignment exhibited a strong influence on the morphology of MSCs, indicating that the alignment of the scaffolds could determine the distribution of cells. Moreover, smaller diameter and aligned TSF scaffolds are more favorable to the growth of MSCs as compared with 800 nm and 1200 nm random TSF scaffolds. In addition, the increased migration speed and efficiency of MSCs induced by three-D TSF were verified, highlighting the guiding roles of TSF to the migrated MSCs. More importantly, 400 nm aligned TSF scaffolds dramatically improved cell migratory speed and further induced the most efficient migration of MSCs as compared with larger diameter TSF scaffolds. In conclusion, the data demonstrate that smaller diameter and aligned electrospun TSF represent valuable scaffolds for supporting and promoting MSCs growth and migration, thus raising the possibility of manipulating TSF scaffolds to enhance homing and therapeutic potential of MSCs in cellular therapy.

  11. Entrapment of Guide Wire in an Inferior Vena Cava Filter: A Technique for Removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Aal, Ahmed Kamel, E-mail: akamel@uabmc.edu; Saddekni, Souheil; Hamed, Maysoon Farouk

    Entrapment of a central venous catheter (CVC) guide wire in an inferior vena cava (IVC) filter is a rare, but reported complication during CVC placement. With the increasing use of vena cava filters (VCFs), this number will most likely continue to grow. The consequences of this complication can be serious, as continued traction upon the guide wire may result in filter dislodgement and migration, filter fracture, or injury to the IVC. We describe a case in which a J-tipped guide wire introduced through a left subclavian access without fluoroscopic guidance during CVC placement was entrapped at the apex of anmore » IVC filter. We describe a technique that we used successfully in removing the entrapped wire through the left subclavian access site. We also present simple useful recommendations to prevent this complication.« less

  12. Hox paralog group 2 genes control the migration of mouse pontine neurons through slit-robo signaling.

    PubMed

    Geisen, Marc J; Di Meglio, Thomas; Pasqualetti, Massimo; Ducret, Sebastien; Brunet, Jean-François; Chedotal, Alain; Rijli, Filippo M

    2008-06-10

    The pontine neurons (PN) represent a major source of mossy fiber projections to the cerebellum. During mouse hindbrain development, PN migrate tangentially and sequentially along both the anteroposterior (AP) and dorsoventral (DV) axes. Unlike DV migration, which is controlled by the Netrin-1/Dcc attractive pathway, little is known about the molecular mechanisms guiding PN migration along the AP axis. Here, we show that Hoxa2 and Hoxb2 are required both intrinsically and extrinsically to maintain normal AP migration of subsets of PN, by preventing their premature ventral attraction towards the midline. Moreover, the migration defects observed in Hoxa2 and Hoxb2 mutant mice were phenocopied in compound Robo1;Robo2, Slit1;Slit2, and Robo2;Slit2 knockout animals, indicating that these guidance molecules act downstream of Hox genes to control PN migration. Indeed, using chromatin immunoprecipitation assays, we further demonstrated that Robo2 is a direct target of Hoxa2 in vivo and that maintenance of high Robo and Slit expression levels was impaired in Hoxa2 mutant mice. Lastly, the analysis of Phox2b-deficient mice indicated that the facial motor nucleus is a major Slit signaling source required to prevent premature ventral migration of PN. These findings provide novel insights into the molecular control of neuronal migration from transcription factor to regulation of guidance receptor and ligand expression. Specifically, they address the question of how exposure to multiple guidance cues along the AP and DV axes is regulated at the transcriptional level and in turn translated into stereotyped migratory responses during tangential migration of neurons in the developing mammalian brain.

  13. Hox Paralog Group 2 Genes Control the Migration of Mouse Pontine Neurons through Slit-Robo Signaling

    PubMed Central

    Pasqualetti, Massimo; Ducret, Sebastien; Brunet, Jean-François; Chedotal, Alain; Rijli, Filippo M

    2008-01-01

    The pontine neurons (PN) represent a major source of mossy fiber projections to the cerebellum. During mouse hindbrain development, PN migrate tangentially and sequentially along both the anteroposterior (AP) and dorsoventral (DV) axes. Unlike DV migration, which is controlled by the Netrin-1/Dcc attractive pathway, little is known about the molecular mechanisms guiding PN migration along the AP axis. Here, we show that Hoxa2 and Hoxb2 are required both intrinsically and extrinsically to maintain normal AP migration of subsets of PN, by preventing their premature ventral attraction towards the midline. Moreover, the migration defects observed in Hoxa2 and Hoxb2 mutant mice were phenocopied in compound Robo1;Robo2, Slit1;Slit2, and Robo2;Slit2 knockout animals, indicating that these guidance molecules act downstream of Hox genes to control PN migration. Indeed, using chromatin immunoprecipitation assays, we further demonstrated that Robo2 is a direct target of Hoxa2 in vivo and that maintenance of high Robo and Slit expression levels was impaired in Hoxa2 mutant mice. Lastly, the analysis of Phox2b-deficient mice indicated that the facial motor nucleus is a major Slit signaling source required to prevent premature ventral migration of PN. These findings provide novel insights into the molecular control of neuronal migration from transcription factor to regulation of guidance receptor and ligand expression. Specifically, they address the question of how exposure to multiple guidance cues along the AP and DV axes is regulated at the transcriptional level and in turn translated into stereotyped migratory responses during tangential migration of neurons in the developing mammalian brain. PMID:18547144

  14. The nature of inherent bactericidal activity: insights from the nanotopology of three species of dragonfly

    NASA Astrophysics Data System (ADS)

    Mainwaring, David E.; Nguyen, Song Ha; Webb, Hayden; Jakubov, Timur; Tobin, Mark; Lamb, Robert N.; Wu, Alex H.-F.; Marchant, Richard; Crawford, Russell J.; Ivanova, Elena P.

    2016-03-01

    While insect wings are widely recognised as multi-functional, recent work showed that this extends to extensive bactericidal activity brought about by cell deformation and lysis on the wing nanotopology. We now quantitatively show that subtle changes to this topography result in substantial changes in bactericidal activity that are able to span an order of magnitude. Notably, the chemical composition of the lipid nanopillars was seen by XPS and synchrotron FTIR microspectroscopy to be similar across these activity differences. Modelling the interaction between bacterial cells and the wing surface lipids of 3 species of dragonflies, that inhabit similar environments, but with distinctly different behavioural repertoires, provided the relationship between surface structure and antibacterial functionality. In doing so, these principal behavioural patterns correlated with the demands for antimicrobial efficiency dictated by differences in their foraging strategies. This work now reveals a new feature in the design elegance of natural multi-functional surfaces as well providing insights into the bactericidal mechanism underlying inherently antimicrobial materials, while suggesting that nanotopology is related to the evolutionary development of a species through the demands of its behavioural repertoire. The underlying relationship between the processes of wetting, adhesion and capillarity of the lipid nanopillars and bactericidal efficiency suggests new prospects for purely mechano-responsive antibacterial surfaces.While insect wings are widely recognised as multi-functional, recent work showed that this extends to extensive bactericidal activity brought about by cell deformation and lysis on the wing nanotopology. We now quantitatively show that subtle changes to this topography result in substantial changes in bactericidal activity that are able to span an order of magnitude. Notably, the chemical composition of the lipid nanopillars was seen by XPS and synchrotron FTIR microspectroscopy to be similar across these activity differences. Modelling the interaction between bacterial cells and the wing surface lipids of 3 species of dragonflies, that inhabit similar environments, but with distinctly different behavioural repertoires, provided the relationship between surface structure and antibacterial functionality. In doing so, these principal behavioural patterns correlated with the demands for antimicrobial efficiency dictated by differences in their foraging strategies. This work now reveals a new feature in the design elegance of natural multi-functional surfaces as well providing insights into the bactericidal mechanism underlying inherently antimicrobial materials, while suggesting that nanotopology is related to the evolutionary development of a species through the demands of its behavioural repertoire. The underlying relationship between the processes of wetting, adhesion and capillarity of the lipid nanopillars and bactericidal efficiency suggests new prospects for purely mechano-responsive antibacterial surfaces. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08542j

  15. Suicide Prevention and Community-Level Indicators

    ERIC Educational Resources Information Center

    Hourani, Laurel L.; Davidson, Lucy; Clinton-Sherrod, Monique; Patel, Nita; Marshall, Maureen; Crosby, Alex E.

    2006-01-01

    This study sought to develop a set of easily obtainable, relevant measures of a community's condition that could be used to guide its suicide prevention efforts. Existing data were gathered across 159 Georgia counties for nine potential social indicators (rates of net migration, divorce, unemployment, violent crimes reported, driving under the…

  16. Navigation.

    PubMed

    Wiltschko, Roswitha

    2017-07-01

    Experiments with migrating birds displaced during autumn migration outside their normal migration corridor reveal two different navigational strategies: adult migrants compensate for the displacement, and head towards their traditional wintering areas, whereas young first-time migrants continue in their migratory direction. Young birds are guided to their still unknown goal by a genetically coded migration program that indicates duration and direction(s) of the migratory flight by controlling the amount of migratory restlessness and the compass course(s) with respect to the geomagnetic field and celestial rotation. Adult migrants that have already wintered and are familiar with the goal area approach the goal by true navigation, specifically heading towards it and changing their course correspondingly after displacement. During their first journey, young birds experience the distribution of potential navigational factors en route and in their winter home, which allows them to truly navigate on their next migrations. The navigational factors used appear to include magnetic intensity as a component in their multi-modal navigational 'map'; olfactory input is also involved, even if it is not yet entirely clear in what way. The mechanisms of migratory birds for true navigation over long distances appear to be in principle similar to those discussed for by homing pigeons.

  17. Tracking from the tropics reveals behaviour of juvenile songbirds on their first spring migration.

    PubMed

    McKinnon, Emily A; Fraser, Kevin C; Stanley, Calandra Q; Stutchbury, Bridget J M

    2014-01-01

    Juvenile songbirds on spring migration travel from tropical wintering sites to temperate breeding destinations thousands of kilometres away with no prior experience to guide them. We provide a first glimpse at the migration timing, routes, and stopover behaviour of juvenile wood thrushes (Hylocichla mustelina) on their inaugural spring migration by using miniaturized archival geolocators to track them from Central America to the U.S. and Canada. We found significant differences between the timing of juvenile migration and that of more experienced adults: juveniles not only departed later from tropical wintering sites relative to adults, they also became progressively later as they moved northward. The increasing delay was driven by more frequent short stops by juveniles along their migration route, particularly in the U.S. as they got closer to breeding sites. Surprisingly, juveniles were just as likely as adults to cross the Gulf of Mexico, an open-water crossing of 800-1000 km, and migration route at the Gulf was not significantly different for juveniles relative to adults. To determine if the later departure of juveniles was related to poor body condition in winter relative to adults, we examined percent lean body mass, fat scores, and pectoral muscle scores of juvenile versus adult birds at a wintering site in Belize. We found no age-related differences in body condition. Later migration timing of juveniles relative to adults could be an adaptive strategy (as opposed to condition-dependent) to avoid the high costs of fast migration and competition for breeding territories with experienced and larger adults. We did find significant differences in wing size between adults and juveniles, which could contribute to lower flight efficiency of juveniles and thus slower overall migration speed. We provide the first step toward understanding the "black box" of juvenile songbird migration by documenting their migration timing and en route performance.

  18. Tracking from the Tropics Reveals Behaviour of Juvenile Songbirds on Their First Spring Migration

    PubMed Central

    McKinnon, Emily A.; Fraser, Kevin C.; Stanley, Calandra Q.; Stutchbury, Bridget J. M.

    2014-01-01

    Juvenile songbirds on spring migration travel from tropical wintering sites to temperate breeding destinations thousands of kilometres away with no prior experience to guide them. We provide a first glimpse at the migration timing, routes, and stopover behaviour of juvenile wood thrushes (Hylocichla mustelina) on their inaugural spring migration by using miniaturized archival geolocators to track them from Central America to the U.S. and Canada. We found significant differences between the timing of juvenile migration and that of more experienced adults: juveniles not only departed later from tropical wintering sites relative to adults, they also became progressively later as they moved northward. The increasing delay was driven by more frequent short stops by juveniles along their migration route, particularly in the U.S. as they got closer to breeding sites. Surprisingly, juveniles were just as likely as adults to cross the Gulf of Mexico, an open-water crossing of 800–1000 km, and migration route at the Gulf was not significantly different for juveniles relative to adults. To determine if the later departure of juveniles was related to poor body condition in winter relative to adults, we examined percent lean body mass, fat scores, and pectoral muscle scores of juvenile versus adult birds at a wintering site in Belize. We found no age-related differences in body condition. Later migration timing of juveniles relative to adults could be an adaptive strategy (as opposed to condition-dependent) to avoid the high costs of fast migration and competition for breeding territories with experienced and larger adults. We did find significant differences in wing size between adults and juveniles, which could contribute to lower flight efficiency of juveniles and thus slower overall migration speed. We provide the first step toward understanding the “black box” of juvenile songbird migration by documenting their migration timing and en route performance. PMID:25141193

  19. Efficiency of two-way weirs and prepositioned electrofishing for sampling potamodromous fish migrations

    USGS Publications Warehouse

    Favrot, Scott D.; Kwak, Thomas J.

    2016-01-01

    Potamodromy (i.e., migration entirely in freshwater) is a common life history strategy of North American lotic fishes, and efficient sampling methods for potamodromous fishes are needed to formulate conservation and management decisions. Many potamodromous fishes inhabit medium-sized rivers and are mobile during spawning migrations, which complicates sampling with conventional gears (e.g., nets and electrofishing). We compared the efficiency of a passive migration technique (resistance board weirs) and an active technique (prepositioned areal electrofishers; [PAEs]) for sampling migrating potamodromous fishes in Valley River, a southern Appalachian Mountain river, from March through July 2006 and 2007. A total of 35 fish species from 10 families were collected, 32 species by PAE and 19 species by weir. Species richness and diversity were higher for PAE catch, and species dominance (i.e., proportion of assemblage composed of the three most abundant species) was higher for weir catch. Prepositioned areal electrofisher catch by number was considerably higher than weir catch, but biomass was lower for PAE catch. Weir catch decreased following the spawning migration, while PAEs continued to collect fish. Sampling bias associated with water velocity was detected for PAEs, but not weirs, and neither gear demonstrated depth bias in wadeable reaches. Mean fish mortality from PAEs was five times greater than that from weirs. Catch efficiency and composition comparisons indicated that weirs were effective at documenting migration chronology, sampling nocturnal migration, and yielding samples unbiased by water velocity or habitat, with low mortality. Prepositioned areal electrofishers are an appropriate sampling technique for seasonal fish occupancy objectives, while weirs are more suitable for quantitatively describing spawning migrations. Our comparative results may guide fisheries scientists in selecting an appropriate sampling gear and regime for research, monitoring, conservation, and management of potamodromous fishes.

  20. IMAGING DIAGNOSIS-URETHROVAGINAL FISTULA CAUSED BY A MIGRATING GRASS AWN IN THE VAGINA.

    PubMed

    Agut, Amalia; Carrillo, Juana D; Anson, Agustina; Belda, Eliseo; Soler, Marta

    2016-05-01

    A young intact female dog was presented with urinary incontinence. Abdominal ultrasound revealed the presence of hyperechoic linear structures within the cranial vagina suggestive of foreign material. A computed tomography (CT) retrograde vaginourethrogram demonstrated the presence of a fistulous tract between the urethra and vagina. A presumptive diagnosis of urethrovaginal fistula due to migration of foreign material was made. The grass awn was removed with vaginoscopic-guided retrieval. Fourteen days later, surgical repair of the fistula and an ovariohysterectomy were done. This case report emphasizes the usefulness of CT for diagnosis and precise anatomical localization of genitourinary tract fistulas. © 2015 American College of Veterinary Radiology.

  1. Surface coating for prevention of metallic seed migration in tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyunseok; Park, Jong In; Lee, Won Seok

    Purpose: In radiotherapy, metallic implants often detach from their deposited sites and migrate to other locations. This undesirable migration could cause inadequate dose coverage for permanent brachytherapy and difficulties in image-guided radiation delivery for patients. To prevent migration of implanted seeds, the authors propose a potential strategy to use a biocompatible and tissue-adhesive material called polydopamine. Methods: In this study, nonradioactive dummy seeds that have the same geometry and composition as commercial I-125 seeds were coated in polydopamine. Using scanning electron microscopy and x-ray photoelectron spectroscopy, the surface of the polydopamine-coated and noncoated seeds was characterized. The detachment stress betweenmore » the two types of seeds and the tissue was measured. The efficacy of polydopamine-coated seed was investigated through in vitro migration tests by tracing the seed location after tissue implantation and shaking for given times. The cytotoxicity of the polydopamine coating was also evaluated. Results: The results of the coating characterization have shown that polydopamine was successfully coated on the surface of the seeds. In the adhesion test, the polydopamine-coated seeds had 2.1-fold greater detachment stress than noncoated seeds. From the in vitro test, it was determined that the polydopamine-coated seed migrated shorter distances than the noncoated seed. This difference was increased with a greater length of time after implantation. Conclusions: The authors suggest that polydopamine coating is an effective technique to prevent migration of implanted seeds, especially for permanent prostate brachytherapy.« less

  2. Neuronal Migration Dynamics in the Developing Ferret Cortex.

    PubMed

    Gertz, Caitlyn C; Kriegstein, Arnold R

    2015-10-21

    During mammalian neocortical development, newborn excitatory and inhibitory neurons must migrate over long distances to reach their final positions within the cortical plate. In the lissencephalic rodent brain, pyramidal neurons are born in the ventricular and subventricular zones of the pallium and migrate along radial glia fibers to reach the appropriate cortical layer. Although much less is known about neuronal migration in species with a gyrencephalic cortex, retroviral studies in the ferret and primate suggest that, unlike the rodent, pyramidal neurons do not follow strict radial pathways and instead can disperse horizontally. However, the means by which pyramidal neurons laterally disperse remain unknown. In this study, we identified a viral labeling technique for visualizing neuronal migration in the ferret, a gyrencephalic carnivore, and found that migration was predominantly radial at early postnatal ages. In contrast, neurons displayed more tortuous migration routes with a decreased frequency of cortical plate-directed migration at later stages of neurogenesis concomitant with the start of brain folding. This was accompanied by neurons migrating sequentially along several different radial glial fibers, suggesting a mode by which pyramidal neurons may laterally disperse in a folded cortex. These findings provide insight into the migratory behavior of neurons in gyrencephalic species and provide a framework for using nonrodent model systems for studying neuronal migration disorders. Elucidating neuronal migration dynamics in the gyrencephalic, or folded, cortex is important for understanding neurodevelopmental disorders. Similar to the rodent, we found that neuronal migration was predominantly radial at early postnatal ages in the gyrencephalic ferret cortex. Interestingly, ferret neurons displayed more tortuous migration routes and a decreased frequency of radial migration at later ages coincident with the start of cortical folding. We found that ferret neurons use several different radial glial fibers as migratory guides, including those belonging to the recently described outer radial glia, suggesting a mechanism by which ferret neurons disperse laterally. It is likely that excitatory neurons horizontally disperse in other gyrencephalic mammals, including the primate, suggesting an important modification to the current model deduced primarily from the rodent. Copyright © 2015 the authors 0270-6474/15/3514307-09$15.00/0.

  3. Datura metel-synthesized silver nanoparticles magnify predation of dragonfly nymphs against the malaria vector Anopheles stephensi.

    PubMed

    Murugan, Kadarkarai; Dinesh, Devakumar; Kumar, Prabhu Jenil; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Madhiyazhagan, Pari; Suresh, Udaiyan; Nicoletti, Marcello; Alarfaj, Abdullah A; Munusamy, Murugan A; Higuchi, Akon; Mehlhorn, Heinz; Benelli, Giovanni

    2015-12-01

    Malaria is a life-threatening disease caused by parasites transmitted to people and animals through the bites of infected mosquitoes. The employ of synthetic insecticides to control Anopheles populations leads to high operational costs, non-target effects, and induced resistance. Recently, plant-borne compounds have been proposed for efficient and rapid extracellular synthesis of mosquitocidal nanoparticles. However, their impact against predators of mosquito larvae has been poorly studied. In this study, we synthesized silver nanoparticles (AgNPs) using the Datura metel leaf extract as reducing and stabilizing agent. The biosynthesis of AgNPs was confirmed analyzing the excitation of surface plasmon resonance using ultraviolet-visible (UV-vis) spectroscopy. Scanning electron microscopy (SEM) showed the clustered and irregular shapes of AgNPs, with a mean size of 40-60 nm. The presence of silver was determined by energy-dispersive X-ray (EDX) spectroscopy. Fourier transform infrared (FTIR) spectroscopy analysis investigated the identity of secondary metabolites, which may be acting as AgNP capping agents. In laboratory, LC50 of D. metel extract against Anopheles stephensi ranged from 34.693 ppm (I instar larvae) to 81.500 ppm (pupae). LC50 of AgNP ranged from 2.969 ppm (I instar larvae) to 6.755 ppm (pupae). Under standard laboratory conditions, the predation efficiency of Anax immaculifrons nymphs after 24 h was 75.5 % (II instar larvae) and 53.5 % (III instar larvae). In AgNP-contaminated environment, predation rates were boosted to 95.5 and 78 %, respectively. Our results documented that D. metel-synthesized AgNP might be employed at rather low doses to reduce larval populations of malaria vectors, without detrimental effects on behavioral traits of young instars of the dragonfly Anax immaculifrons.

  4. An autonomous robot inspired by insect neurophysiology pursues moving features in natural environments

    NASA Astrophysics Data System (ADS)

    Bagheri, Zahra M.; Cazzolato, Benjamin S.; Grainger, Steven; O'Carroll, David C.; Wiederman, Steven D.

    2017-08-01

    Objective. Many computer vision and robotic applications require the implementation of robust and efficient target-tracking algorithms on a moving platform. However, deployment of a real-time system is challenging, even with the computational power of modern hardware. Lightweight and low-powered flying insects, such as dragonflies, track prey or conspecifics within cluttered natural environments, illustrating an efficient biological solution to the target-tracking problem. Approach. We used our recent recordings from ‘small target motion detector’ neurons in the dragonfly brain to inspire the development of a closed-loop target detection and tracking algorithm. This model exploits facilitation, a slow build-up of response to targets which move along long, continuous trajectories, as seen in our electrophysiological data. To test performance in real-world conditions, we implemented this model on a robotic platform that uses active pursuit strategies based on insect behaviour. Main results. Our robot performs robustly in closed-loop pursuit of targets, despite a range of challenging conditions used in our experiments; low contrast targets, heavily cluttered environments and the presence of distracters. We show that the facilitation stage boosts responses to targets moving along continuous trajectories, improving contrast sensitivity and detection of small moving targets against textured backgrounds. Moreover, the temporal properties of facilitation play a useful role in handling vibration of the robotic platform. We also show that the adoption of feed-forward models which predict the sensory consequences of self-movement can significantly improve target detection during saccadic movements. Significance. Our results provide insight into the neuronal mechanisms that underlie biological target detection and selection (from a moving platform), as well as highlight the effectiveness of our bio-inspired algorithm in an artificial visual system.

  5. The distribution of dragonfly larvae in a South Carolina stream: relationships with sediment type, body size, and the presence of other larvae.

    PubMed

    Worthen, Wade B; Horacek, Henry Joseph

    2015-01-01

    Dragonfly larvae were sampled in Little Creek, Greenville, SC. The distributions of five common species were described relative to sediment type, body size, and the presence of other larvae. In total, 337 quadrats (1 m by 0.5 m) were sampled by kick seine. For each quadrat, the substrate was classified as sand, sand-cobble mix, cobble, coarse, or rock, and water depth and distance from bank were measured. Larvae were identified to species, and the lengths of the body, head, and metafemur were measured. Species were distributed differently across sediment types: sanddragons, Progomphus obscurus (Rambur) (Odonata: Gomphidae), were common in sand; twin-spotted spiketails, Cordulegaster maculata Selys (Odonata: Cordulegastridae), preferred a sand-cobble mix; Maine snaketails, Ophiogomphus mainensis Packard (Odonata: Gomphidae), preferred cobble and coarse sediments; fawn darners, Boyeria vinosa (Say) (Odonata: Aeshnidae), preferred coarse sediments; and Eastern least clubtails, Stylogomphus albistylus (Hagen) (Odonata: Gomphidae), preferred coarse and rock sediments. P. obscurus and C. maculata co-occurred more frequently than expected by chance, as did O. mainensis, B. vinosa, and S. albistylus. Mean size varied among species, and species preferences contributed to differences in mean size across sediment types. There were significant negative associations among larval size classes: small larvae (<12 mm) occurred less frequently with large larvae (>15 mm) than expected by chance, and large larvae were alone in quadrats more frequently than other size classes. Species may select habitats at a large scale based on sediment type and their functional morphology, but small scale distributions are consistent with competitive displacement or intraguild predation. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  6. Effects of a glyphosate-based herbicide and predation threat on the behaviour of agile frog tadpoles.

    PubMed

    Mikó, Zsanett; Ujszegi, János; Gál, Zoltán; Hettyey, Attila

    2017-06-01

    The widespread application of pesticides emphasises the importance of understanding the impacts of these chemicals on natural communities. The most commonly applied broad-spectrum herbicides in the world are glyphosate-based herbicides, which have been suggested to induce significant behavioural changes in non-target organisms even at low environmental concentrations. To scrutinize the behavioural effects of herbicide-exposure we exposed agile frog (Rana dalmatina) tadpoles in an outdoor mesocosm experiment to three concentrations of a glyphosate-based herbicide (0, 2 and 6.5mg acid equivalent (a.e.) / L). To assess whether anti-predator behaviour is affected by the pesticide, we combined all levels of herbicide-exposure with three predator treatments (no predator, caged Aeshna cyanea dragonfly larvae or Lissotriton vulgaris newt adults) in a full factorial design. We observed hiding, activity, proximity to the predator cage and vertical position of tadpoles. We found that at the higher herbicide concentration tadpoles decreased their activity and more tadpoles were hiding, and at least at the lower concentration their vertical position was closer to the water surface than in tadpoles of the control treatment. Tadpoles also decreased their activity in the presence of dragonfly larvae, but did not hide more in response to either predator, nor did tadpoles avoid predators spatially. Further, exposure to the herbicide did not significantly influence behavioural responses to predation threat. Our study documents a definite influence of glyphosate-based herbicides on the behaviour of agile frog tadpoles and indicates that some of these changes are similar to those induced by dangerous predators. This may suggest that the underlying physiological mechanisms or the adaptive value of behavioural changes may similar. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Wing shape allometry and aerodynamics in calopterygid damselflies: a comparative approach.

    PubMed

    Outomuro, David; Adams, Dean C; Johansson, Frank

    2013-06-07

    Wing size and shape have important aerodynamic implications on flight performance. We explored how wing size was related to wing shape in territorial males of 37 taxa of the damselfly family Calopterygidae. Wing coloration was also included in the analyses because it is sexually and naturally selected and has been shown to be related to wing shape. We studied wing shape using both the non-dimensional radius of the second moment of wing area (RSM) and geometric morphometrics. Lower values of the RSM result in less energetically demanding flight and wider ranges of flight speed. We also re-analyzed previously published data on other damselflies and dragonflies. The RSM showed a hump-shaped relationship with wing size. However, after correcting for phylogeny using independent contrast, this pattern changed to a negative linear relationship. The basal genus of the study family, Hetaerina, was mainly driving that change. The obtained patterns were specific for the study family and differed from other damselflies and dragonflies. The relationship between the RSM and wing shape measured by geometric morphometrics was linear, but relatively small changes along the RSM axis can result in large changes in wing shape. Our results also showed that wing coloration may have some effect on RSM. We found that RSM showed a complex relationship with size in calopterygid damselflies, probably as a result of other selection pressures besides wing size per se. Wing coloration and specific behavior (e.g. courtship) are potential candidates for explaining the complexity. Univariate measures of wing shape such as RSM are more intuitive but lack the high resolution of other multivariate techniques such as geometric morphometrics. We suggest that the relationship between wing shape and size are taxa-specific and differ among closely-related insect groups.

  8. The Dragonfly Nearby Galaxies Survey. III. The Luminosity Function of the M101 Group

    NASA Astrophysics Data System (ADS)

    Danieli, Shany; van Dokkum, Pieter; Merritt, Allison; Abraham, Roberto; Zhang, Jielai; Karachentsev, I. D.; Makarova, L. N.

    2017-03-01

    We obtained follow-up HST observations of the seven low surface brightness galaxies discovered with the Dragonfly Telephoto Array in the field of the massive spiral galaxy M101. Out of the seven galaxies, only three were resolved into stars and are potentially associated with the M101 group at D = 7 Mpc. Based on HST ACS photometry in the broad F606W and F814W filters, we use a maximum likelihood algorithm to locate the Tip of the Red Giant Branch in galaxy color-magnitude diagrams. Distances are {6.38}-0.35+0.35,{6.87}-0.30+0.21 and {6.52}-0.27+0.25 {Mpc} and we confirm that they are members of the M101 group. Combining the three confirmed low-luminosity satellites with previous results for brighter group members, we find the M101 galaxy group to be a sparsely populated galaxy group consisting of seven group members, down to M V = -9.2 mag. We compare the M101 cumulative luminosity function to that of the Milky Way and M31. We find that they are remarkably similar; in fact, the cumulative luminosity function of the M101 group gets even flatter for fainter magnitudes, and we show that the M101 group might exhibit the two known small-scale flaws in the ΛCDM model, namely “the missing satellite” problem and the “too big to fail” problem. Kinematic measurements of M101's satellite galaxies are required to determine whether the “too big to fail” problem does in fact exist in the M101 group.

  9. VEGF is a chemoattractant for FGF-2–stimulated neural progenitors

    PubMed Central

    Zhang, Huanxiang; Vutskits, Laszlo; Pepper, Michael S.; Kiss, Jozsef Z.

    2003-01-01

    Mmigration of undifferentiated neural progenitors is critical for the development and repair of the nervous system. However, the mechanisms and factors that regulate migration are not well understood. Here, we show that vascular endothelial growth factor (VEGF)-A, a major angiogenic factor, guides the directed migration of neural progenitors that do not display antigenic markers for neuron- or glia-restricted precursor cells. We demonstrate that progenitor cells express both VEGF receptor (VEGFR) 1 and VEGFR2, but signaling through VEGFR2 specifically mediates the chemotactic effect of VEGF. The expression of VEGFRs and the chemotaxis of progenitors in response to VEGF require the presence of fibroblast growth factor 2. These results demonstrate that VEGF is an attractive guidance cue for the migration of undifferentiated neural progenitors and offer a mechanistic link between neurogenesis and angiogenesis in the nervous system. PMID:14691144

  10. Reflecting on the Great Black Migration by Creating a Newspaper

    ERIC Educational Resources Information Center

    Hines, Angela

    2008-01-01

    This article describes the ways in which the author guided her third- and fourth-grade students in the use of historical fiction and primary and secondary sources (letters, historical newspapers, census data, photos) to think and write critically about provocative historical events. In creating their own newspaper, students learned to summarize…

  11. Asian Pacific Perspectives: Samoans in the United States.

    ERIC Educational Resources Information Center

    Los Angeles Unified School District, CA.

    These instructional materials on Samoans in the United States for elementary students were developed through the K.E.Y.S. project (Knowledge of English Yields Success). Information is included about Samoa, migration of Samoans to the United States, cultural background, and Samoan students. Resource guides describe the purpose of the unit, how to…

  12. Predicting and Mapping Potential Whooping Crane Stopover Habitat to Guide Site Selection for Wind Energy Projects

    EPA Science Inventory

    Migration is one of the most poorly understood components of a bird’s life cycle. For that reason, migratory stopover habitats are often not part of conservation planning and may be overlooked when planning new development projects. This project highlights and addresses an overl...

  13. Eph and Ephrin function in dispersal and epithelial insertion of pigmented immunocytes in sea urchin embryos

    PubMed Central

    Krupke, Oliver A; Zysk, Ivona; Mellott, Dan O; Burke, Robert D

    2016-01-01

    The mechanisms that underlie directional cell migration are incompletely understood. Eph receptors usually guide migrations of cells by exclusion from regions expressing Ephrin. In sea urchin embryos, pigmented immunocytes are specified in vegetal epithelium, transition to mesenchyme, migrate, and re-enter ectoderm, distributing in dorsal ectoderm and ciliary band, but not ventral ectoderm. Immunocytes express Sp-Eph and Sp-Efn is expressed throughout dorsal and ciliary band ectoderm. Interfering with expression or function of Sp-Eph results in rounded immunocytes entering ectoderm but not adopting a dendritic form. Expressing Sp-Efn throughout embryos permits immunocyte insertion in ventral ectoderm. In mosaic embryos, immunocytes insert preferentially in ectoderm expressing Sp-Efn. We conclude that Sp-Eph signaling is necessary and sufficient for epithelial insertion. As well, we propose that immunocytes disperse when Sp-Eph enhances adhesion, causing haptotactic movement to regions of higher ligand abundance. This is a distinctive example of Eph/Ephrin signaling acting positively to pattern migrating cells. DOI: http://dx.doi.org/10.7554/eLife.16000.001 PMID:27474796

  14. Fiducial migration following small peripheral lung tumor image-guided CyberKnife stereotactic radiosurgery

    NASA Astrophysics Data System (ADS)

    Strulik, Konrad L.; Cho, Min H.; Collins, Brian T.; Khan, Noureen; Banovac, Filip; Slack, Rebecca; Cleary, Kevin

    2008-03-01

    To track respiratory motion during CyberKnife stereotactic radiosurgery in the lung, several (three to five) cylindrical gold fiducials are implanted near the planned target volume (PTV). Since these fiducials remain in the human body after treatment, we hypothesize that tracking fiducial movement over time may correlate with the tumor response to treatment and pulmonary fibrosis, thereby serving as an indicator of treatment success. In this paper, we investigate fiducial migration in 24 patients through examination of computed tomography (CT) volume images at four time points: pre-treatment, three, six, and twelve month post-treatment. We developed a MATLAB based GUI environment to display the images, identify the fiducials, and compute our performance measure. After we semi-automatically segmented and detected fiducial locations in CT images of the same patient over time, we identified them according to their configuration and introduced a relative performance measure (ACD: average center distance) to detect their migration. We found that the migration tended to result in a movement towards the fiducial center of the radiated tissue area (indicating tumor regression) and may potentially be linked to the patient prognosis.

  15. Trajectory Analysis Unveils Reelin's Role in the Directed Migration of Granule Cells in the Dentate Gyrus.

    PubMed

    Wang, Shaobo; Brunne, Bianka; Zhao, Shanting; Chai, Xuejun; Li, Jiawei; Lau, Jeremie; Failla, Antonio Virgilio; Zobiak, Bernd; Sibbe, Mirjam; Westbrook, Gary L; Lutz, David; Frotscher, Michael

    2018-01-03

    Reelin controls neuronal migration and layer formation. Previous studies in reeler mice deficient in Reelin focused on the result of the developmental process in fixed tissue sections. It has remained unclear whether Reelin affects the migratory process, migration directionality, or migrating neurons guided by the radial glial scaffold. Moreover, Reelin has been regarded as an attractive signal because newly generated neurons migrate toward the Reelin-containing marginal zone. Conversely, Reelin might be a stop signal because migrating neurons in reeler , but not in wild-type mice, invade the marginal zone. Here, we monitored the migration of newly generated proopiomelanocortin-EGFP -expressing dentate granule cells in slice cultures from reeler , reeler -like mutants and wild-type mice of either sex using real-time microscopy. We discovered that not the actual migratory process and migratory speed, but migration directionality of the granule cells is controlled by Reelin. While wild-type granule cells migrated toward the marginal zone of the dentate gyrus, neurons in cultures from reeler and reeler -like mutants migrated randomly in all directions as revealed by vector analyses of migratory trajectories. Moreover, live imaging of granule cells in reeler slices cocultured to wild-type dentate gyrus showed that the reeler neurons changed their directions and migrated toward the Reelin-containing marginal zone of the wild-type culture, thus forming a compact granule cell layer. In contrast, directed migration was not observed when Reelin was ubiquitously present in the medium of reeler slices. These results indicate that topographically administered Reelin controls the formation of a granule cell layer. SIGNIFICANCE STATEMENT Neuronal migration and the various factors controlling its onset, speed, directionality, and arrest are poorly understood. Slice cultures offer a unique model to study the migration of individual neurons in an almost natural environment. In the present study, we took advantage of the expression of proopiomelanocortin-EGFP by newly generated, migrating granule cells to analyze their migratory trajectories in hippocampal slice cultures from wild-type mice and mutants deficient in Reelin signaling. We show that the compartmentalized presence of Reelin is essential for the directionality, but not the actual migratory process or speed, of migrating granule cells leading to their characteristic lamination in the dentate gyrus. Copyright © 2018 the authors 0270-6474/18/380137-12$15.00/0.

  16. Bimanual, intra-operative, fluoroscopy-guided removal of nasopharyngeal migratory fish bone from carotid space.

    PubMed

    Al-Abduwani, J A; Bhargava, D; Sawhney, S; Al-Abri, R

    2010-07-01

    We report a rare and unusual case of a patient with an ingested fishbone which migrated from the oropharynx to the anterior compartment of the retropharyngeal space and then to the deep neck space in the nasopharynx (i.e. the carotid space). This report aims to describe a successful, minimally invasive method of foreign body removal which avoided both major skull base surgery and any potential life-threatening complications. A secondary aim is to highlight the role of intra-operative fluoroscopy, an under-used tool. We present a 67-year-old man with a history of fish bone impaction but no fish bone visible on plain X-ray or flexible endoscopy. The diagnosis of fish bone lodged in the retropharyngeal space was confirmed by computed tomography. Surgical exploration of the anterior retropharyngeal space failed to locate the fish bone, as it had migrated to a new, unknown location. Intra-operative fluoroscopy was vital for the removal of the fish bone, as it was impossible to see with the naked eye and had migrated from its previously imaged position. The fish bone was finally retrieved bimanually using external pressure on the submandibular region, which displaced the fish bone, and fluoroscopic guidance, which assisted its removal from the nasopharyngeal lumen. To the best of our knowledge, this is the first reported case of bimanual, intra-operative, fluoroscopy-guided, intra-luminal removal of a migratory fish bone from the deep neck space in this region of the nasopharynx.

  17. A Molecular Smart Surface for Spatio-Temporal Studies of Cell Mobility

    PubMed Central

    Lee, Eun-ju; Luo, Wei; Chan, Eugene W. L.; Yousaf, Muhammad N.

    2015-01-01

    Active migration in both healthy and malignant cells requires the integration of information derived from soluble signaling molecules with positional information gained from interactions with the extracellular matrix and with other cells. How a cell responds and moves involves complex signaling cascades that guide the directional functions of the cytoskeleton as well as the synthesis and release of proteases that facilitate movement through tissues. The biochemical events of the signaling cascades occur in a spatially and temporally coordinated manner then dynamically shape the cytoskeleton in specific subcellular regions. Therefore, cell migration and invasion involve a precise but constantly changing subcellular nano-architecture. A multidisciplinary effort that combines new surface chemistry and cell biological tools is required to understand the reorganization of cytoskeleton triggered by complex signaling during migration. Here we generate a class of model substrates that modulate the dynamic environment for a variety of cell adhesion and migration experiments. In particular, we use these dynamic substrates to probe in real-time how the interplay between the population of cells, the initial pattern geometry, ligand density, ligand affinity and integrin composition affects cell migration and growth. Whole genome microarray analysis indicates that several classes of genes ranging from signal transduction to cytoskeletal reorganization are differentially regulated depending on the nature of the surface conditions. PMID:26030281

  18. Ultrasound-Guided Radiological Placement of Central Venous Port via the Subclavian Vein: A Retrospective Analysis of 500 Cases at a Single Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamoto, Noriaki, E-mail: nosakamoto@hotmail.co.jp; Arai, Yasuaki, E-mail: arai-y3111@mvh.biglobe.ne.jp; Takeuchi, Yoshito, E-mail: yostakeu@ncc.go.jp

    2010-10-15

    The purpose of this study was to assess the technical success rate and adverse events (AEs) associated with ultrasound (US)-guided radiological placement (RP) of a central venous port (CVP) via the subclavian vein (SCV). Between April 2006 and May 2007, a total of 500 US-guided RPs of a CVP via the SCV were scheduled in 486 cancer patients (mean age {+-} SD, 54.1 {+-} 18.1 years) at our institute. Referring to the interventional radiology report database and patients' records, technical success rate and AEs relevant to CVP placement were evaluated retrospectively. The technical success rate was 98.6% (493/500). AEs occurredmore » in 26 cases (5.2%) during follow-up (range, 1-1080 days; mean {+-} SD, 304.0 {+-} 292.1 days). AEs within 24 h postprocedure occurred in five patients: pneumothorax (n = 2), arterial puncture (n = 1), hematoma formation at the pocket site (n = 2), and catheter tip migration into the internal mammary vein (n = 1). There were seven early AEs: hematoma formation at the pocket site (n = 2), fibrin sheath formation around the indwelling catheter (n = 2), and catheter-related infections (n = 3). There were 13 delayed AEs: catheter-related infections (n = 7), catheter detachments (n = 3), catheter occlusion (n = 1), symptomatic thrombus in the SCV (n = 1), and catheter migration (n = 1). No major AEs, such as procedure-related death, air embolism, or events requiring surgical intervention, were observed. In conclusion, US-guided RP of a CVP via the SCV is highly appropriate, based on its high technical success rate and the limited number of AEs.« less

  19. Dynamic and coordinated single-molecular interactions at TM4SF5-enriched microdomains guide invasive behaviors in 2- and 3-dimensional environments.

    PubMed

    Kim, Hye-Jin; Kwon, Sojung; Nam, Seo Hee; Jung, Jae Woo; Kang, Minkyung; Ryu, Jihye; Kim, Ji Eon; Cheong, Jin-Gyu; Cho, Chang Yun; Kim, Somi; Song, Dae-Geun; Kim, Yong-Nyun; Kim, Tai Young; Jung, Min-Kyo; Lee, Kyung-Min; Pack, Chan-Gi; Lee, Jung Weon

    2017-04-01

    Membrane proteins sense extracellular cues and transduce intracellular signaling to coordinate directionality and speed during cellular migration. They are often localized to specific regions, as with lipid rafts or tetraspanin-enriched microdomains; however, the dynamic interactions of tetraspanins with diverse receptors within tetraspanin-enriched microdomains on cellular surfaces remain largely unexplored. Here, we investigated effects of tetraspan(in) TM4SF5 (transmembrane 4 L6 family member 5)-enriched microdomains (T 5 ERMs) on the directionality of cell migration. Physical association of TM4SF5 with epidermal growth factor receptor (EGFR) and integrin α5 was visualized by live fluorescence cross-correlation spectroscopy and higher-resolution microscopy at the leading edge of migratory cells, presumably forming TM4SF5-enriched microdomains. Whereas TM4SF5 and EGFR colocalized at the migrating leading region more than at the rear, TM4SF5 and integrin α5 colocalized evenly throughout cells. Cholesterol depletion and disruption in TM4SF5 post-translational modifications, including N -glycosylation and palmitoylation, altered TM4SF5 interactions and cellular localization, which led to less cellular migration speed and directionality in 2- or 3-dimensional conditions. TM4SF5 controlled directional cell migration and invasion, and importantly, these TM4SF5 functions were dependent on cholesterol, TM4SF5 post-translational modifications, and EGFR and integrin α5 activity. Altogether, we showed that TM4SF5 dynamically interacted with EGFR and integrin α5 in migratory cells to control directionality and invasion.-Kim, H.-J., Kwon, S., Nam, S. H., Jung, J. W., Kang, M., Ryu, J., Kim, J. E., Cheong, J.-G., Cho, C. Y., Kim, S., Song, D.-G., Kim, Y.-N., Kim, T. Y., Jung, M.-K., Lee, K.-M., Pack, C.-G., Lee, J. W. Dynamic and coordinated single-molecular interactions at TM4SF5-enriched microdomains guide invasive behaviors in 2- and 3-dimensional environments. © FASEB.

  20. Quantifying density-independent mortality of temperate tree species

    Treesearch

    Heather E Lintz; Andrew N. Gray; Andrew Yost; Richard Sniezko; Chris Woodall; Matt Reilly; Karen Hutten; Mark Elliott

    2016-01-01

    Forest resilience to climate change is a topic of national concern as our standing assets and future forestsare important to our livelihood. Many tree species are predicted to decline or disappear while othersmay be able to adapt or migrate. Efforts to quantify and disseminate the current condition of forests areurgently needed to guide management and policy. Here, we...

  1. Puerto Rican Migration: The Return Flow = La Migracion Puertorriquena: El Reflujo a la Isla.

    ERIC Educational Resources Information Center

    Vivo, Paquita, Comp.

    This is a guide to materials and research on Puerto Ricans who have returned to Puerto Rico after living in the United States. Part 1 is an annotated bibliography of books, journal articles, printed documents, doctoral dissertations, master's theses, journalistic accounts, and unpublished papers on characteristics of Puerto Rican return migrants;…

  2. Endothelial cell-derived GABA signaling modulates neuronal migration and postnatal behavior

    PubMed Central

    Li, Suyan; Kumar T, Peeyush; Joshee, Sampada; Kirschstein, Timo; Subburaju, Sivan; Khalili, Jahan S; Kloepper, Jonas; Du, Chuang; Elkhal, Abdallah; Szabó, Gábor; Jain, Rakesh K; Köhling, Rüdiger; Vasudevan, Anju

    2018-01-01

    The cerebral cortex is essential for integration and processing of information that is required for most behaviors. The exquisitely precise laminar organization of the cerebral cortex arises during embryonic development when neurons migrate successively from ventricular zones to coalesce into specific cortical layers. While radial glia act as guide rails for projection neuron migration, pre-formed vascular networks provide support and guidance cues for GABAergic interneuron migration. This study provides novel conceptual and mechanistic insights into this paradigm of vascular-neuronal interactions, revealing new mechanisms of GABA and its receptor-mediated signaling via embryonic forebrain endothelial cells. With the use of two new endothelial cell specific conditional mouse models of the GABA pathway (Gabrb3ΔTie2-Cre and VgatΔTie2-Cre), we show that partial or complete loss of GABA release from endothelial cells during embryogenesis results in vascular defects and impairs long-distance migration and positioning of cortical interneurons. The downstream effects of perturbed endothelial cell-derived GABA signaling are critical, leading to lasting changes to cortical circuits and persistent behavioral deficits. Furthermore, we illustrate new mechanisms of activation of GABA signaling in forebrain endothelial cells that promotes their migration, angiogenesis and acquisition of blood-brain barrier properties. Our findings uncover and elucidate a novel endothelial GABA signaling pathway in the CNS that is distinct from the classical neuronal GABA signaling pathway and shed new light on the etiology and pathophysiology of neuropsychiatric diseases, such as autism spectrum disorders, epilepsy, anxiety, depression and schizophrenia. PMID:29086765

  3. Synthesis of juvenile lamprey migration and passage research and monitoring at Columbia and Snake River Dams

    USGS Publications Warehouse

    Mesa, Matthew G.; Weiland, Lisa K.; Christiansen, Helena E.

    2016-01-01

    We compiled and summarized previous sources of data and research results related to the presence, numbers, and migration timing characteristics of juvenile (eyed macropthalmia) and larval (ammocoetes) Pacific lamprey Entosphenus tridentatus, in the Columbia River basin (CRB). Included were data from various screw trap collections, data from historic fyke net studies, catch records of lampreys at JBS facilities, turbine cooling water strainer collections, and information on the occurrence of lampreys in the diets of avian and piscine predators. We identified key data gaps and uncertainties that should be addressed in a juvenile lamprey passage research program. The goal of this work was to summarize information from disparate sources so that managers can use it to prioritize and guide future research and monitoring efforts related to the downstream migration of juvenile Pacific lamprey within the CRB. A common finding in all datasets was the high level of variation observed for CRB lamprey in numbers present, timing and spatial distribution. This will make developing monitoring programs to accurately characterize lamprey migrations and passage more challenging. Primary data gaps centered around our uncertainty on the numbers of juvenile and larval present in the system which affects the ability to assign risk to passage conditions and prioritize management actions. Recommendations include developing standardized monitoring methods, such as at juvenile bypass systems (JBS’s), to better document numbers and timing of lamprey migrations at dams, and use biotelemetry tracking techniques to estimate survival potentials for different migration histories.

  4. Optimization and Pharmacological Validation of a Leukocyte Migration Assay in Zebrafish Larvae for the Rapid In Vivo Bioactivity Analysis of Anti-Inflammatory Secondary Metabolites

    PubMed Central

    Vicet-Muro, Liliana; Wilches-Arizábala, Isabel María; Esguerra, Camila V.; de Witte, Peter A. M.; Crawford, Alexander D.

    2013-01-01

    Over the past decade, zebrafish (Danio rerio) have emerged as an attractive model for in vivo drug discovery. In this study, we explore the suitability of zebrafish larvae to rapidly evaluate the anti-inflammatory activity of natural products (NPs) and medicinal plants used in traditional medicine for the treatment of inflammatory disorders. First, we optimized a zebrafish assay for leukocyte migration. Inflammation was induced in four days post-fertilization (dpf) zebrafish larvae by tail transection and co-incubation with bacterial lipopolysaccharides (LPS), resulting in a robust recruitment of leukocytes to the zone of injury. Migrating zebrafish leukocytes were detected in situ by myeloperoxidase (MPO) staining, and anti-inflammatory activity was semi-quantitatively scored using a standardized scale of relative leukocyte migration (RLM). Pharmacological validation of this optimized assay was performed with a panel of anti-inflammatory drugs, demonstrating a concentration-responsive inhibition of leukocyte migration for both steroidal and non-steroidal anti-inflammatory drugs (SAIDs and NSAIDs). Subsequently, we evaluated the bioactivity of structurally diverse NPs with well-documented anti-inflammatory properties. Finally, we further used this zebrafish-based assay to quantify the anti-inflammatory activity in the aqueous and methanolic extracts of several medicinal plants. Our results indicate the suitability of this LPS-enhanced leukocyte migration assay in zebrafish larvae as a front-line screening platform in NP discovery, including for the bioassay-guided isolation of anti-inflammatory secondary metabolites from complex NP extracts. PMID:24124487

  5. Quantitative cell polarity imaging defines leader-to-follower transitions during collective migration and the key role of microtubule-dependent adherens junction formation.

    PubMed

    Revenu, Céline; Streichan, Sebastian; Donà, Erika; Lecaudey, Virginie; Hufnagel, Lars; Gilmour, Darren

    2014-03-01

    The directed migration of cell collectives drives the formation of complex organ systems. A characteristic feature of many migrating collectives is a 'tissue-scale' polarity, whereby 'leader' cells at the edge of the tissue guide trailing 'followers' that become assembled into polarised epithelial tissues en route. Here, we combine quantitative imaging and perturbation approaches to investigate epithelial cell state transitions during collective migration and organogenesis, using the zebrafish lateral line primordium as an in vivo model. A readout of three-dimensional cell polarity, based on centrosomal-nucleus axes, allows the transition from migrating leaders to assembled followers to be quantitatively resolved for the first time in vivo. Using live reporters and a novel fluorescent protein timer approach, we investigate changes in cell-cell adhesion underlying this transition by monitoring cadherin receptor localisation and stability. This reveals that while cadherin 2 is expressed across the entire tissue, functional apical junctions are first assembled in the transition zone and become progressively more stable across the leader-follower axis of the tissue. Perturbation experiments demonstrate that the formation of these apical adherens junctions requires dynamic microtubules. However, once stabilised, adherens junction maintenance is microtubule independent. Combined, these data identify a mechanism for regulating leader-to-follower transitions within migrating collectives, based on the relocation and stabilisation of cadherins, and reveal a key role for dynamic microtubules in this process.

  6. Status of downstream fish passage at hydroelectric projects in the northeast, USA

    USGS Publications Warehouse

    Odeh, Mufeed; Orvis, Curtis

    1997-01-01

    In the northeastern United States several guidance, protection, and conveyance methods have been employed to assist downstream migrating fish. Overlay racks, standard bar racks with close spacing, louvers, curtain walls, guide walls, netting, and other means have been used to guide and protect fish from entrainment. The design process of these facilities comprises consideration of various factors, including flow approach, attraction flow, guidance and protection devices, bypass location, conveyance mechanism, and plunge pool conditions. This paper presents the status of the design criteria for downstream fish passage facilities at hydroelectric sites in the northeast part of the United States. Examples of existing facilities are given.

  7. Endoscopic ultrasound-guided choledochoduodenostomy after a failed or impossible ERCP.

    PubMed

    Mora Soler, Ana María; Álvarez Delgado, Alberto; Piñero Pérez, María Concepción; Velasco-Guardado, Antonio; Marcos Prieto, Héctor; Rodríguez Pérez, Antonio

    2018-05-01

    endoscopic ultrasound-guided biliary drainage (EUS-BD) is an alternative to percutaneous trans-hepatic biliary drainage (PTBD) in cases of failed endoscopic retrograde cholangiopancreatography (ERCP). this is a retrospective description of six cases of endoscopic ultrasound-guided biliary drainage via choledochoduodenostomy (EUCD), as well as the clinical characteristics, endoscopic procedure, complications and monitoring. all cases had malignant distal biliary obstruction. The procedure was concluded with good drainage in four out of six patients. Two late complications were recorded that were caused by stent migration and there were no deaths related with the procedure. The average monitoring period was six months. EUCD can be considered as a valid therapeutic choice in some selected cases and when performed by a team of expert endoscopists in cases of failed ERCP drainage or as an alternative to PTBD. However, the procedure has some associated complications.

  8. The Ethics of Medical Practitioner Migration From Low-Resourced Countries to the Developed World: A Call for Action by Health Systems and Individual Doctors.

    PubMed

    Mpofu, Charles; Gupta, Tarun Sen; Hays, Richard

    2016-09-01

    Medical migration appears to be an increasing global phenomenon, with complex contributing factors. Although it is acknowledged that such movements are inevitable, given the current globalized economy, the movement of health professionals from their country of training raises questions about equity of access and quality of care. Concerns arise if migration occurs from low- and middle-income countries (LMICs) to high-income countries (HICs). The actions of HICs receiving medical practitioners from LMICs are examined through the global justice theories of John Rawls and Immanuel Kant. These theories were initially proposed by Pogge (1988) and Tan (1997) and, in this work, are extended to the issue of medical migration. Global justice theories propose that instead of looking at health needs and workforce issues within their national boundaries, HICs should be guided by principles of justice relevant to the needs of health systems on a global scale. Issues of individual justice are also considered within the framework of rights and social responsibilities of individual medical practitioners. Local and international policy changes are suggested based on both global justice theories and the ideals of individual justice.

  9. Migration of the Gaudi and LHCb software repositories from CVS to Subversion

    NASA Astrophysics Data System (ADS)

    Clemencic, M.; Degaudenzi, H.; LHCb Collaboration

    2011-12-01

    A common code repository is of primary importance in a distributed development environment such as large HEP experiments. CVS (Concurrent Versions System) has been used in the past years at CERN for the hosting of shared software repositories, among which were the repositories for the Gaudi Framework and the LHCb software projects. Many developers around the world produced alternative systems to share code and revisions among several developers, mainly to overcome the limitations in CVS, and CERN has recently started a new service for code hosting based on the version control system Subversion. The differences between CVS and Subversion and the way the code was organized in Gaudi and LHCb CVS repositories required careful study and planning of the migration. Special care was used to define the organization of the new Subversion repository. To avoid as much as possible disruption in the development cycle, the migration has been gradual with the help of tools developed explicitly to hide the differences between the two systems. The principles guiding the migration steps, the organization of the Subversion repository and the tools developed will be presented, as well as the problems encountered both from the librarian and the user points of view.

  10. Hispanic Children and Youth in the United States: A Resource Guide. Reference Books on Family Issues (Vol. 20). Garland Reference Library of Social Science (Vol. 608).

    ERIC Educational Resources Information Center

    Carrasquillo, Angela L.

    This book discusses the demographic, cultural, linguistic, socioeconomic, and educational characteristics of Hispanic children and youth. Chapters cover: (1) historical and demographic overview (history of Hispanic presence in the United States, geographic distribution, population size and growth, migration, social and cultural patterns, parent…

  11. Geologic Carbon Sequestration Leakage Detection: A Physics-Guided Machine Learning Approach

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Harp, D. R.; Chen, B.; Pawar, R.

    2017-12-01

    One of the risks of large-scale geologic carbon sequestration is the potential migration of fluids out of the storage formations. Accurate and fast detection of this fluids migration is not only important but also challenging, due to the large subsurface uncertainty and complex governing physics. Traditional leakage detection and monitoring techniques rely on geophysical observations including pressure. However, the resulting accuracy of these methods is limited because of indirect information they provide requiring expert interpretation, therefore yielding in-accurate estimates of leakage rates and locations. In this work, we develop a novel machine-learning technique based on support vector regression to effectively and efficiently predict the leakage locations and leakage rates based on limited number of pressure observations. Compared to the conventional data-driven approaches, which can be usually seem as a "black box" procedure, we develop a physics-guided machine learning method to incorporate the governing physics into the learning procedure. To validate the performance of our proposed leakage detection method, we employ our method to both 2D and 3D synthetic subsurface models. Our novel CO2 leakage detection method has shown high detection accuracy in the example problems.

  12. Blocking and guiding adult sea lamprey with pulsed direct current from vertical electrodes

    USGS Publications Warehouse

    Johnson, Nicholas S.; Thompson, Henry T.; Holbrook, Christopher M.; Tix, John A.

    2014-01-01

    Controlling the invasion front of aquatic nuisance species is of high importance to resource managers. We tested the hypothesis that adult sea lamprey (Petromyzon marinus), a destructive invasive species in the Laurentian Great Lakes, would exhibit behavioral avoidance to dual-frequency pulsed direct current generated by vertical electrodes and that the electric field would not injure or kill sea lamprey or non-target fish. Laboratory and in-stream experiments demonstrated that the electric field blocked sea lamprey migration and directed sea lamprey into traps. Rainbow trout (Oncorhynchus mykiss) and white sucker (Catostomus commersoni), species that migrate sympatrically with sea lamprey, avoided the electric field and had minimal injuries when subjected to it. Vertical electrodes are advantageous for fish guidance because (1) the electric field produced varies minimally with depth, (2) the electric field is not grounded, reducing power consumption to where portable and remote deployments powered by solar, wind, hydro, or a small generator are feasible, and (3) vertical electrodes can be quickly deployed without significant stream modification allowing rapid responses to new invasions. Similar dual-frequency pulsed direct current fields produced from vertical electrodes may be advantageous for blocking or trapping other invasive fish or for guiding valued fish around dams.

  13. Directed transport of active magnetotactic bacteria in porous media flow

    NASA Astrophysics Data System (ADS)

    Waisbord, Nicolas; Dehkharghani, Amin; Coons, Thomas; Guasto, Jeffrey S.

    2017-11-01

    Swimming cell migration through porous media is a topic of ecological and technical relevance for understanding sediment ecosystems and bioremediation of soil for decontamination. We focus on magnetotactic bacteria - which align passively with Earth's magnetic field and migrate in such sediment environments - as a model system. The transport properties of magnetotactic bacteria are measured in a 2D microfluidic porous medium as a function of the porous microstructure geometry and under a variety of environmental conditions. In a quiescent fluid and in the absence of an external, guiding magnetic field, the effective diffusion of cells' random walk is unsurprisingly hindered with decreasing porosity due to cell-surface interactions. When guided by a magnetic field, cell trajectories acquire a net direction and form lanes, a behavior that is enhanced with increasing magnetic field. When the directed motility is coupled with an opposing fluid flow through the porous medium, convective cells form and locally trap the swimming bacteria. These results, which are corroborated by Langevin Simulations are an important step toward understanding magnetotactic bacterial ecology as well as for the magnetic guidance of microrobots in complex environments. Supported by NSF Grant CBET-1511340.

  14. Enteroaggregative Escherichia coli Promotes Transepithelial Migration of Neutrophils Through a Conserved 12-Lipoxygenase Pathway

    PubMed Central

    Boll, Erik J.; Struve, Carsten; Sander, Anja; Demma, Zachary; Krogfelt, Karen A.; McCormick, Beth A.

    2014-01-01

    Summary Enteroaggregative Escherichia coli (EAEC) induces release of pro-inflammatory markers and disruption of intestinal epithelial barriers in vitro suggesting an inflammatory aspect to EAEC infection. However, the mechanisms underlying EAEC-induced mucosal inflammatory responses and the extent to which these events contribute to pathogenesis is not well characterized. Employing an established in vitro model we demonstrated that EAEC prototype strain 042 induces migration of polymorphonuclear neutrophils (PMNs) across polarized T84 cell monolayers. This event was mediated through a conserved host cell signaling cascade involving the 12/15-LOX pathway and led to apical secretion of an arachidonic acid-derived lipid PMN chemoattractant, guiding PMNs across the epithelia to the site of infection. Moreover, supporting the hypothesis that inflammatory responses may contribute to EAEC pathogenesis, we found that PMN transepithelial migration promoted enhanced attachment of EAEC 042 to T84 cells. These findings suggest that EAEC-induced PMN infiltration may favor colonization and thus pathogenesis of EAEC. PMID:21951973

  15. Myosin-II controls cellular branching morphogenesis and migration in 3D by minimizing cell surface curvature

    PubMed Central

    Elliott, Hunter; Fischer, Robert A.; Myers, Kenneth A.; Desai, Ravi A.; Gao, Lin; Chen, Christopher S.; Adelstein, Robert; Waterman, Clare M.; Danuser, Gaudenz

    2014-01-01

    In many cases cell function is intimately linked to cell shape control. We utilized endothelial cell branching morphogenesis as a model to understand the role of myosin-II in shape control of invasive cells migrating in 3D collagen gels. We applied principles of differential geometry and mathematical morphology to 3D image sets to parameterize cell branch structure and local cell surface curvature. We find that Rho/ROCK-stimulated myosin-II contractility minimizes cell-scale branching by recognizing and minimizing local cell surface curvature. Utilizing micro-fabrication to constrain cell shape identifies a positive feedback mechanism in which low curvature stabilizes myosin-II cortical association, where it acts to maintain minimal curvature. The feedback between myosin-II regulation by and control of curvature drives cycles of localized cortical myosin-II assembly and disassembly. These cycles in turn mediate alternating phases of directionally biased branch initiation and retraction to guide 3D cell migration. PMID:25621949

  16. Radioguided localisation of impalpable breast lesions using 99m-Technetium macroaggregated albumin: Lessons learnt during introduction of a new technique to guide preoperative localisation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landman, Joanne; Kulawansa, Sagarika; McCarthy, Michael

    2015-03-15

    Preoperative wire-guided localisation (WGL) of impalpable breast lesions is widely used but can be technically difficult. Risks include wire migration, inaccurate placement, and inadequate surgical margins. Research shows that radioguided occult lesion localisation (ROLL) is quicker, easier, and can improve surgical and cosmetic outcomes. An audited introduction of ROLL was conducted to validate the technique as a feasible alternative to WGL. Fifty patients with single impalpable lesions and biopsy proven malignancy or indeterminate histology underwent WGL followed by intralesional radiopharmaceutical injection of 99m-Technetium macroaggregated albumin. Postprocedural mammography was performed to demonstrate wire position, and scintigraphy to evaluate radiopharmaceutical migration. Lymphoscintigraphymore » and intraoperative sentinel node biopsy were performed if indicated, followed by lesion localisation and excision using a gamma probe. Specimen imaging was performed, with immediate reexcision for visibly inadequate margins. Accurate localisation was achieved in 86% of patients with ROLL compared to 72% with WGL. All lesions were successfully removed, with clear margins in 71.8% of malignant lesions. Reexcision and intraoperative sentinel node localisation rates were equivalent to preaudit figures for WGL. ROLL was easy to perform and problems were infrequent. Inaccurate radiopharmaceutical placement necessitating WGL occurred in four patients. Minor radiopharmaceutical migration was common, but precluded using ROLL in only two cases. ROLL is effective, simple, inexpensive, and easily learnt; however, preoperative confirmation of correct radiopharmaceutical placement using mammography and the gamma probe is important to help ensure successful lesion removal. Insertion of a backup hookwire is recommended during the initial introduction of ROLL.« less

  17. Neutrophil migration under spatially-varying chemoattractant gradient profiles.

    PubMed

    Halilovic, Iris; Wu, Jiandong; Alexander, Murray; Lin, Francis

    2015-01-01

    Chemotaxis plays an important role in biological processes such as cancer metastasis, embryogenesis, wound healing, and immune response. Neutrophils are the frontline defenders against invasion of foreign microorganisms into our bodies. To achieve this important immune function, a neutrophil can sense minute chemoattractant concentration differences across its cell body and effectively migrate toward the chemoattractant source. Furthermore, it has been demonstrated in various studies that neutrophils are highly sensitive to changes in the surrounding chemoattractant environments, suggesting the role of a chemotactic memory for processing the complex spatiotemporal chemical guiding signals. Using a microfluidic device, in the present study we characterized neutrophil migration under spatially varying profiles of interleukine-8 gradients, which consist of three spatially ordered regions of a shallow gradient, a steep gradient and a nearly saturated gradient. This design allowed us to examine how neutrophils migrate under different chemoattractant gradient profiles, and how the migratory response is affected when the cell moves from one gradient profile to another in a single experiment. Our results show robust neutrophil chemotaxis in the shallow and steep gradient, but not the saturated gradient. Furthermore, neutrophils display a transition from chemotaxis to flowtaxis when they migrate across the steep gradient interface, and the relative efficiency of this transition depends on the cell's chemotaxis history. Finally, some neutrophils were observed to adjust their morphology to different gradient profiles.

  18. Contact guidance is cell cycle-dependent.

    PubMed

    Pourfarhangi, Kamyar Esmaeili; De La Hoz, Edgar Cardenas; Cohen, Andrew R; Gligorijevic, Bojana

    2018-09-01

    Cancer cell migration is essential for metastasis, during which cancer cells move through the tumor and reach the blood vessels. In vivo , cancer cells are exposed to contact guidance and chemotactic cues. Depending on the strength of such cues, cells will migrate in a random or directed manner. While similar cues may also stimulate cell proliferation, it is not clear whether cell cycle progression affects migration of cancer cells and whether this effect is different in random versus directed migration. In this study, we tested the effect of cell cycle progression on contact guided migration in 2D and 3D environments, in the breast carcinoma cell line, FUCCI-MDA-MB-231. The results were quantified from live cell microscopy images using the open source lineage editing and validation image analysis tools (LEVER). In 2D, cells were placed inside 10 μ m-wide microchannels to stimulate contact guidance, with or without an additional chemotactic gradient of the soluble epidermal growth factor. In 3D, contact guidance was modeled by aligned collagen fibers. In both 2D and 3D, contact guidance was cell cycle-dependent, while the addition of the chemo-attractant gradient in 2D increased cell velocity and persistence in directionally migrating cells, regardless of their cell cycle phases. In both 2D and 3D contact guidance, cells in the G1 phase of the cell cycle outperformed cells in the S/G2 phase in terms of migration persistence and instantaneous velocity. These data suggest that in the presence of contact guidance cues in vivo , breast carcinoma cells in the G1 phase of the cell cycle may be more efficient in reaching the neighboring vasculature.

  19. Environmental Monitoring and Assessment Program Western Pilot Project - Information about selected fish and macroinvertebrates sampled from North Dakota perennial streams, 2000-2003

    USGS Publications Warehouse

    Vining, Kevin C.; Lundgren, Robert F.

    2008-01-01

    Sixty-five sampling sites, selected by a statistical design to represent lengths of perennial streams in North Dakota, were chosen to be sampled for fish and aquatic insects (macroinvertebrates) to establish unbiased baseline data. Channel catfish and common carp were the most abundant game and large fish species in the Cultivated Plains and Rangeland Plains, respectively. Blackflies were present in more than 50 percent of stream lengths sampled in the State; mayflies and caddisflies were present in more than 80 percent. Dragonflies were present in a greater percentage of stream lengths in the Rangeland Plains than in the Cultivated Plains.

  20. An optimal control strategy for two-dimensional motion camouflage with non-holonimic constraints.

    PubMed

    Rañó, Iñaki

    2012-07-01

    Motion camouflage is a stealth behaviour observed both in hover-flies and in dragonflies. Existing controllers for mimicking motion camouflage generate this behaviour on an empirical basis or without considering the kinematic motion restrictions present in animal trajectories. This study summarises our formal contributions to solve the generation of motion camouflage as a non-linear optimal control problem. The dynamics of the system capture the kinematic restrictions to motion of the agents, while the performance index ensures camouflage trajectories. An extensive set of simulations support the technique, and a novel analysis of the obtained trajectories contributes to our understanding of possible mechanisms to obtain sensor based motion camouflage, for instance, in mobile robots.

  1. Ducted Fan Designs Lead to Potential New Vehicles

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In 1994, aerospace engineers Rob Bulaga and Mike Moshier formed Trek Aerospace Inc., based in Folsom, California, to develop personal air vehicles using a novel ducted fan design. The company relied on Ames Research Center for a great deal of testing, the results of which have provided greater lift, lowered weight, more power, and improved maneuverability. The technology has been applied to three models: the Dragonfly UMR-1, the Springtail EFV, and the OVIWUN, a small-scale version that is for sale through the company's Web site. It is safer than a manned vehicle, and its size makes it relatively difficult for it to damage itself during test flights the way a larger mass, faster craft could.

  2. Revealing the Formation Mechanism of Ultra-Diffuse Galaxies

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2017-09-01

    Recently a population of large, very low optical surface brightness galaxies, so called ultra-diffuse galaxies (UDGs), were discovered in the outskirts of Coma clusters. Stellar line-of-sight velocity dispersions suggest large dark matter halo masses of 10^12 M_sun with very low baryon fractions ( 1%). The outstanding question waiting to be answered is: How do UDGs form and evolve? One theory is that UDGs are related to bright galaxies, however they are prevented from building a normal stellar population through various violent processes, such as gas stripping. We propose to observe Dragonfly 44, the most massive UDG known, for 100 ks with ACIS-I to test some of the formation theories.

  3. International migration as a determinant of emergency caesarean.

    PubMed

    Merry, Lisa; Semenic, Sonia; Gyorkos, Theresa W; Fraser, William; Small, Rhonda; Gagnon, Anita J

    2016-10-01

    High caesarean rates are of concern given associated risks. International migrant women (women born abroad) represent a substantial proportion of women giving birth in high-income countries (HICs) and face social conditions that may exacerbate childbearing health risks. Among migrant women, emergency rather than planned caesareans, tend to be more prevalent. This method of delivery can be stressful, physically harmful and result in an overall negative birth experience. Research establishing evidence of risk factors for emergency caesareans in migrants is insufficient. (1) Describe potential pathways (with a focus on modifiable factors) by which migration, using internationally recommended migration indicators: country of birth, length of time in country, fluency in receiving-country language, migration classification and ethnicity, may lead to emergency caesarean; and (2) propose a framework to guide future research for understanding "potentially preventable" emergency caesareans in migrant women living in HICs. "Potentially preventable" emergency caesareans in migrant women are likely due to several modifiable, interrelated factors pre-pregnancy, during pregnancy and during labour. Migration itself is a determinant and also shapes other determinants. Complications and ineffective labour progress and/or foetal distress and ultimately the decision to perform an emergency caesarean may be the result of poor health (i.e., physiological effects), lack of support and disempowerment (i.e., psychological effects) and sub-optimal care. Understanding the direct and indirect effects of migration on emergency caesarean is crucial so that targeted strategies can be developed and implemented for reducing unnecessary caesareans in this vulnerable population. Copyright © 2016 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  4. A dual-docking microfluidic cell migration assay (D2-Chip) for testing neutrophil chemotaxis and the memory effect.

    PubMed

    Yang, Ke; Wu, Jiandong; Xu, Guoqing; Xie, Dongxue; Peretz-Soroka, Hagit; Santos, Susy; Alexander, Murray; Zhu, Ling; Zhang, Michael; Liu, Yong; Lin, Francis

    2017-04-18

    Chemotaxis is a classic mechanism for guiding cell migration and an important topic in both fundamental cell biology and health sciences. Neutrophils are a widely used model to study eukaryotic cell migration and neutrophil chemotaxis itself can lead to protective or harmful immune actions to the body. While much has been learnt from past research about how neutrophils effectively navigate through a chemoattractant gradient, many interesting questions remain unclear. For example, while it is tempting to model neutrophil chemotaxis using the well-established biased random walk theory, the experimental proof was challenged by the cell's highly persistent migrating nature. A special experimental design is required to test the key predictions from the random walk model. Another question that has interested the cell migration community for decades concerns the existence of chemotactic memory and its underlying mechanism. Although chemotactic memory has been suggested in various studies, a clear quantitative experimental demonstration will improve our understanding of the migratory memory effect. Motivated by these questions, we developed a microfluidic cell migration assay (so-called dual-docking chip or D 2 -Chip) that can test both the biased random walk model and the memory effect for neutrophil chemotaxis on a single chip enabled by multi-region gradient generation and dual-region cell alignment. Our results provide experimental support for the biased random walk model and chemotactic memory for neutrophil chemotaxis. Quantitative data analyses provide new insights into neutrophil chemotaxis and memory by making connections to entropic disorder, cell morphology and oscillating migratory response.

  5. The effects of single-walled carbon nanotubes on cancer cell migration using a pancreatic tumor model

    NASA Astrophysics Data System (ADS)

    Layton, Elivia; McNamar, Rachel; Hasanjee, Aamr M.; McNair, Cayman; Stevens, Brianna; Vaughan, Melville; Zhou, Feifan; Chen, Wei R.

    2017-02-01

    Non-invasive laser immunotherapy (NLIT) is a viable alternative to traditional cancer treatment because it combines the photothermal and immunological effects of non-invasive laser irradiation and single-walled carbon nanotubes (SWNT) with an immunoadjuvant, glycated chitosan (GC). This combination forms SWNT-GC, a photosensitive immunoadjuvant, which creates a tumor-specific immunity that targets both the primary tumor and any metastasis. It is known that NLIT induces anti-tumor as well as anti-metastatic immune responses, but its immunological mechanism is not clear. The objective of this study is to clarify the role of SWNT-GC in cancer cell migration. Panc02 (non-metastatic) and Panc02-H7 (metastatic) pancreatic cancer cells were used in two-dimensional elastomer plug assays to observe the restriction of cell migration induced by SWNT, GC, and SWNT-GC individually. To replicate a three-dimensional in vivo study, a similar assay was repeated using embedded collagen lattices. Both the 2D and the 3D studies confirmed previous results indicating that GC inhibits cancer cell motility. The 2D and 3D studies also showed that SWNT-GC inhibited the migration of cancer cells, but a discrepancy was observed regarding the effect of SWNT alone. The 2D model concluded that SWNT inhibited migration while the 3D model determined that SWNT promoted migration. The results of this study will guide future work to determine the mechanism behind NLIT, including how metastases are eradicated and how the tumor specific immunity is created.

  6. Manipulation of Schwann cell migration across the astrocyte boundary by polysialyltransferase-loaded superparamagnetic nanoparticles under magnetic field

    PubMed Central

    Xia, Bing; Huang, Liangliang; Zhu, Lei; Liu, Zhongyang; Ma, Teng; Zhu, Shu; Huang, Jinghui; Luo, Zhuojing

    2016-01-01

    Schwann cell (SC) transplantation is an attractive strategy for spinal cord injury (SCI). However, the efficacy of SC transplantation has been limited by the poor migratory ability of SCs in the astrocyte-rich central nervous system (CNS) environment and the inability to intermingle with the host astrocyte. In this study, we first magnetofected SCs by polysialyltransferase-functionalized superparamagnetic iron oxide nanoparticles (PST/SPIONs) to induce overexpression of polysialylation of neural cell adhesion molecule (PSA-NCAM) to enhance SC migration ability, before manipulating the direction of SC migration with the assistance of an applied magnetic field (MF). It was found that magnetofection with PST/SPIONs significantly upregulated the expression of PSA-NCAM in SCs, which significantly enhanced the migration ability of SCs, but without preferential direction in the absence of MF. The number and averaged maximum distance of SCs with PST/SPIONs migrating into the astrocyte domain were significantly enhanced by an applied MF. In a 300 μm row along the astrocyte boundary, the number of SCs with PST/SPIONs migrating into the astrocyte domain under an MF was 2.95 and 6.71 times higher than that in the absence of MF and the intact control SCs, respectively. More interestingly, a confrontation assay demonstrated that SCs with PST/SPIONs were in close contact with astrocytes and no longer formed boundaries in the presence of MF. In conclusion, SCs with PST/SPIONs showed enhanced preferential migration along the axis of a magnetic force, which might be beneficial for the formation of Büngner bands in the CNS. These findings raise the possibilities of enhancing the migration of transplanted SCs in astrocyte-rich CNS regions in a specific direction and creating an SC bridge in the CNS environment to guide regenerated axons to their distal destination in the treatment of SCI. PMID:28003748

  7. Basal Complex and Basal Venation of Odonata Wings: Structural Diversity and Potential Role in the Wing Deformation

    PubMed Central

    Rajabi, H.; Ghoroubi, N.; Malaki, M.; Darvizeh, A.; Gorb, S. N.

    2016-01-01

    Dragonflies and damselflies, belonging to the order Odonata, are known to be excellent fliers with versatile flight capabilities. The ability to fly over a wide range of speeds, high manoeuvrability and great agility are a few characteristics of their flight. The architecture of the wings and their structural elements have been found to play a major role in this regard. However, the precise influence of individual wing components on the flight performance of these insects remains unknown. The design of the wing basis (so called basal complex) and the venation of this part are responsible for particular deformability and specific shape of the wing blade. However, the wing bases are rather different in representatives of different odonate groups. This presumably reflects the dimensions of the wings on one hand, and different flight characteristics on the other hand. In this article, we develop the first three-dimensional (3D) finite element (FE) models of the proximal part of the wings of typical representatives of five dragonflies and damselflies families. Using a combination of the basic material properties of insect cuticle, a linear elastic material model and a nonlinear geometric analysis, we simulate the mechanical behaviour of the wing bases. The results reveal that although both the basal venation and the basal complex influence the structural stiffness of the wings, it is only the latter which significantly affects their deformation patterns. The use of numerical simulations enabled us to address the role of various wing components such as the arculus, discoidal cell and triangle on the camber formation in flight. Our study further provides a detailed representation of the stress concentration in the models. The numerical analysis presented in this study is not only of importance for understanding structure-function relationship of insect wings, but also might help to improve the design of the wings for biomimetic micro-air vehicles (MAVs). PMID:27513753

  8. Wind selection and drift compensation optimize migratory pathways in a high-flying moth.

    PubMed

    Chapman, Jason W; Reynolds, Don R; Mouritsen, Henrik; Hill, Jane K; Riley, Joe R; Sivell, Duncan; Smith, Alan D; Woiwod, Ian P

    2008-04-08

    Numerous insect species undertake regular seasonal migrations in order to exploit temporary breeding habitats [1]. These migrations are often achieved by high-altitude windborne movement at night [2-6], facilitating rapid long-distance transport, but seemingly at the cost of frequent displacement in highly disadvantageous directions (the so-called "pied piper" phenomenon [7]). This has lead to uncertainty about the mechanisms migrant insects use to control their migratory directions [8, 9]. Here we show that, far from being at the mercy of the wind, nocturnal moths have unexpectedly complex behavioral mechanisms that guide their migratory flight paths in seasonally-favorable directions. Using entomological radar, we demonstrate that free-flying individuals of the migratory noctuid moth Autographa gamma actively select fast, high-altitude airstreams moving in a direction that is highly beneficial for their autumn migration. They also exhibit common orientation close to the downwind direction, thus maximizing the rectilinear distance traveled. Most unexpectedly, we find that when winds are not closely aligned with the moth's preferred heading (toward the SSW), they compensate for cross-wind drift, thus increasing the probability of reaching their overwintering range. We conclude that nocturnally migrating moths use a compass and an inherited preferred direction to optimize their migratory track.

  9. Mechanical guidance of collective cell migration and invasion

    NASA Astrophysics Data System (ADS)

    Trepat, Xavier

    A broad range of biological processes such as morphogenesis, tissue regeneration, and cancer invasion depend on the collective migration of epithelial cells. Guidance of collective cell migration is commonly attributed to soluble or immobilized chemical gradients. I will present novel mechanisms of collective cellular guidance that are physical in origin rather than chemical. Firstly, I will focus on how the mechanical interaction between the tumor and its stroma guides cancer cell invasion. I will show that cancer associated fibroblasts exert a physical force on cancer cells that enables their collective invasion. In the second part of my talk I will focus on durotaxis, the ability of cells to follow gradients of extracellular matrix stiffness. Durotaxis is well established as a single cell phenomenon but whether it can direct the motion of cell collectives is unknown. I will show that durotaxis emerges in cell collectives even if isolated constituent cells are unable to durotax. Collective durotaxis applies to a broad variety of epithelial cell types and requires the action of myosin motors and the integrity of cell-cell junctions. Collective durotaxis is more efficient than any previous report of single cell durotaxis; it thus emerges as robust mechanism to direct collective cell migration in development and disease.eplace this text with your abstract.

  10. Fine tuning cellular recognition: The function of the leucine rich repeat (LRR) trans-membrane protein, LRT, in muscle targeting to tendon cells.

    PubMed

    Gilsohn, Eli; Volk, Talila

    2010-01-01

    The formation of complex tissues during embryonic development is often accompanied by directed cellular migration towards a target tissue. Specific mutual recognition between the migrating cell and its target tissue leads to the arrest of the cell migratory behavior and subsequent contact formation between the two interacting cell types. Recent studies implicated a novel family of surface proteins containing a trans-membrane domain and single leucine-rich repeat (LRR) domain in inter-cellular recognition and the arrest of cell migration. Here, we describe the involvement of a novel LRR surface protein, LRT, in targeting migrating muscles towards their corresponding tendon cells in the Drosophila embryo. LRT is specifically expressed by the target tendon cells and is essential for arresting the migratory behavior of the muscle cells. Additional studies in Drosophila S2 cultured cells suggest that LRT forms a protein complex with the Roundabout (Robo) receptor, essential for guiding muscles towards their tendon partners. Genetic analysis supports a model in which LRT performs its activity non-autonomously through its interaction with the Robo receptors expressed on the muscle surfaces. These results suggest a novel mechanism of intercellular recognition through interactions between LRR family members and Robo receptors.

  11. The disappearing clip: an unusual complication in MRI biopsy

    PubMed Central

    Bourke, Anita Geraldine; Peter, Prasant; Jose, Chaitra Lesli

    2014-01-01

    MRI-guided biopsies are being increasingly used for otherwise occult breast lesions. Clip migration has been reported however, to the best of our knowledge, there have been no documented cases of entire disappearance of a marker clip. Absence of the postbiopsy marker clip was noted when our patient returned for preoperative hook-wire localisation even though accurate clip placement had been confirmed on the post-MRI biopsy mammogram. PMID:25139917

  12. Crack propagation monitoring in a full-scale aircraft fatigue test based on guided wave-Gaussian mixture model

    NASA Astrophysics Data System (ADS)

    Qiu, Lei; Yuan, Shenfang; Bao, Qiao; Mei, Hanfei; Ren, Yuanqiang

    2016-05-01

    For aerospace application of structural health monitoring (SHM) technology, the problem of reliable damage monitoring under time-varying conditions must be addressed and the SHM technology has to be fully validated on real aircraft structures under realistic load conditions on ground before it can reach the status of flight test. In this paper, the guided wave (GW) based SHM method is applied to a full-scale aircraft fatigue test which is one of the most similar test status to the flight test. To deal with the time-varying problem, a GW-Gaussian mixture model (GW-GMM) is proposed. The probability characteristic of GW features, which is introduced by time-varying conditions is modeled by GW-GMM. The weak cumulative variation trend of the crack propagation, which is mixed in time-varying influence can be tracked by the GW-GMM migration during on-line damage monitoring process. A best match based Kullback-Leibler divergence is proposed to measure the GW-GMM migration degree to reveal the crack propagation. The method is validated in the full-scale aircraft fatigue test. The validation results indicate that the reliable crack propagation monitoring of the left landing gear spar and the right wing panel under realistic load conditions are achieved.

  13. Synthetically Simple, Highly Resilient Hydrogels

    PubMed Central

    Cui, Jun; Lackey, Melissa A.; Madkour, Ahmad E.; Saffer, Erika M.; Griffin, David M.; Bhatia, Surita R.; Crosby, Alfred J.; Tew, Gregory N.

    2014-01-01

    Highly resilient synthetic hydrogels were synthesized by using the efficient thiol-norbornene chemistry to cross-link hydrophilic poly(ethylene glycol) (PEG) and hydrophobic polydimethylsiloxane (PDMS) polymer chains. The swelling and mechanical properties of the hydrogels were well-controlled by the relative amounts of PEG and PDMS. In addition, the mechanical energy storage efficiency (resilience) was more than 97% at strains up to 300%. This is comparable with one of the most resilient materials known: natural resilin, an elastic protein found in many insects, such as in the tendons of fleas and the wings of dragonflies. The high resilience of these hydrogels can be attributed to the well-defined network structure provided by the versatile chemistry, low cross-link density, and lack of secondary structure in the polymer chains. PMID:22372639

  14. KSC-2011-4303

    NASA Image and Video Library

    2011-06-06

    Cape Canaveral, Fla. -- Workers using a large crane dismantle the final sections of the rotating service structure on Launch Pad 39B at NASA's Kennedy Space Center in Florida. A dragonfly passing across the camera lens (center) pays no attention to the pad's deconstruction in progress. In 2009, the pad was no longer needed for the shuttle program, so it is being restructured for future use. Its new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. The new lightning protection system, which was in place for the October 2009 launch of Ares I-X, will remain. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Jim Grossmann

  15. Lights, Camera: Learning! Findings from studies of video in formal and informal science education

    NASA Astrophysics Data System (ADS)

    Borland, J.

    2013-12-01

    As part of the panel, media researcher, Jennifer Borland, will highlight findings from a variety of studies of videos across the spectrum of formal to informal learning, including schools, museums, and in viewers homes. In her presentation, Borland will assert that the viewing context matters a great deal, but there are some general take-aways that can be extrapolated to the use of educational video in a variety of settings. Borland has served as an evaluator on several video-related projects funded by NASA and the the National Science Foundation including: Data Visualization videos and Space Shows developed by the American Museum of Natural History, DragonflyTV, Earth the Operators Manual, The Music Instinct and Time Team America.

  16. The Stent Patency and Migration Rate of Different Shaped Plastic Stents in Bile Flow Phantom Model and In Vivo Animal Bile Duct Dilation Model.

    PubMed

    Kwon, Chang-Il; Kim, Gwangil; Jeong, Seok; Lee, Don Haeng; Kim, Kyoung Ah; Ko, Kwang Hyun; Cho, Joo Young; Hong, Sung Pyo

    2017-05-01

    In research and development of biliary plastic stents (PS), continuous efforts have been made to overcome short patency time and high rate of migration. The aim of this study was to evaluate the patency and migration rate of different PS shapes for a given period of time. Using an in vitro bile phantom model, we compared the patency among different shapes of PS (three straight PS, four double-pigtail PS, and a new screw-shaped PS). We performed an analysis of the degree of luminal narrowing by light microscopic examination. Using an in vivo swine model, we compared the patency and migration rate among the three different types of PS. Eight weeks after the bile exposure in the bile flow phantom model, 80 PS were retrieved and analyzed. The straight PS showed less biofilm formation and luminal narrowing than other types of PS (p < 0.05). Forty-nine PS were inserted into the dilated bile ducts of 10 swine models, and 39 PS were successfully retrieved 8 weeks later. The stent migration occurred less frequently in the double-pigtail PS and the screw-shaped PS than it did in the straight PS (11.1, 10, and 27.3%, respectively). However, there was no statistical difference in stent patency among the different shapes. Stent patency may not be significantly different depending on the shape of PS for 8 weeks. The screw-shaped PS showed similar patency and migration rate to the double-pigtail PS. These results may help guiding future PS development and clinical decisions.

  17. A galvanotaxis assay for analysis of neural precursor cell migration kinetics in an externally applied direct current electric field.

    PubMed

    Babona-Pilipos, Robart; Popovic, Milos R; Morshead, Cindi M

    2012-10-13

    The discovery of neural stem and progenitor cells (collectively termed neural precursor cells) (NPCs) in the adult mammalian brain has led to a body of research aimed at utilizing the multipotent and proliferative properties of these cells for the development of neuroregenerative strategies. A critical step for the success of such strategies is the mobilization of NPCs toward a lesion site following exogenous transplantation or to enhance the response of the endogenous precursors that are found in the periventricular region of the CNS. Accordingly, it is essential to understand the mechanisms that promote, guide, and enhance NPC migration. Our work focuses on the utilization of direct current electric fields (dcEFs) to promote and direct NPC migration - a phenomenon known as galvanotaxis. Endogenous physiological electric fields function as critical cues for cell migration during normal development and wound repair. Pharmacological disruption of the trans-neural tube potential in axolotl embryos causes severe developmental malformations(1). In the context of wound healing, the rate of repair of wounded cornea is directly correlated with the magnitude of the epithelial wound potential that arises after injury, as shown by pharmacological enhancement or disruption of this dcEF(2-3). We have demonstrated that adult subependymal NPCs undergo rapid and directed cathodal migration in vitro when exposed to an externally applied dcEF. In this protocol we describe our lab's techniques for creating a simple and effective galvanotaxis assay for high-resolution, long-term observation of directed cell body translocation (migration) on a single-cell level. This assay would be suitable for investigating the mechanisms that regulate dcEF transduction into cellular motility through the use of transgenic or knockout mice, short interfering RNA, or specific receptor agonists/antagonists.

  18. Focusing and alignment of erythrocytes in a viscoelastic medium

    NASA Astrophysics Data System (ADS)

    Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon

    2017-01-01

    Viscoelastic fluid flow-induced cross-streamline migration has recently received considerable attention because this process provides simple focusing and alignment over a wide range of flow rates. The lateral migration of particles depends on the channel geometry and physicochemical properties of particles. In this study, digital in-line holographic microscopy (DIHM) is employed to investigate the lateral migration of human erythrocytes induced by viscoelastic fluid flow in a rectangular microchannel. DIHM provides 3D spatial distributions of particles and information on particle orientation in the microchannel. The elastic forces generated in the pressure-driven flows of a viscoelastic fluid push suspended particles away from the walls and enforce erythrocytes to have a fixed orientation. Blood cell deformability influences the lateral focusing and fixed orientation in the microchannel. Different from rigid spheres and hardened erythrocytes, deformable normal erythrocytes disperse from the channel center plane, as the flow rate increases. Furthermore, normal erythrocytes have a higher angle of inclination than hardened erythrocytes in the region near the side-walls of the channel. These results may guide the label-free diagnosis of hematological diseases caused by abnormal erythrocyte deformability.

  19. Strategies for the Management of SVC Stent Migration into the Right Atrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, J. D., E-mail: drjeremytaylor@yahoo.co.uk; Lehmann, E. D.; Belli, A.-M.

    Purpose. Stent migration into the right atrium is a potentially fatal complication of stenting in the venous system and is most likely to occur during the treatment of superior vena cava obstruction. Endovascular approaches that can salvage this hazardous situation are described and the keys to successful treatment are highlighted. Materials and Methods. Four different strategies are reviewed: (1) snaring the stent directly, (2) angioplasty balloon-assisted snaring of the stent, (3) guide wire-assisted snaring of the stent, and (4) superior vena cava-to-inferior vena cava bridging stent. Results. These techniques have been employed in the successful management of four cases. Nomore » short- or long-term complications as a result of these maneuvers have been identified. Additional treatment of the underlying disease was possible at the same time in each case. Conclusion. We conclude that prompt management of right atrial stent migration is essential and can be successfully achieved by a variety of 'bale-out' techniques which are within the technical range of most interventional radiologists.« less

  20. Paxillin Mediates Sensing of Physical Cues and Regulates Directional Cell Motility by Controlling Lamellipodia Positioning

    PubMed Central

    Sero, Julia E.; Thodeti, Charles K.; Mammoto, Akiko; Bakal, Chris; Thomas, Sheila; Ingber, Donald E.

    2011-01-01

    Physical interactions between cells and the extracellular matrix (ECM) guide directional migration by spatially controlling where cells form focal adhesions (FAs), which in turn regulate the extension of motile processes. Here we show that physical control of directional migration requires the FA scaffold protein paxillin. Using single-cell sized ECM islands to constrain cell shape, we found that fibroblasts cultured on square islands preferentially activated Rac and extended lamellipodia from corner, rather than side regions after 30 min stimulation with PDGF, but that cells lacking paxillin failed to restrict Rac activity to corners and formed small lamellipodia along their entire peripheries. This spatial preference was preceded by non-spatially constrained formation of both dorsal and lateral membrane ruffles from 5–10 min. Expression of paxillin N-terminal (paxN) or C-terminal (paxC) truncation mutants produced opposite, but complementary, effects on lamellipodia formation. Surprisingly, pax−/− and paxN cells also formed more circular dorsal ruffles (CDRs) than pax+ cells, while paxC cells formed fewer CDRs and extended larger lamellipodia even in the absence of PDGF. In a two-dimensional (2D) wound assay, pax−/− cells migrated at similar speeds to controls but lost directional persistence. Directional motility was rescued by expressing full-length paxillin or the N-terminus alone, but paxN cells migrated more slowly. In contrast, pax−/− and paxN cells exhibited increased migration in a three-dimensional (3D) invasion assay, with paxN cells invading Matrigel even in the absence of PDGF. These studies indicate that paxillin integrates physical and chemical motility signals by spatially constraining where cells will form motile processes, and thereby regulates directional migration both in 2D and 3D. These findings also suggest that CDRs may correspond to invasive protrusions that drive cell migration through 3D extracellular matrices. PMID:22194823

  1. Cdc42 Promotes Schwann Cell Proliferation and Migration Through Wnt/β-Catenin and p38 MAPK Signaling Pathway After Sciatic Nerve Injury.

    PubMed

    Han, Bin; Zhao, Jun-Ying; Wang, Wu-Tao; Li, Zheng-Wei; He, Ai-Ping; Song, Xiao-Yang

    2017-05-01

    Schwann cells (SCs) are unique glial cells in the peripheral nerve and may secrete multiple neurotrophic factors, adhesion molecules, extracellular matrix molecules to form the microenvironment of peripheral nerve regeneration, guiding and supporting nerve proliferation and migration. Cdc42 plays an important regulatory role in dynamic changes of the cytoskeleton. However, there is a little study referred to regulation and mechanism of Cdc42 on glial cells after peripheral nerve injury. The present study investigated the role of Cdc42 in the proliferation and migration of SCs after sciatic nerve injury. Cdc42 expression was tested, showing that the mRNA and protein expression levels of Cdc42 were significantly up-regulated after sciatic nerve injury. Then, we isolated and purified SCs from injuried sciatic nerve at day 7. The purified SCs were transfected with Cdc42 siRNA and pcDNA3.1-Cdc42, and the cell proliferation, cell cycle and migration were assessed. The results implied that Cdc42 siRNA remarkably inhibited Schwann cell proliferation and migration, and resulted in S phase arrest. While pcDNA3.1-Cdc42 showed a contrary effect. Besides, we also observed that Cdc42 siRNA down-regulated the protein expression of β-catenin, Cyclin D1, c-myc and p-p38, which were up-regulated by pcDNA3.1-Cdc42. Meanwhile, the inhibitor of Wnt/β-catenin and p38 MAPK signaling pathway IWP-2 and SB203580 significantly inhibited the effect of pcDNA3.1-Cdc42 on cell proliferation and migration. Overall, our data indicate that Cdc42 regulates Schwann cell proliferation and migration through Wnt/β-catenin and p38 MAPK signaling pathway after sciatic nerve injury, which provides further insights into the therapy of the sciatic nerve injury.

  2. New Faces of Liberty: A Curriculum for Teaching about Today's Refugees and Immigrants. For Teachers of Social Studies, Language Arts and English as a Second Language, Grades 5 through 8.

    ERIC Educational Resources Information Center

    Jorgensen-Esmaili, Karen

    This middle school curriculum guide helps teachers to work with students to explore the experiences of new immigrant children and to nurture student understanding of migration and its impact on individual refugees and recipient community members. An introductory section ("Notes to the Teacher") explains the issues that call for this…

  3. Defense Logistics: A Completed Comprehensive Strategy is Needed to Guide DOD’s In-Transit Visibility Efforts

    DTIC Science & Technology

    2013-02-01

    Defense Logistics List of Abbreviations aRFID active radio frequency identification DOD Department of Defense RFID...The Navy and the Air Force each have their own Active Radio Frequency Identification ( aRFID ) Migration Program. These two programs are included...with the aRFID Program and the aRFID Infrastructure, respectively and are therefore not listed in the table. Appendix III: Comments from the

  4. Chemokines and their receptors: insights from molecular modeling and crystallography.

    PubMed

    Kufareva, Irina

    2016-10-01

    Chemokines are small secreted proteins that direct cell migration in development, immunity, inflammation, and cancer. They do so by binding and activating specific G protein coupled receptors on the surface of migrating cells. Despite the importance of receptor:chemokine interactions, their structural basis remained unclear for a long time. In 2015, the first atomic resolution insights were obtained with the publication of X-ray structures for two distantly related receptors bound to chemokines. In conjunction with experiment-guided molecular modeling, the structures suggest a conserved receptor:chemokine complex architecture, while highlighting the diverse details and functional roles of individual interaction epitopes. Novel findings promote the development and detailed structural interpretation of the canonical two-site hypothesis of receptor:chemokine recognition, and suggest new avenues for pharmacological modulation of chemokine receptors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Types of neural guides and using nanotechnology for peripheral nerve reconstruction

    PubMed Central

    Biazar, Esmaeil; Khorasani, MT; Montazeri, Naser; Pourshamsian, Khalil; Daliri, Morteza; T, Mostafa Rezaei; B, Mahmoud Jabarvand; Khoshzaban, Ahad; K, Saeed Heidari; Jafarpour, Mostafa; Roviemiab, Ziba

    2010-01-01

    Peripheral nerve injuries can lead to lifetime loss of function and permanent disfigurement. Different methods, such as conventional allograft procedures and use of biologic tubes present problems when used for damaged peripheral nerve reconstruction. Designed scaffolds comprised of natural and synthetic materials are now widely used in the reconstruction of damaged tissues. Utilization of absorbable and nonabsorbable synthetic and natural polymers with unique characteristics can be an appropriate solution to repair damaged nerve tissues. Polymeric nanofibrous scaffolds with properties similar to neural structures can be more effective in the reconstruction process. Better cell adhesion and migration, more guiding of axons, and structural features, such as porosity, provide a clearer role for nanofibers in the restoration of neural tissues. In this paper, basic concepts of peripheral nerve injury, types of artificial and natural guides, and methods to improve the performance of tubes, such as orientation, nanotechnology applications for nerve reconstruction, fibers and nanofibers, electrospinning methods, and their application in peripheral nerve reconstruction are reviewed. PMID:21042546

  6. Using geographic distribution of well-screen depths and hydrogeologic conditions to identify areas of concern for contaminant migration through inactive supply wells

    NASA Astrophysics Data System (ADS)

    Gailey, Robert M.

    2018-02-01

    Contaminant migration through inactive supply wells can negatively affect groundwater quality and the combined effects from groups of such wells may cause greater impacts. Because the number of wells in many basins is often large and the geographic areas involved can be vast, approaches are needed to estimate potential impacts and focus limited resources for investigation and corrective measures on the most important areas. One possibility is to evaluate the geographic distribution of well-screen depths relative to hydrogeologic conditions and assess where contaminant migration through wells may be impacting groundwater quality. This approach is demonstrated for a geographically extensive area in the southern Central Valley of California, USA. The conditions that lead to wells acting as conduits for contaminant migration are evaluated and areas where the problem likely occurs are identified. Although only a small fraction of all wells appear to act as conduits, potential impacts may be significant considering needs to control nonpoint-source pollution and improve drinking water quality for rural residents. Addressing a limited number of areas where contaminant migration rates are expected to be high may cost-effectively accomplish the most beneficial groundwater quality protection and improvement. While this work focuses on a specific region, the results indicate that impacts from groups of wells may occur in other areas with similar conditions. Analyses similar to that demonstrated here may guide efficient investigation and corrective action in such areas with benefits occurring for groundwater quality. Potential benefits may justify expenditures to develop the necessary data for performing the analyses.

  7. Impact of migration on illness experience and help-seeking strategies of patients from Turkey and Bosnia in primary health care in Basel.

    PubMed

    Gilgen, D; Maeusezahl, D; Salis Gross, C; Battegay, E; Flubacher, P; Tanner, M; Weiss, M G; Hatz, C

    2005-09-01

    Migration, particularly among refugees and asylum seekers, poses many challenges to the health system of host countries. This study examined the impact of migration history on illness experience, its meaning and help-seeking strategies of migrant patients from Bosnia and Turkey with a range of common health problems in general practice in Basel, Switzerland. The Explanatory Model Interview Catalogue, a data collection instrument for cross-cultural research which combines epidemiological and ethnographic research approaches, was used in semi-structured one-to-one patient interviews. Bosnian patients (n=36) who had more traumatic migration experiences than Turkish/Kurdish (n=62) or Swiss internal migrants (n=48) reported a larger number of health problems than the other groups. Psychological distress was reported most frequently by all three groups in response to focussed queries, but spontaneously reported symptoms indicated the prominence of somatic, rather than psychological or psychosocial, problems. Among Bosnians, 78% identified traumatic migration experiences as a cause of their illness, in addition to a range of psychological and biomedical causes. Help-seeking strategies for the current illness included a wide range of treatments, such as basic medical care at private surgeries, outpatients department in hospitals as well as alternative medical treatments among all groups. Findings provide a useful guide to clinicians who work with migrants and should inform policy in medical care, information and health promotion for migrants in Switzerland as well as further education of health professionals on issues concerning migrants health.

  8. Canadian Nurse Graduates considering Migrating Abroad for Work: Are Their Expectations Being Met in Canada?

    PubMed

    Freeman, Michelle; Beaulieu, Lizette; Crawley, Jamie

    2015-12-01

    An RN credential has been called "a ticket to the world." Canadian RNs have been active participants in migration, especially to the United States. In an increasingly globally oriented world, Canadian nurse graduates have many employment options. The purpose of this study was to explore the job values and expectations of baccalaureate nursing students who indicated they were considering migrating for work abroad for their first job and to explore their confidence in having these values met in Canada compared to another country. This was a quantitative study guided by the Value-Expectancy Framework. Data were collected through a Web-based self-report survey and analyzed using descriptive statistics for sample characteristics and t tests for comparison. Nonprobability convenience sampling of graduating baccalaureate nursing students from a Canadian border region was used. Of 130 respondents, 92 (70.8%) indicated that they were considering migrating from Canada for work. Respondents believed that working abroad would provide more adventure, full-time work, professional development, appropriate staffing, flexible scheduling, and freedom to choose their preferred job sector/specialty. The authors conclude that there is a need to study nursing graduates' labour mobility both within and outside of Canada and the factors that influence their decision-making and to address the factors that encourage them to leave Canada. Human resource planning will become increasingly important given the predicted nursing shortage and changes to nurse licensure in Canada with the potential to influence migration. Copyright© by Ingram School of Nursing, McGill University.

  9. Understanding the “black box” of a health-promotion program: Keys to enable health among older persons aging in the context of migration

    PubMed Central

    Barenfeld, Emmelie; Gustafsson, Susanne; Wallin, Lars; Dahlin-Ivanoff, Synneve

    2015-01-01

    Although the need to make health services more accessible to persons who have migrated has been identified, knowledge about health-promotion programs (HPPs) from the perspective of older persons born abroad is lacking. This study explores the design experiences and content implemented in an adapted version of a group-based HPP developed in a researcher–community partnership. Fourteen persons aged 70–83 years or older who had migrated to Sweden from Finland or the Balkan Peninsula were included. A grounded theory approach guided the data collection and analysis. The findings showed how participants and personnel jointly helped raise awareness. The participants experienced three key processes that could open doors to awareness: enabling community, providing opportunities to understand and be understood, and confirming human values and abilities. Depending on how the HPP content and design are being shaped by the group, the key processes could both inhibit or encourage opening doors to awareness. Therefore, this study provides key insights into how to enable health by deepening the understanding of how the exchange of health-promoting messages is experienced to be facilitated or hindered. This study adds to the scientific knowledge base of how the design and content of HPP may support and recognize the capabilities of persons aging in the context of migration. PMID:26654636

  10. Alpinia oxyphylla Miquel fruit extract activates MAPK-mediated signaling of PAs and MMP2/9 to induce Schwann cell migration and nerve regeneration.

    PubMed

    Chang, Yung-Ming; Ye, Chi-Xin; Ho, Tsung-Jung; Tsai, Te-Neng; Chiu, Ping-Ling; Tsai, Chin-Chuan; Lin, Yueh-Min; Kuo, Chia-Hua; Tsai, Fuu-Jen; Tsai, Chang-Hai; Huang, Chih-Yang

    2014-05-01

    This study investigates the molecular mechanisms by which Alpiniae oxyphyllae fructus (AOF) promotes neuron regeneration. A piece of silicone rubber was guided across a 15 mm gap in the sciatic nerve of a rat. This nerve gap was then filled with different concentrations of AOF extract (0-200 mg/ml). We investigated the role of MAPK (ERK1/2, JNK and p38) pathways for AOF-induced matrix-degrading proteolytic enzyme (PAs and MMP2/9) production in RSC96 Schwann cells. The results showed that AOF increased the expressions of uPA, tPA, MMP-9, and MAPKs in vivo. In vitro, our results show that treatment with AOF extract induces ERK1/2, JNK, and p38 phosphorylation to activate the downstream PAs and MMPs signaling expression. AOF-stimulated ERK1/2, JNK, and p38 phosphorylation attenuated by individual pretreatment with siRNAs or inhibitors (U0126, SP600125 and SB203580), resulting in migration and uPA-related signal pathway inhibition. Taken together our data suggests the MAPKs (ERK1/2, JNK and p38), PAs (uPA, tPA), MMP (MMP2, MMP9) regenerative and migration signaling pathway of Schwann cells regulated by AOF extract might play a major role in Schwann cell migration and damaged peripheral nerve regeneration.

  11. Understanding the "black box" of a health-promotion program: Keys to enable health among older persons aging in the context of migration.

    PubMed

    Barenfeld, Emmelie; Gustafsson, Susanne; Wallin, Lars; Dahlin-Ivanoff, Synneve

    2015-01-01

    Although the need to make health services more accessible to persons who have migrated has been identified, knowledge about health-promotion programs (HPPs) from the perspective of older persons born abroad is lacking. This study explores the design experiences and content implemented in an adapted version of a group-based HPP developed in a researcher-community partnership. Fourteen persons aged 70-83 years or older who had migrated to Sweden from Finland or the Balkan Peninsula were included. A grounded theory approach guided the data collection and analysis. The findings showed how participants and personnel jointly helped raise awareness. The participants experienced three key processes that could open doors to awareness: enabling community, providing opportunities to understand and be understood, and confirming human values and abilities. Depending on how the HPP content and design are being shaped by the group, the key processes could both inhibit or encourage opening doors to awareness. Therefore, this study provides key insights into how to enable health by deepening the understanding of how the exchange of health-promoting messages is experienced to be facilitated or hindered. This study adds to the scientific knowledge base of how the design and content of HPP may support and recognize the capabilities of persons aging in the context of migration.

  12. Cellular behavior controlled by bio-inspired and geometry-tunable nanohairs.

    PubMed

    Heo, Chaejeong; Jeong, Chanho; Im, Hyeon Seong; Kim, Jong Uk; Woo, Juhyun; Lee, Ji Yeon; Park, Byeonghak; Suh, Minah; Kim, Tae-Il

    2017-11-23

    A cicada wing has a biocidal feature of rupturing the membrane of cells, while the cactus spine can transmit a water drop to the stem of the plant. Both of these properties have evolved from their respective unique structures. Here, we endeavor to develop geometry-controllable nanohairs that mimic the cicada's wing-like vertical hairs and the cactus spine-like stooped hairs, and to quantitatively characterize the cell migration behavior of the hairy structures. It was found that the neuroblastoma cells are highly sensitive to the variation of surfaces: flat, vertical, and stooped nanohairs (100 nm diameter and 900 nm height). The cells on the vertical hairs showed significantly decreased proliferation. It was found that the behavior of cells cultured on stooped nanohairs is strongly influenced by the direction of the stooped pattern of hairs when we quantitatively measured the migration of cells on flat, vertical, and stooped structures. However, the cells on the flat structures showed random movement and the cells on the vertical nanohairs restricted the nanohair movement. Cells on the stooped structure showed higher forward migration preference compared to that of the other structures. Furthermore, we found that these cellular behaviors on the different patterns of nanohairs were affected by intracellular actin flament change. Consistent with these results, the vertical and stooped structures can facilitate the control of cell viability and guide directional migration for biomedical applications such as organogenesis.

  13. 'Til Eph do us part': intercellular signaling via Eph receptors and ephrin ligands guides cerebral cortical development from birth through maturation.

    PubMed

    North, Hilary A; Clifford, Meredith A; Donoghue, Maria J

    2013-08-01

    Eph receptors, the largest family of surface-bound receptor tyrosine kinases and their ligands, the ephrins, mediate a wide variety of cellular interactions in most organ systems throughout both development and maturity. In the forming cerebral cortex, Eph family members are broadly and dynamically expressed in particular sets of cortical cells at discrete times. Here, we review the known functions of Eph-mediated intercellular signaling in the generation of progenitors, the migration of maturing cells, the differentiation of neurons, the formation of functional connections, and the choice between life and death during corticogenesis. In synthesizing these results, we posit a signaling paradigm in which cortical cells maintain a life history of Eph-mediated intercellular interactions that guides subsequent cellular decision-making.

  14. A Critically Endangered new dragonfly species from Morocco: Onychogomphus boudoti sp. nov. (Odonata: Gomphidae).

    PubMed

    Ferreira, Sónia; Velo-Antón, Guillermo; Brochard, Christophe; Vieira, Cristiana; Alves, Paulo Célio; Thompson, David J; Watts, Phillip C; Brito, José Carlos

    2014-08-25

    Both sexes of Onychogomphus boudoti sp. nov. Ferreira (Odonata: Anisoptera: Gomphidae) and exuviae are described and illustrated from a single locality in Morocco. This newly discovered species differs markedly from other Onychogomphus species by the morphology of the male epiproct and the female vulvar scale. It is genetically distinct in the mitochondrial DNA and the nuclear PRMT gene from all other Western Palaearctic Onychogomphus species. The known distribution of the new species is confined to a small stream with unusual habitat characteristics in the vicinity of Khenifra, in the Middle Atlas, where it experiences low population size and limited genetic diversity. We suggest listing this species both locally and globally as "Critically Endangered" [CR (B1, B2 + abiii)] following the IUCN Red List Categories and Criteria. 

  15. Deepwater Program: Exploration and Research of Northern Gulf of Mexico Deepwater Natural and Artificial Hard Bottom Habitats with Emphasis on Coral Communities: Reefs, Rigs and Wrecks

    DTIC Science & Technology

    2010-01-01

    Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Guide for...Roberts, J.M. & Guinotte, J.J. (2007) Corals in deep water: Will the unseen hand of ocean acidification destroy cold water ecosystems? Coral Reefs ...scleractinians from the NE Atlantic Ocean . Coral Reefs , 24(3), 514-522. Wang JL, Whitlock MC (2003) Estimating effective population size and migration rates

  16. An Integration, Long Range Planning, and Migration Guide for the Stock Point Logistics Integrated Communications Project.

    DTIC Science & Technology

    1986-03-01

    and universal terminal/printer interface mapping ( TMAP ) software. When the Burroughs HYPERchannel software package (i.e., Burroughs NETEX) provided...and terminal device and security functions placed under the control of the FDC’s SAS/ TMAP processes. Without processing efficiency enhancements, TAPS...FDC’s SAS/ TMAP processes. As was also previously indicated, the performance of TAPS II on TANDEM is poor today, and there are questions as whether

  17. Transperineal ultrasound-guided implantation of electromagnetic transponders in the prostatic fossa for localization and tracking during external beam radiation therapy.

    PubMed

    Garsa, Adam A; Verma, Vivek; Michalski, Jeff M; Gay, Hiram A

    2014-01-01

    To describe a transperineal ultrasound-guided technique for implantation of electromagnetic transponders into the prostatic fossa. Patients were placed in the dorsal lithotomy position, and local anesthetic was administered. On ultrasound, the bladder, urethra, vesicourethral anastomosis, rectum, and the prostatic fossa were carefully identified. Three transponders were implanted into the prostatic fossa under ultrasound guidance in a triangular configuration and implantation was verified by fluoroscopy. Patients underwent computed tomography (CT) simulation approximately 1 week later. All patients in this study were subsequently treated with intensity modulated radiation therapy (IMRT) to the prostatic fossa. From 2008 to 2012, 180 patients received transperineal implantation of electromagnetic transponders into the prostatic fossa and subsequently received IMRT. There were no cases of severe hematuria or rectal bleeding requiring intervention. There were no grade 3 or 4 toxicities. Three patients (1.7%) had a transponder missing on the subsequent CT simulation. Thirteen patients (7.3%) had transponder migration with a geometric residual that exceeded 2 mm for 3 consecutive days (5.6%) or rotation that exceeded 10 degrees for 5 consecutive days (1.7%). These patients underwent a resimulation CT scan to identify the new transponder coordinates. A transperineal technique for implantation of electromagnetic transponders into the prostatic fossa is safe and well tolerated, with no severe toxicity after implantation. There is a low rate of transponder loss or migration.

  18. A computational fluid dynamics modeling study of guide walls for downstream fish passage

    USGS Publications Warehouse

    Mulligan, Kevin; Towler, Brett; Haro, Alexander J.; Ahlfeld, David P.

    2017-01-01

    A partial-depth, impermeable guidance structure (or guide wall) for downstream fish passage is typically constructed as a series of panels attached to a floating boom and anchored across a water body (e.g. river channel, reservoir, or power canal). The downstream terminus of the wall is generally located nearby to a fish bypass structure. If guidance is successful, the fish will avoid entrainment in a dangerous intake structure (i.e. turbine intakes) while passing from the headpond to the tailwater of a hydroelectric facility through a safer passage route (i.e. the bypass). The goal of this study is to determine the combination of guide wall design parameters that will most likely increase the chance of surface-oriented fish being successfully guided to the bypass. To evaluate the flow field immediately upstream of a guide wall, a parameterized computational fluid dynamics model of an idealized power canal was constructed in © ANSYS Fluent v 14.5 (ANSYS Inc., 2012). The design parameters investigated were the angle and depth of the guide wall and the average approach velocity in the power canal. Results call attention to the importance of the downward to sweeping flow ratio and demonstrate how a change in guide wall depth and angle can affect this important hydraulic cue to out-migrating fish. The key findings indicate that a guide wall set at a small angle (15° is the minimum in this study) and deep enough such that sweeping flow dominant conditions prevail within the expected vertical distribution of fish approaching the structure will produce hydraulic conditions that are more likely to result in effective passage.

  19. The navigational feats of green sea turtles migrating from Ascension Island investigated by satellite telemetry.

    PubMed Central

    Luschi, P; Hays, G C; Del Seppia, C; Marsh, R; Papi, F

    1998-01-01

    Previous tagging studies of the movements of green turtles (Chelonia mydas) nesting at Ascension Island have shown that they shuttle between this remote target in the Atlantic Ocean and their feeding grounds on the Brazilian coast, a distance of 2300 km or more. Since a knowledge of sea turtle migration routes might allow inferences on the still unknown navigational mechanisms of marine animals, we tracked the postnesting migration of six green turtle females from Ascension Island to Brazil. Five of them reached the proximity of the easternmost stretch of the Brazilian coast, covering 1777-2342 km in 33-47 days. Their courses were impressively similar for the first 1000 km, with three turtles tracked over different dates following indistinguishable paths for the first 300 km. Only the sixth turtle made some relatively short trips in different directions around Ascension. The tracks show that turtles (i) are able to maintain straight courses over long distances in the open sea; (ii) may perform exploratory movements in different directions; (iii) appropriately correct their course during the journey according to external information; and (iv) initially keep the same direction as the west-south-westerly flowing current, possibly guided by chemical cues. PMID:9881473

  20. Sky Compass Orientation in Desert Locusts-Evidence from Field and Laboratory Studies.

    PubMed

    Homberg, Uwe

    2015-01-01

    Locusts are long-range migratory insects. At high population density, immature animals form marching hopper bands while adults take off and form huge swarms of millions of animals. At low population densities animals are solitarious, but likewise migrate, mostly during the night. Numerous studies aimed at predicting locust infestations showed that migrations both as hopper bands and as adults are largely downwind following seasonal shifts of the tropical convergence zone taking the animals to areas of rainfall. Only a few studies provided evidence for active orientation mechanisms, including the involvement of a sun compass. This scarcity of evidence stands in contrast to recent neurobiological data showing sophisticated neuronal adaptations suited for sky compass navigation. These include a special dorsal eye region with photoreceptors suited to analyze the polarization pattern of the sky and a system of topographically arranged sky compass neurons in the central complex of the brain. Laboratory experiments, moreover, demonstrated polarotaxis in tethered flying animals. The discrepancy of these findings call for more rigorous field studies on active orientation mechanisms in locusts. It remains to be shown how locusts use their internal sky compass during mass migrations and what role it plays to guide solitarious locusts in their natural habitat.

  1. Applying heuristic inquiry to nurse migration from the UK to Australia.

    PubMed

    Vafeas, Caroline; Hendricks, Joyce

    2017-01-23

    Background Heuristic inquiry is a research approach that improves understanding of the essence of an experience. This qualitative method relies on researchers' ability to discover and interpret their own experience while exploring those of others. Aim To present a discussion of heuristic inquiry's methodology and its application to the experience of nurse migration. Discussion The researcher's commitment to the research is central to heuristic inquiry. It is immersive, reflective, reiterative and a personally-affecting method of gathering knowledge. Researchers are acknowledged as the only people who can validate the findings of the research by exploring their own experiences while also examining those of others with the same experiences to truly understand the phenomena being researched. This paper presents the ways in which the heuristic process guides this discovery in relation to traditional research steps. Conclusion Heuristic inquiry is an appropriate method for exploring nurses' experiences of migration because nurse researchers can tell their own stories and it brings understanding of themselves and the phenomenon as experienced by others. Implications for practice Although not a popular method in nursing research, heuristic inquiry offers a depth of exploration and understanding that may not be revealed by other methods.

  2. Computational modeling of three-dimensional ECM-rigidity sensing to guide directed cell migration.

    PubMed

    Kim, Min-Cheol; Silberberg, Yaron R; Abeyaratne, Rohan; Kamm, Roger D; Asada, H Harry

    2018-01-16

    Filopodia have a key role in sensing both chemical and mechanical cues in surrounding extracellular matrix (ECM). However, quantitative understanding is still missing in the filopodial mechanosensing of local ECM stiffness, resulting from dynamic interactions between filopodia and the surrounding 3D ECM fibers. Here we present a method for characterizing the stiffness of ECM that is sensed by filopodia based on the theory of elasticity and discrete ECM fiber. We have applied this method to a filopodial mechanosensing model for predicting directed cell migration toward stiffer ECM. This model provides us with a distribution of force and displacement as well as their time rate of changes near the tip of a filopodium when it is bound to the surrounding ECM fibers. Aggregating these effects in each local region of 3D ECM, we express the local ECM stiffness sensed by the cell and explain polarity in the cellular durotaxis mechanism.

  3. Fatal hemorrhage following sacroiliac joint fusion surgery: A case report.

    PubMed

    Palmiere, Cristian; Augsburger, Marc; Del Mar Lesta, Maria; Grabherr, Silke; Borens, Olivier

    2017-05-01

    Threaded pins and wires are commonly used in orthopedic practice and their migration intra- or post-operatively may be responsible for potentially serious complications. Vascular and visceral injury from intra-pelvic pin or guide-wire migration during or following hip surgery has been reported frequently in the literature and may result in progression through soft tissues with subsequent perforation of organs and vessels. In this report, we describe an autopsy case involving a 40-year old man suffering from chronic low back pain due to sacroiliac joint disruption. The patient underwent minimally invasive sacroiliac joint arthrodesis. Some intra-operative bleeding was noticed when a drill was retrieved, though the patient died postoperatively. Postmortem investigations allowed the source of bleeding to be identified (a perforation of a branch of the right internal iliac artery) and a potentially toxic tramadol concentration in peripheral blood to be measured. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Long-term genetic monitoring of a riverine dragonfly, Orthetrum coerulescens (Odonata: Libellulidae]: Direct anthropogenic impact versus climate change effects.

    PubMed

    Herzog, Rebecca; Hadrys, Heike

    2017-01-01

    Modern conservationists call for long term genetic monitoring datasets to evaluate and understand the impact of human activities on natural ecosystems and species on a global but also local scale. However, long-term monitoring datasets are still rare but in high demand to correctly identify, evaluate and respond to environmental changes. In the presented study, a population of the riverine dragonfly, Orthetrum coerulescens (Odonata: Libellulidae), was monitored over a time period from 1989 to 2013. Study site was an artificial irrigation ditch in one of the last European stone steppes and "nature heritage", the Crau in Southern France. This artificial riverine habitat has an unusual high diversity of odonate species, prominent indicators for evaluating freshwater habitats. A clearing of the canal and destruction of the bank vegetation in 1996 was assumed to have great negative impact on the odonate larval and adult populations. Two mitochondrial markers (CO1 & ND1) and a panel of nuclear microsatellite loci were used to assess the genetic diversity. Over time they revealed a dramatic decline in diversity parameters between the years 2004 and 2007, however not between 1996 and 1997. From 2007 onwards the population shows a stabilizing trend but has not reached the amount of genetic variation found at the beginning of this survey. This decline cannot be referred to the clearing of the canal or any other direct anthropogenic impact. Instead, it is most likely that the populations' decay was due to by extreme weather conditions during the specific years. A severe drought was recorded for the summer months of these years, leading to reduced water levels in the canal causing also other water parameters to change, and therefore impacting temperature sensitive riverine habitat specialists like the O. coerulescens in a significant way. The data provide important insights into population genetic dynamics and metrics not always congruent with traditional monitoring data (e.g. abundance); a fact that should be regarded with caution when management plans for developed landscapes are designed.

  5. Small scale karst features (tube karren) as evidence of a latest Quaternary fossil landslide

    NASA Astrophysics Data System (ADS)

    Stöger, Tobias; Plan, Lukas; Draganits, Erich

    2017-04-01

    At least since 1933 numerous small dissolutional holes in the ceilings of overhangs and small caves have been known from a restricted area in the Northern Calcareous Alps in Lower Austria but not investigated yet. These tube-shaped structures are a few centimetres in diameter, more or less vertical, taper upwards, are closed at the top and penetrate some tens of centimetres into the Middle Triassic limestone. Very similar features were described by Simms (2002) from the shores of three lakes in western Ireland and termed Röhrenkarren or tube karren. According to his model they formed by condensation corrosion within air pockets trapped by seasonal floods. The features investigated in the present study occur on both sides of a valley in the north eastern part of the Northern Calcareous Alps south of the city Sankt Pölten. Presently there is no lake and so far no paleo lake is known from this area. Based on airborne laser scanning data and field observations in a narrow section of the valley downstream of the tube karren sites, a previously unknown potential fossil landslide was discovered. The clayey silty sediments upstream of the landslide are interpreted as palaeo-lake sediments. This interpretation is supported by the existence of abundant dragonfly eggs within these deposits. The same fine-grained sediments are partly also found inside the tube karren. These observations are interpreted that a landslide-dammed palaeo-lake formed due to the mass movement that blocked the river and the tube karren were formed by seasonal fluctuations of the lake level. Geochronological dating of calcite crusts covering the karren and of the organic material of the dragonfly eggs are on the way. As the karren features look quite fresh and unweathered and from the diffuse shape of the landslide a late Quaternary age is estimated. References Simms, M.J. 2002. The origin of enigmatic, tubular, lake-shore karren: a mechanism for rapid dissolution of limestone in carbonate-saturated waters. Physical Geography, 23(1), 1-20.

  6. Neutrophil adhesion and chemotaxis depend on substrate mechanics

    NASA Astrophysics Data System (ADS)

    Jannat, Risat A.; Robbins, Gregory P.; Ricart, Brendon G.; Dembo, Micah; Hammer, Daniel A.

    2010-05-01

    Neutrophil adhesion to the vasculature and chemotaxis within tissues play critical roles in the inflammatory response to injury and pathogens. Unregulated neutrophil activity has been implicated in the progression of numerous chronic and acute diseases such as rheumatoid arthritis, asthma and sepsis. Cell migration of anchorage-dependent cells is known to depend on both chemical and mechanical interactions. Although neutrophil responses to chemical cues have been well characterized, little is known about the effect of underlying tissue mechanics on neutrophil adhesion and migration. To address this question, we quantified neutrophil migration and traction stresses on compliant hydrogel substrates with varying elasticity in a micromachined gradient chamber in which we could apply either a uniform concentration or a precise gradient of the bacterial chemoattractant fMLP. Neutrophils spread more extensively on substrates of greater stiffness. In addition, increasing the stiffness of the substrate leads to a significant increase in the chemotactic index for each fMLP gradient tested. As the substrate becomes stiffer, neutrophils generate higher traction forces without significant changes in cell speed. These forces are often displayed in pairs and focused in the uropod. Increases in the mean fMLP concentration beyond the KD of the receptor lead to a decrease in chemotactic index on all surfaces. Blocking with an antibody against β2-integrins leads to a significant reduction, but not an elimination, of directed motility on stiff materials, but no change in motility on soft materials, suggesting neutrophils can display both integrin-dependent and integrin-independent motility. These findings are critical for understanding how neutrophil migration may change in different mechanical environments in vivo and can be used to guide the design of migration inhibitors that more efficiently target inflammation.

  7. Potential Hydrogeomechanical Impacts of Geological CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    McPherson, B. J.; Haerer, D.; Han, W.; Heath, J.; Morse, J.

    2006-12-01

    Long-term sequestration of anthropogenic "greenhouse gases" such as CO2 is a proposed approach to managing climate change. Deep brine reservoirs in sedimentary basins are possible sites for sequestration, given their ubiquitous nature. We used a mathematical sedimentary basin model, including coupling of multiphase CO2-groundwater flow and rock deformation, to evaluate residence times in possible brine reservoir storage sites, migration patterns and rates away from such sites, and effects of CO2 injection on fluid pressures and rock strain. Study areas include the Uinta and Paradox basins of Utah, the San Juan basin of New Mexico, and the Permian basin of west Texas. Regional-scale hydrologic and mechanical properties, including the presence of fracture zones, were calibrated using laboratory and field data. Our initial results suggest that, in general, long-term (~100 years or more) sequestration in deep brine reservoirs is possible, if guided by robust structural and hydrologic data. However, specific processes must be addressed to characterize and minimize risks. In addition to CO2 migration from target sequestration reservoirs into other reservoirs or to the land surface, another environmental issue is displacement of brines into freshwater aquifers. We evaluated the potential for such unintended aquifer contamination by displacement of brines out of adjacent sealing layers such as marine shales. Results suggest that sustained injection of CO2 may incur significant brine displacement out of adjacent sealing layers, depending on the injection history, initial brine composition, and hydrologic properties of both reservoirs and seals. Model simulations also suggest that as injection-induced overpressures migrate, effective stresses may follow this migration under some conditions, as will associated rock strain. Such "strain migration" may lead to induced or reactivated fractures or faults, but can be controlled through reservoir engineering.

  8. Inducible Sterilization of Zebrafish by Disruption of Primordial Germ Cell Migration

    PubMed Central

    Wong, Ten-Tsao; Collodi, Paul

    2013-01-01

    During zebrafish development, a gradient of stromal-derived factor 1a (Sdf1a) provides the directional cue that guides the migration of the primordial germ cells (PGCs) to the gonadal tissue. Here we describe a method to produce large numbers of infertile fish by inducing ubiquitous expression of Sdf1a in zebrafish embryos resulting in disruption of the normal PGC migration pattern. A transgenic line of zebrafish, Tg(hsp70:sdf1a-nanos3, EGFP), was generated that expresses Sdf1a under the control of the heat-shock protein 70 (hsp70) promoter and nanos3 3?UTR. To better visualize the PGCs, the Tg(hsp70:sdf1a-nanos3, EGFP) fish were crossed with another transgenic line, Tg(kop:DsRed-nanos3), that expresses DsRed driven by the PGC-specific kop promoter. Heat treatment of the transgenic embryos caused an induction of Sdf1a expression throughout the embryo resulting in the disruption of their normal migration. Optimal embryo survival and disruption of PGC migration was achieved when transgenic embryos at the 4- to 8-cell stage were incubated at 34.5°C for 18 hours. Under these conditions, disruption of PGC migration was observed in 100% of the embryos. Sixty-four adult fish were developed from three separate batches of heat-treated embryos and all were found to be infertile males. When each male was paired with a wild-type female, only unfertilized eggs were produced and histological examination revealed that each of the adult male fish possessed severely under-developed gonads that lacked gametes. The results demonstrate that inducible Sdf1a expression is an efficient and reliable strategy to produce infertile fish. This approach makes it convenient to generate large numbers of infertile adult fish while also providing the capability to maintain a fertile brood stock. PMID:23826390

  9. Stripes and belly-spots – a review of pigment cell morphogenesis in vertebrates

    PubMed Central

    Kelsh, Robert N.; Harris, Melissa L.; Colanesi, Sarah; Erickson, Carol A.

    2009-01-01

    Pigment patterns in the integument have long-attracted attention from both scientists and non-scientists alike since their natural attractiveness combines with their excellence as models for the general problem of pattern formation. Pigment cells are formed from the neural crest and must migrate to reach their final locations. In this review, we focus on our current understanding of mechanisms underlying the control of pigment cell migration and patterning in diverse vertebrates. The model systems discussed here –chick, mouse, and zebrafish – each provide unique insights into the major morphogenetic events driving pigment pattern formation. In birds and mammals, melanoblasts must be specified before they can migrate on the dorsolateral pathway. Transmembrane receptors involved in guiding them onto this route include EphB2 and Ednrb2 in chick, and Kit in mouse. Terminal migration depends, in part, upon extracellular matrix reorganization by ADAMTS20. Invasion of the ectoderm, especially into the feather germ and hair follicles, requires specific signals that are beginning to be characterized. We summarize our current understanding of the mechanisms regulating melanoblast number and organization in the epidermis. We note the apparent differences in pigment pattern formation in poikilothermic vertebrates when compared with birds and mammals. With more pigment cell types, migration pathways are more complex and largely unexplored; nevertheless, a role for Kit signaling in melanophore migration is clear and indicates that at least some patterning mechanisms may be highly conserved. We summarize the multiple factors thought to contribute to zebrafish embryonic pigment pattern formation, highlighting a recent study identifying Sdf1a as one factor crucial for regulation of melanophore positioning. Finally, we discuss the mechanisms generating a second, metamorphic pigment pattern in adult fish, emphasizing recent studies strengthening the evidence that undifferentiated progenitor cells play a major role in generating adult pigment cells. PMID:18977309

  10. Vascular endothelial growth factor c/vascular endothelial growth factor receptor 3 signaling regulates chemokine gradients and lymphocyte migration from tissues to lymphatics.

    PubMed

    Iwami, Daiki; Brinkman, C Colin; Bromberg, Jonathan S

    2015-04-01

    Circulation of leukocytes via blood, tissue and lymph is integral to adaptive immunity. Afferent lymphatics form CCL21 gradients to guide dendritic cells and T cells to lymphatics and then to draining lymph nodes (dLN). Vascular endothelial growth factor C and vascular endothelial growth factor receptor 3 (VEGFR-3) are the major lymphatic growth factor and receptor. We hypothesized these molecules also regulate chemokine gradients and lymphatic migration. CD4 T cells were injected into the foot pad or ear pinnae, and migration to afferent lymphatics and dLN quantified by flow cytometry or whole mount immunohistochemistry. Vascular endothelial growth factor receptor 3 or its signaling or downstream actions were modified with blocking monoclonal antibodies (mAbs) or other reagents. Anti-VEGFR-3 prevented migration of CD4 T cells into lymphatic lumen and significantly decreased the number that migrated to dLN. Anti-VEGFR-3 abolished CCL21 gradients around lymphatics, although CCL21 production was not inhibited. Heparan sulfate (HS), critical to establish CCL21 gradients, was down-regulated around lymphatics by anti-VEGFR-3 and this was dependent on heparanase-mediated degradation. Moreover, a Phosphoinositide 3-kinase (PI3K)α inhibitor disrupted HS and CCL21 gradients, whereas a PI3K activator prevented the effects of anti-VEGFR-3. During contact hypersensitivity, VEGFR-3, CCL21, and HS expression were all attenuated, and anti-heparanase or PI3K activator reversed these effects. Vascular endothelial growth factor C/VEGFR-3 signaling through PI3Kα regulates the activity of heparanase, which modifies HS and CCL21 gradients around lymphatics. The functional and physical linkages of these molecules regulate lymphatic migration from tissues to dLN. These represent new therapeutic targets to influence immunity and inflammation.

  11. Understanding the migratory orientation program of birds: extending laboratory studies to study free-flying migrants in a natural setting.

    PubMed

    Thorup, Kasper; Holland, Richard A; Tøttrup, Anders P; Wikelski, Martin

    2010-09-01

    For many years, orientation in migratory birds has primarily been studied in the laboratory. Although a laboratory-based setting enables greater control over environmental cues, the laboratory-based findings must be confirmed in the wild in free-flying birds to be able to fully understand how birds orient during migration. Despite the difficulties associated with following free-flying birds over long distances, a number of possibilities currently exist for tracking the long distance, sometimes even globe-spanning, journeys undertaken by migrating birds. Birds fitted with radio transmitters can either be located from the ground or from aircraft (conventional tracking), or from space. Alternatively, positional information obtained by onboard equipment (e.g., GPS units) can be transmitted to receivers in space. Use of these tracking methods has provided a wealth of information on migratory behaviors that are otherwise very difficult to study. Here, we focus on the progress in understanding certain components of the migration-orientation system. Comparably exciting results can be expected in the future from tracking free-flying migrants in the wild. Use of orientation cues has been studied in migrating raptors (satellite telemetry) and thrushes (conventional telemetry), highlighting that findings in the natural setting may not always be as expected on the basis of cage-experiments. Furthermore, field tracking methods combined with experimental approaches have finally allowed for an extension of the paradigmatic displacement experiments performed by Perdeck in 1958 on the short-distance, social migrant, the starling, to long-distance migrating storks and long-distance, non-socially migrating passerines. Results from these studies provide fundamental insights into the nature of the migratory orientation system that enables experienced birds to navigate and guide inexperienced, young birds to their species-specific winter grounds. © The Author 2010. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.

  12. T Cell Receptor Signaling in the Control of Regulatory T Cell Differentiation and Function

    PubMed Central

    Li, Ming O.; Rudensky, Alexander Y.

    2016-01-01

    Regulatory T cells (TReg cells), a specialized T cell lineage, have a pivotal function in the control of self-tolerance and inflammatory responses. Recent studies have revealed a discrete mode of TCR signaling that regulates Treg cell differentiation, maintenance and function and that impacts on gene expression, metabolism, cell adhesion and migration of these cells. Here, we discuss the emerging understanding of TCR-guided differentiation of Treg cells in the context of their function in health and disease. PMID:27026074

  13. Implementing the Code of Practice on International Recruitment in Romania - exploring the current state of implementation and what Romania is doing to retain its domestic health workforce.

    PubMed

    Paina, Ligia; Ungureanu, Marius; Olsavszky, Victor

    2016-06-30

    The Romanian health system is struggling to retain its health workers, who are currently facing strong incentives for migration to Western European health systems. Retention issues, coupled with high levels of migration, complicate Romania's efforts in providing basic health services for rural, underserved, and marginalized populations, as well as in achieving equitable health access for all. The WHO Global Code of Practice on International Recruitment of Health Personnel (the Code) aims to promote ethical international recruitment and health systems strengthening. We explore Romania's implementation of the Code's principles and recommendations. We analysed peer-reviewed and grey literature, in English and Romanian, and sought secondary data from the websites of Romania's largest medical universities. The analysis was guided by the following themes and recommendations in the Code: health personnel development and health systems sustainability, international cooperation, data gathering, information exchange, and implementation and monitoring of the Code. Romania's implementation of the Code was observed to be limited. Gaps were identified with regards to several aspects of the Romanian health system, including the lack of support to health personnel training, recruitment, and retention in order to increase the appeal for health providers to practice in Romania and in underserved areas. In terms of international cooperation, the Code recommends various policy instruments to guide recruitment, including bilateral agreements. However, we could not determine which of these instruments were used as a result of the Code and whether or not they were effective. We identified little evidence of initiatives for health workers' professional and personal support. Insufficient data and few information exchange platforms exist on health workforce issues, hindering active sharing of data on migration with European Union and WHO audiences. We could not identify any evidence of monitoring of the Code's implementation to date. In the absence of major system reforms, health workers will continue to migrate to urban areas and abroad. Romanian policymakers should address more of the Code's recommendations by developing a national policy for human resources for health, a central database to aid health workforce planning and management, stronger platforms for information exchange and civil society engagement, and updated and transparent bilateral agreements.

  14. Migration of interfacial oxygen ions modulated resistive switching in oxide-based memory devices

    NASA Astrophysics Data System (ADS)

    Chen, C.; Gao, S.; Zeng, F.; Tang, G. S.; Li, S. Z.; Song, C.; Fu, H. D.; Pan, F.

    2013-07-01

    Oxides-based resistive switching memory induced by oxygen ions migration is attractive for future nonvolatile memories. Numerous works had focused their attentions on the sandwiched oxide materials for depressing the characteristic variations, but the comprehensive studies of the dependence of electrodes on the migration behavior of oxygen ions are overshadowed. Here, we investigated the interaction of various metals (Ni, Co, Al, Ti, Zr, and Hf) with oxygen atoms at the metal/Ta2O5 interface under electric stress and explored the effect of top electrode on the characteristic variations of Ta2O5-based memory device. It is demonstrated that chemically inert electrodes (Ni and Co) lead to the scattering switching characteristics and destructive gas bubbles, while the highly chemically active metals (Hf and Zr) formed a thick and dense interfacial intermediate oxide layer at the metal/Ta2O5 interface, which also degraded the resistive switching behavior. The relatively chemically active metals (Al and Ti) can absorb oxygen ions from the Ta2O5 film and avoid forming the problematic interfacial layer, which is benefit to the formation of oxygen vacancies composed conduction filaments in Ta2O5 film thus exhibit the minimum variations of switching characteristics. The clarification of oxygen ions migration behavior at the interface can lead further optimization of resistive switching performance in Ta2O5-based memory device and guide the rule of electrode selection for other oxide-based resistive switching memories.

  15. Intercontinental migratory connectivity and population structuring of Dunlins from western Alaska

    USGS Publications Warehouse

    Gill, Robert E.; Handel, Colleen M.; Ruthrauff, Daniel R.

    2013-01-01

    The Dunlin (Calidris alpina) is a polytypic shorebird with complex patterns of distribution and migration throughout its holarctic range. We analyzed mark-re sighting data obtained between 1977 and 2010 from birds captured at two major staging areas in western Alaska to test the hypothesis that the migration patterns of Alaskan populations are a mixture of parallel and chain, similar to those of Dunlin populations in the western Palearctic. Birds marked on the Yukon—Kuskokwim Delta were found wintering in both Asia and North America, which documented the unexpected mixing of C. a. arcticola from northern Alaska and C. a. pacifica from western Alaska and contradicted our initial prediction of parallel migration pathways for these two subspecies. In its North American winter range C. a. pacifica segregated according to location of marking, confirming our prediction of a chain migration pattern within this population. Individuals of C. a. pacifica marked on the delta were resighted significantly farther north, mostly in southern British Columbia and Washington, than birds marked on the second, more southerly staging area on the Alaska Peninsula, which were resighted primarily in the San Francisco Bay area of northern California. We recommend additional studies use a combination of intrinsic and extrinsic markers to quantify the strength of migratory connectivity between breeding, staging, and wintering areas. Such information is needed to guide conservation efforts because the Dunlin and other waterbirds are losing intertidal habitats at an unprecedented rate and scale, particularly in the Yellow Sea and other parts of Asia.

  16. Opportunistically collected data reveal habitat selection by migrating Whooping Cranes in the U.S. Northern Plains

    USGS Publications Warehouse

    Niemuth, Neil D.; Ryba, Adam J.; Pearse, Aaron T.; Kvas, Susan M.; Brandt, David; Wangler, Brian; Austin, Jane; Carlisle, Martha J.

    2018-01-01

    The Whooping Crane (Grus americana) is a federally endangered species in the United States and Canada that relies on wetland, grassland, and cropland habitat during its long migration between wintering grounds in coastal Texas, USA, and breeding sites in Alberta and Northwest Territories, Canada. We combined opportunistic Whooping Crane sightings with landscape data to identify correlates of Whooping Crane occurrence along the migration corridor in North Dakota and South Dakota, USA. Whooping Cranes selected landscapes characterized by diverse wetland communities and upland foraging opportunities. Model performance substantially improved when variables related to detection were included, emphasizing the importance of accounting for biases associated with detection and reporting of birds in opportunistic datasets. We created a predictive map showing relative probability of occurrence across the study region by applying our model to GIS data layers; validation using independent, unbiased locations from birds equipped with platform transmitting terminals indicated that our final model adequately predicted habitat use by migrant Whooping Cranes. The probability map demonstrated that existing conservation efforts have protected much top-tier Whooping Crane habitat, especially in the portions of North Dakota and South Dakota that lie east of the Missouri River. Our results can support species recovery by informing prioritization for acquisition and restoration of landscapes that provide safe roosting and foraging habitats. Our results can also guide the siting of structures such as wind towers and electrical transmission and distribution lines, which pose a strike and mortality risk to migrating Whooping Cranes.

  17. Microfabricated discontinuous-edge surface topographies influence osteoblast adhesion, migration, cytoskeletal organization, and proliferation and enhance matrix and mineral deposition in vitro.

    PubMed

    Hamilton, D W; Wong, K S; Brunette, D M

    2006-05-01

    The fabrication of surfaces that stimulate increased adhesion, migration, and differentiated function of osteoblasts has been viewed as being desirable for many orthopedic applications. Previous studies have shown that microfabricated pits and grooves alter adhesion, spreading, matrix secretion, and production of mineral by rat calvarial osteoblasts (RCOs). The mechanisms underlying these effects are unknown, although microenvironment and cell alignment are considered to play a role. The aim of this work was to investigate the behavior of RCOs on microfabricated discontinuous-edge surfaces (DESs), which could provide an alternative means to control both the microenvironment and cellular alignment. Two types of discontinuous-type structures were employed, gap-cornered boxes and micron scale pillars. DES gap-cornered boxes and the pillars influenced the arrangement of F-actin, microtubules, and vinculin. Osteoblasts were guided in their direction of migration on both types of substrata. Both box DESs and pillars altered the staining intensity and localization pattern of phosphotyrosine and src-activated FAK localization. Cell multilayering, matrix deposition, and mineralization were enhanced on both discontinuous topographies when compared with smooth controls. This study shows that DESs alter adhesion, migration, and proliferative responses from osteoblasts at early time points (<1 week) and promote multilayering, matrix deposition, and mineral deposition at later times (2-6 weeks). Such topographical patterns could potentially be employed as effective surface features on bone-contacting implants or in membrane-based periodontal applications.

  18. A mathematical model for mesenchymal and chemosensitive cell dynamics.

    PubMed

    Häcker, Anita

    2012-01-01

    The structure of an underlying tissue network has a strong impact on cell dynamics. If, in addition, cells alter the network by mechanical and chemical interactions, their movement is called mesenchymal. Important examples for mesenchymal movement include fibroblasts in wound healing and metastatic tumour cells. This paper is focused on the latter. Based on the anisotropic biphasic theory of Barocas and Tranquillo, which models a fibre network and interstitial solution as two-component fluid, a mathematical model for the interactions of cells with a fibre network is developed. A new description for fibre reorientation is given and orientation-dependent proteolysis is added to the model. With respect to cell dynamics, the equation, based on anisotropic diffusion, is extended by haptotaxis and chemotaxis. The chemoattractants are the solute network fragments, emerging from proteolysis, and the epidermal growth factor which may guide the cells to a blood vessel. Moreover the cell migration is impeded at either high or low network density. This new model enables us to study chemotactic cell migration in a complex fibre network and the consequential network deformation. Numerical simulations for the cell migration and network deformation are carried out in two space dimensions. Simulations of cell migration in underlying tissue networks visualise the impact of the network structure on cell dynamics. In a scenario for fibre reorientation between cell clusters good qualitative agreement with experimental results is achieved. The invasion speeds of cells in an aligned and an isotropic fibre network are compared. © Springer-Verlag 2011

  19. [Adolescense pregnancy in a marginalized rural community in Mexico].

    PubMed

    Jiménez-González, Alberto; Granados-Cosme, José Arturo; Rosales-Flores, Roselia Arminda

    2017-01-01

    To identify objective and subjective conditions in the lives of pregnant teens within a highly-marginalized community in the state of Puebla, Mexico. Objective and subjective conditions of pregnant teens were evaluated through a mixed methodology (surveys, observation guides and a structured interview guide). The main family characteristic is the absence of a father due to migration, no desire to study or work and the new meaning of pregnancy: the initial social stigma for engaging in a sexual activity and then, the stigma for being a young mother. Objective conditions show family disintegration, lack of access to education at the community, high school and college level as well as unemployment as processes linked to teen pregnancy; thus, making it practically impossible to develop life goals. Subjective conditions center around the reproduction of gender stereotypes related to maternity.

  20. Dynamics of manganese, cadmium, and lead in experimental power plant ponds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathis, B.J.; Cummings, T.F.; Gower, M.

    1977-06-01

    This study was designed to determine the effect of heated power plant cooling water on the compartmentalization of manganese, lead, and cadmium in experimental ponds. Caged channel catfish and green sunfish were kept in an experimental pond and a control pond. Periodically, whole fishes, gill, heart, kidney, liver, and musculature were analyzed for the three metals. Concentrations of the three metals in fishes were not affected by the temperature differential maintained during the study. There was no correlation in concentrations of cadmium and lead with age (weight and length) of fishes but manganese concentrations declined slightly with age. Aquatic organismsmore » such as snails, fingernail clams, leeches, tubificid annelids, and dragonfly nymphs exhibited concentrations of cadmium higher than sediments while snails and duckweed more closely reflected concentrations of manganese in sediments.« less

  1. Ew, that's icky: Assessing children's attitudes towards the insects of Connecticut

    NASA Astrophysics Data System (ADS)

    Weeks, Faith Jean-Ellen

    This study investigated children's attitudes towards insects, focusing on how attitudes change from fascination to repulsion as the children age. This study involved 127 elementary students (grades 4-6) and 139 high school students (grades 9-12) from New Haven public schools. Students were administered Likert type surveys to evaluate their attitudes after viewing photos of 8 common insects of Connecticut; the butterfly, ladybug, dragonfly, ant, moth, cricket, beetle, and fly. Scores from elementary school students were compared with high school students to determine if attitudes towards insects became less favorable as the children age. The results were also analyzed to determine if attitudinal changes were consistent between girls and boys. It was found that elementary school students did not hold more negative attitudes than high school students, but girls did hold more negative attitudes towards insects than boys.

  2. The life history of Pleurogenoides malampuzhensis sp. nov. (Digenea: Pleurogenidae) from amphibious and aquatic hosts in Kerala, India.

    PubMed

    Brinesh, R; Janardanan, K P

    2014-06-01

    The life-cycle stages of Pleurogenoides malampuzhensis sp. nov. infecting the Indian bullfrog Hoplobatrachus tigerinus (Daudin) and the skipper frog Euphlyctis cyanophlyctis (Schneider) occurring in irrigation canals and paddy fields in Malampuzha, which forms part of the district of Palakkad, Kerala, are described. The species is described, its systematic position discussed and compared with the related species, P. gastroporus (Luhe, 1901) and P. orientalis (Srivastava, 1934). The life-cycle stages, from cercaria to egg-producing adult, were successfully established in the laboratory. Virgulate xiphidiocercariae emerged from the snail Digoniostoma pulchella (Benson). Metacercariae are found in muscle tissues of dragonfly nymphs and become infective to the frogs within 22 days. The pre-patent period is 20 days. Growth and development of both metacercariae and adults are described.

  3. The thorax morphology of Epiophlebia (Insecta: Odonata) nymphs--including remarks on ontogenesis and evolution.

    PubMed

    Büsse, Sebastian; Helmker, Benjamin; Hörnschemeyer, Thomas

    2015-08-06

    The species of Epiophlebia are unique among the recent Odonata in showing a mixture of morphological characters of dragonflies (Anisoptera) and damselflies (Zygoptera). The status of the four described extant species of Epiophlebia is disputable from a genetic as well as from a morphological point of view. Here we present an analysis of the thoracic musculature of different nymphal instars of Epiophlebia laidlawi and Epiophlebia superstes to elucidate their morphology and ontogenetic development. In total, 75 muscles have been identified in the thorax of Epiophlebia. This represents the highest number of thoracic muscles ever found in any odonate. It includes six muscles that are reported for the first time for Odonata, and three of these are even new for Pterygota. In total, our results indicate that Epiophlebia has the most ancestral thoracic morphology among Odonata.

  4. Lessons from the great egret: Cosmopolitan species as environmental guides

    NASA Astrophysics Data System (ADS)

    Lewis, Celia

    This dissertation is an experiment in environmental learning. The cosmopolitan species, the great egret (Egretta alba), is used as a guide to learning about local environmental history and local ecology in four places: Long Island Sound, USA; Delaware Bay, USA; Neusiedler See, Austria; and the Hunter River Valley in New South Wales, Australia. It is also used as a guide to the development of a cosmopolitan environmental perspective. The development of this broad perspective is based on the thesis that knowledge of the ecology of species mobility and cosmopolitanism may bring to light ecological connections within and between places, and that human migration and cultural mobility are also part of the ecological history of the environment. The concept of species guides is reviewed in nature literature, including examples from the works of Richard Nelson, Robert Michael Pyle, Terry Tempest Williams, Scott Weidensaul, and Peter Matthiessen. The author visits egret colonies, interviews biologists working at these sites, and develops narratives about the environmental history and the cultural history of each site, and the connections between egrets and humans in those places. Parallels are drawn between the migrant and cosmopolitan nature of great egrets and other species, and of the human species, and how recognition of these similarities can lead to a cosmopolitan environmental perspective.

  5. Fiducial marker guided prostate radiotherapy: a review

    PubMed Central

    Jain, Suneil; Hounsell, Alan R; O'Sullivan, Joe M

    2016-01-01

    Image-guided radiotherapy (IGRT) is an essential tool in the accurate delivery of modern radiotherapy techniques. Prostate radiotherapy positioned using skin marks or bony anatomy may be adequate for delivering a relatively homogeneous whole-pelvic radiotherapy dose, but these surrogates are not reliable when using reduced margins, dose escalation or hypofractionated stereotactic radiotherapy. Fiducial markers (FMs) for prostate IGRT have been in use since the 1990s. They require surgical implantation and provide a surrogate for the position of the prostate gland. A variety of FMs are available and they can be used in a number of ways. This review aimed to establish the evidence for using prostate FMs in terms of feasibility, implantation procedures, types of FMs used, FM migration, imaging modalities used and the clinical impact of FMs. A search strategy was defined and a literature search was carried out in Medline. Inclusion and exclusion criteria were applied, which resulted in 50 articles being included in this review. The evidence demonstrates that FMs provide a more accurate surrogate for the position of the prostate than either external skin marks or bony anatomy. A combination of FM alignment and soft-tissue analysis is currently the most effective and widely available approach to ensuring accuracy in prostate IGRT. FM implantation is safe and well tolerated. FM migration is possible but minimal. Standardization of all techniques and procedures in relation to the use of prostate FMs is required. Finally, a clinical trial investigating a non-surgical alternative to prostate FMs is introduced. PMID:27585736

  6. A new fiducial marker for Image-guided radiotherapy of prostate cancer: clinical experience.

    PubMed

    Carl, Jesper; Nielsen, Jane; Holmberg, Mats; Højkjaer Larsen, Erik; Fabrin, Knud; Fisker, Rune V

    2008-01-01

    A new fiducial marker for image guided radiotherapy (IGRT) based on a removable prostate stent made of Ni Ti has been developed during two previous clinical feasibility studies. The marker is currently being evaluated for IGRT treatment in a third clinical study. The new marker is used to co-register MR and planning CT scans with high accuracy in the region around the prostate. The co-registered MR-CT volumes are used for delineation of GTV before planning. In each treatment session the IGRT system is used to position the patient before treatment. The IGRT system use a stereo pair of kV images matched to corresponding Digital Reconstructed Radiograms (DRR) from the planning CT scan. The match is done using mutual gray scale information. The pair of DRR's for positioning is created in the IGRT system with a threshold in the Look Up Table (LUT). The resulting match provides the necessary shift in couch coordinates to position the stent with an accuracy of 1-2 mm within the planned position. At the present time 39 patients have received the new marker. Of the 39 one has migrated to the bladder. Deviations of more than 5 mm between CTV outlined on CT and MR are seen in several cases and in anterior-posterior (AP), left-right (LR) and cranial-caudal (CC) directions. Intra-fraction translation movements up to +/- 3 mm are seen as well. As the stent is also clearly visible on images taken with high voltage x-rays using electronic portal images devices (EPID), the positioning has been verified independently of the IGRT system. The preliminary result of an on going clinical study of a Ni Ti prostate stent, potentially a new fiducial marker for image guided radiotherapy, looks promising. The risk of migration appears to be much lower compared to previous designs.

  7. Nematic order-disorder state transition in a liquid crystal analogue formed by oriented and migrating amoeboid cells

    NASA Astrophysics Data System (ADS)

    Kemkemer, R.; Teichgräber, V.; Schrank-Kaufmann, S.; Kaufmann, D.; Gruler, H.

    2000-10-01

    In cell culture, liquid crystal analogues are formed by elongated, migrating, and interacting amoeboid cells. An apolar nematic liquid crystal analogue is formed by different cell types like human melanocytes (=pigment cells of the skin), human fibroblasts (=connective tissue cells), human osteoblasts (=bone cells), human adipocytes (=fat cells), etc. The nematic analogue is quite well described by i) a stochastic machine equation responsible for cell orientation and ii) a self-organized extracellular guiding signal, E_2, which is proportional to the orientational order parameter as well as to the cell density. The investigations were mainly made with melanocytes. The transition to an isotropic state analogue can be accomplished either by changing the strength of interaction (e.g. variation of the cell density) or by influencing the cellular machinery by an externally applied signal: i) An isotropic gaseous state analogue is observed at low cell density (ρ < 110melanocytes/mm^2) and a nematic liquid crystal state analogue at higher cell density. ii) The nematic state analogue disappears if the bipolar shaped melanocytes are forced to become a star-like shape (induced by colchicine or staurosporine). The analogy between nematic liquid crystal state analogue formed by elongated, migrating and interacting cells and the nematic liquid crystal phase formed by interacting elongated molecules is discussed.

  8. Night-time neuronal activation of Cluster N in a day- and night-migrating songbird.

    PubMed

    Zapka, Manuela; Heyers, Dominik; Liedvogel, Miriam; Jarvis, Erich D; Mouritsen, Henrik

    2010-08-01

    Magnetic compass orientation in a night-migratory songbird requires that Cluster N, a cluster of forebrain regions, is functional. Cluster N, which receives input from the eyes via the thalamofugal pathway, shows high neuronal activity in night-migrants performing magnetic compass-guided behaviour at night, whereas no activation is observed during the day, and covering up the birds' eyes strongly reduces neuronal activation. These findings suggest that Cluster N processes light-dependent magnetic compass information in night-migrating songbirds. The aim of this study was to test if Cluster N is active during daytime migration. We used behavioural molecular mapping based on ZENK activation to investigate if Cluster N is active in the meadow pipit (Anthus pratensis), a day- and night-migratory species. We found that Cluster N of meadow pipits shows high neuronal activity under dim-light at night, but not under full room-light conditions during the day. These data suggest that, in day- and night-migratory meadow pipits, the light-dependent magnetic compass, which requires an active Cluster N, may only be used during night-time, whereas another magnetosensory mechanism and/or other reference system(s), like the sun or polarized light, may be used as primary orientation cues during the day.

  9. FAK is required for tension-dependent organization of collective cell movements in Xenopus mesendoderm

    PubMed Central

    Bjerke, Maureen A.; Dzamba, Bette; Wang, Chong; DeSimone, Douglas W.

    2014-01-01

    Collective cell movements are integral to biological processes such as embryonic development and wound healing and also have a prominent role in some metastatic cancers. In migrating Xenopus mesendoderm, traction forces are generated by cells through integrin-based adhesions and tension transmitted across cadherin adhesions. This is accompanied by assembly of a mechanoresponsive cadherin adhesion complex containing keratin intermediate filaments and the catenin-family member plakoglobin. We demonstrate that focal adhesion kinase (FAK), a major component of integrin adhesion complexes, is required for normal morphogenesis at gastrulation, closure of the anterior neural tube, axial elongation and somitogenesis. Depletion of zygotically expressed FAK results in disruption of mesendoderm tissue polarity similar to that observed when expression of keratin or plakoglobin is inhibited. Both individual and collective migrations of mesendoderm cells from FAK depleted embryos are slowed, cell protrusions are disordered, and cell spreading and traction forces are decreased. Additionally, keratin filaments fail to organize at the rear of cells in the tissue and association of plakoglobin with cadherin is diminished. These findings suggest that FAK is required for the tension-dependent assembly of the cadherin adhesion complex that guides collective mesendoderm migration, perhaps by modulating the dynamic balance of substrate traction forces and cell cohesion needed to establish cell polarity. PMID:25127991

  10. Netrin-1 guides inflammatory cell migration to control mucosal immune responses during intestinal inflammation

    PubMed Central

    Aherne, Carol M.; Collins, Colm B.; Eltzschig, Holger K.

    2013-01-01

    The intestinal epithelium is a dynamic barrier playing an active role in intestinal homeostasis and inflammation. Intestinal barrier function is dysregulated during inflammatory bowel disease (IBD), with epithelial cells playing a significant part in generating an inflammatory milieu through the release of signals that attract leukocytes to the intestinal lamina propria. However, it is increasingly appreciated that the intestinal epithelium mediates a counterbalancing response to drive resolution. Drawing analogies with neuronal development, where the balance of chemoattractive and chemorepellent signals is key to directed neuronal movement it has been postulated that such secreted cues play a role in leukocyte migration. Netrin-1 is one of the best-described neuronal guidance molecules, which has been shown to play a significant role in directed migration of leukocytes. Prior to our study the potential role of netrin-1 in IBD was poorly characterized. We defined netrin-1 as an intestinal epithelial-derived protein capable of limiting neutrophil recruitment to attenuate acute colitis. Our study highlights that the intestinal epithelium releases factors during acute inflammation that are responsible for fine-tuning the immune response. Exploration of these epithelial-mediated protective mechanisms will shed light on the complexity of the intestinal epithelial barrier in health and disease. PMID:24665394

  11. Radioactive implant migration in patients treated for localized prostate cancer with interstitial brachytherapy.

    PubMed

    Older, R A; Synder, B; Krupski, T L; Glembocki, D J; Gillenwater, J Y

    2001-05-01

    In several of the initial patients undergoing brachytherapy at our institution radioactive implants were visible in the thorax on chest radiography. The clinical ramifications of this unanticipated finding were unclear. Thus, we investigated the incidence of brachytherapy seed migration to the chest and whether these seeds were associated with any clinical significance. We retrospectively reviewed the records of all patients who underwent ultrasound or computerized tomography guided brachytherapy of 103palladium seeds from March 1997 to March 1999. This list of patients on brachytherapy was then matched against the radiology computer system to determine those who had undergone chest X-ray after brachytherapy. When the radiology report was unclear regarding brachytherapy seeds, chest x-rays were reviewed by one of us (R. O.) to determine the presence and position of the seeds. Post-brachytherapy chest x-rays were available in 110 of the 183 patients. In 78 cases no brachytherapy seeds were identified. Radioactive implants were identified on chest radiography in 32 patients (29%), including 1 to 5 seeds in 20, 8, 1, 2 and 1, respectively. No patients complained of any change in pulmonary symptoms after brachytherapy. Radioactive implants migrated after brachytherapy for localized prostate cancer in 29% of the patients who underwent post-procedure radiography. There did not appear to be a pattern to the seed distribution. However, while the incidence was not negligible, no patient appeared to have any acute pulmonary symptoms. Therefore, while the migration of radioactive implants to the chest is a real phenomenon, it appears to have no adverse clinical consequences in the early post-procedure period.

  12. Airway epithelial wounds in rhesus monkey generate ionic currents that guide cell migration to promote healing

    PubMed Central

    Sun, Yao-Hui; Reid, Brian; Fontaine, Justin H.; Miller, Lisa A.; Hyde, Dallas M.; Mogilner, Alex

    2011-01-01

    Damage to the respiratory epithelium is one of the most critical steps to many life-threatening diseases, such as acute respiratory distress syndrome and chronic obstructive pulmonary disease. The mechanisms underlying repair of the damaged epithelium have not yet been fully elucidated. Here we provide experimental evidence suggesting a novel mechanism for wound repair: endogenous electric currents. It is known that the airway epithelium maintains a voltage difference referred to as the transepithelial potential. Using a noninvasive vibrating probe, we demonstrate that wounds in the epithelium of trachea from rhesus monkeys generate significant outward electric currents. A small slit wound produced an outward current (1.59 μA/cm2), which could be enhanced (nearly doubled) by the ion transport stimulator aminophylline. In addition, inhibiting cystic fibrosis transmembrane conductance regulator (CFTR) with CFTR(Inh)-172 significantly reduced wound currents (0.17 μA/cm2), implicating an important role of ion transporters in wound induced electric potentials. Time-lapse video microscopy showed that applied electric fields (EFs) induced robust directional migration of primary tracheobronchial epithelial cells from rhesus monkeys, towards the cathode, with a threshold of <23 mV/mm. Reversal of the field polarity induced cell migration towards the new cathode. We further demonstrate that application of an EF promoted wound healing in a monolayer wound healing assay. Our results suggest that endogenous electric currents at sites of tracheal epithelial injury may direct cell migration, which could benefit restitution of damaged airway mucosa. Manipulation of ion transport may lead to novel therapeutic approaches to repair damaged respiratory epithelium. PMID:21719726

  13. Enteric nervous system development: migration, differentiation, and disease

    PubMed Central

    Lake, Jonathan I.

    2013-01-01

    The enteric nervous system (ENS) provides the intrinsic innervation of the bowel and is the most neurochemically diverse branch of the peripheral nervous system, consisting of two layers of ganglia and fibers encircling the gastrointestinal tract. The ENS is vital for life and is capable of autonomous regulation of motility and secretion. Developmental studies in model organisms and genetic studies of the most common congenital disease of the ENS, Hirschsprung disease, have provided a detailed understanding of ENS development. The ENS originates in the neural crest, mostly from the vagal levels of the neuraxis, which invades, proliferates, and migrates within the intestinal wall until the entire bowel is colonized with enteric neural crest-derived cells (ENCDCs). After initial migration, the ENS develops further by responding to guidance factors and morphogens that pattern the bowel concentrically, differentiating into glia and neuronal subtypes and wiring together to form a functional nervous system. Molecules controlling this process, including glial cell line-derived neurotrophic factor and its receptor RET, endothelin (ET)-3 and its receptor endothelin receptor type B, and transcription factors such as SOX10 and PHOX2B, are required for ENS development in humans. Important areas of active investigation include mechanisms that guide ENCDC migration, the role and signals downstream of endothelin receptor type B, and control of differentiation, neurochemical coding, and axonal targeting. Recent work also focuses on disease treatment by exploring the natural role of ENS stem cells and investigating potential therapeutic uses. Disease prevention may also be possible by modifying the fetal microenvironment to reduce the penetrance of Hirschsprung disease-causing mutations. PMID:23639815

  14. Hepatocyte growth factor/c-MET axis-mediated tropism of cord blood-derived unrestricted somatic stem cells for neuronal injury.

    PubMed

    Trapp, Thorsten; Kögler, Gesine; El-Khattouti, Abdelouahid; Sorg, Rüdiger V; Besselmann, Michael; Föcking, Melanie; Bührle, Christian P; Trompeter, Ingo; Fischer, Johannes C; Wernet, Peter

    2008-11-21

    An under-agarose chemotaxis assay was used to investigate whether unrestricted somatic stem cells (USSC) that were recently characterized in human cord blood are attracted by neuronal injury in vitro. USSC migrated toward extracts of post-ischemic brain tissue of mice in which stroke had been induced. Moreover, apoptotic neurons secrete factors that strongly attracted USSC, whereas necrotic and healthy neurons did not. Investigating the expression of growth factors and chemokines in lesioned brain tissue and neurons and of their respective receptors in USSC revealed expression of hepatocyte growth factor (HGF) in post-ischemic brain and in apoptotic but not in necrotic neurons and of the HGF receptor c-MET in USSC. Neuronal lesion-triggered migration was observed in vitro and in vivo only when c-MET was expressed at a high level in USSC. Neutralization of the bioactivity of HGF with an antibody inhibited migration of USSC toward neuronal injury. This, together with the finding that human recombinant HGF attracts USSC, document that HGF signaling is necessary for the tropism of USSC for neuronal injury. Our data demonstrate that USSC have the capacity to migrate toward apoptotic neurons and injured brain. Together with their neural differentiation potential, this suggests a neuroregenerative potential of USSC. Moreover, we provide evidence for a hitherto unrecognized pivotal role of the HGF/c-MET axis in guiding stem cells toward brain injury, which may partly account for the capability of HGF to improve function in the diseased central nervous system.

  15. Stretchy Proteins on Stretchy Substrates: The Important Elements of Integrin-Mediated Rigidity Sensing

    PubMed Central

    Moore, Simon W.; Roca-Cusachs, Pere; Sheetz, Michael P.

    2013-01-01

    Matrix and tissue rigidity guides many cellular processes, including the differentiation of stem cells and the migration of cells in health and disease. Cells actively and transiently test rigidity using mechanisms limited by inherent physical parameters that include the strength of extracellular attachments, the pulling capacity on these attachments, and the sensitivity of the mechanotransduction system. Here we focus on rigidity sensing mediated through the integrin family of extracellular matrix receptors and linked proteins, and discuss the evidence supporting these proteins as mechanosensors. PMID:20708583

  16. Magnetic information affects the stellar orientation of young bird migrants

    NASA Astrophysics Data System (ADS)

    Weindler, Peter; Wiltschko, Roswitha; Wiltschko, Wolfgang

    1996-09-01

    WHEN young birds leave on their first migration, they are guided by innate information about their direction of migration. It is generally assumed that this direction is represented twice, namely with respect to celestial rotation and with respect to the Earth's magnetic field1,2. The interactions between the two cue systems have been analysed by exposing hand-raised young birds during the premigratory period to cue-conflict situations, in which celestial rotation and the magnetic field provided different information. Celestial rotation altered the course with respect to the magnetic field3-7, whereas conflicting magnetic information did not seem to affect the course with respect to the stars8,9. Celestial information thus seemed to dominate over magnetic information. Here we report that the interaction between the two cue systems is far more complex than this. Celestial rotation alone seems to provide only a tendency to move away from its centre (towards geographical south), which is then modified by information from the magnetic field to establish the distinctive, population-specific migratory direction.

  17. HIV-1 Nef interferes with host cell motility by deregulation of Cofilin.

    PubMed

    Stolp, Bettina; Reichman-Fried, Michal; Abraham, Libin; Pan, Xiaoyu; Giese, Simone I; Hannemann, Sebastian; Goulimari, Polyxeni; Raz, Erez; Grosse, Robert; Fackler, Oliver T

    2009-08-20

    HIV-1 Nef is a key factor in AIDS pathogenesis. Here, we report that Nef potently inhibits motility of fibroblasts and chemotaxis of HIV-1-infected primary human T lymphocytes toward the chemokines SDF-1alpha, CCL-19, and CCL-21 ex vivo. Furthermore, Nef inhibits guided motility of zebrafish primordial germ cells toward endogenous SDF-1a in vivo. These migration defects result from Nef-mediated inhibition of the actin remodeling normally triggered by migratory stimuli. Nef strongly induces phosphorylation of cofilin, inactivating this evolutionarily conserved actin-depolymerizing factor that promotes cell motility when unphosphorylated. Nef-dependent cofilin deregulation requires association of Nef with the cellular kinase Pak2. Disruption of Nef-Pak2 association restores the cofilin phosphorylation levels and actin remodeling that facilitate cell motility. We conclude that HIV-1 Nef alters Pak2 function, which directly or indirectly inactivates cofilin, thereby restricting migration of infected T lymphocytes as part of a strategy to optimize immune evasion and HIV-1 replication.

  18. Vascular occlusion with a balloon-expandable stent occluder.

    PubMed

    Moss, J G; Laborde, J C; Clem, M C; Rivera, F J; Encarnacion, C E; Meyer, K B; Palmaz, J C

    1994-05-01

    To evaluate the effectiveness of a new vascular occlusion device. The device was created by coating a balloon-expandable stent with a silicone sleeve that tapers to a blind-ended nozzle at its leading end. Once crimp-mounted on an angioplasty balloon catheter, the device is introduced over a guide wire through a small end hole in the nozzle. The device was tested for stability and occlusive ability. No migration was measured over a pulsatile pulse range of 50-300 mm Hg, and mean flow rate in the occluded vessel was reduced from 443 mL/min +/- 99 (standard deviation) to 1.9 mL/min +/- 2.7. Subsequently, 12 arteries were occluded in three dogs, and immediate vascular occlusion was achieved in all vessels. An arteriovenous fistula was created in another six dogs and was successfully occluded with the device. Follow-up arteriography at 3 months demonstrated persistent occlusion with no migration of the device. This new occlusive device offers immediate vascular occlusion with excellent stability.

  19. Tangential migration of corridor guidepost neurons contributes to anxiety circuits.

    PubMed

    Tinterri, Andrea; Deck, Marie; Keita, Maryama; Mailhes, Caroline; Rubin, Anna Noren; Kessaris, Nicoletta; Lokmane, Ludmilla; Bielle, Franck; Garel, Sonia

    2018-02-15

    In mammals, thalamic axons are guided internally toward their neocortical target by corridor (Co) neurons that act as axonal guideposts. The existence of Co-like neurons in non-mammalian species, in which thalamic axons do not grow internally, raised the possibility that Co cells might have an ancestral role. Here, we investigated the contribution of corridor (Co) cells to mature brain circuits using a combination of genetic fate-mapping and assays in mice. We unexpectedly found that Co neurons contribute to striatal-like projection neurons in the central extended amygdala. In particular, Co-like neurons participate in specific nuclei of the bed nucleus of the stria terminalis, which plays essential roles in anxiety circuits. Our study shows that Co neurons possess an evolutionary conserved role in anxiety circuits independently from an acquired guidepost function. It furthermore highlights that neurons can have multiple sequential functions during brain wiring and supports a general role of tangential migration in the building of subpallial circuits. © 2017 Wiley Periodicals, Inc.

  20. Chemokine guided angiogenesis directs coronary vasculature formation in zebrafish

    PubMed Central

    Harrison, Michael R.M.; Bussmann, Jeroen; Huang, Ying; Zhao, Long; Osorio, Arthela; Burns, C. Geoffrey; Burns, Caroline E.; Sucov, Henry M.; Siekmann, Arndt F.; Lien, Ching-Ling

    2015-01-01

    SUMMARY Interruption of coronary blood supply severely impairs heart function with often-fatal consequences for heart disease patients. However the formation and maturation of these coronary vessels is not fully understood. Here we provide a detailed analysis of coronary vessel development in zebrafish. We observe that coronary vessels form in zebrafish by angiogenic sprouting of arterial cells derived from the endocardium at the atrioventricular canal. Endothelial cells express the CXC-motif chemokine receptor Cxcr4a and migrate to vascularize the ventricle under the guidance of the myocardium-expressed ligand Cxcl12b. cxcr4a mutant zebrafish fail to form a vascular network, whereas ectopic expression of Cxcl12b ligand induces coronary vessel formation. Importantly, cxcr4a mutant zebrafish fail to undergo heart regeneration following injury. Our results suggest that chemokine-signaling has an essential role in coronary vessel formation by directing migration of endocardium-derived endothelial cells. Poorly developed vasculature in cxcr4a mutants likely underlies decreased regenerative potential in adults. PMID:26017769

  1. Interplay between chemotaxis and contact inhibition of locomotion determines exploratory cell migration

    PubMed Central

    Lin, Benjamin; Yin, Taofei; Wu, Yi I.; Inoue, Takanari; Levchenko, Andre

    2015-01-01

    Directed cell migration in native environments is influenced by multiple migratory cues. These cues may include simultaneously occurring attractive soluble growth factor gradients and repulsive effects arising from cell-cell contact, termed contact inhibition of locomotion (CIL). How single cells reconcile potentially conflicting cues remains poorly understood. Here we show that a dynamic crosstalk between epidermal growth factor (EGF) mediated chemotaxis and CIL guide metastatic breast cancer cell motility, whereby cells become progressively insensitive to CIL in a chemotactic input-dependent manner. This balance is determined via integration of protrusion-enhancing signaling from EGF gradients and protrusion-suppressing signaling induced by CIL, mediated in part through EphB. Our results further suggest that EphB and EGF signaling inputs control protrusion formation by converging onto regulation of phosphatidylinositol 3-kinase (PI3K). We propose that this intricate interplay may enhance the spread of loose cell ensembles in pathophysiological conditions such as cancer, and possibly other physiological settings. PMID:25851023

  2. Exceptional preservation of eye structure in arthropod visual predators from the Middle Jurassic

    PubMed Central

    Vannier, Jean; Schoenemann, Brigitte; Gillot, Thomas; Charbonnier, Sylvain; Clarkson, Euan

    2016-01-01

    Vision has revolutionized the way animals explore their environment and interact with each other and rapidly became a major driving force in animal evolution. However, direct evidence of how ancient animals could perceive their environment is extremely difficult to obtain because internal eye structures are almost never fossilized. Here, we reconstruct with unprecedented resolution the three-dimensional structure of the huge compound eye of a 160-million-year-old thylacocephalan arthropod from the La Voulte exceptional fossil biota in SE France. This arthropod had about 18,000 lenses on each eye, which is a record among extinct and extant arthropods and is surpassed only by modern dragonflies. Combined information about its eyes, internal organs and gut contents obtained by X-ray microtomography lead to the conclusion that this thylacocephalan arthropod was a visual hunter probably adapted to illuminated environments, thus contradicting the hypothesis that La Voulte was a deep-water environment. PMID:26785293

  3. Ecology of Lawrence Livermore Laboratoy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntyre, D.R.

    1977-03-10

    The ecological impact of the Lawrence Livermore Laboratory on man, plants and animals, soil, water, and air has been on the positive side since the removal of much of the former airbase runway system. Many new trees have been planted, and the total biological energy has been increased. Although there has been destruction of some native plants, many new ecological niches have been formed. Cliff swallows, quail, and other birds have been able to find territories. Even a muskrat has appeared from the overflow storm drains. Opossums, brush rabbits, field mice, and predatory birds (kites, hawks, eagles, and sparrow hawks)more » are numerous. The use of herbicides and insecticides has upset the balance somewhat, but California poppies, owl clover, dragonflies, lacewings, bees, and wasps indicate that the effects are limited and that there is a wealth of animal life in the open areas and around the buildings.« less

  4. Predator personality structures prey communities and trophic cascades.

    PubMed

    Start, Denon; Gilbert, Benjamin

    2017-03-01

    Intraspecific variation is central to our understanding of evolution and population ecology, yet its consequences for community ecology are poorly understood. Animal personality - consistent individual differences in suites of behaviours - may be particularly important for trophic dynamics, where predator personality can determine activity rates and patterns of attack. We used mesocosms with aquatic food webs in which the top predator (dragonfly nymphs) varied in activity and subsequent attack rates on zooplankton, and tested the effects of predator personality. We found support for four hypotheses: (1) active predators disproportionately reduce the abundance of prey, (2) active predators select for predator-resistant prey species, (3) active predators strengthen trophic cascades (increase phytoplankton abundance) and (4) active predators are more likely to cannibalise one another, weakening all other trends when at high densities. These results suggest that intraspecific variation in predator personality is an important determinant of prey abundance, community composition and trophic cascades. © 2017 John Wiley & Sons Ltd/CNRS.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorier, Matthieu; Mubarak, Misbah; Ross, Rob

    Two-tiered direct network topologies such as Dragonflies have been proposed for future post-petascale and exascale machines, since they provide a high-radix, low-diameter, fast interconnection network. Such topologies call for redesigning MPI collective communication algorithms in order to attain the best performance. Yet as increasingly more applications share a machine, it is not clear how these topology-aware algorithms will react to interference with concurrent jobs accessing the same network. In this paper, we study three topology-aware broadcast algorithms, including one designed by ourselves. We evaluate their performance through event-driven simulation for small- and large-sized broadcasts (in terms of both data sizemore » and number of processes). We study the effect of different routing mechanisms on the topology-aware collective algorithms, as well as their sensitivity to network contention with other jobs. Our results show that while topology-aware algorithms dramatically reduce link utilization, their advantage in terms of latency is more limited.« less

  6. Evaluating System Parameters on a Dragonfly using Simulation and Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatele, Abhinav; Jain, Nikhil; Livnat, Yarden

    The dragon y topology is becoming a popular choice for build- ing high-radix, low-diameter networks with high-bandwidth links. Even with a powerful network, preliminary experi- ments on Edison at NERSC have shown that for communica- tion heavy applications, job interference and thus presumably job placement remains an important factor. In this paper, we explore the e ects of job placement, job sizes, parallel workloads and network con gurations on network through- put to better understand inter-job interference. We use a simulation tool called Damsel y to model the network be- havior of Edison and study the impact of various systemmore » parameters on network throughput. Parallel workloads based on ve representative communication patters are used and the simulation studies on up to 131,072 cores are aided by a new visualization of the dragon y network.« less

  7. Lens and Camera Arrays for Sky Surveys and Space Surveillance

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Cox, D.; McGraw, J.; Zimmer, P.

    2016-09-01

    In recent years, a number of sky survey projects have chosen to use arrays of commercial cameras coupled with commercial photographic lenses to enable low-cost, wide-area observation. Projects such as SuperWASP, FAVOR, RAPTOR, Lotis, PANOPTES, and DragonFly rely on multiple cameras with commercial lenses to image wide areas of the sky each night. The sensors are usually commercial astronomical charge coupled devices (CCDs) or digital single reflex (DSLR) cameras, while the lenses are large-aperture, highend consumer items intended for general photography. While much of this equipment is very capable and relatively inexpensive, this approach comes with a number of significant limitations that reduce sensitivity and overall utility of the image data. The most frequently encountered limitations include lens vignetting, narrow spectral bandpass, and a relatively large point spread function. Understanding these limits helps to assess the utility of the data, and identify areas where advanced optical designs could significantly improve survey performance.

  8. Marooned on Mars: Mind-Spinning Books for Software Engineers

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Swanson, Keith (Technical Monitor)

    1999-01-01

    Dragonfly - NASA and the Crisis Aboard MIR (New York: HarperCollins Publishers), the story of the Russian-American misadventures on MIR. An expose with almost embarrassing detail about the inner-workings of Johnson Space Center in Houston, this book is best read with the JSC organization chart in hand. Here's the real world of engineering and life in extreme environments. It makes most other accounts of "requirements analysis" appear glib and simplistic. The book vividly portrays the sometimes harrowing experiences of the American astronauts in the web of Russian interpersonal relations and literally in the web of MIR's wiring. Burrough's exposition reveals how handling bureaucratic procedures and bulky facilities is as much a matter of moxie and goodwill as technical capability. Lessons from MIR showed NASA that getting to Mars required a different view of knowledge and improvisation-long-duration missions are not at all like the scripted and pre-engineered flights of Apollo or the Space Shuttle.

  9. Uncertainty Propagation Methods for High-Dimensional Complex Systems

    NASA Astrophysics Data System (ADS)

    Mukherjee, Arpan

    Researchers are developing ever smaller aircraft called Micro Aerial Vehicles (MAVs). The Space Robotics Group has joined the field by developing a dragonfly-inspired MAV. This thesis presents two contributions to this project. The first is the development of a dynamical model of the internal MAV components to be used for tuning design parameters and as a future plant model. This model is derived using the Lagrangian method and differs from others because it accounts for the internal dynamics of the system. The second contribution of this thesis is an estimation algorithm that can be used to determine prototype performance and verify the dynamical model from the first part. Based on the Gauss-Newton Batch Estimator, this algorithm uses a single camera and known points of interest on the wing to estimate the wing kinematic angles. Unlike other single-camera methods, this method is probabilistically based rather than being geometric.

  10. DNA barcodes for dragonflies and damselflies (Odonata) of Mindanao, Philippines.

    PubMed

    Casas, Princess Angelie S; Sing, Kong-Wah; Lee, Ping-Shin; Nuñeza, Olga M; Villanueva, Reagan Joseph T; Wilson, John-James

    2018-03-01

    Reliable species identification provides a sounder basis for use of species in the order Odonata as biological indicators and for their conservation, an urgent concern as many species are threatened with imminent extinction. We generated 134 COI barcodes from 36 morphologically identified species of Odonata collected from Mindanao Island, representing 10 families and 19 genera. Intraspecific sequence divergences ranged from 0 to 6.7% with four species showing more than 2%, while interspecific sequence divergences ranged from 0.5 to 23.3% with seven species showing less than 2%. Consequently, no distinct gap was observed between intraspecific and interspecific DNA barcode divergences. The numerous islands of the Philippine archipelago may have facilitated rapid speciation in the Odonata and resulted in low interspecific sequence divergences among closely related groups of species. This study contributes DNA barcodes for 36 morphologically identified species of Odonata reported from Mindanao including 31 species with no previous DNA barcode records.

  11. Exceptional preservation of eye structure in arthropod visual predators from the Middle Jurassic.

    PubMed

    Vannier, Jean; Schoenemann, Brigitte; Gillot, Thomas; Charbonnier, Sylvain; Clarkson, Euan

    2016-01-19

    Vision has revolutionized the way animals explore their environment and interact with each other and rapidly became a major driving force in animal evolution. However, direct evidence of how ancient animals could perceive their environment is extremely difficult to obtain because internal eye structures are almost never fossilized. Here, we reconstruct with unprecedented resolution the three-dimensional structure of the huge compound eye of a 160-million-year-old thylacocephalan arthropod from the La Voulte exceptional fossil biota in SE France. This arthropod had about 18,000 lenses on each eye, which is a record among extinct and extant arthropods and is surpassed only by modern dragonflies. Combined information about its eyes, internal organs and gut contents obtained by X-ray microtomography lead to the conclusion that this thylacocephalan arthropod was a visual hunter probably adapted to illuminated environments, thus contradicting the hypothesis that La Voulte was a deep-water environment.

  12. Software-defined networking control plane for seamless integration of multiple silicon photonic switches in Datacom networks.

    PubMed

    Shen, Yiwen; Hattink, Maarten H N; Samadi, Payman; Cheng, Qixiang; Hu, Ziyiz; Gazman, Alexander; Bergman, Keren

    2018-04-16

    Silicon photonics based switches offer an effective option for the delivery of dynamic bandwidth for future large-scale Datacom systems while maintaining scalable energy efficiency. The integration of a silicon photonics-based optical switching fabric within electronic Datacom architectures requires novel network topologies and arbitration strategies to effectively manage the active elements in the network. We present a scalable software-defined networking control plane to integrate silicon photonic based switches with conventional Ethernet or InfiniBand networks. Our software-defined control plane manages both electronic packet switches and multiple silicon photonic switches for simultaneous packet and circuit switching. We built an experimental Dragonfly network testbed with 16 electronic packet switches and 2 silicon photonic switches to evaluate our control plane. Observed latencies occupied by each step of the switching procedure demonstrate a total of 344 µs control plane latency for data-center and high performance computing platforms.

  13. Subtle Variations in Surface Properties of Black Silicon Surfaces Influence the Degree of Bactericidal Efficiency

    NASA Astrophysics Data System (ADS)

    Bhadra, Chris M.; Werner, Marco; Baulin, Vladimir A.; Truong Khanh, Vi; Kobaisi, Mohammad Al; Nguyen, Song Ha; Balcytis, Armandas; Juodkazis, Saulius; Wang, James Y.; Mainwaring, David E.; Crawford, Russell J.; Ivanova, Elena P.

    2018-06-01

    One of the major challenges faced by the biomedical industry is the development of robust synthetic surfaces that can resist bacterial colonization. Much inspiration has been drawn recently from naturally occurring mechano-bactericidal surfaces such as the wings of cicada ( Psaltoda claripennis) and dragonfly ( Diplacodes bipunctata) species in fabricating their synthetic analogs. However, the bactericidal activity of nanostructured surfaces is observed in a particular range of parameters reflecting the geometry of nanostructures and surface wettability. Here, several of the nanometer-scale characteristics of black silicon (bSi) surfaces including the density and height of the nanopillars that have the potential to influence the bactericidal efficiency of these nanostructured surfaces have been investigated. The results provide important evidence that minor variations in the nanoarchitecture of substrata can substantially alter their performance as bactericidal surfaces.[Figure not available: see fulltext.

  14. The thorax morphology of Epiophlebia (Insecta: Odonata) nymphs – including remarks on ontogenesis and evolution

    PubMed Central

    Büsse, Sebastian; Helmker, Benjamin; Hörnschemeyer, Thomas

    2015-01-01

    The species of Epiophlebia are unique among the recent Odonata in showing a mixture of morphological characters of dragonflies (Anisoptera) and damselflies (Zygoptera). The status of the four described extant species of Epiophlebia is disputable from a genetic as well as from a morphological point of view. Here we present an analysis of the thoracic musculature of different nymphal instars of Epiophlebia laidlawi and Epiophlebia superstes to elucidate their morphology and ontogenetic development. In total, 75 muscles have been identified in the thorax of Epiophlebia. This represents the highest number of thoracic muscles ever found in any odonate. It includes six muscles that are reported for the first time for Odonata, and three of these are even new for Pterygota. In total, our results indicate that Epiophlebia has the most ancestral thoracic morphology among Odonata. PMID:26246088

  15. Steroidal glycosides from the bulbs of Easter lily (Lilium longiflorum Thunb.) promote dermal fibroblast migration in vitro.

    PubMed

    Esposito, Debora; Munafo, John P; Lucibello, Teresa; Baldeon, Manuel; Komarnytsky, Slavko; Gianfagna, Thomas J

    2013-07-09

    Preparations derived from bulbs of various Lilium species have been used to promote the healing of skin abrasions, sores and burns and to aid in healing wounds in Traditional Chinese and Greco-Roman Medicine. To evaluate fractionated Easter lily bulb extracts and their steroidal glycosides (1-5) for the promotion of dermal fibroblast migration in vitro, a model for the early events in wound healing. An activity-guided screening approach was used by coupling sequential solvent extraction, gel permeation chromatography (GPC), and semi-preparative reverse-phase high performance liquid chromatography (RP-HPLC) with an in vitro dermal fibroblast migration assay. Cytotoxicity was evaluated with methyl thiazole tetrazolium (MTT). To gain insight into the mode of action of the steroidal glycosides, nitric oxide (NO) production, and expression of genes for transforming growth factor beta-1 (TGF-β) and its receptors were evaluated. Fractionated bulb extracts and the two isolated steroidal glycoalkaloids (1) and (2) induced NO production and TGF-β receptor I mRNA expression in fibroblast cell culture. In a cytotoxicity assay, steroidal glycosides (1) and (3) had IC50 values of 8.2 and 8.7 µM, but the natural acetylation of the C-6″' hydroxy of the terminal glucose unit in (2) resulted in a 3-fold decrease in cell cytotoxicity when compared with (1). Results from the dermal fibroblast migration assay revealed that the steroidal glycoalkaloids (1) and (2), and the furostanol saponin (3) promoted fibroblast migration from the range of 23.7±5.7 to 37.7±5.1%, as compared with the control. Collectively, our data demonstrate that the steroidal glycosides present in Easter lily bulbs induce, at least in part, the observed dermal fibroblast migration activity of the bulb extracts. This is the first evidence that steroidal glycosides from Lilium longiflorum may potentially play a role in the wound healing process and may provide a scientific basis for the historical use of lily bulbs for this purpose. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Temporal shifts and temperature sensitivity of avian spring migratory phenology: a phylogenetic meta-analysis.

    PubMed

    Usui, Takuji; Butchart, Stuart H M; Phillimore, Albert B

    2017-03-01

    There are wide reports of advances in the timing of spring migration of birds over time and in relation to rising temperatures, though phenological responses vary substantially within and among species. An understanding of the ecological, life-history and geographic variables that predict this intra- and interspecific variation can guide our projections of how populations and species are likely to respond to future climate change. Here, we conduct phylogenetic meta-analyses addressing slope estimates of the timing of avian spring migration regressed on (i) year and (ii) temperature, representing a total of 413 species across five continents. We take into account slope estimation error and examine phylogenetic, ecological and geographic predictors of intra- and interspecific variation. We confirm earlier findings that on average birds have significantly advanced their spring migration time by 2·1 days per decade and 1·2 days °C -1 . We find that over time and in response to warmer spring conditions, short-distance migrants have advanced spring migratory phenology by more than long-distance migrants. We also find that larger bodied species show greater advance over time compared to smaller bodied species. Our results did not reveal any evidence that interspecific variation in migration response is predictable on the basis of species' habitat or diet. We detected a substantial phylogenetic signal in migration time in response to both year and temperature, suggesting that some of the shifts in migratory phenological response to climate are predictable on the basis of phylogeny. However, we estimate high levels of species and spatial variance relative to phylogenetic variance, which is consistent with plasticity in response to climate evolving fairly rapidly and being more influenced by adaptation to current local climate than by common descent. On average, avian spring migration times have advanced over time and as spring has become warmer. While we are able to identify predictors that explain some of the true among-species variation in response, substantial intra- and interspecific variation in migratory response remains to be explained. © 2016 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  17. A density gradient of VAPG peptides on a cell-resisting surface achieves selective adhesion and directional migration of smooth muscle cells over fibroblasts.

    PubMed

    Yu, Shan; Zuo, Xingang; Shen, Tao; Duan, Yiyuan; Mao, Zhengwei; Gao, Changyou

    2018-05-01

    Selective adhesion and migration of smooth muscle cells (SMCs) over fibroblasts (FIBs) is required to prevent adventitia fibrosis in vascular regeneration. In this study, a uniform cell-resisting layer of poly(ethylene glycol) (PEG) with a density gradient of azide groups was generated on a substrate by immobilizing two kinds of PEG molecules in a gradient manner. A density gradient of alkynyl-functionalized Val-Ala-Pro-Gly (VAPG) peptides was then prepared on the PEG layer via click chemistry. The VAPG density gradient was characterized by fluorescence imaging, revealing the gradual enhancement of the fluorescent intensity along the substrate direction. The adhesion and mobility of SMCs were selectively enhanced on the VAPG density gradient, leading to directional migration toward the higher peptide density (up to 84%). In contrast, the adhesion and mobility of FIBs were significantly weakened. The net displacement of SMCs also significantly increased compared with that on tissue culture polystyrene (TCPS) and that of FIBs on the gradient. The mitogen-activated protein kinase (MAPK) signaling pathways related to cell migration were studied, showing higher expressions of functional proteins from SMCs on the VAPG-modified surface in a density-dependent manner. For the first time the selective adhesion and directional migration of SMCs over FIBs was achieved by an elaborative design of a gradient surface, leading to a new insight in design of novel vascular regenerative materials. Selective cell adhesion and migration guided by regenerative biomaterials are extremely important for the regeneration of targeted tissues, which can avoid the drawbacks of incorrect and uncontrolled responses of tissue cells to implants. For example, selectivity of smooth muscle cells (SMCs) over fibroblasts (FIBs) is required to prevent adventitia fibrosis in vascular regeneration. Herein we prepare a uniform cell-repelling layer, on which SMCs-selective Val-Ala-Pro-Gly (VAPG) peptides are immobilized in a continuous manner. Selective adhesion and enhanced and directional migration of SMCs over FIBs are achieved by the interplay of cell-repelling layer and gradient SMCs-selective VAPG peptides, paving a new way for the design of novel vascular grafts with enhanced biological performance. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Flow and diffusion in channel-guided cell migration.

    PubMed

    Marel, Anna-Kristina; Zorn, Matthias; Klingner, Christoph; Wedlich-Söldner, Roland; Frey, Erwin; Rädler, Joachim O

    2014-09-02

    Collective migration of mechanically coupled cell layers is a notable feature of wound healing, embryonic development, and cancer progression. In confluent epithelial sheets, the dynamics have been found to be highly heterogeneous, exhibiting spontaneous formation of swirls, long-range correlations, and glass-like dynamic arrest as a function of cell density. In contrast, the flow-like properties of one-sided cell-sheet expansion in confining geometries are not well understood. Here, we studied the short- and long-term flow of Madin-Darby canine kidney (MDCK) cells as they moved through microchannels. Using single-cell tracking and particle image velocimetry (PIV), we found that a defined averaged stationary cell current emerged that exhibited a velocity gradient in the direction of migration and a plug-flow-like profile across the advancing sheet. The observed flow velocity can be decomposed into a constant term of directed cell migration and a diffusion-like contribution that increases with density gradient. The diffusive component is consistent with the cell-density profile and front propagation speed predicted by the Fisher-Kolmogorov equation. To connect diffusion-mediated transport to underlying cellular motility, we studied single-cell trajectories and occurrence of vorticity. We discovered that the directed large-scale cell flow altered fluctuations in cellular motion at short length scales: vorticity maps showed a reduced frequency of swirl formation in channel flow compared with resting sheets of equal cell density. Furthermore, under flow, single-cell trajectories showed persistent long-range, random-walk behavior superimposed on drift, whereas cells in resting tissue did not show significant displacements with respect to neighboring cells. Our work thus suggests that active cell migration manifests itself in an underlying, spatially uniform drift as well as in randomized bursts of short-range correlated motion that lead to a diffusion-mediated transport. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. TPS-guided interstitial Iodine-125 implantation in patients with oral cavity and maxillofacial carcinomas.

    PubMed

    Meng, J; Zhang, J; Zhuang, Q-W; Wang, X; Li, Z-P; Gu, Q-P

    2014-10-01

    To investigate the efficacy as well as the complications involved in the use of interstitial Iodine-125 implantation for the treatment of oral cavity and maxillofacial carcinomas. Fifteen patients with oral cavity and maxillofacial carcinomas received treatment planning system (TPS)-guided interstitial Iodine-125 implantation. The apparent activity per particle ranged from 0.6 mCi (2.22MBq) to 0.7 mCi (2.59MBq). The matched peripheral dose delivered by radioactive seeds ranged from 90 to 120 Gy. The efficacy of the treatment and the postoperative complications were evaluated during follow-up. The seeds were implanted successfully in all 15 patients and median number of seeds implanted was 36.53. CT scans were performed in all patients at 1-6 months postoperatively. During follow-up at 6-27 months, seed migration occurred and a good local tumor control was achieved with an overall response of 86.7%. No severe side effects were observed. TPS-guided interstitial Iodine-125 implantation is an effective and safe procedure with minimal invasiveness for the treatment of oral cavity and maxillofacial carcinomas, and it effectively prevents the recurrence of cancer and short-term lymphatic metastasis.

  20. The Killer Fly Hunger Games: Target Size and Speed Predict Decision to Pursuit

    PubMed Central

    Wardill, Trevor J.; Knowles, Katie; Barlow, Laura; Tapia, Gervasio; Nordström, Karin; Olberg, Robert M.; Gonzalez-Bellido, Paloma T.

    2015-01-01

    Predatory animals have evolved to optimally detect their prey using exquisite sensory systems such as vision, olfaction and hearing. It may not be so surprising that vertebrates, with large central nervous systems, excel at predatory behaviors. More striking is the fact that many tiny insects, with their miniscule brains and scaled down nerve cords, are also ferocious, highly successful predators. For predation, it is important to determine whether a prey is suitable before initiating pursuit. This is paramount since pursuing a prey that is too large to capture, subdue or dispatch will generate a substantial metabolic cost (in the form of muscle output) without any chance of metabolic gain (in the form of food). In addition, during all pursuits, the predator breaks its potential camouflage and thus runs the risk of becoming prey itself. Many insects use their eyes to initially detect and subsequently pursue prey. Dragonflies, which are extremely efficient predators, therefore have huge eyes with relatively high spatial resolution that allow efficient prey size estimation before initiating pursuit. However, much smaller insects, such as killer flies, also visualize and successfully pursue prey. This is an impressive behavior since the small size of the killer fly naturally limits the neural capacity and also the spatial resolution provided by the compound eye. Despite this, we here show that killer flies efficiently pursue natural (Drosophila melanogaster) and artificial (beads) prey. The natural pursuits are initiated at a distance of 7.9 ± 2.9 cm, which we show is too far away to allow for distance estimation using binocular disparities. Moreover, we show that rather than estimating absolute prey size prior to launching the attack, as dragonflies do, killer flies attack with high probability when the ratio of the prey's subtended retinal velocity and retinal size is 0.37. We also show that killer flies will respond to a stimulus of an angular size that is smaller than that of the photoreceptor acceptance angle, and that the predatory response is strongly modulated by the metabolic state. Our data thus provide an exciting example of a loosely designed matched filter to Drosophila, but one which will still generate successful pursuits of other suitable prey. PMID:26398293

  1. Bactericidal activity of self-assembled palmitic and stearic fatty acid crystals on highly ordered pyrolytic graphite.

    PubMed

    Ivanova, Elena P; Nguyen, Song Ha; Guo, Yachong; Baulin, Vladimir A; Webb, Hayden K; Truong, Vi Khanh; Wandiyanto, Jason V; Garvey, Christopher J; Mahon, Peter J; Mainwaring, David E; Crawford, Russell J

    2017-09-01

    The wings of insects such as cicadas and dragonflies have been found to possess nanostructure arrays that are assembled from fatty acids. These arrays can physically interact with the bacterial cell membranes, leading to the death of the cell. Such mechanobactericidal surfaces are of significant interest, as they can kill bacteria without the need for antibacterial chemicals. Here, we report on the bactericidal effect of two of the main lipid components of the insect wing epicuticle, palmitic (C16) and stearic (C18) fatty acids. Films of these fatty acids were re-crystallised on the surface of highly ordered pyrolytic graphite. It appeared that the presence of two additional CH 2 groups in the alkyl chain resulted in the formation of different surface structures. Scanning electron microscopy and atomic force microscopy showed that the palmitic acid microcrystallites were more asymmetric than those of the stearic acid, where the palmitic acid microcrystallites were observed to be an angular abutment in the scanning electron micrographs. The principal differences between the two types of long-chain saturated fatty acid crystallites were the larger density of peaks in the upper contact plane of the palmitic acid crystallites, as well as their greater proportion of asymmetrical shapes, in comparison to that of the stearic acid film. These two parameters might contribute to higher bactericidal activity on surfaces derived from palmitic acid. Both the palmitic and stearic acid crystallite surfaces displayed activity against Gram-negative, rod-shaped Pseudomonas aeruginosa and Gram-positive, spherical Staphylococcus aureus cells. These microcrystallite interfaces might be a useful tool in the fabrication of effective bactericidal nanocoatings. Nanostructured cicada and dragonfly wing surfaces have been discovered to be able physically kill bacterial cells. Here, we report on the successful fabrication of bactericidal three-dimensional structures of two main lipid components of the epicuticle of insect wings, palmitic (C16) and stearic (C18) acids. After crystallisation onto highly ordered pyrolytic graphite, both the palmitic and stearic acid films displayed bactericidal activity against both Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus cells. The simplicity of the production of these microcrystallite interfaces suggests that a fabrication technique, based on solution deposition, could be an effective technique for the application of bactericidal nanocoatings. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Air bubble migration is a random event post embryo transfer.

    PubMed

    Confino, E; Zhang, J; Risquez, F

    2007-06-01

    Air bubble location following embryo transfer (ET) is the presumable placement spot of embryos. The purpose of this study was to document endometrial air bubble position and migration following embryo transfer. Multicenter prospective case study. Eighty-eight embryo transfers were performed under abdominal ultrasound guidance in two countries by two authors. A single or double air bubble was loaded with the embryos using a soft, coaxial, end opened catheters. The embryos were slowly injected 10-20 mm from the fundus. Air bubble position was recorded immediately, 30 minutes later and when the patient stood up. Bubble marker location analysis revealed a random distribution without visible gravity effect when the patients stood up. The bubble markers demonstrated splitting, moving in all directions and dispersion. Air bubbles move and split frequently post ET with the patient in the horizontal position, suggestive of active uterine contractions. Bubble migration analysis supports a rather random movement of the bubbles and possibly the embryos. Standing up changed somewhat bubble configuration and distribution in the uterine cavity. Gravity related bubble motion was uncommon, suggesting that horizontal rest post ET may not be necessary. This report challenges the common belief that a very accurate ultrasound guided embryo placement is mandatory. The very random bubble movement observed in this two-center study suggests that a large "window" of embryo placement maybe present.

  3. Ecology of tern flight in relation to wind, topography and aerodynamic theory.

    PubMed

    Hedenström, Anders; Åkesson, Susanne

    2016-09-26

    Flight is an economical mode of locomotion, because it is both fast and relatively cheap per unit of distance, enabling birds to migrate long distances and obtain food over large areas. The power required to fly follows a U-shaped function in relation to airspeed, from which context dependent 'optimal' flight speeds can be derived. Crosswinds will displace birds away from their intended track unless they make compensatory adjustments of heading and airspeed. We report on flight track measurements in five geometrically similar tern species ranging one magnitude in body mass, from both migration and the breeding season at the island of Öland in the Baltic Sea. When leaving the southern point of Öland, migrating Arctic and common terns made a 60° shift in track direction, probably guided by a distant landmark. Terns adjusted both airspeed and heading in relation to tail and side wind, where coastlines facilitated compensation. Airspeed also depended on ecological context (searching versus not searching for food), and it increased with flock size. Species-specific maximum range speed agreed with predicted speeds from a new aerodynamic theory. Our study shows that the selection of airspeed is a behavioural trait that depended on a complex blend of internal and external factors.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. © 2016 The Author(s).

  4. Lateral and vertical distribution of downstream migrating juvenile sea lamprey

    USGS Publications Warehouse

    Sotola, V. Alex; Miehls, Scott M.; Simard, Lee G.; Marsden, J. Ellen

    2018-01-01

    Sea lamprey is considered an invasive and nuisance species in the Laurentian Great Lakes, Lake Champlain, and the Finger Lakes of New York and is a major focus of control efforts. Currently, management practices focus on limiting the area of infestation using barriers to block migratory adults, and lampricides to kill ammocoetes in infested tributaries. No control efforts currently target the downstream-migrating post-metamorphic life stage which could provide another management opportunity. In order to apply control methods to this life stage, a better understanding of their downstream movement patterns is needed. To quantify spatial distribution of downstream migrants, we deployed fyke and drift nets laterally and vertically across the stream channel in two tributaries of Lake Champlain. Sea lamprey was not randomly distributed across the stream width and lateral distribution showed a significant association with discharge. Results indicated that juvenile sea lamprey is most likely to be present in the thalweg and at midwater depths of the stream channel. Further, a majority of the catch occurred during high flow events, suggesting an increase in downstream movement activity when water levels are higher than base flow. Discharge and flow are strong predictors of the distribution of out-migrating sea lamprey, thus managers will need to either target capture efforts in high discharge areas of streams or develop means to guide sea lamprey away from these areas.

  5. PSA-NCAM expression in the teleost optic tectum is related to ecological niche and use of vision in finding food.

    PubMed

    Labak, I; Pavić, V; Zjalić, M; Blažetić, S; Viljetić, B; Merdić, E; Heffer, M

    2017-08-01

    In this study, tangential migration and neuronal connectivity organization were analysed in the optic tectum of seven different teleosts through the expression of polysialylated neural cell adhesion molecule (PSA-NCAM) in response to ecological niche and use of vision. Reduced PSA-NCAM expression in rainbow trout Oncorhynchus mykiss optic tectum occurred in efferent layers, while in pike Esox lucius and zebrafish Danio rerio it occurred in afferent and efferent layers. Zander Sander lucioperca and European eel Anguilla anguilla had very low PSA-NCAM expression in all tectal layers except in the stratum marginale. Common carp Cyprinus carpio and wels catfish Silurus glanis had the same intensity of PSA-NCAM expression in all tectal layers. The optic tectum of all studied fishes was also a site of tangential migration with sustained PSA-NCAM and c-series ganglioside expression. Anti-c-series ganglioside immunoreactivity was observed in all tectal layers of all analysed fishes, even in layers where PSA-NCAM expression was reduced. Since the optic tectum is indispensable for visually guided prey capture, stabilization of synaptic contact and decrease of neurogenesis and tangential migration in the visual map are an expected adjustment to ecological niche. The authors hypothesize that this stabilization would probably be achieved by down-regulation of PSA-NCAM rather than c-series of ganglioside. © 2017 The Fisheries Society of the British Isles.

  6. Ecology of tern flight in relation to wind, topography and aerodynamic theory

    PubMed Central

    2016-01-01

    Flight is an economical mode of locomotion, because it is both fast and relatively cheap per unit of distance, enabling birds to migrate long distances and obtain food over large areas. The power required to fly follows a U-shaped function in relation to airspeed, from which context dependent ‘optimal’ flight speeds can be derived. Crosswinds will displace birds away from their intended track unless they make compensatory adjustments of heading and airspeed. We report on flight track measurements in five geometrically similar tern species ranging one magnitude in body mass, from both migration and the breeding season at the island of Öland in the Baltic Sea. When leaving the southern point of Öland, migrating Arctic and common terns made a 60° shift in track direction, probably guided by a distant landmark. Terns adjusted both airspeed and heading in relation to tail and side wind, where coastlines facilitated compensation. Airspeed also depended on ecological context (searching versus not searching for food), and it increased with flock size. Species-specific maximum range speed agreed with predicted speeds from a new aerodynamic theory. Our study shows that the selection of airspeed is a behavioural trait that depended on a complex blend of internal and external factors. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’. PMID:27528786

  7. Migration in the Anthropocene: how collective navigation, environmental system and taxonomy shape the vulnerability of migratory species.

    PubMed

    Hardesty-Moore, Molly; Deinet, Stefanie; Freeman, Robin; Titcomb, Georgia C; Dillon, Erin M; Stears, Keenan; Klope, Maggie; Bui, An; Orr, Devyn; Young, Hillary S; Miller-Ter Kuile, Ana; Hughey, Lacey F; McCauley, Douglas J

    2018-05-19

    Recent increases in human disturbance pose significant threats to migratory species using collective movement strategies. Key threats to migrants may differ depending on behavioural traits (e.g. collective navigation), taxonomy and the environmental system (i.e. freshwater, marine or terrestrial) associated with migration. We quantitatively assess how collective navigation, taxonomic membership and environmental system impact species' vulnerability by (i) evaluating population change in migratory and non-migratory bird, mammal and fish species using the Living Planet Database (LPD), (ii) analysing the role of collective navigation and environmental system on migrant extinction risk using International Union for Conservation of Nature (IUCN) classifications and (iii) compiling literature on geographical range change of migratory species. Likelihood of population decrease differed by taxonomic group: migratory birds were more likely to experience annual declines than non-migrants, while mammals displayed the opposite pattern. Within migratory species in IUCN, we observed that collective navigation and environmental system were important predictors of extinction risk for fishes and birds, but not for mammals, which had overall higher extinction risk than other taxa. We found high phylogenetic relatedness among collectively navigating species, which could have obscured its importance in determining extinction risk. Overall, outputs from these analyses can help guide strategic interventions to conserve the most vulnerable migrations.This article is part of the theme issue 'Collective movement ecology'. © 2018 The Author(s).

  8. Public Health England's Migrant Health Guide: an online resource for primary care practitioners.

    PubMed

    Crawshaw, A F; Kirkbride, H

    2018-05-01

    Approximately 13% of the UK population in 2015 was born overseas. Most migrants have come to the UK to work or study although there has been a small increase in the number of asylum applications in the UK in recent years, reflective of the ongoing humanitarian situation across Europe. Migrants in the UK tend to be young and healthy, but some may face unique health needs as a result of their experiences before, during and after migration. For these needs to be appropriately recognised and addressed, evidence-based advice is needed for UK professionals. The Migrant Health Guide is a free online tool for healthcare professionals. It was launched in 2011 and is widely used in the UK and internationally. It has four sections: 1) Migrants and the NHS-information on access and entitlements to the National Health Service (NHS); 2) Assessing patients-includes a checklist for initial healthcare assessments and advice for patients travelling abroad to visit friends and relatives; 3) Countries-country-specific advice on infectious diseases, women's health and nutritional and metabolic concerns; and 4) Health topics-information about communicable and non-communicable diseases and other health issues. The guide has undergone an extensive update in 2017. In particular, the pages on mental health and human trafficking have been expanded. A formal evaluation will obtain feedback on the guide and measure changes in awareness, knowledge, opinions, attitudes and behaviour of end users. Findings will inform future revisions and updates to the guide. Public Health England's Migrant Health Guide is a valuable resource for healthcare professionals. The relaunched guide builds on the previous version in raising awareness of key issues and providing evidence-based advice to improve the health of migrants and refugees internationally and in the UK. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  9. Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Dongli; Zhang, Zhen; Li, Jieyao

    Esophageal cancer is one of the most lethal solid malignancies. Mounting evidence demonstrates that cancer stem cells (CSCs) are able to cause tumor initiation, metastasis and responsible for chemotherapy and radiotherapy failures. As CSCs are thought to be the main reason of therapeutic failure, these cells must be effectively targeted to elicit long-lasting therapeutic responses. We aimed to enrich and identify the esophageal cancer cell subpopulation with stem-like properties and help to develop new target therapy strategies for CSCs. Here, we found esophageal cancer cells KYSE70 and TE1 could form spheres in ultra low attachment surface culture and be seriallymore » passaged. Sphere-forming cells could redifferentiate and acquire morphology comparable to parental cells, when return to adherent culture. The sphere-forming cells possessed the key criteria that define CSCs: persistent self-renewal, overexpression of stemness genes (SOX2, ALDH1A1 and KLF4), reduced expression of differentiation marker CK4, chemoresistance, strong invasion and enhanced tumorigenic potential. SB525334, transforming growth factor-beta 1(TGF-β1) inhibitor, significantly inhibited migration and invasion of sphere-forming stem-like cells and had no effect on sphere-forming ability. In conclusion, esophageal cancer sphere-forming cells from KYSE70 and TE1 cultured in ultra low attachment surface possess cancer stem cell properties, providing a model for CSCs targeted therapy. TGF-β1 promotes the migration and invasion of sphere-forming stem-like cells, which may guide future studies on therapeutic strategies targeting these cells. - Highlights: • Esophageal cancer sphere-forming cells possess cancer stem cell properties. • Sphere-forming cells enhance TGF-β1 pathway activity. • TGF-β 1 inhibitor suppresses the migration and invasion of sphere-forming cells.« less

  10. Dynamic properties of polydisperse colloidal particles in the presence of thermal gradient studied by a modified Brownian dynamic model

    NASA Astrophysics Data System (ADS)

    Song, Dongxing; Jin, Hui; Jing, Dengwei; Wang, Xin

    2018-03-01

    Aggregation and migration of colloidal particles under the thermal gradient widely exists in nature and many industrial processes. In this study, dynamic properties of polydisperse colloidal particles in the presence of thermal gradient were studied by a modified Brownian dynamic model. Other than the traditional forces on colloidal particles, including Brownian force, hydrodynamic force, and electrostatic force from other particles, the electrostatic force from the asymmetric ionic diffusion layer under a thermal gradient has been considered and introduced into the Brownian dynamic model. The aggregation ratio of particles (R A), the balance time (t B) indicating the time threshold when {{R}A} becomes constant, the porosity ({{P}BA} ), fractal dimension (D f) and distributions of concentration (DISC) and aggregation (DISA) for the aggregated particles were discussed based on this model. The aggregated structures formed by polydisperse particles are less dense and the particles therein are loosely bonded. Also it showed a quite large compressibility as the increases of concentration and interparticle potential can significantly increase the fractal dimension. The thermal gradient can induce two competitive factors leading to a two-stage migration of particles. When t<{{t}B} , the unsynchronized aggregation is dominant and the particles slightly migrate along the thermal gradient. When t>{{t}B} , the thermophoresis becomes dominant thus the migrations of particles are against the thermal gradient. The effect of thermophoresis on the aggregate structures was found to be similar to the effect of increasing particle concentration. This study demonstrates how the thermal gradient affects the aggregation of monodisperse and polydisperse particles and can be a guide for the biomimetics and precise control of colloid system under the thermal gradient. Moreover, our model can be easily extended to other more complex colloidal systems considering shear, temperature fluctuation, surfactant, etc.

  11. ILO - International Migration Programme.

    PubMed

    Boudraa, Miriam

    2011-01-01

    In a wide International Context characterised not only by the economical development but also by the social, cultural, political and individual development, we witness more and more to a exchange between the developed and the developing countries, which can be translated especially in the migration of the work force. In theory, all countries are either countries of origin either countries of transit or destination, and they are all responsible for the rights of migrant workers by promoting the rights, by monitoring and by preventing the abusive conditions. The process of migration of the workforce can be divided into three stages: the first coincides with the period prior to departure, the second is represented by the aftermath of the departure and the period of stay in the country of destination, the third stage corresponds to the return in the country of origin. The workers must be protected throughout this process by the international organizations that perform the catalytic role of communication and exchange between countries, for the only purpose of protecting the rights of immigrant and/or immigrants workers. The responsibility for the protection of workers is divided among the various players in the International Labour Organisation. Every country has to apply measures according to the international standards regarding workers' rights, standards that guide the various countries in the formulation and implementation of their policies and legislation. These standards are suggested by International Conventions, the ILO Conventions and other international instruments such as the human rights instrument. There has been a big step forward once the ILO Fundamental Conventions and Conventions on Migrant Workers where implemented and this implementation represented the use of the Guidelines "ILO Multilateral Framework on Labour Migration".

  12. American wild celery (Vallisneria americana): Ecological considerations for restoration

    USGS Publications Warehouse

    Korschgen, C.E.; Green, W.L.

    1988-01-01

    The success of vegetation management programs for waterfowl is dependent on knowing the physical and physiological requirements of target species. Lakes and riverine impoundments that contain an abundance of the American wildcelery (Vallisneria americana ) have traditionally been favored by canvasbacks (Aythya valisineria ) and other waterfowl as feeding areas during migration. Information on the ecology of American wildcelery is summarized to serve as a guide for potential wetland restoration projects. Techniques are described for transplanting winter buds. Management programs that employ these techniques should define objectives clearly and evaluate the water regime carefully before initiating major restoration.

  13. Smells Like Home: The Role of Olfactory Cues in the Homing Behavior of Blacktip Sharks, Carcharhinus limbatus.

    PubMed

    Gardiner, Jayne M; Whitney, Nicholas M; Hueter, Robert E

    2015-09-01

    Animal navigation in the marine environment is believed to be guided by different sensory cues over different spatial scales. Geomagnetic cues are thought to guide long-range navigation, while visual or olfactory cues allow animals to pinpoint precise locations, but the complete behavioral sequence is not yet understood. Terra Ceia Bay is a primary nursery area for blacktip sharks, Carcharhinus limbatus, on southwestern Florida's Gulf of Mexico coast. Young-of-the-year animals show strong fidelity to a specific home range in the northeastern end of the bay and rapidly return when displaced. Older juveniles demonstrate annual philopatry for the first few years, migrating as far south as the Florida Keys each fall, then returning to Terra Ceia Bay each spring. To examine the sensory cues used in homing, we captured neonate (<3 weeks old) blacktip sharks from within their home range, fitted them with acoustic tags, and translocated them to sites 8 km away in adjacent Tampa Bay and released them. Intact animals returned to their home range, within 34 h on average, and remained there. With olfaction blocked, fewer animals returned to their home range and they took longer to do so, 130 h on average. However, they did not remain there but instead moved throughout Terra Ceia Bay and in and out of Tampa Bay. Since sharks from both treatments returned at night in tannic and turbid water, vision is likely not playing a major role in navigation by these animals. The animals in this study also returned on incoming or slack tides, suggesting that sharks, like many other fish, may use selective tidal stream transport to conserve energy and aid navigation during migration. Collectively, these results suggest that while other cues, possibly geomagnetic and/or tidal information, might guide sharks over long distances, olfactory cues are required for recognizing their specific home range. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  14. Platelets Guide Leukocytes to Their Sites of Extravasation

    PubMed Central

    Puhr-Westerheide, Daniel; Pörnbacher, Michaela; Lauber, Kirsten; Krombach, Fritz; Reichel, Christoph Andreas

    2016-01-01

    Effective immune responses require the directed migration of leukocytes from the vasculature to the site of injury or infection. How immune cells “find” their site of extravasation remains largely obscure. Here, we identified a previously unrecognized role of platelets as pathfinders guiding leukocytes to their exit points in the microvasculature: upon onset of inflammation, circulating platelets were found to immediately adhere at distinct sites in venular microvessels enabling these cellular blood components to capture neutrophils and, in turn, inflammatory monocytes via CD40-CD40L-dependent interactions. In this cellular crosstalk, ligation of PSGL-1 by P-selectin leads to ERK1/2 MAPK-dependent conformational changes of leukocyte integrins, which promote the successive extravasation of neutrophils and monocytes to the perivascular tissue. Conversely, blockade of this cellular partnership resulted in misguided, inefficient leukocyte responses. Our experimental data uncover a platelet-directed, spatiotemporally organized, multicellular crosstalk that is essential for effective trafficking of leukocytes to the site of inflammation. PMID:27152726

  15. Rheotaxis guides mammalian sperm

    PubMed Central

    Miki, Kiyoshi; Clapham, David E

    2013-01-01

    Background In sea urchins, spermatozoan motility is altered by chemotactic peptides, giving rise to the assumption that mammalian eggs also emit chemotactic agents that guide spermatozoa through the female reproductive tract to the mature oocyte. Mammalian spermatozoa indeed undergo complex adaptations within the female (the process of capacitation) that are initiated by agents ranging from pH to progesterone, but these factors are not necessarily taxic. Currently, chemotaxis, thermotaxis, and rheotaxis have not been definitively established in mammals. Results Here, we show that positive rheotaxis, the ability of organisms to orient and swim against the flow of surrounding fluid, is a major taxic factor for mouse and human sperm. This flow is generated within 4 hours of sexual stimulation and coitus in female mice; prolactin-triggered oviductal fluid secretion clears the oviduct of debris, lowers viscosity, and generates the stream that guides sperm migration in the oviduct. Rheotaxic movement is demonstrated in capacitated and uncapacitated spermatozoa in low and high viscosity medium. Finally, we show that a unique sperm motion we quantify using the sperm head's rolling rate reflects sperm rotation that generates essential force for positioning the sperm in the stream. Rotation requires CatSper channels, presumably by enabling Ca2+ influx. Conclusions We propose that rheotaxis is a major determinant of sperm guidance over long distances in the mammalian female reproductive tract. Coitus induces fluid flow to guide sperm in the oviduct. Sperm rheotaxis requires rotational motion during CatSper channel-dependent hyperactivated motility. PMID:23453951

  16. Sterols isolated from Nuruk (Rhizopus oryzae KSD-815) inhibit the migration of cancer cells.

    PubMed

    Lee, Dae-Young; Lee, Sang-Jin; Kwak, Ho-Young; Jung, Lakoon; Heo, Jieun; Hong, Sungyoul; Kim, Gye-Won; Baek, Nam-In

    2009-11-01

    An activity-guided fractionation method was used to isolate anticancer components from Nuruk (Rhizopus oryzae KSD-815:KSD-815). Dried powder of KSD-815 was extracted with 80% methanol and partitioned successively using nhexane, ethyl acetate, n-butanol, and water. The n-hexane and n-butanol fractions showed a strong antimigratory effect on human cancer cells. Both of these fractions were subjected to separation and purification procedures using silica gel, octadecyl silica gel, and Sephadex LH-20 column chromatographies to afford four purified compounds. These were identified as ergosterol peroxide (1), stigmast- 5-en-3beta,7beta-diol (2), ergosta-7,22-dien-3beta,5alpha,6beta,9alpha-tetraol (3), and daucosterol (4), respectively, by spectroscopic methods such as nuclear magnetic resonance spectrometry, mass spectrometry, and infrared spectroscopy, and comparison with those in the literature. Compounds 1-4 were isolated from KSD-815 for the first time. Compounds 1 and 4 inhibited the migration of MDA-MB-231 cells at concentrations lower than 20 micronM.

  17. Transcatheter Amplatzer vascular plug-embolization of a giant postnephrectomy arteriovenous fistula combined with an aneurysm of the renal pedicle by through-and-through, arteriovenous access

    PubMed Central

    Kayser, Ole; Schäfer, Philipp

    2013-01-01

    Although endovascular transcatheter embolization of arteriovenous fistulas is minimally invasive, the torrential flow prevailing within a fistula implies the risk of migration of the deployed embolization devices into the downstream venous and pulmonary circulation. We present the endovascular treatment of a giant postnephrectomy arteriovenous fistula between the right renal pedicle and the residual renal vein in a 63-year-old man. The purpose of this case report is to demonstrate that the Amplatzer vascular plug (AVP) can be safely positioned to embolize even relatively large arteriovenous fistulas (AVFs). Secondly, we illustrate that this occluder can even be introduced to the fistula via a transvenous catheter in cases where it is initially not possible to advance the deployment-catheter through a tortuous feeder artery. Migration of the vascular plug was ruled out at follow-up 4 months subsequently to the intervention. Thus, the Amplatzer vascular plug and the arteriovenous through-and-through guide wire access with subsequent transvenous deployment should be considered in similar cases. PMID:23326248

  18. Migration and Accumulation of Octachlorodipropyl Ether in Soil-Tea Systems in Young and Old Tea Gardens.

    PubMed

    Liao, Min; Shi, Yan-Hong; Cao, Hai-Qun; Fang, Qing-Kui; Xiao, Jin-Jing; Hua, Ri-Mao

    2017-09-08

    The migration and accumulation of octachlorodipropyl ether (OCDPE) in soil-tea systems were investigated using a gas chromatography-electron capture detector (GC-ECD) method in young and old tea gardens. When the residual concentration of OCDPE was 100 g a.i. hm -2 in soils, the peak concentrations of OCDPE in fresh leaves of young and old tea plants were 0.365 mg/kg and 0.144 mg/kg, taking 45 days and 55 days, respectively. Equations for the accumulation curves of OCDPE in fresh leaves of young and old tea plants were C t = 0.0227e 0.0566t (R² = 0.9154) and C t = 0.0298e -0.0306t (R² = 0.7156), and were C t = 3.8435e 0.055t (R² = 0.9698) and C t = 1.5627e -0.048t (R² = 0.9634) for dissipation curves, with a half-life of 14.4 days and 12.6 days, respectively. These results have practical guiding significance for controlling tea food safety.

  19. Exploring domestic violence and social distress in Australian-Indian migrants through community theater.

    PubMed

    O'Connor, Manjula; Colucci, Erminia

    2016-02-01

    In many parts of the world, young adult women have higher levels of common mental disorders than men. The exacerbation of domestic violence (DV) by migration is a salient social determinant of poor mental health. Ecological models describe factors contributing to DV as operating at individual, family, cultural, and societal levels. We explored the interplay among these factors in an Indian community living in Melbourne, Australia, in a qualitative participatory action research study using a modified Forum Theater approach. We here present findings on connections between migration, societal factors, and social/family/cultural factors in DV. The study captured the voices of women living in the community as they describe how DV contributes to their emotional difficulties. Improved understanding of the sociocultural dynamics of DV and the associated social distress in this migrant Indian community can be used to guide the development of culturally sensitive prevention and response programs to assist migrant women from the Indian subcontinent who present with psychopathology and suicidal behaviors associated with DV. © The Author(s) 2015.

  20. A study on the migration and transformation law of nitrogen in urine in municipal wastewater transportation and treatment.

    PubMed

    Wuang, Ren; Pengkang, Jin; Chenggang, Liang; Xiaochang, Wang; Lei, Zhang

    2013-01-01

    Many studies suggest that the total nitrogen (TN) in urine is around 9,000 mg/L and about 80% of nitrogen in municipal wastewater comes from urine, because nitrogen mainly occurs in the form of urea in fresh human urine. Based on this fact, the study on the migration and transformation law of nitrogen in urine and its influencing factors was carried out. It can be seen from the experimental results that the transformation rate of urea in urine into ammonia nitrogen after standing for 20 days is only about 18.2%, but the urea in urine can be hydrolyzed into ammonia nitrogen rapidly after it is catalyzed directly with free urease or indirectly with microorganism. Adding respectively a certain amount of urease, activated sludge and septic-tank sludge to urine samples can make the maximum transformation rate achieve 85% after 1 day, 2 days and 6 days, respectively. In combination with some corresponding treatment methods, recycling of nitrogen in urine can be achieved. The results are of great significance in guiding denitrification in municipal wastewater treatment.

  1. Differentiation of Drosophila glial cells.

    PubMed

    Sasse, Sofia; Neuert, Helen; Klämbt, Christian

    2015-01-01

    Glial cells are important constituents of the nervous system and a hallmark of these cells are their pronounced migratory abilities. In Drosophila, glial lineages have been well described and some of the molecular mechanisms necessary to guide migrating glial cells to their final target sites have been identified. With the onset of migration, glial cells are already specified into one of five main glial cell types. The perineurial and subperineurial glial cells are eventually located at the outer surface of the Drosophila nervous system and constitute the blood-brain barrier. The cortex glial cells ensheath all neuroblasts and their progeny and reside within the central nervous system. Astrocyte-like cells invade the neuropil to control synaptic function and ensheathing glial cells encase the entire neuropil. Within the peripheral nervous system, wrapping glial cells ensheath individual axons or axon fascicles. Here, we summarize the current knowledge on how differentiation of glial cells into the specific subtypes is orchestrated. Furthermore, we discuss sequencing data that will facilitate further analyses of glial differentiation in the fly nervous system. © 2015 Wiley Periodicals, Inc.

  2. Role of mechanical cues in shaping neuronal morphology and connectivity.

    PubMed

    Gangatharan, Girisaran; Schneider-Maunoury, Sylvie; Breau, Marie Anne

    2018-06-01

    Neuronal circuits, the functional building blocks of the nervous system, assemble during development through a series of dynamic processes including the migration of neurons to their final position, the growth and navigation of axons and their synaptic connection with target cells. While the role of chemical cues in guiding neuronal migration and axonal development has been extensively analysed, the contribution of mechanical inputs, such as forces and stiffness, has received far less attention. In this article, we review the in vitro and more recent in vivo studies supporting the notion that mechanical signals are critical for multiple aspects of neuronal circuit assembly, from the emergence of axons to the formation of functional synapses. By combining live imaging approaches with tools designed to measure and manipulate the mechanical environment of neurons, the emerging field of neuromechanics will add a new paradigm in our understanding of neuronal development and potentially inspire novel regenerative therapies. © 2018 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  3. A field trip guide to the petrology of Quaternary volcanism on the Yellowstone Plateau

    USGS Publications Warehouse

    Vazquez, Jorge A.; Stelten, Mark; Bindeman, Ilya N.; Cooper, Kari

    2017-12-19

    The Yellowstone Plateau is one of the largest manifestations of silicic volcanism on Earth, and marks the youngest focus of magmatism associated with the Yellowstone Hot Spot. The earliest products of Yellowstone Hot Spot volcanism are from ~17 million years ago, but may be as old as ~32 Ma, and include contemporaneous eruption of voluminous mafic and silicic magmas, which are mostly located in the region of northwestern Nevada and southeastern Oregon. Since 17 Ma, the main locus of Yellowstone Hot Spot volcanism has migrated northeastward producing numerous silicic caldera complexes that generally remain active for ~2–4 million years, with the present-day focus being the Yellowstone Plateau. Northeastward migration of volcanism associated with the Yellowstone Hot Spot resulted in the formation of the Snake River Plain, a low relief physiographic feature extending ~750 kilometers from northern Nevada to eastern Idaho. Most of the silicic volcanic centers along the Snake River Plain have been inundated by younger basalt volcanism, but many of their ignimbrites and lava flows are exposed in the extended regions at the margins of the Snake River Plain. 

  4. Life on magnets: stem cell networking on micro-magnet arrays.

    PubMed

    Zablotskii, Vitalii; Dejneka, Alexandr; Kubinová, Šárka; Le-Roy, Damien; Dumas-Bouchiat, Frédéric; Givord, Dominique; Dempsey, Nora M; Syková, Eva

    2013-01-01

    Interactions between a micro-magnet array and living cells may guide the establishment of cell networks due to the cellular response to a magnetic field. To manipulate mesenchymal stem cells free of magnetic nanoparticles by a high magnetic field gradient, we used high quality micro-patterned NdFeB films around which the stray field's value and direction drastically change across the cell body. Such micro-magnet arrays coated with parylene produce high magnetic field gradients that affect the cells in two main ways: i) causing cell migration and adherence to a covered magnetic surface and ii) elongating the cells in the directions parallel to the edges of the micro-magnet. To explain these effects, three putative mechanisms that incorporate both physical and biological factors influencing the cells are suggested. It is shown that the static high magnetic field gradient generated by the micro-magnet arrays are capable of assisting cell migration to those areas with the strongest magnetic field gradient, thereby allowing the build up of tunable interconnected stem cell networks, which is an elegant route for tissue engineering and regenerative medicine.

  5. Life on Magnets: Stem Cell Networking on Micro-Magnet Arrays

    PubMed Central

    Zablotskii, Vitalii; Dejneka, Alexandr; Kubinová, Šárka; Le-Roy, Damien; Dumas-Bouchiat, Frédéric; Givord, Dominique; Dempsey, Nora M.; Syková, Eva

    2013-01-01

    Interactions between a micro-magnet array and living cells may guide the establishment of cell networks due to the cellular response to a magnetic field. To manipulate mesenchymal stem cells free of magnetic nanoparticles by a high magnetic field gradient, we used high quality micro-patterned NdFeB films around which the stray field’s value and direction drastically change across the cell body. Such micro-magnet arrays coated with parylene produce high magnetic field gradients that affect the cells in two main ways: i) causing cell migration and adherence to a covered magnetic surface and ii) elongating the cells in the directions parallel to the edges of the micro-magnet. To explain these effects, three putative mechanisms that incorporate both physical and biological factors influencing the cells are suggested. It is shown that the static high magnetic field gradient generated by the micro-magnet arrays are capable of assisting cell migration to those areas with the strongest magnetic field gradient, thereby allowing the build up of tunable interconnected stem cell networks, which is an elegant route for tissue engineering and regenerative medicine. PMID:23936425

  6. Stereo-EEG: Diagnostic and therapeutic tool for periventricular nodular heterotopia epilepsies.

    PubMed

    Mirandola, Laura; Mai, Roberto F; Francione, Stefano; Pelliccia, Veronica; Gozzo, Francesca; Sartori, Ivana; Nobili, Lino; Cardinale, Francesco; Cossu, Massimo; Meletti, Stefano; Tassi, Laura

    2017-11-01

    Periventricular nodular heterotopias (PNHs) are malformations of cortical development related to neuronal migration disorders, frequently associated with drug-resistant epilepsy (DRE). Stereo-electroencephalography (SEEG) is considered a very effective step of the presurgical evaluation, providing the recognition of the epileptogenic zone (EZ). At the same time, via the intracerebral electrodes it is possible to perform radiofrequency thermocoagulation (SEEG-guided RF-TC) with the aim of ablating and/or disrupting the EZ. The purpose of this study was to evaluate both the relationships between PNH and the EZ, and the efficacy of SEEG-guided RF-TC. Twenty patients with DRE related to PNHs were studied. Inclusion criteria were the following: (1) patients with epilepsy and PNHs (unilateral or bilateral, single or multiple nodules) diagnosed on brain magnetic resonance imaging (MRI); (2) SEEG recordings available as part of the presurgical investigations, with at least one intracerebral electrode inside the heterotopia; (3) complete surgical workup with SEEG-guided RF-TC and/or with traditional neurosurgery, with a follow-up of at least 12 months. Complex and heterogenic epileptic networks were found in these patients. SEEG-guided RF-TC both into the nodules and/or the cortex was efficacious in the 76% of patients. Single or multiple, unilateral or bilateral PNHs are the most suitable for this procedure, whereas patients with PNHs associated with complex cortical malformations obtained excellent outcome only with traditional resective surgery. Each patient had a specific epileptogenic network, independent from the number, size, or location of nodules and from the cortical malformation associated with. SEEG-guided RF-TC appears as a new and very effective diagnostic and therapeutic approach for DRE related to PNHs. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  7. Reaching Latinas with Our Bodies, Ourselves and the Guía de Capacitación para Promotoras de Salud: health education for social change.

    PubMed

    Bonilla, Zobeida E; Morrison, Sharon D; Norsigian, Judy; Rosero, Ema

    2012-01-01

    As the cultural and linguistic diversity of the United States continues to grow and population shifts transform the communities where we live and work, health care providers continue to face challenges to deliver health services in demographically redefined terrains. This report describes the development of a Spanish-language training guide for community health workers (Guía de Capacitación para Promotoras de Salud) based on the book Nuestros Cuerpos, Nuestras Vidas (NCNV), the Spanish-language translation and cultural adaptation of the classic women's health book Our Bodies, Ourselves. The guide aims to 1) provide a tool for addressing the health education needs of immigrant Latinas and 2) facilitate the use of the book NCNV as a health education tool in Latino communities. Thirty telephone interviews with individuals working in agencies and organizations serving Latinos and 2 focus groups with Latinas were conducted to select the topics included in the training guide, all of which were drawn directly from NCNV. The guide contains 11 modules organized into 6 workshops. The modules address 11 topics related to women's health, ranging from sexuality and pregnancy to domestic violence and mental health. An ecological framework is used to deliver the health information. The materials acknowledge the roles of history, environment, culture, economic conditions, migration history, and politics as key determinants of health and illness. The workshops are designed to train community health workers on the women's health topics contained in the guide and to equip them for the delivery of health education among immigrant Latinas. © 2012 by the American College of Nurse-Midwives.

  8. Cryo-Assisted Resection En Bloc, and Cryoablation In Situ, of Primary Breast Cancer Coupled With Intraoperative Ultrasound-Guided Tracer Injection: A Preliminary Clinical Study.

    PubMed

    Korpan, Nikolai N; Xu, Kecheng; Schwarzinger, Philipp; Watanabe, Masashi; Breitenecker, Gerhard; Patrick, Le Pivert

    2018-01-01

    The aim of the study was to perform cryosurgery on a primary breast tumor, coupled with simultaneous peritumoral and intratumoral tracer injection of a blue dye, to evaluate lymphatic mapping. We explored the ability of our strategy to prevent tumor cells, but not that of injected tracers, to migrate to the lymphovascular drainage during conventional resection of frozen breast malignancies. Seventeen patients aged 51 (14) years (mean [standard deviation]), presenting primary breast cancer with stage I to IV, were randomly selected and treated in The Rudolfinerhaus Private Clinic in Vienna, Austria, and included in this preliminary clinical study. Under intraoperative ultrasound, 14 patients underwent curative cryo-assisted tumor resection en bloc, coupled with peritumoral tracer injection, which consisted of complete tumor freezing and concomitant peritumor injection with a blue dye, before resection and sentinel lymph node dissection (group A). Group B consists of 3 patients previously refused any standard therapy and had palliative tumor cryoablation in situ combined with intratumoral tracer injection. The intraoperative ultrasound facilitated needle positioning and dye injection timing. In group A, the frozen site extruded the dye that was distributed through the unfrozen tumor, the breast tissue, and the resection cavity for 12 patients. One to 4 lymph nodes were stained for 10 of 14 patients. The resection margin was evaluable. Our intraoperative ultrasound-guided performance revealed the injection and migration of a blue dye during the frozen resection en bloc and cryoablation in situ of primary breast tumors. Sentinel lymph node mapping, pathological determination of the tumor, and resection margins were achievable. The study paves the way for intraoperative cryo-assisted therapeutic strategies for breast cancer.

  9. AAV-CRISPR/Cas9-Mediated Depletion of VEGFR2 Blocks Angiogenesis In Vitro.

    PubMed

    Wu, Wenyi; Duan, Yajian; Ma, Gaoen; Zhou, Guohong; Park-Windhol, Cindy; D'Amore, Patricia A; Lei, Hetian

    2017-12-01

    Pathologic angiogenesis is a component of many diseases, including neovascular age-related macular degeneration, proliferation diabetic retinopathy, as well as tumor growth and metastasis. The purpose of this project was to examine whether the system of adeno-associated viral (AAV)-mediated CRISPR (clustered regularly interspaced short palindromic repeats)-associated endonuclease (Cas)9 can be used to deplete expression of VEGF receptor 2 (VEGFR2) in human vascular endothelial cells in vitro and thus suppress its downstream signaling events. The dual AAV system of CRISPR/Cas9 from Streptococcus pyogenes (AAV-SpGuide and -SpCas9) was adapted to edit genomic VEGFR2 in primary human retinal microvascular endothelial cells (HRECs). In this system, the endothelial-specific promoter for intercellular adhesion molecule 2 (ICAM2) was cloned into the dual AAV vectors of SpGuide and SpCas9 for driving expression of green fluorescence protein (GFP) and SpCas9, respectively. These two AAV vectors were applied to production of recombinant AAV serotype 5 (rAAV5), which were used to infect HRECs for depletion of VEGFR2. Protein expression was determined by Western blot; and cell proliferation, migration, as well as tube formation were examined. AAV5 effectively infected vascular endothelial cells (ECs) and retinal pigment epithelial (RPE) cells; the ICAM2 promoter drove expression of GFP and SpCas9 in HRECs, but not in RPE cells. The results showed that the rAAV5-CRISPR/Cas9 depleted VEGFR2 by 80% and completely blocked VEGF-induced activation of Akt, and proliferation, migration as well as tube formation of HRECs. AAV-CRISRP/Cas9-mediated depletion of VEGFR2 is a potential therapeutic strategy for pathologic angiogenesis.

  10. Fabrication and characterization of polyvinyl alcohol/metal (Ca, Mg, Ti) doped zirconium phosphate nanocomposite films for scaffold-guided tissue engineering application.

    PubMed

    Kalita, Himani; Pal, Pallabi; Dhara, Santanu; Pathak, Amita

    2017-02-01

    Nanocomposite films of polyvinyl alcohol (PVA) and zirconium phosphate (ZrP)/doped ZrP (doped with Ca, Mg, Ti) nanoparticles have been developed by solvent casting method to assess their potential as matrix material in scaffold-guided tissue engineering application. The prepared ZrP and doped ZrP nanoparticles as well as the nanocomposite films were characterized by various spectroscopic and microscopic techniques. Nanoindentation studies revealed improved nanomechanical properties in the PVA/doped ZrP nanocomposite films (highest for PVA/Ti doped ZrP: hardness=262.4MPa; elastic modulus=5800MPa) as compared to the PVA/ZrP and neat PVA films. In-vitro cell culture experiments carried out to access the cellular viability, attachment, proliferation, and migration on the substrates, using mouse fibroblast (3T3) cell lines, inferred enhanced bioactivity in the PVA/doped ZrP nanocomposite films (highest for PVA/Ca doped ZrP) in contrast to PVA/ZrP and neat PVA films. Controlled biodegradability as well as swelling behavior, superior bioactivity and improved mechanical properties of the PVA/doped ZrP nanocomposite films make them promising matrix materials for scaffold-guided tissue engineering application. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Long non-coding RNA UCA1 upregulation promotes the migration of hypoxia-resistant gastric cancer cells through the miR-7-5p/EGFR axis.

    PubMed

    Yang, Zichang; Shi, Xiaonan; Li, Ce; Wang, Xiaoxun; Hou, Kezuo; Li, Zhi; Zhang, Xiaojie; Fan, Yibo; Qu, Xiujuan; Che, Xiaofang; Liu, Yunpeng

    2018-05-01

    A variety of solid tumors are surrounded by a hypoxic microenvironment, which is known to be associated with high metastatic capability and resistance to various clinical therapies, contributing to a poor survival rate for cancer patients. Although the majority of previous studies on tumor-associated hypoxia have focused on acute hypoxia, chronic hypoxia more closely mimics the actual hypoxic microenvironment of a tumor. In this study, two novel hypoxia-resistant gastric cancer (HRGC) cell lines which could grow normally in 2% oxygen were established. The long non-coding RNA UCA1 was upregulated in HRGC cells, which promoted their migration. Bioinformatics analysis and a luciferase reporter assay showed that miR-7-5p could bind to specific sites of UCA1 to regulate the target EGFR through competitive endogenous RNA function. UCA1 directly interacted with miR-7-5p and decreased the binding of miR-7-5p to the EGFR 3'-untranslated region, which suppressed the degradation of EGFR mRNA by miR-7-5p. Therefore, long-term hypoxia induced UCA1 to promote cell migration by enhancing the expression of EGFR. This study thus reveals a new mechanism by which a hypoxic microenvironment promotes tumor metastasis, and highlights UCA1 as a potential biomarker for predicting the metastasis of gastric cancer to guide clinical treatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Compensation for fluctuations in crosswind drift without stationary landmarks in butterflies migrating over seas.

    PubMed

    Srygley, Robert B.

    2001-01-01

    Migrating insects may fly over large bodies of water that lack landmarks, but little is known about their ability to navigate in such a fluid environment. Using boat navigation instruments to measure compensation for fluctuations in crosswind drift, I investigated the ability of butterflies (Lepidoptera: Hesperiidae, Nymphalidae and Pieridae) to orient with and without landmarks as they migrated naturally over the Caribbean Sea. I used the presence or absence of landmarks or clouds to evaluate their use by the butterflies as guides for compensation. Forty-one per cent of the butterflies compensated for crosswind drift, whereas only 16% did not compensate. No conclusion could be drawn for the remainder. Without landmarks or clouds, butterflies were significantly less likely to compensate for drift than when these local cues were present. Butterflies were more likely to compensate fully in the presence of a landmark than when only clouds were present. Phoebis sennae butterflies drifted in the morning and overcompensated for drift in the afternoon, a pattern found both within and between individuals independent of landmarks. Although I cannot exclude the use of clouds, this would probably result in undercompensation. Hence, a ground reference in conjunction with a sun or magnetic compass is the most likely orientation cue. In the absence of clouds, one butterfly compensated, at least in part, indicating that it was using ripples on the sea surface as a ground reference in conjunction with a sun or magnetic compass. Copyright 2001 The Association for the Study of Animal Behaviour.

  13. Social support under siege: An analysis of forced migration among women from the Democratic Republic of Congo.

    PubMed

    Wachter, Karin; Gulbas, Lauren E

    2018-07-01

    In 2016, researchers conducted a qualitative study in a mid-sized town in the United States to address gaps in research and practice related to psychosocial consequences of forced migration among women. The loss of social support and its impacts on the well-being of women are rarely addressed in refugee resettlement policy or practice overwhelmingly concerned with economic self-sufficiency. The study sought to develop theory to explain how women (n = 27) who migrated from the Democratic Republic of the Congo recreate social support post-resettlement in the United States. An interpretive approach informed by postcolonial feminist perspectives guided the grounded theory methodology. A theoretical model emerged explaining pivots in the internal and relational lives of women as social support systematically constricted over time as a result of war, displacement, and resettlement. Upon arrival to the United States, women experienced partitioned lives through changing relationships to space and time, which contributed to women being alone and impacted well-being. Converging processes propelled women towards learning to stand alone, through which women could develop a sense self-reliance, but not without internal and relational consequences. The analysis contributes to the empirical literature knowledge of how resettlement is a life altering event that sets into motion psychosocial processes with implications for well-being and health. Implications for practice and future research are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. A Worldwide Competition to Compare the Speed and Chemotactic Accuracy of Neutrophil-Like Cells

    PubMed Central

    Wong, Elisabeth; Hamza, Bashar; Bae, Albert; Martel, Joseph; Kataria, Rama; Keizer-Gunnink, Ineke; Kortholt, Arjan; Van Haastert, Peter J. M.; Charras, Guillaume; Janetopoulos, Christopher; Irimia, Daniel

    2016-01-01

    Chemotaxis is the ability to migrate towards the source of chemical gradients. It underlies the ability of neutrophils and other immune cells to hone in on their targets and defend against invading pathogens. Given the importance of neutrophil migration to health and disease, it is crucial to understand the basic mechanisms controlling chemotaxis so that strategies can be developed to modulate cell migration in clinical settings. Because of the complexity of human genetics, Dictyostelium and HL60 cells have long served as models system for studying chemotaxis. Since many of our current insights into chemotaxis have been gained from these two model systems, we decided to compare them side by side in a set of winner-take-all races, the Dicty World Races. These worldwide competitions challenge researchers to genetically engineer and pharmacologically enhance the model systems to compete in microfluidic racecourses. These races bring together technological innovations in genetic engineering and precision measurement of cell motility. Fourteen teams participated in the inaugural Dicty World Race 2014 and contributed cell lines, which they tuned for enhanced speed and chemotactic accuracy. The race enabled large-scale analyses of chemotaxis in complex environments and revealed an intriguing balance of speed and accuracy of the model cell lines. The successes of the first race validated the concept of using fun-spirited competition to gain insights into the complex mechanisms controlling chemotaxis, while the challenges of the first race will guide further technological development and planning of future events. PMID:27332963

  15. Use of a retrievable metallic stent internally coated with silicone to treat airway obstruction.

    PubMed

    Kim, Jin Hyoung; Shin, Ji Hoon; Song, Ho-Young; Lee, Se Chul; Kim, Kyung Rae; Park, Jung-Hoon

    2008-08-01

    The authors hypothesized that internally covered stents can reduce the rates of stent migration or mucous retention. The authors performed this study to report their experience with use of a retrievable metallic stent internally coated with silicone in patients with benign or malignant central airway obstructions. From 2004 to 2007, the authors performed fluoroscopically guided placement of a retrievable metallic stent internally coated with silicone in 26 consecutive patients with benign (n = 5) and malignant (n = 21) central airway obstructions. Stents were woven from a single thread of a 0.2-mm-diameter nitinol wire in a tubular configuration and internally covered with silicone membrane. Stent placement was technically and clinically successful in 93% (25/26) and 85% (22/26) of the patients, respectively. There were eight complications (31%) after stent placement, including tumor overgrowth (n = 2), stent migration (n = 1), symptomatic granulation tissue formation (n = 1), severe pain (n = 1), improper stent location (n = 1), symptomatic sputum retention (n = 1) and esophagobronchial fistula (n = 1). Because of complications, five stents were removed with a retrieval hook under fluoroscopic guidance without difficulty. The median survival period and stent patency were 150.0 days +/- 91.4 and 143.0 days +/- 26.7, respectively. The use of a retrievable metallic stent internally coated with silicone is a safe and effective method for relieving dyspnea, with adequate stent patency in patients with benign or malignant central airway obstructions. This stent design seems to be less prone to migration or mucous retention.

  16. Novel Structure and Unexpected RNA-Binding Ability of the C-Terminal Domain of Herpes Simplex Virus 1 Tegument Protein UL21

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metrick, Claire M.; Heldwein, Ekaterina E.; Sandri-Goldin, R. M.

    Proteins forming the tegument layers of herpesviral virions mediate many essential processes in the viral replication cycle, yet few have been characterized in detail. UL21 is one such multifunctional tegument protein and is conserved among alphaherpesviruses. While UL21 has been implicated in many processes in viral replication, ranging from nuclear egress to virion morphogenesis to cell-cell spread, its precise roles remain unclear. Here we report the 2.7-Å crystal structure of the C-terminal domain of herpes simplex virus 1 (HSV-1) UL21 (UL21C), which has a unique α-helical fold resembling a dragonfly. Analysis of evolutionary conservation patterns and surface electrostatics pinpointed fourmore » regions of potential functional importance on the surface of UL21C to be pursued by mutagenesis. In combination with the previously determined structure of the N-terminal domain of UL21, the structure of UL21C provides a 3-dimensional framework for targeted exploration of the multiple roles of UL21 in the replication and pathogenesis of alphaherpesviruses. Additionally, we describe an unanticipated ability of UL21 to bind RNA, which may hint at a yet unexplored function. IMPORTANCEDue to the limited genomic coding capacity of viruses, viral proteins are often multifunctional, which makes them attractive antiviral targets. Such multifunctionality, however, complicates their study, which often involves constructing and characterizing null mutant viruses. Systematic exploration of these multifunctional proteins requires detailed road maps in the form of 3-dimensional structures. In this work, we determined the crystal structure of the C-terminal domain of UL21, a multifunctional tegument protein that is conserved among alphaherpesviruses. Structural analysis pinpointed surface areas of potential functional importance that provide a starting point for mutagenesis. In addition, the unexpected RNA-binding ability of UL21 may expand its functional repertoire. The structure of UL21C and the observation of its RNA-binding ability are the latest additions to the navigational chart that can guide the exploration of the multiple functions of UL21.« less

  17. Echolocating bats use a nearly time-optimal strategy to intercept prey.

    PubMed

    Ghose, Kaushik; Horiuchi, Timothy K; Krishnaprasad, P S; Moss, Cynthia F

    2006-05-01

    Acquisition of food in many animal species depends on the pursuit and capture of moving prey. Among modern humans, the pursuit and interception of moving targets plays a central role in a variety of sports, such as tennis, football, Frisbee, and baseball. Studies of target pursuit in animals, ranging from dragonflies to fish and dogs to humans, have suggested that they all use a constant bearing (CB) strategy to pursue prey or other moving targets. CB is best known as the interception strategy employed by baseball outfielders to catch ballistic fly balls. CB is a time-optimal solution to catch targets moving along a straight line, or in a predictable fashion--such as a ballistic baseball, or a piece of food sinking in water. Many animals, however, have to capture prey that may make evasive and unpredictable maneuvers. Is CB an optimum solution to pursuing erratically moving targets? Do animals faced with such erratic prey also use CB? In this paper, we address these questions by studying prey capture in an insectivorous echolocating bat. Echolocating bats rely on sonar to pursue and capture flying insects. The bat's prey may emerge from foliage for a brief time, fly in erratic three-dimensional paths before returning to cover. Bats typically take less than one second to detect, localize and capture such insects. We used high speed stereo infra-red videography to study the three dimensional flight paths of the big brown bat, Eptesicus fuscus, as it chased erratically moving insects in a dark laboratory flight room. We quantified the bat's complex pursuit trajectories using a simple delay differential equation. Our analysis of the pursuit trajectories suggests that bats use a constant absolute target direction strategy during pursuit. We show mathematically that, unlike CB, this approach minimizes the time it takes for a pursuer to intercept an unpredictably moving target. Interestingly, the bat's behavior is similar to the interception strategy implemented in some guided missiles. We suggest that the time-optimal strategy adopted by the bat is in response to the evolutionary pressures of having to capture erratic and fast moving insects.

  18. Pre-operative localization of solitary pulmonary nodules with computed tomography-guided hook wire: report of 181 patients.

    PubMed

    Hanauer, Matthieu; Perentes, Jean Yannis; Krueger, Thorsten; Ris, Hans-Beat; Bize, Pierre; Schmidt, Sabine; Gonzalez, Michel

    2016-01-16

    Video-assisted thoracic surgery (VATS) is currently performed to diagnose and treat solitary pulmonary nodules (SPN). However, the intra-operative identification of deep nodules can be challenging with VATS as the lung is difficult to palpate. The aim of the study was to report the utility and the results of pre-operative computed tomography (CT)-guided hook wire localization of SPN. All records of the patients undergoing CT-guided hook wire localization prior to VATS resection for SPN between 2002 and 2013 were reviewed. The efficacy in localizing the nodule, hook wire complications, necessity to convert VATS to thoracotomy and the histology of SPN are reported. One hundred eighty-one patients (90 females, mean age 63 y, range 28-82 y) underwent 187 pulmonary resections after CT-guided hook wire localization. The mean SPN diameter was 10.3 mm (range: 4-29 mm). The mean distance of the lesion from the pleural surface was 11.6 mm (range: 0-45 mm). The mean time interval from hook wire insertion to VATS resection was 224 min (range 54-622 min). Hook wire complications included pneumothorax requiring chest tube drainage in 4 patients (2.1%) and mild parenchymal haemorrhage in 11 (5.9%) patients. Migration of the hook wire occurred in 7 patients (3.7%) although it did not affect the success of VATS resection (nodule location guided by the lung puncture site). Three patients underwent additional wedge resection by VATS during the same procedure because no lesion was identified in the surgical specimen. Conversion thoracotomy was required in 13 patients (7 %) for centrally localized lesions (6 patients) and pleural adhesions (7 patients). The mean operative time was 60 min (range 18-135 min). Pathological examination revealed a malignant lesion in 107 patients (59 %). The diagnostic yield was 98.3 %. VATS resection for SPN after CT-guided hook wire localization for SPN is safe and allows for proper diagnosis with a low thoracotomy conversion rate.

  19. Quantifying cross-border movements and migrations for guiding the strategic planning of malaria control and elimination

    PubMed Central

    2014-01-01

    Background Identifying human and malaria parasite movements is important for control planning across all transmission intensities. Imported infections can reintroduce infections into areas previously free of infection, maintain ‘hotspots’ of transmission and import drug resistant strains, challenging national control programmes at a variety of temporal and spatial scales. Recent analyses based on mobile phone usage data have provided valuable insights into population and likely parasite movements within countries, but these data are restricted to sub-national analyses, leaving important cross-border movements neglected. Methods National census data were used to analyse and model cross-border migration and movement, using East Africa as an example. ‘Hotspots’ of origin-specific immigrants from neighbouring countries were identified for Kenya, Tanzania and Uganda. Populations of origin-specific migrants were compared to distance from origin country borders and population size at destination, and regression models were developed to quantify and compare differences in migration patterns. Migration data were then combined with existing spatially-referenced malaria data to compare the relative propensity for cross-border malaria movement in the region. Results The spatial patterns and processes for immigration were different between each origin and destination country pair. Hotspots of immigration, for example, were concentrated close to origin country borders for most immigrants to Tanzania, but for Kenya, a similar pattern was only seen for Tanzanian and Ugandan immigrants. Regression model fits also differed between specific migrant groups, with some migration patterns more dependent on population size at destination and distance travelled than others. With these differences between immigration patterns and processes, and heterogeneous transmission risk in East Africa and the surrounding region, propensities to import malaria infections also likely show substantial variations. Conclusion This was a first attempt to quantify and model cross-border movements relevant to malaria transmission and control. With national census available worldwide, this approach can be translated to construct a cross-border human and malaria movement evidence base for other malaria endemic countries. The outcomes of this study will feed into wider efforts to quantify and model human and malaria movements in endemic regions to facilitate improved intervention planning, resource allocation and collaborative policy decisions. PMID:24886389

  20. Trace Elements in Basalts From the Siqueiros Fracture Zone: Implications for Melt Migration Models

    NASA Astrophysics Data System (ADS)

    Pickle, R. C.; Forsyth, D. W.; Saal, A. E.; Nagle, A. N.; Perfit, M. R.

    2008-12-01

    Incompatible trace element (ITE) ratios in MORB from a variety of locations may provide insights into the melt migration process by constraining aggregated melt compositions predicted by mantle melting and flow models. By using actual plate geometries to create a 3-D thermodynamic mantle model, melt volumes and compositions at all depths and locations may be calculated and binned into cubes using the pHMELTS algorithm [Asimow et al., 2004]. These melts can be traced from each cube to the surface assuming several migration models, including a simplified pressure gradient model and one in which melt is guided upwards by a low permeability compacted layer. The ITE ratios of all melts arriving at the surface are summed, averaged, and compared to those of the actual sample compositions from the various MOR locales. The Siqueiros fracture zone at 8° 20' N on the East Pacific Rise (EPR) comprises 4 intra-transform spreading centers (ITSCs) across 140 km of offset between two longer spreading ridges, and is an excellent study region for several reasons. First, an abundance of MORB data is readily available, and the samples retrieved from ITSCs are unlikely to be aggregated in a long-lived magma chamber or affected by along-axis transport, so they represent melts extracted locally from the mantle. Additionally, samples at Siqueiros span a compositional range from depleted to normal MORB within the fracture zone yet have similar isotopic compositions to samples collected from the 9-10° EPR. This minimizes the effect of assuming a uniform source composition in our melting model despite a heterogeneous mantle, allowing us to consistently compare the actual lava composition with that predicted by our model. Finally, it has been demonstrated with preliminary migration models that incipient melts generated directly below an ITSC may not necessarily erupt at that ITSC but migrate laterally towards a nearby ridge due to enhanced pressure gradients. The close proximity of the ITSCs at Siqueiros to the large ridges bounding the fracture zone provide a good opportunity to model this phenomenon and may help explain the variable ITE ratios found between samples collected within the transform and those near the ridges.

  1. Software-defined networking control plane for seamless integration of multiple silicon photonic switches in Datacom networks

    DOE PAGES

    Shen, Yiwen; Hattink, Maarten; Samadi, Payman; ...

    2018-04-13

    Silicon photonics based switches offer an effective option for the delivery of dynamic bandwidth for future large-scale Datacom systems while maintaining scalable energy efficiency. The integration of a silicon photonics-based optical switching fabric within electronic Datacom architectures requires novel network topologies and arbitration strategies to effectively manage the active elements in the network. Here, we present a scalable software-defined networking control plane to integrate silicon photonic based switches with conventional Ethernet or InfiniBand networks. Our software-defined control plane manages both electronic packet switches and multiple silicon photonic switches for simultaneous packet and circuit switching. We built an experimental Dragonfly networkmore » testbed with 16 electronic packet switches and 2 silicon photonic switches to evaluate our control plane. Observed latencies occupied by each step of the switching procedure demonstrate a total of 344 microsecond control plane latency for data-center and high performance computing platforms.« less

  2. Software-defined networking control plane for seamless integration of multiple silicon photonic switches in Datacom networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yiwen; Hattink, Maarten; Samadi, Payman

    Silicon photonics based switches offer an effective option for the delivery of dynamic bandwidth for future large-scale Datacom systems while maintaining scalable energy efficiency. The integration of a silicon photonics-based optical switching fabric within electronic Datacom architectures requires novel network topologies and arbitration strategies to effectively manage the active elements in the network. Here, we present a scalable software-defined networking control plane to integrate silicon photonic based switches with conventional Ethernet or InfiniBand networks. Our software-defined control plane manages both electronic packet switches and multiple silicon photonic switches for simultaneous packet and circuit switching. We built an experimental Dragonfly networkmore » testbed with 16 electronic packet switches and 2 silicon photonic switches to evaluate our control plane. Observed latencies occupied by each step of the switching procedure demonstrate a total of 344 microsecond control plane latency for data-center and high performance computing platforms.« less

  3. Nonconsumptive predator-driven mortality causes natural selection on prey.

    PubMed

    Siepielski, Adam M; Wang, Jason; Prince, Garrett

    2014-03-01

    Predators frequently exert natural selection through differential consumption of their prey. However, predators may also cause prey mortality through nonconsumptive effects, which could cause selection if different prey phenotypes are differentially susceptible to this nonconsumptive mortality. Here we present an experimental test of this hypothesis, which reveals that nonconsumptive mortality imposed by predatory dragonflies causes selection on their damselfly prey favoring increased activity levels. These results are consistent with other studies of predator-driven selection, however, they reveal that consumption alone is not the only mechanism by which predators can exert selection on prey. Uncovering this mechanism also suggests that prey defensive traits may represent adaptations to not only avoid being consumed, but also for dealing with other sources of mortality caused by predators. Demonstrating selection through both consumptive and nonconsumptive predator mortality provides us with insight into the diverse effects of predators as an evolutionary force. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  4. Antibacterial titanium nano-patterned arrays inspired by dragonfly wings

    NASA Astrophysics Data System (ADS)

    Bhadra, Chris M.; Khanh Truong, Vi; Pham, Vy T. H.; Al Kobaisi, Mohammad; Seniutinas, Gediminas; Wang, James Y.; Juodkazis, Saulius; Crawford, Russell J.; Ivanova, Elena P.

    2015-11-01

    Titanium and its alloys remain the most popular choice as a medical implant material because of its desirable properties. The successful osseointegration of titanium implants is, however, adversely affected by the presence of bacterial biofilms that can form on the surface, and hence methods for preventing the formation of surface biofilms have been the subject of intensive research over the past few years. In this study, we report the response of bacteria and primary human fibroblasts to the antibacterial nanoarrays fabricated on titanium surfaces using a simple hydrothermal etching process. These fabricated titanium surfaces were shown to possess selective bactericidal activity, eliminating almost 50% of Pseudomonas aeruginosa cells and about 20% of the Staphylococcus aureus cells coming into contact with the surface. These nano-patterned surfaces were also shown to enhance the aligned attachment behavior and proliferation of primary human fibroblasts over 10 days of growth. These antibacterial surfaces, which are capable of exhibiting differential responses to bacterial and eukaryotic cells, represent surfaces that have excellent prospects for biomedical applications.

  5. A dual layer hair array of the brown lacewing: repelling water at different length scales.

    PubMed

    Watson, Jolanta A; Cribb, Bronwen W; Hu, Hsuan-Ming; Watson, Gregory S

    2011-02-16

    Additional weight due to contamination (water and/or contaminating particles) can potentially have a detrimental effect on the flight capabilities of large winged insects such as butterflies and dragonflies. Insects where the wing surface area-body mass ratio is very high will be even more susceptible to these effects. Water droplets tend to move spontaneously off the wing surface of these insects. In the case of the brown lacewing, the drops effectively encounter a dual bed of hair springs with a topographical structure which aids in the hairs resisting penetration into water bodies. In this article, we demonstrate experimentally how this protective defense system employed by the brown lacewing (Micromus tasmaniae) aids in resisting contamination from water and how the micro- and nanostructures found on these hairs are responsible for quickly shedding water from the wing which demonstrates an active liquid-repelling surface. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Antibacterial titanium nano-patterned arrays inspired by dragonfly wings

    PubMed Central

    Bhadra, Chris M.; Khanh Truong, Vi; Pham, Vy T. H.; Al Kobaisi, Mohammad; Seniutinas, Gediminas; Wang, James Y.; Juodkazis, Saulius; Crawford, Russell J.; Ivanova, Elena P.

    2015-01-01

    Titanium and its alloys remain the most popular choice as a medical implant material because of its desirable properties. The successful osseointegration of titanium implants is, however, adversely affected by the presence of bacterial biofilms that can form on the surface, and hence methods for preventing the formation of surface biofilms have been the subject of intensive research over the past few years. In this study, we report the response of bacteria and primary human fibroblasts to the antibacterial nanoarrays fabricated on titanium surfaces using a simple hydrothermal etching process. These fabricated titanium surfaces were shown to possess selective bactericidal activity, eliminating almost 50% of Pseudomonas aeruginosa cells and about 20% of the Staphylococcus aureus cells coming into contact with the surface. These nano-patterned surfaces were also shown to enhance the aligned attachment behavior and proliferation of primary human fibroblasts over 10 days of growth. These antibacterial surfaces, which are capable of exhibiting differential responses to bacterial and eukaryotic cells, represent surfaces that have excellent prospects for biomedical applications. PMID:26576662

  7. Animal behaviour and algal camouflage jointly structure predation and selection.

    PubMed

    Start, Denon

    2018-05-01

    Trait variation can structure interactions between individuals, thus shaping selection. Although antipredator strategies are an important component of many aquatic systems, how multiple antipredator traits interact to influence consumption and selection remains contentious. Here, I use a common larval dragonfly (Epitheca canis) and its predator (Anax junius) to test for the joint effects of activity rate and algal camouflage on predation and survival selection. I found that active and poorly camouflaged Epitheca were more likely to be consumed, and thus, survival selection favoured inactive and well-camouflaged individuals. Notably, camouflage dampened selection on activity rate, likely by reducing attack rates when Epitheca encountered a predator. Correlational selection is therefore conferred by the ecological interaction of traits, rather than by opposing selection acting on linked traits. I suggest that antipredator traits with different adaptive functions can jointly structure patterns of consumption and selection. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  8. Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis.

    PubMed

    Peng, Hanchuan; Tang, Jianyong; Xiao, Hang; Bria, Alessandro; Zhou, Jianlong; Butler, Victoria; Zhou, Zhi; Gonzalez-Bellido, Paloma T; Oh, Seung W; Chen, Jichao; Mitra, Ananya; Tsien, Richard W; Zeng, Hongkui; Ascoli, Giorgio A; Iannello, Giulio; Hawrylycz, Michael; Myers, Eugene; Long, Fuhui

    2014-07-11

    Three-dimensional (3D) bioimaging, visualization and data analysis are in strong need of powerful 3D exploration techniques. We develop virtual finger (VF) to generate 3D curves, points and regions-of-interest in the 3D space of a volumetric image with a single finger operation, such as a computer mouse stroke, or click or zoom from the 2D-projection plane of an image as visualized with a computer. VF provides efficient methods for acquisition, visualization and analysis of 3D images for roundworm, fruitfly, dragonfly, mouse, rat and human. Specifically, VF enables instant 3D optical zoom-in imaging, 3D free-form optical microsurgery, and 3D visualization and annotation of terabytes of whole-brain image volumes. VF also leads to orders of magnitude better efficiency of automated 3D reconstruction of neurons and similar biostructures over our previous systems. We use VF to generate from images of 1,107 Drosophila GAL4 lines a projectome of a Drosophila brain.

  9. Engineering a nanostructured "super surface" with superhydrophobic and superkilling properties.

    PubMed

    Hasan, Jafar; Raj, Shammy; Yadav, Lavendra; Chatterjee, Kaushik

    2015-05-12

    We present a nanostructured "super surface" fabricated using a simple recipe based on deep reactive ion etching of a silicon wafer. The topography of the surface is inspired by the surface topographical features of dragonfly wings. The super surface is comprised of nanopillars 4 μm in height and 220 nm in diameter with random inter-pillar spacing. The surface exhibited superhydrophobicity with a static water contact angle of 154.0° and contact angle hysteresis of 8.3°. Bacterial studies revealed the bactericidal property of the surface against both gram negative ( Escherichia coli ) and gram positive ( Staphylococcus aureus ) strains through mechanical rupture of the cells by the sharp nanopillars. The cell viability on these nanostructured surfaces was nearly six-fold lower than on the unmodified silicon wafer. The nanostructured surface also killed mammalian cells (mouse osteoblasts) through mechanical rupture of the cell membrane. Thus, such nanostructured super surfaces could find applications for designing self-cleaning and anti-bacterial surfaces in diverse applications such as microfluidics, surgical instruments, pipelines and food packaging.

  10. Structure and function of a compound eye, more than half a billion years old.

    PubMed

    Schoenemann, Brigitte; Pärnaste, Helje; Clarkson, Euan N K

    2017-12-19

    Until now, the fossil record has not been capable of revealing any details of the mechanisms of complex vision at the beginning of metazoan evolution. Here, we describe functional units, at a cellular level, of a compound eye from the base of the Cambrian, more than half a billion years old. Remains of early Cambrian arthropods showed the external lattices of enormous compound eyes, but not the internal structures or anything about how those compound eyes may have functioned. In a phosphatized trilobite eye from the lower Cambrian of the Baltic, we found lithified remnants of cellular systems, typical of a modern focal apposition eye, similar to those of a bee or dragonfly. This shows that sophisticated eyes already existed at the beginning of the fossil record of higher organisms, while the differences between the ancient system and the internal structures of a modern apposition compound eye open important insights into the evolution of vision. Copyright © 2017 the Author(s). Published by PNAS.

  11. Some Research into Wetting in Natural Systems

    NASA Astrophysics Data System (ADS)

    Shirtcliffe, Neil; Struck, Alexander; Albiez, Vera; Walker, Shani-Nini

    2017-04-01

    We have been investigating some natural systems that turn out to have some interesting similarities to soil. Our recent focus has been on the wings of insects, in particular locally available butterfly, dragonfly and damselfly species. These can be shown to repel water highly efficiently under some conditions and to become less repellent or even sticky under others. Although we have not fully characterized the system yet, it shows a time delay similar to that observed on water repellent soils and seems to be related in some ways. We are also beginning to investigate how soils, or more particularly composts behave when electrically stimulated at different frequencies. We hope to be able to extract information about the liquid in the soils from this technique and therefore to be able to rapidly characterize samples. Significant parameters being the liquid fraction and the distribution of particles. This technique typically gives considerably more and more robust data than single frequency or D.C. measurements.

  12. Homologization of the flight musculature of zygoptera (insecta: odonata) and neoptera (insecta).

    PubMed

    Büsse, Sebastian; Genet, Cécile; Hörnschemeyer, Thomas

    2013-01-01

    Among the winged insects (Pterygota) the Dragonflies and Damselflies (Odonata) are unique for several reasons. Behaviourally they are aerial predators that hunt and catch their prey in flight, only. Morphologically the flight apparatus of Odonata is significantly different from what is found in the remaining Pterygota. However, to understand the phylogenetic relationships of winged insects and the origin and evolution of insect flight in general, it is essential to know how the elements of the odonatan flight apparatus relate to those of the other Pterygota. Here we present a comprehensive, comparative morphological investigation of the thoracic flight musculature of damselflies (Zygoptera). Based on our new data we propose a homologization scheme for the thoracic musculature throughout Pterygota. The new homology hypotheses will allow for future comparative work and especially for phylogenetic analyses using characters of the thoracic musculature throughout all winged insects. This will contribute to understand the early evolution of pterygote insects and their basal phylogenetic relationship.

  13. The thorax musculature of Anisoptera (Insecta: Odonata) nymphs and its evolutionary relevance

    PubMed Central

    2013-01-01

    Background Among the winged insects (Pterygota) the Odonata (dragon- and damselflies) are special for several reasons. They are strictly aerial predators showing remarkable flight abilities and their thorax morphology differs significantly from that of other Pterygota in terms of the arrangement and number of muscles. Even within one individual the musculature is significantly different between the nymphal and adult stage. Results Here we present a comparative morphological investigation of the thoracic musculature of dragonfly (Anisoptera) nymphs. We investigated representatives of the Libellulidae, Aeshnidae and Cordulegasteridae and found 71 muscles: 19 muscles in the prothorax, 26 in the mesothorax and 27 in the metathorax. Nine of these muscles were previously unknown in Odonata, and for seven muscles no homologous muscles could be identified in the neopteran thorax. Conclusion Our results support and extend the homology hypotheses for the thoracic musculatures of Odonata and Neoptera, thus supplementing our understanding of the evolution of Pterygota and providing additional characters for phylogenetic analyses comprising all subgroups of Pterygota. PMID:24180622

  14. The thorax musculature of Anisoptera (Insecta: Odonata) nymphs and its evolutionary relevance.

    PubMed

    Büsse, Sebastian; Hörnschemeyer, Thomas

    2013-11-01

    Among the winged insects (Pterygota) the Odonata (dragon- and damselflies) are special for several reasons. They are strictly aerial predators showing remarkable flight abilities and their thorax morphology differs significantly from that of other Pterygota in terms of the arrangement and number of muscles. Even within one individual the musculature is significantly different between the nymphal and adult stage. Here we present a comparative morphological investigation of the thoracic musculature of dragonfly (Anisoptera) nymphs. We investigated representatives of the Libellulidae, Aeshnidae and Cordulegasteridae and found 71 muscles: 19 muscles in the prothorax, 26 in the mesothorax and 27 in the metathorax. Nine of these muscles were previously unknown in Odonata, and for seven muscles no homologous muscles could be identified in the neopteran thorax. Our results support and extend the homology hypotheses for the thoracic musculatures of Odonata and Neoptera, thus supplementing our understanding of the evolution of Pterygota and providing additional characters for phylogenetic analyses comprising all subgroups of Pterygota.

  15. Homologization of the Flight Musculature of Zygoptera (Insecta: Odonata) and Neoptera (Insecta)

    PubMed Central

    Büsse, Sebastian; Genet, Cécile; Hörnschemeyer, Thomas

    2013-01-01

    Among the winged insects (Pterygota) the Dragonflies and Damselflies (Odonata) are unique for several reasons. Behaviourally they are aerial predators that hunt and catch their prey in flight, only. Morphologically the flight apparatus of Odonata is significantly different from what is found in the remaining Pterygota. However, to understand the phylogenetic relationships of winged insects and the origin and evolution of insect flight in general, it is essential to know how the elements of the odonatan flight apparatus relate to those of the other Pterygota. Here we present a comprehensive, comparative morphological investigation of the thoracic flight musculature of damselflies (Zygoptera). Based on our new data we propose a homologization scheme for the thoracic musculature throughout Pterygota. The new homology hypotheses will allow for future comparative work and especially for phylogenetic analyses using characters of the thoracic musculature throughout all winged insects. This will contribute to understand the early evolution of pterygote insects and their basal phylogenetic relationship. PMID:23457479

  16. Uncontrolled Stability in Freely Flying Insects

    NASA Astrophysics Data System (ADS)

    Melfi, James, Jr.; Wang, Z. Jane

    2015-11-01

    One of the key flight modes of a flying insect is longitudinal flight, traveling along a localized two-dimensional plane from one location to another. Past work on this topic has shown that flying insects, unless stabilized by some external stimulus, are typically unstable to a well studied pitching instability. In our work, we examine this instability in a computational study to understand whether it is possible for either evolution or an aero-vehicle designer to stabilize longitudinal flight through changes to insect morphology, kinematics, or aerodynamic quantities. A quasi-steady wingbeat averaged flapping flight model is used to describe the insect. From this model, a number of non-dimensional parameters are identified. The effect of these parameters was then quantified using linear stability analysis, applied to various translational states of the insect. Based on our understanding of these parameters, we demonstrate how to find an intrinsically stable flapping flight sequence for a dragonfly-like flapping flier in an instantaneous flapping flight model.

  17. Selenium in fly ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutenmann, W.H.; Bache, C.A.; Youngs, W.D.

    1976-03-05

    Selenium, at concentrations exceeding 200 parts per million (ppM) (dry weight), has been found in white sweet clover voluntarily growing on beds of fly ash in central New York State. Guinea pigs fed such clover concentrated selenium in their tissues. The contents of the honey stomachs of bees foraging on this seleniferous clover contained negligible selenium. Mature vegetables cultured on 10 percent (by weight) fly ash-amended soil absorbed up to 1 ppM of selenium. Fly ashes from 21 states contained total selenium contents ranging from 1.2 to 16.5 ppM. Cabbage grown on soil containing 10 percent (by weight) of thesemore » fly ashes absorbed selenium (up to 3.7 ppM) in direct proportion (correlation coefficient r = .89) to the selenium concentration in the respective fly ash. Water, aquatic weeds, algae, dragonfly nymphs, polliwogs, and tissues of bullheads and muskrats from a fly ash-contaminated pond contained concentrations of selenium markedly elevated over those of controls.« less

  18. Coalition Building for Health: A Community Garden Pilot Project with Apartment Dwelling Refugees.

    PubMed

    Eggert, Lynne K; Blood-Siegfried, Jane; Champagne, Mary; Al-Jumaily, Maha; Biederman, Donna J

    2015-01-01

    Refugees often experience compromised health from both pre- and post-migration stressors. Coalition theory has helped guide the development of targeted programs to address the health care needs of vulnerable populations. Using the Community Coalition Action Theory as a framework, a coalition was formed to implement a community garden with apartment-dwelling refugees. Outcomes included successful coalition formation, a community garden, reported satisfaction from all gardeners with increased vegetable intake, access to culturally meaningful foods, and evidence of increased community engagement. The opportunity for community health nurses to convene a coalition to affect positive health for refugees is demonstrated.

  19. [Psychosomatics and psychotraumatology of refugees and migrants : A Challenge for the Internist].

    PubMed

    Schellong, J; Epple, F; Weidner, K

    2016-05-01

    Many refugees experience severely stressful events in their home countries, during migration and occasionally even after arrival in the country of destination. The individual reactions not only influence the mental health but also somatic well being. Traumatic events may have an essential impact on psychosocial functioning; moreover, the social circumstances during the integration process influence mental stability. Physicians play an important role in identifying possible traumatization and subsequently guiding towards adequate treatment; hence, the healthcare of refugees should regularly include psychosomatic and psychotraumatological aspects. Knowledge of screening instruments, trauma-informed care and interpreter-assisted communication are necessary to meet required standards.

  20. Tiny patients, tiny dressings: a guide to the neonatal PICC dressing change.

    PubMed

    Sharpe, Elizabeth L

    2008-06-01

    Advances in neonatology now support the survival of the tiniest of infants. The peripherally inserted central catheter (PICC) has now become an integral part of routine practice in neonatal intensive care units around the world. Keen attention to safe maintenance of these devices is essential. A properly applied and maintained PICC dressing is the first line of defense to minimize the risk of complications such as dislodgement, migration, and infection. This article describes a neonatal PICC dressing change and discusses the frequently encountered quandaries surrounding this important procedure, including dressing materials, frequency, site preparation, barrier precautions, and other relevant concerns.

  1. Rh-Catalyzed Intermolecular Reactions of α-Alkyl-α-Diazo Carbonyl Compounds with Selectivity over β-Hydride Migration.

    PubMed

    DeAngelis, Andrew; Panish, Robert; Fox, Joseph M

    2016-01-19

    Rh-carbenes derived from α-diazocarbonyl compounds have found broad utility across a remarkable range of reactivity, including cyclopropanation, cyclopropenation, C-H insertions, heteroatom-hydrogen insertions, and ylide forming reactions. However, in contrast to α-aryl or α-vinyl-α-diazocarbonyl compounds, the utility of α-alkyl-α-diazocarbonyl compounds had been moderated by the propensity of such compounds to undergo intramolecular β-hydride migration to give alkene products. Especially challenging had been intermolecular reactions involving α-alkyl-α-diazocarbonyl compounds. This Account discusses the historical context and prior limitations of Rh-catalyzed reactions involving α-alkyl-α-diazocarbonyl compounds. Early studies demonstrated that ligand and temperature effects could influence chemoselectivity over β-hydride migration. However, effects were modest and conflicting conclusions had been drawn about the influence of sterically demanding ligands on β-hydride migration. More recent advances have led to a more detailed understanding of the reaction conditions that can promote intermolecular reactivity in preference to β-hydride migration. In particular, the use of bulky carboxylate ligands and low reaction temperatures have been key to enabling intermolecular cyclopropenation, cyclopropanation, carbonyl ylide formation/dipolar cycloaddition, indole C-H functionalization, and intramolecular bicyclobutanation with high chemoselectivity over β-hydride migration. Cyclic α-diazocarbonyl compounds have been shown to be particularly resilient toward β-hydride migration and are the first class of compounds that can engage in intermolecular reactivity in the presence of tertiary β-hydrogens. DFT calculations were used to propose that for cyclic α-diazocarbonyl compounds, ring constraints relieve steric interaction for intermolecular reactions and thereby accelerate the rate of intermolecular reactivity relative to intramolecular β-hydride migration. Enantioselective reactions of α-alkyl-α-diazocarbonyl compounds have been developed using bimetallic N-imido-tert-leucinate-derived complexes. The most effective complexes were found by computation and X-ray crystallography to adopt a "chiral crown" conformation in which all of the imido groups are presented on one face of the paddlewheel complex in a chiral arrangement. Insight from computational studies guided the design and synthesis of a mixed ligand paddlewheel complex, Rh2(S-PTTL)3TPA, the structure of which bears similarity to the chiral crown complex Rh2(S-PTTL)4. Rh2(S-PTTL)3TPA engages substrate classes (aliphatic alkynes, silylacetylenes, α-olefins) that are especially challenging in intermolecular reactions of α-alkyl-α-diazoesters and catalyzes enantioselective cyclopropanation, cyclopropenation, and indole C-H functionalization with yields and enantioselectivities that are comparable or superior to Rh2(S-PTTL)4. The work detailed in this Account describes progress toward enabling a more general utility for α-alkyl-α-diazo compounds in Rh-catalyzed carbene reactions. Further studies on ligand design and synthesis will continue to broaden the scope of their selective reactions.

  2. A polydimethylsiloxane-polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies.

    PubMed

    Chang, Chia-Wen; Cheng, Yung-Ju; Tu, Melissa; Chen, Ying-Hua; Peng, Chien-Chung; Liao, Wei-Hao; Tung, Yi-Chung

    2014-10-07

    This paper reports a polydimethylsiloxane-polycarbonate (PDMS-PC) hybrid microfluidic device capable of performing cell culture under combinations of chemical and oxygen gradients. The microfluidic device is constructed of two PDMS layers with microfluidic channel patterns separated by a thin PDMS membrane. The top layer contains an embedded PC film and a serpentine channel for a spatially confined oxygen scavenging chemical reaction to generate an oxygen gradient in the bottom layer for cell culture. Using the chemical reaction method, the device can be operated with a small amount of chemicals, without bulky gas cylinders and sophisticated flow control schemes. Furthermore, it can be directly used in conventional incubators with syringe pumps to simplify the system setup. The bottom layer contains arrangements of serpentine channels for chemical gradient generation and a cell culture chamber in the downstream. The generated chemical and oxygen gradients are experimentally characterized using a fluorescein solution and an oxygen-sensitive fluorescent dye, respectively. For demonstration, a 48 hour cell-based drug test and a cell migration assay using human lung adenocarcinoma epithelial cells (A549) are conducted under various combinations of the chemical and oxygen gradients in the experiments. The drug testing results show an increase in A549 cell apoptosis due to the hypoxia-activated cytotoxicity of tirapazamine (TPZ) and also suggest great cell compatibility and gradient controllability of the device. In addition, the A549 cell migration assay results demonstrate an aerotactic behavior of the A549 cells and suggest that the oxygen gradient plays an essential role in guiding cell migration. The migration results, under combinations of chemokine and oxygen gradients, cannot be simply superposed with single gradient results. The device is promising to advance the control of in vitro microenvironments, to better study cellular responses under various physiological conditions for biomedical applications.

  3. Emergence of HGF/SF-Induced Coordinated Cellular Motility

    PubMed Central

    Zaritsky, Assaf; Natan, Sari; Ben-Jacob, Eshel; Tsarfaty, Ilan

    2012-01-01

    Collective cell migration plays a major role in embryonic morphogenesis, tissue remodeling, wound repair and cancer invasion. Despite many decades of extensive investigations, only few analytical tools have been developed to enhance the biological understanding of this important phenomenon. Here we present a novel quantitative approach to analyze long term kinetics of bright field time-lapse wound healing. Fully-automated spatiotemporal measures and visualization of cells' motility and implicit morphology were proven to be sound, repetitive and highly informative compared to single-cell tracking analysis. We study cellular collective migration induced by tyrosine kinase-growth factor signaling (Met-Hepatocyte Growth Factor/Scatter Factor (HGF/SF)). Our quantitative approach is applied to demonstrate that collective migration of the adenocarcinoma cell lines is characterized by simple morpho-kinetics. HGF/SF induces complex morpho-kinetic coordinated collective migration: cells at the front move faster and are more spread than those further away from the wound edge. As the wound heals, distant cells gradually accelerate and enhance spread and elongation –resembling the epithelial to mesenchymal transition (EMT), and then the cells become more spread and maintain higher velocity than cells located closer to the wound. Finally, upon wound closure, front cells halt, shrink and round up (resembling mesenchymal to epithelial transition (MET) phenotype) while distant cells undergo the same process gradually. Met inhibition experiments further validate that Met signaling dramatically alters the morpho-kinetic dynamics of the healing wound. Machine-learning classification was applied to demonstrate the generalization of our findings, revealing even subtle changes in motility patterns induced by Met-inhibition. It is concluded that activation of Met-signaling induces an elaborated model in which cells lead a coordinated increased motility along with gradual differentiation-based collective cell motility dynamics. Our quantitative phenotypes may guide future investigation on the molecular and cellular mechanisms of tyrosine kinase-induced coordinate cell motility and morphogenesis in metastasis. PMID:22970283

  4. BridgeUP: STEM. Creating Opportunities for Women through Tiered Mentorship

    NASA Astrophysics Data System (ADS)

    Secunda, Amy; Cornelis, Juliette; Ferreira, Denelis; Gomez, Anay; Khan, Ariba; Li, Anna; Soo, Audrey; Mac Low, Mordecai

    2018-01-01

    BridgeUP: STEM is an ambitious, and exciting initiative responding to the extensive gender and opportunity gaps that exist in the STEM pipeline for women, girls, and under-resourced youth. BridgeUP: STEM has developed a distinct identity in the landscape of computer science education by embedding programming in the context of scientific research. One of the ways in which this is accomplished is through a tiered mentorship program. Five Helen Fellows are chosen from a pool of female, postbaccalaureate applicants to be mentored by researchers at the American Museum of Natural History in a computational research project. The Helen Fellows then act as mentors to six high school women (Brown Scholars), guiding them through a computational project aligned with their own research. This year, three of the Helen Fellows, and by extension, eighteen Brown Scholars, are performing computational astrophysics research. This poster presents one example of a tiered mentorship working on modeling the migration of stellar mass black holes (BH) in active galactic nucleus (AGN) disks. Making an analogy from the well-studied migration and formation of planets in protoplanetary disks to the newer field of migration and formation of binary BH in AGN disks, the Helen Fellow is working with her mentors to make the necessary adaptations of an N-body code incorporating migration torques from the protoplanetary disk case to the AGN disk case to model how binary BH form. This is in order to better understand and make predictions for gravitational wave observations from the Laser Interferometer Gravitational-Wave Observatory (LIGO). The Brown Scholars then implement the Helen Fellow’s code for a variety of different distributions of initial stellar mass BH populations that they generate using python, and produce visualizations of the output to be used in a published paper. Over the course of the project, students will develop a basic understanding of the physics related to their project and develop their practical computational skills.

  5. 2-D traveltime and waveform inversion for improved seismic imaging: Naga Thrust and Fold Belt, India

    NASA Astrophysics Data System (ADS)

    Jaiswal, Priyank; Zelt, Colin A.; Bally, Albert W.; Dasgupta, Rahul

    2008-05-01

    Exploration along the Naga Thrust and Fold Belt in the Assam province of Northeast India encounters geological as well as logistic challenges. Drilling for hydrocarbons, traditionally guided by surface manifestations of the Naga thrust fault, faces additional challenges in the northeast where the thrust fault gradually deepens leaving subtle surface expressions. In such an area, multichannel 2-D seismic data were collected along a line perpendicular to the trend of the thrust belt. The data have a moderate signal-to-noise ratio and suffer from ground roll and other acquisition-related noise. In addition to data quality, the complex geology of the thrust belt limits the ability of conventional seismic processing to yield a reliable velocity model which in turn leads to poor subsurface image. In this paper, we demonstrate the application of traveltime and waveform inversion as supplements to conventional seismic imaging and interpretation processes. Both traveltime and waveform inversion utilize the first arrivals that are typically discarded during conventional seismic processing. As a first step, a smooth velocity model with long wavelength characteristics of the subsurface is estimated through inversion of the first-arrival traveltimes. This velocity model is then used to obtain a Kirchhoff pre-stack depth-migrated image which in turn is used for the interpretation of the fault. Waveform inversion is applied to the central part of the seismic line to a depth of ~1 km where the quality of the migrated image is poor. Waveform inversion is performed in the frequency domain over a series of iterations, proceeding from low to high frequency (11-19 Hz) using the velocity model from traveltime inversion as the starting model. In the end, the pre-stack depth-migrated image and the waveform inversion model are jointly interpreted. This study demonstrates that a combination of traveltime and waveform inversion with Kirchhoff pre-stack depth migration is a promising approach for the interpretation of geological structures in a thrust belt.

  6. Nanoscale Surface Modifications of Medical Implants for Cartilage Tissue Repair and Regeneration

    PubMed Central

    Griffin, MF; Szarko, M; Seifailan, A; Butler, PE

    2016-01-01

    Background: Natural cartilage regeneration is limited after trauma or degenerative processes. Due to the clinical challenge of reconstruction of articular cartilage, research into developing biomaterials to support cartilage regeneration have evolved. The structural architecture of composition of the cartilage extracellular matrix (ECM) is vital in guiding cell adhesion, migration and formation of cartilage. Current technologies have tried to mimic the cell’s nanoscale microenvironment to improve implants to improve cartilage tissue repair. Methods: This review evaluates nanoscale techniques used to modify the implant surface for cartilage regeneration. Results: The surface of biomaterial is a vital parameter to guide cell adhesion and consequently allow for the formation of ECM and allow for tissue repair. By providing nanosized cues on the surface in the form of a nanotopography or nanosized molecules, allows for better control of cell behaviour and regeneration of cartilage. Chemical, physical and lithography techniques have all been explored for modifying the nanoscale surface of implants to promote chondrocyte adhesion and ECM formation. Conclusion: Future studies are needed to further establish the optimal nanoscale modification of implants for cartilage tissue regeneration. PMID:28217208

  7. [Feasibility of device closure for multiple atrial septal defects using 3D printing and ultrasound-guided intervention technique].

    PubMed

    Qiu, X; Lü, B; Xu, N; Yan, C W; Ouyang, W B; Liu, Y; Zhang, F W; Yue, Z Q; Pang, K J; Pan, X B

    2017-04-25

    Objective: To investigate the feasibility of trans-catheter closure of multiple atrial septal defects (ASD) monitored by trans-thoracic echocardiography (TTE) under the guidance of 3D printing heart model. Methods: Between April and August 2016, a total of 21 patients (8 male and 13 female) with multiple ASD in Fuwai Hospital of Chinese Academy of Medical Sciences underwent CT scan and 3-dimensional echocardiography for heart disease model produced by 3D printing technique. The best occlusion program was determined through the simulation test on the model. Percutaneous device closure of multiple ASD was performed follow the predetermined program guided by TTE. Clinical follow-up including electrocardiogram and TTE was arranged at 1 month after the procedure. Results: The trans-catheter procedure was successful in all 21 patients using a single atrial septal occluder. Mild residual shunt was found in 5 patient in the immediate postoperative period, 3 of them were disappeared during postoperative follow-up. There was no death, vascular damage, arrhythmia, device migration, thromboembolism, valvular dysfunction during the follow-up period. Conclusion: The use of 3D printing heart model provides a useful reference for transcatheter device closure of multiple ASD achieving through ultrasound-guided intervention technique, which appears to be safe and feasible with good outcomes of short-term follow-up.

  8. Transthoracic Echocardiography-Guided Percutaneous Patent Ductus Arteriosus Occlusion: A New Strategy for Interventional Treatment.

    PubMed

    Pan, Xiang-Bin; Ouyang, Wen-Bin; Wang, Shou-Zheng; Liu, Yao; Zhang, Da-Wei; Zhang, Feng-Wen; Pang, Kun-Jing; Zhang, Zhe; Hu, Sheng-Shou

    2016-07-01

    Percutaneous patent ductus arteriosus (PDA) occlusion has become the preferred therapeutic option, which uses fluoroscopy as the guidance. To reduce the x-ray exposure, PDA occlusion using the Amplatzer Duct Occluder II (ADO II) under guidance of transthoracic echocardiography only was conducted. This single center study aims to access the safety and efficiency of this new strategy. From June 2013 to May 2015, 63 consecutive PDA patients underwent transthoracic echocardiography-guided PDA occlusion through the femoral artery. Outpatient follow-up was conducted at 1, 3, and 6 months, and yearly. Sixty-two patients successfully underwent echocardiography-guided percutaneous PDA occlusion. One patient was converted to minimally invasive transthoracic occlusion due to failure of delivery sheath passage through tortuous PDA. Mean procedure duration was 24.3 ± 7.0 minutes; ADO II diameter averaged 4.6 ± 0.9 mm; 8 cases showed traces of residual shunt immediately after operation which resolved after 24 hours; and mean hospital stay was 3.4 ± 0.5 days. There was no occluder migration, hemolysis, pericardial effusion, pulmonary branch or aortic stenosis at mean 13.5 ± 4.8 months follow-up. This study demonstrated that percutaneous PDA occlusion can be successfully performed under guidance of transthoracic echocardiography only and appears safe and effective while avoiding radiation and contrast agent use. © 2016, Wiley Periodicals, Inc.

  9. Hierarchical Self-Assembly of Light Guided Spinning Microgears

    NASA Astrophysics Data System (ADS)

    Aubret, Antoine; Youssef, Mena; Sacanna, Stefano; Palacci, Jeremie; Sacanna Group, NYU Team

    2017-11-01

    In this work, we demonstrate the self-assembly of microgears obtained from the guided construction of tailored self-propelled particles used as primary building blocks. The experiment relies on our control of phoretic phenomena: the migration of particles in a solute gradient. We activate a photocatalytic material, the hematite, and trigger the decomposition of hydrogen peroxide to set concentration gradient. We use this effect to engineer phototactic swimmers, attracted to the region of high illumination. We guide the swimmers to form robust and highly persistent microgears. They interact with each other through hydrodynamics and diffusiophoretically through the chemical clouds of fuel consumption. Multiple rotors are studied and we specifically address the dynamics of two rotors. We show that the microgears move collectively or synchronize thanks to the interaction of their chemical clouds. Increasing the number of microrotors (N = 2 - 7), we form an active crystal which can rotate, re-organize, change shape, and exhibit phase synchronization between its individual components. Such crystal made of non-equilibrium rotating gears at the microscale is unique. Our study paves the way for better understanding and control of emergent phenomena in collection of active spinning particles. It is a promising avenue for the creation of cutting-edge materials using emergent behavior from hierarchical self-assembly to unveil untapped functionalities. This work is supported by NSF CAREER DMR 1554724.

  10. The side effects and complications of percutaneous iodine-125 seeds implantation under CT-guide for patients with advanced pancreatic cancer.

    PubMed

    Lv, Wei-Fu; Lu, Dong; Xiao, Jing-Kun; Mukhiya, Gauri; Tan, Zhong-Xiao; Cheng, De-Lei; Zhou, Chun-Ze; Zhang, Xing-Min; Zhang, Zheng-Feng; Hou, Chang-Long

    2017-12-01

    The present study investigates the side effects and complications of computed tomography (CT)-guided percutaneous iodine-125 (I-125) seeds implantation for advanced pancreatic cancer. The clinical data were retrospectively analyzed for patients treated with implantation of I-125 seeds under CT-guide in our hospital from May 2010 to April 2015. The side effects and complications were collected and their possible reasons were analyzed. A total of 78 patients were enrolled. The side effects were categorized as fever in 29 cases (37.18%), abdominal pain in 26 cases (33.33%), nausea and vomiting in 9 cases (11.54%), diarrhea in 5 cases (6.41%), and constipation in 4 cases (5.13%). Complications were composed of pancreatitis in 9 cases (11.54%), infection in 5 cases (6.41%), seed migration in 2 cases (2.56%), intestinal perforation in 1 case (1.28%), and intestinal obstruction in 1 case. The incidence of complication was 23.08% (18/78). The difference in incidence of complication was statistically significant between patients implanted with ≤27 seeds and those with >27 seeds (P = .032). The side effects and complications frequently occur in implantation of I-125 seeds for patients with advanced pancreatic cancer. More concern should be given to the patients treated by this technique. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  11. Exploring Inflammatory Disease Drug Effects on Neutrophil Function

    PubMed Central

    Wu, Xiaojie; Kim, Donghyuk; Young, Ashlyn T.; Haynes, Christy L.

    2014-01-01

    Neutrophils are critical inflammatory cells; thus, it is important to characterize the effects of drugs on neutrophil function in the context of inflammatory diseases. Herein, chemically guided neutrophil migration, known as chemotaxis, is studied in the context of drug treatment at the single cell level using a microfluidic platform, complemented by cell viability assays and calcium imaging. Three representative drugs known to inhibit surface receptor expression, signaling enzyme activity, and the elevation of intracellular Ca2+ levels, each playing a significant role in neutrophil chemotactic pathways, are used to examine the in vitro drug effects on cellular behaviors. The microfluidic device establishes a stable concentration gradient of chemokines across a cell culture chamber so that neutrophil migration can be monitored under various drug-exposure conditions. Different time- and concentration-dependent regulatory effects were observed by comparing the motility, polarization, and effectiveness of neutrophil chemotaxis in response to the three drugs. Viability assays revealed distinct drug capabilities in reducing neutrophil viability while calcium imaging clarified the role of Ca2+ in the neutrophil chemotactic pathway. This study provides mechanistic insight into the drug effects on neutrophil function, facilitating comparison of current and potential pharmaceutical approaches. PMID:24946254

  12. Velocity of climate change algorithms for guiding conservation and management.

    PubMed

    Hamann, Andreas; Roberts, David R; Barber, Quinn E; Carroll, Carlos; Nielsen, Scott E

    2015-02-01

    The velocity of climate change is an elegant analytical concept that can be used to evaluate the exposure of organisms to climate change. In essence, one divides the rate of climate change by the rate of spatial climate variability to obtain a speed at which species must migrate over the surface of the earth to maintain constant climate conditions. However, to apply the algorithm for conservation and management purposes, additional information is needed to improve realism at local scales. For example, destination information is needed to ensure that vectors describing speed and direction of required migration do not point toward a climatic cul-de-sac by pointing beyond mountain tops. Here, we present an analytical approach that conforms to standard velocity algorithms if climate equivalents are nearby. Otherwise, the algorithm extends the search for climate refugia, which can be expanded to search for multivariate climate matches. With source and destination information available, forward and backward velocities can be calculated allowing useful inferences about conservation of species (present-to-future velocities) and management of species populations (future-to-present velocities). © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  13. Renal dendritic cells sample blood-borne antigen and guide T-cell migration to the kidney by means of intravascular processes.

    PubMed

    Yatim, Karim M; Gosto, Minja; Humar, Rishab; Williams, Amanda L; Oberbarnscheidt, Martin H

    2016-10-01

    Bony fish are among the first vertebrates to possess an innate and adaptive immune system. In these species, the kidney has a dual function: filtering solutes similar to mammals and acting as a lymphoid organ responsible for hematopoiesis and antigen processing. Recent studies have shown that the mammalian kidney has an extensive network of mononuclear phagocytes, whose function is not fully understood. Here, we employed two-photon intravital microscopy of fluorescent reporter mice to demonstrate that renal dendritic cells encase the microvasculature in the cortex, extend dendrites into the peritubular capillaries, and sample the blood for antigen. We utilized a mouse model of systemic bacterial infection as well as immune complexes to demonstrate antigen uptake by renal dendritic cells. As a consequence, renal dendritic cells mediated T-cell migration into the kidney in an antigen-dependent manner in the setting of bacterial infection. Thus, renal dendritic cells may be uniquely positioned to play an important role not only in surveillance of systemic infection but also in local infection and autoimmunity. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  14. Douglas-fir plantations in Europe: a retrospective test of assisted migration to address climate change.

    PubMed

    Isaac-Renton, Miriam G; Roberts, David R; Hamann, Andreas; Spiecker, Heinrich

    2014-08-01

    We evaluate genetic test plantations of North American Douglas-fir provenances in Europe to quantify how tree populations respond when subjected to climate regime shifts, and we examined whether bioclimate envelope models developed for North America to guide assisted migration under climate change can retrospectively predict the success of these provenance transfers to Europe. The meta-analysis is based on long-term growth data of 2800 provenances transferred to 120 European test sites. The model was generally well suited to predict the best performing provenances along north-south gradients in Western Europe, but failed to predict superior performance of coastal North American populations under continental climate conditions in Eastern Europe. However, model projections appear appropriate when considering additional information regarding adaptation of Douglas-fir provenances to withstand frost and drought, even though the model partially fails in a validation against growth traits alone. We conclude by applying the partially validated model to climate change scenarios for Europe, demonstrating that climate trends observed over the last three decades warrant changes to current use of Douglas-fir provenances in plantation forestry throughout Western and Central Europe. © 2014 John Wiley & Sons Ltd.

  15. Updating movement estimates for American black ducks (Anas rubripes)

    USGS Publications Warehouse

    Robinson, Orin J.; McGowan, Conor P.; Devers, Patrick K.

    2016-01-01

    Understanding migratory connectivity for species of concern is of great importance if we are to implement management aimed at conserving them. New methods are improving our understanding of migration; however, banding (ringing) data is by far the most widely available and accessible movement data for researchers. Here, we use band recovery data for American black ducks (Anas rubripes) from 1951–2011 and analyze their movement among seven management regions using a hierarchical Bayesian framework. We showed that black ducks generally exhibit flyway fidelity, and that many black ducks, regardless of breeding region, stopover or overwinter on the Atlantic coast of the United States. We also show that a non-trivial portion of the continental black duck population either does not move at all or moves to the north during the fall migration (they typically move to the south). The results of this analysis will be used in a projection modeling context to evaluate how habitat or harvest management actions in one region would propagate throughout the continental population of black ducks. This analysis may provide a guide for future research and help inform management efforts for black ducks as well as other migratory species.

  16. Ecological correlates of population genetic structure: a comparative approach using a vertebrate metacommunity.

    PubMed

    Manier, Mollie K; Arnold, Stevan J

    2006-12-07

    Identifying ecological factors associated with population genetic differentiation is important for understanding microevolutionary processes and guiding the management of threatened populations. We identified ecological correlates of several population genetic parameters for three interacting species (two garter snakes and an anuran) that occupy a common landscape. Using multiple regression analysis, we found that species interactions were more important in explaining variation in population genetic parameters than habitat and nearest-neighbour characteristics. Effective population size was best explained by census size, while migration was associated with differences in species abundance. In contrast, genetic distance was poorly explained by the ecological correlates that we tested, but geographical distance was prominent in models for all species. We found substantially different population dynamics for the prey species relative to the two predators, characterized by larger effective sizes, lower gene flow and a state of migration-drift equilibrium. We also identified an escarpment formed by a series of block faults that serves as a barrier to dispersal for the predators. Our results suggest that successful landscape-level management should incorporate genetic and ecological data for all relevant species, because even closely associated species can exhibit very different population genetic dynamics on the same landscape.

  17. Self-organization of bacterial biofilms is facilitated by extracellular DNA

    PubMed Central

    Gloag, Erin S.; Turnbull, Lynne; Huang, Alan; Vallotton, Pascal; Wang, Huabin; Nolan, Laura M.; Mililli, Lisa; Hunt, Cameron; Lu, Jing; Osvath, Sarah R.; Monahan, Leigh G.; Cavaliere, Rosalia; Charles, Ian G.; Wand, Matt P.; Gee, Michelle L.; Prabhakar, Ranganathan; Whitchurch, Cynthia B.

    2013-01-01

    Twitching motility-mediated biofilm expansion is a complex, multicellular behavior that enables the active colonization of surfaces by many species of bacteria. In this study we have explored the emergence of intricate network patterns of interconnected trails that form in actively expanding biofilms of Pseudomonas aeruginosa. We have used high-resolution, phase-contrast time-lapse microscopy and developed sophisticated computer vision algorithms to track and analyze individual cell movements during expansion of P. aeruginosa biofilms. We have also used atomic force microscopy to examine the topography of the substrate underneath the expanding biofilm. Our analyses reveal that at the leading edge of the biofilm, highly coherent groups of bacteria migrate across the surface of the semisolid media and in doing so create furrows along which following cells preferentially migrate. This leads to the emergence of a network of trails that guide mass transit toward the leading edges of the biofilm. We have also determined that extracellular DNA (eDNA) facilitates efficient traffic flow throughout the furrow network by maintaining coherent cell alignments, thereby avoiding traffic jams and ensuring an efficient supply of cells to the migrating front. Our analyses reveal that eDNA also coordinates the movements of cells in the leading edge vanguard rafts and is required for the assembly of cells into the “bulldozer” aggregates that forge the interconnecting furrows. Our observations have revealed that large-scale self-organization of cells in actively expanding biofilms of P. aeruginosa occurs through construction of an intricate network of furrows that is facilitated by eDNA. PMID:23798445

  18. Setting the Clock for Fail-Safe Early Embryogenesis.

    PubMed

    Fickentscher, Rolf; Struntz, Philipp; Weiss, Matthias

    2016-10-28

    The embryogenesis of the small nematode Caenorhabditis elegans is a remarkably robust self-organization phenomenon. Cell migration trajectories in the early embryo, for example, are well explained by mechanical cues that push cells into positions where they experience the least repulsive forces. Yet, how this mechanically guided progress in development is properly timed has remained elusive so far. Here, we show that cell volumes and division times are strongly anticorrelated during the early embryogenesis of C. elegans with significant differences between somatic cells and precursors of the germline. Our experimental findings are explained by a simple model that in conjunction with mechanical guidance can account for the fail-safe early embryogenesis of C. elegans.

  19. Contaminant Attenuation and Transport Characterization of 200-UP-1 Operable Unit Sediment Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Brady D.; Szecsody, James E.; Qafoku, Nikolla

    Contaminants disposed of at the land surface migrate through the vadose zone, forming plumes in groundwater. Processes that occur in the groundwater can attenuate contaminant concentrations during transport through the aquifer. For this reason, quantifying contaminant attenuation and contaminant transport processes in the aquifer, in support of the conceptual site model (CSM) and fate and transport modeling, are important for assessing the need for, and type of, remediation in the groundwater, including monitored natural attenuation (MNA). The framework to characterize attenuation and transport processes provided in U.S. Environmental Protection Agency (EPA) guidance documents was used to guide the laboratory effortmore » reported herein.« less

  20. Capillary Assembly of Colloids: Interactions on Planar and Curved Interfaces

    NASA Astrophysics Data System (ADS)

    Liu, Iris B.; Sharifi-Mood, Nima; Stebe, Kathleen J.

    2018-03-01

    In directed assembly, small building blocks are assembled into an organized structure under the influence of guiding fields. Capillary interactions provide a versatile route for structure formation. Colloids adsorbed on fluid interfaces distort the interface, which creates an associated energy field. When neighboring distortions overlap, colloids interact to minimize interfacial area. Contact line pinning, particle shape, and surface chemistry play important roles in structure formation. Interface curvature acts like an external field; particles migrate and assemble in patterns dictated by curvature gradients. We review basic analysis and recent findings in this rapidly evolving literature. Understanding the roles of assembly is essential for tuning the mechanical, physical, and optical properties of the structure.

  1. Role of the extracellular matrix during neural crest cell migration.

    PubMed

    Perris, R; Perissinotto, D

    2000-07-01

    Once specified to become neural crest (NC), cells occupying the dorsal portion of the neural tube disrupt their cadherin-mediated cell-cell contacts, acquire motile properties, and embark upon an extensive migration through the embryo to reach their ultimate phenotype-specific sites. The understanding of how this movement is regulated is still rather fragmentary due to the complexity of the cellular and molecular interactions involved. An additional intricate aspect of the regulation of NC cell movement is that the timings, modes and patterns of NC cell migration are intimately associated with the concomitant phenotypic diversification that cells undergo during their migratory phase and the fact that these changes modulate the way that moving cells interact with their microenvironment. To date, two interplaying mechanisms appear central for the guidance of the migrating NC cells through the embryo: one involves secreted signalling molecules acting through their cognate protein kinase/phosphatase-type receptors and the other is contributed by the multivalent interactions of the cells with their surrounding extracellular matrix (ECM). The latter ones seem fundamental in light of the central morphogenetic role played by the intracellular signals transduced through the cytoskeleton upon integrin ligation, and the convergence of these signalling cascades with those triggered by cadherins, survival/growth factor receptors, gap junctional communications, and stretch-activated calcium channels. The elucidation of the importance of the ECM during NC cell movement is presently favoured by the augmenting knowledge about the macromolecular structure of the specific ECM assembled during NC development and the functional assaying of its individual constituents via molecular and genetic manipulations. Collectively, these data propose that NC cell migration may be governed by time- and space-dependent alterations in the expression of inhibitory ECM components; the relative ratio of permissive versus non-permissive ECM components; and the supramolecular assembly of permissive ECM components. Six multidomain ECM constituents encoded by a corresponding number of genes appear to date the master ECM molecules in the control of NC cell movement. These are fibronectin, laminin isoforms 1 and 8, aggrecan, and PG-M/version isoforms V0 and V1. This review revisits a number of original observations in amphibian and avian embryos and discusses them in light of more recent experimental data to explain how the interaction of moving NC cells with these ECM components may be coordinated to guide cells toward their final sites during the process of organogenesis.

  2. Cellular interactions and biomechanical properties of a unique vascular-derived scaffold for periodontal tissue regeneration.

    PubMed

    Goktas, Selda; Pierre, Nicolas; Abe, Koki; Dmytryk, John; McFetridge, Peter S

    2010-03-01

    These investigations describe the development of a novel ex vivo three-dimensional scaffold derived from the human umbilical vein (HUV), and its potential as a regenerative matrix for tissue regeneration. Unique properties associated with the vascular wall have shown potential to function as a surgical barrier for guided tissue regeneration, particularly with the regeneration of periodontal tissues. HUV was isolated from umbilical cords using a semiautomated machining technology, decellularized using 1% sodium dodecyl sulfate, and then opened longitudinally to form tissue sheets. Uniaxial tensile testing, stress relaxation, and suture retention tests were performed on the acellular matrix to evaluate the HUV's biomechanical properties, followed by an evaluation of cellular interactions by seeding human gingival fibroblasts to assess adhesion, metabolic function, and proliferation on the scaffold. The scaffold's biomechanical properties were shown to display anisotropic behavior, which is attributed to the ex vivo material's composite structure. Detailed results indicated that the ultimate tensile strength of the longitudinal strips was significantly higher than that of the circumferential strips (p < 0.001). The HUV also exhibited significantly higher stress relaxation response in the longitudinal direction than in the circumferential orientation (p < 0.05). The ablumenal and lumenal surfaces of the material were also shown to differentially influence cell proliferation and metabolic activity, with both cellular functions significantly increased on the ablumenal surface (p < 0.05). Human gingival fibroblast migration into the scaffold was also influenced by the organization of extracellular matrix components, where the lumenal surface inhibits cell migration, acting as a barrier, while the ablumenal surface, which is proposed to interface with the wound site, promotes cellular invasion. These results show the HUV bioscaffold to be a promising naturally derived surgical barrier that may function well as a resorbable guided tissue regeneration membrane as well as in other clinical applications.

  3. Differential predation on tadpoles influences the potential effects of hybridization between Hyla cinerea and Hyla gratiosa

    USGS Publications Warehouse

    Gunzburger, M.S.

    2005-01-01

    Long-term effects of hybridization and introgression are influenced by performance of hybrids in habitats of parental species. The treefrogs Hyla cinerea and Hyla gratiosa, which typically breed in permanent and temporary habitats, respectively, have occasionally hybridized throughout the Southeastern United States. To predict in which of the parental habitats effects of hybridization might be strongest, I performed experiments to evaluate predation on tadpoles of H. cinerea, H. gratiosa, and F1 hybrids with predators typical of the breeding habitats of the parental species. Hybrid tadpoles had lower survival with sunfish than odonate naiad (dragonfly) predators and tended to increase hiding behavior in response to sunfish predation. Tadpoles of H. gratiosa also had higher survival with odonates than sunfish, but H. cinerea had similar survival with both predator types. These results suggest that hybrids are most likely to survive and return to breed in temporary habitats used by H. gratiosa. Thus, hybridization and introgression might be more likely to have adverse effects on populations of H. gratiosa than H. cinerea. Copyright 2005 Society for the Study of Amphibians and Reptiles.

  4. Niche Partitioning in Three Sympatric Congeneric Species of Dragonfly, Orthetrum chrysostigma, O. coerulescens anceps, and O. nitidinerve: The Importance of Microhabitat

    PubMed Central

    Khelifa, Rassim; Zebsa, Rabah; Moussaoui, Abdelkrim; Kahalerras, Amin; Bensouilah, Soufyane; Mahdjoub, Hayat

    2013-01-01

    Habitat heterogeneity has been shown to promote co-existence of closely related species. Based on this concept, a field study was conducted on the niche partitioning of three territorial congeneric species of skimmers (Anisoptera: Libellulidae) in Northeast Algeria during the breeding season of 2011. According to their size, there is a descending hierarchy between Orthetrum nitidinerve Sélys, O. chrysostigma (Burmeister), and O. coerulescens anceps (Schneider). After being marked and surveyed, the two latter species had the same breeding behavior sequence. Knowing that they had almost the same size, such species could not co-occur in the same habitat according to the competitive exclusion principle. The spatial distribution of the three species was investigated at two different microhabitats, and it was found that these two species were actually isolated at this scale. O. chrysostigma and O. nitidinerve preferred open areas, while O. c. anceps occurred in highly vegetated waters. This study highlights the role of microhabitat in community structure as an important niche axis that maintains closely related species in the same habitat. PMID:24219357

  5. Thelytokous parthenogenesis in the damselfly Ischnura hastata (Odonata, Coenagrionidae): genetic mechanisms and lack of bacterial infection.

    PubMed

    Lorenzo-Carballa, M O; Cordero-Rivera, A

    2009-11-01

    Thelytokous parthenogenesis, the production of female-only offspring from unfertilized eggs, has been described in all the insect orders, but is a rare phenomenon in the Odonata (dragonflies and damselflies). The only-known case of parthenogenesis in this group is the North American damselfly species Ischnura hastata, which has parthenogenetic populations in the Azores Islands. Here, we present for the first time the results of laboratory rearing, which showed parthenogenetic reproduction in the Azorean I. hastata populations. In an attempt to understand how parthenogenesis could have evolved in this species, we first determined the genetic mode of parthenogenesis by analysing the genotype of parthenogenetic females and their offspring at three polymorphic microsatellite loci. In addition, we used polymerase chain reaction amplification to test whether parthenogenesis in I. hastata could be bacterially induced. Our data indicate that thelytoky is achieved through an (at least functionally) apomictic mechanism and that parthenogenesis is not caused by endosymbionts. Finally, we discuss possible routes to parthenogenetic reproduction, as well as the evolutionary implications of this type of parthenogenesis.

  6. Bio-inspired silicon nanospikes fabricated by metal-assisted chemical etching for antibacterial surfaces

    NASA Astrophysics Data System (ADS)

    Hu, Huan; Siu, Vince S.; Gifford, Stacey M.; Kim, Sungcheol; Lu, Minhua; Meyer, Pablo; Stolovitzky, Gustavo A.

    2017-12-01

    The recently discovered bactericidal properties of nanostructures on wings of insects such as cicadas and dragonflies have inspired the development of similar nanostructured surfaces for antibacterial applications. Since most antibacterial applications require nanostructures covering a considerable amount of area, a practical fabrication method needs to be cost-effective and scalable. However, most reported nanofabrication methods require either expensive equipment or a high temperature process, limiting cost efficiency and scalability. Here, we report a simple, fast, low-cost, and scalable antibacterial surface nanofabrication methodology. Our method is based on metal-assisted chemical etching that only requires etching a single crystal silicon substrate in a mixture of silver nitrate and hydrofluoric acid for several minutes. We experimentally studied the effects of etching time on the morphology of the silicon nanospikes and the bactericidal properties of the resulting surface. We discovered that 6 minutes of etching results in a surface containing silicon nanospikes with optimal geometry. The bactericidal properties of the silicon nanospikes were supported by bacterial plating results, fluorescence images, and scanning electron microscopy images.

  7. Excerpts from SRL monthly reports on waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1967-06-01

    Radiophosphorus was first pumped to the K-Area 50-million gallon containment basin from the vertical tube storage basin at the Savannah River Piant in August 1965. From September to mid-November 1965, Tendipedidae midges emerging from the containment basin had sorbed /sup 32/P by factors of 10/sup 5/ to 10/sup 6/ (sup 32/P midge/water ratio), and spread the /sup 32/P locally. Attempts to control the midges by applying DDT and pouring diesel oil on the surface of the water did not succeed. Essentially no midges emerged during the winters of 1965-66 and 1966-67; and during the warm months of 1966 their emergencemore » was controlled effectively by two applications of Abate 4E, malathion, and diesel oil. Dragonflies that were collected near the basin during this period accumulated /sup 32/P factor of approximates 10/sup 3/. Data are also presented on the content of /sup 32/P in algae; fish, beetles, crickets, grasshoppers, and insect-eating birds collected in the area, and in Lespedeza growing on the lateral trenches and banks of the large containment basin. (CH)« less

  8. Effectiveness of amphibians as biodiversity surrogates in pond conservation.

    PubMed

    Ilg, Christiane; Oertli, Beat

    2017-04-01

    Amphibian decline has led to worldwide conservation efforts, including the identification and designation of sites for their protection. These sites could also play an important role in the conservation of other freshwater taxa. In 89 ponds in Switzerland, we assessed the effectiveness of amphibians as a surrogate for 4 taxonomic groups that occur in the same freshwater ecosystems as amphibians: dragonflies, aquatic beetles, aquatic gastropods, and aquatic plants. The ponds were all of high value for amphibian conservation. Cross-taxon correlations were tested for species richness and conservation value, and Mantel tests were used to investigate community congruence. Species richness, conservation value, and community composition of amphibians were weakly congruent with these measures for the other taxonomic groups. Paired comparisons for the 5 groups considered showed that for each metric, amphibians had the lowest degree of congruence. Our results imply that site designation for amphibian conservation will not necessarily provide protection for freshwater biodiversity as a whole. To provide adequate protection for freshwater species, we recommend other taxonomic groups be considered in addition to amphibians in the prioritization and site designation process. © 2016 Society for Conservation Biology.

  9. Inertia may limit efficiency of slow flapping flight, but mayflies show a strategy for reducing the power requirements of loiter.

    PubMed

    Usherwood, James R

    2009-03-01

    Predictions from aerodynamic theory often match biological observations very poorly. Many insects and several bird species habitually hover, frequently flying at low advance ratios. Taking helicopter-based aerodynamic theory, wings functioning predominantly for hovering, even for quite small insects, should operate at low angles of attack. However, insect wings operate at very high angles of attack during hovering; reduction in angle of attack should result in considerable energetic savings. Here, I consider the possibility that selection of kinematics is constrained from being aerodynamically optimal due to the inertial power requirements of flapping. Potential increases in aerodynamic efficiency with lower angles of attack during hovering may be outweighed by increases in inertial power due to the associated increases in flapping frequency. For simple hovering, traditional rotary-winged helicopter-like micro air vehicles would be more efficient than their flapping biomimetic counterparts. However, flapping may confer advantages in terms of top speed and manoeuvrability. If flapping-winged micro air vehicles are required to hover or loiter more efficiently, dragonflies and mayflies suggest biomimetic solutions.

  10. Intratumoral oxygen gradients mediate sarcoma cell invasion

    PubMed Central

    Lewis, Daniel M.; Park, Kyung Min; Tang, Vitor; Xu, Yu; Pak, Koreana; Eisinger-Mathason, T. S. Karin; Simon, M. Celeste; Gerecht, Sharon

    2016-01-01

    Hypoxia is a critical factor in the progression and metastasis of many cancers, including soft tissue sarcomas. Frequently, oxygen (O2) gradients develop in tumors as they grow beyond their vascular supply, leading to heterogeneous areas of O2 depletion. Here, we report the impact of hypoxic O2 gradients on sarcoma cell invasion and migration. O2 gradient measurements showed that large sarcoma mouse tumors (>300 mm3) contain a severely hypoxic core [≤0.1% partial pressure of O2 (pO2)] whereas smaller tumors possessed hypoxic gradients throughout the tumor mass (0.1–6% pO2). To analyze tumor invasion, we used O2-controllable hydrogels to recreate the physiopathological O2 levels in vitro. Small tumor grafts encapsulated in the hydrogels revealed increased invasion that was both faster and extended over a longer distance in the hypoxic hydrogels compared with nonhypoxic hydrogels. To model the effect of the O2 gradient accurately, we examined individual sarcoma cells embedded in the O2-controllable hydrogel. We observed that hypoxic gradients guide sarcoma cell motility and matrix remodeling through hypoxia-inducible factor-1α (HIF-1α) activation. We further found that in the hypoxic gradient, individual cells migrate more quickly, across longer distances, and in the direction of increasing O2 tension. Treatment with minoxidil, an inhibitor of hypoxia-induced sarcoma metastasis, abrogated cell migration and matrix remodeling in the hypoxic gradient. Overall, we show that O2 acts as a 3D physicotactic agent during sarcoma tumor invasion and propose the O2-controllable hydrogels as a predictive system to study early stages of the metastatic process and therapeutic targets. PMID:27486245

  11. Mapping Potential Amplification and Transmission Hotspots for MERS-CoV, Kenya.

    PubMed

    Gikonyo, Stephen; Kimani, Tabitha; Matere, Joseph; Kimutai, Joshua; Kiambi, Stella G; Bitek, Austine O; Juma Ngeiywa, K J Z; Makonnen, Yilma J; Tripodi, Astrid; Morzaria, Subhash; Lubroth, Juan; Rugalema, Gabriel; Fasina, Folorunso Oludayo

    2018-03-16

    Dromedary camels have been implicated consistently as the source of Middle East respiratory syndrome coronavirus (MERS-CoV) human infections and attention to prevent and control it has focused on camels. To understanding the epidemiological role of camels in the transmission of MERS-CoV, we utilized an iterative empirical process in Geographic Information System (GIS) to identify and qualify potential hotspots for maintenance and circulation of MERS-CoV, and produced risk-based surveillance sites in Kenya. Data on camel population and distribution were used to develop camel density map, while camel farming system was defined using multi-factorial criteria including the agro-ecological zones (AEZs), production and marketing practices. Primary and secondary MERS-CoV seroprevalence data from specific sites were analyzed, and location-based prevalence matching with camel densities was conducted. High-risk convergence points (migration zones, trade routes, camel markets, slaughter slabs) were profiled and frequent cross-border camel movement mapped. Results showed that high camel-dense areas and interaction (markets and migration zones) were potential hotspot for transmission and spread. Cross-border contacts occurred with in-migrated herds at hotspot locations. AEZ differential did not influence risk distribution and plausible risk factors for spatial MERS-CoV hotspots were camel densities, previous cases of MERS-CoV, high seroprevalence and points of camel convergences. Although Kenyan camels are predisposed to MERS-CoV, no shedding is documented to date. These potential hotspots, determined using anthropogenic, system and trade characterizations should guide selection of sampling/surveillance sites, high-risk locations, critical areas for interventions and policy development in Kenya, as well as instigate further virological examination of camels.

  12. Intratumoral oxygen gradients mediate sarcoma cell invasion.

    PubMed

    Lewis, Daniel M; Park, Kyung Min; Tang, Vitor; Xu, Yu; Pak, Koreana; Eisinger-Mathason, T S Karin; Simon, M Celeste; Gerecht, Sharon

    2016-08-16

    Hypoxia is a critical factor in the progression and metastasis of many cancers, including soft tissue sarcomas. Frequently, oxygen (O2) gradients develop in tumors as they grow beyond their vascular supply, leading to heterogeneous areas of O2 depletion. Here, we report the impact of hypoxic O2 gradients on sarcoma cell invasion and migration. O2 gradient measurements showed that large sarcoma mouse tumors (>300 mm(3)) contain a severely hypoxic core [≤0.1% partial pressure of O2 (pO2)] whereas smaller tumors possessed hypoxic gradients throughout the tumor mass (0.1-6% pO2). To analyze tumor invasion, we used O2-controllable hydrogels to recreate the physiopathological O2 levels in vitro. Small tumor grafts encapsulated in the hydrogels revealed increased invasion that was both faster and extended over a longer distance in the hypoxic hydrogels compared with nonhypoxic hydrogels. To model the effect of the O2 gradient accurately, we examined individual sarcoma cells embedded in the O2-controllable hydrogel. We observed that hypoxic gradients guide sarcoma cell motility and matrix remodeling through hypoxia-inducible factor-1α (HIF-1α) activation. We further found that in the hypoxic gradient, individual cells migrate more quickly, across longer distances, and in the direction of increasing O2 tension. Treatment with minoxidil, an inhibitor of hypoxia-induced sarcoma metastasis, abrogated cell migration and matrix remodeling in the hypoxic gradient. Overall, we show that O2 acts as a 3D physicotactic agent during sarcoma tumor invasion and propose the O2-controllable hydrogels as a predictive system to study early stages of the metastatic process and therapeutic targets.

  13. International migration and dietary change in Mexican women from a social practice framework.

    PubMed

    Bojorquez, Ietza; Rosales, Cecilia; Angulo, Alexandra; de Zapien, Jill; Denman, Catalina; Madanat, Hala

    2018-06-01

    Migration from lower- and middle-income to high-income countries is associated with dietary change, and especially with the adoption of a modern, less healthy diet. In this article we analyze the dietary changes experienced by Mexican migrants, employing as a theoretical framework the concept of social practice. According to this framework, practices integrate material elements, meanings and competences that provide their conditions of possibility. Practices are shared by members of social groups, and interact with other competing or reinforcing practices. Between 2014 and 2015, we conducted semi-structured interviews with 27 women, international return migrants living in Tijuana, Mexico. The interview guide asked about history of migration and dietary change. We found three main areas of dietary change: from subsistence farming to ready meals, abundance vs. restriction, and adoption of new food items. The first one was associated with changes in food procurement and female work: when moving from rural to urban areas, participants substituted self-produced for purchased food; and as migrant women joined the labor force, consumption of ready meals increased. The second was the result of changes in income: participants of lower socioeconomic position modified the logic of food acquisition from restriction to abundance and back, depending on the available resources. The third change was relatively minor, with occasional consumption of new dishes or food items, and was associated with exposure to different cuisines and with learning how to cook them. Public health efforts to improve the migrants' diets should take into account the constitutive elements of dietary practices, instead of isolating individuals from their social contexts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Tensile stress stimulates microtubule outgrowth in living cells

    NASA Technical Reports Server (NTRS)

    Kaverina, Irina; Krylyshkina, Olga; Beningo, Karen; Anderson, Kurt; Wang, Yu-Li; Small, J. Victor

    2002-01-01

    Cell motility is driven by the sum of asymmetric traction forces exerted on the substrate through adhesion foci that interface with the actin cytoskeleton. Establishment of this asymmetry involves microtubules, which exert a destabilising effect on adhesion foci via targeting events. Here, we demonstrate the existence of a mechano-sensing mechanism that signals microtubule polymerisation and guidance of the microtubules towards adhesion sites under increased stress. Stress was applied either by manipulating the body of cells moving on glass with a microneedle or by stretching a flexible substrate that cells were migrating on. We propose a model for this mechano-sensing phenomenon whereby microtubule polymerisation is stimulated and guided through the interaction of a microtubule tip complex with actin filaments under tension.

  15. Molecular-Assisted Pollen Grain Analysis Reveals Spatiotemporal Origin of Long-Distance Migrants of a Noctuid Moth

    PubMed Central

    Chang, Hong; Guo, Jianglong; Fu, Xiaowei; Liu, Yongqiang; Wyckhuys, Kris A. G.; Hou, Youming

    2018-01-01

    Pollen grains are regularly used as markers to determine an insect’s movement patterns or host (plant) feeding behavior, yet conventional morphology-based pollen grain analysis (or palynology) encounters a number of important limitations. In the present study, we combine conventional analytical approaches with DNA meta-barcoding to identify pollen grains attached to migrating adults of the turnip moth, Agrotis segetum (Lepidoptera: Noctuidae) in Northeast China. More specifically, pollen grains were dislodged from 2566 A. segetum long-distance migrants captured on Beihuang Island (Bohai Sea) and identified to many (plant) species level. Pollen belonged to 26 families of plants, including Fagaceae, Oleaceae, Leguminosae, Asteraceae, Pinaceae and Rosaceae, including common species such as Citrus sinensis, Olea europaea, Ligustrum lucidum, Robinia pseudoacacia, Castanopsis echinocarpa, Melia azedarach and Castanea henryi. As the above plants are indigenous to southern climes, we deduce that A. segetum forage on plants in those locales prior to engaging in northward spring migration. Our work validates the use of DNA-assisted approaches in lepidopteran pollination ecology research and provides unique and valuable information on the adult feeding range and geographical origin of A. segetum. Our findings also enable targeted (area-wide) pest management interventions or guide the future isolation of volatile attractants. PMID:29438348

  16. Three-dimensional matrix fiber alignment modulates cell migration and MT1-MMP utility by spatially and temporally directing protrusions

    NASA Astrophysics Data System (ADS)

    Fraley, Stephanie I.; Wu, Pei-Hsun; He, Lijuan; Feng, Yunfeng; Krisnamurthy, Ranjini; Longmore, Gregory D.; Wirtz, Denis

    2015-10-01

    Multiple attributes of the three-dimensional (3D) extracellular matrix (ECM) have been independently implicated as regulators of cell motility, including pore size, crosslink density, structural organization, and stiffness. However, these parameters cannot be independently varied within a complex 3D ECM protein network. We present an integrated, quantitative study of these parameters across a broad range of complex matrix configurations using self-assembling 3D collagen and show how each parameter relates to the others and to cell motility. Increasing collagen density resulted in a decrease and then an increase in both pore size and fiber alignment, which both correlated significantly with cell motility but not bulk matrix stiffness within the range tested. However, using the crosslinking enzyme Transglutaminase II to alter microstructure independently of density revealed that motility is most significantly predicted by fiber alignment. Cellular protrusion rate, protrusion orientation, speed of migration, and invasion distance showed coupled biphasic responses to increasing collagen density not predicted by 2D models or by stiffness, but instead by fiber alignment. The requirement of matrix metalloproteinase (MMP) activity was also observed to depend on microstructure, and a threshold of MMP utility was identified. Our results suggest that fiber topography guides protrusions and thereby MMP activity and motility.

  17. Columbia River Basin Fish and Wildlife Program Annual Implementation Work Plan for Fiscal Year 1994.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    United States. Bonneville Power Administration; Northwest Power Planning Council; Columbia Basin Fish and Wildlife Authority

    1994-02-01

    This document is part of Bonneville Power Administration`s program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The Fiscal Year 1994 (FY 1994) Annual Implementation Work Plan (AIWP) presents Bonneville Power Administration`s (BPA`s) plan for implementation of the Columbia River Basin Fish and Wildlife Program (Program). The purpose of the Program is to guide BPA and other federal agencies in carrying out their responsibilities to protect, mitigate, and enhance fish and wildlife in the Columbia River Basin. Phase I began the work of salmonmore » recovery with certain fast-track measures completed in August 1991. Phase II dealt with Snake and Columbia river flow and salmon harvest and was completed in December 1991. Phase III dealt with system-wide habitat and salmon production issues and was completed in September 1992. Phase IV planning, focusing on resident fish and wildlife, began in August 1993, and was finished and adopted in November 1993. This report provides summaries of the ongoing and new projects for FY 1994 within the areas of juvenile migration, adult migration, salmon harvest, production and habitat, coordinated implementation, monitoring and evaluation, resident fish, and wildlife.« less

  18. R5 HIV-1 envelope attracts dendritic cells to cross the human intestinal epithelium and sample luminal virions via engagement of the CCR5

    PubMed Central

    Cavarelli, Mariangela; Foglieni, Chiara; Rescigno, Maria; Scarlatti, Gabriella

    2013-01-01

    The gastrointestinal tract is a principal route of entry and site of persistence of human immunodeficiency virus type 1 (HIV-1). The intestinal mucosa, being rich of cells that are the main target of the virus, represents a primary site of viral replication and CD4+ T-cell depletion. Here, we show both in vitro and ex vivo that HIV-1 of R5 but not X4 phenotype is capable of selectively triggering dendritic cells (DCs) to migrate within 30 min between intestinal epithelial cells to sample virions and transfer infection to target cells. The engagement of the chemokine receptor 5 on DCs and the viral envelope, regardless of the genetic subtype, drive DC migration. Viruses penetrating through transient opening of the tight junctions likely create a paracellular gradient to attract DCs. The formation of junctions with epithelial cells may initiate a haptotactic process of DCs and at the same time favour cell-to-cell viral transmission. Our findings indicate that HIV-1 translocation across the intestinal mucosa occurs through the selective engagement of DCs by R5 viruses, and may guide the design of new prevention strategies. PMID:23606583

  19. R5 HIV-1 envelope attracts dendritic cells to cross the human intestinal epithelium and sample luminal virions via engagement of the CCR5.

    PubMed

    Cavarelli, Mariangela; Foglieni, Chiara; Rescigno, Maria; Scarlatti, Gabriella

    2013-05-01

    The gastrointestinal tract is a principal route of entry and site of persistence of human immunodeficiency virus type 1 (HIV-1). The intestinal mucosa, being rich of cells that are the main target of the virus, represents a primary site of viral replication and CD4(+) T-cell depletion. Here, we show both in vitro and ex vivo that HIV-1 of R5 but not X4 phenotype is capable of selectively triggering dendritic cells (DCs) to migrate within 30 min between intestinal epithelial cells to sample virions and transfer infection to target cells. The engagement of the chemokine receptor 5 on DCs and the viral envelope, regardless of the genetic subtype, drive DC migration. Viruses penetrating through transient opening of the tight junctions likely create a paracellular gradient to attract DCs. The formation of junctions with epithelial cells may initiate a haptotactic process of DCs and at the same time favour cell-to-cell viral transmission. Our findings indicate that HIV-1 translocation across the intestinal mucosa occurs through the selective engagement of DCs by R5 viruses, and may guide the design of new prevention strategies. Copyright © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  20. MarvelD3 couples tight junctions to the MEKK1–JNK pathway to regulate cell behavior and survival

    PubMed Central

    Steed, Emily; Elbediwy, Ahmed; Vacca, Barbara; Dupasquier, Sébastien; Hemkemeyer, Sandra A.; Suddason, Tesha; Costa, Ana C.; Beaudry, Jean-Bernard; Zihni, Ceniz; Gallagher, Ewen; Pierreux, Christophe E.

    2014-01-01

    MarvelD3 is a transmembrane component of tight junctions, but there is little evidence for a direct involvement in the junctional permeability barrier. Tight junctions also regulate signaling mechanisms that guide cell proliferation; however, the transmembrane components that link the junction to such signaling pathways are not well understood. In this paper, we show that MarvelD3 is a dynamic junctional regulator of the MEKK1–c-Jun NH2-terminal kinase (JNK) pathway. Loss of MarvelD3 expression in differentiating Caco-2 cells resulted in increased cell migration and proliferation, whereas reexpression in a metastatic tumor cell line inhibited migration, proliferation, and in vivo tumor formation. Expression levels of MarvelD3 inversely correlated with JNK activity, as MarvelD3 recruited MEKK1 to junctions, leading to down-regulation of JNK phosphorylation and inhibition of JNK-regulated transcriptional mechanisms. Interplay between MarvelD3 internalization and JNK activation tuned activation of MEKK1 during osmotic stress, leading to junction dissociation and cell death in MarvelD3-depleted cells. MarvelD3 thus couples tight junctions to the MEKK1–JNK pathway to regulate cell behavior and survival. PMID:24567356

Top