Science.gov

Sample records for guided multibeam radiotherapy

  1. [Task sharing with radiotherapy technicians in image-guided radiotherapy].

    PubMed

    Diaz, O; Lorchel, F; Revault, C; Mornex, F

    2013-10-01

    The development of accelerators with on-board imaging systems now allows better target volumes reset at the time of irradiation (image-guided radiotherapy [IGRT]). However, these technological advances in the control of repositioning led to a multiplication of tasks for each actor in radiotherapy and increase the time available for the treatment, whether for radiotherapy technicians or radiation oncologists. As there is currently no explicit regulatory framework governing the use of IGRT, some institutional experiments show that a transfer is possible between radiation oncologists and radiotherapy technicians for on-line verification of image positioning. Initial training for every technical and drafting procedures within institutions will improve audit quality by reducing interindividual variability.

  2. [Adaptative radiotherapy: The case for MRI-guided radiotherapy].

    PubMed

    Maingon, P

    2016-10-01

    The concept of image-guided radiotherapy benefits from the development of magnetic resonance imaging (MRI) associated with different capacities of tissue analyses such as spectroscopy or diffusion analysis. The production of devices allowing the repositioning of patients through MRI represents a strong added value without delivering any additional dose to the patient while the optimization of the adaptative strategies are facilitated by a better contrast of the soft tissues compared to the scanner. The advantages of MRI are well demonstrated for brain tumours, head and neck carcinomas, pelvic tumors, mediastinal malignancies, gastrointestinal tract diseases. Adaptative radiotherapy inaugurates a new area of radiotherapy with different modalities. Several technological solutions are provided or discussed allowing the patients to benefit from thses new technologies as soon as possible.

  3. [Good practice of image-guided radiotherapy].

    PubMed

    de Crevoisier, R; Créhange, G; Castelli, J; Lafond, C; Delpon, G

    2015-10-01

    Image-guided radiotherapy (IGRT) aims to take into account the anatomical variations occurring during the course of radiotherapy, by direct or indirect visualization of the target volume followed by a corrective action. The movements of the target, or at least the set-up errors are corrected by moving the treatment table, corresponding to the simplest and most validated IGRT modality in a standard practice. The deformations of the target volume and organs at risk are however much more common, and unfortunately much more complicated to consider, requiring multiple planning before or during the treatment, corresponding to the adaptive radiotherapy strategies. The planning target volume must be carefully chosen according to these anatomic variations. This article reviews the modalities of IGRT, standard or under evaluation, according to the different tumour sites.

  4. Fiducial marker guided prostate radiotherapy: a review.

    PubMed

    O'Neill, Angela G M; Jain, Suneil; Hounsell, Alan R; O'Sullivan, Joe M

    2016-12-01

    Image-guided radiotherapy (IGRT) is an essential tool in the accurate delivery of modern radiotherapy techniques. Prostate radiotherapy positioned using skin marks or bony anatomy may be adequate for delivering a relatively homogeneous whole-pelvic radiotherapy dose, but these surrogates are not reliable when using reduced margins, dose escalation or hypofractionated stereotactic radiotherapy. Fiducial markers (FMs) for prostate IGRT have been in use since the 1990s. They require surgical implantation and provide a surrogate for the position of the prostate gland. A variety of FMs are available and they can be used in a number of ways. This review aimed to establish the evidence for using prostate FMs in terms of feasibility, implantation procedures, types of FMs used, FM migration, imaging modalities used and the clinical impact of FMs. A search strategy was defined and a literature search was carried out in Medline. Inclusion and exclusion criteria were applied, which resulted in 50 articles being included in this review. The evidence demonstrates that FMs provide a more accurate surrogate for the position of the prostate than either external skin marks or bony anatomy. A combination of FM alignment and soft-tissue analysis is currently the most effective and widely available approach to ensuring accuracy in prostate IGRT. FM implantation is safe and well tolerated. FM migration is possible but minimal. Standardization of all techniques and procedures in relation to the use of prostate FMs is required. Finally, a clinical trial investigating a non-surgical alternative to prostate FMs is introduced.

  5. Dynamic targeting image-guided radiotherapy

    SciTech Connect

    Huntzinger, Calvin; Munro, Peter; Johnson, Scott; Miettinen, Mika; Zankowski, Corey; Ahlstrom, Greg; Glettig, Reto; Filliberti, Reto; Kaissl, Wolfgang; Kamber, Martin; Amstutz, Martin; Bouchet, Lionel; Klebanov, Dan; Mostafavi, Hassan; Stark, Richard

    2006-07-01

    Volumetric imaging and planning for 3-dimensional (3D) conformal radiotherapy and intensity-modulated radiotherapy (IMRT) have highlighted the need to the oncology community to better understand the geometric uncertainties inherent in the radiotherapy delivery process, including setup error (interfraction) as well as organ motion during treatment (intrafraction). This has ushered in the development of emerging technologies and clinical processes, collectively referred to as image-guided radiotherapy (IGRT). The goal of IGRT is to provide the tools needed to manage both inter- and intrafraction motion to improve the accuracy of treatment delivery. Like IMRT, IGRT is a process involving all steps in the radiotherapy treatment process, including patient immobilization, computed tomogaphy (CT) simulation, treatment planning, plan verification, patient setup verification and correction, delivery, and quality assurance. The technology and capability of the Dynamic Targeting{sup TM} IGRT system developed by Varian Medical Systems is presented. The core of this system is a Clinac (registered) or Trilogy{sup TM} accelerator equipped with a gantry-mounted imaging system known as the On-Board Imager{sup TM} (OBI). This includes a kilovoltage (kV) x-ray source, an amorphous silicon kV digital image detector, and 2 robotic arms that independently position the kV source and imager orthogonal to the treatment beam. A similar robotic arm positions the PortalVision{sup TM} megavoltage (MV) portal digital image detector, allowing both to be used in concert. The system is designed to support a variety of imaging modalities. The following applications and how they fit in the overall clinical process are described: kV and MV planar radiographic imaging for patient repositioning, kV volumetric cone beam CT imaging for patient repositioning, and kV planar fluoroscopic imaging for gating verification. Achieving image-guided motion management throughout the radiation oncology process

  6. Image-Guided Radiotherapy and -Brachytherapy for Cervical Cancer

    PubMed Central

    Dutta, Suresh; Nguyen, Nam Phong; Vock, Jacqueline; Kerr, Christine; Godinez, Juan; Bose, Satya; Jang, Siyoung; Chi, Alexander; Almeida, Fabio; Woods, William; Desai, Anand; David, Rick; Karlsson, Ulf Lennart; Altdorfer, Gabor

    2015-01-01

    Conventional radiotherapy for cervical cancer relies on clinical examination, 3-dimensional conformal radiotherapy (3D-CRT), and 2-dimensional intracavitary brachytherapy. Excellent local control and survival have been obtained for small early stage cervical cancer with definitive radiotherapy. For bulky and locally advanced disease, the addition of chemotherapy has improved the prognosis but toxicity remains significant. New imaging technology such as positron-emission tomography and magnetic resonance imaging has improved tumor delineation for radiotherapy planning. Image-guided radiotherapy (IGRT) may decrease treatment toxicity of whole pelvic radiation because of its potential for bone marrow, bowel, and bladder sparring. Tumor shrinkage during whole pelvic IGRT may optimize image-guided brachytherapy (IGBT), allowing for better local control and reduced toxicity for patients with cervical cancer. IGRT and IGBT should be integrated in future prospective studies for cervical cancer. PMID:25853092

  7. Image-guided radiotherapy and -brachytherapy for cervical cancer.

    PubMed

    Dutta, Suresh; Nguyen, Nam Phong; Vock, Jacqueline; Kerr, Christine; Godinez, Juan; Bose, Satya; Jang, Siyoung; Chi, Alexander; Almeida, Fabio; Woods, William; Desai, Anand; David, Rick; Karlsson, Ulf Lennart; Altdorfer, Gabor

    2015-01-01

    Conventional radiotherapy for cervical cancer relies on clinical examination, 3-dimensional conformal radiotherapy (3D-CRT), and 2-dimensional intracavitary brachytherapy. Excellent local control and survival have been obtained for small early stage cervical cancer with definitive radiotherapy. For bulky and locally advanced disease, the addition of chemotherapy has improved the prognosis but toxicity remains significant. New imaging technology such as positron-emission tomography and magnetic resonance imaging has improved tumor delineation for radiotherapy planning. Image-guided radiotherapy (IGRT) may decrease treatment toxicity of whole pelvic radiation because of its potential for bone marrow, bowel, and bladder sparring. Tumor shrinkage during whole pelvic IGRT may optimize image-guided brachytherapy (IGBT), allowing for better local control and reduced toxicity for patients with cervical cancer. IGRT and IGBT should be integrated in future prospective studies for cervical cancer.

  8. Comparison of image-guided radiotherapy technologies for prostate cancer.

    PubMed

    Das, Satya; Liu, Tian; Jani, Ashesh B; Rossi, Peter; Shelton, Joseph; Shi, Zheng; Khan, Mohammad K

    2014-12-01

    Radiation oncology has seen a rapid increase in the use of image-guided radiotherapy technology (IGRT) for prostate cancer patients over the past decade. The increase in the use of IGRT is largely driven by the fact that these technologies have been approved by the Food and Drug Administration and are now readily reimbursed by many insurance companies. Prostate cancer patients undergoing intensity modulated radiotherapy (IMRT) now have access to a wide variety of IGRTs that can cost anywhere from $500,000 or more in upfront costs, and can add anywhere from 10 to 15 thousand dollars to a course of IMRT. Some of the IGRT options include daily cone beam computed tomography, ultrasound, orthogonal x-ray units using implanted fiducial markers, implanted radiofrequency markers with the ability to localize and track prostate motion during radiotherapy (Calypso 4D), and cine magnetic resonance imaging. Although these technologies add to the cost of IMRT, there is little direct comparative effectiveness data to help patients, physicians, and policy makers decide if one technology is better than another. In our critical review, the first of its kind, we summarize the advantages, disadvantages, and the limitations of each technology. We also provide an overview of existing literature as it pertains to the comparison of existing IGRTs. Lastly, we provide insights about the need for future outcomes research that may have a significant impact on health policies as it comes to reimbursement in the modern era.

  9. Characterizing geometric accuracy and precision in image guided gated radiotherapy

    NASA Astrophysics Data System (ADS)

    Tenn, Stephen Edward

    Gated radiotherapy combined with intensity modulated or three-dimensional conformal radiotherapy for tumors in the thorax and abdomen can deliver dose distributions which conform closely to tumor shapes allowing increased tumor dose while sparing healthy tissues. These conformal fields require more accurate and precise placement than traditional fields or tumors may receive suboptimal dose thereby reducing tumor control probability. Image guidance based on four-dimensional computed tomography (4DCT) provides a means to improve accuracy and precision in radiotherapy. The ability of 4DCT to accurately reproduce patient geometry and the ability of image guided gating equipment to position tumors and place fields around them must be characterized in order to determine treatment parameters such as tumor margins. Fiducial based methods of characterizing accuracy and precision of equipment for 4DCT planning and image guided gated radiotherapy (IGGRT) are presented with results for specific equipment. Fiducial markers of known geometric orientation are used to characterize 4DCT image reconstruction accuracy. Accuracy is determined under different acquisition protocols, reconstruction phases, and phantom trajectories. Targeting accuracy of fiducial based image guided gating is assessed by measuring in-phantom field positions for different motions, gating levels and target rotations. Synchronization parameters for gating equipment are also determined. Finally, end-to-end testing is performed to assess overall accuracy and precision of the equipment under controlled conditions. 4DCT limits fiducial geometric distance errors to 2 mm for repeatable target trajectories and to 5 mm for a pseudo-random trajectory. Largest offsets were in the longitudinal direction. If correctly calibrated and synchronized, the IGGRT system tested here can target reproducibly moving tumors with accuracy better than 1.2 mm. Gating level can affect accuracy if target motion is asymmetric about the

  10. Dosimetry characterization of a multibeam radiotherapy treatment for age-related macular degeneration

    SciTech Connect

    Lee, Choonsik; Chell, Erik; Gertner, Michael; Hansen, Steven; Howell, Roger W.; Hanlon, Justin; Bolch, Wesley E.

    2008-11-15

    Age-related macular degeneration (ARMD) is a major health problem worldwide. Advanced ARMD, which ultimately leads to profound vision loss, has dry and wet forms, which account for 20% and 80% of cases involving severe vision loss, respectively. A new device and approach for radiation treatment of ARMD has been recently developed by Oraya Therapeutics, Inc. (Newark, CA). The goal of the present study is to provide a initial dosimetry characterization of the proposed radiotherapy treatment via Monte Carlo radiation transport simulation. A 3D eye model including cornea, anterior chamber, lens, orbit, fat, sclera, choroid, retina, vitreous, macula, and optic nerve was carefully designed. The eye model was imported into the MCNPX2.5 Monte Carlo code and radiation transport simulations were undertaken to obtain absorbed doses and dose volume histograms (DVH) to targeted and nontargeted structures within the eye. Three different studies were undertaken to investigate (1) available beam angles that maximized the dose to the macula target tissue, simultaneously minimizing dose to normal tissues, (2) the energy dependency of the DVH for different x-ray energies (80, 100, and 120 kVp), and (3) the optimal focal spot size among options of 0.0, 0.4, 1.0, and 5.5 mm. All results were scaled to give 8 Gy to the macula volume, which is the current treatment requirement. Eight beam treatment angles are currently under investigation. In all eight beam angles, the source-to-target distance is 13 cm, and the polar angle of entry is 30 degree sign from the geometric axis of the eye. The azimuthal angle changes in eight increments of 45 degree sign in a clockwise fashion, such that an azimuthal angle of 0 degree sign corresponds to the 12 o'clock position when viewing the treated eye. Based on considerations of nontarget tissue avoidance, as well as facial-anatomical restrictions on beam delivery, treatment azimuthal angles between 135 degree sign and 225 degree sign would be available

  11. [Image-guided radiotherapy: rational, modalities and results].

    PubMed

    de Crevoisier, R; Louvel, G; Cazoulat, G; Leseur, J; Lafond, C; Lahbabi, K; Chira, C; Lagrange, J-L

    2009-01-01

    The objective of Image-Guided Radiotherapy (IGRT) is to take in account the inter- or/and intrafraction anatomic variations (organ motion and deformations) in order to improve treatment accuracy. The IGRT should therefore translate in a clinical benefit the recent advances in both tumor definition thanks to functional imaging, and dose distribution thanks to intensity modulated radiotherapy. The IGRT enables direct or indirect tumor visualization during radiation delivery. If the tumor position does not correspond with the theoretical location of target derived from planning system, the table is moved. In case of important uncertainties related to target deformation, a new planning can be discussed. IGRT is realized by different types of devices which can vary in principle and as well as in their implementation: from LINAC-integrated-kV (or MV)-Cone Beam CTs to helicoidal tomotherapy, Cyberknife and Novalis low-energy stereoscopic imaging system. These techniques led to a more rational choice of Planning Target Volume. Being recently introduced in practice, the clinical results of this technique are still limited. Nevertheless, until so far, IGRT has showed promising results with reports of minimal acute toxicity. This review describes IGRT for various tumor localizations. The dose delivered by on board imaging should be taken in account. A strong quality control is required for safety and proper prospective evaluation of the clinical benefit of IGRT.

  12. An image guided small animal stereotactic radiotherapy system

    PubMed Central

    Sha, Hao; Udayakumar, Thirupandiyur S.; Johnson, Perry B.; Dogan, Nesrin; Pollack, Alan; Yang, Yidong

    2016-01-01

    Small animal radiotherapy studies should be performed preferably on irradiators capable of focal tumor irradiation and healthy tissue sparing. In this study, an image guided small animal arc radiation treatment system (iSMAART) was developed which can achieve highly precise radiation targeting through the utilization of onboard cone beam computed tomography (CBCT) guidance. The iSMAART employs a unique imaging and radiation geometry where animals are positioned upright. It consists of a stationary x-ray tube, a stationary flat panel detector, and a rotatable and translational animal stage. System performance was evaluated in regards to imaging, image guidance, animal positioning, and radiation targeting using phantoms and tumor bearing animals. The onboard CBCT achieved good signal, contrast, and sub-millimeter spatial resolution. The iodine contrast CBCT accurately delineated orthotopic prostate tumors. Animal positioning was evaluated with ∼0.3 mm vertical displacement along superior-inferior direction. The overall targeting precision was within 0.4 mm. Stereotactic radiation beams conformal to tumor targets can be precisely delivered from multiple angles surrounding the animal. The iSMAART allows radiobiology labs to utilize an image guided precision radiation technique that can focally irradiate tumors while sparing healthy tissues at an affordable cost. PMID:26958942

  13. Fluoroscopic tumor tracking for image-guided lung cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Lin, Tong; Cerviño, Laura I.; Tang, Xiaoli; Vasconcelos, Nuno; Jiang, Steve B.

    2009-02-01

    Accurate lung tumor tracking in real time is a keystone to image-guided radiotherapy of lung cancers. Existing lung tumor tracking approaches can be roughly grouped into three categories: (1) deriving tumor position from external surrogates; (2) tracking implanted fiducial markers fluoroscopically or electromagnetically; (3) fluoroscopically tracking lung tumor without implanted fiducial markers. The first approach suffers from insufficient accuracy, while the second may not be widely accepted due to the risk of pneumothorax. Previous studies in fluoroscopic markerless tracking are mainly based on template matching methods, which may fail when the tumor boundary is unclear in fluoroscopic images. In this paper we propose a novel markerless tumor tracking algorithm, which employs the correlation between the tumor position and surrogate anatomic features in the image. The positions of the surrogate features are not directly tracked; instead, we use principal component analysis of regions of interest containing them to obtain parametric representations of their motion patterns. Then, the tumor position can be predicted from the parametric representations of surrogates through regression. Four regression methods were tested in this study: linear and two-degree polynomial regression, artificial neural network (ANN) and support vector machine (SVM). The experimental results based on fluoroscopic sequences of ten lung cancer patients demonstrate a mean tracking error of 2.1 pixels and a maximum error at a 95% confidence level of 4.6 pixels (pixel size is about 0.5 mm) for the proposed tracking algorithm.

  14. Image guided dose escalated prostate radiotherapy: still room to improve

    PubMed Central

    Martin, Jarad M; Bayley, Andrew; Bristow, Robert; Chung, Peter; Gospodarowicz, Mary; Menard, Cynthia; Milosevic, Michael; Rosewall, Tara; Warde, Padraig R; Catton, Charles N

    2009-01-01

    Background Prostate radiotherapy (RT) dose escalation has been reported to result in improved biochemical control at the cost of greater late toxicity. We report on the application of 79.8 Gy in 42 fractions of prostate image guided RT (IGRT). The primary objective was to assess 5-year biochemical control and potential prognostic factors by the Phoenix definition. Secondary endpoints included acute and late toxicity by the Radiotherapy Oncology Group (RTOG) scoring scales. Methods From October/2001 and June/2003, 259 men were treated with at least 2-years follow-up. 59 patients had low, 163 intermediate and 37 high risk disease. 43 had adjuvant hormonal therapy (HT), mostly for high- or multiple risk factor intermediate-risk disease (n = 25). They received either 3-dimensional conformal RT (3DCRT, n = 226) or intensity modulated RT (IMRT) including daily on-line IGRT with intraprostatic fiducial markers. Results Median follow-up was 67.8 months (range 24.4-84.7). There was no severe (grade 3-4) acute toxicity, and grade 2 acute gastrointestinal (GI) toxicity was unusual (10.1%). The 5-year incidence of grade 2-3 late GI and genitourinary (GU) toxicity was 13.7% and 12.1%, with corresponding grade 3 figures of 3.5% and 2.0% respectively. HT had an association with an increased risk of grade 2-3 late GI toxicity (11% v 21%, p = 0.018). Using the Phoenix definition for biochemical failure, the 5 year-bNED is 88.4%, 76.5% and 77.9% for low, intermediate and high risk patients respectively. On univariate analysis, T-category and Gleason grade correlated with Phoenix bNED (p = 0.006 and 0.039 respectively). Hormonal therapy was not a significant prognostic factor on uni- or multi-variate analysis. Men with positive prostate biopsies following RT had a lower chance of bNED at 5 years (34.4% v 64.3%; p = 0.147). Conclusion IGRT to 79.8 Gy results in favourable rates of late toxicity compared with published non-IGRT treated cohorts. Future avenues of investigation for

  15. Post-Prostatectomy Image-Guided Radiotherapy: The Invisible Target Concept

    PubMed Central

    Vilotte, Florent; Antoine, Mickael; Bobin, Maxime; Latorzeff, Igor; Supiot, Stéphane; Richaud, Pierre; Thomas, Laurence; Leduc, Nicolas; Guérif, Stephane; Iriondo-Alberdi, Jone; de Crevoisier, Renaud; Sargos, Paul

    2017-01-01

    In the era of intensity-modulated radiation therapy, image-guided radiotherapy (IGRT) appears crucial to control dose delivery and to promote dose escalation while allowing healthy tissue sparing. The place of IGRT following radical prostatectomy is poorly described in the literature. This review aims to highlight some key points on the different IGRT techniques applicable to prostatic bed radiotherapy. Furthermore, methods used to evaluate target motion and to reduce planning target volume margins will also be explored. PMID:28337425

  16. Post-Prostatectomy Image-Guided Radiotherapy: The Invisible Target Concept.

    PubMed

    Vilotte, Florent; Antoine, Mickael; Bobin, Maxime; Latorzeff, Igor; Supiot, Stéphane; Richaud, Pierre; Thomas, Laurence; Leduc, Nicolas; Guérif, Stephane; Iriondo-Alberdi, Jone; de Crevoisier, Renaud; Sargos, Paul

    2017-01-01

    In the era of intensity-modulated radiation therapy, image-guided radiotherapy (IGRT) appears crucial to control dose delivery and to promote dose escalation while allowing healthy tissue sparing. The place of IGRT following radical prostatectomy is poorly described in the literature. This review aims to highlight some key points on the different IGRT techniques applicable to prostatic bed radiotherapy. Furthermore, methods used to evaluate target motion and to reduce planning target volume margins will also be explored.

  17. Effect of image-guided hypofractionated stereotactic radiotherapy on peripheral non-small-cell lung cancer

    PubMed Central

    Wang, Shu-wen; Ren, Juan; Yan, Yan-li; Xue, Chao-fan; Tan, Li; Ma, Xiao-wei

    2016-01-01

    The objective of this study was to compare the effects of image-guided hypofractionated radiotherapy and conventional fractionated radiotherapy on non-small-cell lung cancer (NSCLC). Fifty stage- and age-matched cases with NSCLC were randomly divided into two groups (A and B). There were 23 cases in group A and 27 cases in group B. Image-guided radiotherapy (IGRT) and stereotactic radiotherapy were conjugately applied to the patients in group A. Group A patients underwent hypofractionated radiotherapy (6–8 Gy/time) three times per week, with a total dose of 64–66 Gy; group B received conventional fractionated radiotherapy, with a total dose of 68–70 Gy five times per week. In group A, 1-year and 2-year local failure survival rate and 1-year local failure-free survival rate were significantly higher than in group B (P<0.05). The local failure rate (P<0.05) and distant metastasis rate (P>0.05) were lower in group A than in group B. The overall survival rate of group A was significantly higher than that of group B (P=0.03), and the survival rate at 1 year was 87% vs 63%, (P<0.05). The median survival time of group A was longer than that of group B. There was no significant difference in the incidence of complications between the two groups (P>0.05). Compared with conventional fractionated radiation therapy, image-guided hypofractionated stereotactic radiotherapy in NSCLC received better treatment efficacy and showed good tolerability. PMID:27574441

  18. Image-guided radiotherapy and motion management in lung cancer

    PubMed Central

    2015-01-01

    In this review, image guidance and motion management in radiotherapy for lung cancer is discussed. Motion characteristics of lung tumours and image guidance techniques to obtain motion information are elaborated. Possibilities for management of image guidance and motion in the various steps of the treatment chain are explained, including imaging techniques and beam delivery techniques. Clinical studies using different motion management techniques are reviewed, and finally future directions for image guidance and motion management are outlined. PMID:25955231

  19. Quantitative Assessment of Image-Guided Radiotherapy for Paraspinal Tumors

    SciTech Connect

    Stoiber, Eva M.; Lechsel, Gerhard; Giske, Kristina; Muenter, Marc W.; Hoess, Angelika; Bendl, Rolf; Debus, Juergen; Huber, Peter E.; Thieke, Christian

    2009-11-01

    Purpose: To evaluate stereotactic positioning uncertainties of patients with paraspinal tumors treated with fractionated intensity-modulated radiotherapy; and to determine whether target-point correction via rigid registration is sufficient for daily patient positioning. Patients and Methods: Forty-five patients with tumors at the cervical, thoracic, and lumbar spine received regular control computed-tomography (CT) scans using an in-room CT scanner. All patients were immobilized with the combination of Scotch cast torso and head masks. The positioning was evaluated regarding translational and rotational errors by applying a rigid registration algorithm based on mutual information. The registration box was fitted to the target volume for optimal registration in the high-dose area. To evaluate the suitability of the rigid registration result for correcting the target volume position we subsequently registered three small subsections of the upper, middle, and lower target volume. The resulting residual deviations reflect the extent of the elastic deformations, which cannot be covered by the rigid-body registration procedure. Results: A total of 321 control CT scans were evaluated. The rotational errors were negligible. Translational errors were smallest for cervical tumors (-0.1 +- 1.1, 0.3 +- 0.8, and 0.1 +- 0.9 mm along left-right, anterior-posterior, and superior-inferior axes), followed by thoracic (0.8 +- 1.1, 0.3 +- 0.8, and 1.1 +- 1.3 mm) and lumbar tumors (-0.7 +- 1.3, 0.0 +- 0.9, and 0.5 +- 1.6 mm). The residual deviations of the three subsections were <1 mm. Conclusions: The applied stereotactic patient setup resulted in small rotational errors. However, considerable translational positioning errors may occur; thus, on the basis of these data daily control CT scans are recommended. Rigid transformation is adequate for correcting the target volume position.

  20. Stereotactic Image-Guided Intensity Modulated Radiotherapy Using the HI-ART II Helical Tomotherapy System

    SciTech Connect

    Holmes, Timothy W. Hudes, Richard; Dziuba, Sylwester; Kazi, Abdul; Hall, Mark; Dawson, Dana

    2008-07-01

    The highly integrated adaptive radiation therapy (HI-ART II) helical tomotherapy unit is a new radiotherapy machine designed to achieve highly precise and accurate treatments at all body sites. The precision and accuracy of the HI-ART II is similar to that provided by stereotactic radiosurgery systems, hence the historical distinction between external beam radiotherapy and stereotactic procedures based on differing precision requirements is removed for this device. The objectives of this work are: (1) to describe stereotactic helical tomotherapy processes (SRS, SBRT); (2) to show that the precision and accuracy of the HI-ART meet the requirements defined for SRS and SBRT; and (3) to describe the clinical implementation of a stereotactic image-guided intensity modulated radiation therapy (IG-IMRT) system that incorporates optical motion management.

  1. MRI-guided tumor tracking in lung cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Cerviño, Laura I.; Du, Jiang; Jiang, Steve B.

    2011-07-01

    Precise tracking of lung tumor motion during treatment delivery still represents a challenge in radiation therapy. Prototypes of MRI-linac hybrid systems are being created which have the potential of ionization-free real-time imaging of the tumor. This study evaluates the performance of lung tumor tracking algorithms in cine-MRI sagittal images from five healthy volunteers. Visible vascular structures were used as targets. Volunteers performed several series of regular and irregular breathing. Two tracking algorithms were implemented and evaluated: a template matching (TM) algorithm in combination with surrogate tracking using the diaphragm (surrogate was used when the maximum correlation between the template and the image in the search window was less than specified), and an artificial neural network (ANN) model based on the principal components of a region of interest that encompasses the target motion. The mean tracking error ē and the error at 95% confidence level e95 were evaluated for each model. The ANN model led to ē = 1.5 mm and e95 = 4.2 mm, while TM led to ē = 0.6 mm and e95 = 1.0 mm. An extra series was considered separately to evaluate the benefit of using surrogate tracking in combination with TM when target out-of-plane motion occurs. For this series, the mean error was 7.2 mm using only TM and 1.7 mm when the surrogate was used in combination with TM. Results show that, as opposed to tracking with other imaging modalities, ANN does not perform well in MR-guided tracking. TM, however, leads to highly accurate tracking. Out-of-plane motion could be addressed by surrogate tracking using the diaphragm, which can be easily identified in the images.

  2. Accurate calibration of a stereo-vision system in image-guided radiotherapy

    SciTech Connect

    Liu Dezhi; Li Shidong

    2006-11-15

    Image-guided radiotherapy using a three-dimensional (3D) camera as the on-board surface imaging system requires precise and accurate registration of the 3D surface images in the treatment machine coordinate system. Two simple calibration methods, an analytical solution as three-point matching and a least-squares estimation method as multipoint registration, were introduced to correlate the stereo-vision surface imaging frame with the machine coordinate system. Both types of calibrations utilized 3D surface images of a calibration template placed on the top of the treatment couch. Image transformational parameters were derived from corresponding 3D marked points on the surface images to their given coordinates in the treatment room coordinate system. Our experimental results demonstrated that both methods had provided the desired calibration accuracy of 0.5 mm. The multipoint registration method is more robust particularly for noisy 3D surface images. Both calibration methods have been used as our weekly QA tools for a 3D image-guided radiotherapy system.

  3. The treatment of intraperitoneal malignant disease with monoclonal antibody guided 131I radiotherapy.

    PubMed Central

    Ward, B.; Mather, S.; Shepherd, J.; Crowther, M.; Hawkins, L.; Britton, K.; Slevin, M. L.

    1988-01-01

    Seven patients with small volume ovarian carcinoma, remaining after conventional therapy with surgery and a platinum containing chemotherapy regimen, were treated with intraperitoneal monoclonal antibody guided radiotherapy. 100 mCi131I conjugated to 10 mg of monoclonal antibody were injected i.p. in 2,000 ml peritoneal dialysis fluid. Patients were evaluated 3 months later; 3 had clinical progressive disease while third look laparotomy demonstrated progressive disease in 3 of the remaining 4 patients. The seventh patient did not have a third look laparotomy and is currently inevaluable for response. Five patients with recurrent malignant ascites not controlled by diuretics or repeated paracentesis were similarly treated with 75-170 mCi131I conjugated to 10 mg monoclonal antibody. In three patients the ascites was controlled for a mean of 4 months. One patient died too early to assess the control of his ascites but tumour cells disappeared from the ascitic fluid after therapy. In the patient whose ascites were not controlled, a subpopulation of antigen-negative tumour cells was demonstrated. This study was unable to demonstrate a therapeutic benefit for i.p. injected monoclonal antibody guided radiotherapy for solid intraperitoneal tumour but suggests that it may be capable of controlling the accumulation of antigen positive malignant ascites. Images Figure 1 Figure 3 Figure 4 PMID:3219277

  4. WE-EF-BRD-01: Past, Present and Future: MRI-Guided Radiotherapy From 2005 to 2025

    SciTech Connect

    Lagendijk, J.

    2015-06-15

    MRI-guided treatment is a growing area of medicine, particularly in radiotherapy and surgery. The exquisite soft tissue anatomic contrast offered by MRI, along with functional imaging, makes the use of MRI during therapeutic procedures very attractive. Challenging the utility of MRI in the therapy room are many issues including the physics of MRI and the impact on the environment and therapeutic instruments, the impact of the room and instruments on the MRI; safety, space, design and cost. In this session, the applications and challenges of MRI-guided treatment will be described. The session format is: Past, present and future: MRI-guided radiotherapy from 2005 to 2025: Jan Lagendijk Battling Maxwell’s equations: Physics challenges and solutions for hybrid MRI systems: Paul Keall I want it now!: Advances in MRI acquisition, reconstruction and the use of priors to enable fast anatomic and physiologic imaging to inform guidance and adaptation decisions: Yanle Hu MR in the OR: The growth and applications of MRI for interventional radiology and surgery: Rebecca Fahrig Learning Objectives: To understand the history and trajectory of MRI-guided radiotherapy To understand the challenges of integrating MR imaging systems with linear accelerators To understand the latest in fast MRI methods to enable the visualisation of anatomy and physiology on radiotherapy treatment timescales To understand the growing role and challenges of MRI for image-guided surgical procedures My disclosures are publicly available and updated at: http://sydney.edu.au/medicine/radiation-physics/about-us/disclosures.php.

  5. Development of an integral system test for image-guided radiotherapy

    SciTech Connect

    Rowbottom, Carl G.; Jaffray, David A.

    2004-12-01

    An integral system test was developed to determine the precision and accuracy of an image-guided radiotherapy system involving an x-ray volumetric imaging device mounted onto the gantry of a medical linear accelerator. The test was designed to interrogate the system components as a whole without deconstructing the individual sources of error. The integral system test was based on the imaging of an unambiguous stationary object in the treatment position and so took no account of patient related errors. An array of micromosfets interspersed within slices of a tissue equivalent phantom was developed as an imaging test object. It has previously been demonstrated that micromosfets have a very small active volume, are clearly visible on CT images, and produce no significant artifacts. In addition, the active volume of the micromosfets can be accurately inferred radiographically via the use of x-ray volumetric imaging. X-ray volumetric imaging was performed with the object in the treatment position, then reconstructed and transferred to a treatment planning system. With the phantom remaining undisturbed in the treatment position a series of treatment fields were designed to produce a series of fields with the leaf edge sweeping across active volume of the micromosfets. The fields were delivered with a micro-MLC to dosimetrically verify the position of the mosfets and compare with dose values produced by the treatment planning system. It was demonstrated that the systematic gantry flex could be accounted for by the imaging and delivery systems. For the delivery system small changes in leaf positions of the micro-MLC were required to account for gantry flex. The position of the micromosfets determined by the 50% dose position was on average (0.15{+-}0.13) mm away from the position determined radiographically for the x and y axes, and (1.0{+-}0.14) mm for the z axis. This implies that a margin of approximately 0.2 mm in the axial plane and 1.0 mm in the superior

  6. NBN gain is predictive for adverse outcome following image-guided radiotherapy for localized prostate cancer

    PubMed Central

    Sykes, Jenna; Zafarana, Gaetano; Chu, Kenneth C.; Ramnarine, Varune R.; Ishkanian, Adrian; Sendorek, Dorota H.S.; Pasic, Ivan; Lam, Wan L.; Jurisica, Igor; van der Kwast, Theo; Milosevic, Michael; Boutros, Paul C.; Bristow, Robert G.

    2014-01-01

    Despite the use of clinical prognostic factors (PSA, T-category and Gleason score), 20-60% of localized prostate cancers (PCa) fail primary local treatment. Herein, we determined the prognostic importance of main sensors of the DNA damage response (DDR): MRE11A, RAD50, NBN, ATM, ATR and PRKDC. We studied copy number alterations in DDR genes in localized PCa treated with image-guided radiotherapy (IGRT; n=139) versus radical prostatectomy (RadP; n=154). In both cohorts, NBN gains were the most frequent genomic alteration (14.4 and 11% of cases, respectively), and were associated with overall tumour genomic instability (p<0.0001). NBN gains were the only significant predictor of 5yrs biochemical relapse-free rate (bRFR) following IGRT (46% versus 77%; p=0.00067). On multivariate analysis, NBN gain remained a significant independent predictor of bRFR after adjusting for known clinical prognostic variables (HR=3.28, 95% CI 1.56–6.89, Wald p-value=0.0017). No DDR-sensing gene was prognostic in the RadP cohort. In vitro studies correlated NBN gene overexpression with PCa cells radioresistance. In conclusion, NBN gain predicts for decreased bRFR in IGRT, but not in RadP patients. If validated independently, Nibrin gains may be the first PCa predictive biomarker to facilitate local treatment decisions using precision medicine approaches with surgery or radiotherapy. PMID:25415046

  7. SU-E-J-191: Motion Prediction Using Extreme Learning Machine in Image Guided Radiotherapy

    SciTech Connect

    Jia, J; Cao, R; Pei, X; Wang, H; Hu, L

    2015-06-15

    Purpose: Real-time motion tracking is a critical issue in image guided radiotherapy due to the time latency caused by image processing and system response. It is of great necessity to fast and accurately predict the future position of the respiratory motion and the tumor location. Methods: The prediction of respiratory position was done based on the positioning and tracking module in ARTS-IGRT system which was developed by FDS Team (www.fds.org.cn). An approach involving with the extreme learning machine (ELM) was adopted to predict the future respiratory position as well as the tumor’s location by training the past trajectories. For the training process, a feed-forward neural network with one single hidden layer was used for the learning. First, the number of hidden nodes was figured out for the single layered feed forward network (SLFN). Then the input weights and hidden layer biases of the SLFN were randomly assigned to calculate the hidden neuron output matrix. Finally, the predicted movement were obtained by applying the output weights and compared with the actual movement. Breathing movement acquired from the external infrared markers was used to test the prediction accuracy. And the implanted marker movement for the prostate cancer was used to test the implementation of the tumor motion prediction. Results: The accuracy of the predicted motion and the actual motion was tested. Five volunteers with different breathing patterns were tested. The average prediction time was 0.281s. And the standard deviation of prediction accuracy was 0.002 for the respiratory motion and 0.001 for the tumor motion. Conclusion: The extreme learning machine method can provide an accurate and fast prediction of the respiratory motion and the tumor location and therefore can meet the requirements of real-time tumor-tracking in image guided radiotherapy.

  8. Reliability of the Bony Anatomy in Image-Guided Stereotactic Radiotherapy of Brain Metastases

    SciTech Connect

    Guckenberger, Matthias Baier, Kurt; Guenther, Iris; Richter, Anne; Wilbert, Juergen; Sauer, Otto; Vordermark, Dirk; Flentje, Michael

    2007-09-01

    Purpose: To evaluate whether the position of brain metastases remains stable between planning and treatment in cranial stereotactic radiotherapy (SRT). Methods and Materials: Eighteen patients with 20 brain metastases were treated with single-fraction (17 lesions) or hypofractionated (3 lesions) image-guided SRT. Median time interval between planning and treatment was 8 days. Before treatment a cone-beam CT (CBCT) and a conventional CT after application of i.v. contrast were acquired. Setup errors using automatic bone registration (CBCT) and manual soft-tissue registration of the brain metastases (conventional CT) were compared. Results: Tumor size was not significantly different between planning and treatment. The three-dimensional setup error (mean {+-} SD) was 4.0 {+-} 2.1 mm and 3.5 {+-} 2.2 mm according to the bony anatomy and the lesion itself, respectively. A highly significant correlation between automatic bone match and soft-tissue registration was seen in all three directions (r {>=} 0.88). The three-dimensional distance between the isocenter according to bone match and soft-tissue registration was 1.7 {+-} 0.7 mm, maximum 2.8 mm. Treatment of intracranial pressure with steroids did not influence the position of the lesion relative to the bony anatomy. Conclusion: With a time interval of approximately 1 week between planning and treatment, the bony anatomy of the skull proved to be an excellent surrogate for the target position in image-guided SRT.

  9. Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Stemkens, Bjorn; Tijssen, Rob H. N.; de Senneville, Baudouin Denis; Lagendijk, Jan J. W.; van den Berg, Cornelis A. T.

    2016-07-01

    Respiratory motion introduces substantial uncertainties in abdominal radiotherapy for which traditionally large margins are used. The MR-Linac will open up the opportunity to acquire high resolution MR images just prior to radiation and during treatment. However, volumetric MRI time series are not able to characterize 3D tumor and organ-at-risk motion with sufficient temporal resolution. In this study we propose a method to estimate 3D deformation vector fields (DVFs) with high spatial and temporal resolution based on fast 2D imaging and a subject-specific motion model based on respiratory correlated MRI. In a pre-beam phase, a retrospectively sorted 4D-MRI is acquired, from which the motion is parameterized using a principal component analysis. This motion model is used in combination with fast 2D cine-MR images, which are acquired during radiation, to generate full field-of-view 3D DVFs with a temporal resolution of 476 ms. The geometrical accuracies of the input data (4D-MRI and 2D multi-slice acquisitions) and the fitting procedure were determined using an MR-compatible motion phantom and found to be 1.0-1.5 mm on average. The framework was tested on seven healthy volunteers for both the pancreas and the kidney. The calculated motion was independently validated using one of the 2D slices, with an average error of 1.45 mm. The calculated 3D DVFs can be used retrospectively for treatment simulations, plan evaluations, or to determine the accumulated dose for both the tumor and organs-at-risk on a subject-specific basis in MR-guided radiotherapy.

  10. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy.

    PubMed

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-07

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  11. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  12. Automatic block-matching registration to improve lung tumor localization during image-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Robertson, Scott Patrick

    To improve relatively poor outcomes for locally-advanced lung cancer patients, many current efforts are dedicated to minimizing uncertainties in radiotherapy. This enables the isotoxic delivery of escalated tumor doses, leading to better local tumor control. The current dissertation specifically addresses inter-fractional uncertainties resulting from patient setup variability. An automatic block-matching registration (BMR) algorithm is implemented and evaluated for the purpose of directly localizing advanced-stage lung tumors during image-guided radiation therapy. In this algorithm, small image sub-volumes, termed "blocks", are automatically identified on the tumor surface in an initial planning computed tomography (CT) image. Each block is independently and automatically registered to daily images acquired immediately prior to each treatment fraction. To improve the accuracy and robustness of BMR, this algorithm incorporates multi-resolution pyramid registration, regularization with a median filter, and a new multiple-candidate-registrations technique. The result of block-matching is a sparse displacement vector field that models local tissue deformations near the tumor surface. The distribution of displacement vectors is aggregated to obtain the final tumor registration, corresponding to the treatment couch shift for patient setup correction. Compared to existing rigid and deformable registration algorithms, the final BMR algorithm significantly improves the overlap between target volumes from the planning CT and registered daily images. Furthermore, BMR results in the smallest treatment margins for the given study population. However, despite these improvements, large residual target localization errors were noted, indicating that purely rigid couch shifts cannot correct for all sources of inter-fractional variability. Further reductions in treatment uncertainties may require the combination of high-quality target localization and adaptive radiotherapy.

  13. Biological Image-Guided Radiotherapy in Rectal Cancer: Challenges and Pitfalls

    SciTech Connect

    Roels, Sarah; Slagmolen, Pieter; Lee, John A.; Loeckx, Dirk; Maes, Frederik; Stroobants, Sigrid; Ectors, Nadine; Penninckx, Freddy; Haustermans, Karin

    2009-11-01

    Purpose: To investigate the feasibility of integrating multiple imaging modalities for image-guided radiotherapy in rectal cancer. Patients and Methods: Magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) were performed before, during, and after preoperative chemoradiotherapy (CRT) in patients with resectable rectal cancer. The FDG-PET signals were segmented with an adaptive threshold-based and a gradient-based method. Magnetic resonance tumor volumes (TVs) were manually delineated. A nonrigid registration algorithm was applied to register the images, and mismatch analyses were carried out between MR and FDG-PET TVs and between TVs over time. Tumor volumes delineated on the images after CRT were compared with the pathologic TV. Results: Forty-five FDG-PET/CT and 45 MR images were analyzed from 15 patients. The mean MRI and FDG-PET TVs showed a tendency to shrink during and after CRT. In general, MRI showed larger TVs than FDG-PET. There was an approximately 50% mismatch between the FDG-PET TV and the MRI TV at baseline and during CRT. Sixty-one percent of the FDG-PET TV and 76% of the MRI TV obtained after 10 fractions of CRT remained inside the corresponding baseline TV. On MRI, residual tumor was still suspected in all 6 patients with a pathologic complete response, whereas FDG-PET showed a metabolic complete response in 3 of them. The FDG-PET TVs delineated with the gradient-based method matched closest with pathologic findings. Conclusions: Integration of MRI and FDG-PET into radiotherapy seems feasible. Gradient-based segmentation is recommended for FDG-PET. Spatial variance between MRI and FDG-PET TVs should be taken into account for target definition.

  14. Magnetization curves of sintered heavy tungsten alloys for applications in MRI-guided radiotherapy

    SciTech Connect

    Kolling, Stefan; Oborn, Bradley M.; Keall, Paul J.; Horvat, Joseph

    2014-06-15

    Purpose: Due to the current interest in MRI-guided radiotherapy, the magnetic properties of the materials commonly used in radiotherapy are becoming increasingly important. In this paper, measurement results for the magnetization (BH) curves of a range of sintered heavy tungsten alloys used in radiation shielding and collimation are presented. Methods: Sintered heavy tungsten alloys typically contain >90 % tungsten and <10 % of a combination of iron, nickel, and copper binders. Samples of eight different grades of sintered heavy tungsten alloys with varying binder content were investigated. Using a superconducting quantum interference detector magnetometer, the induced magnetic momentm was measured for each sample as a function of applied external field H{sub 0} and the BH curve derived. Results: The iron content of the alloys was found to play a dominant role, directly influencing the magnetizationM and thus the nonlinearity of the BH curve. Generally, the saturation magnetization increased with increasing iron content of the alloy. Furthermore, no measurable magnetization was found for all alloys without iron content, despite containing up to 6% of nickel. For two samples from different manufacturers but with identical quoted nominal elemental composition (95% W, 3.5% Ni, 1.5% Fe), a relative difference in the magnetization of 11%–16% was measured. Conclusions: The measured curves show that the magnetic properties of sintered heavy tungsten alloys strongly depend on the iron content, whereas the addition of nickel in the absence of iron led to no measurable effect. Since a difference in the BH curves for two samples with identical quoted nominal composition from different manufacturers was observed, measuring of the BH curve for each individual batch of heavy tungsten alloys is advisable whenever accurate knowledge of the magnetic properties is crucial. The obtained BH curves can be used in FEM simulations to predict the magnetic impact of sintered heavy

  15. Inverse Relationship Between Biochemical Outcome and Acute Toxicity After Image-Guided Radiotherapy for Prostate Cancer

    SciTech Connect

    Vesprini, Danny; Catton, Charles; Jacks, Lindsay; Lockwood, Gina; Rosewall, Tara; Bayley, Andrew; Chung, Peter; Gospodarowicz, Mary; Menard, Cynthia; Milosevic, Michael; Nichol, Alan; Skala, Marketa; Warde, Padraig; Bristow, Robert G.

    2012-06-01

    Purpose: Prostate cancer patients exhibit variability in normal tissue reactions and biochemical failure. With the use of image-guided radiotherapy (IGRT), there is a greater likelihood that the differences in normal tissue and tumor response are due to biological rather than physical factors. We tested the hypothesis that prospectively scored acute toxicity is associated with biochemical failure-free rate (BFFR) in prostate cancer patients treated with IGRT. Methods and Materials: We retrospectively analyzed BFFR in 362 patients with localized prostate cancer treated with IGRT. We compared BFFR with prospectively collected Radiation Therapy Oncology Group (RTOG) maximum acute gastrointestinal (GI) and genitourinary (GU) toxicity scores. Median follow-up for all patients was 58.3 months after total radiotherapy doses of 75.6-79.8 Gy. Results: Patients reporting RTOG acute GU or GI toxicity scores of {>=}2 were considered 'sensitive' (n = 141, 39%) and patients reporting scores <2 were considered 'nonsensitive' (n = 221, 61%). When calculating biochemical failure (BF) using the American Society for Therapeutic Radiology and Oncology definition at 5 years, 76% (CI 70-82%) of the 'nonsensitive' patients were failure free, compared with only 53% (CI 43-62%) of the 'sensitive' patients (log-rank test, p < 0.0001). This difference was also observed using the Phoenix definition; 'nonsensitive' 5-year BFFR was 81% (CI 74-86%) vs. 'sensitive' BFFR was 68% (CI 58-76%; log-rank test p = 0.0012). The difference in BF between cohorts remained significant when controlled for radiation dose (75.6 vs. 79.8 Gy), prognostic stratification (T category, prostate-specific antigen, and Gleason score), and prostate volume. Conclusions: This study unexpectedly shows that prostate cancer patients who develop {>=}Grade 2 RTOG acute toxicity during radiotherapy are less likely to remain BFF at 5 years. These results deserve further study and, if validated in other large IGRT cohorts

  16. Integral test phantom for dosimetric quality assurance of image guided and intensity modulated stereotactic radiotherapy

    SciTech Connect

    Letourneau, Daniel; Keller, Harald; Sharpe, Michael B.; Jaffray, David A.

    2007-05-15

    The objective of this work is to develop a dosimetric phantom quality assurance (QA) of linear accelerators capable of cone-beam CT (CBCT) image guided and intensity-modulated radiotherapy (IG-IMRT). This phantom is to be used in an integral test to quantify in real-time both the performance of the image guidance and the dose delivery systems in terms of dose localization. The prototype IG-IMRT QA phantom consisted of a cylindrical imaging phantom (CatPhan) combined with an array of 11 radiation diodes mounted on a 10 cm diameter disk, oriented perpendicular to the phantom axis. Basic diode response characterization was performed for 6 and 18 MV photons. The diode response was compared to planning system calculations in the open and penumbrae regions of simple and complex beam arrangements. The clinical use of the QA phantom was illustrated in an integral test of an IG-IMRT treatment designed for a clinical spinal radiosurgery case. The sensitivity of the phantom to multileaf collimator (MLC) calibration and setup errors in the clinical setting was assessed by introducing errors in the IMRT plan or by displacing the phantom. The diodes offered good response linearity and long-term reproducibility for both 6 and 18 MV. Axial dosimetry of coplanar beams (in a plane containing the beam axes) was made possible with the nearly isoplanatic response of the diodes over 360 deg. of gantry (usually within {+-}1%). For single beam geometry, errors in phantom placement as small as 0.5 mm could be accurately detected (in gradient {>=}1%/mm). In clinical setting, MLC systematic errors of 1 mm on a single MLC bank introduced in the IMRT plan were easily detectable with the QA phantom. The QA phantom demonstrated also sufficient sensitivity for the detection of setup errors as small as 1 mm for the IMRT delivery. These results demonstrated that the prototype can accurately and efficiently verify the entire IG-IMRT process. This tool, in conjunction with image guidance capabilities

  17. Image-guided adaptive gating of lung cancer radiotherapy: a computer simulation study

    NASA Astrophysics Data System (ADS)

    Aristophanous, Michalis; Rottmann, Joerg; Park, Sang-June; Nishioka, Seiko; Shirato, Hiroki; Berbeco, Ross I.

    2010-08-01

    The purpose of this study is to investigate the effect that image-guided adaptation of the gating window during treatment could have on the residual tumor motion, by simulating different gated radiotherapy techniques. There are three separate components of this simulation: (1) the 'Hokkaido Data', which are previously measured 3D data of lung tumor motion tracks and the corresponding 1D respiratory signals obtained during the entire ungated radiotherapy treatments of eight patients, (2) the respiratory gating protocol at our institution and the imaging performed under that protocol and (3) the actual simulation in which the Hokkaido Data are used to select tumor position information that could have been collected based on the imaging performed under our gating protocol. We simulated treatments with a fixed gating window and a gating window that is updated during treatment. The patient data were divided into different fractions, each with continuous acquisitions longer than 2 min. In accordance to the imaging performed under our gating protocol, we assume that we have tumor position information for the first 15 s of treatment, obtained from kV fluoroscopy, and for the rest of the fractions the tumor position is only available during the beam-on time from MV imaging. The gating window was set according to the information obtained from the first 15 s such that the residual motion was less than 3 mm. For the fixed gating window technique the gate remained the same for the entire treatment, while for the adaptive technique the range of the tumor motion during beam-on time was measured and used to adapt the gating window to keep the residual motion below 3 mm. The algorithm used to adapt the gating window is described. The residual tumor motion inside the gating window was reduced on average by 24% for the patients with regular breathing patterns and the difference was statistically significant (p-value = 0.01). The magnitude of the residual tumor motion depended on the

  18. MR-guided breast radiotherapy: feasibility and magnetic-field impact on skin dose

    NASA Astrophysics Data System (ADS)

    van Heijst, Tristan C. F.; den Hartogh, Mariska D.; Lagendijk, Jan J. W.; Desirée van den Bongard, H. J. G.; van Asselen, Bram

    2013-09-01

    The UMC Utrecht MRI/linac (MRL) design provides image guidance with high soft-tissue contrast, directly during radiotherapy (RT). Breast cancer patients are a potential group to benefit from better guidance in the MRL. However, due to the electron return effect, the skin dose can be increased in presence of a magnetic field. Since large skin areas are generally involved in breast RT, the purpose of this study is to investigate the effects on the skin dose, for whole-breast irradiation (WBI) and accelerated partial-breast irradiation (APBI). In ten patients with early-stage breast cancer, targets and organs at risk (OARs) were delineated on postoperative CT scans co-registered with MRI. The OARs included the skin, comprising the first 5 mm of ipsilateral-breast tissue, plus extensions. Three intensity-modulated RT techniques were considered (2× WBI, 1× APBI). Individual beam geometries were used for all patients. Specially developed MRL treatment-planning software was used. Acceptable plans were generated for 0 T, 0.35 T and 1.5 T, using a class solution. The skin dose was augmented in WBI in the presence of a magnetic field, which is a potential drawback, whereas in APBI the induced effects were negligible. This opens possibilities for developing MR-guided partial-breast treatments in the MRL.

  19. Real-time 3D surface-image-guided beam setup in radiotherapy of breast cancer

    SciTech Connect

    Djajaputra, David; Li Shidong

    2005-01-01

    We describe an approach for external beam radiotherapy of breast cancer that utilizes the three-dimensional (3D) surface information of the breast. The surface data of the breast are obtained from a 3D optical camera that is rigidly mounted on the ceiling of the treatment vault. This 3D camera utilizes light in the visible range therefore it introduces no ionization radiation to the patient. In addition to the surface topographical information of the treated area, the camera also captures gray-scale information that is overlaid on the 3D surface image. This allows us to visualize the skin markers and automatically determine the isocenter position and the beam angles in the breast tangential fields. The field sizes and shapes of the tangential, supraclavicular, and internal mammary gland fields can all be determined according to the 3D surface image of the target. A least-squares method is first introduced for the tangential-field setup that is useful for compensation of the target shape changes. The entire process of capturing the 3D surface data and subsequent calculation of beam parameters typically requires less than 1 min. Our tests on phantom experiments and patient images have achieved the accuracy of 1 mm in shift and 0.5 deg. in rotation. Importantly, the target shape and position changes in each treatment session can both be corrected through this real-time image-guided system.

  20. Intensity-Modulated and Image-Guided Radiotherapy in Patients with Locally Advanced Inoperable Pancreatic Cancer after Preradiation Chemotherapy

    PubMed Central

    Sinn, M.; Ganeshan, R.; Graf, R.; Pelzer, U.; Stieler, J. M.; Striefler, J. K.; Bahra, M.; Wust, P.; Riess, H.

    2014-01-01

    Background. Radiotherapy (RT) in patients with pancreatic cancer is still a controversial subject and its benefit in inoperable stages of locally advanced pancreatic cancer (LAPC), even after induction chemotherapy, remains unclear. Modern radiation techniques such as image-guided radiotherapy (IGRT) and intensity-modulated radiotherapy (IMRT) may improve effectiveness and reduce radiotherapy-related toxicities. Methods. Patients with LAPC who underwent radiotherapy after chemotherapy between 09/2004 and 05/2013 were retrospectively analyzed with regard to preradiation chemotherapy (PRCT), modalities of radiotherapy, and toxicities. Progression-free (PFS) and overall survival (OS) were estimated by Kaplan-Meier curves. Results. 15 (68%) women and 7 men (median age 64 years; range 40–77) were identified. Median duration of PRCT was 11.1 months (range 4.3–33.0). Six patients (27%) underwent conventional RT and 16 patients (73%) advanced IMRT and IGRT; median dosage was 50.4 (range 9–54) Gray. No grade III or IV toxicities occurred. Median PFS (estimated from the beginning of RT) was 5.8 months, 2.6 months in the conventional RT group (conv-RT), and 7.1 months in the IMRT/IGRT group (P = 0.029); median OS was 11.0 months, 4.2 months (conv-RT), and 14.0 months (IMRT/IGRT); P = 0.141. Median RT-specific PFS for patients with prolonged PRCT > 9 months was 8.5 months compared to 5.6 months for PRCT < 9 months (P = 0.293). This effect was translated into a significantly better median RT-specific overall survival of patients in the PRCT > 9 months group, with 19.0 months compared to 8.5 months in the PRCT  <  9 months group (P = 0.049). Conclusions. IGRT and IMRT after PRCT are feasible and effective options for patients with LAPC after prolonged preradiation chemotherapy. PMID:25401140

  1. Improvement in toxicity in high risk prostate cancer patients treated with image-guided intensity-modulated radiotherapy compared to 3D conformal radiotherapy without daily image guidance

    PubMed Central

    2014-01-01

    Background Image-guided radiotherapy (IGRT) facilitates the delivery of a very precise radiation dose. In this study we compare the toxicity and biochemical progression-free survival between patients treated with daily image-guided intensity-modulated radiotherapy (IG-IMRT) and 3D conformal radiotherapy (3DCRT) without daily image guidance for high risk prostate cancer (PCa). Methods A total of 503 high risk PCa patients treated with radiotherapy (RT) and endocrine treatment between 2000 and 2010 were retrospectively reviewed. 115 patients were treated with 3DCRT, and 388 patients were treated with IG-IMRT. 3DCRT patients were treated to 76 Gy and without daily image guidance and with 1–2 cm PTV margins. IG-IMRT patients were treated to 78 Gy based on daily image guidance of fiducial markers, and the PTV margins were 5–7 mm. Furthermore, the dose-volume constraints to both the rectum and bladder were changed with the introduction of IG-IMRT. Results The 2-year actuarial likelihood of developing grade > = 2 GI toxicity following RT was 57.3% in 3DCRT patients and 5.8% in IG-IMRT patients (p < 0.001). For GU toxicity the numbers were 41.8% and 29.7%, respectively (p = 0.011). On multivariate analysis, 3DCRT was associated with a significantly increased risk of developing grade > = 2 GI toxicity compared to IG-IMRT (p < 0.001, HR = 11.59 [CI: 6.67-20.14]). 3DCRT was also associated with an increased risk of developing GU toxicity compared to IG-IMRT. The 3-year actuarial biochemical progression-free survival probability was 86.0% for 3DCRT and 90.3% for IG-IMRT (p = 0.386). On multivariate analysis there was no difference in biochemical progression-free survival between 3DCRT and IG-IMRT. Conclusion The difference in toxicity can be attributed to the combination of the IMRT technique with reduced dose to organs-at-risk, daily image guidance and margin reduction. PMID:24495815

  2. Image-Guided Intensity-Modulated Photon Radiotherapy Using Multifractionated Regimen to Paraspinal Chordomas and Rare Sarcomas

    SciTech Connect

    Terezakis, Stephanie A. Lovelock, D. Michael; Bilsky, Mark H.; Hunt, Margaret A.; Zatcky, Joan N.P.; Yamada, Yoshiya

    2007-12-01

    Purpose: Image-guided intensity-modulated radiotherapy enables delivery of high-dose radiation to tumors close to the spinal cord. We report our experience with multifractionated regimens using image-guided intensity-modulated radiotherapy to treat gross paraspinal disease to doses beyond cord tolerance. Methods and Materials: We performed a retrospective review of 27 consecutive patients with partially resected or unresectable paraspinal tumors irradiated to >5,300 cGy in standard fractionation. Results: The median follow-up was 17.4 months (range, 2.1-47.3). Eighteen sarcomas, seven chordomas, and two ependymomas were treated. The median dose to the planning target volume was 6,600 cGy (range, 5,396-7,080) in 180- or 200-cGy fractions. The median planning target volume was 164 cm{sup 3} (range, 29-1,116). Seven patients developed recurrence at the treatment site (26%), and 6 of these patients had high-grade tumors. Three patients with recurrence had metastatic disease at the time of radiotherapy. The 2-year local control rate was 65%, and the 2-year overall survival rate was 79%. Of the 5 patients who died, 4 had metastatic disease at death. Twenty-three patients (84%) reported either no pain or improved pain at the last follow-up visit. Sixteen patients discontinued narcotic use after treatment (62.5%). Twenty-three patients (89%) had a stable or improved American Spine Injury Association score at the last follow-up visit. No patient experienced radiation-induced myelopathy. Conclusions: The dose to paraspinal tumors has traditionally been limited to respect cord tolerance. With image-guided intensity-modulated radiotherapy, greater doses of radiation delivered in multiple fractions can be prescribed with excellent target coverage, effective palliation, and acceptable toxicity and local control.

  3. Temporary organ displacement coupled with image-guided, intensity-modulated radiotherapy for paraspinal tumors

    PubMed Central

    2013-01-01

    Background To investigate the feasibility and dosimetric improvements of a novel technique to temporarily displace critical structures in the pelvis and abdomen from tumor during high-dose radiotherapy. Methods Between 2010 and 2012, 11 patients received high-dose image-guided intensity-modulated radiotherapy with temporary organ displacement (TOD) at our institution. In all cases, imaging revealed tumor abutting critical structures. An all-purpose drainage catheter was introduced between the gross tumor volume (GTV) and critical organs at risk (OAR) and infused with normal saline (NS) containing 5-10% iohexol. Radiation planning was performed with the displaced OARs and positional reproducibility was confirmed with cone-beam CT (CBCT). Patients were treated within 36 hours of catheter placement. Radiation plans were re-optimized using pre-TOD OARs to the same prescription and dosimetrically compared with post-TOD plans. A two-tailed permutation test was performed on each dosimetric measure. Results The bowel/rectum was displaced in six patients and kidney in four patients. One patient was excluded due to poor visualization of the OAR; thus 10 patients were analyzed. A mean of 229 ml (range, 80–1000) of NS 5-10% iohexol infusion resulted in OAR mean displacement of 17.5 mm (range, 7–32). The median dose prescribed was 2400 cGy in one fraction (range, 2100–3000 in 3 fractions). The mean GTV Dmin and PTV Dmin pre- and post-bowel TOD IG-IMRT dosimetry significantly increased from 1473 cGy to 2086 cGy (p=0.015) and 714 cGy to 1214 cGy (p=0.021), respectively. TOD increased mean PTV D95 by 27.14% of prescription (p=0.014) while the PTV D05 decreased by 9.2% (p=0.011). TOD of the bowel resulted in a 39% decrease in mean bowel Dmax (p=0.008) confirmed by CBCT. TOD of the kidney significantly decreased mean kidney dose and Dmax by 25% (0.022). Conclusions TOD was well tolerated, reproducible, and facilitated dose escalation to previously radioresistant tumors

  4. Specific recommendations for accurate and direct use of PET-CT in PET guided radiotherapy for head and neck sites

    SciTech Connect

    Thomas, C. M. Convery, D. J.; Greener, A. G.; Pike, L. C.; Baker, S.; Woods, E.; Hartill, C. E.

    2014-04-15

    Purpose: To provide specific experience-based guidance and recommendations for centers wishing to develop, validate, and implement an accurate and efficient process for directly using positron emission tomography-computed tomography (PET-CT) for the radiotherapy planning of head and neck cancer patients. Methods: A PET-CT system was modified with hard-top couch, external lasers and radiotherapy immobilization and indexing devices and was subject to a commissioning and quality assurance program. PET-CT imaging protocols were developed specifically for radiotherapy planning and the image quality and pathway tested using phantoms and five patients recruited into an in-house study. Security and accuracy of data transfer was tested throughout the whole data pathway. The patient pathway was fully established and tested ready for implementation in a PET-guided dose-escalation trial for head and neck cancer patients. Results: Couch deflection was greater than for departmental CT simulator machines. An area of high attenuation in the couch generated image artifacts and adjustments were made accordingly. Using newly developed protocols CT image quality was suitable to maintain delineation and treatment accuracy. Upon transfer of data to the treatment planning system a half pixel offset between PET and CT was observed and corrected. By taking this into account, PET to CT alignment accuracy was maintained below 1 mm in all systems in the data pathway. Transfer of structures delineated in the PET fusion software to the radiotherapy treatment planning system was validated. Conclusions: A method to perform direct PET-guided radiotherapy planning was successfully validated and specific recommendations were developed to assist other centers. Of major concern is ensuring that the quality of PET and CT data is appropriate for radiotherapy treatment planning and on-treatment verification. Couch movements can be compromised, bore-size can be a limitation for certain immobilization

  5. On the significance of density-induced speed of sound variations on US-guided radiotherapy

    SciTech Connect

    Fontanarosa, Davide; Meer, Skadi van der; Verhaegen, Frank

    2012-10-15

    Purpose: To show the effect of speed of sound (SOS) aberration on ultrasound guided radiotherapy (US-gRT) as a function of implemented workflow. US systems assume that SOS is constant in human soft tissues (at a value of 1540 m/s), while its actual nonuniform distribution produces small but systematic errors of up to a few millimeters in the positions of scanned structures. When a coregistered computerized tomography (CT) scan is available, the US image can be corrected for SOS aberration. Typically, image guided radiotherapy workflows implementing US systems only provide a CT scan at the simulation (SIM) stage. If changes occur in geometry or density distribution between SIM and treatment (TX) stage, SOS aberration can change accordingly, with a final impact on the measured position of structures which is dependent on the workflow adopted. Methods: Four basic scenarios were considered of possible changes between SIM and TX: (1) No changes, (2) only patient position changes (rigid rotation-translation), (3) only US transducer position changes (constrained on patient's surface), and (4) patient tissues thickness changes. Different SOS aberrations may arise from the different scenarios, according to the specific US-gRT workflow used: intermodality (INTER) where TX US scans are compared to SIM CT scans; intramodality (INTRA) where TX US scans are compared to SIM US scans; and INTERc and INTRAc where all US images are corrected for SOS aberration (using density information provided by SIM CT). For an experimental proof of principle, the effect of tissues thickness change was simulated in the different workflows: a dual layered phantom was filled with layers of sunflower oil (SOS 1478 m/s), water (SOS 1482 m/s), and 20% saline solution (SOS 1700 m/s). The phantom was US scanned, the layer thicknesses were increased and the US scans were repeated. The errors resulting from the different workflows were compared. Results: Theoretical considerations show that workflows

  6. Role of Intra- or Periprostatic Calcifications in Image-Guided Radiotherapy for Prostate Cancer

    SciTech Connect

    Hanna, Samir Abdallah; Neves-Junior, Wellington Furtado Pimenta; Marta, Gustavo Nader; Haddad, Cecilia Maria Kalil; Fernandes da Silva, Joao Luis

    2012-03-01

    Purpose: Image-guided radiotherapy (IGRT) allows more precise localization of the prostate, thus minimizing errors resulting from organ motion and set-up during treatment of prostate cancer. Using megavoltage cone-beam computed tomography (MVCBCT), references such as bones, the prostate itself or implanted fiducial markers can be used as surrogates to correct patient positioning immediately before each treatment fraction. However, the use of fiducials requires an invasive procedure and may increase costs. We aimed to assess whether intra- or periprostatic calcifications (IPC) could be used as natural fiducials. Methods and Materials: Data on patients treated with IGRT for prostate cancer with clearly visible IPC and implanted fiducials in both planning CT and MVCBCT images were reviewed. IPC were classified as central when inside the prostate and peripheral when within the planning target volume. Daily deviations in lateral, longitudinal, and vertical directions from baseline positioning using fiducials and using IPC were compared. Results: A total of 287 MVCBCT images were obtained and analyzed from 10 patients. The mean {+-} standard deviation daily deviation (mm) in the lateral, longitudinal, and vertical coordinates were 0.55 {+-} 3.11, 0.58 {+-} 3.45, and -0.54 {+-} 4.03, respectively, for fiducials, and 0.72 {+-} 3.22, 0.63 {+-} 3.58, and -0.69 {+-} 4.26, for IPC. The p values for comparisons (fiducials vs. IPC) were 0.003, 0.653, and 0.078 for lateral, longitudinal, and vertical coordinates, respectively. When cases with central IPC were analyzed (n = 7), no significant difference was found in such comparisons. Central IPC and fiducials exhibited a similar pattern of displacement during treatment, with equal values for daily displacements in the three directions for more than 90% of measurements. Conclusions: Our data suggest that centrally located IPC may be used as natural fiducials for treatment positioning during IGRT for prostate cancer, with potential

  7. A DVH-guided IMRT optimization algorithm for automatic treatment planning and adaptive radiotherapy replanning

    SciTech Connect

    Zarepisheh, Masoud; Li, Nan; Long, Troy; Romeijn, H. Edwin; Tian, Zhen; Jia, Xun; Jiang, Steve B.

    2014-06-15

    Purpose: To develop a novel algorithm that incorporates prior treatment knowledge into intensity modulated radiation therapy optimization to facilitate automatic treatment planning and adaptive radiotherapy (ART) replanning. Methods: The algorithm automatically creates a treatment plan guided by the DVH curves of a reference plan that contains information on the clinician-approved dose-volume trade-offs among different targets/organs and among different portions of a DVH curve for an organ. In ART, the reference plan is the initial plan for the same patient, while for automatic treatment planning the reference plan is selected from a library of clinically approved and delivered plans of previously treated patients with similar medical conditions and geometry. The proposed algorithm employs a voxel-based optimization model and navigates the large voxel-based Pareto surface. The voxel weights are iteratively adjusted to approach a plan that is similar to the reference plan in terms of the DVHs. If the reference plan is feasible but not Pareto optimal, the algorithm generates a Pareto optimal plan with the DVHs better than the reference ones. If the reference plan is too restricting for the new geometry, the algorithm generates a Pareto plan with DVHs close to the reference ones. In both cases, the new plans have similar DVH trade-offs as the reference plans. Results: The algorithm was tested using three patient cases and found to be able to automatically adjust the voxel-weighting factors in order to generate a Pareto plan with similar DVH trade-offs as the reference plan. The algorithm has also been implemented on a GPU for high efficiency. Conclusions: A novel prior-knowledge-based optimization algorithm has been developed that automatically adjust the voxel weights and generate a clinical optimal plan at high efficiency. It is found that the new algorithm can significantly improve the plan quality and planning efficiency in ART replanning and automatic treatment

  8. Radiation Dose From Kilovoltage Cone Beam Computed Tomography in an Image-Guided Radiotherapy Procedure

    SciTech Connect

    Ding, George X. Coffey, Charles W.

    2009-02-01

    Purpose: Image-guided radiation therapy has emerged as the new paradigm in radiotherapy. This work is to provide detailed information concerning the additional imaging doses to patients' radiosensitive organs from a kilovoltage cone beam computed tomography (kV CBCT) scan procedure. Methods and Materials: The Vanderbilt-Monte-Carlo-Beam-Calibration (VMCBC; Vanderbilt University, Nashville, TN) algorithm was used to calculate radiation dose to organs resulting from a kV CBCT imaging guidance procedure. Eight patients, including 3 pediatric and 5 adult patients, were investigated. The CBCT scans in both full- and half-fan modes were studied. Results: For a head-and-neck scan in half-fan mode, dose-volume histogram analyses show mean doses of 7 and 8 cGy to the eyes, 5 and 6 cGy to the spinal cord, 5 and 6 cGy to the brain, and 18 and 23 cGy to the cervical vertebrae for an adult and a 29-month-old child, respectively. The dose from a scan in full-fan mode is 10-20% lower than that in half-fan mode. For an abdominal scan, mean doses are 3 and 7 cGy to prostate and 7 and 17 cGy to femoral heads for a large adult patient and a 31-month-old pediatric patient, respectively. Conclusions: Doses to radiosensitive organs can total 300 cGy accrued over an entire treatment course if kV CBCT scans are acquired daily. These findings provide needed data for clinicians to make informed decisions concerning additional imaging doses. The dose to bone is two to four times greater than dose to soft tissue for kV x-rays, which should be considered, especially for pediatric patients.

  9. Development of the DVH management software for the biologically-guided evaluation of radiotherapy plan

    PubMed Central

    Kim, BoKyong; Park, Hee Chul; Oh, Dongryul; Shin, Eun Hyuk; Ahn, Yong Chan; Kim, Jinsung

    2012-01-01

    Purpose To develop the dose volume histogram (DVH) management software which guides the evaluation of radiotherapy (RT) plan of a new case according to the biological consequences of the DVHs from the previously treated patients. Materials and Methods We determined the radiation pneumonitis (RP) as an biological response parameter in order to develop DVH management software. We retrospectively reviewed the medical records of lung cancer patients treated with curative 3-dimensional conformal radiation therapy (3D-CRT). The biological event was defined as RP of the Radiation Therapy Oncology Group (RTOG) grade III or more. Results The DVH management software consisted of three parts (pre-existing DVH database, graphical tool, and Pinnacle3 script). The pre-existing DVH data were retrieved from 128 patients. RP events were tagged to the specific DVH data through retrospective review of patients' medical records. The graphical tool was developed to present the complication histogram derived from the pre-existing database (DVH and RP) and was implemented into the radiation treatment planning (RTP) system, Pinnacle3 v8.0 (Phillips Healthcare). The software was designed for the pre-existing database to be updated easily by tagging the specific DVH data with the new incidence of RP events at the time of patients' follow-up. Conclusion We developed the DVH management software as an effective tool to incorporate the phenomenological consequences derived from the pre-existing database in the evaluation of a new RT plan. It can be used not only for lung cancer patients but also for the other disease site with different toxicity parameters. PMID:23120743

  10. Markerless tumor tracking using short kilovoltage imaging arcs for lung image-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Shieh, Chun-Chien; Keall, Paul J.; Kuncic, Zdenka; Huang, Chen-Yu; Feain, Ilana

    2015-12-01

    The ability to monitor tumor motion without implanted markers is clinically advantageous for lung image-guided radiotherapy (IGRT). Existing markerless tracking methods often suffer from overlapping structures and low visibility of tumors on kV projection images. We introduce the short arc tumor tracking (SATT) method to overcome these issues. The proposed method utilizes multiple kV projection images selected from a nine-degree imaging arc to improve tumor localization, and respiratory-correlated 4D cone-beam CT (CBCT) prior knowledge to minimize the effects of overlapping anatomies. The 3D tumor position is solved as an optimization problem with prior knowledge incorporated via regularization. We retrospectively validated SATT on 11 clinical scans from four patients with central tumors. These patients represent challenging scenarios for markerless tumor tracking due to the inferior adjacent contrast. The 3D trajectories of implanted fiducial markers were used as the ground truth for tracking accuracy evaluation. In all cases, the tumors were successfully tracked at all gantry angles. Compared to standard pre-treatment CBCT guidance alone, trajectory errors were significantly smaller with tracking in all cases, and the improvements were the most prominent in the superior-inferior direction. The mean 3D tracking error ranged from 2.2-9.9 mm, which was 0.4-2.6 mm smaller compared to pre-treatment CBCT. In conclusion, we were able to directly track tumors with inferior visibility on kV projection images using SATT. Tumor localization accuracies are significantly better with tracking compared to the current standard of care of lung IGRT. Future work involves the prospective evaluation and clinical implementation of SATT.

  11. Investigation of Linac-Based Image-Guided Hypofractionated Prostate Radiotherapy

    SciTech Connect

    Pawlicki, Todd . E-mail: tpaw@stanford.edu; Kim, Gwe-Ya; Hsu, Annie; Cotrutz, Cristian; Boyer, Arthur L.; Xing Lei; King, Christopher R.; Luxton, Gary

    2007-07-01

    A hypofractionation treatment protocol for prostate cancer was initiated in our department in December 2003. The treatment regimen consists of a total dose of 36.25 Gy delivered at 7.25 Gy per fraction over 10 days. We discuss the rationale for such a prostate hypofractionation protocol and the need for frequent prostate imaging during treatment. The CyberKnife (Accuray Inc., Sunnyvale, CA), a linear accelerator mounted on a robotic arm, is currently being used as the radiation delivery device for this protocol, due to its incorporation of near real-time kV imaging of the prostate via 3 gold fiducial seeds. Recently introduced conventional linac kV imaging with intensity modulated planning and delivery may add a new option for these hypofractionated treatments. The purpose of this work is to investigate the use of intensity modulated radiotherapy (IMRT) and the Varian Trilogy Accelerator with on-board kV imaging (Varian Medical Systems Inc., Palo Alto, CA) for treatment of our hypofractionated prostate patients. The dose-volume histograms and dose statistics of 2 patients previously treated on the CyberKnife were compared to 7-field IMRT plans. A process of acquiring images to observe intrafraction prostate motion was achieved in an average time of about 1 minute and 40 seconds, and IMRT beam delivery takes about 40 seconds per field. A complete 7-field IMRT plan can therefore be imaged and delivered in 10 to 17 minutes. The Varian Trilogy Accelerator with on-board imaging and IMRT is well suited for image-guided hypofractionated prostate treatments. During this study, we have also uncovered opportunities for improvement of the on-board imaging hardware/software implementation that would further enhance performance in this regard.

  12. Multi-System Verification of Registrations for Image-Guided Radiotherapy in Clinical Trials

    SciTech Connect

    Cui Yunfeng; Galvin, James M.; Straube, William L.; Bosch, Walter R.; Purdy, James A.; Li, X. Allen; Xiao Ying

    2011-09-01

    Purpose: To provide quantitative information on the image registration differences from multiple systems for image-guided radiotherapy (IGRT) credentialing and margin reduction in clinical trials. Methods and Materials: Images and IGRT shift results from three different treatment systems (Tomotherapy Hi-Art, Elekta Synergy, Varian Trilogy) have been sent from various institutions to the Image-Guided Therapy QA Center (ITC) for evaluation for the Radiation Therapy Oncology Group (RTOG) trials. Nine patient datasets (five head-and-neck and four prostate) were included in the comparison, with each patient having 1-4 daily individual IGRT studies. In all cases, daily shifts were re-calculated by re-registration of the planning CT with the daily IGRT data using three independent software systems (MIMvista, FocalSim, VelocityAI). Automatic fusion was used in all calculations. The results were compared with those submitted from institutions. Similar regions of interest (ROIs) and same initial positions were used in registrations for inter-system comparison. Different slice spacings for CBCT sampling and different ROIs for registration were used in some cases to observe the variation of registration due to these factors. Results: For the 54 comparisons with head-and-neck datasets, the absolute values of differences of the registration results between different systems were 2.6 {+-} 2.1 mm (mean {+-} SD; range 0.1-8.6 mm, left-right [LR]), 1.7 {+-} 1.3 mm (0.0-4.9 mm, superior-inferior [SI]), and 1.8 {+-} 1.1 mm (0.1-4.0 mm, anterior-posterior [AP]). For the 66 comparisons in prostate cases, the differences were 1.1 {+-} 1.0 mm (0.0-4.6 mm, LR), 2.1 {+-} 1.7 mm (0.0-6.6 mm, SI), and 2.0 {+-} 1.8 mm (0.1-6.9 mm, AP). The differences caused by the slice spacing variation were relatively small, and the different ROI selections in FocalSim and MIMvista also had limited impact. Conclusion: The extent of differences was reported when different systems were used for image

  13. SU-E-T-59: A Novel Multi-Beam Dynamic IMRT with Fixed-Jaw Technique for Left Breast Cancer Patients with Regional Lymph Nodes Radiotherapy

    SciTech Connect

    Wang, J; Yang, Z; Hu, W

    2015-06-15

    Purpose: This study was to investigate the dosimetric benefit of a novel intensity modulated radiation therapy (IMRT) technique for irradiating the left breast and regional lymph node (RLN). Methods: The breast and RLN (internal mammary node and periclavicular node) and normal tissue were contoured for 16 consecutive left-sided breast cancer patients previously treated with RT after lumpectomy. Nine equi-spaced fields IMRT (9 -field IMRT), tangential multi-beam IMRT (tangential-IMRT) and IMRT with fixed-jaw technique (FJT-IMRT) were developed and compared with three-dimensional conformal RT (3DCRT). Prescribed dose was 50 Gy in 25 fractions. Dose distributions and dose volume histograms were used to evaluate plans. Results: All IMRTs achieved similar target coverage and substantially reduced heart V30 and V20 compared to the 3DCRT. The average heart mean dose had different changes, which were 9.0Gy for 9-field IMRT, 5.7Gy for tangential-IMRT and 4.2Gy for FJT-IMRT. For the contralateral lung and breast, the 9-field IMRT has the highest mean dose; and the FJT-IMRT and tangential-IMRT had similar lower value. For the thyroid, both 9-field IMRT and FJT-IMRT had similar V30 (20% and 22%) and were significantly lower than that of 3DCRT (34%) and tangential-IMRT (46%). Moreover, the thyroid mean dose of FJT-IMRT is the lowest. For cervical esophagus and humeral head, the FJT-IMRT also had the best sparing. Conclusion: All 9-field IMRT, tangential-IMRT and FJT-IMRT had superiority for targets coverage and substantially reduced the heart volume of high dose irradiation. The FJT-IMRT showed advantages of avoiding the contralateral breast and lung irradiation and decreasing the thyroid, humeral head and cervical esophagus radiation dose at the expense of a slight monitor units (MUs) increasing.

  14. The management of imaging dose during image-guided radiotherapy: Report of the AAPM Task Group 75

    SciTech Connect

    Murphy, Martin J.; Balter, James; Balter, Stephen; BenComo, Jose A. Jr.; Das, Indra J.; Jiang, Steve B.; Ma, C.-M.; Olivera, Gustavo H.; Rodebaugh, Raymond F.; Ruchala, Kenneth J.; Shirato, Hiroki; Yin, Fang-Fang

    2007-10-15

    Radiographic image guidance has emerged as the new paradigm for patient positioning, target localization, and external beam alignment in radiotherapy. Although widely varied in modality and method, all radiographic guidance techniques have one thing in common--they can give a significant radiation dose to the patient. As with all medical uses of ionizing radiation, the general view is that this exposure should be carefully managed. The philosophy for dose management adopted by the diagnostic imaging community is summarized by the acronym ALARA, i.e., as low as reasonably achievable. But unlike the general situation with diagnostic imaging and image-guided surgery, image-guided radiotherapy (IGRT) adds the imaging dose to an already high level of therapeutic radiation. There is furthermore an interplay between increased imaging and improved therapeutic dose conformity that suggests the possibility of optimizing rather than simply minimizing the imaging dose. For this reason, the management of imaging dose during radiotherapy is a different problem than its management during routine diagnostic or image-guided surgical procedures. The imaging dose received as part of a radiotherapy treatment has long been regarded as negligible and thus has been quantified in a fairly loose manner. On the other hand, radiation oncologists examine the therapy dose distribution in minute detail. The introduction of more intensive imaging procedures for IGRT now obligates the clinician to evaluate therapeutic and imaging doses in a more balanced manner. This task group is charged with addressing the issue of radiation dose delivered via image guidance techniques during radiotherapy. The group has developed this charge into three objectives: (1) Compile an overview of image-guidance techniques and their associated radiation dose levels, to provide the clinician using a particular set of image guidance techniques with enough data to estimate the total diagnostic dose for a specific

  15. Quality assurance of U.S.-guided external beam radiotherapy for prostate cancer: report of AAPM Task Group 154.

    PubMed

    Molloy, Janelle A; Chan, Gordon; Markovic, Alexander; McNeeley, Shawn; Pfeiffer, Doug; Salter, Bill; Tome, Wolfgang A

    2011-02-01

    Task Group 154 (TG154) of the American Association of Physicists in Medicine (AAPM) was created to produce a guidance document for clinical medical physicists describing recommended quality assurance (QA) procedures for ultrasound (U.S.)-guided external beam radiotherapy localization. This report describes the relevant literature, state of the art, and briefly summarizes U.S. imaging physics. Simulation, treatment planning and treatment delivery considerations are presented in order to improve consistency and accuracy. User training is emphasized in the report and recommendations regarding peer review are included. A set of thorough, yet practical, QA procedures, frequencies, and tolerances are recommended. These encompass recommendations to ensure both spatial accuracy and image quality.

  16. Evaluation of volume change in rectum and bladder during application of image-guided radiotherapy for prostate carcinoma

    NASA Astrophysics Data System (ADS)

    Luna, J. A.; Rojas, J. I.

    2016-07-01

    All prostate cancer patients from Centro Médico Radioterapia Siglo XXI receive Volumetric Modulated Arc Therapy (VMAT). This therapy uses image-guided radiotherapy (IGRT) with the Cone Beam Computed Tomography (CBCT). This study compares the planned dose in the reference CT image against the delivered dose recalculate in the CBCT image. The purpose of this study is to evaluate the anatomic changes and related dosimetric effect based on weekly CBCT directly for patients with prostate cancer undergoing volumetric modulated arc therapy (VMAT) treatment. The collected data were analyzed using one-way ANOVA.

  17. Functional Image-Guided Radiotherapy Planning in Respiratory-Gated Intensity-Modulated Radiotherapy for Lung Cancer Patients With Chronic Obstructive Pulmonary Disease

    SciTech Connect

    Kimura, Tomoki; Nishibuchi, Ikuno; Murakami, Yuji; Kenjo, Masahiro; Kaneyasu, Yuko; Nagata, Yasushi

    2012-03-15

    Purpose: To investigate the incorporation of functional lung image-derived low attenuation area (LAA) based on four-dimensional computed tomography (4D-CT) into respiratory-gated intensity-modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT) in treatment planning for lung cancer patients with chronic obstructive pulmonary disease (COPD). Methods and Materials: Eight lung cancer patients with COPD were the subjects of this study. LAA was generated from 4D-CT data sets according to CT values of less than than -860 Hounsfield units (HU) as a threshold. The functional lung image was defined as the area where LAA was excluded from the image of the total lung. Two respiratory-gated radiotherapy plans (70 Gy/35 fractions) were designed and compared in each patient as follows: Plan A was an anatomical IMRT or VMAT plan based on the total lung; Plan F was a functional IMRT or VMAT plan based on the functional lung. Dosimetric parameters (percentage of total lung volume irradiated with {>=}20 Gy [V20], and mean dose of total lung [MLD]) of the two plans were compared. Results: V20 was lower in Plan F than in Plan A (mean 1.5%, p = 0.025 in IMRT, mean 1.6%, p = 0.044 in VMAT) achieved by a reduction in MLD (mean 0.23 Gy, p = 0.083 in IMRT, mean 0.5 Gy, p = 0.042 in VMAT). No differences were noted in target volume coverage and organ-at-risk doses. Conclusions: Functional IGRT planning based on LAA in respiratory-guided IMRT or VMAT appears to be effective in preserving a functional lung in lung cancer patients with COPD.

  18. Image-guided stereotactic radiotherapy in 4 dogs with intracranial neoplasia.

    PubMed

    Moon, Alaina Burkard; Heller, Heidi Barnes; Forrest, Lisa

    2016-05-01

    The purpose of this study was to describe the use, and side effects, of a novel stereotactic radiotherapy protocol using TomoTherapy(®) in 4 dogs with confirmed or suspected primary extra-axial intracranial neoplasia. Three fractions of 8 Gy were prescribed. Acute side effects were noted in 1 dog; no late effects were noted.

  19. Molecular PET imaging for biology-guided adaptive radiotherapy of head and neck cancer.

    PubMed

    Hoeben, Bianca A W; Bussink, Johan; Troost, Esther G C; Oyen, Wim J G; Kaanders, Johannes H A M

    2013-10-01

    Integration of molecular imaging PET techniques into therapy selection strategies and radiation treatment planning for head and neck squamous cell carcinoma (HNSCC) can serve several purposes. First, pre-treatment assessments can steer decisions about radiotherapy modifications or combinations with other modalities. Second, biology-based objective functions can be introduced to the radiation treatment planning process by co-registration of molecular imaging with planning computed tomography (CT) scans. Thus, customized heterogeneous dose distributions can be generated with escalated doses to tumor areas where radiotherapy resistance mechanisms are most prevalent. Third, monitoring of temporal and spatial variations in these radiotherapy resistance mechanisms early during the course of treatment can discriminate responders from non-responders. With such information available shortly after the start of treatment, modifications can be implemented or the radiation treatment plan can be adapted tailing the biological response pattern. Currently, these strategies are in various phases of clinical testing, mostly in single-center studies. Further validation in multicenter set-up is needed. Ultimately, this should result in availability for routine clinical practice requiring stable production and accessibility of tracers, reproducibility and standardization of imaging and analysis methods, as well as general availability of knowledge and expertise. Small studies employing adaptive radiotherapy based on functional dynamics and early response mechanisms demonstrate promising results. In this context, we focus this review on the widely used PET tracer (18)F-FDG and PET tracers depicting hypoxia and proliferation; two well-known radiation resistance mechanisms.

  20. Development of an ultrasmall C-band linear accelerator guide for a four-dimensional image-guided radiotherapy system with a gimbaled x-ray head.

    PubMed

    Kamino, Yuichiro; Miura, Sadao; Kokubo, Masaki; Yamashita, Ichiro; Hirai, Etsuro; Hiraoka, Masahiro; Ishikawa, Junzo

    2007-05-01

    We are developing a four-dimensional image-guided radiotherapy system with a gimbaled x-ray head. It is capable of pursuing irradiation and delivering irradiation precisely with the help of an agile moving x-ray head on the gimbals. Requirements for the accelerator guide were established, system design was developed, and detailed design was conducted. An accelerator guide was manufactured and basic beam performance and leakage radiation from the accelerator guide were evaluated at a low pulse repetition rate. The accelerator guide including the electron gun is 38 cm long and weighs about 10 kg. The length of the accelerating structure is 24.4 cm. The accelerating structure is a standing wave type and is composed of the axial-coupled injector section and the side-coupled acceleration cavity section. The injector section is composed of one prebuncher cavity, one buncher cavity, one side-coupled half cavity, and two axial coupling cavities. The acceleration cavity section is composed of eight side-coupled nose reentrant cavities and eight coupling cavities. The electron gun is a diode-type gun with a cerium hexaboride (CeB6) direct heating cathode. The accelerator guide can be operated without any magnetic focusing device. Output beam current was 75 mA with a transmission efficiency of 58%, and the average energy was 5.24 MeV. Beam energy was distributed from 4.95 to 5.6 MeV. The beam profile, measured 88 mm from the beam output hole on the axis of the accelerator guide, was 0.7 mm X 0.9 mm full width at half maximum (FWHM) width. The beam loading line was 5.925 (MeV)-Ib (mA) X 0.00808 (MeV/mA), where Ib is output beam current. The maximum radiation leakage of the accelerator guide at 100 cm from the axis of the accelerator guide was calculated as 0.33 cGy/min at the rated x-ray output of 500 cGy/min from the measured value. This leakage requires no radiation shielding for the accelerator guide itself per IEC 60601-2-1.

  1. [Prostate cancer external beam radiotherapy].

    PubMed

    de Crevoisier, R; Pommier, P; Latorzeff, I; Chapet, O; Chauvet, B; Hennequin, C

    2016-09-01

    The prostate external beam radiotherapy techniques are described, when irradiating the prostate or after prostatectomy, with and without pelvic lymph nodes. The following parts are presented: indications of radiotherapy, total dose and fractionation, planning CT image acquisition, volume of interest delineation (target volumes and organs at risk) and margins, Intensity modulated radiotherapy planning and corresponding dose-volume constraints, and finally Image guided radiotherapy.

  2. Functional Imaging Biomarkers: Potential to Guide an Individualised Approach to Radiotherapy.

    PubMed

    Prestwich, R J D; Vaidyanathan, S; Scarsbrook, A F

    2015-10-01

    The identification of robust prognostic and predictive biomarkers would transform the ability to implement an individualised approach to radiotherapy. In this regard, there has been a surge of interest in the use of functional imaging to assess key underlying biological processes within tumours and their response to therapy. Importantly, functional imaging biomarkers hold the potential to evaluate tumour heterogeneity/biology both spatially and temporally. An ever-increasing range of functional imaging techniques is now available primarily involving positron emission tomography and magnetic resonance imaging. Small-scale studies across multiple tumour types have consistently been able to correlate changes in functional imaging parameters during radiotherapy with disease outcomes. Considerable challenges remain before the implementation of functional imaging biomarkers into routine clinical practice, including the inherent temporal variability of biological processes within tumours, reproducibility of imaging, determination of optimal imaging technique/combinations, timing during treatment and design of appropriate validation studies.

  3. Evaluation of Imaging Dose From Different Image Guided Systems During Head and Neck Radiotherapy: A Phantom Study.

    PubMed

    Cheng, Chun Shing; Jong, Wei Loong; Ung, Ngie Min; Wong, Jeannie Hsiu Ding

    2016-12-09

    This work evaluated and compared the absorbed doses to selected organs in the head and neck region from the three image guided radiotherapy systems: cone-beam computed tomography (CBCT) and kilovoltage (kV) planar imaging using the On-board Imager(®) (OBI) as well as the ExacTrac(®) X-ray system, all available on the Varian Novalis TX linear accelerator. The head and neck region of an anthropomorphic phantom was used to simulate patients' head within the imaging field. Nanodots optically stimulated luminescent dosemeters were positioned at selected sites to measure the absorbed doses. CBCT was found to be delivering the highest dose to internal organs while OBI-2D gave the highest doses to the eye lenses. The setting of half-rotation in CBCT effectively reduces the dose to the eye lenses. Daily high-quality CBCT verification was found to increase the secondary cancer risk by 0.79%.

  4. The feasibility of using a conventional flexible RF coil for an online MR-guided radiotherapy treatment

    NASA Astrophysics Data System (ADS)

    Hoogcarspel, Stan J.; Crijns, Sjoerd P. M.; Lagendijk, Jan J. W.; van Vulpen, Marco; Raaymakers, Bas W.

    2013-03-01

    The purpose of this paper is to evaluate the impact of a flexible radiofrequency coil on the treatment delivery of an online MR-guided radiotherapy treatment. For this study, we used a Synergy MR body coil (Philips, Best) in combination with the current MRL prototype of the UMC Utrecht. The compatibility of the coil is evaluated in two steps. First, we evaluated the dosimetric impact of the MR coil on both a simple and a complex irradiation strategy for treating spinal bone metastases. This tumor site will likely be chosen for the first in-man treatments with the UMC Utrecht MRL system. Second, we investigated the impact of the treatment beam on the MRI performance of the body coil. In case a single posterior-anterior rectangular field was applied, dose to the target volume was underestimated up to 2.2% as a result of beam attenuation in the MR coil. This underestimation however, decreased to 1% when a stereotactic treatment strategy was employed. The presence of the MR coil in or near the distal site of the treatment beam decreased the exit dose when a magnetic field was present. The MRI performance of the coil was unaffected as the result of the radiation. It is feasible to use the Synergy MR body coil for an online MR-guided radiotherapy treatment without any modification to the coil or attenuation correction methods in the planning stage. The effect of the MRI coil on the dose delivery is minimal and there is no effect of the treatment beam on the SNR of the acquired MRI data.

  5. Positron Emission Tomography-Guided, Focal-Dose Escalation Using Intensity-Modulated Radiotherapy for Head and Neck Cancer

    SciTech Connect

    Madani, Indira . E-mail: indira@krtkg1.ugent.be; Duthoy, Wim; Derie, Cristina R.N.; De Gersem, Werner Ir.; Boterberg, Tom; Saerens, Micky; Jacobs, Filip Ir.; Gregoire, Vincent; Lonneux, Max; Vakaet, Luc; Vanderstraeten, Barbara; Bauters, Wouter; Bonte, Katrien; Thierens, Hubert; Neve, Wilfried de

    2007-05-01

    Purpose: To assess the feasibility of intensity-modulated radiotherapy (IMRT) using positron emission tomography (PET)-guided dose escalation, and to determine the maximum tolerated dose in head and neck cancer. Methods and Materials: A Phase I clinical trial was designed to escalate the dose limited to the [{sup 18}-F]fluoro-2-deoxy-D-glucose positron emission tomography ({sup 18}F-FDG-PET)-delineated subvolume within the gross tumor volume. Positron emission tomography scanning was performed in the treatment position. Intensity-modulated radiotherapy with an upfront simultaneously integrated boost was employed. Two dose levels were planned: 25 Gy (level I) and 30 Gy (level II), delivered in 10 fractions. Standard IMRT was applied for the remaining 22 fractions of 2.16 Gy. Results: Between 2003 and 2005, 41 patients were enrolled, with 23 at dose level I, and 18 at dose level II; 39 patients completed the planned therapy. The median follow-up for surviving patients was 14 months. Two cases of dose-limiting toxicity occurred at dose level I (Grade 4 dermitis and Grade 4 dysphagia). One treatment-related death at dose level II halted the study. Complete response was observed in 18 of 21 (86%) and 13 of 16 (81%) evaluated patients at dose levels I and II (p < 0.7), respectively, with actuarial 1-year local control at 85% and 87% (p n.s.), and 1-year overall survival at 82% and 54% (p = 0.06), at dose levels I and II, respectively. In 4 of 9 patients, the site of relapse was in the boosted {sup 18}F-FDG-PET-delineated region. Conclusions: For head and neck cancer, PET-guided dose escalation appears to be well-tolerated. The maximum tolerated dose was not reached at the investigated dose levels.

  6. CT-Guided 125I Seed Interstitial Brachytherapy as a Salvage Treatment for Recurrent Spinal Metastases after External Beam Radiotherapy

    PubMed Central

    Yao, Lihong; Cao, Qianqian; Yang, Jiwen; Meng, Na; Guo, Fuxin; Jiang, Yuliang; Tian, Suqing; Sun, Haitao

    2016-01-01

    The aim of this study is to evaluate the feasibility, safety, and clinical efficacy of CT-guided 125I seed interstitial brachytherapy in patients with recurrent spinal metastases after external beam radiotherapy (EBRT). Between August 2003 and September 2015, 26 spinal metastatic lesions (24 patients) were reirradiated by this salvage therapy modality. Treatment for all patients was preplanned using a three-dimensional treatment planning system 3–5 days before 125I seed interstitial brachytherapy; dosimetry verification was performed immediately after seed implantation. Median actual D90 was 99 Gy (range, 90–176), and spinal cord median Dmax was 39 Gy (range, 6–110). Median local control (LC) was 12 months (95% CI: 7.0–17.0). The 6- and 12-month LC rates were 52% and 40%, respectively. Median overall survival (OS) was 11 months (95% CI: 7.7–14.3); 6-month and 1-, 2-, and 3-year OS rates were 65%, 37%, 14%, and 9%, respectively. Pain-free survival ranged from 2 to 42 months (median, 6; 95% CI: 4.6–7.4). Treatment was well-tolerated, with no radiation-induced vertebral compression fractures or myelopathy reported. Reirradiation with CT-guided 125I seed interstitial brachytherapy appears to be feasible, safe, and effective as pain relief or salvage treatment for patients with recurrent spinal metastases after EBRT. PMID:28105434

  7. Medical applications of fast 3D cameras in real-time image-guided radiotherapy (IGRT) of cancer

    NASA Astrophysics Data System (ADS)

    Li, Shidong; Li, Tuotuo; Geng, Jason

    2013-03-01

    Dynamic volumetric medical imaging (4DMI) has reduced motion artifacts, increased early diagnosis of small mobile tumors, and improved target definition for treatment planning. High speed cameras for video, X-ray, or other forms of sequential imaging allow a live tracking of external or internal movement useful for real-time image-guided radiation therapy (IGRT). However, none of 4DMI can track real-time organ motion and no camera has correlated with 4DMI to show volumetric changes. With a brief review of various IGRT techniques, we propose a fast 3D camera for live-video stereovision, an automatic surface-motion identifier to classify body or respiratory motion, a mechanical model for synchronizing the external surface movement with the internal target displacement by combination use of the real-time stereovision and pre-treatment 4DMI, and dynamic multi-leaf collimation for adaptive aiming the moving target. Our preliminary results demonstrate that the technique is feasible and efficient in IGRT of mobile targets. A clinical trial has been initiated for validation of its spatial and temporal accuracies and dosimetric impact for intensity-modulated RT (IMRT), volumetric-modulated arc therapy (VMAT), and stereotactic body radiotherapy (SBRT) of any mobile tumors. The technique can be extended for surface-guided stereotactic needle insertion in biopsy of small lung nodules.

  8. Robotic Image-Guided Stereotactic Radiotherapy, for Isolated Recurrent Primary, Lymph Node or Metastatic Prostate Cancer

    SciTech Connect

    Jereczek-Fossa, Barbara Alicja; Beltramo, Giancarlo; Fariselli, Laura; Fodor, Cristiana; Santoro, Luigi; Vavassori, Andrea; Zerini, Dario; Gherardi, Federica; Ascione, Carmen; Bossi-Zanetti, Isa; Mauro, Roberta; Bregantin, Achille; Bianchi, Livia Corinna; De Cobelli, Ottavio; Orecchia, Roberto

    2012-02-01

    Purpose: To evaluate the outcome of robotic CyberKnife (Accuray, Sunnyvale, CA)-based stereotactic radiotherapy (CBK-SRT) for isolated recurrent primary, lymph node, or metastatic prostate cancer. Methods and Materials: Between May 2007 and December 2009, 34 consecutive patients/38 lesions were treated (15 patients reirradiated for local recurrence [P], 4 patients reirradiated for anastomosis recurrence [A], 16 patients treated for single lymph node recurrence [LN], and 3 patients treated for single metastasis [M]). In all but 4 patients, [{sup 11}C]choline positron emission tomography/computed tomography was performed. CBK-SRT consisted of reirradiation and first radiotherapy in 27 and 11 lesions, respectively. The median CBK-SRT dose was 30 Gy in 4.5 fractions (P, 30 Gy in 5 fractions; A, 30 Gy in 5 fractions; LN, 33 Gy in 3 fractions; and M, 36 Gy in 3 fractions). In 18 patients (21 lesions) androgen deprivation was added to CBK-SRT (median duration, 16.6 months). Results: The median follow-up was 16.9 months. Acute toxicity included urinary events (3 Grade 1, 2 Grade 2, and 2 Grade 3 events) and rectal events (1 Grade 1 event). Late toxicity included urinary events (3 Grade 1, 2 Grade 2, and 2 Grade 3 events) and rectal events (1 Grade 1 event and 1 Grade 2 event). Biochemical response was observed in 32 of 38 evaluable lesions. Prostate-specific antigen stabilization was seen for 4 lesions, and in 2 cases prostate-specific antigen progression was reported. The 30-month progression-free survival rate was 42.6%. Disease progression was observed for 14 lesions (5, 2, 5, and 2 in Groups P, A, LN, and M respectively). In only 3 cases, in-field progression was seen. At the time of analysis (May 2010), 19 patients are alive with no evidence of disease and 15 are alive with disease. Conclusions: CyberKnife-based stereotactic radiotherapy is a feasible approach for isolated recurrent primary, lymph node, or metastatic prostate cancer, offering excellent in-field tumor

  9. Learning image context for segmentation of prostate in CT-guided radiotherapy.

    PubMed

    Li, Wei; Liao, Shu; Feng, Qianjin; Chen, Wufan; Shen, Dinggang

    2011-01-01

    Segmentation of prostate is highly important in the external beam radiotherapy of prostate cancer. However, it is challenging to localize prostate in the CT images due to low image contrast, prostate motion, and both intensity and shape changes of bladder and rectum around the prostate. In this paper, an online learning and patient-specific classification method based on location-adaptive image context is proposed to precisely segment prostate in the CT image. Specifically, two sets of position-adaptive classifiers are respectively placed along the two coordinate directions, and further trained with the previous segmented treatment images to jointly perform the prostate segmentation. In particular, each location-adaptive classifier is recursively trained with different image context collected at different scales and orientations for better identification of each prostate region. The proposed learning-based prostate segmentation method has been extensively evaluated on a large set of patients, achieving very promising results.

  10. Development of a four-dimensional image-guided radiotherapy system with a gimbaled X-ray head

    SciTech Connect

    Kamino, Yuichiro . E-mail: daisaku_horiuchi@mhi.co.jp; Takayama, Kenji; Kokubo, Masaki; Narita, Yuichiro; Hirai, Etsuro; Kawawda, Noriyuki; Mizowaki, Takashi; Nagata, Yasushi; Nishidai, Takehiro; Hiraoka, Masahiro

    2006-09-01

    Purpose: To develop and evaluate a new four-dimensional image-guided radiotherapy system, which enables precise setup, real-time tumor tracking, and pursuit irradiation. Methods and Materials: The system has an innovative gimbaled X-ray head that enables small-angle ({+-}2.4{sup o}) rotations (pan and tilt) along the two orthogonal gimbals. This design provides for both accurate beam positioning at the isocenter by actively compensating for mechanical distortion and quick pursuit of the target. The X-ray head is composed of an ultralight C-band linear accelerator and a multileaf collimator. The gimbaled X-ray head is mounted on a rigid O-ring structure with an on-board imaging subsystem composed of two sets of kilovoltage X-ray tubes and flat panel detectors, which provides a pair of radiographs, cone beam computed tomography images useful for image guided setup, and real-time fluoroscopic monitoring for pursuit irradiation. Results: The root mean square accuracy of the static beam positioning was 0.1 mm for 360{sup o} of O-ring rotation. The dynamic beam response and positioning accuracy was {+-}0.6 mm for a 0.75 Hz, 40-mm stroke and {+-}0.4 mm for a 2.0 Hz, 8-mm stroke. The quality of the images was encouraging for using the tomography-based setup. Fluoroscopic images were sufficient for monitoring and tracking lung tumors. Conclusions: Key functions and capabilities of our new system are very promising for precise image-guided setup and for tracking and pursuit irradiation of a moving target.

  11. High-Dose, Single-Fraction Image-Guided Intensity-Modulated Radiotherapy for Metastatic Spinal Lesions

    SciTech Connect

    Yamada, Yoshiya Bilsky, Mark H.; Lovelock, D. Michael; Venkatraman, Ennapadam S.; Toner, Sean; Johnson, Jared; Zatcky, Joan N.P.; Zelefsky, Michael J.; Fuks, Zvi

    2008-06-01

    Purpose: To report tumor control and toxicity for patients treated with image-guided intensity-modulated radiotherapy (RT) for spinal metastases with high-dose single-fraction RT. Methods and Materials: A total of 103 consecutive spinal metastases in 93 patients without high-grade epidural spinal cord compression were treated with image-guided intensity-modulated RT to doses of 18-24 Gy (median, 24 Gy) in a single fraction between 2003 and 2006. The spinal cord dose was limited to a 14-Gy maximal dose. The patients were prospectively examined every 3-4 months with clinical assessment and cross-sectional imaging. Results: The overall actuarial local control rate was 90% (local failure developed in 7 patients) at a median follow-up of 15 months (range, 2-45 months). The median time to local failure was 9 months (range, 2-15 months) from the time of treatment. Of the 93 patients, 37 died. The median overall survival was 15 months. In all cases, death was from progression of systemic disease and not local failure. The histologic type was not a statistically significant predictor of survival or local control. The radiation dose was a significant predictor of local control (p = 0.03). All patients without local failure also reported durable symptom palliation. Acute toxicity was mild (Grade 1-2). No case of radiculopathy or myelopathy has developed. Conclusion: High-dose, single-fraction image-guided intensity-modulated RT is a noninvasive intervention that appears to be safe and very effective palliation for patients with spinal metastases, with minimal negative effects on quality of life and a high probability of tumor control.

  12. SU-E-J-205: Monte Carlo Modeling of Ultrasound Probes for Real-Time Ultrasound Image-Guided Radiotherapy

    SciTech Connect

    Hristov, D; Schlosser, J; Bazalova, M; Chen, J

    2014-06-01

    Purpose: To quantify the effect of ultrasound (US) probe beam attenuation for radiation therapy delivered under real-time US image guidance by means of Monte Carlo (MC) simulations. Methods: MC models of two Philips US probes, an X6-1 matrix-array transducer and a C5-2 curved-array transducer, were built based on their CT images in the EGSnrc BEAMnrc and DOSXYZnrc codes. Due to the metal parts, the probes were scanned in a Tomotherapy machine with a 3.5 MV beam. Mass densities in the probes were assigned based on an electron density calibration phantom consisting of cylinders with mass densities between 0.2–8.0 g/cm{sup 3}. Beam attenuation due to the probes was measured in a solid water phantom for a 6 MV and 15 MV 15x15 cm{sup 2} beam delivered on a Varian Trilogy linear accelerator. The dose was measured with the PTW-729 ionization chamber array at two depths and compared to MC simulations. The extreme case beam attenuation expected in robotic US image guided radiotherapy for probes in upright position was quantified by means of MC simulations. Results: The 3.5 MV CT number to mass density calibration curve was found to be linear with R{sup 2} > 0.99. The maximum mass densities were 4.6 and 4.2 g/cm{sup 3} in the C5-2 and X6-1 probe, respectively. Gamma analysis of the simulated and measured doses revealed that over 98% of measurement points passed the 3%/3mm criteria for both probes and measurement depths. The extreme attenuation for probes in upright position was found to be 25% and 31% for the C5-2 and X6-1 probe, respectively, for both 6 and 15 MV beams at 10 cm depth. Conclusion: MC models of two US probes used for real-time image guidance during radiotherapy have been built. As a Result, radiotherapy treatment planning with the imaging probes in place can now be performed. J Schlosser is an employee of SoniTrack Systems, Inc. D Hristov has financial interest in SoniTrack Systems, Inc.

  13. Optimization and quality assurance of an image-guided radiation therapy system for intensity-modulated radiation therapy radiotherapy.

    PubMed

    Tsai, Jen-San; Micaily, Bizhan; Miyamoto, Curtis

    2012-01-01

    To develop a quality assurance (QA) of XVI cone beam system (XVIcbs) for its optimal imaging-guided radiotherapy (IGRT) implementation, and to construe prostate tumor margin required for intensity-modulated radiation therapy (IMRT) if IGRT is unavailable. XVIcbs spatial accuracy was explored with a humanoid phantom; isodose conformity to lesion target with a rice phantom housing a soap as target; image resolution with a diagnostic phantom; and exposure validation with a Radcal ion chamber. To optimize XVIcbs, rotation flexmap on coincidency between gantry rotational axis and that of XVI cone beam scan was investigated. Theoretic correlation to image quality of XVIcbs rotational axis stability was elaborately studied. Comprehensive QA of IGRT using XVIcbs has initially been explored and then implemented on our general IMRT treatments, and on special IMRT radiotherapies such as head and neck (H and N), stereotactic radiation therapy (SRT), stereotactic radiosurgery (SRS), and stereotactic body radiotherapy (SBRT). Fifteen examples of prostate setup accounted for 350 IGRT cone beam system were analyzed. IGRT accuracy results were in agreement ± 1 mm. Flexmap 0.25 mm met the manufacturer's specification. Films confirmed isodose coincidence with target (soap) via XVIcbs, otherwise not. Superficial doses were measured from 7.2-2.5 cGy for anatomic diameters 15-33 cm, respectively. Image quality was susceptible to rotational stability or patient movement. IGRT using XVIcbs on general IMRT treatments such as prostate, SRT, SRS, and SBRT for setup accuracy were verified; and subsequently coordinate shifts corrections were recorded. The 350 prostate IGRT coordinate shifts modeled to Gaussian distributions show central peaks deviated off the isocenter by 0.6 ± 3.0 mm, 0.5 ± 4.5 mm in the X(RL)- and Z(SI)-coordinates, respectively; and 2.0 ± 3.0 mm in the Y(AP)-coordinate as a result of belly and bladder capacity variations. Sixty-eight percent of confidence was within

  14. Optimization and quality assurance of an image-guided radiation therapy system for intensity-modulated radiation therapy radiotherapy

    SciTech Connect

    Tsai, Jen-San; Micaily, Bizhan; Miyamoto, Curtis

    2012-10-01

    To develop a quality assurance (QA) of XVI cone beam system (XVIcbs) for its optimal imaging-guided radiotherapy (IGRT) implementation, and to construe prostate tumor margin required for intensity-modulated radiation therapy (IMRT) if IGRT is unavailable. XVIcbs spatial accuracy was explored with a humanoid phantom; isodose conformity to lesion target with a rice phantom housing a soap as target; image resolution with a diagnostic phantom; and exposure validation with a Radcal ion chamber. To optimize XVIcbs, rotation flexmap on coincidency between gantry rotational axis and that of XVI cone beam scan was investigated. Theoretic correlation to image quality of XVIcbs rotational axis stability was elaborately studied. Comprehensive QA of IGRT using XVIcbs has initially been explored and then implemented on our general IMRT treatments, and on special IMRT radiotherapies such as head and neck (H and N), stereotactic radiation therapy (SRT), stereotactic radiosurgery (SRS), and stereotactic body radiotherapy (SBRT). Fifteen examples of prostate setup accounted for 350 IGRT cone beam system were analyzed. IGRT accuracy results were in agreement {+-} 1 mm. Flexmap 0.25 mm met the manufacturer's specification. Films confirmed isodose coincidence with target (soap) via XVIcbs, otherwise not. Superficial doses were measured from 7.2-2.5 cGy for anatomic diameters 15-33 cm, respectively. Image quality was susceptible to rotational stability or patient movement. IGRT using XVIcbs on general IMRT treatments such as prostate, SRT, SRS, and SBRT for setup accuracy were verified; and subsequently coordinate shifts corrections were recorded. The 350 prostate IGRT coordinate shifts modeled to Gaussian distributions show central peaks deviated off the isocenter by 0.6 {+-} 3.0 mm, 0.5 {+-} 4.5 mm in the X(RL)- and Z(SI)-coordinates, respectively; and 2.0 {+-} 3.0 mm in the Y(AP)-coordinate as a result of belly and bladder capacity variations. Sixty-eight percent of confidence was

  15. Statistical Determination of the Gating Windows for Respiratory-Gated Radiotherapy Using a Visible Guiding System.

    PubMed

    Oh, Se An; Yea, Ji Woon; Kim, Sung Kyu

    2016-01-01

    Respiratory-gated radiation therapy (RGRT) is used to minimize the radiation dose to normal tissue in lung-cancer patients. Although determining the gating window in the respiratory phase of patients is important in RGRT, it is not easy. Our aim was to determine the optimal gating window when using a visible guiding system for RGRT. Between April and October 2014, the breathing signals of 23 lung-cancer patients were recorded with a real-time position management (RPM) respiratory gating system (Varian, USA). We performed statistical analysis with breathing signals to find the optimal gating window for guided breathing in RGRT. When we compared breathing signals before and after the breathing training, 19 of the 23 patients showed statistically significant differences (p < 0.05). The standard deviation of the respiration signals after breathing training was lowest for phases of 30%-70%. The results showed that the optimal gating window in RGRT is 40% (30%-70%) with respect to repeatability for breathing after respiration training with the visible guiding system. RGRT was performed with the RPM system to confirm the usefulness of the visible guiding system. The RPM system and our visible guiding system improve the respiratory regularity, which in turn should improve the accuracy and efficiency of RGRT.

  16. Statistical Determination of the Gating Windows for Respiratory-Gated Radiotherapy Using a Visible Guiding System

    PubMed Central

    Oh, Se An; Yea, Ji Woon

    2016-01-01

    Respiratory-gated radiation therapy (RGRT) is used to minimize the radiation dose to normal tissue in lung-cancer patients. Although determining the gating window in the respiratory phase of patients is important in RGRT, it is not easy. Our aim was to determine the optimal gating window when using a visible guiding system for RGRT. Between April and October 2014, the breathing signals of 23 lung-cancer patients were recorded with a real-time position management (RPM) respiratory gating system (Varian, USA). We performed statistical analysis with breathing signals to find the optimal gating window for guided breathing in RGRT. When we compared breathing signals before and after the breathing training, 19 of the 23 patients showed statistically significant differences (p < 0.05). The standard deviation of the respiration signals after breathing training was lowest for phases of 30%–70%. The results showed that the optimal gating window in RGRT is 40% (30%–70%) with respect to repeatability for breathing after respiration training with the visible guiding system. RGRT was performed with the RPM system to confirm the usefulness of the visible guiding system. The RPM system and our visible guiding system improve the respiratory regularity, which in turn should improve the accuracy and efficiency of RGRT. PMID:27228097

  17. Phase II Trial of Hypofractionated Image-Guided Intensity-Modulated Radiotherapy for Localized Prostate Adenocarcinoma

    SciTech Connect

    Martin, Jarad M.; Rosewall, Tara; Bayley, Andrew; Bristow, Robert; Chung, Peter; Crook, Juanita; Gospodarowicz, Mary; McLean, Michael; Menard, Cynthia; Milosevic, Michael; Warde, Padraig; Catton, Charles

    2007-11-15

    Purpose: To assess in a prospective trial the feasibility and late toxicity of hypofractionated radiotherapy (RT) for prostate cancer. Methods and Materials: Eligible patients had clinical stage T1c-2cNXM0 disease. They received 60 Gy in 20 fractions over 4 weeks with intensity-modulated radiotherapy including daily on-line image guidance with intraprostatic fiducial markers. Results: Between June 2001 and March 2004, 92 patients were treated with hypofractionated RT. The cohort had a median prostate-specific antigen value of 7.06 ng/mL. The majority had Gleason grade 5-6 (38%) or 7 (59%) disease, and 82 patients had T1c-T2a clinical staging. Overall, 29 patients had low-risk, 56 intermediate-risk, and 7 high-risk disease. Severe acute toxicity (Grade 3-4) was rare, occurring in only 1 patient. Median follow-up was 38 months. According to the Phoenix definition for biochemical failure, the rate of biochemical control at 14 months was 97%. According to the previous American Society for Therapeutic Radiology and Oncology definition, biochemical control at 3 years was 76%. The incidence of late toxicity was low, with no severe (Grade {>=}3) toxicity at the most recent assessment. Conclusions: Hypofractionated RT using 60 Gy in 20 fractions over 4 weeks with image guidance is feasible and is associated with low rates of late bladder and rectal toxicity. At early follow-up, biochemical outcome is comparable to that reported for conventionally fractionated controls. The findings are being tested in an ongoing, multicenter, Phase III trial.

  18. Performance characteristics of mobile MOSFET dosimeter for kilovoltage X-rays used in image guided radiotherapy

    PubMed Central

    Kumar, A. Sathish; Singh, I. Rabi Raja; Sharma, S. D.; Ravindran, B. Paul

    2015-01-01

    The main objective of this study was to investigate the characteristics of metal oxide semiconductor field effect transistor (MOSFET) dosimeter for kilovoltage (kV) X-ray beams in order to perform the in vivo dosimetry during image guidance in radiotherapy. The performance characteristics of high sensitivity MOSFET dosimeters were investigated for 80, 90, 100, 110, 120, and 125 kV X-ray beams used for imaging in radiotherapy. This study was performed using Clinac 2100 C/D medical electron linear accelerator with on-board imaging and kV cone beam computed tomography system. The characteristics studied in this work include energy dependence, angular dependence, and linearity. The X-ray beam outputs were measured as per American Association of Physicists in Medicine (AAPM) TG 61 recommendations using PTW parallel plate (PP) ionization chamber, which was calibrated in terms of air kerma (Nk) by the National Standard Laboratory. The MOSFET dosimeters were calibrated against the PP ionization chamber for all the kV X-ray beams and the calibration coefficient was found to be 0.11 cGy/mV with a standard deviation of about ±1%. The response of MOSFET was found to be energy independent for the kV X-ray energies used in this study. The response of the MOSFET dosimeter was also found independent of angle of incidence for the gantry angles in the range of 0° to 360° in-air as well as at 3 cm depth in tissue equivalent phantom. PMID:26500397

  19. SU-E-J-144: MRI Visualization of a Metallic Fiducial Marker Used for Image Guided Prostate Radiotherapy

    SciTech Connect

    Yee, S; Krauss, D; Yan, D

    2014-06-01

    Purpose: Unlike on the daily CBCT used for the image-guided radiation therapy, the visualization of an implantable metallic fiducial marker on the planning MRI images has been a challenge due to the inherent insensitivity of metal in MRI, and very thin (∼ 1 mm or less) diameter. Here, an MRI technique to visualize a marker used for prostate cancer radiotherapy is reported. Methods: During the MRI acquisitions, a multi-shot turbo spin echo (TSE) technique (TR=3500 ms, TE=8.6 ms, ETL=17, recon voxel=0.42x0.42x3.5 mm3) was acquired in Philips 3T Ingenia together with a T2-weighted multi-shot TSE (TR=5381 ms, TE=110 ms, ETL=17, recon voxel=0.47×0.47×3 mm3) and a balanced turbo field echo (bTFE, flip angle 60, TR=2.76 ms, TE=1.3 ms, 0.85×0.85×3 mm3, NSA=4). In acquiring the MRI to visualize the fiducial marker, a particular emphasis was made to improve the spatial resolution and visibility in the generally dark, inhomogeneous prostate area by adjusting the slice profile ordering and TE values of TSE acquisition (in general, the lower value of TE in TSE acquisition generates a brighter signal but at the cost of high spatial resolution since the k-space, responsible for high spatial resolution, is filled with noisier data). Results: While clearly visible in CT, the marker was not visible in either T2-weighted TSE or bTFE, although the image qualities of both images were superior. In the new TSE acquisition (∼ a proton-density weighted image) adjusted by changing the profile ordering and the TE value, the marker was visible as a negative (but clear) contrast in the magnitude MRI, and as a positive contrast in the imaginary image of the phase-sensitive MRI. Conclusion: A metallic fiducial marker used for image guidance before prostate cancer radiotherapy can be made visible in MRI, which may facilitate more use of MRI in planning and guiding such radiation therapy.

  20. Tumor Control Outcomes After Hypofractionated and Single-Dose Stereotactic Image-Guided Intensity-Modulated Radiotherapy for Extracranial Metastases From Renal Cell Carcinoma

    SciTech Connect

    Zelefsky, Michael J.; Greco, Carlo; Motzer, Robert; Magsanoc, Juan Martin; Pei Xin; Lovelock, Michael; Mechalakos, Jim; Zatcky, Joan; Fuks, Zvi; Yamada, Yoshiya

    2012-04-01

    Purpose: To report tumor local progression-free outcomes after treatment with single-dose, image-guided, intensity-modulated radiotherapy and hypofractionated regimens for extracranial metastases from renal cell primary tumors. Patients and Methods: Between 2004 and 2010, 105 lesions from renal cell carcinoma were treated with either single-dose, image-guided, intensity-modulated radiotherapy to a prescription dose of 18-24 Gy (median, 24) or hypofractionation (three or five fractions) with a prescription dose of 20-30 Gy. The median follow-up was 12 months (range, 1-48). Results: The overall 3-year actuarial local progression-free survival for all lesions was 44%. The 3-year local progression-free survival for those who received a high single-dose (24 Gy; n = 45), a low single-dose (<24 Gy; n = 14), or hypofractionation regimens (n = 46) was 88%, 21%, and 17%, respectively (high single dose vs. low single dose, p = .001; high single dose vs. hypofractionation, p < .001). Multivariate analysis revealed the following variables were significant predictors of improved local progression-free survival: 24 Gy dose compared with a lower dose (p = .009) and a single dose vs. hypofractionation (p = .008). Conclusion: High single-dose, image-guided, intensity-modulated radiotherapy is a noninvasive procedure resulting in high probability of local tumor control for metastatic renal cell cancer generally considered radioresistant according to the classic radiobiologic ranking.

  1. [Assessment of overall spatial accuracy in image guided stereotactic body radiotherapy using a spine registration method].

    PubMed

    Nakazawa, Hisato; Uchiyama, Yukio; Komori, Masataka; Hayashi, Naoki

    2014-06-01

    Stereotactic body radiotherapy (SBRT) for lung and liver tumors is always performed under image guidance, a technique used to confirm the accuracy of setup positioning by fusing planning digitally reconstructed radiographs with X-ray, fluoroscopic, or computed tomography (CT) images, using bony structures, tumor shadows, or metallic markers as landmarks. The Japanese SBRT guidelines state that bony spinal structures should be used as the main landmarks for patient setup. In this study, we used the Novalis system as a linear accelerator for SBRT of lung and liver tumors. The current study compared the differences between spine registration and target registration and calculated total spatial accuracy including setup uncertainty derived from our image registration results and the geometric uncertainty of the Novalis system. We were able to evaluate clearly whether overall spatial accuracy is achieved within a setup margin (SM) for planning target volume (PTV) in treatment planning. After being granted approval by the Hospital and University Ethics Committee, we retrospectively analyzed eleven patients with lung tumor and seven patients with liver tumor. The results showed the total spatial accuracy to be within a tolerable range for SM of treatment planning. We therefore regard our method to be suitable for image fusion involving 2-dimensional X-ray images during the treatment planning stage of SBRT for lung and liver tumors.

  2. Patient Selection and Activity Planning Guide for Selective Internal Radiotherapy With Yttrium-90 Resin Microspheres

    SciTech Connect

    Lau, Wan-Yee; Kennedy, Andrew S.; Kim, Yun Hwan; Lai, Hee Kit; Lee, Rheun-Chuan; Leung, Thomas W.T.; Liu, Ching-Sheng; Salem, Riad; Sangro, Bruno; Shuter, Borys; Wang, Shih-Chang

    2012-01-01

    Purpose: Selective internal radiotherapy (SIRT) with yttrium-90 ({sup 90}Y) resin microspheres can improve the clinical outcomes for selected patients with inoperable liver cancer. This technique involves intra-arterial delivery of {beta}-emitting microspheres into hepatocellular carcinomas or liver metastases while sparing uninvolved structures. Its unique mode of action, including both {sup 90}Y brachytherapy and embolization of neoplastic microvasculature, necessitates activity planning methods specific to SIRT. Methods and Materials: A panel of clinicians experienced in {sup 90}Y resin microsphere SIRT was convened to integrate clinical experience with the published data to propose an activity planning pathway for radioembolization. Results: Accurate planning is essential to minimize potentially fatal sequelae such as radiation-induced liver disease while delivering tumoricidal {sup 90}Y activity. Planning methods have included empiric dosing according to degree of tumor involvement, empiric dosing adjusted for the body surface area, and partition model calculations using Medical Internal Radiation Dose principles. It has been recommended that at least two of these methods be compared when calculating the microsphere activity for each patient. Conclusions: Many factors inform {sup 90}Y resin microsphere SIRT activity planning, including the therapeutic intent, tissue and vasculature imaging, tumor and uninvolved liver characteristics, previous therapies, and localization of the microsphere infusion. The influence of each of these factors has been discussed.

  3. Motion prediction in MRI-guided radiotherapy based on interleaved orthogonal cine-MRI

    NASA Astrophysics Data System (ADS)

    Seregni, M.; Paganelli, C.; Lee, D.; Greer, P. B.; Baroni, G.; Keall, P. J.; Riboldi, M.

    2016-01-01

    In-room cine-MRI guidance can provide non-invasive target localization during radiotherapy treatment. However, in order to cope with finite imaging frequency and system latencies between target localization and dose delivery, tumour motion prediction is required. This work proposes a framework for motion prediction dedicated to cine-MRI guidance, aiming at quantifying the geometric uncertainties introduced by this process for both tumour tracking and beam gating. The tumour position, identified through scale invariant features detected in cine-MRI slices, is estimated at high-frequency (25 Hz) using three independent predictors, one for each anatomical coordinate. Linear extrapolation, auto-regressive and support vector machine algorithms are compared against systems that use no prediction or surrogate-based motion estimation. Geometric uncertainties are reported as a function of image acquisition period and system latency. Average results show that the tracking error RMS can be decreased down to a [0.2; 1.2] mm range, for acquisition periods between 250 and 750 ms and system latencies between 50 and 300 ms. Except for the linear extrapolator, tracking and gating prediction errors were, on average, lower than those measured for surrogate-based motion estimation. This finding suggests that cine-MRI guidance, combined with appropriate prediction algorithms, could relevantly decrease geometric uncertainties in motion compensated treatments.

  4. A rapid and robust iterative closest point algorithm for image guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Barbiere, Joseph; Hanley, Joseph

    2008-03-01

    Our work presents a rapid and robust process that can analytically evaluate and correct patient setup error for head and neck radiotherapy by comparing orthogonal megavoltage portal images with digitally reconstructed radiographs. For robust data Photoshop is used to interactively segment images and registering reference contours to the transformed PI. MatLab is used for matrix computations and image analysis. The closest point distance for each PI point to a DRR point forms a set of homologous points. The translation that aligns the PI to the DRR is equal to the difference in centers of mass. The original PI points are transformed and the process repeated with an Iterative Closest Point algorithm until the transformation change becomes negligible. Using a 3.00 GHz processor the calculation of the 2500x1750 CPD matrix takes about 150 sec per iteration. Standard down sampling to about 1000 DRR and 250 PI points significantly reduces that time. We introduce a local neighborhood matrix consisting of a small subset of the DRR points in the vicinity of each PI point to further reduce the CPD matrix size. Our results demonstrate the effects of down sampling on accuracy. For validation, analytical detailed results are displayed as a histogram.

  5. Motion prediction in MRI-guided radiotherapy based on interleaved orthogonal cine-MRI.

    PubMed

    Seregni, M; Paganelli, C; Lee, D; Greer, P B; Baroni, G; Keall, P J; Riboldi, M

    2016-01-21

    In-room cine-MRI guidance can provide non-invasive target localization during radiotherapy treatment. However, in order to cope with finite imaging frequency and system latencies between target localization and dose delivery, tumour motion prediction is required. This work proposes a framework for motion prediction dedicated to cine-MRI guidance, aiming at quantifying the geometric uncertainties introduced by this process for both tumour tracking and beam gating. The tumour position, identified through scale invariant features detected in cine-MRI slices, is estimated at high-frequency (25 Hz) using three independent predictors, one for each anatomical coordinate. Linear extrapolation, auto-regressive and support vector machine algorithms are compared against systems that use no prediction or surrogate-based motion estimation. Geometric uncertainties are reported as a function of image acquisition period and system latency. Average results show that the tracking error RMS can be decreased down to a [0.2; 1.2] mm range, for acquisition periods between 250 and 750 ms and system latencies between 50 and 300 ms. Except for the linear extrapolator, tracking and gating prediction errors were, on average, lower than those measured for surrogate-based motion estimation. This finding suggests that cine-MRI guidance, combined with appropriate prediction algorithms, could relevantly decrease geometric uncertainties in motion compensated treatments.

  6. Use of the BrainLAB ExacTrac X-Ray 6D System in Image-Guided Radiotherapy

    SciTech Connect

    Jin, J.-Y. Yin Fangfang; Tenn, Stephen E.; Medin, Paul M.; Solberg, Timothy D.

    2008-07-01

    The ExacTrac X-Ray 6D image-guided radiotherapy (IGRT) system will be described and its performance evaluated. The system is mainly an integration of 2 subsystems: (1) an infrared (IR)-based optical positioning system (ExacTrac) and (2) a radiographic kV x-ray imaging system (X-Ray 6D). The infrared system consists of 2 IR cameras, which are used to monitor reflective body markers placed on the patient's skin to assist in patient initial setup, and an IR reflective reference star, which is attached to the treatment couch and can assist in couch movement with spatial resolution to better than 0.3 mm. The radiographic kV devices consist of 2 oblique x-ray imagers to obtain high-quality radiographs for patient position verification and adjustment. The position verification is made by fusing the radiographs with the simulation CT images using either 3 degree-of-freedom (3D) or 6 degree-of-freedom (6D) fusion algorithms. The position adjustment is performed using the infrared system according to the verification results. The reliability of the fusion algorithm will be described based on phantom and patient studies. The results indicated that the 6D fusion method is better compared to the 3D method if there are rotational deviations between the simulation and setup positions. Recently, the system has been augmented with the capabilities for image-guided positioning of targets in motion due to respiration and for gated treatment of those targets. The infrared markers provide a respiratory signal for tracking and gating of the treatment beam, with the x-ray system providing periodic confirmation of patient position relative to the gating window throughout the duration of the gated delivery.

  7. Use of the BrainLAB ExacTrac X-Ray 6D system in image-guided radiotherapy.

    PubMed

    Jin, Jian-Yue; Yin, Fang-Fang; Tenn, Stephen E; Medin, Paul M; Solberg, Timothy D

    2008-01-01

    The ExacTrac X-Ray 6D image-guided radiotherapy (IGRT) system will be described and its performance evaluated. The system is mainly an integration of 2 subsystems: (1) an infrared (IR)-based optical positioning system (ExacTrac) and (2) a radiographic kV x-ray imaging system (X-Ray 6D). The infrared system consists of 2 IR cameras, which are used to monitor reflective body markers placed on the patient's skin to assist in patient initial setup, and an IR reflective reference star, which is attached to the treatment couch and can assist in couch movement with spatial resolution to better than 0.3 mm. The radiographic kV devices consist of 2 oblique x-ray imagers to obtain high-quality radiographs for patient position verification and adjustment. The position verification is made by fusing the radiographs with the simulation CT images using either 3 degree-of-freedom (3D) or 6 degree-of-freedom (6D) fusion algorithms. The position adjustment is performed using the infrared system according to the verification results. The reliability of the fusion algorithm will be described based on phantom and patient studies. The results indicated that the 6D fusion method is better compared to the 3D method if there are rotational deviations between the simulation and setup positions. Recently, the system has been augmented with the capabilities for image-guided positioning of targets in motion due to respiration and for gated treatment of those targets. The infrared markers provide a respiratory signal for tracking and gating of the treatment beam, with the x-ray system providing periodic confirmation of patient position relative to the gating window throughout the duration of the gated delivery.

  8. Magnitude of speed of sound aberration corrections for ultrasound image guided radiotherapy for prostate and other anatomical sites

    SciTech Connect

    Fontanarosa, Davide; Meer, Skadi van der; Bloemen-van Gurp, Esther; Stroian, Gabriela; Verhaegen, Frank

    2012-08-15

    Purpose: The purpose of this work is to assess the magnitude of speed of sound (SOS) aberrations in three-dimensional ultrasound (US) imaging systems in image guided radiotherapy. The discrepancy between the fixed SOS value of 1540 m/s assumed by US systems in human soft tissues and its actual nonhomogeneous distribution in patients produces small but systematic errors of up to a few millimeters in the positions of scanned structures. Methods: A correction, provided by a previously published density-based algorithm, was applied to a set of five prostate, five liver, and five breast cancer patients. The shifts of the centroids of target structures and the change in shape were evaluated. Results: After the correction the prostate cases showed shifts up to 3.6 mm toward the US probe, which may explain largely the reported positioning discrepancies in the literature on US systems versus other imaging modalities. Liver cases showed the largest changes in volume of the organ, up to almost 9%, and shifts of the centroids up to more than 6 mm either away or toward the US probe. Breast images showed systematic small shifts of the centroids toward the US probe with a maximum magnitude of 1.3 mm. Conclusions: The applied correction in prostate and liver cancer patients shows positioning errors of several mm due to SOS aberration; the errors are smaller in breast cancer cases, but possibly becoming more important when breast tissue thickness increases.

  9. MR-CT registration using a Ni-Ti prostate stent in image-guided radiotherapy of prostate cancer

    SciTech Connect

    Korsager, Anne Sofie; Ostergaard, Lasse Riis; Carl, Jesper

    2013-06-15

    Purpose: In image-guided radiotherapy of prostate cancer defining the clinical target volume often relies on magnetic resonance (MR). The task of transferring the clinical target volume from MR to standard planning computed tomography (CT) is not trivial due to prostate mobility. In this paper, an automatic local registration approach is proposed based on a newly developed removable Ni-Ti prostate stent.Methods: The registration uses the voxel similarity measure mutual information in a two-step approach where the pelvic bones are used to establish an initial registration for the local registration.Results: In a phantom study, the accuracy was measured to 0.97 mm and visual inspection showed accurate registration of all 30 data sets. The consistency of the registration was examined where translation and rotation displacements yield a rotation error of 0.41 Degree-Sign {+-} 0.45 Degree-Sign and a translation error of 1.67 {+-} 2.24 mm.Conclusions: This study demonstrated the feasibility for an automatic local MR-CT registration using the prostate stent.

  10. Localization Accuracy of the Clinical Target Volume During Image-Guided Radiotherapy of Lung Cancer

    SciTech Connect

    Hugo, Geoffrey D.; Weiss, Elisabeth; Badawi, Ahmed; Orton, Matthew

    2011-10-01

    Purpose: To evaluate the position and shape of the originally defined clinical target volume (CTV) over the treatment course, and to assess the impact of gross tumor volume (GTV)-based online computed tomography (CT) guidance on CTV localization accuracy. Methods and Materials: Weekly breath-hold CT scans were acquired in 17 patients undergoing radiotherapy. Deformable registration was used to propagate the GTV and CTV from the first weekly CT image to all other weekly CT images. The on-treatment CT scans were registered rigidly to the planning CT scan based on the GTV location to simulate online guidance, and residual error in the CTV centroids and borders was calculated. Results: The mean GTV after 5 weeks relative to volume at the beginning of treatment was 77% {+-} 20%, whereas for the prescribed CTV, it was 92% {+-} 10%. The mean absolute residual error magnitude in the CTV centroid position after a GTV-based localization was 2.9 {+-} 3.0 mm, and it varied from 0.3 to 20.0 mm over all patients. Residual error of the CTV centroid was associated with GTV regression and anisotropy of regression during treatment (p = 0.02 and p = 0.03, respectively; Spearman rank correlation). A residual error in CTV border position greater than 2 mm was present in 77% of patients and 50% of fractions. Among these fractions, residual error of the CTV borders was 3.5 {+-} 1.6 mm (left-right), 3.1 {+-} 0.9 mm (anterior-posterior), and 6.4 {+-} 7.5 mm (superior-inferior). Conclusions: Online guidance based on the visible GTV produces substantial error in CTV localization, particularly for highly regressing tumors. The results of this study will be useful in designing margins for CTV localization or for developing new online CTV localization strategies.

  11. Learning Image Context for Segmentation of Prostate in CT-Guided Radiotherapy

    PubMed Central

    Li, Wei; Liao, Shu; Feng, Qianjin; Chen, Wufan; Shen, Dinggang

    2012-01-01

    Accurate segmentation of prostate is the key to the success of external beam radiotherapy of prostate cancer. However, accurate segmentation of prostate in computer tomography (CT) images remains challenging mainly due to three factors: (1) low image contrast between the prostate and its surrounding tissues, (2) unpredictable prostate motion across different treatment days, and (3) large variations of intensities and shapes of bladder and rectum around the prostate. In this paper, an online-learning and patient-specific classification method based on the location-adaptive image context is presented to deal with all these challenging issues and achieve the precise segmentation of prostate in CT images. Specifically, two sets of location-adaptive classifiers are placed, respectively, along the two coordinate directions of the planning image space of a patient, and further trained with the planning image and also the previous-segmented treatment images of the same patient to jointly perform prostate segmentation for a new treatment image (of the same patient). In particular, each location-adaptive classifier, which itself consists of a set of sequential sub-classifiers, is recursively trained with both the static image appearance features and the iteratively-updated image context features (extracted at different scales and orientations) for better identification of each prostate region. The proposed learning-based prostate segmentation method has been extensively evaluated on 161 images of 11 patients, each with more than 9 daily treatment 3D CT images. Our method achieves the mean Dice value 0.908 and the mean ± SD of average surface distance (ASD) value 1.40 ± 0.57 mm. Its performance is also compared with three prostate segmentation methods, indicating the best segmentation accuracy by the proposed method among all methods under comparison. PMID:22343071

  12. Learning image context for segmentation of the prostate in CT-guided radiotherapy.

    PubMed

    Li, Wei; Liao, Shu; Feng, Qianjin; Chen, Wufan; Shen, Dinggang

    2012-03-07

    Accurate segmentation of the prostate is the key to the success of external beam radiotherapy of prostate cancer. However, accurate segmentation of the prostate in computer tomography (CT) images remains challenging mainly due to three factors: (1) low image contrast between the prostate and its surrounding tissues, (2) unpredictable prostate motion across different treatment days and (3) large variations of intensities and shapes of the bladder and rectum around the prostate. In this paper, an online-learning and patient-specific classification method based on the location-adaptive image context is presented to deal with all these challenging issues and achieve the precise segmentation of the prostate in CT images. Specifically, two sets of location-adaptive classifiers are placed, respectively, along the two coordinate directions of the planning image space of a patient, and further trained with the planning image and also the previous-segmented treatment images of the same patient to jointly perform prostate segmentation for a new treatment image (of the same patient). In particular, each location-adaptive classifier, which itself consists of a set of sequential sub-classifiers, is recursively trained with both the static image appearance features and the iteratively updated image context features (extracted at different scales and orientations) for better identification of each prostate region. The proposed learning-based prostate segmentation method has been extensively evaluated on 161 images of 11 patients, each with more than nine daily treatment three-dimensional CT images. Our method achieves the mean Dice value 0.908 and the mean ± SD of average surface distance value 1.40 ± 0.57 mm. Its performance is also compared with three prostate segmentation methods, indicating the best segmentation accuracy by the proposed method among all methods under comparison.

  13. PET guidance in prostate cancer radiotherapy: Quantitative imaging to predict response and guide treatment.

    PubMed

    Cattaneo, G M; Bettinardi, V; Mapelli, P; Picchio, M

    2016-03-01

    Positron emission tomography (PET) allows a monitoring and recording of the spatial and temporal distribution of molecular/cellular processes for diagnostic and therapeutic applications. The aim of this review is to describe the current applications and to explore the role of PET in prostate cancer management, mainly in the radiation therapy (RT) scenario. The state-of-the art of PET for prostate cancer will be presented together with the impact of new specific PET tracers and technological developments aiming at obtaining better imaging quality, increased tumor detectability and more accurate volume delineation. An increased number of studies have been focusing on PET quantification methods as predictive biomarkers capable of guiding individualized treatment and improving patient outcome; the sophisticated advanced intensity modulated and imaged guided radiation therapy techniques (IMRT/IGRT) are capable of boosting more radioresistant tumor (sub)volumes. The use of advanced feature analyses of PET images is an approach that holds great promise with regard to several oncological diseases, but needs further validation in managing prostate diseases.

  14. SU-D-9A-07: Imaging Dose and Cancer Risk in Image-Guided Radiotherapy of Cancers

    SciTech Connect

    Zhou, L; Bai, S; Zhang, Y; Ming, X; Zhang, Y; Deng, J

    2014-06-01

    Purpose: To systematically evaluate the imaging doses and cancer risks associated with various imaging procedures involving ionizing radiation during image-guided radiotherapy of an increasingly large number of cancer patients. Methods: 141 patients (52 brain cases, 47 thoracic cases, 42 abdominal cases, aged 3 to 91 years old) treated between October 2009 and March 2010 were included in this IRB-approved retrospective study. During the whole radiotherapy course, each patient underwent at least one type of imaging procedures, i.e., kV portal, MV portal and kVCBCT, besides CT simulations. Based on Monte Carlo modeling and particle transport in human anatomy of various dimensions, the correlations between the radiation doses to the various organs-at-risk (OARs) at the head, the thoracic and the abdominal regions and one's weight, circumference, scan mAs and kVp have been obtained and used to estimate the radiation dose from a specific imaging procedure. The radiation-induced excess relative risk (ERR) was then estimated with BEIR VII formulism based on one's gender, age and radiation dose. 1+ ERR was reported in this study as relative cancer risk. Results: For the whole cohort of 141 patients, the mean imaging doses from various imaging procedures were 8.3 cGy to the brain, 10.5 cGy to the lungs and 19.2 cGy to the red bone marrow, respectively. Accordingly, the cancer risks were 1.140, 1.369 and 2.671, respectively. In comparison, MV portal deposited largest doses to the lungs while kVCBCT delivered the highest doses to the red bone marrow. Conclusion: The compiled imaging doses to a patient during his/her treatment course were patient-specific and site-dependent, varying from 1.2 to 263.5 cGy on average, which were clinically significant and should be included in the treatment planning and overall decision-making. Our results indicated the necessity of personalized imaging to maximize its clinical benefits while reducing the associated cancer risks. Sichuan

  15. Image-Guided Radiotherapy Using a Modified Industrial Micro-CT for Preclinical Applications

    PubMed Central

    Felix, Manuela C.; Fleckenstein, Jens; Kirschner, Stefanie; Hartmann, Linda; Wenz, Frederik; Brockmann, Marc A.

    2015-01-01

    Purpose/Objective Although radiotherapy is a key component of cancer treatment, its implementation into pre-clinical in vivo models with relatively small target volumes is frequently omitted either due to technical complexity or expected side effects hampering long-term observational studies. We here demonstrate how an affordable industrial micro-CT can be converted into a small animal IGRT device at very low costs. We also demonstrate the proof of principle for the case of partial brain irradiation of mice carrying orthotopic glioblastoma implants. Methods/Materials A commercially available micro-CT originally designed for non-destructive material analysis was used. It consists of a CNC manipulator, a transmission X-ray tube (10–160 kV) and a flat-panel detector, which was used together with custom-made steel collimators (1–5 mm aperture size). For radiation field characterization, an ionization chamber, water-equivalent slab phantoms and radiochromic films were used. A treatment planning tool was implemented using a C++ application. For proof of principle, NOD/SCID/γc−/− mice were orthotopically implanted with U87MG high-grade glioma cells and irradiated using the novel setup. Results The overall symmetry of the radiation field at 150 kV was 1.04±0.02%. The flatness was 4.99±0.63% and the penumbra widths were between 0.14 mm and 0.51 mm. The full width at half maximum (FWHM) ranged from 1.97 to 9.99 mm depending on the collimator aperture size. The dose depth curve along the central axis followed a typical shape of keV photons. Dose rates measured were 10.7 mGy/s in 1 mm and 7.6 mGy/s in 5 mm depth (5 mm collimator aperture size). Treatment of mice with a single dose of 10 Gy was tolerated well and resulted in central tumor necrosis consistent with therapeutic efficacy. Conclusion A conventional industrial micro-CT can be easily modified to allow effective small animal IGRT even of critical target volumes such as the brain. PMID:25993010

  16. TH-A-BRF-05: MRI of Individual Lymph Nodes to Guide Regional Breast Radiotherapy

    SciTech Connect

    Heijst, T van; Asselen, B van; Lagendijk, J; Bongard, D van den; Philippens, M

    2014-06-15

    Purpose: In regional radiotherapy (RT) for breast-cancer patients, direct visualization of individual lymph nodes (LNs) may reduce target volumes and Result in lower toxicity (i.e. reduced radiation pneumonitis, arm edema, arm morbidity), relative to standard CT-based delineations. To this end, newly designed magnetic resonance imaging (MRI) sequences were optimized and assessed qualitatively and quantitatively. Methods: In ten healthy female volunteers, a scanning protocol was developed and optimized. Coronal images were acquired in supine RT position positioned on a wedge board on a 1.5 T Ingenia (Philips) wide-bore MRI. In four volunteers the optimized MRI protocol was applied, including a 3-dimensional (3D) T1-weighted (T1w) fast-field-echo (FFE). T2w sequences, including 3D FFE, 3D and 2D fast spin echo (FSE), and diffusion-weighted single-shot echo-planar imaging (DWI) were also performed. Several fatsuppression techniques were used. Qualitative evaluation parameters included LN contrast, motion susceptibility, visibility of anatomical structures, and fat suppression. The number of visible axillary and supraclavicular LNs was also determined. Results: T1 FFE, insensitive to motion, lacked contrast of LNs, which often blended in with soft tissue and blood. T2 FFE showed high contrast, but some LNs were obscured due to motion. Both 2D and 3D FSE were motion-insensitive having high contrast, although some blood remained visible. 2D FSE showed more anatomical details, while in 3D FSE, some blurring occurred. DWI showed high LN contrast, but suffered from geometric distortions and low resolution. Fat suppression by mDixon was the most reliable in regions with magnetic-field inhomogeneities. The FSE sequences showed the highest sensitivity for LN detection. Conclusion: MRI of regional LNs was achieved in volunteers. The FSE techniques were robust and the most sensitive. Our optimized MRI sequences can facilitate direct delineation of individual LNs. This can Result

  17. Image-Guided Radiotherapy for Left-Sided Breast Cancer Patients: Geometrical Uncertainty of the Heart

    SciTech Connect

    Topolnjak, Rajko; Borst, Gerben R.; Nijkamp, Jasper

    2012-03-15

    Purpose: To quantify the geometrical uncertainties for the heart during radiotherapy treatment of left-sided breast cancer patients and to determine and validate planning organ at risk volume (PRV) margins. Methods and Materials: Twenty-two patients treated in supine position in 28 fractions with regularly acquired cone-beam computed tomography (CBCT) scans for offline setup correction were included. Retrospectively, the CBCT scans were reconstructed into 10-phase respiration correlated four-dimensional scans. The heart was registered in each breathing phase to the planning CT scan to establish the respiratory heart motion during the CBCT scan ({sigma}{sub resp}). The average of the respiratory motion was calculated as the heart displacement error for a fraction. Subsequently, the systematic ({Sigma}), random ({sigma}), and total random ({sigma}{sub tot}={radical}({sigma}{sup 2}+{sigma}{sub resp}{sup 2})) errors of the heart position were calculated. Based on the errors a PRV margin for the heart was calculated to ensure that the maximum heart dose (D{sub max}) is not underestimated in at least 90% of the cases (M{sub heart} = 1.3{Sigma}-0.5{sigma}{sub tot}). All analysis were performed in left-right (LR), craniocaudal (CC), and anteroposterior (AP) directions with respect to both online and offline bony anatomy setup corrections. The PRV margin was validated by accumulating the dose to the heart based on the heart registrations and comparing the planned PRV D{sub max} to the accumulated heart D{sub max}. Results: For online setup correction, the cardiac geometrical uncertainties and PRV margins were N-Ary-Summation = 2.2/3.2/2.1 mm, {sigma} = 2.1/2.9/1.4 mm, and M{sub heart} = 1.6/2.3/1.3 mm for LR/CC/AP, respectively. For offline setup correction these were N-Ary-Summation = 2.4/3.7/2.2 mm, {sigma} = 2.9/4.1/2.7 mm, and M{sub heart} = 1.6/2.1/1.4 mm. Cardiac motion induced by breathing was {sigma}{sub resp} = 1.4/2.9/1.4 mm for LR/CC/AP. The PRV D{sub max

  18. On-Board Imaging Validation of Optically Guided Stereotactic Radiosurgery Positioning System for Conventionally Fractionated Radiotherapy for Paranasal Sinus and Skull Base Cancer

    SciTech Connect

    Maxim, Peter G.; Loo, Billy W.; Murphy, James D.; Chu, Karen P.M.; Hsu, Annie; Le, Quynh-Thu

    2011-11-15

    Purpose: To evaluate the positioning accuracy of an optical positioning system for stereotactic radiosurgery in a pilot experience of optically guided, conventionally fractionated, radiotherapy for paranasal sinus and skull base tumors. Methods and Materials: Before each daily radiotherapy session, the positioning of 28 patients was set up using an optical positioning system. After this initial setup, the patients underwent standard on-board imaging that included daily orthogonal kilovoltage images and weekly cone beam computed tomography scans. Daily translational shifts were made after comparing the on-board images with the treatment planning computed tomography scans. These daily translational shifts represented the daily positional error in the optical tracking system and were recorded during the treatment course. For 13 patients treated with smaller fields, a three-degree of freedom (3DOF) head positioner was used for more accurate setup. Results: The mean positional error for the optically guided system in patients with and without the 3DOF head positioner was 1.4 {+-} 1.1 mm and 3.9 {+-} 1.6 mm, respectively (p <.0001). The mean positional error drifted 0.11 mm/wk upward during the treatment course for patients using the 3DOF head positioner (p = .057). No positional drift was observed in the patients without the 3DOF head positioner. Conclusion: Our initial clinical experience with optically guided head-and-neck fractionated radiotherapy was promising and demonstrated clinical feasibility. The optically guided setup was especially useful when used in conjunction with the 3DOF head positioner and when it was recalibrated to the shifts using the weekly portal images.

  19. Dosimetric impact of setup errors in head and neck cancer patients treated by image-guided radiotherapy

    PubMed Central

    Kaur, Inderjit; Rawat, Sheh; Ahlawat, Parveen; Kakria, Anjali; Gupta, Gourav; Saxena, Upasna; Mishra, Manindra Bhushan

    2016-01-01

    To assess and analyze the impact of setup uncertainties on target volume coverage and doses to organs at risk (OAR) in head and neck cancer (HNC) patients treated by image-guided radiotherapy (IGRT). Translational setup errors in 25 HNC patients were observed by kilovoltage cone beam computed tomography (kV CBCT). Two plans were generated. Plan one – the original plan which was the initially optimized and approved plan of the patient. All patients were treated according to their respective approved plans at a defined isocenter. Plan two – the plan sum which was the sum of all plans recalculated at a different isocenter according to setup errors in x, y, and z-direction. Plan sum was created to evaluate doses that would have been received by planning target volume (PTV) and OARs if setup errors were not corrected. These 2 plans were analyzed and compared in terms of target volume coverage and doses to OARs. A total 503 kV CBCT images were acquired for evaluation of setup errors in 25 HNC patients. The systematic (mean) and random errors (standard deviation) combined for 25 patients in x, y, and z directions were 0.15 cm, 0.21 cm, and 0.19 cm and 0.09 cm, 0.12 cm, and 0.09 cm, respectively. The study showed that there was a significant difference in PTV coverage between 2 plans. The doses to various OARs showed a nonsignificant increase in the plan sum. The correction of translational setup errors is essential for IGRT treatment in terms of delivery of planned optimal doses to target volume. PMID:27217627

  20. Predictors of Local Control After Single-Dose Stereotactic Image-Guided Intensity-Modulated Radiotherapy for Extracranial Metastases

    SciTech Connect

    Greco, Carlo; Zelefsky, Michael J.; Lovelock, Michael; Fuks, Zvi; Hunt, Margie; Rosenzweig, Kenneth; Zatcky, Joan; Kim, Balem; Yamada, Yoshiya

    2011-03-15

    Purpose: To report tumor local control after treatment with single-dose image-guided intensity-modulated radiotherapy (SD-IGRT) to extracranial metastatic sites. Methods and Materials: A total of 126 metastases in 103 patients were treated with SD-IGRT to prescription doses of 18-24 Gy (median, 24 Gy) between 2004 and 2007. Results: The overall actuarial local relapse-free survival (LRFS) rate was 64% at a median follow-up of 18 months (range, 2-45 months). The median time to failure was 9.6 months (range, 1-23 months). On univariate analysis, LRFS was significantly correlated with prescription dose (p = 0.029). Stratification by dose into high (23 to 24 Gy), intermediate (21 to 22 Gy), and low (18 to 20 Gy) dose levels revealed highly significant differences in LRFS between high (82%) and low doses (25%) (p < 0.0001). Overall, histology had no significant effect on LRFS (p = 0.16). Renal cell histology displayed a profound dose-response effect, with 80% LRFS at the high dose level (23 to 24 Gy) vs. 37% with low doses ({<=}22 Gy) (p = 0.04). However, for patients who received the high dose level, histology was not a statistically significant predictor of LRFS (p = 0.90). Target organ (bone vs. lymph node vs. soft tissues) (p = 0.5) and planning target volume size (p = 0.55) were not found to be associated with long-term LRFS probability. Multivariate Cox regression analysis confirmed prescription dose to be a significant predictor of LRFS (p = 0.003). Conclusion: High-dose SD-IGRT is a noninvasive procedure resulting in high probability of local tumor control. Single-dose IGRT may be effectively used to locally control metastatic deposits regardless of histology and target organ, provided sufficiently high doses (> 22 Gy) of radiation are delivered.

  1. Prospective Study of Cone-Beam Computed Tomography Image-Guided Radiotherapy for Prone Accelerated Partial Breast Irradiation

    SciTech Connect

    Jozsef, Gabor; DeWyngaert, J. Keith; Becker, Stewart J.; Lymberis, Stella; Formenti, Silvia C.

    2011-10-01

    Purpose: To report setup variations during prone accelerated partial breast irradiation (APBI). Methods: New York University (NYU) 07-582 is an institutional review board-approved protocol of cone-beam computed tomography (CBCT) to deliver image-guided ABPI in the prone position. Eligible are postmenopausal women with pT1 breast cancer excised with negative margins and no nodal involvement. A total dose of 30 Gy in five daily fractions of 6 Gy are delivered to the planning target volume (the tumor cavity with 1.5-cm margin) by image-guided radiotherapy. Patients are set up prone, on a dedicated mattress, used for both simulation and treatment. After positioning with skin marks and lasers, CBCTs are performed and the images are registered to the planning CT. The resulting shifts (setup corrections) are recorded in the three principal directions and applied. Portal images are taken for verification. If they differ from the planning digital reconstructed radiographs, the patient is reset, and a new CBCT is taken. Results: 70 consecutive patients have undergone a total of 343 CBCTs: 7 patients had four of five planned CBCTs performed. Seven CBCTs (2%) required to be repeated because of misalignment in the comparison between portal and digital reconstructed radiograph image after the first CBCT. The mean shifts and standard deviations in the anterior-posterior (AP), superior-inferior (SI), and medial-lateral (ML) directions were -0.19 (0.54), -0.02 (0.33), and -0.02 (0.43) cm, respectively. The average root mean squares of the daily shifts were 0.50 (0.28), 0.29 (0.17), and 0.38 (0.20). A conservative margin formula resulted in a recommended margin of 1.26, 0.73, 0.96 cm in the AP, SI, and ML directions. Conclusion: CBCTs confirmed that the NYU prone APBI setup and treatment technique are reproducible, with interfraction variation comparable to those reported for supine setup. The currently applied margin (1.5 cm) adequately compensates for the setup variation detected.

  2. Image-guided adaptive radiotherapy for prostate and head-and-neck cancers

    NASA Astrophysics Data System (ADS)

    O'Daniel, Jennifer C.

    In the current practice of radiation therapy, daily patient alignments have been based on external skin marks or on bone. However, internal organ variation (both motion and volumetric changes) between treatment fractions can displace the treatment target, causing target underdosage and normal tissue overdosage. In order to deliver the radiation treatment as planned, more accurate knowledge of the daily internal anatomy was needed. Additionally, treatments needed to adapt to these variations by either shifting the patient to account for the daily target position or by altering the treatment plan. In this dissertation, the question of whether inter-fractional variations in internal patient anatomy combined with external set-up uncertainties produced measurable differences between planned and delivered doses for prostate and head-and-neck cancer patients was investigated. Image-guided adaptive treatment strategies to improve tumor coverage and/or reduce normal tissue dose were examined. Treatment deliveries utilizing various alignment procedures for ten prostate cancer patients and eleven head-and-neck cancer patients, each of whom received multiple CT scans over the course of treatment, were simulated. The largest prostate dose losses between planning and delivery were correlated with anterior/posterior and superior/inferior prostate displacement. Daily bone alignment sufficiently maintained target coverage for 70% of patients, ultrasound for 90%, and CT for 100%. A no-action-level correction protocol, which corrected the daily bone alignment for the systematic internal displacement of the prostate based on a pre-determined number of CT image sets, successfully improved the prostate and seminal vesicle dosimetric coverage. Three CT image sets were sufficient to accurately correct the bone alignment scheme for the prostate internal systematic shifts. For head-and-neck cancer patient treatment, setup uncertainties and internal organ variations did not greatly affect

  3. An adaptive MR-CT registration method for MRI-guided prostate cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Zhong, Hualiang; Wen, Ning; Gordon, James J.; Elshaikh, Mohamed A.; Movsas, Benjamin; Chetty, Indrin J.

    2015-04-01

    during the transformation between the MR and CT images and improves the accuracy of the B-spline registrations in the prostate region. The approach will be valuable for the development of high-quality MRI-guided radiation therapy.

  4. Reductions in the variations of respiration signals for respiratory-gated radiotherapy when using the video-coaching respiration guiding system

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Jeong; Yea, Ji Woon; Oh, Se An

    2015-07-01

    Respiratory-gated radiation therapy (RGRT) has been used to minimize the dose to normal tissue in lung-cancer radiotherapy. The present research aims to improve the regularity of respiration in RGRT by using a video-coached respiration guiding system. In the study, 16 patients with lung cancer were evaluated. The respiration signals of the patients were measured by using a realtime position management (RPM) respiratory gating system (Varian, USA), and the patients were trained using the video-coaching respiration guiding system. The patients performed free breathing and guided breathing, and the respiratory cycles were acquired for ~5 min. Then, Microsoft Excel 2010 software was used to calculate the mean and the standard deviation for each phase. The standard deviation was computed in order to analyze the improvement in the respiratory regularity with respect to the period and the displacement. The standard deviation of the guided breathing decreased to 48.8% in the inhale peak and 24.2% in the exhale peak compared with the values for the free breathing of patient 6. The standard deviation of the respiratory cycle was found to be decreased when using the respiratory guiding system. The respiratory regularity was significantly improved when using the video-coaching respiration guiding system. Therefore, the system is useful for improving the accuracy and the efficiency of RGRT.

  5. SU-E-J-10: Imaging Dose and Cancer Risk in Image-Guided Radiotherapy of Cancers

    SciTech Connect

    Zhou, L; Bai, S; Zhang, Y; Deng, J

    2015-06-15

    Purpose: To systematically evaluate imaging doses and cancer risks to organs-at-risk as a Result of cumulative doses from various radiological imaging procedures in image-guided radiotherapy (IGRT) in a large cohort of cancer patients. Methods: With IRB approval, imaging procedures (computed tomography, kilo-voltage portal imaging, megavoltage portal imaging and kilo-voltage cone-beam computed tomography) of 4832 cancer patients treated during 4.5 years were collected with their gender, age and circumference. Correlations between patient’s circumference and Monte Carlo simulated-organ dose were applied to estimate organ doses while the cancer risks were reported as 1+ERR using BEIR VII models. Results: 80 cGy or more doses were deposited to brain, lungs and RBM in 273 patients (maximum 136, 278 and 267 cGy, respectively), due largely to repetitive imaging procedures and non-personalized imaging settings. Regardless of gender, relative cancer risk estimates for brain, lungs, and RBM were 3.4 (n = 55), 2.6 (n = 49), 1.8 (n = 25) for age group of 0–19; 1.2 (n = 87), 1.4 (n = 98), 1.3 (n = 51) for age group of 20–39; 1.0 (n = 457), 1.1 (n = 880), 1.8 (n=360) for age group of 40–59; 1.0 (n = 646), 1.1 (n = 1400), 2.3 (n = 716) for age group of 60–79 and 1.0 (n = 108),1.1 (n = 305),1.6 (n = 147) for age group of 80–99. Conclusion: The cumulative imaging doses and associated cancer risks from multi-imaging procedures were patient-specific and site-dependent, with up to 2.7 Gy imaging dose deposited to critical structures in some pediatric patients. The associated cancer risks in brain and lungs for children of age 0 to 19 were 2–3 times larger than those for adults. This study indicated a pressing need for personalized imaging protocol to maximize its clinical benefits while reducing associated cancer risks. Sichuan University Scholarship.

  6. Implementation of Feedback-Guided Voluntary Breath-Hold Gating for Cone Beam CT-Based Stereotactic Body Radiotherapy

    SciTech Connect

    Peng Yong; Vedam, Sastry; Chang, Joe Y.; Gao Song; Sadagopan, Ramaswamy; Bues, Martin; Balter, Peter

    2011-07-01

    Purpose: To analyze tumor position reproducibility of feedback-guided voluntary deep inspiration breath-hold (FGBH) gating for cone beam computed tomography (CBCT)-based stereotactic body radiotherapy (SBRT). Methods and materials: Thirteen early-stage lung cancer patients eligible for SBRT with tumor motion of >1cm were evaluated for FGBH-gated treatment. Multiple FGBH CTs were acquired at simulation, and single FGBH CBCTs were also acquired prior to each treatment. Simulation CTs and treatment CBCTs were analyzed to quantify reproducibility of tumor positions during FGBH. Benefits of FGBH gating compared to treatment during free breathing, as well treatment with gating at exhalation, were examined for lung sparing, motion margins, and reproducibility of gross tumor volume (GTV) position relative to nonmoving anatomy. Results: FGBH increased total lung volumes by 1.5 times compared to free breathing, resulting in a proportional drop in total lung volume receiving 10 Gy or more. Intra- and inter-FGBH reproducibility of GTV centroid positions at simulation were 1.0 {+-} 0.5 mm, 1.3 {+-} 1.0 mm, and 0.6 {+-} 0.4 mm in the anterior-posterior (AP), superior-inferior (SI), and left-right lateral (LR) directions, respectively, compared to more than 1 cm of tumor motion at free breathing. During treatment, inter-FGBH reproducibility of the GTV centroid with respect to bony anatomy was 1.2 {+-} 0.7 mm, 1.5 {+-} 0.8 mm, and 1.0 {+-} 0.4 mm in the AP, SI, and LR directions. In addition, the quality of CBCTs was improved due to elimination of motion artifacts, making this technique attractive for poorly visualized tumors, even with small motion. Conclusions: The extent of tumor motion at normal respiration does not influence the reproducibility of the tumor position under breath hold conditions. FGBH-gated SBRT with CBCT can improve the reproducibility of GTV centroids, reduce required margins, and minimize dose to normal tissues in the treatment of mobile tumors.

  7. Intrafraction Variation of Mean Tumor Position During Image-Guided Hypofractionated Stereotactic Body Radiotherapy for Lung Cancer

    SciTech Connect

    Shah, Chirag; Grills, Inga S.; Kestin, Larry L.; McGrath, Samuel; Ye Hong; Martin, Shannon K.; Yan Di

    2012-04-01

    Purpose: Prolonged delivery times during daily cone-beam computed tomography (CBCT)-guided lung stereotactic body radiotherapy (SBRT) introduce concerns regarding intrafraction variation (IFV) of the mean target position (MTP). The purpose of this study was to evaluate the magnitude of the IFV-MTP and to assess target margins required to compensate for IFV and postonline CBCT correction residuals. Patient, treatment, and tumor characteristics were analyzed with respect to their impact on IFV-MTP. Methods and Materials: A total of 126 patients with 140 tumors underwent 659 fractions of lung SBRT. Dose prescribed was 48 or 60 Gy in 12 Gy fractions. Translational target position correction of the MTP was performed via onboard CBCT. IFV-MTP was measured as the difference in MTP between the postcorrection CBCT and the posttreatment CBCT excluding residual error. Results: IFV-MTP was 0.2 {+-} 1.8 mm, 0.1 {+-} 1.9 mm, and 0.01 {+-} 1.5 mm in the craniocaudal, anteroposterior, and mediolateral dimensions and the IFV-MTP vector was 2.3 {+-} 2.1 mm. Treatment time and excursion were found to be significant predictors of IFV-MTP. An IFV-MTP vector greater than 2 and 5 mm was seen in 40.8% and 7.2% of fractions, respectively. IFV-MTP greater than 2 mm was seen in heavier patients with larger excursions and longer treatment times. Significant differences in IFV-MTP were seen between immobilization devices. The stereotactic frame immobilization device was found to be significantly less likely to have an IFV-MTP vector greater than 2 mm compared with the alpha cradle, BodyFIX, and hybrid immobilization devices. Conclusions: Treatment time and respiratory excursion are significantly associated with IFV-MTP. Significant differences in IFV-MTP were found between immobilization devices. Target margins for IFV-MTP plus post-correction residuals are dependent on immobilization device with 5-mm uniform margins being acceptable for the frame immobilization device.

  8. Personalized Assessment of kV Cone Beam Computed Tomography Doses in Image-guided Radiotherapy of Pediatric Cancer Patients

    SciTech Connect

    Zhang Yibao; Yan Yulong; Nath, Ravinder; Bao Shanglian; Deng Jun

    2012-08-01

    Purpose: To develop a quantitative method for the estimation of kV cone beam computed tomography (kVCBCT) doses in pediatric patients undergoing image-guided radiotherapy. Methods and Materials: Forty-two children were retrospectively analyzed in subgroups of different scanned regions: one group in the head-and-neck and the other group in the pelvis. Critical structures in planning CT images were delineated on an Eclipse treatment planning system before being converted into CT phantoms for Monte Carlo simulations. A benchmarked EGS4 Monte Carlo code was used to calculate three-dimensional dose distributions of kVCBCT scans with full-fan high-quality head or half-fan pelvis protocols predefined by the manufacturer. Based on planning CT images and structures exported in DICOM RT format, occipital-frontal circumferences (OFC) were calculated for head-and-neck patients using DICOMan software. Similarly, hip circumferences (HIP) were acquired for the pelvic group. Correlations between mean organ doses and age, weight, OFC, and HIP values were analyzed with SigmaPlot software suite, where regression performances were analyzed with relative dose differences (RDD) and coefficients of determination (R{sup 2}). Results: kVCBCT-contributed mean doses to all critical structures decreased monotonically with studied parameters, with a steeper decrease in the pelvis than in the head. Empirical functions have been developed for a dose estimation of the major organs at risk in the head and pelvis, respectively. If evaluated with physical parameters other than age, a mean RDD of up to 7.9% was observed for all the structures in our population of 42 patients. Conclusions: kVCBCT doses are highly correlated with patient size. According to this study, weight can be used as a primary index for dose assessment in both head and pelvis scans, while OFC and HIP may serve as secondary indices for dose estimation in corresponding regions. With the proposed empirical functions, it is possible

  9. [Clinical experience in image-guided ultra-conformal hypofractionated radiotherapy in case of metastatic diseases at the University of Pécs].

    PubMed

    László, Zoltán; Boronkai, Árpád; Lõcsei, Zoltán; Kalincsák, Judit; Szappanos, Szabolcs; Farkas, Róbert; Al Farhat, Yousuf; Sebestyén, Zsolt; Sebestyén, Klára; Kovács, Péter; Csapó, László; Mangel, László

    2015-06-01

    With the development of radiation therapy technology, the utilization of more accurate patient fixation, inclusion of PET/CT image fusion into treatment planning, 3D image-guided radiotherapy, and intensity-modulated dynamic arc irradiation, the application of hypofractionated stereotactic radiotherapy can be extended to specified extracranial target volumes, and so even to the treatment of various metastases. Between October 2012 and August 2014 in our institute we performed extracranial, hypofractionated, image-többguided radiotherapy with RapidArc system for six cases, and 3D conformal multifield technique for one patient with Novalis TX system in case of different few-numbered and slow-growing metastases. For the precise definition of the target volumes we employed PET/CT during the treatment planning procedure. Octreotid scan was applied in one carcinoid tumour patient. Considering the localisation of the metastases and the predictable motion of the organs, we applied 5 to 20 mm safety margin during the contouring procedure. The average treatment volume was 312 cm3. With 2.5-3 Gy fraction doses we delivered 39-45 Gy total dose, and the treatment duration was 2.5 to 3 weeks. The image guidance was carried out via ExacTrac, and kV-Cone Beam CT equipment based on an online protocol, therefore localisation differences were corrected before every single treatment. The patients tolerated the treatments well without major (Gr>2) side effects. Total or near total regression of the metastases was observed at subsequent control examinations in all cases (the median follow-up time was 5 months). According to our first experience, extracranial, imageguided hypofractionated radiotherapy is well-tolerated by patients and can be effectively applied in the treatment of slow-growing and few-numbered metastases.

  10. WE-G-BRF-06: Positron Emission Tomography (PET)-Guided Dynamic Lung Tumor Tracking for Cancer Radiotherapy: First Patient Simulations

    SciTech Connect

    Yang, J; Loo, B; Graves, E; Yamamoto, T; Keall, P

    2014-06-15

    Purpose: PET-guided dynamic tumor tracking is a novel concept of biologically targeted image guidance for radiotherapy. A dynamic tumor tracking algorithm based on list-mode PET data has been developed and previously tested on dynamic phantom data. In this study, we investigate if dynamic tumor tracking is clinically feasible by applying the method to lung cancer patient PET data. Methods: PET-guided tumor tracking estimates the target position of a segmented volume in PET images reconstructed continuously from accumulated coincidence events correlated with external respiratory motion, simulating real-time applications, i.e., only data up to the current time point is used to estimate the target position. A target volume is segmented with a 50% threshold, consistently, of the maximum intensity in the predetermined volume of interest. Through this algorithm, the PET-estimated trajectories are quantified from four lung cancer patients who have distinct tumor location and size. The accuracy of the PET-estimated trajectories is evaluated by comparing to external respiratory motion because the ground-truth of tumor motion is not known in patients; however, previous phantom studies demonstrated sub-2mm accuracy using clinically derived 3D tumor motion. Results: The overall similarity of motion patterns between the PET-estimated trajectories and the external respiratory traces implies that the PET-guided tracking algorithm can provide an acceptable level of targeting accuracy. However, there are variations in the tracking accuracy between tumors due to the quality of the segmentation which depends on target-to-background ratio, tumor location and size. Conclusion: For the first time, a dynamic tumor tracking algorithm has been applied to lung cancer patient PET data, demonstrating clinical feasibility of real-time tumor tracking for integrated PET-linacs. The target-to-background ratio is a significant factor determining accuracy: screening during treatment planning would

  11. SU-E-J-198: Out-Of-Field Dose and Surface Dose Measurements of MRI-Guided Cobalt-60 Radiotherapy

    SciTech Connect

    Lamb, J; Agazaryan, N; Cao, M; Low, D; Thomas, D; Yang, Y

    2015-06-15

    Purpose: To measure quantities of dosimetric interest in an MRI-guided cobalt radiotherapy machine that was recently introduced to clinical use. Methods: Out-of-field dose due to photon scatter and leakage was measured using an ion chamber and solid water slabs mimicking a human body. Surface dose was measured by irradiating stacks of radiochromic film and extrapolating to zero thickness. Electron out-of-field dose was characterized using solid water slabs and radiochromic film. Results: For some phantom geometries, up to 50% of Dmax was observed up to 10 cm laterally from the edge of the beam. The maximum penetration was between 1 and 2 mm in solid water, indicating an electron energy not greater than approximately 0.4 MeV. Out-of-field dose from photon scatter measured at 1 cm depth in solid water was found to fall to less than 10% of Dmax at a distance of 1.2 cm from the edge of a 10.5 × 10.5 cm field, and less that 1% of Dmax at a distance of 10 cm from field edge. Surface dose was measured to be 8% of Dmax. Conclusion: Surface dose and out-of-field dose from the MRIguided cobalt radiotherapy machine was measured and found to be within acceptable limits. Electron out-of-field dose, an effect unique to MRI-guided radiotherapy and presumed to arise from low-energy electrons trapped by the Lorentz force, was quantified. Dr. Low is a member of the scientific advisory board of ViewRay, Inc.

  12. Comparison of Effects Between Central and Peripheral Stage I Lung Cancer Using Image-Guided Stereotactic Body Radiotherapy via Helical Tomotherapy.

    PubMed

    He, Jian; Huang, Yan; Shi, Shiming; Hu, Yong; Zeng, Zhaochong

    2015-12-01

    Lung cancer is a common malignant tumor with high morbidity and mortality. Here we compared the effects and outcome between central and peripheral stage I lung cancer using image-guided stereotactic body radiotherapy. From June 2011 to July 2013, a total of 33 patients with stage I lung cancer were enrolled. A total of 50 Gy in 10 fractions or 60 Gy in 10 fractions was delivered in the central arm (n = 18), while 50 Gy in 5 fractions in the peripheral arm (n = 15). Statistical analyses were performed using logistic regression analysis and Kaplan-Meier method. The mean follow-up time was 38.1 months. Three-month, 1-, 2-, and 3-year overall response rates were 66.7%, 83.3%, 61.1%, and 72.2% and 66.7%, 80%, 80%, and 80% in the central and peripheral arms, respectively. Three-year local control rates (94.4% vs 93.3%, P = .854), regional control rates (94.4% vs 86.7%, P = .412), and distant control rates (64.2% vs 61.7%, P = .509) had no differences between the central and the peripheral arms. Grade 2 radiation pneumonitis was observed in 6 of 18 patients in the central arm and in 1 of 15 patients in the peripheral arm (P = .92). Grade 2 radiation esophagitis was 5.7% in the central arm, while none occurred in the peripheral arm (P = .008). Five (15.1%) of all patients felt slight fatigue during radiotherapy. Other major complications were not observed. In conclusion, helical image-guided stereotactic body radiotherapy for central stage I lung cancer is safe and effective compared to peripheral stage I lung cancer.

  13. Discontinuous finite element space-angle treatment of the first order linear Boltzmann transport equation with magnetic fields: Application to MRI-guided radiotherapy

    SciTech Connect

    St Aubin, J.; Keyvanloo, A.; Fallone, B. G.

    2016-01-15

    Purpose: The advent of magnetic resonance imaging (MRI) guided radiotherapy systems demands the incorporation of the magnetic field into dose calculation algorithms of treatment planning systems. This is due to the fact that the Lorentz force of the magnetic field perturbs the path of the relativistic electrons, hence altering the dose deposited by them. Building on the previous work, the authors have developed a discontinuous finite element space-angle treatment of the linear Boltzmann transport equation to accurately account for the effects of magnetic fields on radiotherapy doses. Methods: The authors present a detailed description of their new formalism and compare its accuracy to GEANT4 Monte Carlo calculations for magnetic fields parallel and perpendicular to the radiation beam at field strengths of 0.5 and 3 T for an inhomogeneous 3D slab geometry phantom comprising water, bone, and air or lung. The accuracy of the authors’ new formalism was determined using a gamma analysis with a 2%/2 mm criterion. Results: Greater than 98.9% of all points analyzed passed the 2%/2 mm gamma criterion for the field strengths and orientations tested. The authors have benchmarked their new formalism against Monte Carlo in a challenging radiation transport problem with a high density material (bone) directly adjacent to a very low density material (dry air at STP) where the effects of the magnetic field dominate collisions. Conclusions: A discontinuous finite element space-angle approach has been proven to be an accurate method for solving the linear Boltzmann transport equation with magnetic fields for cases relevant to MRI guided radiotherapy. The authors have validated the accuracy of this novel technique against GEANT4, even in cases of strong magnetic field strengths and low density air.

  14. [Image-guided radiotherapy].

    PubMed

    de Crevoisier, R; Chauvet, B; Barillot, I; Lafond, C; Mahé, M; Delpon, G

    2016-09-01

    The IGRT is described in its various equipment and implementation. IGRT can be based either on ionizing radiation generating 2D imaging (MV or kV) or 3D imaging (CBCT or MV-CT) or on non-ionizing radiation (ultrasound, optical imaging, MRI or radiofrequency). Adaptive radiation therapy is then presented in its principles of implementation. The function of the technicians for IGRT is then presented and the possible dose delivered by the on-board imaging is discussed. The quality control of IGRT devices is finally described.

  15. Multibeam Phased Array Antennas

    NASA Technical Reports Server (NTRS)

    Popovic, Zoya; Romisch, Stefania; Rondineau, Sebastien

    2004-01-01

    In this study, a new architecture for Ka-band multi-beam arrays was developed and demonstrated experimentally. The goal of the investigation was to demonstrate a new architecture that has the potential of reducing the cost as compared to standard expensive phased array technology. The goals of this specific part of the project, as stated in the yearly statement of work in the original proposal are: 1. Investigate bounds on performance of multi-beam lens arrays in terms of beamwidths, volume (size), isolation between beams, number of simultaneous beams, etc. 2. Design a small-scale array to demonstrate the principle. The array will be designed for operation around 3OGHz (Ka-band), with two 10-degree beamwidth beams. 3. Investigate most appropriate way to accomplish fine-tuning of the beam pointing within 5 degrees around the main beam pointing angle.

  16. Evaluations of an adaptive planning technique incorporating dose feedback in image-guided radiotherapy of prostate cancer

    SciTech Connect

    Liu Han; Wu Qiuwen

    2011-12-15

    treatment course, then 11 patients fail. If the same criteria is assessed at the end of each week (every five fractions), then 14 patients fail, with three patients failing the 1st or 2nd week but passing at the end. The average dose deficit from these 14 patients was 4.4%. They improved to 2% after the weekly compensation. Out of these 14 patients who needed dose compensation, ten passed the dose criterion after weekly dose compensation, three patients failed marginally, and one patient still failed the criterion significantly (10% deficit), representing 3.6% of the patient population. A more aggressive compensation frequency (every three fractions) could successfully reduce the dose deficit to the acceptable level for this patient. The average number of required dose compensation re-planning per patient was 0.82 (0.79) per patient for schedule A (B) delivery strategy. The doses to OARs were not significantly different from the online IG only plans without dose compensation. Conclusions: We have demonstrated the effectiveness of offline dose compensation technique in image-guided radiotherapy for prostate cancer. It can effectively account for residual uncertainties which cannot be corrected through online IG. Dose compensation allows further margin reduction and critical organs sparing.

  17. Automatic localization of the prostate for on-line or off-line image-guided radiotherapy

    SciTech Connect

    Smitsmans, Monique H.P.; Wolthaus, Jochem W.H.; Artignan, Xavier; Bois, Josien de; Jaffray, David A.; Lebesque, Joos V.; Herk, Marcel van . E-mail: portal@nki.nl

    2004-10-01

    Purpose: With higher radiation dose, higher cure rates have been reported in prostate cancer patients. The extra margin needed to account for prostate motion, however, limits the level of dose escalation, because of the presence of surrounding organs at risk. Knowledge of the precise position of the prostate would allow significant reduction of the treatment field. Better localization of the prostate at the time of treatment is therefore needed, e.g. using a cone-beam computed tomography (CT) system integrated with the linear accelerator. Localization of the prostate relies upon manual delineation of contours in successive axial CT slices or interactive alignment and is fairly time-consuming. A faster method is required for on-line or off-line image-guided radiotherapy, because of prostate motion, for patient throughput and efficiency. Therefore, we developed an automatic method to localize the prostate, based on 3D gray value registration. Methods and materials: A study was performed on conventional repeat CT scans of 19 prostate cancer patients to develop the methodology to localize the prostate. For each patient, 8-13 repeat CT scans were made during the course of treatment. First, the planning CT scan and the repeat CT scan were registered onto the rigid bony structures. Then, the delineated prostate in the planning CT scan was enlarged by an optimum margin of 5 mm to define a region of interest in the planning CT scan that contained enough gray value information for registration. Subsequently, this region was automatically registered to a repeat CT scan using 3D gray value registration to localize the prostate. The performance of automatic prostate localization was compared to prostate localization using contours. Therefore, a reference set was generated by registering the delineated contours of the prostates in all scans of all patients. Gray value registrations that showed large differences with respect to contour registrations were detected with a {chi

  18. Precision radiotherapy for brain tumors

    PubMed Central

    Yan, Ying; Guo, Zhanwen; Zhang, Haibo; Wang, Ning; Xu, Ying

    2012-01-01

    OBJECTIVE: Precision radiotherapy plays an important role in the management of brain tumors. This study aimed to identify global research trends in precision radiotherapy for brain tumors using a bibliometric analysis of the Web of Science. DATA RETRIEVAL: We performed a bibliometric analysis of data retrievals for precision radiotherapy for brain tumors containing the key words cerebral tumor, brain tumor, intensity-modulated radiotherapy, stereotactic body radiation therapy, stereotactic ablative radiotherapy, imaging-guided radiotherapy, dose-guided radiotherapy, stereotactic brachytherapy, and stereotactic radiotherapy using the Web of Science. SELECTION CRITERIA: Inclusion criteria: (a) peer-reviewed articles on precision radiotherapy for brain tumors which were published and indexed in the Web of Science; (b) type of articles: original research articles and reviews; (c) year of publication: 2002-2011. Exclusion criteria: (a) articles that required manual searching or telephone access; (b) Corrected papers or book chapters. MAIN OUTCOME MEASURES: (1) Annual publication output; (2) distribution according to country; (3) distribution according to institution; (4) top cited publications; (5) distribution according to journals; and (6) comparison of study results on precision radiotherapy for brain tumors. RESULTS: The stereotactic radiotherapy, intensity-modulated radiotherapy, and imaging-guided radiotherapy are three major methods of precision radiotherapy for brain tumors. There were 260 research articles addressing precision radiotherapy for brain tumors found within the Web of Science. The USA published the most papers on precision radiotherapy for brain tumors, followed by Germany and France. European Synchrotron Radiation Facility, German Cancer Research Center and Heidelberg University were the most prolific research institutes for publications on precision radiotherapy for brain tumors. Among the top 13 research institutes publishing in this field, seven

  19. [Image guided radiotherapy with the Cone Beam CT kV (Elekta): experience of the Léon Bérard centre].

    PubMed

    Pommier, P; Gassa, F; Lafay, F; Claude, L

    2009-09-01

    Image guide radiotherapy with the Cone Beam CT kV (CBCT-kV) developed by Elekta has been implemented at the centre Léon Bérard in November 2006. The treatment procedure is presented and detailed for prostate cancer IGRT and non small cell lung cancer (NSCLC) stereotactic radiotherapy (SRT). CBCT-kV is routinely used for SRT, selected paediatric cancers, all prostate carcinomas, primitive brain tumours and head and neck cancers that do not require nodes irradiation. Thirty-five to 40 patients are treated within a daily 11-hours period. The general procedure for 3D images acquisition and their analysis is described. The CBCT-kV permitted to identify about 10% of prostate cancer patients for whom a positioning with bone-based 2D images only would have led to an unacceptable dose distribution for at least one session. SRT is now used routinely for inoperable NSCLC. The easiness of implementing CBCT-kV imaging and its expected medical benefit should lead to a rapid diffusion of this technology that is also submitted to prospective and multicentric medico-economical evaluations.

  20. Successful treatment of a 67-year-old woman with urethral adenocarcinoma with the use of external beam radiotherapy and image guided adaptive interstitial brachytherapy

    PubMed Central

    Mujkanovic, Jasmin; Tanderup, Kari; Agerbæk, Mads; Bisgaard, Ulla; Høyer, Søren; Lindegaard, Jacob Christian

    2016-01-01

    Primary urethral cancer (PUC) is a very rare disease. This case report illustrates a successful treatment approach of a 67-year-old woman with a urethral adenocarcinoma selected for an organ preserving treatment with external beam radiotherapy (EBRT) and interstitial brachytherapy (BT) boost, using the GEC-ESTRO target concept originally designed for locally advanced cervical cancer (LACC). Treatment included EBRT with 45 Gy in 25 fractions followed by image guided adaptive interstitial BT (IGABT) with a pulsed-dose-rate (PDR) BT boost with 30 Gy in 50 hourly pulses. The D90 for CTVHR was 79.1 Gy in EQD23. At 24 months follow-up, the patient was recurrence free and without treatment related side effects. PMID:27895686

  1. Hypofractionated stereotactic body radiotherapy for primary and metastatic liver tumors using the novalis image-guided system: preliminary results regarding efficacy and toxicity.

    PubMed

    Iwata, Hiromitsu; Shibamoto, Yuta; Hashizume, Chisa; Mori, Yoshimasa; Kobayashi, Tatsuya; Hayashi, Naoki; Kosaki, Katsura; Ishikawa, Tetsuya; Kuzuya, Teiji; Utsunomiya, Setsuo

    2010-12-01

    www.tcrt.org The purpose of this study was to evaluate the efficacy and toxicity of stereotactic body radiotherapy (SBRT) for primary and metastatic liver tumors using the Novalis image-guided radiotherapy system. After preliminarily treating liver tumors using the Novalis system from July 2006, we started a protocol-based study in February 2008. Eighteen patients (6 with primary hepatocellular carcinoma and 12 with metastatic liver tumor) were treated with 55 or 50 Gy, depending upon their planned dose distribution and liver function, delivered in 10 fractions over 2 weeks. Four non-coplanar and three coplanar static beams were used. Patient age ranged from 54 to 84 years (median: 72 years). The Child-Pugh classification was Grade A in 17 patients and Grade B in 1. Tumor diameter ranged from 12 to 35 mm (median: 23 mm). Toxicities were evaluated according to the Common Terminology Criteria of Adverse Events version 4.0, and radiation-induced liver disease (RILD) was defined by Lawrence's criterion. The median follow-up period was 14.5 months. For all patients, the 1-year overall survival and local control rates were 94% and 86%, respectively. A Grade 1 liver enzyme change was observed in 5 patients, but no RILD or chronic liver dysfunction was observed. SBRT using the Novalis image-guided system is safe and effective for treating primary and metastatic liver tumors. Further investigation of SBRT for liver tumors is warranted. In view of the acceptable toxicity observed with this protocol, we have moved to a new protocol to shorten the overall treatment time and escalate the dose.

  2. Image-Guided Radiotherapy (IGRT) for Prostate Cancer Comparing kV Imaging of Fiducial Markers With Cone Beam Computed Tomography (CBCT)

    SciTech Connect

    Barney, Brandon M.; Lee, R. Jeffrey; Handrahan, Diana; Welsh, Keith T.; Cook, J. Taylor; Sause, William T.

    2011-05-01

    Purpose: To present our single-institution experience with image-guided radiotherapy comparing fiducial markers and cone-beam computed tomography (CBCT) for daily localization of prostate cancer. Methods and Materials: From April 2007 to October 2008, 36 patients with prostate cancer received intensity-modulated radiotherapy with daily localization by use of implanted fiducials. Orthogonal kilovoltage (kV) portal imaging preceded all 1244 treatments. Cone-beam computed tomography images were also obtained before 286 treatments (23%). Shifts in the anterior-posterior (AP), superior-inferior (SI), and left-right (LR) dimensions were made from kV fiducial imaging. Cone-beam computed tomography shifts based on soft tissues were recorded. Shifts were compared by use of Bland-Altman limits of agreement. Mean and standard deviation of absolute differences were also compared. A difference of 5 mm or less was acceptable. Subsets including start date, body mass index, and prostate size were analyzed. Results: Of 286 treatments, 81 (28%) resulted in a greater than 5.0-mm difference in one or more dimensions. Mean differences in the AP, SI, and LR dimensions were 3.4 {+-} 2.6 mm, 3.1 {+-} 2.7 mm, and 1.3 {+-} 1.6 mm, respectively. Most deviations occurred in the posterior (fiducials, 78%; CBCT, 59%), superior (79%, 61%), and left (57%, 63%) directions. Bland-Altman 95% confidence intervals were -4.0 to 9.3 mm for AP, -9.0 to 5.3 mm for SI, and -4.1 to 3.9 mm for LR. The percentages of shift agreements within {+-}5 mm were 72.4% for AP, 72.7% for SI, and 97.2% for LR. Correlation between imaging techniques was not altered by time, body mass index, or prostate size. Conclusions: Cone-beam computed tomography and kV fiducial imaging are similar; however, more than one-fourth of CBCT and kV shifts differed enough to affect target coverage. This was even more pronounced with smaller margins (3 mm). Fiducial imaging requires less daily physician input, is less time-consuming, and is

  3. Assessment of contrast enhanced respiration managed cone-beam CT for image guided radiotherapy of intrahepatic tumors

    SciTech Connect

    Jensen, Nikolaj K. G.; Stewart, Errol; Lock, Michael; Fisher, Barbara; Kozak, Roman; Chen, Jeff; Lee, Ting-Yim; Wong, Eugene

    2014-05-15

    Purpose: Contrast enhancement and respiration management are widely used during image acquisition for radiotherapy treatment planning of liver tumors along with respiration management at the treatment unit. However, neither respiration management nor intravenous contrast is commonly used during cone-beam CT (CBCT) image acquisition for alignment prior to radiotherapy. In this study, the authors investigate the potential gains of injecting an iodinated contrast agent in combination with respiration management during CBCT acquisition for liver tumor radiotherapy. Methods: Five rabbits with implanted liver tumors were subjected to CBCT with and without motion management and contrast injection. The acquired CBCT images were registered to the planning CT to determine alignment accuracy and dosimetric impact. The authors developed a simulation tool for simulating contrast-enhanced CBCT images from dynamic contrast enhanced CT imaging (DCE-CT) to determine optimal contrast injection protocols. The tool was validated against contrast-enhanced CBCT of the rabbit subjects and was used for five human patients diagnosed with hepatocellular carcinoma. Results: In the rabbit experiment, when neither motion management nor contrast was used, tumor centroid misalignment between planning image and CBCT was 9.2 mm. This was reduced to 2.8 mm when both techniques were employed. Tumors were not visualized in clinical CBCT images of human subjects. Simulated contrast-enhanced CBCT was found to improve tumor contrast in all subjects. Different patients were found to require different contrast injections to maximize tumor contrast. Conclusions: Based on the authors’ animal study, respiration managed contrast enhanced CBCT improves IGRT significantly. Contrast enhanced CBCT benefits from patient specific tracer kinetics determined from DCE-CT.

  4. X-ray volumetric imaging in image-guided radiotherapy: The new standard in on-treatment imaging

    SciTech Connect

    McBain, Catherine A.; Henry, Ann M. . E-mail: catherine.mcbain@christie-tr.nwest.nhs.uk; Sykes, Jonathan; Amer, Ali; Marchant, Tom; Moore, Christopher M.; Davies, Julie; Stratford, Julia; McCarthy, Claire; Porritt, Bridget; Williams, Peter; Khoo, Vincent S.; Price, Pat

    2006-02-01

    Purpose: X-ray volumetric imaging (XVI) for the first time allows for the on-treatment acquisition of three-dimensional (3D) kV cone beam computed tomography (CT) images. Clinical imaging using the Synergy System (Elekta, Crawley, UK) commenced in July 2003. This study evaluated image quality and dose delivered and assessed clinical utility for treatment verification at a range of anatomic sites. Methods and Materials: Single XVIs were acquired from 30 patients undergoing radiotherapy for tumors at 10 different anatomic sites. Patients were imaged in their setup position. Radiation doses received were measured using TLDs on the skin surface. The utility of XVI in verifying target volume coverage was qualitatively assessed by experienced clinicians. Results: X-ray volumetric imaging acquisition was completed in the treatment position at all anatomic sites. At sites where a full gantry rotation was not possible, XVIs were reconstructed from projection images acquired from partial rotations. Soft-tissue definition of organ boundaries allowed direct assessment of 3D target volume coverage at all sites. Individual image quality depended on both imaging parameters and patient characteristics. Radiation dose ranged from 0.003 Gy in the head to 0.03 Gy in the pelvis. Conclusions: On-treatment XVI provided 3D verification images with soft-tissue definition at all anatomic sites at acceptably low radiation doses. This technology sets a new standard in treatment verification and will facilitate novel adaptive radiotherapy techniques.

  5. The ACTS multibeam antenna

    NASA Technical Reports Server (NTRS)

    Regier, Frank A.

    1992-01-01

    The Advanced Communications Technology Satellite (ACTS) to be launched in 1993 is briefly introduced. Its multibeam antenna, consisting of electrically similar 30 GHz receive and 20 GHz transmit offset Cassegrain systems, both utilizing orthogonal polarizations, is described. Dual polarization is achieved by using one feed assembly for each polarization in conjunction with nested front and back subreflectors, the gridded front subreflector acting as a window for one polarization and a reflector for the other. The antennas produce spot beams with approximately 0.3 degree beamwidth and gains of approximately 50 dbi. High surface accuracy and high edge taper produce low sidelobe levels and high cross-polarization isolation. A brief description is given of several Ka-band components fabricated for ACTS. These include multiflare antenna feedhorns, beam-forming networks utilizing latching ferrite waveguide switches, a 30 GHz HEMT low-noise amplifier and a 20 GHz TWT power amplifier.

  6. The Methanol Multibeam Survey

    NASA Astrophysics Data System (ADS)

    Green, James A.; Cohen, R. J.; Caswell, J. L.; Fuller, G. A.; Brooks, K.; Burton, M. G.; Chrysostomou, A.; Diamond, P. J.; Ellingsen, S. P.; Gray, M. D.; Hoare, M. G.; Masheder, M. R. W.; McClure-Griffiths, N.; Pestalozzi, M.; Phillips, C.; Quinn, L.; Thompson, M. A.; Voronkov, M.; Walsh, A.; Ward-Thompson, D.; Wong-McSweeney, D.; Yates, J. A.; Cox, J.

    2007-03-01

    A new 7-beam methanol multibeam receiver is being used to survey the Galaxy for newly forming massive stars, that are pinpointed by strong methanol maser emission at 6.668 GHz. The receiver, jointly constructed by Jodrell Bank Observatory (JBO) and the Australia Telescope National Facility (ATNF), was successfully commissioned at Parkes in January 2006. The Parkes-Jodrell survey of the Milky Way for methanol masers is two orders of magnitude faster than previous systematic surveys using 30-m class dishes, and is the first systematic survey of the entire Galactic plane. The first 53 days of observations with the Parkes telescope have yielded 518 methanol sources, of which 218 are new discoveries. We present the survey methodology as well as preliminary results and analysis.

  7. The ACTS multibeam antenna

    NASA Astrophysics Data System (ADS)

    Regier, Frank A.

    1992-06-01

    The Advanced Communications Technology Satellite (ACTS) to be launched in 1993 is briefly introduced. Its multibeam antenna, consisting of electrically similar 30 GHz receive and 20 GHz transmit offset Cassegrain systems, both utilizing orthogonal polarizations, is described. Dual polarization is achieved by using one feed assembly for each polarization in conjunction with nested front and back subreflectors, the gridded front subreflector acting as a window for one polarization and a reflector for the other. The antennas produce spot beams with approximately 0.3 degree beamwidth and gains of approximately 50 dbi. High surface accuracy and high edge taper produce low sidelobe levels and high cross-polarization isolation. A brief description is given of several Ka-band components fabricated for ACTS. These include multiflare antenna feedhorns, beam-forming networks utilizing latching ferrite waveguide switches, a 30 GHz HEMT low-noise amplifier and a 20 GHz TWT power amplifier.

  8. Image-Guided Radiotherapy for Prostate Cancer: A Prospective Trial of Concomitant Boost Using Indium-111-Capromab Pendetide (ProstaScint) Imaging

    SciTech Connect

    Wong, William W.; Schild, Steven E.; Vora, Sujay A.; Ezzell, Gary A.; Nguyen, Ba D.; Ram, Panol C.; Roarke, Michael C.

    2011-11-15

    Purpose: To evaluate, in a prospective study, the use of {sup 111}In-capromab pendetide (ProstaScint) scan to guide the delivery of a concomitant boost to intraprostatic region showing increased uptake while treating the entire gland with intensity-modulated radiotherapy for localized prostate cancer. Methods and Materials: From September 2002 to November 2005, 71 patients were enrolled. Planning pelvic CT and {sup 111}In-capromab pendetide scan images were coregistered. The entire prostate gland received 75.6 Gy/42 fractions, whereas areas of increased uptake in {sup 111}In-capromab pendetide scan received 82 Gy. For patients with T3/T4 disease, or Gleason score {>=}8, or prostate-specific antigen level >20 ng/mL, 12 months of adjuvant androgen deprivation therapy was given. In January 2005 the protocol was modified to give 6 months of androgen deprivation therapy to patients with a prostate-specific antigen level of 10-20 ng/mL or Gleason 7 disease. Results: Thirty-one patients had low-risk, 30 had intermediate-risk, and 10 had high-risk disease. With a median follow-up of 66 months, the 5-year biochemical control rates were 94% for the entire cohort and 97%, 93%, and 90% for low-, intermediate-, and high-risk groups, respectively. Maximum acute and late urinary toxicities were Grade 2 for 38 patients (54%) and 28 patients (39%) and Grade 3 for 1 and 3 patients (4%), respectively. One patient had Grade 4 hematuria. Maximum acute and late gastrointestinal toxicities were Grade 2 for 32 patients (45%) and 15 patients (21%), respectively. Most of the side effects improved with longer follow-up. Conclusion: Concomitant boost to areas showing increased uptake in {sup 111}In-capromab pendetide scan to 82 Gy using intensity-modulated radiotherapy while the entire prostate received 75.6 Gy was feasible and tolerable, with 94% biochemical control rate at 5 years.

  9. Do We Need Daily Image-Guided Radiotherapy by Megavoltage Computed Tomography in Head and Neck Helical Tomotherapy? The Actual Delivered Dose to the Spinal Cord

    SciTech Connect

    Duma, Marciana Nona; Kampfer, Severin; Schuster, Tibor; Aswathanarayana, Nandana; Fromm, Laura-Sophie; Molls, Michael; Andratschke, Nicolaus; Geinitz, Hans

    2012-09-01

    Purpose: To quantify the actual delivered dose to the cervical spinal cord with different image-guided radiotherapy (IGRT) approaches during head and neck (HN) cancer helical tomotherapy. Methods and Materials: Twenty HN patients (HNpts) treated with bilateral nodal irradiation were analyzed. Daily megavoltage computed tomography MVCT) scans were performed for setup purposes. The maximum dose on the planning CT scan (plan-Dmax) and the magnitude and localization of the actual delivered Dmax (a-Dmax) were analyzed for four scenarios: daily image-guided radiotherapy (dIGRT), twice weekly IGRT (2 Multiplication-Sign WkIGRT), once weekly IGRT (1 Multiplication-Sign WkIGRT), and no IGRT at all (non-IGRT). The spinal cord was recontoured on 236 MVCTs for each scenario (total, 944 fractions), and the delivered dose was recalculated for each fraction (fx) separately. Results: Fifty-one percent of the analyzed fx for dIGRT, 56% of the analyzed fx for the 2 Multiplication-Sign WkIGRT, 62% of the analyzed fx for the 1 Multiplication-Sign WkIGRT, and 63% of the analyzed fx for the non-IGRT scenarios received a higher a-Dmax than the plan-Dmax. The median increase of dose in these fx was 3.3% more for dIGRT, 5.8% more for 2 Multiplication-Sign WkIGRT, 10.0% more for 1 Multiplication-Sign WkIGRT, and 9.5% more for non-IGRT than the plan-Dmax. The median spinal cord volumes receiving a higher dose than the plan-Dmax were 0.02 cm{sup 3} for dIGRT, 0.11 cm{sup 3} for 2 Multiplication-Sign WkIGRT, 0.31 cm{sup 3} for 1 Multiplication-Sign WkIGRT, and 0.22 cm{sup 3} for non-IGRT. Differences between the dIGRT and all other scenarios were statistically significant (p < 0.05). Conclusions: Compared to the Dmax of the initial plan, daily IGRT had the smallest increase in dose. Furthermore, daily IGRT had the lowest proportion of fractions and the smallest volumes affected by a dose that was higher than the planned dose. For patients treated with doses close to the tolerance dose of the

  10. Image-guided intensity-modulated radiotherapy for prostate cancer: Dose constraints for the anterior rectal wall to minimize rectal toxicity

    SciTech Connect

    Peterson, Jennifer L.; Buskirk, Steven J.; Heckman, Michael G.; Diehl, Nancy N.; Bernard, Johnny R.; Tzou, Katherine S.; Casale, Henry E.; Bellefontaine, Louis P.; Serago, Christopher; Kim, Siyong; Vallow, Laura A.; Daugherty, Larry C.; Ko, Stephen J.

    2014-04-01

    Rectal adverse events (AEs) are a major concern with definitive radiotherapy (RT) treatment for prostate cancer. The anterior rectal wall is at the greatest risk of injury as it lies closest to the target volume and receives the highest dose of RT. This study evaluated the absolute volume of anterior rectal wall receiving a high dose to identify potential ideal dose constraints that can minimize rectal AEs. A total of 111 consecutive patients with Stage T1c to T3a N0 M0 prostate cancer who underwent image-guided intensity-modulated RT at our institution were included. AEs were graded according to the Common Terminology Criteria for Adverse Events, version 4.0. The volume of anterior rectal wall receiving 5 to 80 Gy in 2.5-Gy increments was determined. Multivariable Cox regression models were used to identify cut points in these volumes that led to an increased risk of early and late rectal AEs. Early AEs occurred in most patients (88%); however, relatively few of them (13%) were grade ≥2. At 5 years, the cumulative incidence of late rectal AEs was 37%, with only 5% being grade ≥2. For almost all RT doses, we identified a threshold of irradiated absolute volume of anterior rectal wall above which there was at least a trend toward a significantly higher rate of AEs. Most strikingly, patients with more than 1.29, 0.73, or 0.45 cm{sup 3} of anterior rectal wall exposed to radiation doses of 67.5, 70, or 72.5 Gy, respectively, had a significantly increased risk of late AEs (relative risks [RR]: 2.18 to 2.72; p ≤ 0.041) and of grade ≥ 2 early AEs (RR: 6.36 to 6.48; p = 0.004). Our study provides evidence that definitive image-guided intensity-modulated radiotherapy (IG-IMRT) for prostate cancer is well tolerated and also identifies dose thresholds for the absolute volume of anterior rectal wall above which patients are at greater risk of early and late complications.

  11. Clinical Feasibility of Using an EPID in cine Mode for Image-Guided Verification of Stereotactic Body Radiotherapy

    SciTech Connect

    Berbeco, Ross I.

    2007-09-01

    Purpose: To introduce a novel method for monitoring tumor location during stereotactic body radiotherapy (SBRT) while the treatment beam is on by using a conventional electronic portal imaging device (EPID). Methods and Materials: In our clinic, selected patients were treated under a phase I institutional review board-approved SBRT protocol for limited hepatic metastases from solid tumors. Before treatment planning multiple gold fiducial markers were implanted on the periphery of the tumor. During treatment the EPID was used in cine mode to collect the exit radiation and produce a sequence of images for each field. An in-house program was developed for calculating the location of the fiducials and their relative distance to the planned locations. Results: Three case studies illustrate the utility of the technique. Patient A exhibited a systematic shift of 4 mm during one of the treatment beams. Patient B showed an inferior drift of the target of approximately 1 cm from the time of setup to the end of the fraction. Patient C had a poor setup on the first day of treatment that was quantified and accounted for on subsequent treatment days. Conclusions: Target localization throughout each treatment beam can be quickly assessed with the presented technique. Treatment monitoring with an EPID in cine mode is shown to be a clinically feasible and useful tool.

  12. Outcome of Elderly Patients with Meningioma after Image-Guided Stereotactic Radiotherapy: A Study of 100 Cases

    PubMed Central

    Budach, Volker; Graaf, Lukas; Gollrad, Johannes; Badakhshi, Harun

    2015-01-01

    Introduction. Incidence of meningioma increases with age. Surgery has been the mainstay treatment. Elderly patients, however, are at risk of severe morbidity. Therefore, we conducted this study to analyze long-term outcomes of linac-based fractionated stereotactic radiotherapy (FSRT) for older adults (aged ≥65 years) with meningioma and determine prognostic factors. Materials and Methods. Between October 1998 and March 2009, 100 patients (≥65, median age, 71 years) were treated with FSRT for meningioma. Two patients were lost to follow-up. Eight patients each had grade I and grade II meningiomas, and five patients had grade III meningiomas. The histology was unknown in 77 cases (grade 0). Results. The median follow-up was 37 months, and 3-year, 5-year, and 10-year progression-free survival (PFS) rates were 93.7%, 91.1%, and 82%. Patients with grade 0/I meningioma showed 3- and 5-year PFS rates of 98.4% and 95.6%. Patients with grade II or III meningiomas showed 3-year PFS rates of 36%. 93.8% of patients showed local tumor control. Multivariate analysis did not indicate any significant prognostic factors. Conclusion. FSRT may play an important role as a noninvasive and safe method in the clinical management of older patients with meningioma. PMID:26101778

  13. Dosimetric evaluation of the OneDose MOSFET for measuring kilovoltage imaging dose from image-guided radiotherapy procedures

    SciTech Connect

    Ding, George X.; Coffey, Charles W.

    2010-09-15

    Purpose: The purpose of this study is to investigate the feasibility of using a single-use dosimeter, OneDose MOSFET designed for in vivo patient dosimetry, for measuring the radiation dose from kilovoltage (kV) x rays resulting from image-guided procedures. Methods: The OneDose MOSFET dosimeters were precalibrated by the manufacturer using Co-60 beams. Their energy response and characteristics for kV x rays were investigated by using an ionization chamber, in which the air-kerma calibration factors were obtained from an Accredited Dosimetry Calibration Laboratory (ADCL). The dosimetric properties have been tested for typical kV beams used in image-guided radiation therapy (IGRT). Results: The direct dose reading from the OneDose system needs to be multiplied by a correction factor ranging from 0.30 to 0.35 for kilovoltage x rays ranging from 50 to 125 kVp, respectively. In addition to energy response, the OneDose dosimeter has up to a 20% reduced sensitivity for beams (70-125 kVp) incident from the back of the OneDose detector. Conclusions: The uncertainty in measuring dose resulting from a kilovoltage beam used in IGRT is approximately 20%; this uncertainty is mainly due to the sensitivity dependence of the incident beam direction relative to the OneDose detector. The ease of use may allow the dosimeter to be suitable for estimating the dose resulting from image-guided procedures.

  14. Clinical outcome of protocol based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer

    PubMed Central

    Pötter, Richard; Georg, Petra; Dimopoulos, Johannes C.A.; Grimm, Magdalena; Berger, Daniel; Nesvacil, Nicole; Georg, Dietmar; Schmid, Maximilian P.; Reinthaller, Alexander; Sturdza, Alina; Kirisits, Christian

    2011-01-01

    Background To analyse the overall clinical outcome and benefits by applying protocol based image guided adaptive brachytherapy combined with 3D conformal external beam radiotherapy (EBRT) ± chemotherapy (ChT). Methods Treatment schedule was EBRT with 45–50.4 Gy ± concomitant cisplatin chemotherapy plus 4 × 7 Gy High Dose Rate (HDR) brachytherapy. Patients were treated in the “protocol period” (2001–2008) with the prospective application of the High Risk CTV concept (D90) and dose volume constraints for organs at risk including biological modelling. Dose volume adaptation was performed with the aim of dose escalation in large tumours (prescribed D90 > 85 Gy), often with inserting additional interstitial needles. Dose volume constraints (D2cc) were 70–75 Gy for rectum and sigmoid and 90 Gy for bladder. Late morbidity was prospectively scored, using LENT/SOMA Score. Disease outcome and treatment related late morbidity were evaluated and compared using actuarial analysis. Findings One hundred and fifty-six consecutive patients (median age 58 years) with cervix cancer FIGO stages IB–IVA were treated with definitive radiotherapy in curative intent. Histology was squamous cell cancer in 134 patients (86%), tumour size was >5 cm in 103 patients (66%), lymph node involvement in 75 patients (48%). Median follow-up was 42 months for all patients. Interstitial techniques were used in addition to intracavitary brachytherapy in 69/156 (44%) patients. Total prescribed mean dose (D90) was 93 ± 13 Gy, D2cc 86 ± 17 Gy for bladder, 65 ± 9 Gy for rectum and 64 ± 9 Gy for sigmoid. Complete remission was achieved in 151/156 patients (97%). Overall local control at 3 years was 95%; 98% for tumours 2–5 cm, and 92% for tumours >5 cm (p = 0.04), 100% for IB, 96% for IIB, 86% for IIIB. Cancer specific survival at 3 years was overall 74%, 83% for tumours 2–5 cm, 70% for tumours >5 cm, 83% for IB, 84% for IIB, 52% for IIIB. Overall

  15. The ACTS multibeam antenna

    NASA Technical Reports Server (NTRS)

    Regier, Frank A.

    1992-01-01

    The Advanced Communications Technology Satellite (ACTS) to be launched in 1993 introduces several new technologies including a multibeam antenna (MBA) operating at Ka-band. The satellite is introduced briefly, and then the MBA, consisting of electrically similar 30 GHz received and 20 GHz transmit offset Cassegrain systems utilizing orthogonal linear polarizations, is described. Dual polarization is achieved by using one feed assembly for each polarization in conjunction with nested front and back subreflectors, the gridded front subreflector acting as a window for one polarization and a reflector for the other. The antennas produce spot beams with approximately 0.3 deg beamwidth and gains of approximately 50 dbi. High surface accuracy and high edge taper produce low sidelobe levels and high cross-polarization isolation. A brief description is given of several Ka-band components fabricated for ACTS. These include multiflare antenna feedhorns, beam-forming networks utilizing latching ferrite waveguide switches, a 30 GHz high mobility electron transmitter (HEMT) low-noise amplifier and a 20 GHz TWT power amplifier.

  16. Adaptive multibeam antenna array

    NASA Astrophysics Data System (ADS)

    Novikov, V. I.

    1984-01-01

    An adaptive multibeam antenna array is considered which will enhance the advantages of a plain one. By providing simultaneous reception of signals from different directions and their sequential processing. The optimization of the array control for maximum interference suppression in the radiation pattern is emphasized. The optimum control is sought with respect to the signal-to-interference power ratio as a genaralized criterion. Sampled useful signals and transmission coefficients are found to be complex-conjugate quantities, assuming compatible formation of beams, so that synphasal equiamplitude addition of signals from all array element is attainable by unique settings of the weight factors. Calculations are simplified by letting the useful signal power in the 1-th beam be approximately equal to the k-th weight factor, before optimizing the weight vector for maximum signal-to-interference ratio. A narrowband interference described by power P and vector V of signal distribution over the array is considered as an example, to demonstrate the algorithm of synthesis. The algorithm, using the Butler matrix, was executed experimentally on a computer for a linear equidistant antenna array of 32 elements with compatible formation of beams.

  17. The ACTS multibeam antenna

    NASA Astrophysics Data System (ADS)

    Regier, Frank A.

    1992-04-01

    The Advanced Communications Technology Satellite (ACTS) to be launched in 1993 introduces several new technologies including a multibeam antenna (MBA) operating at Ka-band. The satellite is introduced briefly, and then the MBA, consisting of electrically similar 30 GHz received and 20 GHz transmit offset Cassegrain systems utilizing orthogonal linear polarizations, is described. Dual polarization is achieved by using one feed assembly for each polarization in conjunction with nested front and back subreflectors, the gridded front subreflector acting as a window for one polarization and a reflector for the other. The antennas produce spot beams with approximately 0.3 deg beamwidth and gains of approximately 50 dbi. High surface accuracy and high edge taper produce low sidelobe levels and high cross-polarization isolation. A brief description is given of several Ka-band components fabricated for ACTS. These include multiflare antenna feedhorns, beam-forming networks utilizing latching ferrite waveguide switches, a 30 GHz high mobility electron transmitter (HEMT) low-noise amplifier and a 20 GHz TWT power amplifier.

  18. SU-E-T-306: Study of the Reduction Technique for the Secondary Cancer Risk Due to Cone Beam CT in Image Guided Radiotherapy

    SciTech Connect

    Sung, J; Kim, D; Kim, D; Chung, W; Baek, T; Lee, H; Yoon, M

    2014-06-01

    Purpose: This study evaluated the effectiveness of a thin lead sheet based simple shielding method for imaging doses from cone beam computed tomography (CBCT) in image-guided radiotherapy (IGRT). Methods: The entire body, except for the region scanned by CBCT, was shielded by wrapping in a 2 mm lead sheet. Reduction of secondary doses from CBCT was measured using a radio-photoluminescence glass dosimeter (RPLGD) placed inside an anthropomorphic phantom and changes in secondary cancer risk due to the shielding effect were estimated using BEIR VII model. Results: Doses to out-of-field organs for head-and-neck, chest, and pelvis scans were decreased 15∼100 %, 23∼90 %, and 23∼98 %, respectively, and the average reductions in lifetime secondary cancer risk due to the 2 mm lead shielding were 1.61, 10.4, and 12.8 persons per 100,000, respectively. Conclusion: This study suggests that a simple thin lead sheet based shielding method results in a non-negligible reduction of secondary doses to out-of-field regions for CBCT.

  19. Tumor Control Outcomes Following Hypofractionated and Single-Dose Stereotactic Image-Guided Intensity-Modulated Radiotherapy for Extracranial Metastases from Renal Cell Carcinoma

    PubMed Central

    Zelefsky, Michael J; Greco, Carlo; Motzer, Robert; Magsanoc, Juan Martin; Pei, Xin; Lovelock, Michael; Mechalakos, Jim; Zatcky, Joan; Fuks, Zvi; Yamada, Yoshiya

    2014-01-01

    Purpose To report tumor local progression-free outcomes following treatment with single-dose image-guided intensity-modulated radiotherapy (SD-IGRT) and hypofractionated regimens for extracranial metastases from renal cell primary tumors. Methods and Materials Between 2004 and 2010, a total of 105 lesions from renal cell carcinomas were treated with either SD-IGRT to prescription doses of 18–24 Gy (median, 24 Gy) or hypofractionation (3 or 5 fractions) with prescription doses ranging between 20 and 30 Gy. The median follow-up was 12 months (range, 1–48 months). Results The overall 3-year actuarial local progression-free survival (LPFS) for all lesions was 44%. The 3-year LPFS for those who received high single-dose (24 Gy; n = 45), low single-dose (< 24 Gy; n = 14), and hypofractionation regimens (n = 46) were 88%, 21%, and 17%, respectively (high single dose versus low single dose, p = 0.001; high single dose versus hypofractionation, p < 0.001). Multivariate analysis revealed the following variables as significant predictors of improved LPFS: dose of 24 Gy compared with lower dose (p = 0.009), and single dose versus hypofractionation (p = 0.008). Conclusion High-dose SD-IGRT is a non-invasive procedure resulting in high probability of local tumor control for metastatic renal cell cancers, generally considered radioresistant according to classical radiobiological ranking. PMID:21596489

  20. Definition and visualisation of regions of interest in post-prostatectomy image-guided intensity modulated radiotherapy

    SciTech Connect

    Bell, Linda J Cox, Jennifer; Eade, Thomas; Rinks, Marianne; Kneebone, Andrew

    2014-09-15

    Standard post-prostatectomy radiotherapy (PPRT) image verification uses bony anatomy alignment. However, the prostate bed (PB) moves independently of bony anatomy. Cone beam computed tomography (CBCT) can be used to soft tissue match, so radiation therapists (RTs) must understand pelvic anatomy and PPRT clinical target volumes (CTV). The aims of this study are to define regions of interest (ROI) to be used in soft tissue matching image guidance and determine their visibility on planning CT (PCT) and CBCT. Published CTV guidelines were used to select ROIs. The PCT scans (n = 23) and CBCT scans (n = 105) of 23 post-prostatectomy patients were reviewed. Details on ROI identification were recorded. Eighteen patients had surgical clips. All ROIs were identified on PCTs at least 90% of the time apart from mesorectal fascia (MF) (87%) due to superior image quality. When surgical clips are present, the seminal vesicle bed (SVB) was only seen in 2.3% of CBCTs and MF was unidentifiable. Most other structures were well identified on CBCT. The anterior rectal wall (ARW) was identified in 81.4% of images and penile bulb (PB) in 68.6%. In the absence of surgical clips, the MF and SVB were always identified; the ARW was identified in 89.5% of CBCTs and PB in 73.7%. Surgical clips should be used as ROIs when present to define SVB and MF. In the absence of clips, SVB, MF and ARW can be used. RTs must have a strong knowledge of soft tissue anatomy and PPRT CTV to ensure coverage and enable soft tissue matching.

  1. [Which rules apply to hypofractionated radiotherapy?].

    PubMed

    Supiot, S; Clément-Colmou, K; Paris, F; Corre, I; Chiavassa, S; Delpon, G

    2015-10-01

    Hypofractionated radiotherapy is now more widely prescribed due to improved targeting techniques (intensity modulated radiotherapy, image-guided radiotherapy and stereotactic radiotherapy). Low dose hypofractionated radiotherapy is routinely administered mostly for palliative purposes. High or very high dose hypofractionated irradiation must be delivered according to very strict procedures since every minor deviation can lead to major changes in dose delivery to the tumor volume and organs at risk. Thus, each stage of the processing must be carefully monitored starting from the limitations and the choice of the hypofractionation technique, tumour contouring and dose constraints prescription, planning and finally dose calculation and patient positioning verification.

  2. SU-E-J-210: Characterizing Tissue Equivalent Materials for the Development of a Dual MRI-CT Heterogeneous Anthropomorphic Phantom Designed Specifically for MRI Guided Radiotherapy Systems

    SciTech Connect

    Steinmann, A; Stafford, R; Yung, J; Followill, D

    2015-06-15

    Purpose: MRI guided radiotherapy (MRIgRT) is an emerging technology which will eventually require a proficient quality auditing system. Due to different principles in which MR and CT acquire images, there is a need for a multi-imaging-modality, end-to-end QA phantom for MRIgRT. The purpose of this study is to identify lung, soft tissue, and tumor equivalent substitutes that share similar human-like CT and MR properties (i.e. Hounsfield units and relaxation times). Methods: Materials of interested such as common CT QA phantom materials, and other proprietary gels/silicones from Polytek, SmoothOn, and CompositeOne were first scanned on a GE 1.5T Signa HDxT MR. Materials that could be seen on both T1-weighted and T2-weighted images were then scanned on a GE Lightspeed RT16 CT simulator and a GE Discovery 750HD CT scanner and their HU values were then measured. The materials with matching HU values of lung (−500 to −700HU), muscle (+40HU) and soft tissue (+100 to +300HU) were further scanned on GE 1.5T Signa HDx to measure their T1 and T2 relaxation times from varying parameters of TI and TE. Results: Materials that could be visualized on T1-weighted and T2-weighted images from a 1.5T MR unit and had an appropriate average CT number, −650, −685, 46,169, and 168 HUs were: compressed cork saturated with water, Polytek Platsil™ Gel-00 combined with mini styrofoam balls, radiotherapy bolus material, SmoothOn Dragon-Skin™ and SmoothOn Ecoflex™, respectively. Conclusion: Post processing analysis is currently being performed to accurately map T1 and T2 values for each material tested. From previous MR visualization and CT examinations it is expected that Dragon-Skin™, Ecoflex™ and bolus will have values consistent with tissue and tumor substitutes. We also expect compressed cork statured with water, and Polytek™-styrofoam combination to have approximate T1 and T2 values suitable for lung-equivalent materials.

  3. Accuracy and efficiency of an infrared based positioning and tracking system for patient set-up and monitoring in image guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Jia, Jing; Xu, Gongming; Pei, Xi; Cao, Ruifen; Hu, Liqin; Wu, Yican

    2015-03-01

    monitoring during image guided radiotherapy treatments.

  4. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study

    NASA Astrophysics Data System (ADS)

    Bowen, S. R.; Nyflot, M. J.; Herrmann, C.; Groh, C. M.; Meyer, J.; Wollenweber, S. D.; Stearns, C. W.; Kinahan, P. E.; Sandison, G. A.

    2015-05-01

    delivery under a dose painting paradigm is feasible within an integrated respiratory motion phantom workflow. For a limited set of cases, the magnitude of errors was comparable during PET/CT imaging and treatment delivery without motion compensation. Errors were moderately mitigated during PET/CT imaging and significantly mitigated during RT delivery with motion compensation. This dynamic motion phantom end-to-end workflow provides a method for quality assurance of 4D PET/CT-guided radiotherapy, including evaluation of respiratory motion compensation methods during imaging and treatment delivery.

  5. SU-E-J-14: A Novel Approach to Evaluate the Dosimetric Effect of Rectal Variation During Image Guided Prostate Radiotherapy

    SciTech Connect

    Murray, J; McQuaid, D; Dunlop, A; Nill, S; Gulliford, S; Buettner, F; Hall, E; Dearnaley, D

    2014-06-01

    Purpose: Deformable registration establishes the spatial correspondence back to the reference image in order to accumulate dose. However, in prostate radiotherapy the changing shape and volume of the rectum present a challenge to accurate deformable registration and consequently calculation of delivered dose. We explored an alternative approach to calculating accumulated dose to the rectum, independent of deformable registration. Methods: This study was performed on three patients who received online image-guided radiotherapy (IGRT) with daily CBCT (XVI-system,Elekta) and target localization using intraprostatic fiducials. On each CBCT, the rectum was manually contoured and bulk density assignments were made allowing dose to be calculated for each fraction. Dose-surface maps (DSM) were generated (MATLAB,Mathworks,Natick,MA) by considering the rectum as a cylinder and sampling the dose at 21-equispaced points on each CT slice. The cylinder was “cut” at the posterior-most position on each CT and unfolded to generate a DSM. These were normalised in the longitudinal direction by interpolation creating maps of 21×21 pixels. A DSM was produced for each CBCT and the dose was accumulated. Results: The mean accumulated delivered rectal surface dose was on average 7.5(+/−3.5)% lower than the planned dose. The dose difference maps consistently show that the greatest variation in dose between planned and delivered dose is away from where the rectal surface is adjacent to the prostate. Conclusion: Estimation of dose accumulation using DSM provides an alternative method for determining actual delivered dose to the rectum. The dose difference is greatest in areas away from the region where the rectal surface abuts the prostate, the region where set-up is verified. The change in size and shape of the rectum was shown to resultin a change in the accumulated dose compared to the planned dose and this will have an impact on determining the relationships between dose delivered

  6. Atlas-guided generation of pseudo-CT images for MRI-only and hybrid PET-MRI-guided radiotherapy treatment planning.

    PubMed

    Arabi, Hossein; Koutsouvelis, Nikolaos; Rouzaud, Michel; Miralbell, Raymond; Zaidi, Habib

    2016-09-07

    Magnetic resonance imaging (MRI)-guided attenuation correction (AC) of positron emission tomography (PET) data and/or radiation therapy (RT) treatment planning is challenged by the lack of a direct link between MRI voxel intensities and electron density. Therefore, even if this is not a trivial task, a pseudo-computed tomography (CT) image must be predicted from MRI alone. In this work, we propose a two-step (segmentation and fusion) atlas-based algorithm focusing on bone tissue identification to create a pseudo-CT image from conventional MRI sequences and evaluate its performance against the conventional MRI segmentation technique and a recently proposed multi-atlas approach. The clinical studies consisted of pelvic CT, PET and MRI scans of 12 patients with loco-regionally advanced rectal disease. In the first step, bone segmentation of the target image is optimized through local weighted atlas voting. The obtained bone map is then used to assess the quality of deformed atlases to perform voxel-wise weighted atlas fusion. To evaluate the performance of the method, a leave-one-out cross-validation (LOOCV) scheme was devised to find optimal parameters for the model. Geometric evaluation of the produced pseudo-CT images and quantitative analysis of the accuracy of PET AC were performed. Moreover, a dosimetric evaluation of volumetric modulated arc therapy photon treatment plans calculated using the different pseudo-CT images was carried out and compared to those produced using CT images serving as references. The pseudo-CT images produced using the proposed method exhibit bone identification accuracy of 0.89 based on the Dice similarity metric compared to 0.75 achieved by the other atlas-based method. The superior bone extraction resulted in a mean standard uptake value bias of  -1.5  ±  5.0% (mean  ±  SD) in bony structures compared to  -19.9  ±  11.8% and  -8.1  ±  8.2% achieved by MRI segmentation-based (water

  7. Atlas-guided generation of pseudo-CT images for MRI-only and hybrid PET-MRI-guided radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Arabi, Hossein; Koutsouvelis, Nikolaos; Rouzaud, Michel; Miralbell, Raymond; Zaidi, Habib

    2016-09-01

    Magnetic resonance imaging (MRI)-guided attenuation correction (AC) of positron emission tomography (PET) data and/or radiation therapy (RT) treatment planning is challenged by the lack of a direct link between MRI voxel intensities and electron density. Therefore, even if this is not a trivial task, a pseudo-computed tomography (CT) image must be predicted from MRI alone. In this work, we propose a two-step (segmentation and fusion) atlas-based algorithm focusing on bone tissue identification to create a pseudo-CT image from conventional MRI sequences and evaluate its performance against the conventional MRI segmentation technique and a recently proposed multi-atlas approach. The clinical studies consisted of pelvic CT, PET and MRI scans of 12 patients with loco-regionally advanced rectal disease. In the first step, bone segmentation of the target image is optimized through local weighted atlas voting. The obtained bone map is then used to assess the quality of deformed atlases to perform voxel-wise weighted atlas fusion. To evaluate the performance of the method, a leave-one-out cross-validation (LOOCV) scheme was devised to find optimal parameters for the model. Geometric evaluation of the produced pseudo-CT images and quantitative analysis of the accuracy of PET AC were performed. Moreover, a dosimetric evaluation of volumetric modulated arc therapy photon treatment plans calculated using the different pseudo-CT images was carried out and compared to those produced using CT images serving as references. The pseudo-CT images produced using the proposed method exhibit bone identification accuracy of 0.89 based on the Dice similarity metric compared to 0.75 achieved by the other atlas-based method. The superior bone extraction resulted in a mean standard uptake value bias of  -1.5  ±  5.0% (mean  ±  SD) in bony structures compared to  -19.9  ±  11.8% and  -8.1  ±  8.2% achieved by MRI segmentation-based (water

  8. Tissue feature-based intra-fractional motion tracking for stereoscopic x-ray image guided radiotherapy.

    PubMed

    Xie, Yaoqin; Xing, Lei; Gu, Jia; Liu, Wu

    2013-06-07

    Real-time knowledge of tumor position during radiation therapy is essential to overcome the adverse effect of intra-fractional organ motion. The goal of this work is to develop a tumor tracking strategy by effectively utilizing the inherent image features of stereoscopic x-ray images acquired during dose delivery. In stereoscopic x-ray image guided radiation delivery, two orthogonal x-ray images are acquired either simultaneously or sequentially. The essence of markerless tumor tracking is the reliable identification of inherent points with distinct tissue features on each projection image and their association between two images. The identification of the feature points on a planar x-ray image is realized by searching for points with high intensity gradient. The feature points are associated by using the scale invariance features transform descriptor. The performance of the proposed technique is evaluated by using images of a motion phantom and four archived clinical cases acquired using either a CyberKnife equipped with a stereoscopic x-ray imaging system, or a LINAC equipped with an onboard kV imager and an electronic portal imaging device. In the phantom study, the results obtained using the proposed method agree with the measurements to within 2 mm in all three directions. In the clinical study, the mean error is 0.48 ± 0.46 mm for four patient data with 144 sequential images. In this work, a tissue feature-based tracking method for stereoscopic x-ray image guided radiation therapy is developed. The technique avoids the invasive procedure of fiducial implantation and may greatly facilitate the clinical workflow.

  9. Clinical Application of High-Dose, Image-Guided Intensity-Modulated Radiotherapy in High-Risk Prostate Cancer

    SciTech Connect

    Bayley, Andrew; Rosewall, Tara; Craig, Tim; Bristow, Rob; Chung, Peter; Gospodarowicz, Mary; Menard, Cynthia; Milosevic, Michael; Warde, Padraig; Catton, Charles

    2010-06-01

    Purpose: To report the feasibility and early toxicity of dose-escalated image-guided IMRT to the pelvic lymph nodes (LN), prostate (P), and seminal vesicles (SV). Methods and Materials: A total of 103 high-risk prostate cancer patients received two-phase, dose-escalated, image-guided IMRT with 3 years of androgen deprivation therapy. Clinical target volumes (CTVs) were delineated using computed tomography/magnetic resonance co-registration and included the prostate, portions of the SV, and the LN. Planning target volume margins (PTV) used were as follows: P (10 mm, 7 mm posteriorly), SV (10 mm), and LN (5 mm). Organs at risk (OaR) were the rectal and bladder walls, femoral heads, and large and small bowel. The IMRT was planned with an intended dose of 55.1 Gy in 29 fractions to all CTVs (Phase 1), with P+SV consecutive boost of 24.7 Gy in 13 fractions. Daily online image guidance was performed using bony landmarks and intraprostatic markers. Feasibility criteria included delivery of intended doses in 80% of patients, 95% of CTV displacements incorporated within PTV during Phase 1, and acute toxicity rate comparable to that of lower-dose pelvic techniques. Results: A total of 91 patients (88%) received the total prescription dose. All patients received at least 72 Gy. In Phase 1, 63 patients (61%) received the intended 55.1 Gy, whereas 87% of patients received at least 50 Gy. Dose reductions were caused by small bowel and rectal wall constraints. All CTVs received the planned dose in >95% of treatment fractions. There were no Radiation Therapy Oncology Group acute toxicities greater than Grade 3, although there were five incidences equivalent to Grade 3 within a median follow-up of 23 months. Conclusion: These results suggest that dose escalation to the PLN+P+SV using IMRT is feasible, with acceptable rates of acute toxicity.

  10. Tissue feature-based intra-fractional motion tracking for stereoscopic x-ray image guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Xie, Yaoqin; Xing, Lei; Gu, Jia; Liu, Wu

    2013-06-01

    Real-time knowledge of tumor position during radiation therapy is essential to overcome the adverse effect of intra-fractional organ motion. The goal of this work is to develop a tumor tracking strategy by effectively utilizing the inherent image features of stereoscopic x-ray images acquired during dose delivery. In stereoscopic x-ray image guided radiation delivery, two orthogonal x-ray images are acquired either simultaneously or sequentially. The essence of markerless tumor tracking is the reliable identification of inherent points with distinct tissue features on each projection image and their association between two images. The identification of the feature points on a planar x-ray image is realized by searching for points with high intensity gradient. The feature points are associated by using the scale invariance features transform descriptor. The performance of the proposed technique is evaluated by using images of a motion phantom and four archived clinical cases acquired using either a CyberKnife equipped with a stereoscopic x-ray imaging system, or a LINAC equipped with an onboard kV imager and an electronic portal imaging device. In the phantom study, the results obtained using the proposed method agree with the measurements to within 2 mm in all three directions. In the clinical study, the mean error is 0.48 ± 0.46 mm for four patient data with 144 sequential images. In this work, a tissue feature-based tracking method for stereoscopic x-ray image guided radiation therapy is developed. The technique avoids the invasive procedure of fiducial implantation and may greatly facilitate the clinical workflow.

  11. First Clinical Release of an Online, Adaptive, Aperture-Based Image-Guided Radiotherapy Strategy in Intensity-Modulated Radiotherapy to Correct for Inter- and Intrafractional Rotations of the Prostate

    SciTech Connect

    Deutschmann, Heinz; Kametriser, Gerhard; Steininger, Philipp; Scherer, Philipp; Schoeller, Helmut; Gaisberger, Christoph; Mooslechner, Michaela; Mitterlechner, Bernhard; Weichenberger, Harald; Fastner, Gert; Wurstbauer, Karl; Jeschke, Stephan; Forstner, Rosemarie; Sedlmayer, Felix

    2012-08-01

    Purpose: We developed and evaluated a correction strategy for prostate rotations using direct adaptation of segments in intensity-modulated radiotherapy (IMRT). Method and Materials: Implanted fiducials (four gold markers) were used to determine interfractional translations, rotations, and dilations of the prostate. We used hybrid imaging: The markers were automatically detected in two pretreatment planar X-ray projections; their actual position in three-dimensional space was reconstructed from these images at first. The structure set comprising prostate, seminal vesicles, and adjacent rectum wall was transformed accordingly in 6 degrees of freedom. Shapes of IMRT segments were geometrically adapted in a class solution forward-planning approach, derived within seconds on-site and treated immediately. Intrafractional movements were followed in MV electronic portal images captured on the fly. Results: In 31 of 39 patients, for 833 of 1013 fractions (supine, flat couch, knee support, comfortably full bladder, empty rectum, no intraprostatic marker migrations >2 mm of more than one marker), the online aperture adaptation allowed safe reduction of margins clinical target volume-planning target volume (prostate) down to 5 mm when only interfractional corrections were applied: Dominant L-R rotations were found to be 5.3 Degree-Sign (mean of means), standard deviation of means {+-}4.9 Degree-Sign , maximum at 30.7 Degree-Sign . Three-dimensional vector translations relative to skin markings were 9.3 {+-} 4.4 mm (maximum, 23.6 mm). Intrafractional movements in 7.7 {+-} 1.5 min (maximum, 15.1 min) between kV imaging and last beam's electronic portal images showed further L-R rotations of 2.5 Degree-Sign {+-} 2.3 Degree-Sign (maximum, 26.9 Degree-Sign ), and three-dimensional vector translations of 3.0 {+-}3.7 mm (maximum, 10.2 mm). Addressing intrafractional errors could further reduce margins to 3 mm. Conclusion: We demonstrated the clinical feasibility of an online

  12. Interfractional Prostate Shifts: Review of 1870 Computed Tomography (CT) Scans Obtained During Image-Guided Radiotherapy Using CT-on-Rails for the Treatment of Prostate Cancer

    SciTech Connect

    Wong, James R. Gao Zhanrong; Uematsu, Minoru; Merrick, Scott; Machernis, Nolan P.; Chen, Timothy; Cheng, C.W.

    2008-12-01

    Purpose: To review 1870 CT scans of interfractional prostate shift obtained during image-guided radiotherapy. Methods and Materials: A total of 1870 pretreatment CT scans were acquired with CT-on-rails, and the corresponding shift data for 329 patients with prostate cancer were analyzed. Results: Of the 1870 scans reviewed, 44% required no setup adjustments in the anterior-posterior (AP) direction, 14% had shifts of 3-5 mm, 29% had shifts of 6-10 mm, and 13% had shifts of >10 mm. In the superior-inferior direction, 81% had no adjustments, 2% had shifts of 3-5 mm, 15% had shifts of 6-10 mm, and 2% had shifts of >10 mm. In the left-right direction, 65% had no adjustment, 13% had shifts of 3-5 mm, 17% had shifts of 6-10 mm, and 5% had shifts of >10 mm. Further analysis of the first 66 consecutive patients divided into three groups according to body mass index indicates that the shift in the AP direction for the overweight subgroup was statistically larger than those for the control and obese subgroups (p < 0.05). The interfractional shift in the lateral direction for the obese group (1 SD, 5.5 mm) was significantly larger than those for the overweight and control groups (4.1 and 2.9 mm, respectively) (p < 0.001). Conclusions: These data demonstrate that there is a significantly greater shift in the AP direction than in the lateral and superior-inferior directions for the entire patient group. Overweight and obese patient groups show a significant difference from the control group in terms of prostate shift.

  13. Dosimetric Advantages of Four-Dimensional Adaptive Image-Guided Radiotherapy for Lung Tumors Using Online Cone-Beam Computed Tomography

    SciTech Connect

    Harsolia, Asif; Hugo, Geoffrey D.; Kestin, Larry L. Grills, Inga S.; Yan Di

    2008-02-01

    Purpose: This study compares multiple planning techniques designed to improve accuracy while allowing reduced planning target volume (PTV) margins though image-guided radiotherapy (IGRT) with four-dimensional (4D) cone-beam computed tomography (CBCT). Methods and Materials: Free-breathing planning and 4D-CBCT scans were obtained in 8 patients with lung tumors. Four plans were generated for each patient: 3D-conformal, 4D-union, 4D-offline adaptive with a single correction (offline ART), and 4D-online adaptive with daily correction (online ART). For the 4D-union plan, the union of gross tumor volumes from all phases of the 4D-CBCT was created with a 5-mm expansion applied for setup uncertainty. For offline and online ART, the gross tumor volume was delineated at the mean position of tumor motion from the 4D-CBCT. The PTV margins were calculated from the random components of tumor motion and setup uncertainty. Results: Adaptive IGRT techniques provided better PTV coverage with less irradiated normal tissues. Compared with 3D plans, mean relative decreases in PTV volumes were 15%, 39%, and 44% using 4D-union, offline ART, and online ART planning techniques, respectively. This resulted in mean lung volume receiving {>=} 20Gy (V20) relative decreases of 21%, 23%, and 31% and mean lung dose relative decreases of 16%, 26%, and 31% for the 4D-union, 4D-offline ART, and 4D-online ART, respectively. Conclusions: Adaptive IGRT using CBCT is feasible for the treatment of patients with lung tumors and significantly decreases PTV volume and dose to normal tissues, allowing for the possibility of dose escalation. All analyzed 4D planning strategies resulted in improvements over 3D plans, with 4D-online ART appearing optimal.

  14. SU-E-J-151: Dosimetric Evaluation of DIR Mapped Contours for Image Guided Adaptive Radiotherapy with 4D Cone-Beam CT

    SciTech Connect

    Balik, S; Weiss, E; Williamson, J; Hugo, G; Jan, N; Zhang, L; Roman, N; Christensen, G

    2014-06-01

    Purpose: To estimate dosimetric errors resulting from using contours deformably mapped from planning CT to 4D cone beam CT (CBCT) images for image-guided adaptive radiotherapy of locally advanced non-small cell lung cancer (NSCLC). Methods: Ten locally advanced non-small cell lung cancer (NSCLC) patients underwent one planning 4D fan-beam CT (4DFBCT) and weekly 4DCBCT scans. Multiple physicians delineated the gross tumor volume (GTV) and normal structures in planning CT images and only GTV in CBCT images. Manual contours were mapped from planning CT to CBCTs using small deformation, inverse consistent linear elastic (SICLE) algorithm for two scans in each patient. Two physicians reviewed and rated the DIR-mapped (auto) and manual GTV contours as clinically acceptable (CA), clinically acceptable after minor modification (CAMM) and unacceptable (CU). Mapped normal structures were visually inspected and corrected if necessary, and used to override tissue density for dose calculation. CTV (6mm expansion of GTV) and PTV (5mm expansion of CTV) were created. VMAT plans were generated using the DIR-mapped contours to deliver 66 Gy in 33 fractions with 95% and 100% coverage (V66) to PTV and CTV, respectively. Plan evaluation for V66 was based on manual PTV and CTV contours. Results: Mean PTV V66 was 84% (range 75% – 95%) and mean CTV V66 was 97% (range 93% – 100%) for CAMM scored plans (12 plans); and was 90% (range 80% – 95%) and 99% (range 95% – 100%) for CA scored plans (7 plans). The difference in V66 between CAMM and CA was significant for PTV (p = 0.03) and approached significance for CTV (p = 0.07). Conclusion: The quality of DIR-mapped contours directly impacted the plan quality for 4DCBCT-based adaptation. Larger safety margins may be needed when planning with auto contours for IGART with 4DCBCT images. Reseach was supported by NIH P01CA116602.

  15. SU-E-J-47: Development of a High-Precision, Image-Guided Radiotherapy, Multi- Purpose Radiation Isocenter Quality-Assurance Calibration and Checking System

    SciTech Connect

    Liu, C; Yan, G; Helmig, R; Lebron, S; Kahler, D

    2014-06-01

    Purpose: To develop a system that can define the radiation isocenter and correlate this information with couch coordinates, laser alignment, optical distance indicator (ODI) settings, optical tracking system (OTS) calibrations, and mechanical isocenter walkout. Methods: Our team developed a multi-adapter, multi-purpose quality assurance (QA) and calibration device that uses an electronic portal imaging device (EPID) and in-house image-processing software to define the radiation isocenter, thereby allowing linear accelerator (Linac) components to be verified and calibrated. Motivated by the concept that each Linac component related to patient setup for image-guided radiotherapy based on cone-beam CT should be calibrated with respect to the radiation isocenter, we designed multiple concentric adapters of various materials and shapes to meet the needs of MV and KV radiation isocenter definition, laser alignment, and OTS calibration. The phantom's ability to accurately define the radiation isocenter was validated on 4 Elekta Linacs using a commercial ball bearing (BB) phantom as a reference. Radiation isocenter walkout and the accuracy of couch coordinates, ODI, and OTS were then quantified with the device. Results: The device was able to define the radiation isocenter within 0.3 mm. Radiation isocenter walkout was within ±1 mm at 4 cardinal angles. By switching adapters, we identified that the accuracy of the couch position digital readout, ODI, OTS, and mechanical isocenter walkout was within sub-mm. Conclusion: This multi-adapter, multi-purpose isocenter phantom can be used to accurately define the radiation isocenter and represents a potential paradigm shift in Linac QA. Moreover, multiple concentric adapters allowed for sub-mm accuracy for the other relevant components. This intuitive and user-friendly design is currently patent pending.

  16. Residual Seminal Vesicle Displacement in Marker-Based Image-Guided Radiotherapy for Prostate Cancer and the Impact on Margin Design

    SciTech Connect

    Smitsmans, Monique H.P.; Bois, Josien de; Sonke, Jan-Jakob; Catton, Charles N.; Jaffray, David A.; Lebesque, Joos V.; Herk, Marcel van

    2011-06-01

    Purpose: The objectives of this study were to quantify residual interfraction displacement of seminal vesicles (SV) and investigate the efficacy of rotation correction on SV displacement in marker-based prostate image-guided radiotherapy (IGRT). We also determined the effect of marker registration on the measured SV displacement and its impact on margin design. Methods and Materials: SV displacement was determined relative to marker registration by using 296 cone beam computed tomography scans of 13 prostate cancer patients with implanted markers. SV were individually registered in the transverse plane, based on gray-value information. The target registration error (TRE) for the SV due to marker registration inaccuracies was estimated. Correlations between prostate gland rotations and SV displacement and between individual SV displacements were determined. Results: The SV registration success rate was 99%. Displacement amounts of both SVs were comparable. Systematic and random residual SV displacements were 1.6 mm and 2.0 mm in the left-right direction, respectively, and 2.8 mm and 3.1 mm in the anteroposterior (AP) direction, respectively. Rotation correction did not reduce residual SV displacement. Prostate gland rotation around the left-right axis correlated with SV AP displacement (R{sup 2} = 42%); a correlation existed between both SVs for AP displacement (R{sup 2} = 62%); considerable correlation existed between random errors of SV displacement and TRE (R{sup 2} = 34%). Conclusions: Considerable residual SV displacement exists in marker-based IGRT. Rotation correction barely reduced SV displacement, rather, a larger SV displacement was shown relative to the prostate gland that was not captured by the marker position. Marker registration error partly explains SV displacement when correcting for rotations. Correcting for rotations, therefore, is not advisable when SV are part of the target volume. Margin design for SVs should take these uncertainties into

  17. Scapula alata in early breast cancer patients enrolled in a randomized clinical trial of post-surgery short-course image-guided radiotherapy

    PubMed Central

    2012-01-01

    Background Scapula alata (SA) is a known complication of breast surgery associated with palsy of the serratus anterior, but it is seldom mentioned. We evaluated the risk factors associated with SA and the relationship of SA with ipsilateral shoulder/arm morbidity in a series of patients enrolled in a trial of post-surgery radiotherapy (RT). Methods The trial randomized women with completely resected stage I-II breast cancer to short-course image-guided RT, versus conventional RT. SA, arm volume and shoulder-arm mobility were measured prior to RT and at one to three months post-RT. Shoulder/arm morbidities were computed as a post-RT percentage change relative to pre-RT measurements. Results Of 119 evaluable patients, 13 (= 10.9%) had pre-RT SA. Age younger than 50 years old, a body mass index less than 25 kg/m2, and axillary lymph node dissection were significant risk factors, with odds ratios of 4.8 (P = 0.009), 6.1 (P = 0.016), and 6.1 (P = 0.005), respectively. Randomization group was not significant. At one to three months’ post-RT, mean arm volume increased by 4.1% (P = 0.036) and abduction decreased by 8.6% (P = 0.046) among SA patients, but not among non-SA patients. SA resolved in eight, persisted in five, and appeared in one patient. Conclusion The relationship of SA with lower body mass index suggests that SA might have been underestimated in overweight patients. Despite apparent resolution of SA in most patients, pre-RT SA portended an increased risk of shoulder/arm morbidity. We argue that SA warrants further investigation. Incidentally, the observation of SA occurring after RT in one patient represents the second case of post-RT SA reported in the literature. PMID:22591589

  18. SU-E-J-12: An Image-Guided Soft Robotic Patient Positioning System for Maskless Head-And-Neck Cancer Radiotherapy: A Proof-Of-Concept Study

    SciTech Connect

    Ogunmolu, O; Gans, N; Jiang, S; Gu, X

    2015-06-15

    Purpose: We propose a surface-image-guided soft robotic patient positioning system for maskless head-and-neck radiotherapy. The ultimate goal of this project is to utilize a soft robot to realize non-rigid patient positioning and real-time motion compensation. In this proof-of-concept study, we design a position-based visual servoing control system for an air-bladder-based soft robot and investigate its performance in controlling the flexion/extension cranial motion on a mannequin head phantom. Methods: The current system consists of Microsoft Kinect depth camera, an inflatable air bladder (IAB), pressured air source, pneumatic valve actuators, custom-built current regulators, and a National Instruments myRIO microcontroller. The performance of the designed system was evaluated on a mannequin head, with a ball joint fixed below its neck to simulate torso-induced head motion along flexion/extension direction. The IAB is placed beneath the mannequin head. The Kinect camera captures images of the mannequin head, extracts the face, and measures the position of the head relative to the camera. This distance is sent to the myRIO, which runs control algorithms and sends actuation commands to the valves, inflating and deflating the IAB to induce head motion. Results: For a step input, i.e. regulation of the head to a constant displacement, the maximum error was a 6% overshoot, which the system then reduces to 0% steady-state error. In this initial investigation, the settling time to reach the regulated position was approximately 8 seconds, with 2 seconds of delay between the command start of motion due to capacitance of the pneumatics, for a total of 10 seconds to regulate the error. Conclusion: The surface image-guided soft robotic patient positioning system can achieve accurate mannequin head flexion/extension motion. Given this promising initial Result, the extension of the current one-dimensional soft robot control to multiple IABs for non-rigid positioning control

  19. Polymeric micelles as a diagnostic tool for image-guided drug delivery and radiotherapy of HER2 overexpressing breast cancer

    NASA Astrophysics Data System (ADS)

    Hoang, Nu Bryan

    Block copolymer micelles have emerged as a viable formulation strategy with several drugs relying on this technology in clinical evaluation. To date, information on the tumor penetration and intratumoral distribution of block copolymer micelles (BCM) has been quite limited. Thus, there is impetus to develop a radiolabeled formulation that can be used to gain invaluable insight into the intratumoral distribution of the BCMs. This information could then be used to direct formulation strategies as a means to optimize treatment outcomes. This thesis describes the synthesis and characterization of a targeted block copolymer micelle system based on poly(ethylene glycol)-block -poly(epsilon-caprolactone) labeled with the radionuclide Indium-111 (111In). The incorporation of the imageable component, 111In permits pursuit of image-guided drug delivery for real-time monitoring of tumor localization and intratumoral distribution. Intracellular trafficking of drugs and therapies such as Auger electron emitting radionuclides to perinuclear and nuclear regions of cells is critical to realizing their full therapeutic potential. HER2 specific antibodies (trastuzumab fab fragments) and nuclear localization signal peptides were conjugated to the surface of the BCMs to direct uptake in HER2 expressing cells and subsequent localization in the cell nucleus. Cell uptake was HER2 density dependent, confirming receptor-mediated internalization of the BCMs. Importantly, conjugation of NLS resulted in a significant increase in nuclear uptake of the radionuclide 111In. Successful nuclear targeting was shown to improve the antiproliferative effect of the Auger electrons. In addition, a significant radiation enhancement effect was observed by concurrent delivery of low-dose MTX and 111In in all breast cancer cell lines evaluated. Imaging enabled the accurate quantification of the specific tumor uptake of the micelles and visualization of their degree of tumor penetration in relation to

  20. Technical Note: Radiological properties of tissue surrogates used in a multimodality deformable pelvic phantom for MR-guided radiotherapy

    SciTech Connect

    Niebuhr, Nina I. Johnen, Wibke; Güldaglar, Timur; Runz, Armin; Echner, Gernot; Mann, Philipp; Möhler, Christian; Pfaffenberger, Asja; Greilich, Steffen; Jäkel, Oliver

    2016-02-15

    Purpose: Phantom surrogates were developed to allow multimodal [computed tomography (CT), magnetic resonance imaging (MRI), and teletherapy] and anthropomorphic tissue simulation as well as materials and methods to construct deformable organ shapes and anthropomorphic bone models. Methods: Agarose gels of variable concentrations and loadings were investigated to simulate various soft tissue types. Oils, fats, and Vaseline were investigated as surrogates for adipose tissue and bone marrow. Anthropomorphic shapes of bone and organs were realized using 3D-printing techniques based on segmentations of patient CT-scans. All materials were characterized in dual energy CT and MRI to adapt CT numbers, electron density, effective atomic number, as well as T1- and T2-relaxation times to patient and literature values. Results: Soft tissue simulation could be achieved with agarose gels in combination with a gadolinium-based contrast agent and NaF to simulate muscle, prostate, and tumor tissues. Vegetable oils were shown to be a good representation for adipose tissue in all modalities. Inner bone was realized using a mixture of Vaseline and K{sub 2}HPO{sub 4}, resulting in both a fatty bone marrow signal in MRI and inhomogeneous areas of low and high attenuation in CT. The high attenuation of outer bone was additionally adapted by applying gypsum bandages to the 3D-printed hollow bone case with values up to 1200 HU. Deformable hollow organs were manufactured using silicone. Signal loss in the MR images based on the conductivity of the gels needs to be further investigated. Conclusions: The presented surrogates and techniques allow the customized construction of multimodality, anthropomorphic, and deformable phantoms as exemplarily shown for a pelvic phantom, which is intended to study adaptive treatment scenarios in MR-guided radiation therapy.

  1. Dosimetric implications of residual seminal vesicle motion in fiducial-guided intensity-modulated radiotherapy for prostate cancer

    SciTech Connect

    Stenmark, Matthew H.; Vineberg, Karen; Ten Haken, Randall K.; Hamstra, Daniel A.; Feng, Mary

    2012-10-01

    To determine whether residual interfraction seminal vesicle (SV) displacement necessitates specific planning target volume (PTV) margins during fiducial-guided intensity modulated radiation therapy (IMRT) of the prostate. A planning computed tomography (CT) scan and 2 subsequent CT scans were prospectively obtained for 20 prostate cancer patients with intraprostatic fiducial markers. After CT registration, SV displacement relative to the prostate was quantified as a function of margin size for both the proximal (1 cm) SV (PSV) and the full SV (FSV). Two IMRT plans were simulated for each patient (prostate + PSV and prostate + FSV) both with a uniform 5-mm PTV margin. Minimum clinical target volume (CTV) dose (D{sub min}) and the volume of SV receiving 95% of the prescription dose (V{sub 95%}) were assessed during treatment and compared with the initial plan. In all cases, SV displacement with respect to the prostate was greater for the FSV compared with the PSV. To ensure at least 95% geometrical coverage of the CTV for 90% of patients, margins of 5 and 8 mm were required for the PSV and FSV, respectively. Dosimetrically, residual SV displacement had minimal impact on PSV coverage compared with FSV coverage. For the PSV D{sub min} was {>=}95% of the prescribed dose in 90% of patients with an overall mean V{sub 95%} of 99.6 {+-} 0.8%; for the FSV D{sub min} was {>=}95% of the prescribed dose in only 45% of patients with a mean V{sub 95%} of 97.9 {+-} 2.4%. The SVs move differentially from the prostate and exhibit greater variation with increasing distance from the prostate. For plans targeting just the prostate and PSVs, 5-mm PTV expansions are adequate. However, despite daily localization of the prostate, larger PTV margins are required for cases where the intent is to completely cover the FSV.

  2. Image-Guided Radiotherapy for Cervix Cancer: High-Tech External Beam Therapy Versus High-Tech Brachytherapy

    SciTech Connect

    Georg, Dietmar Kirisits, Christian; Hillbrand, Martin; Dimopoulos, Johannes; Poetter, Richard

    2008-07-15

    Purpose: Many studies comparing external-beam therapy (EBT) and brachytherapy (BT) are biased because advanced EBT is compared with conventional BT. This study compares high-tech EBT against high-tech BT. Methods and Materials: Nine patients were selected with locally advanced cervix cancer, representing typical clinical situations according to initial tumor extension and response after EBT. Patients were treated either with intracavitary, combined interstitial/intracavitary, or complex interstitial BT. Gross tumor volume, high-risk clinical target volume (CTV), intermediate-risk CTV, bladder, rectum, and sigmoid were delineated. Magnetic resonance-guided BT planning was manually optimized with respect to organ dose limits. Margins (3 and 5 mm) were added to BT CTVs to construct planning target volumes (PTVs) for EBT. Inversely planned EBT with photons (IMRT) and protons (IMPT) was challenged to deliver the highest possible doses to PTVs while respecting D{sub 1cc} and D{sub 2cc} limits from BT, assuming the same fractionation (4 x 7 Gy). The D90 for target structures and normal tissue volumes receiving fractionated doses between 3 and 7 Gy were compared. Results: High-risk CTV doses depended on the clinical situation and radiation quality. If IMRT was limited to D{sub 2cc} and D{sub 1cc} from BT, the D90 for high-risk PTV and intermediate-risk PTV was mostly lower. Volumes receiving 60 Gy (in equivalent dose in 20 Gy fractions) were approximately twice as large for IMRT compared with BT. For IMPT, this volume ratio was lower. Planning target volume doses of IMPT plans with 3-mm margins were comparable to those with BT. Gross tumor volume doses were mostly lower for both IMRT and IMPT. Conclusion: For benchmarking high-tech EBT, high-tech BT techniques have to be used. For cervix cancer boost treatments, both IMRT and IMPT seem to be inferior to advanced BT.

  3. Setup deviations for whole-breast radiotherapy with TomoDirect: A comparison of weekly and biweekly image-guided protocols

    NASA Astrophysics Data System (ADS)

    Jung, Jae Hong; Jung, Joo-Young; Bae, Sun Hyun; Moon, Seong Kwon; Cho, Kwang Hwan

    2016-10-01

    The purpose of this study was to compare patient setup deviations for different image-guided protocols (weekly vs. biweekly) that are used in TomoDirect three-dimensional conformal radiotherapy (TD-3DCRT) for whole-breast radiation therapy (WBRT). A total of 138 defined megavoltage computed tomography (MVCT) image sets from 46 breast cancer cases were divided into two groups based on the imaging acquisition times: weekly or biweekly. The mean error, three-dimensional setup displacement error (3D-error), systematic error (Σ), and random error (σ) were calculated for each group. The 3D-errors were 4.29 ± 1.11 mm and 5.02 ± 1.85 mm for the weekly and biweekly groups, respectively; the biweekly error was 14.6% higher than the weekly error. The systematic errors in the roll angle and the x, y, and z directions were 0.48°, 1.72 mm, 2.18 mm, and 1.85 mm for the weekly protocol and 0.21°, 1.24 mm, 1.39 mm, and 1.85 mm for the biweekly protocol. Random errors in the roll angle and the x, y, and z directions were 25.7%, 40.6%, 40.0%, and 40.8% higher in the biweekly group than in the weekly group. For the x, y, and z directions, the distributions of the treatment frequency at less than 5 mm were 98.6%, 91.3%, and 94.2% in the weekly group and 94.2%, 89.9%, and 82.6% in the biweekly group. Moreover, the roll angles with 0 - 1° were 79.7% and 89.9% in the weekly and the biweekly groups, respectively. Overall, the evaluation of setup deviations for the two protocols revealed no significant differences (p > 0.05). Reducing the frequency of MVCT imaging could have promising effects on imaging doses and machine times during treatment. However, the biweekly protocol was associated with increased random setup deviations in the treatment. We have demonstrated a biweekly protocol of TD-3DCRT for WBRT, and we anticipate that our method may provide an alternative approach for considering the uncertainties in the patient setup.

  4. Image-guided brachytherapy (IGBT) combined with whole pelvic intensity-modulated radiotherapy (WP-IMRT) for locally advanced cervical cancer: a prospective study from Chiang Mai University Hospital, Thailand

    PubMed Central

    Wanwilairat, Somsak; Chakrabandhu, Somvilai; Klunklin, Pitchayaponne; Onchan, Wimrak; Tippanya, Damrongsak; Nopnop, Wannapa; Galalae, Razvan; Chitapanarux, Imjai

    2013-01-01

    Purpose A report of preliminary results and toxicity profiles using image-guided brachytherapy (IGBT) combined with whole pelvic intensity-modulated radiation therapy (WP-IMRT) for locally advanced cervical cancer. Material and methods Fifteen patients with locally advanced cervical cancer were enrolled into the study. WP-IMRT was used to treat the Clinical Target Volume (CTV) with a dose of 45 Gy in 25 fractions. Concurrent cisplatin (40 mg/m2) was prescribed during radiotherapy (RT) on weekly basis. IGBT using computed tomography was performed at the dose of 7 Gy × 4 fractions to the High-Risk Clinical Target Volume (HR-CTV). Results The mean cumulative doses – in terms of equivalent dose of 2 Gy (EQD2) – of IGBT plus WP-IMRT to HR-CTV, bladder, rectum, and sigmoid colon were 88.3, 85.0, 68.2 and 73.6 Gy, respectively. In comparison with standard (point A prescription) dose-volume histograms, volume-based image-guided brachytherapy improved the cumulative doses for bladder of 67%, rectum of 47% and sigmoid of 46%. At the median follow-up time of 14 months, the local control, metastasis-free survival and overall survival rates were 93%, 100% and 93%, respectively. No grade 3-4 acute and late toxicities were observed. Conclusion The combination of image-guided brachytherapy and intensity-modulated radiotherapy improved the dose distribution to tumor volumes and avoided overdose in OARs which could be converted in excellent local control and toxicity profiles. PMID:23634150

  5. Intensity-modulated salvage radiotherapy with simultaneous integrated boost for local recurrence of prostate carcinoma: a pilot study on the place of PET-choline for guiding target volume delineation

    PubMed Central

    Wahart, Aurélien; Guy, Jean-Baptiste; Vallard, Alexis; Geissler, Benjamin; Ben Mrad, Majed; Falk, Alexander T; Prevot, Nathalie; de Laroche, Guy; Rancoule, Chloé; Chargari, Cyrus

    2016-01-01

    Objective: The aim of this study was to report the first cases of salvage radiotherapy (RT) using the intensity-modulated radiotherapy (IMRT) with simultaneous integrated boost (SIB) targeted on choline positron emission tomography (PET) uptake in a local recurrent prostate cancer, after a radical prostatectomy. Methods: Four patients received salvage irradiation for biochemical relapse that occurred after the initial radical prostatectomy. The relapse occurred from 10 months to 6 years with PSA levels ranging from 2.35 to 4.86 ng ml−1. For each patient, an 18F-choline PET-CT showed a focal choline uptake in prostatic fossa, with standardized uptake value calculated on the basis of predicted lean body mass (SUL) max of 3.3–6.8. No involved lymph node or distant metastases were diagnosed. IMRT doses were of 62.7 Gy (1.9 Gy/fraction, 33 fractions), with a SIB of 69.3 Gy (2.1 Gy/fraction, 33 fractions) to a PET-guided target volume. Results: Acute toxicities were limited. We observed no gastrointestinal toxicity ≥grade 2 and only one grade 2 genitourinary toxicity. At 1-month follow-up evaluation, no complication and a decrease in PSA level (6.8–43.8% of the pre-therapeutic level) were reported. After 4 months, a decrease in PSA level was obtained for all the patients, ranging from 30% to 70%. At a median follow-up of 15 months, PSA level was controlled for all the patients, but one of them experienced a distant lymph node recurrence. Conclusion: Salvage irradiation to the prostate bed with SIB guided by PET-CT is feasible, with biological efficacy and no major acute toxicity. Advances in knowledge: IMRT with PET-oriented SIB for salvage treatment of prostate cancer is possible, without major acute toxicity. PMID:26648528

  6. [Postoperative radiotherapy of prostate cancer].

    PubMed

    Guérif, S; Latorzeff, I; Lagrange, J-L; Hennequin, C; Supiot, S; Garcia, A; François, P; Soulié, M; Richaud, P; Salomon, L

    2014-10-01

    Between 10 and 40% of patients who have undergone a radical prostatectomy may have a biologic recurrence. Local or distant failure represents the possible patterns of relapse. Patients at high-risk for local relapse have extraprostatic disease, positive surgical margins or seminal vesicles infiltration or high Gleason score at pathology. Three phase-III randomized clinical trials have shown that, for these patients, adjuvant irradiation reduces the risk of tumoral progression without higher toxicity. Salvage radiotherapy for late relapse allows a disease control in 60-70% of the cases. Several research in order to improve the therapeutic ratio of the radiotherapy after prostatectomy are evaluate in the French Groupe d'Étude des Tumeurs Urogénitales (Gétug) and of the French association of urology (Afu). The Gétug-Afu 17 trial will provide answers to the question of the optimal moment for postoperative radiotherapy for pT3-4 R1 pN0 Nx patients, with the objective of comparing an immediate treatment to a differed early treatment initiated at biological recurrence. The Gétug-Afu 22 questions the place of a short hormonetherapy combined with image-guided, intensity-modulated radiotherapy (IMRT) in adjuvant situation for a detectable prostate specific antigen (PSA). The implementation of a multicenter quality control within the Gétug-Afu in order to harmonize a modern postoperative radiotherapy will allow the development of a dose escalation IMRT after surgery.

  7. Geant4 simulation of the Elekta XVI kV CBCT unit for accurate description of potential late toxicity effects of image-guided radiotherapy.

    PubMed

    Brochu, F M; Burnet, N G; Jena, R; Plaistow, R; Parker, M A; Thomas, S J

    2014-12-21

    This paper describes the modelisation of the Elekta XVI Cone Beam Computed Tomography (CBCT) machine components with Geant4 and its validation against calibration data taken for two commonly used machine setups. Preliminary dose maps of simulated CBCTs coming from this modelisation work are presented. This study is the first step of a research project, GHOST, aiming to improve the understanding of late toxicity risk in external beam radiotherapy patients by simulating dose depositions integrated from different sources (imaging, treatment beam) over the entire treatment plan. The second cancer risk will then be derived from different models relating irradiation dose and second cancer risk.

  8. Geant4 simulation of the Elekta XVI kV CBCT unit for accurate description of potential late toxicity effects of image-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Brochu, F. M.; Burnet, N. G.; Jena, R.; Plaistow, R.; Parker, M. A.; Thomas, S. J.

    2014-12-01

    This paper describes the modelisation of the Elekta XVI Cone Beam Computed Tomography (CBCT) machine components with Geant4 and its validation against calibration data taken for two commonly used machine setups. Preliminary dose maps of simulated CBCTs coming from this modelisation work are presented. This study is the first step of a research project, GHOST, aiming to improve the understanding of late toxicity risk in external beam radiotherapy patients by simulating dose depositions integrated from different sources (imaging, treatment beam) over the entire treatment plan. The second cancer risk will then be derived from different models relating irradiation dose and second cancer risk.

  9. Interfractional Seminal Vesicle Motion Relative to the Prostate Gland for Image-guided Radiotherapy for Prostate Cancer with/without Androgen Deprivation Therapy: A Retrospective Cohort Study.

    PubMed

    Waki, Takahiro; Katsui, Kuniaki; Mitsuhashi, Toshiharu; Ogata, Takeshi; Katayama, Norihisa; Takemoto, Mitsuhiro; Nasu, Yasutomo; Kumon, Hiromi; Kanazawa, Susumu

    2017-02-01

    We investigated differences in seminal vesicle (SV) length and interfractional SV motion relative to the prostate gland in prostate cancer patients. We compared 32 patients who received androgen deprivation therapy (ADT) before radiotherapy with 12 patients receiving radiotherapy alone at Okayama University Hospital in August 2008-July 2011. We examined the right and left SVs' length and motion by computed tomography (CT) to determine the ADT's effects and analyzed 347 CT scans in a multiple linear regression model. The ADT patients' SV length was significantly shorter than the non-ADT patients'. The differences in right and left SV lengths between the ADT and non-ADT patients were 6.8 mm (95% CI 2.0-11.7 mm) and 7.2 mm (95% CI 3.1- 11.3 mm) respectively in an adjusted regression model. SV motion did not differ between the ADT and non- ADT patients in terms of interfractional motion of the SV tips and the SVs' center relative to the prostate gland. The ADT patients had significantly shorter SVs compared to the non-ADT patients, but no difference in SV motion was observed. SV interfractional motion should thus be compensated using the same planning margins, regardless of whether ADT is used.

  10. Status of Multi-Beam Long Trace- Profiler Development

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V.; Kilaru, Kiranmayee; Merthe, Daniel J.; Kester, Thomas; McKinney, Wayne R.; Takacs, Peter Z.; Eng, Ron; Dahir, Andrew; Yashchuk, Valeriy V.

    2013-01-01

    A multi-beam LTP is under development at MSFC in collaboration with Lawrence Berkeley National laboratory and Brookhaven National Laboratory. The Multi-beam LTP has been fully assembled. First tests of the MBLTP has demonstrated the feasibility of the multibeam approach. The calibrations are under way. The MBLTP is intended to be used for metrology support of the deterministic polishing experiments.

  11. Protocol for a phase III randomised trial of image-guided intensity modulated radiotherapy (IG-IMRT) and conventional radiotherapy for late small bowel toxicity reduction after postoperative adjuvant radiation in Ca cervix

    PubMed Central

    Chopra, Supriya; Engineer, Reena; Mahantshetty, Umesh; Misra, Shagun; Phurailatpam, Reena; Paul, Siji N; Kannan, Sadhna; Kerkar, Rajendra; Maheshwari, Amita; Shylasree, TS; Ghosh, Jaya; Gupta, Sudeep; Thomas, Biji; Singh, Shalini; Sharma, Sanjiv; Chilikuri, Srinivas; Shrivastava, Shyam Kishore

    2012-01-01

    Introduction External beam radiation followed by vaginal brachytherapy (±chemotherapy) leads to reduction in the risk of local recurrence and improves progression-free survival in patients with adverse risk factors following Wertheim's hysterectomy albeit at the risk of late bowel toxicity. Intensity Modulated Radiotherapy (IMRT) results in reduction in bowel doses and has potential to reduce late morbidity, however, needs to be confirmed prospectively in a randomised trial. The present randomised trial tests reduction if any in late small bowel toxicity with the use of IMRT in postoperative setting. Methods and analysis Patients more than 18 years of age who need adjuvant (chemo) radiation will be eligible. Patients with residual pelvic or para-aortic nodal disease, history of multiple abdominal surgeries or any other medical bowel condition will be excluded. The trial will randomise patients into standard radiation or IMRT. The primary aim is to compare differences in late grades II–IV bowel toxicity between the two arms. The secondary aims of the study focus on evaluating correlation of dose–volume parameters and late toxicity and quality of life. The trial is planned as a multicentre randomised study. The trial is designed to detect a 13% difference in late grades II–IV bowel toxicity with an α of 0.05 and β of 0.80. A total of 240 patients will be required to demonstrate the aforesaid difference. Ethics and dissemination The trial is approved by institutional ethics review board and will be routinely monitored as per standard guidelines. The study results will be disseminated via peer reviewed scientific journals, conference presentations and submission to regulatory authorities. Registration The trial is registered with clinicaltrials.gov (NCT 01279135). PMID:23242243

  12. Positron Emission Tomography/Computed Tomography-Guided Intensity-Modulated Radiotherapy for Limited-Stage Small-Cell Lung Cancer

    SciTech Connect

    Shirvani, Shervin M.; Komaki, Ritsuko; Heymach, John V.; Fossella, Frank V.

    2012-01-01

    Purpose: Omitting elective nodal irradiation from planning target volumes does not compromise outcomes in patients with non-small-cell lung cancer, but whether the same is true for those with limited-stage small-cell lung cancer (LS-SCLC) is unknown. Therefore, in the present study, we sought to determine the clinical outcomes and the frequency of elective nodal failure in patients with LS-SCLC staged using positron emission tomography/computed tomography and treated with involved-field intensity-modulated radiotherapy. Methods and Materials: Between 2005 and 2008, 60 patients with LS-SCLC at our institution underwent disease staging using positron emission tomography/computed tomography before treatment using an intensity-modulated radiotherapy plan in which elective nodal irradiation was intentionally omitted from the planning target volume (mode and median dose, 45 Gy in 30 fractions; range, 40.5 Gy in 27 fractions to 63.8 Gy in 35 fractions). In most cases, concurrent platinum-based chemotherapy was administered. We retrospectively reviewed the clinical outcomes to determine the overall survival, relapse-free survival, and failure patterns. Elective nodal failure was defined as recurrence in initially uninvolved hilar, mediastinal, or supraclavicular nodes. Survival was assessed using the Kaplan-Meier method. Results: The median age of the study patients at diagnosis was 63 years (range, 39-86). The median follow-up duration was 21 months (range, 4-58) in all patients and 26 months (range, 4-58) in the survivors. The 2-year actuarial overall survival and relapse-free survival rate were 58% and 43%, respectively. Of the 30 patients with recurrence, 23 had metastatic disease and 7 had locoregional failure. We observed only one isolated elective nodal failure. Conclusions: To our knowledge, this is the first study to examine the outcomes in patients with LS-SCLC staged with positron emission tomography/computed tomography and treated with definitive intensity

  13. Multi-beam laser altimeter

    NASA Technical Reports Server (NTRS)

    Bufton, Jack L.; Harding, David J.; Ramos-Izquierdo, Luis

    1993-01-01

    Laser altimetry provides a high-resolution, high-accuracy method for measurement of the elevation and horizontal variability of Earth-surface topography. The basis of the measurement is the timing of the round-trip propagation of short-duration pulses of laser radiation between a spacecraft and the Earth's surface. Vertical resolution of the altimetry measurement is determined primarily by laser pulsewidth, surface-induced spreading in time of the reflected pulse, and the timing precision of the altimeter electronics. With conventional gain-switched pulses from solid-state lasers and sub-nsec resolution electronics, sub-meter vertical range resolution is possible from orbital attitudes of several hundred kilometers. Horizontal resolution is a function of laser beam footprint size at the surface and the spacing between successive laser pulses. Laser divergence angle and altimeter platform height above the surface determine the laser footprint size at the surface, while laser pulse repetition-rate, laser transmitter beam configuration, and altimeter platform velocity determine the space between successive laser pulses. Multiple laser transitters in a singlaltimeter instrument provide across-track and along-track coverage that can be used to construct a range image of the Earth's surface. Other aspects of the multi-beam laser altimeter are discussed.

  14. SU-C-18A-04: 3D Markerless Registration of Lung Based On Coherent Point Drift: Application in Image Guided Radiotherapy

    SciTech Connect

    Nasehi Tehrani, J; Wang, J; Guo, X; Yang, Y

    2014-06-01

    Purpose: This study evaluated a new probabilistic non-rigid registration method called coherent point drift for real time 3D markerless registration of the lung motion during radiotherapy. Method: 4DCT image datasets Dir-lab (www.dir-lab.com) have been used for creating 3D boundary element model of the lungs. For the first step, the 3D surface of the lungs in respiration phases T0 and T50 were segmented and divided into a finite number of linear triangular elements. Each triangle is a two dimensional object which has three vertices (each vertex has three degree of freedom). One of the main features of the lungs motion is velocity coherence so the vertices that creating the mesh of the lungs should also have features and degree of freedom of lung structure. This means that the vertices close to each other tend to move coherently. In the next step, we implemented a probabilistic non-rigid registration method called coherent point drift to calculate nonlinear displacement of vertices between different expiratory phases. Results: The method has been applied to images of 10-patients in Dir-lab dataset. The normal distribution of vertices to the origin for each expiratory stage were calculated. The results shows that the maximum error of registration between different expiratory phases is less than 0.4 mm (0.38 SI, 0.33 mm AP, 0.29 mm RL direction). This method is a reliable method for calculating the vector of displacement, and the degrees of freedom (DOFs) of lung structure in radiotherapy. Conclusions: We evaluated a new 3D registration method for distribution set of vertices inside lungs mesh. In this technique, lungs motion considering velocity coherence are inserted as a penalty in regularization function. The results indicate that high registration accuracy is achievable with CPD. This method is helpful for calculating of displacement vector and analyzing possible physiological and anatomical changes during treatment.

  15. SU-E-CAMPUS-J-04: Image Guided Radiation Therapy (IGRT): Review of Technical Standards and Credentialing in Radiotherapy Clinical Trials

    SciTech Connect

    Giaddui, T; Chen, W; Yu, J; Gong, Y; Galvin, J; Xiao, Y; Cui, Y; Yin, F; Craig, T; Dawson, L; Al-Hallaq, H; Chmura, S

    2014-06-15

    Purpose: To review IGRT credentialing experience and unexpected technical issues encountered in connection with advanced radiotherapy technologies as implemented in RTOG clinical trials. To update IGRT credentialing procedures with the aim of improving the quality of the process, and to increase the proportion of IGRT credentialing compliance. To develop a living disease site-specific IGRT encyclopedia. Methods: Numerous technical issues were encountered during the IGRT credentialing process. The criteria used for credentialing review were based on: image quality; anatomy included in fused data sets and shift results. Credentialing requirements have been updated according to the AAPM task group reports for IGRT to ensure that all required technical items are included in the quality review process. Implementation instructions have been updated and expanded for recent protocols. Results: Technical issues observed during the credentialing review process include, but are not limited to: poor quality images; inadequate image acquisition region; poor data quality; shifts larger than acceptable; no soft tissue surrogate. The updated IGRT credentialing process will address these issues and will also include the technical items required from AAPM: TG 104; TG 142 and TG 179 reports. An instruction manual has been developed describing a remote credentialing method for reviewers. Submission requirements are updated, including images/documents as well as facility questionnaire. The review report now includes summary of the review process and the parameters that reviewers check. We have reached consensus on the minimum IGRT technical requirement for a number of disease sites. RTOG 1311(NRG-BR002A Phase 1 Study of Stereotactic Body Radiotherapy (SBRT) for the Treatment of Multiple Metastases) is an example, here; the protocol specified the minimum requirement for each anatomical sites (with/without fiducials). Conclusion: Technical issues are identified and reported. IGRT

  16. MR-Guided Pulsed High-Intensity Focused Ultrasound Enhancement of Gene Therapy Combined With Androgen Deprivation and Radiotherapy for Prostate Cancer Treatment

    DTIC Science & Technology

    2009-09-01

    ultrasound . J. Acoust. Soc.Am. 72 1926-1932, (1982) (7) Neppiras E A. Acoustic cavitation . Physics reports 61(3): 159-251, (1980) (8) ter Haar G R, Daniels...Guided Pulsed High-Intensity Focused Ultrasound Enhancement of 5b. GRANT NUMBER W81XWH-08-1-0469 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...failing to This work is aimed to study MR guided high intensity focused ultrasound (MRgHIFU) enhancement of gene therapy for Prostate Cancer. The

  17. Radiotherapy Planning using MRI

    PubMed Central

    Schmidt, Maria A; Payne, Geoffrey S

    2016-01-01

    The use of Magnetic Resonance Imaging (MRI) in Radiotherapy (RT) planning is rapidly expanding. We review the wide range of image contrast mechanisms available to MRI and the way they are exploited for RT planning. However a number of challenges are also considered: the requirements that MR images are acquired in the RT treatment position, that they are geometrically accurate, that effects of patient motion during the scan are minimised, that tissue markers are clearly demonstrated, that an estimate of electron density can be obtained. These issues are discussed in detail, prior to the consideration of a number of specific clinical applications. This is followed by a brief discussion on the development of real-time MRI-guided RT. PMID:26509844

  18. Commissioning and quality assurance of the X-ray volume Imaging system of an image-guided radiotherapy capable linear accelerator

    PubMed Central

    Muralidhar, K. R.; Murthy, P. Narayana; Kumar, Rajneesh

    2008-01-01

    An Image-Guided Radiotherapy–capable linear accelerator (Elekta Synergy) was installed at our hospital, which is equipped with a kV x-ray volume imaging (XVI) system and electronic portal imaging device (iViewGT). The objective of this presentation is to describe the results of commissioning measurements carried out on the XVI facility to verify the manufacturer's specifications and also to evolve a QA schedule which can be used to test its performance routinely. The QA program consists of a series of tests (safety features, geometric accuracy, and image quality). These tests were found to be useful to assess the performance of the XVI system and also proved that XVI system is very suitable for image-guided high-precision radiation therapy. PMID:19893694

  19. Multibeam satellite EIRP adaptability for aeronautical communications.

    NASA Technical Reports Server (NTRS)

    Kinal, G. V.; Bisaga, J. J.

    1973-01-01

    EIRP enhancement and management techniques, emphasizing aeronautical communications and adaptable multibeam concepts, are classified and characterized. User requirement and demand characteristics that exploit the improvement available from each technique are identified, and the relative performance improvement of each is discussed. It is concluded that aeronautical satellite communications could benefit greatly by the employment of these techniques.

  20. High Dose-Per-Fraction Irradiation of Limited Lung Volumes Using an Image-Guided, Highly Focused Irradiator: Simulating Stereotactic Body Radiotherapy Regimens in a Small-Animal Model

    SciTech Connect

    Cho, Jaeho; Kodym, Reinhard; Seliounine, Serguei

    2010-07-01

    Purpose: To investigate the underlying biology associated with stereotactic body radiotherapy (SBRT), both in vivo models and image-guided, highly focal irradiation systems are necessary. Here, we describe such an irradiation system and use it to examine normal tissue toxicity in a small-animal model at lung volumes similar to those associated with human therapy. Methods and Materials: High-dose radiation was delivered to a small volume of the left lung of C3H/HeJCr mice using a small-animal stereotactic irradiator. The irradiator has a collimation mechanism to produce focal radiation beams, an imaging subsystem consisting of a fluorescent screen coupled to a charge-coupled device camera, and a manual positioning stage. Histopathologic examination and micro-CT were used to evaluate the radiation response. Results: Focal obliteration of the alveoli by fibrous connective tissue, hyperplasia of the bronchiolar epithelium, and presence of a small number of inflammatory cells are the main reactions to low-volume/high-dose irradiation of the mouse lung. The tissue response suggested a radiation dose threshold for early phase fibrosis lying between 40 and 100 Gy. The irradiation system satisfied our requirements of high-dose-rate, small beam diameter, and precise localization and verification. Conclusions: We have established an experimental model and image-guided animal irradiation system for the study of high dose per fraction irradiations such as those used with SBRT at volumes analogous to those used in human beings. It will also allow the targeting of specific anatomical structures of the thorax or ultimately, orthotopic tumors of the lung.

  1. SU-E-J-55: End-To-End Effectiveness Analysis of 3D Surface Image Guided Voluntary Breath-Holding Radiotherapy for Left Breast

    SciTech Connect

    Lin, M; Feigenberg, S

    2015-06-15

    Purpose To evaluate the effectiveness of using 3D-surface-image to guide breath-holding (BH) left-side breast treatment. Methods Two 3D surface image guided BH procedures were implemented and evaluated: normal-BH, taking BH at a comfortable level, and deep-inspiration-breath-holding (DIBH). A total of 20 patients (10 Normal-BH and 10 DIBH) were recruited. Patients received a BH evaluation using a commercialized 3D-surface- tracking-system (VisionRT, London, UK) to quantify the reproducibility of BH positions prior to CT scan. Tangential 3D/IMRT plans were conducted. Patients were initially setup under free-breathing (FB) condition using the FB surface obtained from the untaged CT to ensure a correct patient position. Patients were then guided to reach the planned BH position using the BH surface obtained from the BH CT. Action-levels were set at each phase of treatment process based on the information provided by the 3D-surface-tracking-system for proper interventions (eliminate/re-setup/ re-coaching). We reviewed the frequency of interventions to evaluate its effectiveness. The FB-CBCT and port-film were utilized to evaluate the accuracy of 3D-surface-guided setups. Results 25% of BH candidates with BH positioning uncertainty > 2mm are eliminated prior to CT scan. For >90% of fractions, based on the setup deltas from3D-surface-trackingsystem, adjustments of patient setup are needed after the initial-setup using laser. 3D-surface-guided-setup accuracy is comparable as CBCT. For the BH guidance, frequency of interventions (a re-coaching/re-setup) is 40%(Normal-BH)/91%(DIBH) of treatments for the first 5-fractions and then drops to 16%(Normal-BH)/46%(DIBH). The necessity of re-setup is highly patient-specific for Normal-BH but highly random among patients for DIBH. Overall, a −0.8±2.4 mm accuracy of the anterior pericardial shadow position was achieved. Conclusion 3D-surface-image technology provides effective intervention to the treatment process and ensures

  2. Magnitude of shift of tumor position as a function of moderated deep inspiration breath-hold: An analysis of pooled data of lung patients with active breath control in image-guided radiotherapy

    PubMed Central

    Muralidhar, K. R.; Murthy, P. Narayana; Mahadev, D. Shankar; Subramanyam, K.; Sudarshan, G.; Raju, A. Krishnam

    2008-01-01

    The purpose of this study was to evaluate the reproducibility and magnitude of shift of tumor position by using active breathing control and iView-GT for patients with lung cancer with moderate deep-inspiration breath-hold (mDIBH) technique. Eight patients with 10 lung tumors were studied. CT scans were performed in the breath-holding phase. Moderate deep-inspiration breath-hold under spirometer-based monitoring system was used. Few important bony anatomic details were delineated by the radiation oncologist. To evaluate the interbreath-hold reproducibility of the tumor position, we compared the digital reconstruction radiographs (DRRs) from planning system with the DRRs from the iView-GT in the machine room. We measured the shift in x, y, and z directions. The reproducibility was defined as the difference between the bony landmarks from the DRR of the planning system and those from the DRR of the iView-GT. The maximum shift of the tumor position was 3.2 mm, 3.0 mm, and 2.9 mm in the longitudinal, lateral, and vertical directions. In conclusion, the moderated deep-inspiration breath-hold method using a spirometer is feasible, with relatively good reproducibility of the tumor position for image-guided radiotherapy in lung cancers. PMID:19893708

  3. Comparison of Localization Performance with Implanted Fiducial Markers and Cone-Beam Computed Tomography for On-line Image-Guided Radiotherapy of the Prostate

    PubMed Central

    Moseley, Douglas J; White, Elizabeth A; Wiltshire, Kirsty L; Rosewall, Tara; Sharpe, Michael B; Siewerdsen, Jeffrey H; Bissonnette, Jean-Pierre; Gospodarowicz, Mary; Warde, Padraig; Catton, Charles N; Jaffray, David A

    2007-01-01

    Purpose To assess the accuracy of kV cone-beam CT (CBCT) based setup corrections as compared to orthogonal MV portal image-based corrections for patients undergoing external-beam radiotherapy of the prostate. Method and Materials Daily cone-beam CT volumetric images were acquired after setup for patients with three intra-prostatic fiducial markers. The estimated couch shifts were compared retrospectively to patient adjustments based on two orthogonal MV portal images (the current clinical standard of care in our institution). The CBCT soft-tissue based shifts were also estimated by digitally removing the gold markers in each projection to suppress the artifacts in the reconstructed volumes. A total of 256 volumetric images for 15 patients were analyzed. Results The Pearson coefficient of correlation for the patient position shifts using fiducial markers in MV vs kV was (R2 = 0.95, 0.84, 0.81) in the L/R, A/P and S/I directions respectively. The correlation using soft-tissue matching was ((R2 = 0.90, 0.49, 0.51) in the L/R, A/P and S/I directions. A Bland-Altman analysis showed no significant trends in the data. The percentage of shifts within a +/−3mm tolerance (the clinical action level) was (99.7, 95.5, 91.3) for fiducial marker matching and (99.5, 70.3, 78.4) for soft-tissue matching. Conclusions Cone-beam CT is an accurate and precise tool for image-guidance. It provides an equivalent means of patient setup correction for prostate patients with implanted gold fiducial markers. Use of the additional information provided by the visualization of soft-tissue structures is an active area of research. PMID:17293243

  4. Comparison of localization performance with implanted fiducial markers and cone-beam computed tomography for on-line image-guided radiotherapy of the prostate

    SciTech Connect

    Moseley, Douglas J. . E-mail: douglas.moseley@rmp.uhn.on.ca; White, Elizabeth A.; Wiltshire, Kirsty L.; Rosewall, Tara; Sharpe, Michael B.; Siewerdsen, Jeffrey H.; Bissonnette, Jean-Pierre; Gospodarowicz, Mary; Warde, Padraig; Catton, Charles N.; Jaffray, David A.

    2007-03-01

    Purpose: The aim of this work was to assess the accuracy of kilovoltage (kV) cone-beam computed tomography (CBCT)-based setup corrections as compared with orthogonal megavoltage (MV) portal image-based corrections for patients undergoing external-beam radiotherapy of the prostate. Methods and Materials: Daily cone-beam CT volumetric images were acquired after setup for patients with three intraprostatic fiducial markers. The estimated couch shifts were compared retrospectively to patient adjustments based on two orthogonal MV portal images (the current clinical standard of care in our institution). The CBCT soft-tissue based shifts were also estimated by digitally removing the gold markers in each projection to suppress the artifacts in the reconstructed volumes. A total of 256 volumetric images for 15 patients were analyzed. Results: The Pearson coefficient of correlation for the patient position shifts using fiducial markers in MV vs. kV was (R{sup 2} = 0.95, 0.84, 0.81) in the left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions, respectively. The correlation using soft-tissue matching was as follows: R{sup 2} = 0.90, 0.49, 0.51 in the LR, AP and SI directions. A Bland-Altman analysis showed no significant trends in the data. The percentage of shifts within a {+-}3-mm tolerance (the clinical action level) was 99.7%, 95.5%, 91.3% for fiducial marker matching and 99.5%, 70.3%, 78.4% for soft-tissue matching. Conclusions: Cone-beam CT is an accurate and precise tool for image guidance. It provides an equivalent means of patient setup correction for prostate patients with implanted gold fiducial markers. Use of the additional information provided by the visualization of soft-tissue structures is an active area of research.

  5. Evaluation of overall setup accuracy and adequate setup margins in pelvic image-guided radiotherapy: Comparison of the male and female patients

    SciTech Connect

    Laaksomaa, Marko; Kapanen, Mika; Tulijoki, Tapio; Peltola, Seppo; Hyödynmaa, Simo; Kellokumpu-Lehtinen, Pirkko-Liisa

    2014-04-01

    We evaluated adequate setup margins for the radiotherapy (RT) of pelvic tumors based on overall position errors of bony landmarks. We also estimated the difference in setup accuracy between the male and female patients. Finally, we compared the patient rotation for 2 immobilization devices. The study cohort included consecutive 64 male and 64 female patients. Altogether, 1794 orthogonal setup images were analyzed. Observer-related deviation in image matching and the effect of patient rotation were explicitly determined. Overall systematic and random errors were calculated in 3 orthogonal directions. Anisotropic setup margins were evaluated based on residual errors after weekly image guidance. The van Herk formula was used to calculate the margins. Overall, 100 patients were immobilized with a house-made device. The patient rotation was compared against 28 patients immobilized with CIVCO's Kneefix and Feetfix. We found that the usually applied isotropic setup margin of 8 mm covered all the uncertainties related to patient setup for most RT treatments of the pelvis. However, margins of even 10.3 mm were needed for the female patients with very large pelvic target volumes centered either in the symphysis or in the sacrum containing both of these structures. This was because the effect of rotation (p ≤ 0.02) and the observer variation in image matching (p ≤ 0.04) were significantly larger for the female patients than for the male patients. Even with daily image guidance, the required margins remained larger for the women. Patient rotations were largest about the lateral axes. The difference between the required margins was only 1 mm for the 2 immobilization devices. The largest component of overall systematic position error came from patient rotation. This emphasizes the need for rotation correction. Overall, larger position errors and setup margins were observed for the female patients with pelvic cancer than for the male patients.

  6. [Comparison of setup accuracy between ExacTrac X-ray 6 dimensions and cone-beam computed tomography for intracranial and pelvic image-guided radiotherapy].

    PubMed

    Kudo, Tsuyoshi; Ono, Kaoru; Furukawa, Kengo; Fujimoto, Sachie; Akagi, Yukio; Koyama, Tadashi; Hirokawa, Yutaka

    2012-01-01

    The aim of this study was to compare the setup difference measured with ExacTrac X-ray 6D (ETX6D) and cone-beam computed tomography (CBCT) for non-invasive fractionated radiotherapy. Setup data were collected on a Novalis Tx treatment unit for both a head phantom and patients with intracranial tumors and a pelvic phantom and patients with prostate cancer. Initially, setup was done for a phantom using ETX6D. Secondly, a treatment couch was shifted or rotated by each already known value. Thirdly, ETX6D and CBCT scans were obtained. Finally, setup difference was determined: the registrations of ETX6D images with the corresponding digitally reconstructed radiographs using ETX6D fusion, and registrations of CBCT images with the planning CT using online 6D fusion. The setup difference between ETX6D and CBCT was compared. The impact of shifts and rotations on the difference was evaluated. Patients' setup data was similarly analyzed. In phantom experiments, the root mean square (RMS) of difference of the shift and rotation was less than 0.45 mm for translations, and 0.17 degrees for rotations. In intracranial patients' data, the RMS of that was 0.55 mm and 0.44 degree, respectively. In prostate cancer patients' data, the RMS of that was 0.77 mm and 0.79 degree, respectively. In this study, we observed modest setup differences between ETX6D and CBCT. These differences were generally less than 1.00 mm for translations, and 1.00 degrees for rotations, respectively.

  7. Image-guided intensity-modulated radiotherapy for refractory bilateral breast cancer in a patient with extensive cutaneous metastasis in the chest and abdominal walls

    PubMed Central

    Lu, Yueh-Feng; Lin, Yu-Chin; Chen, Kuo-Hsin; Shueng, Pei-Wei; Yeh, Hsin-Pei; Hsieh, Chen-Hsi

    2016-01-01

    Treatment for bilateral breast cancer with chest wall and abdominal skin invasion normally involves conventional radiotherapy (RT); however, conventional RT provides inadequate target volume coverage and excessive treatment of large volumes of normal tissue. Helical tomotherapy (HT) has the ability to deliver continuous craniocaudal irradiation that suppresses junction problems and provides good conformity of dose distribution. A 47-year-old female with stage IV bilateral breast cancer with chest wall and pectoralis major muscle invasion, lymphadenopathy, bilateral pleural effusion, and multiple bone metastases received chemotherapy and target therapy beginning in January 2014; 4 months after the initiation of chemotherapy, computed tomography revealed progression of chest and abdominal wall invasion. A total dose of 70.2 Gy was delivered to both breasts, the chest wall, the abdominal wall, and the bilateral supraclavicular nodal areas in 39 fractions via HT. The total planning target volume was 4,533.29 cm3. The percent of lung volume receiving at least 20 Gy (V20) was 28%, 22%, and 25% for the right lung, left lung, and whole lung, respectively. The mean dose to the heart was 8.6 Gy. Follow-up computed tomography revealed complete response after the RT course. Grade 1 dysphagia, weight loss, grade 2 neutropenia, and grade 3 dermatitis were noted during the RT course. Pain score decreased from 6 to 1. No cardiac, pulmonary, liver, or intestinal toxicity developed during treatment or follow-up. Concurrent HT with or without systemic treatment could be a safe salvage therapy for chemorefractory locally advanced breast cancer patients with extensive cutaneous metastasis. PMID:27284253

  8. FIRE: an open-software suite for real-time 2D/3D image registration for image guided radiotherapy research

    NASA Astrophysics Data System (ADS)

    Furtado, H.; Gendrin, C.; Spoerk, J.; Steiner, E.; Underwood, T.; Kuenzler, T.; Georg, D.; Birkfellner, W.

    2016-03-01

    Radiotherapy treatments have changed at a tremendously rapid pace. Dose delivered to the tumor has escalated while organs at risk (OARs) are better spared. The impact of moving tumors during dose delivery has become higher due to very steep dose gradients. Intra-fractional tumor motion has to be managed adequately to reduce errors in dose delivery. For tumors with large motion such as tumors in the lung, tracking is an approach that can reduce position uncertainty. Tumor tracking approaches range from purely image intensity based techniques to motion estimation based on surrogate tracking. Research efforts are often based on custom designed software platforms which take too much time and effort to develop. To address this challenge we have developed an open software platform especially focusing on tumor motion management. FLIRT is a freely available open-source software platform. The core method for tumor tracking is purely intensity based 2D/3D registration. The platform is written in C++ using the Qt framework for the user interface. The performance critical methods are implemented on the graphics processor using the CUDA extension. One registration can be as fast as 90ms (11Hz). This is suitable to track tumors moving due to respiration (~0.3Hz) or heartbeat (~1Hz). Apart from focusing on high performance, the platform is designed to be flexible and easy to use. Current use cases range from tracking feasibility studies, patient positioning and method validation. Such a framework has the potential of enabling the research community to rapidly perform patient studies or try new methods.

  9. Local Setup Errors in Image-Guided Radiotherapy for Head and Neck Cancer Patients Immobilized With a Custom-Made Device

    SciTech Connect

    Giske, Kristina; Stoiber, Eva M.; Schwarz, Michael; Stoll, Armin; Muenter, Marc W.; Timke, Carmen; Roeder, Falk; Debus, Juergen; Huber, Peter E.; Thieke, Christian; Bendl, Rolf

    2011-06-01

    Purpose: To evaluate the local positioning uncertainties during fractionated radiotherapy of head-and-neck cancer patients immobilized using a custom-made fixation device and discuss the effect of possible patient correction strategies for these uncertainties. Methods and Materials: A total of 45 head-and-neck patients underwent regular control computed tomography scanning using an in-room computed tomography scanner. The local and global positioning variations of all patients were evaluated by applying a rigid registration algorithm. One bounding box around the complete target volume and nine local registration boxes containing relevant anatomic structures were introduced. The resulting uncertainties for a stereotactic setup and the deformations referenced to one anatomic local registration box were determined. Local deformations of the patients immobilized using our custom-made device were compared with previously published results. Several patient positioning correction strategies were simulated, and the residual local uncertainties were calculated. Results: The patient anatomy in the stereotactic setup showed local systematic positioning deviations of 1-4 mm. The deformations referenced to a particular anatomic local registration box were similar to the reported deformations assessed from patients immobilized with commercially available Aquaplast masks. A global correction, including the rotational error compensation, decreased the remaining local translational errors. Depending on the chosen patient positioning strategy, the remaining local uncertainties varied considerably. Conclusions: Local deformations in head-and-neck patients occur even if an elaborate, custom-made patient fixation method is used. A rotational error correction decreased the required margins considerably. None of the considered correction strategies achieved perfect alignment. Therefore, weighting of anatomic subregions to obtain the optimal correction vector should be investigated in the

  10. Incidence of Secondary Cancer Development After High-Dose Intensity-Modulated Radiotherapy and Image-Guided Brachytherapy for the Treatment of Localized Prostate Cancer

    SciTech Connect

    Zelefsky, Michael J.; Housman, Douglas M.; Pei Xin; Alicikus, Zumre; Magsanoc, Juan Martin; Dauer, Lawrence T.; St Germain, Jean; Yamada, Yoshiya; Kollmeier, Marisa; Cox, Brett; Zhang Zhigang

    2012-07-01

    Purpose: To report the incidence and excess risk of second malignancy (SM) development compared with the general population after external beam radiotherapy (EBRT) and brachytherapy to treat prostate cancer. Methods and Materials: Between 1998 and 2001, 1,310 patients with localized prostate cancer were treated with EBRT (n = 897) or brachytherapy (n = 413). We compared the incidence of SMs in our patients with that of the general population extracted from the National Cancer Institute's Surveillance, Epidemiology, and End Results data set combined with the 2000 census data. Results: The 10-year likelihood of SM development was 25% after EBRT and 15% after brachytherapy (p = .02). The corresponding 10-year likelihood for in-field SM development in these groups was 4.9% and 1.6% (p = .24). Multivariate analysis showed that EBRT vs. brachytherapy and older age were the only significant predictors for the development of all SMs (p = .037 and p = .030), with a trend for older patients to develop a SM. The increased incidence of SM for EBRT patients was explained by the greater incidence of skin cancer outside the radiation field compared with that after brachytherapy (10.6% and 3.3%, respectively, p = .004). For the EBRT group, the 5- and 10-year mortality rate was 1.96% and 5.1% from out-of field cancer, respectively; for in-field SM, the corresponding mortality rates were 0.1% and 0.7%. Among the brachytherapy group, the 5- and 10-year mortality rate related to out-of field SM was 0.8% and 2.7%, respectively. Our observed SM rates after prostate RT were not significantly different from the cancer incidence rates in the general population. Conclusions: Using modern sophisticated treatment techniques, we report low rates of in-field bladder and rectal SM risks after prostate cancer RT. Furthermore, the likelihood of mortality secondary to a SM was unusual. The greater rate of SM observed with EBRT vs. brachytherapy was related to a small, but significantly increased

  11. [Radiotherapy of bone metastases].

    PubMed

    Thureau, S; Vieillard, M-H; Supiot, S; Lagrange, J-L

    2016-09-01

    Radiotherapy plays a major role in palliative treatment of bone metastases. Recent developments of stereotactic radiotherapy and intensity modulated radiation therapy give the possibility to treat oligometastatic diseases. The objective of this paper is to report indications and treatment modalities of radiotherapy in these situations.

  12. SU-E-J-219: Quantitative Evaluation of Motion Effects On Accuracy of Image-Guided Radiotherapy with Fiducial Markers Using CT Imaging

    SciTech Connect

    Ali, I; Oyewale, S; Ahmad, S; Algan, O; Alsbou, N

    2014-06-01

    Purpose: To investigate quantitatively patient motion effects on the localization accuracy of image-guided radiation with fiducial markers using axial CT (ACT), helical CT (HCT) and cone-beam CT (CBCT) using modeling and experimental phantom studies. Methods: Markers with different lengths (2.5 mm, 5 mm, 10 mm, and 20 mm) were inserted in a mobile thorax phantom which was imaged using ACT, HCT and CBCT. The phantom moved with sinusoidal motion with amplitudes ranging 0–20 mm and a frequency of 15 cycles-per-minute. Three parameters that include: apparent marker lengths, center position and distance between the centers of the markers were measured in the different CT images of the mobile phantom. A motion mathematical model was derived to predict the variations in the previous three parameters and their dependence on the motion in the different imaging modalities. Results: In CBCT, the measured marker lengths increased linearly with increase in motion amplitude. For example, the apparent length of the 10 mm marker was about 20 mm when phantom moved with amplitude of 5 mm. Although the markers have elongated, the center position and the distance between markers remained at the same position for different motion amplitudes in CBCT. These parameters were not affected by motion frequency and phase in CBCT. In HCT and ACT, the measured marker length, center and distance between markers varied irregularly with motion parameters. The apparent lengths of the markers varied with inverse of the phantom velocity which depends on motion frequency and phase. Similarly the center position and distance between markers varied inversely with phantom speed. Conclusion: Motion may lead to variations in maker length, center position and distance between markers using CT imaging. These effects should be considered in patient setup using image-guided radiation therapy based on fiducial markers matching using 2D-radiographs or volumetric CT imaging.

  13. Evaluation of Juvenile Salmon Behavior at Bonneville Dam, Columbia River, Using a Multibeam Technique

    SciTech Connect

    Johnson, Robert L. ); Moursund, Russell A. )

    1999-11-01

    In recent years, with increased effort to bypass and guide fragile stocks of juvenile salmon in the Columbia Basin past hydroelectric projects, it has been increasingly important to obtain fine-scale fish behavior data in a non-intrusive manner. The Dual-Head Multibeam Sonar is an emerging technology for fisheries applications that addresses that requirement. It has two principal advantages over traditional hydroacoustic techniques: (1) it allows for simultaneous large-volume coverage of a region of interest, and (2) it affords 3-D tracking capability. The use of Dual-Head Multibeam Sonar in this study resulted in unprecedented insight into fine-scale smolt behavior upstream of a prototype surface collector at Bonneville Dam first powerhouse in 1998. Our results indicated that outmigrant juvenile salmon had an increased likelihood of milling or holding. This discovery will lead to better design criteria for future bypass and collector systems. Future fisheries multibeam sonar systems will likely be fully integrated systems with built-in real time tracking capability. These systems may be used to track targets relative to physical guidance structures or other behavior modifying stimuli such as light, turbulent flow, electrical/magnetic fields, or low-frequency sound and vibration. The combination of fine-scale fish behavior data and environmental parameters will yield better design criteria for the safe passage of listed or endangered species of Pacific salmon.

  14. Phase II dose escalation study of image-guided adaptive radiotherapy for prostate cancer: Use of dose-volume constraints to achieve rectal isotoxicity

    SciTech Connect

    Vargas, Carlos; Yan Di; Kestin, Larry L.; Krauss, Daniel; Lockman, David M.; Brabbins, Donald S.; Martinez, Alvaro A. . E-mail: amartinez@beaumont.edu

    2005-09-01

    significant difference by dose level was seen in the 2-year rate of Grade 2 or higher chronic rectal toxicity. These rates were 27%, 15%, 14%, 17%, and 24% for dose levels equal to or less than 72, 73.8, 75.6, 77.4, and 79.2 Gy, respectively (p = 0.3). Grade 2 or higher chronic rectal bleeding was significantly greater for Group 2 than for Group 1, 17% vs. 8% (p = 0.035). Conclusions: High doses (79.2 Gy) were safely delivered in selected patients by our adaptive radiotherapy process. Under the rectal dose-volume histogram constraints for the dose level selection, the risk of chronic rectal toxicity is similar among patients treated to different dose levels. Therefore, rectal chronic toxicity rates reflect the dose-volume cutoff used and are independent of the actual dose levels. On the other hand, a larger PTV will increase the rectal wall dose and chronic rectal toxicity rates. PTV volume and dose constraints should be defined, considering their potential benefit.

  15. Field Calibration Procedures for Multibeam Sonar Systems

    DTIC Science & Technology

    1998-06-01

    include multibeam sonar transducers, light detection and ranging ( LIDAR ) surveys, acoustic seafloor classification systems, sub-bottom profilers, and... DTM ) of the reference surface is created from the cleaned data, and an averaging gridding algorithm is used to smooth the data. The gridding size...should be no larger than the average footprint of the inner beams. Using large vertical exaggeration, the DTM should be observed on 3-D visualization

  16. SU-E-J-44: A Novel Approach to Quantify Patient Setup and Target Motion for Real-Time Image-Guided Radiotherapy (IGRT)

    SciTech Connect

    Li, S; Charpentier, P; Sayler, E; Micaily, B; Miyamoto, C; Geng, J

    2015-06-15

    Purpose Isocenter shifts and rotations to correct patient setup errors and organ motion cannot remedy some shape changes of large targets. We are investigating new methods in quantification of target deformation for realtime IGRT of breast and chest wall cancer. Methods Ninety-five patients of breast or chest wall cancer were accrued in an IRB-approved clinical trial of IGRT using 3D surface images acquired at daily setup and beam-on time via an in-room camera. Shifts and rotations relating to the planned reference surface were determined using iterative-closest-point alignment. Local surface displacements and target deformation are measured via a ray-surface intersection and principal component analysis (PCA) of external surface, respectively. Isocenter shift, upper-abdominal displacement, and vectors of the surface projected onto the two principal components, PC1 and PC2, were evaluated for sensitivity and accuracy in detection of target deformation. Setup errors for some deformed targets were estimated by superlatively registering target volume, inner surface, or external surface in weekly CBCT or these outlines on weekly EPI. Results Setup difference according to the inner-surface, external surface, or target volume could be 1.5 cm. Video surface-guided setup agreed with EPI results to within < 0.5 cm while CBCT results were sometimes (∼20%) different from that of EPI (>0.5 cm) due to target deformation for some large breasts and some chest walls undergoing deep-breath-hold irradiation. Square root of PC1 and PC2 is very sensitive to external surface deformation and irregular breathing. Conclusion PCA of external surfaces is quick and simple way to detect target deformation in IGRT of breast and chest wall cancer. Setup corrections based on the target volume, inner surface, and external surface could be significant different. Thus, checking of target shape changes is essential for accurate image-guided patient setup and motion tracking of large deformable

  17. Biomarkers for DNA DSB inhibitors and radiotherapy clinical trials.

    PubMed

    Liu, Stanley K; Olive, Peggy L; Bristow, Robert G

    2008-09-01

    Major technical advances in radiotherapy, including IMRT and image-guided radiotherapy, have allowed for improved physical precision and increased dose delivery to the tumor, with better sparing of surrounding normal tissue. The development of inhibitors of the sensing and repair of DNA double-strand breaks (DSBs) is exciting and could be combined with precise radiotherapy targeting to improve local control following radiotherapy. However, caution must be exercised in order that DSB inhibitors are combined with radiotherapy in such a manner as to preserve the therapeutic ratio by exploiting repair deficiencies in malignant cells over that of normal cells. In this review, we discuss the rationale and current approaches to targeting DSB sensing and repair pathways in combined modality with radiotherapy. We also describe potential biomarkers that could be useful in detecting functional inhibition of DSB repair in a patient's tissues during clinical radiotherapy trials. Finally, we examine a number of issues relating to the use of DSB-inhibiting molecular agents and radiotherapy in the context of the tumor microenvironment, effects on normal tissues and the optimal timing and duration of the agent in relation to fractionated radiotherapy.

  18. TU-AB-303-09: Investigation of Simple Method to Guide Adaptive Radiotherapy of Head-And-Neck Treatment Using Portal Imager

    SciTech Connect

    Al Etreby, M; Elshemey, W; El Sherbini, N

    2015-06-15

    Purpose: Planned dose distribution for IMRT or VMAT could be altered by tissue changes during treatment course as in head and neck patients. Thus the aim of our study is to investigate a simple method that guides decision for re-planning. We will correlate changes in exit fluence tracked through entire treatment course with the anatomical changes. Methods: Fifteen patients were planned for IMRT; weekly CT scan was registered to original CT. Volume changes of different structures were assessed for each week. Frequently integrated images were acquired for all fields twice weekly via portal imager. The delivered fluences were compared with reference images. Gamma analysis (3% and 3 mm) including maximum γ, and percentage of points with γ≥ 1, were calculated for all fields. Results: Continuous reduction in GTV, CTV1 and parotids volumes during treatment was found [median value of 5.3 (1.3–20.8), 23.8 (3.0–128.7) and 1.7 (0.5–6.3) cm3 respectively] with significant change on week 2 (p= < 0.005). Also the value of gamma area >1 parameter continued to increase, significantly (P < 0.005), starting from second week (1.8 ± 1.9%) reaching 4.1 ± 1.6% by the end of treatment. Most of these changes in the exit fluences are significantly correlated to patient anatomy variations. Pearson correlation coefficient was −0.984 (P = 0.002) and −0.984 (P = 0.014) for the maximum gamma value and the value of gamma area >1, respectively. Conclusion: The changes in exit fluences are reflecting the corresponding anatomical changes. We proposed a method to track the changes in the averaged maximum gamma value and the gamma area > 1 value for the exit fluences during treatment. Maximum gamma value of 2.6% and Maximum gamma area > 1 value of 1.8% would be useful boarder lines that if exceeded a re-planning would be recommended.

  19. Contour propagation in MRI-guided radiotherapy treatment of cervical cancer: the accuracy of rigid, non-rigid and semi-automatic registrations

    NASA Astrophysics Data System (ADS)

    van der Put, R. W.; Kerkhof, E. M.; Raaymakers, B. W.; Jürgenliemk-Schulz, I. M.; Lagendijk, J. J. W.

    2009-12-01

    External beam radiation treatment for patients with cervical cancer is hindered by the relatively large motion of the target volume. A hybrid MRI-accelerator system makes it possible to acquire online MR images during treatment in order to correct for motion and deformation. To fully benefit from such a system, online delineation of the target volumes is necessary. The aim of this study is to investigate the accuracy of rigid, non-rigid and semi-automatic registrations of MR images for interfractional contour propagation in patients with cervical cancer. Registration using mutual information was performed on both bony anatomy and soft tissue. A B-spline transform was used for the non-rigid method. Semi-automatic registration was implemented with a point set registration algorithm on a small set of manual landmarks. Online registration was simulated by application of each method to four weekly MRI scans for each of 33 cervical cancer patients. Evaluation was performed by distance analysis with respect to manual delineations. The results show that soft-tissue registration significantly (P < 0.001) improves the accuracy of contour propagation compared to registration based on bony anatomy. A combination of user-assisted and non-rigid registration provides the best results with a median error of 3.2 mm (1.4-9.9 mm) compared to 5.9 mm (1.7-19.7 mm) with bone registration (P < 0.001) and 3.4 mm (1.3-19.1 mm) with non-rigid registration (P = 0.01). In a clinical setting, the benefit may be further increased when outliers can be removed by visual inspection of the online images. We conclude that for external beam radiation treatment of cervical cancer, online MRI imaging will allow target localization based on soft tissue visualization, which provides a significantly higher accuracy than localization based on bony anatomy. The use of limited user input to guide the registration increases overall accuracy. Additional non-rigid registration further reduces the propagation

  20. Development of image quality assurance measures of the ExacTrac localization system using commercially available image evaluation software and hardware for image-guided radiotherapy.

    PubMed

    Stanley, Dennis N; Papanikolaou, Nikos; Gutierrez, Alonso N

    2014-11-01

    Quality assurance (QA) of the image quality for image-guided localization systems is crucial to ensure accurate visualization and localization of target volumes. In this study, a methodology was developed to assess and evaluate the constancy of the high-contrast spatial resolution, dose, energy, contrast, and geometrical accuracy of the BrainLAB ExacTrac system. An in-house fixation device was constructed to hold the QCkV-1 phantom firmly and reproducibly against the face of the flat panel detectors. Two image sets per detector were acquired using ExacTrac preset console settings over a period of three months. The image sets were analyzed in PIPSpro and the following metrics were recorded: high-contrast spatial resolution (f30,f40,f50 (lp/mm)), noise, and contrast-to-noise ratio. Geometrical image accuracy was evaluated by assessing the length between to predetermined points of the QCkV-1 phantom. Dose and kVp were recorded using the Unfors RaySafe Xi R/F Detector. The kVp and dose were evaluated for the following: Cranial Standard (CS) (80 kV,80 mA,80 ms), Thorax Standard (TS) (120 kV,160 mA,160 ms), Abdomen Standard (AS) (120 kV,160 mA,130 ms), and Pelvis Standard (PS) (120 kV,160 mA,160 ms). With regard to high-contrast spatial resolution, the mean values of the f30 (lp/mm), f40 (lp/mm) and f50 (lp/mm) for the left detector were 1.39±0.04,1.24±0.05, and 1.09±0.04, respectively, while for the right detector they were 1.38±0.04,1.22±0.05, and 1.09±0.05, respectively. Mean CNRs for the left and right detectors were 148±3 and 143±4, respectively. For geometrical accuracy, both detectors had a measured image length of the QCkV-1 of 57.9±0.5mm. The left detector showed dose measurements of 20.4±0.2μGy(CS), 191.8±0.7μGy(TS), 154.2±0.7μGy(AS), and 192.2±0.6μGy(PS), while the right detector showed 20.3±0.3μGy(CS), 189.7±0.8μGy(TS), 151.0±0.7μGy(AS), and 189.7±0.8μGy(PS), respectively. For X-ray energy, the left detector (right X-ray tube) had

  1. Development of image quality assurance measures of the ExacTrac localization system using commercially available image evaluation software and hardware for image-guided radiotherapy.

    PubMed

    Stanley, Dennis N; Papanikolaou, Nikos; Gutiérrez, Alonso N

    2014-11-08

    Quality assurance (QA) of the image quality for image-guided localization systems is crucial to ensure accurate visualization and localization of target volumes. In this study, a methodology was developed to assess and evaluate the constancy of the high-contrast spatial resolution, dose, energy, contrast, and geometrical accuracy of the BrainLAB ExacTrac system. An in-house fixation device was constructed to hold the QCkV-1 phantom firmly and reproducibly against the face of the flat panel detectors. Two image sets per detector were acquired using ExacTrac preset console settings over a period of three months. The image sets were analyzed in PIPSpro and the following metrics were recorded: high-contrast spatial resolution (f30, f40, f50 (lp/mm)), noise, and contrast-to-noise ratio. Geometrical image accu- racy was evaluated by assessing the length between to predetermined points of the QCkV-1 phantom. Dose and kVp were recorded using the Unfors RaySafe Xi R/F Detector. The kVp and dose were evaluated for the following: Cranial Standard (CS) (80 kV,80 mA,80 ms), Thorax Standard (TS) (120 kV,160 mA,160 ms), Abdomen Standard (AS) (120 kV,160 mA,130 ms), and Pelvis Standard (PS) (120 kV,160 mA,160 ms). With regard to high-contrast spatial resolution, the mean values of the f30 (lp/mm), f40 (lp/mm) and f50 (lp/mm) for the left detector were 1.39 ± 0.04, 1.24 ± 0.05, and 1.09 ± 0.04, respectively, while for the right detector they were 1.38 ± 0.04, 1.22 ± 0.05, and 1.09 ± 0.05, respectively. Mean CNRs for the left and right detectors were 148 ± 3 and 143 ± 4, respectively. For geometrical accuracy, both detectors had a measured image length of the QCkV-1 of 57.9 ± 0.5 mm. The left detector showed dose measurements of 20.4 ± 0.2 μGy (CS), 191.8 ± 0.7 μGy (TS), 154.2 ± 0.7 μGy (AS), and 192.2 ± 0.6 μGy (PS), while the right detector showed 20.3 ± 0.3 μGy (CS), 189.7 ± 0.8 μGy (TS), 151.0 ± 0.7 μGy (AS), and 189.7 ± 0.8 μGy (PS), respectively. For X

  2. [Clinical to planning target volume margins in prostate cancer radiotherapy].

    PubMed

    Ramiandrisoa, F; Duvergé, L; Castelli, J; Nguyen, T D; Servagi-Vernat, S; de Crevoisier, R

    2016-10-01

    The knowledge of inter- and intrafraction motion and deformations of the intrapelvic target volumes (prostate, seminal vesicles, prostatectomy bed and lymph nodes) as well as the main organs at risk (bladder and rectum) allow to define rational clinical to planning target volume margins, depending on the different radiotherapy techniques and their uncertainties. In case of image-guided radiotherapy, prostate margins and seminal vesicles margins can be between 5 and 10mm. The margins around the prostatectomy bed vary from 10 to 15mm and those around the lymph node clinical target volume between 7 and 10mm. Stereotactic body radiotherapy allows lower margins, which are 3 to 5mm around the prostate. Image-guided and stereotactic body radiotherapy with adequate margins allow finally moderate or extreme hypofractionation.

  3. [Radiotherapy of hypopharynx cancers].

    PubMed

    Pointreau, Y; Lafond, C; Trémolières, P; Legouté, F; Servagi-Vernat, S; Giraud, P; Maingon, P; Calais, G; Lapeyre, M

    2016-09-01

    The intensity-modulated radiotherapy is the gold standard in the treatment of hypopharynx cancers. Early T1 and T2 tumours could be treated by exclusive radiotherapy or surgery. For tumours requiring total pharyngolaryngectomy (T2 or T3), induction chemotherapy followed by exclusive radiotherapy or concurrent chemoradiotherapy are possible. For T4 tumours, surgery must be proposed. The treatment of lymph nodes is based on the initial treatment of the primary tumour. In non-surgical procedure, in case of sequential radiotherapy, curative dose is 70Gy and prophylactic dose is 50Gy. An integrated simultaneous boost radiotherapy is allowed (70Gy in 2Gy per fraction and 56Gy in 1.8Gy per fraction or 70Gy in 2.12Gy per fraction). Postoperatively, radiotherapy is used for locally advanced cancers with dose levels based on pathologic criteria (66Gy for R1 resection, 50 to 54Gy for complete resection). Volume delineation is based on guidelines.

  4. Heavy-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Kanai, Tatsuaki

    2000-11-01

    Heavy-ion radiotherapy using high-energy carbon beams has been performed at the National Institute of Radiological Sciences, Japan. The physical frame works for heavy-ion radiotherapy are established using physical understandings of radiation physics. In order to increase the accuracy of heavy-ion radiotherapy, many physical problems should be solved. Unsolved problems, such as the depth dose distributions, range of heavy-ion in patients and heavy-ion dosimetry in the radiation therapy, are discussed. .

  5. [Radiotherapy of oropharynx carcinoma].

    PubMed

    Servagi Vernat, S; Tochet, F; Vieillevigne, L; Pointreau, Y; Maingon, P; Giraud, P

    2016-09-01

    Indication, doses, technique of radiotherapy and concomitant chemotherapy for oropharynx carcinoma are presented. The recommendations for delineation of the target volumes and organs at risk are detailed.

  6. [Radiotherapy of skin cancers].

    PubMed

    Hennequin, C; Rio, E; Mahé, M-A

    2016-09-01

    The indications of radiotherapy for skin cancers are not clearly defined because of the lack of randomised trials or prospective studies. For basal cell carcinomas, radiotherapy frequently offers a good local control, but a randomized trial showed that surgery is more efficient and less toxic. Indications of radiotherapy are contra-indications of surgery for patients older than 60, non-sclerodermiform histology and occurring in non-sensitive areas. Adjuvant radiotherapy could be proposed to squamous cell carcinomas, in case of poor prognostic factors. Dose of 60 to 70Gy are usually required, and must be modulated to the size of the lesions. Adjuvant radiotherapy seems beneficial for desmoplastic melanomas but not for the other histological types. Prophylactic nodal irradiation (45 to 50Gy), for locally advanced tumours (massive nodal involvement), decreases the locoregional failure rate but do not increase survival. Adjuvant radiotherapy (50 to 56Gy) for Merckel cell carcinomas increases also the local control rate, as demonstrated by meta-analysis and a large epidemiological study. Nodal areas must be included, if there is no surgical exploration (sentinel lymph node dissection). Kaposi sarcomas are radiosensitive and could be treated with relatively low doses (24 to 30Gy). Also, cutaneous lymphomas are good indications for radiotherapy: B lymphomas are electively treated with limited fields. The role of total skin electron therapy for T-lymphomas is still discussed; but palliative radiotherapy is very efficient in case of cutaneous nodules.

  7. Further advancing the throughput of a multi-beam SEM

    NASA Astrophysics Data System (ADS)

    Kemen, Thomas; Malloy, Matt; Thiel, Brad; Mikula, Shawn; Denk, Winfried; Dellemann, Gregor; Zeidler, Dirk

    2015-03-01

    Multiple electron beam SEMs enable detecting structures of few nanometer in diameter at much higher throughputs than possible with single beam electron microscopes at comparable electron probe parameters. Although recent multiple beam SEM development has already demonstrated a large speed increase1, higher throughputs are still required to match the needs of many semiconductor applications2. We demonstrate the next step in the development of multi-beam SEMs by increasing the number of beams and the current per beam. The modularity of the multi-beam concept ensures that design changes in the multi-beam SEM are minimized.

  8. An algorithm for signal processing in multibeam antenna arrays

    NASA Astrophysics Data System (ADS)

    Danilevskii, L. N.; Domanov, Iu. A.; Korobko, O. V.

    1980-09-01

    A signal processing method for multibeam antenna arrays is presented which can be used to effectively reduce discrete-phasing sidelobes. Calculations of an 11-element array are presented as an example.

  9. [Radiotherapy of benign intracranial tumors].

    PubMed

    Delannes, M; Latorzeff, I; Chand, M E; Huchet, A; Dupin, C; Colin, P

    2016-09-01

    Most of the benign intracranial tumors are meningiomas, vestibular schwannomas, pituitary adenomas, craniopharyngiomas, and glomus tumors. Some of them grow very slowly, and can be observed without specific treatment, especially if they are asymptomatic. Symptomatic or growing tumors are treated by surgery, which is the reference treatment. When surgery is not possible, due to the location of the lesion, or general conditions, radiotherapy can be applied, as it is if there is a postoperative growing residual tumor, or a local relapse. Indications have to be discussed in polydisciplinary meetings, with precise evaluation of the benefit and risks of the treatments. The techniques to be used are the most modern ones, as multimodal imaging and image-guided radiation therapy. Stereotactic treatments, using fractionated or single doses depending on the size or the location of the tumors, are commonly realized, to avoid as much a possible the occurrence of late side effects.

  10. Multi-beam linear accelerator EVT

    NASA Astrophysics Data System (ADS)

    Teryaev, Vladimir E.; Kazakov, Sergey Yu.; Hirshfield, Jay L.

    2016-09-01

    A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initial specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. A relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.

  11. Recruitment in Radiotherapy

    ERIC Educational Resources Information Center

    Deeley, T. J.; And Others

    1976-01-01

    The Faculty Board of Radiotherapy and Oncology of the Royal College of Radiobiologists surveyed the factors thought to influence recruitment into the specialty. Possible factors listed in replies of 36 questionnaires are offered. (LBH)

  12. Auv Multibeam Bathymetry and Sidescan Survey of the SS Montebello wreck Offshore Cambria CA

    NASA Astrophysics Data System (ADS)

    Caress, D. W.; Thomas, H.; Conlin, D.; Thompson, D.; Paull, C. K.

    2010-12-01

    An MBARI Mapping AUV survey of the SS Montebello wreck offshore Cambria, CA collected high-resolution multibeam bathymetry and sidescan imagery of the vessel and the surrounding seafloor. The Montebello was an oil tanker that was torpedoed and sunk about 11 km offshore in 275 m water depth by a Japanese submarine on December 23, 1941. The Montebello was loaded with 3,000,000 gallons of crude oil, and there is no evidence that significant leakage of that cargo occurred at the time of the sinking or in the 69 years since. The California Department of Fish and Game’s Office of Spill Prevention and Response (OSPR) commissioned the AUV survey as part of a multi-agency Montebello Task Force effort to assess the potential pollution threat. The survey data will be used to determine the extent and general character of the wreckage for a pending Task Force report and to guide any future ROV dive or assessment activity . The AUV surveyed the wreck site from altitudes of 75 and 25 m; the low-altitude high-resolution survey consists of a grid with a 50 m line spacing both parallel and orthogonal to the ship. The 200 kHz multibeam bathymetry images the wreck from both above and from the sides with an 0.5 m lateral resolution. The combination of soundings from all of the survey lines results in a three-dimensional distribution of soundings that delineates the external morphology and some of the internal structure of the wreck. 410 kHz chirp sidescan sonar data also image the site from both directions. The bathymetry data indicate that the Montebello was pitched forward down when it impacted the bottom, crushing and breaking off the bow section. Both forward and aft deckhouses are largely intact, and in fact the multibeam images the individual decks within those structures. About half of the forward mast remains, both amidships masts and the smokestack are missing. A good deal of the deck piping and equipment appears intact, and aside from the bow, the ship’s sides appear

  13. [Radiotherapy of larynx cancers].

    PubMed

    Pointreau, Y; Lafond, C; Legouté, F; Trémolières, P; Servagi-Vernat, S; Giraud, P; Maingon, P; Calais, G; Lapeyre, M

    2016-09-01

    Intensity-modulated radiotherapy is the gold standard in the treatment of larynx cancers (except T1 glottic tumour). Early T1 and T2 tumours may be treated by exclusive radiation or surgery. For tumours requiring total laryngectomy (T2 or T3), induction chemotherapy followed by exclusive radiotherapy or concurrent chemoradiotherapy is possible. For T4 tumour, surgery must be proposed. The treatment of lymph nodes is based on the initial treatment of the primary tumour. In non-surgical procedure, in case of sequential radiotherapy, the curative dose is 70Gy and the prophylactic dose is 50Gy. An integrated simultaneous boost radiotherapy is allowed (70Gy in 2Gy per fraction and 56Gy in 1.8Gy per fraction or 70Gy in 2.12Gy per fraction). Postoperatively, radiotherapy is used in locally advanced cancer with dose levels based on pathologic criteria (66Gy for R1 resection, 50 to 54Gy for complete resection). Volume delineation was based on guidelines.

  14. ACTS Multibeam Antenna On-Orbit Performance

    NASA Technical Reports Server (NTRS)

    Acosta, R.; Wright, D.; Mitchell, Kenneth

    1996-01-01

    The Advanced Communications Technology Satellite (ACTS) launched in September 1993 introduces several new technologies including a multibeam antenna (MBA) operating at Ka-band. The MBA with fixed and rapidly reconfigurable spot beams serves users equipped with small aperture terminals within the coverage area. The antenna produces spot beams with approximately 0.3 degrees beamwidth and gains of approximately 50 dBi. A number of MBA performance evaluations have been performed since the ACTS launch. These evaluations were designed to assess MBA performance (e.g., beam pointing stability, beam shape, gain, etc.) in the space environment. The on-orbit measurements found systematic environmental perturbation to the MBA beam pointing. These perturbations were found to be imposed by satellite attitude control system, antenna and spacecraft mechanical alignments, on-orbit thermal effects, etc. As a result, the footprint coverage of the MBA may not exactly cover the intended service area at all times. This report describes the space environment effects on the ACTS MBA performance as a function of time of the day and time of the year and compensation approaches for these effects.

  15. [Radiotherapy for retroperitoneal sarcomas].

    PubMed

    Sargos, P; Stoeckle, E; Henriques de Figueiredo, B; Antoine, M; Delannes, M; Mervoyer, A; Kantor, G

    2016-10-01

    The management of retroperitoneal sarcoma can be very challenging, and the quality of initial treatment strategy appears to be a crucial prognostic factor. En bloc surgery is currently the standard of care for these rare tumours and perioperative treatments such as chemotherapy or radiotherapy have not been validated yet. However, local-regional relapse constitutes the most common disease course. While adjuvant radiotherapy is less and less common due to gastrointestinal toxicities, preoperative radiation therapy offers numerous advantages and is being evaluated as part of a national multicentre phase II study (TOMOREP trial) and is the subject of a European randomized phase III study (STRASS trial). The objective of this article is to present data on preoperative irradiation in terms of dose, volumes and optimal radiotherapy techniques for the treatment of this rare disease.

  16. Contrast enhanced exposure strategy in multi-beam mask writing

    NASA Astrophysics Data System (ADS)

    Belic, Nikola; Hofmann, Ulrich; Klikovits, Jan; Martens, Stephan

    2013-03-01

    Since multi electron beam exposure has become a serious contender for next generation mask making, proximity- and process effect corrections (PEC) need to be adapted to this technology. With feature sizes in the order of the short-range blurs (resist and tool), contrast enhancements need to be combined with standard linearity corrections. Different PEC strategies are reviewed and compared with respect to their suitability for multi-beam exposure. This analysis recommends a hybrid approach that combines the benefits of shape- and dose PEC and is optimally applicable for multibeam exposure. Exposure results on the proof-of-concept 50keV electron multi-beam mask exposure tool (eMET POC) and a standard 50 kV vector shaped beam tool (VSB) are shown to verify that the combined PEC with overdose contrast enhancement covers the whole pattern range from isolated to opaque.

  17. Radiotherapy for lung cancer

    SciTech Connect

    Bleehen, N.M.; Cox, J.D.

    1985-05-01

    The role of radiation therapy in the management of lung cancer was reviewed at a workshop held in Cambridge, England, in June 1984. It was concluded that there was a continuing role for radiation therapy in the primary management of small cell lung cancer, including the loco-regional treatment for patients with limited disease. Radical radiotherapy for patients with non-small cell carcinoma could be curative for a proportion of patients with limited disease. Careful planning and quality control was essential. Palliative radiotherapy provided useful treatment for many other patients. Other related aspects of treatment are also presented.

  18. Radiotherapy in Glioblastoma: the Past, the Present and the Future.

    PubMed

    Gzell, C; Back, M; Wheeler, H; Bailey, D; Foote, M

    2017-01-01

    The aim of this review is to explore the changing utility of radiotherapy in the treatment of patients with glioblastoma over the past 60 years. Together with surgery, radiotherapy has always been the cornerstone of treatment of glioblastoma, but techniques have significantly advanced over this time. The exploration of early two-dimensional techniques, investigation of dose escalation, concomitant chemotherapy and modern techniques, including intensity-modulated radiotherapy, image-guided radiotherapy, and volumetric-modulated arc therapy will be covered. In addition, current controversies including decreasing margin size, re-irradiation, treatment of elderly patients, and novel imaging tracers will be discussed. Future directions including immunotherapy and tumour treating fields are examined. Radiotherapy-based treatments cannot rely solely on advances in chemotherapy or immunotherapy to improve the overall survival of patients with glioblastoma. Radiation oncology needs to continue to develop and improve the delivery, target definition, and dose of radiotherapy to these patients to improve their survival and the toxicity associated with treatment.

  19. Multibeam Phased-Array Antennas Developed and Characterized

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Lambert, Kevin M.

    2003-01-01

    Fixed-formation microsatellites have been proposed for future NASA missions to lower costs and improve data collection and reliability. Achieving seamless connectivity communications between these satellites requires the use of multibeam array antennas. As a result of NASA Glenn Research Center s collaborative efforts with the University of Colorado and Texas A&M University, two prototype multibeam array antennas have been developed and demonstrated at Ka-band frequencies. These arrays are designed to be dual-beam, dual-frequency arrays, with two fixed scan beams at around +/- 30 . They can be used in both ground and space systems for transmit and receive functions.

  20. A new fixation aid for the radiotherapy of eye tumors

    SciTech Connect

    Buchgeister, Markus; Grisanti, Salvatore; Suesskind, Daniela; Bamberg, Michael; Paulsen, Frank

    2007-12-15

    A modified swim goggle holding a light spot as an optical guide for actively aligning the eye in a reproducible orientation has been constructed to perform radiotherapy of ocular tumors. This device is compatible with computed tomography (CT) and magnetic resonance imaging systems. Image fusion of these data sets yielded clinically acceptable results. The reproducibility of the eye's positioning is tested by repeated CT. The eye's alignment during radiotherapy is monitored by an infrared TV camera with individual markings of the eye's position on the TV-monitor screen. From 2003-2006, 50 patients were treated with this fixation aid by radiosurgery with good patient compliance.

  1. A new fixation aid for the radiotherapy of eye tumors.

    PubMed

    Buchgeister, Markus; Grisanti, Salvatore; Süsskind, Daniela; Bamberg, Michael; Paulsen, Frank

    2007-12-01

    A modified swim goggle holding a light spot as an optical guide for actively aligning the eye in a reproducible orientation has been constructed to perform radiotherapy of ocular tumors. This device is compatible with computed tomography (CT) and magnetic resonance imaging systems. Image fusion of these data sets yielded clinically acceptable results. The reproducibility of the eye's positioning is tested by repeated CT. The eye's alignment during radiotherapy is monitored by an infrared TV camera with individual markings of the eye's position on the TV-monitor screen. From 2003-2006, 50 patients were treated with this fixation aid by radiosurgery with good patient compliance.

  2. The Tumour Microenvironment after Radiotherapy: Mechanisms of Resistance and Recurrence

    PubMed Central

    Barker, Holly E.; Paget, James T. E.; Khan, Aadil A.; Harrington, Kevin J.

    2016-01-01

    Radiotherapy plays a central part in curing cancer. For decades, most research on improving treatment outcomes has focussed on modulating radiation-induced biological effects on cancer cells. Recently, we have better understood that components within the tumour microenvironment have pivotal roles in determining treatment outcomes. In this Review, we describe vascular, stromal and immunological changes induced in the tumour microenvironment by irradiation and discuss how they may promote radioresistance and tumour recurrence. Subsequently, we highlight how this knowledge is guiding the development of new treatment paradigms in which biologically targeted agents will be combined with radiotherapy. PMID:26105538

  3. Big Data Analytics for Prostate Radiotherapy.

    PubMed

    Coates, James; Souhami, Luis; El Naqa, Issam

    2016-01-01

    Radiation therapy is a first-line treatment option for localized prostate cancer and radiation-induced normal tissue damage are often the main limiting factor for modern radiotherapy regimens. Conversely, under-dosing of target volumes in an attempt to spare adjacent healthy tissues limits the likelihood of achieving local, long-term control. Thus, the ability to generate personalized data-driven risk profiles for radiotherapy outcomes would provide valuable prognostic information to help guide both clinicians and patients alike. Big data applied to radiation oncology promises to deliver better understanding of outcomes by harvesting and integrating heterogeneous data types, including patient-specific clinical parameters, treatment-related dose-volume metrics, and biological risk factors. When taken together, such variables make up the basis for a multi-dimensional space (the "RadoncSpace") in which the presented modeling techniques search in order to identify significant predictors. Herein, we review outcome modeling and big data-mining techniques for both tumor control and radiotherapy-induced normal tissue effects. We apply many of the presented modeling approaches onto a cohort of hypofractionated prostate cancer patients taking into account different data types and a large heterogeneous mix of physical and biological parameters. Cross-validation techniques are also reviewed for the refinement of the proposed framework architecture and checking individual model performance. We conclude by considering advanced modeling techniques that borrow concepts from big data analytics, such as machine learning and artificial intelligence, before discussing the potential future impact of systems radiobiology approaches.

  4. [Radiotherapy of breast cancer].

    PubMed

    Hennequin, C; Barillot, I; Azria, D; Belkacémi, Y; Bollet, M; Chauvet, B; Cowen, D; Cutuli, B; Fourquet, A; Hannoun-Lévi, J M; Leblanc, M; Mahé, M A

    2016-09-01

    In breast cancer, radiotherapy is an essential component of the treatment. After conservative surgery for an infiltrating carcinoma, radiotherapy must be systematically performed, regardless of the characteristics of the disease, because it decreases the rate of local recurrence and by this way, specific mortality. Partial breast irradiation could not be proposed routinely but only in very selected and informed patients. For ductal carcinoma in situ, adjuvant radiotherapy must be also systematically performed after lumpectomy. After mastectomy, chest wall irradiation is required for pT3-T4 tumours and if there is an axillary nodal involvement, whatever the number of involved lymph nodes. After neo-adjuvant chemotherapy and mastectomy, in case of pN0 disease, chest wall irradiation is recommended if there is a clinically or radiologically T3-T4 or node positive disease before chemotherapy. Axillary irradiation is recommended only if there is no axillary surgical dissection and a positive sentinel lymph node. Supra and infra-clavicular irradiation is advised in case of positive axillary nodes. Internal mammary irradiation must be discussed case by case, according to the benefit/risk ratio (cardiac toxicity). Dose to the chest wall or the breast must be between 45-50Gy with a conventional fractionation. A boost dose over the tumour bed is required if the patient is younger than 60 years old. Hypofractionation (42.5 Gy in 16 fractions, or 41.6 Gy en 13 or 40 Gy en 15) is possible after tumorectomy and if a nodal irradiation is not mandatory. Delineation of the breast, the chest wall and the nodal areas are based on clinical and radiological evaluations. 3D-conformal irradiation is the recommended technique, intensity-modulated radiotherapy must be proposed only in case of specific clinical situations. Respiratory gating could be useful to decrease the cardiac dose. Concomitant administration of chemotherapy in unadvised, but hormonal treatment could be start with

  5. Role of Radiotherapy and Newer Techniques in the Treatment of GI Cancers.

    PubMed

    Hajj, Carla; Goodman, Karyn A

    2015-06-01

    The role of radiotherapy in multidisciplinary treatment of GI malignancies is well established. Recent advances in imaging as well as radiotherapy planning and delivery techniques have made it possible to target tumors more accurately while sparing normal tissues. Intensity-modulated radiotherapy is an advanced method of delivering radiation using cutting-edge technology to manipulate beams of radiation. The role of intensity-modulated radiotherapy is growing for many GI malignancies, such as cancers of the stomach, pancreas, esophagus, liver, and anus. Stereotactic body radiotherapy is an emerging treatment option for some GI tumors such as locally advanced pancreatic cancer and primary or metastatic tumors of the liver. Stereotactic body radiotherapy requires a high degree of confidence in tumor location and subcentimeter accuracy of the delivered dose. New image-guided techniques have been developed to overcome setup uncertainties at the time of treatment, including real-time imaging on the linear accelerator. Modern imaging techniques have also allowed for more accurate pretreatment staging and delineation of the primary tumor and involved sites. In particular, magnetic resonance imaging and positron emission tomography scans can be particularly useful in radiotherapy planning and assessing treatment response. Molecular biomarkers are being investigated as predictors of response to radiotherapy with the intent of ultimately moving toward using genomic and proteomic determinants of therapeutic strategies. The role of all of these new approaches in the radiotherapeutic management of GI cancers and the evolving role of radiotherapy in these tumor sites will be highlighted in this review.

  6. A multilevel optical element based on the Fizeau multibeam interferometer

    NASA Astrophysics Data System (ADS)

    Zhmud', A. A.

    1990-10-01

    A new multilevel optical element is proposed which is based on the Fizeau multibeam interferometer and a single-frequency wavelength-tunable semiconductor injection lazer. Possible applications of the optical element in optical data processors are discussed. As an example, a high-speed 17-bit analog-digital converter based on this element is considered.

  7. NASA Adaptive Multibeam Phased Array (AMPA): An application study

    NASA Technical Reports Server (NTRS)

    Mittra, R.; Lee, S. W.; Gee, W.

    1982-01-01

    The proposed orbital geometry for the adaptive multibeam phased array (AMPA) communication system is reviewed and some of the system's capabilities and preliminary specifications are highlighted. Typical AMPA user link models and calculations are presented, the principal AMPA features are described, and the implementation of the system is demonstrated. System tradeoffs and requirements are discussed. Recommendations are included.

  8. [Radiotherapy for Graves' ophthalmopathy].

    PubMed

    Kuhnt, T; Müller, A C; Janich, M; Gerlach, R; Hädecke, J; Duncker, G I W; Dunst, J

    2004-11-01

    Graves' ophthalmopathy (GO) is the most frequent extrathyroidal manifestation of Graves' disease, an autoimmune disorder of the thyroid, whereas the precise pathogenesis still remains unclear. In Hashimoto's thyroiditis the occurrence of proptosis is an extremely rare event. The therapy for middle and severe courses of GO shows in partly disappointing results, although several therapy modalities are possible (glucocorticoid therapy, radiotherapy, antithyroid drug treatment, surgery). All these therapies lead in only 40 - 70 % to an improvement of the pathogenic symptoms. An intensive interdisciplinary cooperation is necessary to satisfy the requirements for the treatment of Graves' ophthalmopathy. As a consequence of the very different results of the few of clinical studies that were accomplished with reference to this topic, treatment by radiotherapy in the management of the disease is presently controversially discussed. In the German-speaking countries the radiotherapy is, however, firmly established as a therapy option in the treatment of the moderate disease classes (class 2-5 according to NO SPECS), especially if diplopia is present. This article describes the sequences, dosages and fractionation schemes as well as the risks and side effects of the radiotherapy. Altogether, radiotherapy is assessed as an effective and sure method. The administration of glucocorticoids can take place before the beginning of or during the radiotherapy. For the success of treatment the correct selection of patients who may possibly profit from a radiotherapy is absolutely essential. By realising that GO proceeds normally over a period of 2-5 years, which is followed by a period of fibrotic alteration, the application of the radiotherapy in the early, active phase is indispensable. A precise explanation for the effects of radiotherapy in treatment of the GO does not exist at present. The determination of the most effective irradiation doses was made from retrospectively evaluated

  9. Current concepts on imaging in radiotherapy.

    PubMed

    Lecchi, Michela; Fossati, Piero; Elisei, Federica; Orecchia, Roberto; Lucignani, Giovanni

    2008-04-01

    New high-precision radiotherapy (RT) techniques, such as intensity-modulated radiation therapy (IMRT) or hadrontherapy, allow better dose distribution within the target and spare a larger portion of normal tissue than conventional RT. These techniques require accurate tumour volume delineation and intrinsic characterization, as well as verification of target localisation and monitoring of organ motion and response assessment during treatment. These tasks are strongly dependent on imaging technologies. Among these, computed tomography (CT), magnetic resonance imaging (MRI), ultrasonography (US) and positron emission tomography (PET) have been applied in high-precision RT. For tumour volume delineation and characterization, PET has brought an additional dimension to the management of cancer patients by allowing the incorporation of crucial functional and molecular images in RT treatment planning, i.e. direct evaluation of tumour metabolism, cell proliferation, apoptosis, hypoxia and angiogenesis. The combination of PET and CT in a single imaging system (PET/CT) to obtain a fused anatomical and functional dataset is now emerging as a promising tool in radiotherapy departments for delineation of tumour volumes and optimization of treatment plans. Another exciting new area is image-guided radiotherapy (IGRT), which focuses on the potential benefit of advanced imaging and image registration to improve precision, daily target localization and monitoring during treatment, thus reducing morbidity and potentially allowing the safe delivery of higher doses. The variety of IGRT systems is rapidly expanding, including cone beam CT and US. This article examines the increasing role of imaging techniques in the entire process of high-precision radiotherapy.

  10. Translational Research to Improve the Efficacy of Carbon Ion Radiotherapy: Experience of Gunma University

    PubMed Central

    Oike, Takahiro; Sato, Hiro; Noda, Shin-ei; Nakano, Takashi

    2016-01-01

    Carbon ion radiotherapy holds great promise for cancer therapy. Clinical data show that carbon ion radiotherapy is an effective treatment for tumors that are resistant to X-ray radiotherapy. Since 1994 in Japan, the National Institute of Radiological Sciences has been heading the development of carbon ion radiotherapy using the Heavy Ion Medical Accelerator in Chiba. The Gunma University Heavy Ion Medical Center (GHMC) was established in the year 2006 as a proof-of-principle institute for carbon ion radiotherapy with a view to facilitating the worldwide spread of compact accelerator systems. Along with the management of more than 1900 cancer patients to date, GHMC engages in translational research to improve the treatment efficacy of carbon ion radiotherapy. Research aimed at guiding patient selection is of utmost importance for making the most of carbon ion radiotherapy, which is an extremely limited medical resource. Intratumoral oxygen levels, radiation-induced cellular apoptosis, the capacity to repair DNA double-strand breaks, and the mutational status of tumor protein p53 and epidermal growth factor receptor genes are all associated with X-ray sensitivity. Assays for these factors are useful in the identification of X-ray-resistant tumors for which carbon ion radiotherapy would be beneficial. Research aimed at optimizing treatments based on carbon ion radiotherapy is also important. This includes assessment of dose fractionation, normal tissue toxicity, tumor cell motility, and bystander effects. Furthermore, the efficacy of carbon ion radiotherapy will likely be enhanced by research into combined treatment with other modalities such as chemotherapy. Several clinically available chemotherapeutic drugs (carboplatin, paclitaxel, and etoposide) and drugs at the developmental stage (Wee-1 and heat shock protein 90 inhibitors) show a sensitizing effect on tumor cells treated with carbon ions. Additionally, the efficacy of carbon ion radiotherapy can be improved by

  11. Translational Research to Improve the Efficacy of Carbon Ion Radiotherapy: Experience of Gunma University.

    PubMed

    Oike, Takahiro; Sato, Hiro; Noda, Shin-Ei; Nakano, Takashi

    2016-01-01

    Carbon ion radiotherapy holds great promise for cancer therapy. Clinical data show that carbon ion radiotherapy is an effective treatment for tumors that are resistant to X-ray radiotherapy. Since 1994 in Japan, the National Institute of Radiological Sciences has been heading the development of carbon ion radiotherapy using the Heavy Ion Medical Accelerator in Chiba. The Gunma University Heavy Ion Medical Center (GHMC) was established in the year 2006 as a proof-of-principle institute for carbon ion radiotherapy with a view to facilitating the worldwide spread of compact accelerator systems. Along with the management of more than 1900 cancer patients to date, GHMC engages in translational research to improve the treatment efficacy of carbon ion radiotherapy. Research aimed at guiding patient selection is of utmost importance for making the most of carbon ion radiotherapy, which is an extremely limited medical resource. Intratumoral oxygen levels, radiation-induced cellular apoptosis, the capacity to repair DNA double-strand breaks, and the mutational status of tumor protein p53 and epidermal growth factor receptor genes are all associated with X-ray sensitivity. Assays for these factors are useful in the identification of X-ray-resistant tumors for which carbon ion radiotherapy would be beneficial. Research aimed at optimizing treatments based on carbon ion radiotherapy is also important. This includes assessment of dose fractionation, normal tissue toxicity, tumor cell motility, and bystander effects. Furthermore, the efficacy of carbon ion radiotherapy will likely be enhanced by research into combined treatment with other modalities such as chemotherapy. Several clinically available chemotherapeutic drugs (carboplatin, paclitaxel, and etoposide) and drugs at the developmental stage (Wee-1 and heat shock protein 90 inhibitors) show a sensitizing effect on tumor cells treated with carbon ions. Additionally, the efficacy of carbon ion radiotherapy can be improved by

  12. Imaging practices and radiation doses from imaging in radiotherapy.

    PubMed

    Siiskonen, Teemu; Kaijaluoto, Sampsa; Florea, Tudor

    2017-03-25

    Modern radiotherapy treatments require frequent imaging for accurate patient positioning relative to the therapeutic radiation beam. Imaging practices in five Finnish radiotherapy clinics were assessed and discussed from the patient dose optimization point of view. The results show that imaging strategies are not jointly established and variations exist. The organ absorbed doses depend on imaging technique and imaging frequency. In particular, organ doses from the cone beam computed tomography can have very large variations (a factor of 10-50 in breast imaging and factor of 5 in prostate imaging). The cumulative imaging organ dose from the treatment can vary by a factor of ten or more for the same treatment, depending on the chosen technique and imaging frequency. Awareness and optimization of the imaging dose in image-guided radiotherapy should be strengthened.

  13. [Current Trends in Radiotherapy Following Surgical Resection of Soft-tissue Sarcoma of the Extremities and Trunk].

    PubMed

    Kraus-Tiefenbacher, U S; Van Kampen, M

    2015-04-01

    Besides surgery, radiotherapy plays its well-established part in the multimodality treatment of soft-tissue sarcomas. It can be delivered before or after surgery with similar control rates. Adjuvant radiotherapy increases the local control rates as well as the overall survival in intermediate or high-grade soft-tissue sarcomas. Due to the complex and sophisticated nature of the treatment, patients should be referred to specialised centres where modern radiotherapeutic options like intensity modulated radiotherapy and image-guided radiotherapy can be offered.

  14. Multibeam Bathymetry of Haleakala Volcano, Maui

    NASA Astrophysics Data System (ADS)

    Eakins, B. W.; Robinson, J.

    2002-12-01

    The submarine northeast flank of Haleakala Volcano, Maui was mapped in detail during the summers of 2001 and 2002 by a joint team from the Japan Marine Science and Technology Center (JAMSTEC), Tokyo Institute of Technology, University of Hawaii, and the U.S. Geological Survey. JAMSTEC instruments used included SeaBeam 2112 hull-mounted multibeam sonar (bathymetry and sidescan imagery), manned submersible Shinkai 6500 and ROV Kaiko (bottom video, photographs and sampling of Hana Ridge), gravimeter, magnetometer, and single-channel seismic system. Hana Ridge, Haleakala's submarine east rift zone, is capped by coral-reef terraces for much of its length, which are flexurally tilted towards the axis of the Hawaiian Ridge and delineate former shorelines. Its deeper, more distal portion exhibits a pair of parallel, linear crests, studded with volcanic cones, that suggest lateral migration of the rift zone during its growth. The northern face of the arcuate ridge terminus is a landslide scar in one of these crests, while its southwestern prong is a small, constructional ridge. The Hana slump, a series of basins and ridges analogous to the Laupahoehoe slump off Kohala Volcano, Hawaii, lies north of Hana Ridge and extends down to the Hawaiian moat. Northwest of this slump region a small, dual-crested ridge strikes toward the Hawaiian moat and is inferred to represent a fossil rift zone, perhaps of East Molokai Volcano. A sediment chute along its southern flank has built a large submarine fan with a staircase of contour-parallel folds on its surface that are probably derived from slow creep of sediments down into the moat. Sediments infill the basins of the Hana slump [Moore et al., 1989], whose lowermost layers have been variously back-tilted by block rotation during slumping and flexural loading of the Hawaiian Ridge; the ridges define the outer edges of those down-dropped blocks, which may have subsided several kilometers. An apron of volcaniclastic debris shed from

  15. Radiotherapy for bone pain.

    PubMed Central

    Needham, P R; Mithal, N P; Hoskin, P J

    1994-01-01

    Painful bone metastases are a common problem for cancer patients. Although current evidence supports the use of a single fraction of radiotherapy as the treatment of choice, many radiotherapists, for a variety of reasons, continue to use fractionated regimens. Over one six month period 105 patients received external beam irradiation for painful bone metastases at the Royal London Hospital (RLH). Thirty-one per cent of the patients were aged 70 or over. The treatment of 97 of these patients was assessed. They had a total of 280 sites treated over the course of their disease. Fifty-nine per cent of sites treated received a fractionated course of radiotherapy. Site significantly influenced fractionation. Overall response rates of 82% were achieved. Fractionation did not appear to influence this. Ten patients received large field irradiation. Fifteen patients had five or more sites irradiated, of whom only one received hemibody irradiation. PMID:7523672

  16. Melanoma: Last call for radiotherapy.

    PubMed

    Espenel, Sophie; Vallard, Alexis; Rancoule, Chloé; Garcia, Max-Adrien; Guy, Jean-Baptiste; Chargari, Cyrus; Deutsch, Eric; Magné, Nicolas

    2017-02-01

    Melanoma is traditionally considered to be a radioresistant tumor. However, radiotherapy and immunotherapy latest developments might upset this radiobiological dogma. Stereotactic radiotherapy allows high dose per fraction delivery, with high dose rate. More DNA lethal damages, less sublethal damages reparation, endothelial cell apoptosis, and finally clonogenic cell dysfunction are produced, resulting in improved local control. Radiotherapy can also enhance immune responses, inducing neoantigens formation, tumor antigen presentation, and cytokines release. A synergic effect of radiotherapy with immunotherapy is expected, and might lead to abscopal effects. If hadrontherapy biological properties seem able to suppress hypoxia-induced radioresistance and increase biological efficacy, ballistic advantages over photon radiations might also improve radiotherapy outcomes on usually poor prognosis locations. The present review addresses biological and clinical effects of high fraction dose, bystander effect, abscopal effect, and hadrontherapy features in melanoma. Clinical trials results are warranted to establish indications of innovative radiotherapy in melanoma.

  17. Accident prevention in radiotherapy

    PubMed Central

    Holmberg, O

    2007-01-01

    In order to prevent accidents in radiotherapy, it is important to learn from accidents that have occurred previously. Lessons learned from a number of accidents are summarised and underlying patterns are looked for in this paper. Accidents can be prevented by applying several safety layers of preventive actions. Categories of these preventive actions are discussed together with specific actions belonging to each category of safety layer. PMID:21614274

  18. [Radiotherapy of bladder cancer].

    PubMed

    Riou, O; Chauvet, B; Lagrange, J-L; Martin, P; Llacer Moscardo, C; Charissoux, M; Lauche, O; Aillères, N; Fenoglietto, P; Azria, D

    2016-09-01

    Surgery (radical cystectomy) is the standard treatment of muscle-invasive bladder cancer. Radiochemotherapy has risen as an alternative treatment option to surgery as part as organ-sparing combined modality treatment or for patients unfit for surgery. Radiochemotherapy achieves 5-year bladder intact survival of 40 to 65% and 5-year overall survival of 40 to 50% with excellent quality of life. This article introduces the French recommendations for radiotherapy of bladder cancer: indications, exams, technique, dosimetry, delivery and image guidance.

  19. Radiotherapy DICOM packet sniffing.

    PubMed

    Ackerly, T; Gesoand, M; Smith, R

    2008-09-01

    The Digital Imaging and Communications in Medicine (DICOM) standard is meant to allow communication of medical images between equipment provided by different vendors, but when two applications do not interact correctly in a multi-vendor environment it is often first necessary to demonstrate non-compliance of either the sender or the receiver before a resolution to the problem can be progressed. Sometimes the only way to do this is to monitor the network communication between the two applications to find out which one is not complying with the DICOM standard. Packet sniffing is a technique of network traffic analysis by passive observation of all information transiting a point on the network, regardless of the specified sender or receiver. DICOM packet sniffing traps and interprets the network communication between two DICOM applications to determine which is non compliant. This is illustrated with reference to three examples, a radiotherapy planning system unable to receive CT data from a particular CT scanner, a radiotherapy simulator unable to print correctly on a DICOM printer, and a PACS unable to respond when queried about what images it has in its archive by a radiotherapy treatment planning system. Additionally in this work it has been proven that it is feasible to extract DICOM images from the intercepted network data. This process can be applied to determine the cause of a DICOM image being rendered differently by the sender and the receiver.

  20. Imaging in radiotherapy.

    PubMed

    Van den Berge, D L; De Ridder, M; Storme, G A

    2000-10-01

    Radiotherapy, more then any other treatment modality, relies heavily and often exclusively on medical imaging to determine the extent of disease and the spatial relation between target region and neighbouring healthy tissues. Radically new approaches to radiation delivery are inspired on CT scanning and treat patients in a slice-by-slice fashion using intensity modulated megavoltage fan beams. For quality assurance of complex 3-D dose distributions, MR based 3-D verificative dosimetry on irradiated phantoms has been described. As treatment delivery becomes increasingly refined, the need for accurate target definition increases as well and sophisticated imaging tools like image fusion and 3-D reconstruction are routinely used for treatment planning. While in the past patients were positioned on the treatment machines based exclusively on surface topography and the well-known skin marks, such approach is no longer sufficient for high-accuracy radiotherapy and special imaging tools like on-line portal imaging are used to verify and correct target positioning. Much of these applications rely on digital image processing, transmission and storage, and the development of standards, like DICOM and PACS have greatly contributed to these applications. Digital imaging plays an increasing role in many areas in radiotherapy and has been fundamental in new developments that have demonstrated impact on patient care.

  1. [Radiotherapy for primary lung carcinoma].

    PubMed

    Giraud, P; Lacornerie, T; Mornex, F

    2016-09-01

    Indication, doses, technique of radiotherapy and concomitant chemotherapy, for primary lung carcinoma are presented. The recommendations for delineation of the target volumes and organs at risk are detailed.

  2. [The need for a paradigm shift in radiotherapy].

    PubMed

    Mayer, Árpád; Katona, Csilla; Farkas, Róbert; Póti, Zsuzsa

    2015-11-01

    The status and indications of radiotherapy have significantly changed in the past decade because novel techniques, radiobiological research and major advances in informatics have made better local control possible. Using supplemented marking of the target volume with computer tomography based other image-making methods adapted made it possible to define the tumor and intact surrounding tissues more precisely. With novel radiotherapy techniques the dosage of the homogenity and the covering in the target volume can be raised optimally, especially with intensity modulated arc radiotherapy (volumetric modulated arc therapy) without causing radiation injury or damage to intact surrounding tissues. Furthermore, with novel techniques and target volume marking, new indications have appeared in clinical practice and besides stereotactic radiotherapy for intracranial metastases, the extracranial so-called oligometastic conditions can be maintained close to a curative state (or in remission) for many years. Among these, perhaps the most striking is the stereotactic radiotherapy treatment of liver, lung and spinal cord metastases in one or more fractions, for which the indispensable condition is the image or respiratory guided technique.

  3. Stereotactic body radiotherapy: current strategies and future development

    PubMed Central

    2016-01-01

    Stereotactic body radiotherapy (SBRT) has emerged as the standard treatment for medically inoperable early-staged non-small cell lung cancer (NSCLC). The local control rate after SBRT is over 90%. Some forms of tumour motion management and image-guided radiation delivery techniques are the prerequisites for fulfilment of its goal to deliver a high radiation dose to the tumour target without overdosing surrounding normal tissues. In this review, the current strategies of tumour motion management will be discussed, followed by an overview of various image-guided radiotherapy (RT) systems and devices available for clinical practice. Besides medically inoperable stage I NSCLC, SBRT has also been widely adopted for treatment of oligometastasis involving the lungs. Its possible applications in various other cancer illnesses are under extensive exploration. The progress of SBRT is critically technology-dependent. With advancement of technology, the ideal of personalised, effective and yet safe SBRT is already on the horizon. PMID:27606082

  4. [Radiotherapy in cancers of the oesophagus, the gastric cardia and the stomach].

    PubMed

    Créhange, G; Huguet, F; Quero, L; N'Guyen, T V; Mirabel, X; Lacornerie, T

    2016-09-01

    Localized oesophageal and gastric cancers have a poor prognosis. In oesophageal cancer, external radiotherapy combined with concomitant chemotherapy is accepted as part of the therapeutic armamentarium in a curative intent in the preoperative setting for resectable tumours; or without surgery in inoperable patients or non-resectable tumours due to wide local and/or regional extension. Data from the literature show conflicting results with no clinical evidence in favour of either a unique dose protocol or consensual target volume definition in the setting of exclusive chemoradiation. In the preoperative setting, chemoradiotherapy has become the standard in oesophageal cancer, even though there is no evidence that surgery may be beneficial in locally advanced tumours that respond to radiotherapy and chemotherapy. The main cause of failure after exclusive chemoradiotherapy in oesophageal cancer is locoregional relapse suggesting that doses and volumes usually considered may be inadequate. In gastric cancer, radiotherapy may be indicated postoperatively in patients with resected tumours that include less than D2 lymph node dissection or in the absence of perioperative chemotherapy. Preoperative chemoradiotherapy in gastric cancers is still under investigation. The evolving techniques of external radiotherapy, such as image-guided radiotherapy (IMRT) and volumetric modulated arctherapy (VMAT) have reduced the volume of lung and heart exposed to radiation, which seems to have diminished radiotherapy-related morbi-mortality rates. Given this, quality assurance for radiotherapy and protocols for radiotherapy delivery must be better standardized. This article on the indications for radiotherapy and the techniques used in oesophageal and gastric cancers is included in a special issue dedicated to national recommendations from the French society of radiation oncology (SFRO) on radiotherapy indications, planning, dose prescription, and techniques of radiotherapy delivery.

  5. Intensity Modulated Radiotherapy with High Energy Photon and Hadron Beams

    NASA Astrophysics Data System (ADS)

    Oelfke, U.

    2004-07-01

    This short contribution will briefly describe the basic concepts of intensity modulated radiation therapy with high energy photons (IMRT) and charged particle beams (IMPT). Dose delivery and optimization strategies like the `Inverse Planning' approach will be explained for both radiation modalities and their potential advantages are demonstrated for characteristic clinical examples. Finally, future development like image guided radiotherapy (IGRT) and adaptive radiation therapy, based on functional imaging methods, will be introduced.

  6. Particle radiotherapy for prostate cancer.

    PubMed

    Shioyama, Yoshiyuki; Tsuji, Hiroshi; Suefuji, Hiroaki; Sinoto, Makoto; Matsunobu, Akira; Toyama, Shingo; Nakamura, Katsumasa; Kudo, Sho

    2015-01-01

    Recent advances in external beam radiotherapy have allowed us to deliver higher doses to the tumors while decreasing doses to the surrounding tissues. Dose escalation using high-precision radiotherapy has improved the treatment outcomes of prostate cancer. Intensity-modulated radiation therapy has been widely used throughout the world as the most advanced form of photon radiotherapy. In contrast, particle radiotherapy has also been under development, and has been used as an effective and non-invasive radiation modality for prostate and other cancers. Among the particles used in such treatments, protons and carbon ions have the physical advantage that the dose can be focused on the tumor with only minimal exposure of the surrounding normal tissues. Furthermore, carbon ions also have radiobiological advantages that include higher killing effects on intrinsic radio-resistant tumors, hypoxic tumor cells and tumor cells in the G0 or S phase. However, the degree of clinical benefit derived from these theoretical advantages in the treatment of prostate cancer has not been adequately determined. The present article reviews the available literature on the use of particle radiotherapy for prostate cancer as well as the literature on the physical and radiobiological properties of this treatment, and discusses the role and the relative merits of particle radiotherapy compared with current photon-based radiotherapy, with a focus on proton beam therapy and carbon ion radiotherapy.

  7. Advanced Communication Technology Satellite (ACTS) multibeam antenna technology verification experiments

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Larko, Jeffrey M.; Lagin, Alan R.

    1992-01-01

    The Advanced Communication Technology Satellite (ACTS) is a key to reaching NASA's goal of developing high-risk, advanced communications technology using multiple frequency bands to support the nation's future communication needs. Using the multiple, dynamic hopping spot beams, and advanced on board switching and processing systems, ACTS will open a new era in communications satellite technology. One of the key technologies to be validated as part of the ACTS program is the multibeam antenna with rapidly reconfigurable hopping and fixed spot beam to serve users equipped with small-aperature terminals within the coverage areas. The proposed antenna technology experiments are designed to evaluate in-orbit ACTS multibeam antenna performance (radiation pattern, gain, cross pol levels, etc.).

  8. Multi-beam RFQ linac structure for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Hayashizaki, Noriyosu; Ishibashi, Takuya; Ito, Taku; Hattori, Toshiyuki

    2009-07-01

    Both the RF linear accelerator (linac) and the linear induction accelerator have been considered as injectors in a driver system for heavy ion fusion (HIF). In order to relax beam defocusing by space charge effect in the low-energy region, the accelerating beams that were merged and had their beam currents increased by the funnel tree system are injected into storage rings. A multi-beam linac that accelerates multiple beams in an accelerator cavity has the advantages of cost reduction and downsizing of the system. We modeled the multi-beam Interdigital-H type radio frequency quadruple (IH-RFQ) cavities with the different beam numbers and evaluated the electromagnetic characteristics by simulation. As a result, the reasonable ranges of their configuration were indicated for a practical use.

  9. Status of Multi-beam Long Trace-profiler Development

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V.; Merthe, Daniel J.; Kilaru, Kiranmayee; Kester, Thomas; Ramsey, Brian; McKinney, Wayne R.; Takacs, Peter Z.; Dahir, A.; Yashchuk, Valeriy V.

    2013-01-01

    The multi-beam long trace profiler (MB-LTP) is under development at NASA's Marshall Space Flight Center. The traditional LTPs scans the surface under the test by a single laser beam directly measuring the surface figure slope errors. While capable of exceptional surface slope accuracy, the LTP single beam scanning has slow measuring speed. Metrology efficiency can be increased by replacing the single laser beam with multiple beams that can scan a section of the test surface at a single instance. The increase in speed with such a system would be almost proportional to the number of laser beams. The progress for a multi-beam long trace profiler development is presented.

  10. Structuring by multi-beam interference using symmetric pyramids.

    PubMed

    Lei, Ming; Yao, Baoli; Rupp, Romano A

    2006-06-12

    A method for producing optical structures using rotationally symmetric pyramids is proposed. Two-dimensional structures can be achieved using acute prisms. They form by multi-beam interference of plane waves that impinge from directions distributed symmetrically around the axis of rotational symmetry. Flat-topped pyramids provide an additional beam along the axis thus generating three-dimensional structures. Experimental results are consistent with the results of numerical simulations. The advantages of the method are simplicity of operation, low cost, ease of integration, good stability, and high transmittance. Possible applications are the fabrication of photonic micro-structures such as photonic crystals or array waveguides as well as multi-beam optical tweezers.

  11. Adaptive multibeam antennas for spacelab. Phase A: Feasibility study

    NASA Technical Reports Server (NTRS)

    Allen, C. C.; Applebaum, S. P.; Popowsky, W. J.; Wouch, G.

    1976-01-01

    The feasibility was studied of using adaptive multibeam multi-frequency antennas on the spacelab, and to define the experiment configuration and program plan needed for a demonstration to prove the concept. Three applications missions were selected, and requirements were defined for an L band communications experiment, an L band radiometer experiment, and a Ku band communications experiment. Reflector, passive lens, and phased array antenna systems were considered, and the Adaptive Multibeam Phased Array (AMPA) was chosen. Array configuration and beamforming network tradeoffs resulted in a single 3m x 3m L band array with 576 elements for high radiometer beam efficiency. Separate 0.4m x 0.4 m arrays are used to transmit and receive at Ku band with either 576 elements or thinned apertures. Each array has two independently steerable 5 deg beams, which are adaptively controlled.

  12. Bystander effects and radiotherapy.

    PubMed

    Marín, Alicia; Martín, Margarita; Liñán, Olga; Alvarenga, Felipe; López, Mario; Fernández, Laura; Büchser, David; Cerezo, Laura

    2015-01-01

    Radiation-induced bystander effects are defined as biological effects expressed after irradiation by cells whose nuclei have not been directly irradiated. These effects include DNA damage, chromosomal instability, mutation, and apoptosis. There is considerable evidence that ionizing radiation affects cells located near the site of irradiation, which respond individually and collectively as part of a large interconnected web. These bystander signals can alter the dynamic equilibrium between proliferation, apoptosis, quiescence or differentiation. The aim of this review is to examine the most important biological effects of this phenomenon with regard to areas of major interest in radiotherapy. Such aspects include radiation-induced bystander effects during the cell cycle under hypoxic conditions when administering fractionated modalities or combined radio-chemotherapy. Other relevant aspects include individual variation and genetics in toxicity of bystander factors and normal tissue collateral damage. In advanced radiotherapy techniques, such as intensity-modulated radiation therapy (IMRT), the high degree of dose conformity to the target volume reduces the dose and, therefore, the risk of complications, to normal tissues. However, significant doses can accumulate out-of-field due to photon scattering and this may impact cellular response in these regions. Protons may offer a solution to reduce out-of-field doses. The bystander effect has numerous associated phenomena, including adaptive response, genomic instability, and abscopal effects. Also, the bystander effect can influence radiation protection and oxidative stress. It is essential that we understand the mechanisms underlying the bystander effect in order to more accurately assess radiation risk and to evaluate protocols for cancer radiotherapy.

  13. Radiotherapy in the UK

    SciTech Connect

    Ramsay, S.

    1993-10-09

    What is wrong with radiation treatment in the UK Is it bad practice or merely bad publicity Between 1982 and 1991, 1,000 patients receiving isocentric radiation therapy at the North Staffordshire Royal Infirmary received a substantial underdose of radiation; the clinical report on this incident was published last week. The operator had been using a correction factor for tumor-to-skin distance, unaware that this factor had already been applied by the computer system. Although the report pointed out that it is not surprising that the clinicians were not alerted to the undertreatment, is also noted that there were no resources at the hospital to audit the outcome of radiotherapy.

  14. [Radiotherapy during pregnancy].

    PubMed

    Mazeron, R; Barillot, I; Mornex, F; Giraud, P

    2016-09-01

    The diagnostic of cancer during pregnancy is a rare and delicate situation. As the developments of the embryo and the human fetus are extremely sensitive to ionizing radiations, the treatment of these tumors should be discussed. The studies - preclinical and clinical - based mostly on exposure accidents show that subdiaphragmatic treatments are possible during pregnancy. When radiotherapy is used, phantom estimations of the dose to the fetus, confirmed by in vivo measurements are required. Irradiation and imaging techniques should be arranged to decrease as much as possible the dose delivered to the fetus and hold below the threshold of 0.1Gy.

  15. A new integrated slot element feed array for multibeam systems

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. Sigfrid; Johansson, Joakim F.; Kollberg, Erik L.

    1986-01-01

    A feed array consisting of constant width slot antennas (CWSA), fed from a block containing fin-line transitions, has been developed. The array has a two-dimensional configuration, with five elements each on five parallel substrates. Beamwidths are compatible with use in f/D = 1.0 multibeam systems, with optimum taper. Array element spacings are close to a factor of two smaller than for other typical arrays, and spillover efficiency is about 65 percent.

  16. Adaptive multibeam phased array design for a Spacelab experiment

    NASA Technical Reports Server (NTRS)

    Noji, T. T.; Fass, S.; Fuoco, A. M.; Wang, C. D.

    1977-01-01

    The parametric tradeoff analyses and design for an Adaptive Multibeam Phased Array (AMPA) for a Spacelab experiment are described. This AMPA Experiment System was designed with particular emphasis to maximize channel capacity and minimize implementation and cost impacts for future austere maritime and aeronautical users, operating with a low gain hemispherical coverage antenna element, low effective radiated power, and low antenna gain-to-system noise temperature ratio.

  17. Multibeam Altimeter Navigation Update Using Faceted Shape Model

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Brugarolas, Paul; Broschart, Steve

    2008-01-01

    A method of incorporating information, acquired by a multibeam laser or radar altimeter system, pertaining to the distance and direction between the system and a nearby target body, into an estimate of the state of a vehicle upon which the system is mounted, involves the use of a faceted model to represent the shape of the target body. Fundamentally, what one seeks to measure is the distance from the vehicle to the target body.

  18. Vibration piezoelectric energy harvester with multi-beam

    SciTech Connect

    Cui, Yan Zhang, Qunying Yao, Minglei; Dong, Weijie; Gao, Shiqiao

    2015-04-15

    This work presents a novel vibration piezoelectric energy harvester, which is a micro piezoelectric cantilever with multi-beam. The characteristics of the PZT (Pb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3}) thin film were measured; XRD (X-ray diffraction) pattern and AFM (Atomic Force Microscope) image of the PZT thin film were measured, and show that the PZT (Pb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3}) thin film is highly (110) crystal oriented; the leakage current is maintained in nA magnitude, the residual polarisation Pr is 37.037 μC/cm{sup 2}, the coercive field voltage Ec is 27.083 kV/cm, and the piezoelectric constant d{sub 33} is 28 pC/N. In order to test the dynamic performance of the energy harvester, a new measuring system was set up. The maximum output voltage of the single beam of the multi-beam can achieve 80.78 mV under an acceleration of 1 g at 260 Hz of frequency; the maximum output voltage of the single beam of the multi-beam is almost 20 mV at 1400 Hz frequency. .

  19. Tests of Multibeam Scintillation Mitigation on Laser Uplinks

    NASA Technical Reports Server (NTRS)

    Wilson, Keith

    2004-01-01

    A report presents additional details about parts of the program of research and development that is the topic of the immediately preceding article. The report emphasizes those aspects of the program that pertain to the use of multiple uplink laser beams in a ground-to-spacecraft optical communication system to reduce (relative to the case of a single uplink laser beam) the depth and frequency of occurrence of fades in the uplink signal received at the spacecraft. The underlying multibeam scintillation-mitigation concept was described in "Multiple-Beam Transmission for Optical Communication" (NPO-20384), NASA Tech Briefs, Vol. 22, No. 11 (November 1998), page 56. The report discusses the need for mitigating uplink scintillation; briefly describes the Optical Communications Telescope Laboratory and its role as the ground station in the research; summarizes prior experiments in uplink scintillation and multibeam mitigation of scintillation in ground-to-spacecraft laser communications; and describes key experiments planned to be performed in the next five years. The report then elaborates somewhat on the initial experiments, which are to be dedicated to understanding and perfecting the multibeam scintillation-mitigation strategy.

  20. Estimation and simulation of multi-beam sonar noise.

    PubMed

    Holmin, Arne Johannes; Korneliussen, Rolf J; Tjøstheim, Dag

    2016-02-01

    Methods for the estimation and modeling of noise present in multi-beam sonar data, including the magnitude, probability distribution, and spatial correlation of the noise, are developed. The methods consider individual acoustic samples and facilitate compensation of highly localized noise as well as subtraction of noise estimates averaged over time. The modeled noise is included in an existing multi-beam sonar simulation model [Holmin, Handegard, Korneliussen, and Tjøstheim, J. Acoust. Soc. Am. 132, 3720-3734 (2012)], resulting in an improved model that can be used to strengthen interpretation of data collected in situ at any signal to noise ratio. Two experiments, from the former study in which multi-beam sonar data of herring schools were simulated, are repeated with inclusion of noise. These experiments demonstrate (1) the potentially large effect of changes in fish orientation on the backscatter from a school, and (2) the estimation of behavioral characteristics such as the polarization and packing density of fish schools. The latter is achieved by comparing real data with simulated data for different polarizations and packing densities.

  1. Meter Accuracy Seafloor Geodesy using Repeated Multibeam Surveys

    NASA Astrophysics Data System (ADS)

    DeSanto, J. B.; Sandwell, D. T.

    2014-12-01

    Ship-board multibeam surveys are a useful tool in measuring tectonic deformation of the seafloor, having been used to measure the ~50 m of surface slip along the Japan trench during the 2011 Tohoku-Oki earthquake with an uncertainty of 20 m (Fujiwara et al, 2011, Science). In this study, we investigate the improvement in positioning accuracy obtainable when comparing multibeam and sidescan surveys repeated along the same track to within 1/10 of the critical baseline and taken at a slow ship speed of 1 knot. We compare two surveys of the Juan de Fuca Ridge axis fitting these criteria with two coincident surveys of the Cocos Ridge, taken at 11 knots. Both pairs of surveys were collected using a Simrad EM120 sonar system aboard the RV Roger Revelle. We find the multibeam surveys of the Juan de Fuca ridge axis sufficient to measure displacements accurate to better than 2 m, a marked improvement over the 50 m accuracy of the Cocos ridge surveys. Likewise, we can measure displacement accurate to 2 m using the sidescan data from the Juan de Fuca surveys. This accuracy is sufficient to observe meter-level horizontal movements on the deep ocean associated with large earthquakes and landslides.

  2. Plasma parameter estimation from multistatic, multibeam incoherent scatter data

    NASA Astrophysics Data System (ADS)

    Virtanen, I. I.; McKay-Bukowski, D.; Vierinen, J.; Aikio, A.; Fallows, R.; Roininen, L.

    2014-12-01

    Multistatic incoherent scatter radars are superior to monostatic facilities in the sense that multistatic systems can measure plasma parameters from multiple directions in volumes limited by beam dimensions and measurement range resolution. We propose a new incoherent scatter analysis technique that uses data from all receiver beams of a multistatic, multibeam radar system and produces, in addition to the plasma parameters typically measured with monostatic radars, estimates of ion velocity vectors and ion temperature anisotropies. Because the total scattered energy collected with remote receivers of a modern multistatic, multibeam radar system may even exceed the energy collected with the core transmit-and-receive site, the remote data improve the accuracy of all plasma parameter estimates, including those that could be measured with the core site alone. We apply the new multistatic analysis method for data measured by the tristatic European Incoherent Scatter VHF radar and the Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) multibeam receiver and show that a significant improvement in accuracy is obtained by adding KAIRA data in the multistatic analysis. We also demonstrate the development of a pronounced ion temperature anisotropy during high-speed ionospheric plasma flows in substorm conditions.

  3. Multibeam 3D Underwater SLAM with Probabilistic Registration

    PubMed Central

    Palomer, Albert; Ridao, Pere; Ribas, David

    2016-01-01

    This paper describes a pose-based underwater 3D Simultaneous Localization and Mapping (SLAM) using a multibeam echosounder to produce high consistency underwater maps. The proposed algorithm compounds swath profiles of the seafloor with dead reckoning localization to build surface patches (i.e., point clouds). An Iterative Closest Point (ICP) with a probabilistic implementation is then used to register the point clouds, taking into account their uncertainties. The registration process is divided in two steps: (1) point-to-point association for coarse registration and (2) point-to-plane association for fine registration. The point clouds of the surfaces to be registered are sub-sampled in order to decrease both the computation time and also the potential of falling into local minima during the registration. In addition, a heuristic is used to decrease the complexity of the association step of the ICP from O(n2) to O(n). The performance of the SLAM framework is tested using two real world datasets: First, a 2.5D bathymetric dataset obtained with the usual down-looking multibeam sonar configuration, and second, a full 3D underwater dataset acquired with a multibeam sonar mounted on a pan and tilt unit. PMID:27104538

  4. Multibeam 3D Underwater SLAM with Probabilistic Registration.

    PubMed

    Palomer, Albert; Ridao, Pere; Ribas, David

    2016-04-20

    This paper describes a pose-based underwater 3D Simultaneous Localization and Mapping (SLAM) using a multibeam echosounder to produce high consistency underwater maps. The proposed algorithm compounds swath profiles of the seafloor with dead reckoning localization to build surface patches (i.e., point clouds). An Iterative Closest Point (ICP) with a probabilistic implementation is then used to register the point clouds, taking into account their uncertainties. The registration process is divided in two steps: (1) point-to-point association for coarse registration and (2) point-to-plane association for fine registration. The point clouds of the surfaces to be registered are sub-sampled in order to decrease both the computation time and also the potential of falling into local minima during the registration. In addition, a heuristic is used to decrease the complexity of the association step of the ICP from O(n2) to O(n) . The performance of the SLAM framework is tested using two real world datasets: First, a 2.5D bathymetric dataset obtained with the usual down-looking multibeam sonar configuration, and second, a full 3D underwater dataset acquired with a multibeam sonar mounted on a pan and tilt unit.

  5. Imaging in radiotherapy

    NASA Astrophysics Data System (ADS)

    Calandrino, R.; Del Maschio, A.; Cattaneo, G. M.; Castiglioni, I.

    2009-09-01

    The diagnostic methodologies used for the radiotherapy planning have undergone great developments in the last 30 years. Since the 1980s, after the introduction of the CT scanner, the modality for the planning moved beyond the planar 2D assessment to approach a real and more realistic volumetric 3D definition. Consequently the dose distribution, previously obtained by means of an overly simple approximation, became increasingly complex, better tailoring the true shape of the tumour. The final therapeutic improvement has been obtained by a parallel increase in the complexity of the irradiating units: the Linacs for therapy have, in fact, been equipped with a full accessory set capable to modulate the fluence (IMRT) and to check the correct target position continuously during the therapy session (IMRT-IGRT). The multimodal diagnostic approach, which integrates diagnostic information, from images of the patient taken with CT, NMR, PET and US, further improves the data for a biological and topological optimization of the radiotherapy plan and consequently of the dose distribution in the Planning Target Volume. Proteomic and genomic analysis will be the next step in tumour diagnosis. These methods will provide the planners with further information, for a true personalization of the treatment regimen and the assessment of the predictive essays for each tumour and each patient.

  6. Fertility impairment in radiotherapy

    PubMed Central

    Kuźba-Kryszak, Tamara; Nowikiewicz, Tomasz; Żyromska, Agnieszka

    2016-01-01

    Infertility as a result of antineoplastic therapy is becoming a very important issue due to the growing incidence of neoplastic diseases. Routinely applied antineoplastic treatments and the illness itself lead to fertility disorders. Therapeutic methods used in antineoplastic treatment may cause fertility impairment or sterilization due to permanent damage to reproductive cells. The risk of sterilization depends on the patient's sex, age during therapy, type of neoplasm, radiation dose and treatment area. It is known that chemotherapy and radiotherapy can lead to fertility impairment and the combination of these two gives an additive effect. The aim of this article is to raise the issue of infertility in these patients. It is of growing importance due to the increase in the number of children and young adults who underwent radiotherapy in the past. The progress in antineoplastic therapy improves treatment results, but at the same time requires a deeper look at existential needs of the patient. Reproductive function is an integral element of self-esteem and should be taken into account during therapy planning. PMID:27647982

  7. [Hodgkin's lymphoma and radiotherapy].

    PubMed

    Datsenko, P V; Panshin, G A

    2015-01-01

    After a median observation time of 4,5 years, 440 patients with Hodgkin's lymphoma stage I-IV to the Ann Arbor classification were treated with radiotherapy (2200 lymph areas) and ABVD (n=204) or BEACOPP (n=117) or CEA/ABVD (lomustine, etoposide, adriamycine, bleomycine, vinblastine and dacarbacine; n=119) regimens in 1995-2012. Correct allocation of groups with "CR or PR ≥80%" and "PR: 0-79%", after first-line chemotherapy, is extremely important for following RT planning. Adaptation of patients with Hodgkin's lymphoma can take place only after successful treatment, the probability of relapse and fear of repeated courses strongly interfere with this process, especially in the first years after its closure. Duration of remission period, especially in young people, is no less important than the criteria for overall survival. It is impossible to build recommendations for treatment for Hodgkin's lymphoma, based only on long-term survival rates. Importance of radiotherapy in reducing the number of relapses is undeniable, so the idea that the development of the role of chemotherapy in the treatment of the ray method Hodgkin's lymphoma gradually becomes secondary is in serious doubt. Our findings suggest the importance of both maintaining a high disease-free survival and reducing long-term complications in designing treatments of Hodgkin's lymphoma.

  8. Big Data Analytics for Prostate Radiotherapy

    PubMed Central

    Coates, James; Souhami, Luis; El Naqa, Issam

    2016-01-01

    Radiation therapy is a first-line treatment option for localized prostate cancer and radiation-induced normal tissue damage are often the main limiting factor for modern radiotherapy regimens. Conversely, under-dosing of target volumes in an attempt to spare adjacent healthy tissues limits the likelihood of achieving local, long-term control. Thus, the ability to generate personalized data-driven risk profiles for radiotherapy outcomes would provide valuable prognostic information to help guide both clinicians and patients alike. Big data applied to radiation oncology promises to deliver better understanding of outcomes by harvesting and integrating heterogeneous data types, including patient-specific clinical parameters, treatment-related dose–volume metrics, and biological risk factors. When taken together, such variables make up the basis for a multi-dimensional space (the “RadoncSpace”) in which the presented modeling techniques search in order to identify significant predictors. Herein, we review outcome modeling and big data-mining techniques for both tumor control and radiotherapy-induced normal tissue effects. We apply many of the presented modeling approaches onto a cohort of hypofractionated prostate cancer patients taking into account different data types and a large heterogeneous mix of physical and biological parameters. Cross-validation techniques are also reviewed for the refinement of the proposed framework architecture and checking individual model performance. We conclude by considering advanced modeling techniques that borrow concepts from big data analytics, such as machine learning and artificial intelligence, before discussing the potential future impact of systems radiobiology approaches. PMID:27379211

  9. [Stereotactic radiosurgery and radiotherapy for brain metastases].

    PubMed

    Tanguy, Ronan; Métellus, Philippe; Mornex, Françoise; Mazeron, Jean-Jacques

    2013-01-01

    Brain metastases management is still controversial even though many trials are trying to define the respective roles of neurosurgery, whole-brain radiotherapy, single-dose stereotactic radiotherapy and fractionated stereotactic radiotherapy. In this article, we review data from trials that examine the role of radiosurgery and fractionated stereotactic radiotherapy in the management of brain metastases.

  10. Visualizing sediment dynamics through repeated high-resolution multibeam mapping

    NASA Astrophysics Data System (ADS)

    de Vries, J. J.; Greinert, J.; Maierhofer, T.

    2013-12-01

    Multibeam mapping has become a common method for mapping the seafloor in shallow and great water depths with different spatial resolutions depending on the system platform (ship-based, AUV- or ROV-based), the beam angle of the system itself, the survey speed, and the distance to the seafloor. Significant advances in system accuracy, processing power and new software make multibeam mapping a powerful tool for studying sediment dynamics in 4D through repeated surveys that are ideally linked to additional studies on currents and sediment load in the water column. The Texelstroom channel, which is part of the Marsdiep between the city of Den Helder and the island of Texel (North Holland, the Netherlands), has been investigated in such a way for many years using water depth estimates from an ADCP installed on a ferry shuttling 24 times a day between the mainland and the island. Since 2009, repeated multibeam surveys have been undertaken up to three times per year as part of a student course, revealing sediment dynamics in much more detail than could be previously seen with the water depth estimates from the ferry-based ADCP. In the Texelstroom channel, the water depth ranges from a few meters to 45 meters. In the highly variable bathymetry, a series of large, bended sand waves exist mainly perpendicular to the direction of the main current. The shape of the sand waves changes from asymmetrical to symmetrical depending on the time of year, with more symmetrical shapes in spring and summer. Perpendicular to the large sand waves, smaller ripples develop during autumn. In addition to these changes in sand wave characteristics, sand wave crests sometimes migrate more than 30m in two months with an average movement of half a meter per day. The migration direction changes during the year resulting in a non-constant back-and-forth movement of the large sand waves. These intra-annual variations are characterized by changes in the slope of the sand waves, variations in the

  11. Ka-Band Multibeam Aperture Phased Array Being Developed

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Kacpura, Thomas J.

    2004-01-01

    Phased-array antenna systems offer many advantages to low-Earth-orbiting satellite systems. Their large scan angles and multibeam capabilities allow for vibration-free, rapid beam scanning and graceful degradation operation for high rate downlink of data to users on the ground. Technology advancements continue to reduce the power, weight, and cost of these systems to make phased arrays a competitive alternative in comparison to the gimbled reflector system commonly used in science missions. One effort to reduce the cost of phased arrays is the development of a Ka-band multibeam aperture (MBA) phased array by Boeing Corporation under a contract jointly by the NASA Glenn Research Center and the Office of Naval Research. The objective is to develop and demonstrate a space-qualifiable dual-beam Ka-band (26.5-GHz) phased-array antenna. The goals are to advance the state of the art in Ka-band active phased-array antennas and to develop and demonstrate multibeam transmission technology compatible with spacecraft in low Earth orbit to reduce the cost of future missions by retiring certain development risks. The frequency chosen is suitable for space-to-space and space-to-ground communication links. The phased-array antenna has a radiation pattern designed by combining a set of individual radiating elements, optimized with the type of radiating elements used, their positions in space, and the amplitude and phase of the currents feeding the elements. This arrangement produces a directional radiation pattern that is proportional to the number of individual radiating elements. The arrays of interest here can scan the main beam electronically with a computerized algorithm. The antenna is constructed using electronic components with no mechanical parts, and the steering is performed electronically, without any resulting vibration. The speed of the scanning is limited primarily by the control electronics. The radiation performance degrades gracefully if a portion of the elements

  12. Patterns of care of radiotherapy in México

    PubMed Central

    Poitevin-Chacón, Adela; Hinojosa-Gómez, José

    2012-01-01

    Aim This survey is performed to learn about the structure of radiotherapy in México. Background Radiation oncology practice is increasing because of the higher incidence of cancer. There is no published data about radiotherapy in México. Materials and methods A questionnaire was sent to the 83 registered centers in the database of the Mexican regulatory agency. One out of the 32 states has no radiotherapy. 27 centers from 14 states provided their answers. Results 829 patients are treated annually with any radiotherapy modality in each center. Two centers have one cobalt machine, 7 have a cobalt and a linac and 10 have more than one linac. Five centers use 2D planning systems, 22 use 3D; 9, conventional simulators; 22, CT based simulation, and 1 center has no simulation. Most of the centers verify beams with films, electronic portal image devices and cone beam CTs are also used. Intensity modulated and image guided radiotherapy are performed in 5 states. Breast, prostate, cervix, lung, rectum and head and neck cancer are the six most common locations. There are 45 public and 38 private centers, 2 dedicated to children. Two gamma knife units, 5 Novalis systems, 1 tomotherapy and 2 cyberknife machines are working. All centers have at least one radiation oncologist, one physicist and one radiotherapist. Conclusions Definitive conclusions cannot be drawn from this limited feedback due to a low participation of centers. This survey about radiotherapy in Mexico shows the heterogeneity of equipment as well as medical and technical staff in the whole country. PMID:24416531

  13. Radiotherapy in Phyllodes Tumour

    PubMed Central

    Sasidharan, Balukrishna; Manipadam, Marie Therese; Paul, M J; Backianathan, Selvamani

    2017-01-01

    Introduction Phyllodes Tumour (PT) of the breast is a relatively rare breast neoplasm (<1%) with diverse range of pathology and biological behaviour. Aim To describe the clinical course of PT and to define the role of Radiotherapy (RT) in PT of the breast. Materials and Methods Retrospective analysis of hospital data of patients with PT presented from 2005 to 2014 was done. Descriptive statistics was used to analyze the results. Simple description of data was done in this study. Age and duration of symptoms were expressed in median and range. Percentages, tables and general discussions were used to understand the meaning of the data analyzed. Results Out of the 98 patients, 92 were eligible for analysis. The median age of presentation was 43 years. A total of 64/92 patients were premenopausal. There was no side predilection for this tumour but 57/92 patients presented as an upper outer quadrant lump. Fifty percent of the patients presented as giant (10 cm) PT. The median duration of symptoms was 12 months (range: 1-168 months). A 60% of patients had Benign (B), 23% had Borderline (BL) and 17% had malignant (M) tumours. The surgical treatment for benign histology included Lumpectomy (L) for 15%, Wide Local Excision (WLE) for 48%, and Simple Mastectomy (SM) for 37%. All BL and M tumours were treated with WLE or SM. There was no recurrence in B and BL group when the margin was ≥1 cm. All non-metastatic M tumours received adjuvant RT irrespective of their margin status. Total 3/16 patients with M developed local recurrence. Total 6/16 M patients had distant metastases (lung or bone). Our median duration of follow up was 20 months (range: 1-120 months). Conclusion Surgical resection with adequate margins (>1 cm) gave excellent local control in B and BL tumours. For patients with BL PT, local radiotherapy is useful, if margins are close or positive even after the best surgical resection. There is a trend towards improved local control with adjuvant radiotherapy for

  14. [Respiratory synchronization and breast radiotherapy].

    PubMed

    Mège, A; Ziouèche-Mottet, A; Bodez, V; Garcia, R; Arnaud, A; de Rauglaudre, G; Pourel, N; Chauvet, B

    2016-10-01

    Adjuvant radiation therapy following breast cancer surgery continues to improve locoregional control and overall survival. But the success of highly targeted-conformal radiotherapy such as intensity-modulated techniques, can be compromised by respiratory motion. The intrafraction motion can potentially result in significant under- or overdose, and also expose organs at risk. This article summarizes the respiratory motion and its effects on imaging, dose calculation and dose delivery by radiotherapy for breast cancer. We will review the methods of respiratory synchronization available for breast radiotherapy to minimize the respiratory impact and to spare organs such as heart and lung.

  15. The technical consideration of multi-beam mask writer for production

    NASA Astrophysics Data System (ADS)

    Lee, Sang Hee; Ahn, Byung-Sup; Choi, Jin; Shin, In Kyun; Tamamushi, Shuichi; Jeon, Chan-Uk

    2016-10-01

    Multi-beam mask writer is under development to solve the throughput and patterning resolution problems in VSB mask writer. Theoretically, the writing time is appropriate for future design node and the resolution is improved with multi-beam mask writer. Many previous studies show the feasible results of resolution, CD control and registration. Although such technical results of development tool seem to be enough for mass production, there are still many unexpected problems for real mass production. In this report, the technical challenges of multi-beam mask writer are discussed in terms of production and application. The problems and issues are defined based on the performance of current development tool compared with the requirements of mask quality. Using the simulation and experiment, we analyze the specific characteristics of electron beam in multi-beam mask writer scheme. Consequently, we suggest necessary specifications for mass production with multi-beam mask writer in the future.

  16. Radiotherapy on hidradenocarcinoma

    PubMed Central

    Lalya, Issam; Hadadi, Khalid; Tazi, El Mehdi; Lalya, Ilham; Bazine, Amine; Andaloussy, Khalid; Elmarjany, Mohamed; Sifat, Hassan; Hassouni, Khalid; Kebdani, Tayeb; Mansouri, Hamid; Benjaafar, Noureddine; Elgueddari, Brahim Khalil

    2011-01-01

    Context: Clear cell Hidradenocarcinoma is a rare carcinoma arising from sweat glands. It is an aggressive tumor that most metastasizes to regional lymph nodes and distant viscera; surgery with safe margins is the mainstay of treatment. Case Report: We report a case of 68-year-old woman who presented with an invasive clear cell hidradenocarcinoma situated in the left parotid area which recurred 5 months after surgery, this recurrence was managed successfully by high-dose irradiation of the tumor bed (66 Gy) and regional lymphatic chains (50 Gy), after a follow-up of more than 15 months, the patient is in good local control without significant toxicity. Conclusion: Post operative radiotherapy allows better local control and should be mandatory when histological features predictive of recurrence are present: positive margins, histology poorly differentiated, perineural invasion, vascular and lymphatic invasion, lymph node involvement, and extracapsular spread. PMID:22540063

  17. [Hepatic tumors and radiotherapy].

    PubMed

    Rio, E; Mornex, F; Peiffert, D; Huertas, A

    2016-09-01

    Recent technological developments led to develop the concept of focused liver radiation therapy. We must distinguish primary and secondary tumors as the indications are restricted and must be discussed as an alternative to surgical or medical treatments. For hepatocellular carcinoma 5 to 10cm (or more), a conformational radiation with or without intensity modulation is performed. Stereotactic body radiotherapy (SBRT) is being evaluated and is increasingly proposed as an alternative to radiofrequency ablative treatment for primary or secondary tumors (typically less than 5cm). Tumor (and liver) movements induced by respiratory motions must be taken into account. Strict dosimetric criteria must be met with particular attention to the dose-volume histograms to liver and the hollow organs, including cases of SBRT.

  18. [Radiotherapy for nasopharyngeal carcinoma].

    PubMed

    Maingon, P; Blanchard, P; Bidault, F; Calmels, L

    2016-09-01

    Nasapharyngeal carcinoma is a rare disease. Oftenly, the diagnostic is made for advanced disease. Localized tumors, T1 or T2 NO observed a good prognosis and are locally controlled in more than 90 % of the cases by radiotherapy alone. The standard treatment of locally advanced disease is combined chemoradiation. A special vigilance of fast decrease of the volume of the pathological lymph nodes, sometimes associated to loss of weight might indicate an adaptive dosimetric revision. The treatment of recurrent disease is of great importance. Surgical indications are limited but should be discussed in multidisciplinary tumor board when possible. Surgical nodal sampling has to be proposed for nodal recurrence as well as reirradiation, which could be indicated according to the technical issues.

  19. Pion radiotherapy at LAMPF

    SciTech Connect

    Bush, S.E.; Smith, A.R.; Zink, S.

    1982-12-01

    Clinical investigations of pi meson radiotherapy were conducted by the Cancer Research and Treatment Center of the University of New Mexico and the Los Alamos National Laboratory from 1974 until 1982. Two hundred and thirty patients have been treated for a variety of locally advanced primary and metastatic neoplasms. One hundred and ninety-six patients have been followed for a minimum of 18 months. Crude survival data range from 11% for unresectable pancreatic carcinoma to 82% for Stages C and D1 adenocarcinoma of the prostate. Acute tolerance of normal tissues is approximately 4500 pion rad in 36 fractions over 7 weeks. Severe chronic reactions have appeared with increasing frequency after doses in excess of 4000 pion rad.

  20. X-ray volume imaging in bladder radiotherapy verification

    SciTech Connect

    Henry, Ann M. . E-mail: amhenry@doctors.net.uk; Stratford, Julia; McCarthy, Claire; Davies, Julie; Sykes, Jonathan R.; Amer, Ali; Marchant, Tom; Cowan, Richard; Wylie, James; Logue, John; Livsey, Jacqueline; Khoo, Vincent S.; Moore, Chris; Price, Pat

    2006-03-15

    Purpose: To assess the clinical utility of X-ray volume imaging (XVI) for verification of bladder radiotherapy and to quantify geometric error in bladder radiotherapy delivery. Methods and Materials: Twenty subjects undergoing conformal bladder radiotherapy were recruited. X-ray volume images and electronic portal images (EPIs) were acquired for the first 5 fractions and then once weekly. X-ray volume images were co-registered with the planning computed tomography scan and clinical target volume coverage assessed in three dimensions (3D). Interfraction bladder volume change was described by quantifying changes in bladder volume with time. Bony setup errors were compared from both XVI and EPI. Results: The bladder boundary was clearly visible on coronal XVI views in nearly all images, allowing accurate 3D treatment verification. In 93.5% of imaged fractions, the clinical target volume was within the planning target volume. Most subjects displayed consistent bladder volumes, but 25% displayed changes that could be predicted from the first three XVIs. Bony setup errors were similar whether calculated from XVI or EPI. Conclusions: Coronal XVI can be used to verify 3D bladder radiotherapy delivery. Image-guided interventions to reduce geographic miss and normal tissue toxicity are feasible with this technology.

  1. [New techniques and potential benefits for radiotherapy of lung cancer].

    PubMed

    Lefebvre, L; Doré, M; Giraud, P

    2014-10-01

    Radiotherapy is used for inoperable lung cancers, sometimes in association with chemotherapy. Outcomes of conventional radiotherapy are disappointing. New techniques improve adaptation to tumour volume, decrease normal tissue irradiation and lead to increasing tumour dose with the opportunity for improved survival. With intensity-modulated radiation therapy, isodoses can conform to complex volumes. It is widely used and seems to be indicated in locally advanced stages. Its dosimetric improvements have been demonstrated but outcomes are still heterogeneous. Stereotactic radiotherapy allows treatment of small volumes with many narrow beams. Dedicated devices or appropriate equipment on classical devices are needed. In early stages, its efficacy is comparable to surgery with an acceptable toxicity. Endobronchial brachytherapy could be used for early stages with specific criteria. Hadrontherapy is still experimental regarding lung cancer. Hadrons have physical properties leading to very accurate dose distribution. In the rare published studies, toxicities are roughly lower than others techniques but for early stages its effectiveness is not better than stereotactic radiotherapy. These techniques are optimized by metabolic imaging which precisely defines the target volume and assesses the therapeutic response; image-guided radiation therapy which allows a more accurate patient set up and by respiratory tracking or gating which takes account of tumour respiratory motions.

  2. MRI-guided brachytherapy

    PubMed Central

    Tanderup, Kari; Viswanathan, Akila; Kirisits, Christian; Frank, Steven J.

    2014-01-01

    The application of MRI-guided brachytherapy has demonstrated significant growth during the last two decades. Clinical improvements in cervix cancer outcomes have been linked to the application of repeated MRI for identification of residual tumor volumes during radiotherapy. This has changed clinical practice in the direction of individualized dose administration, and mounting evidence of improved clinical outcome with regard to local control, overall survival as well as morbidity. MRI-guided prostate HDR and LDR brachytherapy has improved the accuracy of target and organs-at-risk (OAR) delineation, and the potential exists for improved dose prescription and reporting for the prostate gland and organs at risk. Furthermore, MRI-guided prostate brachytherapy has significant potential to identify prostate subvolumes and dominant lesions to allow for dose administration reflecting the differential risk of recurrence. MRI-guided brachytherapy involves advanced imaging, target concepts, and dose planning. The key issue for safe dissemination and implementation of high quality MRI-guided brachytherapy is establishment of qualified multidisciplinary teams and strategies for training and education. PMID:24931089

  3. The Effect of Adjuvant Postmastectomy Radiotherapy Bolus Technique on Local Recurrence

    SciTech Connect

    Tieu, Minh Thi; Graham, Peter; Browne, Lois; Chin, Yaw Sinn

    2011-11-01

    Purpose: Postmastectomy radiotherapy bolus is heterogenous, with little evidence to guide clinical practise. This study explores the effect of chest wall bolus technique on chest wall recurrence. Methods and Materials: This was a retrospective cohort study of 254 patients treated with adjuvant postmastectomy radiotherapy between 1993 and 2003. Patient and treatment characteristics including bolus details were extracted. Outcomes considered were treatment toxicities, treatment delivery, and local recurrence. Results: In all, 143 patients received radiotherapy with whole chest wall bolus, 88 patients with parascar bolus, and 23 with no bolus. Twenty patients did not complete radiotherapy because of acute skin toxicity: 17 in the whole chest wall bolus group, 2 in the parascar bolus group, and 1 in the group not treated with bolus. On multivariate analysis, whole chest wall bolus and chemotherapy were found to be significant predictors for early cessation of radiotherapy resulting from acute skin toxicity. There were 19 chest wall failures: 13 in the whole chest wall bolus group, 4 in the parascar bolus group, and 2 in the no-bolus group. On multivariate analysis, lymphovascular invasion and failure to complete radiotherapy because of acute skin toxicity were associated with chest wall recurrence. Conclusions: From our results, parascar bolus and no bolus performed no worse than did whole chest wall bolus with regard to chest wall recurrence. However, bolus may have an impact on early cessation of radiotherapy caused by skin toxicity, which then may influence chest wall recurrence.

  4. Uses of megavoltage digital tomosynthesis in radiotherapy

    NASA Astrophysics Data System (ADS)

    Sarkar, Vikren

    With the advent of intensity modulated radiotherapy, radiation treatment plans are becoming more conformal to the tumor with the decreasing margins. It is therefore of prime importance that the patient be positioned correctly prior to treatment. Therefore, image guided treatment is necessary for intensity modulated radiotherapy plans to be implemented successfully. Current advanced imaging devices require costly hardware and software upgrade, and radiation imaging solutions, such as cone beam computed tomography, may introduce extra radiation dose to the patient in order to acquire better quality images. Thus, there is a need to extend current existing imaging device ability and functions while reducing cost and radiation dose. Existing electronic portal imaging devices can be used to generate computed tomography-like tomograms through projection images acquired over a small angle using the technique of cone-beam digital tomosynthesis. Since it uses a fraction of the images required for computed tomography reconstruction, use of this technique correspondingly delivers only a fraction of the imaging dose to the patient. Furthermore, cone-beam digital tomosynthesis can be offered as a software-only solution as long as a portal imaging device is available. In this study, the feasibility of performing digital tomosynthesis using individually-acquired megavoltage images from a charge coupled device-based electronic portal imaging device was investigated. Three digital tomosynthesis reconstruction algorithms, the shift-and-add, filtered back-projection, and simultaneous algebraic reconstruction technique, were compared considering the final image quality and radiation dose during imaging. A software platform, DART, was created using a combination of the Matlab and C++ languages. The platform allows for the registration of a reference Cone Beam Digital Tomosynthesis (CBDT) image against a daily acquired set to determine how to shift the patient prior to treatment. Finally

  5. Bone Health and Pelvic Radiotherapy.

    PubMed

    Higham, C E; Faithfull, S

    2015-11-01

    Survivors who have received pelvic radiotherapy make up many of the long-term cancer population, with therapies for gynaecological, bowel, bladder and prostate malignancies. Individuals who receive radiotherapy to the pelvis as part of their cancer treatment are at risk of insufficiency fractures. Symptoms of insufficiency fractures include pelvic and back pain and immobility, which can affect substantially quality of life. This constellation of symptoms can occur within 2 months of radiotherapy up to 63 months post-treatment, with a median incidence of 6-20 months. As a condition it is under reported and evidence is poor as to the contributing risk factors, causation and best management to improve the patient's bone health and mobility. As radiotherapy advances, chronic symptoms, such as insufficiency fractures, as a consequence of treatment need to be better understood and reviewed. This overview explores the current evidence for the effect of radiotherapy on bone health and insufficiency fractures and identifies what we know and where gaps in our knowledge lie. The overview concludes with the need to take seriously complaints of pelvic pain from patients after pelvic radiotherapy and to investigate and manage these symptoms more effectively. There is a clear need for definitive research in this field to provide the evidence-based guidance much needed in practice.

  6. Processing and analysis of Simrad multibeam sonar data

    NASA Astrophysics Data System (ADS)

    Mitchell, Neil C.

    1996-12-01

    The common approach to analysing data collected with multibeam and sidescan sonars is to visually interpret charts of contoured bathymetry and mosaics of seabed images. However, some of the information content is lost by processing the data into charts because this involves some averaging; the analysis might uncover more information if done on the data at an earlier stage in the processing. Motivated by this potential, I have created a software system which can be used to analyse data collected with Simrad EM1000 (shallow water) and EM12 (deep water) multibeam sonars, as well as to generate bathymetry contour charts and backscatter mosaics. The system includes data preprocessing, such as navigation filtering, depth filtering (removal of outlying values), and amplitude mapping using the multibeam bathymetry to correctly position image pixels across the swath. The data attributes that can be analysed include the orientation and slope of the seafloor, and the mean signal strength for each sounding. To determine bathymetry attributes such as slope, the soundings across a number of beams and across a series of pings are grouped and a least-squares plane fitted to them. Bathymetric curvature is obtained by detrending the grouped data using the least-squares plane and fitting a paraboloid to the residuals. The magnitudes and signs of the paraboloid's coefficients reveal depressions and hills and their orientations. Furthermore, the seafloor geology can be classified using a simple combination of these attributes. For example, flat-lying sediments can be classified where the backscatter, slope and curvature fall below specified values.

  7. Geodetic constraints from multi-beam laser altimeter crossovers

    NASA Astrophysics Data System (ADS)

    Mazarico, Erwan; Neumann, G. A.; Rowlands, D. D.; Smith, D. E.

    2010-06-01

    The round-trip travel time measurements made by spacecraft laser altimeters are primarily used to construct topographic maps of the target body. The accuracy of the calculated bounce point locations of the laser pulses depends on the quality of the spacecraft trajectory reconstruction. The trajectory constraints from Doppler and range radio tracking data can be supplemented by altimetric “crossovers”, to greatly improve the reconstruction of the spacecraft trajectory. Crossovers have been used successfully in the past (e.g., Mars Orbiter Laser Altimeter on Mars Global Surveyor), but only with single-beam altimeters. The same algorithms can be used with a multi-beam laser altimeter, but we present a method using the unique cross-track topographic information present in the multi-beam data. Those crossovers are especially adapted to shallow (small angle) intersections, as the overlapping area is large, reducing the inherent ambiguities of single-beam data in that situation. We call those “swath crossovers”. They prove particularly useful in the case of polar-orbiting spacecraft over slowly rotating bodies, because all the non-polar crossovers have small intersection angles. To demonstrate this method, we perform a simplified simulation based on the Lunar Reconnaissance Orbiter (LRO) and its five-beam Lunar Orbiter Laser Altimeter. We show that swath crossovers over one lunar month can independently, from geometry alone, recover the imposed orbital perturbations with great accuracy (5 m horizontal, < 1 m vertical, about one order of magnitude smaller than the imposed perturbations). We also present new types of constraints that can be derived from the swath crossovers, and designed to be used in a precision orbit determination setup. In future work, we will use such multi-beam altimetric constraints with data from LRO.

  8. Multibeam bathymetry and selected perspective views offshore San Diego, California

    USGS Publications Warehouse

    Dartnell, Peter; Normark, William R.; Driscoll, Neal W.; Babcock, Jeffrey M.; Gardner, James V.; Kvitek, Rikk G.; Iampietro, Pat J.

    2007-01-01

    This set of two posters consists of a map on one sheet and a set of seven perspective views on the other. The ocean floor image was generated from multibeam-bathymetry data acquired by Federal and local agencies as well as academic institutions including: - U.S. Geological Survey mapped from the La Jolla Canyon south to the US-Mexico border using a Kongsberg Simrad multibeam echosounder system (MBES) (March - April 1998). Data and metadata available at http://pubs.usgs.gov/of/2004/1221/. - Woods Hole Oceanographic Institution and SCRIPPS Institution of Oceanography mapped the majority of the La Jolla Fan Valley including the sea floor to the north and south of the valley using a Seabeam 2100 MBES. Data available at http://www.ngdc.noaa.gov/mgg/bathymetry/multibeam.html. Survey ID, AT07L09, Chief Scientists, Barrie Walden and Joseph Coburn (April 2002). - California State University, Monterey Bay, mapped Scripps Canyon and the head of La Jolla Canyon using a Reson 8101 MBES (October 2001). Data and metadata available at http://seafloor.csumb.edu/SFMLwebDATA.htm. This work was funded by the California Department of Fish and Game California Coastal Conservancy, San Diego Association of Governments (SANDAG), California Department of Fish and Game, and Fugro Pelagos mapped the nearshore region out to about 35-40 m. - The sea floor within this image that has not been mapped with MBES is filled in with interpreted bathymetry gridded from single-beam data available at http://www.ngdc.noaa.gov/mgg/bathymetry/hydro.html. Depths are in meters below sea level, which is referenced to Mean Lower Low Water.

  9. Enhancing radiotherapy for lung cancer using immunoadjuvants delivered in situ from new design radiotherapy biomaterials: a preclinical study

    NASA Astrophysics Data System (ADS)

    Hao, Yao; Yasmin-Karim, Sayeda; Moreau, Michele; Sinha, Neeharika; Sajo, Erno; Ngwa, Wilfred

    2016-12-01

    Studies show that radiotherapy of a primary tumor in combination with immunoadjuvants (IA) can result in increased survival or immune-mediated regression of metastasis outside the radiation field, a phenomenon known as abscopal effect. However, toxicities due to repeated systematic administration of IA have been shown to be a major obstacle in clinical trials. To minimize the toxicities and prime a more potent immune response, Ngwa et al have proposed that inert radiotherapy biomaterials such as fiducials could be upgraded to multifunctional ones loaded with IA for in situ delivery directly into the tumor sub-volume at no additional inconvenience to patients. In this preliminary study, the potential of such an approach is investigated for lung cancer using anti-CD40 antibody. First the benefit of using the anti-CD40 delivered in situ to enhance radiotherapy was tested in mice with subcutaneous tumors generated with the Lewis Lung cancer cell line LL/2 (LLC-1). The tumors were implanted on both flanks of the mice to simulate metastasis. Tumors on one flank were treated with and without anti-CD40 and the survival benefits compared. An experimentally determined in vivo diffusion coefficient for nanoparticles was then employed to estimate the time for achieving intratumoral distribution of the needed minimal concentrations of anti-CD40 nanoparticles if released from a multifuntional radiotherapy biomaterials. The studies show that the use of anti-CD40 significantly enhanced radiotherapy effect, slowing the growth of the treated and untreated tumors, and increasing survival. Meanwhile our calculations indicate that for a 2-4 cm tumor and 7 mg g-1 IA concentrations, it would take 4.4-17.4 d, respectively, following burst release, for the required concentration of IA nanoparticles to accumulate throughout the tumor during image-guided radiotherapy. The distribution of IA could be customized as a function of loading concentrations or nanoparticle size to fit current

  10. On intermodulation beams of satellite DBF transmitting multibeam array antenna

    NASA Astrophysics Data System (ADS)

    Zhao, Hongmei; Wang, Huali; Mu, Shanxiang

    2007-11-01

    Digital beamforming (DBF) transmitting multibeam planar array antenna with nonlinear behaviors of solid-state power amplifiers (SSPA) is discussed. This paper investigates the intermodulation beams produced by the nonlinearity characteristics of the SSPA with multiple carrier components. The Shimbo model is simplified to describe the nonlinear behaviors of SSPA. The optimal SSPA input back-off (IBO) point which is given the desired the carrier and the intermodulatin ratio (C/IM) is simulated. And the tradeoffs between linearity and efficiency of the power amplifier which influence this IBO is also discussed, helping to selecting suitable SSPA device and reducing the dc power consumption in satellite array antenna system.

  11. Personalized estimation of dose to red bone marrow and the associated leukaemia risk attributable to pelvic kilo-voltage cone beam computed tomography scans in image-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Zhang, Yibao; Yan, Yulong; Nath, Ravinder; Bao, Shanglian; Deng, Jun

    2012-07-01

    The aim of this study is to investigate the imaging dose to red bone marrow (RBM) and the associated leukaemia risks attributable to pelvic kilo-voltage cone beam computed tomography (kVCBCT) scans in image-guided radiation therapy (IGRT). The RBM doses of 42 patients (age 2.7-86.4 years) were calculated using Monte Carlo simulations. The trabecular spongiosa was segmented to substitute RBM rather than the whole bone. Quantitative correlations between anthropometric variables such as age, physical bone density (PBD) and RBM dose were established. Personalized leukaemia risk was evaluated using an improved Boice model which included the age-associated RBM involvement. An incremental leukaemia risk of 29%-82% (mean = 45%) was found to be associated with 40 pelvic kVCBCT scans in the subject group used in a typical external beam radiation therapy course. Higher risks were observed in children. Due to the enhanced photoelectric effect in high atomic number materials, PBD was observed to strongly affect the RBM dose. Considerable overestimations (9%-42%, mean = 28%) were observed if the whole bone doses were used as surrogates of RBM doses. The personalized estimation of RBM dose and associated leukaemia risk caused by pelvic kVCBCT scans is clinically feasible with the proposed empirical models. Higher radiogenic cancer risks are associated with repeated kVCBCT scans in IGRT of cancer patients, especially children.

  12. Challenges and technical requirements for multi-beam mask writer development

    NASA Astrophysics Data System (ADS)

    Lee, Sang Hee; Choi, Jin; Lee, Ho June; Shin, In Kyun; Tamamushi, Shuichi; Jeon, Chan-Uk

    2014-07-01

    Because mask patterning quality of CD uniformity, MTT, registration and smaller assist feature size is important for wafer patterning, the higher exposure dose and complex pattern design will be necessary. It is the reason why the faster and more accurate e-beam mask writer is needed for future design node. Multi-beam mask writer is the most promising new e-beam mask writer technology for future sub-10nm device mask patterning to solve the pattern quality issue and writing time problem. In this report, the technical challenges of multi-beam mask writer are discussed by comparison with problems of current VSB e-beam mask writer. Comparing with e-beam mask writer which has the critical issues of beam size and position control, the application of entirely different methods and techniques of CD and position control is essential for multi-beam mask writer which has new architecture and writing strategy. Using the simulation method, we present the different challenges between VSB and multi-beam mask writer. And there are many important technical requirements to achieve expected specification of multi-beam mask writer. To understand such requirements, the patterning simulation and mathematical calculation are done for analysis. Based on the patterning simulation, the detail technical requirements and issues of multi-beam mask writer are achieved. Consequently, we suggest the direction of multi-beam mask writer development in terms of technical challenges and requirements.

  13. Echoview as a multibeam sonar data processing and analysis toolkit for fisheries research

    NASA Astrophysics Data System (ADS)

    Buelens, Bart; Pauly, Tim; Higginbottom, Ian

    2003-10-01

    Echoview is a hydroacoustic data analysis software package, widely used in the fisheries research and stock assessment communities. Originally developed to handle a variety of single-beam sonar data formats, Echoview has been extended to support multibeam data. Multibeam data logging, lossless compression, and real time beamforming and display are some of the software's core features. Multibeam data has an additional dimension compared to single-beam data, and a 3D data viewer has been developed providing 3D visualizations of the seabed and fish schools detected by built-in algorithms. Since the multibeam module is just one of many software modules of the Echoview package, data from other sources such as single-beam sonar systems and current profilers can be combined and analyzed together with the multibeam data. The combination of coincident fish density estimates from calibrated single-beam backscatter data with school volume estimates from multibeam data will represent a significant improvement in stock assessment methods. Ongoing research and development will make it possible for Echoview to follow and even set new trends in multibeam water-column data analysis for fisheries research. Features under development include calibration, vessel motion compensation, improved feature detection, and enhanced and animated 3D displays.

  14. Development of Topological Correction Algorithms for ADCP Multibeam Bathymetry Measurements

    NASA Astrophysics Data System (ADS)

    Yang, Sung-Kee; Kim, Dong-Su; Kim, Soo-Jeong; Jung, Woo-Yul

    2013-04-01

    Acoustic Doppler Current Profilers (ADCPs) are increasingly popular in the river research and management communities being primarily used for estimation of stream flows. ADCPs capabilities, however, entail additional features that are not fully explored, such as morphologic representation of river or reservoir bed based upon multi-beam depth measurements. In addition to flow velocity, ADCP measurements include river bathymetry information through the depth measurements acquired in individual 4 or 5 beams with a given oblique angle. Such sounding capability indicates that multi-beam ADCPs can be utilized as an efficient depth-sounder to be more capable than the conventional single-beam eco-sounders. The paper introduces the post-processing algorithms required to deal with raw ADCP bathymetry measurements including the following aspects: a) correcting the individual beam depths for tilt (pitch and roll); b) filtering outliers using SMART filters; d) transforming the corrected depths into geographical coordinates by UTM conversion; and, e) tag the beam detecting locations with the concurrent GPS information; f) spatial representation in a GIS package. The developed algorithms are applied for the ADCP bathymetric dataset acquired from Han-Cheon in Juju Island to validate their applicability.

  15. Development of Multi-Beam Long Trace Profiler

    NASA Technical Reports Server (NTRS)

    Kilaru, Kiranmayee; Merthe, Daniel J.; Ali, Zulfiqar; Gubarev, Mikhail V.; Kester, Thomas; McKinney, Wayne R.; Takacs, Peter Z.; Yashchuk, Valeriy V.

    2011-01-01

    In order to fulfill the angular resolution requirements and make the performance goals for future NASA missions feasible, it is crucial to develop instruments capable of fast and precise figure metrology of x-ray optical elements for further correction of the surface errors. The Long Trace Profilometer (LTP) is an instrument widely used for measuring the surface figure of grazing incidence X-ray mirrors. In the case of replicated optics designed for x-ray astronomy applications, such as mirrors and the corresponding mandrels have a cylindrical shape and their tangential profile is parabolic or hyperbolic. Modern LTPs have sub-microradian accuracy, but the measuring speed is very low, because the profilometer measures surface figure point by point using a single laser beam. The measurement rate can be significantly improved by replacing the single optical beam with multiple beams. The goal of this study is to demonstrate the viability of multi-beam metrology as a way of significantly improving the quality and affordability of replicated x-ray optics. The multi-beam LTP would allow one- and two-dimensional scanning with sub-microradian resolution and a measurement rate of about ten times faster compared to the current LTP. The design details of the instrument's optical layout and the status of optical tests will be presented.

  16. Design and Simulation of Electron Gun for a Multibeam Klystron

    NASA Astrophysics Data System (ADS)

    Nehra, A. K.; Gupta, R. K.; Sharma, S. M.; Panda, P. C.; Choyal, Y.; Sharma, R. K.

    2012-11-01

    This paper represents the design of multi-beam (sixty-beam) electron gun and focusing system for high power, compact klystron. The beam voltage is 4 kV with a total beam current of 513 (8.55 × 60) mA which is equally divided among sixty-beam. Each beam has a perveance of 0.033 μP making a total gun perveance of 2.02 μP corresponding to a total beam power of more than 2 kW. The cathode radius is7 mm and individual emitter radius is 0.2 mm having current density 6.7 A/cm2. The design has been accomplished using OPERA 3D code. All beamlets have individual anode as well as BFE and a common focusing system. Potential difference between cathode and anode is 4 kV. A magnetic field of 1200 Gauss is applied along the beam axis. A major challenge for the development of multi-beam klystron is design and technology for the focusing of off-axis beamlets because off-axis beams are at various azimuths.

  17. Method for enhancing stability in multi-beam microscopy

    NASA Astrophysics Data System (ADS)

    Huang, Yujia; Wang, Yifan; Kuang, Cuifang; Liu, Xu

    2016-10-01

    A method based on close loop control of four degrees of freedom (4DF) is proposed to enhance angular and translational stability of beams in multi-beam microscopy including STED, RESOLFT and CARS, etc. Deviations of multi-beams can be measured and corrected by our module, which is composed of four degrees of freedom position sensitive detectors (4DF PSD) and two actuator mirrors (AM) with motor and piezo servos. An output crosslink matrix obtained by a self-learning process is used to control four actuators to compensate for 4DF independently in beam deviations. We realize a standard deviation within about 2 µm at the entrance pupil plane (a spatial optical path of 180 cm for the whole system) using a compact stabilization system, which is equivalent to around 3 nm at the sample plane under the 100×  objective lens with a focal length of 2 mm, corresponding to an improvement of stability by an order of magnitude. Our method can react fast in real time and compensate for large disturbances caused by air agitation or temperature variation.

  18. W-CMOS blanking device for projection multibeam lithography

    NASA Astrophysics Data System (ADS)

    Jurisch, Michael; Irmscher, Mathias; Letzkus, Florian; Eder-Kapl, Stefan; Klein, Christof; Loeschner, Hans; Piller, Walter; Platzgummer, Elmar

    2010-05-01

    As the designs of future mask nodes become more and more complex the corresponding pattern writing times will rise significantly when using single beam writing tools. Projection multi-beam lithography [1] is one promising technology to enhance the throughput compared to state of the art VSB pattern generators. One key component of the projection multi-beam tool is an Aperture Plate System (APS) to form and switch thousands of individual beamlets. In our present setup a highly parallel beam is divided into 43,008 individual beamlets by a Siaperture- plate. These micrometer sized beams pass through larger openings in a blanking-plate and are individually switched on and off by applying a voltage to blanking-electrodes which are placed around the blanking-plate openings. A charged particle 200x reduction optics demagnifies the beamlet array to the substrate. The switched off beams are filtered out in the projection optics so that only the beams which are unaffected by the blanking-plate are projected to the substrate with 200x reduction. The blanking-plate is basically a CMOS device for handling the writing data. In our work the blanking-electrodes are fabricated using CMOS compatible add on processes like SiO2-etching or metal deposition and structuring. A new approach is the implementation of buried tungsten electrodes for beam blanking.

  19. Progress of Multi-Beam Long Trace-Profiler Development

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Kilaru, Kiranmayee; Merthe, Daniel J.; Kester, Thomas; McKinney, Wayne R.; Takacs, Peter Z.; Yashchuk, Valeriy V.

    2012-01-01

    The multi-beam long trace profiler (LTP) under development at NASA s Marshall Space Flight Center[1] is designed to increase the efficiency of metrology of replicated X-ray optics. The traditional LTP operates on a single laser beam that scans along the test surface to detect the slope errors. While capable of exceptional surface slope accuracy, the LTP single beam scanning has slow measuring speed. As metrology constitutes a significant fraction of the time spent in optics production, an increase in the efficiency of metrology helps in decreasing the cost of fabrication of the x-ray optics and in improving their quality. Metrology efficiency can be increased by replacing the single laser beam with multiple beams that can scan a section of the test surface at a single instance. The increase in speed with such a system would be almost proportional to the number of laser beams. A collaborative feasibility study has been made and specifications were fixed for a multi-beam long trace profiler. The progress made in the development of this metrology system is presented.

  20. Correction for depth biases to shallow water multibeam bathymetric data

    NASA Astrophysics Data System (ADS)

    Yang, Fan-lin; Li, Jia-biao; Liu, Zhi-min; Han, Li-tao

    2013-04-01

    Vertical errors often present in multibeam swath bathymetric data. They are mainly sourced by sound refraction, internal wave disturbance, imperfect tide correction, transducer mounting, long period heave, static draft change, dynamic squat and dynamic motion residuals, etc. Although they can be partly removed or reduced by specific algorithms, the synthesized depth biases are unavoidable and sometimes have an important influence on high precise utilization of the final bathymetric data. In order to confidently identify the decimeter-level changes in seabed morphology by MBES, we must remove or weaken depth biases and improve the precision of multibeam bathymetry further. The fixed-interval profiles that are perpendicular to the vessel track are generated to adjust depth biases between swaths. We present a kind of postprocessing method to minimize the depth biases by the histogram of cumulative depth biases. The datum line in each profile can be obtained by the maximum value of histogram. The corrections of depth biases can be calculated according to the datum line. And then the quality of final bathymetry can be improved by the corrections. The method is verified by a field test.

  1. SU-F-303-17: Real Time Dose Calculation of MRI Guided Co-60 Radiotherapy Treatments On Free Breathing Patients, Using a Motion Model and Fast Monte Carlo Dose Calculation

    SciTech Connect

    Thomas, D; O’Connell, D; Lamb, J; Cao, M; Yang, Y; Agazaryan, N; Lee, P; Low, D

    2015-06-15

    Purpose: To demonstrate real-time dose calculation of free-breathing MRI guided Co−60 treatments, using a motion model and Monte-Carlo dose calculation to accurately account for the interplay between irregular breathing motion and an IMRT delivery. Methods: ViewRay Co-60 dose distributions were optimized on ITVs contoured from free-breathing CT images of lung cancer patients. Each treatment plan was separated into 0.25s segments, accounting for the MLC positions and beam angles at each time point. A voxel-specific motion model derived from multiple fast-helical free-breathing CTs and deformable registration was calculated for each patient. 3D images for every 0.25s of a simulated treatment were generated in real time, here using a bellows signal as a surrogate to accurately account for breathing irregularities. Monte-Carlo dose calculation was performed every 0.25s of the treatment, with the number of histories in each calculation scaled to give an overall 1% statistical uncertainty. Each dose calculation was deformed back to the reference image using the motion model and accumulated. The static and real-time dose calculations were compared. Results: Image generation was performed in real time at 4 frames per second (GPU). Monte-Carlo dose calculation was performed at approximately 1frame per second (CPU), giving a total calculation time of approximately 30 minutes per treatment. Results show both cold- and hot-spots in and around the ITV, and increased dose to contralateral lung as the tumor moves in and out of the beam during treatment. Conclusion: An accurate motion model combined with a fast Monte-Carlo dose calculation allows almost real-time dose calculation of a free-breathing treatment. When combined with sagittal 2D-cine-mode MRI during treatment to update the motion model in real time, this will allow the true delivered dose of a treatment to be calculated, providing a useful tool for adaptive planning and assessing the effectiveness of gated treatments.

  2. Expanding global access to radiotherapy.

    PubMed

    Atun, Rifat; Jaffray, David A; Barton, Michael B; Bray, Freddie; Baumann, Michael; Vikram, Bhadrasain; Hanna, Timothy P; Knaul, Felicia M; Lievens, Yolande; Lui, Tracey Y M; Milosevic, Michael; O'Sullivan, Brian; Rodin, Danielle L; Rosenblatt, Eduardo; Van Dyk, Jacob; Yap, Mei Ling; Zubizarreta, Eduardo; Gospodarowicz, Mary

    2015-09-01

    Radiotherapy is a critical and inseparable component of comprehensive cancer treatment and care. For many of the most common cancers in low-income and middle-income countries, radiotherapy is essential for effective treatment. In high-income countries, radiotherapy is used in more than half of all cases of cancer to cure localised disease, palliate symptoms, and control disease in incurable cancers. Yet, in planning and building treatment capacity for cancer, radiotherapy is frequently the last resource to be considered. Consequently, worldwide access to radiotherapy is unacceptably low. We present a new body of evidence that quantifies the worldwide coverage of radiotherapy services by country. We show the shortfall in access to radiotherapy by country and globally for 2015-35 based on current and projected need, and show substantial health and economic benefits to investing in radiotherapy. The cost of scaling up radiotherapy in the nominal model in 2015-35 is US$26·6 billion in low-income countries, $62·6 billion in lower-middle-income countries, and $94·8 billion in upper-middle-income countries, which amounts to $184·0 billion across all low-income and middle-income countries. In the efficiency model the costs were lower: $14·1 billion in low-income, $33·3 billion in lower-middle-income, and $49·4 billion in upper-middle-income countries-a total of $96·8 billion. Scale-up of radiotherapy capacity in 2015-35 from current levels could lead to saving of 26·9 million life-years in low-income and middle-income countries over the lifetime of the patients who received treatment. The economic benefits of investment in radiotherapy are very substantial. Using the nominal cost model could produce a net benefit of $278·1 billion in 2015-35 ($265·2 million in low-income countries, $38·5 billion in lower-middle-income countries, and $239·3 billion in upper-middle-income countries). Investment in the efficiency model would produce in the same period an even

  3. [Head and neck adaptive radiotherapy].

    PubMed

    Graff, P; Huger, S; Kirby, N; Pouliot, J

    2013-10-01

    Onboard volumetric imaging systems can provide accurate data of the patient's anatomy during a course of head and neck radiotherapy making it possible to assess the actual delivered dose and to evaluate the dosimetric impact of complex daily positioning variations and gradual anatomic changes such as geometric variations of tumors and normal tissues or shrinkage of external contours. Adaptive radiotherapy is defined as the correction of a patient's treatment planning to adapt for individual variations observed during treatment. Strategies are developed to selectively identify patients that require replanning because of an intolerable dosimetric drift. Automated tools are designed to limit time consumption. Deformable image registration algorithms are the cornerstones of these strategies, but a better understanding of their limits of validity is required before adaptive radiotherapy can be safely introduced to daily practice. Moreover, strict evaluation of the clinical benefits is yet to be proven.

  4. Inflammatory Skin Conditions Associated With Radiotherapy.

    PubMed

    Hernández Aragüés, I; Pulido Pérez, A; Suárez Fernández, R

    2017-04-01

    Radiotherapy for cancer is used increasingly. Because skin cells undergo rapid turnover, the ionizing radiation of radiotherapy has collateral effects that are often expressed in inflammatory reactions. Some of these reactions-radiodermatitis and recall phenomenon, for example-are very familiar to dermatologists. Other, less common radiotherapy-associated skin conditions are often underdiagnosed but must also be recognized.

  5. Radiotherapy supports protective tumor-specific immunity

    PubMed Central

    Gupta, Anurag; Sharma, Anu; von Boehmer, Lotta; Surace, Laura; Knuth, Alexander; van den Broek, Maries

    2012-01-01

    Radiotherapy is an important therapeutic option for the treatment of cancer. Growing evidence indicates that, besides inducing an irreversible DNA damage, radiotherapy promotes tumor-specific immune response, which significantly contribute to therapeutic efficacy. We postulate that radiotherapy activates tumor-associated dendritic cells, thus changing the tolerogenic tumor environment into an immunogenic one. PMID:23264910

  6. Clinical quality standards for radiotherapy

    PubMed Central

    2012-01-01

    Aim of the study The technological progress that is currently being witnessed in the areas of diagnostic imaging, treatment planning systems and therapeutic equipment has caused radiotherapy to become a high-tech and interdisciplinary domain involving staff of various backgrounds. This allows steady improvement in therapy results, but at the same time makes the diagnostic, imaging and therapeutic processes more complex and complicated, requiring every stage of those processes to be planned, organized, controlled and improved so as to assure high quality of services provided. The aim of this paper is to present clinical quality standards for radiotherapy as developed by the author. Material and methods In order to develop the quality standards, a comparative analysis was performed between European and Polish legal acts adopted in the period of 1980-2006 and the universal industrial ISO 9001:2008 standard, defining requirements for quality management systems, and relevant articles published in 1984-2009 were reviewed, including applicable guidelines and recommendations of American, international, European and Polish bodies, such as the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy & Oncology (ESTRO), the International Atomic Energy Agency (IAEA), and the Organisation of European Cancer Institutes (OECI) on quality assurance and management in radiotherapy. Results As a result, 352 quality standards for radiotherapy were developed and categorized into the following three groups: 1 – organizational standards; 2 – physico-technical standards and 3 – clinical standards. Conclusion Proposed clinical quality standards for radiotherapy can be used by any institution using ionizing radiation for medical purposes. However, standards are of value only if they are implemented, reviewed, audited and improved, and if there is a clear mechanism in place to monitor and address failure to meet agreed standards. PMID:23788854

  7. Second Malignant Neoplasms Following Radiotherapy

    PubMed Central

    Kumar, Sanath

    2012-01-01

    More than half of all cancer patients receive radiotherapy as a part of their treatment. With the increasing number of long-term cancer survivors, there is a growing concern about the risk of radiation induced second malignant neoplasm [SMN]. This risk appears to be highest for survivors of childhood cancers. The exact mechanism and dose-response relationship for radiation induced malignancy is not well understood, however, there have been growing efforts to develop strategies for the prevention and mitigation of radiation induced cancers. This review article focuses on the incidence, etiology, and risk factors for SMN in various organs after radiotherapy. PMID:23249860

  8. Balancing Equity and Advancement: The Role of Health Technology Assessment in Radiotherapy Resource Allocation.

    PubMed

    Rodin, D; Aggarwal, A; Lievens, Y; Sullivan, R

    2017-02-01

    Radiotherapy is an essential modality for effective cancer control, yet enormous inequalities in access in low- and middle-income countries (LMICs) have created one of the largest global technology gaps in medicine today. The Global Task Force on Radiotherapy for Cancer Control quantified this gap and showed that over half of patients worldwide do not have access to treatment. Governments, policy makers and the global health community have ignored this crisis due to the complexity of radiotherapy technology and its seemingly high upfront costs. However, understanding the cost of treatment in the context of a dramatic clinical benefit could help to demonstrate the feasibility of radiotherapy in diverse income settings. When there are scarce resources, such analysis is essential in order to set priorities and provide high-value interventions to large populations. Here we explore the current status of economic evaluation tools in LMICs and some of the barriers to their use. We describe how the concepts of health technology assessment, value-based care and investment frameworks can be applied to the global crisis of radiotherapy availability to guide appropriate capacity building and resource utilisation. The development of local expertise in these health economic tools can be a powerful level to improve cancer care in LMICs and to build universal global access to radiotherapy.

  9. Reliability of fish size estimates obtained from multibeam imaging sonar

    USGS Publications Warehouse

    Hightower, Joseph E.; Magowan, Kevin J.; Brown, Lori M.; Fox, Dewayne A.

    2013-01-01

    Multibeam imaging sonars have considerable potential for use in fisheries surveys because the video-like images are easy to interpret, and they contain information about fish size, shape, and swimming behavior, as well as characteristics of occupied habitats. We examined images obtained using a dual-frequency identification sonar (DIDSON) multibeam sonar for Atlantic sturgeon Acipenser oxyrinchus oxyrinchus, striped bass Morone saxatilis, white perch M. americana, and channel catfish Ictalurus punctatus of known size (20–141 cm) to determine the reliability of length estimates. For ranges up to 11 m, percent measurement error (sonar estimate – total length)/total length × 100 varied by species but was not related to the fish's range or aspect angle (orientation relative to the sonar beam). Least-square mean percent error was significantly different from 0.0 for Atlantic sturgeon (x̄  =  −8.34, SE  =  2.39) and white perch (x̄  = 14.48, SE  =  3.99) but not striped bass (x̄  =  3.71, SE  =  2.58) or channel catfish (x̄  = 3.97, SE  =  5.16). Underestimating lengths of Atlantic sturgeon may be due to difficulty in detecting the snout or the longer dorsal lobe of the heterocercal tail. White perch was the smallest species tested, and it had the largest percent measurement errors (both positive and negative) and the lowest percentage of images classified as good or acceptable. Automated length estimates for the four species using Echoview software varied with position in the view-field. Estimates tended to be low at more extreme azimuthal angles (fish's angle off-axis within the view-field), but mean and maximum estimates were highly correlated with total length. Software estimates also were biased by fish images partially outside the view-field and when acoustic crosstalk occurred (when a fish perpendicular to the sonar and at relatively close range is detected in the side lobes of adjacent beams). These sources of

  10. Building a Digital Library for Multibeam Data, Images and Documents

    NASA Astrophysics Data System (ADS)

    Miller, S. P.; Staudigel, H.; Koppers, A.; Johnson, C.; Cande, S.; Sandwell, D.; Peckman, U.; Becker, J. J.; Helly, J.; Zaslavsky, I.; Schottlaender, B. E.; Starr, S.; Montoya, G.

    2001-12-01

    The Scripps Institution of Oceanography, the UCSD Libraries and the San Diego Supercomputing Center have joined forces to establish a digital library for accessing a wide range of multibeam and marine geophysical data, to a community that ranges from the MGG researcher to K-12 outreach clients. This digital library collection will include 233 multibeam cruises with grids, plots, photographs, station data, technical reports, planning documents and publications, drawn from the holdings of the Geological Data Center and the SIO Archives. Inquiries will be made through an Ocean Exploration Console, reminiscent of a cockpit display where a multitude of data may be displayed individually or in two or three-dimensional projections. These displays will provide access to cruise data as well as global databases such as Global Topography, crustal age, and sediment thickness, thus meeting the day-to-day needs of researchers as well as educators, students, and the public. The prototype contains a few selected expeditions, and a review of the initial approach will be solicited from the user community during the poster session. The search process can be focused by a variety of constraints: geospatial (lat-lon box), temporal (e.g., since 1996), keyword (e.g., cruise, place name, PI, etc.), or expert-level (e.g., K-6 or researcher). The Storage Resource Broker (SRB) software from the SDSC manages the evolving collection as a series of distributed but related archives in various media, from shipboard data through processing and final archiving. The latest version of MB-System provides for the systematic creation of standard metadata, and for the harvesting of metadata from multibeam files. Automated scripts will be used to load the metadata catalog to enable queries with an Oracle database management system. These new efforts to bridge the gap between libraries and data archives are supported by the NSF Information Technology and National Science Digital Library (NSDL) programs

  11. Quantifying methane flux from lake sediments using multibeam sonar

    NASA Astrophysics Data System (ADS)

    Scandella, B.; Urban, P.; Delwiche, K.; Greinert, J.; Hemond, H.; Ruppel, C. D.; Juanes, R.

    2013-12-01

    Methane is a potent greenhouse gas, and the production and emission of methane from sediments in wetlands, lakes and rivers both contributes to and may be exacerbated by climate change. In some of these shallow-water settings, methane fluxes may be largely controlled by episodic venting that can be triggered by drops in hydrostatic pressure. Even with better constraints on the mechanisms for gas release, quantifying these fluxes has remained a challenge due to rapid spatiotemporal changes in the patterns of bubble emissions from the sediments. The research presented here uses a fixed-location Imagenex DeltaT 837B multibeam sonar to estimate methane-venting fluxes from organic-rich lake sediments over a large area (~400 m2) and over a multi-season deployment period with unprecedented spatial and temporal resolution. Simpler, single-beam sonar systems have been used in the past to estimate bubble fluxes in a variety of settings. Here we extend this methodology to a multibeam system by means of: (1) detailed calibration of the sonar signal against imposed bubble streams, and (2) validation against an in situ independent record of gas flux captured by overlying bubble traps. The calibrated sonar signals then yield estimates of the methane flux with high spatial resolution (~1 m) and temporal frequency (6 Hz) from a portion of the deepwater basin of Upper Mystic Lake, MA, USA, a temperate eutrophic kettle lake. These results in turn inform mathematical models of methane transport and release from the sediments, which reproduce with high fidelity the ebullitive response to hydrostatic pressure variations. In addition, the detailed information about spatial variability of methane flux derived from sonar records is used to estimate the uncertainty associated with upscaling flux measurements from bubble traps to the scale of the sonar observation area. Taken together, these multibeam sonar measurements and analysis provide a novel quantitative approach for the assessment of

  12. TU-A-BRF-01: MR Guided Radiation Therapy

    SciTech Connect

    Stanescu, T; Balter, J; Nyholm, T; Lagendijk, J

    2014-06-15

    In recent years, there has been an increasing interest in the development of new technologies focused on the deeper integration of MR in radiotherapy. The innovations span from image data acquisition and post-processing to clinical implementation of MR-guided RT systems and workflow development. The session is intended to provide a review of the key and most recent advancements. Targeted discussions will cover topics which currently define the concept of MR-guided radiotherapy including a) system commissioning, quality control and safety, b) MR data manipulation for dose computations and treatment simulation, c) quantification/management of organ motion and treatment delivery guidance. Learning Objectives: Understand the concept and specifics of MR-guided radiotherapy; Understand the requirements for system integration in clinical workflow; Become familiar with the proposed strategies for system commissioning, RT planning and delivery guidance.

  13. [Guidelines for external radiotherapy and brachytherapy: 2nd edition].

    PubMed

    Mahé, M-A; Barillot, I; Chauvet, B

    2016-09-01

    In 2007, a first edition was published with the objective to produce guidelines for optimization, harmonization and homogenization of practices in external radiation therapy in France. The second edition, including brachytherapy, has the same objective and takes into account recent technologic improvements (intensity modulation radiation therapy, stereotactic radiotherapy, and 3-dimension brachytherapy) and results of literature. The first part is about daily use of general principles (quality, security, image-guided radiation therapy) and the second is to describe each treatment step in main cancers.

  14. ACTS on-orbit multibeam antenna pattern measurements

    NASA Technical Reports Server (NTRS)

    Acosta, R.; Wright, D.; Regier, F.

    1995-01-01

    The Advanced Communication Technology (ACTS) is a key to NASA's goal of developing high-risk, advanced communications technology using multiple frequency bands to support the nation's future communication needs. Using the multiple, dynamic hopping spot beams and advanced on board switching and processing systems, ACTS will open a new era in communications satellite technology. One of the key technologies to be validated as part of the ACTS program is the multibeam antenna (MBA) with rapidly reconfigurable hopping and fixed spot beams to serve users equipped with small-aperture terminals within the coverage areas. The MBA test program is designed to evaluate the on-orbit ACTS antenna performance. The main parameters measured are beam shape, beam center location and gain.

  15. An attempt at multibeam imaging of laboratory sea ice

    NASA Astrophysics Data System (ADS)

    Chayes, D. N.; Schmidt, V. E.

    2015-12-01

    Sea ice was grown in a wave tank at the Hamburgische Schiffbau-Versuchsanstalt GmbH (HSVA) in Hamburg, Germany from December 12-20, 2013 as part of an EU-funded effort to understand the behavior of crude oil under sea ice. As an add-on to that experiment, we borrowed a Teledyne ODOM MB1 multibeam sonar that works in the frequency range from 170 to 220 kHz, mounted it on a moveable trolly, and collected beamformed and time series data with it looking upward at sea ice grown under various conditions.The water depth between the sonar transducer and the bottom of the sea ice was shallower than expected so the sonar was operating in the vicinity of the near field boundary. The experimental setup, data processing methods, and results will be presented in this poster.

  16. Injectable silver nanosensors: in vivo dosimetry for external beam radiotherapy using positron emission tomography

    NASA Astrophysics Data System (ADS)

    Christensen, A. N.; Rydhög, J. S.; Søndergaard, R. V.; Andresen, T. L.; Holm, S.; Munck Af Rosenschöld, P.; Conradsen, K.; Jølck, R. I.

    2016-05-01

    Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive 106Ag, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The silver-nanosensor was investigated in a tissue equivalent thorax phantom using clinical settings and workflow for both standard fractionated radiotherapy (2 Gy) and stereotactic radiotherapy (10- and 22 Gy) in a high-energy beam setting (18 MV). The developed silver-nanosensor provided high radiopacity on the planning CT-scans sufficient for patient positioning in image-guided radiotherapy and provided dosimetric information about the absorbed dose with a 10% and 8% standard deviation for the stereotactic regimens, 10 and 22 Gy, respectively.Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive 106Ag, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The

  17. Multibeam monopulse radar for airborne sense and avoid system

    NASA Astrophysics Data System (ADS)

    Gorwara, Ashok; Molchanov, Pavlo

    2016-10-01

    The multibeam monopulse radar for Airborne Based Sense and Avoid (ABSAA) system concept is the next step in the development of passive monopulse direction finder proposed by Stephen E. Lipsky in the 80s. In the proposed system the multibeam monopulse radar with an array of directional antennas is positioned on a small aircaraft or Unmanned Aircraft System (UAS). Radar signals are simultaneously transmitted and received by multiple angle shifted directional antennas with overlapping antenna patterns and the entire sky, 360° for both horizontal and vertical coverage. Digitizing of amplitude and phase of signals in separate directional antennas relative to reference signals provides high-accuracy high-resolution range and azimuth measurement and allows to record real time amplitude and phase of reflected from non-cooperative aircraft signals. High resolution range and azimuth measurement provides minimal tracking errors in both position and velocity of non-cooperative aircraft and determined by sampling frequency of the digitizer. High speed sampling with high-accuracy processor clock provides high resolution phase/time domain measurement even for directional antennas with wide Field of View (FOV). Fourier transform (frequency domain processing) of received radar signals provides signatures and dramatically increases probability of detection for non-cooperative aircraft. Steering of transmitting power and integration, correlation period of received reflected signals for separate antennas (directions) allows dramatically decreased ground clutter for low altitude flights. An open architecture, modular construction allows the combination of a radar sensor with Automatic Dependent Surveillance - Broadcast (ADS-B), electro-optic, acoustic sensors.

  18. Radiotherapy T1 glottic carcinoma

    SciTech Connect

    Zablow, A.I.; Erba, P.S.; Sanfillippo, L.J.

    1989-11-01

    From 1970 to 1985, curative radiotherapy was administered to 63 patients with stage I carcinoma of the true vocal cords. Precision radiotherapeutic technique yields cure rates comparable to surgical results. Good voice quality was preserved in a high percentage of patients.

  19. Multibeam tomotherapy: A new treatment unit devised for multileaf collimation, intensity-modulated radiation therapy

    SciTech Connect

    Achterberg, Nils; Mueller, Reinhold G.

    2007-10-15

    A fully integrated system for treatment planning, application, and verification for automated multileaf collimator (MLC) based, intensity-modulated, image-guided, and adaptive radiation therapy (IMRT, IGRT and ART, respectively) is proposed. Patient comfort, which was the major development goal, will be achieved through a new unit design and short treatment times. Our device for photon beam therapy will consist of a new dual energy linac with five fixed treatment heads positioned evenly along one plane but one electron beam generator only. A minimum of moving parts increases technical reliability and reduces motion times to a minimum. Motion is allowed solely for the MLCs, the robotic patient table, and the small angle gantry rotation of {+-}36 deg. . Besides sophisticated electron beam guidance, this compact setup can be built using existing modules. The flattening-filter-free treatment heads are characterized by reduced beam-on time and contain apertures restricted in one dimension to the area of maximum primary fluence output. In the case of longer targets, this leads to a topographic intensity modulation, thanks to the combination of 'step and shoot' MLC delivery and discrete patient couch motion. Owing to the limited number of beam directions, this multislice cone beam serial tomotherapy is referred to as 'multibeam tomotherapy.' Every patient slice is irradiated by one treatment head at any given moment but for one subfield only. The electron beam is then guided to the next head ready for delivery, while the other heads are preparing their leaves for the next segment. The 'Multifocal MLC-positioning' algorithm was programmed to enable treatment planning and optimize treatment time. We developed an overlap strategy for the longitudinally adjacent fields of every beam direction, in doing so minimizing the field match problem and the effects of possible table step errors. Clinical case studies show for the same or better planning target volume coverage, better

  20. Multibeam tomotherapy: a new treatment unit devised for multileaf collimation, intensity-modulated radiation therapy.

    PubMed

    Achterberg, Nils; Müller, Reinhold G

    2007-10-01

    A fully integrated system for treatment planning, application, and verification for automated multileaf collimator (MLC) based, intensity-modulated, image-guided, and adaptive radiation therapy (IMRT, IGRT and ART, respectively) is proposed. Patient comfort, which was the major development goal, will be achieved through a new unit design and short treatment times. Our device for photon beam therapy will consist of a new dual energy linac with five fixed treatment heads positioned evenly along one plane but one electron beam generator only. A minimum of moving parts increases technical reliability and reduces motion times to a minimum. Motion is allowed solely for the MLCs, the robotic patient table, and the small angle gantry rotation of +/- 36 degrees. Besides sophisticated electron beam guidance, this compact setup can be built using existing modules. The flattening-filter-free treatment heads are characterized by reduced beam-on time and contain apertures restricted in one dimension to the area of maximum primary fluence output. In the case of longer targets, this leads to a topographic intensity modulation, thanks to the combination of "step and shoot" MLC delivery and discrete patient couch motion. Owing to the limited number of beam directions, this multislice cone beam serial tomotherapy is referred to as "multibeam tomotherapy." Every patient slice is irradiated by one treatment head at any given moment but for one subfield only. The electron beam is then guided to the next head ready for delivery, while the other heads are preparing their leaves for the next segment. The "Multifocal MLC-positioning" algorithm was programmed to enable treatment planning and optimize treatment time. We developed an overlap strategy for the longitudinally adjacent fields of every beam direction, in doing so minimizing the field match problem and the effects of possible table step errors. Clinical case studies show for the same or better planning target volume coverage, better

  1. Designing and implementing Multibeam Smart Antennas for high bandwidth UAV communications using FPGAs

    NASA Astrophysics Data System (ADS)

    Porcello, J. C.

    Requirements for high bandwidth UAV communications are often necessary in order to move large amounts of mission information to/from Users in real-time. The focus of this paper is antenna beamforming for point-to-point, high bandwidth UAV communications in order to optimize transmit and receive power and support high data throughput communications. Specifically, this paper looks at the design and implementation of Multibeam Smart Antennas to implement antenna beamforming in an aerospace communications environment. The Smart Antenna is contrasted against Fast Fourier Transform (FFT) based beamforming in order to quantify the increase in both computational load and FPGA resources required for multibeam adaptive signal processing in the Smart Antenna. The paper begins with an overall discussion of Smart Antenna design and general beamforming issues in high bandwidth communications. Important design considerations such as processing complexity in a constrained Size, Weight and Power (SWaP) environment are discussed. The focus of the paper is with respect to design and implementation of digital beamforming wideband communications waveforms using FPGAs. A Multibeam Time Delay element is introduced based on Lagrange Interpolation. Design data for Multibeam Smart Antennas in FPGAs is provided in the paper as well as reference circuits for implementation. Finally, an example Multibeam Smart Antenna design is provided based on a Xilinx Virtex-7 FPGA. The Multibeam Smart Antenna example design illustrates the concepts discussed in the paper and provides design insight into Multibeam Smart Antenna implementation from the point of view of implementation complexity, required hardware, and overall system performance gain.

  2. Early manifestation of communicating hydrocephalus after fractionated stereotactic radiotherapy for aggressive giant atypical prolactinoma.

    PubMed

    Ohtakara, Kazuhiro; Ohe, Naoyuki; Iwama, Toru; Hoshi, Hiroaki

    2014-05-01

    Aggressive giant invasive pituitary adenomas refractory to standard surgical or medical treatment remain a genuine challenge. In addition, communicating hydrocephalus (CH) attributed to malabsorption of cerebrospinal fluid (CSF) developing after radiotherapy for pituitary adenomas has not been previously reported. Herein, we describe the case of a 48-year-old male presenting with a giant atypical prolactinoma refractory to previous therapies, including pharmacotherapy and repetitive surgery. He underwent image-guided fractionated stereotactic radiotherapy in 28 fractions, resulting in early manifestation of CH associated with undisputed, both radiological and hormonal response. He recovered well after a shunt placement, with otherwise favorable consequences such as sustained tumor regression, decreasing prolactin level, and retained visual function for a 22-month follow-up. Fractionated stereotactic radiotherapy would provide a viable treatment alternative for these refractory cases, while caution should be exercised regarding the possibility of iatrogenic CH.

  3. The role of radiotherapy in the management of localized soft tissue sarcomas

    PubMed Central

    Tiong, Siaw Sze; Dickie, Colleen; Haas, Rick L.; O’Sullivan, Brian

    2016-01-01

    The combination of radiotherapy (RT) and function-preserving surgery is the most usual contemporary approach in the management of soft tissue sarcomas (STS). Pre- and postoperative RT result in similar local control rates, as shown by a landmark trial in extremity STS. In this review, the role of RT in the management of extremity STS will be discussed, but STS in other sites, including retroperitoneal STS, will also be addressed. The focus will consider various aspects of RT including strategies to reduce the volume of tissue being irradiated, dose, scheduling, and the possible of omission of RT in selected cases. Finally, technology advances through the use of intensity-modulated radiotherapy (IMRT), image-guided IMRT, intraoperative radiotherapy (IORT) and particle therapy will also be discussed. PMID:27807504

  4. Challenges of Using High-Dose Fractionation Radiotherapy in Combination Therapy

    PubMed Central

    Yang, Ying-Chieh; Chiang, Chi-Shiun

    2016-01-01

    Radiotherapy is crucial and substantially contributes to multimodal cancer treatment. The combination of conventional fractionation radiotherapy (CFRT) and systemic therapy has been established as the standard treatment for many cancer types. With advances in linear accelerators and image-guided techniques, high-dose fractionation radiotherapy (HFRT) is increasingly introduced in cancer centers. Clinicians are currently integrating HFRT into multimodality treatment. The shift from CFRT to HFRT reveals different effects on the tumor microenvironment and responses, particularly the immune response. Furthermore, the combination of HFRT and drugs yields different results in different types of tumors or using different treatment schemes. We have reviewed clinical trials and preclinical evidence on the combination of HFRT with drugs, such as chemotherapy, targeted therapy, and immune therapy. Notably, HFRT apparently enhances tumor cell killing and antigen presentation, thus providing opportunities and challenges in treating cancer. PMID:27446811

  5. Optimization of the interface between radiology, surgery, radiotherapy, and pathology in head and neck tumor surgery: a navigation-assisted multidisciplinary network.

    PubMed

    Guijarro-Martínez, R; Gellrich, N-C; Witte, J; Tapioles, D; von Briel, C; Kolotas, C; Achinger, J; Hailemariam, S; Schulte, H; Rohner, D; Hammer, B

    2014-02-01

    A navigation-assisted multidisciplinary network to improve the interface between radiology, surgery, radiotherapy, and pathology in the field of head and neck cancer is described. All implicated fields are integrated by a common server platform and have remote data access in a ready-to-use format. The margins of resection and exact locations of biopsies are mapped intraoperatively. The pathologist uses the numerical coordinates of these samples to precisely trace each specimen in the anatomical field. Subsequently, map-guided radiotherapy is planned. In addition to the benefits of image-guided resection, this model enables radiotherapy planning according to the specific coordinates of the resection defect plus any residually affected sites identified by the pathologist. Irradiation of adjacent healthy structures is thereby minimized. In summary, the navigation-assisted network described grants timely multidisciplinary feedback between all fields involved, attains meticulous pathological definition, and permits optimized coordinate-directed radiotherapy.

  6. [Stereotactic radiotherapy for pelvic tumors].

    PubMed

    Mazeron, R; Fumagalli, I

    2014-01-01

    Extracranial stereotactic radiotherapy is booming. The development and spread of dedicated accelerators coupled with efficient methods of repositioning can now allow treatments of mobile lesions with moderate size, with high doses per fraction. Intuitively, except for the prostate, pelvic tumours, often requiring irradiation of regional lymph node drainage, lend little to this type of treatment. However, in some difficult circumstances, such as boost or re-radiation, stereotactic irradiation condition is promising and clinical experiences have already been reported.

  7. Intraoperative radiotherapy for breast cancer

    PubMed Central

    Williams, Norman R.; Pigott, Katharine H.; Brew-Graves, Chris

    2014-01-01

    Intra-operative radiotherapy (IORT) as a treatment for breast cancer is a relatively new technique that is designed to be a replacement for whole breast external beam radiotherapy (EBRT) in selected women suitable for breast-conserving therapy. This article reviews twelve reasons for the use of the technique, with a particular emphasis on targeted intra-operative radiotherapy (TARGIT) which uses X-rays generated from a portable device within the operating theatre immediately after the breast tumour (and surrounding margin of healthy tissue) has been removed. The delivery of a single fraction of radiotherapy directly to the tumour bed at the time of surgery, with the capability of adding EBRT at a later date if required (risk-adaptive technique) is discussed in light of recent results from a large multinational randomised controlled trial comparing TARGIT with EBRT. The technique avoids irradiation of normal tissues such as skin, heart, lungs, ribs and spine, and has been shown to improve cosmetic outcome when compared with EBRT. Beneficial aspects to both institutional and societal economics are discussed, together with evidence demonstrating excellent patient satisfaction and quality of life. There is a discussion of the published evidence regarding the use of IORT twice in the same breast (for new primary cancers) and in patients who would never be considered for EBRT because of their special circumstances (such as the frail, the elderly, or those with collagen vascular disease). Finally, there is a discussion of the role of the TARGIT Academy in developing and sustaining high standards in the use of the technique. PMID:25083504

  8. Multibeam Mapping of Remote Fjords in Southeast-Greenland

    NASA Astrophysics Data System (ADS)

    Weinrebe, W.; Kjaer, K. H.; Kjeldsen, K. K.; Bjork, A. A.

    2015-12-01

    The fjords of Southeast-Greenland are among the most remote areas of the Northern Hemisphere. Access to this area is hampered by a broad belt of sea ice floating along the East-Greenland coast from North to South. Consequently, the majority of those fjords have never been surveyed in detail until now. During an expedition by the Center of GeoGenetics of the University of Copenhagen in summer of 2014 we were able to map the Skjoldungen Fjord system with multibeam bathymetry. The topsail schooner ACTIV, built 1951 as a cargo ship to supply remote settlements in Greenland was chosen for the expedition. Though a vintage vessel, the ACTIV was well suited to cross the belt of sea ice and to cruise the ice covered fjords. A portable ELAC-Seabeam 1050 multibeam system was temporarily installed on the vessel. The two transducer of the system were mounted at the lower end of a 6 m long pole attached outboard at port side to the hull of the vessel. Though the installation was quite demanding without any winches or cranes, the construction was sufficiently stable and easy to manage throughout the entire cruise. Nearly the entire fjord system, leaving only a small gap of 5 km at the innermost part and small stripes close to the shorelines could be surveyed during the cruise. For the first time, a comprehensive map of Skjoldungen Fjord is now available. The map displays water depths from close to zero up to 800 m, the deepest part along a stretch of about 10 km in the Southwest. The bathymetry of the northern fjord is remarkably different from the southern fjord: the southern fjord features an outer deep part showing water depths between 500 m and 800 m and a shallow inner part with depths less than 300 m and a prominent sill in between. The northern fjord shows a more gradual increase of water depths from 200 m in the inner part to 600 m at the entrance.

  9. Neutron guide

    DOEpatents

    Greene, Geoffrey L.

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  10. Adjuvant and Definitive Radiotherapy for Adrenocortical Carcinoma

    SciTech Connect

    Sabolch, Aaron; Feng, Mary; Griffith, Kent; Hammer, Gary; Doherty, Gerard; Ben-Josef, Edgar

    2011-08-01

    Purpose: To evaluate the impact of both adjuvant and definitive radiotherapy on local control of adrenocortical carcinoma. Methods and Materials: Outcomes were analyzed from 58 patients with 64 instances of treatment for adrenocortical carcinoma at the University of Michigan's Multidisciplinary Adrenal Cancer Clinic. Thirty-seven of these instances were for primary disease, whereas the remaining 27 were for recurrent disease. Thirty-eight of the treatment regimens involved surgery alone, 10 surgery plus adjuvant radiotherapy, and 16 definitive radiotherapy for unresectable disease. The effects of patient, tumor, and treatment factors were modeled simultaneously using multiple variable Cox proportional hazards regression for associations with local recurrence, distant recurrence, and overall survival. Results: Local failure occurred in 16 of the 38 instances that involved surgery alone, in 2 of the 10 that consisted of surgery plus adjuvant radiotherapy, and in 1 instance of definitive radiotherapy. Lack of radiotherapy use was associated with 4.7 times the risk of local failure compared with treatment regimens that involved radiotherapy (95% confidence interval, 1.2-19.0; p = 0.030). Conclusions: Radiotherapy seems to significantly lower the risk of local recurrence/progression in patients with adrenocortical carcinoma. Adjuvant radiotherapy should be strongly considered after surgical resection.

  11. Technical Note: DIRART- A software suite for deformable image registration and adaptive radiotherapy research

    SciTech Connect

    Yang Deshan; Brame, Scott; El Naqa, Issam; Aditya, Apte; Wu Yu; Murty Goddu, S.; Mutic, Sasa; Deasy, Joseph O.; Low, Daniel A.

    2011-01-15

    Purpose: Recent years have witnessed tremendous progress in image guide radiotherapy technology and a growing interest in the possibilities for adapting treatment planning and delivery over the course of treatment. One obstacle faced by the research community has been the lack of a comprehensive open-source software toolkit dedicated for adaptive radiotherapy (ART). To address this need, the authors have developed a software suite called the Deformable Image Registration and Adaptive Radiotherapy Toolkit (DIRART). Methods: DIRART is an open-source toolkit developed in MATLAB. It is designed in an object-oriented style with focus on user-friendliness, features, and flexibility. It contains four classes of DIR algorithms, including the newer inverse consistency algorithms to provide consistent displacement vector field in both directions. It also contains common ART functions, an integrated graphical user interface, a variety of visualization and image-processing features, dose metric analysis functions, and interface routines. These interface routines make DIRART a powerful complement to the Computational Environment for Radiotherapy Research (CERR) and popular image-processing toolkits such as ITK. Results: DIRART provides a set of image processing/registration algorithms and postprocessing functions to facilitate the development and testing of DIR algorithms. It also offers a good amount of options for DIR results visualization, evaluation, and validation. Conclusions: By exchanging data with treatment planning systems via DICOM-RT files and CERR, and by bringing image registration algorithms closer to radiotherapy applications, DIRART is potentially a convenient and flexible platform that may facilitate ART and DIR research.

  12. Nanomedicines for image-guided cancer therapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zheng, Jinzi

    2016-09-01

    Imaging technologies are being increasingly employed to guide the delivery of cancer therapies with the intent to increase their performance and efficacy. To date, many patients have benefited from image-guided treatments through prolonged survival and improvements in quality of life. Advances in nanomedicine have enabled the development of multifunctional imaging agents that can further increase the performance of image-guided cancer therapy. Specifically, this talk will focus on examples that demonstrate the benefits and application of nanomedicine in the context of image-guide surgery, personalized drug delivery, tracking of cell therapies and high precision radiotherapy delivery.

  13. High-definition laser display system using multibeam scanning

    NASA Astrophysics Data System (ADS)

    Zhao, Zhenming; Li, Yongda; Lang, Baihe

    2000-10-01

    The design and principles of a high definition laser display system with multi-beam scanning are described. The system employs 4 laser beams each being composed of red, green and blue components. The four beams from one scanner are scanned simultaneously by a rotating polygonal mirror for horizontal deflection and by a galvanometer for vertical deflection. Compared with conventional single-beam scanning, the new design has the following advantages: 1) The rotational speed of the polygonal mirrors can be reduced by a factor of 4, which would improve the system performance and decrease the difficulties of the manufacture of the system. The size of the polygonal facet and, therefore, the laser beam diameter can be increased which would decrease the pixel diffusion. 2) The simultaneous operation of the 4 modulators would improve the horizontal resolution by a factor of 4. 3) For the same screen brightness, the single pixel power density can be reduced by a factor of 4 which would decrease the hazardous laser radiation.

  14. Remote characterizing diffuse hydrothermal flows using multi-beam sonar

    NASA Astrophysics Data System (ADS)

    Ivakin, A. N.; Jackson, D. R.; Bemis, K. G.; Xu, G.

    2015-12-01

    Multi-beam sonars are normally used for bottom bathymetry and backscatter intensity measurements, which provide a base for remotely characterizing the seabed. If not only sonar echo intensity (squared magnitude of acoustic pressure) but also the cross-correlation between successive echoes is measured, then temporal changes in sound speed in the near-bottom environment can be determined. This, in turn, allows estimation of the change of environmental parameters, e.g. temperature variations, as there is a simple linear relationship between sound speed and temperature changes. Stochastic modeling shows that the dependence of the echo decorrelation on the lag time has a relationship with the statistics of temperature variations above the seabed that determine their spatial and temporal scales, power spectra, and structure functions. This approach has been applied to quantify the bottom diffuse hydrothermal flow activity at the Main Endeavour Field on the Juan de Fuca Ridge using the Cabled Observatory Vent Imaging Sonar (COVIS) connected to the Ocean Network Canada's NEPTUNE observatory. In contrast to our previous work, which was focused on spatial imaging of acoustic decorrelation at fixed lag, here the lag dependence of the acoustic structure function is measured and analyzed. This allows extraction of additional parameters of temperature fluctuation statistics. A potential to map diffuse flow using a ROV/HOV is discussed.

  15. The 6-GHz multibeam maser survey - I. Techniques

    NASA Astrophysics Data System (ADS)

    Green, J. A.; Caswell, J. L.; Fuller, G. A.; Avison, A.; Breen, S. L.; Brooks, K.; Burton, M. G.; Chrysostomou, A.; Cox, J.; Diamond, P. J.; Ellingsen, S. P.; Gray, M. D.; Hoare, M. G.; Masheder, M. R. W.; McClure-Griffiths, N. M.; Pestalozzi, M.; Phillips, C.; Quinn, L.; Thompson, M. A.; Voronkov, M. A.; Walsh, A.; Ward-Thompson, D.; Wong-McSweeney, D.; Yates, J. A.; Cohen, R. J.

    2009-01-01

    A new seven-beam 6-7GHz receiver has been built to survey the Galaxy and the Magellanic Clouds for newly forming high-mass stars that are pinpointed by strong methanol maser emission at 6668MHz. The receiver was jointly constructed by Jodrell Bank Observatory (JBO) and the Australia Telescope National Facility (ATNF) and allows simultaneous coverage at 6668 and 6035MHz. It was successfully commissioned at Parkes in 2006 January and is now being used to conduct the Parkes-Jodrell multibeam maser survey of the Milky Way. This will be the first systematic survey of the entire Galactic plane for masers of not only 6668-MHz methanol, but also 6035-MHz excited-state hydroxyl. The survey is two orders of magnitude faster than most previous systematic surveys and has an rms noise level of ~0.17Jy. This paper describes the observational strategy, techniques and reduction procedures of the Galactic and Magellanic Cloud surveys, together with deeper, pointed, follow-up observations and complementary observations with other instruments. It also includes an estimate of the survey detection efficiency. The 111d of observations with the Parkes telescope have so far yielded >800 methanol sources, of which ~350 are new discoveries. The whole project will provide the first comprehensive Galaxy-wide catalogue of 6668-MHz and 6035-MHz masers.

  16. Monitoring Large-Scale Sediment Transport Dynamics with Multibeam Sonar

    NASA Astrophysics Data System (ADS)

    Parsons, D. R.; Simmons, S. M.; Best, J. L.; Keevil, G. M.; Oberg, K.; Czuba, J. A.

    2009-05-01

    Multibeam Echo-Sounder systems have developed rapidly over recent decades and are routinely deployed to provide high-resolution bathymetric information in and range of environments. Modern data handling and storage technologies now facilitate the logging of the raw acoustic back-scatter information that was previously discarded by these systems. This paper describes methodologies that exploit this logging capability to quantify both the concentration and dynamics of suspended sediment within the water column. This development provides a multi-purpose tool for the holistic surveying of sediment transport dynamics by imaging suspended sediment concentration, the associated flows and providing concurrent high-resolution bathymetry. Results obtained a RESON 7125 MBES are presented from both well constrained dock-side testing and full field deployment over dune bedforms in the Mississippi. The capacity of the system to image suspended sediment structures is demonstrated and a novel methodology for estimating 2D flow velocities, based on frame cross-correlation methods, is introduced. The results demonstrate the capability of MBES systems to successfully map spatial and temporal variations in suspended sediment concentration throughout a 2D swath and application of the velocity estimation algorithms allow real-time holistic monitoring of turbulent flow processes and suspended sediment fluxes at a scale previously unrealisable. Turbulent flow over a natural dune bedform on the Mississippi is used to highlight the process information provided and the insights that can be gleaned for this technical development.

  17. Multi-beam Measurements of Langmuir Turbulence at HAARP

    NASA Astrophysics Data System (ADS)

    Adham, N.; Sheerin, J. P.; Watanabe, N.; Rayyan, N.; Spry, D.; Watkins, B. J.; Bristow, W. A.; Bernhardt, P. A.

    2012-12-01

    We report the results from a recent series of campaigns employing the HAARP HF transmitter to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Short pulse, low duty cycle experiments demonstrate control and suppression of artificial field-aligned irregularities (AFAI). This allows the isolation of ponderomotive plasma turbulence effects. New multi-beam measurements of the plasma line spectra demonstrate marked dependence on the aspect angle of the HF pump beam and the pointing of the MUIR diagnostic radar. Refraction is shown to play an important role in the observed plasma line spectral density as a function of zenith angle including the discovery of a second region of strong turbulence displaced southward from the primary HF interaction region along the geomagnetic field line. Background ionospheric conditions are also observed to have a significant effect. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.

  18. Advanced Communication Technology Satellite (ACTS) multibeam antenna analysis and experiment

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Lagin, Alan R.; Larko, Jeffrey M.; Narvaez, Adabelle

    1992-01-01

    One of the most important aspects of a satellite communication system design is the accurate estimation of antenna performance degradation. Pointing error, end coverage gain, peak gain degradation, etc. are the main concerns. The thermal or dynamic distortions of a reflector antenna structural system can affect the far-field antenna power distribution in a least four ways. (1) The antenna gain is reduced; (2) the main lobe of the antenna can be mispointed thus shifting the destination of the delivered power away from the desired locations; (3) the main lobe of the antenna pattern can be broadened, thus spreading the RF power over a larger area than desired; and (4) the antenna pattern sidelobes can increase, thus increasing the chances of interference among adjacent beams of multiple beam antenna system or with antenna beams of other satellites. The in-house developed NASA Lewis Research Center thermal/structural/RF analysis program was designed to accurately simulate the ACTS in-orbit thermal environment and predict the RF antenna performance. The program combines well establish computer programs (TRASYS, SINDA and NASTAN) with a dual reflector-physical optics RF analysis program. The ACTS multibeam antenna configuration is analyzed and several thermal cases are presented and compared with measurements (pre-flight).

  19. Design and benefits of a multibeam Earth Observing Radar

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.; Walsh, E. J.; Beck, F. B.

    1985-01-01

    The oceanographic rationale is described for continuing to advance the state of the art in satellite radar altimetry, and the expected capabilities of a multibeam Earth Observing Radar are noted. At the end of this decade, there is the possibility that altimeters may be in orbit aboard the American TOPEX, the ESA ERS-1, and the French SPOT satellites at the same time. The TOPEX version will be the most precise altimeter yet built. Global ocean circulation will be measured by using TOPEX to monitor the elevation changes across the ocean basins due to oceanic currents. It will then be possible to monitor the 'mean' circulation patterns in the oceans. The multiple beams of EOR might be used to measure the curvature of the topographic surface. The use of curvature is especially beneficial because it is directly related to ocean circulation, which is a function only of the Laplacian of the topographic height field in a given area. With the EOR, that height field will be known and ocean circulation can be immediately computed.

  20. Magnetic resonance image guided brachytherapy.

    PubMed

    Tanderup, Kari; Viswanathan, Akila N; Kirisits, Christian; Frank, Steven J

    2014-07-01

    The application of magnetic resonance image (MRI)-guided brachytherapy has demonstrated significant growth during the past 2 decades. Clinical improvements in cervix cancer outcomes have been linked to the application of repeated MRI for identification of residual tumor volumes during radiotherapy. This has changed clinical practice in the direction of individualized dose administration, and resulted in mounting evidence of improved clinical outcome regarding local control, overall survival as well as morbidity. MRI-guided prostate high-dose-rate and low-dose-rate brachytherapies have improved the accuracy of target and organs-at-risk delineation, and the potential exists for improved dose prescription and reporting for the prostate gland and organs at risk. Furthermore, MRI-guided prostate brachytherapy has significant potential to identify prostate subvolumes and dominant lesions to allow for dose administration reflecting the differential risk of recurrence. MRI-guided brachytherapy involves advanced imaging, target concepts, and dose planning. The key issue for safe dissemination and implementation of high-quality MRI-guided brachytherapy is establishment of qualified multidisciplinary teams and strategies for training and education.

  1. A parallel multibeam mask writing method and its impact on data volumes

    NASA Astrophysics Data System (ADS)

    Chaudhary, N.; Luo, Y.; Savari, S. A.

    2016-10-01

    The pattern requirements for mask writers have steadily been growing, and there is considerable interest in multibeam mask writers to handle the throughput and resolution challenges associated with the needs of sub- 10nm technology nodes. The mask writer of the future will process terabits of information per second and deal with petabytes of data. In this paper, we investigate lossless data compression and system parallelism together to address part of the data transfer problem. We explore simple compression algorithms and the effect of parallelism on the total compressed data in a multibeam system architecture motivated by the IMS Nanofabrication multibeam mask writer series eMET. We model the shot assignment problem and beam shot overlap by means of two-dimensional linear spatial filtering on an image. We describe a fast scanning strategy and investigate data volumes for a family of beam arrays with 2N ×(2N -1) beams, where N is an odd integer.

  2. 2000 Multibeam Sonar Survey of Crater Lake, Oregon - Data, GIS, Images, and Movies

    USGS Publications Warehouse

    Gardner, James V.; Dartnell, Peter

    2001-01-01

    In the summer of 2000, the U.S. Geological Survey, Pacific Seafloor Mapping Project in cooperation with the National Park Service, and the Center for Coastal and Ocean Mapping, University of New Hampshire used a state-of-the-art multibeam sonar system to collect high-resolution bathymetry and calibrated, co-registered acoustic backscatter to support both biological and geological research in the Crater Lake area. This interactive CD-ROM contains the multibeam bathymetry and acoustic backscatter data, along with an ESRI ArcExplorer project (and software), images, and movies.

  3. Generalized energy-aperture product limit for multi-beam and spotlight SARs

    SciTech Connect

    Karr, T.J.

    1995-12-21

    The SAR energy-aperture product limit is extended to multi-beam SARS, Spotlight and moving spotlight SARS. This fundamental limit bounds the tradeoff between energy and antenna size. The kinematic relations between design variables such as platform speed, pulse repetition frequency, beam width and area rate are analyzed in a unified framework applicable to a wide variety of SARs including strip maps, spotlights, vermer arrays and multi-beam SARS, both scanning and swept-beam. Then the energy-aperture product limit is derived from the signal-to noise requirement and the kinematic constraints. The derivation clarifies impact of multiple beams and spotlighting on SAR performance.

  4. Radiotherapy in patients with connective tissue diseases.

    PubMed

    Giaj-Levra, Niccolò; Sciascia, Savino; Fiorentino, Alba; Fersino, Sergio; Mazzola, Rosario; Ricchetti, Francesco; Roccatello, Dario; Alongi, Filippo

    2016-03-01

    The decision to offer radiotherapy in patients with connective tissue diseases continues to be challenging. Radiotherapy might trigger the onset of connective tissue diseases by increasing the expression of self-antigens, diminishing regulatory T-cell activity, and activating effectors of innate immunity (dendritic cells) through Toll-like receptor-dependent mechanisms, all of which could potentially lead to breaks of immune tolerance. This potential risk has raised some debate among radiation oncologists about whether patients with connective tissue diseases can tolerate radiation as well as people without connective tissue diseases. Because the number of patients with cancer and connective tissue diseases needing radiotherapy will probably increase due to improvements in medical treatment and longer life expectancy, the issue of interactions between radiotherapy and connective tissue diseases needs to be clearer. In this Review, we discuss available data and evidence for patients with connective tissue diseases treated with radiotherapy.

  5. Gut microbial dysbiosis may predict diarrhea and fatigue in patients undergoing pelvic cancer radiotherapy: a pilot study.

    PubMed

    Wang, Aiping; Ling, Zongxin; Yang, Zhixiang; Kiela, Pawel R; Wang, Tao; Wang, Cheng; Cao, Le; Geng, Fang; Shen, Mingqiang; Ran, Xinze; Su, Yongping; Cheng, Tianmin; Wang, Junping

    2015-01-01

    Fatigue and diarrhea are the most frequent adverse effects of pelvic radiotherapy, while their etiologies are largely unknown. The aim of this study is to investigate the correlations between fatigue, diarrhea, and alterations in gut microbiota induced by pelvic radiotherapy. During the 5-week treatment of pelvic radiotherapy in 11 cancer patients, the general fatigue score significantly increased and was more prominent in the patients with diarrhea. The fatigue score was closely correlated with the decrease of serum citrulline (an indicator of the functional enterocyte mass) and the increases of systemic inflammatory proteins, including haptoglobin, orosomuoid, α1-antitrypsin and TNF-α. Serum level of lipopolysaccharide (LPS) was also elevated, especially in the patients with diarrhea indicating epithelial barrier breach and endotoxemia. Pyrosequencing analysis of 16S rRNA gene revealed that microbial diversity, richness, and the Firmicutes/Bacteroidetes ratio were significantly altered prior to radiotherapy in patients who later developed diarrhea. Pelvic radiotherapy induced further changes in fecal microbial ecology, some of which were specific to the patients with or without diarrhea. Our results indicate that gut microbial dysbiosis prior to radiation therapy may be exploited to predict development of diarrhea and to guide preventive treatment options. Radiation-induced dysbiosis may contribute to pelvic radiation disease, including mucositis, diarrhea, systemic inflammatory response, and pelvic radiotherapy-associated fatigue in cancer patients.

  6. Multibeam mapping of the West Florida Shelf, Gulf of Mexico

    USGS Publications Warehouse

    Gardner, James V.; Dartnell, Peter; Sulak, Kenneth J.

    2002-01-01

    A zone of deep-water reefs is thought to extend from the mid and outer shelf south of Mississippi and Alabama to at least the northwestern Florida shelf off Panama City, Florida (Figure 1). The reefs off Mississippi and Alabama are found in water depths of 60 to 120 m (Ludwick and Walton, 1957; Gardner et al., 2001, in press) and were the focus of a multibeam echosounder (MBES) mapping survey by the U.S. Geological Survey (USGS) in 2000 (Gardner et al., 2000, Gardner et al., 2001, in press). If this deep-water-reef trend does exist along the northwestern Florida shelf, then it is critical to determine the accurate geomorphology and reef type that occur because of their importance as benthic habitats for fisheries. Georeferenced high-resolution mapping of bathymetry is a fundamental first step in the study of areas suspected to be critical habitats. Morphology is thought to be critical to defining the distribution of dominant demersal plankton/planktivores communities. Fish faunas of shallow hermatypic reefs have been well studied, but those of deep ahermatypic reefs have been relatively ignored. The ecology of deep-water ahermatypic reefs is fundamentally different from hermatypic reefs because autochthonous intracellular symbiotic zooxanthellae (the carbon source for hermatypic corals) do not form the base of the trophic web in ahermatypic reefs. Instead, exogenous plankton, transported to the reef by currents, serves as the primary carbon source. Thus, one of the principle uses of the morphology data will be to identify whether any reefs found are hermatypic or ahermatypic in origin.

  7. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, Kevin M.; Doyle, Barney L.

    1996-01-01

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue.

  8. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, K.M.; Doyle, B.L.

    1996-08-20

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue. 25 figs.

  9. Discovery Guide.

    ERIC Educational Resources Information Center

    Edwards, Claudia

    This guide describes a project (Teamwork Approach to Better Schools) developed to promote the establishment of a formal teacher support network in a variety of schools within a local support district. The model is a guide to newcomers to the project, helping eliminate startup problems and providing a sound base of experiences. The program began…

  10. SU-E-J-159: Analysis of Total Imaging Uncertainty in Respiratory-Gated Radiotherapy

    SciTech Connect

    Suzuki, J; Okuda, T; Sakaino, S; Yokota, N

    2015-06-15

    Purpose: In respiratory-gated radiotherapy, the gating phase during treatment delivery needs to coincide with the corresponding phase determined during the treatment plan. However, because radiotherapy is performed based on the image obtained for the treatment plan, the time delay, motion artifact, volume effect, and resolution in the images are uncertain. Thus, imaging uncertainty is the most basic factor that affects the localization accuracy. Therefore, these uncertainties should be analyzed. This study aims to analyze the total imaging uncertainty in respiratory-gated radiotherapy. Methods: Two factors of imaging uncertainties related to respiratory-gated radiotherapy were analyzed. First, CT image was used to determine the target volume and 4D treatment planning for the Varian Realtime Position Management (RPM) system. Second, an X-ray image was acquired for image-guided radiotherapy (IGRT) for the BrainLAB ExacTrac system. These factors were measured using a respiratory gating phantom. The conditions applied during phantom operation were as follows: respiratory wave form, sine curve; respiratory cycle, 4 s; phantom target motion amplitude, 10, 20, and 29 mm (which is maximum phantom longitudinal motion). The target and cylindrical marker implanted in the phantom coverage of the CT images was measured and compared with the theoretically calculated coverage from the phantom motion. The theoretical position of the cylindrical marker implanted in the phantom was compared with that acquired from the X-ray image. The total imaging uncertainty was analyzed from these two factors. Results: In the CT image, the uncertainty between the target and cylindrical marker’s actual coverage and the coverage of CT images was 1.19 mm and 2.50mm, respectively. In the Xray image, the uncertainty was 0.39 mm. The total imaging uncertainty from the two factors was 1.62mm. Conclusion: The total imaging uncertainty in respiratory-gated radiotherapy was clinically acceptable. However

  11. Fabrication and Characterization of Three Dimensional Photonic Crystals Generated by Multibeam Interference Lithography

    ERIC Educational Resources Information Center

    Chen, Ying-Chieh

    2009-01-01

    Multibeam interference lithography is investigated as a manufacturing technique for three-dimensional photonic crystal templates. In this research, optimization of the optical setup and the photoresist initiation system leads to a significant improvement of the optical quality of the crystal, as characterized by normal incidence optical…

  12. X-Band Multi-Beam Klystron Design and Progress Report

    SciTech Connect

    Jensen, Aaron; Neilson, Jeff; Tantawi, Sami

    2015-04-15

    Progress on the development of a 5MW 16 beam x-band multi-beam klystron is presented. The power from each of the 16 klystrons is combined using a matched waveguide network. Mechanical and electric models and simulations are discussed. The status of procuring and assembling parts is presented.

  13. An uncertainty model for deep ocean single beam and multibeam echo sounder data

    NASA Astrophysics Data System (ADS)

    Marks, K. M.; Smith, W. H. F.

    2008-12-01

    Comparing single beam and multibeam echo sounder data where surveys overlap we find that: 95% of multibeam measurements are repeatable to within 0.47% of depth; older single beam data can be at least as accurate as multibeam; single beam and multibeam profiles show excellent agreement at full-wavelengths longer than 4 km; archival sounding errors are not Gaussian; 95% of archival soundings in the northwest Atlantic are accurate to within 1.6% of depth; the 95th percentile error is about five times greater in pre-1969 data than in post-1968 data; many of the largest errors are located over large seafloor slopes, where small navigation errors can lead to large depth errors. Our uncertainty model has the form σ 2 = a 2 + ( bz)2 + ( cs)2, where 2 σ is approximately the 95th percentile error, z is the depth, s is the slope, and a, b, c are constants we determine separately for pre-1969 and post-1968 data.

  14. Integrated Multibeam and LIDAR Bathymetry Data Offshore of New London and Niantic, Connecticut

    USGS Publications Warehouse

    Poppe, L.J.; Danforth, W.W.; McMullen, K.Y.; Parker, Castle E.; Lewit, P.G.; Doran, E.F.

    2010-01-01

    Nearshore areas within Long Island Sound are of great interest to the Connecticut and New York research and resource management communities because of their ecological, recreational, and commercial importance. Although advances in multibeam echosounder technology permit the construction of high-resolution representations of sea-floor topography in deeper waters, limitations inherent in collecting fixed-angle multibeam data make using this technology in shallower waters (less than 10 meters deep) difficult and expensive. These limitations have often resulted in data gaps between areas for which multibeam bathymetric datasets are available and the adjacent shoreline. To address this problem, the geospatial data sets released in this report seamlessly integrate complete-coverage multibeam bathymetric data acquired off New London and Niantic Bay, Connecticut, with hydrographic Light Detection and Ranging (LIDAR) data acquired along the nearshore. The result is a more continuous sea floor representation and a much smaller gap between the digital bathymetric data and the shoreline than previously available. These data sets are provided online and on CD-ROM in Environmental Systems Research Institute (ESRI) raster-grid and GeoTIFF formats in order to facilitate access, compatibility, and utility.

  15. Multi-beam surveys of the Michelson Ridge guyots: Subduction or obduction

    NASA Astrophysics Data System (ADS)

    Christian Smoot, N.

    1983-12-01

    This is the first graphic presentation of the Michelson Ridge in its entirety from a total coverage, multi-beam survey. The ridge splits the Izu and Bonin Trenches, is comprised of four guyots, and is anomalous to the strike of all other ridges heretofore discovered in the Pacific Ocean. The ridge is obducting/offscraping onto the Philippine plate instead of subducting.

  16. Assessment of a multibeam Fizeau wedge interferometer for Doppler wind lidar.

    PubMed

    McKay, Jack A

    2002-03-20

    The Fabry-Perot interferometer is the standard instrument for the direct detection Doppler lidar measurement of atmospheric wind speeds. The multibeam Fizeau wedge has some practical advantages over the Fabry-Perot, such as the linear fringe pattern, and is evaluated for this application. The optimal Fizeau must have a resolving power of 10(6) or more. As the multibeam Fizeau wedge is pushed to such high resolving power, the interference fringes of the device become complicated by asymmetry and secondary maxima. A simple condition for the interferometer plate reflectance, optical gap, and wedge angle reveals whether a set of parameters will yield simple, Airy-like fringes or complex Fizeau fringes. Tilting of the Fizeau wedge improves the fringe shape and permits an extension of the regime of Airy-like fringes to higher resolving power. Sufficient resolving power for the wind lidar application is shown to be possible with a large-gap, low-finesse multibeam Fizeau wedge. Liabilities of the multibeam Fizeau wedge in the wind lidar application include a smaller acceptance solid angle and calibration sensitivity to localized deviations of the plates from the ideal.

  17. Multibeam Advisory Committee (MAC) - Three Years of Working Towards the Consistent Acquisition of High Quality Multibeam Echosounder Data Across the US Academic Fleet

    NASA Astrophysics Data System (ADS)

    Johnson, P. D.; Beaudoin, J. D.; Ferrini, V. L.

    2014-12-01

    In 2010 the National Science Foundation (NSF) held a meeting to address the variability in quality of multibeam echosounder (MBES) data for ships of the US Academic Fleet. The participants of this meeting identified that there was a strong need to coordinate operational efforts for multibeam data acquisition across all vessels of the fleet. To address this need, the University of New Hampshire's Center for Coastal and Ocean Mapping joined with Lamont-Doherty Earth Observatory in submitting a proposal to NSF to form the Multibeam Advisory Committee (MAC), which was funded in the fall of 2011. The MAC through the last three years has assembled a team of experts who have been called upon to respond to questions about MBES data acquisition and data quality, conduct shipboard assessments of MBES systems, create documentation supporting best practices for multibeam acquisition and data workflow, and to develop tools to support both data acquisition and quality assessment. Tools and techniques developed through the MAC include: SVP Editor - a graphical display and editing program for SVP, CTD, XBT, and XSV data. This program integrates directly with multibeam acquisition software to both receive navigation and depth information, used during the processing of the sound velocity data, and also has the ability to send edited and processed cast directly to the sounder. MBES Accuracy and Swath Performance Tools - tools which can assess both the accuracy of MBES bathymetric data as compared to a reference surface grid and to examine swath width performance of MBES systems as a function of depth. Remote Patch Test Support - the MAC provides patch test site selection, detailed execution plans, and tools to support the transmittal of a downsized raw MBES data files from ships over satellite in order to determine the angular offset values (pitch, heading, and roll) for MBES systems with no MAC personnel on board. Built In Self Test (BIST) Evaluation Tools - tools which can plot and

  18. Performance Analysis of Integrated Wireless Sensor and Multibeam Satellite Networks Under Terrestrial Interference

    PubMed Central

    Li, Hongjun; Yin, Hao; Gong, Xiangwu; Dong, Feihong; Ren, Baoquan; He, Yuanzhi; Wang, Jingchao

    2016-01-01

    This paper investigates the performance of integrated wireless sensor and multibeam satellite networks (IWSMSNs) under terrestrial interference. The IWSMSNs constitute sensor nodes (SNs), satellite sinks (SSs), multibeam satellite and remote monitoring hosts (RMHs). The multibeam satellite covers multiple beams and multiple SSs in each beam. The SSs can be directly used as SNs to transmit sensing data to RMHs via the satellite, and they can also be used to collect the sensing data from other SNs to transmit to the RMHs. We propose the hybrid one-dimensional (1D) and 2D beam models including the equivalent intra-beam interference factor β from terrestrial communication networks (TCNs) and the equivalent inter-beam interference factor α from adjacent beams. The terrestrial interference is possibly due to the signals from the TCNs or the signals of sinks being transmitted to other satellite networks. The closed-form approximations of capacity per beam are derived for the return link of IWSMSNs under terrestrial interference by using the Haar approximations where the IWSMSNs experience the Rician fading channel. The optimal joint decoding capacity can be considered as the upper bound where all of the SSs’ signals can be jointly decoded by a super-receiver on board the multibeam satellite or a gateway station that knows all of the code books. While the linear minimum mean square error (MMSE) capacity is where all of the signals of SSs are decoded singularly by a multibeam satellite or a gateway station. The simulations show that the optimal capacities are obviously higher than the MMSE capacities under the same conditions, while the capacities are lowered by Rician fading and converge as the Rician factor increases. α and β jointly affect the performance of hybrid 1D and 2D beam models, and the number of SSs also contributes different effects on the optimal capacity and MMSE capacity of the IWSMSNs. PMID:27754438

  19. Performance Analysis of Integrated Wireless Sensor and Multibeam Satellite Networks Under Terrestrial Interference.

    PubMed

    Li, Hongjun; Yin, Hao; Gong, Xiangwu; Dong, Feihong; Ren, Baoquan; He, Yuanzhi; Wang, Jingchao

    2016-10-14

    This paper investigates the performance of integrated wireless sensor and multibeam satellite networks (IWSMSNs) under terrestrial interference. The IWSMSNs constitute sensor nodes (SNs), satellite sinks (SSs), multibeam satellite and remote monitoring hosts (RMHs). The multibeam satellite covers multiple beams and multiple SSs in each beam. The SSs can be directly used as SNs to transmit sensing data to RMHs via the satellite, and they can also be used to collect the sensing data from other SNs to transmit to the RMHs. We propose the hybrid one-dimensional (1D) and 2D beam models including the equivalent intra-beam interference factor β from terrestrial communication networks (TCNs) and the equivalent inter-beam interference factor α from adjacent beams. The terrestrial interference is possibly due to the signals from the TCNs or the signals of sinks being transmitted to other satellite networks. The closed-form approximations of capacity per beam are derived for the return link of IWSMSNs under terrestrial interference by using the Haar approximations where the IWSMSNs experience the Rician fading channel. The optimal joint decoding capacity can be considered as the upper bound where all of the SSs' signals can be jointly decoded by a super-receiver on board the multibeam satellite or a gateway station that knows all of the code books. While the linear minimum mean square error (MMSE) capacity is where all of the signals of SSs are decoded singularly by a multibeam satellite or a gateway station. The simulations show that the optimal capacities are obviously higher than the MMSE capacities under the same conditions, while the capacities are lowered by Rician fading and converge as the Rician factor increases. α and β jointly affect the performance of hybrid 1D and 2D beam models, and the number of SSs also contributes different effects on the optimal capacity and MMSE capacity of the IWSMSNs.

  20. Radiotherapy for Pancreatic Neuroendocrine Tumors

    SciTech Connect

    Contessa, Joseph N.; Griffith, Kent A.; Wolff, Elizabeth; Ensminger, William; Zalupski, Mark; Ben-Josef, Edgar

    2009-11-15

    Purpose: Pancreatic neuroendocrine tumors (PNTs) are rare malignant neoplasms considered to be resistant to radiotherapy (RT), although data on efficacy are scarce. We reviewed our institutional experience to further delineate the role of RT for patients with PNTs. Methods and Materials: Between 1986 and 2006, 36 patients with PNTs were treated with RT to 49 sites. Of these 36 patients, 23 had radiographic follow-up data, which were used to determine the tumor response rate and freedom from local progression. Long-term toxicity was graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events. Results: The overall response rate to RT was 39% (13% complete response, 26% partial response, 56% stable disease, and 4% progressive disease). A significant difference in the freedom from local progression between the groups receiving either greater than or less than the median 2 Gy/fraction biologically equivalent dose of 49.6 Gy was found, with all radiographic progression occurring in patients who had received <=32 Gy. The actuarial 3-year local freedom from progression rate was 49%. Palliation was achieved in 90% of patients, with either improvement or resolution of symptoms after RT. Of 35 patients, 33 had metastatic disease at their referral for RT, and the median overall survival for this patient population was 2 years. Three long-term Grade 3 or greater toxicities were recorded. Conclusion: RT is an effective modality for achieving local control in patients with PNTs. RT produces high rates of symptomatic palliation and freedom from local progression. Prospective trials of radiotherapy for PNTs are warranted.

  1. Evolution of Hypofractionated Accelerated Radiotherapy for Prostate Cancer – The Sunnybrook Experience

    PubMed Central

    Musunuru, Hima Bindu; Cheung, Patrick; Loblaw, Andrew

    2014-01-01

    Stereotactic ablative body radiotherapy (SABR) is a newer method of ultra hypo fractionated radiotherapy that uses combination of image-guided radiotherapy (IGRT) and intensity-modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT), to deliver high doses of radiation in a few fractions to a target, at the same time sparing the surrounding organs at risk (OAR). SABR is ideal for treating small volumes of disease and has been introduced in a number of disease sites including brain, lung, liver, spine, and prostate. Given the radiobiological advantages of treating prostate cancer with high doses per fraction, SABR is becoming a standard of care for low and intermediate-risk prostate cancer patients based upon the results from Sunnybrook and also the US-based prostate SABR consortium. This review examines the development of moderate and ultra hypo-fractionation schedules at the Odette Cancer centre, Sunnybrook Health Sciences. Moderate hypo-fractionation protocol was first developed in 2001 for intermediate-risk prostate cancer and from there on different treatment schedules including SABR evolved for all risk groups. PMID:25452934

  2. SU-E-J-206: Adaptive Radiotherapy for Gynecological Malignancies with MRIGuided Cobolt-60 Radiotherapy

    SciTech Connect

    Lamb, J; Kamrava, M; Agazaryan, N; Cao, M; Low, D; Thomas, D; Yang, Y

    2015-06-15

    Purpose: Even in the IMRT era, bowel toxicity and bone marrow irradiation remain concerns with pelvic irradiation. We examine the potential gain from an adaptive radiotherapy workflow for post-operative gynecological patients treated to pelvic targets including lymph nodes using MRI-guided Co-60 radiation therapy. Methods: An adaptive workflow was developed with the intent of minimizing time overhead of adaptive planning. A pilot study was performed using retrospectively analyzed images from one patient’s treatment. The patient’s treated plan was created using conventional PTV margins. Adaptive treatment was simulated on the patient’s first three fractions. The daily PTV was created by removing non-target tissue, including bone, muscle and bowel, from the initial PTV based on the daily MRI. The number of beams, beam angles, and optimization parameters were kept constant, and the plan was re-optimized. Normal tissue contours were not adjusted for the re-optimization, but were adjusted for evaluation of plan quality. Plan quality was evaluated based on PTV coverage and normal tissue DVH points per treatment protocol. Bowel was contoured as the entire bowel bag per protocol at our institution. Pelvic bone marrow was contoured per RTOG protocol 1203. Results: For the clinically treated plan, the volume of bowel receiving 45 Gy was 380 cc, 53% of the rectum received 30 Gy, 35% of the bladder received 45 Gy, and 28% of the pelvic bone marrow received 40 Gy. For the adaptive plans, the volume of bowel receiving 45 Gy was 175–201 cc, 55–62% of the rectum received 30 Gy, 21– 27% of the bladder received 45 Gy, and 13–17% of the pelvic bone marrow received 40 Gy. Conclusion: Adaptive planning led to a large reduction of bowel and bone marrow dose in this pilot study. Further study of on-line adaptive techniques for the radiotherapy of pelvic lymph nodes is warranted. Dr. Low is a member of the scientific advisory board of ViewRay, Inc.

  3. Intraoperative Radiotherapy in Childhood Malignant Astrocytoma

    PubMed Central

    Rana, Sohail R.; Haddy, Theresa B.; Ashayeri, Ebrahim; Goldson, Alfred L.

    1984-01-01

    A 12-year-old black male patient with glioblastoma multiforme was treated with intraoperative radiotherapy followed by conventional external beam radiation and chemotherapy. The authors' clinical experience with these therapeutic measures is discussed. PMID:6330375

  4. Historical aspects of heavy ion radiotherapy

    SciTech Connect

    Raju, M.R.

    1995-03-01

    This paper presents historical developments of heavy-ion radiotherapy including discussion of HILAC and HIMAC and discussion of cooperation between Japan and the United States, along with personal reflections.

  5. Imaging Instrumentation and Techniques for Precision Radiotherapy

    NASA Astrophysics Data System (ADS)

    Parodi, Katia; Parodi, Katia; Thieke, Christian; Thieke, Christian

    Over the last decade, several technological advances have considerably improved the achievable precision of dose delivery in radiation therapy. Clinical exploitation of the superior tumor-dose conformality offered by modern radiotherapy techniques like intensity-modulated radiotherapy and ion beam therapy requires morphological and functional assessment of the tumor during the entire therapy chain from treatment planning to beam application and treatment response evaluation. This chapter will address the main rationale and role of imaging in state-of-the-art external beam radiotherapy. Moreover, it will present the status of novel imaging instrumentation and techniques being nowadays introduced in clinical use or still under development for image guidance and, ultimately, dose guidance of precision radiotherapy.

  6. [Conformal radiotherapy for vertebral bone metastasis].

    PubMed

    Faivre, J C; Py, J F; Vogin, G; Martinage, G; Salleron, J; Royer, P; Grandgirard, N; Pasquier, D; Thureau, S

    2016-10-01

    Analgesic external beam radiation therapy is a standard of care for patients with uncomplicated painful bone metastases and/or prevention of bone complications. In case of fracture risk, radiation therapy is performed after surgery in a consolidation of an analgesic purpose and stabilizing osteosynthesis. Radiotherapy is mandatory after vertebroplasty or kyphoplasty. Spinal cord compression - the only emergency in radiation therapy - is indicated postoperatively either exclusively for non surgical indication. Analgesic re-irradiation is possible in the case of insufficient response or recurrent pain after radiotherapy. Metabolic radiation, bisphosphonates or denosumab do not dissuade external radiation therapy for pain relief. Systemic oncological treatments can be suspended with a period of wash out given the risk of radiosensitization or recall phenomenon. Better yet, the intensity modulated radiotherapy and stereotactic radiotherapy can be part of a curative strategy for oligometastatic patients and suggest new treatment prospects.

  7. [Hopes of high dose-rate radiotherapy].

    PubMed

    Fouillade, Charles; Favaudon, Vincent; Vozenin, Marie-Catherine; Romeo, Paul-Henri; Bourhis, Jean; Verrelle, Pierre; Devauchelle, Patrick; Patriarca, Annalisa; Heinrich, Sophie; Mazal, Alejandro; Dutreix, Marie

    2017-03-07

    In this review, we present the synthesis of the newly acquired knowledge concerning high dose-rate irradiations and the hopes that these new radiotherapy modalities give rise to. The results were presented at a recent symposium on the subject.

  8. [Radiotherapy of carcinoma of the salivary glands].

    PubMed

    Servagi-Vernat, S; Tochet, F

    2016-09-01

    Indication, doses, and technique of radiotherapy for salivary glands carcinoma are presented, and the contribution of neutrons and carbon ions. The recommendations for delineation of the target volumes and organs at risk are detailed.

  9. Heavy particle radiotherapy: prospects and pitfalls

    SciTech Connect

    Faju, M.R.

    1980-01-01

    The use of heavy particles in radiotherapy of tumor volumes is examined. Particles considered are protons, helium ions, heavy ions, negative pions, and fast neutrons. Advantages and disadvantages are discussed. (ACR)

  10. Intracranial aneurysm formation after radiotherapy for medulloblastoma

    PubMed Central

    Kamide, Tomoya; Mohri, Masanao; Misaki, Kouichi; Uchiyama, Naoyuki; Nakada, Mitsutoshi

    2016-01-01

    Background: The development of an intracranial aneurysm after radiotherapy is rare but secondary effect of cranial irradiation in a primary disease treatment. Case Description: The patient was a 17-year-old male adolescent who was diagnosed as having a posterior fossa medulloblastoma when he was 8 years old. He had undergone tumor resection with radiotherapy and chemotherapy. A distal posterior inferior cerebellar artery aneurysm was identified by magnetic resonance imaging 8 years after radiotherapy and grew rapidly throughout the next 1 year. The patient underwent microsurgical clipping and was discharged without deficit. Conclusion: This experience demonstrates that physicians caring for patients who have undergone intracranial radiotherapy should carefully consider the possibility of an aneurysmal formation when conducting follow-up imaging. PMID:27999713

  11. Toggling between single and multi-beam effects on Stimulated Raman Scattering in a NIF hohlraum plasma

    NASA Astrophysics Data System (ADS)

    Moody, J. D.; Strozzi, D. J.; Divol, L.; Michel, P.; Ralph, J.; Berger, R. L.; Kirkwood, R. K.; Robey, H.; Landen, O. L.; Lepape, S.; Ross, S.; MacGowan, B. J.; Williams, E. A.; Glenzer, S. H.; Nikroo, A.

    2012-10-01

    We have developed a method for studying single and multi-beam laser-plasma interactions (LPI) in a NIF hohlraum plasma. This method utilizes toggling combinations of beams on and off during the time of high (partly saturated) stimulated Raman backscattering (SRS) and measuring the effects on the SRS. We find that during the high-intensity part of the laser pulse SRS saturates at about 10 - 20% reflectivity for single and multi-beam interactions. In addition, we can place limits on the cross-beam energy transfer and show that re-amplification is small due to multiple beam effects. Spectral measurements indicate that toggling beams creates a <=10% change in the plasma temperature. These results are important for developing models of multi-beam intereactions. We will describe the backscatter measurements and simple models used to constrain the multi-beam effects.

  12. Colostomy Guide

    MedlinePlus

    ... Side Effects Managing Cancer-related Side Effects Ostomies Colostomy Guide Colostomy surgery is done for many different diseases and problems. Some colostomies are done because of cancer; others are not. ...

  13. [Radiotherapy for small cell lung carcinoma].

    PubMed

    Pourel, N

    2016-10-01

    Radiotherapy for small cell lung carcinoma has known significant improvements over the past 10 years especially through routine use of PET-CT in the initial work-up and contouring before treatment. Prophylactic cranial irradiation remains a standard of care for locally advanced disease and is a subject of controversy for metastatic disease. A new indication for thoracic radiotherapy may soon arise for metastatic disease, still confirmation studies are ongoing.

  14. Blisters - an unusual effect during radiotherapy.

    PubMed

    Höller, U; Schubert, T; Budach, V; Trefzer, U; Beyer, M

    2013-11-01

    The skin reaction to radiation is regularly monitored in order to detect enhanced radiosensitivity of the patient, unexpected interactions (e.g. with drugs) or any inadvertent overdosage. It is important to distinguish secondary disease from radiation reaction to provide adequate treatment and to avoid unnecessary discontinuation of radiotherapy. A case of bullous eruption or blisters during radiotherapy of the breast is presented. Differential diagnoses bullous pemphigoid, pemphigus vulgaris, and bullous impetigo are discussed and treatment described.

  15. Radiotherapy in the treatment of vertebral hemangiomas

    SciTech Connect

    Faria, S.L.; Schlupp, W.R.; Chiminazzo, H. Jr.

    1985-02-01

    Symptomatic vertebral hemangiomas are not common. Although radiotherapy has been used as treatment, the data are sparse concerning total dose, fractionation and results. The authors report nine patients with vertebral hemangioma treated with 3000-4000 rad, 200 rad/day, 5 fractions per week, followed from 6 to 62 months. Seventy-seven percent had complete or almost complete disappearance of the symptoms. Radiotherapy schedules are discussed.

  16. Radiotherapy for Vestibular Schwannomas: A Critical Review

    SciTech Connect

    Murphy, Erin S.; Suh, John H.

    2011-03-15

    Vestibular schwannomas are slow-growing tumors of the myelin-forming cells that cover cranial nerve VIII. The treatment options for patients with vestibular schwannoma include active observation, surgical management, and radiotherapy. However, the optimal treatment choice remains controversial. We have reviewed the available data and summarized the radiotherapeutic options, including single-session stereotactic radiosurgery, fractionated conventional radiotherapy, fractionated stereotactic radiotherapy, and proton beam therapy. The comparisons of the various radiotherapy modalities have been based on single-institution experiences, which have shown excellent tumor control rates of 91-100%. Both stereotactic radiosurgery and fractionated stereotactic radiotherapy have successfully improved cranial nerve V and VII preservation to >95%. The mixed data regarding the ideal hearing preservation therapy, inherent biases in patient selection, and differences in outcome analysis have made the comparison across radiotherapeutic modalities difficult. Early experience using proton therapy for vestibular schwannoma treatment demonstrated local control rates of 84-100% but disappointing hearing preservation rates of 33-42%. Efforts to improve radiotherapy delivery will focus on refined dosimetry with the goal of reducing the dose to the critical structures. As future randomized trials are unlikely, we suggest regimented pre- and post-treatment assessments, including validated evaluations of cranial nerves V, VII, and VIII, and quality of life assessments with long-term prospective follow-up. The results from such trials will enhance the understanding of therapy outcomes and improve our ability to inform patients.

  17. Multibeam Bathymetry Data Value and Increased Efficiency Through Improved Data Access and Reuse

    NASA Astrophysics Data System (ADS)

    Price, D. J.; Fischman, D.; Varner, J. D.; McLean, S. J.; Henderson, J. F.

    2012-12-01

    The costs associated with geophysical data collection are ever increasing, and efficiencies created by data reuse have never been more important. Multibeam sonar bathymetry, collected by specialized research vessels in challenging oceanic environments, is an example data type that has experienced steady increases in acquisition costs. The National Oceanic and Atmospheric Administration's (NOAA) National Geophysical Data Center (NGDC) in partnership with the Academic Fleet Rolling deck To Repository (R2R) program provides streamlined delivery of multibeam bathymetric data from ship to shore to user. By ensuring long term archive and easy access to these data, we foster the innovative reuse of data to produce additional products to serve multiple needs beyond the original intent of collection. Archived data are made widely accessible to the scientific community and the public via Web technologies that also support a "whole ocean" approach to management and planning, leveraging limited resources, and maximizing the benefit of the original investment in data collection. Currently, the public has access to more than 461,000 multibeam bathymetry files from the NGDC website through various Web based tools (ngdc.noaa.gov/mgg/bathymetry/). Data are discoverable through geospatial maps and text search options. Once data are identified, users can download individual files, bundled data, or create custom grids. This paper takes a closer look at the multibeam data downloaded from the NGDC website and attempts to quantify the value of providing data for reuse. Using the number of surveys downloaded, an average cost to collect and steward multibeam data, and computing the ship hours required to acquire these data, we can estimate the value of the data freely available through R2R and NGDC. We will show that the value of long term stewardship, sharing, and reuse of these data provides a significant return on the initial investment. Proper data stewardship by NOAA's National Data

  18. Adapting radiotherapy to hypoxic tumours

    NASA Astrophysics Data System (ADS)

    Malinen, Eirik; Søvik, Åste; Hristov, Dimitre; Bruland, Øyvind S.; Rune Olsen, Dag

    2006-10-01

    In the current work, the concepts of biologically adapted radiotherapy of hypoxic tumours in a framework encompassing functional tumour imaging, tumour control predictions, inverse treatment planning and intensity modulated radiotherapy (IMRT) were presented. Dynamic contrast enhanced magnetic resonance imaging (DCEMRI) of a spontaneous sarcoma in the nasal region of a dog was employed. The tracer concentration in the tumour was assumed related to the oxygen tension and compared to Eppendorf histograph measurements. Based on the pO2-related images derived from the MR analysis, the tumour was divided into four compartments by a segmentation procedure. DICOM structure sets for IMRT planning could be derived thereof. In order to display the possible advantages of non-uniform tumour doses, dose redistribution among the four tumour compartments was introduced. The dose redistribution was constrained by keeping the average dose to the tumour equal to a conventional target dose. The compartmental doses yielding optimum tumour control probability (TCP) were used as input in an inverse planning system, where the planning basis was the pO2-related tumour images from the MR analysis. Uniform (conventional) and non-uniform IMRT plans were scored both physically and biologically. The consequences of random and systematic errors in the compartmental images were evaluated. The normalized frequency distributions of the tracer concentration and the pO2 Eppendorf measurements were not significantly different. 28% of the tumour had, according to the MR analysis, pO2 values of less than 5 mm Hg. The optimum TCP following a non-uniform dose prescription was about four times higher than that following a uniform dose prescription. The non-uniform IMRT dose distribution resulting from the inverse planning gave a three times higher TCP than that of the uniform distribution. The TCP and the dose-based plan quality depended on IMRT parameters defined in the inverse planning procedure (fields

  19. Study of a multi-beam accelerator driven thorium reactor

    SciTech Connect

    Ludewig, H.; Aronson, A.

    2011-03-01

    The primary advantages that accelerator driven systems have over critical reactors are: (1) Greater flexibility regarding the composition and placement of fissile, fertile, or fission product waste within the blanket surrounding the target, and (2) Potentially enhanced safety brought about by operating at a sufficiently low value of the multiplication factor to preclude reactivity induced events. The control of the power production can be achieved by vary the accelerator beam current. Furthermore, once the beam is shut off the system shuts down. The primary difference between the operation of an accelerator driven system and a critical system is the issue of beam interruptions of the accelerator. These beam interruptions impose thermo-mechanical loads on the fuel and mechanical components not found in critical systems. Studies have been performed to estimate an acceptable number of trips, and the value is significantly less stringent than had been previously estimated. The number of acceptable beam interruptions is a function of the length of the interruption and the mission of the system. Thus, for demonstration type systems and interruption durations of 1sec < t < 5mins, and t > 5mins 2500/yr and 50/yr are deemed acceptable. However, for industrial scale power generation without energy storage type systems and interruption durations of t < 1sec., 1sec < t < 10secs., 10secs < t < 5mins, and t > 5mins, the acceptable number of interruptions are 25000, 2500, 250, and 3 respectively. However, it has also been concluded that further development is required to reduce the number of trips. It is with this in mind that the following study was undertaken. The primary focus of this study will be the merit of a multi-beam target system, which allows for multiple spallation sources within the target/blanket assembly. In this manner it is possible to ameliorate the effects of sudden accelerator beam interruption on the surrounding reactor, since the remaining beams will still

  20. The Mariana Trench: A new view based on multibeam echosounding

    NASA Astrophysics Data System (ADS)

    Gardner, J. V.; Armstrong, A. A.

    2011-12-01

    The entire Mariana Trench, from its northern end at Dutton Ridge to the southwestern terminus at the Yap Trench, was mapped in 2010 using a Kongsberg EM122 12-kHz multibeam echosounder. The region ranges in depths from the shoreline at Guam to almost 11,000 m at the Challenger Deep. The northern part of the trench is receiving seamounts and guyots of the Magellan Seamount chain, whereas the southern section is receiving seafloor that carries the Caroline Ridge to the trench. The area immediately seaward of the trench where the Pacific Plate has bent downward toward the subduction zone has been broken by a series of subparallel horst and graben structures generated by extension on the bending upper surface of the Pacific Plate. Four bathymetric "bridges" span across the trench axis and extend from the Pacific Plate to the inner wall of the trench. The bridges stand as much as 2500 m above the trench axis and are composed of Latest Jurassic to Early Cretaceous accreted seamounts and guyots of the Magellan Seamount chain that are in the process of breaking up and being subducted beneath the Philippine Plate. Only two seamounts of the Caroline Ridge are in the vicinity of the trench and they both presently reside on the outer trench wall. The faults of the horsts and grabens have fractured the seamounts and guyots within the trench depression seaward from the axis outward for about 80 km, but within ~5 km of the trench axis the faults have reactivated to compressional thrust faults. The faults tend to parallel the axis of the trench until the immediate vicinity of an accreting seamount or guyot where the faults bend inward toward the trench axis, as has been observed in many other trenches. Most of the accreted seamounts and guyots are not associated with embayments or reentrants on the inner trench wall, as has been documented in the Middle America and Japan Trenches, perhaps because there is not a large accretionary prism that extends seaward of the forearc. The one

  1. The Geisha Guyots: Multibeam bathymetry and morphometric interpretation

    NASA Astrophysics Data System (ADS)

    Vogt, Peter R.; Smoot, N. Christian

    1984-12-01

    Multibeam bathymetric charts (100 fm = 183 m contour interval) are presented and analyzed for the ˜1100-km-long, 120° trending Geisha chain of eight guyots and at least 13 other seamounts (>1 km height) in the northwest Pacific; these guyots are compared with 23 others in the North Pacific. Edifice distribution is nonrandom and nonuniform and is best described as clusters (200 km apart), some of which are composed of subclusters (30-50 km apart) and edifices 10-20 km from their neighbors. Published radiometric dates from the two ends of the Geisha chain (94 Ma for Makarov in the southeast and 102 Ma for Seiko in the northwest) are consistent with rapid (14 cm/yr) plate motion over a fixed hotspot, but other mechanisms cannot be excluded. Crustal age (from magnetic lineations) increases south westward from 141 to 156 Ma along the chain, i.e., from 39 to 62 Ma at times of seamount volcanism. Total edifice volume is small (2×104 km3), with Makarov guyot at 6000 km3 and the other guyots 700-1500 km3 each. Summit plateau depths (averaging 1420±60 m minimum depth and 1600±120 m break depth) are remarkably uniform along the chain; plateau areas (87±68 km2, ranging from 14 to 246 km2) are the smallest for any guyot chain. Original island heights (0.5-1.3 km) and minimum volumes eroded (2-100 km3) are estimated from the height/area relation of modern volcanic islands. Summit plateau relief (˜100-200 m) is explained by simultaneous shoreline erosion (˜1 km/Ma) and subsidence of thermally rejuvenated lithosphere. There is no bathymetric evidence for guyot volcanism or faulting postdating subsidence below wave base. The Geisha guyots rise 4.5-4.9 km above the regional basement, implying a hotspot-generated swell height of 0.5-1 km and lithosphere thermally reset to about 45% of its age at time of volcanism. Average upper guyot slopes (21°±3°) exceed those of other guyots (13°+3°) but resemble small seamount slopes, suggesting that flank slopes decrease, above

  2. Lived experiences of everyday life during curative radiotherapy in patients with non-small-cell lung cancer: A phenomenological study

    PubMed Central

    Petri, Suzanne; Berthelsen, Connie B.

    2015-01-01

    Aim To explore and describe the essential meaning of lived experiences of the phenomenon: Everyday life during curative radiotherapy in patients with non-small-cell lung cancer (NSCLC). Background Radiotherapy treatment in patients with NSCLC is associated with severe side effects such as fatigue, anxiety, and reduced quality of life. However, little is known about the patients’ experience of everyday life during the care trajectory. Design This study takes a reflective lifeworld approach using an empirical application of phenomenological philosophy described by Dahlberg and colleagues. Method A sample of three patients treated with curative radiotherapy for NSCLC was interviewed 3 weeks after the end of radiotherapy treatment about their experiences of everyday life during their treatment. Data were collected in 2014 and interviews and analysis were conducted within the descriptive phenomenological framework. Findings The essential meaning structure of the phenomenon studied was described as “Hope for recovery serving as a compass in a changed everyday life,” which was a guide for the patients through the radiotherapy treatment to support their efforts in coping with side effects. The constituents of the structure were: Radiotherapy as a life priority, A struggle for acceptance of an altered everyday life, Interpersonal relationships for better or worse, and Meeting the health care system. Conclusion The meaning of hope was essential during radiotherapy treatment and our results suggest that interpersonal relationships can be a prerequisite to the experience of hope. “Hope for recovery serving as a compass in a changed everyday life,” furthermore identifies the essentials in the patients’ assertive approach to believing in recovery and thereby enabling hope in a serious situation. PMID:26610116

  3. Modelling and Bayesian adaptive prediction of individual patients' tumour volume change during radiotherapy.

    PubMed

    Tariq, Imran; Chen, Tao; Kirkby, Norman F; Jena, Rajesh

    2016-03-07

    The aim of this study is to develop a mathematical modelling method that can predict individual patients’ response to radiotherapy, in terms of tumour volume change during the treatment. The main concept is to start from a population-average model, which is subsequently updated from an individual’s tumour volume measurement. The model becomes increasingly personalized and so too does the prediction it produces. This idea of adaptive prediction was realised by using a Bayesian approach for updating the model parameters. The feasibility of the developed method was demonstrated on the data from 25 non-small cell lung cancer patients treated with helical tomotherapy, during which tumour volume was measured from daily imaging as part of the image-guided radiotherapy. The method could provide useful information for adaptive treatment planning and dose scheduling based on the patient’s personalised response.

  4. Radiotherapy Treatment Planning for Testicular Seminoma

    SciTech Connect

    Wilder, Richard B.; Buyyounouski, Mark K.; Efstathiou, Jason A.; Beard, Clair J.

    2012-07-15

    Virtually all patients with Stage I testicular seminoma are cured regardless of postorchiectomy management. For patients treated with adjuvant radiotherapy, late toxicity is a major concern. However, toxicity may be limited by radiotherapy techniques that minimize radiation exposure of healthy normal tissues. This article is an evidence-based review that provides radiotherapy treatment planning recommendations for testicular seminoma. The minority of Stage I patients who choose adjuvant treatment over surveillance may be considered for (1) para-aortic irradiation to 20 Gy in 10 fractions, or (2) carboplatin chemotherapy consisting of area under the curve, AUC = 7 Multiplication-Sign 1-2 cycles. Two-dimensional radiotherapy based on bony anatomy is a simple and effective treatment for Stage IIA or IIB testicular seminoma. Centers with expertise in vascular and nodal anatomy may consider use of anteroposterior-posteroanterior fields based on three-dimensional conformal radiotherapy instead. For modified dog-leg fields delivering 20 Gy in 10 fractions, clinical studies support placement of the inferior border at the top of the acetabulum. Clinical and nodal mapping studies support placement of the superior border of all radiotherapy fields at the top of the T12 vertebral body. For Stage IIA and IIB patients, an anteroposterior-posteroanterior boost is then delivered to the adenopathy with a 2-cm margin to the block edge. The boost dose consists of 10 Gy in 5 fractions for Stage IIA and 16 Gy in 8 fractions for Stage IIB. Alternatively, bleomycin, etoposide, and cisplatin chemotherapy for 3 cycles or etoposide and cisplatin chemotherapy for 4 cycles may be delivered to Stage IIA or IIB patients (e.g., if they have a horseshoe kidney, inflammatory bowel disease, or a history of radiotherapy).

  5. Results of patient specific quality assurance for patients undergoing stereotactic ablative radiotherapy for lung lesions.

    PubMed

    Hardcastle, Nicholas; Clements, Natalie; Chesson, Brent; Aarons, Yolanda; Cramb, Jim; Siva, Shankar; Wanigaratne, Derrick M; Ball, David; Kron, Tomas

    2014-03-01

    Hypofractionated image guided radiotherapy of extracranial targets has become increasingly popular as a treatment modality for inoperable patients with one or more small lesions, often referred to as stereotactic ablative body radiotherapy (SABR). This report details the results of the physical quality assurance (QA) program used for the first 33 lung cancer SABR radiotherapy 3D conformal treatment plans in our centre. SABR involves one or few fractions of high radiation dose delivered in many small fields or arcs with tight margins to mobile targets often delivered through heterogeneous media with non-coplanar beams. We have conducted patient-specific QA similar to the more common intensity modulated radiotherapy QA with particular reference to motion management. Individual patient QA was performed in a Perspex phantom using point dose verification with an ionisation chamber and radiochromic film for verification of the dose distribution both with static and moving detectors to verify motion management strategies. While individual beams could vary by up to 7%, the total dose in the target was found to be within ±2% of the prescribed dose for all 33 plans. Film measurements showed qualitative and quantitative agreement between planned and measured isodose line shapes and dimensions. The QA process highlighted the need to account for couch transmission and demonstrated that the ITV construction was appropriate for the treatment technique used. QA is essential for complex radiotherapy deliveries such as SABR. We found individual patient QA helpful in setting up the technique and understanding potential weaknesses in SABR workflow, thus providing confidence in SABR delivery.

  6. Computational Investigation of Synchronized Multibeam Strategies for the Selective Laser Melting Process

    NASA Astrophysics Data System (ADS)

    Heeling, Thorsten; Wegener, Konrad

    The selective laser melting process features a nearly incomparable freedom of design. But its potential is still limited due to remaining porosity, cracking, distortion, low build-up rates and a limited range of materials. While there is some progress in process control and multiple parallel scan fields to tackle these issues, the potential of synchronized multibeam strategies has not yet been investigated. The presented synchronized multibeam approach is characterized by two widely overlapping scan fields fed by two independent laser sources that can be controlled to work in a synchronized manner with or without a defined offset. This allows a selective manipulation of the local temperature field and thus of melt pool dynamics, the temperature gradients and cooling rates, which are all influencing the processes' porosity, cracking and distortion behavior. Therefore the influences of these strategies on the melt pool dimensions and dynamics as well as the temperature gradients are investigated in this work.

  7. High power operation of an X-band coaxial multi-beam relativistic klystron amplifier

    NASA Astrophysics Data System (ADS)

    Liu, Zhenbang; Huang, Hua; Jin, Xiao; Zhao, Yucong; He, Hu; Lei, Lurong; Chen, Zhaofu

    2013-11-01

    An X-band coaxial multi-beam relativistic klystron amplifier is designed in order to increase output microwave power and operating frequency of the amplifier tube. The experiment is performed on a Tesla-type accelerator. The amplifier is driven by an electron beam of 2.8 kA at 720 kV, and a microwave power of 30 kW and frequency of 9.384 GHz is injected into an input cavity by means of an external source, then a microwave power of over 800 MW is extracted, the amplifier gain is about 44 dB, and conversion efficiency is 40%. The experiment proves that output power of nearly GWs can be generated with the X-band coaxial multi-beam relativistic klystron amplifier driven by a kW-level input power.

  8. Investigation of an X-band gigawatt long pulse multi-beam relativistic klystron amplifier

    NASA Astrophysics Data System (ADS)

    Liu, Zhenbang; Huang, Hua; Lei, Lurong; Jin, Xiao; Zhu, Lei; Wang, Ganping; He, Hu; Wu, Yao; Ge, Yi; Yuan, Huan; Chen, Zhaofu

    2015-09-01

    To achieve a gigawatt-level long pulse radiation power in X-band, a multi-beam relativistic klystron amplifier is proposed and studied experimentally. By introducing 18 electron drift tubes and extended interaction cavities, the power capacity of the device is increased. A radiation power of 1.23 GW with efficiency of 41% and amplifier gain of 46 dB is obtained in the particle-in-cell simulation. Under conditions of a 10 Hz repeat frequency and an input RF power of 30 kW, a radiation power of 0.9 GW, frequency of 9.405 GHz, pulse duration of 105 ns, and efficiency of 30% is generated in the experiment, and the amplifier gain is about 45 dB. Both the simulation and the experiment prove that the multi-beam relativistic klystron amplifier can generate a long pulse GW-level radiation power in X-band.

  9. Combined High-Resolution LIDAR Topography and Multibeam Bathymetry for Northern Resurrection Bay, Seward, Alaska

    USGS Publications Warehouse

    Labay, Keith A.; Haeussler, Peter J.

    2008-01-01

    A new Digital Elevation Model was created using the best available high-resolution topography and multibeam bathymetry surrounding the area of Seward, Alaska. Datasets of (1) LIDAR topography collected for the Kenai Watershed Forum, (2) Seward harbor soundings from the U.S. Army Corp of Engineers, and (3) multibeam bathymetry from the National Oceanic and Atmospheric Administration contributed to the final combined product. These datasets were placed into a common coordinate system, horizontal datum, vertical datum, and data format prior to being combined. The projected coordinate system of Universal Transverse Mercator Zone 6 North American Datum of 1927 was used for the horizontal coordinates. Z-values in meters were referenced to the tidal datum of Mean High Water. Gaps between the datasets were interpolated to create the final seamless 5-meter grid covering the area of interest around Seward, Alaska.

  10. Underwater Acoustic Transponders Tracking While Mapping With A Multibeam Echo-Sounder

    NASA Astrophysics Data System (ADS)

    de Moustier, C. P.; Franzheim, A.; Testa, W.; Burns, J. M.; Foy, R.

    2010-12-01

    A 160 kHz multibeam echo-sounder was used to interrogate and receive the replies from custom-built miniature underwater acoustic transponders attached to the carapace of king crabs in Womens Bay, Alaska. This new application of multibeam echo-sounders combines acoustic tracking and mapping, thus providing environmental context to the tracking information. Each transponder replies with its own coded sequence that stands out from other echoes received by the sonar. Range and bearing of the replies from multiple transponders can be obtained in a single sonar ping. The king crab experiment was done in 25-35 m of water depth, and the system was successfully tested without animals at 190 m depth. Work supported by NOAA's Undersea Research Program Grant G4768, with field work support from NOAA-NMFS/AFSC/RACE and Electronic Navigation Ltd.

  11. High power operation of an X-band coaxial multi-beam relativistic klystron amplifier

    SciTech Connect

    Liu, Zhenbang; Huang, Hua; Jin, Xiao; Zhao, Yucong; He, Hu; Lei, Lurong; Chen, Zhaofu

    2013-11-15

    An X-band coaxial multi-beam relativistic klystron amplifier is designed in order to increase output microwave power and operating frequency of the amplifier tube. The experiment is performed on a Tesla-type accelerator. The amplifier is driven by an electron beam of 2.8 kA at 720 kV, and a microwave power of 30 kW and frequency of 9.384 GHz is injected into an input cavity by means of an external source, then a microwave power of over 800 MW is extracted, the amplifier gain is about 44 dB, and conversion efficiency is 40%. The experiment proves that output power of nearly GWs can be generated with the X-band coaxial multi-beam relativistic klystron amplifier driven by a kW-level input power.

  12. Frequency-controls of electromagnetic multi-beam scanning by metasurfaces.

    PubMed

    Li, Yun Bo; Wan, Xiang; Cai, Ben Geng; Cheng, Qiang; Cui, Tie Jun

    2014-11-05

    We propose a method to control electromagnetic (EM) radiations by holographic metasurfaces, including to producing multi-beam scanning in one dimension (1D) and two dimensions (2D) with the change of frequency. The metasurfaces are composed of subwavelength metallic patches on grounded dielectric substrate. We present a combined theory of holography and leaky wave to realize the multi-beam radiations by exciting the surface interference patterns, which are generated by interference between the excitation source and required radiation waves. As the frequency changes, we show that the main lobes of EM radiation beams could accomplish 1D or 2D scans regularly by using the proposed holographic metasurfaces shaped with different interference patterns. This is the first time to realize 2D scans of antennas by changing the frequency. Full-wave simulations and experimental results validate the proposed theory and confirm the corresponding physical phenomena.

  13. Comparison of adaptive radiotherapy techniques for external radiation therapy of canine bladder cancer.

    PubMed

    Nieset, Jessica R; Harmon, Joseph F; Johnson, Thomas E; Larue, Susan M

    2014-01-01

    Daily bladder variations make it difficult to utilize standard radiotherapy as a primary treatment option for muscle-invasive bladder cancer. Our purpose was to develop a model comparing dose distributions of image-guided and adaptive radiotherapy (ART) techniques for canine bladder cancer. Images were obtained retrospectively from cone-beam computed tomography (CBCT) scans used for daily positioning of four dogs undergoing fractionated image-guided radiotherapy (IGRT). Four different treatment plans were modeled for each dog, and dosimetric data were compared. Two plans were developed using planning target volumes based on planning computed tomography (CT) bladder volume. These plans then used bony anatomy or soft tissue anatomy for daily positioning and dosimetric modeling. The third plan type was a hybrid IGRT and ART technique utilizing a library of premade anisotropic planning target volumes using bladder wall motion data and selection of a "plan-of-the-day" determined from positioning CBCT bladder volumes. The fourth plan was an ART technique that constructed a new planning target volume each day based on daily bladder volume as determined by pretreatment CBCT. Dose volume histograms were generated for each plan type and dose distribution for the bladder and rectum were compared between plan types. Irradiated rectal volume decreased and irradiated bladder volume increased as plan conformality increased. ART provided the greatest rectal sparing, with lowest irradiated rectal volume (P < 0.001), and largest bladder volume receiving 95% of the prescription dose (P < 0.001). In our model, adaptive radiotherapy techniques for canine bladder cancer showed significant reduction in rectal volume irradiated when compared to nonadaptive techniques, while maintaining appropriate bladder coverage.

  14. Automatic respiration tracking for radiotherapy using optical 3D camera

    NASA Astrophysics Data System (ADS)

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Rapid optical three-dimensional (O3D) imaging systems provide accurate digitized 3D surface data in real-time, with no patient contact nor radiation. The accurate 3D surface images offer crucial information in image-guided radiation therapy (IGRT) treatments for accurate patient repositioning and respiration management. However, applications of O3D imaging techniques to image-guided radiotherapy have been clinically challenged by body deformation, pathological and anatomical variations among individual patients, extremely high dimensionality of the 3D surface data, and irregular respiration motion. In existing clinical radiation therapy (RT) procedures target displacements are caused by (1) inter-fractional anatomy changes due to weight, swell, food/water intake; (2) intra-fractional variations from anatomy changes within any treatment session due to voluntary/involuntary physiologic processes (e.g. respiration, muscle relaxation); (3) patient setup misalignment in daily reposition due to user errors; and (4) changes of marker or positioning device, etc. Presently, viable solution is lacking for in-vivo tracking of target motion and anatomy changes during the beam-on time without exposing patient with additional ionized radiation or high magnet field. Current O3D-guided radiotherapy systems relay on selected points or areas in the 3D surface to track surface motion. The configuration of the marks or areas may change with time that makes it inconsistent in quantifying and interpreting the respiration patterns. To meet the challenge of performing real-time respiration tracking using O3D imaging technology in IGRT, we propose a new approach to automatic respiration motion analysis based on linear dimensionality reduction technique based on PCA (principle component analysis). Optical 3D image sequence is decomposed with principle component analysis into a limited number of independent (orthogonal) motion patterns (a low dimension eigen-space span by eigen-vectors). New

  15. A New Integrated Slot Element Feed Array for Multi-beam Systems

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. S.; Johansson, J. F.; Kollberg, E. L.

    1985-01-01

    A feed array consisting of constant width slot antennas (CWSA's), fed from a block containing fin-line transitions, has been developed. The array has a two-dimensional configuration, with five elements each on five parallel substrates. Beam-widths are compatible with use in f/D-1.0 multi-beam systems, with optimum taper. Array element spacings are close to a factor of two smaller than for other typical arrays, and spill-over efficiency is about 65%.

  16. Multi-beam Lidar Instrument Design, Measurement Capabilities, and Technical Readiness

    NASA Astrophysics Data System (ADS)

    Blair, B.; Ranson, J.; Dubayah, R.; Coyle, B.; Salerno, C.

    2007-12-01

    A multi-beam Laser Altimeter has been designed and studied at NASA Goddard Space Flight Center and the critical technologies have developed and tested resulting in a mature and technically ready instrument approach. The instrument consists of three separate beams each providing a near-contiguous profile of 25 m diameter laser footprints. The across-track separation of the beams can be <1 km to as much as ~5 km. A return waveform is collected for each footprint and the system has sufficient Signal-to-Noise Ratio (SNR) to penetrate dense (i.e. 98-99% cover) canopies in relatively clear sky conditions and can penetrate clouds to provide precise topography over unvegetated surfaces. The Multi-beam Laser Altimeter design includes a high-quality GPS receiver for providing precise orbital position information and a state-of-the-art Star Tracker and Inertial Measurement Unit to provide precise and accurate laser beam pointing knowledge. The digitizer-based ranging system will provide ranging to bare surfaces with ~3 cm range precision. The return waveforms will also provide vegetation height measurements with ~1 m of accuracy. The laser transmitters have been fully developed, characterize, and tested. Engineering Test Unit has been built at NASA/GSFC for environmental testing. Test units of the laser demonstrated 5 Billion shots without damage and diode testing indicates lifetimes of ~10 Billion shots per laser can be expected. A new waveform digitizer has been developed with improvements in sampling rate and dynamic range over the ICESat digitizer system, thus allowing higher quality waveforms to be collected, which is critical importantly for vegetation studies. This multi-beam Lidar design is the basis for the Lidar on the DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) mission described in the NRC Decadal Survey Report that consists of a Multi-beam Lidar and an L-band InSAR to be launched in the 2010-2013 timeframe.

  17. Multibeam Spatially-Fed Antenna Arrays with Amplitude-Controlled Beam Steering

    DTIC Science & Technology

    2003-09-01

    connections between antenna pair feeds corresponding to the two linear polarizations. The lens array designed for this study is a cylindrical 45-element...multibeam array that can be designed to have low loss for large numbers of elements for two orthogonal well-isolated (30dB) polarizations. In a transmitter...This loss can be significantly reduced if the lens array and the receiving antenna are designed as a system, which was attempted in the case of the 10

  18. A new interface linking the ODP Log and RIDGE Multibeam Databases

    NASA Astrophysics Data System (ADS)

    Reagan, M.; Haxby, W.; Broglia, C.

    2001-12-01

    Over the past few years, a major effort has been undertaken by ODP Logging Services to create an easily accessible, on-line database of the log data collected during ODP cruises. The database currently consists of data from Legs 101-197 which can be retrieved using any web browser via the ODP Logging Services web site (http://www.ldeo.columbia.edu/BRG/ODP/DATA). Concurrently the RIDGE Multibeam Synthesis project at Lamont-Doherty Earth Observatory (LDEO) has been developing its own online database of multibeam data that can be accessed at http://coast.ldeo.columbia.edu. Recently the capabilities of these two databases have been combined using MapAPP, an interface developed by the RIDGE Multibeam Synthesis project and modified by ODP Logging Services for use with the log database. Both databases can be accessed with a simple menu selection. The interface allows for graphical searching and selection of sites in the regional context of the multibeam data using a java applet. It retains the easy download capabilities built into the log database, but also provides several new features including the ability to plot log curves `on the fly'. This capability can be used to display logs from a single hole, or to compare logs from several holes, thus providing a regional view of the data. The integration of this new graphical interface with the extensive content of the ODP Log Database provides users with a powerful tool for viewing and manipulating data. Future enhancements are anticipated to provide even greater capabilities and ease of use.

  19. A systematic review of antiproton radiotherapy

    NASA Astrophysics Data System (ADS)

    Bittner, Martin-Immanuel; Grosu, Anca-Ligia; Wiedenmann, Nicole; Wilkens, Jan

    2013-01-01

    Antiprotons have been proposed as possible particles for radiotherapy; over the past years, the renewed interest in the potential biomedical relevance led to an increased research activity. It is the aim of this review to deliver a comprehensive overview regarding the evidence accumulated so far, analysing the background and depicting the current status of antiprotons in radiotherapy. A literature search has been conducted, including major scientific and commercial databases. All articles and a number of relevant conference abstracts published in the respective field have been included in this systematic review. The physical basis of antiproton radiotherapy is complex; however, the characterisation of the energy deposition profile supports its potential use in radiotherapy. Also the dosimetry improved considerably over the past few years. Regarding the biological properties, data on the effects on cells are presented; however, definite conclusions regarding the relative biological effectiveness cannot be made at the moment and radiobiological evidence of enhanced effectiveness remains scarce. In addition, there is new evidence supporting the potential imaging properties, for example for online dose verification. Clinical settings which might profit from the use of antiprotons have been further tracked. Judging from the evidence available so far, clinical constellations requiring optimal sparing in the entrance region of the beam and re-irradiations might profit most from antiproton radiotherapy. While several open questions remain to be answered, first steps towards a thorough characterisation of this interesting modality have been made.

  20. A systematic review of antiproton radiotherapy

    NASA Astrophysics Data System (ADS)

    Bittner, Martin-Immanuel; Grosu, Anca-Ligia; Wiedenmann, Nicole; Wilkens, Jan

    2014-01-01

    Antiprotons have been proposed as possible particles for radiotherapy; over the past years, the renewed interest in the potential biomedical relevance led to an increased research activity. It is the aim of this review to deliver a comprehensive overview regarding the evidence accumulated so far, analysing the background and depicting the current status of antiprotons in radiotherapy. A literature search has been conducted, including major scientific and commercial databases. All articles and a number of relevant conference abstracts published in the respective field have been included in this systematic review. The physical basis of antiproton radiotherapy is complex; however, the characterisation of the energy deposition profile supports its potential use in radiotherapy. Also the dosimetry improved considerably over the past few years. Regarding the biological properties, data on the effects on cells are presented; however, definite conclusions regarding the relative biological effectiveness cannot be made at the moment and radiobiological evidence of enhanced effectiveness remains scarce. In addition, there is new evidence supporting the potential imaging properties, for example for online dose verification. Clinical settings which might profit from the use of antiprotons have been further tracked. Judging from the evidence available so far, clinical constellations requiring optimal sparing in the entrance region of the beam and re-irradiations might profit most from antiproton radiotherapy. While several open questions remain to be answered, first steps towards a thorough characterisation of this interesting modality have been made.

  1. Object representation for multi-beam sonar image using local higher-order statistics

    NASA Astrophysics Data System (ADS)

    Li, Haisen; Gao, Jue; Du, Weidong; Zhou, Tian; Xu, Chao; Chen, Baowei

    2017-01-01

    Multi-beam sonar imaging has been widely used in various underwater tasks such as object recognition and object tracking. Problems remain, however, when the sonar images are characterized by low signal-to-noise ratio, low resolution, and amplitude alterations due to viewpoint changes. This paper investigates the capacity of local higher-order statistics (HOS) to represent objects in multi-beam sonar images. The Weibull distribution has been used for modeling the background of the image. Local HOS involving skewness is estimated using a sliding computational window, thus generating the local skewness image of which a square structure is associated with a potential object. The ability of object representation with different signal-to-noise ratio (SNR) between object and background is analyzed, and the choice of the computational window size is discussed. In the case of the object with high SNR, a novel algorithm based on background estimation is proposed to reduce side lobe and retain object regions. The performance of object representation has been evaluated using real data that provided encouraging results in the case of the object with low amplitude, high side lobes, or large fluctuant amplitude. In conclusion, local HOS provides more reliable and stable information relating to the potential object and improves the object representation in multi-beam sonar image.

  2. A new method for weakening the combined effect of residual errors on multibeam bathymetric data

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhu; Yan, Jun; Zhang, Hongmei; Zhang, Yuqing; Wang, Aixue

    2014-12-01

    Multibeam bathymetric system (MBS) has been widely applied in the marine surveying for providing high-resolution seabed topography. However, some factors degrade the precision of bathymetry, including the sound velocity, the vessel attitude, the misalignment angle of the transducer and so on. Although these factors have been corrected strictly in bathymetric data processing, the final bathymetric result is still affected by their residual errors. In deep water, the result usually cannot meet the requirements of high-precision seabed topography. The combined effect of these residual errors is systematic, and it's difficult to separate and weaken the effect using traditional single-error correction methods. Therefore, the paper puts forward a new method for weakening the effect of residual errors based on the frequency-spectrum characteristics of seabed topography and multibeam bathymetric data. Four steps, namely the separation of the low-frequency and the high-frequency part of bathymetric data, the reconstruction of the trend of actual seabed topography, the merging of the actual trend and the extracted microtopography, and the accuracy evaluation, are involved in the method. Experiment results prove that the proposed method could weaken the combined effect of residual errors on multibeam bathymetric data and efficiently improve the accuracy of the final post-processing results. We suggest that the method should be widely applied to MBS data processing in deep water.

  3. Los Angeles and San Diego Margin High-Resolution Multibeam Bathymetry and Backscatter Data

    USGS Publications Warehouse

    Dartnell, Peter; Gardner, James V.; Mayer, Larry A.; Hughes-Clarke, John E.

    2004-01-01

    Summary -- The U.S. Geological Survey in cooperation with the University of New Hampshire and the University of New Brunswick mapped the nearshore regions off Los Angeles and San Diego, California using multibeam echosounders. Multibeam bathymetry and co-registered, corrected acoustic backscatter were collected in water depths ranging from about 3 to 900 m offshore Los Angeles and in water depths ranging from about 17 to 1230 m offshore San Diego. Continuous, 16-m spatial resolution, GIS ready format data of the entire Los Angeles Margin and San Diego Margin are available online as separate USGS Open-File Reports. For ongoing research, the USGS has processed sub-regions within these datasets at finer resolutions. The resolution of each sub-region was determined by the density of soundings within the region. This Open-File Report contains the finer resolution multibeam bathymetry and acoustic backscatter data that the USGS, Western Region, Coastal and Marine Geology Team has processed into GIS ready formats as of April 2004. The data are available in ArcInfo GRID and XYZ formats. See the Los Angeles or San Diego maps for the sub-region locations. These datasets in their present form were not originally intended for publication. The bathymetry and backscatter have data-collection and processing artifacts. These data are being made public to fulfill a Freedom of Information Act request. Care must be taken not to confuse artifacts with real seafloor morphology and acoustic backscatter.

  4. Multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces

    NASA Astrophysics Data System (ADS)

    Ma, Hui Feng; Liu, Yan Qing; Luan, Kang; Cui, Tie Jun

    2016-12-01

    We propose a method to convert linearly polarized incident electromagnetic waves fed by a single source into multi-beam reflections with independent control of polarizations based on anisotropic metasurface at microwave frequencies. The metasurface is composed of Jerusalem Cross structures and grounded plane spaced by a dielectric substrate. By designing the reflection-phase distributions of the anisotropic metasurface along the x and y directions, the x- and y-polarized incident waves can be manipulated independently to realize multi-beam reflections. When the x- and y-polarized reflected beams are designed to the same direction with equal amplitude, the polarization state of the beam will be only controlled by the phase difference between the x- and y-polarized reflected waves. Three examples are presented to show the multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces and excellent performance. Particularly, we designed, fabricated, and measured an anisotropic metasurface for two reflected beams with one linearly polarized and the other circularly polarized. The measurement results have good agreement with the simulations in a broad bandwidth.

  5. Multibeam Sonar Mapping and Modeling of a Submerged Bryophyte Mat in Crater Lake, Oregon

    USGS Publications Warehouse

    Dartnell, Peter; Collier, Robert; Buktenica, Mark; Jessup, Steven; Girdner, Scott; Triezenberg, Peter

    2008-01-01

    Traditionally, multibeam data have been used to map sea floor or lake floor morphology as well as the distribution of surficial facies in order to characterize the geologic component of benthic habitats. In addition to using multibeam data for geologic studies, we want to determine if these data can also be used directly to map the distribution of biota. Multibeam bathymetry and acoustic backscatter data collected in Crater Lake, Oregon, in 2000 are used to map the distribution of a deep-water bryophyte mat, which will be extremely useful for understanding the overall ecology of the lake. To map the bryophyte's distribution, depth range, acoustic backscatter intensity, and derived bathymetric index grids are used as inputs into a hierarchical decision-tree classification model. Observations of the bryophyte mat from over 23 line kilometers of lake-floor video collected in the summer of 2006 are used as controls for the model. The resulting map matches well with ground-truth information and shows that the bryophyte mat covers most of the platform surrounding Wizard Island as well as on outcrops around the caldera wall.

  6. Multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces

    PubMed Central

    Ma, Hui Feng; Liu, Yan Qing; Luan, Kang; Cui, Tie Jun

    2016-01-01

    We propose a method to convert linearly polarized incident electromagnetic waves fed by a single source into multi-beam reflections with independent control of polarizations based on anisotropic metasurface at microwave frequencies. The metasurface is composed of Jerusalem Cross structures and grounded plane spaced by a dielectric substrate. By designing the reflection-phase distributions of the anisotropic metasurface along the x and y directions, the x- and y-polarized incident waves can be manipulated independently to realize multi-beam reflections. When the x- and y-polarized reflected beams are designed to the same direction with equal amplitude, the polarization state of the beam will be only controlled by the phase difference between the x- and y-polarized reflected waves. Three examples are presented to show the multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces and excellent performance. Particularly, we designed, fabricated, and measured an anisotropic metasurface for two reflected beams with one linearly polarized and the other circularly polarized. The measurement results have good agreement with the simulations in a broad bandwidth. PMID:28000734

  7. A Statistical Analysis for Estimating Fish Number Density with the Use of a Multibeam Echosounder

    NASA Astrophysics Data System (ADS)

    Schroth-Miller, Madeline L.

    Fish number density can be estimated from the normalized second moment of acoustic backscatter intensity [Denbigh et al., J. Acoust. Soc. Am. 90, 457-469 (1991)]. This method assumes that the distribution of fish scattering amplitudes is known and that the fish are randomly distributed following a Poisson volume distribution within regions of constant density. It is most useful at low fish densities, relative to the resolution of the acoustic device being used, since the estimators quickly become noisy as the number of fish per resolution cell increases. New models that include noise contributions are considered. The methods were applied to an acoustic assessment of juvenile Atlantic Bluefin Tuna, Thunnus thynnus. The data were collected using a 400 kHz multibeam echo sounder during the summer months of 2009 in Cape Cod, MA. Due to the high resolution of the multibeam system used, the large size (approx. 1.5 m) of the tuna, and the spacing of the fish in the school, we expect there to be low fish densities relative to the resolution of the multibeam system. Results of the fish number density based on the normalized second moment of acoustic intensity are compared to fish packing density estimated using aerial imagery that was collected simultaneously.

  8. Electron multibeam technology for mask and wafer writing at 0.1 nm address grid

    NASA Astrophysics Data System (ADS)

    Platzgummer, Elmar; Klein, Christof; Loeschner, Hans

    2013-07-01

    IMS Nanofabrication realized a 50 keV electron multibeam proof-of-concept (POC) tool confirming writing principles with 0.1 nm address grid and lithography performance capability. The POC system achieves the predicted 5 nm 1 sigma blur across the 82 μm×82 μm array of 512×512 (262,144) programmable 20 nm beams. 24-nm half pitch (HP) has been demonstrated and complex patterns have been written in scanning stripe exposure mode. The first production worthy system for the 11-nm HP mask node is scheduled for 2014 (Alpha), 2015 (Beta), and first-generation high-volume manufacturing multibeam mask writer (MBMW) tools in 2016. In these MBMW systems the max beam current through the column is 1 μA. The new architecture has also the potential for 1× mask (master template) writing. Substantial further developments are needed for maskless e-beam direct write (EBDW) applications as a beam current of >2 mA is needed to achieve 100 wafer per hour industrial targets for 300 mm wafer size. Necessary productivity enhancements of more than three orders of magnitude are only possible by shrinking the multibeam optics such that 50 to 100 subcolumns can be placed on the area of a 300 mm wafer and by clustering 10 to 20 multicolumn tools. An overview of current EBDW efforts is provided.

  9. Homebuyer's Guide.

    ERIC Educational Resources Information Center

    Sindt, Roger P.; Harris, Jack

    Designed to assist prospective buyers in making such important decisions as whether to buy a new or older home and within what price range, the guide provides information on the purchase process. Discussion of the purchase process covers the life-cycle costs (recurring homeownership costs that must be met every month); selection of a home;…

  10. Teachers Guide.

    ERIC Educational Resources Information Center

    Linsky, Ronald B.; Schnitger, Ronald L.

    This guide provides teachers with copies of the materials given to students participating in the oceanography program of the Orange County Floating Laboratory Program and provides information concerning colleges and universities offering courses in oceanography and marine science, source of films, and sources of publications concerning the Navy's…

  11. Persuasion Guide.

    ERIC Educational Resources Information Center

    1971

    In this teacher's guide to the textbook called "Persuasion" the emphasis is on assisting the teacher to develop in his students the skills of critical and creative thinking. Each instructional unit moves from the experience of persuasive techniques, through critical analysis, to the creative practice of the technique in question. Essays on…

  12. Instructor Guide.

    ERIC Educational Resources Information Center

    Langer, Philip; Borg, Walter R.

    This Instructor Guide is designed to acquaint the teacher educator with the Utah State University Protocol Project training materials. It deals with the protocol materials generally and with each module specifically, including the following: (a) an introduction to, and rationale for protocol modules; (b) ways of identifying specific kinds of…

  13. A dose comparison of proton radiotherapy and photon radiotherapy for pediatric brain tumor

    NASA Astrophysics Data System (ADS)

    Kim, S. Y.; Cho, J. H.

    2014-12-01

    The purpose of this study was to investigate the effectiveness of photon radiotherapy and to compare the dose of treatment planning between proton radiotherapy and 3D conformal radiation therapy (3D-CRT) for pediatric brain tumor patients. This study was conducted in five pediatric brain tumor patients who underwent craniospinal irradiation treatment from October 2013 to April 2014 in the hospital. The study compared organs at risk (OARs) by assessing the dose distribution of normal tissue from the proton plan and 3D-CRT. Furthermore, this study assessed the treatment plans by looking at the homogeneity index (HI) and conformity index (CI). As a result, the study revealed OARs due to the small volume proton radiotherapy dose distribution in the normal tissue. Also, by comparing HI and CI between the 3D-CRT and proton radiotherapy plan, the study found that the dose of proton radiotherapy plan was homogenized. When conducting 3D-CRT and proton radiotherapy in a dose-volume histogram comparison, the dose of distribution turned out to be low. Consequently, proton radiotherapy is used for protecting the normal tissue, and is used in tumor tissue as a homogenized dose for effective treatment.

  14. Integration of Diagnostic and Interventional MRI for the Study of Persistent Prostate Cancer after External Beam Radiotherapy

    DTIC Science & Technology

    2009-10-01

    Interventional MRI for the Study of Persistent Prostate Cancer after External Beam Radiotherapy PRINCIPAL INVESTIGATOR: Cynthia Ménard, M.D...2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Integration of Diagnostic and Interventional MRI for the Study of Persistent Prostate Cancer after...clinical testing of a novel technique for magnetic resonance imaging ( MRI ) guided prostate biopsy in a 1.5T horizontal bore scanner using a dedicated

  15. Modality comparison for small animal radiotherapy: A simulation study

    SciTech Connect

    Bazalova, Magdalena Nelson, Geoff; Noll, John M.; Graves, Edward E.

    2014-01-15

    Purpose: Small animal radiation therapy has advanced significantly in recent years. Whereas in the past dose was delivered using a single beam and a lead shield for sparing of healthy tissue, conformal doses can be now delivered using more complex dedicated small animal radiotherapy systems with image guidance. The goal of this paper is to investigate dose distributions for three small animal radiation treatment modalities. Methods: This paper presents a comparison of dose distributions generated by the three approaches—a single-field irradiator with a 200 kV beam and no image guidance, a small animal image-guided conformal system based on a modified microCT scanner with a 120 kV beam developed at Stanford University, and a dedicated conformal system, SARRP, using a 220 kV beam developed at Johns Hopkins University. The authors present a comparison of treatment plans for the three modalities using two cases: a mouse with a subcutaneous tumor and a mouse with a spontaneous lung tumor. A 5 Gy target dose was calculated using the EGSnrc Monte Carlo codes. Results: All treatment modalities generated similar dose distributions for the subcutaneous tumor case, with the highest mean dose to the ipsilateral lung and bones in the single-field plan (0.4 and 0.4 Gy) compared to the microCT (0.1 and 0.2 Gy) and SARRP (0.1 and 0.3 Gy) plans. The lung case demonstrated that due to the nine-beam arrangements in the conformal plans, the mean doses to the ipsilateral lung, spinal cord, and bones were significantly lower in the microCT plan (2.0, 0.4, and 1.9 Gy) and the SARRP plan (1.5, 0.5, and 1.8 Gy) than in single-field irradiator plan (4.5, 3.8, and 3.3 Gy). Similarly, the mean doses to the contralateral lung and the heart were lowest in the microCT plan (1.5 and 2.0 Gy), followed by the SARRP plan (1.7 and 2.2 Gy), and they were highest in the single-field plan (2.5 and 2.4 Gy). For both cases, dose uniformity was greatest in the single-field irradiator plan followed by

  16. Differences in breast tissue oxygenation following radiotherapy.

    PubMed

    Dornfeld, Ken; Gessert, Charles E; Renier, Colleen M; McNaney, David D; Urias, Rodolfo E; Knowles, Denise M; Beauduy, Jean L; Widell, Sherry L; McDonald, Bonita L

    2011-08-01

    Tissue perfusion and oxygenation changes following radiotherapy may result from and/or contribute to the toxicity of treatment. Breast tissue oxygenation levels were determined in the treated and non-treated breast 1 year after radiotherapy for breast conserving treatment. Transcutaneous oxygenation varied between subjects in both treated and non-treated breast. Subjects without diabetes mellitus (n=16) had an average oxygenation level of 64.8 ± 19.9mmHg in the irradiated breast and an average of 72.3 ± 18.1mmHg (p=0.018) at the corresponding location in the control breast. Patients with diabetes (n=4) showed a different oxygenation pattern, with lower oxygenation levels in control tissue and no decrease in the irradiated breast. This study suggests oxygenation levels in normal tissues vary between patients and may respond differently after radiotherapy.

  17. Oral verrucous carcinoma. Treatment with radiotherapy

    SciTech Connect

    Nair, M.K.; Sankaranarayanan, R.; Padmanabhan, T.K.; Madhu, C.S.

    1988-02-01

    Fifty-two cases of oral verrucous carcinoma treated with radiotherapy at the Regional Cancer Centre, Trivandrum, Kerala, India in 1982 were evaluated to determine the distribution within the oral cavity, clinical extent, and effectiveness of radiotherapy in controlling the disease. The most common site was the buccal mucosa. Fifty percent of the patients had clinically negative regional lymph nodes and 33% were in earlier stages (T1, T2, N0, and M0). The overall 3-year no evidence of disease (NED) survival rate was 44%. The 3-year NED survival rate with radium implant was 86%. We cannot comment on anaplastic transformation after radiotherapy because our treatment failures have not been subjected for biopsy concerning this matter. Because the results are comparable with those of well-differentiated squamous cell carcinoma, we think that the treatment policies advocated for oral squamous cell carcinoma are also applicable to oral verrucous carcinoma.

  18. Radiotherapy-induced hypopituitarism: a review.

    PubMed

    Sathyapalan, Thozhukat; Dixit, Sanjay

    2012-05-01

    Hypopituitarism is a disorder caused by impaired hormonal secretions from the hypothalamic-pituitary axis. Radiotherapy is the most common cause of iatrogenic hypopituitarism. The hypothalamic-pituitary axis inadvertently gets irradiated in patients receiving prophylactic cranial radiotherapy for leukemia, total body irradiation and radiotherapy for intracranial, base skull, sinonasal and nasopharyngeal tumors. Radiation-induced hypopituitarism (RIH) is insidious, progressive and largely nonreversible. Mostly, RIH involves one hypothalamic-pituitary axis; however, multiple hormonal axes deficiency starts developing at higher doses. Although the clinical effects of the hypopituitarism are more profound in children and young adults, its implications in older adults are being increasingly recognized. The risk continues to persist or increase up to 10 years following radiation exposure. The clinical management of hypopituitarism is challenging both for the patients and healthcare providers. Here we have reviewed the scale of the problem, the risk factors and the management of RIH.

  19. One hundred years of radiotherapy in Turkey.

    PubMed

    Dincer, M; Kuter, S

    2001-10-01

    The study and practice of radiology in Turkey began in 1897, only 2 years after the discovery of X-rays. A simple X-ray machine was constructed in Istanbul, consisting of a Crookes tube, a Ruhmkorff coil, and a home-made battery. This machine was first used on wounded soldiers, for diagnostic purposes. The first report of X-rays being used therapeutically in Turkey was published in a national journal in 1904. By 1933, the most up-to-date radiotherapy equipment of the time had been installed in every major city in the country. Innovative radiotherapy techniques, such as rotational treatment, were also being tried in 1930s. Today, there are 45 radiotherapy centres in Turkey, and 400 radiation oncologists and 80 medical physicists practise there.

  20. MO-G-BRF-06: Radiotherapy and Prompt Oxygen Dynamics

    SciTech Connect

    Kissick, M; Campos, D; Adamson, E; Niles, D; Torres, A; L, Che Fru; Kimple, R; Fain, S; Kogel, A van der; Jacques, S

    2014-06-15

    Purpose: Adaptive radiotherapy requires a knowledge of the changing local tumor oxygen concentrations for times on the order of the treatment time, a time scale far shorter than cell death and proliferation. This knowledge will be needed to guide hypofractionated radiotherapy. Methods: A diffuse optical probe system was developed to spatially average over the whole interior of athymic Sprague Dawley nude mouse xenografts of human head and neck cancers. The blood volume and hemoglobin saturation was measured in real time. The quantities were measured with spectral fitting before and after 10 Gy of radiation is applied. An MRI BOLD scan is acquired before and after 10 Gy that measures regional changes in R2* which is inversely proportional to oxygen availability. Simulations were performed to fit the blood oxygen dynamics and infer changes in hypoxia within the tumor. Results: The optical probe measured nearly constant blood volume and a significant drop in hemoglobin saturation of about 30% after 10 Gy over the time scale of less than 30 minutes. The averaged R2* within the tumor volume increased by 15% after the 10 Gy dose, which is consistent with the optical results. The simulations and experiments support likely dynamic metabolic changes and/or fast vasoconstrictive signals are occurring that change the oxygen concentrations significantly, but not cell death or proliferation. Conclusion: Significant oxygen changes were observed to occur within 30 minutes, coinciding with the treatment time scale. This dynamic is very important for patient specific adaptive therapy. For hypofractionated therapy, the local instantaneous oxygen content is likely the most important variable to control. The invention of a bedside device for the purpose of measuring the instantaneous response to large radiation doses would be an important step to future improvements in outcome.

  1. Commissioning and initial stereotactic ablative radiotherapy experience with Vero.

    PubMed

    Solberg, Timothy D; Medin, Paul M; Ramirez, Ezequiel; Ding, Chuxiong; Foster, Ryan D; Yordy, John

    2014-03-06

    The purpose of this study is to describe the comprehensive commissioning process and initial clinical performance of the Vero linear accelerator, a new radiotherapy device recently installed at UT Southwestern Medical Center specifically developed for delivery of image-guided stereotactic ablative radiotherapy (SABR). The Vero system utilizes a ring gantry to integrate a beam delivery platform with image guidance systems. The ring is capable of rotating ± 60° about the vertical axis to facilitate noncoplanar beam arrangements ideal for SABR delivery. The beam delivery platform consists of a 6 MV C-band linac with a 60 leaf MLC projecting a maximum field size of 15 × 15 cm² at isocenter. The Vero planning and delivery systems support a range of treatment techniques, including fixed beam conformal, dynamic conformal arcs, fixed gantry IMRT in either SMLC (step-and-shoot) or DMLC (dynamic) delivery, and hybrid arcs, which combines dynamic conformal arcs and fixed beam IMRT delivery. The accelerator and treatment head are mounted on a gimbal mechanism that allows the linac and MLC to pivot in two dimensions for tumor tracking. Two orthogonal kV imaging subsystems built into the ring facilitate both stereoscopic and volumetric (CBCT) image guidance. The system is also equipped with an always-active electronic portal imaging device (EPID). We present our commissioning process and initial clinical experience focusing on SABR applications with the Vero, including: (1) beam data acquisition; (2) dosimetric commissioning of the treatment planning system, including evaluation of a Monte Carlo algorithm in a specially-designed anthropomorphic thorax phantom; (3) validation using the Radiological Physics Center thorax, head and neck (IMRT), and spine credentialing phantoms; (4) end-to-end evaluation of IGRT localization accuracy; (5) ongoing system performance, including isocenter stability; and (6) clinical SABR applications.

  2. More than the Bottom: Multibeam Sonars and Water-column Imaging (Invited)

    NASA Astrophysics Data System (ADS)

    Mayer, L. A.; Weber, T.; Gardner, J. V.; Malik, M.; Doucet, M.; Beaudoin, J.

    2010-12-01

    The past ten years have seen remarkable advances in our ability to rapidly and accurately map the seafloor. Improvements in sonar design and signal processing have dramatically increased both the spatial and temporal resolution of seafloor mapping systems as well as provided the opportunity to extract information about seafloor character through the concomitant mapping of seafloor backscatter. The latest generation of multibeam sonars, however, can now provide acoustic returns from the water-column as well as from the seafloor. When combined with powerful new visualization tools, the ability to acoustically map large volumes of the water-column opens up vast new areas of application for multibeam sonar data. When applied to the most traditional use of multibeam sonar data (seafloor mapping in support of safe navigation), water-column data afford the opportunity to see small, high-standing targets (like ship’s masts) and offer a powerful tool for critically needed, least-depth detection. Water-column data collected from multibeam sonars also provide numerous opportunities for fisheries research ranging from qualitative descriptions of fish school behavior and vessel avoidance studies (the systems can make measurements well beyond the limited, normal-incidence view of traditional fisheries sonars), to the eventual quantitative measurements of volume backscatter (as systems become more calibrated). Increases in system bandwidth will also open opportunities for target identification studies. With increased bandwith will also come the potential for tuning the systems for the mapping of watermass boundaries, offering a powerful tool for a range of physical oceanographic applications. Finally, the ability to map the water-column has great potential for quantifying the flux of methane into the ocean from natural (and un-natural) seeps. Water-column mapping has already proven a valuable asset in monitoring the Deepwater Horizon well-site for potential blow-outs or gas

  3. Pelvic radiotherapy and sexual function in women

    PubMed Central

    Froeding, Ligita Paskeviciute

    2015-01-01

    Background During the past decade there has been considerable progress in developing new radiation methods for cancer treatment. Pelvic radiotherapy constitutes the primary or (neo) adjuvant treatment of many pelvic cancers e.g., locally advanced cervical and rectal cancer. There is an increasing focus on late effects and an increasing awareness that patient reported outcomes (PROs) i.e., patient assessment of physical, social, psychological, and sexual functioning provides the most valid information on the effects of cancer treatment. Following cure of cancer allow survivors focus on quality of life (QOL) issues; sexual functioning has proved to be one of the most important aspects of concern in long-term survivors. Methods An updated literature search in PubMed was performed on pelvic radiotherapy and female sexual functioning/dysfunction. Studies on gynaecological, urological and gastrointestinal cancers were included. The focus was on the period from 2010 to 2014, on studies using PROs, on potential randomized controlled trials (RCTs) where female sexual dysfunction (FSD) at least constituted a secondary outcome, and on studies reporting from modern radiotherapy modalities. Results The literature search revealed a few RCTs with FSD evaluated as a PRO and being a secondary outcome measure in endometrial and in rectal cancer patients. Very limited information could be extracted regarding FSD in bladder, vulva, and anal cancer patients. The literature before and after 2010 confirms that pelvic radiotherapy, independent on modality, increases the risk significantly for FSD both compared to data from age-matched healthy control women and compared to data on patients treated by surgery only. There was only very limited data available on modern radiotherapy modalities. These are awaited during the next five years. Several newer studies confirm that health care professionals are still reluctant to discuss treatment induced sexual dysfunction with patients. Conclusions

  4. Meningioma after radiotherapy for Hodgkin's disease.

    PubMed

    Deutsch, M; Rosenstein, M; Figura, J H

    1999-08-01

    The most common second primary tumors after treatment of childhood Hodgkin's disease are leukemia, lymphoma, breast cancer, soft tissue sarcoma, and thyroid cancer. Although intracranial meningioma has been reported after radiotherapy to the scalp for benign conditions and for intracranial primary brain tumors, this appears to be an extremely rare sequelae of treatment for Hodgkin's disease. The authors describe a 15-year-old boy who underwent radiotherapy for Hodgkin's disease and in whom a meningioma developed in the posterior fossa 27 years later.

  5. Discovery and Validation of Predictive Biomarkers of Survival for Non-small Cell Lung Cancer Patients Undergoing Radical Radiotherapy: Two Proteins With Predictive Value.

    PubMed

    Walker, Michael J; Zhou, Cong; Backen, Alison; Pernemalm, Maria; Williamson, Andrew J K; Priest, Lynsey J C; Koh, Pek; Faivre-Finn, Corinne; Blackhall, Fiona H; Dive, Caroline; Whetton, Anthony D

    2015-08-01

    Lung cancer is the most frequent cause of cancer-related death world-wide. Radiotherapy alone or in conjunction with chemotherapy is the standard treatment for locally advanced non-small cell lung cancer (NSCLC). Currently there is no predictive marker with clinical utility to guide treatment decisions in NSCLC patients undergoing radiotherapy. Identification of such markers would allow treatment options to be considered for more effective therapy. To enable the identification of appropriate protein biomarkers, plasma samples were collected from patients with non-small cell lung cancer before and during radiotherapy for longitudinal comparison following a protocol that carries sufficient power for effective discovery proteomics. Plasma samples from patients pre- and during radiotherapy who had survived > 18 mo were compared to the same time points from patients who survived < 14 mo using an 8 channel isobaric tagging tandem mass spectrometry discovery proteomics platform. Over 650 proteins were detected and relatively quantified. Proteins which showed a change during radiotherapy were selected for validation using an orthogonal antibody-based approach. Two of these proteins were verified in a separate patient cohort: values of CRP and LRG1 combined gave a highly significant indication of extended survival post one week of radiotherapy treatment.

  6. Intensity-Modulated Radiotherapy-Based Stereotactic Body Radiotherapy for Medically Inoperable Early-Stage Lung Cancer: Excellent Local Control

    SciTech Connect

    Videtic, Gregory M.M.; Stephans, Kevin; Reddy, Chandana; Gajdos, Stephen; Kolar, Matthew; Clouser, Edward; Djemil, Toufik

    2010-06-01

    Purpose: To validate the use of stereotactic body radiotherapy (SBRT) using intensity-modulated radiotherapy (IMRT) beams for medically inoperable Stage I lung cancer. Methods and Materials: From February 2004 to November 2006, a total of 26 patients with 28 lesions received SBRT using a Novalis/BrainLAB system. Immobilization involved a Bodyfix vacuum cushion. A weighted abdominal belt limited respiratory excursion. Computed tomographic simulation images were acquired at rest, full inhalation, and full exhalation and were merged to generate an internal gross tumor volume (ITV). Dose was prescribed to cover the planning target volume (PTV), defined as PTV = ITV + 3-5 mm set-up margin. Heterogeneity corrections were used. Delivery of 50 Gy in five sequential fractions typically used seven nonopposing, noncoplanar beams. Image-guided target verification was provided by BrainLAB-ExacTrac. Results: Among the 26 patients, the mean age was 74 years (range, 49-88 years). Of the patients, 50% were male and 50% female. The median Karnofsky performance status was 70 (range, 40-100). The median follow-up was 30.9 months (range, 10.4-51.4 months). Tissue diagnosis was contraindicated in seven patients (26.9%). There were 22 T1 (78.6%) and six T2 (21.4%) tumors. The median conformality index was 1.38 (range, 1.12-1.8). The median heterogeneity index was 1.08 (range, 1.04-1.2). One patient (3.6%) developed acute Grade 3 dyspnea and one patient developed late Grade 2 chest wall pain. Actuarial local control and overall survival at 3 years were 94.4% and 52%, respectively. Conclusions: Use of IMRT-based delivery of SBRT using restriction of tumor motion in medically inoperable lung cancer demonstrates excellent local control and favorable survival.

  7. User’s Guide for Assessing Sediment Transport at Navy Facilities

    DTIC Science & Technology

    2007-09-01

    which is by convention the baseline used for radiocarbon dating (USGS, 1998). Naturally occurring 14C can be used to date organic material between 100...number. 1. REPORT DATE SEP 2007 2. REPORT TYPE 3. DATES COVERED 00-00-2007 to 00-00-2007 4. TITLE AND SUBTITLE User’s Guide for Assessing... dates depends on the type and consistency of the methods used to collect the data (i.e., single-beam versus multi-beam mapping methods; use of same

  8. Radiotherapy in the management of early breast cancer

    SciTech Connect

    Wang, Wei

    2013-03-15

    Radiotherapy is an indispensible part of the management of all stages of breast cancer. In this article, the common indications for radiotherapy in the management of early breast cancer (stages 0, I, and II) are reviewed, including whole-breast radiotherapy as part of breast-conserving treatment for early invasive breast cancer and pre-invasive disease of ductal carcinoma in situ, post-mastectomy radiotherapy, locoregional radiotherapy, and partial breast irradiation. Key clinical studies that underpin our current practice are discussed briefly.

  9. The Leicester radiotherapy bite block: an aid to head and neck radiotherapy.

    PubMed

    Hollows, P; Hayter, J P; Vasanthan, S

    2001-02-01

    We describe the construction of a custom-made bite block to be used during external beam radiotherapy to the oral cavity. The bite block is made with standard maxillofacial prosthetic techniques and materials. The design allows accurate and reproducible positioning of the perioral tissues to aid planning of radiotherapy and treatment. The compressibility of this device improves comfort for the patient, while it is in use.

  10. SU-C-BRD-05: Implementation of Incident Learning in the Safety and Quality Management of Radiotherapy: The Primary Experience in a New Established Program with Advanced Techniques

    SciTech Connect

    Yang, R; Wang, J

    2014-06-15

    Purpose: To explore the implementation and effectiveness of incident learning for the safety and quality of radiotherapy in a new established radiotherapy program with advanced technology. Methods: Reference to the consensus recommendations by American Association of Physicist in Medicine, an incident learning system was specifically designed for reporting, investigating, and learning of individual radiotherapy incidents in a new established radiotherapy program, with 4D CBCT, Ultrasound guided radiotherapy, VMAT, gated treatment delivered on two new installed linacs. The incidents occurring in external beam radiotherapy from February, 2012 to January, 2014 were reported. Results: A total of 33 reports were analyzed, including 28 near misses and 5 incidents. Among them, 5 originated in imaging for planning, 25 in planning, 1 in plan transfer, 1 in commissioning and 1 in treatment delivery. Among them, three near misses originated in the safety barrier of the radiotherapy process. In terms of error type, 1 incident was classified as wrong patient, 7 near misses/incidents as wrong site, 6 as wrong laterality, 5 as wrong dose, 7 as wrong prescription, and 7 as suboptimal plan quality. 5 incidents were all classified as grade 1/2 of dosimetric severity, 1 as grade 0, and the other 4 as grade 1 of medical severity. For the causes/contributory factors, negligence, policy not followed, inadequate training, failure to develop an effective plan, and communication contributed to 19, 15, 12, 5 and 3 near misses/incidents, respectively. The average incident rate per 100 patients treated was 0.4; this rate fell to 0.28% in the second year from 0.56% in the first year. The rate of near miss fell to 1.24% from 2.22%. Conclusion: Effective incident learning can reduce the occurrence of near miss/incidents, enhance the culture of safety. Incident learning is an effective proactive method for improving the quality and safety of radiotherapy.

  11. Endoscopic Ultrasound-Guided Oncologic Therapy for Pancreatic Cancer

    PubMed Central

    Suzuki, Rei; Irisawa, Atsushi; Bhutani, Manoop S.

    2013-01-01

    Since the development of endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) in the early 1990s, its application has been extended to various diseases. For pancreatic cancer, EUS-FNA can obtain specimens from the tumor itself with fewer complications than other methods. Interventional EUS enables various therapeutic options: local ablation, brachytherapy, placement of fiducial markers for radiotherapy, and direct injection of antitumor agents into cancer. This paper will focus on EUS-guided oncologic therapy for pancreatic cancer. PMID:23533319

  12. Post-radiotherapy hypothyroidism in dogs treated for thyroid carcinomas.

    PubMed

    Amores-Fuster, I; Cripps, P; Blackwood, L

    2017-03-01

    Hypothyroidism is a common adverse event after head and neck radiotherapy in human medicine, but uncommonly reported in canine patients. Records of 21 dogs with histologically or cytologically confirmed thyroid carcinoma receiving definitive or hypofractionated radiotherapy were reviewed. Nine cases received 48 Gy in 12 fractions, 10 received 36 Gy in 4 fractions and 2 received 32 Gy in 4 fractions. Seventeen cases had radiotherapy in a post-operative setting. Ten cases developed hypothyroidism (47.6%) after radiotherapy. The development of hypothyroidism was not associated with the radiotherapy protocol used. Median time to diagnosis of hypothyroidism was 6 months (range, 1-13 months). Hypothyroidism is a common side effect following radiotherapy for thyroid carcinomas. Monitoring of thyroid function following radiotherapy is recommended. No specific risk factors have been identified.

  13. Breast Cancer Patients’ Experience of External-Beam Radiotherapy

    PubMed Central

    Schnur, Julie B.; Ouellette, Suzanne C.; Bovbjerg, Dana H.; Montgomery, Guy H.

    2013-01-01

    Radiotherapy is a critical component of treatment for the majority of women with breast cancer, particularly those who receive breast conserving surgery. Although medically beneficial, radiotherapy can take a physical and psychological toll on patients. However, little is known about the specific thoughts and feelings experienced by women undergoing breast cancer radiotherapy. Therefore, the study aim was to use qualitative research methods to develop an understanding of these thoughts and feelings based on 180 diary entries, completed during radiotherapy by 15 women with Stage 0-III breast cancer. Thematic analysis identified four primary participant concerns: (a) a preoccupation with time; (b) fantasies (both optimistic and pessimistic) about life following radiotherapy; (c) the toll their side-effect experience takes on their self-esteem; and (d) feeling mystified by radiotherapy. These themes are consistent with previous literature on illness and identity. These findings have implications for the treatment and care of women undergoing breast cancer radiotherapy. PMID:19380502

  14. Gold Nanoparticle Hyperthermia Reduces Radiotherapy Dose

    PubMed Central

    Lin, Lynn; Slatkin, Daniel N.; Dilmanian, F. Avraham; Vadas, Timothy M.; Smilowitz, Henry M.

    2014-01-01

    Gold nanoparticles can absorb near infrared light, resulting in heating and ablation of tumors. Gold nanoparticles have also been used for enhancing the dose of X-rays in tumors during radiotherapy. The combination of hyperthermia and radiotherapy is synergistic, importantly allowing a reduction in X-ray dose with improved therapeutic results. Here we intratumorally infused small 15 nm gold nanoparticles engineered to be transformed from infrared-transparent to infrared-absorptive by the tumor, which were then heated by infrared followed by X-ray treatment. Synergy was studied using a very radioresistant subcutaneous squamous cell carcinoma (SCCVII) in mice. It was found that the dose required to control 50% of the tumors, normally 55 Gy, could be reduced to <15 Gy (a factor of >3.7). Gold nanoparticles therefore provide a method to combine hyperthermia and radiotherapy to drastically reduce the X-ray radiation needed, thus sparing normal tissue, reducing the side effects, and making radiotherapy more effective. PMID:24990355

  15. Radiotherapy for inverted papilloma: a case report.

    PubMed

    Levendag, P C; Annyas, A A; Escajadillo, J R; Elema, J D

    1984-06-01

    Inverted papilloma is an infrequent tumour of the nasal cavity and paranasal sinuses associated with controversy. The incidence of carcinoma in situ associated with inverted papilloma, has not been very well documented until now. Therefore, we present a case report characterized by an aggressive clinical behaviour, treated by extensive surgery and ultimately controlled by radiotherapy.

  16. Results of radiotherapy for Peyronie's disease

    SciTech Connect

    Niewald, Marcus . E-mail: ramnie@uniklinikum-saarland.de; Wenzlawowicz, Knut v.; Fleckenstein, Jochen; Wisser, Lothar; Derouet, Harry; Ruebe, Christian

    2006-01-01

    Purpose: To retrospectively review the results of radiotherapy for Peyronie's disease. Patients and Methods: In the time interval 1983-2000, 154 patients in our clinic were irradiated for Peyronie's disease. Of those, 101 had at least one complete follow-up data set and are the subject of this study. In the majority of patients, penis deviation was between 30 and 50{sup o}, there were one or two indurated foci with a diameter between 5 and 15 mm. Pain was recorded in 48/92 patients. Seventy-two of the 101 patients received radiotherapy with a total dose of 30 Gy, and 25 received 36 Gy in daily fractions of 2.0 Gy. The remaining patients received the following dosage: 34 Gy (1 patient), 38-40 Gy (3 patients). Mean duration of follow-up was 5 years. Results: The best results ever at any time during follow-up were an improvement of deviation in 47%, reduction of number of foci in 32%, reduction of size of foci in 49%, and less induration in 52%. Approximately 50% reported pain relief after radiotherapy. There were 28 patients with mild acute dermatitis and only 4 patients with mild urethritis. There were no long-term side effects. Conclusion: Our results compare well with those of other studies in the literature. In our patient cohort, radiotherapy was an effective therapy option with only very rare and mild side effects.

  17. Clinical and dosimetric implications of intensity-modulated radiotherapy for early-stage glottic carcinoma

    SciTech Connect

    Ward, Matthew Christopher Pham, Yvonne D.; Kotecha, Rupesh; Zakem, Sara J.; Murray, Eric; Greskovich, John F.

    2016-04-01

    Conventional parallel-opposed radiotherapy (PORT) is the established standard technique for early-stage glottic carcinoma. However, case reports have reported the utility of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) with or without image guidance (image-guided radiotherapy, IGRT) in select patients. The proposed advantages of IMRT/VMAT include sparing of the carotid artery, thyroid gland, and the remaining functional larynx, although these benefits remain unclear. The following case study presents a patient with multiple vascular comorbidities treated with VMAT for early-stage glottic carcinoma. A detailed explanation of the corresponding treatment details, dose-volume histogram (DVH) analysis, and a review of the relevant literature are provided. Conventional PORT remains the standard of care for early-stage glottic carcinoma. IMRT or VMAT may be beneficial for select patients, although great care is necessary to avoid a geographical miss. Clinical data supporting the benefit of CRT are lacking. Therefore, these techniques should be used with caution and only in selected patients.

  18. Overview on cardiac, pulmonary and cutaneous toxicity in patients treated with adjuvant radiotherapy for breast cancer.

    PubMed

    Meattini, Icro; Guenzi, Marina; Fozza, Alessandra; Vidali, Cristiana; Rovea, Paolo; Meacci, Fiammetta; Livi, Lorenzo

    2017-01-01

    Conservative management of breast cancer represents the standard treatment for early disease. Breast conserving surgery associated with radiotherapy for stage I-II has been proven to be as equally effective as mastectomy in term of local control, distant disease, and overall survival. The growing minimal invasive surgical approach on the axillary region, and the new breast reconstructive techniques, will probably lead to a significant decrease of the rate of side-effects related to mastectomy. Therefore, the adverse events caused by adjuvant radiation still remain a challenge. Cutaneous, pulmonary and cardiac toxicity represent the main toxicities of adjuvant radiotherapy for breast cancer. Safety profile of radiation is strongly dependent on the multidisciplinary management of the single case (systemic treatment, endocrine therapy, surgery), individual characteristics (i.e., co-morbidities, age, habits), and radiation-related aspects. Radiation techniques development, and facilities implementation concerning organs-at-risk sparing systems (i.e., image-guided radiotherapy, tracking systems, respiratory gating), represent brand new tools for the clinical oncologist, that would certainly minimize toxicity profile in the next future. However, data reported from published literature will greatly help physicians, to give to the patients appropriate counseling regarding the efficacy and potential adverse events of treatments, thus optimizing the informed decision-making process.

  19. Neo-adjuvant radiotherapy in rectal cancer

    PubMed Central

    Glimelius, Bengt

    2013-01-01

    In rectal cancer treatment, attention has focused on the local primary tumour and the regional tumour cell deposits to diminish the risk of a loco-regional recurrence. Several large randomized trials have also shown that combinations of surgery, radiotherapy and chemotherapy have markedly reduced the risk of a loco-regional recurrence, but this has not yet had any major influence on overall survival. The best results have been achieved when the radiotherapy has been given preoperatively. Preoperative radiotherapy improves loco-regional control even when surgery has been optimized to improve lateral clearance, i.e., when a total mesorectal excision has been performed. The relative reduction is then 50%-70%. The value of radiotherapy has not been tested in combination with more extensive surgery including lateral lymph node clearance, as practised in some Asian countries. Many details about how the radiotherapy is performed are still open for discussion, and practice varies between countries. A highly fractionated radiation schedule (5 Gy × 5), proven efficacious in many trials, has gained much popularity in some countries, whereas a conventionally fractionated regimen (1.8-2.0 Gy × 25-28), often combined with chemotherapy, is used in other countries. The additional therapy adds morbidity to the morbidity that surgery causes, and should therefore be administered only when the risk of loco-regional recurrence is sufficiently high. The best integration of the weakest modality, to date the drugs (conventional cytotoxics and biologicals) is not known. A new generation of trials exploring the best sequence of treatments is required. Furthermore, there is a great need to develop predictors of response, so that treatment can be further individualized and not solely based upon clinical factors and anatomic imaging. PMID:24379566

  20. Validation of automated supervised segmentation of multibeam backscatter data from the Chatham Rise, New Zealand

    NASA Astrophysics Data System (ADS)

    Hillman, Jess I. T.; Lamarche, Geoffroy; Pallentin, Arne; Pecher, Ingo A.; Gorman, Andrew R.; Schneider von Deimling, Jens

    2017-01-01

    Using automated supervised segmentation of multibeam backscatter data to delineate seafloor substrates is a relatively novel technique. Low-frequency multibeam echosounders (MBES), such as the 12-kHz EM120, present particular difficulties since the signal can penetrate several metres into the seafloor, depending on substrate type. We present a case study illustrating how a non-targeted dataset may be used to derive information from multibeam backscatter data regarding distribution of substrate types. The results allow us to assess limitations associated with low frequency MBES where sub-bottom layering is present, and test the accuracy of automated supervised segmentation performed using SonarScope® software. This is done through comparison of predicted and observed substrate from backscatter facies-derived classes and substrate data, reinforced using quantitative statistical analysis based on a confusion matrix. We use sediment samples, video transects and sub-bottom profiles acquired on the Chatham Rise, east of New Zealand. Inferences on the substrate types are made using the Generic Seafloor Acoustic Backscatter (GSAB) model, and the extents of the backscatter classes are delineated by automated supervised segmentation. Correlating substrate data to backscatter classes revealed that backscatter amplitude may correspond to lithologies up to 4 m below the seafloor. Our results emphasise several issues related to substrate characterisation using backscatter classification, primarily because the GSAB model does not only relate to grain size and roughness properties of substrate, but also accounts for other parameters that influence backscatter. Better understanding these limitations allows us to derive first-order interpretations of sediment properties from automated supervised segmentation.

  1. Undergraduates at Sea and in the Laboratory Conducting Habitat Mapping Using Multibeam and Sidescan Sonar

    NASA Astrophysics Data System (ADS)

    Sautter, L. R.; Harris, M. S.

    2008-12-01

    During the last five years, undergraduate students at the College of Charleston have had numerous opportunities to take part in the college's Transect Program and sail aboard research vessels on 2-5 day cruises to study the continental shelf. The program's purpose is to train students in oceanographic research while developing a long-term information geodatabase to characterize and monitor essential fish habitats, and to map seafloor geomorphology. During these cruises students take the lead to conduct a variety of research investigations which include hydrographic surveys of the seafloor using sidescan sonar, multibeam bathymetry, and video collected using a remotely operated vehicle and during SCUBA dives. Following the data collection cruises, students have enrolled in semester-long research courses to analyze data and document results through poster and oral presentations. More than 60 students have taken part in at least one of 6 programs. In the past two years, the NOAA Ship NANCY FOSTER has provided invaluable sea time to conduct multibeam surveys of the mid- and outer continental shelf off Charleston, so that the 22 participating Transect students have focused their work on seafloor mapping, and have become trained in state-of-the art CARIS multibeam and sidescan sonar processing software. Most of these students have presented their results at professional meetings, and manuscripts are currently in preparation. Students have had numerous post-program opportunities to conduct further research at sea and in the lab. They have collaborated with NOAA scientists and other investigators, conducting bathymetry data processing and analysis from other regions. Most recently, two program graduates worked with University of Washington investigators to map sites for the Ocean Observatory Initiative Regional Scale Nodes. Several students have been contracted or hired as hydrographic survey technicians, while others have gone to graduate school to continue their work

  2. Novel multi-beam X-ray source for vacuum electronics enabled medical imaging applications

    NASA Astrophysics Data System (ADS)

    Neculaes, V. Bogdan

    2013-10-01

    For almost 100 of years, commercial medical X-ray applications have relied heavily on X-ray tube architectures based on the vacuum electronics design developed by William Coolidge at the beginning of the twentieth century. Typically, the Coolidge design employs one hot tungsten filament as the electron source; the output of the tube is one X-ray beam. This X-ray source architecture is the state of the art in today's commercial medical imaging applications, such as Computed Tomography. Recently, GE Global Research has demonstrated the most dramatic extension of the Coolidge vacuum tube design for Computed Tomography (CT) in almost a century: a multi-beam X-ray source containing thirty two cathodes emitting up to 1000 mA, in a cathode grounded - anode at potential architecture (anode up to 140 kV). This talk will present the challenges of the X-ray multi-beam vacuum source design - space charge electron gun design, beam focusing to compression ratios needed in CT medical imaging applications (image resolution is critically dependent on how well the electron beam is focused in vacuum X-ray tubes), electron emitter choice to fit the aggressive beam current requirements, novel electronics for beam control and focusing, high voltage and vacuum solutions, as well as vacuum chamber design to sustain the considerable G forces typically encountered on a CT gantry (an X-ray vacuum tube typically rotates on the CT gantry at less than 0.5 s per revolution). Consideration will be given to various electron emitter technologies available for this application - tungsten emitters, dispenser cathodes and carbon nano tubes (CNT) - and their tradeoffs. The medical benefits potentially enabled by this unique vacuum multi-beam X-ray source are: X-ray dose reduction, reduction of image artifacts and improved image resolution. This work was funded in part by NIH grant R01EB006837.

  3. Compiling Multibeam Sonar data for the U.S. Pacific West Coast Extended Continental Shelf Project

    NASA Astrophysics Data System (ADS)

    Lim, E.; Gardner, J. V.; Henderson, J. F.

    2011-12-01

    The United States Extended Continental Shelf (ECS) Project is a multi-agency collaboration whose goals are to determine and define a potential extension of the U.S. continental shelf beyond 200 nautical miles (nmi). Under international law as reflected in the 1982 United Nations Convention on the Law of the Sea (UNCLOS), every coastal state is entitled to a continental shelf out to 200 nmi (the Exclusive Economic Zone) from its coastal baseline or out to a maritime boundary with another coastal country. The extended continental shelf (ECS) is the area that lies beyond this 200 nm limit where a country could gain sovereign rights to the resources of the seafloor and sub-seafloor. In 2007, the U.S. ECS Task Force designated NOAA's National Geophysical Data Center (NGDC) as the Data Management lead for the U.S. ECS Project and the data stewards and archival location for all data related to this project. The process to determine the outer limits of the ECS requires the collection and analysis of data that describe the depth, shape, and geophysical characteristics of the seafloor and sub-seafloor, as well as the thickness of the underlying sediments. The specific types of data that need to be collected include bathymetric data, seismic profiles, magnetic and gravity data, and other geophysical data. NGDC maintains several global geophysical databases, including bathymetric, seismic and geological data, all critical for supporting ECS analysis. Multibeam bathymetry is a primary dataset used for ECS analysis. Since 2003, the U.S. has collected more than 1.65 million square kilometers of multibeam bathymetric data from 18 cruises. One area where new data has been collected and where the U.S. may have an extended continental shelf is off the U.S. Pacific West Coast. New and old multibeam bathymetry archived at and delivered by NGDC were individually gridded by survey for an area within 48-30 degrees north latitude and -140 and -115 west longitude at a resolution of 210

  4. A novel technique for tuning of co-axial cavity of multi-beam klystron

    NASA Astrophysics Data System (ADS)

    Saha, Sukalyan; Bandyopadhyay, Ayan Kumar; Pal, Debashis; Kant, Deepender; Joshi, Lalit Mohan; Kumar, Bijendra; Meena, Rakesh; Rawat, Vikram

    2016-03-01

    Multi-beam Klystrons (MBKs) have gained wide acceptances in the research sector for its inherent advantages. But developing a robust tuning technique for an MBK cavity of coaxial type has still remained a challenge as these designs are very prone to suffer from asymmetric field distribution with inductive tuning of the cavity. Such asymmetry leads to inhomogeneous beam-wave interaction, an undesirable phenomenon. Described herein is a new type of coaxial cavity that has the ability to suppress the asymmetry, thereby allowing tuning of the cavity with a single tuning post.

  5. Evidence for age and evolution of Corner seamounts and Great Meteor seamount chain from multibeam bathymetry

    NASA Technical Reports Server (NTRS)

    Tucholke, Brian E.; Smoot, N. Christian

    1990-01-01

    The morphology of the Corner and Cruiser seamounts is discussed and the apparent age of seamount geomorphic features that are thought to have formed at sea level is derived. High-resolution, multibeam bathymetry of the seamounts shows geomorphic features such as guyots and terraces. The pattern of volcanism is consistent with the sequential formation of the New England, Corner, and Great Meteor chain seamounts above the New England hotspot. However, Late Cretaceous and Cenozoic absolute motion of the African plate over the hotspot differs significantly from predictions of the existing models. The derived age pattern of volcanism indicates formation of the Corner seamounts at ca. 80 Ma to 76 Ma.

  6. Handling, clamping, and alignment evaluation for multi-beam technology on Matrix1.1 platform

    NASA Astrophysics Data System (ADS)

    Lattard, Ludovic; Pradelles, Jonathan; Vergeer, Niels; Slot, Erwin; Pain, Laurent; de Jong, Erik; Torriani, Gianpaolo; Pieczulewski, Charles

    2014-04-01

    The MATRIX platform integrates new types of modules for handling and alignment capability and this represents two new and innovative aspects for multi-beam lithography. Results on performances in terms of robustness of the different modules in real manufacturing conditions, including the interface of the MATRIX platform with the SOKUDO DUO track will be reported. A new type of alignment solution was developed by MAPPER. This paper will show the first results on alignment sensor repeatability. Preliminary results on the overlay performance of the MATRIX platform will be presented and discussion will be engaged to position the MAPPER alignment concept with respect to the ITRS roadmap expectations.

  7. Evidence for age and evolution of Corner seamounts and Great Meteor seamount chain from multibeam bathymetry

    NASA Astrophysics Data System (ADS)

    Tucholke, Brian E.; Smoot, N. Christian

    1990-10-01

    The morphology of the Corner and Cruiser seamounts is discussed and the apparent age of seamount geomorphic features that are thought to have formed at sea level is derived. High-resolution, multibeam bathymetry of the seamounts shows geomorphic features such as guyots and terraces. The pattern of volcanism is consistent with the sequential formation of the New England, Corner, and Great Meteor chain seamounts above the New England hotspot. However, Late Cretaceous and Cenozoic absolute motion of the African plate over the hotspot differs significantly from predictions of the existing models. The derived age pattern of volcanism indicates formation of the Corner seamounts at ca. 80 Ma to 76 Ma.

  8. Design of pitch conversion component for formation of multibeam optical recording head.

    PubMed

    Sasaki, Kentaro; Kawamura, Norikazu; Tokumaru, Haruki

    2008-04-10

    We describe a design of a planar lightwave circuit for parallel information processing using visible light. The circuit serves as a pitch conversion component (PCC) that can align multiple beams close together and easily composes a compact optical system that can project optical spots at a narrow pitch on a certain small plane. From the viewpoint of its application to optical recording, a PCC is designed to have over 50 waveguides according to the fabrication of waveguides for a blue-violet beam. It is analytically confirmed that a PCC contributes to the formation of a multibeam optical recording head with numerous beams.

  9. Endoscopic ultrasound guided interventional procedures

    PubMed Central

    Sharma, Vishal; Rana, Surinder S; Bhasin, Deepak K

    2015-01-01

    Endoscopic ultrasound (EUS) has emerged as an important diagnostic and therapeutic modality in the field of gastrointestinal endoscopy. EUS provides access to many organs and lesions which are in proximity to the gastrointestinal tract and thus giving an opportunity to target them for therapeutic and diagnostic purposes. This modality also provides a real time opportunity to target the required area while avoiding adjacent vascular and other structures. Therapeutic EUS has found role in management of pancreatic fluid collections, biliary and pancreatic duct drainage in cases of failed endoscopic retrograde cholangiopancreatography, drainage of gallbladder, celiac plexus neurolysis/blockage, drainage of mediastinal and intra-abdominal abscesses and collections and in targeted cancer chemotherapy and radiotherapy. Infact, therapeutic EUS has emerged as the therapy of choice for management of pancreatic pseudocysts and recent innovations like fully covered removable metallic stents have improved results in patients with organised necrosis. Similarly, EUS guided drainage of biliary tract and pancreatic duct helps drainage of these systems in patients with failed cannulation, inaccessible papilla as with duodenal/gastric obstruction or surgically altered anatomy. EUS guided gall bladder drainage is a useful emergent procedure in patients with acute cholecystitis who are not fit for surgery. EUS guided celiac plexus neurolysis and blockage is more effective and less morbid vis-à-vis the percutaneous technique. The field of interventional EUS is rapidly advancing and many more interventions are being continuously added. This review focuses on the current status of evidence vis-à-vis the established indications of therapeutic EUS. PMID:26078831

  10. Technical advances in external radiotherapy for hepatocellular carcinoma

    PubMed Central

    Park, Shin-Hyung; Kim, Jae-Chul; Kang, Min Kyu

    2016-01-01

    Radiotherapy techniques have substantially improved in the last two decades. After the introduction of 3-dimensional conformal radiotherapy, radiotherapy has been increasingly used for the treatment of hepatocellular carcinoma (HCC). Currently, more advanced techniques, including intensity-modulated radiotherapy (IMRT), stereotactic ablative body radiotherapy (SABR), and charged particle therapy, are used for the treatment of HCC. IMRT can escalate the tumor dose while sparing the normal tissue even though the tumor is large or located near critical organs. SABR can deliver a very high radiation dose to small HCCs in a few fractions, leading to high local control rates of 84%-100%. Various advanced imaging modalities are used for radiotherapy planning and delivery to improve the precision of radiotherapy. These advanced techniques enable the delivery of high dose radiotherapy for early to advanced HCCs without increasing the radiation-induced toxicities. However, as there have been no effective tools for the prediction of the response to radiotherapy or recurrences within or outside the radiation field, future studies should focus on selecting the patients who will benefit from radiotherapy. PMID:27621577

  11. Pelvic Insufficiency Fracture After Pelvic Radiotherapy for Cervical Cancer: Analysis of Risk Factors

    SciTech Connect

    Oh, Dongryul; Huh, Seung Jae Nam, Heerim; Park, Won; Han, Youngyih; Lim, Do Hoon; Ahn, Yong Chan; Lee, Jeong Won; Kim, Byoung Gie; Bae, Duk Soo; Lee, Je Ho

    2008-03-15

    Purpose: To investigate the incidence, clinical characteristics, and risk factors of pelvic insufficiency fracture (PIF) after pelvic radiotherapy (RT) in cervical cancer. Methods and Materials: Medical records and imaging studies, including bone scintigraphy, CT, and MRI of 557 patients with cervical cancer who received whole-pelvic RT between January 1998 and August 2005 were reviewed. Results: Eighty-three patients were diagnosed as having PIF after pelvic RT. The 5-year cumulative incidence of PIF was 19.7%. The most commonly involved site was the sacroiliac joint. Pelvic pain developed in 48 patients (57.8%) at diagnosis. Eleven patients (13.3%) needed admission or narcotics because of severe pain, and others had good relief of symptoms with conservative management. In univariate analysis, age {>=}55 years (p < 0.001), anteroposterior/posteroanterior parallel opposing technique (p = 0.001), curative treatment (p < 0.001), and radiation dose {>=}50.4 Gy (p = 0.005) were the predisposing factors for development of PIF. Concurrent chemotherapy (p = 0.78) was not significant. Multivariate analysis showed that age {>=}55 years (p < 0.001), body weight <55 kg (p = 0.02), curative treatment (p = 0.03), and radiation dose {>=}50.4 Gy (p = 0.04) were significant predisposing factors for development of PIF. Conclusion: The development of PIF is not rare after pelvic RT. The use of multibeam arrangements to reduce the volume and dose of irradiated pelvic bone can be helpful to minimize the risk of fracture, especially in elderly women with low body weight.

  12. Actual Dose Variation of Parotid Glands and Spinal Cord for Nasopharyngeal Cancer Patients During Radiotherapy

    SciTech Connect

    Han Chunhui Chen Yijen; Liu An; Schultheiss, Timothy E.; Wong, Jeffrey Y.C.

    2008-03-15

    Purpose: For intensity-modulated radiotherapy of nasopharyngeal cancer, accurate dose delivery is crucial to the success of treatment. This study aimed to evaluate the significance of daily image-guided patient setup corrections and to quantify the parotid gland volume and dose variations for nasopharyngeal cancer patients using helical tomotherapy megavoltage computed tomography (CT). Methods and Materials: Five nasopharyngeal cancer patients who underwent helical tomotherapy were selected retrospectively. Each patient had received 70 Gy in 35 fractions. Daily megavoltage CT scans were registered with the planning CT images to correct the patient setup errors. Contours of the spinal cord and parotid glands were drawn on the megavoltage CT images at fixed treatment intervals. The actual doses delivered to the critical structures were calculated using the helical tomotherapy Planned Adaptive application. Results: The maximal dose to the spinal cord showed a significant increase and greater variation without daily setup corrections. The significant decrease in the parotid gland volume led to a greater median dose in the later phase of treatment. The average parotid gland volume had decreased from 20.5 to 13.2 cm{sup 3} by the end of treatment. On average, the median dose to the parotid glands was 83 cGy and 145 cGy for the first and the last treatment fractions, respectively. Conclusions: Daily image-guided setup corrections can eliminate significant dose variations to critical structures. Constant monitoring of patient anatomic changes and selective replanning should be used during radiotherapy to avoid critical structure complications.

  13. Underwater Landscape Evolution in the Peconic Bays (Long Island, NY) as revealed by High-Resolution Multibeam Mapping

    NASA Astrophysics Data System (ADS)

    Flood, R. D.; Kinney, J.; Weaver, M.

    2006-12-01

    The Peconic Bays, an estuary of the National Estuary Program, is about 50 km long and 10 km wide, ranges in depth to 20-30 m and is located between the North Fork and South Fork at the east end of Long Island. There is much interest in the nature and distribution of benthic habitats within this estuary, and we have been conducting high-resolution side-scan sonar and multibeam bathymetry and backscatter studies to understand sediment distribution patterns and physical processes and to guide benthic sampling. Our initial results indicate that the seabed morphology in this area has been shaped by a range of biological and physical processes that have been occurring since glacial times. Morphological elements of the seafloor include apparent glacial-aged topography, eroded glacial deposits, early post-glacial canyons and channels, widespread relict oyster reefs, modern migrating sand banks, restricted areas of modern mud accumulation, and active sand waves. The wide range of morphological elements representing a relatively long time span is apparently due to the fact that the area has been protected from large, erosive ocean waves during the post- glacial sea-level rise and thus there was apparently little wave-induced erosion at the shoreline. Also, there is not a very large modern sediment supply. The largest river on Long Island (the Peconic River) drains into the area. The Peconic River is about 25 km long with a drainage area of 200 km2 and drains a low-relief terrain. That river drains into Great Peconic Bay which may have trapped most of the sediment load. Additional modern sediment is derived from the erosion of glacial cliffs, but a low sediment supply plus strong currents results in insufficient sediment deposition to cover the relict topography in many areas. In addition to underscoring the importance of older environments in controlling more recent sedimentation patterns, observations suggest that important post-glacial and early interglacial climate

  14. Second cancers following radiotherapy for cancer

    SciTech Connect

    Curtis, R.E.

    1997-03-01

    The study of second cancer risk after radiotherapy provides a unique opportunity to study carcinogenesis since large groups of humans are deliberately exposed to substantial doses of radiation in order to cure disease. Detailed radiotherapy records for cancer patients allow precise quantification of organ dose, and population-based cancer registries are frequently available to provide access to large groups of patients who are closely followed for long periods. Moreover, cancer patients treated with surgery alone (no radiation) are frequently available to serve as a non-irradiated comparison group. New information can be provided on relatively insensitive organs, and low dose exposures in the range of scientific interest are received by organs outside the radiation treatment fields. This paper will review several recently completed studies that characterize the risk of radiation-induced second cancers. Emphasis will be given to studies providing new information on the dose-response relationship of radiation-induced leukemia, breast cancer and lung cancer.

  15. [Radiotherapy as primary treatment for chemodectoma?].

    PubMed

    Verniers, D; Van Limbergen, E; Leysen, J; Ostyn, F; Segers, A

    1990-01-01

    Chemodectomas are slowly growing tumours originating in the chemoreceptor bodies. The diagnosis is based on typical clinical symptoms and radiological investigation. CT scanning with contrast enhancement permits to establish diagnosis in most cases and gives a correct idea of tumour size, tumour extension, displacement of arteries and bone destruction. Small tympanic chemodectomas are successfully managed by surgery, without causing additional cranial nerve palsies. Surgery of larger lesions is frequently followed by a high percentage of local recurrence (greater than 50%) and important morbidity (neurologic sequelae). Our present series confirms that these tumours can successfully be treated by radiotherapy. Persisting local control rates can be obtained in more than 90% of cases with moderate doses (45-50 Gy in 5 weeks) of carefully planned radiotherapy.

  16. [Radiotherapy and targeted therapy/immunotherapy].

    PubMed

    Antoni, D; Bockel, S; Deutsch, E; Mornex, F

    2016-10-01

    Thanks to recent advances achieved in oncologic systemic and local ablative treatment, the treatments become more and more efficient in term of local control and overall survival. Thus, the targeted therapies, immunotherapy or stereotactic radiotherapy have modified the management of patients, especially in case of oligometastatic disease. Many questions are raised by these innovations, particularly the diagnosis and management of new side effects or that of the combination of these different treatments, depending on the type of primary tumor. Fundamental data are available, while clinical data are still limited. Ongoing trials should help to clarify the clinical management protocols. This manuscript is a review of the combination of radiotherapy and targeted therapy/immunotherapy.

  17. Perianal Paget disease treated definitively with radiotherapy.

    PubMed

    Mann, J; Lavaf, A; Tejwani, A; Ross, P; Ashamalla, H

    2012-12-01

    Extramammary Paget disease (empd) is a relatively rare cutaneous disorder described as an apocrine gland tumour occurring in both a benign and a malignant form with metastatic potential. The areas of the body affected are the vulva, perianal region, penis, scrotum, perineum, and axilla, all of which contain apocrine glands. When empd affects the perianal region, it is called perianal Paget disease (ppd). All forms of empd, including ppd, are typically treated by wide surgical excision. Perianal Paget disease usually occurs later in life in patients who are often poor surgical candidates, but the available literature is scarce regarding other treatment modalities, including definitive radiotherapy. We contend that ppd can be safely and effectively treated with radiotherapy, and here, we present the case of a 75-year-old woman with ppd who was successfully so treated. A brief review of the literature concerning the diagnosis, natural history, and treatment of ppd is also included.

  18. Proton Radiotherapy for Solid Tumors of Childhood

    PubMed Central

    Cotter, Shane E.; McBride, Sean M.; Yock, Torunn I.

    2012-01-01

    The increasing efficacy of pediatric cancer therapy over the past four decades has produced many long-term survivors that now struggle with serious treatment related morbidities affecting their quality of life. Radiation therapy is responsible for a significant proportion of these late effects, but a relatively new and emerging modality, proton radiotherapy hold great promise to drastically reduce these treatment related late effects in long term survivors by sparing dose to normal tissues. Dosimetric studies of proton radiotherapy compared with best available photon based treatment show significant dose sparing to developing normal tissues. Furthermore, clinical data are now emerging that begin to quantify the benefit in decreased late treatment effects while maintaining excellent cancer control rates. PMID:22417062

  19. Status of radiotherapy in a multidisciplinary cancer board.

    PubMed

    Ichikawa, Mayumi; Nemoto, Kenji; Miwa, Misako; Ohta, Ibuki; Nomiya, Takuma; Yamakawa, Mayumi; Itho, Yuriko; Fukui, Tadahisa; Yoshioka, Takashi

    2014-03-01

    Multidisciplinary cancer boards (CBs) for making cancer treatment decisions have become popular in many countries; however, the status of radiotherapy in CBs and the influence of CBs on radiotherapy decisions have not been studied. To clarify these issues, we reviewed the minutes of our CBs from February 2010 to March 2012, and we classified planned treatments discussed at the CBs into five categories and analyzed decisions concerning radiotherapy in each category. The fraction of cases for which radiotherapy was recommended was 536/757 (71%). These cases included 478 cases (63%) for which radiation therapy was planned and four cases (0.5%) for which radiation therapy was unexpectedly recommended. On the other hand, radiation therapy was canceled in 21 cases (4%) for which radiation therapy had been planned. This study showed that radiotherapy was discussed in many cases at CBs and that CBs have a great influence on decisions concerning radiotherapy.

  20. Postoperative radiotherapy in the management of keloids

    PubMed Central

    Carvajal, Claudia C; Ibarra, Carla M; Arbulo, Douglas L; Russo, Moisés N; Solé, Claudio P

    2016-01-01

    Background The high recurrence rate following keloid resection has generated interest in adjuvant treatments for this disease. Objective This study assesses keloid recurrence when treated with surgery and adjuvant radiotherapy. Methods Retrospective analysis of resected keloids in patients referred to a Chilean radiation oncology centre between 2006 and 2013. Local recurrence was defined as new tissue growth on the surgical scar margin. Results Around103 keloids were analysed in 63 patients treated with 15 Gy in three fraction radiotherapy which was initiated on the same day as the surgery (75% of cases). The median keloid diameter was 6 cm; the most common site was thoracic (22%); the most common cause was prior surgery (35%); 37% caused symptoms, and several (47%) had received prior treatment with corticosteroids (32%), or surgery (30%). The median follow-up was three years, and 94% of recurrences occurred during the first year following treatment. Uni and multivariate analyses showed that an absence of symptoms was a protective factor for recurrence (OR: 0.24), while the time interval from onset to treatment with surgery plus radiotherapy >4.2 years was a risk factor (OR: 2.23). The first year recurrence rate was 32% and stabilised at 32% by the second year with no recurrences after 15 months. Conclusions The combination of surgery and radiotherapy proved to be a good therapeutic alternative in the management of keloids. Our results are similar to those described in the literature for a dose of 15 Gy. Given these results, our centre will implement a new dose escalation protocol to improve future outcomes. PMID:27994646

  1. Radiotherapy equipment--purchase or lease?

    PubMed

    Nisbet, A; Ward, A

    2001-08-01

    Against a background of increasing demand for radiotherapy equipment, this study was undertaken to investigate options for equipment procurement, in particular to compare purchase with lease. The perceived advantages of lease are that equipment can be acquired within budget and cashflow constraints, with relatively low amounts of cash leaving the NHS in the first year, avoiding the necessity of capitalizing the equipment and providing protection against the risk of obsolescence associated with high technology equipment. The perceived disadvantages of leasing are that the Trust does not own the equipment, leasing can be more expensive in revenue terms, the tender process is extended and there may be lease conditions to be met, which may be costly and/or restrictive. There are also a number of technical considerations involved in the leasing of radiotherapy equipment that influence the financial analysis and practical operation of the radiotherapy service. The technical considerations include servicing and planned preventative maintenance, upgrades, spare parts, subsequent purchase of "add ons", modification of equipment, research and development work, commencement of the lease period, return of equipment at the end of the lease period and negotiations at the end of the lease period. A study from Raigmore Hospital, Inverness is described, which involves the procurement of new, state-of-the-art radiotherapy equipment. This provides an overview of the procurement process, including a summary of the advantages and disadvantages of leasing, with the figures from the financial analysis presented and explained. In addition, a detailed description is given of the technical considerations to be taken into account in the financial analysis and negotiation of any lease contract.

  2. Low-Dose Radiotherapy in Indolent Lymphoma

    SciTech Connect

    Rossier, Christine; Schick, Ulrike; Miralbell, Raymond; Mirimanoff, Rene O.; Weber, Damien C.; Ozsahin, Mahmut

    2011-11-01

    Purpose: To assess the response rate, duration of response, and overall survival after low-dose involved-field radiotherapy in patients with recurrent low-grade lymphoma or chronic lymphocytic leukemia (CLL). Methods and Materials: Forty-three (24 women, 19 men) consecutive patients with indolent lymphoma or CLL were treated with a total dose of 4 Gy (2 x 2 Gy) using 6- 18-MV photons. The median age was 73 years (range, 39-88). Radiotherapy was given either after (n = 32; 75%) or before (n = 11; 25%) chemotherapy. The median time from diagnosis was 48 months (range, 1-249). The median follow-up period was 20 months (range, 1-56). Results: The overall response rate was 90%. Twelve patients (28%) had a complete response, 15 (35%) had a partial response, 11 (26%) had stable disease, and 5 (11%) had progressive disease. The median overall survival for patients with a positive response (complete response/partial response/stable disease) was 41 months; for patients with progressive disease it was 6 months (p = 0.001). The median time to in-field progression was 21 months (range, 0-24), and the median time to out-field progression was 8 months (range, 0-40). The 3-year in-field control was 92% in patients with complete response (median was not reached). The median time to in-field progression was 9 months (range, 0.5-24) in patients with partial response and 6 months (range, 0.6-6) in those with stable disease (p < 0.05). Younger age, positive response to radiotherapy, and no previous chemotherapy were the best factors influencing the outcome. Conclusions: Low-dose involved-field radiotherapy is an effective treatment in the management of patients with recurrent low-grade lymphoma or CLL.

  3. Radiation transport in a radiotherapy room

    SciTech Connect

    Agosteo, S.; Para, A.F.; Maggioni, B.

    1995-01-01

    The photoneutron dose equivalent in a linac radio-therapy room and its entrance maze was investigated by means of Monte Carlo simulations under different conditions. Particularly, the effect of neutron absorbers and moderator layers placed on the maze walls was considered. The contribution of prompt gamma rays emitted in absorption reactions of thermal neutrons was also taken into account. The simulation results are compared with some experimental measurements in the therapy room and in the maze. 13 refs., 5 figs., 5 tabs.

  4. Partial breast radiotherapy with simple teletherapy techniques.

    PubMed

    Fekete, Gábor; Újhidy, Dóra; Együd, Zsófia; Kiscsatári, Laura; Marosi, Gusztáv; Kahán, Zsuzsanna; Varga, Zoltán

    2015-01-01

    A prospective pilot study of partial breast irradiation (PBI) with conventional vs hypofractionated schedules was set out. The study aimed to determine efficacy, acute and late side effects, and the preference of photon vs electron irradiation based on individual features. Patients were enrolled according to internationally accepted guidelines on PBI. Conformal radiotherapy plans were generated with both photon and electron beams, and the preferred technique based on dose homogeneity and the radiation exposure of healthy tissues was applied. For electron dose verification, a special phantom was constructed. Patients were randomized for fractionation schedules of 25 × 2 vs 13 × 3Gy. Skin and breast changes were registered at the time of and ≥1 year after the completion of radiotherapy. Dose homogeneity was better with photons. If the tumor bed was located in the inner quadrants, electron beam gave superior results regarding conformity and sparing of organ at risk (OAR). If the tumor was situated in the lateral quadrants, conformity was better with photons. A depth of the tumor bed ≥3.0cm predicted the superiority of photon irradiation (odds ratio [OR] = 23.6, 95% CI: 5.2 to 107.5, p < 0.001) with >90% sensitivity and specificity. After a median follow-up of 39 months, among 72 irradiated cases, 1 local relapse out of the tumor bed was detected. Acute radiodermatitis of grade I to II, hyperpigmentation, and telangiectasia developed ≥1 year after radiotherapy, exclusively after electron beam radiotherapy. The choice of electrons or photons for PBI should be based on tumor bed location; the used methods are efficient and feasible.

  5. Hypothyroidism After Radiotherapy for Nasopharyngeal Cancer Patients

    SciTech Connect

    Wu, Y.-H.; Wang, H-M.; Chen, Hellen Hi-Wen; Lin, C.-Y.; Chen, Eric Yen-Chao; Fan, K.-H.; Huang, S.-F.; Chen, I-How; Liao, C.-T.; Cheng, Ann-Joy; Chang, Joseph Tung-Chieh

    2010-03-15

    Purpose: The aim of this study was to determine the long-term incidence and possible predictive factors for posttreatment hypothyroidism in nasopharyngeal carcinoma (NPC) patients after radiotherapy. Methods and Materials: Four hundred and eight sequential NPC patients who had received regular annual thyroid hormone surveys prospectively after radiotherapy were included in this study. Median patient age was 47.3 years, and 286 patients were male. Thyroid function was prospectively evaluated by measuring thyroid-stimulating hormone (TSH) and serum free thyroxine (FT4) levels. Low FT4 levels indicated clinical hypothyroidism in this study. Results: With a median follow-up of 4.3 years (range, 0.54-19.7 years), the incidence of low FT4 level was 5.3%, 9.0%, and 19.1% at 3, 5, and 10 years after radiotherapy, respectively. Hypothyroidism was more common with early T stage (p = 0.044), female sex (p = 0.037), and three-dimensional conformal therapy with the altered fractionation technique (p = 0.005) after univariate analysis. N stage, chemotherapy, reirradiation, and neck electron boost did not affect the incidence of hypothyroidism. Younger age and conformal therapy were significant factors that determined clinical hypothyroidism after multivariate analysis. Overall, patients presented with a low FT4 level about 1 year after presenting with an elevated TSH level. Conclusion: Among our study group of NPC patients, 19.1% experienced clinical hypothyroidism by 10 years after treatment. Younger age and conformal therapy increased the risk of hypothyroidism. We suggest routine evaluation of thyroid function in NPC patients after radiotherapy. The impact of pituitary injury should be also considered.

  6. Targeting Radiotherapy to Cancer by Gene Transfer

    PubMed Central

    2003-01-01

    Targeted radionuclide therapy is an alternative method of radiation treatment which uses a tumor-seeking agent carrying a radioactive atom to deposits of tumor, wherever in the body they may be located. Recent experimental data signifies promise for the amalgamation of gene transfer with radionuclide targeting. This review encompasses aspects of the integration of gene manipulation and targeted radiotherapy, highlighting the possibilities of gene transfer to assist the targeting of cancer with low molecular weight radiopharmaceuticals. PMID:12721515

  7. Partial breast radiotherapy with simple teletherapy techniques

    SciTech Connect

    Fekete, Gábor; Újhidy, Dóra; Együd, Zsófia; Kiscsatári, Laura; Marosi, Gusztáv; Kahán, Zsuzsanna; Varga, Zoltán

    2015-01-01

    A prospective pilot study of partial breast irradiation (PBI) with conventional vs hypofractionated schedules was set out. The study aimed to determine efficacy, acute and late side effects, and the preference of photon vs electron irradiation based on individual features. Patients were enrolled according to internationally accepted guidelines on PBI. Conformal radiotherapy plans were generated with both photon and electron beams, and the preferred technique based on dose homogeneity and the radiation exposure of healthy tissues was applied. For electron dose verification, a special phantom was constructed. Patients were randomized for fractionation schedules of 25 × 2 vs 13 × 3 Gy. Skin and breast changes were registered at the time of and ≥1 year after the completion of radiotherapy. Dose homogeneity was better with photons. If the tumor bed was located in the inner quadrants, electron beam gave superior results regarding conformity and sparing of organ at risk (OAR). If the tumor was situated in the lateral quadrants, conformity was better with photons. A depth of the tumor bed ≥3.0 cm predicted the superiority of photon irradiation (odds ratio [OR] = 23.6, 95% CI: 5.2 to 107.5, p < 0.001) with >90% sensitivity and specificity. After a median follow-up of 39 months, among 72 irradiated cases, 1 local relapse out of the tumor bed was detected. Acute radiodermatitis of grade I to II, hyperpigmentation, and telangiectasia developed ≥1 year after radiotherapy, exclusively after electron beam radiotherapy. The choice of electrons or photons for PBI should be based on tumor bed location; the used methods are efficient and feasible.

  8. The role of radiotherapy in veterinary practice.

    PubMed

    Owen, L N

    1975-11-01

    It is common knowledge today that cancer is by no means an incurable disease and therefore it is no longer necessary to propose euthanasia for all inoperable cases of malignant neoplasia. The veterinary surgeon has a duty to inform his client of current methods of treatment, particularly radiotherapy, which may possibly provide a cure or prolong life without pain for several months. This article outlines the availability and usefulness of this important line of treatment.

  9. Glioblastoma multiforme after radiotherapy for acromegaly

    SciTech Connect

    Piatt, J.H. Jr.; Blue, J.M.; Schold, S.C. Jr.; Burger, P.C.

    1983-07-01

    A case of glioblastoma multiforme that occurred 14 years after radiotherapy for acromegaly is presented. The striking correspondence between the anatomy of the tumor and the geometry of the radiation ports is suggestive of a causal relationship. Previously reported cases of radiation-associated glioma are reviewed, and a brief appraisal of the evidence for induction of these lesions by radiation is presented. The differentiation of radiation-associated neoplasms from radionecrosis is also discussed.

  10. Adaptive Radiotherapy for an Uncommon Chloroma

    PubMed Central

    Majdoul, Soufya; Colson-Durand, Laurianne; To, Nu Hanh; Belkacemi, Yazid

    2016-01-01

    Granulocytic sarcomas, also referred to as chloromas or myeloid sarcomas, are extramedullary neoplasms that are composed of immature myeloid cells. This uncommon disease is known to be radiosensitive. However, the total dose and dose per fraction are not standardized. In addition, during the course of radiation therapy, significant reduction of the tumor is usually obtained. Thus, target volume reduction may require an intermediate radiotherapy plan evaluation for an adaptive treatment. A second plan at mid-dose is highly recommended. PMID:27920690

  11. Creating High-Resolution Multiscale Maps of Human Tissue Using Multi-beam SEM

    PubMed Central

    Hageman, Daniel J.; Garbowski, Tomasz; Riedesel, Christof; Knothe, Ulf; Zeidler, Dirk; Knothe Tate, Melissa L.

    2016-01-01

    Multi-beam scanning electron microscopy (mSEM) enables high-throughput, nano-resolution imaging of macroscopic tissue samples, providing an unprecedented means for structure-function characterization of biological tissues and their cellular inhabitants, seamlessly across multiple length scales. Here we describe computational methods to reconstruct and navigate a multitude of high-resolution mSEM images of the human hip. We calculated cross-correlation shift vectors between overlapping images and used a mass-spring-damper model for optimal global registration. We utilized the Google Maps API to create an interactive map and provide open access to our reconstructed mSEM datasets to both the public and scientific communities via our website www.mechbio.org. The nano- to macro-scale map reveals the tissue’s biological and material constituents. Living inhabitants of the hip bone (e.g. osteocytes) are visible in their local extracellular matrix milieu (comprising collagen and mineral) and embedded in bone’s structural tissue architecture, i.e. the osteonal structures in which layers of mineralized tissue are organized in lamellae around a central blood vessel. Multi-beam SEM and our presented methodology enable an unprecedented, comprehensive understanding of health and disease from the molecular to organ length scale. PMID:27870847

  12. Investigation of an X-band gigawatt long pulse multi-beam relativistic klystron amplifier

    SciTech Connect

    Liu, Zhenbang; Huang, Hua; Lei, Lurong; Jin, Xiao; Zhu, Lei; Wang, Ganping; He, Hu; Wu, Yao; Ge, Yi; Yuan, Huan; Chen, Zhaofu

    2015-09-15

    To achieve a gigawatt-level long pulse radiation power in X-band, a multi-beam relativistic klystron amplifier is proposed and studied experimentally. By introducing 18 electron drift tubes and extended interaction cavities, the power capacity of the device is increased. A radiation power of 1.23 GW with efficiency of 41% and amplifier gain of 46 dB is obtained in the particle-in-cell simulation. Under conditions of a 10 Hz repeat frequency and an input RF power of 30 kW, a radiation power of 0.9 GW, frequency of 9.405 GHz, pulse duration of 105 ns, and efficiency of 30% is generated in the experiment, and the amplifier gain is about 45 dB. Both the simulation and the experiment prove that the multi-beam relativistic klystron amplifier can generate a long pulse GW-level radiation power in X-band.

  13. Superimposed coherent terahertz wave radiation from mono-energetically bunched multi-beam

    DOE PAGES

    Shin, Young -Min; Fermi National Accelerator Lab.

    2012-06-27

    Intense coherent radiation is obtained from multiple electron beams monochromatically bunched over the wide higher-order-mode (HOM) spectral band in the THz regime. The overmoded waveguide corrugated by dielectric-implanted staggered gratings superimposes evanescent waves emitted from the low energy electron beams. The dispersion and transmission simulations of the three-beam slow wave structure show that the first two fundamental modes (more » $$TE_{10}$$ and $$TE_{20}$$) are considerably suppressed ($$\\sim-50$$ dB) below the multi-beam resonating mode ($$TE_{30}$$) at the THz regime (0.8–1.24 THz). The theoretical calculations and particle-in-cell simulations show that with significantly higher interaction impedance and power growth rate radiation of the $$TE_{30}$$ mode is $$\\sim$$23 dBm and $$\\sim$$50 dBm stronger than the $$TE_{10}$$ and $$TE_{20}$$ modes around 1 THz, respectively. As a result, this highly selective HOM multi-beam interaction has potential applications for power THz sources and high intensity accelerators.« less

  14. Geologic insights from multibeam bathymetry and seascape maps of the Bay of Fundy, Canada

    NASA Astrophysics Data System (ADS)

    Shaw, John; Todd, Brian J.; Li, Michael Z.

    2014-07-01

    The macrotidal Bay of Fundy, Canada, was systematically mapped in the early 2000s using multibeam sonar technology, partly to support efforts to develop hydropower. The primary product was a suite of 1:50,000-scale maps of shaded seafloor relief and backscatter. In addition, a ‘seascape’ map was produced in an attempt to classify the entire bay in terms of morphology, texture, and biota. The eight seascape groups that are delineated reflect the strong signature of glaciation in much of the bay, the effects of Holocene tidal range expansion, and the results of modern processes under a dynamic current regime. As a result of the recent mapping we are able to argue that the muddy depocentre in the southwest of the bay was primarily active before the well-documented expansion of tidal range that occurred in the Bay of Fundy in the Holocene epoch. We further demonstrate the complexity of the seafloor in one of the glacial seascapes, and discuss the morphology and stability of a major tidal scour. The evidence obtained from multibeam sonar mapping reveals the complexity of the sea floor in the Bay of Fundy not necessarily apparent on the 1977 surficial geology map based on sparse lines of single-beam echo sounder data.

  15. Geomorphology, acoustic backscatter, and processes in Santa Monica Bay from multibeam mapping.

    PubMed

    Gardner, James V; Dartnell, Peter; Mayer, Larry A; Hughes Clarke, John E

    2003-01-01

    Santa Monica Bay was mapped in 1996 using a high-resolution multibeam system, providing the first substantial update of the submarine geomorphology since the initial compilation by Shepard and Emery [(1941) Geol. Soc. Amer. Spec. Paper 31]. The multibeam mapping generated not only high-resolution bathymetry, but also coregistered, calibrated acoustic backscatter at 95 kHz. The geomorphology has been subdivided into six provinces; shelf, marginal plateau, submarine canyon, basin slope, apron, and basin. The dimensions, gradients, and backscatter characteristics of each province is described and related to a combination of tectonics, climate, sea level, and sediment supply. Fluctuations of eustatic sea level have had a profound effect on the area; by periodically eroding the surface of Santa Monica plateau, extending the mouth of the Los Angeles River to various locations along the shelf break, and by connecting submarine canyons to rivers. A wetter glacial climate undoubtedly generated more sediment to the rivers that then transported the increased sediment load to the low-stand coastline and canyon heads. The trends of Santa Monica Canyon and several bathymetric highs suggest a complex tectonic stress field that has controlled the various segments. There is no geomorphic evidence to suggest Redondo Canyon is fault controlled. The San Pedro fault can be extended more than 30 km to the northwest by the alignment of a series of bathymetric highs and abrupt changes in direction of channel thalwegs.

  16. Patterning of Aluminium thin film on polyethylene terephthalate by multi-beam picosecond laser

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Perrie, W.; Harris, P.; Allegre, O. J.; Abrams, K. J.; Dearden, G.

    2015-11-01

    High speed patterning of a 30 nm thick Aluminium thin film on a flexible Polyethylene Terephthalate substrate was demonstrated with the aid of Computer Generated Holograms (CGH's) applied to a phase only Spatial Light Modulator. Low fluence picosecond laser pulses minimise thermal damage to the sensitive substrate and thus clean, single and multi-beam, front side thin film removal is achieved with good edge quality. Interestingly, rear side ablation shows significant Al film delamination. Measured front and rear side ablation thresholds were Fth=0.20±0.01 J cm-2 and Fth=0.15±0.01 J cm-2 respectively. With laser repetition rate of 200 kHz and 8 diffractive spots, a film removal rate of R>0.5 cm2 s-1 was demonstrated during patterning with a fixed CGH and 5 W average laser power. The effective laser repetition rate was feff~1.3 MHz. The application of 30 stored CGH's switching up to 10 Hz was also synchronised with motion control, allowing dynamic large area multi-beam patterning which however, slows micro-fabrication.

  17. Calibration of a multi-beam Laser System by using a TLS-generated Reference

    NASA Astrophysics Data System (ADS)

    Gordon, M.; Meidow, J.

    2013-10-01

    Rotating multi-beam LIDARs mounted on moving platforms have become very successful for many applications such as autonomous navigation, obstacle avoidance or mobile mapping. To obtain accurate point coordinates, a precise calibration of such a LIDAR system is required. For the determination of the corresponding parameters we propose a calibration scheme which exploits the information of 3D reference point clouds captured by a terrestrial laser scanning (TLS) device. It is assumed that the accuracy of this point clouds is considerably higher than that from the multi-beam LIDAR and that the data represent faces of man-made objects at different distances. After extracting planes in the reference data sets, the point-plane-incidences of the measured points and the reference planes are used to formulate the implicit constraints. We inspect the Velodyne HDL-64E S2 system as the best-known representative for this kind of sensor system. The usability and feasibility of the calibration procedure is demonstrated with real data sets representing building faces (walls, roof planes and ground). Beside the improvement of the point accuracy by considering the calibration results, we test the significance of the parameters related to the sensor model and consider the uncertainty of measurements w.r.t. the measured distances. The Velodyne returns two kinds of measurements - distances and encoder angles. To account for this, we perform a variance component estimation to obtain realistic standard deviations for the observations.

  18. Superimposed coherent terahertz wave radiation from mono-energetically bunched multi-beam

    SciTech Connect

    Shin, Young -Min

    2012-06-27

    Intense coherent radiation is obtained from multiple electron beams monochromatically bunched over the wide higher-order-mode (HOM) spectral band in the THz regime. The overmoded waveguide corrugated by dielectric-implanted staggered gratings superimposes evanescent waves emitted from the low energy electron beams. The dispersion and transmission simulations of the three-beam slow wave structure show that the first two fundamental modes ($TE_{10}$ and $TE_{20}$) are considerably suppressed ($\\sim-50$ dB) below the multi-beam resonating mode ($TE_{30}$) at the THz regime (0.8–1.24 THz). The theoretical calculations and particle-in-cell simulations show that with significantly higher interaction impedance and power growth rate radiation of the $TE_{30}$ mode is $\\sim$23 dBm and $\\sim$50 dBm stronger than the $TE_{10}$ and $TE_{20}$ modes around 1 THz, respectively. As a result, this highly selective HOM multi-beam interaction has potential applications for power THz sources and high intensity accelerators.

  19. Superimposed coherent terahertz wave radiation from mono-energetically bunched multi-beam

    SciTech Connect

    Shin, Young-Min

    2012-06-15

    Intense coherent radiation is obtained from multiple electron beams monochromatically bunched over the wide higher-order-mode (HOM) spectral band in the THz regime. The overmoded waveguide corrugated by dielectric-implanted staggered gratings superimposes evanescent waves emitted from the low energy electron beams. The dispersion and transmission simulations of the three-beam slow wave structure show that the first two fundamental modes (TE{sub 10} and TE{sub 20}) are considerably suppressed ({approx}-50 dB) below the multi-beam resonating mode (TE{sub 30}) at the THz regime (0.8-1.24 THz). The theoretical calculations and particle-in-cell simulations show that with significantly higher interaction impedance and power growth rate radiation of the TE{sub 30} mode is {approx}23 dBm and {approx}50 dBm stronger than the TE{sub 10} and TE{sub 20} modes around 1 THz, respectively. This highly selective HOM multi-beam interaction has potential applications for power THz sources and high intensity accelerators.

  20. Challenges and requirements of mask data processing for multi-beam mask writer

    NASA Astrophysics Data System (ADS)

    Choi, Jin; Lee, Dong Hyun; Park, Sinjeung; Lee, SookHyun; Tamamushi, Shuichi; Shin, In Kyun; Jeon, Chan Uk

    2015-07-01

    To overcome the resolution and throughput of current mask writer for advanced lithography technologies, the platform of e-beam writer have been evolved by the developments of hardware and software in writer. Especially, aggressive optical proximity correction (OPC) for unprecedented extension of optical lithography and the needs of low sensitivity resist for high resolution result in the limit of variable shaped beam writer which is widely used for mass production. The multi-beam mask writer is attractive candidate for photomask writing of sub-10nm device because of its high speed and the large degree of freedom which enable high dose and dose modulation for each pixel. However, the higher dose and almost unlimited appetite for dose modulation challenge the mask data processing (MDP) in aspects of extreme data volume and correction method. Here, we discuss the requirements